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1.1 INTRODUCTION

People have always observed natural phenomena and then verbalized their obscrva-
rions for discussion with others. With the development of physics, the words in the
verbal descriptions were given symbols, which could then be manipulated according
to the rules of mathematics.

In physics two fundamental processes arc involved. The first 1s the deseription
of natural phenomena based on expeniments, which control variables. Theories are
not accepted by physicists until verified by experiment. The second 1s mathematical
manipulation or theorizing, which 1s a predictive process. If the observed quantities
have been described properly and given the proper symbols, then the subsequent
mathematical manipulations will result in new relationships that must be correct on
testing, clse their formulation will be rejected as incorrect or inadequate. Furthermore,
the results of the relationships must stand the test of ime. In this sense, time means
enough time for many experiments to be performed to test the relationships. The
laws presented in this book have met these requirements.

Although human beings have observed Nature from their first existence, it
was not until the time of Galileo (1564-1642) that these observations began to be
expressed in modern mathematical terms. Subsequent studies, measurements, and
critical evaluations developed what we now call the First Principles of physics, which
have truly stood the test of tume. The first six chapters of this book discuss these
principles and show how they are used in their simplest form, Other aveas of physics
maust satisfy these Fiyst Principles. Chapters 7 through 16 illustrate the use of these
principles i rotational motion, the behavior of gases, and electric and magnetic
phenomena. Chapters 1 through 16 constitute what is usually known as classical
Physics. In the remaining chapters, we introduce a different way of describing the
behavior of small physical particles. For example, although we may continue to
consider the electron as the smallest negatively charged particle, experiments have
shown that its behavior can also be described as a wave instead of a particle. The
mathematics of waves, instead of that of particles, must be used to explain the
electron’s behavior in certain situations, whereas the mathematics of particles still
applies in other situations. This revolution in thought, begun in the early part of this
century, has led to the method, or science, of wave mechanics, which is more generally
called quantum mechanics.

When the behavior of an electron within a solid is sought, very little can be
learned by the particle treatment, but a vast amount of understanding can be achieved
by the wave approach. How docs this fit in with our mention of the test of time and
observation? Although the actual length of time of this modern model (about 90
years) is short compared with the time since Galileo, the number of experiments that
have been performed is far greater. It has been said that of all the physicists who have
ever hived, 95% are sall alive.



QUANLTILIES AND UNILES =

The observation requircment is somewhatr more subtle. We cannot observe
fundamental pacricles such as an electron in the same way that we observe macroscopic
objects; they are too small. In fact, we will later discuss the Uncertainty Principle,
which will show that the mere act of observing will change the stare of the paracle.
Because of this principle, experiments that would completely characterize a small
particle are too difficulc o perform. Whar we do observe is the statistical behavior
of a vast number of particles, and we infer the average behavior of 2 member of the

sratistical ensemble. Therefore, although we may never know the physical paramerers |

of the individual particle, there are many physical experiments that can tell us if the
statistical model 1s sausfactory. )

].2 QUANTITIES AND UNITS

It a physical phepomenon is to be quantified, there must be suitable, agreed-on
mcasuring devices. Many measuring systemys have been created in the past, nonc
perfect. It is desivable to have a mcasurement system thar has the least number of
fundamental parameters. In classical physics, these are length, mass, and time. All
mechanical quantities can be defined in terms of these three. For example, speed is
the ratio of a lengzh to a time. We then choose a standard for each of rhe fundamental
parameters. Most saientific measurements use the metric system. There are two
versions of the metric system in use, the ggs (centimeter, gram, second) and the
mks (meter, kilogram, second). Although the cgs system is still often used 1in the
biological sciences, most measurements by physicists now usc the mks system. This
ts the mechanical part of the more general ST (Systeme Internationale) that covers all
physical measurements. The English system of units (foot, pound, second) is often
dictaced by manufacruring specifications. We will mostly use ST units in this book.

The unit of a quantty is as importanc as the magnitude, as indicated in the quote
from The New Yort: Times at the beginning of this chapter. It is meaningless to say “the
distance between two points 1s 10,” because the 10 may be meters, milcs, or inches,
The units are an integral part of the measurement and must be created algebraically.
Onem ay substituce for them or convert them to a different system, bue they cannot
!DC gotten rid of except by an algebraic process. For examiple, 7 is dimensionless, but
It is defined on the basis of two measured quandiies, the circumference of a ciccle
divided by its diamercr. It is independent of units because they cancel: arcumference
(meters)/diamerer (neters), and 11 3s seen that meters cancel algebraically.

Conversion of unirs must be done with care, and, in order to convert, a
fClationship berween units of two different systems must be known. Let us iHustrace
this with a reivial example. Tow many feet are there in 5 nu?

Smi=’ft (3.1

Unted Srates copy of the original
platinuny-iridium bar which for

many vears was the standard of
lengzh: rhe mewer

.




We know the relation
5280 ft =1 mu (1.2)

How do we substitute this with care? The safest rule is always to multiply by one
(unity), because we know that in algebra, multiplication of anything by unity leaves it
unchanged. Our conversion relation, Eq. 1.2, can be made into two different forms
of unity depending on whether we divide both sides by miles or by feer:

5280 ft Imi
Imi = 5280ft
We can now mulaply the left side of Eq. 1.1 by the first form of unity, which gives
5280 ft  _ :
5 mi = 5 i :’l—ﬁﬁ = 5 x 5280 ft = 26,400 ft

We see that miles in both the numerator and the denominator have cancelled
algebraically, leaving feet as the unit,

We can do more than one algebraic step at a time. For example, how many
seconds are in 1 day?

1 day = ? sec
We know three conversion relations
lday=24h lh=60min 1mn =60 sec

We select our choices of unity to give successive algebraic cancellanions

94K 60 mm \ /60 sec
1(.‘13}-':1513?(193?)( 1K )(TEHE)

= 24 x 60 x 60 sec = 84,600 sec

We may convert two units simultaneously in a single equation to save a lot of writing,
For example, a car traveling ar 60 mi/h travels how many feet per second?
60mi —60Hﬁ 5280 ft 1 K lmi’ﬁ') 60 x 5280
h 1mi J\60min/ \60sec/ 60 x 60

o w ft/sec = 88 ft/sec

Remember that in square or cubic units, all measurements must be in the same
units. It makes no sense to calculate the area of a room if its length is measured in feet
and 1ts width is measured in meters. Both measurements should be in the same system.
Also remember that when converting square or cubic units they must be squared or
cubed just as algebraic quantities. For example, how many cubic centimeters (1 m =
100 cm) are there in a volume of 1 m??

1 m?® = 1 o (100 cm) (10{) cm) (IDL'! cm) — 1,000,000 cm?

1wy 1 @ 1 =1



l ‘3 POWERS OF 10

fren, very large and very small numbers arise in physics. In 1 cm® of a solid there
are a vast number of atoms, about 1 followed by 21 zeros. Measurements have
shown that the range of atomic diameters in meters is between 0.0000000001 and
0.0000000003 m. Because of the difficulty of reading and writing numbers with many
zeros, we use powers of 10 noration. Recall the algebraic postulate that any quantity
1o the zeroth fower is, identically, unity. A bricf tablc of some powers of 10 follows.

10° = 1 10t= L =01
- 1
10'=" 10 107%= 55=001

102= 100 107 = 55 =0.001

|

(=4

10 = 1000 107 = gy = 0.0001

10* = 10,000
Some of thesc are used as prefixes; for example, 103 = kilo, 1073 = milli, 107 =
micro, 10™° = nano, 10712 = pico.

Let us review the algebra ot adding and multiplying powers with the leteer #
representing 10. (These rules apply for a equal to any value other than zero.)
EXAMPLE 1-1

(b x [,z"\)(f X am) — b[ll”ﬂ,m — bmrz-ﬁm

Substitute arbitrary numbers for the letters; for example, & = 2, ¢ = 3,7 = 4, and
m=12.

(2x 10M(3 x10%) =2 x 3 x 10* x 10 =6 x 10°

EXAMPLE 1-2
exa e o,
F xa” —_f'
Ife:é)f:Z’ 7 =4, and m=2,
6x10% 6
22 210 i=3 2
%100~ 30 x 10

EXAMPLE 1-3
(b xa”)+ (c x a™)
This form can be simplified it » = m, then

(bxa"y+ (c xa”y=(b+c)a"

POWERS OF 10 =« 5



If # % . they can be made cqual. For example, let
b=2andc=3, n=4andm=>5
substiruting in the algebraic relation, we have
2% 10* + 3 x 10°

Bur 105 = 10% x 10* and therefore
2% 10%+3 x 10° =2 x 10+ 3 x 10" x 10%

=2 +30)10* =32 x 10* =32 x 10°

This sum could also be done by converting the first term

1

0
2x%x10‘*+3x105=0.2x105+3x105:3.2x105

In scentific notation, usually only one digit is placed in front of the decimal
point.

1.4 ACCURACY OF NUMBERS

Suppose we wish to find the agea of a rectangular surface. We know that we multiply
the length / by the wadth w. Suppose we take a metric ruler to measure / and w. The
metric ruler’s smallest division is che millimeter, 107 m. Figure 1-1 illustrates the use
of a metric ruler to measure the length of che recrangle. We can see thar the measure of
length hies between 47.6 and 47.7 am; from the position of the edge of the rectangle we
can estimate the second decimal as being less than 0.5 mm but not less than 0.3 mm.
We can thercfore express our measurement as 47.6440.01 cmy, or 0.4764+0.0001 m.
Thus, the last digic is always uncerrain and the + value is the magnirude of the
uncertainty. Suppose we have measured the wadeh as 0.6343 £ 0.0001 m; what is
the accuracy of the calculacion of the arca? We examine the two cxtremes. The largest
arca 18

0.4765 m x 0.6344 m = 0.3023 m?
angd the smallest s
0.4763m x 0.6342 m = 0.3021 m?

We can write the answer as the average between the two values with = the uncertainty,
or 0.3022 £ 0.0001 m?, Therefore, the accuracy of the product cannor exceed the
accuracy of any of the components in the product.

This type of analysis must be extended to all dara-bandling, for example, sums,
differences and quotients. Suppose that we want to sum two numbers known with

lcm

—

17 78
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)
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different degrees of accuracy. What is the accuracy of the sum? As ap example, consider
chree successive points A, B, and Con astraght line. If the disrance berween A and B is
15.75 m and the distance between Band C1s 2.432 my, what is the distance between A
and C? The answer is obtained by summing the fwo numbers. [f we use a calcularor to
cvaluate the sum, it will rell us that the answer is 18.182 m. However, the only reliable
answer is 18.18 m, because we do not know whar the third digit after the decimal
point of the ficst number (15.75 m) is. No matter how accurately a given parameter is
measured, when s combined arithmetcally with another measurement the result is
only as accurarte as the least-accurare measurcnient. The number of accurate figures in
2 measurement is called the number of significant Sigures. Computer science students
are often misled becausc computer or calculator answers may have 8 to 10 figures. In
general, most of these figures have no srignificance and the angwer should be rounded
:)'r'( to the lowest number of signthcant figures of the quantiries used in the caleulation.

Tt is ncorrect 1o give an answer with a greater number of figures.

PROBLEMS

I.1  Express your heightin merers, using the relation Lin. =
2.54 cm.

1.2 Use the relations 1 mi = 5280 frand I m = 3.28 ftto
express the speed 60 mi/h i meters per second (m/sec).

.3 How many kilomerers arc in 1 mi?

-4 Express the following in scientific noration (a single
digit to the left of the decimal);

0.038, 0.000042, 5280, 62.356,

(4 x10% + 3 % 102)6 x 103

32 x 10%/(6.1 x 1072+9.2 x 1073

'-35 Express the following operation in scientific notation

4% 10% +6 x 10°
2 x 10—+

' l”_ Light travels ar 186,000 mi/sec. Assume an average of
365 days in a year. (a) How many vears does it take the tight to
rach us from rhe sun, which is 9.3 x 107 mi from the earth?
() How many years docs it rake the lghr to reach us from the
Nearest star, other rhan the sun, whichis 1.8 10" my from us?
Er

; Astronomers measure large distances i a unic called
t . L. . , .
€ light-year. This is the distance that lighe cravehing ar

approxamately 186,000 mi/sec will trave] in t yr. How many
mules are in 1 light-year?

Assume char the average lecture peniod is 1 micro-
century (1078 centaries); how long is the lecture period in
minutes?

Answer:  52.6 nin.

A light-fermi s 2 unit of time proposed by science-
fiction writer Tsaac Asimov. It is defined as the time raken by
light to trave] the distance of 1 fermi (1071° m), which is the
approxinate size of the proron. How long 1s 2 light-fermi in
seconds? Light rravels at 3 x 108 m/scc.

There are approximately 8 x 1028

copper atoms in
1 m® of coppet. (a) What is the volume occupied by a copper
atom? (b) What (s the radius of a sphere having thar volume?

(volume of a sphere = 471%/3)

Assume that atoms have spherical shape wich average
radius 4 x 1073 m. How many atcoms are there in the carth?
Neglecr the volume lost in packing the spheres and take the
average radius of the earth to be 6.37 x 109 m.

Answer:  4.04 x 10%8,



2 = PHYSICAL QUANTITIES

1.12 In the Old Testament the Lord commanded Noab
o build an ark 300 cubits long, 50 cubits wide, and 30
cubirs high. A cubit 1s the length from a man’s cibow to the
tip of his extended nuddle finger. We do not know Noabh’s
height, s0 measure a cubir from both a short person and a
ral) person. Assume the ark was a parallelepiped with right
angles. (2) Whar are the maximum and the minimum values
of its volume? (b) Assuming that the average animal required
aspaceof 2 x 4 x 6 fi?, and that one half the volume of the ark
was for food and passengers, whar s the possible variation in
the number of animals that could be accommodared?

Density is defined as the mass per unit volume. Take
the average density of the earth ro be 5.5 g/em? and assume
that the earth 1§ a sphere of radius 6.37 x 10% km. Calculate
the mass of the carth.

Answer: 5.96 x 10** kg.

A neutron is ong of the constituent particles of the
nucleus. The mass of the neutron is 1.67 x 107" kg. Assum-
ing that the ncurron is a sphere of radius 1 F (107 m), whar
is the density of the neutron in g/em*? Compare your answer
with the average density of the earth (see problem 1.13).

The radius of a carbon atom is abour 2.5 x 107% an.
(@) How many could fit in a row 1-cm long? (b) How many
could fit in 2 layer one atom deep and axca 1 em?? (c) How

many could fir in a cube 1 ¢cm on cach side? (d) It a cryseal of
carbon atoms {(diamond) had this form, what is the minimum
number of impurity atoms thar could block the light coming
through the faces of a i-cm® cube? Express your answer in
both percent and in parrs per million. (Hing: Assume as an
approximarion that a layer of impurity atoms on each of three
faces of the cube ar right angles 1o each other could block all
the lighr.)
Anmswer: () 2% 107 em™!, (b) 4 x 10+ em~2, (¢) 8 x

102} em=3, (d) 1.2 x 10*%, 1.5 x 1075%, 0.15 ppm.

The distance x of an object from 2 certain ongin is
found o vary with time £ asx = 2y + a2t + 4312, whercx isin
meters, £ 18 lseconds, and 4, 25, and a3 are constants, What
are the units of 41, 25, 452

A studentis trying to find what parameters determine
the period (time for a full swing) of a pendulum. After some
experimentation, he concludes that the period T is given by
T = 2n g/l where g = 9.8 m/s? is the acceleration of free-
falling bodies near the surface of the earth and / is the length
of the pendulum. (2) Show by the units of the terms that
the student’s conclusion 1s incorrect. (b) Assuming that the
period depends only ong and £, what is the proper functional
dependence of T on these two quantties?



2.1 INTRODUCTION

We will be dealing with cwo types of quantines in this book. Some quantinies arc
fully specified only by a number and a unit, such as a quart of milk or a pound of
potaroes. Such a quantiry consisting only of magnimde is called a sealar quantity.
Other measurements have meaning only if direction s specified along with the
magrurude. For cxample, telling a stranger that a gas station 15 1 ni away will not
help him unless you specify the direction also. A quantity that has both magnitude
and direcrion and obeys certain algebraic faws 1s called a vector quantity and will be
indicated 11 this book by boldface type.

2.2 VECTOR COMPONENTS

A vector direchon mist be specificd in relation to a given coovdinate sysecem. Given
a coordinate system, any vector can be expressed in terms of its components.

Let us examine the concept of vector components first by simply using the
compass points north, south, cast, and west as the dircctions.

Suppose you walk 5.0 mi cast and then 4.0 mi norch. How far ave vou and in
what dircction from the starting point?

We draw Fig. 2-1. We see that we have right-angle geometry and, because R 1s
the hypotenuse, using the pythagorean theorem, we have

R = /(4.0 mi)> + (5.0 mi)2 = 6.4 mi

We also know from trigonometry that

opposite side 4.0 ol

— = =0.8
adjacentside 5.0 ol

rand =
or
6 = arctan 0.8 = 39°

The distance R together with its orientanion 8 is calied the vector sum ot the two vectors
5.0 mi cast and 4.0 mi north and is given the name rasu/tant. The 5.0 mi cast vector
and the 4.0 mile north vector are called the components of R,

Suppose, mistead, you walk 5.0 mi east and 4.0 mi northeast, namely, 45° north
of cast as in Fig. 2-2, What 15 the resultant?

This 1s a little more complicated and, although you could use the law of cosines
and the law of sines o solve the problem, there i a simpler way thar will be used
throughout che book. This method s parucularly useful when you deal with problems
that involve more rhan two vectors. Ler us reduce the problem o two quesnons.

R =64mi,
: A.Qmi
.'\\ﬁ
T so0mi
P 1
E_—~ / |
- Sami |2
o 2N
5 mi Ik,



A

| How far arc you to the east of the starting poinr?
5 How far are you north of the srarting point?

Note that the additonal dashed lines in Fig. 2-2 labeled E; and N represent
he respective distances east and north traveled in the second leg. In this sccond
art of the walk we sec again a righr triangle with E; and N as the legs and with
4.0 mi as the hypotenuse. Recall from trigonometry that sin 45° = N»/4.0 mu and
cos 457 = E3/4.0 mi. Therefore, N2 = (4.0 mi) sin45° and E; = (4.0 mi) cos 45°.
Now make a rable of the dara

t

East North

Walk 1 5mi 0 mu
Walk2 (4.0 m)cos45° = 2.8 nt (4.0 ;i) cos45° = 2.8 mu
Total 7.8 mi 2.8 mi

Take a fresh piece of graph paper and plot these distances from a srarting point,
which will be at the ongin of a compass coordinate system, as in Fig. 2-3. The point
marked x 1s your location from the starting point, R is the distance, and 6 is the angle,
We now have right-triangle gcometry again and may write as before

R = /(7.8 mi)? + (2.8 mi) = 8.3 mi

2.8 mi
6= =) =19.7°
arctan (7.8 rm) 9

Consider the more complicated walk of Fig. 2-4. What is the resulrant R of the
four displacements shown?

To find R and 9, make a rable of cast-west and north-south displacenients. Note ¥
here that the table will be in terms of cast and 1 orth, so that a2 displacement ro the west
will be a negative east displacement and one to the south will be negarive north. The e —
Components of the 4.0 nu, 5.0 mi, 7.0 mi, and 2.0 mi displacements can be found by ’ o l?z.a mi
Putting pieces of graph paper wirh the origins at the starting points of these legs and it o &
finding the components by righr-triangle geometry, as in Fig. 2-5. 78 ™
Construct a table as in the previous example. k :
mi
T
East Nowth 4 /
Walk 1 (4.0mi)cos30° = 3.5mi (4.0 mi)sin30°= 2.0 mi /5 mi
Walk2  (5.0mi)cos60° = 25mi (5.0 mi)sin60’ = 4.3 mi Y-
Walk 3 —7.0mi = —7.0 mi Omi= 0 mi A i A
Walk4  —(2.0 mi) cos45° = —1.4 mi —(2.0 mi) sin 45° = —1.4 mi __36'1:..-«.-:’_{3&_

Total —2.4 mi 4.9mj AR
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Now rake a piece of graph paper and plot the rotal east and north displacements as
m Fig. 2-6.

R= \/'(—2-4: mi)? + (4.9 mj)? = 5.5 mi

4.9 mi

& = arctan (m

) = 63.9° north of the west direction

What we have donc in Fig. 2-6 is to definc an angle 6 as less than 90°. This makes
both the calcularion and the spatial location much simpler. To work with 8 < 90° we
had to ignore the sign of the coordinate and locare the resulting angle on the graph.
Had we kept the sign of the coordinate in the calculation of the angle, it would not
have helped much because the tangenr is negarive in two of the quadrants. We would
still have to rely on some construction to locate the angle. The merhod shown in the
preceding example, which first uscs a graph to show where vou are, leaves no question
as to the meaning of the angle 6, How does one specify the angle? Itis equally correct
1o sav it 1s 64° north of west or, using the 360° scale with east as 0%, the angle would be
180°—64> = 116°. Onc other pointshould be noted. In kig. 2-5 we symbolicatly used
four pieces of graph paper to obtain the components of the vectors. We could have
equally used a single piece by putting the beginning of each of the wallks at the origin
of the graph paper as in Fig. 2-7; henceforth, we will conserve paper by this method.

Now that we have rclared coordinate systems to navigacion, we can apply the
same techniques to cartesian coordinates x-y inscead of compass direcrions. To show
how the vector component method 1s used wn morc complicared sitnations, we will
abandon our walks and consider forces, The concept of forces will be developed more
fully in Chapter 4. For now, we can simply rely on our experience that a force is that
which when exerted in some direction against an object may or may NOC Cause it to
move. [t s a vector quanary.

EXAMPLE 2-1 A box is pulled by nwvo persons exerting the forces F) and B,
shown in Fig. 2-8, where Fy is given as 50 Ib. Two questions may now be asked. 1.

= S )
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What force F; must be applied so that the box moves only in the x direction? 2. What
single force could replace Fy and F; so that the box moves only in the x direction?

ti We obtain answers to these nwo questions by first consorucung a
vector diagram of the forces, as in Fig. 2-9, and wabulating the components of the

torces.
Force X conponents y components
5 (50 Ib) cos 307 = 43.3 |b —(501b)sin 30° = —25.01b
) 25 Frcos37° = 0.8F; Fosn37 = 0.6 F,
Total 4331b+0.8F, —25.01b + 0.6F;

If the object is going to move in the x dircction, the resultant force must be in
the x direction only, with no component in the y direction. If there is to be no net
force in the ¥ direction that could canse the box to move in that direction, then the
sum of the positive and negarive y forces must be zero. We can express this as

Y F=0
2516+ 0.6F, =

or

25 1b
0.6

Question 2 can be answered from the sum of forces in the x direction.

=41.71b

2:

> F.=4331b+0.8F,
=4331b+ 0.8 x 417 Ib
=76.7 Ib

hhuctorc‘ we conclude that instead of the nwo forces Fy and F; acting on the box,
£ S dypee ; X . : ’ ;
€ same resulr can be obtained by a single force of 76.7 1b pulling in the x direction.

FIGURE 2-7
F
#\37°
D"i'-__- ———————————— “»x
N 30°
Fi=5801b
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F
Fay 2 ’
P |
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- e = X
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We can now summarize the preceding discussion concerning the addition of

vectors by the method of components.

Establish a coordinate system. Choose an x-y cartesian coordinate system that
is convenient for calculation. For example, we will see in Chapter 4 that when
an object slides on an inclined plane, it is convenient to choose the plane as the
X axis.

Construct each vector with its tail at the ongin of this coordinate system.
Drop construction lines from the head of each vector perpendicular to the x
and y axes, and note from the laws of trigonometry that the ¥ component of a
vector 1s equal to the magnitude of the vector multiplied by the cosine of the
angle that the vector makes with the x axis. Similarly, the ¥ component of a
vector equals the magnitude of the vector fimes the sine of the same angle.
Add algebraically the individual ¥ components and y components of all the
vectors to find the x and ¥ components, respectively, of the resultant vector.

> The square of the resultant equals the sum of the squares of the x and ¥

components of the resultant.

To determine the angle of the resultant, it is best to make a sketch of the
resultant, showing itsx and y components, which will indicate in what quadrant
the resultant is. The angle between R and the x axis (either positive or negative
direction) is equal to the tangent of the absolute value of the y component of
the resultant divided by the absolute value of the x component.

We conclude this section by defining certain rules of vector algebra.

If we have a vector A, we define a vector—A as one whosc magnitude is the
same as that of A but its direction is opposite to that of A. _

A vector 2A is one whose magnitude 1s twice that of A and whose direction is
the same as that of A. More generally, when a vector is multiplied or divided
by a scalar quantity, we obtain a vector of different magnitude but of the same
direction as the initial vector.

3 When several vectors are added, they can be added in any order and thus the

distributive law holds; for example, (A +B) 4+ C = A + (B + C).

2.3 UNIT VECTORS

It is

lengthy to write and say x component, ¥y component, and z component. A

shorthand notation is used. Unit Vectors i, j, and k are introduced. These have the

respective directions x, ¥, and z and a magnitude of unity, so they give direction

without changing the magnitude. For example, the vector Fy in Fig. 2-9 thar has



<

components 43.3 ib in the x directon and —25 Ib in the y direction would simply be

wrirten as
v
F = (43.37 - 25j) b A
The convenrional diagram for three dimensions is shown in Fig. 2-10 wich the
corresponding UNIL VECLors.
The vecror F in Fig. 2-11 bas the components shown, which are obrained by il i
he right-triangle method of extending perpendiculars to the axes, This vector would e~
g K

be written as

F=(4i+8j+5k)Ib

t

0 Unit vecrors i, J, k

on the three coordinate axes.

F=/(41b)?+(81b)? + (51b)? ¥

and its magnitude 13 obrained from the three-dimensional pythagorean theorem

=10.21b

When desired, the direction can be obtained by standard methods of analyric geometry
to obtain its location in space. 2ib

2.4 DOTPRODUCT

Very often in physics we have two vecrors with an angle 6 between them, and we wish

to find the producr of their componpents that lie in the divection of one or the other
vector, FIGURE 2-11 Componenrs of

Consider Fig, 2-12. If we, for instance, select the A dircction, then the VectorFonthe three coordinare axes,
component of vector B in that direction is given by dropping a perpendicular !
(Fig. 2-12a) and noting from the resuleing right triangle that the component of B in @ . l
the A direction is B cos# and the product of dus component and vector A 1s ' {

|

ABcos8 L [

If, instead, we had sclecred the B direction we could cqually have dropped a
Perpendicular from vector A to the line of vector B (Fig. 2-12b) and obrained the
identical resude. Because rherc is no specified direction for the resultng product, we <
define such a productas a scalar. We use the shorthand notation of a dot ( ‘)torcpresent (B B \
this type of product, which is referred w as the dot producs - b

A-B=ABcosb (2.1) ‘ : A

Where on the right side 4 and B are simply the magnitude of cach of the veetors. We e Geomeuic ]

¥ 5= A . . . representation of fwvo ways o

will use this dor product r Chapter 5 on work and energy, both of which arise from P i
’ fornming a dor producr of vecrors A

vecror relationships although neither in itsclf has dircetion. and B



Let us apply our definition of the dot product to the unit vectors i, j, and k.
i-j=(1)1})cos90° =0
ik=(1)(1)eosO0° =0
jok=(1){1)cos%0° =0
1-i=(1)(L)cos0® =1
j-i=(1)1)cosQ® =1
k-k=(1){1)cos0O° =1

We see thar when a unit vector is dotred with a different unit vector the result is zero,
whercas when a unit vecror is dotred with itself the result is unity.

Find A BifA = 3i + 2jand B = —i + 3j.

A B =(3i+2§) (—i+3j)
=30 (—i)+3i-3j+2 (=) + 2 3
= —3+0+0+6
=3

You can verify that B - A gives the samce answer; therefore the commurative Jaw
holds for the dot product of two vectors.

¥
2.5 crossprobuct
In some topics of physics we often need to define a vector C, whose magnirude is
equal to the magnitude of one vector A times the component of a second vector B in ¢
the direction perpendicular to A (see Fig. 2-13). Moreover, we want the divection
of C 1o be perpendicular to A and B. _ - -x

We thus introduce a new type of product called the cross producr of A and B. 1f O
C is the cross product of A and B, we write s e
2 A
C=AxB (2.2) \

By this defininion, 1t is seen in Fig, 2-13 that the magninude of the vector Cis FIGURE 2-13 Geometric

representanion of the cross product
C =ABsin# A x B = C, where C = ABsin 4.



o=s

The direction of C is perpendicular to borh A and B and consequently perpendicular
ro the plane containing A and B. Therc are obviously two possible directions for a
vector perpendicular o a plane. This ambiguity can be removed by using a right-hand
sgle. A simple mnenomic is the following. Consider the two vectors to be two sticks
connected by a hinge ar the apex of the angle. Mentally place the palm of your right
hand against the outside of the furst stick o be crossed (in our case A) as if to push
¢he owo sticks together (see Fig, 2-14). Do this with the thumb extended and the
thumb will poine in the direction of the vecror cross product, The vector C' = B x A
will, from the definioon, have the same magnirude as C. However, it is clear from
Fig. 2-15 that the direction of C' is opposite to that of C; namcly,

AxB=-BxA
Note that this is in contrast to the dot product where A -B =B - A.

We can examine the resulung dircceions of cross products by operating on the
unit vectors of Fig. 2-10 with the right-hand rule. We find thar

ixj=k
ixk =i
k xi=j
jxi= -k
kxj=—i
ixk=—j

It should be noted in the definition thati x i =j x j = k x k = 0 because the angle
between a vector and Itself is zero and sin 0° = Q.

SAAMPLE 23 Find A x Bif A =3i+2jand B = —i + 3]

A x B = (3§ +2§) x (—i-+3j)
=3I x (=) + 31 % 3j+ 2j x (—1) + 2j x 3j
=0+9k +2k +0

=11k

LNV OU T INW oL o

I¢ Right-hand rule
for the vecror cross product. For A x
B, curl the fingers of the raght hand in
a direcrion such thar the fingers seem

ro push vector A toward vecior B.

The direcuion of the thumb points in
the direcuon of the veczor C = A x B.

T

: 315 Right-hand rule
for che vector cross prodoct of
BxA=-C. TR (V0 L



PROBLEMS

What are the x and ¥ components of the following
vector displacements? (a) 2 mac 20°2 (b) 3mar 12072 (¢) 4 m
ar 24072 (d) 2.5 m ar 325°2 All angles are with respecr o the
posifive x aus.

A sailboar follows a series of racing buoys. On the first
lap it goes 8 mi at 20°, then 10 mi ar 40°, then 6 mi ar
130~ Whar distance is it from its starting point, and in what
direction must it saf) to renirn?

Answer;  17.8 mi, 230.6°.

A sailboar sails 7 mi 11 the direcrion 37° north of east,
then 4 mi n the direcion 53° west of north. Whar 15 the
magnitude and the direction of the final leg that will bring 1t
to the starting poinc?

A wvecror digplacement A in the x-y plane has an x
component of 10 m. The angle benveen the ¥ axis and the
vector A is 37°. What 1s the magnitude of the vector A2

A force of 100 Ib acts on an object at an angle of 20°
with respect to the x axis, and a force of 300 Ib acts atan angle
of 607 with respect to the x axis. Wheart single force must be
applied at what angle to be the equivalent of these two forces?

Answer: 382 1b, 50.3°.

In problem 2.5 an additional 200 Ib acts at 215°. What
single force at whart angle will be the equivalent of these three
forces?

Consider the case discussed in Example 2-1, except that
Fy = F; = 50 Ib. The two men exerung these forces on the
box ask a small boy to push on the box while they pull i
so that it moves onlv in rthe x direction with a net force in
that direction of 90 Ib. With how large a force and in what
direction does the boy push on the box?
8.41b, —37°.

Answer:
7.6 Express the vectors of problem 2.1 in i. j, k notagop.

2.9 Express the vectors of problem 2.2 in i, j, k notation
and pertorim the summarion i that norarion.
Answer: 11.31 +13.8j.

Whar is the magnitude and the angle of the resultant
of vecrors A, B, and C, where A = 2i + 3§, B = 4i — 2j, and
C=—-i+j:

The sum of three vectors A, B, and C is equal to vector
R.IfA =2i—-3j,B=—i+2j,and R = =2i+ 3j, wharare
the components of vecror C? Make a skerch of vecror C on
a cartesian system, find 1ts magnimde and the angle it makes
with the x axis.

The resultant of vectors A, B, and Cis 2i +5. ItA =
6i—3jand B = 2i 4 5j, find the components, the magnitude,
and the angle of vector C.

Vectors A and B have magnitudes of 3 m and 4 m,
respectively, and are 307 apart. Find A - B and the magnitude
of A x B.

Answer: 10.4 m?, 6.0 m?.

If che veerors A and B of problem 2.13 are 1507 apare,
find A-Band A x B.

Find the dot and cross products of vecrors A and B
of problem 2.13 if they are 0° apact. If they are 180° apart.

& Fudthevector A x BifA =i—3j+2kand B =
-2i—j+ 3k

Find the dotproduct A-Bif A = 3i+4j—kand B =
—3j—12k. What are the magnitudes of vecror A and vector B?

2. 18 Use the dor product to find the angle benween vecrors
A and B in problem 2.17.

2. 19 Find the angle benween the vecrors A = 4i + 3 and
B = 6i — 3.
63.4°.

Amnswer:

2.20° Whatis the angle between the vector A = 3i — 7j and
the x-axis:

Find the angles berween the vector A = 21 — 3j + 5k
and thew, y, and z axes, respectively.

Answer: 71.1°,119.1°, 35.8°.
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5 55  Consider a vector A = 4j — 9j. Find a vecior 1n the
x-y plane thar is perpendicuiar to A.

Answer: 2(2.251 +j), where a is an arbitrary constant.

5 75 A vector R = 9i — 12j can be expressed as a linear
;mbination of two vectors A and B; namely, R = C1A +
C,B, where C and C; are two scalar constants. If A = 5i— 3j
and B = —i+ 12j, what ate Cy and Cy?

Answer: C1 = 1.68,C, = —0.58.

5 24 The resultant R of two vecrors A and B has half the
magnitude of A and 15 perpendicular to B. If the magnitude
of A is 5, what is the magmitude of B and the angle between

A and B?

2.25 Many theorems in geometry can be readily proved by
vecror algebra. Consider the triangle OAB in Fig, 2-16. Show
that the line joining the midpoint of side OA ro the midpoint
of side AB is parallel to OB and its length is half thar of OB.
(Hnt: Make vectors out of OA, OB, AB, CA, AD, and CD
and find relations between these vectors)

Problem

PROBLLEMS

2.26 Consider the line obrained by joinwng the origin and
the pointx = 5,y = 3 (see Fig. 2-17). Find the perpendicular
distance 4 from a powni P with coordinatesx = 1,y = 7 o
thar line.

Answer:  5.49.

»r

P(1.7)

(5. 3}

0 — » 2

2-17 Problem

2.27 The magnitude of vectors A and B are 4 and 10,
respectvely. The magnitude of the resultant R is 12, What s
the angle between A and B?

What is the area of the triangle formed by joining
the following three points: x = 0 m, 3y = O m; x = 3 m,
y=4m;x="7m,y=2nm. Recall that the area of a rrianglc
18 Arca = 1/2 base x height, (Hine: Malke vectors out of two
of the sides of the triangle and consider the magnitude of the
cross product of those two vectors.)

Answer: 11 m?2.



3.1 INTRODUCTION

In this chapter we introduce cermin vector quantities—position, displacemnent,
velocity and acceleration—used to describe the motion of a body. We define these
quantities and discuss the machematical relatiops berween them. We then derive
specific funcrional relations berween them and time (a scalar quantity) for the case
where the object moves in a straight line with constanr acceleravion. The chapter
concludes with a discussion of projecrile morion, onc of the simplest tvpes of
two-dimensional monon.

3,2 SPEED AND VELOCITY

Two words in English, “speed” and “veloaity,” are used interchangeably to indicate
how fast a body is moving. Inn physics we make a distincrion berween them, The
word “speed” is defined as a scalar quantity and “velociny™ is a vector quanoty. Thus,
the average speed (where average will be represented by a bar on top of the quantiry
involved) is the distance traveled in any direction, As, divided by the time At, or

As

speed = "

where
Af{anything) = final value — migal valae

Velocity is defined differendy. Consider a particle moving in space. Ler the
parncle be at point P in Rig. 3-1 at some inirial time Zg and at point P’ some later time
tr. The initial position of the particle can be specificd by a position vector ro obtained
by drawing an arrow from the origin of the coordinare system to point P. Similacly,
che position at the later time s speaified by a second position vector 1y that results
when an arrow 1s drawn from the ongin to point P’ The position at any other point
in che motion is specified by a corresponding position vector r. We can now define
the displacernent vector Ar as the vector difference between the final and the nial
position vectors, namely, Ar = rs — tg (sec Fig. 3-1). Correspondingly, we define
the average velocity ¥ as the ratio of the displacement vector to the time taken for the
dssplacement to occur, namely,

- _Yy—1to Ar -
v:—-—‘é—m:E {(A.2)
The distincnion between speed and velocity 1s difficult to grasp ar first, bur it is
extremely important, Consider the walk taken in Fig. 2-1. Suppose it ook Lh.
Then, by definiion, Eq 3.1, the average speed of walking was As/Ar = (4.0mi +
5.0mi)/Th = 9mi/h, whereas the average veloaty was ArjAr = 6.4mi/lh =

P <

» x
FIGURE 3-1  The displacement
vecror Ar is obrained by drawing an
arrow from the inital position vector
tp to the final position vector xy.



6.4 mi/hin the direction 39" north of east. Consider amore extreme example. Suppose
» race car 1s rraveling around a circular track of 1-mi diameter and its speedometer
reads 100 mi/h. This is the speed. The ame taken to reach any pomi s, from Eq. 3.1,
0 A;,-’?pccg. Becausc the track length is 7 x diameter = 3.14 mj, the time o

complete one clreutt 1s

3.14m

_ _ -2
[ = 100 mi/h 314 x107“h

and the time to go halfway around is 1.57 x 1072 h. However, the car’s average
velocity by the definition of Eq. 3.2 depends on irs position. When the car has gone
hzdf\‘l,-'a;’ around, say from the western-most to eastern-most position on rhe track,
then th'c magnitude of the vector displacement from the starting point is the diameter
or 1 mi. Hence, its average velocity to that poinris

) ou
1.57 x 10—2h

In one complete circuit, as the car passes the starting point s vector displacernent is

V= = 63.7 mi/h in the cast dircction.

zero and hence
5 O mi
T 314 x 10 2h

This seeming contradiction has occurred because we have taken large displacements

= Omi/h

for Ar, If we shrink the displacement to a minute amount by taking the limit

! Ar  dr I
v=lm — = — (3.3)
At—0 AL At

then the magnitude of the velocity, which is now called the insmntancons velociry,
at any point on the track will cqual the speed. This can be seen in Fig. 3-2,
Where we notice that as As becomes smaller, the difference berween As and the
FOI‘rcsp011di11g Ar decreases. We should also nete that in the limig where Ar becomes
Infinitesimally small, it becomes tangenrial to the path, and therefore the direction
of the instantaneous velocity is the rangent to the path. Thus, while the magnitude

Y v
A

SPEED AND VELOCITY

x —— X L

}"iG URE 35
Ay js th

A curved path of 1 car traveling dockwise. As is the disrance traveled by the car, and

7 he displacemient vector benwveen the position of the car ¢ ar some instant and the possuon ry
thC iRitial riman &e en Simee s A L s+ e
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of the instantancous velocity remains equal to the speed, the direcdon parr of the
instantaneous veloary is changing. Velociry is a vecror becausc it 1s equal 1o a vector
displacement divided by time, whicl is scalar, and the division of a vector by a scalar
does not remove the vector property. We should pote that by definition, Eq. 3.3, the
instantancous velocity v is the first derivative of the positon vector with respect to
time. It should also be pointed our that because Eq. 3.3 1s a vector equation, it holds
for cach of the carresian components of the vectors v and r, namely,
)

where vy, vy, and v, are the cartesian components of v and x, y, and z are those of r.

Uy

3.3 ACCELERATION

In the preceding secnon we introduced a convention in which A s a measurable
change between a final value and an initia) vajue and 4 is used for an infinitesimally
small change.

If there 1s a velociry change Av in a certain time Az, we define the average
acceleration as

or

where the subscripts f and 0 represent final and initial values, respectively. Usually in
a problem we start our stopwatch at £y = 0, so the clapsed time is simply ¢ and we
drop the subscript f. We may define an insrantaneous acceleration as

. AV dv P
a=—\m —=— (3.2)
At—0 AL At

which is the first derivatve of v with respect ro time. Substituting Eq. 3.3 for v, we

4 (dr _dzr i

which is the second derivative of r with respect to time.

weite

The positon of a body on the x axis varies as a function of rime
according to the following equation

x(meters) = (3t + 2¢2)m

Find 1ts velocity and acceleration when r = 3 sce.



Because the body moves in a straight line, r = . From Eq. 3.3

U= % = %(3; +2r%) = (3 +48) m/sec

The velocity of the body at? = 3 sec is therefore

v(t = 3sec) =34+ 4 x 3 = 15m/sec

From Eq. 3.5,
Av

d
A== E@—i—ét) = 4 m/sec’

Notice that 2 s a constant, and therefore (¢ = 3scc) = 4m Jsec?.

3‘4 LINEAR MOTION

Because displacement, velocity, and acceleration are vectors, we may treat them by
the method of cartesian components mtroduced mn Chaprer 2. First, let us consider
motion only in the direction of a single component, for example, the x direction, that
is, motion in a straight line.

If we start timing an object moving in the x direction when it starts from or is
passing the x = 0 point, we may wnte Eq. 3.2 as

. x=0
5 —
T -0
or
X =t 3.7)

Because in this section we will be talking aboutr motion in onc direction, we will drop
the subscript x from the velocity.

Equation 3.7 results from the definition of average velocity; thus it holds in all
cases whether or not the acceleration is constanc. Tn the remainder of this chapter, we
. will consider only constant acceleration.

' The derivadve of a variable, for example, the velocity v, with respect to a second
""‘fllabk, for example, time £, represents the instantancous #ate of change of the first
vafllablf—‘ (v) with respect o the sceond (£). Thus, the acceleration as defined in Eq.
3.5 i the rate of change of the velocity with time. If the acceleration is consrant, the
change iy the velocy during the first, second, chird, and all succeeding seconds of
the motion will be the same and cqual to the acceleration 2. Thus, if the mortion lasts
t Seconds;, the change in the velocity Av = v — vy = a2, where v is the final velocity

an ; o . . A
d vy is the inidal velocity. We can rewrite this resule as

LINEAR MO TTON =

Vrom_



If velocity v is plotted against time £, it is seen thar Eq. 3.8 is a straight line, as
indicated in Fig. 3-3. The slope of thus line is the constant acceleration 4.

With a little bit of thought, we can obtain another important relagjon. When
the velocity increases at a constant rare as in Eq. 3.8 and Fig. 3-3, the avcrage velocity
is one half the sum of the initial velooity vy and the final velocity v, namely,

_ vt (3.9)
U= ——— (3.9
2, rd
and Eq. 3.7 becomes
v+ U :
Lo P, (3.10)
2

The three equartions (3.7), (3.8), and (3.9) define lincar motion for constant acceler-
ation. Often, however, at least two of these, and sometimes all three, must be used to
solve a problem. It s convenient, thereforc, ro combine these three equadons to ob-
tain wo auxihary ones and have all five avatlable (thereby avoiding the necessity of
solving simultancous equations). We obrain the auxiliary equations i the following
wav,

From Eq. 3.8 writc

U— U
5:—2
¥

and substimuting it into Eq. 3.10 we obtain

Y (v+ vy) (v~ vg)

and

If we substitute Eq. 3.8 for vin Eq. 3.10, we obtain

X =

vy + 4 + vo
w2 t

and
1 .
x:volf—l—zatz (B2

We may derive these equations more formally by integration. By definition

dU i
= — [3.<
at

Rearranging terms and integrating, we write

v 1
/ av = f adr
(B} 0

Av /
Slope =¥ = a,/|
|
| A
|
e — ]
Fd At
bV
vy
— »!
FIGURE 3-3 Plor of v versus ¢

for constant aceeleration.




LINEAR MOTION

o
This cqunti()n holds in gencral whether or not acceleration is a constant. In the present
case scceleration is taken as constant, soa can be taken out of the integral and we write

% r
/ dv=a / dt
Juy 0

This regrares to

U -y =at
and
u=vy+ar
From the defininon
dx
V= —

ar
X 12
f Ax = / vdt
X0 0
Substitute Eq. 3.8 for v

/- d: Zf (U()—%—ﬂf)df:l}(]/ dt-%—a-/’i'dt
X0 0 0 0

l
X — X = vl - —2-12f2

Note that in this formulation of Eq. 3.12 we have not requived thatx = O atz = 0
as in the previous algebraic derivarions.
We may use the chain rule to write
dv  dudx du
4= — = —— = U—
dr  dxdr dx

or

2 2
% a(x — Xp)
2 2 0
v  — v = 2a(x — %) (

LQ“?MHS 3.7 through 3.12 have been derived for morion in the ¢ divection. Similar
C‘QUamous can simply be written for motion in the ¥ and z directions when the
omponents of the accelerarion in these directions are also constane.

There is one imporranc thing to be noted here. In the solution of motion
Problens we musr assion vecror directions. Suppose we observe a boy throwing a



ball as we look through a transparent piece of graph paper and draw lines of motion
and displacement. We could lie on our side or stand on our head and draw the lines
withour having any effect on the boy and his ball. Thercfore, choosing a partcular
coordinate systemis amatter of personal convenience. The upward drrection could be
the positive ¥ direction or the negative ¥ direction, or even a direction at an angle on
the graph paper, although we will always try to choose 2 system thae will minimize the
caleulational sreps. It is important to note thar once we choose a coordinate system,
all parameters have their vector direction controlled by it. If we choose the posinive v
direction as up and the boy throws the ball seratghe up, then the vector displacement
from the ground to its highest position 1s positive. During its upward travel, because
velocity is the displacement divided by the scalar time, it too 1s positive. The only
motion s in the y dircction, so we therefore nse y, vy, and 4, in the cquations previousty
denived. Thus, Eq. 3.8 is

B ¢ T
b

U = Voy Syt (3.8

We observe that in throwing the ballupward the largest value for the magninude
of the ¥ velocity occurs as it leaves the boy’s hand; then the ball begins to slow down
unril the upward velocity is zero. The only way that this can occur is if 2, in Eq. 3.8
is negative. Now g, is the acceleration caused by the force of gravity acting on the
ball, and we will see in the next chapter thae because the force of gravity 1s downward
then the corresponding aceeleration must also be downyward. The accelevation caused
by gravity i usually written as the symbol g and bas the approximate sea-level value g =
9.8 mfsec?.

When solving problems, the best approach is to abulare what 1s known and
what is to be found and select the appropriate cquation.

CAMPLE 3-2 A boy throws a ball upward with an itial velocity of 12 m/sec.
How high docs it go?

woluvion We choose the starting pomt as the origin and the upward
direction as posinve. Because velocity is a vector displacement divided by time,
upward velocity 1s also positive. The force of graviry is in the negative y direction, so
the sign of the accelerarion is therefore negacive. First list whar is known and whar is
to be found

voy = 12m/sec, v, = 0 (at its lughest port), #y, =g = -9.8 m/sec?

y=2

We sclect the v equivalent of Eq. 3.11 because all the quantties in that equanton are
known except v, the quantiry that we want to find

2

vy

2
- UQ\' = za,)ﬁy

Muluflash photograph of a falling
ball. Nore the increase in the distance
rravcled by the ball betwveen fashes
as it falls. This refleces an increase

in the velocity of the ball caused by
the dowpward-directed gravitational
zeceleragon.
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Sohving for y, we write
2 2
vy — UOy

e
J 2a,

Qubstituting the numerical valucs for the quandries in the cquarion,

0 — (12 m/sec)?

7 2(—9.8 m/scc’)
=7.3m
FXAMPLE 3-3 A boy throws a ball upward with an initial velocity of 12 m/sce

and carches it when it retuens. How long was it in the air?

Solution As in the previous example, we choose the starting point as the

origin and the upward dircction as positive.
vy = 12m/sec, a, =-9.8 m/sec?, y = 0 (vector displacement i5 zero
because it returns to his hand), ¢ =?
Soicatilia. 3.12
1,
y= vQ,r + anr
Using the fact that y = 0, Eq. 3.12 becomes
0= Uyt + %Ilyl‘z

We see immediately that if we divide both sides of the equation by z, we obran

1
0= v, + ant

and

2 Uoy

ay

2 x 12 my/sec

—-9.8 m/scc2
= 2.45 sec

3 In this example, the ball returned to its starting poing, so the displacement ¥
A as Z?l‘()‘ This simplified Eq. 3.12, because dividing both sides by r linearized the
quation. If the ball bad Janded on a roof, then the left side of Eq. 3.12 would not be

Zero ; 3 . .
and the ¢quation to be solved would be quadratic.

PROJECTILE MOTION



3.5 PROJECTILE MOTION

We have treated motion in ong dimension in the preceding section. Suppose we have
a smooth, frictionless wall in the x-y plane, If we ser an object in morion along the
wall, we find experimentally that the object 1s aceclerated downward in the y-vecror
dircction but that there is no accelerarion in the x-vector (horizonral) direction. Thar
13, the object moves in thex dircction with its constant initial x velocity but its y velocity
is increasing downward owing to the acceleradon of gravity. If we now perform the
same experiment with an imaginary wall, we have what is called projecrile motion. The
characteristic in the coordmate sysien in which we are working is that che x and y
motions and velocitics are at right angles to each other and that there is an accelerarion
only in the ¥ dircction, a,; there is no acceleration in the x dircction. The equations
of motion in the x and y dlreuzom are therefore

X = vped

1 2
Y= vyt + 3t

In view of the foregoing, projectile problems arc treated as two separate lncar
motion problems, one 1n the x dwrection and another in the ¥ direction, with only

time as the common element.

EX A ball moving at 2 my/sec rolls off of a 1-m-high rable, Fig. 3
How far horizontally from the edge of the table does it land?

AMPLE 3-4

: The ball will continue moving in the x direction for as long as it
is in rhc air. We can use Fq. 3.7 to determine the x coordinate of the ball as it lands

X = Vsl

where ¢ is the time that the ball s in the air. Note here that, because the valocity in
the x direction 1s unchanged, T, = vp, and therefore

Xr = 2mjfsecy
tf 1s the time when the y coordinate of the ball becomes —1 m. We have
yp=—1m, vy =0, 8, =—-9.8m/fsec’, # =2
Using Eq. 3.12,

¥ = vt + la-l’z
4 2 >

Because vp, = 0, this equarion becomes

Muluflash photograph of two falling
balls: One released from rest and
the other launched with an initial
horizonral veloctgy. The vertical
position of the two balls at any given
time (rime of the Hashes) is the same
tor both, indicating that the vertical
moton 1s tnatfeeted by rhe inial
horizontal velocity given 0 the
sccond ball,

FIGURE 2.4 The edge of the
table is chosen as the origin of the x-¥
coordinate systen.




PROJECTILE MOTION = 31

p—
and
2
r=+ |2
V&
[ a=1m)
Lf::l:

~9.8 m/scc’
= +0.45sec

and because in deriving Eqs. 3.9 through 3.12 we chose t = 0 as the imdal time, only
the positive root is acceprable, therefore,

X = 2m/sec x 0.45 sec

=09m

Let us examine a specific case of projecale motion along level ground. We will
find the general formula for the distance that a person can throw a ball or that a
gun can fire a projectile. The variables are shown in Fig. 3-5a and the initial velocity — * v =4 FNE
components in Fig. 3-5&. The distance.x that the projectile travels just before it strikes K

the ground is y

X = Uty = vty (because Uy = vyy) ;

From Fig. 3-55

ey & ,'é RLHeS d{__&\

Dge = Uy COS H e ke

Cannonball trajecrorics for vanous
and therefore launching angles as conceived by
Drego Utano in 1621,

Xp = vp cos iy

We determine the time in the air from the y-direction problem when the projectile
8 thrown upward with an injoal velocity of vy, = wpsind and 1s acted on by the
QL:CCICI‘a{i_(‘)n of gravity, #y, = g = ~9.8 m/sec?. At the end of its wajecrory the vector
displacement is ¥y =0, s0 we may write

i 2
JYr = 0, Doy = Vo SN 6)3 ay = —-98 H‘l/SCC—S Z:f =
Using
gy = vo S i Ayl
} o .
Y=yt - ST (3.14) Vpe = g €03
2 (®)
1, FIGURE 35 (s) Projecte

movon on level ground wich
vy and ¢ che inttial velocity and
angle, respeenively. (4) Thex and y

mmisnrm s & e Tmtel Al Al e ae

4 = —upsinh
. o



Substitute this for # in the equation for x-direcuon motion

2
X = 225in6cosb

Substirute the trigonometric relation 2 sin 6 cos § = sin 26 and obtain

2
v L
0 4in29 (3.15)

Xp =
We can rcadily find from Eq. 3.15 the angle at which the projecrile should be
chrown (or fired) to achicve a maximum distance in the x direction for a fixed value
of vg. The only variable 1s the angle in the term sin 26, and the sine has a maximum
value of unity when the argument is 90°. Therefore, xr of Eqg. 3.15 is maximum when
26 = 90" or = 45°.
Note that Eq. 3.15 is valid only when the projectile returns to the starting level,
because we setyr = 0 in Eq. 3.14. If it returns to somc other level, then the quadratic
equation in tymne must be solved (see problems 3.16 and 3.17).

- 0 ™

EXAMPLE 3-5  Aboy stands on the edge of 2 voof 10 m above the ground and
throws a ball with a velocity of 15 m/sec at an angle of 37° above the horizonral. How
far from the building docs it land? See Fig. 3-6.

Solurion  Let us choose the edge of the roof as the origin of the coordinate
system. There is no acceleration in the x direction, so we may siroply write the
following for x distance

Xf = Uxly = Vogly
v, = vgcos 37° = 15 m/sec x 0.8 = 12 m/sec
xr = 12 m/seciy

We now need to find the time in the air, which is a motion problem in the y direction
only,

yr= —10m, vy, = 15m/secsin37° = 15m/scc x 0.6 = Om/sec

J
_ ect pr =0
ay = —9.8m/sec”, Iy =

We use Eq. 3.12
L
Y= vyt + ia}.t
Ifr = ty wheny =y = —10m, this equation can be wriren as

1
S8+ vty ~yp =0

FIGURE 3-6

Example 3-5.
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ving this guadratic ¢quation for z

vy % \Juge — (4) (34,) (=)
(2) (52)

Sol

{ff:

~upy T \/ Upy2 2tzy i

2y

Substiruting the numerical values for yy, vy, and 2,

—{9 m/sec) % \/(9 m/scc)? + (2)(=9.8 m/sec’)(—10m)

-98 m/sccz

i =

tp = 2.6s¢cc, —0.78sec

Because we have started riming when the ball is thrown, rhe negative time solution is
rejected because it has no physical meaning to this problem. Substiture the positive
time of 2.6 sec into the equation of motion in the x direction and obtain

xp = 12m/sec x 2.6sec = 31.2m

It will be instructive to find the magnitude of the velocity and the angle ar which
the ball strikes the ground. This 3s obtained from the components of the velocity just
before it hirs, as shown in Fig. 3-7. We sce from the vector component method that
the ball’s vector velocity just before striking the ground is given by the final value
of its components, vy, and vg. Because we have a right triangle, we may use the
pythagorean theorem

=g
and the angle ¢ at which jc scrikes the ground is
A = arctan %
fo y
Y = 12 m/see because jt is unchanged during the ball’s flight. We musc therefore
find vy, We obrain this from Eq. 3.8 in the y direction.

voy = 9m/sec, ¥ = 2.6sec, a, = —9.8 m/sec?, vg =? I\ o 2
Up = voy + oty Ny
Uy = 9m/scc — 9.8 m/sec? x 2.6 sec L
vy = — 16.5 m/sec |

Then FIGURE 3-7

Example 3-5.

Diagram to calculate the angle at

v = \/(llm/scc)2 + (—16.5m/sec)? = 20.4 m/sec

ground.

which the projectile strikes the



| —16.5m/sec]

6 = arctan = 54°

12 m,scc

where ¢ 15 the angle indicared in Fig, 3-7.

PROBLEMS

3.1 Astudent drives to colicge 15 km away from home in
half an hour. Afrer classes, he returns home in 20 min. Find (a)
the average speed on his way to college, (b) the average speed
for the round nip, (¢) his average velociry for the entire trip.

3.2 The postton of a particle moving alony the » ads is
given by x = 3 + 17¢ — 52, where x is in meters and 7 is
i seconds. (a) What is the position of the particle at £ = 1,
2, and 3 sec? (b) At what time does the particle return 1o the
origin? (¢) What is the instantaneous velocitv arr = 1, 2,
and 3sec? (d) At what rime is the instantancous velocity of
the particle zero? (¢) What is the velocity of the parricle as it
passes through the origin? (f) What is the acceleration of the
particle as it passcs the origin?

3.2
given byx = 54 2r + 47% — 2%, wherex is in merers. (a) Find

The position of 4 parucle moving in a srraight line 1s

an expression for the instantancous velocicy as a funcrion of
time. (b) Find the posinon of the particlearz = 0, 1,0.1, and
0.0Lsec. (¢} What is the average velocity between £ = 0 sec
andz = 1sec, berweenr = Qsecandt = (.1 sec, and between
t = 0scc and r = 0.01sec? (d) What is the instantancous
veloatey at £ = Osec? (¢) Whart conclusion do you draw from

N

the answers in (c) and (d)

3.4 A caris driving cast ar 60 kmy/h, it then makes a turn
and travels north at 50 ko/h. Tf it takes 2 sec to make the curn,
what is the average accelerarion of the car over this 2 second
interval?

Answer: 10.85 my/sec?, directed 39.8° north of west.

3.5 Consider ihe particle of problem 3.3. (a) Find an
cxpression {or the acceleration of the particle as a tuncrion of
tme. (b) What is the instantaneous velocity of the particle
0, 1, 0.1, and 0.01sec’ (¢) What is the average
acceleration between ¥ = Qsec and £ = 1 sec, benwveen r =
Osccandt = 0.1 sec, between s = Osecandr = 0.01 see? (d)

at + =

Whar 1s the instanraneous accelerarion at £ = 0 sec? {¢) What
condusion cant you draw from the answers in (¢) and (d)?

3.6 A car starts from rest and acecletares uniformly to a
speed of 25 m/sec in 8sec. (a) Whar is the aceeleration? (b)
How far did ir travel in the 8 sec?

(a) 3.13 m/scc?, (b) 100 m.

Answey:

3.7 Avrockersrarting from restrises to a height of 20,000 m
in 60 scc. (a) What was the average velocity of the rocker? (b)
Assuming rhat the acceleration was consrant, whar was the
acccleration of the rocker? (¢) What was rhe velocity and the
height of the rocker after 30 sce?

3.2 Aboy stands on the edge of a building 10 m above the
ground and throws a ball upward wich an initial velocity of
12 m/sec. Tt misses the roof on the way down and falls to the
ground. Find how long the ball was in the air and its velocity
just before it strikes the ground. (Fint: takey = 0 atz = 0
and y final as —10m).

Answer: 3.11 sec, —18.44 m/scc.

3.9 A car moving ar 25 m/sec suikes a tree, and the tree is
seen to dent the front by 0.5 m. Assume that the deceleracion
of the car was constant. Find the deceleration and rime it took

the car to stop.

3.10 A car moving with constant acceleration covers a
distance of 50m between nwo points in 5sec. Is velocity
as ir passes the second point is 16 m/sec. (a) What is its
acceleraton? (b) What was its velocity as it passed the first
point?

Answer:  (a) 2.4m/sec?, (b) 4.0 m/sec.

3.1 Aball is dropped from the roof of a building. Tt 15
observed to take 0.2 see to pass by a window 2 m high. How
far is the top of the window from the roof?

Amswer: 4.15m.




=
5.2 Aballis dropped from a bridge 60 m above the sutface
of the water Ope second larer, a second ball is thrown dovwwn
with an inigial velocity vo. Both balls strike the water at the
same time. (8 Hosw long were the balls in the air? (b) What
was the iniial velocity of the second ball? (¢) Whar were the
velocities of the balls as they struck the warer?
(a) 3.50sec, 2.50scec, (b) —11.76 m/sec,

(c) —34.30 m/sec, —36.25 m/sec.

Agiswer:

T3 A motorcvele is waiting at an intersection. As the
light turns green it starts with an acceleration of 20 m/sec?.
At that same moment a car, moving with constant velocity of
120 my/sec overtakes and passes the motorcycle. (a) How far
from the traffic hight will the motorcycle overtake the car? (b)
What is the velocity of the motarcycle at that point?

3.19 A girl drops a flowerpot from 2 window 50 m above
the ground. At the same instant a boy direcdy under che
flowerpot throws a stone with an upward velocity of 30 m/sec.
(a) How far above the ground will the stone hit the pot? (b)
How long after the flowerpor was dropped does the hit rake
place? (c) Whar is the minimum velocity with which the stone
must be thrown for the hit to occuy?
Answer:  (a) 36.4m, (b) 1.67 sec, (¢) 15.65 m/sec.

3.15  Anelectron is ser in motion horizonrally with a veloc-
ity U, = 4 x 10° m/sec. How far will it fall while traveling a
horizontal distance of 10 m?

PROBILEMS

3.16 A boy standing on the ground throws a ball ar ap
angle of 377 above the honzontal with a velocity of 15 my/sec.
It lands on the edge of a flat roof of a building 3 m high. How
far hovzontally from the boy docs w stike the roof?
Answer:  16.86m.

3.17 A boy standing on the ground throws a ball ar an
angle of 37° above the honzontal with a velocity of 15 m/scc.
It strikes the wall of a building 16 m away. How high above
the ground s the pomt at which the bail strikes the building?
Answer:  3.32m.

3.18  Anarullery gunner wishes to have a projectile land ar
a point on level ground 20,000 m away from the gun. If the
muzzle velocity is 500 m/scc and the muzzle is assumed to be
ar ground level, ar what angle above the horizontal should
the gun be aimed?

3.19  Tfche gun of problem 3.18 is on a hill 30 m high and
the same angle of elevation is used, bow far beyond the target

will the projecrite land?

A batrer ar home plaie his a baseball L m above the
ground. The ball leaves the bacin the direction of an outielder
with a velocity of 30m/sec ar an angle of 30 above the
horizonral. Half a second after the ball is hir, the outfielder
100 m away from home plate nins to carch the ball. How fast
must he run to catch the ball just before it hits the ground?

Answer:  7.16m/scc,
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4.] INTRODUCTION

In this chaprer we will consider Newron’s three laws of motion. Although when firse
propounded they were postulates, they have since been verificd by expenment in so
rany ways that they are now considered Laws of Nature. There is one consistent word
in these three laws and thar is “body” We sometimes speak of chus as the newronzan
body. Norice that body is singular. In a given physical situation we must first define the
newtonian body, which may often be a mathemarical pointg, i which case iris called a
particle. If the siruation has two bodies, then Newton’s Jaws must be applied separately
to cach. Often we solve complicated systems of solids on a computer that can
remember and vary 10,000 atomic positions in 2 solid. We require an cqual number of
applications of Newton’s laws, one for each, although the complexity of the solution
of that number of simulraneous equations is often reducible by symmetry of behavior.

Ii addition to using the basic rerms of Chapter 1 —length, mass, and time —
we will discuss the term force, which we have used a bit freely. A precautionary word
might be said of these.

Length, at least on carch, can be measured by adopring a standard such as the
length of the king’s foot, or the length of a standard bar of meral, and comparing
other lengths with it.

Time can be measured by divisions of the motion of the carth either w roration
abour its own axis or in revolution about the sun. Again, a standard has been
established by our environment. An carly recorded question about what time really
means 1s found in a discussion by St. Augustine in his Confescons around 400 A.D.
“For so it is O Lord, my God, I mcasure it, but whart it 1s I mcasure 1 do not know?”

Mass 1s an even more obscure property. Newton first referred to it as inertial
mass, that propery of a body which resists being set in motion if a force s applied. Bur
whar is force? Ic 1s that entity which under cerrain conditions, to be discussed shortly,
can change the state of motion, of 2 mass when iraces o3 it. And dhus we find ourselves
in a circular argument. We may define mass if force 1s known, or we may define force it o
mass is known. The customary approach is to start with mass and define force through
the motion it causes on mass. This enables us to use a combination of dimensions—
lengrh, mass, and time for force. So if we choosc an arbitrary object, and agree thatirbe
the standard of mass (the kilogram was selected), we will be able o evaluare the mass of
any other body by means of Newron’s second law. We will shortly sce how thisis done.

4.2 NEWTON’'S LAWS

We will nort srare the three laws exactly as Newton did; instead we will usc modern

English so that we may discuss chem with no misunderstanding. (sase Newnoy (1642-1727).
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T NEWTON'S LAWS = 39

. First Law: Every body of matter continues in a state of rest or moves with
el o 7 k4
constant velocity in a strayght Jine unless compelled by a force o change that

sgate.
Second Law: When pet unbalanced forces act on a body, they will produce a

change in the nwmentum (this concepr will be defined shortly) of that body
Propo_rticmai ro the vecror sum of the forces. The direcrion of the change in
momenoun Is that of the line of action of the resulrant force.

Thivd Lasw: Forces, arising from che interaction of particles, act in such a way
that the force exerted by one particle on the second is equal and opposite to
the force exerted by the second on the first and both are directed zlong the line

joming the two particles. (Or, as usually expressed, action and reacrion arc equal

and opposite.)

Tn the first law Newton implies what we call fimmes of refevence. He has implied
thar a body at rest with respect to an observer can be analyzed in the same way as
one moving past the observer at a constant velocity. That is, the same force applicd
to either body will change irs state of motion mn the same way.

The third law of action and reaction implies that there can be no single force
in isolation. A force must act on a body and, when ir docs, the body acts on the
source of the force. Consider a bat striking a ball. The bart ts a mass un motion with a
certain velocity. If it strikes the ball, it exerts a force on It and changes the ball’s state
of motion. Ar the instant of seriking, the ball exerts a force on the bat in the oppositc
direction, thereby changing the bar’s state of motion by slowing it down. 1f the bat
misses the ball, it swings through the air with no appreciable change in motion because
It has not excrted force on any body of substantial mass and therefore nothing has
changed its statc of motion. Strictly speaking, the bar is sttiking air molecules during
IS motion, thereby changing their state of motion and slightdly reducing its speed.

?l'hcrc is another force acting ro change the direction of the bac’s motion that causcs
Lo move in an age. If it were not for the foree of the batter’s hands the bat’s motion  Galileo Galitei (1564-1642).
f\-‘ould continue in a straight line, That is, if the batter lets go of the bat, it will fly off

M astraighe line; we will consider this phenomenon later.

Tht first and third laws set the stage and the conditions for the sccond law. To
Appreciate Newton’s approach, et us briefly look at it in historical perspecrive, It is
;s)n;j’é);i‘:;’“’lc’dgc that Gah:J?o (1564-1642) was r_r‘icd f'or fiisobcﬁﬂg 2 directive
. S\'Stcmm'r?th authorities not tg state or publish his views of moltmn of the
of Hieél}a11ic.\ _10 Hext great narugal ph/llosophcr to tak_e a kc_cn mterest vy the I.QWS

S was the Frenchman René Descartes (ov in Latin, Renatus Cartesius)

(1596165 i ! -~
= 1‘650)_ Our cattesian coordinate system bears his Latin name, He decided from
' Studies thar the

‘Vhﬁt hc C

Most important property of a body in a mechanical system was
L alled its momentum, the mass omes the velocity, mv. We will deal widh this in
~apter

5. Being a careful obscrver, he could not help but notice what had happened  pene Descartes (159()—1650).



to Galileo, so he declined to publish his thoughts on mechanical systems. These were
embodied in his manuscript Le Monde, which was first published in Amsterdam in
1662, 12 year after his death. The Reformanon had by then reached Holland, so the
fear of recriminanon by ecclesiastical authorities was of lirtle concern.

Meanwhile, back in England, the Grear Plague was raging and cvervone who
had a reletive in the country escaped from the city of London. Among these was
Newton, who, according to legend, was contemplating the motion of a falling apple.
A copy of Le Monde was given to him, and he was able ro make the creanve step
shortly thereafter, although his approach was somewhar indirect. The concept of
momentum, mv, involves constant or zer¢ velocity, which is embodicd in his first
law. Tf a force 1s applied against a body, the body resists with what he called an inertial
force, namely, resisrance to having irs state of motion (momeninun) changed. This is
the principle embodied in the third law. If, however, a force 1s applied to a body for
a given length of ume, Az, the momentum will be changed by Amv. He called the
product of force and time an impulse, and he wrote the basic principle of the second
Jaw that the application of an impulse to a body caused a change in its momennim or

FAt = Amv (4.1)

He recognized, however, that direcuon was equally important. That is, if an tnpulse
was applied in the x direction, the momentum of the body would be changed in only
the x direction. Thus Newton introduced the requirement of vectors in calculatons.

If we divide Eq. 4.1 by Ar and consider the mass of the body to be constant,
we may write

Av
F=m— {4.2)
Af

where we must recogrize that in most physically realizable situations F is not a
constant but rather an average force; for example, the force of a bat against a baseball.
In Chaprer 3 we defined a A as a measurable quantity. Newron reahzed that he wanted
to have a form of Eq. 4.2 for very small, or instantaneous, values of time. Because
only tentative beginnings of caleulus existed ar thar time, he proceeded to improve
the methods. (G. Leibniz, a contemporary German mathematician, aso refined the
calculus, independently.) Combining the result of Eg. 3.5, a = dv/dr, with Eq. 4.2,

we may write

F=ma F=ma (4.3)
To use Newton's great second law properly, we must include formally the two
addinonal concepts: (1) This 1s a vector equanon, and (2) the force, which is now
Instantaneous so the average is not required, is actually the ner, or unbalanced, force
i a given dirccrion. We write this as the algebraic sum in each direcrion.




Q=

The forms of Newron’s law that we will use are therefore

ZFX = ma,, ZF—V = ma,, ZPZ = ma, {44}

The concept of summation of forces can be understood from clementary examples.
Consider a tug-of-war with equal numbers of people of equal strength pulling on 2
in opposite directions. If we consider a point in the center of the rope as the
nian body, we conclude that the sum of forces acting on that body is zero and
we will observe no acceleration. If a small child joins one of the sides and pulls, then
the sum of forees is no longer zero, but instead there is a net force in the direction
thar the child pulls with magnirude equal to the force the child exerts. Hence, the
rope will be accelerated in his direcoon.

It is convenient at this pomnt to introduce the word fension, which is used to

rop¢
newto

convey the transmission of a force through a rope. In this example, none of the
contcs;mnt’s hands are on the newtonian body at the center of the rope; yer, if the
center is not being accelerated in cither direction, the sum of forces ar that poinr must
be zero. If we insert a spring scale in the rope on either side of the center, we note thar
the same force is present, an cxample of aczion and reaction. Why does the spring scale
not read zero, since we have just said that the sum of the force 1s zero? The answer lies
with the third law of action and reaction. If you pull on one end of a spring, the other
atrached end is being pulled equally and in the opposite direction. Thus, although the
sum of the forces is zero and the scale does not accelerate, the spring is nevertheless
stretched, which causes the scale to read the value of whatever force is being applied
to either end. We may perform the same measurement at any other point along the
rope and the scale will read the same. The measured force in the rope at any point is
called the fension in the rope. We could lower a curtain at the middle of che rope and tie
onc end of the rope to a wall and send thar team home. The other team would not be
aware of ir, and a measurement in the rope would indicare the same tension. Suppose
We went behind the curtain and cur the rope: How would Newton’s law apply?

4.3 wmass

Letus now reconsider our dilermma of defining mass and force. At this point we

know . .
from Chapter 3 how to measure acceleration, and we have stated that everyone

as ag e . . .
’ gteed to accept a certain block of material as having a mass of 1 kg. We do not
Yet know how

force, gy

to measure force, but we can devise a system to reproduce a given
123s a pull on a rope with 2 spring scale to measure the same tension. If we

The standard kilogram, a platinum-
indwm cylinder kepr at the

e ) - Internadonal Burcau of Weights and
w¢ measure a different acceleration a; . From Eq. 4.3 wemay  \ercures in Stvee, Fance.

&xert thi 2 . ) . o
is force on the standard kilogram, my, with no other forces such as friction

Or gravj i - |
: . Gy tO interfere, we can measure an acceleration ap. If we apply this same force
A different mgags mi,



write for cach experiment
F= Mo ag
F= w14

and, cquating the two because the forces are cqual, we have
my  ap :
_— = — { 4.0 )
wy a)

arelation independent of the value of the force. We thus have a method of measuring

the mass of any other body in relation to a standard mass.

The unit of force can be defined in terms of mass, length, and rime using Eq. 4.3.

F=ma

w4

where brackets conrain the dimensionality of the quannaies involved and M, L, and
T stand for dimensions of mass, length, and time, respectively. Because the equation
must balance dimensionally, force has units of mass x lengrh/time? or kilogram-merer

ML
g (“ﬁ)

In the S system of units, this combination of units is called newton (N) for simplicity.
A foree of 1 N is that force which causes & mass of 1 kg to be accelevated ar a vate of 1 m/sec?
(or 2 kg accelerated at 0.5 m/sec?, and so on).

per sccond?

4.4 WEIGHT

A simple way to determine mass is t0 wergh 1t on 2 balance scale. In this method, a
balance consists of a rod pivoted in the cenrer so chat the weighing pan on each side
is equidistant from the center. (In Chapter 8 we will see how a balance scale may
be constructed with arms of unequal length.) The unknown mass is placed on one
side, and multples or fractions of a standard kilogram are placed on the other side
untl 3 balance is achieved. In this way the magnirude of the unknown mass can be
determined because both the unknown and known masses are being acted on by the
same force, that of gravity.

The force of gravity can be expressed in rerms of Eq. 4.3 by measuring g
(acccleraton due to gravigy), the acceleration resubung from gravity. This can be
done by noting that the rate of free fall of all objects in a vacuum (to eliminate air
resistance) at a given point on earth is the same. The downward acceleration ar sca




AT LI LSRN

Lis appwxjmatclv the same at all locations, org = 9.8 m/sec?. So the force on an
ve :

l e . . . . - s - ,
ect of mass 7 resulting trom gravity 1s, trom Newton’s sccond law

obj
F=ny
d in the English language we call this force the wegghe of an object or
= g

Weight = 5y

Thus, for 1kg
Weight = 1(kg)g(m/sec’) = g(kg m/sec’)

= g newtons

and ] kg weighs 9.8 N. On the surfacc of the moon the acceleration of gravity is about
one-sixth that of earth, so the weight of 1 kg will be one-sixth its weighr on carth. In
outer space at great distance from all other objects, the gravitatiopal force will be near
zero, and the kilogram will have almost zero weight. Bur its mass is unchanged. It
takes the same force to producc a given acceleration In space as it does on the moon
or on the carth.

In the English system we use units of pounds to express the weight of an object.
Thercfore, the pound is a force. Acceleration is fr/sec? and mass has units of

Weight(pound) . pound-sec”
glfifsec®y fr

Theunitof mass in the English system js called the slug (from sluggish). At the surface

of the carth the acceleration of gravity is 32.2 fi/scc® and 11b weighe has a mass of

1/32.2 slugs.

4.5 APPLICATIONS OF NEWTON'S LAWS

4.5a. Zero Acceleration

Itisg 5 . . . .
: seen from Eq. 4.4 that whena = 0ina given direction the sum of forces, or net
-()rCC . Bk T o= . . . . ~ .

» I tat direction is zcro. This fact can be used to gain information abourt the
g 0on an abject when the object is not accelerated. When several forces act

ON an objec I ject o
said o bk_tr but their effects cancel so that the object 15 not accelerated, the object is
14 to be i equilibrinm.

torees actin

EXAMPIE 4.

Abl '
ock rests on 4 table. What are the forces acting on the block? Sce Fig, 4-1.

Q1
o BT
SOINTIN

Take the upward direction (+ dircction) as positive, We know

that th -~
: e ey .
£C 1s a force downward equal to the weight of the block. Bur because the

LS VY AL N O YYD

AR AN
Example 4-1.



block is not accelerating there must be an equal force upward, which we wil call N
for normal force, so thar the sum of forces in the y direction is zero, Note here that
the word mormal 1s used in the mathematical sense of the direction perpendicufar to

a plane. We wrire Newron's law as
Yk =
-mg+N =0
N =my

So.the rable exerts a force equal and opposite to the weight of the block; the rable
exerts a force on the floor equal o the sum of irs weight and that of the block, the
floor exerts an equal and opposite force on the table legs, and so forth.

EXAMPLE 4-2

A chuld pulls a toy boat through the water ar constant velocity by a string parallel
to the surface of the water on which he exerts a force of 1 N, What is the force of
resistance of the water to the morion of the boar? Sec Fig. 4-2.

Solution Let F be the force parallel to the water of the string and # be
the force of resistance of the warter. Let us rake the dirccion of F as the positive x
dirccrzon. Because constant velocty means zero acceleranon,

D Fe=0
F—-f=0

f=F=1N

EXAMPLE 4-3
Two ropes attached ro a ceiling at the angles shown in Fig, 4-3 support a block
of weight 50 N. What are the tensions Ty and T in the ropes?

lution Note here that the ropes exert forces both on the block and on
the ceiling. The newtonian body of our concern is one through which all of the forees
pass, namely the block. We thercfore use the tensions acting on the block. We firse
draw a vecror diagram of the forces (tensions) as n Fig. 4-4. If we cxamine the
newtonian body, we sec thar it 1s ot acceleracing in either the x or y directions, We
may therefore write

> Fe=0, > F=0

By rhe component method of Chaprer 2, we find thex and y components of dhe forees
and substtute them into the equations.

> Fe=0

o2 Example 4-2.

¥
" r,
\, -
TZ\\ B Ty
53¢ A\ “/" 5
s /'\,:,/ 437 e
d
-,"" mg = 50N

FIGITRE 4-4  Example 4-3.




Tycos37° —T3¢0853" =Q

0877 —0.61,=0

S F=0

T1sin37°4+ Thsin53° —50N =0

0.6T1+0.87>,-50N =0

APPLICATIONS OQF NEWTON'S LAWS

We solve these simulraneously by substituting either 71 or T from one equation into

the other, For cxample, from the Y F, = 0 cquaunon we get
0.67, 3
= = — T
YT Tos 4t

Substituring into the second cquation

3
0.6 (;Tz)—I-OBTg—SON:O
1257, = 50N
Ty = 40N and 17 :23:301\?

4.5b. Constant Acceleration

In a constant acceleration situation we must examine the motion of the newtonman

body in all of the cartesian directions. 1t may be accelerating in some directions bur

not in others. The direction or directions in which it is not accelerating may give

additional information about the forces acting on the body.

EXAMPLE 4-4

A child pulls on a string arrached to a 1-kg toy boar at an angle of 45¢ with 2
cons Lo - . :
- ns@nt force of 2 N (Fig. 4-5). The boat goes from rest to a velocity of 0.2 m/sec in

Sec. Assuming constant acceleration, what s the force of resistance of the water?

Solution

Z F. = ma,

Fr “ !
Om Fig. 4-5_ this becomes

2Ncos45° — [ = ma,

QNY0.71) - f = (1kg)a
Where we used
of Iesistance of

Uae = 0, Ve = 0.2 m/sec, i = 0.5sec, a, =?

the component of force 1 the direction of motion and f is the force
the water. We find 2, by the method of Chaprer 3.

Example 4-4.



Vg = Vow + iy

n U — Vo _ 0.2m/scc— — 0my/scc — 0.40 m/sec?
t 0.5 sec

Substituting rhis vesult for &, gives
142N —f =0.40N

£=102N

EXAMPLE 4-5
A block of mass 8 kg 1s relcased from rest on a frictionless incline thar is at an
angle of 37 with the horizontal (Fig. 4-6a). What s s acceleration down the incline?

Solution In this situation jtis convenient to tlt our graph paper so that the
% axis is along the incline, for that is the direction in which the acceleration is to be
determined. The y axis will be perpendicular to the incline. The vector force diagram
is shown in Fig. 4-64. The only forces exerted on the block are g downward and the
normal force N on the block exerted by the planc thar, as we indicated in Example
4-1, is perpendicular to the surface. The component of myg along the x axis, Fy, is
determuned by dropping a perpendicular from the end of the my-force vector o the
% axis. The angle between my and this perpendicularis § = 37° by the geometric rule
thar rwo angles are cqual if their sides are murually perpendicular: A is perpendicular
to D, and B 1s perpendicular to C. Therefore,

sin37e = Ix
g

F, = mgsin37°

From Newton’s second law, Eq. 4.4,

F. = ma,
Fy
By = —
m
mg sin 37°
o m

1

45375 = 9.8 m/sec? x 0.6

5.91m/sec?

]

Tivo imporrant points can be seen in this simple problem:

()
FIGURE 4-6 Example 4-5.
(a) Diagram of the problem.
(b) Force diagram.




bicaanil S APPLICALIONS OF NEW JUN S LAWS # 4y

} Becausc the
-est at the same height on the same planc will have the samc acceleration and,
]

acceleraton is independent of the mass, all masses starting from

therefore, reach the botrom at che same time.
5 Theacceleration is less than the acecleration of gravity because only a component
p of the force of gravitv on the body is directed down the plane.

EXAMPLE 4-0 o
Masscs of 2 kg and 4 kg connected by a cord are suspended over a frictionless

pulley {Fig. 4-71). What 1s their acceleragon when released:?

Solution Before solving this problem, we note three imporrant facts. First,
pecause the pulley is frictionless, the tension in the rope is the same on both sides.
Itit were not, the cord would slide over the pulley until the rensions were the same.
Second, the tensions are not the samc asina static situation; that is, we casnot eqliate
T = my because ) Fy # 0. Third, there are two newtonian bodies and we must
write an equation for each, bur note thatr while 771 moves upward with a positive
acceleration, #; moves with an acceleration having the same magnitude but directed
downward. The force diagrams for the two bodies are given in Fig. 4-75.

For body m; we write

ny =ma
T —myg =ma
T =mQ+a)

For body 2,

ZF/ = %14

and, noting thar because upward motion was chosen as positive for body 1, the

downward acceleration of body 2 must be negatve, we writc my =4 kg

T — mog = le(—ﬂ)
=my(g —a)

Subs[ . .
fting the T from the bod y 1 equation, into the equation for body 2, as the
tc’)b[oné are ¢l

(a)

1¢ samne, we obtain ar u |r
B3 b

m (g +a)y = my(g — a) , !

RCAl'rangmg rerms, (mg |

My
a(my +my) = g(my — nn)

Example 4-6
(a) Dngn am of the problem. (&) Foree
m1 + my diagram for each of the masses.

"’1-2 — }7-21



4kg — 2kg

m = 3.3m/sec’  for body 1

=9.8 m/scc2 x

and

a = —-3.3m/sec> forbody 2

4.6 FRICTION

We have to exert a steady foree 1o drag an object ar constant velocity across the Aoor.
Because the velocity is constant, the acecleration is zero and the sum of forces on the
objecr is correspondingly zero. This means thar theve is a force equal and opposite
1o the force that we excre that resists the mowtion of the object. However, our tug-of-
war cxample does nort apply here, for if we stop pulling the object the resistive force
does not stare to pull it in the opposite direction. Nearly all surfaces have a certain
amount of roughness, visible under a2 microscope, and it 1s the breakage of these
rough protrusions or the rising over themn thar causes the resistance to motion. This
resistive force is called the foree of fricrion. The earlicr example, 4-2, of the boy with the
boat is another type of friction, that of water resisting the motion of an object moving
through it. But why consider friction ar alt in a book about semiconductors and their
circuts? Because we commonly experience friction of the tvpes we arce discussing
here and thus they are casier to comprehend. We will later consider the motion of
electrons chrough a solid under the mflucnce of electric forces. The motion of the
clectrons 1s impeded by their banging into the atoms in the solid and losing encrgy
in the process. This is another type of friction.

Returning now to the behavior of an object with an opposing frictional force,
we must leave Figst Principles temporarily and rely on experimental dara. There ave
two types of triction, staric and kineric. The starting friction 1§ called static. The friction
of motion 1s called kimetic. We observe from experience that it is harder ro start an
objcct moving across a floor than it is to maintan its motion; static friction is larger
than kinetic friction. We will only consider kincric friction. If we wish to measure the
force of kinetic fricton, we have only to measure the force required to keep an object
In motion at constant velocity on a level surface. If we add a weight equal to thar of
the object on top of it, we find it takes twice the force to keep it moving at constant
velociry; with the object weighing rhree times as much, then three times the force 1
required, We would correctdy conclude that the force of friction is proportional o
the weight of the objeci. Bur, as can be seen from Fig. 4-8, it is equivalenr to say
that the force of friction is proportional to the normal force because mg = N. Eithet o=
way we say that the force of friction is proportional ro the force pushing the surtaces

together. Therefore
F1 E 4-8 Forces ona mass
f«N (=) thar give risce 1o a foree of fricrion £




T
-_.-ﬂ’*_—"""‘"
 know that it is casier to pull or push an object across ice than across a

Jow W . . . .
Iﬁ\ - Therefore, we may transform the propornonality of Eq. 4.7 to an equality by
OOL- ]

introducing . PN
(mu) for this, and p is called the coefficient of friction. Thus

a constant that characrerizes the surface. We costomanly use the Greek

Jerter #
f=uN (4.8)

B

EXAMPLE 4
A force of 10N is required to keep a box of mass 20 kg moving at a constant

velocity across a level floor (Fig. 4-9). What is the coefficient of friction?

Because the velacity is constant, 2, = 0 and 8, = 0, and

Y Ee=0

Solution

F—f=0
F=10N
and
Sr =0
L'\" — ﬂlg = O
N =my
Bur
f=uN
= nmg
or
et
my
_ 10N
20kg % 9.8 m/sec?
w=0.05
eh HPPose thar the surface is nor level bur is inclined by an angle ¢ with respect to

)rizontﬂ_l, as in

the axig pe i
anys Perpendicy]

% = 0, the normal

Fig. 4-10. We see that the component of the weight my dong
arto the plane is —m4 cos 6 and, by Newton's sccond law, because
force N exerted by the planc on the block is N' = 1 cos . Thus,

‘9. 4.8 can be - :
1Be written in a morc general form as

[ = pmg cosd (4.9

FEICLTION

/ F-10N

T

T Y N N P IS T

mgy

Example 4-7.

JIGUERRE 410 A block in an
inclined plage. The normal force
1s equad to the compornent of the
weight perpendicular to the plane
my cos ) and the foree of friction is
equal to —umg cos 0



==

when 6 = 0, f = pmyg and is ar a maximuni. When 6 = 90°, the incline is standing
vertically and therc js no force pushing the surfaces wogerher and f = 0.

EXAMPLE 4-8

A block is placed on a plane inclined to the horizonral ar 37¢. The coefficient
of friction berween the planc and the block 1s p = 0.4, When the block s released,

what is 1ts acccleration down the plane?

Solution The forces along the plane arc the force of friction f upward and
the component of the force of gravity Fp downward (see Fig. 4-10). Choose the
downward direction as positive and writec Newton’s second law.

Z Fplnne = MAplanc
Fp —f = maploe
We have seen in Example 4-5 that
Fp=mgsinb
and Eq. 4.9 gives the expression for f
mg SN — [Lmg COS O = Mapianc

Solving for the acceleration, we obtain

g sin § — uwg cos §
Aplane =

22

=gsinf — pgcosd

Substituting the known quantities

Bpsne = 9.8 m/sec’ x 0.6 — 0.4 x 9.8 m/scc” x 0.8

=274 m/sec2

We sce thar the mass cancels; that is, all blocks with the same coefficient of friction

will have the same acceleration down the planc.

PROBLEMS

4.1 A50-N weight is suspended by arope from the celling.
A horizontal force pulls it sideways, causing the rope to make
an angle with the ceiling of 53°. When the weight is 1o
equibibrium, whar is the fogce?

4.2 A40-N weight is suspended by a rope from the geiling”
Another rope pulls horizontally on it sideways so 014t t
suspending rope makes an angle of 60~ with the ceiling. W
are the tensions in the ropes?



—
A 50-N weight is suspended by arope from the ceiling.

43 - wal force of 40N pulls on the weight in the x

A_ hor.li)ﬂ( a) What is the angle that the rope makes widh the

{1]3;;1;0 (:D) Whar is the tension on the rope?

celings

4 A 10‘()\"’ weight is suspended by ropes as shown in Fig.
_}, % =

411, Find the rension on each rope.

100 N

i 4-11 Droblem

4.5 Aforccof 50N acting ar 37° above the horizontal pulls
ablock along the floor with constant velociry. If the coefficient
offriction berween the block and the floor is 0.2, what 1s the

muass of the block?

Answer:  23.4kg.

4.6 A500-kgbox is to be lowered down a ramp at constant

velocity. The ramp makes an angle of 30° with the ground.
The coefficient of friction between the ramp and the box is
0.7. (2) Whar force applied parallel to the ramp is needed?
MUSt the box be pushed down or held back? (b) Repeat (a)
if the coefficient of friction is 0.2.

1 .A constant horrzontal force of 50 N acts on a body that
Stestingon asmoorth, frictiouless horizontat planc. The body
Bobserved to go from rest o v = 5 m/sec in 10 scc. What is
the mass of the body?

Answer: 100kg.

8 A body of
plane. A fOI‘C-C of
Plane for 5 sce,

mass 5 kg rests on a horizontal frictioniess
10N is applied at an angle of 37° above the
How far has the body moved in thar time?

4.

ﬁ]inﬂino?zqff)f] of mass 9 x 107* kg lcaves the heated

in 3 Staighy li\ “‘Qlum tube with vg = Omy/sec m_ld travels

With b ,mft_(.)\mrd 6a plate llcm away. It arrives r%lcrc

a-‘Qlf-:lt:n;at'im) 21 =10 m(scC, ‘Fmd the magnitude of the
d the acceleratin g farce.

PROBLLEMS = o1

4.10 A 5-kg mpass is attached to the end of a string with a
breaking sorength of 100 N. Whart 1s the maximum accelera-
tion that the mass can be given by pulling the string in the
upward direction?

Answer: 10.2 m/sec?.

4.11  Three blocks of mass—mn = 3kg, my = 4kg, mz =
6 kg—resting on a frictionless table and connected by strings
with tensions 77 and 77 are being pulled to the right by 2
forcc of 6N (Fig. 4-12). (a) What is the aceeleration of the
blocks? (b) What are the tensions in the strings?

4.12  What horizonrtal force is required to drag a 5-kg block
along a horizontal surface, with a coefficient of friction of 0.5,
ar a constant acceleration of 1 m/sec?s

4.13 A block of 8kg is held on an indine at 37°. The
coefficient of fricnon berween the block and the incline is p =
0.1. When the block is releasced, what will be jts acceleration?

1.14  Consider an 8-kg block on a fricrionless plane inclined
at 37° ro the horizontal, as in Fig. 4-6a. Supposc a force of
40 N is applied to the block upward along the plane. (a) What
will be the acceleration of the block? (b) If the upward force
applied 15 60 N, whar will be its acceleration? (c) What force
is required along the plane to hold the block monionless?
Answer:  (a) 0.90 m/sec? downward, (b) 1.60 m/sec?
upward, (¢) 47.18 N.

(2) Whar constant force acting parallel to a 37° plane
is required to push a 10-kg block up the plane ar constanc
speed if the coefficient of friction 1s 0.5} (b) What force 1
required to push it up with an acccleraton of 2 m/sec??

.16 Block A reszs on a fncrionless plane and the connecr-
g cord passes over a frictionless pulley wath bjock B acrached
to it {Fig. 4-13). What is the aceeleration of block A along the
planc when 1t 1s released?

Answer: 0.67 m/sec? down the plane.



13 Problem +.16.

.17 An object 1s hung by a rope 1o the celling of an
elevator. When the clevaror nises at constant speed, the rension
ntheropeis S0 N. (a) What is the tension when the clevaroris
acceleranng upward ar 3 my/sec’? (b) What is the accelerarion
of the elevaror if the tension 1s 30 N?

118 Ap object shides down a 37° wchine with constant
velocity. After reaching the bottom, it is launched up rthe
incline with an mitial velociry of 5m/sec. How far up rhe
incline will it move before it stops?

Answer: 1.06m.

.19 1n Fig. 4-14, the masses of blocks A, B, and C arc
5kg, 20kg, and 10 kg, respecrively. The blocks are observed
to move with constant velocicy. What will be the accelerarion
of blocks A and B when block C is removed?

Answey: (.65 m/scc’.

Problem

FIGURE 4-14

20 A 40-N block is conneced to a second block by a
light rope passing over a frictionless pudley, as in Fig. 4-
15. 'T'he coefficient of fction berween the blocks and the
inclines is 0.25. It the 40-N block moves up the plane ar
constant veloatv: (a) Whart 1s the welghr of the second block?

(b) What js the tension in the rope? (¢) Suppose that the 40.
N block is replaced by a 100-N block and the coefficient of
friction remains unchanged, what will be the adeeleration of
the blocks?

4.21 A rope of breaking strengrh 800N 1s to be used to.
drag a box ar constant velocity on a honzonral surface. Tﬁ&l
rope pulls the box at some angle 6 above the horizontal. Ifthe
coefficient of friction 18 0.3, what is the maximum weighe of
the box thar can be moved without the rope breaking? 4

Answer: 2784 N.

4.22 A 10-kgballis hung by a rope from the ceiling of ae
The maximum tension that the rope can withstand is S00N.
(2) What is the maximum honzontal aceeleration thar the car
can reach without the rope breaking? (b) What is the angif-"j_'
between the rope and the vertical for that acceleration?

Answer: (2) 49.03 m/sec?, (b) 78.7

4.23 A block is held against the frone vertical wall of :
railroad car, as in Fig. 4-16. The coctficient of friciion beow oﬁﬁ
the block and the wall is 0.4. When the train begns 80
accelerare, the block is released and begins to slide down the
wall with an accelerarion of 9.0 m/sec®. What is the horizontal
acceleration of the rain?

s
Answer:  2m/sec.

Problem 4.23.

FIGURE 4-16
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'L'H N. The mass of block A is 2kg and the
1 between all surfaces is 0.2. The pulley is
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5.1 INTRODUCTION

The terms work, energy, and power are common words in English. In physics we
require precise definitions so that these terms can be formulated mathematically.
Readeys will find that definitions w1 physics do not always march the usage of the
words. For example, although a student may do homework, by the physics defininon
of work none is being done, although ar the biological cellular level, chemical work is
being donc. We will not consider chemical work in dus book. It is important that we
consider mechanical work, energy, and power, for it is the trearment of these terms
from First Prunciples that will be apphed dircetly to elecrrical circuirs. It is therefore
esscnnial that the physics definitions of these terms be learned carefully.

5.2 WORK

In this first treatment of work we will reserict our consideration to thar done by a
constant force. Our definition of an amount of work AW done by a constant force
F acting on a body 1s: The product of the distance the body is moved in a given
direction by the component of the force in that direction,

AW =F;, As (5.1)

where F; vepresents the component of force in the direction As. If F, is L N and As is
I m, thenthe work AW done on the body by the force Fis 1 newton-meter (N-m). We
define a pew unit, 1 N-m = 1 joule (pronounced in America as jewcl) with symbol J.

MPLE 5-1

Abox 1s pushed 3 m at constant velocity across a floor by aforce Fof 5 N parallel
to the floor. (a) How much work was done on the box by the force F, which dlearly
opposes friction (sec Fig. 5-1). (b) How much work is done on the box by the force
of friction?

() W =5Nx3m=15]
(b) Because 2 = 0




Ei! o POTENTIAL ENLERAY

nt of f in the direction of the displacetnent vector Ax is —f (because

The COQ)PODC
s always act against the motion); therefore

ﬁ—iction:h} force
S AW = (=f) Ax

= — 157

Although work may be positive or negative, it has no direction and 1s therefore

o ey qUANTILY. We will now show that work meets the condition of the vecror dot
roduct of Chapter 2, which was defined as a scalar. Suppose the force pulling a box
across a floor 1§ not in the direction of moton bur is in the divecton shown in Fig. 5-

2. Following the definition of work, we must take the componenr of the force tn the

direction of m otion

AW =F, Ax
= Fcosf Ax
AW = F Ax cosd (5.2)
which, by Eq. 2.1, 18
| AW =F: Ax 3)

Because Eqgs. 5.2 and 5.3 are expressions of the general relation of Eq. 2.1, the F and
Axin Eq. 5.2 are the magnitudes, and we thus have a scalar. Eq. 5.2 has an important
conceptual implication. Suppose we carry a weight 7 across the room. Ifit 1s inutially
;‘)laced in our hands and we carry it slowly, withour appreciablc acceleration, the only
force we exert is in the upward direction.

> E=0

by =mg

Ifwe ¢ s
nove a distance Ax, from our definition of work

AW = F, Axcos®

thC a_nqi\
3 C g y . . . . . R
= 81€ 8 between the force direction and the motion direction is 90°. Therefore
6 no work,

VV & mavy u P
. 4y use the dcﬁl’llt o ™ ~ n , N
F"\"mlplc 51 1on of Eq. 5.2 to wrear formally the work of friction of

AW = f Axcos0

l?il.t 6 — 180> ko 3 i ) Ax
e €os 180° = —1, so we conld have simply raken the magniude of : .
100 timyes the dist: . . FIGURE 5-2 Force and motion
1stance and the cos @ would have yielded the correct sign. are not in the same direction

/



5.3 POTENTIAL ENERGY

Consider now thar we lift a weight mg ar constant veloaty a distance y from the Aoot.
Because graviry exerts a downward force 7, we must exert an upward force of equal
magnitude over a distance y and therefore have done an amount of work 7ugy on the
welght. Ifwe lower it back to the floor, we still exert an upward force smg, but now the
motion 1s 1n a direction opposite to the force, or 6 = 180°, and the work donc by s
1s —mygy and thercfore no net work has been done in the round arip. Suppose we wish
to move a weight myg from the floor to a shelt a distance x across the room. There are
many paths that we may take, some of which are shown in Fig. 5-3. An examination
of these paths shows that each maove i the y direction contributes positive or negatve
work amouats whose sum mwust be gy, whereas motion in the.x direction contributes
no work. We are thus able to draw a very important condusion. Work done against
the gravitational fovee is independent of the choice of parh between amy nwo fixed endpoints.

Suppose an object is placed at a hayght ¥ ) a gravianonal field, as in Fig. 5-4.
If ir descended from v, the gravirational foree g on the object would be capable of
doing work equal to rthe force times the displacement mygy. Therefore, because the
gravitational force is potenually able to do work on the object, we say that it has a
potential enevgy Ey equal 1o myy. (Note that the unit of potential energy is the same
as that of work, that is, the joule)

E; = mygy {5.4)

That 15, 1f we have lifted 1t by doing work #yy on it, then it has gained a potential
energy of mygy, whete we use the positive value because the work was put into it. Note
that there 1s a direct relation between the work done on an object in a gravitatonal
field and its gain in potendal energy. The measure of y must be considered with
care. Suppose an object is lifted above a rable to a heighr yy. It has E, = mgy, with
respect to the rable. But if the table 1s at a heighr yz above the floor, the object has
Ey = mg(y1 + y3) with respect to the floor (see Fig. 5-5).

Thus, for potenual energy, a reference level must always be specified. If we lift
an object two different distances above a table, then we may state the difference in
potential encrgy berween the two posinons. [f we included the distance above the
floor for each, then when we take the difference i their Ep, the distance above the
foor will cancel,

AE,(with the table as the reference lcvel)
= myyy — w1 = mg(y2 — 1)

AE,(with the floor as the reference level)

= my(y2 +53) —mg(yL +3)

BY 5

maYg * m,g“x +

= mgy |
FIGURE 5-3 Examplgs of
different paths used in raising
o a heighr v

SA L]
mgy5




= mgys — w1 = g (y2 — 1)

chis answer that only the difference 1n heights needs to be specified to give
difference in porential energy. We will use this concept in clectricity to
ladye difference in potental encrgy of a charged particle in two different
lectric field. To apply the concepr of potental cnergy i later chapters
and our consideradon of work to that done by a variable force.

We see i
the relative
5 pcciﬁ’ the rc¢

jdons inanc
we will need to €xp

5 4 WORK DONE BY A VARIABLE FORCE
e

We have seen that when the force actng through a distance Ax is constant, then the

work done may be written as
AW:FAX:F_,_A_XJ (0

Suppose that at each small displacement of the motion the force has a different

value. Then we would write Eq. 5.3 as
W = Fa by + Fp Axy + Fug o3 + -+ - Py Axy
or

N
W =) Euln

=1
A sketch of this summation is shown in Fig. 5-6 for the work done in moving a body
from & = 2 to.x = 4. We see that cach verrical segment of Ax; width has associated
with it an average Fy,. The total work is the sum of the areas of these segments. If we
m“kf the width of cach segment very small so that Ax — 0, the number of scgments
ch“?f@ 10 obtain the area under the curve approaches infinity and the sum of these
lIIﬁIjltcs:mai areas becomes the precise arca under the curve of Fig. 5-6, or the total
WOrk. This is the definition of an integral. Tharis, Eq. 5.5 as Ax — 0 becomes

b
w :f F.de (5.6)

¢finition of an integral, and with reference to Fig. 5-6, we
area under the F, vecsus the x curve. In the derivagon of Eq.

Fgrmcrmore, by the 4
S;Ct thar worlk is. the
3;6. We have assume
dfrc':tion of the disp
lsplaccment ASs 2

d that F, although not constant in magnitude, Is always in the
lacements Ax’s. Tn the more general case where F and the general
re not in the same direction, the expression for the work becomes

AW =F.ds

.;ﬁ' "‘ i’a ) 1_

Py Fys __F,\'G. :

Fi3 r""“{__ﬁ

Fe BT | ]

e L
4 @
Ll B
a e
afiiiii g gl
Axy Axs Axz dxz Axs Axg

X i

Area under the
curve obraned by summagion of the
area of recrangles.



or the ntegral form

h
VV:/ F .- ds

where the dot product takes care of changes in orientation between the vectors F and
ds.

5.5 KINETIC ENERGY

The word “kinetic” is used frequently 1n all branches of science and is from the Greek
word for mouon. If work is done on a body thar changes is state of motion, namely,
its velociny, we say thar the work has caused the body to gain or lose kinetic encrgy, Ey.
We will show two derivations of kinctic energy, the first for the restricred condition
of a consrant force and the second for a variable force. In both cases we will consider
motion in the x direction alone.

If the force is consranr and the initial position is x = 0, we may write the
definition of work as

W =Fx
which from Newton’s sccond law (Eq. 4.4) can be written as
W = max
or, if we rake 2 only in the x direction, we may drop the subscript and write
W = max (5.8)
Because the force i constant and we are considenng a single body of constant
mass, the acceleration 1s constant and we may use Eq. 3.11
v — v = 2ax (3.11)

where vg 18 the veloary at s = 0 and v is the velocity at x. Substiruting dhs equation
into Eq. 5.8 we obrain

v? —u?
W=m] ——
2
1 2 2 -
W = SHut = Sy (5.9)

Thus the work donc on a body that changes its velocity actually changes the quanncy

1 D .
3mvz, which 1s called the kénetic energy Ey.

L

E, = %muz (5.10)




ange in kinetic energy is cqual to work and work 1s a scalar quantity, kineric

pecause < : P :
so a scalar quantity and the umt of kinenic energy is the same as thar of

energy 18 al ‘
chat is, the joule.
%o obtain the same reswle if the applied force is not constant bur 1s vartable. Let

W
; Conqih‘[ the x axis modon again so rhat
1§ CONS

W:[FM

- moe F must remain inside the integral, but we can substiture Newton’s sccond
In this cas¢ grak,

I
works

Jaw for it, F = ma

.
W = m/ adx (5.11)
R
And we mav substitute for 4 from tq. 3.13
Av B
ﬂ = U_ [ ..:.
dx

Thus Eq. 5.11 becomes

X dv
W= —dsx
m[ v

o X

v
W =w / vdv
v
\ where we have changed the limies of integration because the velocity is vy at %o and
v atx, This inrcgrates o

2 i
o2
W =m—
m 3 }Uﬂ
1
W = Emvz — zmué (5.9)

which is the same resulr as found before for a constant force. Note that in both
derivations we have uscd F = sa where F is the ner, or resultant, force. If a = Q,
_then F = 0 and there is no net, or resulrant, force and hence there can be no change
10 the kinetic energy. Eq. 5.9 is known as the work-energy theovem, which states thar
he work done by the resultant force acting on a particle is equal ro the change in kinetic
REIRY of the particle.

3.6 ENERGY CONSERVATION

We deg . . . .
define a mechanically conservarive system as one in which no energy enters or

|

Cavec tha . - . .
aves the system (as hear, radiation, or such). Thercfore, the system’s initial energy is UFPE CCE

) , 'OCF

A,

MET



unchanged, which is the samc as saying it is conscerved. This fact simplifies the solution
of many rypes of problems because we do nor have 1o calculare the acceleration. For
conservative systems we know that the rotal encrgy in stace 1 is the same as thatin state
2. Because the total energy is the swm of the potential and kinetic energics, we write

(Elz + -Ep)inina\ = (Ek - E;)ﬁnnl (5.12)

We can verify explicitly the conservation of the toral energy with the simple example
shown in Fig. 5-7.

Ler us launch an object of mass 7 from a point y; above the floor with an
it velociry vy . Owing 1o the gravitational force that acts on the object, its velocty
decreases as itrises. Sometime lareg, the velociry ot the object will be v; and irs position
¥2. We can relate this new velocity and posjtion to the nital velocity and position by
means of Eq. 3.11.

RN R
vy = v = 2(=4)02 — )
Rearranging terms,
2 2=l 42
Vit Yy = Vi + g
If we divide borth sides by 2 and multiply by the mass of the object 72, we get

1 ] :
Emvzz +mgy, = ;mvf -~ mgy foukd)

Thus, although the velocity of the object (and therefore its E,) decreases as it rises,

this decrcase in Ey is compensated by an increase in £y in such a way that the sum of
E, and E; remains constant and equal ro the sum of the initial kinctic and porential
energics. That is, total enexgy is conserved.
EXAMPLE 5-2

Suppose a ball is dropped from a height # = 10 m. What is its velocity just
before it strikes the ground?

Ey +Ey = Ey + Epyr

0 +mgh = %muz +0

b=, /2gh = £/2 x 9.8m/sec x 100m = ~14m/scc

where the negative sign is chosen because the motion 15 downward.
The pendulum is another simple example of the conscrvation of energy. Let us : % ' {
l? ) S ) . P ) g} | A falling tree illustrazes the 4
assume an idealized pendulum chat swings in a vacuum so thar there s no energy lost o o potential energy 10"

to aic fricrion and thar there is no frictional loss at the pivor (sce Fig. 5-8). If we start ginepc energy.



h endulum by pulling it to one side and releasing it with no initial veloaity, ic has

e : o )

: 'ljitizd Potcnti'al energy of mghg, which is also the rotal encrgy. If there ts no energy
n (ke Y . . . .

? S du{-inu its subsequent mouon, it must always have this amount of roral energy.
o5 s S » : N g

When it s Qcascd, It bcgm.s»to f?LLI and potennial energy 1s let. Buc as it falls o plc_l\s
p qpccd and thereby gams kinenic encrgy. At the bottom of its path, 4 = 0 and all its

enesgy is kinetic. As it Starts to nse again, the kinetic energy is converred to porental

rov. Thus, if bo is its initial height, mghy 1s the energy of the pendulum and the
ot

¢ne . i . R .
of the potcntial and kincric energies at all other posinions must equal this value.

sum
We may Write this as

Epo + Exo = Epy + En2

1
mgho + 0 = mghs + Emvf

The string does no work on the pendulum because of the definition (Eq. 5.7)
AW = F-ds =Fcosfds

The angle @ is that benween the string divection and 4, che instancaneous direction of
motion. This angle is always 90°, so that 4T due to the string is always zero,

/ If the system loses energy or energy is put into the system, it is no longer a
mechanically conservative system. Later, when we understand other types of encrgy
and can enlarge the system to include all sources of inpur and output, we will again
develop the concepr of conservation of ¢nergy. For now, however, let us say thart all
cnergy must be accounted for and use the term accountability of energy. We become
accountants and keep books of assets and Liabihizies. All inidial energy plus any energy
putin, E;,, is on the left side of the ledger as an asset. All energy converred to another
form or escaping from the system, Eq, may go on the righe side. Thus, Eq. 5.12 15
written as

By + Epi + B = E:‘g’ + Epf + Eoul

EXAMPLE 5-2

] B Rici s on 2 377 slope of length s = 100m (Fig. 5-9). The coefficient of
iR berween his skis and the snow is 0.2. 1f he starts from rest, whar 1s his velocity
At the bortom of the slope?

Ey +pr‘ +E, = Elzj' + E],f + Lo

RIS oo . . . . ..

O energy is pur in, but there is cnergy lost to work against friction, or Eyge =
leYict'[OnJ = |f - S|

!

LVAN B INAY | WA/ENODLE D v

ML ENEEN

=

Examplc 5-3.




As before, let us tilt our coordinate axis so thar the slope becomes the x axis and

the normal becomes the v axis.
S F=0
N —mgcos37° =0
N =myg cos37°
f = uN = pmycos37°
Eow = If - 8] = pmg cos 37°(5)
| _
04 mgh+0= S+ 0 + pmg cos 377 ()
The mass cancels, and we solve for vy
v = [2(gh — s cos 37°)] V7
= [2(9.8 m/sec® x 100 m x sin 37°
— 0.2 x 9.8 m/sec® x 100m x cos 37°))'2

= 29.4m/sec

5.7 POWER

Difterent persons or different machuncs may take ditferent amounts of time to do the
sarne amount of work. The term used to describe this rate of performance of work is

power .
> work done
ower = ———
gme taken
%4 e
P=__ (5.15)
A

Work is mcasured in joules, time t scconds, therefore the unit of power 1s joules per
second (J/sec). We Introduce a new umir: 1]/sec = 1 watt (W). Conversely, work (or
energy) is equal to power x ume,

Wijoules) = P(wars)t(sec)

The symbol used for ware is W. A 100-W lighr bulb uses 1007 of elecrrical energy
each sccond. Your clectric light bill is in kilowatt-hours. A kilowatr-hour is the energy
dissipated by a device that uscs 10° W for a period of 1 h, that is, 1 kwh = 107 J/sec
x3600 sec = 3.6 x 10° .
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P Ax

P=—x

imally small displacements 2x

ax

P=F =2

F dt
ax = v, the velocity
dar ’

P=F v

ﬁp) This is defined as

P=F.v

=3 x 10*N x 5m/scc

Lhp

tailer in 15 min?

OX 1 being pushed on a horizonral surface,

» m‘_l- (2) How much work is done by the 90-
OVing the box a distance 0f 20 m? (b) How much

op another expression for power because work is defined by Eq.
mdu'ct of force F and displacement As, where As can be 1n the x

(5.16)

¢ an engineering unit of power that we might introduce in passing:

=15x10°W (746 w) =200hp

work is done by frction over the same distance? (¢) Whar is
the force of fuction?

5.2 Aforce of 20 N parallel to a 37° plane pulls a 2-kg block
5 mup the plape at a constant speed. (a) How much work has
been done by the 20-N force? (b) How much work has been
done by friction? (¢) How much work has been done by the



atjonal force acting on the block? (d) What can you sav
‘the toral work done?
(2) 1007, (b) =417, (c) =397, (d} zero.

HSWEY?

In Fig. 5-10 the force acting on a body forx < 10m s
0.2x N and the force for x > 10m is constant at F, =
Vhat is the work done in going fromx = Qrox = 15 m?

v

x(m)

ETOTTRE 5210 Problem 5.4.

Aboy pulls a 15-kg sled ar constant speed a distance of
dong rough level snow thar has a coefficient of friction
. How much work did he do?

A 40-ky box 1s to be pushed ar constant speed a distance
up aramp by aforce parailel ro the ramp. The coefhaent
vion between the box and the ramp is 0.25. The ramp
an avgle of 37+ with the horizontal. How much work
e done?

Answer: 15711,

A car traveling at 30 my/sec suddenly brakes. Tf the
1ent of friction betwveen the tires and the road 1s 0.7,
18 the minimum stopping distance? Solve by energy
«ds.

A bead having an initial specd ar point A of 2 m/sec
down a frictionless wirc (sec Fig. 5-11). What are its
-at points B and C?

Answer: vy = 4.2]1 m/scc, ue = 3.44 m/sec.

A 3. lp = 2 misec

2R

Problem 5.8.

A horizonra) force of 20 N pullsa 10-kg block on a level
aless surface a distance of 5 m. (a) How much work is

donc, and what becomes of thus work? (b) Show, U.Sing
methods of Chapters 3 and 4, that the change in the kipe
energy is equal the work done by the force.

An auromobile is moving with a velocity of 9 kmyp
From what height would ithave to fall to acquire that velociey

i1 Using the conservation of energy principle, find ghe
maximum height reached by a projectile launched wig, :{'
veloctty of 80 m/sce at an angle of 37¢ with the horizongly

i
= 3

A pendulum consists of a mass at the end of a string.
1.5 mlong. The mass is pulled sideways l.l.l?[l_] the string makes
an angle of 30° with the vertical; then it is relcased. What j
the speed of the mass as it passes through its lowest poing
1.98 m/scc.

Answer:

5.12  Alightrope passing over a frictionless pulley connects.
wo blocks of mass m) = 3 kg and m; = 5 kg (see Fig. 5.12).
(a) Tf the blocks are released from rest in the position shown.

ground? (b) What is final height reached by m;?

Answer:  (a) 5.42m/sec, (b) 7.5 m.

14 A 40-kg box slides 5m down a ramp inclined at 3'7‘?:
to the horizontal, Ifthere is no friction, what is its speed a8 fh’é
bottom? If the coetficient of faction is 0.2, what is 15 8
at the botrom?

515 AS5-kg block rests at the top of a rough plank incli s

ar 25* with respecet to the horizontal and 4 m long. I is gi¢!
an inirial speed downward of 2 m/sce, and it just rcacbcft
bottom before it stops. What is the coefficient of frictiof
Solve by energy methods. '

Anaper:  0.52.

i
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i -
.16 Aconstant force nf 60 N paralic! 1o an inclined plane
;)f 30¢ above the horizontal pushes a 6-kg block 10 m up the
incliney The coefficient of friction benveen the block and the
‘mc!iﬂé‘ is 0.25. (a) What s the velocity of the block at the 10-m

<c if theblock starts from rese? (b) If the force is removed
yat point; how much farther up the inchine will the block
so! (€) At the uppermost point the block starts sliding down.
;.-mt is its speed when it reaches the borrom? Usc the energy

arth

methods.
Anaver: () 7.72m/sce, (b) 4.24m, (¢) 8.90 m/scc.

- 17 A rigid rod of negligible weighr and lengrth / = 2m
iqas a2 mass of Skg attached to one end. The other end is
Pivorcd abour 2 point 0, as shown in Fig. 5-13. The mass 1s
released from the position shown with some initial speed vy
As the mass swings around it expericnces an average fricrional
force of 12 N and just reaches the top of the circle, poine 2.
(a) What is the imtial speed vo of the mass? (b) What is the
specd of the mass as it passes through the lowest point P'?

A
P
A
\
N\
\
\
1 1 0 ‘ >
F i
\ //
L\ //
I: \\\\ ///
i
SLGURT 513 Problem 5.17,

218 Amassmy = 3kgresting on a Jong table (s connecred
by a light sirin g passing over a frictionless pulley to a second
Mass 725 = 5 kg hanging 2 m above the floor (see Fig. 5-14).
The coefficient of friction berween the table and my 18 0.3.
The blocks are refeased from rest. (2) What 15 the velocity of

ms as 1t hits the Boor? (b) What is the toral distance teaveled
by 1 before it stops?
Answer:  (3) 4.48 my/sec, (b) 5.42m,

375 -
! fﬁ \

IGURE 5.14 Problem 5.18.

An 80-kg man ascends a 4 m high scaircase in 12 sce.
What is his horsepower?

An elevator of mass 800 kg is raised 10m in 5 sec.
How much power is required? Express your answer in watts
and in horsepower.

A cable cavis operated on a slope 1000 m long making
an angle of 20° with the horizontal. The cable car moves up
the slope with a speed of 3 m/sec and carnes 20 persons of
average weight 600 N. Whart power is necded?

Answer: 1.23 x 10* W,

The piston of a steam engine 1s driven 120 times
per minute. The length of the stroke is 0.5 m. If the engine
develops 150 kW of power, what is the average force excrted
by the stcam on the piston?

Acpump is needed to hift 100 kg of water per minute
from a well 30 m decp. The warer is ejected with a speed of
5 m/sec. What must be the power outpur of the pump?

Answer:  510.8 W.

A 2500-kg automobile devclops 30 kW of power to
drive wirh a constant vejocity of 90 km/in on a level road.
What power must it develop to drive up a 15¢ hill with the
same velociry?

Answer: 1.88 x 105 W.
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INTRODUCTION

6.1

Momentum is the product of the mass of a body and its veloay. It is therefore a
vector. We first mentioned momentum in Chaprer 4 as the seed whose germination
Jed to modem thoughts on the mechanical behavior of newronian bodics. In our
description of this development, however, we did not consider with sufficient care
what was meant by a body. In many cases it is an assembly of particles. In thus chapter
we will first show how such an assembly can be mathematically represented by a point
mass, called the center of mass. We will then show that the motion of the center of
mass 1s that predicted by Newton’s second law for a particle whose mass is the sum
of the masscs of the individual parnicles and is acted on by the resultant of the forees
acting on the body. Having established these facts, we will turn our attention to the
momennum changes of colliding bodies with confidence, knowing that the treatment
of bodies ts as mathematically sound as if they were very small masses. Collision theory
is very important in our larer analysis of conduction electrons in solids.

6.2 CENTER OF MASS

If you have a stick, whether uniform or not, you can find a point along its length chat
we call the “balance point.” If you place your finger there, you can support the stick.
Clearly, from Newton’s law, the sum of the forces in the ¥ direction is zero at that
point, with your inger supplying the upward force. The weight of the stick supplies
the downward force, and it appears to be locared at that poing, although we know that
every segment of the stick has weight. We call this pount the center of gravizy of the stick.

If, while balancing the stck on your finger, you suddenly excrt an impulse on
it by moving your finger rapidly upward, the stick will fly upward withour roravng,.
Thar s, al) parts of the stick will move upward wniformly and the stick will therefore
retain the configuration that it had on your finger. 1f, when it 1s in motion, you carch
1c at the center of gravity, the entire stick will stop. These experiments show that
the center of gravity of the stick behaves as 2 pomr mass in Newton’s sccond law,
F = ma, and that the center of granity may also be considered as the center of mass.
That 15, if you perform these same experiments in distant space where the force of
gravity 1s negligible, you will obtain the same resulrs. Similarly, if you have a piece of
cardboard, you can find a point on the surface ar which vou can place vour finger and
support it. All the weight of the cardboard can be considered to be located at that
point. Although it is a more difficult experiment to perform on a three-dimensional
object, it tmay be shown mathemarically that it too has a center of mass. A better
understanding of what the center of mass is will be obtained when we introduce the
concept of torque in Chaprer 8.

m.
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CENTER OF MASS =
fwr-— 3 .

¢ that we have two masses, m; and m;, on 2 welghtless stick as in Fig. 6-

e rm a measurement, we will find that the balance poinr (center of ma 83),

la, Hwt_}?r_:riol\i.-‘agcﬁ the products of the masses and their respective distances from

irlsldllfafojﬁt;;q;\“c equal. From Fig. 6-1a, the center of mass is the point such that
¢ balance :

nha = mzb
L . in Fig. 6-14. We mav cxpress Eq. 6.1 in cCrms
Let s put this figure on an x axis, as in Fig y exp q
of x distances by noring that

a = .x:(_m - x} a_nd_ [7 — xz - Ixc]”

Equation 6.1 becomes

) (Xem — x]) = M2(X3 ~ Xem)
Rearranging gives
(M3 + ma Yy = mixy + miaxy

or
X+ 9K
1y

<m

This relation holds true regardless of the number of masses placed on the balancc, so
We ray write

Z?:] mbx'i
Z?:l i

n
But Z mi = M, where M is the total mass. We can therefore express EqQ. 6.2 as

=1

12
Xem = — E X :\_. 3
M o

EXAMPLE 6.

Fmd tl]c center Of

mass of the configuration in Fig. 6-2 when m; = 1kg,
m=2kg, and My =3k

g.
Salution

1
Yem = 77 >

Ifwe rake the oo B _ | |
€ POsition of m, as ghe ongn, we write this equarion as

1
x['lh ! EM“—_% ' ) ’ m
Hke 4 kg + 3kg (1 K8 2 O+ 2kg x 0.5 m + 3kg x L3m) O
=0.82m,

08

Example 6-1.

V]Ls




/2 s MOMLNTUM AND COLLIS]JONS

If we had chosen any other point as the origin, the position of the center of mass
rclagve 1o the individual masscs would have been the same, although the numeerical
value of %, would have been different.

In the general case, when the masses do nor lie on one of the axes, we define
the center of mass as the point whose carresian coordinates are

| Qs
xcm:_ﬂ;mlxl (0.3)

l ?l

Yem = A_/f Z Y, (6.4)

1=1
1 2
Zm = M g miz,

where x;, ¥,, z; are the coordinates of the #th parriclc, all measured from the same
arbitrary origin. The reason for defining the center of mass in this manner will become
obvious 1n the next section.

XAMI 6-2  Fund thex and y coordinates of the center of mass of the system
shown in Fig. 6-3, where m| = 2 kg, my = 3kg, m3 = 4kg, and my = 1 kg, and the
coordinates are (3,4)m, (4,6)m, (5,5)m, and (6,8)m, respecrively.

lution We note that each mass has both an x and ¥ coordinate and
thereforce cach contributes to the x, and the yp.
For &, We write

Xem = Fvi Z X,

i=1

1
=—2kex3 31 4m-+4kg x5 1! ™
IOkg( g x 3m+43kg x 4m gx5m+1kgx 6m) e s
:4'.4m my
6 ' ™y
For yoy we write T g :
41— ¢
l 1 > @
‘2 [ A “amy
Yo M i=1 s 2 i
{
o | [ |
101 (kg x4m+3kg x 6m+4kg x Sm+ 1kg x 8m) 0 . L :

=54m FIGURE 6-3  Example 6-2.



MOTION Q) THE CENTER OF MASS
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6 3 MOTION OF THE CENTER OF MASS
L 2

1 rewrite the expression for thex coordinate of the center of mass of an array of
es, Eq. Q in the following way.

it

11a8S

A’bfcm = IRNXY f X T MKy

Differentiating this with respect to time, we obrain

dxcm ] de dxu
=m-——+my— + - w,—
dt At dr " dr
or
MUpem = W1 Ug] + 9300 + - - 112,00 (6.7)

Simifar expressions can be readily obtained for Muya, and Mvser,.

Equation 6.7 and the equivalent cquations for the y and z motion show that
the total momentum of alf the particles 1s equal to the momentum of a single particle
whose mass is equal ro the sum of the masses of the particles and moves with the
velocity of the center of mass. Iet us now ditferentiate Eq. 6.7 with respect ro time.

Av dv due au
M Kem 1 x) T+ X + .. ., X7
dt At at ar
or
M Byom = ML By) T 1) xd + -+ Wy Bn (6.0
We can apply Newton’s second law (F = 7a) to each individual particle; that
8, Foy = mia, Fyy = maay, . ... Substtruting this in Eq. 6.8, we have

Magm =Fa +Fa+- Fy 6.y

where Fy; is the x component of the resultant (i.e., the sum) of the forces acting on
the 7th particle. A system of masses may be connceted by internal forces such as the
binding forces of a solid. There may be additional external forces acting on the sohd.
By Newtorr’s chird law of action and reaction, each foree exerted internally by a particle
o another has an equal-and oppositc force exerted internally on it. Thevefore, the
Sum of internal forces on the right side of Eq. 6.9 must be zero. We conclude thar the
UM of the forces in Eq. 6.9 includes only the axternal forces acting on the system of

Particles. We can rewrite Eq. 6.9 sunply as

n
Z Fo = May,

i=]

; he same equarion can be derived for the vy and dic z components of the external
orces . .
rees, and we have the vector cquation of Chaprer 4

F=Macy (€ )



where F is the resulrant of the exrernal forces acting on all the pasticles. This resulc
shows that the center of mass moves as if it were a point whose mass is equal to the
total mass of the system and all the external forces were acting on it. And this 1s why
the point defined by Eqs. 6.3, 6.4, and 6.5 is called the center of mass.

. AMPLE 6-3
Suppose a grenade is thrown thar has the trajectory shown in Fig. 6-4. If it
cxplodes in midair, only wrternal forces have acted on the fragments and therefore
from Eq. 6.10 the acceleration of the center of mass of the fragmencs, regardless .
of their subscquent dispersal, is unchanged by the explosion, and thus follows the
original trajectory.

6.4 MOMENTUM AND ITS CONSERVATION
Recall Newton’s approach to mechanics from Chapter 4. He said thar an impulse
applied o a body will change its state of momentum (Eq. 4.1).
FAr = Amv (4.1
FAt = mvp —mvp

where vy ts the velocity of the body before the force begins to act on it and vy is the
veJoctty when the force stops acting on the body.
Momentum is often repgesented by the letter p,

FAr= Pr— Po (4]

1f chere is no external force exerted on a mass, the left side of Eq. 4.1" is zero and we
nmay writc

po = P

This simple cquation is called the law of conservation of momentum. It 1s important to Y,
recognize that momentum is a vecror and that Eq. 6.11 must be satisfied in all three —
cartesian coordinares.

We can casily extend dhus law to a system of particles using the results developed

n the preceding section. FIGURE 6-4 A grenade explodes
Jf the resultant of the excernal forces acting on all the particles is zero, then from  While in a majectory of projecrile

. . . mortion. Becausce there has been

Eq. 6.10 the acceleration of the center of mass is 4. = 0. Thercfore, the velociry on- B

of the center of mass will be constant. We can then conclude, from Eq. 6.7 and che explosion, the morion of the center

equivalent equarions for the y and z directions, that the rotal momentum of all the o g i unchanged.

no external force involved in the #
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parddCS will not changge, or

\ S ety b i

i=1 before i=1 after
We should note that Eq. 6.12 does not imply that the momenta of the individual
pmidcs remains constant. The individual momenta can change as a result of internal
forees such as in Example 6-3, bur the rotal momenrum remains unchanged.

EXAMPLE 6-4

A cannon of mass 1000 kg fires a 100-kg projectile with a muzzle velocity of
400 m/scc (see Fig. 6-5). With whar speed and in what direction does the cannon
mover?

Solution Let M be the mass of the cannon, V) its initial velocity, and A\
igs final velocity. Let m be the mass of the projectile and vg and vy its initial and
final velocities, respectively. If we consider the cannon and projectile as our system of
particles, no external force 1s involved in che firing of the projectile and we conclude

that
Po = Pr
Substiture the terms on each side of this equation
mvo +MVy = mvy +MVy
If we choose the dircction of motion of the projectile as the positive direction, and
noting thar V and vy are zero, we get
0+ 0 = mvy + MVy
or

mvp 100 kg x 400 m/sec
M 1000 kg

Vr= -

Vi = —40m/sec

‘x\'om that although from experience we know that the cannon will recoil (i.e., move
In a direction opposite to that of the projecule), we are not told this as one of the
faces of the problem. So we put Vy in as positive; the vector aspect of the formulation gl \
shows in the result (i.c., the fact that V; is negative) that the direction of recoil 1s
Opposite o that of the projectile. f‘""

In the next section we will consider problems in collisions whose solutions

K (x)

i

volve both momentum conservation and energy accountability. However, as the
followmg example illustrates, some questions about collisions can be answered by 5
momentum conservation alone. FIGURE 6-6 Example 6-5.



EXAMPLE 6-5

A 10,000-kg truck rraveling castac 20 my/scc collides with a 2000-kg car traveling
north at 30 m/sec. After the collision, they are locked together. With what velociry
and at whar angle do the locked vehicles move immediately after the collision? (See
the schematc diagram, Fig. 6-6.)

Solution Because no external force is involved in the collision, momentum
is conserved. In the x directon
Pt = Puf
wirvp = (mr )V cos8
Rearranging terms,

mypvr 10,000 kg x 20 m/sec

VoSt = et~ 10,000kg + 2000kg

= 16.7 m/sec
In the y direction,

P10 = Py
mey, = (mr + 1)V sin 6

Solving for VV sin 8,

U, 2000 kg x 30 m/sec

T R . Bt i, s i
A myp +m.  10,000kg + 2000 kg

= 5.0 m/sec

First find the angle by dividing the nvo velocity components

XY siné " g 5.0 /sec
Xcosf  16.7m/sec

g = arctan 0.30 = 16.7°

=0.30

Find V' by substituting the angle into either the x ory momentum solutions
Vsin 16.77 = 5 m/sec
V = 17.4m/sec
or
Vcox 16.7° = 16.7 m,scc L

V =17.4m/scc L




*5 COLLISIONS

One oft}lc most important applications of the conservation of momentum law occurs
in the theory of collisions. We will deal only with collisions berween two bodies,
as it is exceedingly difficulr to obtain any bur approximate solutions for three-body
collisions. There are two types of collisions, to which we give the names ¢/astic and
inelastic. In an elastic collision kinetic energy is conserved (i.¢., no energy is lost from
the system). This type of collision can occur only between atomic particles, although
in physics problems we often assume elastic collisions between colliding bodies. In
actuality, there are no clastic collisions, burt in some the energy loss is very small and
it may be considered negligible. An inelastic collision is one in which kinetic energy
is nor conserved (c.g., some energy is lost to friction, crumpled fenders, or such).

6.5a. Elastic Collisions

EXAMPLE 6-6

A ncutron with a mass of 7z = 1 u (atomic mass unit) strikes a larger atom
at rest and rebounds clastically along its original path with 0.9 of its initial forward
velocity. What is the mass M, in atomic mass units, of the atom it suuck?

Seolution Let v be the initial velocity of the neutron and vy = —0.9uy jts
final velocity. Note that the problem tells us that it rebounds; therefore the direetion
of the final velocity is opposite to its initial velocity. Let M be the mass of the atom,
v 1ts initial velocity, and vy its velocity after collision. Both momentum and kinetic
energy are conserved. From the conservation of momenaunm

vy + MVy = mup + MV

and on rearranging and using the face that vy = 0

Vf = m‘-(b‘n _ E'r—)—
M
_ Tu(up +09v)  (1u)(1.9v9)
h M N M

From the conservation of kinetic cnergy

1 1 1 1
7" ug + EM Ve = Pk xff- + EMVj;

Solving for M, noting that vp = 0, we obtain

2 =12 : 2
o m(vy : ) (Lu)(0.19v5)

.
V2 7

Multiflash photograph of a collision

between a moving ball coming in
from the left and a stationary ball.



If we substitute for vy from the momentum equation into the energy equation, we
obtaun
(1u)(0.19v2)M?

M =
AT w361y

which simplifics to

_ (1u?)(3.61)
— (1u)(0.19)

= ]19u

M

EXAMPLE 6-7

An important type of elastic collision art the atomic level, whose results we will
use later, is the collision between a very small mass particle, such as an electron, with
another particle of comparatively large mass, such as an atom. The mass ot a copper
atom, for example, is about 10° times that of an clectron. In this type of collision
one is often interested in finding the velocity of the electron after the collision with
the copper atom. To solve this type of collision, we follow rhe usual procedure
of conserving momentum and kinetic energy. We will assume a one-dimensional
collision.

Solution Let m, vg, and vy be the mass and the initial and the final velocity
of the electron and M, vy, and vy those of the atom. From the conservation of
momengum law

mug + MV = mue +MVy
and, on rearranging,
MV — Vi) = m(vy — vo) (6.13)

Conserving kinetc energy yields

%mvﬁ + %ﬂﬂ’l = %muﬁ 35 %MVf
or
MV -V} =m{u} —v})
On factoring,
M(Va + Vi) (Vo — Vr) = m(up + vo)(vy — vo) (6.14)
Dividing Eq. 6.14 by Eq. 6.13 obrains

V0+Vf=U0+W (6.15)
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Eor simplicity, let us have the atom initally ar rest, vg = 0, and substitute vy of Eq.
6.15 into Eq. 6.13,

) —M (vo + vp) = (v — up)
—Mug — Muy = mur —mug
Rearranging,

~v(M +m) = vo(M —m)

(M — m)
= —yg——r-=- 6.16
U= T M T (6.1
For our case 711 < M therefore Eq. 6.16 reduces to
vy A =g (6.17)

The electron rebounds (recous) with the same magnitude of velocity; thus it
does not lose any kinetic encrgy; therefore the atom does not gain any and is not set
in motion. This is, of course, an approximation. If the mass of the clectron is raken
as 1 unit and the mass of the atom as 10° units and these numbers arc substituted
into Eq. 6.16, then yr = —0.99998vy. Because kinetic energy is proportional to v,
the remaining ecnergy of the recoiling clectron is 0.99996 of its initial kinetc energy.
Therefore, in the collision 0.00004 of the mnitial kinetic energy of the electron has
been transferred to the atom. This concept will be important later when we develop
the loss of electron energy to atoms in an electrical conductor in which electrons flow
a8 2 current. The increase in energy of the atoms from electron collisions manifests
wself as an increase in temperature of the conductor.

6.5b. Inelastic Collisions

Inall the preceding examples, the energy of the system was unchanged by the collision.
We now give an example of a collision in which the energy is changed by the collision.

EXAMPLE 6-8

A ballistic pendulum is used to measure the velocity of a buller. The bullet is
shot into a wooden block suspended by strings. It lodges in the block, losing e¢nergy
N its penetration, and the increasc in the height of the swinging block and bullet is
Measured (see Fig. 6-7). If the bullet has a mass of 0.01 kg, the block has a mass of
0.5kg, and the swing rises 0.1 m, what was the velocity of the incident bullet and
What fraction of its energy was lost during penctration?

Selution
Fa‘g. 6-7.

We first conserve momentum between situation (#) and (&) in

Po = Pr

{h)

,Lh
(¢}

FIGURE 6-7 Example 6-8.
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mo+ 0 = (m+ M)V
0.01kgu = 0.51kgl”

We saw in Section 5.6 in the discussion of the pendulum that the string docs no work
on the block. We may thercfore conserve mechapical energy between situations (6)
and (¢) in Fig. 6-7.

{E&]L‘ = (15:,0}(

(m + MYV = (m + Mgh

[N e

V= Vi”@ = L4 m/sec

Substrnute rhis value into the momentum equanon and obraip

_ 05lkg

Y= 0.01kg

x l.4m/sec = 71.4m/sec

We find the fraction of the buller’s initial energy lost in penetration by calculating the
energy of the system before (situation #) and after the collision (situation b).

(Ed)s = %mu"’ = %(0.01 kg)(71.4 m/scc)® = 25.5]

1

(Er)p = %(m + MV = 5(0'51 kg)(1.4 m/sec)> = 0.5]

The fraction remaning is

(Ex)s  0.5]

E.  255]

Fraction remaining =

and the fraction lost is
Fracton lost = 1 — fraction remaining = 0.98

When colliding objects sack together we find that the kineric energy is not
conserved. We should note that energy can be lost, and thercfore the collision is
inclastic, in certain cases where objects do not stick together.

PROBLEMS

6.1 The equilibrium separation between the centers of the 6.2 In the Bohr model of the hydrogen atom, the electron
sodium (m = 23u) and chlorine (m = 35u) ions in the  (m = 9.1 x 1073 kg) revolves around a protgn (m = 1,67 x
sodium chloride molecule is 2.4 x 107" m. Where is the 1077 kg) in a circular orbit of radius » = 0.5 x 107 m.
center of mass of the molecule? Where is the center of mass of the hydrogen atom?




¢lectron
= 167 X
LO Y m.

—

5.3 Whatare thex and y coordinares of the center of mass
of the system of particles shown in Fig. 6-8?

L5
5 kg
T 16— @
~ 10 kg
Sty b
22 3ke @
@
24g ) ; | J
3 5 10 15
x(m)——

FIGURE 6-8 Problem 6.3.

6.4 Athoriumnucleus (m = 232 u),atrestacthe origin ofa
coordinate system, decays into a radium nucleus (m = 228 u)
and 2n elpha particle (m = 4u). Sometime later, the alpha
particle passes the pointx = 3m, ¥ = 2m with a velocity
y = 2 x 10%m/sec. What is the position and the velocity of
rhe radium nucleus at that moment?
Answer: % =53 % 1072m, y =35 x 107 m,
v = 3.5 x 10% m/sec.

6.5 Two particles of mass #2y = 1 kg and my; = 99kg are
held 2 m apart. The particles areract cach other with a constant
torce dirccted along the line joining the two particles. (a)
When the particles are released, where will the collision oceur?
(b) Does the answer to (a) depend on the actual value of the
foree:

Answer: (a) 1.98 m from 21, (b) no.

6.5 A 0.25-kg baseball has an wmitial velocity toward a bat
of 15 m/scc. The batter strikes the ball and it goes out in
the reverse direction ar 30 my/sce. (a) What is the change in
the momentum of the ball? (b) What is its change in Kinetic
energy?

6.7 A swimmer in a pool makes a racing turn at the end
by suddenly straightening his legs while his feet are pressed
against the end of the pool. Ifhis mass is 80 kg and he exerts an
average force of 120 N for 0.8 sec, what is his initial velocity
0n leaving the pool end?

6.8 Acarcrashesinto a tree. If the car hasa mass of 1200 kg
and its speed is reduced from 30 m/sec to zero in 0.2 sec, what
1S the average foree exerted by the tree on the car?

6.9 A fire hose delivers water at the rate of 20 kg/sec with a
speed of 25 m/sec. Ariot police officer uses the hose to control
an unruly crowd. The water from the hose strikes a person
horizontally and then falls down to the ground. What is the
average force experienced by thar person?

Awnswer: 500N

6.10 A gun fires a 0.01-kg bullet with a velocity of
250 m/sec ara 0.5-kg melon resting on a post. The bullet pen-
ctrares the melon and leaves the back of it with a velocity of
100 m/sec. With what velocity and in what divection does the
melon leave the post?

6.11 A radium atom at rest with a mass of 226 u suddenly
emits an alpha particle of mass 4u with a speed of 2 x
107 m/sec. With what speed and in what direction does the
resulting radon atom of mass 222 u move?

6.12  Atruckof'mass 5 x 10° kg moving at 20 m/scc collides
head-on with a car of mass 1 x 10° kg moving at 25 m/sec
in the opposite direction. If they stick together after the
collision, in what direction and with what speed do they move
immediately after the collision?

6.13  Anatomofmass 10 ustrikes astationaryatom of mass
M and rebounds elastically with one half its original velocioy.
Whar is the mass of the atom it struck?

Answer: 30,

6.14 A sled of mass 10 kg slides on level, frictionless ice
with a velocity of 12 m/sec. It collides clastically with another
sled of different mass pointed in the same direction bur ar
rest. After the collision, the first sled continues in the same
direction but with a velocity of 4 m/sec. Whar is the mass of
the second sled and its velocity after the collision?

Answer: Skg, 16 m/scc.

6.15 A 9000-N open-top radroad car is coasting with a
velocity v = 10km/h on a frictionless horizontal track. A
1200-kg meteorite falls vertically into the car with a velocity
of 200 km/h. (a) What is the velocity of the railroad car after
the meteorite lands on it? (b) What is the magnitude and the
direcdon of the impulse of the meteorite on the car?

6.16  An object at rest in space explodes into three equal
parts. The velocities of two of them are, respecrively, 27 and
—4y. Find the resulting velociry of the third part.



6.17 A buller of mass 80 g is moving cast with a velocity
up. The buller surikes a 200-g wooden block moving south
with a velocity of 2mysce. The bullet remains embedded in
the block, which then moves in the direction 37° south of
cast. {a) What is the velocity of the block after the collision?
(b) Whar was the inigal velocity vy of the bullet? (¢) Whart is
the fractional change in the energy of the system?
Anawer:  (a) 2.37 m/sec, (b) 6.65 m/sec, (c) 64%
decreasc.

6.18 Two particles of mass my = S kgandmy = 2kg move
toward cach other as shown in Fig. 6-9. After the collision,
they stick together. (2) What is the speed of the particles
after they collide? (b) What is the direction of motion of the
particles after the collision? (¢) What is the change in the total
kinetic energy of the particles?

i 4

I
my

vy = 10 misec

X

3 = 12 mise

mz

FIGURE 6-9 Problem 6.18.

6.19 A puck sliding on a frictionless table with 2 velocity
v = 2m/sec strikes a second puck of equal mass initially
at rest, The collision is elastic, and it is found that after the
collision both pucks move with the same speed. (2) Whar is
the speed of the pucks after the collision? (b) Whatis the angle
between the directions of motion of the pucks?

Answer: (a) 1.41 m/sec, (b) 90°.

6.20 Three boys stand on a 10-kg wagon resting on a
fricdonless horizontal surface. The boys take turns running

off the same end of the wagon with a velocity of 1.5 m/see
relative to the wagon. The mass of each of the boys is 40 kg,
What s the final velocity of the wagon?

Answer:  7.87 m/sec.

6.21 A 2-kg block rests on the ground. The coefficient of
friction between the block and the ground is 0.4. A man fires
a0.01-kg bullet parallel to the ground. It lodges in the block,
and the block and bullet are observed to slide 2m before
coming ro rest. What was the velociry of the bullet?

Answer: 796 m/sec.

6.22  Ablock of mass 1 kg rests over a hole in a tabletop. A
buller of mass 0.01 kg is fired upward inro the block with a-
velocity of 200 m/sec. Tf the bullet imbeds itself in the block, |
how high will the block rise?

6.23 A buller of mass 100 g is shot into a 3-kg wooden
block resting on an incline plane, as shown in Fig. 6-10. The
buller remains embedded in the block, which then slides down
the incline plane 2 m before coming to rest. The coefficient
of friction between the block and rhe incline is 0.5. What wag
the injgal velocity of the bullet?

Answer:  91.9 m/fsec.

i T
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FIGURE 6-10 Problem 6.23.

6.24 A bomb is launched with a velocity vy = 500 mi/sec
at an angle of 37° with the horizontal. At the highest point
of the trajectory it explodes in two equal pieces. One piece
lands 20 sec later directy below the point where the explosion
occurred. When and where does the second piece land?

Answer: 778 sec, 4.99 x 10* m from launching.




7.1 INTRODUCTION

In rhe preceding chaprers we deale with mansiarional :motion—thae s, the change of
position in the cartesian coordinate system of the center of mass of a body. However,
some systems simply rorate and some rotate while the center of mass translares
through space: A roulerte wheel simply rotates, whereas 2 car wheel both rorares and
mranslares. Neweron’s laws and momentum and energy conservarion sull apply, but
the formulation js somewhat different. In this chapter and the nexr we will consider
rotational motion. Weneed these properties in order to bupld the model ot the electron
rotational motion in atoms.

7.2 MEASUREMENT OF ROTATION

The most common measurement of rotation 1s a count of the number of revolutions
abourt an axis of rotation. We also use degrees as a measure, where 360 corresponds
o one revoluton. In physics we mostly use rachans for a variety of reasons. One of
these reasons is thar the formulation affords a quick and casy bridge between linear
and roratdonal moaon. Let us examine dhis.

A measurc of an angle in radians is the length of the circular arc subtended by
the angle divided by the radius of the circle (see Fig. 7-1). If the length of the arc from
ato b issand r is the radius, then the measure of angle ¢ in radians is given by

O(in radians) = )i (7.1)

Because both s and » are in units of length, the units cancel on the right side
and 715 dimensionless. Other measures of 8, such as degrees or revolutions, arc also
dimensionless. However, the numerical magnirudes of these quantities differ. so we
must state the system of measure used. Obviously, we must maintain a consistency
of angular measure in a given problem.

Recurning to Eq. 7.1, we may ask how many radians there are in a whole
revolution. The arc length subtended by a revolution is the crcumference, or 2.
Therctove,

sof 1 rm;oluuon _ 2ar — 27 radians (rad)
radius »
We may convert betwveen sysiems of angular measure as shown i Chapeer 1 using

the dendaes

257 (radians) = 360 (degrees) = 1 revolurion (1ev)

—

FIGURE 7-1




7 3 ROTATIONAL MOTION

.

Suppose We have a reference marker 2 on the x axis of a coordinate system and a
wheel whose center coincides with the origin. We also have a mark & on the wheel. We
can measure the time during which the wheel marker & moves from the coordinate
marker ., distance As (sce Fig. 7-2). The speed, of the marker on the wheel 18
measured by the time it takes for the marker o move an arc length As, or

As
speed,_, = —
# Ar
In the limit Az — 0 the distance As becomes a vecror and the speed becomes v, the
instantaneous velociry {see Section 3.2)

ds

V= — {774
At

The direction of the instantancous velocity of the marker on the rotating wheel is the
tangent to the circle of moton and is called the tangential velociov it is somenimes
indicated by writing v with the subscript 7. Nowe thar as the marker rotares the
direction of vy constantly changes cven though the marker may rotare ata constant
rate. Therefore, the vecror vy is constantly changing. In the previous chaprers we have
dealr largely with vectors whose direction remained constant while the magnitude

changed, whereas here we have a vecror whose magnitude may remain constant while

its direction always changes. This has important inplications in the devejopment of

the cenripetal force that we will consider later in this chapter.

In Fig. 7-2 we sce that while s is increasing, the angle # is also increasing as the
moving radius vector (line from origin to the marker on the circumference) sweeps
out a larger arc. The average rate of change of the angle & with time is called the
average angulor or rotational velocirv; we use the small Greek letrer o (omega) for this.

A#H
B=—
ANr
and, as Az — 0, the average angular velocity @ becomes the instantancous angular
velogity o, namely,

an

w = —

it

Bee
Wi = . . . )

Bether ¢ is radians/second, degrees/second or revolutions/sccond. We may relate

the rangeny;

Wse 1s dimensionless, o has units of reciprocal time, although itmust be specified

al velocity to the rotational velocity by differentiating Eq. 7.1 with respect
O time T .

Vs Av

vy dr




. ————— =3 aee == = =

Rearranging terms and using the defimtions of Lgs. 7.2 and 7.3 we obuain
Uy = [ {7.4)
where w is in radians/sccond.
EXAMPLE 7-1
A car is traveling at a constant velocity of 24 m/sec. The radius of its wheels 1s

7 = 0.30 m. (2) How many revolutions have the wheels turned after the car has gone
120 m? (b) How many revolutions have the wheels turned after 60 sec?

Solarion
o (2) If there is no shpping between the wheels of the car and the road, the arc

length moved by a marker on the outermost radius of the wheel is cqual to the
disrance traveled by the car; thatis, s = 120 m. Using Eq. 7.1

5 120 m
Ty T 030m
! rev
6 = 400 rad = 400 rad ( > = 63.7 rev
27 rad

o (b) Beeanse the car travels ar constant veloviny, the distance rraveled by the carin
60 sec can be found wirh Eq. 3.12, keeping i mund rhat the acceleranion a4 = 0

x = (24 m/scc)(60sec) = 1440 m

This, as we have indicared, is also the arc length moved by a marker on the rism of
the wheel, We now use Eq. 7.1 to find the angle rotated by the wheel in 60 scc.

t(r = 60scc) = .
x

1440 m 1yew
#=-r— =4800rad = 4 ad = 764 rev
030m Orad = 4800 rx ( d) rew

2rra

Suppese the marker on the rotating wheel of Fig. 7-2 is not rorating ara consrant
tate bur is speeding up or slowing down. Then from Eq. 7.4 the marker on the whee!
has an average tangennial acceleradon thac from Eq. 3.4 s
_ AVT
ar =

At

vy —vrg
T At
In the mit as Ar — 0, a7 becomes rhe instantancous acceleration ar, that is,

ar =

dr

cha

and

Tof

spt‘.(
rang
resp

whe

astl
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The rate at which the angle ¢ is being swept out, the angudar velocity . is 2lso
Weicall the rate of change of o the average angular or rotational aceckerauon

chﬂngi”’g'
and nse as the symbol the small Greek lerrer e (alpha), so that
_ Aw
ad=—
Ar

To find the instantancous value we ler At — 0, and
{fm ey

o = E 7.0}

Angular acceleration has dimensions of (time) 7, although, as before, we must

specify the measure of the angle. We may connect the angular aceeleraton wich the

rangential acceleration of the marker on the wheel by differendaring Eq. 7.4 wich
yespect to fime.

Ay de
—_— = F—
ar de
ar =ro {7:7)

where o 1s 1n radians/second squared.
Because the radian is a dimensionless quandity, the unies of zr will be the same
as those of 7 divided by sccond?. Thus if » is eapressed in merers, a7 will be in ny/sec?.

EXAMPLE 7-2

A driver of a car traveling at 24 im/sec applies the brakes, decclerates uniformly,
and comes to a stop in 100 m. If the wheels bave a radius of 0.30 m, whar 1s the
angular deceleration of the wheels i rev/sec??

Solution There are several ways to solve s, bur let us use the most
straightforward one, finding first rhe lincar deceleracion and then relating it o
rotational deceleration

Vo = 24 (ﬂ/SCCS U/‘ = O, X = 100 ny, a =>
From Eq. 3.11,

u}—ué:bzx

Because » e . .. . .

Ceause 2 is the acceleration of the car, it is also the tangenoal weceleration ot evert
boint on the rim of ws wheels (assuming no slipping detween rhe wheels and the
Toad). By Eq. 7.7



=
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= == — e

ar —2.88 m/sccz
= = —————
r 0.30m

rad 1rev
—— —— = —15rev/sec?

o= —9. =
sec? 2 rad

7.4 EQUATIONS OF ROTATIONAL MOTION

We may derive the equations of rotational morion by the method of Chaprer 3. Asin
Chapeer 3, we will limir our discussion to the casc of constant angular acceleration.
The basic relations obrained by argumencs analogous to those of Egs. 3.7 and

3.9are

We may abrain the other three relations amalogous to Egs. 3.8, 3.11, and 3.12 by
Inregration for the condition that o = constant. From the definition of e, Eq. 7.6,

dw
a= -
dr
f do=o | dt
o J0O
W —wy =of
W = o +at (7.10)
From the defimition
a6
w=—
at

) !
/ a0 = [ wdr
i i8]
Substitute Eq. 7.10 for w

v r ' 7
/ a8 = f (g -+ ar)dt = wy / at + LY/ tdr
N V] §] 0

1
H— By = wr + Eutz (7.11)

To obtain our final equation, we usc the chain rule o write

_ zﬁg - dw 46 _ Hew
Tar T dbd T “de




p—

\ulsiply both \.sides by 46

adf = wdw

and the integration is

& w
o / 40 = f wdw
An (05

1
2 2
a(f ~ &) = 5(0 — wpy)
which is usually written in the form
W' — wf = 2a(8 - 6) (F.12)

EXAMPLE 7-3

A roulette wheef is given an inltial rotational velocity of 2 rev/sec. 1t is observed
to be rotating at 1.5 rev/sec 5 sec after it was set in motion. (#) What is the angular

deceleration (assumed consrant) of the wheel? (&) How long will 1t take to stop? (¢)
How manv revolutions will it make from start to finish?

Tty
a0t

\
’

(a) wy = 2.0rev/sec w=1.5sec t =5sec ¢ =

w = wy Tt

w—wy 1.5 rev/sec — 2.0 rev/sec

o= =
t 5sec
a= — 0.1 rev/sec?
(b) wo = 2rev/sec wy =0 o =-0.1 rev/sec? =2

wr = wg + aty

’ wy — wo 0 — 2 rev/sec

4 o —0.1 rev/sec?

ty = 20 scc

(€) wp = 2revfsec wr =0 1y =2Wsec #=>

Wy — wy 2rey 0
02 ft_f‘: = /;CC+ x 20 sec

= 20rev

9 =

J O AR e W WE)

ER SR ST R T S e



JU o ROTATIONAL MOTION
7.5 RADIAL ACCELERATION

Let us consider more carefully the modon of the marker on the wheel in Fig. 7-2 as
the wheel rotates at constant speed. In Fig. 7-32 we have the same whecl with the
velocity vectors indicated at points # and b. We see that even though the velociry
vecrors at poines # and & may have the same magnitude, their direction is different.
This difference is indicated 1n Fig. 7-30 by the vector Av, . In this figure the vector
tails have been purat a common point, Thus, in a rime A? the vector v, has changed in
value by Av, . This implics an acceleration has taken place. Because a velocity vector
of a point op a circle is ahvays rangent to the ardle, it is perpendicular to the radius.
For infinitesimal changes Af and thus Avy, there is an acceleration ag inward along
the radius called a radzal accelevation ap given by

i Av
ap = HMmMm —
R Ai—0 At

We will now exaniine this radial acceleration analytically. We see from Fig. 7-4a
by the method of vector components of Chapeer 2 that the coordinates of the marker
at some oime ¢ are

x =rcosh
y=rsind

Let the marker rotate about the circle at a constant rorational velocity w so thatw = w.
Substitute Eq. 7.8 nto Egs. 7.13 and obtain

X = ¥ COsS Wt
AR I

y=rsin ot [T

The x component of the velocity of the marker in Fig. 7-4% is v, = dx/dr, and the y
component is v, = dy/dt. Performing this difterentiation of Egs. 7.14 yields

a .
Uy = VaTt(COS wt) = —~7rwsin ot

a . .
w=r (sln wt) = rw cos wi L7

We see that in Eqgs. 7.15 both v, and v, are functions of time and therefore the point
must be accelerating in both the x and y directions. We may obtain the components
of acceleration by differentiating Eqs. 7.15 with respeet to time:

flU_( . 2
Ay = = —ro— (Sin wi) = —rw” Cos wi
dr ar
A, a
o . A S ‘7 16)
a, = —— = rw——{COSwt) = —¥w” SIN Wk (7.16)
Y dr df( )

> <

(a)




.

R —

e e ———e

Thesquare of the resultant acceleration a3 is the sum of the squares of the components,

or w
| 2 =8+
ay = 2w’ cos® ot + 7ot sin® ot
= r%w* (cos® wt + sin’ )

Using the trigonometric identity that
: )
sin” 0 + cos?0 = 1

we obrain
s=r2ot

or
T %
ap = Hrw (7.17)

The direction of ag can be found by comparing Eq. 7.16 with Eq. 7.14. It is scen
that a, is ©? times the nggative x coordinate of the radius vector r and 4y is w? times
the negative y coordinate of r. This implies that ag, and, conscquently, the direction
of ag is along the radius toward the center, that is, opposite to the vector direction of
the radius. This is sketched in Fig. 7-5, where the resultant ap is seen to be direcred
mward along the radius zoward the center.

7.6 CENTRIPETAL FORCE

Newton’s second law, F = ma, states that if there is a net force on a body there is an
associated acceleration. The converse is true; if there 1s an acceleranon there must be
anet force. We have shown in the previous section that a particle or a body moving
0 drcular motion at constant speed is being accelerated inward along the radius.
Th.crcforc, the particle must be acted on by a force along the radius toward the center.
This sitvarion corresponds to the statement of Newton’s second law that “Ifa body in
3-5:»tatc of motion is acted on by an external force, it will be accelerated in the direcrion
Ofthe force » The particle cannor undergo circular monon unless there is a force along
the ffidius directed inward toward the center. This force is called the censripetal (center-
S_t_’el““g) force. A demonstration of this is casily performed by whirling a weight ac
t‘-“ll‘:‘cnd ofa string in a ¢ircle. You must exert a constant force (tension in the string) to
Taintain the motion. If vou let go of the string, the weight will iy off in a straight line

Wit o hAE : . ;
ha velocity whose direction will be the tangent to the circle at the point of release.  prauRE 7.5




We indicare radial {(or centripetal) force by Fr. We may ase Newron's second
law to write

Z Fr =may (7.18)
or, using Eq. 7.17
E Fr = mro® (7.19)

Another convenient form is obrained by substituting Eq. 7.4, vr = rw for ©

2
L A
Fr =m—L (7.20)
E , "

In the solution of problems involving radial acceleration, two rules must be
obscrved, based on the derivations: (1) a#x has dimensions of m/sec? and therefore
@ must have dimensions of rad/sec?; and (2) radial forces directed toward the center
of rotanon are posirive, whereas those directed away from the center are negative.
We also note from Scetion 3-2 that the magnirude of the instantaneous tangential
veloarty ar any pointis equal to the speed.

A person whose weight is 600 N is riding a roller coaster. This person sits on
a scale as the roller coaster passes over the top of a rise of radius 80 m. (a) What s
the minimum speed of the car if the scale reads zero (the sensation of weightlessness
is experienced)? (b) If the car increases irs speed ro 40 m/sec in descending o a dip

with a radius of 80 m, what will the scale read: See Fig. 7-6.

Let us consider the forces on the nder ar the rise. The rider’s
weight, my, 18 directed toward the center. The scale exerts a normal force N upward.
N is the reading of the scalc.

Ui
=
:

n@_k?:m_

If the scale reads zero, N = 0 and
2

v
7

vy = a7

= \/Q.Sm/scc2 x 80 m = 28 m/sec

myg = m

BE 7-6

Emmplc 7-4.
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In the dip vx ,l = 40 m/sec, mg 1s downward directed away from the conter whereas

N’ now is ugward toward the center. Following our sign convention we write

/2
—my +N' = —mL
S
12
v
N'=mg +m-—
7

600N ) (40 m/sec’)
9.8 m/sec2 (80m)

=600N+1224 N = 1824 N

—_-600_'\1-i—(

Notice that now rhe scale reads more than three times the person’s weight,

7.7 ORBITAL MOTION AND GRAVITATION

Johannes Kepler (1571-1630), a German astronomer and marhematician, plotred
the orbits followed by the planets around the sun. He found three empirical mes for
planetary motion, the fiest two were published in 1609 and the third in 1621. The
reason for planctary behavior was not known until Newton found that he could derive
Kepler's rules if he postulared 2 universal gravitanonal law, Namely, any rwo bodies
are gravitationally attracted ro each other by a force proporuonal to the product of
their masses (#2172,) and inversely proportional to the square of the distance hetween
them, 72, If we call the proportionality constant G, the wversal gravitational constant,
WC may write

mim o

%)

F=G

The value of this constanris G = 6.67 x 107! Nim?/kg?. Such a small number was not
measurable in Newton’s time, and it was first measured in 1798 by Henry Cavendish
(1731-1810), Newron found a method of performing calculations withou it. For
example, he was able to caleutate the acecleration of graviry at the eartlys surface,

= 9.8 m/sec?, which compared favorably with the experimental measurement of
the acceleration of falling bodies. He reasoned as follows. et #. be the mass of the
carth, m,, the mass of an object near the surface of the carth, 1, the mass of the moon,
¥e the radius of the carth, and 7., the distance from the center of mass of the earth to
the center of mass of the moon (assume constant radius of the moon’s orbit).

At the surface of the carth the force on an objecr is its weight mqg. This is
¢qual o the force of gravity betwween the object and the cacth, as given by Eq. 7.21.
QOmndu‘mg all the mass of the cacth to be at its center of mass, which is the geometrical
center of 2 sphere, then

mO 1,

Mo = G—=5—

]o}mnncs I«cplcr (1571 1630).

W Cavondich 71731219100



and

>
'8

G =4 (7.23)
me

The moon 1s also attracted to the earth by the gravirational force

W Mle .
F=G—3 (7.24)
? Em

This force 1s the centripetal force, which from Eq. 7.20 is

2
) U
Fr = mm—7

cm

Substituning Eq. 7.24 for this force yields

2
e MmUp

G =
7‘5m Vem
from which
Vi,
G =L (7.25
71,
Equatc the G’s of Egs. 7.23 and 7.25
yi U% Fem
e e
from which
2
Vi
= (7.26)
Tli‘

He had the quantries 7. = 3.8 x 105 m and 7. = 6.3 x 10®m measured by
astronomers. vt 1s the speed of the moon, which is the distance around its orbit
277 m divided by the period of rotation of the moon around the earth, 27.3 days
(2.36 x 106 sec)

27 % 3.8 x 10°m
2.36 x 10%sec
Substituting these numbers into Eq. 7.26 results in

_(1.01 x 10°m/sec)?(3.8 x 10%m)
N (6.3 x 10%m)?2

Ur = = 1.01 x 10% m/sec

= 9.8 m/sec?

And thus Newton was able to verify his gravirational law.
Larer, when Cavendish mcasured G, the mass of the earth and the sun could be
caleulated (see Example 7-5).

%
Torsion balance used by Catendisil_

derermine the universal gravitationdt

constant G.
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7-5

EXAMPLE

The md\}us of the earth is 7. = 6.3 x 10°m and G = 6.67 x 1071 Nm?/kg?.

Find the mass of the carth.

Use Eq. 7.22

Solution

(6.3 x 105m)2(9.8 m/sec?)

= =58 x IOQAkg

6.67 x 10-1) Nm?/kg?

The same answer can be obtained if we use Eq. 7,19 instead of Eq. 7.22.

Fp = mro*

Applying this to the motion of the moon around the earth, we writc

M1,

2
Tem

G

2
= MmVemW

The rotational velocity must be in rad/sec. One orbir of the moon is 2 rad, which
it completes in 27.3 days. Therefore, o = 27/27.3 day = 27/2.36 x 10®sec =
2.66 x 1076 rad/sec. When this value is used the same answer is obtained for #..

3,2
m®@

G

M =

(3.8 x10°m)*(2.66 x 10~® rad /scc)?

6.67 x 1071 Nm?/kg’

=58 x 10%*kg

PROBLEMS

7.1 A wheel of radius 0.5 m is rotating at 120 rev/min.
(2) Whac is its rotational speed in rad/sec? (b) Whar is the
Hngential velociry of a point on the rim? (c) How many
radians does che wheel turn in 10 sec? (d) If the wheel were
tolling on the ground, what distance would it travel in 10 sec?

7+ Caleulate the angular velocity of the hour hand, the

Minute hang, and the second hand of 2 wristwarch.

/-3 Awheel rotating at 5 rev/sec coasts to rest in 30 sec. (a)

S SO . . R ~
What is its decelcration in rev/sec? and in rad/sec?? (b) If the

radius of the wheel is 0.4 m, whar is the rangential acceleration
of'a point on the rim? (¢) Through how many revolurions did
the wheel turn m coming to rest?

Answer: (a) —0.167 rev/sec?, —1.05 rad/sec’,
(b) —0.42 m/sec?, (c) 75 rev.
7.4 A bicycle with a whee! radius of 0.34m is traveling ac

10 m/sec. What is the rotational speed of the wheels?



7.5 A whed] rotating ar 10 rev/sec makes 1000 rev while
coasting to a stop with constant deccleranon, How long did
it take o stop?

7.6 A wheel of radius 2m srarts rotating with constant
angular accelerarione = 1.5 rad/sec?. Whar are the tangential
and radial accelerarions of a point on the rim after the wheel
has rotated 20 rad?

7.7 Apulley of radius #, = 8 ¢cm is connected ro the shaft of
anclectric motor. A belt couples the pulley to a wheel of radius
7w = 24cm (see Big. 7-7). The motor shaft begins to rotate
with an angular acccleration & = 25 rad/sec?. (a) What is the
angular velocity of the wheel after 3sec? (b) Through what
angle has the wheel rotated when the centriperal acccleration
of a point on the rim of the wheel is 100 42 (5 = 9.8 m/sec?)
Amnswer:  (a) 25 rad/sec, (b) 245 rad.

TOTTRE =
FIGURE 7-7

m7.7.

Proble
7.8 A wheel makes 40rev in 2 scc. The angular veloaity ar
the end of the 2-scc timie is 18 rev/see. (a) Whar is the angular

velocity at the beginning of the 2 sec? (b) What is the angular
acceleradon (assume it to be constant) of the wheel?

7.9 Assumc that the orbit of the earih around the sun is
circular and that the period of rotarion is 365 days. The
carth-sun distance is 1.5 x 101 m. What is the cencripetal
accelerarion of the earrh resulung from jts moton around the
sun?

7.10 A 0.4-kg object on a sring 0.5 m Jong atcached 1o a
pin on a frictionless table 1s made 1o rotate. If the breaking
strengeh of the string is 20 N, whar is the maxdimum rocational
speed?

Answer: 10 rad/sec.

7.11  Anobject of mass 0.2 kg on a 0.4-m string is wiirled
in a vertical circle. (a) If the rotational speed s slowed until
the object just completes the top of ihe circle with no tension
in the string, what is its tangential velocity at that pomne? (b)

1f the same velocity 1s maintained at the bottom of the circle,
what is the tension in the string at that point? See Fig. 7-8.

U —=~ SN
/ oy \5
Lpl I I
=0 \ |
\\h// \\‘c_“_ﬂ_f_...i-vs vp
TTCTRE 78 Problem 7,11,

7.12  Abug sits on a phonograph record 0.18 m from the
center. If the record murns at 33 rev/min, what 1y the radial
aceelerarion of the buge? Tt has a mass of 0.5 gm, what is the
centriperal force acting on it? See Fig. 7-9.

(>

FIGURE 7-9 Droblem
7.12.

7.13  The carth-sun disrance s 1.5 x 107 m. If the carth

goes around the sun once In 365 days, find the mass of the

sun. Assume the earth makes a circular orbit around the sun.
Answer: 2 x 1030 kg.

7.14 The torce of atrraction between oppositely charged
particles is given by Coulomb’s law, which has the same form
as Newton’s gravirational law

L
.

where g1 and g, are the charges on the particles in Coulombs
(C), # is the distance berween them, and K ts aconstant, In the
Bohr modcl of the hydrogen atom, the electron revotves in a
arcular orbit around the statonary proton. The magnirude
of the charge on the electron is the same as the charge on the
proton gy = 4, = 1.6 x 107"? Cand K =9 x 10° Nm?2/C3.
The radius of the smalles elecrron orbitis 5.3 x 1071t m, and
the mass of the electron is 9.1 x 107! kg. Find the number
of rev/sec of the ¢lectron around dhe proron, according to the
model.
Answer: 6.56 x 10 rev/sec.

. - Ab\. ~
7.15  Whart should the duration of a day bein order for
a person standmg at the equator to have the fecling of

th
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weightlessness, namecly, for the normal force exerred by the
e ! " . v .

sround on fhe person to be zero. The radius of the earth 1s

=]

6.37 x 109m.
Answer: 1.41h.

716 (2) What 1s the centripetal accelerarion of a person
standing on the earth ar a point of latitude 452 (b) What
is the magnitude and the direction of the force exerted by
the ground on that person? Express your answer in terms
of the weight myg of the person. The radius of the earth is
637 % 10°m.

7.17 A 2-kg block is rotating on a frictionless table with
angular velocity @ = 2rev/sec. The block is connected to
a Is-kg block by means of a string of rotal length 2 m that
passes through a small hole in the rable (sce Fig, 7-10). How
far below the fablerop does the 15-kg block hang?

Answer: 1.53 m.

my = 2kg

/
1
o,

1 e
E e p

FIGURE 7-10 Problem 7.17.

7.18 A 1.5-kgmassisartached to one end of a rod of length
I'= 1m and negligible weight. The other cnd of the rod is
pivored, and the mass rotates in a vertical circle. The tangential
velocity of che mass at the top of the circle is 3 m/sec. (a)
What is the magnitude and the direction of the force exerted
by the rod on the mass at the top of the circle? (b) Tf friction
at the pivor is negligible, what is the rangential veocity at the
bottom of the circle? (c) What force does the rod exert on the
mass ar the bottom?
Answer: (2) L.20 N upward. (b) 6.94 m/sec, (c) 87 N.

719 A particle of mass m = 0.7 kg is released from rest at
point A in F ig. 7-11. Trslides down and around the frictionless
loop. (a) What are the radial and rangendial accclerations at
Points B, C, and D? (b) What is the normal force exerted by
the track ar those three points? (This 1s the basis for a popular
fide in amusement parks.)

A LU LI LLINEY

FIGURE 7-11  Problem 7.19.

7.20  Thelength of the string of a conical pendulumis 0.6 m
(see Fig. 7-12). The mass of the bob is 1.2 kg. The angular
velocity of the bob (which moves in a circle in the horizontal
plane) is such that the angle berween the string and the vertical
1s 30° and is constant. (3) What is the tension in the string?
(b) What is the angular velocity of the bob?

Answer: (a) 13.6N, (b) 4.34 rad/sec.

OTOTIRE 7 19
FIGURE 7-12

Problemy 7.20.

7.21  Asmali particle of mass # is placed on top of a station-
ary, frictionless spherical ball of radius 0.5 m (see Fig. 7-13).
It is given a slight kick to start shiding down. (a) Find the tan-
gential velocity of the particle when it looses contact with the
sphere. (b) What is the angle 8 when contact is lost?
Answer:  (a) 1.81 m/sce, (b) 48.2°.




8,1 INTRODUCTION

In this chapter we introduce the concepts of rotational dynamics. Previously, we
devcloped the first principles of lincar dynamics; now we adapr the principles of linear
dynamics to rotating bodies. The same laws apply, buc their formulation s different.
We will sec, however, thar Newton’s Jaws, momentum, energy, and power all have
equations equivalent to their linear counterparts.

8,2 MOMENT OF INERTIA AND TORQUE

In Newron’s second Jaw, mass is the proportionality consrant between force and
acceleration. Newton called it the inertial mass, that is, the resistance of a body to
having its stare of motion changed. We cncouncer a simular concept in rorarional
mornion. Independent of friction, it is easier to spin a bicycle wheel on its axle than
i 1§ o s0 spin a car wheel. This resistance to having the state of rotational motion
changed is called the moment of inertia, with symbol 1. To demonpstrate it in its simplest
form, ler us consider the rotation of a point mass #2 at one end of a rigid massless rod
of length 7. Let the other end of the rod be fastened to a point of rotation so that
the system can rotate in the plane of the paper, as in Fig. 8-1. Suppose a force F is
applied ro the mass in the direction shown. We construer cartesian coordinates with
the origin at s and x” as an extension of r. The force F has two components obtained
by construcring the indicated lines perpendicular to the x” and ¥’ coordinare axes. The
x' component Fx = F cos ¢ is in the direction of r. But because che rod is rigid, there
can be no motion of the mass in the x” direction. The component in the ' direction
is Fsio ¢. It should be observed that by construction this component is tangent to
the circle of rotation at the point where 7 is located, so Fr = Fsin¢. By Newton’s
second law, this tangendal force causes a tangential acceleration

Fr = mar (8.1)
From Eq, 7.7
ar = 1o dpiass)
Substituting for Fr and a7 in Eq. 8.1 yields
Fsin¢ = mra
Now multiply both sides of this equanion by »
2 8.2)

7Fsing = mv (38.2)

From Fig. 8-1, rsin¢ on the left side of Eq. 8.2 is equal to 4, the perpendicular
distance from the origin of the x-y coordinate system 0 to the line of F. Eq. 8.2 can
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gherefore be rewritten as
) [ 4
\ Fh = mro (8.3)
where
Fh =Frsing

The quantity Fb = Frsin, the product of a force times the pespendicular distonce from
the point of rotation to the line of the force, is called the forgue produced by F, which is
usually represented by 7, the small Greek lerter £au. The quanuey mr?> on the right
side of Eq. 8.2 15 called the moment of incrtia, [, of a point mass. We may therefore

write Eq. 8.3 as
T :Ia '\\')

This is Newto’s second law, which governs rotation. When compared with F = ma,
we sce that 7 corresponds to foree, I to mass, and « to iincar acceleration. Just as in the
linear case, 7 must be the net torque and, if it is zero, there 1s no angular acceleration.
Note that from the original definition, Eq. 7.6, the unirs of « are rad/scc?.

It should be pointed out thar it the force in Fig. 8-1 did not lic in the x-y plane
but in some other planc while inaking the same angle with 7, the torque would still
have the same roagnitude, 7F sin ¢, but the ensuing plane of rotation would not be the
same. This ambiguity can be removed by assigning a direction to 7. [t is conventional
to define 7 as the cross product of the position vector r and the force vector F, namely,

T=rxF (8.5)

Erom the definition of the cross product, Eq. 2.2, the magnitude of 7 is#F sin ¢, which
1s the same value assigned previously. Morcover, the direction of 7 is the perpendicular
to the two vectors being crossed, r and F, according to the right-hand rule discussed
 Chapter 2. In the case illustrated by Fig. 8- 1, 7 is perpendicular to the plane of the
Paper outward. Equation 8.5 defines r unambiguously.

EXAMPLE 8-1

A balance scale consisting of a weightless rod has a mass of 0.1 kg on the right
Side 0.2 m from the ptvot point. See Fig. 8-2. (a) How far from the pivor point on
the left musc 0.4 leg be placed so that a balance 1s achicved? (b) If the 0.4-kg mass is
Suddenly rermoved, whar is the instantancous rotational acceleration of the rod? (©)
What is the instantancous rangential accelcration of the 0.1-kg mass when the 0.4-kg
mass 1s removed?

S
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Solution

o (a) When a balance is achicved @ = 0 and therefore

Zr:()

On the right of the pivot point the force is n214 downward and the cross product
r x F is into the paper or negative. On the left the force is #2945 downward and
the cross product r x F is out of the paper or positive.

(myg)(x) sin 90° — (#19)(0.2 m) sin 90° = 0

Solving for x

~ (my(0.2m)sin 90°
v (mr2g) sin 90<

(0.1kg)(9.8 m/sec?)(0.2m)
(0.4kg)(9.8 m/sec?)

=0.05m

e (b)
Tt {my)(0.2m)sin 90°
T I (m)(0.2m)?

L (01 kg)(9.8m/sec?)(0.2m) sin90°
- (0.1kg)(0.2m)?

o = 49 rad/sec? clockwise
> (c)
ar =ra
= (0.2m) (49 rad/sec?)

= 9.8 m/scc?

As expecred, the answer to part (c) is the acceleranion of a body in free fall.
The same answer will be obrained for the left-hand weight if the right-hand one is
removed except thar the rod will rotate counterclockwise.

In Eg. 8.3, mr? is the moment of inertia of a point mass at a distance » from
the pivor point. If there are a variery of masses art ditferent distances from the pivot
point, the moment of inertia of the assembly is the sum of their individual ones or

I = Z m,-rf (8.6)
i=1
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If all the masses are at the same distance # from the pivot point, 12 = 72 for all the
sin rh;? sum and #? can be factored to obrain

\ n
I:rQZm, (8.7)
Fy

If we wish to find the moment of inertia of a thin hoop such as a bicycle wheel with
essentially massless spokes, then the mass of the wheel M is simply

ernl

where 7; is the mass of each infinitesimal element. Therefore, the moment of inertia
of a bicycle wheel is approximately

I =M

The value of I for spheres, cvlinders and such musr be cither derived by Eq. 8.6 or
looked up in rables. We should notc thar unlike the translational inertia (the mass),
the rotational inertia (moment of nerta) of an object depends on the location of the
mass relative to the axis of rotatdon and in general is different for different axes of
rotation (sec problems 8.5 and 8.6).

8.3 ROTATIONAL KINETIC ENERGY

In Fig. 8-1 the force F was divided into tvo orthogonal components. It is seen that
because # is fixed, the component of F in the x’ direction can do no work.

In an infinitesimally small time interval 42, the tangendal component of F,
Fr = Fsin ¢ causes the particle to move an infinitesimal displacement s, which from
Eq. 7.2 is given by

As = vy dt (8.8)

Because time is a scalar quantiry, the direction of As is the same as that of vy, namely,
Rngent to the path of the particle and thercfore in the same direction as Fr (see Fig. 8-

3). The work done by Fr in this infinitesimal distance is 4W, and by the dcfinition
ofEq. 5.3 is

AW =Fr - ds (8.9)

But because E r and ds are in the same direction, the dot product i Eq. 8.9 can be
delered

AW = Frds (8.10)

>

g,




The rangenrial displacement of the parnicle is accompanied by an increase in the angle
¢ (see Fig. 8-3). The two acc celated by the differental form of Eq. 7.1

a
== (7.1)
"
Substituting F sin ¢ for Fr and » 46 for ds into Eq. 8.10, we obrain
AW, = Fsin¢v do (8.11)

We have added the subscript 6 to 4W to indicate that the work is associated with an

angular displacement 46.
The product Fsin¢7 in the vight side of Eq. 8.11 may be recognized as the

torque excrred by the force F (see Eq. 8.5), therefore
AW, = ©db (8.12)

To find the work done for 2 finite rotation we sunply integrate Eq. 8.12

e
I/V.9=/ Tdf (8.13)

o
where g and 6y are the initial and final angles, respectively. Equaton 8.13 1s equivalent
to the expression found in Chapter 5 for the work done in translation

b
4

In Chaprer 5 we indicated that the net work done on a body changes its velocity, or
more precisely, its kineric energy. This was known as the work-cnergy theorem (Eq.
5.9). We can show thar the same occurs tn the case of rotation, while at the same
time we will find an expression for the kinenic energy of a rotating body in terms of

rotatonal parameters.
Substituung 7 = I (Eq. 8.4) 1nto Eq. 8.13 vields

L
W, = lods (8.14)
%
. dw
Bur, by defimtion, o = and 49 = wdr; therefore,
o Ao
Wy = / J—uwdt
o Ar
The time Ar cancels our i the mnregral, and we get
Wy = /JIa)da) (8.15)
JWo

where we have changed the limits from 6y and 6 to wo (inidal angular velocity) and
wy (final angular velocity), for we now integrate with respect to w. If the moment of
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inertia is constant—rhat is, if the distance of the parnicle to the point of rotation does

wr
VV 4 = I w &iﬂ)

o

port change 7 then Eq. 8.15 becomes
\,

1 1 =
W, = 5]0),2 — ing 1&.10)

Comparing this with the work-cnergy theorem of Chapter 5, where we saw rhat work
done is equal ro the change in kinetc energy, we may write

1 i
%]a)f2 - —-10)8 (8.17)

(A—Et>r01 = 5

1, : o
where the quanaty 31 w? is called the rorational kinetic energy, (B )eor-

We may gain insight into the physical significance of (Ep)oc = 1/210? by
relating it to the lincar kinetic cnergy of the parricle. A point on a rotating system has
an instantancous tangential velocity vr. [ts kineric energy is therefore

.1
Er = imv-f-

But, because vr = rw, the kinetic energy may be written as

o122
}:/Z_Emr(o

The moment of inertia of a point mass is I = mr?. Therefore,
Ey = lIa)2
2

Hence, the expression for the rotational kinetic energy in terms of I and w is simply
another form of the kineric energy of a particle rorating abour a fixed axis.

The expression %—I w? for the rotational kinetic cnergy can be readily shown to
be applicable to the rotarion of a rigid body made up of discrete masses ;. The
fotational kineric energy of the ith particle js

; (8.18)

(Ex)eor of ith particle = lm,rfau[

2
and the (E;),,, of the body is the sum of (£ )yer of the tndividual masses

l "

\ 2,2

(Ep)eor = 5 2 Myt w,
“ =l

Becayge the body is rigid, all point masses rotate with rhe same angular velocity
CRardless of cheir distance from the axs, $o wiz = w? and it can be factored our of
the sum. We then have

1 i
: 2 E 2
(Lr’z)rur ~ ;ll) nyz,

=]



Bur the quantity in the summation is the definition of the moment of vertia I for a
system of particles (see Eq. 8.6) and therefore

(E)ror = %Iw2 (8.19)

A body can be roratng as it translates through space; for example, the earth rotatcs
about its axjs as 1ts center of mass moves about the sun. Clearly, the earth’s roration
gives it more kinetic energy than if it were moving without rotarion. Its toral kinetic
encrgy is therefore the sum of translatonal and rotational kinetic energies

1 1
(Ek)roml = (Elz)r.r.ms + (Ek)ror = Emug';.w + 510)2

where vy 1s the translational velocity of the center of mass,

EXAMPLE 8-2

A large wheel of radius 0.4 m and moment of inerdia 1.2 kg-m?, pivored at the
center, is free to rotate without friction. A rope is wound around it and a 2-kg weight
is attached to the rope (sce Fig. 8-4). When the weight has descended 1.5 m from its
starting position (a) what is its downward velocity? (b) what is the rotational velocity
of the wheel?

Solution
(a) We may solve this problem by the conservation of energy, equating the initial
potential energy of the weight to its conversion to kinctic energy of the weighr and
of the wheel.
L

mgh = Pt + 51{02

The downward velocity v of the weighrt is equal to the tangential velocity at the rim
of the wheel vr; therefore

Subsututing for w
1 1 02
gl — —mut L ]~
mgh = =my + 2172

We solve for the velocity

<

- 1)2

mgh

L %m + 2“(7

B 1/2
(2kg)(9.8 m/sec?)(1.5m)

] . (L2kg—m?)
(5) (2 kg) T 2)0.4m)?

! m { 2 ke
FIGURE 5-4  Example 8-2.
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(b) The'answer to part (a) shows that any point op the rim of the wheel has a
velooity of v = 2.5 m/sec. We convert this to rotational velociry of the

v = 2.5 m/sec

ﬁmgcntial
wheel
vr  2.5m/scc

— = = 6.2 rad/sec
7 0.4m /

w =

8’4 POWER

The definition of power 1s work done per unit ume. The incremental amount of work
done in moving the mass in Fig. 8-3 a distance ds = 46 is given in Eq. 8.12.

AWy = tdf (8.12)
But, from Eq. 5.15
Power = —
ower = —
Substitute Eq. 8.12 to obtain
46
D - —
ower = —
or, because w = 46/4t
Power = 1w (8.20)

EXAMPLE 8-3

A machine shop bas a tathe wheel of 40-cm diamerer driven by a belt that goes
around the rim. If the linear speed of the belr is 2m/sec and the wheel requires a
fangential force of 50 N to turn it, how much power is required to operate the lathe?

Solation Use Eq. 8.20
Power = 1w

If there is no shipping between the belr and the wheel, the linear speed of the belt is
€qual to the rangential velocity ar the rim of the wheel and the rotational velocity is
therefore
ur
w=—
”
_ 2m/sec
- 02m

= 10rad/sec

POWER

=

107



From Eq. 8.5 the torque is
v =rFsing
= (0.2 m)(50 N) sin 90°
= 10 Nm
then

Power = 10 Nm x 10 rad/sec

= W = 0.
100 (746W> 0.13hp

8.5 ANGULAR MOMENTUM

We learned that an important property of a particle or of a system of particles (a body)
is Its momentum p = 7v. An equivalent property can be associated wich a rotating
body.
Consider, as shown in Fig. 8-5, a particle of mass 7 with momentum p = mv
in the x-y plane. The position vecror of m is r, which is not required to be a constant.
From Newton’s second law we write
F= %(mv) (4.2)
If we take the cross product of both sides with the positon vector r, we obrain
A 5
rx E=rx —(mv) (8.21)
ar
By definition r x F =  and therefore

— a (8.22)
T=rx E(mv) 8.22

The right side of Eq. 8.22 can be rewritten as

d 4 i
r x E(mv) = d—t(r X mV) (8.23)
The equivalence of the nwvo cxpressions becomes evident tf we differentiate the second
rerm
ar d
E(r X mv) = s WV 1 X %(mv)

But by definition dr/dt = v, the instantancous velocity of the particle; therefore

a a
E(r X HIV) =V X MV +T X d—r(mv)

I
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We saw in Chapter 2 that the cross product of two vectors in the same direcuon is

2E10. Thergtore
N
vXmv=m(vxv)=0

and, therefore

—(rxmv)=r x E(mv)

At

a
Substituzing Eq. 8.23 for er(mv) in Eq. 8.22 yields

T=—(r xmv (8.24)
We have already indicated that the torque 7 in rorational motion plays the role of the
force F in transiational motion. Thus, if we compare Eq. 8.24 with Eq. 4.2, we are
led to the conclusion that the quantity r x#v in rotational motion plavs the same role
as does the momentum mv in translarion. We thercefore call

L=rxmv

the angular momentum of the particle.
We can find another expression for L that shows even more clearly its
correspondence to the momentum #v.

L =r xmv=rnvusiny

where y is the angle between the radius vecror ¢ and the lincar momentum v (sce
Fig. 8-5). Bur, from Fig. 8-53, musin y = mur, and

L =wrmur
Erom Eq. 7.4, vr = rw and therefore
L+ mrw (8.206)
We have defiped 72 as the moment of inertia 7 of a point mass; henee
L=1Iw (8.27)

The ¢quation of motion for rotation, Eq. 8.24, can be written

AL d(lw)

dar At




8.6 CONSERVATION OF ANGULAR MOMENTUM
We will now show that the law of conservation of momentum that was derived in
Chaprer 6 applies equally to angular momentum. Start with Eq. 8.28

,_ Alw) _dL.
T oA dr

If we have a situation in which there is no net exteenally applied torque, then 7 = 0.
Thus

4L

il

and L = constant. Hence, Jw = consrant.
Therefore, with no ner external torque

(Iw)y = (](1))f (8.29)

This is known as the law of conservation of angular momentum.

EXAMPLE 8-4

Suppose the body of an ice skater has 2 moment of inertia / = 4kg-m? and
her arms have a mass of 5 kg cach with the cenrer of mass at 0.4 m from her body.
She starts to turn at 0.5 rev/sec on the point of her skate with her arms outstretched.
She then pulls her arms inward so that their center of mass is at the axis of her body,
7 = 0. What will be her speed of rotation?

Solution
Iyeny = Iyoy
(I body + 1 ams 0 = I bodv @f

ooty + 21 )y = Tbody 0f

Solving for ey
(Tbody + 2mr?)wy  [4kg-m” 42 x Skg x (0.4 m)*}(0.5 rev/sec)
Wy = = =
/ Thoay 4 kg-m’
= 0.7 rev/sec

Duc to the small torque cxerted by
the ice, the angular momentum ofa:';
spinning skater 1s almost constant-
aresult, when the skaterpulls herar
inward, thus reducing h&\_r moment of
incrria, her angular velocity increase!
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PROBLEMS

)
g1 A bicyc\]c wheel of mass 2kg and radius 0.32m is
spinning freely on 1ts axle ar 2 rev/sec. When you place your
hand against the tire the wheel decelerates uniformly and
comes 1o a stop i 8 sec. Whar was the rorque of your hand
against the wheel?

g.7 Two masscs, my = 1kg and m, = 5 kg, are connected
by a rigid rod of negligible weight (see Fig. 8-6). The system
3 pivoted abour point 0. The gravirational forces act in the
negative 2 dircection. (a) Express the position vectors and the
forces on the masses in terms of unit vectors and calculate the
torque on the system. (b) What is the angular acceleration of
the system at the instant shown in Fig. 8-62

i4_2m—o.<—-— Am—————
oLl 2 oo
my my

)
FIGURE 8-6 Problem 8.2.

8.3 A roulerte wheel with /' = 0.5 kg-m? rotating inigally
ar 2 rev/sec coasts to a stop from the constant fricdon torque
of the bearing, If the torque is 0.4 N-m, how long does it take
[0 stop?

Answer:  15.7 sec.

8.4 A grindstone with / = 240 kg-m? rocates with a speed
of L vev/sec. A knife blade is pressed against it, and the wheel
Coasts 10 a stop with constant deceleration 1n 12 sec. Whar
torque did the knife exert on the wheel?

8.5 Four identica) masses (m = 2 kg) are connecred by rods
of negligible weight to form a recrangle (see Fig. 8-7). The
Masses are rorated about an axis perpendicular to the plane of
the recrangle and passing through its center with an angular
aceeleration o = 3 rev/sec. Whar rorque is needed?

1282 N-m.

Answer:

FIGURE 8-7 DProblem 8.5.
8.6 Repear problem 8.5 for a rotation, with the same

angular acceleration, abour an axis through a corner of the
rectangle (see Fig, 8-8).

m
n B 5 £ L)

FIGURE 8-8 Problem 8.6.

8.7 A uniform wooden board of mass 20 kg rests on two
supports as shown in Fig. 8-9. A 30-kg steel block is placed
to the nghr of support A. How far to the nght of A can the
steel block be placed withour tipping the board?

Answer: 2.0m.
j‘—Sm——’l-"B m—--l- -Bm—--iI
| l P
- | I W
B A
FIGURE 8-9 Droblem 8.7.
8.8 A wheel (I = 30kg-m?) is pivoted about an axis

through its center. A 90 N-m torque 1s applied to the whecl,
which then accelerares from test to an angular velocity of
20 rad/sec in 10sce. (a) Whar is the friction torque of the



bearings? (b) If the applied torque is removed after 60 sec,
how long will it rake for the wheel to come to rest?

8.9 Calculate the change in rotational Kinetic energy of the
voulette wheel and grindstone of problems 8-3 and 8-4.

8.10 A ball of mass 0.3 kg and radius 0.1 m rolls dong the
ground with a transverse speed of 4 m/sec. It comes to a slope
inclined ar 30°. How far up the slope docs it roll? (I (ball)
= 2/5 mr?).

Answer:  2.29m.

211 A wheel of moment of incria 60kg-m” and radius
1.5m is rorating about an axis through its center with an
angular velocity = 30 rev/sec. A brake is applied producing
a normal force of 450 N aganst the rim (see Fig. 8-10). The
coefficient of fricion between the wheel and the brake ts 0.5.
(a) How long will it take for the wheel to stop? (b) Calculate
the work done by friction, and show that this s equal to the
change in the kinctic energy of the wheel.

Problem 8.11.

8.12  Although most people arc concerned abour the horse-
power of a car’s motor, the important parameter 1s the amoant
of torque that can be given ro the rear wheels. The torque of
the motor is turned at right angles to the wheels by the dif-
ferential gear. Assumec that in low gear the angular velocity
of the rear wheels 15 0.1 thar of the motor. If the motor has
200 hp and is twrning over ar a rate of 1400 rev/min, how
much torquc 1s delivered to the rear whecls?
Answer: 1,02 x 10* N-m.

8.13  Ad-kgblockisattached to onc end of ahghtrope. The
other end of the rope is wrapped around a pulley of moment
ofinertial = 0.5 kg-m? and radius # = 0.2 m (see Fig. 8-11).
The block is veleased from rest, and it moves down 9 m in
3sec. (a) What is the {riction torque of the bearings? (b) Usc

encrgy principles to calculate the velocrty of the block aftey jp
has fallen 9 m.

Answey:  (a) 1.24 N-m, (b) 6.0 m/sec.

FIGURE 8-11

Problem 8.13.

8.14 A 2-kg block resting on a frictionless table is con-
neered by a string passing over a pulley to a second block,
my = 5 kg, hanging over the cdge of the table 0.8 m above
the floor (sec Fig. 8-12). The momenr of inerria of the pul-
ley is 0.8 kg-m? and the radins is 0.1 m. Neglect the friction
of the bearings and assume that there is no slipping berween
the string and the pulley. Use energy methods to calculate the
velocity of 72, as it hics the loor.

Answer:  0.95 m/sec.
2 kg
5 kg
.0'8 m

Problem 8.14.

FIGURE

8-12

8.15 Repeat problem 8.14 if the coefficient of fricto®
between the 2-kg block and the table is 0.25.

8.16 Usethe data in problem 7.14 1o find the angular mae
mentum of an electron in the smallest orbit of tPic hydroge®

atom.

Anawer: 1.05 x 107 J-sec. ﬂ
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g.17 A50-gm mousc falls onto the outer edge of 2 phono-
ngh rurnrable\of vadius 20 ¢m rotating at 33 rev/min. How
much work must it do to walk into the center post? Assiune

char the angular velocity of the rurntable does nort change.

518 A childrens merry-go-round of radius 4 m and mass
100 kg has an 80-kg man standing at the rim. The merry-
go-round coasts on a frictionless bearing at 0.2 rev/sec. The
man walks inward 2m roward the center. What is the new
rorational speed of the merry-go-round? What is the source
of this energy? (The moment of inerua of a solid disk is 1 =
1/2 wit).

Amnswey:

0.37 rev/sec.

8.19 Amassof0.1 kgonastringisrotating on a frictionless
table with @ = ] rev/sec and » = 0.2 m. The string passes
through a hole in the table and is held by a hand below (sec
Fig. 8-13). (a) What is the angular momentum of the mass?
(b) Whar is the kinetic encrgy of the mass? (¢) If the string
is pulled down by the hand until » = 0.1 1n, what is the new

rorational speed of the mass? (d) What is the new kineric
cnergy? (¢) How much work did the hand do in pulling the
string?
Answer: (a) 251 x 1072 J-sec, (b) 7.9 x 1072, (¢)
4rev/sec, (d) 3.16 x 10717, (e) 2.37 x 107} ]

FIGURE 8-13 Problem 8.19.



9.,] INTRODUCTION

Heat and temperature proved to be very elusive concepts to early scientists. Most
historic theories—for examples, the phlogiston and the caloric—assumed chat heat
was a substance that could flow, much as a gas or a fluid. In fact, the marhematics of
hear low were correctly worked out before scientists learned the crue nature of heat
and 1ts associated property, temperarure. For indeed “hear” does flow; bur whar is
hear?

Our modern understanding of heart, temperacure, and the behavior of gases is
the result of two and a half centaries of scientific investigarion; we now know that heat
is a form of energy. We will not tell the entire story, because it is beyond the scope of
this book, We will, however, trace the story through the measurement of temperarure,
the ideal gas law, and then the application of the first principles of mechanics, as
developed in the carlier chapters, to the average motion of molecules in gases. The
identification of the average kinetic energy of molecules with temperature will then
be shown. From that we will be able to write the first law of thermodynamics, which
is a broadened statement of the law of conservation of energy.

9,2 MOLECULAR WEIGHT

In real systems there arc vast numbers of atoms, all of which obey the first principles
of physics, or quantum variations of them, in their motion. The motion of each is
different however, so a conclusion about the behavior of a group of atoms 1s statistical.
In this book we will consider only systems composed of identical atoms, or molccules
such as oxygen molecules (O,) or nitrogen molecules (N3).

Enscmbles of different atoms or molecules have different statistical averages of
their properties. Thus is becausc if objects that bave the same kinctic energics, $muv?,
have different masses, then their velocities are different. It is therefore imporrant to
know the mass of the atoms or molecules that make up the ensemble, Jt is clear that
if we know the mass of the ensemble and the weight of each particle of the ensemible,
then we can immediatcly determine the number of particles.

We use a unit called the mole (abbr. mol) as a measure of the number of particles
with the following definition..4 mole of & substance is that guantity which contasns the
same number of prrticles as theve nve atoms in 124 (12 x 1073 kyg) of carbon-12. The
measure in ST units is the kifomole (kmol), which is the quantity of the substance that
contains the same number of particles as there are atoms in 12 kg of carbon-12. All
the elements have isoropes, that is, atoms with the same chemical properties but with a
slighrly different mass. Therefore, a single jsotope of carbon (carbon-12} is chosen as
the reference standard. This standard is said to bave a mass of exactly 12 u per atom,

Amedo Avogadro {1776-1856).



where # is called an atomic mase unir and has the value
\\ Lu = 166057 x 107 kg

The mass of an atom (or moletule) in atomic mass units 1s called the aromic weight (or
molecnlar weight'). Thus, for example, the atontic weight of carbon-12 is 12 u, that of
hydrogen-1 is 1.0078 v. The mass, in grams, of a mole of a substance 18 numerically
edual to the atomic weight (or molecular weight) of the atoms of thar substance, and
it is referred to as the gram aromic wesght (or gram moleculpr weight). The mass of
] mole of carbon-12 is 12 g/mole, that of hvdrogen-1 is 1.0078 g/mole. Often, the
word “gram” is delcted from the expressions for the mass of a mole, which may lead
to confusion. We can rely on the units to scc whether we are dealing with the mass
of an atom or that of a mole.

By the usc of very careful techniques, chemists and physicists have been able
0 mcaéu re the number of atoms in 1 mole of a substance. This is called Avogadros
aumber and has the value

Ny =6.022 x 1048 atoms/mof = 6.022 x 10%6 aroms/kmol

Therefore, if we know the number of moles of substance present in the ensemble, we
can caleulate the number of acoms or molecules present.

We will use the symbol # to represent the number of moles present, where #
may be greater or less than one, or equal to it. Because one usually has less than 1
mole, # has the name mole fraction. If we denote M as the gram molecular weight of
a substance and 2 as the mass of the amount present, then # = m/M and, because
M has N atoms or molecules, the number of atoms or molecules present is #Ny .

0.3 THERMOMETERS

It has been known from ancient times that solids and liquds expand when they
are heated. It is not known when the first thermomerers were made, but they are
believed to have been brought into general use by Duke Ferdinand of Tuscany in
1654. They were generally used shortly thereafter by members of the Academy of
Science of Florence (which was founded by him) and were long known as Florentine
t'hcrmomctcrs. They were much like modern thermometers in that they had a colored
lfquid, presumably alcohol, hermetically scaled in a tube with a bulb at one end, with
lietle pieces of colored glass to mark even divisions on the scale.

In 1714 Gabricl Fahrenheir proposed that a scale be cstablished in which the
mperature of the human body be taken as 100° (which has since been corrected
t_O ?8‘6"") and 0 be the lowest temperature attainable with a mixeure of ice and salt,
Sodium chioride (NaCl). Using this scale, the melting point of pure ice is 32° and
the boiling point of pure water at sea level is 212°. Shortly after Fahrenheic’s death in

Onc of the carliest thermometers
used was Galilea’s thermoscope
shown here.



1736 a differenc scale, Centigrade or Celsius, came into use; by chis scale, the melting
point of icc was raken at 0°C and the boiling point of water at 100°C.

The Fahrenheir scale s still popularly used n the United States and Canada,
probably because of its finer divisions for metcorologic measurements, bur in scientific
laboratories and in mwost of the world the Celsius scale is used. The conversion between
the two has ever since been confusing to the layperson, bug, with a little thought, one
can climinare the difficulty. The conversion is casy to see if we construct vet a third
scale, which we will call the °E-32 scale, in Fig. 9-]. Tfwe take an arbitrary cemperature
point on the °C scale and the same pomnt on the °F-32 scale, we may make a rano

between the temperarure of °C and °F-32 scales as

°C 100
°F—32 " 180
or
OC —§
°F—32 ©
Thus
5
“C=—-("F-32 (9.1
C 9( ) (2.1)
or
°F = g C+32 (9.2)

0.4 IDEAL GAS LAW AND ABSOLUTE TEMPERATURE

We define the term pressure, P, as force perpendicular to a surface per unit surface area,
or P = F/A. Therefore, for a given force, the smaller the area on which it acts the
larger is the pressure. For example, a weight terminating in a sharp point can usually
make an indentation in a surface on which the point rests. But if the point is changed
to a flat face of larger area, no mark will be made.

The dimension of pressure is newton/merer? (N/m?), and in fluids we some-
times usc the term pascal (Pa) where 1 Pa = 1 N/m?. Atmospheric pressure at sea
level is approximately 1.01 x 10 N/m?, which is equivalent in the English system to
14.7 lb/in2.

An ideal gas is one thar has no tendency to condense. This means that the atoms
are infinitesimal in size and thar there is no attractive force between them. Ideal gases
do notexist, but they may be approximated by rare gases (such as helium, neon, argon)
at Jow pressure, or any other gas at very low pressure. Roberr Boyle in 1662 showed
that if the quantity of gas and its temperarure remain constant, then the pressure and

Water bolls 300 212 -
0 32 0
lca melts |
°C °F °F -32
scale scale scale
FIGURE 9-1
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bert Boyle (1627-1691).
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where C isa constanr. In 1802, Joseph Gay-Lussac showed that if the quantity of gas
and its volume remained constant, the pressure is proportional to the temperature or

P=KT

where X is a constant.
These two laws may be combined into a single law with a single constant:

PY =R'T (9.5)

When equal volumes of the same gas are raken at the same temperaturc and pressure,
R’ remains constant. If, however, equal masses of different gases are taken under the
same conditions, R’ varies inversely with the molccular weight.

In the middle of the last century low temperarures were achicved in Lord Kelvin's
laboratory in England. The ideal gas law, Eq. 9.5, was cxamined over an extended
range of temperarures. It seemed desirable to cstablish R’ as a constant and to correct
its inverse variation with the mass of the gas used by muldiplying by the number of
moles, n (because 7 = m/A). With the introduction of this term n the idcal gas law
is written as

PV =uRT (9.6)
where 7 is the number of moles (mole fraction) and R is now the same for all gases.

When Kelvin’s group examined Eq. 9.6 ar constant volume for different "y
anounts of a gas ), 1y, #3, . . ., the data appcared as in Fig. 9-2. It is seen in this 2
graph thar the dara taken to the lowest achievable temperature 7} all lic on straight rd ;
lines and, if these lines are extrapolared to P = 0, they terminate at 2 common poin, T e ‘,-3
~273.16° C. This was called absoluze zevo, and is the lowest possible temperature. o P ~ ol "
It was therefore logical to establish a new temperature scale with its zero point ar T A
—273.16" C. Thus, 0°C = +273.16 K, where K is the symbol for the new scale, called : e :
the Kelvin or ghsplyte scale. It is related to the Celsius scale as a7 | |

-273.16 L 0
K =273.16"+°C (9.7) T (C)—>

Resules of Lord
dhi Kelvin’s experiments showing a
a1 NP . ey
118 associates as linear variation of the pressure

f Rk ﬂl ~ he
R = 8314]/kmol — K of 3 gas with remperanure when

71 . = . . .
With data of ghe typt shown in Fig. 9-2, the gas constant R was evaluared by Kelvin

the volume is kept constant. The
three curves correspond to difterent
amounts of gas. When the curves

EXAMPLE o.

W = v are extrapolared, they rerminarce ar a
"har is the temperature of absolure zero on the Fahrenheit scale? common point T = —273.16".



Absolure zero = —273.16°C. T'rom Eq. 9.2

b 14 nflzi'ir_u_'r

F= 2 G432
]
. 9 .
“F = = x (=273.16) + 32 = —459.7°F
o

EXAMPLE 9-2

Inn a wypical experiment to determine the value of the gas constant R, 0.152 g of neon
gas (atomic weight 20.2 g/molc) is introduced into a 100-em?® flask that is closed and
artached o a pressure gauge. [t is found that when the flask is placed in a constant
remperature bath at 50°C the pressure of the gas is 2 arnospheres (atm). Whar value

of R is obralned?

Solution  The mole fraction n 1s the ratio of the number of grams present

to the atomic weight in grams.

0.152¢
1>2g _ 7.52 x 1073 mol = 7.52 x 10~¢ kmol

T g/mole

The volume 1s

; 1 3
V =10"cm?® (_m__) =107%mp?

102 ¢m
The pressure 1$ (
1.01 x 10° N/m? .
P =2am (M) —2.02 x 10° N/m? y
} atm ;
The temperature in Kis 7 = 273° + 50° = 323 K. 9
The idcal gas law PV = #nRT is written as b
T
RtV )
nT &
202 % 10°N/m’ x 107* m?
T 752 x 10-6kmo! x 323K b
— 8316]/kmol — K. :
Bt}
EXAMPLE 9-3 W
v

In a diesel engine, no spark plug is required because the temperarure is raised to the
ignition point of the air-fuel mixture by compression. In a ypical diesel engine che
air intake is ar 27°C and ar a pressure of 1 atm, and it is compressed to 1/15 of jts
original volurne witly its pressure becoming about 50 atm. Whar is the temperature

of the air-fuel mixture in the cylinder in °C?

William Thompso;i‘l(c!vin
(1824-1907).



Solution We note from the ideal gas {aw that
N 1;[/ =nR
Snd. if the quantity of gas is kept constant, then the nghr side of the equation is a
sstant. Therefore, if we change any of the quantities on the left side, the odher
Jrities must change to yicld the same constant, #R. This means that the tnical
conditions of the left side must equal the final condicions becausce both the initial and
che final condjtions arc equal to the same constant, 2R We write thus as

PoVy BV

cor

q ual

To 7:{-
where T must be in K.
In this problem
BV
7 PV

50 atm /15 m®
T latm  Vem?

L000K =727°C

x 300K

M

0.5 KINETIC THEORY OF GAS PRESSURE

We will now show how the concept of momentum conservation and the definition
of pressure can be used to calculare the statistical behavior of a large number of atoms
or molecules in a gas. One of the assumptions in this calculation is that all collisions
between aroms or molecules are perfectly clastic. This is not strictly crue at high
temperaturcs, because in some high-energy collisions clectrons are excited or even
knocked off atoms. Although this situation can be dealt with theorerically, it will not
concern us here.

Because the walls of a container are also made of atoms, then all collisions
between the aroms of a gas in a coneainer and the walls are elastic. One other fact
must be kept in mind. In an elastic colliston of an atom with the container wall, the
velocity component normal o the wall is reversed on collision with its magnitude
unchanged, and the velocity component in the direction parallel to the surface of the
wall is unchanged. This can be seen in the rwo-dimensional schematic of Fig. 9-3.
Viewed from above, it is clear that a v, velocity component would also be unchanged.

We recall from Chapter 4 tharan impulse acting on a body is equal to the change
I the momentum of the body. For the situarion of Fig. 9-3,

F, Ar = A (1muy)

KINBEITIG IHEUOURK Y UF GAS PREESSUIRE = 121

FIGTURE 9.5 Two-dimensional
representation of an clastic colliston
of a molecule with the wall of the

conrainet.



where F, is the average force exerted by the wall of the conrainer on the atom during
the time incerval Ar, and where m is the mass of the atom. From Newton's third Jaw
of action and reaction, the magnitude of the force exerted by the atom on the wall is
cqual to T, and can be written as
T _ ™MVYs fnal — MV« ininal
At

.=
Recause only the directon and not the magnirude of v, changes on collision

l_:x ==+ 2mu.
At

where the choice of sign depends on the assignment of velocity direction sign.

(9.8)

Suppose the atom is moving abour in a cubica) box of side length 1, area of a face
A =1% and avolume V' = /* (sce Fig. 9-4). The direction of the force in the impulse
of Eq. 9.8 and the initial velocity are reversed if the atom collides with the opposite
wall. Thus, it will be convenient to consider only the magnitude of the average forcc,
so we will drop the negative sign in Eq. 9.8. We may approximate Az of Eq. 9.8 as
the time between collisions of the atom against the wall, Tlus is the rime for the atom
to travel to the opposite wall, bounce off it, and retum to the first wall.

Because the atom’s velocity m the x direction remains constant i magnitude,
the time for a round tnp berween opposite walls is

At = 2—1 (9.9)
Uy

Substiruting this nto Eq. 9.8 obrains the magnitude of the average force on a wall

due ro the successive striking by one atom

2
= 2muy  wmu; )
Fy = T 9.10)

Uy

This is the average force on a wall in the y-z plane due to a single atom of the gas. Let
us call the force due ro this atom F,) and the x velocity v, . Then if there is a second
atom with velocity vy;. it would contribute a force F,2, and so on. The total average
force on a wall due to the x motion of N atoms in the box would be the sum of the
contributon of each, or

moa Mo

‘F-‘f = ] Vi -+ 7vx2+ U TUM\’
w
:7(1{31+U,32+"'U3N) (9.11)

If N is che total number of atoms in the box, then by the definition of an average as
the sum of the individual amounts divided by the number of items, we may write for
v?, the average of the squared individual x velocities,

_ 2 4 )2 R

2_le ' Ux2+ VN (9.12)

Vi = -4 B
N

A\
th
th,
thy

We

de

FIGURE 9-4




¢  gybstitute Eq.9.121into Eq. 9.11

— mN — .
AN EF,=—u} (9.13)

!
By the three-dimensional pythagorcan theorem
v = Uﬁ + vf + uz2
or, expressed in averages,
vi= ol o] (9.14)

Bur in a gas in equilibrium there is no preferred direction of motion; hence

v? = 3u2 (9.15

Substitute v2 from Eq. 9.15 into Eq. 9.13, and F,, becomes a general force on any

wall F

F= mg—zjﬁ (9.16)
If we now use the definition of pressurc P = F/A, we may writc Eq. 9.16 as

P= ’%E

P= %E (9.17)

where V = A/ is the volume of the box. Now multiply and divide Eq. 9.17 by 2 and

obtain
AN (1 —
P—gT—/(EmU) (F.18)

which shows that the pressure of a gas on the walls of a container is propostional to
the average kincric energy of the atoros or molecules of the gas. One should recognize
that atom-atom collisions also take place in a gas. In a morc complete calculation
these are considered, but the result given by Eq. 9.18 remains unchanged.

0.6 KINETIC THEORY OF TEMPERATURE

We may now show the relacion of molecular monon to remperature by using the
ideal gas Jaw, Eq.9.6

PV =naRT (9.6)
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T —— =

and the cquation we just derived for the pressure, Eg. 9.18. Substituting for the
pressure in Bq. 9.6 from Eg. 9.18, we obtain

3

9 _
—-N (%mlﬂ) =nRT (9.19)

in which it should be recalled that N is the number of molecules present in the box
and  1s the number or fracrion of moles present. By definjtion

N(number of molecules)

ber of moles) =
n(number of moles) N+ (Avogadro’s number)

Substituting » = N/Ny i Eq. 9.19 gives

2 1 — N
IN| =mu? | = —RT 2(
3I\ (2mv ) N 1 {9.20)

e

The number of molecules, N, cancels, and we are left with the ratio of two constants
R/N 4. This ratio occurs so frequendly that ic is given the name Boltzmann’ constant,
after the German theorist, with the symbol &p. [ts value is

R

b = —
B A
8314 J/kmol - K

~ 6.02 x 1026 molccule/kmol

=1.38 x 1073 J/K per molecule

Eq. 9.20 then becomes

1 — 3
—mvt= kg T 9.21
St = ks (9.21)
or
T—ZE (G 22
© 3kp Sl

and we have shown that temperaturc is simply proportional to the average kinetic
energy Ey of the molecules. Although this calculation has been done for gases, the
same result is obtained for liquids and solids.

We may use Eq. 9.21 to find the speed of motecules in a gas. Note, however,
that the speed will actually be che square root of average squared velocity, This is
called the 1ot mean square (RMS) velodity and, although it is not strictly the average
speed, irs statistical definition js close enough for our purposcs. Thus, from Eq. 9.21

3bsT

URMS = v {9.23)

=/

where T is in K and  1s the mass of a single molccule (or arom) in kilograms.




Lar AME e
D . . .
. [Fwe considerair to be made up largely of diatomic nitrogen molecules, Na. what 1s

cheir RMS velecity ac 27 C: One nirrogen atom has a mass of 14 x 1.67 x 1077 kg,

and t

fye mass of N is nwvice thar.

From Eq. 9.23

[35T _ [3x138x 108K x 300K _ o
— = o = —— SeC
ERMS m {28 x1.67 x 102 kg jRee

9.7 MEASUREMENT OF HEAT

The measure of a quamit_\_' of heat AQ was cstablished by French scientists as the
calorie. One calovic is the quantity of heat vequived to vaise the tempesature of 1 g of water by
1° C. (In the English system the measure is the British thermal unic (BTU), where 1
BTU is the quantity of heat required to raise the temperatuge of 11b of water by 1¢ F)

Aswe discussed in Chapter 3, fricion between surfaces causes loss of mechanical
energy. However, experience shows us that friction produces heat. Anyone who
has used sandpaper on a wooden surface has observed this phenomenon. From the
preceding section we recognize that this temperature risc is duc to the increased
kineric energy of the molecules. This increase has been produced by the work done
on the molecules by the sandpaper. So we see rhat by our understanding of the nature
of temperature we need not restrict the law of cnergy conscrvation to frictionless
systems; the apparent loss of mechanical energy of the moving system has gone into
mereased mechanical energy of the molecules.

We may measure how much mechanical encrgy produces what quantity of heat
by a simple experiment (sec Fig. 9-5). Suppose we have a paddle wheel driven by a
falling weight, The paddle wheel is in a known quantity of waccr completely insulated
from hear flowing in or out. By letring the weight fall with constant velocity and
Measuring the increased temperarure of the water, we may find the mechanical energy -
€quivalent of heat. (Note: The weight is allowed to fall at constant speed so thar no '
changes in kineric energy have o be considered, only changes in potenreial cnergy.) The
ql}ailriq' ot hear AQ is proportional to the temperature rise. This involves the mass
of the water m and the specific bear of the water ¢, which is defined as the amounr of benr
Hecdert 10 yaise the temperaturs of | g of msubstamce (in this case water) 1° C. As mentioned

(;‘“htll. for water this is 1 cal/g “C. Therefore, the quantity of hear AQ required to raise
t

*etemperarure by A7 of a mass m of s substance whose specific heat isc, is writtenas . -

Diagram of the

apparatus for the measorement of
AQ =mc AT (7250 the mechanical equivalent of hear.



We can equate this o the loss of potential energy, AE, = migh, of the falling weight
g, that is,

U1

migh = me AT (9.25)

For a known amount of AE, and a measured AT, the cxperiment yields the relation
4184}: 1 cal [\Lx’jéj

This relation is called the mechanical equivalent of heat.

We may generalize Eq. 9.24 to any substance. On measurement we find,
however, that almost all substances have different specific heats. These are not readily
calculated but can be determined experimentally and are given by tables in handbooks.
The evaluation of the specific heat (or heat capacity) of 1deal gases is simpler and is
presented next.

Q.8 SPECIFIC HEATS OF GASES

It we hold a quantity of gas at a constanc volume so that it cannot do work by
expanding, then all the hear AQ goes nto increasing the kinetic energy of the
molecules, or

AQ = AE, (9.27)

We have discussed ¢ as the specific heat per gram of any substance, but actually
we have been ralking about solids and liquids. The situauon is differenc for gases
because they are compressible. We may define a term C,, as the molar specific hear at
consrant volume; that is, the specific heat per mole

Cy =M (9.28)

where M s the mass of a mole of gas and ¢,, 1s the specific hear per gram ar constant
volume. The mass of the gas m is the mass of a mole M multiplied by the number of
moles 7, that is, m = Az, We may rewrite Eq. 9.24 as AQ = (specific heat per mole)
X (number of moles) x(AT), or

AQ = Cun AT (9.29)

The resulting increase in the cnergy of the molecules may be written as

AE
AE; = (pumber of molecules) x (~—k—)
per molecule

The number of molecules is equal to the number of moles n, multiplied by Avogadro’s
number Ny, and, from Eq. 9.21, AE; per molecule = 3/2kp AT Therefore,

AE, = (nNy) (%kB AT> —

—~—




Substituting Eq. 9.29 for AQ and Eq. 9.30 for AL in Eq. 9.27, we obrain

N

z\ ~ -
Ly Con A1

\

3
5%]\7,\12]3 AT
or

3
Cv = 51\',\/(];

. R
Ry definiton kp = o and Eq. 9.31 becomes
3 Ny

C, = >R 9.32

[\ YN

Note that the conversion factor of Eg. 9.26 will reduce R to a value somewhar easier
to remember

1 cal
R =8314]J/kmol — K = 8 314]/mol — K (TM])

cal
mol K

Theretore, Eq. 9.32 for 1dcal gases, which involve only the translational motion of

= 1.987

&~ 2 cal/mol — K

their atoms (no vibntion or rotation as in diatomic gases), vields
cal
mol) — K

This value is expected to hold for all the rare gases thar are monatomic, such as helium,
neon, and argon. Experiment has proven thart the agreement with theory is excellent.

C, =~ = x 2cal/mole — K = 2

N

0.0 WORKDONE BY A GAS

Suppose we have a clinder and a piston with a gas inside, as in Fig. 9-6. Let the cross
section of the cylinder be 4 and the weight of the piston plus a weight resting on it
be my. Suppose the piston was originally at position 41 and the gas has expanded and
bushed it up a distance dx to position 4. The definition of work, Eq. 5.3, is force
times the distance moved in the dircction of the force.

AW = Fdx
Bur from the definition of pressure, P = F/A, we may substiture for F and obtain
AW =PAdx
Since A dx is the change in volumc 4V, we may write thar work donc by a gas as

AW = P4V (©.33)




Nore that by the definition of work, if the gas does work by expanding, the work
done 15 positive, whereas if the gas 1s compressed by the force on the piscon, the work

done by the gas 1s negadive.

Q.10 FIRST LAW OF THERMODYNAMICS

We now have three factors relating encrgy and the behavior of a gas:

1 Work done on or by a gas AW = PAV.

2 The quandry of hear AQ that may be added or extracted from the gas.

3 The change in average kinetic energy of the molecules AE, which we usually
call the change 1n internal energy AE.

Because of the meerplay of these three rerms, 1t is not meaningful to ask what 1s the
amount of heat in a gas. It heat is added to 2 gas at constant volume, it all goes into
the increase of the mternal energy AE. If, however, the gas is allowed to expand and
do work when heat is added, then the amount of heat available to increase the internal
energy depends on the amount of heat that has gone into work. For example, if the gas
1s allowed to expand and do work while the temperarure is held constant (AT = 0),
then the final internal energy is the same as the initiad and AE = 0. We may logically
write these conceprs in the form of the cquation

AQ = AW + AE (9.34)

In Eq. 9.34 AQ is taken as positive if heat enters the system (the gas in this
case) and as negative if ir leaves the system. The work, AW | 1s positive if it is done by
the system, and negative if donce oz the systeny. This simple, logical expression bears
the ponderous name of the Figst Law of Thermodynamics. 1t is seen that through the
axpression for the mechanical equivalent of heat, Eq. 9.26, AQ can be expressed as
encrgy, as can AW and AE. We have then a full statement of the law of conservation
of encrgy in which the £ (energy out) term of the mechanical law, Eq. 5.14, is now
included as well as the energy term Ey, which may be heat. Furthermore, because
work, AW, can give rise to changes both in potential and in kinetic energy of a body
or system of bodics, all possible mechanical energy terms have been mncluded. Other
forms of energy, for example, radiant energy, which will be discussed in a later chaprer,
are also included in the first law of thermodynamics.

EXAMPLE 9-3
Six thousand calories of heat arc added to 2 moles of neon gas at 27° C while it does
41007J of work. (a) How much does the internal energy of the system increase? (b)

What is the final temperaruce of the gas?
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« (a) Fixst convert calories to joules
4.184]
lcad

Mg:émmcn( ):251x1m1
Use the first law of thermodynamics
AE = AQ — AW
=251 x10*T—0.41 x 10*] = 2.10 x 10*)

s (b) The relation between the change in the internal energy and the change in
temperature is given by Eq. 9.30
3
AE = (nN4) <§/q; A’[‘>
Recalling that N kp = R, we write
.3 -
AL = -2-nR AT

Therefore
. 2AE
A= 5k
_ 2x210x10%)
T 3x2mol x 8.314 J/mol — K

=842K or °C

rl‘ﬁnzll =127° C + 842°C = 869°C

SUPPLEMENT 9-1: MAXWELL-BOLTZMANN STATISTICAL
DISTRIBUTION

In this chapter we have derived the mean square velocity v? of a large number of atoms
or clectrons, Eq. 9.21. We did not address the question of how these square velocities
are distributed. That ts, how many atoms have a square velocity twice the mean or
one half the mean. This problem is in the realm of staristical mechanics, the science
of the application of the first principles of physics to a large number of bodies. The
tigorous solution is beyond our intercst and is roo difficult to present here. However,
Professor Richard Feynman has presented a conceprual solution that we will give.
Suppose we have a very all glass tube with a column of gas going to a
great heighr such as into our upper atmosphere —but, unlike our atmosphere, the
mperarure is the same at all heights. The problem will be to derive the law of the
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decrease in density of the atmosphere as the height increases. Let n be the number
of moles of gas in volume V' at pressure P, From the ideal gas law Eq. 9.6 we write
P = nRT/V. We recall that R = kN4, thercfore, P = (»NA/V)(kgT). The ratio
nNys/V represents the number of molecules per unit volume N. Thus the pressure is
proportional to the number of molecules per unit volume because the temperarure is
constant; that 18, P = NkgT.

The pressure 1s higher the lower we measurc i, for ar any poinr the gas must
support all the gas above it. Consider a small cylindrical volume of gas of cross-
sectional aread = 1 m? and width dy at a heighty (sce Fig 9-7). The verrical force from
below on this gas is Py, because F = P4 and we have taken 4 = 1 m?. The vertical
torce from above at a height y -+ 4y is less than Py by the weight of the molecules in
the section benveen y and y + 4y. The toral number of molecules in this region is the
number per unit volume N times the volume Ay (since 4 was taken as unity). Each
molecule has a weighe of 75, so the difference in pressure is

Pyigy— Py =dP = —mg N dy. (9.35)

We have scen that” = N kgT . Because T is constant, the pressurc depends only
on N. Differcntiating ) with respect to N we obrain

AP = hyT AN (9.36)
Equating Eq. 9.36 to Eq. 9.35, we have an equanion that can be integrated to find N

kyT N = —mng N dy

or
AN mg
N - —Ef 4 Ludwig Boltzmann (1844-1906).
Integraring P g
e N kT Jo 7 =
which yields

N = Ny "*! (9.37)

|

|

|

{

I

|

where the constant N is the value of N at y = 0 and this value of y may be ar any |3
predetermined level. }
We sec that the nameraror of the argument of the exponental in Eq. 9.37 |
conrains the potental energy per molecule, and we may write thar the density at any lh

\

point is

N = Nge BT (9.38)
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The source of the potential energy need not be graviradonal. For example, the
po[cmial enprgies of elecrrons at different distances from their nucler have an clectrical
origin, as we will see in Chapter 14,

In Chapter 5 we saw that as a particle moves in a gravitational field (or any other
conservarive field) the potential energy of the particle may change. However, the toral
energy, which is the sum of the potential and kinetic energies, remajns constant. Thus
it is reasonable to assume that If we start with a given number of molecules having
1 certain value for the porential energy, the number having chat particular value for
the rotal cnergy, somerime later, will be the same. This means that Eq. 9.38 can be
gcncralized 1o represent the number of molecules having a cerrain value for the toral

energy E; that 1s,
N‘ = L\JYO gvﬁ/kk.[. ’ Q. Y

Eq. 9.39 is known as the Maxwell-Boltzmann stagistical distribution of energy.

In general, if £, — E) is some cnergy difference between encrgy stare 1 and
a higher cnergy state 2 of a particle, rhe ratio of the number occupying the higher
energy state to the lower energy srate is given by

N,

< Ea=EN) ko T
N,

= o_(

We can use Eq. 9.39 to answer another important question, namely, what
fraction of the toral number of particles has cnergy equal to or greater than a certain
value E;? Because Eq. 9.39 represents the number of particles with energy E, the
number of particles with energy between E and E + 4E will be proportional to
Noe 55T 4E 1t follows that the fraction of particles with energies greater than or
equal to E; is

[ NoeEhT gE
o J3° No et 4F

foo e—EMT ( HE
En »&BT

T —EfsT ( 4E
Jo~ e (IzaT)

oC

Fracuon (E > E,)

p—FhaT

£
x

p—EfinT

0
— E*E/"l\'l.\‘[

The term of EQq. 9.41 is often referred to as the Boltzmann factor.



PROBLEMS

9.1 The molecular weights ot sodium and dhlorine arc
22.99¢g/mole and 35.45 g/mole, respectively, How many
molccules of sodium chloride (ordinary salt) are there in100 g
of salt?

9.2 The density of copper is 9 g/cme’3 its molecular weighe
is 64 g/mole. What is the number of copper atoms in 1m3»

Answer: 8.47 x 1028,

2.2 (a) What is the body temperature of a healthy person
on a Celsius chinical thermometer? (b) If the person had a
temperature of 102° F whar would the thermomcter read?

9.4 At what temperature will Fahrenheit and Celsius
thermornecrers read the same value?

Answer:  —40°.

9.5 A gas bubblerises from the botrom of a lake to the sur-
face. If the pressure at the bottom is three times atmospheric
pressure and the temperaure 1s 4° C while near the surface
the temperatuee is 24° C, whar is the ratio of the volume of
the bubble just before it reaches the surface to its volume at
the botrom of the lake?

2.6 Io an ultrahigh vacuum system, the pressure can be
lowered 1o 1070 torr (1torr = 1/760atm). How many
molcculcs are there in a vacuum chamber of volume 8 x
10® em?® if the pressure is 10710 torr and the temperature is
27°C? Latm = 1.01 x 10° N/m?.

Answer: 257 x 1083,

2.7 A gas tank contains 10kg of oxygen ar a pressurc of
107 N/m? and a temperaturc of 27¢ C. Asa result of a leak, the
pressure drops to 5 x 10 N/m? and the remperarure decreases
to 7°C. (a) What is the volume of the rank? (b) How much
oxygen has leaked out? The molecular weighrt of oxygen is
32 g/mole.

9.8 The nrerior of the sun is at a temperature of about
1.5 % 10% K. The energy s creared by the fusion of hydrogen
atoms when they collide. Tn developing the technology for a
fusion reactor we simulate this fusion reaction by accelerating
protons (hydrogen nuclei) and lerting them strike fixed-rarget

D O S T I T U

hydrogen atoms. What must be rhe velocity of the protons to
simulate 1.5 x 108 K>

9.9 One gram of Ne gas (atonmiic weight 20.2 g/molc) is in

a sealed flask at room temperature, 27° C. If 10 calories of

heat are added to the gas, what is the vgpg of the molecules?
Answer:  6.72 x 102 m/sec.

9.10  The temperature of a gas in a closed containerat 274 C
is raised to 327° C. By what mulriple has vgygg changed?

9.11  The remperaturc of a room 7m x5m x3mas 27° C,
(a) How much encrgy is contained 1 the air of that room?
(b) If that energy could be converred o electrical energy, for
how long could 2 100-W butb be lir? Assume the air behaves
as an 1deal gas.

9.12 A 300-W ynmersion heater is used to heat a cup of
water. If the cup contains 150 g of water at 27° C and 80%
of the heater energy s absorbed by the water, how long will
it rake for the watcr to begin to boil?

Answer: 191 sec.

9.13 A 1000-W heater is used to heat the room of problem
9.11. If the molar specific heat of air is 5 cal/mole-I(; how long
will it take to raisc the temperacure of the room from 60° E
to 70° F? Assume thar the quantity, volume, and pressure of
air do nort change.

9.14  How many calorics of heat must be added to 0.5g
of neon gas at constant volume o raise 1ts temperature
from 27°C to 127°C? The molecular weight of neon 1§

20.2 g/mole. !
Answer: 740 cal. {

9.15 To heat a cerrain quancity of gas from 27¢ Cto 127° 0 1
. ) . i
requires 500 cal when irs volume is kept constant. By how 8
much does 1ts internal energy change? How much work could i
- |

the gas do i cooling back to 27° C?

2.16 A 20-g buller is shot inro a ballistic pendulum with @ 5
velocity of 1000 my/sce (see Fig. 9-8). The mass of the wooden
block is 2 kg. If the bullet remains embedded ix\thc block and
80% of the energy Jost in the collision is absorbed as heat



py the bullet, what is the increasc in the temperature of the

The spriciﬁc heat of the buller is 0.1 cal/g-°C.
2N

b;llct?
946 C.

Answer:

m=20g
[ A—— M = 2kg

v = 1000 misec
FIGTJEE 9-8  Problem 9.16.

Ten moles of an ideal gas at a pressurc of 8 atm and
3

9.17
with volume 1072 m? are allowed to expand isothermally
(constant temperarure) until the volume doubles. What is the
work done by the gas? (1 atm = 1.01 x 103N/m?),

Answer: 5.6 x 103 ].

9.18 Usc the ideal gas law, Eq. 9.6, and the first law of
thermodynamics, Eq. 9.34, to show that the molar specific
hear for a process at constant pressure G, = C, + R, where
G, is the molar specific hear at constant volume and R is the
universal gas constant,

9.19 The initial pressure and volume of 0.1 moles of argon
gas are Tatm (1.01 x 10° N/m?) and 1 liter (1073 m?) (see
Fig. 9-9). The gas is heared ar constant volume until the
pressure rises to 4arm (path A). The gas is then allowed to
&xpand along path B unri) the pressure drops to 1am. The
835 is finally cooled down at constant pressure unil it returns
to1ts initial state (parh C). (a) Find the temperature of the gas
at the end of each process (points 1, 2, and 3). (b) Find the
internal energy of gas at points 1, 2, and 3. (¢) Calculate the
Work done in cach process. (d) Calculate the heat entering or
leaving the gas during each process.

Answer: (2) 122K, 487 K, 609K, (b) 152 J, 6077,
7607, (¢) 0T, 1.01 x 10%), —4.04 x 102 ], (d) 4557,
11637, —10127 (leaving rhe gas).

7~
6-—
Tsv_
s 2
€4 M
§3—~r B
32_-‘4‘ \\
E g ™
1=y — =2
I I S O
1 2 3 4 5 6 7
Volume {lilers) ——»
FIGTURYE 9-9  Problem 9.19.

20 A mole of an ideal gas 1s taken from state A to statc
C along the path ABC (sece Fig. 9-10). (a) Tf 1000 cal of heat
flow into the gas and the gas does 2100 ] of work, what is the
change in the internal energy of the gas? (b) When the gas is
returned from C to A along the path CDA, 700 cal of heat
flow out of the gas. How much work is done on the gas? (¢)
What is the change n the temperature of the gas when it 15
brought back from C ro A? (d) If the pressure of the gas in
statc A 1s 2 aum, what is the difference in the volume of the
gas between states D and A?

|
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10.1 INTRODUCTION

In this chapter we will develop the concepts of oscillarory motion. When a block
attached to 2 spring is set into motion, its position is a periodic function of time.
Stmdarly, in Chapter 7 when we considered the motion of a particle rotating in a circle,
we saw that the position coordinates were oscillatory funcrions of time., Specifically,
we showed (Fig. 10-14) that the components of a position vector r making an angle
¢ with the x axis were

X =rcosf
(10.1)
y=rsind
and that the components of the acceleration, second derivatives with respect to time
of these coordinates, were (Fig. 10-15)

d*x

2
A, = —— = —¥w" CoshH
(10.2)
Ay .
a, = 2}% = —rw? 8in§

As theangle 8 goes from 0° to 360“ the components of the position vector and of the
acceleration vary in value as the sine or cosine functions and go through a reversal of
sign; in other words, their vatues oscillate sinusoidally. In this chapeer we will derive
some properties of this oscillatory mogon with essentially the identical mathematical
method that generated Eqs. 10.1 and 10.2.

10.2 CHARACTERIZATION OF SPRINGS

Robert Hooke (1635-1703), an Epglsh scientist, was the first to elucidate the
behavior of an clastic body such as a spring. He found that the extension or
compression x of an elastic body 1s proportional to the applied force F or

Fxx

This simple refacionship is now known as Hooke’s faw, We introduce a proportionality
constant to create an equality. This constant has the symbol 2 and is called the force
CONSTANE OV SPring constant

F=lkx (10.3)

In the case of a spring, the value of the constant £ characterizes the srength (or
stiffness) of the spring—a spring with a large % is stronger, or stiffer, than onc with

®
FIGURE 10-1




F?’:-__ﬂ,,__ .
o small - We may readily measure the value of & by simply hanging a weight on the
and Ipeasuring how much it strecches. For the measurement to be valid, the
mustrenurn to jts original length when the weight is removed. The extension
spring in this case 1s within its elastic Limsr. 1f a spring 1s strerched beyond its
fimit it will deform permanendy and Hooke’s law 1s not obeyed.

spriﬂg
Spr ing
of the

elastic
]0‘3 FREQUENCY AND PERIOD

Supposc we have a periodic event, that is, onc that occurs rcgularly with tune such as
the rising of the sun. We know that it occurs once each day; that is, 1ts freguency v s
one event per day, and it has dimensions of (time) ™! because event is dimensionless.
We use another quantity, the time berween periodic events, known as the period
with symbol T'. The period of the sun’s rising is 1 day per event, and obviously has
dimensions of time. It1s scen that period and ﬁ‘cqucncy are reciprocals of cach other.

1 i
v=— (10.4)
T k
If, for example, the time berween periodic events is 7 = 0.2 sec, then the number of

events per sccond, the frequency v, will be

1

v= — = Sevents/sec
0.2 sec/event

As we have indicated, frequency has units of (time) ™! or events per second. One event
per second is called one hertz, abbreviated Hz.

It a poinr pasticle moves on a circle as in Fig. 10-1a. its position vector from
the center of the circle to the particle has the magnitude of the radius. This is often
called the adins vector of the point, or simply the radius vector. As the particle
moves, the radius vector rotates and if the particle moves with constant speed in the
counterclockwise direction, we say thar it rotates with a constant positive rorational
speed . Then 4 is a function of time, and from Eq.7.8

6 =uwt (10.5)

WY z . . . .
We can use this result to express the coordinates x and ¥ of the rotaring particle in
Fig. 10-1 as explicit functions of time and the frequency of rotation. Substitntng Eq.
10.5 for 6 in Eq. 10.1, we obtain

X =7 COSwr

y=7Sinwt

The angular specd @ is related to the frequency of totation v rather simply. Ty every
rotation 6 changes by 27 rad. 1f the particle performs v rotations in 1 sec, then 9 will



change by 27v rad every second. By definition, w is the change in 6 per unit time (per Wi
second). We conclude that
w = 21V (10.7)
Eq
Substituring Eq. 10.7 for @ w Eq. 10.6 we may write ext
X = ¥ Cos 2mvt aclu
wit
(10.8) acce
¥ =¥ Sin 27wt equ
secc
J]O.4 AMPLITUDE AND PHASE ANGLE
. ' ) This
Fig. 10-2 shows a plot of sin @ versus 6. We see that the value of sin 6 oscillates between Seat]
+1 and —1. The maximoum value of the magnitude of this oscillation is called the Bbs
amplitude. In Fig. 10-2, the amplitude is ). If sin & were multiplied by a constant A, s -
then A would be the amplitude in the expression.d sin 6. Suppose instead of sin 6 we kv
plot the funcdon sin( 4 m/4). We see that when 8 = 0 the function has the value o
of sin /4 and thereafter attains all values of sin 6 at an angle 7/4 earlicr, as shown in
Fig. 10-3. If, on the other hand, we plot the function sin(6 —/4) we see in Fig. 10-35
that it starts later than the sin 8 functon. The general form for a function to describe  sné Wen
a body undergoing smusoidal oscillations, such as the onc jllustrated in Fig. 10-11s  + 2% N B We
/
4 1 | | ‘ -
Asin(b + ¢) 0 N il
. '1}\ ’ \m__.,ﬁ/
or, because ¢ = wr, this may be written as
FIGURE 10-2
Asin(wt + ¢) (10.9)
) Subst;
where ¢ is called the phase angle and ics sign may be positive or negative. Note that if  + 1} e sinfe + 3
¢ = /2, then sin(6 + /2) = cos b, which may be scen by sketching a +57/2 phasc 5 ,r"/ 7 |><1 | | .
<y . - . ~ . ~ . 7 T 3r @
shift on Fig. 10-34. The motion described by Eq. 10.9 is often referred to as simple g Nz~ / = Cance
harmonic movion. L sin @
(2)

10.5 OSCILLATION OF A SPRING

+1 —— /smlﬁ - —I|
. . . . Ve W |
Suppose a body of mass 72 1s connected t0 2 massiess spring, with a spring constant &, /0 N\, b Theres
: . . . T . o1 - 7’ «
and the body 1s free to oscillate on a fricdionless surface as in Fig. 10-4, At its rest, or T 3 A /ﬁ Sing |
equilibrium position, the position coordinate isx = 0, indicated n Fig. 10-4a. Ifthe -1 &

body is pushed to compress the spring a distance xo, Fig. 10-46, or pulled to stretch
it a distance x, Fig. 10-4¢, and then released, the body will then begin to oscillate. w7000y 103



We may calculate 1ts subsequent motion from Newron’s second law

\ F =1ma

N

Eq- 10.3 gives an expression of Hooke’s law, F = kx; fora spﬁng. However, this is the
external force needed to compress or to strech the spring. By Newrton’s third law of
setion and reaction, if you pull ona spring with force F it pulls in the opposite direction
with force —F. Thus, the force that the spring exerts on the body 1s —4x. Becausce the
acceleration is not constant (the force on the body depends on displacement x from
equilibrium), we use the fundamental definition a, = 4%x/dr*. Applying Newton’s
second law to the body, we obrain

d%x
"o
This is a second-order differential equarion; although there are straightforward
mathematical techniques for its solution, we will simply guess a solution and
substitute it inco Eq. 10.10 to see if an equality is maintained. Such a procedure
can verify that the guessed function is a solution but does not prove that it is the
only solution. We may try as our guess the function introduced earlier, Eq. 10.9, to
describe a body undergoing sinusoidal oscillations. Our guess at a solunion will be

—kx =

x = Asin(of + ¢) (10.9)

We may substirure this directly into the left side of Eq. 10.10, but for the right side
we need 1ts second derivadve
dAx
dt
% =Aa>% cos(wt + ¢) = —Aw? sin(wt + ¢) (10.11)
Substituting Eqs. 10.9 and 10.11 into Eq. 10.10 obtains

a .
:A;i; sin{wr + ¢) = Aw cos(wt + @)

—kA sin(wt + @) = —maw® Asin(wt + ¢)
Cancelling obrains

k= mw

k B
w = -— VLU L)
it

Therefore, Eq. 10.9 is a solurion when the constants have the relagon of Eq. 10.12.
Using Eq. 10.7, that » = 27v, we immediaccly obtain the frequency of oscillation

and

1l /%

V= —.f—
27V m



and the period

v k

To complete the soluton of the problem, we must derermine the value of the
amplitude 4 and of the phase angle ¢ in the expression for x, Eq. 10.9. This is done
by specifying the boundary conditions, that is, the behavior of the body ar some tme
such as, # = 0. For cxample, the body in Fig. 10-4 can be set into oscillanon by
initally strerching the spring a cerrain distance ¥ = % as shown in Fig. 10-4¢ and
then releasing it. Thacis, at 2 = 0.

X =X (10.14)
v, =0 (10.15)

The first condition, Eq. 10.14, is satisfied by setting x = x¢ and 7 = 0 in Eq. 10.9.
This vields

xo = Asin ¢ (10.16)

To unpose the second condition, we must first determine the velocity of the body as
afunction of time. This is done as follows:

—dx = dA in(wt
Uy = prrlie sin(wt + ¢)
vy = =Awcos(wt + ¢) (10.17)

The second condition, Eq. 10.15, will be satisfied by setting ve = 0 and z = 0 in Eq.
10.17; that is,

0=Awcosg (10.18)

The amplitude and the phrase angle can now be found by solving simulraneously
Eqs. 10.16 and 10.18. If we divide Eq. 10.18 by Eq. 10.16, we obrain

2 _ Awcos¢
xo  Asm¢
or
cotp =0
hence
6="1 (10.19)

Substiruting Eq. 10.19 for ¢ in Eq. 10.16 yields the resule

xo:Asing—zA (10.20)
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- see that the amplitude, in dhis case, is equal to the initial displacement of
. fiom its equilibrium position, and the phase angle is 7/2 rad. We should
ote tl);{t other boundary condirions will yield different values for 4 and ¢.

5 We can use the facrs that sin(6 + 7/2) = cos§ and cos(f + 7/2) = — sind, o

Jiminatc ¢ from the expressions Eq. 10.9 for x and Eq. 10.17 for vy, which now
¢

hecorme
x = A coswr (10.21)

v, = —Awsinar (10.22)

We sec by Eq. 10.22 that immcdiately after release from its strerched position
to the right, the velocity of the body is toward the left, hence the neganive sign. When
the argument of the sine, wt, exceeds 7, then the sine funcuon becomes negative and
the velocity is positive, or toward the right. We also see trom Eq. 10.22 that because
the maximum value the sine functon may have js 1, then the maximum velocity of
the block 1s

k o
Uy = TAw = MV — (10.23)
m
Furthermore, because sin wt = 1 when ot = /2 and —1 when wt = 37/2, insernon
of these values into Eq. 10.21 shows thar the maximun velocity occurs whenx = 0
or at the midpoint of oscillation. Tt is instructive to compare a plot of Eq. 10.22 with
one of Eq. 10.21 as shown in Fig. 10-5. Note that the amplirude of the displacement
A and the maximum valuc of the velocity Aw are not the same because o may be
equal to or greater or smaller than unity. Figure 10-5 is a plot with Aw & 1.24. Tt can
be seen that the velocity is maximum when the displacement is zero and zexo when
the displacement is maximum. The physical significance of this result will become
evident when we discuss the energy associated with oscillations 1n the nexr section.

We may examine the behavior of the acceleration by taking the time derivaave

of the velocity in Eq. 10.22,

Ay
a4, = — = —Aw—sinwt
T dr
A, = —Aw? cos wr (10.24)

"i"c plot a, versus 6 and compare it with the displacement (x value). Because o for
Fig. 10-5 was taken as 1.2, w? is 1.4, so the maximum value of 2, will be 1.4 rimes
the amplitude of x. The acceleration and displacement curves are plotted in Fig. 10-
6. Here we sce that the acceleration, although also a cosine curve butr wirh a different
afnplimdt, is a reflection abourt the € axis of the displacement. Thar is, when the
displacement is m aximum in the posirive direcrion, the acceleration is masimum n the
“‘Cgafi\*c direction. Furthermorc, when the displacement is zero, 5o is the acceleration.
This relation can be scen physically in Fig. 10-7. When the body is displaced to the

Ge = —Awsin wt
Aw -
A VN~
i ! pd 1 .
D| RN 73 on + ) = wi
g \ s I
_Awl: ¥ = A cos

FIGUEE 105 Plorotx and v as
funcuons of rime for o grearer than

unity.
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right (positive x direction) a distance 4 and thep released (Fig. 10-74), the aceeleradon
is in the negative x direction. The acccleration is also a maximum at this position. This
1s evident because F = ma and F = —kx. Therefore, —kx = ma and 4 is maximuwn
when x 1s maximum and x and 2 have opposite signs. When the body reaches x = 0
(Fig. 10-78), the acceleration is 0, but as it passes to the lefi the displacement.x becomes
negative and the acceleration becomes positive or toward the right (Fig. 10-7¢). This
behavior is shown schemauocally in Fig. 10-6. At = /2, which corresponds to zero
displacement, the acceleration goes 1o zero. As the displacement becomes negative

(/2 < 6 < 3m/2) the acceleration becomes positive. We also note from F

that the two maxima of acceleration occur at 8 = 0 or w(wt = 0 or 7). The maximum,

values of the acceleranon at these two positons are, from Eq. 10.24,

ay = —Aw? cos0 = —Aw?
4 = —Aw’cosm = Aw’
or
Ay = £AW? (10.25)
EXAMPLE 10-1
Show thatx = A4 cos(wt + ¢) is also a solution of Eq. 10.10.
Solution
A%«
—hx = m—— (10.10)
ds?

Take the second derivative and substitute into the right side of Eq. 10.10.

dx d .
i AE cos(wt + ¢) = —Aw sin(wt + @)
Ay d . N
E e -Awd—x sin(wt + ¢) = —Aw” cos(wt + ¢)

Substruting in Eq. 10.10,
—kA cos(wt + ¢) = —mAw? cos(wt + @)
After cancelling the cosine term from both sides of this equation, we obtain
F
R

Thus,.d cos(wt + ¢) is a solution of Eq. 10.10 for this value of w.

ig. 10-6

x = A COS wt I"-..
S s i N
FIGURE 10-6 Pi(‘t
functons of rime for @ greater

of x and 2

unity.
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@ EXAMPLE 10-2
Agiven spring stretches 0.1 mwhen a force of 20 N pulls on it A 2-kg block artached

ro it on a frictionless surface as in Fig. 10-4 is pulled to the right 0.2 m and relcased.

(@) What is the frequency of oscilladon of the block? (b) What is its velociry at the
m1d}70mf (c) What is its acceleration at either end? (d) Whar are the velocity and
acceleration when x = 0.12:m, on the block’s first passing this pome?

Solution First we must derermine the spring constant k-
F 20N
=L 2 200N/m
X 0.1m

« (a) We may then calculate w from Eq. 10.12

B /z_ 200N/m ‘
»=y = e ke = 10rad/sec

Because
= 2nmv
w 10 rad/sec
Vv = Z = T = 16 HL

« (b) The velociry is a maximuwm whenx = 0, that is, at the midpoint. Therefore,
from Eq. 10.23, (recall, as shown earlier in this section, that when a block is
mitially displaced a distance x from its equilibrium position and chen released,

the amplitude of the motion 4 = xg)
U= Unyy = TAw = £(0.2m)(10rad/sec) = £2 m/sec
# (¢) The acceleration 1s a maximuim ac the two extremes of the motion. Therefore,
from Eq. 10.25
Amae = FAw® = £(0.2m)(10 rad/sec)? = +20 m/sec’

* (d) To determine the block’s velocity and acceleration at some arbitrary value of
X, we need to know the angle wr at thae position. In chis problem, ¢ = 0.12m.

We use the relation
x =Acoswr (10.21

- X 0.12m
ol WF = arc cos 1= are cos =53°

0.2m
Then we may substitute into Eqs. 10.22 and 10.24

1 as v= —Awsinwt

an

= — (2.0 m)(10rad/sec) sin 53° = —1.6 m/sec

il nan -
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(Moving toward the left)

a= —Hwcoswr (10.24)
= —(2.0m)(10 t‘ad/scc2)2 cos 53¢ = —12 m/sec?

(Accelerating coward the left)

10.6 ENERGY OF OSCILLATION

In Chapter 5 we saw that when an objecr is raised to a heighr y in the gravitational
ficld on its descent the gravitationa! force is capable of doing work on the object.
Because of rhis, there is associated with the object ar a height y a potential energy
Ey = mypy. We defined the potential energy as the work done in raising the object to
that height. An analogous situation occurs here. When a body artached to a spring
is displaced from its cquilibrium position (¥ = 0). the spring is potentially capable,
on rhe refease of the body, to do work on the body. We can therefore associate with
the spring-body system a potential energy E,. This potential energy will be the work
done in stretching or compressing the spring.

When the force F and the displacement 2x are in the same direction, work was
defined as the producr of the magnitudes of the force and the displacement (sec Eq.
5.1), that 1s,

AW = Fdx
ofr
W:fFM
0

Erom Hooke’ law, Eq. 10.3, the force needed to compress or stretch a spring is
F = kx; thus

>
0
1
W = -k
2

The porential energy of the spring-body system, when the body is displaced a distance
x from 1ts equilibrium position, is therefore

E,(spring) = %}axz (10.25)

This equation was derived on the assumption that the spring was imually in s
equilibrium position, x = 0. This assumption is not necessary. If the spring is initially

—




ina Posirion xy and 1s compressed or strerched o position x5, the work done is as

pefore .
p W =lz/ s i
1 1 pi &
e Ekx% — gkxi [ AV Z0)

Note that because the displacement is squared the potenrial energy of a spring is
the same whether jtis scretched or compressed an equal distance x from its relaved
osition.
1f therc is no friction we may expecr, as was the casc with the gravitational
force, that the rotal mechanical energy, kinertic plus potential, will remain constant as
the body oscillates. This can be shown rather simply. By the work-cnergy theorem,
Eq. 5.9, the work done by the spring, as the body moves between two arbitrary
displacementsx) anday, isequal to the change in the kinetic energy of the body; thatis,
X
/x Fipemg A% = %mu% — %mv% (10.27)
1
where vy and v, are the velocitics of the body at x) and x5, respectively. The force
exerted by the spring on the body is Fipgng = —kx. Substituting this for Fpring in Eq.
10.28, and inregrating the left side of the equation we obtain
x
/x e = — (%lmg - %M)

L

Eq. 10.28 becomes

1 1 1 1
- (—kx% - Ekxf> = Zmvy - Emvf

2 2
Rearranging terms, we obtain
1 1 1 1 e
Ekxlz + Emv% = Ekx% + -2-mv§ (10.28)

Because x; and x; are acbitrary points we conclude that the total energy
. ! 1
Eww = hﬂ(zlmz) + (5””’2)

Femains constant as the body oscillaes.

Note that when the spring is stretched, x = A. Before the object is released it
has no velocity and 1/2 £42 is the total encrgy of the system; after it is released the
Nergy remains copstant because energy neicher enters nor leaves the system.

In Section 10.5 we saw that the velocity was a maximum when rhe displacement
?\’a:g “€10, and ir was zero when the displacement was a maximum. This result is
N8mately tied to the fact thar the toral mechanical encrgy of the system remains
SOnstant. Therefore, the kineric energy (and hence the velociry) will be a maximum



when the potential energy is aminimum, that is, whenx is zero. The kinetic energy will
be a minimum (zero) when the potential energy is a maximum, that s, whenx = A.

EXAMPLE

10-3

The block of Example 10-2 is released from a position of x; =4 = 0.2 m as before.
(2) What is s velocity atxy = 0.1 m? (b) Whar is its acccleration at this position?

Loy IR
SO1IUTIOnN

o (a) The velodity at x5 can be found with the conservation of energy equation,

Eq. 10.29

1 1

2 2

Solving for vy, noting that vy = 0, we obtain

I L
vy = l:k(xl xz)}

mi

1 1 >
ke 4 St = Ekxg + 5mu;

B [200N/m[(0.2m)2 — (0.1 mf]]m

2kg
= 1.73m/sec

o (b) We may find the acceleration at this position by using Newton’s sccond law

F = ma
—hkx = mn
L (200N/m)@1m)
o om 2kg B

PROBLEMS

10,1 Show tharx = A sin wr + B cos wr, where 4 and B arc
arbitrary constants, is a solution of Eq. 10.10.

10.2  The positon of a particle undergoing oscillations is
given by x = 25an(3xz + 57/5), where x is in centimerers
and 7 in scconds. Find (a) the frequency of the motion, (b)
the amplimde of the motion, (¢) the maximum veloaty of
the particle, (d) the maximum value of dhe acceleration of the
particle, (¢) the position, the velocity, and the acceleration of
the parncle at £ = 0.

10 m/scc2

10.¢
Asin
conn
parti
givey

i . . 18 thy
10.2 The samc block on the same spring as in Ex

10-2 is rcleased after being pulled 0.2 m o the right.
its position, vclocity, and acceleration 0.1sec after by
relcased.

10.1

=

Magg
ot
the b
are yj

'.r-h& i

10.4 A small block atrached to a spring is oscillaring hot
zontally on a frictionless surface with an amplitude of 0.121
When it is at the position x = 0.05 m its velociry is 2 m/’
(3) Wharis its frequency of oscillation? (b) W'hat‘;is its posi
when its velocity is 1 m/sect \
Ansper:  (a) 292 Hz, (b) 0.107 m.
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C . = AD oscillating block of mass 250 g rakes 0.15 sec to

10

move bett
apart: (3)»
che mlplliu
of the spring?

veen the endpoints of the motion, which are 40 cm
Whar is the frequency of the motion? (b) What is
de of the motion? (¢) What is the force constant

jp.6 When a mass of 0.2kg is suspended from a spring,
o seretches 0.04m. The mass is pulled down an additional
:L sance 0.1m from its equilibrium position and released.
(a) What is the spring constant? (b) What is the period of
oscillagion? (¢) What 1s the frequency of osaillarion? (d) What
will be the maximum velocity?
Anaver:  (a) 49 N/m, (b) 0.40 sec, (¢) 2.5 Hz,
(d) 1.57 m/sec.

0.7 (a) Write down the equation for the posicion y (mea-
sured from the equilibrium position) of the mass in problem
10-6. (b) What is the equation for the velociry of the mass as
2 funcrion of time? (¢) What is the equation for the aceclera-
tion of the mass as a function of ame? Take positions below
the equilibrium point as positive.

10.8  (2) How long after being released is the position of the
mass in problems 10-6 and 10-7 equal to 0.05 m? (b) What
15 the velocity of the mass when y = 0.05 m? (c) What is the
acceleration of the mass when y = 0.05 m?
Answer:  (a) 6.7 x 1072 sec, (b) —1.36 m/sec,
(c) =12.25m/scc.

0.9 The position of an oscillating particle is given by x =
Asin(awr + ¢y, Eq. 10.9. A particle of mass 7 = 0.5kg is
connected to a spring of force constant k = 200 N/m. The
P.-&t'ticlc 15 initially at rest on a frictionless rable. The particle is
S“’Cn an initial velocity of 1.5 m/sec ro start oscillating. What
5 the amplitude of the motion 4 and the phasc angle ¢?
Answer: 7.5 x 1072 m, O rad.

10.10 Two springs with force constants £y = 100 N/m and
£ = 200 N/m are connected to opposite ends of a block of
i’;“; 3kg (sce Fig. 10-8). (a) If the block is displaced 0.1 m
. € right, what is the net force excerted by the springs on
,a}: blOC%C? The block is relcased from that position. (b) What
L the fl.‘(:qucnc_v and the period of the motion? (¢) Whar is
' cfifnplimdc of the motion? (d) Find an expression for the
POSition of the particle as a function of time.

Problem 10.10.

A block of mass 2kg sits on a platform that is
oscillating in a vertical plane with an amplitude of 10 cm (see
Fig. 10-9). If the frequency of oscilladon 1s 1 Hz, what is
the normal force exerted by the pladform on the block (a) as
they pass the equilibrium point, (b) at the lowest point of
the mouon, (¢) at the highest point of the morion? (@) If the
frequency remains constant, at what value of the amplirude
will the block and the platform separate?

Answer: (a) 19.6N, (b) 27.5N, (¢) 11.7N,
(d) 24.8 x 102 m.
m = 2kg
3]
.L._. e
'. =
B
: 3

Problem 10.11.

A block 15 oscillating horizontally on a frictionless
table with an amplitude of 5 ¢, A coin of mass m = 3 g is
placed on top of the block. The maximum force of friction
beoween the coin and the block is 0.015N. Whar is the
maximum value of the frequency of oscillation for which the
coin will stay on top of the block?

Answer:  1.59 Hz.

A block is oscillating with an amplitude of 20 cm.
The spring constant is 150 N/m. (a) What js the energy of the
system? (b) When the displacement is 5 cm, whatis the kinetic
energy of the block and the potenual energy of the spring?

A 0.25-kg mass js oscillating with a frequency v =
5 Hz. Whar is the amplitude of the mortion if the energy of
the system is J2J?



10.15 A mass is oscillaring with amplirude A. (a) When
the displacement is % = 14, what fraction of the energy 1s
potential and what fracuon is kinegie? (b) For whar value ofx
tn terms of A will the encrgy be half kinetic and halt porential?
Answer: (a) 3, 3, (b) 0.707A.

i0.16 A wooden block of mass 0.8 kg rests on a friction-
Jess table connected to a spring (¢ = 200N/m) as shown
in Fig. 10-10. A 20-g bullet moving with a velocity v =
500 m/sec is shot into the block and remains embedded in ir.
What is the amplitude of the cnsuing oscillatory motion?
Answer:  0.78 m.

FIGURE 10-10  Problem 10.16.

10.17 A block of mass m; = 3kg rests on a frictionless
surface connected to a spring (£ = 150 N/m). A sccond block
of mass m; = 1 kg is launched toward m) with a velocity of
4 mysec (see Fig. 10-11), After the collision, #> bounces back
in the opposite direction with a velocity of 1 my/scc. (a) How
much will the spring be compressed: (b) What fraction of the
energy 1s lost in the collision?

Answer: (a) 0.24 m, (b) 0.42.

k

& !
HIIHlIN - Ny

TIGURE 10-11  Problem 10.17.

10.18 A spring (£ = 200N/m) is compressed 10 cm .
tween two blocks of mass 1 = 1.5kgand my = 4.5 kg (see
Fig. 10-12). The spring is not connected to the blocks, a
the rable 1s frictionless. Whart are the velocrries of the blocks.
ter they avc released and lose contact with the spring? A, ’
thar the spring falls straight down to the table,

FIGURE 10-12 Problem 10.18.

10.12 A mass of 3kg is commected to a spring of for
constant 250 N/ro on a horizonrtal surface. The cocfficient
friction between the block and the surface 15 0.1. The b
is pulled 20 ¢m to the nghr and refeased. (a) How far to
left of the equilibrium point will the block move? (b) What
the toral back and forth distance traveled by the block be
1T STOPS?

Answer: (a) 0.176 m, (b) 1.70 m.

P — <




150 = WAVE MOTION
I1.1 INTRODuUCTION

Waves are an important concept in physics. We can see water waves and readily
demonstrate sound waves with clementary laboratory experimencs. In 1801 Thomas
Young showed that light can be considered wavelike by experimental analogjes to
the behavior of warer waves. It will be shown in a later chapter that cxperiments
with fundamental particles, such as electrons, demonstrate that chey also have wave
characreristics.

If we crack a whip, we produce a bricf wransverse displacemenc that can be
seen to travel to the end of the whip. If we drop a pebble on the calm surface of a
pond, a circular ripple is produced. This ripple travels away from the point where
the pebble hit the water with constanc speed and, as it reaches a given point of the
water surface, it produces a temporary displacement of the water molecules. These
are cxamples of fraveling waves, which can trapsmit encrgy along 2 medium without
any net translation of the particles in the medium through which the wave travels.
Thesc readily wisible experiments with water or strings led early scientists to conclude
that a wave 1s a disturbance that travels in a medim. When light was shown to
have wave characteristics, even though it can travel in the vacuum of space that exists
between the earth and the stars, an crroncous concdusion was drawn that there must
exast a medium permeating the entire universe. This was called zether. As we will
see in Chaprer 16, because of the nature of the light wave, no medium is necessary
for its propagation. Beforc we cnter into the realm of modem physics, we must
have a solid understanding of wave motion: the mathematical descripion of a wave,
the parameters that characterize it, and the laws that govern irs propagation. In the
development of these ideas we will consider waves in a visible medium such as a string
or a water surfacc.

ll 2 WAVELENGTH, VELOCITY, FREQUENCY, AND
* AMPLITUDE

Suppose we are sicting in a boat on a body of water in which there is some wave
motion, as in Fig. 11-1. If'we measure the time between risings on the waves, we have
a quanuty known as the period, with symbo! 7', which is the time between successive
risings. If instcad, we ask how many risings did we experience per unit ame, such
as Lh, this quandty is called the fieguency, with symbol v. Here v = number of
rismgs/unit time. Just as in the case of oscillatory motion considered in Chapter 10, Y Aitile

the period and the frequency arc reciprocals of each other. e

e
- i

—

(11.1)

1
b=
T FIGURE 11-1




If we ask a friend ip another boat to row away from us (in the direction of the

e mOtion) and ro stop ar the neacest location where he rises ar the same insrant
pat we do; the distance between us is called the wavelength of the wave with symbol
: peed of the wave through the water is the distance berween the boats divided

S Thes . : - N
t", the time it rakes for our rising to reach him. This is called the wave velocisy, with
s};(nbOI v, and

A
U=
T
or, ﬁ—om Eq 1 ]..]_.
v =4y { )

This is 2 fundamental equation obeyed by all waves.
Another important parameter that characterizes a wave is its amplizude. The
amplitade of a wave is the maximum value of the displacement ir produces (see

Fig. 11-1).

11.3 TRAVELING WAVES IN A STRING

Let us have a very long string stretched along the x direction. A pulsed
displacement, such as plucking the string, introduced at one end of the string, will
cause a transverse displacement of the string in the y or z direction. Let us for now
consider only the transverse y direction because it is more easily drawn on a flat sheet
of paper.

Atz = 0, when the pulse is introduced, the sering may look as in Fig. 11-24. The
wave pulse rravels along the string and, consequently, the string will look differendy
some tme later, see Fig. 11-24. This clearly indicates that the transverse displacement
of the string, v, varies with x—that is, the point of the string under consideration—
and with time ¢. Tn mathemarcal terms we say that the wave pulsc, ¥, is 2 function
of ¥ and #; that is, y = flx,t). The exact shape of the wave pulse, the precise form
of the function flx, z), will be determined by the source producing the pulse and the
ature of the string. One of the most important and most commonly found types
of traveling waves is the sinusoidal traveling wave, a wave consisting of a series of
fonsecurive sinusoidal pulses.

Let us artach the end of the string (x = 0) to a block connected to a spring
hanging from the ceiling, as shown in Fig. 11-3. If we pull on the block, thus stretching
the Spring, and then release it, we know thart the block will begin to oscillate. The y
‘:O(frdin-atc of the block, and therefore the transverse displacement of that end of the
Sng, will be given by Eq. 10.9

y(x = 0,8) = Asin(wt + ¢) (11.3)

=’ (=0 —» \
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FIGTURE 11-2 A mansverse

displacement in a string traveling in
the positive x direction,

E

X

FIGURE 11-3
the production of sinusoidal rraveling
waves 10 aJong string under tensjon.

Arrangement for



This transverse displacement, introduced atx = 0, moves along the string and, as a
result, sometime later other points on the string will begin ro oscillate in the transverse
 directon. If the velocity of the wave in the string is v, then the time it rakes to travel
a distance x along the string 1s x/v. Thus, at time # the displacement produced by the
wave at a point x is the same as was the displacement at the origin (¥ = 0) at an carlicr
tme ¢ — 1o, where 7o is the time that it takes the wave to reach x; that s, ty = x/v.
Putting £ — ) into Eq. 11.3 for r, we obtain

y{x,t) = Asin{w(r — &) + ¢
and on substituting fp = x/v we have
y(x,7) = Asin (w— 3x+¢) (11.4)
v

Eq. 11.4 1s the general form of the wave equation, but for our purposes we do not
require such generality. If we limit ourselves to waves such thar y = 0 when both
x = 0andr = 0, then ¢ = 0 or 7. We can then write the commonly used versions of
Eq 11.4as

¥(x, 1) = Asin(wt —kx) wheng =0 (1L.5)
or
yx,ty =Asin(lx —wt) whenop=n (11.5')
where
k=2 (11.6)
U

Either of these versions of the travelling wave equation may be used, and the choice
1s a writer’s preference,

The constant £ that we have introduced is called the propagation constant (or wave
mumber). (Note thar chis £ is a new and different constant from the spring constant £
introduced in Chapter 10.) It will be used extensively in the latter part of this book.
Les physical significance will soon become apparent.

We can write an alternative representation of a sinusoidal traveling wave that
differs from that of Eq. 11.5 in the direction of propagation of the wave that it
represents. Equation 11.5 was dertved by assuming that the wave traveled roward
the right in the posiive x direction. For a wave traveling toward the left,

Y%, 7) = A s (kx + o) (11.7)

Jo show that Eq. 11.7 represents a wave traveling in the neganive x direction, we Jook
ata particular value ofy, the wave displacement, and ask oursclves, as time £ increases,
whar happens to x tor thac particular y value of the wave? To pick a particular, fixed
value of y, the argument of the sine function in Eq. 11.7 must be kept copstant, thatis,

bx 4 wt = constant (11.8)
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FIGURE 1 1-4 Stop-action diagrams showing the introduction of a rravclmg wave Ju a strng by

the experimental arrangement of Figure 11-3.

Obviously, as # increases, £ must decrease 1f the left side of Eq. 11.8 is to remain
constant. Therefore, the wave of Eq. 11.7 is moving toward decreasing values of x,
that is, in the neganve x direction.

To understand a traveling wave in 2 string produced by an oscillating source
such as that of Pig. 11-3, let us examine some stop-action diagrams, such as those
in Fig. 11-4. We sce thar the y displacement introduced by the oscillation travels to
the right in the detailed sketches of Fig. 11-4a—. Morc than one full wavelength is
represented tn Fig. 11-45-4.

To gain insight into the physical significance of the wave represented by eicher
Eq. 11.5" or Eq. 11.7, et us analyze it from nwo different points of view.

Suppose we take a snapshor of the string as the wave travels through ic. Whar
will we see? Taking a snapshort of the string means setting z equal to an instantaneous
value ; in Eq. 11.5', which now becomes

y(x, 1) = Asinlkx — 6)) (11.9)

Where 6y = wr) is aphase shift at £,. This is shown best in Fig. 11-5 in comparison with
a_Sinc function plotted as a dashed line. In this igure the solid line is the snapshor at
fme 7 and the dashed linc is a sine curve with y = 0 ar the origin. At the time of the
Photograph the solid line is phasc shifted by an angle 6) = w1 from the sic curve
Of)’ = 0arx = 0. At somec other time 7, the snapshot would show a different phase
Shift 6. Eyen though there is a phasc shift, the string looks like a sine wave. We can
e Eq. 11.9 to find the wavclength 2. of the wave. In Section 11-2, we defined x as
fh't Separation berween two risings in the body of water of Fig. 11-1. Similarly here,
18 the separation benveen o successive maxima in the transverse displacement of’

e String; for example, from Fig. 11-5

X:xg—xl
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We identity x) and &3 as two successive values of x for which the sine function in Eq.
11.9 equals +1; that is,

ke ~ 6y = 2 rad (11.10)
and
kx2—01:<%—|—2;z)rad (11.11)

Solving Eqs. 11.10 and 11.11 stimultaneously, we obtain

kxy =kxy = 2n
p 27
Xy —X] = —
2 1 &
2

A= — A2

2 (11.12)

We see, therefore, that the propagation constant 4 in Eq. 11.5" yields, through
the relation of Eq. 11.12, the wavelength of the wave.

An alternative way of looking at Eq. 11.5" is to consider a particular point in
the string of Fig. 11-44 and to analyze the motion of that point as a funcrion of timec.
We can place a little Jight bulb at that point in the string and follow the motion of the
bulb. Supposc we choose the particular point in the string as x) in Fig. 11-47. This
means we ser x equal to a constant value xy in Eq. 11.5/, which now becomes

y(x1,t) = Asin(6) — wr) (11.13)

where #) = kxy is a constant phase shift that depends on the point chosen in contrast
to the previous analysis, which showed that the phase shift depended on che rime of
the snapshot. We immediately recognize Eq. 11.13 as being similar to Eq. 10.9, which
described the oscillatory motion of the body arrached o a spring. With the position x
fixed, y will vary with sin oz and the littde bulb will undergo simpie harmonic moton
with amplitude 4 and frequency

V=g (11.14)

o

It should be noted thar Eq. 11.13, with a change in x and therefore with the
corresponding phase shift 8], describes the motion of any other point in the string.
As the wave moves through the string, all the particles in the string oscillare with the




. ,npﬁrudc and frequency, although out of phase with one another, that is, with
qme oy
a‘i&kr:ﬂ} phase. shifts.

We conclude this secuon with an alternative demonstration of the relation

oy frequency and wavelengzh, Eq. 11.2. Combining Bq. 11.14and Eq, 11.12,
we have the product

2 w
= Te_@

k 2m k

By definition k= % (Eq. 11.6), thercfore

A w
V= — =
k

clel €
|
c

which is the resule found earlier. This result is valid for all waves whether in a medium
such 2s a String, Or warer or ajr, or in a vacuum such as light waves.

EXAMPLE 11-1

A mass of 0.2 kg suspended from a spring of force constant 1000 N/m is arrached to
a long string as shown in Fig, 11-3. The mass is set into vertical oscillation, and che
distance between successive crests of the waves 10 the string is mcasured to be 12 cm.
What is the velocity of waves in the string?

Solution We use Eq. 10.12 1o find the frequency of oscillation
k IT000 N/m
13 ’,m \/ 05 kg 70.71 rad/sec
w  70.71rad/scc

The velocity of waves in a medium can be found with Eq.11.2
U= AV
=12x 1072 m x 11.26scc™*

= 1.35m/sec

1.4 ENERGY TRANSFER OF A WAVE

One . . L . . L.
i of the most imporrtant aspects of wave motion is chat it provides a mechanism for
o SRS o . i )
. transfer of energy. A particle in a string before the wave arrives has no mechanical
Nero S . ! . . . . .
8Y- If a sinusoidal wave acrives at the locarion of the particle, the particle begins o

EXecure o . . . : . .
¥ Ute simple harmonic motion, and it therefore acquires kinetic as well as potential
Deroy 7 . . . Ly
L8Y. The wave bas given encrgy to the particle becawse the wave carrics energy with it.

ENERGY | RANSFER OF A WAVE =

Sy



In fact it we think carefully, wave motion is one of the two general mechanisms
avatlable to transport energy from one point to another. The other occurs when one
or more particles move from one point to another and in so doing bring their kinetic
encrgy with them. This kinetic energy can be rransferred to other particles in the
medium through which thev propagare, There are, however, two obvious differences
between these o mechanisms; one of them will be crucial in the development of
quantum mechanics in a later chaprer.

1 The first difference is thar waves transfer energy without transfer of matter,
unlike the motion of particles.

2 The second is thar the cnergy of a beam of particles is localized (1t is where
the parucles arc at a given instant). In a wave the encrgy is distributed over the
entire spacc occupied ar a given instant by the wave, (When the ripples in the
pond move outward from their source, all the warter in the region of the wave
is displaced.)

We will now calculace the rate—char is, cnergy per unit time—at which energy
is rransmicred by a wave in a string, noting that a sunjlar calculation, leading to
similar results, may be madc for any other type of wave. Let us consider the sinusoidal
traveling wave represented by Eq. 11.5'.

y = Asinfkx — o) (11.57)

The rate of energy production, consumption, or transmission was defined in
Eq. 5.15 as power P. We can obrain P by calculating the cnergy crossing a given
point in a string in 1 sec, for example, pointe D in Fig. 11-6. This will be equal to the
wave encrgy of the string particles in one wavelength multiplied by the number of
wavelengths passing point D in 1sce, that is, by the frequency v.

P = (energy per wavelength) x v (11.15)

To find the cnergy in onc wavelength we note, as shown i the previous section,
that cach particle in the string is oscillaring with the same amplitude 4. Because the
roral energy of an oscillating particle is proportional to the square of the amplitude of
oscillatjon (sec Eq. 10.26 er seq.), we conclude that all the particles in the vibraring
string have the same cpergy. At any given time, the energy of a pacticular particle may
be all kinetic or all potential or a mixture, In Fig. 11-6, the energy of particle Cis all
kineric, because C is passing through the equilibrium point. On the other hand, the
cnergy of particle B 15 all porennal, because it is abour to reverse the direction of its
transverse motion and 1ts velocity is zero.

To obrain the kinetic cnergy of the particles in the string we need an expression
for the transverse velocity vy. This can be obtained by differcntiating y in Eq. 11.8’
with respect to tine. Becausex is also a variable in the expression fory, we will indicate
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mission in the derivative by wriring vy as a partial devivative wich respect to

i ©
:haf iS. \‘

; N 3

' v, = —j% = EA sin(ky — wr)

— wA cos(kx — wt)

Uy

We can now calculate the energy of particle C of mass Am.

1 =
E(for particle C) = EA?ﬂUjmu (11.17)
Butfrom Eq. 11.16 vynax = —@A, because the maximum value of the cosine funcrion
is 1. Eq. 11.17 becomes
. - ]- 242 P o
E(for particle C) = 3 Amw A (11.18)

Because the energy of all the parricles is the same, we can obtain the energy in one
wavelength by replacing As in Eq. 11.18 with the mass contained in one wavclength.
If the amplitude of the wave is small compared with the wavelength (a situation often
sansfied), then the mass in one wavelength is A, where 2 is the mass per unir length
of the sering. Therefore,

1 .
Epergy per wavelengrh = EuleAz (11.19)
Substituting Eq. 11.19 for dhe energy per wavelength in Eq. 11.15, we obrain
1
P = < piveA?
2
or
P =272 nuwv?A? (11.20)

Where we have made nse of the fact that 1v = v and w = 27v.

Although Eq. 11.20 has been derived for a wave in a string, two important
features hold for any other type of wave: The power transporied by a wave is proportionnl
W the square of the amplirude and to the velocity of propagation of the wave. We will use
these imporrant resulss lacer in our discussions of the principles of modern physics.

When considering waves that propagate in three dimensions, such as sound
Waves or light waves, it is convenient to talk abour the energy lowing through a given
arca of the medium traversed by the wave. The unique term intensity, with symbol
L is used for this purpose. The intensity is defined as the power ransmiited per unit
area perpendicular to the dircction of propagation of the wave. Clearly, intensity and
Power are related by a simple geometric factor. Thus, the intensity of the wave is also

Proportional to the square of the amplirude. In the ST system, intensity has units of
W/m?




PROBLEMS

The speed of sound in air 1s abour 330 my/sec, whercas
the velocity of light is 3 x 10% m/scc. If you sce a flash of
lightning and count 8 sec before you hear the thunder, how
far away was the hghming?

Answer:  2.64 x 103 m.

If the principal audio frequency of a thunderclap is the
lowest rhe ear can hear, about 20 Hz, whart is the wavelength
of the sound wave: The speed of sound in air is about 330
my/sec.

The speed of all clectromagnetic waves in air, both
visible and invisible, is 3 x 10® m/sec. The AM radio band
ranges in frequency from 550 to 1600 kHz. Whar is the range
of wavelengths? The FM band ranges from 88 to 108 MHz
(1 MHz = 10° Hz). What is its range of wavelengths?

4 The range of sound frequencies detectable by the hu-
man car is 20 10 20,000 Hz. Wharis the range of wavelengths?
The velocity of sound in ajv 1s 330 m/sec.

A rule of humb for finding the distance whete a flash
of lighting occurs is to count the number of seconds from the
moment one secs the lightning to the moment one hears the
thunder. The distance in kilomerers is the number of seconds
divided by 3. How accurate is this rale? (See problem 11-1.)

In an experiment designed to measure the velocity of
sound waves (n copper, a blow is struck atone end of a copper
rod. Detectors at the other end measure the rime interval
between the arrival of the sound pulse through the rod and
the amval of the sound pulse through the air. If the rod is 3 m
tong and the sound pulse that traveled through the rod arrives
8.01 x 107 scc earlier than the sound pulse that traveled
through the air, whar is the velociry of sound in copper? The
velocity of sound in air is 330 m/sec.

Answer: 2775 m/scc.

In the wave configuration shown in Fig. 11-7 the
lengrh of the string is 4.2 m, the frequency of the wave is
1.2 Hz, and the amplirude is 0.05 m. What is the speed of the
wave? Note that % 3> amplitude.

Answer:  2.52 m/sec.

'r 22 m J|

{-7 Problem 11.7.

1.3 The equation of 2 transverse wave rraveling along a
very long string is given by

y = 6.0s1n(0.0207x 4 4.07¢)

where x and y are expressed in centimeters and £ in seconds.
Find (a) the amplitude, (b) the wavelengrh, (c) rhe frequency,
(d) the specd of propagarion, (¢) the direction of propagation
of the wave, and (f) the maximum transverse speed of a
particle in the siring.

The cquation of a traveling wave in a long stretched
string is y = 107 sin(32¢ — 4%)m, where % is in meters and #
is in seconds. What is the veloaty of the wave in the string?

.10 Wnate the equanion of motion of a traveling wave for
the string in problem 11-7 using the same aroplitude. Assume
that the wave travels in the positive x direction.

Write the equation for a wave traveling in the negarive
direction along thex axis and having an amplitude of 0.010 m,
a frequency 550 Hz, and a speed 330 m/sec.

Answer: y = 0.010sin(3.337% + 11007£) m.

Consider the siruation illustrated in Fig. 11-3. Lot
the spring constant k = 200 N/m and the mass of the block
m = 2kg. The block is given an upward initial kick to start
it oscillating. Sketch the shape of the string at £ = 0.155€6
t =0.35cc,t = 0.45sec,7 = 0.6s¢ec, and t = 1.2 sec.

13 A wiangular pulse of height 0.5 m and length 2m

moves along rhe positive x direction on a siring with velocif -

12 m/sec (see Fig. 11-8). Acr = 0 the pulse is between %1 =

1m and x; = 3m. Plot the transverse velocity of point 2 as

a function of nme.
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11,14 A sinusoidal rraveling wave on a string has a fre-

quency v = 15 Hz and a velocity v = 7.5 m/sec. (a) How
s .

fyr apart are two points whose transverse displacements arc

phasc—shiftcd by 30°? (b) At a particular point on the string, .

what is the phase difference between two displacements
oceurring 0.05 scc apart?
Answer:  (a) 4.17 x 1072 m_ (b) 270°.

11.15 A block connected to a rigid rod is raised from some
inirial position y = 0 with constant veloaty v, = 20 m/sec
for 0.4 sec. The block 1s then suddenly lowered to its imtial
position and then raised again with the same velocity for the
same amountof time. The cycle s repeated indefinitely. A long
string under tension is attached to the side of the biock (see
Fig. 11-9). Let the wave velocity in the stiing be 5 m/sec. (a)
Skerch the shape of the string, using approximate dimensions
for the x and y coordinates, at £ = 0.2sec, r = 0.4 sec and
¢ = 1.2scc. (b) What is the spacing of the pulses on the string?

Uy

X

FIGUREZ 11-9 Problem 11.15.

.16 A laser produces light pulscs of energy 5 J and dura-
HOn 2 » 10~7 sec. The width of the beam is 1 mm?2. What is
the intensity of the laser bghe

17 A sinusoidal traveling wave of amplitude 2cm
and wavelength 50 cm moves along a string with veloc
ity v = 6my/sec. (2) Whar is the maximum transverse
velocity of the paricles i the swing? (b) What is the
maximum transverse acceleration of the parricles in the
string?

Answer: () 1.51 m/sce. (b) 113.7 m/sec?.

If the string of problern 11.17 is 30 m long and has
a mass of 6 kg, what 1s the power transimitted by the wave?
19 Suppose that during the transmission of waves
through a suring the frequency 1s suddenly doubled while
maintaining the same amplitude and velocity of propagation,
what will happen to the magnitude of the power transmit-
ted? Suppose that the amplitude is doubled while holding the
frequency fixed, what will happen to the power?

1.20  Consider a point source emitting waves in all direc-
tiovs, If the medivm through which the waves propagare is
isorropic, the velocity of propagation will be the same in all
directions. As a result, points in the medium where the wave
has a certain phase are equidistant from the source and there-
forc hie on a spherical shell with the source at the center.
These waves arc called spherical waves, Considet waves emit-
ted from a 5-W source in a nonabsocbing medivm. (a) What
is the intensity of the waves 1 m away from the source? (b)
What should the power of the source be in order thar the jn-
tensity of the waves 1 m away be the same as that of the laser
in problem 11.162

A point source emits spherical waves in a nonab-
sorbing medium (sce problem 11.20.) The intensity at some
unknown distance from the source is 25 W/m®. The intensity
arsotne point 10 m farther away from the source 1s 16 W/m?.
(a) How far is the source from the first point? (b) Whar is the
power output of the source?

Answer: (a) 40 m, (b) 503 kW.



INTRODUCTION

12.1

In the preceding chaprer we introduced the concepr of waves as a periodic disturbance
of a medium. We used familiar concepts such as waves on a string o in warer to
lustrate the phenomena. The general equation for a traveling wave was derived as
was the concept of phase shift. In this chapter we will start with the behavior of
two waves when they come together and the effect produced by their relative phase.
We will ficst discuss this phenomenon with waves 1 water and then extend it to
light waves. At this point we will assume, as did early investigators, that air could be
the substance in which light-wave motion occurs. However, we will show in a latex
chapter that light waves do not require some substance or medium to support them.

THE SUPERPOSITION PRINCIPLE

12:2

One of the fundamental principles governing the propagation of waves is called the
superposition principle. What happens when owo different waves meet? Experiments
show thar waves can move through the same region of space independenty and, as a
result, when they meet the resultant wave is simply the algebraic sum of the individual
waves. (The superposition principle does not hold for waves of very large amplitude
in deformable media.) Figure 12-1 shows what happens when a square pulse in the
stng meets a triangular pulse moving n the opposite direction. In Fig. 12-1a4 two
posirive waves approach each other. The resulting displacement of the string is the
addition of the displacements that cach pulse would have produced in the absence of
the other (Fig. 12-15). After meeting, the waves move on unaffected (Fig, 12-1¢). If
one wave pulse is positive and the other 1s negative, as i Fig. 12-14-f, the neganvely
direcred pulse subtraces from the positive pulse. These two examples show that the
resultant pulse while the rwo waves are passing one another is the algebraic sum of
the two waves.

The superposition principle leads to 2 wave phenomenon known as zuterference.
Suppose two waves with the same wavelength, velocity, and amphitude, but from
different sources, travel rogether in the same direction, What will be the amplitude of
the resulong wave? Figure 12-24 shows that if they are in phase, the toral amplitude
ar any point will be che stmple sum of the two. If they are out of phase by one-half
wavelength, the resulting amplirude will be zero (sec Fig. 12-26). The first case is called
constructive interfevence, and the second is called destrucrive inrerference. Itis important
fo note thatif cither wave is shifted to the right or to the left by a whole wavelength, the
sitwation is unchanged. However, if the shift is by only a half wavclength the situation
is reversed; that is, constructive interference becomes destructive and vice versa.
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FIGURE 12-1  Superposition
principle: (2) A squarc positive
puldse and 2 triangular positive pulse
in a string traveling mn opposite
dicections. (&) The two pulses meety
and the resultipg displacement

of the string is the sum of the
displacemients thar cach pulse would
have preduced in the absence of
the other. (¢) After meeting, the
pulses move away unaffecred. i4) A
positive square pulse and a negarive
rriangular pulse moving in opposité
directions. (¢) The pulses mect.
the resulding displagement is the

difference (algebraie ‘ium) of the two
pulses. (f) After mecring, the oo
pulses move away unaffecred.




FIGURE 12-3 Ripple-tank demonstradon of the phenomenon of interference. Two vibrators
[| . Strlkmg the watcer surface in the tank at periodic intenvals produce two circular wave patterns. As the

WO Wave patterns cross cach other, an intesterence partern resulrs. Along the solid lines rhe waves
om the o sources interfere constructively, thar is, the displacement of the water is large. Along
dashed lines the interference 1s destructive, and the displacement of the water is zero. There are
itional paths of constructive and destructive inrerference that have not been marked with lines.

& ,3 INTERFERENCE FROM TWO SOURCES

If pebbles orwater drops fall at regular intervals in still water, a pattern of circular
‘Waves, cach consrantly increasing in radius, will be established. If a similar situation
Wwith the same frequency of disturbance occurs nearby, the circular traveling waves
; Will cross one another, producing an interference pattern. Note that the restriction of
‘ "-_ fthe Previous secrion that the waves travel together in the same direcnion has now been

:ﬁfnlo\’ed- Arsome points the interference will be constructive, and ar others it will be
b destructive. A simple laboratory demonstration of this is shown in Fig. 12-3. This is
- 3photograph of whar is called a riple rank. This is a tray of water illuminared from
. 'bFIO\x‘. Instead of having drops of water falling, nvo vibrators are placed in the tray and
‘thl frequency and amplitude of vibration can be controlled more accurately than can
;':::t..hat of falling drops of water. The centers of the circles at the borroun are the locations
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FIGURT 122 Interterence of two
waves: (a) Covistryesive interfevence
of two waves traveling together in
phase, that ts, with the amplitudes
coindiding, resuiring i a wave with
an amplitude chat 1s the sum of the
amplitudes of the indwidual waves.
(b) Destructive tnrerfevence of two
waves of equal amplitude rraveling
together with a phase difference of
one-half wavclengih resubung in a
wave of wro amplirude.
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at which the vibrators are located. Some of the paths along wlich construcrive
interference occurs are indicated with solid lines. The dashed lines between the paths
tabeled 0 and 1 are regions of destructive interference.

Figure 12-4 is a schematic representation of the photograph in Fig. 12-3 in
which the wave crests, represented by the circular lines, procced outward from the
two sources Sy and Sz. It is seen in this figurce that the phenomenon of Fig. 12-3 is
a purely geometric onc that can be reproduced on paper with a compass and ruler.
The distance beoween the crests is the wavelengeh 4. The troughs are located halfway
between the crests. As in the photograph, the solid lines labeled 0, 1, 2, .. . represent
the paths of construcnve interference.

We notice in this figure that the paths of constructive interference are symmectric
aboutthelinelabeled 0. Therefore, we need to consider only one group citherabove or
below the 0 line. We will consider the ones above, knowing that che results will be the
same for the ones below. Constructive interfercnce occurs along these paths because
the crests from the two sources coincide and add to the disturbance of the water.
This is the criterion presented i the previous scction for copstructive interference.
Along the path labeled 0 in Fig. 12-4, the first crest from S coincides with the fivst
crest from S, the second crest from S; with the second from S;, and so on. Along
the path labeled 1, the first crest from S, coincides with the second crest from Sy,
the second trom S; with the third from Sy, and so on. We may view these waves
as having traveled for some distanice from their sources along their respective paths.
When two waves travel in the same medium, the difference in the distances traveled
by them from their respective sources to a common point is called the path difference.
Keeping mn mind thart the separation between successive crests is the wavelength 7,
we can now state the criterion for constructive interference as follows: When waves
from two sources are emitted 0 phase, constructive inteyfevence occuys when the path
diffevence is zero, ov one wavelength, or an integral multiple of wavelengths n).. This can
be formally shown with the trigonometric relation for the sum of sines,

1 1
Sina—;—sinb:2su15(ﬂ+b)cosg(a—b) (12.1)

Let us consider a pownt P whose distances from 81 and 83 are x and x3, vespectively,
as shown in Fig. 12-5, From Eq. 11.5’, the wave y| from S; and the wave y; from S,
at P are

1 =Asin(kxe) — wt)
¥ = Asin(kxy — wr)
From the superposition principle, the resulting wave will be
y=xn-tr

= A[sin(key — or) + sin(xy — wi)] {12.2)

v

FIGURE 12-4 Geomertric
representarion of the photograph in .
Fig. 12-3. The crests of the water
waves arc represented by circular
lings whose centers coincide with
thé\location of the vibrarors. The
disrance between adjacent crests s ,
wavelength. The rroughs are halfwa '
benwveen the circular lines. The cresss
from the two sources coincide along
the solid lines labeled 0, 1, 2, whet¢.
constructive tnterference occurs.
Along the dashed lincs, the crests
from one source coincide with the
troughs from the other, resulting in
paths of destructive inserference.

Sy x| 1

FIGURE 12-3 Arbirrary potnt P ':':
in Fig. 12-3 or 12-4, '



Now Jet the path difference be an integral multiple of the wavelength, thac is,

\_ xy —x1 = nh, wheren =0,4+1,+2,...
3%
and

Xo = x| + HA

or. because from Eq. 11.12

e 2T
Tk
2nn
xy =21 + T)
then Eq. 12.2 becomes
y:A[Sin(kxl — o)+ sin(kx) + 270 — wt)] (12.3)

Using Eq. 12.1 gives

1 1
y = 24510 E(kxl — wt + k) — wt + 27n) cos 5(25(?2)

y = 2A sin(kxy — wt) (12.4)
In the last step we let kx1 — ot = 6 and uscd the fact that sin(8 + #7) = —sgnb and
cosnw = —1 if » is an odd nreger, and sn(f + »r) = sind and cosnr = 1 if n is

an cven integer. Equation 12.4 formally verifies that when the path difference is an
integral multiple of the wavelength, the resulting wave has an amplitude that is twice
that of y; or y; at that point.

Rerurning to Fig. 12-4, we note that the dashed lines, representing paths where
destructive interference occurs, correspond 1o points whose distances from Sy and S
differ by 1/2 )., or (from Eq. 11.12) %3 —x) = /2 = n/k. The resulting wave in this
case will be

y=n-txr
= A[sin(key — wt) +sin(kxy + 7 — o))

Using Eq. 12.1, we obtain
1 1
y = 2Asin 5(}&1 — wt + kxy — wt 4 7) COs 57

But cos /2 = 0, and therefore v = ) + y2 = 0; this by definition is destructive

: . . : 3 5
Wterterence. The same vesulrt is obtained if vy — X = 5)» or Ek and so on.

Christian Huygens



FIGURE 12-6  Huygens’ principle. Parallel wave frongs in the ripple tank strike a barrier with a
small opening. The opentng becomes a source of circular waves.

I 2.4 DOUBLE SLIT INTERFERENCE OF LIGHT

If a series of cither plane waves or large radius spherical waves sorike a barrier
with a small opening, circular waves are propagated beyond the opening as if the
opening were a point source, The enlarging circumference of these waves is called a
wave front. Figure 12-6 illustrates this propagarion with water waves in a still rank.
This phenomenon illustrates what is known as after the Dutch physicist, Christian
Huygens (1629-1695). It is more generally stared that every poinr on @ wave front
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can be considered as a source of secondary wavelers that spread ourt in all directions
with a spc\cd and wavelength equal to those of the propagating wave. The ncxyly
Propagarcd\wavc front 1s the tangent to these secondary wavelers. Thus, the spherical
wavelet passing through the opening in the barricr of Fig. 12-6 produces a secondary
wave front that itself produces other wavelets as shown in Fig. 12-7.

Huygens demonstrated that the known facts abour the propagation of light
could be explained by using his principle. It was many years, however, before lighe
was accepred as 2 wave phenomenon. This came about when the English physician
Thomas Young (1773-1829) performed the first successful experiment that exhibited
the interference of light in 1801. The narure of hight is discussed in more detail in
Chapter 16. For now, we mention thae visible light has a wavelength that ranges from
about 4 x 1077 m 1o 7 x 1077 m, where the lower values appear to us as violet and
the higher values as red. A unit of length often used in specifying the wavelength of
Jlight is the Angstrom, with symbol A; 1.4 = 10-* cm = 10‘1°0m= and therefore the
wavelength of visible light ranges from abour 4000 A to 7000 A.

Figure 12-82 illustrates a schematic arrangement, sinular to the one used by
Young, to determine the phenomenon of interference wich light. A monochromatic
light source (asingle wavelength) shines on an opaque screen with two narrow slics Sy
and §;. According to Huygens’ principle, these two slits become point sources of Jight.
Ifwe letthe light that passes through the slits fall on a screen, we will observe a pattern
of bright and dark lines thar indicares constructive and destructive interference. A plot
of the light intensity on the screen is schematically represented in Fig. 12-84. Figure
12-85 15 a photograph of the interference pattern observed on the screen.

We can use the principles developed in the previous section to find expressions
for the position of the interference maxima and minima. Figure 12-92 shows a
geometric construct of hines drawn from each of the two slits to a point P of
constructive interference. As will become evident soon, for the interference patrern
t be easily observable, the separation between the slits, 4, canpot be much greater
than the wavelength. This implies that in the case of light 4 might be a fow microns
(L0~%m) whereas the distance, D, berween the slits and the screen could be several
centimeters, thatis, D » 4. We therefore conclude that the two lines Sy P and S, are
almost parallel. The situation of Fig. 12-9a can thus be approximated by that shown
in Fig 12.95. In Fig. 12-94, a perpendicular has been dropped from slit Sy to point
Qon the fine §,P Angles indicated by 6 are equal because their sides are mutually
Perpendicular. The extra distance $)Q traveled by the wave from slit S is the path
diffcrcncc, with symbol 8, between the two waves when they arrive at P It is seen
from triangle $15,Q that

§ =dsiné (1 2UEY

- R —

X

i
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URE 12-7  Geometric

representation of the phenomenon in
Fig. 12-6. The opening in the barrier
produces & circular wave front. Each
pount in that wave front produces
secondary circular wavelets, and the
new propagated wave front is the
tangent to these secondary wavelets.

e

Thomas Young {1773-1829).
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Opague screen '

-
fntensity

(a) Projecting Screen &

FIGURE 12-8 () Schematic of Young’s double sht interference of Light experiment. Light
passing through wwo small slits Sy and §5 in an opaque screen produce an interference pattern on a
projecting screen to the right of the slies. () Photographof the interterence pattern on the projecting
screen showing a pattern of and dark fringes. (Sowrre: Cagner et al., Arlas of Oprical Phenomena,

Springer-Verlag, New York, 1971.)

As wc have shown in the preceding section, constructive interference at point P
can occur only if this path difference is an integral multiple of wavelengths #4. The
condition for constructive interference 1n this case becomes

dsing=mn), wheren=20,1,2,3,... (12.6)

Simularly, destructive interference will occur when the path difference 1s 1/2 4, 3/2 A,
5/2x, or in general [(2n + 1)/2] x, where n = 0, 1, 2, 3, .... The condition for

(a) Frojecting Scceen () \

FIGURE 129 (a) Geometric consuruct of lines from each of the slits in Fig, 12-8 to a point P on
rthe projecting screen where constructive ineecfercnce is observed. (8) When D > 4, the two lines
are approximarely parallel. The dufference berween the rwo paths traveled by the light from §; and

Sy 1868 = na,
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' vive interfevence can be stated as

1 2
‘\ Adsmnf = il

A, wheren =0,1,2,3,... 127
chat as 8 increases, sin 6 also increases. We conclude from Eq. 12.6 that for a
at A, the angular separation berween successive nterference maxima decreases
creasing spacing beoween the shis, 4. A simple laboratory demonstration of
shown in Fig. 12-10. These are photographs of a ripple tank like the one used in
_monstration of Fig. 12-3. A comparison of Fig. 12-10a and 12-105 shows that
kept constant, the angular scparaton between interference maxima decreases

= d = e
Inrerference patterns in the ripple tank of Fig. 12-3. (r) and (b) If & is kept

t, the angular separation benween the inrerference maxima decreases when the separarion

een the sources is increased. (#) and (¢) Both £ and 4 are doubled, the angular separation
Cn Interference maxima remains the same.
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as the separation between the sources increases. Similarly a companison of Fig. 12-
104 and 12-10¢ indicates that when the separation benwveen the sources is doubled,
the wavelength must also be doubled to have the same angular separation. Ir should
also be clear from Eq. 12.6 that if 4 > X, a large number of interference maxima will
occur within a small angle and, as a result, the pattern will be difficult to obscrve. To
tllustrate the point, let us assume that £ = 1000 . If we consider a small angle 6, for
example, 8 = 1°, we can solve for # in Eq. 12.6, and we will get

10001 sin 19 = »A
therefore
7 =1000sin1° = 1000 x 0.017 =17

Seventeen jntensity maxima will be formed within an angle of 17, Lt is clear that unfess
the distance from the slits to the screen is very large, the interference pattern will not
be observable,

Although we will not derive the relation, it should be menrioned ar this point
thar a derivadon similar to that of the two-slits can be made for multiple slits of
the same width and the same separation distance: Eqs. 12.6 and 12.7 also apply for
multiple slits. An opaque piece of glass with multiple shits is called a Ziffyaction grating .

1 2.5 SINGLESLIT DIFFRACTION

In the preceding discussion of double slit interference of light, we assumed that
the two openings in the opaque screen acted as point sources. We will see chat this
assumprion is correct if the size of the openings 1s smaller than the wavelength. If the
opening is greater than the wavelength bur of a size comparable to a few wavelengths,
then hight waves passing through different portions of a single shit will interfere with
cach other giving rise to a phenomenon known as single shit diffraction.

" Themerhod used in Section 12.4 can be employed to analyze the diffraction of
light by a single shit. Figure 12.11 illustrates schematically the passage of individual
wavelets through a single shiv of width #. The partern seen on a screen to the right
of the slit appears with a central bright maximum with alternating bnighr and dark
fringes on either side, with the bright fringes diminishing in intensity as the angle
from the normal increases. This is Wustrated in Figs. 12-124 and 4.

In our treamment, we will assume that the size of the slit 3s much smaller than
the distance from the slit to the screen. Under this condition, the lines of propagation
of the waves cmanating from different points in the sht arc approximarely parallel. In
Figs. 12-11a and 12-124 all forward-directed waves strike the screen in phase, because
the path difference 1s zero. Thesc waves give rise to the central maximum. In Fig. 12-
114, wave A has a path difference of 4/2 from wave B and interferes desuructively. This
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FIGURE 12-11 Single sfit diffraction. As Jight passes through the slir, cach point in the slic
becomes secondary source of light. (a) All forward-directed waves arove at the screen in phase,
giving fisc f the central maximum of Fig. 12-12. (5) Waves from the upper half of the shrinterfere
destructively with those from the lower half, giving rise the figst diffraction minimum in Fig. 12-12.
(c) Waves between A and B inrerfere destructively with waves beeween B and C, those berween Cand
D also interfere destructively wich those berween 1) and E. This results in the second interfercnce

minimum in Fig. 12-12.

destructive interference effect occurs across the ennre slic because any wave slightly
below A will interfere destructively with the wave at the same distance below B and
so on. Therefore, a dark band will appear on the screen for angle 6y, where

3 Q\

. A o
sing; = p (12.8)

Atangle 93 in Fig. 12-11¢, the situation is similar to that of Fig. 12-115 in that all
waves between A and B will destructively interfere with corresponding waves between
Band Cand all the waves between Cand D interfere destnuctively with those between
D and E. Thus, a dark band is observed for the condition sin 63 = 23./d. Somewhere
In between these two minima a maximum will be observed. We can generalize this
result by stating that the diffraction minima occur for angles satisfying the relation

sinf = Wj—;, wheren =1,2,3,... (12.9)

From Eq. 12.8, we can see thatif 4 = 2, then sin ) = 1 and 8; = 90, which means
that the central maximum spreads over the endre screen. The same will be true if
‘d'_ < A Thisis what occurs when the screen is illuminated with a point source. We see,
therefore thar an opening can be considered a point source when its size is equal to or
Smaller than he wavelength. Another important conclusion can be drawn from Eq.
.l 2'9 This equation, which gives the position of the minima of single slit diffraction,
:!f:d:ﬁmml 10 Eq. 12.6, which gives the angular position Of-fhc interference mincina
' the double slit case. We found then thar if the separation between the slics, 4,
z’;:::,ucl’l‘gmatcr than the ‘wavclcn gth, rh>c h\tcrfcrcncc pattcr.n would be difficult to
¢. The same conclusion holds here if the size of the shr is much greater than A.



e
Intensity

(a) ®

The patterns of light ona screen from single and double slits arc quite disrinctive,
as shown in Fig. 12-13.

1 2.6 RESOLVING POWER

We have seen in the preceding section that light effectively bends around corners.
Thar is, when light shines on a slic the edges of the shit are not simply shadowed on
the screen; there are also small bright lines within the shadow at angles away from
the normal. This has profound implications for our determinarion of the location of
a particle, We will show here that because of diffraction effects the accuracy of the
determination of the precise locarion of a particle depends on the wavelength used
to “look” at it; the smaller the wavelength cmployed, the greater the accuracy. In
Chapter 19 we will show that the smaller the wavelength of the hight used, the greater
the momentum wransferred o the particle being examined and, correspondingly, the

W

FIGURE 12-12 () Schemarie
representation of the interference
pattern produced on a screen [w-&
passing through a slit (5) I’huu;
of the interference patiern obse
on the screen. (Source: Cagnerer
al., Arlas of Optical Phenomena, New
York, Springer-Verlag, 1971)

FIGURE 12-13 () Fringe
pattern obrained wirh light shined
through a double slit when the
size of the slits is greater than BUE
of the same order of mngnirudcn
as the wavelength. The patreni it
essentially a double slit interfe
patrern, similar o that of g j
85, “modulared” by the diffractio
pactern of Fig. 12-12. §) Single
diffeaction parrern obtai when
of the slits s blocked.
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Two light sources shining on a single slit give rise to two individual diffraction

@)
FIGURE 12-14

patterns. (#) The sowurces are sufficiently apart and the two ceneral maxima are well resolved. (5) The
sources are too close together and as a result the nvo sources cannor be resolved. The two central
maxima overlap to the cxtent that a single intensity maximum (dashed linc) appears on the screen.

greater the disturbance of its position in space. Thus, because of these conflicting
effects there is a limit to which we may simultaneously know the locaton and
momentum of a particle. This limit is known as the Uncertainty Principle. For now,
we will show that the derermination of location depends on the wavelength; this is
called the resolving power.

Suppose we have o sources of light, S1 and S, shining on a single slic. If
they are sufficiently far apart we will see on a screen two single slit patterns, each of
the type of Fig. 12-12. This 1s illustrated in Fig. 12-144. The light intensity at any
point on the screen will be the sum of the contributions from cach source. If we
know the distance of the sources from the slit and the distance of the screen from
the slit, we can calculaze the angle A and the distance Ax between the two sources
from the separation of the two central maxima. Suppose that the sources are closer
together than in Fig. 12-144 and we have the arrangement of Fig. 12-145. We sce
that the bright central maxima of the diftraction pattern from the two sources overlap
SOthat, because it is the sum thar is seen, it is difficult to estimate their distance apart
ad thercfore difficult to know Ax. A rather arbitrary, although practical, crirerion
Used o decide when the two sources S; and S; are just resolvable (i.e., considered
5 separate sources) is the coincidence of the cenrral maximum of one of them with
the firse minimum of the other (see Fig. 12-15). This is known as the Rayleigh
Fiterion or the limir of vesolurion. We saw in Eq. 12.8 thar the first minimum occurs

W
ax:fn S$in §) = A/d. Because this occurs for small angles, sin@; =~ ; (in radians)

: ) L . A
A6 = 6)(in radians) = limiting angle of resolution = p (12.10)
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FIGURE 12-15  Rayleigh critenion. The separation berween the sources is such that the central
maximum produced by one source coincides with the firsc diffraction munimum from the other. The
™o sources are barely resolvable.

Thus, for high resolution— that is, small Ax (see Fig. 12-13)—one should have a
small . and a large slit width 4.

l 2 7 X-RAY DIFFRACTION BY CRYSTALS: BRAGG
* SCATTERING

Waves are scattered or reflected by objects their own size or larger. A wave art the
seashore will not be aftected by a stick in the water but will be by a large rock or jetty.
Atoms have sizes of the order of a few angstroms, 1 to 3 x 1079 m. Visible light has
wavelengths of a few thousand angstroms. Therefore, visible bight will not be affected
by asingle atom. Light is only a sall part of the wavelength range of what is called the
electromagnetic spectrum (Chapter 16). This spectrum ranges benween y-rays and radio
waves. The smallest wavelengths that we can conveniently produce are those of X rays,
whose wavelengths are about the sizes of atoms. These are produced by bombarding a
metal targer with high-energy clectrons. Their origin will be discussed in Chapeer 17.
In 1912, Max von Laue noted thar in a crystalline solid the inreratomic
scparation 1s of the same order of magnitude as the wavelength of X rays. He then
showed that the regulay, periodic arrangement of atoms in a crystalline solid could
be used as a thrce-dimensional diffraction grating (a diffraction grating was defined
at the end of Section 12.4), One year later, Sir William Bragg presented a similar bur
stmpler analysis of the problem. We will now present an outhine of Bragg’s analysis.
Figure 12-16 is a planar represenranion of a three-dimensional cubic cryseal, that
15, a solid in which the atoms are located at the corners of unit cubes. The interaromic

separation is 4. When X rays swike the crystal at an angle 6 with respectto a plane of g wittiam Henry R}Agg

these atoms, the atoms will scatter them 1o all direccions. We will first limitc ourselves
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ro the X 1ays scattered specularly —that is, X rays for which the angle between the
scattered b}.Em and the plane of the crystal is the same as the onc berween the incident
peam and the crystal plane, as shown at pohm Aand B in Fig. 12-16. It is clear from
che figure that the path difference berween the X rays scattered by arom A and atom
B is 2/ because the ray scattered from atom B must travel that extra distance 1o rejoin
the ray scattered from arom A.

From geometuic considerations, / = Asinf, and the path difference is 2/ =
24 sin 4. By analogy to other interference experiments discussed in previous sections,
if this path difference is equal to an integral number of wavelengths, the two beams
will add constructively; that is, the radianion reflected by two adjacent layers of atoms

will add constructively if
24sin9 =nx wheren =1,2,3,... (12.11)

Equation 12.11 is known as the Bragg condition. Obviously, if the waves reflected by
the first layer are in phase with those reflected by the second layer, the same will be
rruc for the waves reflected by the second and third, and so on. Thus the condition
of Eq. 12.11 guarantees that the radiacion reflected by all the atoms in paralle] Jayers
of the crystal ar the same distance apart will be in phase.

Thus far we have concentrated our attention on the waves that were scactered
specularly. Is it possible to have an angle #, not necessanly equal to the angle of
incidence 6, for which the scattered waves vecombine constructively? The answer is
ves. However, if such an angle exists, it can be shown thar a set of atomic planes
exists, different from the ones that we have considered, such thar with respect to
them, the angle of incidence and the angle of scactering ace equal. Furthermore, with
respect to this new set of atomic planes, the Bragg conditon (Eq. 12.11) is satisfied.
This situation is illustrated in Fig. 12.17. To have constructive interfcrence for the
direction shown in Fig. 12-17, the condition 24’ sin ¢ = i must be satisficd.

We showld note that the Bragg equation is very similar to the double shit equation
(Eq. 12.6). In the Bragg equation the interatomic spacing plays the same role as
the separation between the slits in the double slit equation. Becausc the interatomic

FIGURE 12-17 A different set of atomic planes (indicated by sohid lines) in the crysral of Fig.
12-16 can produce constructive reflection if rhic Bragg condigon wirh respect 1o those planes is
Satisfied.

X-KRAY WIFFRACIIONBY CRYSTALS: BRAGG SCATTERING = 175

FIGURE 12-146 Planar

representation of a three-dimensional
cubic crystal of inceratomic spacing
4. The X rays reflected by the
dashed aromic planes will recombine
constructively if the Bragg condition
15 sausfied.
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spacing is of the ovder of 1071 m, we can sec how a crystalline solid can be used as
a diffraction grating for radiation of small wavelength, such as X rays or, as wilf be
discussed in Chapter 19, matrer waves.

EXAMP
The aystal structure of silver bromide (AgBr) is represented in Fig. 12-18. The
molecular weight and the density! of AgBr are 187.80 g/mole and 6.47 g/cm?,
respectively: (a) Caleulate the interatomic separation, 4, of the atoms in AgBr. (b) If
X rays of wavelength & = 1.50 A are incident on a AgBr crystal, at whar angle will the
first order (z = 1) diffraction maxima occur? Assume that the separation between the

aromic planes producing the scattering is the interaromic spacing tound in part (a).

EIz2-1

=

Solution

o () Let us consider a cube of AgBr 1 am a side. In one row of the cube we have
1 cm/d (cm) aroms. Because we have as many rows of atoms in one plane as
there are atoms in a row, we conclude thar the number of atoms in one plane
of the cube is 1/4 x 1/4 or 1/42. Finally, we have as many planes of atoms as we

have 2toms i a row; therefore
3
. . 3 lan
Number of atoms in 1 cm® = 5

where 4 1s expressed i cm.
The actual pumber of atoms can be found as follows:

N of atoms/cm3 = N of moles/cm® x N of atoms/molc

6.47 gjem®

= ——2— X 2x%xN
l8'/78()g/mol<:>< T

where Ny is Avogadro’s number, 6.02 x 10% molecules/mole and the factor of
2 1s included because there are two atoms (one Ag and one Br) per molecule.
We can now write the following relation

1 6.47 g/cmg

5 W x 2 x 6.02 x 102 molecules/mole

=415 x 102 em™?

thercfore

4d=289%x108cm =2.804

1. Density s defined as mass per unit volime (sce problem 13.1).

FIGURE 12-18 Example 1248



; E We can use the Bragg condition, Eq. 12.11, to find the angle at which the
° ﬁfst-G‘{dcr (n = 1) diffraction maximum is observed.

N .
24 smé =i

N
Vs

siné =

1.504
2% 2.894

=0.26

6= sint0.26 = 15°

’8 STANDING WAVES

Another intercsting phenomenon resulting from the superposition principle is the
formation of standing waves.

In Chapter 11, when we discussed traveling waves in 2 string, we implicitly
assumed that once the waves were set up ar one end, they conunue travehng toward
the right forever. This is a correct assumption if the string is infimtely long. Consider

now that the string is of finite length and the other end is clamped to a tigid  Diffaciion pattern produced when
support. When the wave disturbances reach the fixed end, they will propagate in the X rays are incident on 2 NaCl erysral.

oppostte direction. The reflecred waves will add to the incident waves according to  Each dot is produced by a set of
atomic plancs, sadstying the Bragg
condition.

the superposition principle and, under certain conditions, a standing wave pattern
will be formed.

It we assume that the incident waves y| travel toward the right in the positive x
dirccriom from Eq. 11.5 we can represent them as

y1 = Asin(kx — wt) (11.5)

The reflected waves ¥z will be traveling in the negative x direction and from Eq. 11.7
are given by

y2 = A sin(ke + wt) (11.7)
The resulting wave pattern will be
¥ =9 + vy = A[sin(fx — 1) + sin(kx + wr)

Usmg the trigonomerric relation of Eq. 12.1, we obrain

y = 24 suxkx cos wr (12.12)

: : ; . . . . When this flute playver blows on rhe
Equation 12.12 is the equation of a standing wave. We notc tha, as in the case of N P o
mourhpiece standing waves arc set

A traval: . . . . . . .
Taveling wave, the particles in the string execure simple harmonic motion with up inside the flure.
/ .
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the frequency of the wave v = —. Unlike the case of the traveling wave, however, )
. oy . 2T . . m
the amplitude of oscillation is not the same for all the points (all values of ¥ in Eq. it
12.12) in the scring. In particular, there are certain points for which the amplitude of
oscillation (the cocfficient of cos wr) will be zero. These points, called the nodes, are
those for which sinkx = 0. We can locate these nodes and at the same tipe find the
conditions for standing wave formation by requiring thar the value of the wave, y, be
zero at the clamped end of the string, If the length of the string is /, then y(x = /) = 0.
Substitucing this in Eq. 12.12, vields
0 = 24 inkl cos wt (12.13)
Because Eq. 12.13 must be sanisfied for all times £, we conclude that
sinkl = 0 { A
or
12.
ki =m 27,37, -nw (12.14) i/f%ﬁ“\ iingg
where 718 an integer. Note that b = —x, —27, —3n, ... willalso yield a zero value for b lcﬁg
sin /. However, thesce negative values correspond to negative values of £ and hence of % . et
the wavelength A and therefore are not physically acceptable. Substituting Eq. 11,12 i 70,0
for £ in Eq. 12.14, we obtain t/’\/ N
12.
27l 5 | i
L -
A nte
oI : 150
2 <
r=121 (12.15) 1z,
" sou
This resule tells us that the wavelength of the standing wave cannot be arbitrary as pioime 1510 Configuration is 3:
was the case with the traveling wave. It can only have the vatues 2/, 2/21, 2/31, 2/41, o the first four standing waves i $0
.- A schematic of the first few standung wave patterns is shown 1n Fig. 12-19. string of length /. ima
Angy

PROBLEMS

2.1 Two sources cmit waves of the same frequency, wave-  shonc through the slits. Find the angular position of
lenggh, and amplitude. What is the amplirude of the resuling three interference maxima.

wave ara point P ata distancex) from source S and a distance
%3 from source S, if ey —x; is (a) one wavelength? (b) one-half

wavelength?

12.3  Inthedoubleslit of problem 12-2, what is the an

separation berween the first interference maxima for

waves of wavelength Ay = 6000 A and 1, = 4000 A?
-

12.4 Two shrs scparated by 2 distance ad= 4\-X 10°
12.2 Two shirs 1n an opaque screen are separated by a  are 1.5 m away from a screen (see Fig. 12-20). What
distance # = 1075 m. Light of frequency v =5 x 10'¥ Hzis  separaniony; —» benween the fisstand the second inrerfet
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(8 Answer:  1.88cm.

FIGURE 12-20 Problem 12.4.

(2.5 Light from asodium lamp conrains waves with wave-
length A1 = 5880 A and waves with > = 5890 A. Find the
angular separation and the lincar separarion of the two wave-
lengths on a screen 50 cm away from 2 double slic for the
first-order maxima. Do the calculations for a slit separation of
70,000 A and for a slit separation of 7000 A.

12.6 In a double stit experiment performed with light of
wavelength & = 5400A, the separation between the tenth
interfercnce magmum and the central maximum on a screen
150 em away is 10 cm. What is the spacing berween the slirs?

127 Two speakers separated by a distance of 3m emit
sound waves of frequency v = 550 Hz. The velocity of sound
15 830 m/scc. Find the position of the points along the fine
$10in Fig. 12-21, at which the incensity of the sound will be
4 maximum.

dnswer: 7.20m,3.15m,1.60 m, 0.68 m, 0 m from S1 .

v
N

s

S

FIGURE 12-21  Problem 12.7.

2l

: 8 A source of waves S and a detector D arc located 8 m

LP;IT (sce Fig. 12-22). A horizontal reflecung surface is placed

“Mabove the source and the detector. The direct wave from
/

S to D is found to add constructively wich the refiecred wave.
Whcn the reflecting surface is raised an addirional distance of
0.204 m, the direct and the reflected waves add destructively
at D. What are the possible vajucs of the wavelength A
Answer: 0.500m, 0.167m, 0.100m, 0.071m, ...

| X
=, gy == [ — —
S D
fo——8m— .l
FIGURE 12-22 DProblem 12.8.

Monochromatic (single wavelength) light is directed
on a double shit. A light merer is placed o the right of the slits
in the position shown in Fig. 12-23. Whensslit S, is closed, the
light intensity at the locarion of the meter is 1;. When shit §;
1s closed the light intensity is Tp. (a) What is the light intensiry
It when both shits are open if x; — x5 = A} (b) Whar is I1
ifx) —xy = % )2 1) and I are not necessarily cqual. Assume
that the size of the shrs is smaller than the wavelength so that
the slits can be considered to be pomt sources.

Answer: ()11 + L+2(T113)2 (b) 1+ 1, —2(T ) 2.

— |
- Light meter
FIGURE 12-23 Problem 12.9.
12.10  Light of wavelength x = 5000 A is incident on a

single slicof width 1075 m. What is the angular separation be-
rween the central maximum and the eighth-order diffraction

minimum?

12,11 Light of wavelength 6000 A is sent through a single
shit. If the 2ngular separation berween adjacent diffraction
minimais 0.2°, what is the wideh of the slit? (For small angles,
$iné = @ (in radians)).

Answer: 1.72 x 107 m,
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12.12  Ascreen is placed 2 m to the right of a single slit of
unknown width. Light of wavelength 5200 A is incident on
the slit from the left. The separarion on the screen benween the
second-order minima on cither side of the central maximum
15 5.2 em. What is the widrh of the slir?

i2.12  Monochromatic X rays of wavelength » = 1.2 A are
incident on a crystal. The first-order diffracion maximura is
observed when the angle 4 between the incident beamn and the
atomic planes is 12°. (2) What is the separation of the atomic
planes responsible for the diffraction? (b) What is the highest
order Bragg diffraction produced by those planes that can be
observed:
Answer: () 2.89 4, (b) 4th.

12.14  Sodium chloride (NaCl) has a crystal structure sim-
ilar to that of silver bromide (AgBr) shown i Fig. 12-18.
The atomic weight of NaCl is 58.44 g/mole and its density is
2.16 g/em®. (2) Calculate the spacing berween the atoms in a
NaCl crystal. (b) If X rays of wavelength 1.5 A are incident on
a NaCl crystal, at what angle § will the first order diffraction
maximum be observed?

Answer: () 2.82A, (b) 15.4°,

12.15 Potassium chlonde (KCl) has the crystal structure
of AgBr in Fig. 12-18. The molecular weight and the den-
sity of KCl are 74.55 g/mole and 1.98 g/m3, respectively. The
distance between adjacent atomic plancs is 3.14 A, (a) Caleu-
late Avogadro’s number from this data. (b) If the first-order

e e e <

diffracrion maximum for X rays incident on these ag
planes is observed when the angle 8 benwveen the incid,
rection and the arystal plancs is 30°, what is the wavele
of the X rays?

12.16  The wave velocity in 2 string 1 m long is 6m
What arc the frequencics of the standing waves in the | t

12.17 A standing wave in a string 1s described by
equarion

¥ = (0.7 m) sin(4mx) cos(20mz)

where & 18 1n meters and 1 is in seconds. (a) What
amplitude and the velocity of propagation of the rra
waves that gave risc to such a standing wave? (b Wha
amplitude of vibration of the particles in the string |
x = 0.45 m? (c) What is the transverse veloaty of the pa
atx = 0.45m atz = 0.25 sec? (d) What are the locati
the nodes?
Answer: (a) 0.35m, S5m/sec, (b) 0.41m, (¢) 0,
(d)0m, 0.25m, 0.50m, 0.75m.

12.18 A standing wave of frequency v = 10Hz 1s
in a string of mass 2 = 0.100kg and length I = 21
maximuni amplitude of vibranon is 5 cm. What is th

energy of the standing wave? Assume that A = /.
Anmswer:  0.25].
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13.] INTRODUCTION

In this chapter we begin the study of electncity. Although we ulumately wish to
understand the fow of electric charges through electrical circuits, we must start with
the simple empirical laws of the nteraction of charges at rest, called eleczrostazics. Our
starting pount will be the obscrved behavior of electric charges at rest and how careful
obscrvations by Cowlomb led him to postulate laws of the behavior of charges at rest
in their interaction with one another. We will also examine the supesposition principle
according to which the behavior of multiple charges on one another is a simple sum
of the one-to-one nteractions (painise).

13.2 ATTRACTION AND REPULSION OF CHARGES

Everyone has experienced some of the phenomena of static elecuricity. When you
comb dry, clean haiy, it is artracted ro the comb. For a short tune afterward the comb
will atrract small particles such as licde picces of paper. These phenomena have been
known for thousands of ycars. The ancient Greeks noticed that if a piece of amber
(fossilized tree sap) were rubbed with a picce of cat fur, it would attract picces of dry
Icaves. In fact, the Greek word for amber Js elekeron.

These cleetrical phenomena fascinated many early investigators, and a useful
device called the electroscope was invented about 200 years ago to further the studies
of these phenomena, An electroscope is simply two very thin gold lcaves atrached
together at the end of a metal vod, usually with a metal knob at the other end. The
leaves are enclosed in a protective glass-windowed case (sce Fig. 13-1). Gold was used
because it is a soft meral that can be beaten very thin. Therefore, the foils have very
litcle mass and not much force is required to push them apart.

If an amber rod (hard rubber or a synthetic polymer will also serve) is rubbed
with cat fur and brought close to the metal knob, it is seen that the gold leaves separate
nro a wide angle as if they are trying to get away from cach other. Indced they are,
and their behavior is termed “repelling” one another. If the rod is pulled back from
the knob, the leaves collapse again into the downward position. If, however, the rod
is touched 1o the knob before it is removed, the leaves remain aparr, in the repelling
position. This suggests that something has flowed from the rod to the leaves, and we
now know that it is an elecrric charge. If a glass vod 1s rubbed with a plece of silk, che
same phenomena will occur. However, if the electroscope is first charged with the
amber rod and then touched very briefly with the glass rod, it will discharge; that is,
the leaves will fall back down. Tf the glass rod is in contact for a longer period, it is
seen that the electroscope will first discharge and then recharge; thart is, the leaves will
again move apart. This experniment can be done in the reverse. That is, the electroscope
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oed by the glass rod can be discharged and vecharged with the amber vod. These
womg},a were explained by the assumption thar there are two different types of
ges arbicrarily called positive and negative: one type was produced on rubbing
fur 2nd the other by rubbing glass with silk. This is still the model

mdgy, and we speak of positive and negative charges. In other words, we now say that
thC clecrron has a negative charge, bur this is a result of history: its charge could jujst
s casily have been called positive withour affecting its behavior. Ie was also noted in
ese studies that the rod in the clectroscope had to be made of metal. No effect would
B dbscWCd if it were made of wood, rubber, or some other nonmerallic material.
This implies that can flow through metal but not through nonmetals, such as the
ones just named. Thus metals have been known as electrical conducrors and nonmetals
é-s;';'mulﬂtm. In Chapters 24 and 25 we will analyze the difference between these two
s of materials and introduce the semiconductor, 2 marenial with clectrical properries

ant lic berween those of a conductor and an insulator and whose characteristics form

mlbcr with cat

the basis of the modern computer.

3 COULOMB’S LAW

Charles Coulomb (1736~1806) published between 1786 and 1789 the results of a
series of experiments that he had performed. Instead of using the electroscope in
which the force berween the gold leaves was difficult to measure, he used very small
lightweight balls on the ends of long threads. The balls were made of the centers
of dried reed stems called pizh and were small so thar they could approximate point
charges. Iftwo were suspended adjacent ro each other and both touched with either che
amber or glass rod, they would repel each other as did the lcaves of the clectroscope.
He thercfore confirmed that like charges repel. 1f he had touched both with the amber
rod and achieved repulsion and then touched one with the glass rod they would come
together. This experimenc could be reversed in that if the repulsion were first achieved
by touching both with the glass rod, touching one with the amber rod would cause
them to come together. He therefore confirmed thar unlike charges astract.

_ Before continuing with the work of Coulomb, we can use these two findings to
Hterpret the clecroscope observations. Accepring that there arc two types of charges
and that at least one of these can move in a merallic conductor but not in an insulator,
Ve may view the sequence of diagrams in Fig. 13-2. In Fig. 13-2a, the negacively
F'harge d amber rod is brought ncar the electroscope and the mobile negative charges
m the metal rod, being repelled, go to the ends of the gold leaves, their maximum
distance from the amber rod. The gold leaves now both have an excess of negarive
?hargc and repel cach orher. Although atr Couwlomb’s ime it was believed that the
POsitive charges were mobile, we now know that this is not generally truc and it is the

Charles Coulomb (1736-1806).
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negatively charged electrons that move in the metal. The same effect occurs in (5) with
a positively charged glass rod, for it does not matter if the positive charges in the feaves
arc there because they have been repelled by the glass rod or because the electrons
have been attracted to it, thereby Jeaving a ner excess of positive charge on the leaves.
In (¢}, the amber rod is touched to the electroscope. Because the upper end of the
metal rod, as shown in (2), is positively charged, electrons will flow from the amber
to the metal rod. When the amber rod is removed in (), the electroscope has a net
excess of negative charges throughour and the leaves therefore repel each other. In
(2), a positavely charged glass rod is touched to the neganvely charged electroscope
of (4) and first the excess clectrons leave, causing the leaves to collapse because they
now have no excess charge, that is, they are neurral. If this positively charged glass
rod has a sufficient amounr of charge and it is rubbed further agamsr the metal rod
of the ¢lectrascope, more electrons will Jeave the electroscope, resulting in an excess
of positive charges in the clectroscope. Therefore the leaves repel cach other as in (f).

We now return to Coulomb’s experiments concernng the forces between
charges. Let us represent a quantity of charge, a scalar, by the letter 7 and the distance
berween charges by the letter 7. Coulomb, in his experiments, attached fine threads to
the pith balls and passed them over glass rods, which effectively served as frictionless
pulleys. To the ends of these threads he fastencd various weights (see Fig. 13-3a). If
the charges 1 and 4, placed on the pith balls from the amber and glass rods were of
opposite sign, the balls would be attracted to cach other by a force F, which would
be countered by an appropriate weight Mg, The force diagram for 4> is shown in
Fig. 13-34. Note thar the tension 7 in the horizontal thread is cqual 1o the hanging
weight My. We have here the cquilibrium problem of Chaprer 4 where the forces
to the left are T cos @ plus the electrostatic attraction, and these are equal to My
(T> = Myg). By measuring the weights Mg required to hold the balls aparr a distance
7, Coulomb found that the magmitude of the attractive force was proportional to the
reciprocal of the square of the distance between the balls; that is,

Foo—
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He then put the same type of charge on calh ball and draped the threads over the
rods in the opposite direction to measure the force required to hold the balls at
carions dmmf_es # from each other. He found that the force of repulsion also varicd
iaverscly as the square of the distance berween them. Having established this relation,
jhe was then able o hold them at a fixed distance and vary the charges on them. He
could do this accurately by fractuonating the charges. He had a set of metal knobs
on wooden sticks (nsulators). If he touched one of these metal knobs to an amber
or glass rod it would acquire 2 charge of magnitude 4. If he then rouched this knob
[0 an identical uncharged ane they would share the charge equally and each would
have a charge 4/2. Touching cither of these to another would reduce the charge to
g/4, and so on. Touching two knobs i contact with one another would produce a
charge of 7/3. Many combinations of these fractions were used to charge the pith balls
at a fixed distance from one another. Cowlomb showed that the force of artraction
berween oppositely charged balls or of repulsion between balls with charges of the
same sign was proportional 1o the product of the magnirude of the two charges, 7;
. Coulomb’s law is therefore

F o q—% (13.1)

4

where the sign of g) and 45 may be either plus or minus. This proportionality can be
made nto an equality by introducing a constant dependent on the system of unics
used. In the ST system this constang, taken as 1/45r¢q, has the value

1
47‘(60

=9 x 10° N-m?/C*?

The symbol C stands for Coulomb and is the unit of charge. It is important to note
at this time that 1 C is noz the charge of an electron. The charge of the electron in
coulombs is e = —1.6 x 107 C.

Equation 13.1 can now be wrirren as

1 g4 e

" 47ey 12 -

The direction of the force that g1 cxerts on gy is along the hine joinmng the two charges,
& ~ . ~ . . - . 1
Pointing away from g1 if the force is repulsive (g1 and 4; having the same sign) or
toward g, if the force is ateractive (g1 and 42 oppositely charged).
EXAMPLE 1 3.
Two pith balls of mass 0.1 g each arc suspended on 50-cm threads. They are given
qual charges and assume a position in which each makes an angle of 20° with the
¥ertical, as in Fig, 13-42. What is the charge on cach?

lution The vecror diagram of the forces on the right-hand ball s shown
1
0 Fig. 13 417 where F is the coulombic force of repulsion between the two charged

(JFPE/COBN



row ®m DLLCCIRUSTIALILS

pith balls. Because the ball is in equilibrium, we may write
S F.=0
F—Tcos70° =0
F=0.34T

Y=o

Tsin70° —my =0

T-
sin 70"
1 -3 -
ro O x 107 kg x9.8m/sec ) -3

0.94

Subsaruting this valuc of 7" in the equation for F, we obrain
F=034T = 0.34 x 1.04 x 107N =35 x 107N
From Fig. 13-4z, the distance » between the two balls 1s

r = 2lsin20°

¥ =2 x 0.5m x sin 20°

7 = 0.34m
Using Coulomb’s Jaw,
N-m? ¢
_ 9 i
E=9x10 2
because
g1 =42

and substituting for F and # we obtain

9 x 10°D-m 2
35% 107N = C

(0.341m)?

or

AN
\
mg \
g=067x%x10"%¢C ®)
FIGURE 13-4 Exa_mp}c.]j."
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b ] 3.4 CHARGE OF AN ELECTRON

Ina series of experiments, Robert Millikan (1868-1953) in the years 1909
through 1913 mcasured the charge on an electron (sec Fig. 13-5). With a spray he
introduced fine oil drops between owo parallel mezal plares and observed the motion
of a single drop through a telescope. By its raic of fall through the air he was able to
use a formula for the terminal velocity (constant rate of fall through a medium) ro
estimate its weight. He found thar he could arrest its downward motion, thar is, hold
i stationary by placing a positive charge on the upper plate. (We will see Jater that he
could control the positive charge on the plate by means of the voltage.) Therefore, the
balance of forces of my down and the upward attraction could be used to determine
the charge on the drop. First, he found that the drops usually acquired a negative
charge. This showed that it is the negative charge that is apparently the more mobile
one. His second finding, over hundreds of experiments, was that the smallest charge
that was ever acquired by the drop had a magnitude of 1.6 x 107!° C and thar larger

' charges were always integral multiples of this quantity. He therefore assigned this
value to the charge of the electron; it is the smallest negative charge thar can be found.
Because atoms ate neutral and conrain equal numbers of electrons and protons, the

I charge of the heavy and essentially unmobile procon also has this magnitude, bur it is

_ positive. We will see that the protons are in the nucleus and are refatively massive. It is
therefore understandable why it is the negarive charge that is the mobile species rather
than rthe positive onc. This was not known prior to Millikan’s experiment. The great

" theories of clectrical behavior were developed in the nineteenth century when it was
assumed that the positive charge was the mobile species. We will see that all electrical
definitions are based on the behavior of a unit positive charge. This sometimes Jeads
to the confitsion of students; but, as mentoned earlier, the assignment of the words
positive and negative are completely arbitrary, and therefore the theorics remain valid.

| 13.5 SuUPERPOSITION PRINCIPLE

Coulomb’s law, defined in Section 13.3, relates to the force berween two
charges. Tt is an empirical law derived from experimental measurement. How does
One trear a situation in which three or more charges are involved? To answer that
Tequires further experimentation. It is found that the force between any two charges
ina group of charges is independent of the presence of the other charges. What this
Means is that if one seleces a given charge in a group and asks for the total force on i,
this force would be the resuleant of the individual vector forces on it from each of the
charges. This is called the superposition principle of charges. It makes the calculacions

Robest Milfikan (1868-1953).

FIGURE 13-5  Experimeneat
arrangement for the determination
of the charge of the electron.
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straightforward because we can treat them as we did in summing vector forces jp
Chapter 2. Let us cxamine the case of three charges in Example 13-2.

EXAMPLE 13-2
Three charges are arranged in a triangle as shown in Fig. 13-6z. What is the direction
and the magnitude of the resultant force on the 1 x 1078 G charge?

Solution  The force resulting from the 4 x 108 C charge by Coulomb’s
law is
N-m®1x108Cx4x103C

_ 9 _ _
B =9x10°=5 0 =36 x107*N

ar 30° above the positive x axis (see Fig. 13-65).
The force resulting from the 2 x 1078 C charge is

09N—m2 1x1078Cx2x10°3C _
2

Fy = =1 “¢N
,=9x1 =T 1.8 x 10

at 30° below the posinive x axis (Fig. 13-64).
We now usc the vector diagram of these two forees, Fig. 13-68, and find the
resuleant by the component method of Chapter 2. We have

F) = 3.6 x 107* N cos 30°i + 3.6 x 10~* N'sin 30°j
Fr = 1.8 x 107* N cos 30°i — 1.8 x 107* N'sin 30%

R =47 x107*Ni+ 0.9 x 107*Nj

IRl = /(4.7 x 1074 N)> 4 (0.9 x 104 N)? = 4.8 x 10™*N

6 = arctan 2_—: = 10.8° above the positive x axis

The direction of the resultant force vector s indicated by the arrow labeled R in Fig.
13-6a.

Fi =36 x107%N

30°

F,=18% 10791

-4 £ 1078¢ (a) (by




icles of charge 41 = +2 x 107°Cand g =
S are p]accd 0.04 m from cach other. What is the
jon that cach experiences?

ricle of charge g3 = —2 x 107°C is placed
«een the wo charged particles of problem 13.1.
t force on it and in what direction?

hat position between particles 1 and 2 of problem
rricle 3 of probltm 13.2 experience no net force?
0.018 m from 41, berween g1 and 7,.

¢ charges lic on the x axis as in Fig, 13-7, Find
ree on the middle charge, 3.

g,=+1x1078¢

'é‘iﬁT'DXm 2G g,=—4 x 1078¢
» | 02 m
 FIGURE 137 Problem 13.4.

iron atom of mass 9.32 x 10726 kg has 26 clec-
- density of iron is 7.86 g/cm?. If two identical iron
olume 1 cm® were stripped of all their electrons
Im apart, (a) What would be the electrostatic
them? (b) Whar would be the gravitational
them? (c) Compare these forces.

particles of mass 5 kg each are given an equal
harge. (2) What pust the charge be on each
har the gravitational attraction exactly balances
static repulsion? (b) How many electronic charges
harge correspond to?

“" - threads of length 0.7 m support balls of mass
in ‘Example 13.1. Equal charges of the same sign
8 the balls and they repel, cach making an angle of
the vertical. What is the charge on each ball?
Answer: 248 x 1077 C,

.F_hargcq is to be shared by two particles. Whar must
Hrge on each parricle so that the force berween then,
Separation, is 3 maximum?

1
Answer: =
ISIVEY 2

13.9 An elearic dipole consists of nvo charges of equal
magnitude q but of opposite sign separated by some distance
4. The electric dipole moment is defined as p, = g4. Consider
an clectric dipole lying on the y axis as in Fig. 13-8. What is
the force cxerted by the dipole on a charge 4’ locared on the
x axis at a distance x from the origin?

Y

j#
rRty

q
— 5

1
|
.L,f_q

FIGURE 13-8 Problem 13.9.

13.10 Four charges are located at the corners of a square
as shown in Fig. 13-9. (a) What js the resultant force on g7?
(b) What should 41 and g4 be so thar the resultant force on
3 18 Zero?

= 2lx10°80 ¢, = +2x107%¢

0lm

0.1m
g, = =5 x1078C ¢, = +4x107%¢C

FIGURE 13-2 Problem 13.10.

13.11 Twocharges,q; =3x10"°Candg, = —3x107°C,
arc connected by an insuladng rod 10 m long. The rod is
pivoted about its midpoint. The rod is kept horizonzal 10 cm
above the floor. Tvo idenrical charges, 4 = 5 x 107°C, arc
fixed directly below 41 and 42, as shown in Fig. 13-10. Where
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should a 3-kg weight be placed on the rod 1o keep the rod
horizontal?

= R =

FIGURE 13-10 Proble

13.12  Afixed conducting ball hasachargeq; = 3x107°C.
An identical ball with charge 4, is held at a distance x away
from 4y. The two balls atrrace each other with a force of
13.5N. The balls arc then connected by a conducting wire.
After the wirc is removed, the balls repel each other with a
forcc of 0.9 N. (a) What was the charge 4; of the second ball?
(b) What 1s the separation x between the balls?
Answer: (3) =5 x 1076 C, (b) 0.10 m.

13.13  Ana particle (7 = 3.2 x 1077 C) is projected from
far away directly roward a gold nudeus (5 = 79 x 1.6 x
1071° C). The mass of the a particle is 6.7 x 1077 kg and its
initial velocity is 4 x 106 m/scc. Use the work-enetgy theorem
of Section 5.4 (Eq. 5.9) to calculate the closest distance of
approach of the « particle 1o the nucleus. Assume that the

gold nudfeus remains stationary. (Hint: In this case
on the & particlc is not constant. Therefore, the integ
for work, Eq. 3.7’, must be used to evaluate the wi
on the @ particle.)

Answer: 6.8 x 10713

12.14 Two positive charges 7 are held fixed and :
rated by a distance 2a. A third positive charge 4° of 1
inidally placed halfway between them (Fig. 13-11
displaced a small distance x (v < #) and released. (;
that the force on g’ is approximately proportional to
the opposite direction of the displacement x. (b) T
on ¢ is therefore similar to the force exerted by a ¢
a block connected to it (Chapter 10). What is th
oscillation of 4’2

3
TEQ A M
Answer: 2w [—-O——I——
19
q q q
Qe el ——
I R % R
e a 1

FIGURE 13-11 Problem 13.14.
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14.1 inTrRODUCTION

We have seen jn the preceding chaprer how the presence of an electric charge has an
cffect on another electric charge. This raises the question: What if there is only one
electric charge present? The idea of an electric field is introduced to describe the effect
in all space around a charge so that if another charge is present we can predice the
ctfect on it. If we have multiple charges, such as in Example 13-2, we see that the
force of each on a third charge is a vector, and the net effect on the third charge is
the resultanc of the forces. This resultant will differ with both the positon and the
charge of the third one. The concept of separaring the calculation into the formation
of an electric field and the response 1o the electric field by a given charge placed in it
greatly simplifics the calculations.

1 4.2 THEELECTRIC FIELD

If, in Example 13-2, we had wished to find the resultant force on a charge of a different
magnitude in the same position, we would have to repeat the calcularions. However,
after a few such repeat calculations we would notice that all one has to do is mulziply
the first resule by the ratio of the magnitude of the new charge to that of the charge
used 10 the first calculation. If the first calculation has been made for a test charge of
+1 C, the task will be caster, for then the rano of the magnitude of the new charge to
that of the charge of the first calculation is simply the magnitude of the new charge. In
other words, let us simply define a new quannity, called the eleczvic field, with symbol
£, ata point in space as the vector resultant force experienced by a positive rest charge
of magnitude 1 C placed at that point. If an arbitrary test charge 4 is placed at that
point, the charge will cxperience a force

F=4¢ (14.1)
Thus, the electric field at a point in space can be calculared by measuring the force

experienced by a test charge 4' and dividing it by the magnitude of the test charge;
that 1s,

£=- (14.2)

If we consider two charges, 4 and g, separated by a distance r, from Coulomb’s
law (Eq. 13.2) the magnitude of the force between them is
= LA (13.2)
4:4760 y2
Let us arbiwarily consider 4° as the test charge ang 4 as the charge creating the electric
ficld at the point P where 4’ is located. On substitution of Eq. 13.2 n Eq. 14.2, the
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nagnitude of the electric field produced by g at P is given by
o o Lo
4e g2
of
_ L 1 42
T 4y 12 e

Fquation 14.3 is the general expression for the eleciric field resulting from a charge
gata point locarted a distance r away from the charge.

The direction of £ can be deduced from its original definition as the force
experienced by a unit positive charge. If the charge 7 producing the field is positive,
then a positive test charge of 1 C, when placed at P, will be repelled. We conclude that
.:hc electric field produced by a positive charge 7 ara point P is along the line joining the
charge 4 and the point P and directed away from 4. It may be said thar the electric field
is direcred radially away from a point charge 4 (sec Fig. 14-14). On the other hand, a
negative point charge 7 will attract the 1-C positive test charge and consequently the
electric field that it produces is directed radially toward it (see Fig. 14-15).

We have indicated (Section 13.5) that Coulomb’s law obeys the superposition
principle. From the definition it follows that the electric field does to. The field
produced by a group of charges is simply the vector sum of the fields produced by
the individual charges.

An important point to mention here is that not only is there no elecrric field
when there are no charges, but there is no elecuric field ar a point when the force
from an assembly of charges on a test charge is zero at that point. Also, if an array
of equal numbers of positive and negative charges are located in a small region, then
at some distant point (distant relative to the distance between the charges) there is
no measurable electric field. This is why atoms when they are far away from each
other, such as in a dilute gas, experience no measurable eleceric fields. However, the
electrons thar make up the atom experience the electric fields of the nucleus and of the
other electrons. Furthermore, if a charged particle is shot at an atom, as in a nuclear

experiment, it will get close enough to experience the internal electric fields of the
atom,

EXAMPLE 14-1

A charge 4) = 3 x 10-C js located at the origin of the x axis. A second charge
72 = -5 x 107 C is also on the x 2xis 4 m from the origin in the positive x direction.
(2) Caleulate the electric field at che midpoint P of the line joining the two charges.
(b) Ar whar point P’ on thar line is the resultant ficld zero?

Soillijcn

¢ (a) Becausc 4, is positive, its electric field £} at P is away from iz, that is
’71 P 3 X >

LIl i rs b NG IS e

P
7 +1¢C

negative charge —7.

|

141 Dirccdon of the
clecmic ficld ser up at powne P: ()
by a positive charge 4. and (8) by a
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in the positive x direction. The clectric field &5 produced at point P by g5 is
toward 43, thac is, in the same dicection as & (see Fig. 14-2). From Eq. 14.3,
the magnitudes of £y and &; are
N-m? 3 x 10-6C
_ 9 _ 3
[l =9 % 10 & amy T 6.75 x 10°N/C
N-m? 35 x 1076C
C? (2m)?

Because it is seen in Fig. 14-2 that both £1 and &; are directed along the positive
x dircction, the resultant electric field £ at P will be

1<) =9 x 10? =11.25 x 103N/C

E=Ep+E = f x 00 N/C + cxx0.67 x oo/ N/C
=18 x 10°N/C

o (b) From part (a), it is clear that the resultant £ cannot be zero at any point
between g, and g3 because both €1 and £, are in the same direction. Similacly
£ cannot be zero 1o the right of 4, because the magnirude of 45 is greater than
71 and the distance » in Eq. 14.3 is smaller for g, than g1. £ can only be zero to
the left of 41 at some point I to be found.

E=64+8=0
&= —6&
and
[Er] = &

or

1L g1 42
deg xt  4meg (x +4)?

3w+ 4)? =542

2x% — 24x — 48 = 0

FIGURE 142 Example 14-1.




x=13.75m, x= —175m

\ B . e .
The second root of the quadratic equation, x = —1.75 m, represents a point
petween the charges at which £; = &;. However, as indicated carlier, between
the charges, &1 and &; have the same direction and consequendy the resultant

field is not zero.

14.3 ELECTRICAL POTENTIAL ENERGY

We now wish to develop an expression for the amount of work required to move a
charge inan clectric field. First we note thatthe magnitude of the electric field ara point
P resulting from a point charge is independent of the angular position of the point P,
because only distance enters into Eq. 14.3. In the preceding section we also showed
that the direction of the clectric field is radially away from the charge producing the
field if the charge is positive or radially toward it if the charge is negative. Thus,
I the direction of the electric ficld from a positive point charge may be represented
by simply drawing arrows out from it in all directions. Figure 14-3 shows such a
schematic in two dimensions only. If we move a positive test charge 4’ from point A
to point B, we have a situation similar to that of Chapter 5 where we showed that
the work against a gravitaional force is independent of the path. We must recognize
that in this case the force is not constant. In Fig. 14-3 work must be done whenever
the radial distance between the moving charge, 4/, and that which creates the electric
field, 4, 1s changed. However, when 4/ moves tangentially, no work is done because
the direction of motion is perpendicular to the electric field and therefore to the force
acting on 4'. Recall that by defininon work involves the dot product of the force
vector F and displacement vector As, that is, W = F- As (Eq. 5.3). In Fig. 14-3 the
same amount of work is done in moving a charge from point A to point B either by
path 1 (solid line) or by path 2 (dashed line) or by any other path.
Because the force on the test charge 7' is not constant but changes with distance,
We use Eq. 5.7 o cvaluate the work done in moving it from poinr A to point B

FIGURE 14-3  Two possible
paths for bringing a charge 4’ from

We o /BF s (5.7') point A to point B.
' iy R

Just as in che case of gravity, considered in Chapter 5, the force F needed to roe ”:EP’E‘"_J: T -
) Move 4’ at constant veloaity must be equal and opposite 1o the force exerted by the |
clectric field of g, that is, because the force of the electric field on g’ is 4, a force /
- ~4'¢ is needed to move 4’ with constanc velocity, where £ is the electric ficld " -/,ls

produced by 4. Substituting this for Fin Eq. 5.7’ we have AN "

~ !

‘B
Wi = _9/] E-ds (14.4) A
A FIGURE 1
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Because W5 is independent of the pach followed, we will evaluate it by moving
rangentially from point A to C and then radially from point C to point B (see Fig, 14-
4). During the first leg of this trip (A to C), the work done is zcro because £ 1s
perpeadicular to the displaccment 4s. However, the incremental work done along
the path from Cro Bis £ - ds = £4s cos 180° = —£ ds, and Eq. 14.4 becomes

R
VVA_;B=gJ‘/C Eds (14.3)

As we move a distance s toward B from point C, the radius 7 decreases, which
introduces a ncgative sign, thart s, ds = —4r. Using this in Eq. 14.5, we obtain

B
Wa_g = —q'/ Ear (14.6)
C

The electric fleld for a point charge 4 is given by Eq. 14.3. Substirution of Eq. 14.3

for £ in Eq. 14.6 yields
79 [T ar

N
A dmeg Jy, 12

Note that we have put 7, instcad of ¥ as the lower hmic of the integral becausc #5 = 7¢
and we are evaluating the work donc in moving 4’ from A to B. Integrating obrains

Wasg = 79 (l - 1) (14.7)

g TA

By definition (see Section 5.3), the work done in moving an object between two
points in a force field is equal to the difference in the potential energy E, between the
wo points; thar is,

/
E,(B) — Ep(A) = fjféo (% - %) (14.8)
Equation 14.8 gives the difference in the potential energy of the two charges when 4’
is locared at two different points. It does not give the potential energy of the charges
when g’ isat B or at A. For this, as indicated in Section 5.3, we must specify a reference
point, that is, a point at which the potential energy is arbitrarily chosen to be zero. In
electrostatics, this point is often chosen to be * = oo, that is, when the two charges are
separated by an infinite distance. With this assumption, the potential energy of our
two charge system g4 and 4” when they are separated by a distance 7 is simply the work
done 1n bringing one of them (for example 4') from infinity to 7. Setting 74 = 00 and
rg = 7 1n Eq. 14.8, we have

!
7. (14.9)
4eg 4

Ep(r) =

This poreatial energy is called electric porentinl energy to differentiate it from the
gravitational or the elastic potential energies thar we encountered earlier. We should
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pote that, because both g and 4’ are positive, Ep is also positive. To move 4’ from infinity
tor we bave to do positive work, we have to overcome the repulsive force beoween the
WO cha:;_ms, that is, the external force must act in the direcuon of the displacement.
The same is true if both 4 and 4’ are negative. Equacion 14.9 holds also in this
case because the product of two negative charges will yield a positive value for E,. If
the charges arc of unlike sign, they will attract cach other and, consequently, to move
! gt constant velocity, we will have to hold it back. We will then do negative work
and therefore, the potential energy will be negative. It is scen that Eq. 14.9 agrees
with this, for if 7 is positive and 4’ is negative, or vice versa, E, will be negative.

-«

Let us now have two fixed charges 41 and g5 at a distance 7y, from cach other.
To achieve this, an amount of work equal to

1 ngp
dmeq 72

had to be done; that is, the potential energy of the charges is

_ L np

= 14.10°
47‘[60 712 (‘i O)

»

Consider now a third charge 43 that is brought from infinity to point P as shown in
Fig. 14-5. How much work must be done? Or equivalently, what is the change AE,
in the potential energy of the charges? From Eq. 14.4, sciting A = o0, B = P, and
7' = g3, we have

P
AEPZ—ng E-ds (14.11)

20

[

We have already indicated that the electric field obeys the superposition principle.
Thatis, £ = £; + &, where £1 and &, are the electric fields produced by 4, and g3,
respectively. Substituting for £ in Eq. 14.11, we obrain

P

AE, = —qgf (&y + &) - ds
0

or

P p
AEP:_%/ 51‘4'8—93/ &y - ds (14.12)

oc [ou]
Equation 14.12 shows thac the roral work done in bringing 43 to point P is simply
.C'qUal to the sum of the work done against the electric field produced by each charge
In the absence of the other. Thus, by using Eq. 14.9 for 41 and g3 and for 4, and g3
indcpendendy, we may write

1 593 1 724 ]
AE, = =4 — = (14.13)
P 4rey 713 47y 723 ' g

We should remember that encrgy is a scalar quantity and, thercfore, the sum of
the two contribucions to the potential cnergy in Eq. 14.13 is an algebraic sum, not




a vector sum as in the case of the electric field. The total energy of the dhree-charge
system shown in Fig. 14-3 is obrained by combining Eq. 14.13 with Eq. 14.10, that s,

1
£, = N, 14, 1248 (14.14)
4sten \ 712 713 723

Thus, for a system of charges, the procedure to follow is to calculate the potential
energy separately for the pairs and then to add thesc algebraically.

EXAMPLE 14-2

Three charges—g1 = 3 x 107C, 9, = =5 x 107C, and 43 = —8 x 107 C—are
positioned on a straight line as shown in Fig. 14-6. Find the potenial energy of the
charges.

Solution  From Eq. 14.14, we may write

E,=9x10°

N-m* [ (3 x 10 C)(—5 x 1076 C)
Cc? 4m

(3 x 107°C)(—-8 x 107° C)
_|_
Im

(=5 x107°C)(-8 x 107° C)]
+
5m

E, =143 x107%]

14.4 ELECTRIC POTENTIAL

In the preceding section we saw that when a test charge 4’ is moved from point

A to pont B work is done against the electric field produced by 4. The amount of

work done (Eq. 14.4) depends on the strength of the ficld and on the magnitude

of the test charge 4'. We can introduce 2 quantity, called the eleczric potential, with

symbol 7, which is independent of the test charge. The electric potential at a point

P is defined as the work done in bringing a unit positive charge from nfinity to the
point. That is, from Eq. 14.4, setting A = 00, B =D, and g’ = +1C, we have

. :
Wiy = V(P) = —f £ -ds (14.15)

o
Because the magnitude of the test charge ¢' was set equal to unity, the potendial at a
point depends on the electric field alone and not on the test charge 4. However, if we
know the potential at point P, we can immediately conclude, by comparing Eq. 14.4

and Eq. 14.15, that the work done in brjnging a charge 4" of arbirrary magnitude or - 5jevander Volta (1745-1827)- k.
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D is W = g’V (P). But this work, by definition, is the potentjal energy of the

ﬁw‘e therefore write
R

E, =qV (14.16)
_ it of porennal is known as the volr in honor of the Italian scientist Alexandro
,!_51'45~827} From Eq. 14.16 it s seen that g1¢ volt can be defined as one joule
lomb.

Ale can use the results of the preceding section to evaluate the potental resuldng
"'P'bim charge g ar a distance » away from it. If we cquate Eqgs. 14.9 and 14.16,

N -
V(r :EG—O; (14.17)
~ In the preceding section, we saw that the work done in moving a charge in. the
nt field of several charges could be found by summing the work done against
elecrric field independently produced by each charge. We therefore conclude that
tential resulting from several point charges is simply equal to the algebraic sam

ber that work is a scalar quantity) of the porential resulting from each charge.

_ e, T (14.18)
4meq vy 4weg 1

, 72, . .. are the distances from 47 and 72, respectively, to the point where the
lis being evaluated.
In electricity, as in mechanics, one is often interested in the difference in potential
two points rather than in the absolute value of the potential at a pont. A
difference between two poiats is commonly referred to as a volrage difference
ply voltage. This difference can be found by applying Eq. 14.18 o the two
s in question and finding the difference. Alternatively, the potendal difference
'bc calculated directly from the clectric field. From Eq. 14.4 the work done in
ovi ng 4 from A to Bis

Way = -—q’ £ -ds (144}
A
d by definition, this is equal o the difference in potential encrgy Ey(B) E,y(A). Using
clation between potential and potential energy, Eq. 14.16, we write
W.‘\—-—)B
ql

can chiminate the minus sign by inverting the limits of integration, that is,

B
= AV =V(B) — V(A) :—f £ - ds
A

B
V:V(B)—V(A):/ & - ds (14.19)
A
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Several practical conclusions may be drawn from Eq. 14.19. Consider two
plates, B which is positively charged and A which is negavively charged (see Fig. 14-
7). As we saw in Section 14.2, the eleetric field 1s directed away from the posinve
charges and toward the neganve charges. Thus in Fig. 14-7, £ is directed from plate B
to plate A. A unit of positive charge placed at B will be accelerated toward A. Noring
that objects are accelerared when they move from a point to another of lower potential
energy (recall the case of gravity), and remembering that by definition, the potential
ata pomt is the potential energy of a unit of positive charge ar that point, we conclude
that V(B)> V(A). Thar is, the posttively charged plate 1s at 2 hugher potential than
the neganvely charged one. The resnlt lustrated in this example can be generalized
by stating that the electyic field is divected from high potential potnts to low potential points,
and that positive chayges, if fiee to move, do so from bigh potential points to low potential
points. For negative charges the opposite is truc: A negative charge placed near place
A will be accelerated toward plate B; that is, negative chaiges ave acceleyated from low
poiential points to bygh potential poinss. In fact, not only can we say in what direction
the charge will accelerate but we can calculate the velocity with which it will reach the
other platc, if we know the potential difference between the plates. For this we use
the conservarion of toral mechanical energy, which in this case can be written as

Eu(B) + 4V(B) = Ex(A) + gV(A) (14.20)

That 15, the sum of the kinetic and potential energies of a charge g at point B 1s equal
to the sum of these energies at point A.

A potential difference of 100V is established berween the two plates of Fig. 14-7, B
being the high potential plate. A proton of charge g = 1.6 x 10719 C s released from
plate B. Whart will be the velocity of the proton wheo ir reaches plate A? The mass of
the proton is 1.67 x 10727 kg.

Becausc the proton is refcased with no iniial velociey, Ey(B) 1s
zero. From Eq. 14.20, we writc

E(&) =q[V(B) = V(A)] = qAV
or
%mvi =gAV

Solving for vy

[2gA
A = 1 v
m

-

B A
. z
4 =
+
-+
+
V(B) V(A

URE 14-7
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_[2x1.6x 10-19C x 100 V
= 1.67 x 1027 kg

= 1.38 x 10° m/sec

14.5 THE ELECTRON VOLT

A uscful unit of energy is the clectron volt (eV). Because electric potential difference is
the work required per coulomb, then gAYV 15 the energy required to move a charge 4
through a voltage difference AV. The charge of the electronjsg = e = —1.6x 107 C
(Section 13.4). If an elecrron is moved through a potential difference of 1V (17/C)

the energy change is
|aV =16 x 107 C x 1J/C=1.6x107""]

We define 1 clectron volt (€V) as 1.6 x 10717 J, Because the energics of electrons in
atoms and solids are of the order of L0717, the electron volr is a conventient unit of
energy to usc in these cases.

Suppose an electron is moved away from a positive charge through a potential
difference of 100 V. The electron’s potential energy has therefore increased by 100 V.
By energy conservation, if the electron is now released from this point it will acquire
a kinetic energy of 100 eV when it argives back af its starting point.

14.6 ELECTROMOTIVE FORCE

In the electric circuits that we will develop in the next chaprter, the symbol ‘]l‘ will be
used and labeled with a voltage magnitude, such as 10'V. This symbol vepresents a
battery that is a source of electrical potential encrgy. A batrery is a contained chemical
feaction. There are two types, the wet, or rechargeable type used in an automobile,
and the dry type, which is used in flashlights. When the chemical reaction in a wet
cell is exhausted, it can be recharged a number of rimes by sending current through
It in the reverse direction. When the chemical reaction in a dry cell is exhausted, the
baf[t‘i‘_\' 18 “dead > In both types there are two electrodes (plates or rods) whose exposed
P()rtions are called terminals, the anode and the cathode. These are suspended in an
1onic solution in the wet cell and an ionic gel in the dry cell. The solutions and gels
af\c called electvolyres; in wee cells the electrolyte is usually an acid. The anode is made
of 2 marcrial that stron gly arrracts the positive charges from the elecvolyte whereas
the cathode is made of a material that has a strong affinity for negative charges. As
the anode and cathode attract their respective jons from the solution, they become
el<"Ctlfostaticaj.1y charged to the cxtent that they cannot attrace further ions from the

The car bartery 1s ap example of a
rechargeable wer cell. The standard
D, C, or AA bareries used 1o
Rashlighrs, portable radios and many

types of toys are dry cclls.
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solugon. 1n most clectrolytes this balance of forces on the ions, that is, the artracuon
of the electrode versus the artracoion of the solution occurs at around 1.5V 0 2.0 V.
This is the approximate voltage between the rerminals of a chernical batrery. Ifa wire is
connected between the terminals of a battery, charges can flow berween the terminals.
As the charges on the electrodes decrease in number, the chemical acnon inside the
battery agaun rakes place and charges again migrare from the clectrolyre to the plates.
In rthis way the battery maintains a constant potential difference between the platcs.
This rype of potential difference is called an electromotive force. This we now know is a
misnomer. There is no “force” berween the plates, only an ejectric potential difference.
We simply call ic emf . Higher emfs are obtained by combining cclls in series.

The symbol for battery mentioned carlicr, 1|‘, represents a single cell and is
generally used for emfs of 1.5 V or less. The large line represents the anodc as a source
of positive charge, and the small line represents the negative side or the cathode, As
mentioned before, carly scientists assumed thar the charges that flow were the positive
ones. To this day we indicate charge flow, or current dircction as emananng from the

anode | | —- , This is called conventional curvent, and 1ts use does not affect the results
of common circuit calculacions. When a circuit diagram is used in which there is an
emf source of several voles the symbol 4 |I | Il-is used, which represents many batteries
in series. The number of these lincs depends on space available or persistence of the
draftsman, and one should #ot counr the batreries drawn to obtain the magnitude of
the emf.

14.7 capaciTance

Suppose we connect the terminals of a battery to two parallel metal plares, as
in Fig. 14-8. The plate on the left will quickly atrain a negative charge of —g and the
one on the vight a posiove charge of 4-4. The plates are characterized by having a
charge g, the magnitude of the charge on cither of them. It is evident that if the emf
of the battery is small, the charge q on the plate will be small and if the emf is large,
the charge g will be large. Experiments show that the charge 1s proportional to the
potential difference, AV or emf,

gxV

where IV actually means AV or voltage difference between the rwo terminals of the
batrery. We make this relation into an equality by introducing a constant C so that

q=CV

Twwo parallel mee

FIGURE 14-8
platcs scparated by an jnsufatob

- T, et
cuch as air, form a capacigor. W he

o
connected 10 a source of porentt

o < Acauire
difference, the metal plates acgHes =

equal but opposire charges g and =4

L
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- arrangement of such a set of plares as in Fig. 14-8 is called a capacitor, and the

Thﬂsrmc (\ is called the capacirance. The constant has unijts of
com>™ \
b c_ 1 (coulomb)
vV (volt)

hich is given the special name of farad (abb. F) where
W =
1 farad = 1 coulomb/volt

A farad 1s a very large quantry, and the usual capacitor in an clectronic circuit 1s of the
;)rdcr of microfarads (1 uF = 107 F) or picofarads (1 pF = 1072 F). The symbol
for 4 capacitor in an electric circuit is k-

Equation 14.21 represents the charge on 2 capacitor i a vacuum, and in air
there is very little change. Suppose that some nonconducting material, either hiquid
or solid, is placed berween the plates. It is found experimentally that the capacitor will
have a higher charge for the same volrage by a factor k. The matenal placed becween
the plates is called a dielecryrc and the factor « is called the dielectric constant. Therefore,
Eq. 14.21 is written as

g =«CV (14.22)

where « for air or vacuum is unity (1). Some examples of the valucs of « are given in
Table 14-1.

TABLE 14-1

Marerial Dielecric Consrant
Vacuum 1

Paper 3.5

Rubber 7

We can also sce from Eq. 14.22 that if we wish to maineain a given charge g,
less voltage is required with the diclectric present. That s, if it requires 7y volts to
produce a charge 7 on the capacitor in a vacuum, then when a dielectric is introduced
the same charge can be produced by a voltage V' = Vp/«.

PROBLEMS

14,]
4 point charge of —4 x 1079 C? (b) What force would an  were placed there?
tlectron experience if it were placed ar that poine?

4.2 Two equal and opposite charges, g3 = 3 x 107°C 4.3 The two charges of problem 14.2 arc placed on the x
Md gy = _3 x 106 C, arc held 10 em apart. (a) What is axis as shown in Fig. 14-9. Whar is the electric field at a point
the electric field at the midpoint of the line joining the nvo  on the y axis Jocated at a distance y from the origin?

(2) What is the electric field at a pont 0.12m from  charges? (b) What force would an electron expericnce if it
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Problem 14.3.

14.4 Two charges, ;1 = 7 x 107*C and 42 = —14 x
1073 C, are placed on the x axis as shown in Fig. 14-10. (a)
Find the points where the elecrric ficld 1s zero. (b) What 1s
the magnitude and the direction of the electric field at point
P with coordinates x = 0, y = 20 coy?

Amnswer:  (2) 36.2cm to the left of 41,
(b) L.70 x 10*N/C, 0 = ~28.8°.

y
4
1P
20 cro
‘J
et —& > L
9 q,
I
[Scm| 10cm ‘

Problem 14.4.

4.5 Consider the arrangement of charges shown, in
Fig. 14-11. What is the electric ficld at poinr A2

14.6 Four charges of equal magnitude are placed at the
corners of asquarte as shown in Fig. 14-12. Whatis the clectric
ficld at the center of the square, pointO?

4.7 Consider the charge configuration of problem 14.6.
(2) Whatis the electric field at point A? (b) Whar is the elecrric
field at point B?

Amnswer:  (2) 3.77 x 10° N/C divected toward g2,
() 6.19 x 10° N/C direcred toward point O.

I—h <

g, - -2« w0-6¢

0lm
93= =5 < 10"%¢C

—> X

9, = 2x10 8¢

TGURE 14-11

Problem 14.5.

4.8 Two large parallel plates are separared by a distance
of 5cm. The plates have equal but opposite charges tha
creace an electric field in the region berween the plates, Ang
particle (7 = 3.2 x 1077 C,m = 6.68 x 107%" kg) is released
from the positively charged platc, and it strikes the negatively
charged plate 2 x 107%sec lager, Assuming that the electric
field berween the plates is unitorm and perpendicular to the
plates, what is the strength of the cleciric field?

Answer:

9= =3x1079C g, = -3 x 10-%¢
‘ )

N
/
B \<o
N
4 N

/
N

/

/ \

1, 025m \_L
= 6 17 qr
G, = +3x10 °C ¢, = -3x10°7°¢C

FIGURE 14-12 DProblems 14.6 and
14.7.

025m

An electron is projected with an inital vel
3 x 10° m/sec in the & direction in the region benvee

I
oppositely charged plates (sce Fig. 14-13). By the ome (h '

clectron leaves the region berween the plates, ithas und'j‘irg. : clJ
a vertical deflection of 2cm. Assume thar the clecere ﬁ;é&
berween the plates is uniform and perpendicular th the PR
and thar the electric field ourside the region of the phates ©

zero. (2) What is the strength of che elecme field berwees =

522 N/C. 7

ocity Ui ==
novd
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jates? (b) At what point yp on a screen } m away from the
ares will the electron land?
3 Answer: (a) 8.39N/C, (b) 10cm.
-
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FIGURE 14-13 DProblem 14.9.

14.10 A uniform electric field £ = 500N/C exists in the
region berween two oppositely charged plates (see Fig. 14-
14). How much work is donc in moving a charge g = 6 x
10-® Cirom A to P with constant velocity (a) along path ABP,
(b) along path ADP, (c) along the straight line path AP?

Answer:  (2) 1.5 x 1073 J, (b) same as (a), (c) same as
(a).

Problem 14.10.
f4.11 The clectric field between two parallel plates is uni-
form and perpendicular to the plates. The potential difference
Between the plates is 100V, and the separation berween the
Platesis 1 cm. Wharis the strength of the elecrric field berween
the plages:

Answer:  10* N/C.

_{ 412 What is the potentia) difference between the plates
n problem 14.8?

Answey:  18.3V.

1913 A charge 4y = 3 x 1076 C is brought from Infimty

to the origin of a sct of coordinate axes. A sccond charge

FINUDLIIVESY = iy

g2 x 1076 C is broughr also from infinity to a point with
coordinatesx = 5¢m, y = 0 cm. (a) How much work is done
in bringing 7.? (b) How much work is done in bringing 7,
(c) Whar is the potential atx = 2.5an, y = 0cm? (d) How
much work is done in bringing an cJectron from wfinity to
the point x = 2.5cm, ¥y = Ocm after 4y and 4, have been
placed at the locations indicated above?

(a) What is the potential at point T in Fig. 14.9 of
problem 14.3? (b) How much work must be done to move
an electron from point P to the origin?

(a) What is the potential at point O in problem 14.6
(sce Fig. 14.13)2 (b) What is the potential encrgy of 2 charge
g =1 x 107* Cwhen ic is placed at point O? (¢) How much
work must be done in beinging ¢ from infinity to point O?
(d) How much work must be done to move ¢ from point O
to point A?

Answer: Q) 0V, () 0V, (¢) 0], (d) 0].

14.16  Charged particles arc accclerated through a potential
difference of 250 V. What will be the kinetic encrgy in eV if
the parucle is (a) an elecrron, (b) a proton, (¢) an a parucle
(g = +2¢), (d) 2 gold nucleus (g = +79¢). ¢ 18 the magnitude
of the charge of the electron and is 1.6 x 1071° C.

4.17  Inagivenvacuum tube, an clectron is released from
the heated filament with zero velocity, It is artracted by the
posirive plate and arrives at the plate with a velocity of 4 x
10% m/sec. What is the voltage of the plate with respect to the
filament? The mass of the electron is 9.1 x 10731 kg.

14.18  An o particle (g = +2¢) 15 shot dicectly roward a
gold nucleus (7 = +79¢) with a kinetic energy By = 6 MeV
(6 x 108eV). How close does the a particle ger to the gold
nucleus? Assume that the gold nucleus temains srarionary.
Answer: 3.79 x 107 m,

14.19 A particle with charge 4) = 4 x 1076 C is held fixed
ar some point in space. A sccond particle of mass 20 g and
charge 75 = =5 x 107% C is placed 3 cm away frow the first
particle. What velocity nust be given to ¢, so thar it will reach
infinity with zero velocity?

14.20 Two protons arc held fixed 10em apart. A third
proton is projected from far away with some inidal velocity
v as shown in Fig. 14-15. (a) What is the mimmum value
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of v, that will allow the proton to reach the midpoint of the
line joining the two fixed prorons: (b) If the initial velociey is
half the value found in part (a), how dosc to point 0 will the
proton get before it stops?

Answer:  (a) 3.32mysec, (b) 19.4 em.

*4« -’:Jcm—--—Scm—,g

— 0 2

Problem 14,20.

4.21  An clectron 1s placed midway beoween two fixed
charges, 4, = 2.5 x 1071°C and g2 = 5% 1071°C. If the
chargesare 1 m apart, what is the velocity of the electron when
it reaches a point 10 cmy from 452

4.22  Two parricles are placed 1 m apart. Particle 1 has a
mass #m; = 20g and a charge 71 = 6 x 1076 C. Particle 2
has a mass my = 50g and a charge 4, = —4 x 107° C. The
particles are released from rest simultaneously. (a) What will
be the velociries of the particles when they ace 0.5 m apat?

bye

(b) Aewhatdistancc from the inivial position of particle 1 wil]
rhe collision occur?
Answer: (a) vy = 3.93m/see, v; = 1.57 m/sec, (b)
0.714 m.

23 An electric dipole consists of two charged particles
of mass 72 = 300g and charge 41 = 3 x 1077 Cand g, =
—3 x 107> C connected by a rigid rod of negligible weighe
and length 2 = 20 cm. The dipole is placed in a region where
there is 2 uniform clectric field £ = 5000 N/C (sce Fig. 14-
16). (3) Whar is the torque exerted by the electric field when
6 = 30°? (b) How much work must be done to rotate the
dipole from the angular position 8 = 0° 106 = 90°? (¢) If the
dipole js pivoted abour irs midpoint and is rcleased from the
angular position 8 = 90°, whar will be the angular velocity
of the dipole when it swings back to 6 = 0°¢

Answer:  (a) 1.5 x 1072 N-m, (b) 3 x 1072 ], (¢)

‘ 3.16 rad/sec.

Y
A
/7':‘ 41
| d —7
= y >
/ -€
\
45:
2 A

Probleny 14.23.
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15.]1 INTRODUCTION

In thischapter we consider the motion of electrons ina conducror (ametal) when there
is a voltage difference applied between the ends of the conductor. In more common
language, how will the clectrons in a meral wire behave if the wire is attached to the two
opposite terminals of a battery whosc potential difference creates an electric ficld in the
wire? After consideration of the basic behavior, we will treat combinations of wirces,
batreries, and electrical measuring instruments. It will be necessary to understand
the rules for charge flow, a current, in arcuits in order to follow the arrangement of
logic circuits 1n a compurer, which will be treated 1n Chapter 27. We will limit our
discussion mostly to direct curvents, thar 1s, currents whose magnitude and direction
do not change with dme.

15.2 MOTION OF CHARGES IN AN ELECTRIC FIELD

We have seen in Chaprer 14 that the definition of electric field serength £ 1s the force
pet unit positive charge

F
E=—
q
We may substitute Newton’s second law F = sma
ma
g =
or
& .
a= rhed (15.1)

w

Note that in Eq. 15.) 7 represents an arbitrary charge. In the case of an electron,
g =¢e,wheree = —1.6 x 1071 C and the mass of an clectron is m = 9.1 x 1073 kg,
Equation 15.1 will now be written as

—lel€

n

(15.2)

i which the negative sign tells us that the dicection of acceleration of an clectron
1s opposite to that of the field direction. Unless there ts 2 specific need to know the
direction of motion, we may just use the magnitude of the acceleration in Eq. 15.2.
For cxample, suppose a constant clectric field is suddenly applied to a meral. Whar
velocity will the electrons have after traveling a distance s assuming that no scatrering
(or collisions) occurs over that distance? This is simply a problem from Chaprer 3
in which we wish to find a final velocity when the ininal velocigy 18 zero and the




ﬁsp]accmcnt and the constant acceleration are known. From Eq. 3.11, we write
¢
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the velociny 15
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Note that in this expression for v, ¢ stands for the magnirude of the charge of the

electron.

15.3 ELECTRIC CURRENT

In the preceding section we saw that an elecric field in a conductor can cause charges
1o undergo accelerated motion. This acceleration 1s rerminated by collisions of the
electron with the atoms in the conducror. Thar 15, the morton of an electron n an
clecrne field is a series of short accelerauons interrupted by collisions thar scatrer
the electron. It therefore has a random path, although there is a slow net velocity
opposite to the field direction, such as illustrated schematically in Fig. 15-). Tt is the
net velocity of the clectrons, called the drift velocizy, that gives rise to the current, not
the bricf accelerations.

If we stand at a particular plane perpendicular to a wire and count the charge
Ag that Aows by in time Af we define this as electric current 4, where

i= ﬂC/sec (15.3) -
Af ]
The definition of the electric current given by Eq. 15.3 holds only if the rate of  p150me 15-1  The random
charge flow is constant. In the general case where 7 1s not constant, we define it as parh (black lines) of an electron
regulring from collisions with the
;= /i_g (15.3") ionsand the ctiecr of an electric field
dt on the path, with a resulting drift

The concepr of electric current is similar o the concepr of measuring the current  velocity (colored hines). [Sorrce:

M a river. One measures the quantity of water, in gallons, cubic feet, or such, which David Halliday and Robert Resnick,
Fandamenzals of Physies, 2nd ed

Copyright © by John Wiley & Sons,
: ) Tne. Reprinted by permission of
units, current is measured in amperes, or amps, after André Ampere (1775-1836).  john Wiley & Sons, Inc.)

Hows past a point in a given tine.
Because the charge Ag is a scalar quantity, the current 15 also a scalar. In the ST
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Oneampere (1 A) is equal ro onc coulomb per second and is a relatively large quanticy.
Usually in clectronic circuits the current is much smaller chan 1A, and we use the
milllampere (1 mA = 107* A) or the microampere (LA = 107 A).

Consider now a eylindrical conducror with a cross-secrional arcaA4 asin Fig. 15-
2, and let us assume that there are both positive and negative charges, both of which
arc mobile in the presence of an electric ficld € with a vector direcuon from left o
right. Ler us further assume that there are N, positive charges per unit volume with
doft veloary of v, and N, negative charges with drift velocity of v,. In fime Ar the
posttive charges will move from left ro nghr a distance of 1, At. Thercfore, 1 time
Az, all che positively charged partcles within the shaded region of the cylinder of
cross-secton A and length v, Az, and only those particles, will flow out of the shaded
region of the cylinder ro che right. The volume of the shaded cylinder is Av, At, and
the number of positve particles within is the number per unit volume N, times the
volume or Npdu, Ar; if each has a charge g,, the charge flowing across the right end
of the ¢ylinder is

Agy = gpNpAvp AL
Substituting this into Eq. 15.3 gives the current resulting from the positively charged
particles as

0
N
_ gpNpAy Ar
o At
i = gyNpAduvy (

In the same way, the negative partcles, cach with chasge g, flow from right to left
giving rise to a current

ty = 4aNyAu, (15.5)

[t is seen in Eq. 15.4 that the current 4, of positive charges is to the right in

Fig. 15-2 because both the sign of the charge g, and their drift velociry are positive and,

hence, their product is positive. The current 7, resulung from negative charge mouon

also results in an effective current of positive charges to the right by subwraction of the

negative charges. This is seen in Eq. 15.5 in which both the sign of the charge g,, and

the sign of the drift velocity v, are negative and therefore dheir product is posidve:

A flow of negarive charges to the left is equivalent to a flow of positive charges to the right.

When boch positive and neganve charges move, the toral current 7 is the swim of these
WO currents or

t=15T 1y

i :A(QPL\TFUP —+ qurx Un) (15.6)
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. seen by Eq. 15.6 that a measure of eleceric current does not tell whether the
T8 2

& [

nt 1
e | - drift velocity of tl ifive charee carriers v, is in the same vector
The vecror drift veloaity of the positive charge carriers vp & s

hat of the electric field vector €. The direct curcent £ in a conductor has

being carried by positive or by negative charges or by both.

di,rccti()ﬂ as €
%] ame direction as that of the electric ficld £.

& We note that as much charge flows inro the cylinder of Fig. 15-2 as flows out.
~ There is N0 pileup of elecrric charges in the wirc at anAy point. If 'therc were, then the
Jocal electric ficld would be soronger at that point which would increase the ner flow
of charge past thar point unal the charge deosity ar cvery point in the wire would
again be equal. It we connect a wire berween the rerminals of a battery, it is therefore

-

reasonable to conclude thar charge flows ar a steady rate throughour the wire.

It is often convenient to introduce a quantity called the current density, with
symbol 7, which is the current per unit cross-sectional area. This eliminates the area
A from Eq. 15.6; thus

J= ‘%A/mz(amp/mz) (15.7)
EXAMPLE 15-
Supposc a copper wire carrics 10 A (amps) of current and has a cross-section of
1075 m?. As will be secn later, cach atom of copper coneribures one clectron that is
- fice to move, so the electron carvrier density N, is abour the same as the density of
atoms, which is about 7 x 102 atoms per m* (see problem 9.2). The charge on an
clectron is —1.6 x 10717 C. (a) Whar is the drift velocity v, of the elecrrons? (b) How
long would it take an electron te move from one terminal of a battery o the other if
this wire were 1 m Jong?

Solution

e (a) i :AQn N vy

[

Uy = —8
Ag, N,
5 10A
105m?2 x 1.6 x 10-1°C x 7 x 1028 m-3
=9 % 107" m/scc
ey e — £ ———IL—- =1.1 x 103 sec = 18 min

Un 9 x 10 m/sce

S0 the 4¢ : : . :
O the actual drifr velocity of a given clectron 1s very small. However, when we tarn
Frn a light switch, the lamp will Jight almost immecdiately regacdless of the distance
oM switch to lamp. The rcason is that the speed of propagation of the electric ficld
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along the wire is that of the speed of light in the wirc. Therefore, all electrons are
acted on almost simulraneously by the electric field and begin to drift.

1 5.4 RESISTANCE AND RESISTIVITY

We have seen thar the electric ficld £ is the force per unit charge and, hence, the field
causes the charges to be accelerated. The collisions with atoros scatter the charges,
which are then accelerated again. This accelerating-scattering process gives rise to
a ner drift velocity, resulting in an electrical current in the direction of the field £.
Experiment shows that in many cases the clectric current z, hence the current densicy
J, are proporuonal to £.

Jx &

We can change this proportionality ro an equality by introducing a quantity o, called
the elecrricnl vesistivity

E=p] (15.8)
This resistivity Js a property of a given matcrial and is independent of its shape.
The resisnvity was found to be a constant for a given metal ar a given temperature
by George Ohm (1789-1854); Eq. 15.8 is called Ohm’s law. A material obeying
Ohin’s 1s called an obmie conductor, that is, one with a linear relation berween aurrent
density and clectric field. A material with a ponlinear relationship is called a nonohmaic
condnctor. For example, i Chapter 26, we will scc thart a linear dependence does not
hold in the case of a circuit element called the diode.

From Eq. 15.8 the units of p may be detenmined

e EN/C) €& N-sec-mn”
 J(Clseem?y T Cc?
This is such a cumbersome unit tha it is shortened to ©-m (ohm meter).
Some typical values of o for conductors and insulators arc given in Table 15-1.

TABLE 15-1

Material o (Q-m) at room tcmpcrar?ré
Silver 1.5 %1078

Copper 1.7 x 1078
Aluminum 2.7 x 1078

Glass ~ 10+

Teflon ~ 1p*4

Dry wood ~10t!

George Ohm (1787-1854).



It is seen that diffcrences in resistivity between insulators and conductors can be
as 22 orders of magmtude (powers of 10). One of the early successes of the

great ¢
e icds was to cxplain rhis. We will develop this theory in Chapeers 23 and 24.

fhéory Ofsd
It is somenimes convenient o use the reciprocal of the resisnvity; this is called

he conAncrivity and has the symbol . Equation 15.8 may be written as
: 2 A

] = 0'5 ( .. :.'_f._\.

“.'here Ok 1/0
Suppose we have a given metal wire witch cross section A4, length /, and resistivity

with an applied electric field £. The wire is shown schemadcally in Fig. 15-3, We
can use Eq. 14.19 to refate the electric field inside the conducror to the potential
difference berween the rwo ends of the conductor, points 1 and 2.

§2
AV =V -V, = / E-ds (14.19}
If the clectric field inside the conductor is uniform, the integral becomes £/, and
AV = £l
where
=5 —5
or
AV
£=20 (15.10)
Substitution of Eq. 15.10 for £ and Eq. 15.7 for J in Eq. 15.8 yields
/
AV =i2
A
which is written
V =4R (15.11)

thm V actually means AV or volrage difference between the two ends of the wire,
Thys ¢quation (15.11) is also commonly called Ok’ law . Tn this equation R = pl/A
and is called the resistance of the wire and has units of Q (ohms). Tt is seen thart the
10ngcr the wire che more resistance it has to the cwrent, but the larger its cross-
“CCtional area, the less resistance it has. The analogy to water flowing through a pipe
Busciul. Voltage will be the equvalent of the difference in water pressure and current
that of volume per second of flowing water.
‘Wc should note an important fact about the direction of the current through
2 Iesistance. Ar the beginning of this chapter, Secrion 15.3, we indicared thar the
iUrl‘cnt has the same dircction as that of the elecrric ficld. In Chapter 14, Section
4.4, we demonstrated that the electric field s dirceted from high potential points to

S
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low potenual points. We therefore conclude that zhe current in o vesistance is from its
bigh potential side to its low potential side.

15.5 RESISTANCESIN SERIES AND PARALLEL

In this and suceceding sections we will study some simple elecrrical cireuits. Resis-

tances will be drawn with the symbol A\ and emf sources will be drawn as ‘“-for

a small emfand 4I,I | Ffor a larger emf. In all cases, the large line represents the posi-
uve, or higher porential, side of the emf. A simple direct current (dc) circuir with one
emf source and one resistance 1s drawn as In Fig. 15-4, where the arrow represents
the direction of the current,

In Fig. 15-4 and in the following circuit diagrams the emf sources are Jabeled
with the letter V7 and the voltage magnitude is given. This is the conventional labeling,
butirdoes not conform well to the definitions. If one measures the potential diffcrence
berwecen the terminals of a battery, thisis AV but, as already mentioned, it 1s customary
to refer to a voltage difference simply as the “voltage” We have also scen that the
accepred name for such a volrage source is emf. Confusion in terminology often arises
tor the student when the form of Ohm’s law Eq. 15.11 1s used. The ¥ in this cquation
is the potennial, or volrage drop across a resistance R when a current passes throughie.
If one takes amcter that neasures electric potential difference, called avoltmeter, it will
read a voltage V' when the probes ave placed on opposite sides of the resistance. The
concepr of this voltage ditference, commonly called a polzage dyop, across a resistance
should not be confused with the portential difference across the emf source.

Suppose thar we replace the single resistance of Fig. 15-4 with three resistances
(called resistors) of different values Ry, Ry, and Rz, as in Fig. 15-52. We assume in
this type of calculadion that the connecting wires have zero resistance. Therefore, the
clectric potential at point A is the same as that at the left side of the battery, and thar
at point ) 1s the same as the right side of the battery. The same current must pass
through cach of these resistances as thar which passes berween points A and D. This
combination 1s therefore called serfes resistances becanse the current passes through
each sequentially. By Ohun’s law (Eq. 15.11) we may write the voltage drop across
cach resisrance as

Var = 1Ry, Vac =1tR;, Vep =iRs

and, because the sum of these volrage drops must equal rhe potential difference
between A and D, Vi, which is the emf of the bartery, we conclude that

V =Van+ Vac +Ven

=iRy + iRy +iR3 = L(Rl + Ry + 1)

R
—ANW
1
|y
K
1%
a B g Rz o R1p

| __ i |
®) 3 { -

in sexics. (b) Equivalent resistof
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V = iReq

thfcf)RC\\'l is the equivalenr resistance of the three. That 1s, the same current wou»Jd

fow through the circuit if the three resistances were replaced by a single one (Fig,
15-50) with magnitude

Ry =R1+Ry+ Ry (series)

>~ jpis obvious that the generalization of Eq. 15.12, namely. Ry = 35 R; will be true

rega;dlcs.s of the numbcr of resistances in serics.

EXAMPLE
Supposc in Fig. 15-5 the volrage V' = 1.5V and the resistances arc Ry = 5,

Ry, =108, and R3 = 15 Q. Whar are the voltages Vag, Vec, and Vep?

Colution First we find the current through the resistors by replacing the

1

individual resistances with a simple equivalenc resistance. Ry

V =ty = iRy -+ Ry + Rs) “
15V “
5 < =0.05A =50ma

= (5+10+15)
Then, applying Ohun’s Jaw to cach resistance

: Vag = iR =0.05A x5Q =025V @ }

£

VBC = 2R2 = OOSA X ]_OQ — OSOV

VCD =iR; =0.05A x 15Q = 0.75V

sum = Vap = 1.5V

Suppose we now arrange these resistances in parallel, as in Fig. 15-6a. As stated
Previously, we assume the resistance of connecting wires to be negligible and, for
slarity, we redraw the circuit of Fig. 15-6a in the form of Fig. 15-6. Because all
SOnnecting wires are considered to have zero resistance, there can be no voltage drop

ac = .- . . .
t08s them. Therefore, the left side of cach resistance is at the same potencial and

the v - 4 .
tight side is ar the same potennial; hence, rhe same volrage drop V' musr occur R
AToss each Wis € . eq
- S each. We further note that although the current through each resistance may be
fENT, the sum of the individual currents must equal the current that Aows through
€ Wire connecr: f
Ire connec ring them to the battery because charge must be conserved. Thus,
= gy L4 ] - 15.12) (c
B 1=1+1+13 (parallel) _ (15.13) ) v
CQuUse eacly ra - - . ’ .
. ACh resistance has the same voltage drop v across it, we may write Ohm’s  FIGURE 156 (a) Three resistors
Or cach in paralkel. (4) Conventional torm
of drawing resistors in parallel. {¢)
V=iR,, V=0iR,, V=13R; Equivalenr resistor Ry



and

1 v 5= i Z v
I Rl 3 2= Rza 3= _R3
Substinatng these inrto Eq. 15.13 gives
|4 N Vv v
i=— 4+ —
Ry Ry R

or
1
V=
1 1
(E trt E)
1 :
Ry
where
1 1 1 1
— (parallcl) (15.14)

172:] - Ry Ry R;

We sce that any number of parallel resistors can be replaced with an equivalent gesistor
by a gencrahization of the relation of Eq. 15.14. The equivalent circuir looks Jike
Yig. 15-6¢c, where Req is given by Eq. 15.14.

EXAMPLE 15-3

Suppose two resistors, Ry = 5 Q and Ry = 10 @, arc connected in parallel to a 1.5-V
battery as in Fig. 15-7a. (a) What is the current through each? (b) What is the total
cuarrent in the circuit?

Solution

o (2) Using Ohm’s law (Eq. 15.11)

V =hRy, V =ik,

vV 1.5V
) = — = =0.3A =300
7 % 0 0 300 mA,
|4 1.5V
= — = =0.15A = 150 mA,
is 5 00 0.15 150 mA

o B)i=1i) 414, = 300mA +150mA = 450 mA
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(e ;Y check this answer bv solving the equivalent cixcuit, Fig. 15-75.

J_r, v 1, o0l ioie =030

Kq Rl 2 3Q 1082
or

1
Ry = e 3.33Q
i = vo_ 15V 0.45A =450mA
Rey — 3.33Q2

EXAMPLE 15-4
Three resistors are copnected in a combination of scries and parallel as in Fig. 15-8z.

What is the current through cach?

Ry - 3Q
Solution First we find Réq(m for the parallel combination YV
1 1 1 1 1
==+ =0507'4+02507 =0.75Q""
Reqpy R R 24 4
Regpy = 1.33Q2 V-1hav
We then have the equivalent circuir, Fig. 15-84, We now find the equivalent series
1 s Reauy — 1 338 Ry =3Q
resistance Rego) AAA j'v\/\.“
Regs) = Regipy + Rs = 1.33Q+3Q = 4330 ,
We now have the simpler equivalent circuit of Fig. 15-8¢. The current is given by I{
e Tavar {4
Ohin’s law @ V_ 15V
. 4 1.5V
1= = — =0.35A =350mA
ch(s) 4.33Q Reqrey — 4-33Q
W, . AN
¢may retum o Fig. 15-8% and note that we have already solved part of the problem
becanse all this current flows through Rj, hence, 73 = 350 mA. We may find the !
voltage drop across the paralle] combination by use of Ohm’s law ¥
© !
V(p) = iReqpy = 350mA x 1.33Q2 =047V V= 1.5V
T . ) FIGUR Example 15-4.
he current through each of the parallel resistors 1s then
\ V(p) 047V R1 Ry
Hh = — = =0.235A =235mA
1 R 70 5 5n AN
. Vi 047V ‘
= =0.118A = 118mA
& Ry 49 : E | | I
%

And, except for the rounding-off error, i1 + i) = i3 =4 FTGURE 15.¢
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You will have noriced that when there are two resistors 1 series or in pacallel, a
merhod of ratios exists as a quicker way of solution. Consider first a series circult as (n
Fig. 15-9. The current through R is the same as thar through R», apd by Ohm’s law

. " .
1 = -, ] = —
Rl Rz
where ¥V and V) are the voltage drops actoss Ry and R, rcspcaivel_\_!. Equating rhe
s gives
Vi T
R, R,
or
W R .
— = — SEries {(15.15)
Vy R, (serics) 2

80 that 17 & seyies coveuit the vatio of the voltage drops is equal to the vatio of the resistances.
A different ratio can be written for paralle] resistors (sec Fig. 15-10). [n this
situanon we recall that the volrage across cach 1s the same. From Ohm’s law

Vi =iRy, Viy=10R;

Equating V) and V, gives

HnRy = 1R,
or
l.—l = 1}—2 (parallel) (15.16)
) R]

where we sce that s a parallel cirenis the razio of the curresirs through each vesistor is
isversely propovtional to the vesistances. We might have expecred rthis result from the
understanding thar resistance impedes the Sow of currenr; hence, the larger the
resistance the lower the current.

1 5.6 KIRCHHOFF’'S RULES

Nor all electrical circuits can be reduced to simple series or paralle] combinations.
Twvo fundamenral rules were cstablished by G. R. Kirchhoff (1824-1887) rhat aid in
the solution of elecirical neoworks.

1 The algebraic sum of currents soward any branch point is zero.
2 The algebraic sum of all porential changes in a closed loop is zcro.

We will consider rule (1) first. As we have stated earlier, charge cannor accu-
mulate (or be deplered) in a de cireuit: If it did, there would be a larger (or smaller)

£y
"y
R»
] iZ
i
V

FIGURE 15-10

Gustav R. Kirchhoff (182418
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= clectric field at that region which would exert a larger (or smaller) force and thereby
! cdistribtite the charge evenly. Therefore, at any branch point in a circuit, whatever
charge fAows in must flow out. This is seen in Figs. 15-114 and 4. An analogy would
be a series of hoses for water irtigation. Ata branch of hoses, whatcver water flows
“ in must flow out.
The current equanen for Fig. 15-11a, i) = 23 +43, 15 an obvious application of
> he first rule. The rule can also be used for the circuit of Fig. 15-114. Consider branch
oint A. The current equarion would be 7, = 73 +i4 if the currents have the directions
indicated by the arrows. We do know that current 73 has the direction indicated by the
arrow. But we do not know if the arrow 1s the correct direction for 73 since we do not
Jmow i€ the potential ar point A is higher or lower than that at point B. We rherefore
assume a direction and mainrain thar assumpuon i formulating other equations.
When we finally solve the circuit equations, if 23 is positive Our assumpeion is correct;
if it is negative, then the currenr 43 Is in the direction opposite to our assumption.
To illustrate the consistency of following the original assumption, rule (1) applied to
| branch poinc B would be 1) + 23 = is.
Let us consider rule (2). This rule Js a statement of the conservation of energy.
In a circuit there may be porential differences associared with emf sources present
as well as voltage drops associated with resistors. If we mentally start at a point in
the circuit, go around any closed loop in either direction adding algebraically all the
changes in porential and then return to the starting point, the potenual of that point
must be the same as when we started; that is, the sum of all the potendal changes
(increases and decreases) considered in our mental trip must add up to zevo.

In applying rule (2), it 1s useful to follow cerrain guidelines that will prevent i2
crrors in the signs of the porential changes. i
(a) As indicared in connection with rule (1), we first assume a direction for che currenc I3
through each branch of the circuit. Tyt iy
(@)

(b) We then choose any closed loop in the circuit and designate the direction
(clockwise or counterclockwise) in which we wish to mentally waverse it.

(€) We now go around the loop in the chosen direction adding algebraically all the

Potential changes and sctring the swn cqual to zero.

When we meer an emf source, its voltage V' is taken as positive if we ¢ross the o I | ||
source from the negative (low potential) side to the positive (high potential) side. The v
feason for taking V" as positive is that in going from the negative side of the source to A
the posicive one, the change in potential cepresents an inerease in clectric potendal. If if N 133 ) ,

fh(i Bt e § R .. . . . . ) . . .
¢ s crossed from positive to negative, irs voltage is taken as Negative DECause  —isvspy 1= 11 irehhofs rule

the clectric potendal has decreased. Let us now consider what to do when we meeta  jor current at a branch point.
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resistor. Earher, we indicated thart in a gesistor the current goes trom the high potential
side of the resistor to the low potential side and thar the potential drop between the
two sides 15 ZR. Thus, 1f in our mental trip around the circuit loop we cross a xesistor
in the same direction as the current, we must take the iR drop as negative because we
are going from high ro low potential—a decrease. The iR drop is taken as posinive if
the resistor is traversed in the direction opposite to that of the current.

Now we can apply rule (2) to some simple circuits. Consider the circuit of
Fig. 15-12. We choose the current in the clockwise direction (we may just as well
choose the opposite divection, although the correctness of our assumption s obvious
by inspection in this simple circulr). If we now traverse the loop mn the clockwise
direcrion starting at point A, wc apply rule (2) and write

—1R, —1:R2 +1V =0

Note that both 7R dyops are written as negative because both resistors werce crossed in
the direction of the asstimed current. ¥ was raken as posirive because the emf source
was crossed from the negarive fo the positive side. We can rewrite the resule as

V =1R) +iR»
which is the result obtained when we discussed resistors in serics where rule (2) was X -
e | x
mmpheitly used. AAN~ /
Let us now consider the slightly more complicated circuit of Fig. 15-134. We
may again choose to go around the loop in a clockwise direction stacting at point A. i C J
From rule (2) we obtain A
A
—iR1—2R2+Vz+V1=O v
15-12
or
. Ry By
Vy+ Vi = iRy + iR, M
We see that because the batteries are pointing 1n the same direction (relative to the i L j
e

dircction of the current) the effective voltage of the two emf sources is the sum of |
A \ i

the individual voleages, that js, an cinf source of voltage V' = V1 + V) would give

rise to the same current. Suppose we reverse the direction of onc of the sources, asin =,
Fig, 15-135. We will stil] assume thart the current is in the clockwise directon. With ~
such an assumpton, and if we traverse the loop in the clockwise direction, we write

 AAA——— AN
— iR — R+ V-V =0 [ ] |

Note that 7] is now caken as negative because in our mental rip the emf V) was

crossed from the positive 1o the negative side. The result can be solved for 2 x | 1 ] I

-1 {
T R1I+ Ry FIGURE 15-13

i




Re = 100 Re = 10000

Ry = 5005

0
V=15V Vo =9V

It is clcar that if V1 > V3, i would be negative, indicating thar we have assumed the
wrong direction for 7, that is, 2 would be

counterclockwise.
Let us now use Kirchhoffs rules to solve a circuit with certain similarities to a

cransistor circuit that we will encounter in a larer chaprer.

EXAMPLE 15-5

In the circuit of Fig. 15-14, (a) Find the currents 7¢;, 75, and ¢y and the volrage drop
across resistors Ry and R,. (b) Find the voltage diffcrence between points G and D
and between D and E.

Solution

» (a) From the first rule at branch point B
ic iy =1

We then write the second rule for the two loops. For the right-hand loop, if we
traverse 1t n the counterclockwise direction starting at point D, we write

Vs —icRy —icRe +0pRp =0
OV —ic500Q — i 10002 453602 = 0
IV —4cl5002 + 13602 =0
For the left-hand loop, traversing it counterclockwise, we write
V1 —ipRg —igRr —igR1 =0
15V —~360Q —igl00Q — 5002 =0
1.5V —ig602 —71502 =10

We now have three equations to be solved simultaneously for i, 2x, and 3.
They are

ic +1p = fg

KIRCHHOFF'SRULES = 22T

WE15-14 Example 163,
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OV — 15002 + 3602 =0
L5V — 5602 —l5032 =0

We can use the first equation to climinate 4g from the last two. 1y = 5 — ic,

therefore
OV —icl500Q2 + (i — ic)60Q2 =0
or
OV —i:1560Q 4,602 =0 (15.17)
and
1.5V — (3 —4c)60Q —£150Q =0
or

1BV —ig210Q +ic6002 =0 (15.18)

Equations 15.17 and 15.18 can be solved for ik and . Muleplying Eq. 15.17
by 7 and Eq. 15.18 by 2 and adding them together eliminates 7r, that is,

7 % (9V —ic)560Q +ig60 ) = 0
2 x (1.5V — 3210 @ +ic60 Q) = 0

63V —ic10,920Q +3V 441202 =0

66V

0Oy a6
_10,8009_6'1X10 A=61mA

ic
We can now solve for sg using either Eq. 15.17 or 15.13

15V —ig2109Q +ic60Q = 0

=T oloq

L5V 4 (6.1 x 107 A)60 Q)
- 2109

—89x107°A =89mA

Finally, we can use the result of the first rule, 7¢ + 5 = 1§, to obtain 75
g =i —4c=89mA —6.1mA = 2.8mA
The volrage drop across Ry is

V=igR; =89 x I073A x50Q =045V




and the volrage drop across R is
) V=icRy=61x107A x500Q=31V
N
(b) To find the voltage difference berween points D and C, ler us follow the

e
e current ic through the circuit elements in the right-hand loop. Srart with the
potential V.
= Viy+ Va2 —icRa =T¢

Ve =V =V —icRy
=9V —6.1x10"°A x500Q
=6V

We may do the same with the left-hand loop to find the potential difference
between points L and E.

Vo —isRg — it Ry =V
Ve —Vp = —ipRy —igRe
= —28x10%A%60Q
~89x107%A x100Q
=-11V

I'he result shows that D 1s at a higher potenoal than E.

15.7 AMMETERS AND VOLTMETERS V]

In order ro have an intuitive grasp of the operaton of a circuit, it is important to
understand how current or voltage could be measured at any location within the
circuit. The simple meters for carrent or voltage measurement described in this section

were employed for many decades, prior ro the era of modern electronics, and 1lustrate

some basic principles of cirenit design and analysis. ®
We will see in the nexr chaprer that electric current passing through a wire

Produccs a magneric ficld. If a loop of wire is used then, on the passage of current,

one end of the loop becomes the north pole of'a magnet and the other end becomes

the south pole, as in Fig. 15-154. This will be discussed in more detail in Chaprer 16. ,
Many loops can be used (sec Fig. 15-155), and each one concributes to the forming of y
amagnet: The lacger the number of loops, the scronger the magnet for a given QUment. -0 1 5 15 Tie basis of 2

A scries of loops forms a coil, and if a tighdy wound coil is placed berween the poles galvanometer.

— - Metal stap



of a permanent horseshoe magnert as in Fig. 15-15¢ and current passes through it, the
induced north pole of the coil will be repelled by the north pole of the permanent
magnet. If the coil is suspended by a flexible meral strip (see Fig. 15-15¢), the twisting
(rorsion) force of this metal strip acts as a spring and will oppose the rotanon of the
coil, causing it to return to its initial position at zero current. Thus, depending on
the swengeh of this meral strip and rhe other design parameters of the mechanisin, a
full-scale deflection of the instrument needle can be established for a given amount of
current through the coil. This instrument is called agalranometer. The current for full-
scale deflection s called the current rating of a meter. Because these mnstuuments are
electricaily and mechanically delicate, a common current rating is 0.1 mA (107 A).

Used by ieself, such 2 meter could only measure currents from 0 to 0.1 mA when
placed in series in the circuit. To extend the range of the merter, a lower resistance,
called ashunt | 1s placed n parallel with the meter. Figure 15-16 shows these situations
in which the merer could measure full scale for different currents 1 che line. Meters
used for the measuremenc of current though 2 circuir are known by the gencral name
of anumeters (metets to measure amps of current). The resistance of the cod Re w the
galvanometer s also specificd by the manufacturer, in addition ro the current rating.
A typical value might be 10002, or onc kilohm, k2. From Ohnr’s law the voleage
drop across the galvanometer in all cases of Fig, 15-16 must be

V=R, =10"*A x 10°Q =01V

and this must also be the voltage drop across the shunt because it is in parallel with the
meter. With the use of Ohm’s law we may calculate the value of the shunc resistance.
In Fig. 15-165

4 0.1V
A= T99x0a T 102
In Fig. 15-16¢
7
R = 4 0.1% =1.001¢Q

i 99.9x 103A
Many test meters have an exeernal swirch that changes the scale of the ammerer. This
switch disconnects one shunt and introduces once of a different resistance into the
circuit so that the same meter is used for different ranges of current.

An mserument to measure the voltage difference between two pointsin a cireult,
say, nwo sides of a resistor, is called a volzmeter and can be made from a similar
galvanometer. However, we do not want stich a volimeter to disturb the current low
through the resistor because such a change would alter the iR volrage drop. The ideal
instrument would be one thar had infinite resistance. However, the galvanomerer
requires thar current pass through it to obrain a measurcment. We will continue to usc
the galvanomerer previously discussed, which requires 100 p A for full-scale deflection
and has an internal resistance of 1kQ (1000 Q). As shown before, this meter will

= 0.1 mA
(a)
/N 1 mA
1 =0)YmA
ANA
in = 10mA Re¢
Is = 8.8 mA
AA%AY;
R<
®
0.1 mA
P=o1m/ AN
AAN-
1; = 100 mA R;
1 = 99.9mA
AAA =
Rs

FIGURE 15-16  The construction
of different ammcters from a
galvanomercr.
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ad full scale when the voltage difterence across itis ¥V = 107* A x10°Q = 0.1V,
.rc oSC,\‘\\’C wish to extend the range of the galvanometer to 10V full scale. We would
f:ril)lil)cct a résistor R; in series with the galvanomcter so that the potengal drop across
the galvanometer 1s still 0.1V, as in Fig. 15-17. To find the value of Ry, we note that
the :.folragc‘ drop across the galvanometer Vi, = 0.1V, plus the voltage drop across
R, iRa, must be 10V, that 1s,

0.1V+107*A x Ry, =10V

9.9V

——— =99 x 10*
T0-% A 9.9 x Q

Ry =
Similarly, if the meter is to read ful} scale across a volrage drop of 100V, the drop
across Rz must be 100 — 0.1 = 99.9V and the value of Ry must be

999V

_ 5
= ooy =999 x 10°Q

R,
Again, an exrernal switch on a meter connects differenc values of series resistances so
that full-scale deflection of the meter may indicate different maximum volrages.

15.8 POWER DISSIPATION BY RESISTORS

We saw at the end of Chapter 6 that in an elastie collision between an electron and
an atom, very little energy is transferred to the atom—most of the kinctic cnergy
is retained by the electron in its recoil (bouncing off the atom). However small,
some energy is lost by the electron to the atom. This 1s the situaton in a metal
When electrons, accelerated by the electric field, collide with the atoms. Because many
collisions are raking place, cach small energy loss adds to a considerable amount. The
Kinctic energy rransferred to the atoms per unit time represents an energy loss per
unit time by the electrons, which is a power Joss. We have seen in Chapter 9 that
fmperature is 2 measure of the average kinetic encrgy of the atoms (or molecules) of
4 system. Therefore, we expect any conductor to heat up when an clectric current is
Passed through it. We see chis phenomnenon daily in clectric heaters, ovens, and light
bulbs.

The calenlation of power dissipation P in an clecrrical resistor R as a rcsule of
the Passage of a current i can immediacely be found by considering Fig, 15-18. Let Vg
nd Vy represent the potentials of points A and B, respecrively, and Vg the potential

difference. The change in porential energy of a charge Ag entering at A and Jcaving
aB g

AEP = Aq(VR —Va)

I Jsv)

FIGURE 15-1
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This represents an energy loss because Vi is greater thao V. In a given umie Az the
amount of charge mvolved is Ag = 1Az, 50
AE, = VagiAr
The power dissipated in the resistor is Pag = AE,/Az, or
Pag = Vagt

We have written the voltage with the subscript AB to denote that if there s move thao
one resistor in a dreuit, the power lost in each is the product of the voltage across
cach and current flowing through each. With this point in mind, we may write in
more general form

P=Ti (15.19)

Two other forms may be obtained by substitution of Ohm’s law, V = 2R, These are

P =R {15.20)
and
V2.
P=— ( \
R

We have shown in Chapter 5 that the unit of power is the watt or J/sec. The
consistency in electrical definitions is readily seen from Eq. 15.19. The unit of voltage
is onc joule per coulomb (one volt) and the unit of curyentis onc coulomb per second
(one ampere). Therefore the unit of power is

P=Vi=(1JC (1 Csec™!) = 1]/scc = | W (war)

15.9 CHARGING A CAPACITOR—RC CIRCUITS

Thus far we have limited our discussion to cases where the current is constanr with
time, that 1s, direct current. In this scction we consider a cireuir where the current
varies with time. This circuit plays an imporrant role in the opcration of computer
clocks, which will be presented in Chaprer 27.

In Chapter 14 (Section 14.7) we saw that when a capacitor 1s connecied to the
ternunals of a bartery, the plate of the capacitor connected to the positive side of the
battery acquires a positive charge g = CV (Eq. 14.21) and the other platc an equal
but negative charge —4. Onc question that we may asks: How long docs it take
for the charges to appear on the plares of the capacitor? Obviously, because resistors
determune the current (that is, the rare of charge flow) in the circuit, this will depend
on the resistance that 1s in the ¢ireunir.




—_—

Let us consider a circuit where a resistor R (the resistance of the conncecting
wires isjassumed 1o be neghgible) and a capacitor C are connected in series by mcans
ofg\\-’itch S o a battery of emf V' as in Fig. 15-19a. The ininal condition is that when
the switch is open there is no charge on the capacitor. When the switch is closed, a
current is ser up in the circuit and the capacitor will begin to charge (see Fig. 15-19%).

I.ct g be the charge on the capacitor at some ome # after the switch is closed and
et 7 be the current through the resistor at the same instant. Vay 1s the voltage across
the terminals of the battery, that is, Vap = V, Vg is the voltage drop iR across the

resistor, and Vyp is the potential difference % across the plates of the capacitor. We

therefore write

Vap = Vap + Vep

or
V=iR+Z (15.22)

C
By defininion 7 is the rate ar which charges flow through the resistor and, because
these charges cannot cross the gap between the capacitor places, this rate represents

the rate ar which the charge on the capacitor is increasing, that is, 7 = il Equation
dat

15.22 becomes

dq g
V=R—-+=
it C
Dividing both sides of Eq. 15.23 by R and rearranging rerms we have
V_4._%
R RC ™ a
or
df:yditq (15.24) R ]C|
y_& AN I
We mulcipty boch sides of Eq. 15.24 by —1/RC and integrate with the limits g = 0
When 7 = 0 and charge 7 is on the plates at time 7. N |
r )| a
wef = ’ ”
RC Jo e
t_ (V g\
RC R RC/|,




Becausc Inx — Iny = In3, Eq. 15.25 becomes

Solving for g, we get
g=CV(l— ﬂ—r,’jl(f) (15.26)

Let us analyze Eq. 15.26. Atz = 0,4 = CV (1 - = CV (1 -1) = 0.
This agrees with the facr that ar £ = 0 (when the switch was closed) the capacitor
was uncharged. As r increases, the exponential term in the parenthesis decreases and
consequently 7 Increases (the capacitor is being charged). Asr — 00, e7#RC — 0 and
g — CV, the ultimate chacge on the capacitor. Althouglh it takes an infinite amount
of time to fully charge the capacitor, it takes a fnite amount of tme ro get very close to
the final value g4 = CV', Moreover, this time is determined by the product RC, which is
called the time constant of the circuit, For example, whens = RC,g = CV (1-¢71) =
0.63CV;whens =4RC,q=CV (1 —¢7%) = 0.98 CV. We scc that after a few time
coustants, 4 is very close to its ultunate value. A plot of g versus  1s shown in Fig. 15-20.

The consistency of the electrical defimitions of R and € can be readily verified
in Eq. 15.26. From Ohm’s Jaw,

14 ( volrs ) ( volts )
R=— or | —— |-
7\ amps coul/sec

Similarly, from Eq. 14.21

. g {coul
C==
|4 <v01t8>

therefore, the units of RC become :F
vols C i

> | —————— |} or (seconds). Ve oo —
(coul/scc \-'olts) ( ) 0.98CV T
The mathematical solurion of the circuit equation shows thar the larger the /] ;
vajuc of the resistor R and of the capaaitor C, the longer it will take to charge it [ 1 |
. . . . |

It is not difficult to understand the physical reason for this result. The larger R, the e Y
smaller the current through the circuit at any one time, hence the smaller the ratc at 0 15 0 Ch&gﬁ

which the capacitor is being charged. Similarly, the larger C, the more charge itcan  accymulation on a capacicor in an
store for a given voltage and, obviously, the longer it wil] take to charge it. RC cjreuit as 2 funcdon of dme.




E : P.ROBLEMS

(5.1 Awirecarnesacurrenti =1 A. How many electrons
pass 2 fixed cross section of the wure in 1 sec?

;5.2 Copper has one conducuon electron per atom, that
is, each atom contributes one electron thar is free to move
through the solid. The density of copper is 9 g/em® and s
molccular weight is 64 g/mole. A wirc carres a cwrent of
10 A. The cross-seceional arca of the wire is 3mm?. (a) What
is the current density? (b) Whar is the number of conduction
electrons per m*? (¢) What is the drift velocity?
(a) 3.33 x 10° A/m?, (b) 8.47 x 10°¥ m~3,

(¢) 2.46 x 107* m/sec.

Anawer:

15.3 A copper wire 15m long has 8 x 10%® mobile clec-
mons. What is the dnft velocity of the electrons if the current
in the wirc is 5 A?

15.4 The resistivity of copper at ambient temperature is
p= 1.7 x 1078 Q-m. Whar is the resistance of a copper wire
5mlong and 2 x 1073 m in diameter?

15.5 Acopperwire (o= 1.7 x 1078 @-m) 10 m long and
1 x 107% m in diamerter carries a carrent of 2 A. What is the
potential difference across the ends of the wire?

15.6 In the earth’s atmosphere positive charges move to-
ward the earth anad negative charges move away from it. The
total current 1s approximately 1800 A. The average value of
the clectric ficld responsible for this current near the surface
of the ecarth is 100 N/C. What is the resisuvity of the air at che
surface of the carth? The radius of the earth is 6.37 x 10° m.

Answer:  2.83 x 10" Q-m.
Ry R3
I'B l4
|
%
FIGURE 15-21  Problem 15.8.

15.7 Inthe circuit of Example 15-4, Ict Ry = SQ R, =
102,R3 =4Q,and V = 2V. Find the currents 41, 73, and #3.

through cach resistor. Rj = 3Q, R, = 6Q, R3 = 6,
R: =129,V =18 V. (b) Whart 1s the total current 12

15.8 In the arcuit of Fig. 15-2) (a) Find the currents

15.9 The current through Ry in the circuit of Fig. 15-22 is
0.24. (a) Whar is the current in R, Ry, and Ry? (b) Whar is
the volrage of the battery:

Answer: (2) L1A, 054,044 (b)4.2V

H374Q I~
z

12 Problem 15.9.
15.10 How many possible resistance values can be ob-
tained with three resistors R = 502, R; = 100, and

R; =150

In the drcuitof Fig. 15-23, find #3, the volage drops
across Ry and Ry, and the volrage differences Ve — Vi and
Vi — Vg

£ Re =409 g Re = 4009 ¢

i
Ry = 8002
[+l
Vy =135V Vo -6V

1E

LB 15-23  Problem 15.11
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The current £ through R, in the circuit diagram of
Fig. 15-24 is 40 mA. (a) What is the current through R;.
R;, and Ry? (b) What is the potential difference berwveen A

and B?

12

15.15  The volrage drop across R i the circuit chagram of
Fig. 15-25 15 4 V. (a) Find the currents through the resistor
Ry, Ry, and R3. (b) What is the resistance of R;?

Answer: (a)0.5A,0.3A,08A, (b)1.67Q.

27 Vy =15V

1
V=6V
Problem 15.13.

FIGURE 15-25

Find the currents through the resistors Ry, Ry, and

15 t 4

2. 0149

R3 of the circuit of Fig. 15-26.

Vs = 10V

—-#ww——ﬁ— A |
= 100Q2 l ll_____l

- 500 Vi=4v

w*—]llh—*

Thee IR 14

15.15 Thedreuttof Fig. 15-27 isknown as the tha[stqn-e_;g_
Bridge. It is used to find the resistance of an unknown rcsistﬂi,_.; )
R, in terms of three known resistors Ry, Ry, and R, The
value of R, is adjusted upal no current Hows through L‘he'"
galvanometer G. (The arrow over the resistor symbol of R,
indicates that R, is a variable resistor) Let Ry = 10Q ang
R; = 100 If no current flows through G when R, —

470 Q, what is the value of R, ?

Answer: 4700 . I’
R, Ry
Ry R

1516 Agalvanometer has an internal resistance of 200!
and a current of 50 A will cause full-scale deflecaon.
shunt resistance 1s required o use it as an ammeter whose fil

scale reads 0.1 A

Answer: 1 Q.

5.17  The galvanometer of problem 15.16 1s to be
as a voltmerer with a maximum scale reading of 10 V.

1=

series resistance is required?
198 x10°Q

Answer:

As o vough approximation in the following four probi 7

treat the 120V ac (alternating curvent) voltage as a 120V
(direct cuyvent) constant voltage source, i.e., aca 120 V batiery

1518 An electric light bultb marked 100 W is used®
a home i which the wall ouder s at 120V, What is &

resistance of the filament in the bulb?
\

5,19 An immersion heater draws 3 A wfmcu it is plugs
ina120-V wall ouder. What is the power consumprion of 8

bheater?
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15.20 Ifthe immersion heater of problem 15.19 1s used to

poil a cub of water (2 = 150 g) initally ac 27°C and 80% of
the power i§ absorbed by the water, how long will it take for

¢he water o boil?

;5.21  An clecrric heater of resistance 5 €2 is plugged in a
120-V outlet by means of an extension line. Compare the
power Joss in an extension Jine 5 m long when the line is made
of No. 12-gauge copper wire (2.5 mm in diameter) and when
it is made of No. 14-gauge wire (1.6 nun m diameter). The
resistivity of copperis 1.7 x 1078 Q-m.

9.90W, 23.96 W.

Amnswer:

15.22  Amegawarr (10 warts) of electrical power is needed

ro run a factory. Compare the cnergy losses in the transmission
Jines when the volrage is 120 V with when it is 6000 V.

15.23  Avesistor R = 1000 Q2 and a capacitor C = 100 uF
are connected 1n series wirh a 10-V battery and a switch, (a)
How long after closing the switch will the volrage across the

TINADLLMVID W Lint

capacitor be 1.0 V. (b) When will the capacitor be charged to
99% of its final charge?
(2) 1.05 x 1072 sec, (b) 0.46 sec.

Answer:

A capacttor C in series with a resistor R is charged
by murning the switch ro position 2 in Fig. 15-28. After the
capacitor has been charged, the swirch is returned to position
b. Find an expression for the charge on the capacitor as a
funcaon of rime. Take + = 0 ar the moment the switch is

changed from a to b.

Answer: g = CV e798C,
b
1 R
ag” S
T T

FIGURE 15-28  Problem 15.24.
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16.]1 INTRODUCTION

Almost everyone has performed elementary experiments with bar magners. If the bar
magnet is suspended by a thread or supported by a pivot, one of the ends will point
in a northedy dirccuon. This end of the magnet s called the north pole of the magner,
with symbol N. The opposite end of the magnet is called the south pole, with symbol
S. Elemenrary cxperiments also show thar like poles repel and unlike poles artract.
This suggests that there is something that we call a magnetic field by which poles
can exert forces on each other, This field is similar to the two other ficlds we have
alrcady considered, the gravitatonal field and the electyic field. There is one important
difference, however: It we break a bar magnet in half, we cannot make single poles,
but instead we will have two bar magners. The broken end becomes the south pole
of the half that has the north pole, and the other broken end becomes the north pole
of the half that has the sourh pole.

There is an intmarte relation between the motion of electric charges and
magnetic fields, and our technological sociery is largely based on this relationship,
from che generation of electric power to many types of clectronic devices. We will not
deal with all these; instead we will consider only those effects which we need for the
understanding of the concepts of modern physics presented in later chapters, namely,
the magnertic field of a wire coil, the magnetic moment of a curreat loop, the force of
a magnetc feld on a moving charge, and the nature of electromagneric waves.

16.2 MAGNETIC FIELDS

We may map magnctic fie]ds by using 2 small compass that we will represent by a small
arrow with its head as the north pole of the compass magnet. We arbitrarily define
the direction of the magnetic field at a given point 1o be the direction in which the
compass points. Figure 16-1 shows the fields of a bar magnet and a horseshoe magner.
The fields are indicared by continuous Lines from the notth to the south pole, and the
number of lines is arbitrary, although in the comparison of two magnets the stronger
onc is customarily represented by a greater number of field lines. The direction of the
magneric fickd at a given pont is the rangent to the ficld Jine ar that poine. In furure
drawings we may represent the field direction by a single arrow on a hine.

In 1820 the Danish physicist Hans Oersted (1777-1851) found chat there
15 a maguetic field associated with current flowing in a wire. The direction of the
magnetic field for a long, straight wire is schemancally represented in Fig. 16-2. The
field lines are circular about the wire. There are many concentric ficld lines, but the
field becomes weaker as we move away from the wire. The direction of the mragnetic
field is derermined by a right-hand rule. If the thumb of the right hand is pointed in

g
FIGURE 1 6\" Aagnetic field

lines in berween the poles of a bar
magnet and a horseshoe magnet.

Hans Christian Ocrsted
(1777-1851).
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che direction of the current and the fingers are curled, the circular direction of the
fingers is tl,qc direction of the magnetic field.

Suppose we have a circular loop of wire thar carrics current, as in Fig. 16-3.
If we apply the right-hand rule, we see that one side of the loop has a north pole
pelpcndicular to the planc of the loop and its opposite side will become a south pole.
The arrows represent the magneric fickd direcnion smside the loop. These field lines
rerurn outside the loop so that the loop itself becomes 2 magner. This situation will
remain regardless of the shape of the currentloop; that is, a recrangular Joop will give
the same result.

] 6.3 FORCE ON CURRENT-CARRYING WIRES

In the preceding sections, we have presented some qualitative facts about magnetic
fields. We have seen that magnets exert forces on other magnees. We have also seen
that a wire carrving a current produces 2 magnetic held, that 1s, becomes a magnet.

Experiment shows thar when a wire carrying a current is placed in a magnetic
field, it will experience a force. We can vse this ro define the magnitude of a magneuc
ficld, B. (Remember that the direction of B has been defined as the direction taken
by the north pole of a compass).

Figurc 16-4 1s a schemaric drawing of an experiment which shows that when a
wirc carrying a current is placed in amagnetic field B the force Fis in a direction that s
perpendiculay to the plane defined by the field and the direction of the current. We also
find experimentally that there is no force on a wire if the wire is in the direction of the
magnetic field and that the force Fis proportional to the sine of the angle & berween the
field and the wire. The experiment also shows thac the force on the wire is proportional
to the current in the wire 7 and to the length of wire A7 in the ficld. From these
experimental resules we can define the magnitude of the magnetic field B as follows:

F
~ [Alsing
Irshould be clear thar Eq. 16.1 defines B unambiguously because, if we double or cut
0 half dhe current, the foree on the wire will change accordingly. Similar arguments
apply to A and sin 6.

From Eq. 16.1, the SI unut for B is newrons/ampere-meter (N/A-m). The name
for this unit of B is the tesla (T). An older unit for the magnetic field still in usc is the
gauss (G), where 1 tesla = 10* gauss. The carth’s magnetic field is abour 10747, so
thar 1 tesla is a large quannty. Having defined the magnetic ficld by Eq. 16.1, we can
oW state that when a segment of wirc A/, carrving a current 4, is placed in a magnetic
field of magnitude B, it will experience a force

F=:AlBsn# (16.2)

L 16-2 Magnetic field

lines around a fong, straight wire
carrying a aurene,

s
2
//

FICURE 106-3  Magneric
field lines on a plane through a
current-aarryung araular wire loop.
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FIGURE 16-4 Force on a current-carrving wire of length Al in a magnetic field.

The direcrion of this force is the perpendicular borh to the maguetic ficld and to the
direction of the current. We recognize that this refationship can be represented by a
vector cross product. That is, Eq. 16.2 may be written as

F=iA)xB (16.3)

[t is conventiopal to ler the current i be a scalar quantity and to Jet Al be a vector
pointing n the divection of the current. If we let the clement of wire n Fig. 16-4
measure ( at the rcader’s end and let A be the vecror length in the magnetic field,
then the right-hand rule for vector cross product discussed in Chapter 2 will yicld a
force in the upward dircction perpendicular to the plane of vectors Al and B.

I 6.4 TORQUEONA CURRENT LOOP

We are now able to understand the operation of the galvanomerer that was used in
Chapter 15 to construct ammeters and volrmeters.

Consider a single rectangular loop of wire connected to a pivor rod, as shown
in Fig. 16-5a. Let the length of sides 1 and 3 be 2 and thar of sides 2 and 4, 4. We
can use Eq. 16.3 to find the force on cach side of the loop. For sides 1 and 3 the
magnitudes of the forces arc the same because the angle benween Al and B is 907 and
both wires have the same lengrh a, that is,

Fy=F; =i AlBsin90° = iaB (16.4)

From the definition of the cross producet, we see that in Fig. 16-52 Fy is out of the
page toward the reader whereas F3 is into the page. These nvo forces are drawn in
Fig. 16-54. Simiarly the magnitudes of the forees on sides 2 and 4 are cqual.

Fy = Fy =i AlBsin(90° — 6) = 1bB sin(90° — 0)

in
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IJRE 16-5 Torque on a current-carrying recrangulas loop of wire on a pivor rod when placed
gnedc ficld. (a) Side view. (b) Top view.

- We conclude that there 1s no net foree in any direction. However, if we look at
top view (Fig. 16-54) along the pivor rod we see thar there exists a torque that
s to rotate the loop about the pivor rod. The torque is given by Eq. 8.5.

r=rx F 3.5

plied to the present situation, we see thar Fy and Fz exert a rorque on the loop. The
Y . ~ . e

1€t torque is the sum of the individual torques caused by F| and Fj, but because they

are equal, we simply multiply the torque exerted by one of these forces by nwo, or

r=2rxF

T=2rFsngd (16.6})
re F stands for cither F or Fs. Substituting Eq. 16.4 for F in Eq. 16.6, we obtain
T = 2riaBsin o (16.7)
From Figs. 16-54 and 16-54 we sce that # = 4/2; therefore

T = iabB s o {16.8)
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We recognize the product a as the area of the loop. Calling this area 4, Eq. 16.8 may
be writren as

1t =iABsiné (16.9)

Although Eq. 16.9 has been derived for a rectangular loop of wire, 1t can be shown
thar the result is the same for any other geometric configuragon.

Equation 16.9 tells us that the torque is a maximum when 6 = 90°, rhat is,
when the plane of the loop lies in the direction of B, and it is zeyo when § = 0°, that
18, when B is perpendicular o the plane of the loop. The magnitude of the torque can
be increased by increasing the current in the loop. Because in the galvanometer this
rorque on the coll is opposed by the rwisting (torsion) torque of the mctal strip uscd
ro suspend the coil, the magnitude of the angle of roration is a funcuon of the curcent
passing through the coil. An alternative way of increasing the torque on the coil is by
using a coll made of scveral loops. To increase the sensitivity of the galvanometer at
low currents, a coil of many loops of wire is used.

16.5 MAGNETIC DIPOLE MOMENT

Inthe preceding secrion, we saw that the important clement in determining the torque
on a wire loop, for a given field B in which it is placed, is the product of the area
of the loop and the current through the loop (see Eq. 16.9). This quantity 1s called
the magnetic dipole moment or simply the smagnetic moment of the coil with symbol p,
where

i =14 (16.10)
The expression for the rorque can now be wrjtten as
T=pBsing (16.11)

Equations 16.11 and 16.9 give the magnitude of the torque, but they do not speaty
the direction of 7. The direction of the torque can be obtained by using Eq. 16.5

T=2rxF (16.5)

From the definition of the cross product, the direction of 7 in Fig. 16-54 15 the
perpendicular ro the paper directed inward. We can specify both the magnitude and
the direction of 7 in terms of the magnetic moment by assigning a vector direction
o u. We define p as a vecror whose magnitude is given by Eq. 16.10 and whose
divection is the perpendicular to the plane of the loop according to the right-hand
rule. That is, we curl the fingers of the right hand 1n the dircction of the current and
rhe extended thumb indicares the direction of i (sec Fig. 16-54 ). We can now express




the rorque on the loop as

) T=pxB (16.12)
\ . .
From the definition of the cross product, it is dear thar Eq. 16.12 vields the correct

value for the magnitude (Eq. 16.11) and for the direction (Eq.16.5) of 7.

Because a magpenc dipole experiences a torque when placcd in an external
magnetic field, work must be done by an cxternal agent to change its orientation. As
in the cases considered carlier (gravitational and clectrical), this work, by definition,
pecomes the potential encrgy E, of the dipole. Recalling that only changes in potential
energy are experimentally observed, we must define a zero oy reference orienration.
It is customary to set E, = 0 when 6 = 90°, that is, when the dipole vector is
pcrpcndicular to the magnetic field. To calculate E; for any other orientation of 4,
we calculate the work using Eq. 8.13

¥
WOZ/ vt (8.13)
o
Setting this work equal to E,, and substicuting Eq. 16.11 for 7 in Eq. 8.13,
g
E, = B sin 646
90°
6
E, = — uBcosd
90r
Ep = — pBcosd (16.13)

This expression for £, can be written as a dort product (see Eq. 2.1), that is,
Bp=-uB (16.14)

We should notice that, because the cos@ varics between 1 and _1. the maxinum
cnergy is uB. This occurs when cos6 = —1 or 6 = 130°, that js, when 1 and B arc
antialigned. When 2 and B are aligned, 8 = 0°, cosd = 1, and the potential energy
18 at its minimum value of £, = —uB.

EXAMPLE 16-1

Assume that the electron in a hydrogen atom is essencially ina circular orbit of radius
0.5 x 1072% m, and rotates abour the nucleus at the rate of 1014 times per second.
What is the magnetic moment of the hydrogen atom due to the orbital motion of the
electron?

M= ar€a X current

5.
=71
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where71s the current due ro a single clecrron. Becausce current s defined as the amount
of charge passing per unit time, we may view the electron’s orbit as a racerrack and ask
how many rimes the electron passes a given poinr per second. The current is simply

i=cv

where v 1s the frequency of rotation — that is, the number of times the clectron passes
a given pomt in its orbit per second—and ¢ is the magnitude of the charge of the
electron.
p=mrtev
= 7(0.5 x 1079 m)2(1.6 x 10°*° C)(10'* Hz)
=1.26 x 107 A-m?

Thercfore, the hydrogen atom is essendally a small bar magnet and will behave as
such jn a magneric field.

] 6.6 FORCEON A MOVING CHARGE

We may use the development of Section 16.4 concerning the force on a current-
carrying wire in a magnetic field to find the force experienced by a single charge, We
sawin Eqs. 15.4 and 15.5 that we may write the current of either a positive or negative
charge carner as

1=gNAv

where 4 was the magnitude of a charge, N the number of charge carriers per unit
volume, A the cross-sectional arca, and v the average drift velocity of the charge
carriers. If we substitute this into Eq. 16.3 we obrain

F=7/AlxB (16.3)
=gNAvAlxB

We see that. 4 Al is the volume of the wire segment thar is in the magnedce field B.
The product of the charge density N (number of charges per unit volume) and the
volume of the wire segment gives the total nwaber of charges. Therefore, if N4 Al
1s the number of charges expericncing a toral force F, the force per charge carrier
1s F/NA Al and from Eq. 16.3
EF S
= ———=4vxB (16.15)
NA Al

Note that this has been derived for a posirive charge, because we impliatdy assume
that v is in the same direction as Al and thercfore the current. If the charge carrier is
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the electron, the direction of the force is reversed. The foree is perpendicudar to the

Janc of v and B by dcfinition of the vector cross product. It is therefore perpendicular
o the direction of moton given by the vecror v. The definition of work 1s the dot

roduct of force and displacement AW = E-ds = F ds cos 9. Because the infinttesimal
displacement ds has the same direction as the instantaneous velocity v, and becausc F
is Pcrpcndicu_lar tov, 6 = 907, cos 6 = 0, and the magneric field does no work on the
charge. The magnetic field therefore does not change the magnitude of the velocity
of the charged particle.

1 6*7 THE HALL EEFECT

Suppose we have 2 conducting metal strip of width d and chickness ¢ connected in a
circuir and placed in 2 uniform maguetic field B as in Fig. 16-6. Let the direction of
the magneric field be into the paper, indicated by the symbol @, which suggests the
tail of an arrow. The clecric field £, responsible for the current 2 will be directed to
the right. If we assume for the moment thar the current is caused by positive charges,
their drift velocity v will be in the directon of £, as shown in Fig. 16-6.

Ler us consider two points D and C on the meral strip such that che line joining
the two points s perpendicular to &, (see Fig. 16-6). Without the magnenc field,
the potential difference beeween these two points is zero because no work is done in

D
moving a charge from one point to the other. When the magnetic field is turned on, i ¥
the duifting charges will expericnce a force given by Eq. 16.15. We label this force Fy L I
to indicate that this is the force caused by the magnetic field B. i ? ¢
= -':"
Fp=gvxB=gqvB (16.15) 3 L N

This force, ustrated in Fig. 16-7, causes the positive charges to move to the upper
part of the conducting strip while they are moving to the right. Because the sample asa

whole must remain neutral, the lower part of the strip will become negatively charged. E l ‘ !
This situation is also shown in Fig. 16-7. The accumulation of positive charges along

the upper part and of negative charges along the lower part creares an electric field  FIGLRE 166 Expenmental

€, that opposes the further upward drift of posirive charges. There will be a potential =~ 278 ent for the measarement of

o . . , . fe Hall voltage.
difference 7 between D and C associared with this electric ficld. From Eq. 14.19 the volage
Vi =V —-Ve=Ed (16.16) >
' @y o ete
where it is assumed that in equilibrium &, is constant and 4 is the width of the strip [ v 1%
(the discance berween D and C). This voltage difference is called the Hall volrage afrex ?‘ >y
the physicist who first measured it, and the phenomenon is called the Hall effect. It © ) é Q0O
18 clear that the equilibrium Hall voltage Vi will be established when the downward
< FIGURE 16-7 Behavior of

force of £, equals the upward force resulang from the magnetic field. Because the )
¥ mobile postrtve charges in the

force of the electric field is given by definition in Eq. 14.1 as Fe = g&,, we can say oo o of Fig. 16-6
) arrang . .



thar at equilibrium (which is quickly established)

Fe=Fy (16.
& =quB (16.18)
therefore
& =vB

Substituting for €, in Eq. 16.16, we obrain
Vi =vBd

Because the Hall volrage can be readily measured by connecting a volrmeter
between D and C, the Hall effect permits the experimental derermination of the drift
velocity of the charge cacriers. We can obtain additional information if we use Egs.
154 0r 15.5 as follows

1 =gNAv
or
- (16.20)
gNA
Substtuting Eq. 16.18 for v in Eq. 16.17, we obtain
_iBd
H = q_l\’A L 10.21)

Note that 4 is the cross-sectional area of the foil, hence A = thickness (£) x width ().
Therefore

L 4B o
H = ——— (16.22)
gN ¢
or
iB i
Vi =Ry— (16.23)

where Ry = 1/gN is called the Hall coefficient. Because £, B, and 5 are measurable, the
magnitude of the Hall voltage will vicld the value of N, the density of charge carriers.
In the ST system of units, this density will be the number per cubic meter.
Additional important informarion can be obrained from the Hall effect. In our
discussion, we assumed that the charge carricrs were positively charged. These charges
were deflected toward the upper part of the foil, raising the porential of point ID with
respect to point C. Suppose, however, that the charge carriers are negatively charged
particles. In this case, the drift velocity of the carriers will be opposite to that of &, as
n Fag. 16-8. Ajthough the velocity vecror v is reversed, the direction of the force given
by Eq. 16.15 is still upward becanse rhe charge 7 1s negative. As a result, the upper
part of the strip will have an accumulation of negative charges and the lower partan

FIGTTRE 16-8  Behavior of

mobile negarive charges in _rhc Hall

cffect experiment.

acc
G.

o
ca

Mas,
Wave ¢
With I+
ang e
Moty

C

Valy,e C



Tall

Cau-nulation of posiave charges. Poinr D will now be at a lower potential than point
ac

C The polarity of the Hall voltage will tell which type of carrier is responsible for

-coﬂduc':i(m" We will sce in Chapter 25 that the semiconductors used in logic circuirs
ca.n pe made to have cither positve or ncgative charge carrers.

Ex,\MPLEﬁ 16-2
A current of 50A is cstablished 1o a slab of copper 0.5 cm vhick and 2 cm wide, The

glab is placed in a magnenc field B of 1.5 T. The magnetic field 1s perpendicular to
the planc of the slab and to the current. The free electron concentration in copper is
g 4 x 1028 clecorons/m®. What will be the magnirude of the Hall voltage across the

‘vidrh Of: lhc Slab>
Solution Using Equarion 16.19
1 iBd
Vi = —— 2
? Ng A
3 50A x 15T x2x 10?m
T 84x108m3x 1.6 % 10-19C x 10~* m?

=1.12x107°%V

6 8 ELECTROMAGNETIC WAVES: THE NATURE OF
o LIGHT

In 1670, Christian Huygen proposed that the propagation of light could be
explained by assuning that light is a wave. Huygen’s theory was not widely accepted
until 1801, when Thomas Young performed the first successful experiment that
exhibited the interference of light. Even though Young’s experiment established firmly
the wave nature of light, one imporranr question remained unanswered: What is the
nature of the light wave?

Starting with the fundamental laws of electromagnerism, James Maxwell
(1831-1879) in 1873 showcd that accelerared charges would produce electro-
Magnetic waves whose velocity of propagation ¢ through free space should

be
£ =3 x 103 m/sec

Maxwell and other physicists of that period also showed that an clectromagnetic
Wave consists of an electric field £ and a magnetic field B perpendicular to cach other
With both € and B perpendicular to the dircction of their propagation. The spatial
And temporal behavior of the elecrric and magnetic fields is identical ro the traversc
Mmotion of the particles in a siring when a traveling wave propagates through it.
Suppose an clectromagnetic wave travels along the x axis. If we measure the
value of £ and B ar different points along the x axis, at some fixed time £ we will

James Clerk Maxwell (1831-1879).
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FIGURE 16-9  In an clecromagnetic wave, the elecrric and the magnene ficlds arc at right angles
to cach other and to the direcrion of propagation of the wave.

observe that both € and B vary sinusoidally with x. This behavior is illuserated in
Fig. 16-9. Similarly, if we sit ar a fixed point in space and measure £ and B ar that
point as a function of time, we observe that both vary sinusoidally wich time.

This bebavior of the elcctric and magnetic fields can be represented mathemat-
ically as

E=¢& sin(kx — rut)
and (16.22)

B = By sin(fx — o)

Equations 16.22 have the same mathemarical form as the sinusoidal travcling
wave thar was introduced in Chaprer 11 (sec Eq. 11.4 and following). James
Maxwell showed that any charge distribution that oscillates sinusoidally with oime
should produce electric and magnetic ficlds that behave as descuibed by Eqs. 16.22.
Moreover, the frequency w of the electromagnetic wave should be the same as the
frequency of oscillation of the charges producing it. We should indicate at this point
thar no motion of material particles is involved in the electromagnetic wave, hence,
there is no need for a medium of propagation.

One of the key characteristics of a particular type of wave is its velocity of
propagation. Maxwell’s theoretical prediction was that all electromagnetic waves
should travel with velocity ¢ = 3 x 10% m/sec. Within the experimental uncertaingy
this was the value rhar was measured for the speed of light in 1849. This fact
led Maxwell to postulate rhat light is an electromagnetic wave. Fifteen years after
Maxwell’s calculations, Heinrich Hertz (1857-1894) was able to produce waves of
elecoromagnetic origin using a circuir with an oscillaning current flowing through
it. Herrz found that the speed of his clectromagnetic waves agreed, within the
expenmental uncertainties, with the value predicred by Maxwell. The common

Heinrich Hertz

(1857-1894).
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Electromagnetic Specirum

dcc[romagnetic spectrum s listed in the following table, although there are no upper

Name Frequency (Hz) Wavelength (m)
Gamma rays 10%3-10%° 10 10770
X rays 1020-10'¢ 10-12-10-8
Ultraviolet rays 10%7-)0%% 10-°-10-¢
Visible light (4-7.5) x10'* (7.5-4) 1077
Infrared rays 10'4-10 1075-107*
Microwaves 10'*-10° 10-*-10""
Short radio waves 10°-10° 1073102
FM, TV 108 1

AM radio 107-10° 102-10
Long radio waves 108-10! 103-107

The laws of electromagnetic waves apply to waves of the endre clecrromagnetic
spectrum. Some wavelengths, such as visible light, are more accessible for experiment
than are other wavelengths, but all have been at least parmially checked for consistency

with this modcl.

PROBLEMS

16.1  Whar force 1s expenenced by a wire of length / =
0.08 m at an angle of 20° to the magnetic field direction
carrying a current of 2.A in a magnetic ficld of 1.4 T?

16.2  The carth’s magnetic field at the equator is 4 x 107° T
and is paralle] ro the surface of the earth in the south-north
direcrion. (Note that the eartl’s geographic north pole is the
magnetic south pole.) A wire 2m long of mass m = 9g
is suspended by a string. The wire is also paralicl to the
carth’s surface and carriecs a current of 150 A in the cast-
west dircenon. (a) Whar 1s the tension on the string? (b)
What would be the tension if the current was in the west-east
direction?

Ansiper: (2) 10.02 x 1072N, (b) 7.62 x 1072 N.

16.3 A rectangular wire loop carrving a current 7 = 5 A
s hung by a stoing from the end of a rod pivoted abour its
midpoint, as in Fig. 16-10. The lower part of the loop is in

a region where there js 2 uniform magnetic field B = 2T
perpendicular to the plane of the loop as shown. Whar weight
must be placed on the other end of the pivoted rod to balance
i?

Answer: §N.

g Ros
O !
PIVOl/M
Wire loop
\\
® © o]
| 7 4 I
I® ®!
| hogmed |
©__©5 ®)

1171 Problem 16.3.



6.4 Thewire of Fig. 16-11 carries a current 2 = 2 A. Find
the force on cach scgment of the wire when it js placed in
a region where there is 4 magnetic field B = 1.5 T directed
along the positive y axis.

Problem 16 4.

FIGURE 16-11

16.5  Thewireloop ot Fig. 16-12 carries a currentof 2 A. Te
is placed in a region where there is a magncric ficld 8 = 0.5 T
paralicl ro the plane of the loop. (a) Calculate the foree on each

side of the wire loop. (b) What is the torque op the wire loop?

06m v — = R
Yi=2 Amp

%*—0.3 mﬁv{

FIGURE 16-12  Problem 16.5

16.6  Thewireloop of big. 16-13 carries acurrencs = 10 A.
Itisplaced ina uniform magnetic field B = 1.2 T. Lery = 2 m.
(a) Find the net force on the circular part of the loop. (b)
Whar is the net foree on the loop?

Answer: (a) 48 N, tn the upward direction, (b) 0.

x X
x x
X x x ®/3
x X X x x

Problem 16.6.

FIGURE 16-13

16.7  Whar is the masimum torque thar acts on a coil of
wire that consists of 10 loops of diamerer 0.04 m and carries
acutrent of 2 x 1075 A in 2 magnetic ficld of 3 x 1072}

16.5  Awireof length /is to be used to make a coil of one or
several cireular loops through which a current 7 will be passed.
(a) Show that the maxunum magnctc dipole is obrained by

making a single loop. (b) Whar is the dipole moment?

6.9 How much work must be done to rotate the loop of
Problem 16.6 from the position shown in Fig. 16-13 o a
position where the magneric field 1s paraliel to the plane of
the loop?

16.10 A magnctic dipole u with a momene of inertia I
is placed 1n a uniform magnetic field B. Injtially 4 is in the
equlibrium position, that is, parallel to B. The dipole is then
rotated by a small angle 6 and then released. (a) Show that
the subsequent motion of the dipole is approximately simple
harmonic. (b) What is the period of the motion? (Hine: For
small angles @, sind ~ 4.)

1611 A ring made of an insulator with radius » = 0.2m
has a uniformly distributed charge g = 4 x 107* C. The ring
is placed in the x-y planc of a region where there is 2 uniform
magnetic field B = 1.2 T directed along the positive y axis (5€¢
Pig. 16-14). The ring is rotated abour the z axis with constant
angular velocity w = 20rev/sec. (a) What 1s the magnetc
moment of the rotating ring? (b) Whar is the torque exerted
by the magnetic field on the ring?

Answer: () 1.01 x 1073 A-m?, (b) 1.21 x 1073 N-m.
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FIGURE 16-14  Problem 16.11.

16.12 A protonis moving with a velocity v = (3 x L0% +

7 x 10°k) m/sec in a region where there is 2 magnctic field

B = 0.4j T. What 1s the force experienced by the proton?
Anser: (1.92k — 4.48j) x 107* N,

16.13 A proton 1s accelerated through a porential difter-
encc ot 200 V. Ir then enters a region where there is a magnetic
field B = 0.5 T. The magnertic ficld 1s perpendicular co the di-
rection of motion of the procon. Whatis the force experienced
by the proton?

16.14 A charged particle g is projected in the region be-
tween two parallel plates. In the region of the plates there
1§ an clecrric field £ = 50,000 N/C and a magnetic field
B = 0.1T. The clectric field is perpendicular to the magnetic
ficld, and both are perpendicular to the direction of mouion,
as shown in Fig. 16-15. Tt the particle goes through the plates
undeflecred, what 1s the velocity of the particle?
Answer: 5 x 10° my/sec.

r ]
S— & % @ B

q Y

| oo = N s R\ N0 vk |

FIGURE 16-15 Problem 16.14.

16.15 A proton is accelerated dhrough a porential differ-
ence of 300 V. Tr rhen enters a region where there is a magnetic
field B = 0.8 T and an cleceric field €. The electric field is per-
pendicular to the magneric field, and both are perpendicular

LN RN IV - Lrr

1o the direction of monon of the proton (sec Fig. 16-16). The
proton movces through undeflected. What is the value of £2
Answer: 1.92 x 10° N/C.

x x « x
x x ] ® B
X x x x
1€
x x | X
v, Y
—l
x g X x X
X X x
X % x %

TIGURE 1616 Problem 16.15.

16.16 A particle of mass m = 15g and charge g = 3 x
1073 C is moving horizontally near the surface of the carth
with a veloaty v = 50 m/scc. Whar is the magnitude and
direcrion of the smallest magnetic field B that will keep the
particle moving in a straight line? Ignore the elecric field
mentioned w Problem 15.6.

16.17  An electron is moving with a velocity vi = (2 x
10% + 4 x 10%) m/sec in a region where there is a uniform
magnetic ficld, it experiences a force By along the z axis. A sec-
ond electron with velocity va = 3 x 10% m/sce experiences
aforce Fy = 7 x 10713 N. (a) What is the dircction and the
magnitude of the magneric ficld? (by Whar is the magmiude
and dircction of Fy?
Answer:  (a) 1.46jT, (b) 4.67 x 10713k N.

16.18  Asuipofcopper 1 emwide and 1 mm thick bas 50 A
of current passing through it. The strip is in a magneric field
of 0.5 T directed into the paper (see Fig. 16-17). The volrage
difference Viy = Ve — Vi = 2 x 1076V and the obscrvarion
that Ve is larger that Vp indicates chat the conduction is by
electrons. Whar is the density of the clectrons responsible for
the currene? (¢ = 1.6 x 10712 C)
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FIGURE 16-1 Problem 16.18.

A rectangular slab of silicon of thickness 1 mm is
used to measure a0 unknown magnetic field B. The free
electron concentradon of rhac particular type of silicon is
6 x 10%* clectrons per m*. When the slab is placed in the
region of the magnetic ficld, perpendicular to the field, and
the current in the slab is 20 mA, the Hall voltage is 150 4 V.
What is the strength of the magnetic field?

Answer:  7.27T.

Along metal plate of width 4 = 1 coa 1s moved wich
consrant velocity v i a region where there is a magnetic field
B =097 (see Fig. 16-18). A potential difference V' = 4.5 x
107* V appears across two points D and C. The linc joining
the two points 1s perpendicular to the direction of motion of
the plate. What is the velocity u?

Answer: 0.5 m/s.

FIGURE 16-18 Problem, 16.20.




250 » THEBEGINNING OF THE QUANTUM STORY
17.1 INTRODUCTION

By the end of the nineteenth century, most physicists felt rather good abour the state of
their art. In fact, some felt that their successors would spend their time simply taking
measurements to the gext decimal place. There were reasons for this complacent
artitude. Most of the astcronomical data about the motion of the planets, as well as
the behavior of ordinary mechanical systems, could be cxplained using Newron’s
laws of motion and his law of universal gravitation. The empirical laws concerning
clecrric and magnetic flelds had been discovered and fused together by Maxwell, and
his predicnion of the cxistence of electromagnenic waves had been experimentally
verified by Heinrich Hertz: The nature of light was no longer a mystwerv. More
imporrant, the same Jaws used to explain the behavior of macroscopic systems were
also able to explain the behavior of submicroscopic objects (atoms and molccules).
This came abour with the development of the rechniques of statistical mechanics. By
applying Newton’s laws statistically the ideal gas law, PV = #RT could be dcrived.
Simitarly, the specific heat of gascs could be predicted in agreement with the available
expermental data.

There were a few minor problems. We will mention two of them that were
instrumental i the advent of the scientific revolution that today we call modemn
physics. The principle of relativity seemed to fail when applied to electromagnerism.
The principle states that the laws of physics should be the same tn all incrtial frames
of reference. Someone performing cxperiments in a spaceship moving with constant
velocity with respect to the earth obtains the same results from the experiments as does
an experimenter on earth. Because physical laws reflect the results of the experiments,
it follows that these laws have ro be the same (must have the same mathematical
form) in all inertial frames of reference. This mathematical invariance was shown to
be prescrved with the laws of mechanics, but it broke down wirh the laws of cleciricity
and magnetism. This “minor” problem eventually led to development of Einstein’s
special theory of velariviry.

Another problem that baffled physicists at the beginning of the cwenticth
century was the nature of the spectrum emitted by a class of objects called blackbodies.
The predicrions of classical ideas did pot fir the experimental resules. This problem
led to the development of whar we now call guanzum mechanics, Relauvistic cffects
do not generally affect computer operarion, so we will address only the quantum
mechanical part of modern physics in the remainder of this book.
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| 7,2 BLACKBODY RADIATION

All substances at finite temperatures radiate electromagnctic waves. Isolated atoms
(ina gas) emir discrete frequencies, molecules emit bands of frequencics, and solids
radiate 2 continuous spectrum of frequencies.

The derails of the spectrum emitted by a solid depend on its temperature and
o SODIC EXTENnt ON 1ts COMPOsition. At room temperarure the spectrum is ceneered
around the infrared; that is, most of the radiation emirred lies in the infrared part of
the clectromagnetic spectrum. As the temperature of the solid increases, more and
more of the emitted radiarion is in the visible part of the spectrum; we sce it first glow
red and then approach white as the temperarurc is increased.

Objects that emit a spectrum of unsversal character, one that does not depend
on the composition of the object, arc called blackbodies. The reason for che name is
that these objects absorb all the radiation incident on them. They do not reflect lighe,
and henee they appear black. We see them by contrast with other objects or their
background. Any object painted with a dull black pigment is a good approximation
to an ideal blackbody. Another type of blackbody js a metallic caviry with a small hole
(sce Fig. 17-1). Any radiation entering the hole has a very small probabulity of being
reflected out, hence rhe object (hole) is “black™ Afrer multiple parual reflections by
the inner walls of the cavity, the radiation is eventually absorbed by the atoms i the
walls of the cavity. These atomns, in turn, will reradiate elecrromagneric waves into the
cavity and some of it will leak our through the hole. Theorencally, the character of
this radiation that leaks out is the same as that of the other type of blackbody.

17.2a. Character of the Spectrum of a Blackbody

The main fearures of the spectrom emitred by a blackbody are:

1 The spectrum is continuous with a broad maximun. This fact is shown in Fig,
17-2, which s a plot of I(v}, the spectral radiancy at each frequency, versus the
frequency of the radiacion. The spectral radiancy is the energy per frequency
emitred per unit time per unitarca of the blackbody. The two curves correspond
to two different temperatures of the object.

The integral of I(v) over all v, which we call I, represents the energy emitred
per unit time per unit area, regardless of the frequency, and it is found to increase
with the fourth power of the remperarure. This empirical fact, known as the
Stefan-Boltzmann law, states that,

Iy = / I(v)ydv=oT?
J0O

b

where the constant o = 5.67 x 10~ W/m2-K*. This integral is clearly the area
LlndC!‘ f_hC carve fOI' each tCIl\PCTOEU.l'C.

2 L7-10 A merallic caviey
with a small hole is an example of a
blackbody. Radiation enrering the
hole is eventually absorbed atter
successive reflecrions ar the inner
walls of the cavuy. Some of the
radiation reemitted by the aroms
in the walls of the cavity leaks out
through the hole. This radiation has
the same character as rhat of any
other blackbody.



3 Figure 17-2 also shows that the spectrum shifts toward higher frequenaes as
the temperatuge increases. In fact, onc finds experimentally char the frequency
Vraax, A Which 7(v) is a maximum, increases linearly wich dic temperature of the

cavity (blackbody), that s,

Vaan & T

17.2b. Planck’s Theory

Arrempts by physicists to explain the blackbody spectrum using the laws of classical
elecoromagnetism and thermodynamics proved unsuceesstul.

On December 14, 1900, at a meeting of the German Physical Society, Max
Planck (1858-1947) presented a paper entitled, “On the Theory of the Energy
Distribution Law of the Normal Spectrum.” This event is considered che birthday
of quantum mechanics. As we will see, these ideas were at first introduced a lirde bit
haphazardly, with no justification other than thar they accounted for the experimental
facts. Eventually, these ideas were tused together into a set of fundamenral principles
by Erwin Schrodinger and Werner Heiscnberg.

Planck’s approach to the problem was to find an empirical mathematical
expression for I(v) that would fit che cxperimental data. He then observed thac he
could derive the expression by making a revolutionary physical hypothesis, namely;
a system undergoing ssmple barrmonic motion with frequency v can only have and therefore
can only et enengies given by E = nhv, wheve n = 1, 2,3, ... and / is a constant now
known as Planck’s constant. The value of 4, which resulted inn a good fit between the
data and the expression found by Planck for I(v), is 6.63 x 1073* Joule second (J-sec).

We know chat the epergy of 2 harmonic oscillator is proportional to the square
of the amplitude of the motion (Sectdon 10.6). In a classical treatment, such as an
oscillating spring, this amplitrude may vary continuously from zero to infinity. In
contrast, Planck postulated that atomic oscillators can have only discrete energy values.
The dassical and Planclk’s energy spectra for an oscillator are contrasted in Fig, 17-

3. By Planck’s hvpothesis, because an oscillator (such as the atoms i the walls of the
cavity) can take onlv certain values for the cnergy, when they losc that energy (by
emitting electromagnetic waves), they lose it in muluples of hv. These small quantities
of energy are called guanta (singular, guantum).

Using the energy spectrum just described for the atomic oscillators, and
consequenty for the eleciromagneric waves emitted by them, together witch simple
thermodynamic arguments, Planck derived a rather complicared expression for 1(v)

thar matched the experimental data:

2hy? 1
2 exp(hvlkeyT) — 1

I(v) =

()| 7

4!

[R—
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FIC The inrcnsity of
the radiation emitred by a blackbody
as a function of the frequency of -
rhe rachatton for cwvo different
remperarures of the blackbody, Noge
thar the total energy (arca under the
curve) and rhe frequency ar which
the tnrensity 1S a maximum increase
with increasing remperature,

E

N, K
(a) Amplitude

Es=5hr

LEa=4hr
——‘)'{3:-3I'll-'

ko= 2he

Fi=he
(b —_— E5=0
F1G (w) Dependence of
the energy of a classical oscillator on
the amphitude of the modon. Because
the aniplitude of the morion catt be
varicd continuously from zero @
infinity, the energy of an oscillating
body can have any value berween
zero and infinicy. (#) Disarete
{quantized) cnergy specrum of
stormic oscillators as propoed bY
Planck to cxplain the specrum of
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where ¢ is the velocity of light, ky is the Boltzmany constant, v is the frequency of the
elecrromagnctic wave, and T is the absolute temperature of the blackbody.

Every day experience shows thatan oscillator, for example, a pendulum or amass
connected 10 a spring, stops osallanng progressively and smoothly, not in jumps.
Is Planck’s hypothesis in conflicr wirh this macroscopic experimental observation?
Not really. Let us consider a mass m = 10kg, attached ro a spring of force constant
% £ 103 N/m. Ler the initial amplitude of the motion beA = 0.1 m. From elementary
mechanics, we know that

1
E= %mz = 2 % 10°N/m x (0.1 m)* = 5]
and
1 [k
)= w— | —=159H
N v 27,—Vn1, ]0 IIZ

The separation between adjacent energy levels is, by Planck’s hypothesis
AE =hv=6.63 x 107 J-sec x 1.59sec™ ~ 1073 ]

This example shows that, for a macroscopic oscillator, the separation between the
allowed energy states (as postulated by Planck) is extremely small compared with the
energy of the oscillator. The oscillator may be losing energy in jumps, bur the effect
1s Dot noticeable,

] 7.3 THE PHOTOELECTRIC EFFECT

The quantum idea, introduced by Planck to explain the spectrum of a blackbody,
was further expanded by Albert Einstein (1879-1955) in connection with the
photoclectric effect. Under cerrain conditions, which we will discuss shordy, light
mncident on a metal will cause clectrons to be ejected from the surface of the metal.
This is known as the phoroelectric effect .

We will summarize an expertment that can be used to study the properiies of the
clectrons ejected from the metal. We will then see the failure of classical idcas to explain
the resules and, finally, we will introduce Finstein’s hypothesis about the nature of
electromagnetic radiation and how this hypothesis accounts for the experimental facts.

7 .3a. Experimental Facts

Ancexperimental arrangement that can be used to stady some of the propertics of
the phoroelectric effect is shown in Fig, 17-4. The apparacus consists of an cvacuated
ftube with two metal plates, C, the cathode, and A, the anode. Monocdwomatic hight
(Single wavelength) is sent through a quartz window onto the cathode C. Because
the anode is ar a negative potenrial ¥ with respect to the cathode, the clectrons,

AURE 174 Experimental
arrangement for the study of the

photoelectyic eftect.
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on being emitted by the incident light striking the cathode, face a retarding voltage
V. To reach the anode the photoclectrons must be cjected with a kinetic energy E
that is greater chan the difference in potential energy, [¢|V, between the anode and
the cathode. When E, >
conrribure to the cwrrent through rthe circuir, which is measured by a galvanometer

elV, the clectrons, on reaching the anode, will be able to
G. The rube is evacuared to minimize the collisions between the phoroelectrons and
the gas molecules in the tube. By varying the retarding voltage V', the spectrum of
encrgies with which the elecrrons are emitted can be derermined. Other paramerers
can be varied ro see how they affect the energy and the number of photoelectrons
cmitted; these include the intensity 7 and the frequency v of the incident light and the
narure of the cathode. A summary of the experimencal results is shown i Fig. 17-5.

If the value of the retarding voltage V and of the frequency of the light are kept
constant (Fig. 17-5a), 1tis seen thar the photocurrent i through the circuit increases
lincarly with increasing intensity I of the incident radiacion. This in turn means that
the number of electrons emitred with energies E; > |¢|V increases with I, because §
is proportional to the number of electrons that are collected by the anode.

Figure 17-56 shows the dependence of £, and hence of the number of eritted
clectrons capable of reaching the anode, on the value of the retarding voltage. The
experiment is performed while keeping both the intensity and the frequency of the
radiation constant. The two curves correspond to two different vatues of I'. The result
can be casily understood. For small 1’5, only the electrons emitted with small encrgics
are rurned back by the retarding voltage, and therefore do notr contribute to the
current 7. As V' is increased, clectrons with higher epergies will be turned back, and
the current will decreasc. When V' = Vg (V) is called the stopping potentinl), all the
electrons, including the most cnergetic ones, are marned back and the current drops
to zero. Vy is thercfore a measure of the maximum encrgy with which the electrons
are ¢jected from the cathode,

le|Vo = Ep jnax (17.2)
Figure 17-5& shows that Vi, and theretore the maximmm enevgy of the photoclectyons, is
independent of the intensity of the light.

The dependence of ¥y on the frequency v of the lighr can be examined by
repeating the previous experiment with different vs. Figure 17-5¢ shows that Vo
(hence By ;) Increascs linearly with v. Thar is,

[#¥]

Vo=av (

The value of the slope 2 is found to be 4.1 x 10772 J-sec/C. The linear dependence
of ¥ on v and the value of the slope remain unchanged if the experiment is repeated
with a cathode made of a different metal. Fi gure 17-5¢ also shows that for freq UENCICS
v = v Vy is zero. This means that no voltage is necessary to stop the most cnergetic
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FIGURE 17-5 (a) The
photocurrent (the number of emitred
electrons) increases with increasing
light intensiry. () The number of
emitted electrons able to reach the
anode A decrcascs as rhe rerarding
voltage increases. The stopping
potcntiaj Vy ts independent of the
light intensity. (¢) The stopping -
poreatial increxses lincarly with
increasing {requency of the hight.
For frequencies below v, Fy is %10
because no electrons arc emitted. The
value of v. depends on rhe inatcri;ll
heing itluminared (the cathode). The
two curves ae for cesium (Cs) and
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electrons; no volrage is needed because no clecttons are emitred when v < v, As the
graph indicates, the value of v, depends on the marterial used for the cathode.

There is one final experimental fact that is crucia) to the discussion char will
follow. When the conditions for photoemission are favorable (high enough v, low
enough V), the emission is almostinstantancous. The phorocurrent has been observed
to occur within 107 sce from the onset of illuminadon, which is the limit of
experimental accuracy. This essentially insrantancous emission has been observed to
rake place with extremely low intensities of light, as low as 10710 W/m?.

17.3b. Failure of Classical Physics to Explain the Results

According to classical physics, light is an elecrromagnetic wave (see Section 16.8).
To understand the failure of classical physics to explain the experimental results just
presented, we need ro remind ourselves of two facts about waves:

The encrgy of 2 wave is continuously distributed over the entire space traversed
by the wave. For example, when the ripples in the pond move ounward from
their source, all the water in their path is displaced. The intensity of a wave,
which represents the energy carried by the wave per unit area perpendicular to
the direction of propagation of the wave, per unit ume is proportional to the
square of the amplitude of the wave (Eq. 11.20). In the case of electromagnetic
waves It can be shown that

1
I= 5 €0 c&%

where g 15 the permirnviry of free space, ¢ is the velocity of lighr, and & is the
amplirude of the electric field of the wave.

With chese two facts in mind, let us consider an clectron that is bound with
some cnergy £y to the metal. An clecwric field £ = & sinfky — of) impinges on the
bound ejectron. The electric field will exert a force F = 1€ = |e}é sin (kx —wt) onthe
electrons. This force will do work on the electrons, the amount of work depending
on the magnitude of the force. As a result, the clectric field will increase the energy of
the clectrons and, if the energy that the electrons pick up from the electromagnetic
field is greater than the binding energy that keeps them in the metal, the electrons
Will come our of the metal with a kinetic energy E;. which is the difference berween
the energy absorbed from the wave and the binding energy E;. As the amplitude of
the wave increases, the magnitude of the force increases, and so does the work done
by the electromagnetic field on a given electron. We therefore expect, from classical
Physics, that che cnergy given to the electron will increase as the intensity of the wave
increases; derailed caleularions show thac the encrgy absorbed is, indeed, proportional
to the intensiry.



Let us now recxamine the experimental results. The results of Fig. 17-52 can
be explained in terans of classical concepts. The clectrons 1 the meral are bound
differently: some more tightly than others. Given a certain intensity of the wave
and rthercfore a certain amount of energy available to them, the clectrons will use
it ro liberate themselves from the meral; apy remaining energy will be in the form
of kinetic energy of the electrons. For small intensitics only those electrons thar are
weakly bound will come out with sufficient kinetic energy to overcome the retarding
potential and to contribute to the current. As the intensity is Increased the energy
avadable will increase and more electrons will come out with sufficient energy to
reach the anode. The current should increase with increasing intenstry, and it does.

The fact that By ya ts independent of the intensity is difficult to explain by
classical theory. If you increase I, you increase the encrgy available to all the clectrons,
including those thar are the least ughtly bound and that therefore come out with the
maximum kinetic energy. Thus the fact that ¥ 1s independent of I (see Fig. 17-55)
cannot be cxplained by dassical ideas.

The fact that Ey p,, increases with v (see Fig. 17-5¢) cannot be accounted for
by classical physics. As we have scen, the energy of the clecrromagnetic wave depends
on its intensity (amplirude squared), not on jts frequency. Why should Vo depend on
v? Why is there a v, below which no electrons are emitted, no matter how intense the
wave Js? Classical physics provides no answer.

Finally, the fact thar the enuission is almost instantaneous plays a key role in the
rejection of the classical ideas abour the nature of electromagnetic radiation. If we
consider radiation with intensity / = 10720 W/m?, there is no way that the electrons
can be emitted in 1077 sec. It should take considerably longer. Let us consider a sheer
of some metal with an area of 1 m?, as shown in Fig. 17-6, and let us assume thar lighe
of intensity I = 107" W/m? shines on it. As we mentioned, the energy of the beam is
spread continuously over the entire wave fronte. Let us be oprimistic and assume that
all the encrgy failling on a certain atomic site of the meral sheet is absorbed by only
one of the electrons of the atom, the most looscly bound. Tt is well known, from X-
ray studies, thar the interatomic separation 4 in a metal is abour 2.4 (1.4 = 10710 m).
We can uge this fact to find out how many atomic sites there are in the first laver of
the metal surface.

. lm
The number of atoms in a 1-m-long row = vE
1m
=" = 5% 10% atoms/row
2x 1071m /

For simplicity, let the metal have cubic strucrure. This means that there are as many
rows as we have aroms fn once row. And, conscquently, the number of atoms in the
first layer of the metal sheer will be (5 x 10%)2 = 2.5 % 10'? atoms/layer. According to
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ol SENEIOUS ASSUMPLION 10710 J/sec-m? are shared by 2.5 x 109 electrons. Thar 1s,

f , 10710 ]/sec

Energy/second-electron = 35 <1019,

It is known from other types of experiments that the minimum binding encrgy of an

clectron in a meral js typically a few eV7s. Let us take 1¢V. The time required for the
clecaon to collect 1 eV from the clectromagnertic wave will be,

C1eVx L6x 10797V
N 4 x 107307 /s¢c o

=4 % 1073 /sec-e

4 % 10" sec

or ~ 10° days

Thus, we sec that classical physics also fails to explain the short rime release of clectrons
in the photoelectric effecr.

17.3¢c. Einstein’s Theory

In 1905, five vears after Planck’s historic paper, Einstcin was able to explain the
photoelectric cffecr by proposing a theory abourt the nature of electromagnetic
radiation that was dramarically different from that of classical electromagnerism.

According to Einstein, the energy of an electromagmetic wave of frequency v is nor

continuously distributed over the entive wave front, bur instead it is localized tn small bundles -

(porticle-like entiries) called photons. The energy of each photon is Epnern = bv, wherce
h is Planck’s constant (see Scction 17.2b).

Basically, according ro Einstein, a beam of elecromagneric radiation carvies
energy like a beam of particles, not like a wave. Within rhe Einstein bypothesis, the
intensity of the beam is a measure of the density of photons in the beam. Increasing
the intensity without changing the frequency docs not change the energy of the
individual phorons, burt rather the number of photons per unir volume of the beamn,
and thus the encrgy density of the beam.

Einstein visualized the photoelectric effect as a particle-particie colbsion in
which a photon of encrgy hv collides with an electron in the meral and imparts all its
encrgy to the clectron. From conscrvation of encrgy,

/7V:Ek +Eb (17.4)
where E, is the energy with which the particular electron is bound ro the meral and
Ej, is the kinetic energy with which that electron is ejected. From Eq. 17.4 it is cJear

that the value of £ will depend on how tightly bound a given electron 3s. The smaller
Ey, the larger Ep will be. We can rewrite Eq. 17.4 as

Bkma.xzh\;"d’ {17.5)

where ¢ 1s the minimum binding energy and is called the work funcrion of the metal.
(Note that ¢ is not an angle bur a symbol for encrgy in this case.) Experimentally,

A

Albert Einstein (J&79—1955).
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Ejy max s measured bv determining the stopping potential Vg and £4 my = £V, thus
Eq. 17.5 can be rewrirten as
b

Voz-v-f (17.6)
14 £

We can now explain all the experimental data presented at the beginning of
this section. The greater the intensity I, the larger the number of photons that will
strike the meral cathode every second. This will result in a grearer number of photon-
electron collisions and a subsequent increase in the number of electrons emicted. Thus
the resulrs of Fig. 17-5a are explained.

Increasing the wnrensity increases the number of photons, not the encrgy of the
individua photons. The maximum energy (and therefore Vy) should not depend on
the number of phorons (on intensity ) bur rather on the energy of cach photon,
that 15, on the frequency of the wave. In fact, Eq. 17.6 shows that Vg should wncrease
linearly wath v. This is 1n agreement with the result presented in Fig. 17-5¢. The slope
of the curve according o Eq. 17.6 should be equal to /e = 4.1 x 10713 J-sec/C,
which is the observed value. It should be clear that if the energy of the photons is less
than the work function of the metal, no electrons can be ¢jected. That is, if

hv < ¢ or v< % =y (17.7)

no photocmission will rake place. The cur-off frequency v, is accounted for.

Finally, the enuission is instantaneous because the process is not one it which
the electrons progressively gather energy unul they have cnough to come out. It is
a particle-particle collision. If just one photon wirh energy sv > ¢ collides with an
clectron, the latter will be immediately ejecred.

EXAMPLE 17-1
The eye is capable of detecting 10eV of light encrgy. If we take as the average
wavelength of light 6000 A, how many photons is the eye capable of detecting?

Solution  According ro Einstein’s theory, the energy of a photon is given by
hv. Using this, together with the fact (Eq. 11.2) that the product of the wavelength
and the frequency cquals the velocity of propagaton of the wave, which in the case
of light is ¢, that s,

aw=r (17.8)
we obtain

Energy/photon = huv = T

6,63 x 103 J-sec x 3 x 10% my/ser
6000 x 10-10m




=332%x107]=2.07cV

10eV

——————— = 5 phorons
2.07 ¢V/photon

Number of photons =

EXAMPLE 17-2
The cut-off frequency for photoemission in copper is 1.0 x 10'® Hz. What is the
maximum kineric energy of the photoelecrrons emitred when light of wavelength

1000 A is shone on a copper surface?
Solution  The work unction is given by Eq. 17.7
¢ =hv, = 6.63 x 1073*J-sec x 1.0 x 10¥ Hz = 6.63 x 107197
From Eq. 17.5

he

Ekn\u:17U_¢: 7““¢

_ 6.63 x 1073 J-scc x 3 x 10% m/sec B

6.6 -19
1000 x 10~ n 3x1077]

=1326x 107797 =8.29¢V

] 7.4 FURTHER EVIDENCE FOR THE PHOTON THEORY

There exists today a large number of experimental results that confirm the parricle
narure of electromagnetic radiation. In this section, we will discuss qualitatively two

effeces that contribute furdher evidence to the theory.

17.4a. X-ray Production

In 1895, Withelm K. Roentgen (1845-1923) discovered that when highly energeric
clectrons siruck a solid target, a strange (hence the name X rays) kind of rachation

A X rays

v
il

FIGURE 17-7  Appararus for the producnon of X tavs.
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was produced. The radiation was highly penetrating: It passed through objeces that
were opaque to light. Moreover, the radiation was not deflected by either electric or
magnetic fields, indicacing that it did not consist of charged particles. The mysterious
narure of X rays vamshed a few years later when in 1912 Max von Laue (1879-1960)
found that thev could be diffracted. The diffracuon of X rays by crystalline solids
was discussed in Chapter 12. These experiments proved that X rays arc a form of
clectromagnetic radiation. Their wavelength, however, is much smaller than that of
light waves: typically & ~ 1 A.

Figure 17-7 shows a schematic of the experimental arrangementused to produce
X ravs. Electrons from a heared filament F are accelerared by a large potennal difference
V' (scveral thousand volts). As a result, they enter the target T with a kinetic energy
E; = ¢V. On stoking the target, X rays arc emitted.

An analysis of the speccrum of the emucted X rays veveals several interesting
fearures. We will concern ourselves primarily with one of them thar is pertinent to the
phoron hypothesis. The emission spectrum is continuous, with one very important
feature: a sharp, well-defined cut-off on the small wavelength side. These facts are
shown ip Fig. 17-8, which is a schematic plot of the intensity I of the emirted X rays
versus wavelength 4. The value of the cut-off wavelength 2n, is independent of the
rarget materia) but depends on the acceleraring voleage V by Eq. 17.9

Agin X == (17.%)

4

Using the fact that Av = ¢ (Eq. 17.8), we can rewrite this result as,
Vmax X V. (17

Although it is not relevant to our present discussion, we showld point ou, for the
sake of completeness, thar in additon to the continuous spectrum there are several
wrensity peaks, as shown in Fig. 17-8, called the characeristic X vays, The wavelengths
of the characteristic X rays arc independent of the voltage I but depend on the material
of the target.

Let us wry to understand the origin of the spectrum presepced in Fig. 17-8.
When the incoming electron enters the target, it will interact with the atomic elecirons
and with the nuclei present there. The inceraction with the atomic clectrons is the
process that is primanly responsible for the slowing down of the incident elecrrons.
Through mulriple collisions, an incident electron ts progressively slowed down and
loses its energy to the targer: The kinetic encrgy of the bombarding electron becomes
heat. Occasionally, an clectron-electron collision may oceur, which results in a large
transfer of energy from the incident clectron to an atomic electron. As avesult of this
collision, the atomic electron will be knocked our of an atom. In subsequent chaprers
we will see that the electrons jn the atom occupy discrete energy levels. When one of
rhese energy levels is vacated as a resulr of a collision, one of rhe outer electrons in the
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FIGUERE 17-9  Schemaric representation of an elecrron interacting with a nucleus in the rarget

and emitring X rays in the process.

atom falls down into the vacared energy state and in the process gives oft a photon.
The energy of this photon 4v, will be equal to the energy diffcrence between the two
atomic levels involved 1n the transition. These photons account for the characteristic
X-ray peaks. Because, as will be shown in later chapters, the atomic energy levels
are determined by the siructure of the particular atom, we can understand why the
frequency of the characteristic X rays depends on the target mateuial and not on the
energy of the incident electrons, that is, on the accelerating voltage V.

The incident electrons can also interact with the nuclel in the target. This
interaction is responsible for the continuous specrrum or, its customary name,
bremsstrabluny (braking radiation). Let us consider an electron with energy B
approaching a positively charged nucleus. The electron, as a consequence of the
coulombic atrraction of the nucleus, will be deflected from irs straight-line path;
that is, it will be radially accclerated (see Fig. 17-9). Classical electromagnetic theory
predicts that an accelerated charge will radiare electromagnetic waves continuously
and of all frequencies. Thus, from the classical vicw of radiation, it is impossible to
understand why there ts a wavelength cur-oft in the emission spectrum. The cut-off
can be explained rather simply by the photon model of electromagnetic radiation.
The accelerated electron will radiate energy not continuously but in quanta of encrgy
. If now we consider the electron of Fig. 17-9 approaching the nucleus with energy
Ey, emitting several photons of energy 4vi, by, and so on, and finally leaving the
nucleus with cnergy £, we can, from energy conservation considerations, write

E/;—E:(,:hVL"l—hUQ—l""'

We have assumed thar the nucleus does not acquire any energy during the collision.
This is a good approximation because the nucleus is nuich heavier than the electron.
Itis now casy to understand the existence of the cur-oft frequency. The most cnergetic
Photon thar can be produced by the intcraction of the electron wirh the nucleus is the
one that is produced when the electron loscs all its energy in the emission of a single
photon. In such a case E, is zero and dherefore
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FIGURE 17-10  Appararus used tor the Compron effect experiment. Monocdhromasic X rays of
wavelength A are scattered by a graphire rarger. The wavel ength of the scarrered X rays1s determuned
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for differert angles 4.

Elz - hUmax
But becausc E; = ¢V, we conclude that
e = 2V (17.11)

Equation 17.11 predicts the experimental observation given by Eq. 17.10. Nor only
can the photon model predict the exisience of the frequency cut-off and its proper
dependence on the accelerating volrage, bur the experimental results can be used to
derermine the valuc of Planck’s constant. The value of # obtained wa this case agrees
with the values obrained by Planck in connecrion with blackbody radiation and by
Einsrewn n the case of the photoelectric effect.

17.4b. Compton Effect

In 1923, Arthur H. Compron (1892-1962) pertormed a scries of experiments that
provided a dramanc confirmation of the photon nature of electromagnetic radianon.,
A schematic of the experimental arrangement is shown in Fig. 17-10. A beam of X
rays of sharply defined wavelength was sent onto a graphire target. Compron then
studied rhe scatrered radiadon to see what wavelengths were present w it. This was
donc for different angles A, benween the incident and the scattered beams. Whereas
the incident bean consisted of X rays of wavelength 3. = 0.709 A, Compton observed
that the scartered beam contamned rwo intensity maxima: onc at & = 0.709 A and
the other at a A" greater than that of the incident radiation. The value of 2 increased
as the angle of scatrering increased and reached a maximum value of 0.758 A for
¢ = 180°. Figure 17-11 shows the intensity of the scartered radiation as a function
of wavelength for four particular values of 6.

To understand how these results supporr the photon hypothesis, Jer s first
consider what classical clectromagnetic theorv predices abour the scattering of clectro-
magnenc waves. When an cleerric field £ = &g sin{kx — or) impinges on an electron in

Arthur Holly Compton
(1892-1962).




che target macerial, the electron will experience 2 force F = & = e&g sin(wt — kx), sec
Eq- 14. l/ As aresule of this force, the elcctronl \Vl.“ osciflate with a frcgucncy equal to
that of the force, that is, the frequency of the incident elecoromagnetic wave. On the
other hand, according (o classical eleccromagnetic radiation theory, a charged parricle
(the electron in this case) undergoing simple harmonic motion radiates clcctromag-
petic Waves of the same frequency as the frequency of the moinn of the charged
Pm-fidc (sce Scction 16.8). The electron plays the role of a transfer agent: It absorbs
energy from the inadent beam and reradiaces this energy at the same frequency in
all directions. Thus, dassical elecrromagneric theory cannot explain the presence of a
jonger wavelength (smaller frequency) in the scattered bean.

Compton cxplained the shift in the wavelength of the scattered beam by
considering it to be a beam of photons, cach with encrgy E = »v and momenmmp =
byje = b/ (sec the Supplement at the end of this chaprer). According to Compron,
the phorons collide with the electrons in a particle-particle-like collision (sec Fig. 17-
12). In the collision, the clecrron will acquire some momentum and energy at the
expense of the photon. From consideration of the conservarion of energy we conclude
that the energy of the photon and, henee, its frequency will deercase: the wavelengths
of the scattered phortons will be longer than thar of the incident photons. Clearly, the
stronger the collision, the larger the angle of scattering of the photon and the greater
the energy lost to the clectron; the shift in frequency should Lncrease with increasing
g. In fact, we expect that the maximum energy transfer will occur in the case of head-
on collision, which will resulr in backward scattering (8 = 1807) of the photon. These
arguments can be made quantitative by writing explicitly the conservation of energy
and momentum cquations. The solution of these cquations, which can be found in
most modern physics textbooks, yields the frequency and wavelength of the scattered
photons as a function of A. The result, originally derived by Compton, is

h
N—=h=—(1—cosd) (17.12)
me

Where A’ and J are, respectively, the wavelengths of the scattered and the incident
Photons; 7 is the mass of the scattering particle, the clectron, and ¢ is the velocity of
light. An mspection of Eq. 17.12 corroborares the qualitative arguments presented
carlier. In particular, A’ — i is 2 maximum when cos8 = —1, that is, when 6 = 180°.
This maximum shift in wavelength 1s therefore

25 B 2 x 6.63 x 107**J-scc
me 9.1 x 10731ke x 3 x 108 m/sec

()\I - )‘)ma_‘( =

0.049 x 107911 = 0.049 A

For ¢ = 9p¢

b
3 =04 — (1 — cos 90°)
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FIGURE L7-11  Intensity of the
scartered X ravs in the Compeon
experiment of Iig. 17-10 as a

function of the wavelength for four
different angles 0. (Somree: Kenoeth
Krane, Modern Physies. Copyright
©1983 by John Wiley & Sons, Inc.
Reprinted by permission of John
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=0.709 x 1010 m

6.63 x 10734 J-sec
T 91109 kg x 3 x 108 m/sec

1-0)

=0.733x 1079 m = 0.733A

which agrees with the results shown in Fig. 17-11c.

The unshifted wavelength present in the scattered beam can also be explained
1 terms of the phoron model. Up to now, we have assumed that the photons collide
with the electrons in the targer material. The photons can also collide with the atoms
in the graphite. In this case, the only change to be made in the calculations consists
in replacing in Eq. 17.12 the mass of the electron by that of the carbon atom. For
graphite, M0 2 24,0009 ccwon. From Eq. 17.12, we can see that the shuft o
wavelength will be 24,000 times smaller, that is,

_0.049A

()u.’ — )\,)ma_\: ~ m =2 x 10—{]2\

This js an insignificant and unobservable amount when we compare it with A =
0.709A.

EXAMI {7-3

X ravs of wavelength ) = 0.700 A arc Compton-scattered by the clectrons in a
graphite target. (a) Wharis the wavelength of the X rays scatrered aran angle 6 = 120°2
(b) What is the kinetic encrgy of the scattering electrons if they were originally ar rest?

(¢) What s the scattering angle of the electrons?

* (2) From Eq. 17.12
.
A =nr+ —(1 —cos120%)
e

=0.700 x 10™9m

6.63 x 1073 Y-scc

~ +0.5
9.1 x 1073 kg x 3 x 108 m/scc<l 05)

=0.736 x 107 m = 0.736 4

¢ (b) From conservation of encsgy principles, the kinctic energy of the electron
is equal to the energy lost by the photon, that is,

Ey=hv—Hhv
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FIGURE 17-12 Scatering
process of the X rays in the Compto?
cxpeniment of Fig. 17-10. A photon
collides with an electon it 1hL'.,
graphirte rarger in 2 pardcic-pmtidc‘
like colhision. The photon impaﬂf- =
SOME cnergy to the clectron, resulong
in a decrcase jn irs own cnergy
(and therefore in jes fr,léqucnq’) A
as¢ NI
{lision:

and a concommitant 1ncre
wavelength. (2) Before the ¢o
(b) After the collision.
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which from Eq. 17.8, Av = ¢, can be written as

| } b L 1
)Ek:f——”=1%<———)
A X A X

= 6.63 x 107 J-sec
1

¥ + %3 x 108 m/sec [

=1.39 x 10719] = 869 ¢V

¢ (¢) From conscrvation of linear momentum principles

1
0.700 x 10~0m  0.736 x 10-10 m}

Px(before the collision) = py(after the collision)

Wniting this explicity (see Fig. 17-13 and Eq. 17.18 in Supplement 17-1).

I '
? =P, COSP — % cos 60°

thecefore
hv
pecOsp = — + — cos 60°
¢ c
h b .
= — + = cos 60’
XX

1

Pecosp = 6.63 x 1073 J-sec {

pscosd =13.98 x 1072 kg m/scc

Again from conservation of momentun,

py(before the collision) = p, (after the collision)

J

0.5
0.700 x 10-Xm " 0.736 x 10-10 m}

v .
0= —psing+ 7Y $n60° (@)
c

Therefore

l /
Pesing = jTU sin 60° = /—7, s 607

6.63 x 1073 J-sec
0.736 x 10-10m

p.sing =

pesing =7.80 % 10~ kg m/scc

Combining Eqs. 17.13 and 17.14, we obrain

7.80 x 1072* kg m/scc
13.98 x 10 kg m/scc

¢»=29.2°

@ang =

« (0.866)

=0.56

A ™ '
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17-3. (a) Bcf:xrc the collision. (b)

After the collision.
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SUPPLEMENT 17-1: MOMENTUM OF THE PHOTON

From Einstein’s theory of special relativity, the toral relativistic energy of a particle is
given by

E=FE,+E
E =me (17.15)

wherc Ej, is the kinetic energy of the particle, Eg = moc? is the rest encrgy (#4 is the
rest mass of the particle, that is, the mass of the particle when its velooty is zero), m
is the relativistic mass (the mass when the particle is moving), and ¢ is the velocity of
light. For the photon, the rest energy and therefore the rest mass 1s zero; a photon at
rest does not exist.

We can now usc Elnstein’s postulate, namely, Epnoron = hv and, combining
this with the expression for the rotal relativistic energy, Eq. 17.15, we can get an
expression for the momentum of the photon.

Eptoron = hv = me?

Dividing by ¢, we obtain

hv )
He = — (17.16)
c
Using Eq. 17.8, we obtain
h .
me = (17.17)

We recognize the leftside of Eqs. 17.16 and 17.17 as the momentum p of the photon,
that is, the product of the mass and the velocity of the photon,

b by

Ppl\oton = ; - ‘[_ (17.18)

PROBLEMS

17.1 The wavelength iny, for which the speceral radi- by the sun? (b) In what part of the clecoromagnetic spectru®
ancy, I, of a blackbody is a maximum, is given by Wiens  is this radiation? 3

displacement Jaw, which srates: :

17.2  The ratc at which the sun’s encrgy strikes the carth i
known as the solar constant and has a value of 2 cal/em?-scc. If
where 7" 1s the absolure remperature of the blackbody. The  we assume that there 1s no reflecuon by the clouds, ic&c caps, OF
temperarure of the surface of the sun is roughly 5800 K. (a)  such, the carth would absorb all ehis energy. The carth would
What is the wavelengrh of the most intense radiation emitted  be a blackbody radrator and would radiate all the encrgy that

A T = 2.898 x 10 *m-K
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¢ receives back into space. What would be the equilibrium
femperagre of the carth if our assumprion were true?

Answer: 1100 K.

(7.3 The rdius of a hydrogen atom is approximarcly
10~ m (1 A). Light of intensity 1.0 W/m? is shone on such
an atom. Whar is the time lag for the photoelectric effect on
the basis of the wave theory of light> The binding energy of
the electron in the hydrogen atom is 13.6¢V.
Answer:

69.3 sec.

17.4 A 5000-W radio transmirter emyirs radiarion of fre-
quency v = 1100 kHz. How many photops per second docs

it emit?

17.5 Consider a2 100-W sodium vapor lamp radiaung cn-
ergy uniformly in all dircctions. Assume that 80% of the
energy radiared is in the form of photons of wavelength
5890 A. (a) What is the rate of photon cmussion by the lamp?
(b) How far from the larop will the average density of pho-
tons be 2 photons/em?-sec? (c) What is the photon flux (that
15, the number of photons per unit time per unir area) 2.0
from the lamp?
(a) 2.37 x 10%0sec™!, (b) 3.07 x 107 m,

(c) 4.71 x 10" sec™! em~2.

Answer:

17.6  For a quick cstimate of the encrgy of 2 photon in ¢V,
physicists usc the relation E(eV) = 12, 345/x(A). By what
percentage 1s this relation inaccurate?

}7.7 The basis for the creation of the larent image on 2
photographic negative is the dissociation of molecules of
silver bromide, AgBr. The heat of dissociation of AgBr is
24 keal/mole. Find the longest wavelength of light that is just
able o expose the negative, that is, dissociate AgBr.

Answer: 11,900 A.

17.8 A mcral has a work functon ¢ = 1.5¢eV. (a) Whar
18 the sropping porential for light of wavclength 3000 A2 (b)
What is the maxinium velocity of the emitted photoelectrons?

17.9 Lighr of wavclength 1300 A falls on an aluminum
surface having a work funcrion of 4.2¢€V. (a) What 1s the
F{inctic energy of the fastest emitted photoelectrons? (b) What
18 the stopping potential? (¢) Whar js the cut-off frequency v,
for aluminum?

Answer:  (2) 4.09 ¢V, (b) 4.09V, (¢) 101 x 105 Ha.

17.10  When light of wavelength 2000 A is incident on the
surface of a metal, the clectrons are ermitted with a maximum
inetic energy of 2.0eV. (a) Calculare the energy of the
incident photons. (b) What is the work funcrion of the meral?
(¢) Tf the incident light had a wavclength of 6000 A, what
would be the stopping porential?

17.11  The cur-off frequency for photoemission for a given
metal is vg. What is the maximum energy of the emicted
elecrrons when the meralis iluminared wich light of frequency
3\)0?

17.12
meral surface clecrrons are emitted with a maximum kinete
energy of 15 ¢V. When the frequency is reduced o vy/2, the
maxjmum kinetic energy is 3 ¢V, What is the cut-off frequency

When light of frequency vp 1s Incident on a certain

for photoemission for this metal?
2.17 x 10" Hz.

Answer:

17.13  Tnaphotoelectric effect experiment, it js found that
when the surface of sodium meeal is lluminated with light of
wavelength s = 4200 A, the stopping potential Vy = 0.65V.
When the metal is dluminated with light of wavelength . =
3100 A, the stopping potendial is Vo = 1.69V. Calculate
Planck’s constant from these data.

17.14 Not every photon srriking the surface of a metal
undergoces a collision with the electrons in the metal. An
important quantity in the exrension of the phoroelectric effect
theory is the quantum cfficiency, namely, how many photons
are required on the average o yield one phoroelectron. I a
tvpical experiment, light of wavelength A = 4366 A is shone
on a portassium surface. The observed vield is 8 x 107 C/J.
How many photons arc required to yield one photoelectron?
Answer: 44 photons.

17.15  Elecrrons in an X-ray rube are accelerared through
a potential difference of 5000 V. What is the maximum
frequency and the minimum wavelength of the X rays

produced?

17.16  Alpha parricles {charge +2¢) are accelerated by an
clectric potential difference of 20,000 V. The o parnicles strike
a mertal targer and in the process produce X rays. Find the
smallest wavelength of the X ravs emirted by the target.

Answer: 0.311 4.



268 = THEBEGINNING OF THE QUANTUM STORY

{7.17  Aphoronoffrequency v = 3x 10 Hzis Compton-
scartered by an electron ndnially ar vest. After che collision,
the clectron moves in the direcrion of the incident photon.
(2) Find the wavelength of the scatrered phoron. (b) What is
the encrgy of the scarrered clectron?

708 Xrays of wavelength 1 A are Compron-scattered by
the electrons in a carbon targer. (a) Caleulare the wavelength
of the X rays scartered ar 90 with respect to the incident

X rays. (b) What s the energy of the clecrons caug
scattering?

1719 In a Compron experiment the wavelength of
incident phoron is 1.3249 A, whercas thar of the sca
photonis 1.3461 A. (a) Ax what angle is the photon scatre
(b) At whart angle ts the clectron scarrered? () Wha |
kineric cnergy of the scartered electron?

Answer: (a) 82.7¢, (b) 48.1°, (¢) 148 ¢V



