
Understanding the Linux Kernel, 3rd
Edition
By Daniel P. Bovet, Marco Cesati
...
Publisher: O'Reilly
Pub Date: November 2005
ISBN: 0-596-00565-2
Pages: 942

Table of Contents | Index

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

In order to thoroughly understand what makes Linux tick and why it works so well on a wide variety of
systems, you need to delve deep into the heart of the kernel. The kernel handles all interactions
between the CPU and the external world, and determines which programs will share processor time, in
what order. It manages limited memory so well that hundreds of processes can share the system
efficiently, and expertly organizes data transfers so that the CPU isn't kept waiting any longer than
necessary for the relatively slow disks.

The third edition of Understanding the Linux Kernel takes you on a guided tour of the most significant
data structures, algorithms, and programming tricks used in the kernel. Probing beyond superficial
features, the authors offer valuable insights to people who want to know how things really work inside
their machine. Important Intel-specific features are discussed. Relevant segments of code are dissected
line by line. But the book covers more than just the functioning of the code; it explains the theoretical
underpinnings of why Linux does things the way it does.

This edition of the book covers Version 2.6, which has seen significant changes to nearly every kernel
subsystem, particularly in the areas of memory management and block devices. The book focuses on
the following topics:



 Memory management, including file buffering, process swapping, and Direct memory Access
(DMA)



 The Virtual Filesystem layer and the Second and Third Extended Filesystems


 Process creation and scheduling


 Signals, interrupts, and the essential interfaces to device drivers


 Timing


 Synchronization within the kernel


 Interprocess Communication (IPC)


 Program execution

Understanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more than
just an academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll
see how it meets the challenge of providing good system response during process scheduling, file
access, and memory management in a wide variety of environments. This book will help you make the
most of your Linux system. Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Understanding the Linux Kernel, 3rd
Edition
By Daniel P. Bovet, Marco Cesati
...
Publisher: O'Reilly
Pub Date: November 2005
ISBN: 0-596-00565-2
Pages: 942

Table of Contents | Index

Copyright
Preface

The Audience for This Book
Organization of the Material
Level of Description
Overview of the Book
Background Information
Conventions in This Book
How to Contact Us
Safari? Enabled
Acknowledgments

 Chapter 1. Introduction
Section 1.1. Linux Versus Other Unix-Like Kernels
Section 1.2. Hardware Dependency
Section 1.3. Linux Versions
Section 1.4. Basic Operating System Concepts
Section 1.5. An Overview of the Unix Filesystem
Section 1.6. An Overview of Unix Kernels

 Chapter 2. Memory Addressing
Section 2.1. Memory Addresses
Section 2.2. Segmentation in Hardware
Section 2.3. Segmentation in Linux
Section 2.4. Paging in Hardware
Section 2.5. Paging in Linux

 Chapter 3. Processes
Section 3.1. Processes, Lightweight Processes, and Threads
Section 3.2. Process Descriptor
Section 3.3. Process Switch
Section 3.4. Creating Processes
Section 3.5. Destroying Processes

 Chapter 4. Interrupts and Exceptions
Section 4.1. The Role of Interrupt Signals
Section 4.2. Interrupts and Exceptions
Section 4.3. Nested Execution of Exception and Interrupt Handlers
Section 4.4. Initializing the Interrupt Descriptor Table
Section 4.5. Exception Handling
Section 4.6. Interrupt Handling

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Section 4.7. Softirqs and Tasklets
Section 4.8. Work Queues
Section 4.9. Returning from Interrupts and Exceptions

 Chapter 5. Kernel Synchronization
Section 5.1. How the Kernel Services Requests
Section 5.2. Synchronization Primitives
Section 5.3. Synchronizing Accesses to Kernel Data Structures
Section 5.4. Examples of Race Condition Prevention

 Chapter 6. Timing Measurements
Section 6.1. Clock and Timer Circuits
Section 6.2. The Linux Timekeeping Architecture
Section 6.3. Updating the Time and Date
Section 6.4. Updating System Statistics
Section 6.5. Software Timers and Delay Functions
Section 6.6. System Calls Related to Timing Measurements

 Chapter 7. Process Scheduling
Section 7.1. Scheduling Policy
Section 7.2. The Scheduling Algorithm
Section 7.3. Data Structures Used by the Scheduler
Section 7.4. Functions Used by the Scheduler
Section 7.5. Runqueue Balancing in Multiprocessor Systems
Section 7.6. System Calls Related to Scheduling

 Chapter 8. Memory Management
Section 8.1. Page Frame Management
Section 8.2. Memory Area Management
Section 8.3. Noncontiguous Memory Area Management

 Chapter 9. Process Address Space
Section 9.1. The Process's Address Space
Section 9.2. The Memory Descriptor
Section 9.3. Memory Regions
Section 9.4. Page Fault Exception Handler
Section 9.5. Creating and Deleting a Process Address Space
Section 9.6. Managing the Heap

 Chapter 10. System Calls
Section 10.1. POSIX APIs and System Calls
Section 10.2. System Call Handler and Service Routines
Section 10.3. Entering and Exiting a System Call
Section 10.4. Parameter Passing
Section 10.5. Kernel Wrapper Routines

 Chapter 11. Signals
Section 11.1. The Role of Signals
Section 11.2. Generating a Signal
Section 11.3. Delivering a Signal
Section 11.4. System Calls Related to Signal Handling

 Chapter 12. The Virtual Filesystem
Section 12.1. The Role of the Virtual Filesystem (VFS)
Section 12.2. VFS Data Structures
Section 12.3. Filesystem Types
Section 12.4. Filesystem Handling
Section 12.5. Pathname Lookup
Section 12.6. Implementations of VFS System Calls

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Section 12.7. File Locking
 Chapter 13. I/O Architecture and Device Drivers

Section 13.1. I/O Architecture
Section 13.2. The Device Driver Model
Section 13.3. Device Files
Section 13.4. Device Drivers
Section 13.5. Character Device Drivers

 Chapter 14. Block Device Drivers
Section 14.1. Block Devices Handling
Section 14.2. The Generic Block Layer
Section 14.3. The I/O Scheduler
Section 14.4. Block Device Drivers
Section 14.5. Opening a Block Device File

 Chapter 15. The Page Cache
Section 15.1. The Page Cache
Section 15.2. Storing Blocks in the Page Cache
Section 15.3. Writing Dirty Pages to Disk
Section 15.4. The sync(), fsync(), and fdatasync() System Calls

 Chapter 16. Accessing Files
Section 16.1. Reading and Writing a File
Section 16.2. Memory Mapping
Section 16.3. Direct I/O Transfers
Section 16.4. Asynchronous I/O

 Chapter 17. Page Frame Reclaiming
Section 17.1. The Page Frame Reclaiming Algorithm
Section 17.2. Reverse Mapping
Section 17.3. Implementing the PFRA
Section 17.4. Swapping

 Chapter 18. The Ext2 and Ext3 Filesystems
Section 18.1. General Characteristics of Ext2
Section 18.2. Ext2 Disk Data Structures
Section 18.3. Ext2 Memory Data Structures
Section 18.4. Creating the Ext2 Filesystem
Section 18.5. Ext2 Methods
Section 18.6. Managing Ext2 Disk Space
Section 18.7. The Ext3 Filesystem

 Chapter 19. Process Communication
Section 19.1. Pipes
Section 19.2. FIFOs
Section 19.3. System V IPC
Section 19.4. POSIX Message Queues

 Chapter 20. Program ExZecution
Section 20.1. Executable Files
Section 20.2. Executable Formats
Section 20.3. Execution Domains
Section 20.4. The exec Functions

 Appendix A. System Startup
Section A.1. Prehistoric Age: the BIOS
Section A.2. Ancient Age: the Boot Loader
Section A.3. Middle Ages: the setup() Function
Section A.4. Renaissance: the startup_32() Functions

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Section A.5. Modern Age: the start_kernel() Function
 Appendix B. Modules

Section B.1. To Be (a Module) or Not to Be?
Section B.2. Module Implementation
Section B.3. Linking and Unlinking Modules
Section B.4. Linking Modules on Demand

 Bibliography
Books on Unix Kernels
Books on the Linux Kernel
Books on PC Architecture and Technical Manuals on Intel Microprocessors
Other Online Documentation Sources
Research Papers Related to Linux Development

About the Authors
Colophon
Index

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Understanding the Linux Kernel, Third Edition

 by Daniel P. Bovet and Marco Cesati

 Copyright ? 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

 Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Darren Kelly

Production Services: Amy Parker

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

November 2000: First Edition.

December 2002: Second Edition.

November 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Linux series designations, Understanding the Linux Kernel, Third Edition, the
image of a man with a bubble, and related trade dress are trademarks of O'Reilly Media, Inc.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

 While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

 ISBN: 0-596-00565-2

 [M] Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.processtext.com/abcchm.html

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Preface
 In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0. The idea
was to encourage students to read the source code. To achieve this, we assigned term projects consisting
of making changes to the kernel and performing tests on the modified version. We also wrote course
notes for our students about a few critical features of Linux such as task switching and task scheduling.

 Out of this work and with a lot of support from our O'Reilly editor Andy Oram came the first edition of
Understanding the Linux Kernel at the end of 2000, which covered Linux 2.2 with a few anticipations on
Linux 2.4. The success encountered by this book encouraged us to continue along this line. At the end of
2002, we came out with a second edition covering Linux 2.4. You are now looking at the third edition,
which covers Linux 2.6.

 As in our previous experiences, we read thousands of lines of code, trying to make sense of them. After
all this work, we can say that it was worth the effort. We learned a lot of things you don't find in books,
and we hope we have succeeded in conveying some of this information in the following pages.

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

The Audience for This Book
 All people curious about how Linux works and why it is so efficient will find answers here. After reading
the book, you will find your way through the many thousands of lines of code, distinguishing between
crucial data structures and secondary onesin short, becoming a true Linux hacker.

 Our work might be considered a guided tour of the Linux kernel: most of the significant data structures
and many algorithms and programming tricks used in the kernel are discussed. In many cases, the
relevant fragments of code are discussed line by line. Of course, you should have the Linux source code
on hand and should be willing to expend some effort deciphering some of the functions that are not, for
sake of brevity, fully described.

 On another level, the book provides valuable insight to people who want to know more about the critical
design issues in a modern operating system. It is not specifically addressed to system administrators or
programmers; it is mostly for people who want to understand how things really work inside the machine!
As with any good guide, we try to go beyond superficial features. We offer a background, such as the
history of major features and the reasons why they were used.

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Organization of the Material
 When we began to write this book, we were faced with a critical decision: should we refer to a specific
hardware platform or skip the hardware-dependent details and concentrate on the pure
hardware-independent parts of the kernel?

 Others books on Linux kernel internals have chosen the latter approach; we decided to adopt the former
one for the following reasons:



 Efficient kernels take advantage of most available hardware features, such as addressing
techniques, caches, processor exceptions, special instructions, processor control registers, and
so on. If we want to convince you that the kernel indeed does quite a good job in performing a
specific task, we must first tell what kind of support comes from the hardware.



 Even if a large portion of a Unix kernel source code is processor-independent and coded in C
language, a small and critical part is coded in assembly language. A thorough knowledge of the
kernel, therefore, requires the study of a few assembly language fragments that interact with the
hardware.

 When covering hardware features, our strategy is quite simple: only sketch the features that are totally
hardware-driven while detailing those that need some software support. In fact, we are interested in
kernel design rather than in computer architecture.

 Our next step in choosing our path consisted of selecting the computer system to describe. Although
Linux is now running on several kinds of personal computers and workstations, we decided to
concentrate on the very popular and cheap IBM-compatible personal computersand thus on the 80 x 86
microprocessors and on some support chips included in these personal computers. The term 80 x 86
microprocessor will be used in the forthcoming chapters to denote the Intel 80386, 80486, Pentium,
Pentium Pro, Pentium II, Pentium III, and Pentium 4 microprocessors or compatible models. In a few
cases, explicit references will be made to specific models.

 One more choice we had to make was the order to follow in studying Linux components. We tried a
bottom-up approach: start with topics that are hardware-dependent and end with those that are totally
hardware-independent. In fact, we'll make many references to the 80 x 86 microprocessors in the first
part of the book, while the rest of it is relatively hardware-independent. Significant exceptions are made
in Chapter 13 and Chapter 14. In practice, following a bottom-up approach is not as simple as it looks,
because the areas of memory management, process management, and filesystems are intertwined; a few
forward referencesthat is, references to topics yet to be explainedare unavoidable.

 Each chapter starts with a theoretical overview of the topics covered. The material is then presented
according to the bottom-up approach. We start with the data structures needed to support the
functionalities described in the chapter. Then we usually move from the lowest level of functions to higher
levels, often ending by showing how system calls issued by user applications are supported.

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Level of Description
 Linux source code for all supported architectures is contained in more than 14,000 C and assembly
language files stored in about 1000 subdirectories; it consists of roughly 6 million lines of code, which
occupy over 230 megabytes of disk space. Of course, this book can cover only a very small portion of
that code. Just to figure out how big the Linux source is, consider that the whole source code of the book
you are reading occupies less than 3 megabytes. Therefore, we would need more than 75 books like this
to list all code, without even commenting on it!

 So we had to make some choices about the parts to describe. This is a rough assessment of our
decisions:



 We describe process and memory management fairly thoroughly.


 We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although many functions are
just mentioned without detailing the code; we do not discuss other filesystems supported by
Linux.



 We describe device drivers, which account for roughly 50% of the kernel, as far as the kernel
interface is concerned, but do not attempt analysis of each specific driver.

 The book describes the official 2.6.11 version of the Linux kernel, which can be downloaded from the
web site http://www.kernel.org.

 Be aware that most distributions of GNU/Linux modify the official kernel to implement new features or
to improve its efficiency. In a few cases, the source code provided by your favorite distribution might
differ significantly from the one described in this book.

 In many cases, we show fragments of the original code rewritten in an easier-to-read but less efficient
way. This occurs at time-critical points at which sections of programs are often written in a mixture of
hand-optimized C and assembly code. Once again, our aim is to provide some help in studying the
original Linux code.

 While discussing kernel code, we often end up describing the underpinnings of many familiar features
that Unix programmers have heard of and about which they may be curious (shared and mapped
memory, signals, pipes, symbolic links, and so on).

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.kernel.org
http://www.kernel.org
http://www.processtext.com/abcchm.html

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Overview of the Book
 To make life easier, Chapter 1, Introduction, presents a general picture of what is inside a Unix kernel
and how Linux competes against other well-known Unix systems.

 The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing, explains how 80
x 86 processors include special circuits to address data in memory and how Linux exploits them.

 Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3, Processes.
Here we also explain how each process runs either in an unprivileged User Mode or in a privileged
Kernel Mode. Transitions between User Mode and Kernel Mode happen only through well-established
hardware mechanisms called interrupts and exceptions. These are introduced in Chapter 4, Interrupts
and Exceptions.

 In many occasions, the kernel has to deal with bursts of interrupt signals coming from different devices
and processors. Synchronization mechanisms are needed so that all these requests can be serviced in an
interleaved way by the kernel: they are discussed in Chapter 5, Kernel Synchronization, for both
uniprocessor and multiprocessor systems.

 One type of interrupt is crucial for allowing Linux to take care of elapsed time; further details can be
found in Chapter 6, Timing Measurements.

 Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active process in the system
so that all of them can progress toward their completions.

 Next we focus again on memory. Chapter 8, Memory Management, describes the sophisticated
techniques required to handle the most precious resource in the system (besides the processors, of
course): available memory. This resource must be granted both to the Linux kernel and to the user
applications. Chapter 9, Process Address Space, shows how the kernel copes with the requests for
memory issued by greedy application programs.

 Chapter 10, System Calls, explains how a process running in User Mode makes requests to the kernel,
while Chapter 11, Signals, describes how a process may send synchronization signals to other processes.
Now we are ready to move on to another essential topic, how Linux implements the filesystem. A series
of chapters cover this topic. Chapter 12, The Virtual Filesystem, introduces a general layer that supports
many different filesystems. Some Linux files are special because they provide trapdoors to reach
hardware devices; Chapter 13, I/O Architecture and Device Drivers, and Chapter 14, Block Device
Drivers, offer insights on these special files and on the corresponding hardware device drivers.

 Another issue to consider is disk access time; Chapter 15, The Page Cache, shows how a clever use of
RAM reduces disk accesses, therefore improving system performance significantly. Building on the
material covered in these last chapters, we can now explain in Chapter 16, Accessing Files, how user
applications access normal files. Chapter 17, Page Frame Reclaiming, completes our discussion of Linux
memory management and explains the techniques used by Linux to ensure that enough memory is always
available. The last chapter dealing with files is Chapter 18, The Ext2 and Ext3 Filesystems, which
illustrates the most frequently used Linux filesystem, namely Ext2 and its recent evolution, Ext3.

 The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process Communication,
introduces communication mechanisms other than signals available to User Mode processes; Chapter 20,
Program Execution, explains how user applications are started.

 Last, but not least, are the appendixes: Appendix A, System Startup, sketches out how Linux is booted,
while Appendix B, Modules, describes how to dynamically reconfigure the running kernel, adding and
removing functionalities as needed. The Source Code Index includes all the Linux symbols referenced in
the book; here you will find the name of the Linux file defining each symbol and the book's page number
where it is explained. We think you'll find it quite handy.

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Background Information
 No prerequisites are required, except some skill in C programming language and perhaps some
knowledge of an assembly language.

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Conventions in This Book
 The following is a list of typographical conventions used in this book:

 Constant Width

 Used to show the contents of code files or the output from commands, and to indicate source code
keywords that appear in code.

Italic

 Used for file and directory names, program and command names, command-line options, and URLs,
and for emphasizing new terms.

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

How to Contact Us
 Please address comments and questions concerning this book to the publisher:
 O'Reilly Media, Inc.1005 Gravenstein Highway NorthSebastopol, CA 95472(800) 998-9938 (in the
United States or Canada)(707) 829-0515 (international or local)(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:
 http://www.oreilly.com/catalog/understandlk/

 To comment or ask technical questions about this book, send email to:
 bookquestions@oreilly.com

 For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:
 http://www.oreilly.com

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com/catalog/understandlk/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.processtext.com/abcchm.html
http://www.oreilly.com/catalog/understandlk/
http://www.oreilly.com
http://www.processtext.com/abcchm.html

Safari? Enabled

 When you see a Safari? Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

 Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

Acknowledgments
 This book would not have been written without the precious help of the many students of the University
of Rome school of engineering "Tor Vergata" who took our course and tried to decipher lecture notes
about the Linux kernel. Their strenuous efforts to grasp the meaning of the source code led us to improve
our presentation and correct many mistakes.

 Andy Oram, our wonderful editor at O'Reilly Media, deserves a lot of credit. He was the first at O'Reilly
to believe in this project, and he spent a lot of time and energy deciphering our preliminary drafts. He also
suggested many ways to make the book more readable, and he wrote several excellent introductory
paragraphs.

 We had some prestigious reviewers who read our text quite carefully. The first edition was checked by
(in alphabetical order by first name) Alan Cox, Michael Kerrisk, Paul Kinzelman, Raph Levien, and Rik
van Riel.

 The second edition was checked by Erez Zadok, Jerry Cooperstein, John Goerzen, Michael Kerrisk,
Paul Kinzelman, Rik van Riel, and Walt Smith.

 This edition has been reviewed by Charles P. Wright, Clemens Buchacher, Erez Zadok, Raphael Finkel,
Rik van Riel, and Robert P. J. Day. Their comments, together with those of many readers from all over
the world, helped us to remove several errors and inaccuracies and have made this book stronger.

 Marco Cesati
July 2005

 Daniel P. Bovet

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 1. Introduction
 Linux[*] is a member of the large family of Unix-like operating systems . A relative newcomer
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such well-known
commercial Unix operating systems as System V Release 4 (SVR4), developed by AT&T (now owned
by the SCO Group); the 4.4 BSD release from the University of California at Berkeley (4.4BSD); Digital
UNIX from Digital Equipment Corporation (now Hewlett-Packard); AIX from IBM; HP-UX from
Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X from Apple Computer, Inc. Beside
Linux, a few other opensource Unix-like kernels exist, such as FreeBSD , NetBSD , and OpenBSD .

[*] LINUX? is a registered trademark of Linus Torvalds.

 Linux was initially developed by Linus Torvalds in 1991 as an operating system for IBM-compatible
personal computers based on the Intel 80386 microprocessor. Linus remains deeply involved with
improving Linux, keeping it up-to-date with various hardware developments and coordinating the activity
of hundreds of Linux developers around the world. Over the years, developers have worked to make
Linux available on other architectures, including Hewlett-Packard's Alpha, Intel's Itanium, AMD's
AMD64, PowerPC, and IBM's zSeries.

 One of the more appealing benefits to Linux is that it isn't a commercial operating system: its source code
under the GNU General Public License (GPL)[] is open and available to anyone to study (as we will in
this book); if you download the code (the official site is http://www.kernel.org) or check the sources on a
Linux CD, you will be able to explore, from top to bottom, one of the most successful modern operating
systems. This book, in fact, assumes you have the source code on hand and can apply what we say to
your own explorations.

[] The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org); its aim
is to implement a whole operating system freely usable by everyone. The availability of a GNU C
compiler has been essential for the success of the Linux project.

 Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating system because it
does not include all the Unix applications, such as filesystem utilities, windowing systems and graphical
desktops, system administrator commands, text editors, compilers, and so on. However, because most
of these programs are freely available under the GPL, they can be installed in every Linux-based system.

 Because the Linux kernel requires so much additional software to provide a useful environment, many
Linux users prefer to rely on commercial distributions, available on CD-ROM, to get the code included in
a standard Unix system. Alternatively, the code may be obtained from several different sites, for instance
http://www.kernel.org. Several distributions put the Linux source code in the /usr/src/linux directory. In
the rest of this book, all file pathnames will refer implicitly to the Linux source code directory.

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.kernel.org
http://www.gnu.org
http://www.kernel.org
http://www.kernel.org
http://www.gnu.org
http://www.kernel.org
http://www.processtext.com/abcchm.html

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.1. Linux Versus Other Unix-Like Kernels
 The various Unix-like systems on the market, some of which have a long history and show signs of
archaic practices, differ in many important respects. All commercial variants were derived from either
SVR4 or 4.4BSD, and all tend to agree on some common standards like IEEE's Portable Operating
Systems based on Unix (POSIX) and X/Open's Common Applications Environment (CAE).

 The current standards specify only an application programming interface (API)that is, a well-defined
environment in which user programs should run. Therefore, the standards do not impose any restriction
on internal design choices of a compliant kernel.[*]

[*] As a matter of fact, several non-Unix operating systems, such as Windows NT and its descendents,
are POSIX-compliant.

 To define a common user interface, Unix-like kernels often share fundamental design ideas and features.
In this respect, Linux is comparable with the other Unix-like operating systems. Reading this book and
studying the Linux kernel, therefore, may help you understand the other Unix variants, too.

 The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX standard. This, of
course, means that most existing Unix programs can be compiled and executed on a Linux system with
very little effort or even without the need for patches to the source code. Moreover, Linux includes all the
features of a modern Unix operating system, such as virtual memory, a virtual filesystem, lightweight
processes, Unix signals , SVR4 interprocess communications, support for Symmetric Multiprocessor
(SMP) systems, and so on.

 When Linus Torvalds wrote the first kernel, he referred to some classical books on Unix internals, like
Maurice Bach's The Design of the Unix Operating System (Prentice Hall, 1986). Actually, Linux still has
some bias toward the Unix baseline described in Bach's book (i.e., SVR2). However, Linux doesn't
stick to any particular variant. Instead, it tries to adopt the best features and design choices of several
different Unix kernels.

 The following list describes how Linux competes against some well-known commercial Unix kernels:

 Monolithic kernel

 It is a large, complex do-it-yourself program, composed of several logically different components. In
this, it is quite conventional; most commercial Unix variants are monolithic. (Notable exceptions are the
Apple Mac OS X and the GNU Hurd operating systems, both derived from the Carnegie-Mellon's
Mach, which follow a microkernel approach.)

Compiled and statically linked traditional Unix kernels

 Most modern kernels can dynamically load and unload some portions of the kernel code (typically,
device drivers), which are usually called modules . Linux's support for modules is very good, because it is
able to automatically load and unload modules on demand. Among the main commercial Unix variants,
only the SVR4.2 and Solaris kernels have a similar feature.

Kernel threading

 Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of kernel threads . A kernel
thread is an execution context that can be independently scheduled; it may be associated with a user
program, or it may run only some kernel functions. Context switches between kernel threads are usually
much less expensive than context switches between ordinary processes, because the former usually
operate on a common address space. Linux uses kernel threads in a very limited way to execute a few
kernel functions periodically; however, they do not represent the basic execution context abstraction.
(That's the topic of the next item.)

Multithreaded application support

 Most modern operating systems have some kind of support for multithreaded applications that is, user
programs that are designed in terms of many relatively independent execution flows that share a large
portion of the application data structures. A multithreaded user application could be composed of many
lightweight processes (LWP), which are processes that can operate on a common address space,
common physical memory pages, common opened files, and so on. Linux defines its own version of
lightweight processes, which is different from the types used on other systems such as SVR4 and Solaris.
While all the commercial Unix variants of LWP are based on kernel threads, Linux regards lightweight
processes as the basic execution context and handles them via the nonstandard clone() system call.

Preemptive kernel

 When compiled with the "Preemptible Kernel" option, Linux 2.6 can arbitrarily interleave execution
flows while they are in privileged mode. Besides Linux 2.6, a few other conventional, general-purpose
Unix systems, such as Solaris and Mach 3.0 , are fully preemptive kernels. SVR4.2/MP introduces some
fixed preemption points as a method to get limited preemption capability.

Multiprocessor support

 Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6 supports symmetric
multiprocessing (SMP) for different memory models, including NUMA: the system can use multiple
processors and each processor can handle any task there is no discrimination among them. Although a
few parts of the kernel code are still serialized by means of a single "big kernel lock ," it is fair to say that
Linux 2.6 makes a near optimal use of SMP.

Filesystem

 Linux's standard filesystems come in many flavors. You can use the plain old Ext2 filesystem if you don't
have specific needs. You might switch to Ext3 if you want to avoid lengthy filesystem checks after a
system crash. If you'll have to deal with many small files, the ReiserFS filesystem is likely to be the best
choice. Besides Ext3 and ReiserFS, several other journaling filesystems can be used in Linux; they
include IBM AIX's Journaling File System (JFS) and Silicon Graphics IRIX 's XFS filesystem. Thanks
to a powerful object-oriented Virtual File System technology (inspired by Solaris and SVR4), porting a
foreign filesystem to Linux is generally easier than porting to other kernels.

STREAMS

 Linux has no analog to the STREAMS I/O subsystem introduced in SVR4, although it is included now in
most Unix kernels and has become the preferred interface for writing device drivers, terminal drivers, and
network protocols.

 This assessment suggests that Linux is fully competitive nowadays with commercial operating systems.
Moreover, Linux has several features that make it an exciting operating system. Commercial Unix kernels
often introduce new features to gain a larger slice of the market, but these features are not necessarily
useful, stable, or productive. As a matter of fact, modern Unix kernels tend to be quite bloated. By
contrast, Linuxtogether with the other open source operating systemsdoesn't suffer from the restrictions
and the conditioning imposed by the market, hence it can freely evolve according to the ideas of its
designers (mainly Linus Torvalds). Specifically, Linux offers the following advantages over its commercial
competitors:

 Linux is cost-free

 You can install a complete Unix system at no expense other than the hardware (of course).

 Linux is fully customizable in all its components

 Thanks to the compilation options, you can customize the kernel by selecting only the features really
needed. Moreover, thanks to the GPL, you are allowed to freely read and modify the source code of the
kernel and of all system programs.[*]

[*] Many commercial companies are now supporting their products under Linux. However, many of
them aren't distributed under an open source license, so you might not be allowed to read or modify their
source code.

Linux runs on low-end, inexpensive hardware platforms

 You are able to build a network server using an old Intel 80386 system with 4 MB of RAM.

Linux is powerful

 Linux systems are very fast, because they fully exploit the features of the hardware components. The
main Linux goal is efficiency, and indeed many design choices of commercial variants, like the
STREAMS I/O subsystem, have been rejected by Linus because of their implied performance penalty.

 Linux developers are excellent programmers

 Linux systems are very stable; they have a very low failure rate and system maintenance time.

 The Linux kernel can be very small and compact

 It is possible to fit a kernel image, including a few system programs, on just one 1.44 MB floppy disk.
As far as we know, none of the commercial Unix variants is able to boot from a single floppy disk.

Linux is highly compatible with many common operating systems

 Linux lets you directly mount filesystems for all versions of MS-DOS and Microsoft Windows , SVR4,
OS/2 , Mac OS X , Solaris , SunOS , NEXTSTEP , many BSD variants, and so on. Linux also is able
to operate with many network layers, such as Ethernet (as well as Fast Ethernet, Gigabit Ethernet, and
10 Gigabit Ethernet), Fiber Distributed Data Interface (FDDI), High Performance Parallel Interface
(HIPPI), IEEE 802.11 (Wireless LAN), and IEEE 802.15 (Bluetooth). By using suitable libraries, Linux
systems are even able to directly run programs written for other operating systems. For example, Linux is
able to execute some applications written for MS-DOS, Microsoft Windows, SVR3 and R4, 4.4BSD,
SCO Unix , Xenix , and others on the 80x86 platform.

Linux is well supported

 Believe it or not, it may be a lot easier to get patches and updates for Linux than for any proprietary
operating system. The answer to a problem often comes back within a few hours after sending a message
to some newsgroup or mailing list. Moreover, drivers for Linux are usually available a few weeks after
new hardware products have been introduced on the market. By contrast, hardware manufacturers
release device drivers for only a few commercial operating systems usually Microsoft's. Therefore, all
commercial Unix variants run on a restricted subset of hardware components.

 With an estimated installed base of several tens of millions, people who are used to certain features that
are standard under other operating systems are starting to expect the same from Linux. In that regard, the
demand on Linux developers is also increasing. Luckily, though, Linux has evolved under the close
direction of Linus and his subsystem maintainers to accommodate the needs of the masses.

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.2. Hardware Dependency
 Linux tries to maintain a neat distinction between hardware-dependent and hardware-independent
source code. To that end, both the arch and the include directories include 23 subdirectories that
correspond to the different types of hardware platforms supported. The standard names of the platforms
are:

 alpha

 Hewlett-Packard's Alpha workstations (originally Digital, then Compaq; no longer manufactured)

arm, arm26

 ARM processor-based computers such as PDAs and embedded devices

 cris

 "Code Reduced Instruction Set" CPUs used by Axis in its thin-servers, such as web cameras or
development boards

frv

 Embedded systems based on microprocessors of the Fujitsu's FR-V family

 h8300

 Hitachi h8/300 and h8S RISC 8/16-bit microprocessors

 i386

 IBM-compatible personal computers based on 80x86 microprocessors

ia64

 Workstations based on the Intel 64-bit Itanium microprocessor

m32r

 Computers based on the Renesas M32R family of microprocessors

m68k, m68knommu

 Personal computers based on Motorola MC680x0 microprocessors

mips

 Workstations based on MIPS microprocessors, such as those marketed by Silicon Graphics

parisc

 Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors

ppc, ppc64

 Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC microprocessors

s390

 IBM ESA/390 and zSeries mainframes

sh, sh64

 Embedded systems based on SuperH microprocessors developed by Hitachi and STMicroelectronics

sparc, sparc64

 Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC microprocessors

um

 User Mode Linux, a virtual platform that allows developers to run a kernel in User Mode

v850

 NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the Harvard architecture

x86_64

 Workstations based on the AMD's 64-bit microprocessorssuch Athlon and Opteron and Intel's
ia32e/EM64T 64-bit microprocessors

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.3. Linux Versions
 Up to kernel version 2.5, Linux identified kernels through a simple numbering scheme. Each version was
characterized by three numbers, separated by periods. The first two numbers were used to identify the
version; the third number identified the release. The first version number, namely 2, has stayed unchanged
since 1996. The second version number identified the type of kernel: if it was even, it denoted a stable
version; otherwise, it denoted a development version.

 As the name suggests, stable versions were thoroughly checked by Linux distributors and kernel
hackers. A new stable version was released only to address bugs and to add new device drivers.
Development versions, on the other hand, differed quite significantly from one another; kernel developers
were free to experiment with different solutions that occasionally lead to drastic kernel changes. Users
who relied on development versions for running applications could experience unpleasant surprises when
upgrading their kernel to a newer release.

 During development of Linux kernel version 2.6, however, a significant change in the version numbering
scheme has taken place. Basically, the second number no longer identifies stable or development
versions; thus, nowadays kernel developers introduce large and significant changes in the current kernel
version 2.6. A new kernel 2.7 branch will be created only when kernel developers will have to test a
really disruptive change; this 2.7 branch will lead to a new current kernel version, or it will be backported
to the 2.6 version, or finally it will simply be dropped as a dead end.

 The new model of Linux development implies that two kernels having the same version but different
release numbersfor instance, 2.6.10 and 2.6.11can differ significantly even in core components and in
fundamental algorithms. Thus, when a new kernel release appears, it is potentially unstable and buggy. To
address this problem, the kernel developers may release patched versions of any kernel, which are
identified by a fourth number in the version numbering scheme. For instance, at the time this paragraph
was written, the latest "stable" kernel version was 2.6.11.12.

 Please be aware that the kernel version described in this book is Linux 2.6.11.

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.4. Basic Operating System Concepts
 Each computer system includes a basic set of programs called the operating system. The most important
program in the set is called the kernel. It is loaded into RAM when the system boots and contains many
critical procedures that are needed for the system to operate. The other programs are less crucial utilities;
they can provide a wide variety of interactive experiences for the useras well as doing all the jobs the user
bought the computer forbut the essential shape and capabilities of the system are determined by the
kernel. The kernel provides key facilities to everything else on the system and determines many of the
characteristics of higher software. Hence, we often use the term "operating system" as a synonym for
"kernel."

 The operating system must fulfill two main objectives:


 Interact with the hardware components, servicing all low-level programmable elements included
in the hardware platform.



 Provide an execution environment to the applications that run on the computer system (the
so-called user programs).

 Some operating systems allow all user programs to directly play with the hardware components (a
typical example is MS-DOS). In contrast, a Unix-like operating system hides all low-level details
concerning the physical organization of the computer from applications run by the user. When a program
wants to use a hardware resource, it must issue a request to the operating system. The kernel evaluates
the request and, if it chooses to grant the resource, interacts with the proper hardware components on
behalf of the user program.

 To enforce this mechanism, modern operating systems rely on the availability of specific hardware
features that forbid user programs to directly interact with low-level hardware components or to access
arbitrary memory locations. In particular, the hardware introduces at least two different execution modes
for the CPU: a nonprivileged mode for user programs and a privileged mode for the kernel. Unix calls
these User Mode and Kernel Mode , respectively.

 In the rest of this chapter, we introduce the basic concepts that have motivated the design of Unix over
the past two decades, as well as Linux and other operating systems. While the concepts are probably
familiar to you as a Linux user, these sections try to delve into them a bit more deeply than usual to
explain the requirements they place on an operating system kernel. These broad considerations refer to
virtually all Unix-like systems. The other chapters of this book will hopefully help you understand the
Linux kernel internals.

 1.4.1. Multiuser Systems

 A multiuser system is a computer that is able to concurrently and independently execute several
applications belonging to two or more users. Concurrently means that applications can be active at the
same time and contend for the various resources such as CPU, memory, hard disks, and so on.
Independently means that each application can perform its task with no concern for what the applications
of the other users are doing. Switching from one application to another, of course, slows down each of
them and affects the response time seen by the users. Many of the complexities of modern operating
system kernels, which we will examine in this book, are present to minimize the delays enforced on each
program and to provide the user with responses that are as fast as possible.

 Multiuser operating systems must include several features:


 An authentication mechanism for verifying the user's identity


 A protection mechanism against buggy user programs that could block other applications running
in the system



 A protection mechanism against malicious user programs that could interfere with or spy on the
activity of other users



 An accounting mechanism that limits the amount of resource units assigned to each user

 To ensure safe protection mechanisms, operating systems must use the hardware protection associated
with the CPU privileged mode. Otherwise, a user program would be able to directly access the system
circuitry and overcome the imposed bounds. Unix is a multiuser system that enforces the hardware
protection of system resources.

 1.4.2. Users and Groups

 In a multiuser system, each user has a private space on the machine; typically, he owns some quota of
the disk space to store files, receives private mail messages, and so on. The operating system must
ensure that the private portion of a user space is visible only to its owner. In particular, it must ensure that
no user can exploit a system application for the purpose of violating the private space of another user.

 All users are identified by a unique number called the User ID, or UID. Usually only a restricted number
of persons are allowed to make use of a computer system. When one of these users starts a working
session, the system asks for a login name and a password. If the user does not input a valid pair, the
system denies access. Because the password is assumed to be secret, the user's privacy is ensured.

 To selectively share material with other users, each user is a member of one or more user groups , which
are identified by a unique number called a user group ID . Each file is associated with exactly one group.
For example, access can be set so the user owning the file has read and write privileges, the group has
read-only privileges, and other users on the system are denied access to the file.

 Any Unix-like operating system has a special user called root or superuser . The system administrator
must log in as root to handle user accounts, perform maintenance tasks such as system backups and
program upgrades, and so on. The root user can do almost everything, because the operating system
does not apply the usual protection mechanisms to her. In particular, the root user can access every file
on the system and can manipulate every running user program.

 1.4.3. Processes

 All operating systems use one fundamental abstraction: the process. A process can be defined either as
"an instance of a program in execution" or as the "execution context" of a running program. In traditional
operating systems, a process executes a single sequence of instructions in an address space; the address
space is the set of memory addresses that the process is allowed to reference. Modern operating systems
allow processes with multiple execution flows that is, multiple sequences of instructions executed in the
same address space.

 Multiuser systems must enforce an execution environment in which several processes can be active
concurrently and contend for system resources, mainly the CPU. Systems that allow concurrent active
processes are said to be multiprogramming or multiprocessing .[*] It is important to distinguish programs
from processes; several processes can execute the same program concurrently, while the same process
can execute several programs sequentially.

[*] Some multiprocessing operating systems are not multiuser; an example is Microsoft Windows 98.

 On uniprocessor systems, just one process can hold the CPU, and hence just one execution flow can
progress at a time. In general, the number of CPUs is always restricted, and therefore only a few
processes can progress at once. An operating system component called the scheduler chooses the
process that can progress. Some operating systems allow only nonpreemptable processes, which means
that the scheduler is invoked only when a process voluntarily relinquishes the CPU. But processes of a
multiuser system must be preemptable; the operating system tracks how long each process holds the
CPU and periodically activates the scheduler.

 Unix is a multiprocessing operating system with preemptable processes . Even when no user is logged in
and no application is running, several system processes monitor the peripheral devices. In particular,
several processes listen at the system terminals waiting for user logins. When a user inputs a login name,
the listening process runs a program that validates the user password. If the user identity is
acknowledged, the process creates another process that runs a shell into which commands are entered.
When a graphical display is activated, one process runs the window manager, and each window on the
display is usually run by a separate process. When a user creates a graphics shell, one process runs the
graphics windows and a second process runs the shell into which the user can enter the commands. For
each user command, the shell process creates another process that executes the corresponding program.

 Unix-like operating systems adopt a process/kernel model . Each process has the illusion that it's the
only process on the machine, and it has exclusive access to the operating system services. Whenever a
process makes a system call (i.e., a request to the kernel, see Chapter 10), the hardware changes the
privilege mode from User Mode to Kernel Mode, and the process starts the execution of a kernel
procedure with a strictly limited purpose. In this way, the operating system acts within the execution
context of the process in order to satisfy its request. Whenever the request is fully satisfied, the kernel
procedure forces the hardware to return to User Mode and the process continues its execution from the
instruction following the system call.

 1.4.4. Kernel Architecture

 As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the whole kernel
program and runs in Kernel Mode on behalf of the current process. In contrast, microkernel operating
systems demand a very small set of functions from the kernel, generally including a few synchronization
primitives, a simple scheduler, and an interprocess communication mechanism. Several system processes
that run on top of the microkernel implement other operating system-layer functions, like memory
allocators, device drivers, and system call handlers.

 Although academic research on operating systems is oriented toward microkernels , such operating
systems are generally slower than monolithic ones, because the explicit message passing between the
different layers of the operating system has a cost. However, microkernel operating systems might have
some theoretical advantages over monolithic ones. Microkernels force the system programmers to adopt
a modularized approach, because each operating system layer is a relatively independent program that
must interact with the other layers through well-defined and clean software interfaces. Moreover, an
existing microkernel operating system can be easily ported to other architectures fairly easily, because all
hardware-dependent components are generally encapsulated in the microkernel code. Finally,
microkernel operating systems tend to make better use of random access memory (RAM) than
monolithic ones, because system processes that aren't implementing needed functionalities might be
swapped out or destroyed.

 To achieve many of the theoretical advantages of microkernels without introducing performance
penalties, the Linux kernel offers modules . A module is an object file whose code can be linked to (and
unlinked from) the kernel at runtime. The object code usually consists of a set of functions that
implements a filesystem, a device driver, or other features at the kernel's upper layer. The module, unlike
the external layers of microkernel operating systems, does not run as a specific process. Instead, it is
executed in Kernel Mode on behalf of the current process, like any other statically linked kernel function.

 The main advantages of using modules include:

 modularized approach

 Because any module can be linked and unlinked at runtime, system programmers must introduce
well-defined software interfaces to access the data structures handled by modules. This makes it easy to
develop new modules.

Platform independence

 Even if it may rely on some specific hardware features, a module doesn't depend on a fixed hardware
platform. For example, a disk driver module that relies on the SCSI standard works as well on an
IBM-compatible PC as it does on Hewlett-Packard's Alpha.

Frugal main memory usage

 A module can be linked to the running kernel when its functionality is required and unlinked when it is no
longer useful; this is quite useful for small embedded systems.

No performance penalty

 Once linked in, the object code of a module is equivalent to the object code of the statically linked
kernel. Therefore, no explicit message passing is required when the functions of the module are invoked.
[*]

[*] A small performance penalty occurs when the module is linked and unlinked. However, this penalty
can be compared to the penalty caused by the creation and deletion of system processes in microkernel
operating systems.

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.5. An Overview of the Unix Filesystem
 The Unix operating system design is centered on its filesystem, which has several interesting
characteristics. We'll review the most significant ones, since they will be mentioned quite often in
forthcoming chapters.

 1.5.1. Files

 A Unix file is an information container structured as a sequence of bytes; the kernel does not interpret
the contents of a file. Many programming libraries implement higher-level abstractions, such as records
structured into fields and record addressing based on keys. However, the programs in these libraries
must rely on system calls offered by the kernel. From the user's point of view, files are organized in a
tree-structured namespace, as shown in Figure 1-1.

 Figure 1-1. An example of a directory tree

 All the nodes of the tree, except the leaves, denote directory names. A directory node contains
information about the files and directories just beneath it. A file or directory name consists of a sequence
of arbitrary ASCII characters,[*] with the exception of / and of the null character \0. Most filesystems
place a limit on the length of a filename, typically no more than 255 characters. The directory
corresponding to the root of the tree is called the root directory. By convention, its name is a slash (/).
Names must be different within the same directory, but the same name may be used in different
directories.

[*] Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit
extended coding of graphical characters such as Unicode.

 Unix associates a current working directory with each process (see the section "The Process/Kernel
Model" later in this chapter); it belongs to the process execution context, and it identifies the directory
currently used by the process. To identify a specific file, the process uses a pathname, which consists of
slashes alternating with a sequence of directory names that lead to the file. If the first item in the pathname
is a slash, the pathname is said to be absolute, because its starting point is the root directory. Otherwise,
if the first item is a directory name or filename, the pathname is said to be relative, because its starting
point is the process's current directory.

 While specifying filenames, the notations "." and ".." are also used. They denote the current working
directory and its parent directory, respectively. If the current working directory is the root directory, "."
and ".." coincide.

 1.5.2. Hard and Soft Links

 A filename included in a directory is called a file hard link, or more simply, a link. The same file may have
several links included in the same directory or in different ones, so it may have several filenames.

 The Unix command:

 $ ln p1 p2

is used to create a new hard link that has the pathname p2 for a file identified by the pathname p1.

 Hard links have two limitations:


 It is not possible to create hard links for directories. Doing so might transform the directory tree
into a graph with cycles, thus making it impossible to locate a file according to its name.



 Links can be created only among files included in the same filesystem. This is a serious limitation,
because modern Unix systems may include several filesystems located on different disks and/or
partitions, and users may be unaware of the physical divisions between them.

 To overcome these limitations, soft links (also called symbolic links) were introduced a long time ago.
Symbolic links are short files that contain an arbitrary pathname of another file. The pathname may refer
to any file or directory located in any filesystem; it may even refer to a nonexistent file.

 The Unix command:

 $ ln -s p1 p2

creates a new soft link with pathname p2 that refers to pathname p1. When this command is executed,
the filesystem extracts the directory part of p2 and creates a new entry in that directory of type symbolic
link, with the name indicated by p2. This new file contains the name indicated by pathname p1. This way,
each reference to p2 can be translated automatically into a reference to p1.

 1.5.3. File Types

 Unix files may have one of the following types:


 Regular file


 Directory


 Symbolic link


 Block-oriented device file


 Character-oriented device file


 Pipe and named pipe (also called FIFO)


 Socket

 The first three file types are constituents of any Unix filesystem. Their implementation is described in
detail in Chapter 18.

 Device files are related both to I/O devices, and to device drivers integrated into the kernel. For
example, when a program accesses a device file, it acts directly on the I/O device associated with that file
(see Chapter 13).

 Pipes and sockets are special files used for interprocess communication (see the section "
Synchronization and Critical Regions" later in this chapter; also see Chapter 19).

 1.5.4. File Descriptor and Inode

 Unix makes a clear distinction between the contents of a file and the information about a file. With the
exception of device files and files of special filesystems, each file consists of a sequence of bytes. The file
does not include any control information, such as its length or an end-of-file (EOF) delimiter.

 All information needed by the filesystem to handle a file is included in a data structure called an inode.
Each file has its own inode, which the filesystem uses to identify the file.

 While filesystems and the kernel functions handling them can vary widely from one Unix system to
another, they must always provide at least the following attributes, which are specified in the POSIX
standard:



 File type (see the previous section)


 Number of hard links associated with the file


 File length in bytes


 Device ID (i.e., an identifier of the device containing the file)


 Inode number that identifies the file within the filesystem


 UID of the file owner


 User group ID of the file


 Several timestamps that specify the inode status change time, the last access time, and the last
modify time



 Access rights and file mode (see the next section)

 1.5.5. Access Rights and File Mode

 The potential users of a file fall into three classes:


 The user who is the owner of the file


 The users who belong to the same group as the file, not including the owner


 All remaining users (others)

 There are three types of access rights -- read, write, and execute for each of these three classes. Thus,
the set of access rights associated with a file consists of nine different binary flags. Three additional flags,
called suid (Set User ID), sgid (Set Group ID), and sticky, define the file mode. These flags have the
following meanings when applied to executable files:

 suid

 A process executing a file normally keeps the User ID (UID) of the process owner. However, if the
executable file has the suid flag set, the process gets the UID of the file owner.

sgid

 A process executing a file keeps the user group ID of the process group. However, if the executable file
has the sgid flag set, the process gets the user group ID of the file.

sticky

 An executable file with the sticky flag set corresponds to a request to the kernel to keep the program in
memory after its execution terminates.[*]

[*] This flag has become obsolete; other approaches based on sharing of code pages are now used (see
Chapter 9).

 When a file is created by a process, its owner ID is the UID of the process. Its owner user group ID can
be either the process group ID of the creator process or the user group ID of the parent directory,
depending on the value of the sgid flag of the parent directory.

 1.5.6. File-Handling System Calls

 When a user accesses the contents of either a regular file or a directory, he actually accesses some data
stored in a hardware block device. In this sense, a filesystem is a user-level view of the physical
organization of a hard disk partition. Because a process in User Mode cannot directly interact with the
low-level hardware components, each actual file operation must be performed in Kernel Mode.
Therefore, the Unix operating system defines several system calls related to file handling.

 All Unix kernels devote great attention to the efficient handling of hardware block devices to achieve
good overall system performance. In the chapters that follow, we will describe topics related to file
handling in Linux and specifically how the kernel reacts to file-related system calls. To understand those
descriptions, you will need to know how the main file-handling system calls are used; these are described
in the next section.

 1.5.6.1. Opening a file

 Processes can access only "opened" files. To open a file, the process invokes the system call:

 fd = open(path, flag, mode)

The three parameters have the following meanings:

 path

 Denotes the pathname (relative or absolute) of the file to be opened.

flag

 Specifies how the file must be opened (e.g., read, write, read/write, append). It also can specify whether
a nonexisting file should be created.

mode

 Specifies the access rights of a newly created file.

 This system call creates an "open file" object and returns an identifier called a file descriptor. An open file
object contains:



 Some file-handling data structures, such as a set of flags specifying how the file has been
opened, an offset field that denotes the current position in the file from which the next operation
will take place (the so-called file pointer), and so on.



 Some pointers to kernel functions that the process can invoke. The set of permitted functions
depends on the value of the flag parameter.

 We discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing some
general properties specified by the POSIX semantics.



 A file descriptor represents an interaction between a process and an opened file, while an open
file object contains data related to that interaction. The same open file object may be identified by
several file descriptors in the same process.



 Several processes may concurrently open the same file. In this case, the filesystem assigns a
separate file descriptor to each file, along with a separate open file object. When this occurs, the
Unix filesystem does not provide any kind of synchronization among the I/O operations issued by
the processes on the same file. However, several system calls such as flock() are available to
allow processes to synchronize themselves on the entire file or on portions of it (see Chapter 12).

 To create a new file, the process also may invoke the creat() system call, which is handled by the kernel
exactly like open().

 1.5.6.2. Accessing an opened file

 Regular Unix files can be addressed either sequentially or randomly, while device files and named pipes
are usually accessed sequentially. In both kinds of access, the kernel stores the file pointer in the open file
object that is, the current position at which the next read or write operation will take place.

 Sequential access is implicitly assumed: the read() and write() system calls always refer to the position
of the current file pointer. To modify the value, a program must explicitly invoke the lseek() system call.
When a file is opened, the kernel sets the file pointer to the position of the first byte in the file (offset 0).

 The lseek() system call requires the following parameters:

 newoffset = lseek(fd, offset, whence);

which have the following meanings:

 fd

 Indicates the file descriptor of the opened file

offset

 Specifies a signed integer value that will be used for computing the new position of the file pointer

whence

 Specifies whether the new position should be computed by adding the offset value to the number 0
(offset from the beginning of the file), the current file pointer, or the position of the last byte (offset from
the end of the file)

 The read() system call requires the following parameters:
 nread = read(fd, buf, count);

which have the following meanings:

 fd

 Indicates the file descriptor of the opened file

buf

 Specifies the address of the buffer in the process's address space to which the data will be transferred

count

 Denotes the number of bytes to read

 When handling such a system call, the kernel attempts to read count bytes from the file having the file
descriptor fd, starting from the current value of the opened file's offset field. In some casesend-of-file,
empty pipe, and so onthe kernel does not succeed in reading all count bytes. The returned nread value
specifies the number of bytes effectively read. The file pointer also is updated by adding nread to its
previous value. The write() parameters are similar.

 1.5.6.3. Closing a file

 When a process does not need to access the contents of a file anymore, it can invoke the system call:

 res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a process terminates,
the kernel closes all its remaining opened files.

 1.5.6.4. Renaming and deleting a file

 To rename or delete a file, a process does not need to open it. Indeed, such operations do not act on
the contents of the affected file, but rather on the contents of one or more directories. For example, the
system call:

 res = rename(oldpath, newpath);

changes the name of a file link, while the system call:

 res = unlink(pathname);

decreases the file link count and removes the corresponding directory entry. The file is deleted only when
the link count assumes the value 0.

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.6. An Overview of Unix Kernels
 Unix kernels provide an execution environment in which applications may run. Therefore, the kernel must
implement a set of services and corresponding interfaces. Applications use those interfaces and do not
usually interact directly with hardware resources.

 1.6.1. The Process/Kernel Model

 As already mentioned, a CPU can run in either User Mode or Kernel Mode . Actually, some CPUs can
have more than two execution states. For instance, the 80 x 86 microprocessors have four different
execution states. But all standard Unix kernels use only Kernel Mode and User Mode.

 When a program is executed in User Mode, it cannot directly access the kernel data structures or the
kernel programs. When an application executes in Kernel Mode, however, these restrictions no longer
apply. Each CPU model provides special instructions to switch from User Mode to Kernel Mode and
vice versa. A program usually executes in User Mode and switches to Kernel Mode only when
requesting a service provided by the kernel. When the kernel has satisfied the program's request, it puts
the program back in User Mode.

 Processes are dynamic entities that usually have a limited life span within the system. The task of
creating, eliminating, and synchronizing the existing processes is delegated to a group of routines in the
kernel.

 The kernel itself is not a process but a process manager. The process/kernel model assumes that
processes that require a kernel service use specific programming constructs called system calls . Each
system call sets up the group of parameters that identifies the process request and then executes the
hardware-dependent CPU instruction to switch from User Mode to Kernel Mode.

 Besides user processes, Unix systems include a few privileged processes called kernel threads with the
following characteristics:



 They run in Kernel Mode in the kernel address space.


 They do not interact with users, and thus do not require terminal devices.


 They are usually created during system startup and remain alive until the system is shut down.

 On a uniprocessor system, only one process is running at a time, and it may run either in User or in
Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine. Figure 1-2
illustrates examples of transitions between User and Kernel Mode. Process 1 in User Mode issues a
system call, after which the process switches to Kernel Mode, and the system call is serviced. Process 1
then resumes execution in User Mode until a timer interrupt occurs, and the scheduler is activated in
Kernel Mode. A process switch takes place, and Process 2 starts its execution in User Mode until a
hardware device raises an interrupt. As a consequence of the interrupt, Process 2 switches to Kernel
Mode and services the interrupt.

 Figure 1-2. Transitions between User and Kernel Mode

 Unix kernels do much more than handle system calls; in fact, kernel routines can be activated in several
ways:



 A process invokes a system call.


 The CPU executing the process signals an exception, which is an unusual condition such as an
invalid instruction. The kernel handles the exception on behalf of the process that caused it.



 A peripheral device issues an interrupt signal to the CPU to notify it of an event such as a request
for attention, a status change, or the completion of an I/O operation. Each interrupt signal is dealt
by a kernel program called an interrupt handler. Because peripheral devices operate
asynchronously with respect to the CPU, interrupts occur at unpredictable times.



 A kernel thread is executed. Because it runs in Kernel Mode, the corresponding program must
be considered part of the kernel.

 1.6.2. Process Implementation

 To let the kernel manage processes, each process is represented by a process descriptor that includes
information about the current state of the process.

 When the kernel stops the execution of a process, it saves the current contents of several processor
registers in the process descriptor. These include:



 The program counter (PC) and stack pointer (SP) registers


 The general purpose registers


 The floating point registers


 The processor control registers (Processor Status Word) containing information about the CPU
state



 The memory management registers used to keep track of the RAM accessed by the process

 When the kernel decides to resume executing a process, it uses the proper process descriptor fields to
load the CPU registers. Because the stored value of the program counter points to the instruction
following the last instruction executed, the process resumes execution at the point where it was stopped.

 When a process is not executing on the CPU, it is waiting for some event. Unix kernels distinguish many
wait states, which are usually implemented by queues of process descriptors ; each (possibly empty)
queue corresponds to the set of processes waiting for a specific event.

 1.6.3. Reentrant Kernels

 All Unix kernels are reentrant. This means that several processes may be executing in Kernel Mode at
the same time. Of course, on uniprocessor systems, only one process can progress, but many can be
blocked in Kernel Mode when waiting for the CPU or the completion of some I/O operation. For
instance, after issuing a read to a disk on behalf of a process, the kernel lets the disk controller handle it
and resumes executing other processes. An interrupt notifies the kernel when the device has satisfied the
read, so the former process can resume the execution.

 One way to provide reentrancy is to write functions so that they modify only local variables and do not
alter global data structures. Such functions are called reentrant functions . But a reentrant kernel is not
limited only to such reentrant functions (although that is how some real-time kernels are implemented).
Instead, the kernel can include nonreentrant functions and use locking mechanisms to ensure that only one
process can execute a nonreentrant function at a time.

 If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running process even if
that process is in Kernel Mode. This capability is very important, because it improves the throughput of
the device controllers that issue interrupts. Once a device has issued an interrupt, it waits until the CPU
acknowledges it. If the kernel is able to answer quickly, the device controller will be able to perform
other tasks while the CPU handles the interrupt.

 Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel control
path denotes the sequence of instructions executed by the kernel to handle a system call, an exception, or
an interrupt.

 In the simplest case, the CPU executes a kernel control path sequentially from the first instruction to the
last. When one of the following events occurs, however, the CPU interleaves the kernel control paths :



 A process executing in User Mode invokes a system call, and the corresponding kernel control
path verifies that the request cannot be satisfied immediately; it then invokes the scheduler to
select a new process to run. As a result, a process switch occurs. The first kernel control path is
left unfinished, and the CPU resumes the execution of some other kernel control path. In this
case, the two control paths are executed on behalf of two different processes.



 The CPU detects an exceptionfor example, access to a page not present in RAMwhile running a
kernel control path. The first control path is suspended, and the CPU starts the execution of a
suitable procedure. In our example, this type of procedure can allocate a new page for the
process and read its contents from disk. When the procedure terminates, the first control path
can be resumed. In this case, the two control paths are executed on behalf of the same process.



 A hardware interrupt occurs while the CPU is running a kernel control path with the interrupts
enabled. The first kernel control path is left unfinished, and the CPU starts processing another
kernel control path to handle the interrupt. The first kernel control path resumes when the
interrupt handler terminates. In this case, the two kernel control paths run in the execution context
of the same process, and the total system CPU time is accounted to it. However, the interrupt
handler doesn't necessarily operate on behalf of the process.



 An interrupt occurs while the CPU is running with kernel preemption enabled, and a higher
priority process is runnable. In this case, the first kernel control path is left unfinished, and the
CPU resumes executing another kernel control path on behalf of the higher priority process. This
occurs only if the kernel has been compiled with kernel preemption support.

 Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel control paths. Three
different CPU states are considered:



 Running a process in User Mode (User)


 Running an exception or a system call handler (Excp)


 Running an interrupt handler (Intr)

 Figure 1-3. Interleaving of kernel control paths



 1.6.4. Process Address Space

 Each process runs in its private address space. A process running in User Mode refers to private stack,
data, and code areas. When running in Kernel Mode, the process addresses the kernel data and code
areas and uses another private stack.

 Because the kernel is reentrant, several kernel control pathseach related to a different processmay be
executed in turn. In this case, each kernel control path refers to its own private kernel stack.

 While it appears to each process that it has access to a private address space, there are times when part
of the address space is shared among processes. In some cases, this sharing is explicitly requested by
processes; in others, it is done automatically by the kernel to reduce memory usage.

 If the same program, say an editor, is needed simultaneously by several users, the program is loaded into
memory only once, and its instructions can be shared by all of the users who need it. Its data, of course,
must not be shared, because each user will have separate data. This kind of shared address space is
done automatically by the kernel to save memory.

 Processes also can share parts of their address space as a kind of interprocess communication, using the
"shared memory" technique introduced in System V and supported by Linux.

 Finally, Linux supports the mmap() system call, which allows part of a file or the information stored on a
block device to be mapped into a part of a process address space. Memory mapping can provide an
alternative to normal reads and writes for transferring data. If the same file is shared by several
processes, its memory mapping is included in the address space of each of the processes that share it.

 1.6.5. Synchronization and Critical Regions

 Implementing a reentrant kernel requires the use of synchronization . If a kernel control path is
suspended while acting on a kernel data structure, no other kernel control path should be allowed to act
on the same data structure unless it has been reset to a consistent state. Otherwise, the interaction of the
two control paths could corrupt the stored information.

 For example, suppose a global variable V contains the number of available items of some system
resource. The first kernel control path, A, reads the variable and determines that there is just one
available item. At this point, another kernel control path, B, is activated and reads the same variable,
which still contains the value 1. Thus, B decreases V and starts using the resource item. Then A resumes
the execution; because it has already read the value of V, it assumes that it can decrease V and take the
resource item, which B already uses. As a final result, V contains -1, and two kernel control paths use
the same resource item with potentially disastrous effects.

 When the outcome of a computation depends on how two or more processes are scheduled, the code is
incorrect. We say that there is a race condition.

 In general, safe access to a global variable is ensured by using atomic operations . In the previous
example, data corruption is not possible if the two control paths read and decrease V with a single,
noninterruptible operation. However, kernels contain many data structures that cannot be accessed with
a single operation. For example, it usually isn't possible to remove an element from a linked list with a
single operation, because the kernel needs to access at least two pointers at once. Any section of code
that should be finished by each process that begins it before another process can enter it is called a
critical region.[*]

[*] Synchronization problems have been fully described in other works; we refer the interested reader to
books on the Unix operating systems (see the Bibliography).

 These problems occur not only among kernel control paths but also among processes sharing common
data. Several synchronization techniques have been adopted. The following section concentrates on how
to synchronize kernel control paths.

 1.6.5.1. Kernel preemption disabling

 To provide a drastically simple solution to synchronization problems, some traditional Unix kernels are
nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily suspended and
substituted with another process. Therefore, on a uniprocessor system, all kernel data structures that are
not updated by interrupts or exception handlers are safe for the kernel to access.

 Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case, it must ensure
that all data structures are left in a consistent state. Moreover, when it resumes its execution, it must
recheck the value of any previously accessed data structures that could be changed.

 A synchronization mechanism applicable to preemptive kernels consists of disabling kernel preemption
before entering a critical region and reenabling it right after leaving the region.

 Nonpreemptability is not enough for multiprocessor systems, because two kernel control paths running
on different CPUs can concurrently access the same data structure.

 1.6.5.2. Interrupt disabling

 Another synchronization mechanism for uniprocessor systems consists of disabling all hardware
interrupts before entering a critical region and reenabling them right after leaving it. This mechanism, while
simple, is far from optimal. If the critical region is large, interrupts can remain disabled for a relatively long
time, potentially causing all hardware activities to freeze.

 Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not sufficient, and other
synchronization techniques must be used.

 1.6.5.3. Semaphores

 A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies on the use
of semaphores . A semaphore is simply a counter associated with a data structure; it is checked by all
kernel threads before they try to access the data structure. Each semaphore may be viewed as an object
composed of:



 An integer variable


 A list of waiting processes


 Two atomic methods: down() and up()

 The down() method decreases the value of the semaphore. If the new value is less than 0, the method
adds the running process to the semaphore list and then blocks (i.e., invokes the scheduler). The up()
method increases the value of the semaphore and, if its new value is greater than or equal to 0,
reactivates one or more processes in the semaphore list.

 Each data structure to be protected has its own semaphore, which is initialized to 1. When a kernel
control path wishes to access the data structure, it executes the down() method on the proper
semaphore. If the value of the new semaphore isn't negative, access to the data structure is granted.
Otherwise, the process that is executing the kernel control path is added to the semaphore list and
blocked. When another process executes the up() method on that semaphore, one of the processes in
the semaphore list is allowed to proceed.

 1.6.5.4. Spin locks

 In multiprocessor systems, semaphores are not always the best solution to the synchronization problems.
Some kernel data structures should be protected from being concurrently accessed by kernel control
paths that run on different CPUs. In this case, if the time required to update the data structure is short, a
semaphore could be very inefficient. To check a semaphore, the kernel must insert a process in the
semaphore list and then suspend it. Because both operations are relatively expensive, in the time it takes
to complete them, the other kernel control path could have already released the semaphore.

 In these cases, multiprocessor operating systems use spin locks . A spin lock is very similar to a
semaphore, but it has no process list; when a process finds the lock closed by another process, it "spins"
around repeatedly, executing a tight instruction loop until the lock becomes open.

 Of course, spin locks are useless in a uniprocessor environment. When a kernel control path tries to
access a locked data structure, it starts an endless loop. Therefore, the kernel control path that is
updating the protected data structure would not have a chance to continue the execution and release the
spin lock. The final result would be that the system hangs.

 1.6.5.5. Avoiding deadlocks

 Processes or kernel control paths that synchronize with other control paths may easily enter a deadlock
state. The simplest case of deadlock occurs when process p1 gains access to data structure a and
process p2 gains access to b, but p1 then waits for b and p2 waits for a. Other more complex cyclic
waits among groups of processes also may occur. Of course, a deadlock condition causes a complete
freeze of the affected processes or kernel control paths.

 As far as kernel design is concerned, deadlocks become an issue when the number of kernel locks used
is high. In this case, it may be quite difficult to ensure that no deadlock state will ever be reached for all
possible ways to interleave kernel control paths. Several operating systems, including Linux, avoid this
problem by requesting locks in a predefined order.

 1.6.6. Signals and Interprocess Communication

 Unix signals provide a mechanism for notifying processes of system events. Each event has its own signal
number, which is usually referred to by a symbolic constant such as SIGTERM. There are two kinds of
system events:

 Asynchronous notifications

 For instance, a user can send the interrupt signal SIGINT to a foreground process by pressing the
interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications

 For instance, the kernel sends the signal SIGSEGV to a process when it accesses a memory location at
an invalid address.

 The POSIX standard defines about 20 different signals, 2 of which are user-definable and may be used
as a primitive mechanism for communication and synchronization among processes in User Mode. In
general, a process may react to a signal delivery in two possible ways:



 Ignore the signal.


 Asynchronously execute a specified procedure (the signal handler).

 If the process does not specify one of these alternatives, the kernel performs a default action that
depends on the signal number. The five possible default actions are:



 Terminate the process.


 Write the execution context and the contents of the address space in a file (core dump) and
terminate the process.



 Ignore the signal.


 Suspend the process.


 Resume the process's execution, if it was stopped.

 Kernel signal handling is rather elaborate, because the POSIX semantics allows processes to
temporarily block signals. Moreover, the SIGKILL and SIGSTOP signals cannot be directly handled by
the process or ignored.

 AT&T's Unix System V introduced other kinds of interprocess communication among processes in User
Mode, which have been adopted by many Unix kernels: semaphores , message queues , and shared
memory . They are collectively known as System V IPC.

 The kernel implements these constructs as IPC resources. A process acquires a resource by invoking a
shmget() , semget() , or msgget() system call. Just like files, IPC resources are persistent: they must be
explicitly deallocated by the creator process, by the current owner, or by a superuser process.

 Semaphores are similar to those described in the section "Synchronization and Critical Regions," earlier
in this chapter, except that they are reserved for processes in User Mode. Message queues allow
processes to exchange messages by using the msgsnd() and msgrcv() system calls, which insert a
message into a specific message queue and extract a message from it, respectively.

 The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on message queues,
which is usually known as POSIX message queues . They are similar to the System V IPC's message
queues, but they have a much simpler file-based interface to the applications.

 Shared memory provides the fastest way for processes to exchange and share data. A process starts by
issuing a shmget() system call to create a new shared memory having a required size. After obtaining the
IPC resource identifier, the process invokes the shmat() system call, which returns the starting address of
the new region within the process address space. When the process wishes to detach the shared memory
from its address space, it invokes the shmdt() system call. The implementation of shared memory
depends on how the kernel implements process address spaces.

 1.6.7. Process Management

 Unix makes a neat distinction between the process and the program it is executing. To that end, the fork(
) and _exit() system calls are used respectively to create a new process and to terminate it, while an
exec()-like system call is invoked to load a new program. After such a system call is executed, the
process resumes execution with a brand new address space containing the loaded program.

 The process that invokes a fork() is the parent, while the new process is its child. Parents and children
can find one another because the data structure describing each process includes a pointer to its
immediate parent and pointers to all its immediate children.

 A naive implementation of the fork() would require both the parent's data and the parent's code to be
duplicated and the copies assigned to the child. This would be quite time consuming. Current kernels that
can rely on hardware paging units follow the Copy-On-Write approach, which defers page duplication
until the last moment (i.e., until the parent or the child is required to write into a page). We shall describe
how Linux implements this technique in the section "Copy On Write" in Chapter 9.

 The _exit() system call terminates a process. The kernel handles this system call by releasing the
resources owned by the process and sending the parent process a SIGCHLD signal, which is ignored by
default.

 1.6.7.1. Zombie processes

 How can a parent process inquire about termination of its children? The wait4() system call allows a
process to wait until one of its children terminates; it returns the process ID (PID) of the terminated child.

 When executing this system call, the kernel checks whether a child has already terminated. A special
zombie process state is introduced to represent terminated processes: a process remains in that state until
its parent process executes a wait4() system call on it. The system call handler extracts data about
resource usage from the process descriptor fields; the process descriptor may be released once the data
is collected. If no child process has already terminated when the wait4() system call is executed, the
kernel usually puts the process in a wait state until a child terminates.

 Many kernels also implement a waitpid() system call, which allows a process to wait for a specific child
process. Other variants of wait4() system calls are also quite common.

 It's good practice for the kernel to keep around information on a child process until the parent issues its
wait4() call, but suppose the parent process terminates without issuing that call? The information takes
up valuable memory slots that could be used to serve living processes. For example, many shells allow
the user to start a command in the background and then log out. The process that is running the
command shell terminates, but its children continue their execution.

 The solution lies in a special system process called init, which is created during system initialization.
When a process terminates, the kernel changes the appropriate process descriptor pointers of all the
existing children of the terminated process to make them become children of init. This process monitors
the execution of all its children and routinely issues wait4() system calls, whose side effect is to get rid of
all orphaned zombies.

 1.6.7.2. Process groups and login sessions

 Modern Unix operating systems introduce the notion of process groups to represent a "job" abstraction.
For example, in order to execute the command line:

 $ ls | sort | more

a shell that supports process groups, such as bash, creates a new group for the three processes
corresponding to ls, sort, and more. In this way, the shell acts on the three processes as if they were a
single entity (the job, to be precise). Each process descriptor includes a field containing the process
group ID . Each group of processes may have a group leader, which is the process whose PID coincides
with the process group ID. A newly created process is initially inserted into the process group of its
parent.

 Modern Unix kernels also introduce login sessions. Informally, a login session contains all processes that
are descendants of the process that has started a working session on a specific terminalusually, the first
command shell process created for the user. All processes in a process group must be in the same login
session. A login session may have several process groups active simultaneously; one of these process
groups is always in the foreground, which means that it has access to the terminal. The other active
process groups are in the background. When a background process tries to access the terminal, it
receives a SIGTTIN or SIGTTOUT signal. In many command shells, the internal commands bg and fg
can be used to put a process group in either the background or the foreground.

 1.6.8. Memory Management

 Memory management is by far the most complex activity in a Unix kernel. More than a third of this book
is dedicated just to describing how Linux handles memory management. This section illustrates some of
the main issues related to memory management.

 1.6.8.1. Virtual memory

 All recent Unix systems provide a useful abstraction called virtual memory . Virtual memory acts as a
logical layer between the application memory requests and the hardware Memory Management Unit
(MMU). Virtual memory has many purposes and advantages:



 Several processes can be executed concurrently.


 It is possible to run applications whose memory needs are larger than the available physical
memory.



 Processes can execute a program whose code is only partially loaded in memory.


 Each process is allowed to access a subset of the available physical memory.


 Processes can share a single memory image of a library or program.


 Programs can be relocatable that is, they can be placed anywhere in physical memory.


 Programmers can write machine-independent code, because they do not need to be concerned
about physical memory organization.

 The main ingredient of a virtual memory subsystem is the notion of virtual address space. The set of
memory references that a process can use is different from physical memory addresses. When a process
uses a virtual address,[*] the kernel and the MMU cooperate to find the actual physical location of the
requested memory item.

[*] These addresses have different nomenclatures, depending on the computer architecture. As we'll see
in Chapter 2, Intel manuals refer to them as "logical addresses."

 Today's CPUs include hardware circuits that automatically translate the virtual addresses into physical
ones. To that end, the available RAM is partitioned into page frames typically 4 or 8 KB in lengthand a
set of Page Tables is introduced to specify how virtual addresses correspond to physical addresses.
These circuits make memory allocation simpler, because a request for a block of contiguous virtual
addresses can be satisfied by allocating a group of page frames having noncontiguous physical addresses.

 1.6.8.2. Random access memory usage

 All Unix operating systems clearly distinguish between two portions of the random access memory
(RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel code and the kernel
static data structures). The remaining portion of RAM is usually handled by the virtual memory system
and is used in three possible ways:



 To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data structures


 To satisfy process requests for generic memory areas and for memory mapping of files


 To get better performance from disks and other buffered devices by means of caches

 Each request type is valuable. On the other hand, because the available RAM is limited, some balancing
among request types must be done, particularly when little available memory is left. Moreover, when
some critical threshold of available memory is reached and a page-frame-reclaiming algorithm is invoked
to free additional memory, which are the page frames most suitable for reclaiming? As we will see in
Chapter 17, there is no simple answer to this question and very little support from theory. The only
available solution lies in developing carefully tuned empirical algorithms.

 One major problem that must be solved by the virtual memory system is memory fragmentation . Ideally,
a memory request should fail only when the number of free page frames is too small. However, the kernel
is often forced to use physically contiguous memory areas. Hence the memory request could fail even if
there is enough memory available, but it is not available as one contiguous chunk.

 1.6.8.3. Kernel Memory Allocator

 The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for memory areas
from all parts of the system. Some of these requests come from other kernel subsystems needing memory
for kernel use, and some requests come via system calls from user programs to increase their processes'
address spaces. A good KMA should have the following features:



 It must be fast. Actually, this is the most crucial attribute, because it is invoked by all kernel
subsystems (including the interrupt handlers).



 It should minimize the amount of wasted memory.


 It should try to reduce the memory fragmentation problem.


 It should be able to cooperate with the other memory management subsystems to borrow and
release page frames from them.

 Several proposed KMAs, which are based on a variety of different algorithmic techniques, include:


 Resource map allocator


 Power-of-two free lists


 McKusick-Karels allocator


 Buddy system


 Mach's Zone allocator


 Dynix allocator


 Solaris 's Slab allocator

 As we will see in Chapter 8, Linux's KMA uses a Slab allocator on top of a buddy system.

 1.6.8.4. Process virtual address space handling

 The address space of a process contains all the virtual memory addresses that the process is allowed to
reference. The kernel usually stores a process virtual address space as a list of memory area descriptors .
For example, when a process starts the execution of some program via an exec()-like system call, the
kernel assigns to the process a virtual address space that comprises memory areas for:



 The executable code of the program


 The initialized data of the program


 The uninitialized data of the program


 The initial program stack (i.e., the User Mode stack)


 The executable code and data of needed shared libraries


 The heap (the memory dynamically requested by the program)

 All recent Unix operating systems adopt a memory allocation strategy called demand paging . With
demand paging, a process can start program execution with none of its pages in physical memory. As it
accesses a nonpresent page, the MMU generates an exception; the exception handler finds the affected
memory region, allocates a free page, and initializes it with the appropriate data. In a similar fashion,
when the process dynamically requires memory by using malloc(), or the brk() system call (which is
invoked internally by malloc()), the kernel just updates the size of the heap memory region of the
process. A page frame is assigned to the process only when it generates an exception by trying to refer
its virtual memory addresses.

 Virtual address spaces also allow other efficient strategies, such as the Copy On Write strategy
mentioned earlier. For example, when a new process is created, the kernel just assigns the parent's page
frames to the child address space, but marks them read-only. An exception is raised as soon the parent
or the child tries to modify the contents of a page. The exception handler assigns a new page frame to the
affected process and initializes it with the contents of the original page.

 1.6.8.5. Caching

 A good part of the available physical memory is used as cache for hard disks and other block devices.
This is because hard drives are very slow: a disk access requires several milliseconds, which is a very
long time compared with the RAM access time. Therefore, disks are often the bottleneck in system
performance. As a general rule, one of the policies already implemented in the earliest Unix system is to
defer writing to disk as long as possible. As a result, data read previously from disk and no longer used
by any process continue to stay in RAM.

 This strategy is based on the fact that there is a good chance that new processes will require data read
from or written to disk by processes that no longer exist. When a process asks to access a disk, the
kernel checks first whether the required data are in the cache. Each time this happens (a cache hit), the
kernel is able to service the process request without accessing the disk.

 The sync() system call forces disk synchronization by writing all of the "dirty" buffers (i.e., all the buffers
whose contents differ from that of the corresponding disk blocks) into disk. To avoid data loss, all
operating systems take care to periodically write dirty buffers back to disk.

 1.6.9. Device Drivers

 The kernel interacts with I/O devices by means of device drivers . Device drivers are included in the
kernel and consist of data structures and functions that control one or more devices, such as hard disks,
keyboards, mouses, monitors, network interfaces, and devices connected to an SCSI bus. Each driver
interacts with the remaining part of the kernel (even with other drivers) through a specific interface. This
approach has the following advantages:



 Device-specific code can be encapsulated in a specific module.


 Vendors can add new devices without knowing the kernel source code; only the interface
specifications must be known.



 The kernel deals with all devices in a uniform way and accesses them through the same interface.


 It is possible to write a device driver as a module that can be dynamically loaded in the kernel
without requiring the system to be rebooted. It is also possible to dynamically unload a module
that is no longer needed, therefore minimizing the size of the kernel image stored in RAM.

 Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with the processes.

 Figure 1-4. Device driver interface

 Some user programs (P) wish to operate on hardware devices. They make requests to the kernel using
the usual file-related system calls and the device files normally found in the /dev directory. Actually, the
device files are the user-visible portion of the device driver interface. Each device file refers to a specific
device driver, which is invoked by the kernel to perform the requested operation on the hardware
component.

 At the time Unix was introduced, graphical terminals were uncommon and expensive, so only
alphanumeric terminals were handled directly by Unix kernels. When graphical terminals became
widespread, ad hoc applications such as the X Window System were introduced that ran as standard
processes and accessed the I/O ports of the graphics interface and the RAM video area directly. Some
recent Unix kernels, such as Linux 2.6, provide an abstraction for the frame buffer of the graphic card
and allow application software to access them without needing to know anything about the I/O ports of
the graphics interface (see the section "Levels of Kernel Support" in Chapter 13.)

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 2. Memory Addressing
 This chapter deals with addressing techniques. Luckily, an operating system is not forced to keep track
of physical memory all by itself; today's microprocessors include several hardware circuits to make
memory management both more efficient and more robust so that programming errors cannot cause
improper accesses to memory outside the program.

 As in the rest of this book, we offer details in this chapter on how 80 x 86 microprocessors address
memory chips and how Linux uses the available addressing circuits. You will find, we hope, that when
you learn the implementation details on Linux's most popular platform you will better understand both the
general theory of paging and how to research the implementation on other platforms.

 This is the first of three chapters related to memory management; Chapter 8 discusses how the kernel
allocates main memory to itself, while Chapter 9 considers how linear addresses are assigned to
processes.

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.1. Memory Addresses
 Programmers casually refer to a memory address as the way to access the contents of a memory cell.
But when dealing with 80 x 86 microprocessors, we have to distinguish three kinds of addresses:

 Logical address

 Included in the machine language instructions to specify the address of an operand or of an instruction.
This type of address embodies the well-known 80 x 86 segmented architecture that forces MS-DOS
and Windows programmers to divide their programs into segments . Each logical address consists of a
segment and an offset (or displacement) that denotes the distance from the start of the segment to the
actual address.

Linear address (also known as virtual address)

 A single 32-bit unsigned integer that can be used to address up to 4 GB that is, up to 4,294,967,296
memory cells. Linear addresses are usually represented in hexadecimal notation; their values range from
0x00000000 to 0xffffffff.

Physical address

 Used to address memory cells in memory chips. They correspond to the electrical signals sent along the
address pins of the microprocessor to the memory bus. Physical addresses are represented as 32-bit or
36-bit unsigned integers.

 The Memory Management Unit (MMU) transforms a logical address into a linear address by means of a
hardware circuit called a segmentation unit ; subsequently, a second hardware circuit called a paging unit
transforms the linear address into a physical address (see Figure 2-1).

 Figure 2-1. Logical address translation

 In multiprocessor systems, all CPUs usually share the same memory; this means that RAM chips may be
accessed concurrently by independent CPUs. Because read or write operations on a RAM chip must be
performed serially, a hardware circuit called a memory arbiter is inserted between the bus and every
RAM chip. Its role is to grant access to a CPU if the chip is free and to delay it if the chip is busy
servicing a request by another processor. Even uniprocessor systems use memory arbiters , because they
include specialized processors called DMA controllers that operate concurrently with the CPU (see the
section "Direct Memory Access (DMA)" in Chapter 13). In the case of multiprocessor systems, the
structure of the arbiter is more complex because it has more input ports. The dual Pentium, for instance,
maintains a two-port arbiter at each chip entrance and requires that the two CPUs exchange
synchronization messages before attempting to use the common bus. From the programming point of
view, the arbiter is hidden because it is managed by hardware circuits.

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.2. Segmentation in Hardware
 Starting with the 80286 model, Intel microprocessors perform address translation in two different ways
called real mode and protected mode . We'll focus in the next sections on address translation when
protected mode is enabled. Real mode exists mostly to maintain processor compatibility with older
models and to allow the operating system to bootstrap (see Appendix A for a short description of real
mode).

 2.2.1. Segment Selectors and Segmentation Registers

 A logical address consists of two parts: a segment identifier and an offset that specifies the relative
address within the segment. The segment identifier is a 16-bit field called the Segment Selector (see
Figure 2-2), while the offset is a 32-bit field. We'll describe the fields of Segment Selectors in the section
"Fast Access to Segment Descriptors" later in this chapter.

 Figure 2-2. Segment Selector format

 To make it easy to retrieve segment selectors quickly, the processor provides segmentation registers
whose only purpose is to hold Segment Selectors; these registers are called cs, ss, ds, es, fs, and gs.
Although there are only six of them, a program can reuse the same segmentation register for different
purposes by saving its content in memory and then restoring it later.

 Three of the six segmentation registers have specific purposes:

 cs

 The code segment register, which points to a segment containing program instructions

ss

 The stack segment register, which points to a segment containing the current program stack

ds

 The data segment register, which points to a segment containing global and static data

 The remaining three segmentation registers are general purpose and may refer to arbitrary data
segments.

 The cs register has another important function: it includes a 2-bit field that specifies the Current Privilege
Level (CPL) of the CPU. The value 0 denotes the highest privilege level, while the value 3 denotes the
lowest one. Linux uses only levels 0 and 3, which are respectively called Kernel Mode and User Mode.

 2.2.2. Segment Descriptors

 Each segment is represented by an 8-byte Segment Descriptor that describes the segment
characteristics. Segment Descriptors are stored either in the Global Descriptor Table (GDT) or in the
Local Descriptor Table(LDT).

 Usually only one GDT is defined, while each process is permitted to have its own LDT if it needs to
create additional segments besides those stored in the GDT. The address and size of the GDT in main
memory are contained in the gdtr control register, while the address and size of the currently used LDT
are contained in the ldtr control register.

 Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various fields is explained
in Table 2-1.

 Table 2-1. Segment Descriptor fields

Field name Description

Base Contains the linear address of the first byte of the
segment.

G
Granularity flag: if it is cleared (equal to 0), the
segment size is expressed in bytes; otherwise, it is
expressed in multiples of 4096 bytes.

Limit

Holds the offset of the last memory cell in the
segment, thus binding the segment length. When G
is set to 0, the size of a segment may vary between
1 byte and 1 MB; otherwise, it may vary between
4 KB and 4 GB.

S

System flag: if it is cleared, the segment is a system
segment that stores critical data structures such as
the Local Descriptor Table; otherwise, it is a
normal code or data segment.

Type Characterizes the segment type and its access
rights (see the text that follows this table).

DPL

Descriptor Privilege Level: used to restrict
accesses to the segment. It represents the minimal
CPU privilege level requested for accessing the
segment. Therefore, a segment with its DPL set to
0 is accessible only when the CPL is 0 that is, in
Kernel Mode while a segment with its DPL set to
3 is accessible with every CPL value.

P

Segment-Present flag : is equal to 0 if the segment
is not stored currently in main memory. Linux
always sets this flag (bit 47) to 1, because it never
swaps out whole segments to disk.

D or B

Called D or B depending on whether the segment
contains code or data. Its meaning is slightly
different in the two cases, but it is basically set
(equal to 1) if the addresses used as segment
offsets are 32 bits long, and it is cleared if they are
16 bits long (see the Intel manual for further
details).

AVL May be used by the operating system, but it is
ignored by Linux.

There are several types of segments, and thus several types of Segment Descriptors. The following list
shows the types that are widely used in Linux.

 Code Segment Descriptor

 Indicates that the Segment Descriptor refers to a code segment; it may be included either in the GDT or
in the LDT. The descriptor has the S flag set (non-system segment).

Data Segment Descriptor

 Indicates that the Segment Descriptor refers to a data segment; it may be included either in the GDT or
in the LDT. The descriptor has the S flag set. Stack segments are implemented by means of generic data
segments.

Task State Segment Descriptor (TSSD)

 Indicates that the Segment Descriptor refers to a Task State Segment (TSS) that is, a segment used to
save the contents of the processor registers (see the section "Task State Segment" in Chapter 3); it can
appear only in the GDT. The corresponding Type field has the value 11 or 9, depending on whether the
corresponding process is currently executing on a CPU. The S flag of such descriptors is set to 0.

 Figure 2-3. Segment Descriptor format

 Local Descriptor Table Descriptor (LDTD)

 Indicates that the Segment Descriptor refers to a segment containing an LDT; it can appear only in the
GDT. The corresponding Type field has the value 2. The S flag of such descriptors is set to 0. The next
section shows how 80 x 86 processors are able to decide whether a segment descriptor is stored in the
GDT or in the LDT of the process.

 2.2.3. Fast Access to Segment Descriptors

 We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Offset, and that
segmentation registers store only the Segment Selector.

 To speed up the translation of logical addresses into linear addresses, the 80 x 86 processor provides an
additional nonprogrammable registerthat is, a register that cannot be set by a programmerfor each of the
six programmable segmentation registers. Each nonprogrammable register contains the 8-byte Segment
Descriptor (described in the previous section) specified by the Segment Selector contained in the
corresponding segmentation register. Every time a Segment Selector is loaded in a segmentation register,
the corresponding Segment Descriptor is loaded from memory into the matching nonprogrammable CPU
register. From then on, translations of logical addresses referring to that segment can be performed
without accessing the GDT or LDT stored in main memory; the processor can refer only directly to the
CPU register containing the Segment Descriptor. Accesses to the GDT or LDT are necessary only when
the contents of the segmentation registers change (see Figure 2-4).

 Figure 2-4. Segment Selector and Segment Descriptor

 Any Segment Selector includes three fields that are described in Table 2-2.

 Table 2-2. Segment Selector fields

Field name Description

index
Identifies the Segment Descriptor entry contained
in the GDT or in the LDT (described further in the
text following this table).

TI
Table Indicator : specifies whether the Segment
Descriptor is included in the GDT (TI = 0) or in the
LDT (TI = 1).

RPL

Requestor Privilege Level : specifies the Current
Privilege Level of the CPU when the
corresponding Segment Selector is loaded into the
cs register; it also may be used to selectively
weaken the processor privilege level when
accessing data segments (see Intel documentation
for details).

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT is obtained
by multiplying the 13-bit index field of the Segment Selector by 8. For instance, if the GDT is at
0x00020000 (the value stored in the gdtr register) and the index specified by the Segment Selector is 2,
the address of the corresponding Segment Descriptor is 0x00020000 + (2 x 8), or 0x00020010.

 The first entry of the GDT is always set to 0. This ensures that logical addresses with a null Segment
Selector will be considered invalid, thus causing a processor exception. The maximum number of
Segment Descriptors that can be stored in the GDT is 8,191 (i.e., 213-1).

 2.2.4. Segmentation Unit

 Figure 2-5 shows in detail how a logical address is translated into a corresponding linear address. The
segmentation unit performs the following operations:



 Examines the TI field of the Segment Selector to determine which Descriptor Table stores the
Segment Descriptor. This field indicates that the Descriptor is either in the GDT (in which case
the segmentation unit gets the base linear address of the GDT from the gdtr register) or in the
active LDT (in which case the segmentation unit gets the base linear address of that LDT from
the ldtr register).



 Computes the address of the Segment Descriptor from the index field of the Segment Selector.
The index field is multiplied by 8 (the size of a Segment Descriptor), and the result is added to the
content of the gdtr or ldtr register.



 Adds the offset of the logical address to the Base field of the Segment Descriptor, thus obtaining
the linear address.

 Figure 2-5. Translating a logical address



 Notice that, thanks to the nonprogrammable registers associated with the segmentation registers, the first
two operations need to be performed only when a segmentation register has been changed.

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.3. Segmentation in Linux
 Segmentation has been included in 80 x 86 microprocessors to encourage programmers to split their
applications into logically related entities, such as subroutines or global and local data areas. However,
Linux uses segmentation in a very limited way. In fact, segmentation and paging are somewhat redundant,
because both can be used to separate the physical address spaces of processes: segmentation can assign
a different linear address space to each process, while paging can map the same linear address space into
different physical address spaces. Linux prefers paging to segmentation for the following reasons:



 Memory management is simpler when all processes use the same segment register values that is,
when they share the same set of linear addresses.



 One of the design objectives of Linux is portability to a wide range of architectures; RISC
architectures in particular have limited support for segmentation.

 The 2.6 version of Linux uses segmentation only when required by the 80 x 86 architecture.

 All Linux processes running in User Mode use the same pair of segments to address instructions and
data. These segments are called user code segment and user data segment , respectively. Similarly, all
Linux processes running in Kernel Mode use the same pair of segments to address instructions and data:
they are called kernel code segment and kernel data segment , respectively. Table 2-3 shows the values
of the Segment Descriptor fields for these four crucial segments.

 Table 2-3. Values of the Segment Descriptor fields for the four main Linux segments

Segment Base G Limit S Type DPL D/B P

user code 0x00000
000 1 0xfffff 1 10 3 1 1

user data 0x00000
000 1 0xfffff 1 2 3 1 1

kernel
code

0x00000
000 1 0xfffff 1 10 0 1 1

kernel
data

0x00000
000 1 0xfffff 1 2 0 1 1

The corresponding Segment Selectors are defined by the macros _ _USER_CS, _ _USER_DS, _
_KERNEL_CS, and _ _KERNEL_DS, respectively. To address the kernel code segment, for instance,
the kernel just loads the value yielded by the _ _KERNEL_CS macro into the cs segmentation register.

 Notice that the linear addresses associated with such segments all start at 0 and reach the addressing
limit of 232 -1. This means that all processes, either in User Mode or in Kernel Mode, may use the same
logical addresses.

 Another important consequence of having all segments start at 0x00000000 is that in Linux, logical
addresses coincide with linear addresses; that is, the value of the Offset field of a logical address always
coincides with the value of the corresponding linear address.

 As stated earlier, the Current Privilege Level of the CPU indicates whether the processor is in User or
Kernel Mode and is specified by the RPL field of the Segment Selector stored in the cs register.
Whenever the CPL is changed, some segmentation registers must be correspondingly updated. For
instance, when the CPL is equal to 3 (User Mode), the ds register must contain the Segment Selector of
the user data segment, but when the CPL is equal to 0, the ds register must contain the Segment Selector
of the kernel data segment.

 A similar situation occurs for the ss register. It must refer to a User Mode stack inside the user data
segment when the CPL is 3, and it must refer to a Kernel Mode stack inside the kernel data segment
when the CPL is 0. When switching from User Mode to Kernel Mode, Linux always makes sure that the
ss register contains the Segment Selector of the kernel data segment.

 When saving a pointer to an instruction or to a data structure, the kernel does not need to store the
Segment Selector component of the logical address, because the ss register contains the current Segment
Selector. As an example, when the kernel invokes a function, it executes a call assembly language
instruction specifying just the Offset component of its logical address; the Segment Selector is implicitly
selected as the one referred to by the cs register. Because there is just one segment of type "executable in
Kernel Mode," namely the code segment identified by __KERNEL_CS, it is sufficient to load
__KERNEL_CS into cs whenever the CPU switches to Kernel Mode. The same argument goes for
pointers to kernel data structures (implicitly using the ds register), as well as for pointers to user data
structures (the kernel explicitly uses the es register).

 Besides the four segments just described, Linux makes use of a few other specialized segments. We'll
introduce them in the next section while describing the Linux GDT.

 2.3.1. The Linux GDT

 In uniprocessor systems there is only one GDT, while in multiprocessor systems there is one GDT for
every CPU in the system. All GDTs are stored in the cpu_gdt_table array, while the addresses and sizes
of the GDTs (used when initializing the gdtr registers) are stored in the cpu_gdt_descr array. If you look
in the Source Code Index, you can see that these symbols are defined in the file
arch/i386/kernel/head.S . Every macro, function, and other symbol in this book is listed in the Source
Code Index, so you can quickly find it in the source code.

 The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18 segment
descriptors and 14 null, unused, or reserved entries. Unused entries are inserted on purpose so that
Segment Descriptors usually accessed together are kept in the same 32-byte line of the hardware cache
(see the section "Hardware Cache" later in this chapter).

 The 18 segment descriptors included in each GDT point to the following segments:


 Four user and kernel code and data segments (see previous section).


 A Task State Segment (TSS), different for each processor in the system. The linear address
space corresponding to a TSS is a small subset of the linear address space corresponding to the
kernel data segment. The Task State Segments are sequentially stored in the init_tss array; in
particular, the Base field of the TSS descriptor for the nth CPU points to the nth component of
the init_tss array. The G (granularity) flag is cleared, while the Limit field is set to 0xeb, because
the TSS segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit TSS), and
the DPL is set to 0, because processes in User Mode are not allowed to access TSS segments.
You will find details on how Linux uses TSSs in the section "Task State Segment" in Chapter 3.

 Figure 2-6. The Global Descriptor Table




 A segment including the default Local Descriptor Table (LDT), usually shared by all processes
(see the next section).



 Three Thread-Local Storage (TLS) segments: this is a mechanism that allows multithreaded
applications to make use of up to three segments containing data local to each thread. The
set_thread_area() and get_thread_area() system calls, respectively, create and release a TLS
segment for the executing process.



 Three segments related to Advanced Power Management (APM): the BIOS code makes use of
segments, so when the Linux APM driver invokes BIOS functions to get or set the status of
APM devices, it may use custom code and data segments.



 Five segments related to Plug and Play (PnP) BIOS services. As in the previous case, the BIOS
code makes use of segments, so when the Linux PnP driver invokes BIOS functions to detect the
resources used by PnP devices, it may use custom code and data segments.



 A special TSS segment used by the kernel to handle "Double fault " exceptions (see "Exceptions"
in Chapter 4).

 As stated earlier, there is a copy of the GDT for each processor in the system. All copies of the GDT
store identical entries, except for a few cases. First, each processor has its own TSS segment, thus the
corresponding GDT's entries differ. Moreover, a few entries in the GDT may depend on the process that
the CPU is executing (LDT and TLS Segment Descriptors). Finally, in some cases a processor may
temporarily modify an entry in its copy of the GDT; this happens, for instance, when invoking an APM's
BIOS procedure.

 2.3.2. The Linux LDTs

 Most Linux User Mode applications do not make use of a Local Descriptor Table, thus the kernel
defines a default LDT to be shared by most processes. The default Local Descriptor Table is stored in
the default_ldt array. It includes five entries, but only two of them are effectively used by the kernel: a call
gate for iBCS executables, and a call gate for Solaris /x86 executables (see the section "Execution
Domains" in Chapter 20). Call gates are a mechanism provided by 80 x 86 microprocessors to change
the privilege level of the CPU while invoking a predefined function; as we won't discuss them further, you
should consult the Intel documentation for more details.

 In some cases, however, processes may require to set up their own LDT. This turns out to be useful to
applications (such as Wine) that execute segment-oriented Microsoft Windows applications. The
modify_ldt() system call allows a process to do this.

 Any custom LDT created by modify_ldt() also requires its own segment. When a processor starts
executing a process having a custom LDT, the LDT entry in the CPU-specific copy of the GDT is
changed accordingly.

 User Mode applications also may allocate new segments by means of modify_ldt(); the kernel,
however, never makes use of these segments, and it does not have to keep track of the corresponding
Segment Descriptors, because they are included in the custom LDT of the process.

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.4. Paging in Hardware
 The paging unit translates linear addresses into physical ones. One key task in the unit is to check the
requested access type against the access rights of the linear address. If the memory access is not valid, it
generates a Page Fault exception (see Chapter 4 and Chapter 8).

 For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages ;
contiguous linear addresses within a page are mapped into contiguous physical addresses. In this way,
the kernel can specify the physical address and the access rights of a page instead of those of all the
linear addresses included in it. Following the usual convention, we shall use the term "page" to refer both
to a set of linear addresses and to the data contained in this group of addresses.

 The paging unit thinks of all RAM as partitioned into fixed-length page frames (sometimes referred to as
physical pages). Each page frame contains a page that is, the length of a page frame coincides with that
of a page. A page frame is a constituent of main memory, and hence it is a storage area. It is important to
distinguish a page from a page frame; the former is just a block of data, which may be stored in any page
frame or on disk.

 The data structures that map linear to physical addresses are called page tables ; they are stored in main
memory and must be properly initialized by the kernel before enabling the paging unit.

 Starting with the 80386, all 80 x 86 processors support paging; it is enabled by setting the PG flag of a
control register named cr0 . When PG = 0, linear addresses are interpreted as physical addresses.

 2.4.1. Regular Paging

 Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.

 The 32 bits of a linear address are divided into three fields:

 Directory

 The most significant 10 bits

Table

 The intermediate 10 bits

Offset

 The least significant 12 bits

 The translation of linear addresses is accomplished in two steps, each based on a type of translation
table. The first translation table is called the Page Directory, and the second is called the Page Table.[*]

[*] In the discussion that follows, the lowercase "page table" term denotes any page storing the mapping
between linear and physical addresses, while the capitalized "Page Table" term denotes a page in the last
level of page tables.

 The aim of this two-level scheme is to reduce the amount of RAM required for per-process Page
Tables. If a simple one-level Page Table was used, then it would require up to 220 entries (i.e., at 4
bytes per entry, 4 MB of RAM) to represent the Page Table for each process (if the process used a full
4 GB linear address space), even though a process does not use all addresses in that range. The
two-level scheme reduces the memory by requiring Page Tables only for those virtual memory regions
actually used by a process.

 Each active process must have a Page Directory assigned to it. However, there is no need to allocate
RAM for all Page Tables of a process at once; it is more efficient to allocate RAM for a Page Table only
when the process effectively needs it.

 The physical address of the Page Directory in use is stored in a control register named cr3 . The
Directory field within the linear address determines the entry in the Page Directory that points to the
proper Page Table. The address's Table field, in turn, determines the entry in the Page Table that
contains the physical address of the page frame containing the page. The Offset field determines the
relative position within the page frame (see Figure 2-7). Because it is 12 bits long, each page consists of
4096 bytes of data.

 Figure 2-7. Paging by 80 x 86 processors

 Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables can
include up to 1,024 entries. It follows that a Page Directory can address up to 1024 x 1024 x 4096=232
memory cells, as you'd expect in 32-bit addresses.

 The entries of Page Directories and Page Tables have the same structure. Each entry includes the
following fields:

 Present flag

 If it is set, the referred-to page (or Page Table) is contained in main memory; if the flag is 0, the page is
not contained in main memory and the remaining entry bits may be used by the operating system for its
own purposes. If the entry of a Page Table or Page Directory needed to perform an address translation
has the Present flag cleared, the paging unit stores the linear address in a control register named cr2 and
generates exception 14: the Page Fault exception. (We will see in Chapter 17 how Linux uses this field.)

Field containing the 20 most significant bits of a page frame physical address

 Because each page frame has a 4-KB capacity, its physical address must be a multiple of 4096, so the
12 least significant bits of the physical address are always equal to 0. If the field refers to a Page
Directory, the page frame contains a Page Table; if it refers to a Page Table, the page frame contains a
page of data.

Accessed flag

 Set each time the paging unit addresses the corresponding page frame. This flag may be used by the
operating system when selecting pages to be swapped out. The paging unit never resets this flag; this
must be done by the operating system.

Dirty flag

 Applies only to the Page Table entries. It is set each time a write operation is performed on the page
frame. As with the Accessed flag, Dirty may be used by the operating system when selecting pages to be
swapped out. The paging unit never resets this flag; this must be done by the operating system.

Read/Write flag

 Contains the access right (Read/Write or Read) of the page or of the Page Table (see the section "
Hardware Protection Scheme" later in this chapter).

User/Supervisor flag

 Contains the privilege level required to access the page or Page Table (see the later section "Hardware
Protection Scheme").

PCD and PWT flags

 Controls the way the page or Page Table is handled by the hardware cache (see the section "Hardware
Cache" later in this chapter).

Page Size flag

 Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB- or 4 MB-long page frame
(see the following sections).

Global flag

 Applies only to Page Table entries. This flag was introduced in the Pentium Pro to prevent frequently
used pages from being flushed from the TLB cache (see the section "Translation Lookaside Buffers
(TLB)" later in this chapter). It works only if the Page Global Enable (PGE) flag of register cr4 is set.

 2.4.2. Extended Paging

 Starting with the Pentium model, 80 x 86 microprocessors introduce extended paging , which allows
page frames to be 4 MB instead of 4 KB in size (see Figure 2-8). Extended paging is used to translate
large contiguous linear address ranges into corresponding physical ones; in these cases, the kernel can do
without intermediate Page Tables and thus save memory and preserve TLB entries (see the section "
Translation Lookaside Buffers (TLB)").

 Figure 2-8. Extended paging

 As mentioned in the previous section, extended paging is enabled by setting the Page Size flag of a Page
Directory entry. In this case, the paging unit divides the 32 bits of a linear address into two fields:

 Directory

 The most significant 10 bits

Offset

 The remaining 22 bits

 Page Directory entries for extended paging are the same as for normal paging, except that:


 The Page Size flag must be set.


 Only the 10 most significant bits of the 20-bit physical address field are significant. This is
because each physical address is aligned on a 4-MB boundary, so the 22 least significant bits of
the address are 0.

 Extended paging coexists with regular paging; it is enabled by setting the PSE flag of the cr4 processor
register.

 2.4.3. Hardware Protection Scheme

 The paging unit uses a different protection scheme from the segmentation unit. While 80 x 86 processors
allow four possible privilege levels to a segment, only two privilege levels are associated with pages and
Page Tables, because privileges are controlled by the User/Supervisor flag mentioned in the earlier
section "Regular Paging." When this flag is 0, the page can be addressed only when the CPL is less than
3 (this means, for Linux, when the processor is in Kernel Mode). When the flag is 1, the page can always
be addressed.

 Furthermore, instead of the three types of access rights (Read, Write, and Execute) associated with
segments, only two types of access rights (Read and Write) are associated with pages. If the Read/Write
flag of a Page Directory or Page Table entry is equal to 0, the corresponding Page Table or page can
only be read; otherwise it can be read and written.[*]

[*] Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry
(PAE must be enabled, see the section "The Physical Address Extension (PAE) Paging Mechanism" later
in this chapter). Linux 2.6.11 supports this hardware feature.

 2.4.4. An Example of Regular Paging

 A simple example will help in clarifying how regular paging works. Let's assume that the kernel assigns
the linear address space between 0x20000000 and 0x2003ffff to a running process.[] This space
consists of exactly 64 pages. We don't care about the physical addresses of the page frames containing
the pages; in fact, some of them might not even be in main memory. We are interested only in the
remaining fields of the Page Table entries.

[] As we shall see in the following chapters, the 3 GB linear address space is an upper limit, but a User
Mode process is allowed to reference only a subset of it.

 Let's start with the 10 most significant bits of the linear addresses assigned to the process, which are
interpreted as the Directory field by the paging unit. The addresses start with a 2 followed by zeros, so
the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus the Directory field in all the
addresses refers to the 129th entry of the process Page Directory. The corresponding entry must contain
the physical address of the Page Table assigned to the process (see Figure 2-9). If no other linear
addresses are assigned to the process, all the remaining 1,023 entries of the Page Directory are filled with
zeros.

 Figure 2-9. An example of paging

 The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range from 0 to
0x03f, or from 0 to 63 decimal. Thus, only the first 64 entries of the Page Table are valid. The remaining
960 entries are filled with zeros.

 Suppose that the process needs to read the byte at linear address 0x20021406. This address is handled
by the paging unit as follows:

1.

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which points to the
Page Table associated with the process's pages.

2.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to the page
frame containing the desired page.

3.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not present in main memory;
in this case, the paging unit issues a Page Fault exception while translating the linear address. The same
exception is issued whenever the process attempts to access linear addresses outside of the interval
delimited by 0x20000000 and 0x2003ffff, because the Page Table entries not assigned to the process
are filled with zeros; in particular, their Present flags are all cleared.

 2.4.5. The Physical Address Extension (PAE) Paging Mechanism

 The amount of RAM supported by a processor is limited by the number of address pins connected to
the address bus. Older Intel processors from the 80386 to the Pentium used 32-bit physical addresses.
In theory, up to 4 GB of RAM could be installed on such systems; in practice, due to the linear address
space requirements of User Mode processes, the kernel cannot directly address more than 1 GB of
RAM, as we will see in the later section "Paging in Linux."

 However, big servers that need to run hundreds or thousands of processes at the same time require
more than 4 GB of RAM, and in recent years this created a pressure on Intel to expand the amount of
RAM supported on the 32-bit 80 x 86 architecture.

 Intel has satisfied these requests by increasing the number of address pins on its processors from 32 to
36. Starting with the Pentium Pro, all Intel processors are now able to address up to 236 = 64 GB of
RAM. However, the increased range of physical addresses can be exploited only by introducing a new
paging mechanism that translates 32-bit linear addresses into 36-bit physical ones.

 With the Pentium Pro processor, Intel introduced a mechanism called Physical Address Extension
(PAE). Another mechanism, Page Size Extension (PSE-36), was introduced in the Pentium III
processor, but Linux does not use it, and we won't discuss it further in this book.

 PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 control register. The
Page Size (PS) flag in the page directory entry enables large page sizes (2 MB when PAE is enabled).

 Intel has changed the paging mechanism in order to support PAE.


 The 64 GB of RAM are split into 224 distinct page frames, and the physical address field of
Page Table entries has been expanded from 20 to 24 bits. Because a PAE Page Table entry
must include the 12 flag bits (described in the earlier section "Regular Paging") and the 24
physical address bits, for a grand total of 36, the Page Table entry size has been doubled from
32 bits to 64 bits. As a result, a 4-KB PAE Page Table includes 512 entries instead of 1,024.



 A new level of Page Table called the Page Directory Pointer Table (PDPT) consisting of four
64-bit entries has been introduced.



 The cr3 control register contains a 27-bit Page Directory Pointer Table base address field.
Because PDPTs are stored in the first 4 GB of RAM and aligned to a multiple of 32 bytes (25),
27 bits are sufficient to represent the base address of such tables.



 When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory entry), the 32
bits of a linear address are interpreted in the following way:

 cr3

 Points to a PDPT

 bits 3130

 Point to 1 of 4 possible entries in PDPT

 bits 2921

 Point to 1 of 512 possible entries in Page Directory

 bits 2012

 Point to 1 of 512 possible entries in Page Table

 bits 11-0

 Offset of 4-KB page


 When mapping linear addresses to 2-MB pages (PS flag set in Page Directory entry), the 32 bits
of a linear address are interpreted in the following way:

 cr3

 Points to a PDPT

 bits 31-30

 Point to 1 of 4 possible entries in PDPT

 bits 2921

 Point to 1 of 512 possible entries in Page Directory

 bits 20-0

 Offset of 2-MB page

 To summarize, once cr3 is set, it is possible to address up to 4 GB of RAM. If we want to address
more RAM, we'll have to put a new value in cr3 or change the content of the PDPT. However, the main
problem with PAE is that linear addresses are still 32 bits long. This forces kernel programmers to reuse
the same linear addresses to map different areas of RAM. We'll sketch how Linux initializes Page Tables
when PAE is enabled in the later section, "Final kernel Page Table when RAM size is more than 4096
MB." Clearly, PAE does not enlarge the linear address space of a process, because it deals only with
physical addresses. Furthermore, only the kernel can modify the page tables of the processes, thus a
process running in User Mode cannot use a physical address space larger than 4 GB. On the other hand,
PAE allows the kernel to exploit up to 64 GB of RAM, and thus to increase significantly the number of
processes in the system.

 2.4.6. Paging for 64-bit Architectures

 As we have seen in the previous sections, two-level paging is commonly used by 32-bit microprocessors
[*]. Two-level paging, however, is not suitable for computers that adopt a 64-bit architecture. Let's use a
thought experiment to explain why:

[*] The third level of paging present in 80 x 86 processors with PAE enabled has been introduced only
to lower from 1024 to 512 the number of entries in the Page Directory and Page Tables. This enlarges
the Page Table entries from 32 bits to 64 bits so that they can store the 24 most significant bits of the
physical address.

 Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210 addresses, 4 KB
covers 212 addresses, so the Offset field is 12 bits. This leaves up to 52 bits of the linear address to be
distributed between the Table and the Directory fields. If we now decide to use only 48 of the 64 bits for
addressing (this restriction leaves us with a comfortable 256 TB address space!), the remaining 48-12 =
36 bits will have to be split among Table and the Directory fields. If we now decide to reserve 18 bits for
each of these two fields, both the Page Directory and the Page Tables of each process should include
218 entries that is, more than 256,000 entries.

 For that reason, all hardware paging systems for 64-bit processors make use of additional paging levels.
The number of levels used depends on the type of processor. Table 2-4 summarizes the main
characteristics of the hardware paging systems used by some 64-bit platforms supported by Linux.
Please refer to the section "Hardware Dependency" in Chapter 1 for a short description of the hardware
associated with the platform name.

 Table 2-4. Paging levels in some 64-bit architectures

Platform name Page size Number of address
bits used

Number of paging
levels

Linear address
splitting

alpha 8 KB a 43 3 10 + 10 + 10 + 13

ia64 4 KB a 39 3 9 + 9 + 9 + 12

ppc64 4 KB 41 3 10 + 10 + 9 + 12

sh64 4 KB 41 3 10 + 10 + 9 + 12

x86_64 4 KB 48 4 9 + 9 + 9 + 9 + 12

a This architecture supports different page sizes; we select a typical page size adopted by Linux.

As we will see in the section "Paging in Linux" later in this chapter, Linux succeeds in providing a
common paging model that fits most of the supported hardware paging systems.

 2.4.7. Hardware Cache

 Today's microprocessors have clock rates of several gigahertz, while dynamic RAM (DRAM) chips
have access times in the range of hundreds of clock cycles. This means that the CPU may be held back
considerably while executing instructions that require fetching operands from RAM and/or storing results
into RAM.

 Hardware cache memories were introduced to reduce the speed mismatch between CPU and RAM.
They are based on the well-known locality principle , which holds both for programs and data structures.
This states that because of the cyclic structure of programs and the packing of related data into linear
arrays, addresses close to the ones most recently used have a high probability of being used in the near
future. It therefore makes sense to introduce a smaller and faster memory that contains the most recently
used code and data. For this purpose, a new unit called the line was introduced into the 80 x 86
architecture. It consists of a few dozen contiguous bytes that are transferred in burst mode between the
slow DRAM and the fast on-chip static RAM (SRAM) used to implement caches.

 The cache is subdivided into subsets of lines . At one extreme, the cache can be direct mapped , in
which case a line in main memory is always stored at the exact same location in the cache. At the other
extreme, the cache is fully associative , meaning that any line in memory can be stored at any location in
the cache. But most caches are to some degree N-way set associative , where any line of main memory
can be stored in any one of N lines of the cache. For instance, a line of memory can be stored in two
different lines of a two-way set associative cache.

 As shown in Figure 2-10, the cache unit is inserted between the paging unit and the main memory. It
includes both a hardware cache memory and a cache controller. The cache memory stores the actual
lines of memory. The cache controller stores an array of entries, one entry for each line of the cache
memory. Each entry includes a tag and a few flags that describe the status of the cache line. The tag
consists of some bits that allow the cache controller to recognize the memory location currently mapped
by the line. The bits of the memory's physical address are usually split into three groups: the most
significant ones correspond to the tag, the middle ones to the cache controller subset index, and the least
significant ones to the offset within the line.

 Figure 2-10. Processor hardware cache

 When accessing a RAM memory cell, the CPU extracts the subset index from the physical address and
compares the tags of all lines in the subset with the high-order bits of the physical address. If a line with
the same tag as the high-order bits of the address is found, the CPU has a cache hit; otherwise, it has a
cache miss.

 When a cache hit occurs, the cache controller behaves differently, depending on the access type. For a
read operation, the controller selects the data from the cache line and transfers it into a CPU register; the
RAM is not accessed and the CPU saves time, which is why the cache system was invented. For a write
operation, the controller may implement one of two basic strategies called write-through and write-back .
In a write-through, the controller always writes into both RAM and the cache line, effectively switching
off the cache for write operations. In a write-back, which offers more immediate efficiency, only the
cache line is updated and the contents of the RAM are left unchanged. After a write-back, of course, the
RAM must eventually be updated. The cache controller writes the cache line back into RAM only when
the CPU executes an instruction requiring a flush of cache entries or when a FLUSH hardware signal
occurs (usually after a cache miss).

 When a cache miss occurs, the cache line is written to memory, if necessary, and the correct line is
fetched from RAM into the cache entry.

 Multiprocessor systems have a separate hardware cache for every processor, and therefore they need
additional hardware circuitry to synchronize the cache contents. As shown in Figure 2-11, each CPU has
its own local hardware cache. But now updating becomes more time consuming: whenever a CPU
modifies its hardware cache, it must check whether the same data is contained in the other hardware
cache; if so, it must notify the other CPU to update it with the proper value. This activity is often called
cache snooping . Luckily, all this is done at the hardware level and is of no concern to the kernel.

 Figure 2-11. The caches in a dual processor

 Cache technology is rapidly evolving. For example, the first Pentium models included a single on-chip
cache called the L1-cache. More recent models also include other larger, slower on-chip caches called
the L2-cache, L3-cache, etc. The consistency between the cache levels is implemented at the hardware
level. Linux ignores these hardware details and assumes there is a single cache.

 The CD flag of the cr0 processor register is used to enable or disable the cache circuitry. The NW flag,
in the same register, specifies whether the write-through or the write-back strategy is used for the caches.

 Another interesting feature of the Pentium cache is that it lets an operating system associate a different
cache management policy with each page frame. For this purpose, each Page Directory and each Page
Table entry includes two flags: PCD (Page Cache Disable), which specifies whether the cache must be
enabled or disabled while accessing data included in the page frame; and PWT (Page Write-Through),
which specifies whether the write-back or the write-through strategy must be applied while writing data
into the page frame. Linux clears the PCD and PWT flags of all Page Directory and Page Table entries;
as a result, caching is enabled for all page frames, and the write-back strategy is always adopted for
writing.

 2.4.8. Translation Lookaside Buffers (TLB)

 Besides general-purpose hardware caches, 80 x 86 processors include another cache called Translation
Lookaside Buffers (TLB) to speed up linear address translation. When a linear address is used for the
first time, the corresponding physical address is computed through slow accesses to the Page Tables in
RAM. The physical address is then stored in a TLB entry so that further references to the same linear
address can be quickly translated.

 In a multiprocessor system, each CPU has its own TLB, called the local TLB of the CPU. Contrary to
the hardware cache, the corresponding entries of the TLB need not be synchronized, because processes
running on the existing CPUs may associate the same linear address with different physical ones.

 When the cr3 control register of a CPU is modified, the hardware automatically invalidates all entries of
the local TLB, because a new set of page tables is in use and the TLBs are pointing to old data.

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.5. Paging in Linux
 Linux adopts a common paging model that fits both 32-bit and 64-bit architectures. As explained in the
earlier section "Paging for 64-bit Architectures," two paging levels are sufficient for 32-bit architectures,
while 64-bit architectures require a higher number of paging levels. Up to version 2.6.10, the Linux
paging model consisted of three paging levels. Starting with version 2.6.11, a four-level paging model has
been adopted.[*] The four types of page tables illustrated in Figure 2-12 are called:

[*] This change has been made to fully support the linear address bit splitting used by the x86_64
platform (see Table 2-4).



 Page Global Directory


 Page Upper Directory


 Page Middle Directory


 Page Table

 The Page Global Directory includes the addresses of several Page Upper Directories, which in turn
include the addresses of several Page Middle Directories, which in turn include the addresses of several
Page Tables. Each Page Table entry points to a page frame. Thus the linear address can be split into up
to five parts. Figure 2-12 does not show the bit numbers, because the size of each part depends on the
computer architecture.

 For 32-bit architectures with no Physical Address Extension, two paging levels are sufficient. Linux
essentially eliminates the Page Upper Directory and the Page Middle Directory fields by saying that they
contain zero bits. However, the positions of the Page Upper Directory and the Page Middle Directory in
the sequence of pointers are kept so that the same code can work on 32-bit and 64-bit architectures.
The kernel keeps a position for the Page Upper Directory and the Page Middle Directory by setting the
number of entries in them to 1 and mapping these two entries into the proper entry of the Page Global
Directory.

 Figure 2-12. The Linux paging model

 For 32-bit architectures with the Physical Address Extension enabled, three paging levels are used. The
Linux's Page Global Directory corresponds to the 80 x 86's Page Directory Pointer Table, the Page
Upper Directory is eliminated, the Page Middle Directory corresponds to the 80 x 86's Page Directory,
and the Linux's Page Table corresponds to the 80 x 86's Page Table.

 Finally, for 64-bit architectures three or four levels of paging are used depending on the linear address
bit splitting performed by the hardware (see Table 2-2).

 Linux's handling of processes relies heavily on paging. In fact, the automatic translation of linear
addresses into physical ones makes the following design objectives feasible:



 Assign a different physical address space to each process, ensuring an efficient protection
against addressing errors.



 Distinguish pages (groups of data) from page frames (physical addresses in main memory). This
allows the same page to be stored in a page frame, then saved to disk and later reloaded in a
different page frame. This is the basic ingredient of the virtual memory mechanism (see Chapter
17).

 In the remaining part of this chapter, we will refer for the sake of concreteness to the paging circuitry
used by the 80 x 86 processors.

 As we will see in Chapter 9, each process has its own Page Global Directory and its own set of Page
Tables. When a process switch occurs (see the section "Process Switch" in Chapter 3), Linux saves the
cr3 control register in the descriptor of the process previously in execution and then loads cr3 with the
value stored in the descriptor of the process to be executed next. Thus, when the new process resumes
its execution on the CPU, the paging unit refers to the correct set of Page Tables.

 Mapping linear to physical addresses now becomes a mechanical task, although it is still somewhat
complex. The next few sections of this chapter are a rather tedious list of functions and macros that
retrieve information the kernel needs to find addresses and manage the tables; most of the functions are
one or two lines long. You may want to only skim these sections now, but it is useful to know the role of
these functions and macros, because you'll see them often in discussions throughout this book.

 2.5.1. The Linear Address Fields

 The following macros simplify Page Table handling:

 PAGE_SHIFT

 Specifies the length in bits of the Offset field; when applied to 80 x 86 processors, it yields the value 12.
Because all the addresses in a page must fit in the Offset field, the size of a page on 80 x 86 systems is
212 or the familiar 4,096 bytes; the PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of
the total page size. This macro is used by PAGE_SIZE to return the size of the page. Finally, the
PAGE_MASK macro yields the value 0xfffff000 and is used to mask all the bits of the Offset field.

PMD_SHIFT

 The total length in bits of the Offset and Table fields of a linear address; in other words, the logarithm of
the size of the area a Page Middle Directory entry can map. The PMD_SIZE macro computes the size of
the area mapped by a single entry of the Page Middle Directory that is, of a Page Table. The
PMD_MASK macro is used to mask all the bits of the Offset and Table fields.

 When PAE is disabled, PMD_SHIFT yields the value 22 (12 from Offset plus 10 from Table),
PMD_SIZE yields 222 or 4 MB, and PMD_MASK yields 0xffc00000. Conversely, when PAE is
enabled, PMD_SHIFT yields the value 21 (12 from Offset plus 9 from Table), PMD_SIZE yields 221
or 2 MB, and PMD_MASK yields 0xffe00000.

 Large pages do not make use of the last level of page tables, thus LARGE_PAGE_SIZE, which yields
the size of a large page, is equal to PMD_SIZE (2PMD_SHIFT) while LARGE_PAGE_MASK, which
is used to mask all the bits of the Offset and Table fields in a large page address, is equal to
PMD_MASK.

PUD_SHIFT

 Determines the logarithm of the size of the area a Page Upper Directory entry can map. The PUD_SIZE
macro computes the size of the area mapped by a single entry of the Page Global Directory. The
PUD_MASK macro is used to mask all the bits of the Offset, Table, Middle Air, and Upper Air fields.

 On the 80 x 86 processors, PUD_SHIFT is always equal to PMD_SHIFT and PUD_SIZE is equal to
4 MB or 2 MB.

PGDIR_SHIFT

 Determines the logarithm of the size of the area that a Page Global Directory entry can map. The
PGDIR_SIZE macro computes the size of the area mapped by a single entry of the Page Global
Directory. The PGDIR_MASK macro is used to mask all the bits of the Offset, Table, Middle Air, and
Upper Air fields.

 When PAE is disabled, PGDIR_SHIFT yields the value 22 (the same value yielded by PMD_SHIFT
and by PUD_SHIFT), PGDIR_SIZE yields 222 or 4 MB, and PGDIR_MASK yields 0xffc00000.
Conversely, when PAE is enabled, PGDIR_SHIFT yields the value 30 (12 from Offset plus 9 from
Table plus 9 from Middle Air), PGDIR_SIZE yields 230 or 1 GB, and PGDIR_MASK yields
0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER_PUD, and PTRS_PER_PGD

 Compute the number of entries in the Page Table, Page Middle Directory, Page Upper Directory, and
Page Global Directory. They yield the values 1,024, 1, 1, and 1,024, respectively, when PAE is
disabled; and the values 512, 512, 1, and 4, respectively, when PAE is enabled.

 2.5.2. Page Table Handling

 pte_t, pmd_t, pud_t, and pgd_t describe the format of, respectively, a Page Table, a Page Middle
Directory, a Page Upper Directory, and a Page Global Directory entry. They are 64-bit data types when
PAE is enabled and 32-bit data types otherwise. pgprot_t is another 64-bit (PAE enabled) or 32-bit
(PAE disabled) data type that represents the protection flags associated with a single entry.

 Five type-conversion macros _ _ pte, _ _ pmd, _ _ pud, _ _ pgd, and _ _ pgprot cast an unsigned
integer into the required type. Five other type-conversion macros pte_val, pmd_val, pud_val, pgd_val,
and pgprot_val perform the reverse casting from one of the four previously mentioned specialized types
into an unsigned integer.

 The kernel also provides several macros and functions to read or modify page table entries:


 pte_none, pmd_none, pud_none, and pgd_none yield the value 1 if the corresponding entry has
the value 0; otherwise, they yield the value 0.



 pte_clear, pmd_clear, pud_clear, and pgd_clear clear an entry of the corresponding page table,
thus forbidding a process to use the linear addresses mapped by the page table entry. The
ptep_get_and_clear() function clears a Page Table entry and returns the previous value.



 set_pte, set_pmd, set_pud, and set_pgd write a given value into a page table entry;
set_pte_atomic is identical to set_pte, but when PAE is enabled it also ensures that the 64-bit
value is written atomically.



 pte_same(a,b) returns 1 if two Page Table entries a and b refer to the same page and specify the
same access privileges, 0 otherwise.



 pmd_large(e) returns 1 if the Page Middle Directory entry e refers to a large page (2 MB or 4
MB), 0 otherwise.

 The pmd_bad macro is used by functions to check Page Middle Directory entries passed as input
parameters. It yields the value 1 if the entry points to a bad Page Table that is, if at least one of the
following conditions applies:



 The page is not in main memory (Present flag cleared).


 The page allows only Read access (Read/Write flag cleared).


 Either Accessed or Dirty is cleared (Linux always forces these flags to be set for every existing
Page Table).

 The pud_bad and pgd_bad macros always yield 0. No pte_bad macro is defined, because it is legal for
a Page Table entry to refer to a page that is not present in main memory, not writable, or not accessible
at all.

 The pte_present macro yields the value 1 if either the Present flag or the Page Size flag of a Page Table
entry is equal to 1, the value 0 otherwise. Recall that the Page Size flag in Page Table entries has no
meaning for the paging unit of the microprocessor; the kernel, however, marks Present equal to 0 and
Page Size equal to 1 for the pages present in main memory but without read, write, or execute privileges.
In this way, any access to such pages triggers a Page Fault exception because Present is cleared, and the
kernel can detect that the fault is not due to a missing page by checking the value of Page Size.

 The pmd_present macro yields the value 1 if the Present flag of the corresponding entry is equal to 1 that
is, if the corresponding page or Page Table is loaded in main memory. The pud_present and pgd_present
macros always yield the value 1.

 The functions listed in Table 2-5 query the current value of any of the flags included in a Page Table
entry; with the exception of pte_file(), these functions work properly only on Page Table entries for which
pte_present returns 1.

 Table 2-5. Page flag reading functions

Function name Description

pte_user() Reads the User/Supervisor flag

pte_read() Reads the User/Supervisor flag (pages on the 80 x
86 processor cannot be protected against reading)

pte_write() Reads the Read/Write flag

pte_exec()
Reads the User/Supervisor flag (pages on the 80 x
86 processor cannot be protected against code
execution)

pte_dirty() Reads the Dirty flag

pte_young() Reads the Accessed flag

pte_file()
Reads the Dirty flag (when the Present flag is
cleared and the Dirty flag is set, the page belongs
to a non-linear disk file mapping; see Chapter 16)

Another group of functions listed in Table 2-6 sets the value of the flags in a Page Table entry.

 Table 2-6. Page flag setting functions

Function name Description

mk_pte_huge() Sets the Page Size and Present flags of a Page
Table entry

pte_wrprotect() Clears the Read/Write flag

pte_rdprotect() Clears the User/Supervisor flag

pte_exprotect() Clears the User/Supervisor flag

pte_mkwrite() Sets the Read/Write flag

pte_mkread() Sets the User/Supervisor flag

pte_mkexec() Sets the User/Supervisor flag

pte_mkclean() Clears the Dirty flag

pte_mkdirty() Sets the Dirty flag

pte_mkold() Clears the Accessed flag (makes the page old)

pte_mkyoung() Sets the Accessed flag (makes the page young)

pte_modify(p,v) Sets all access rights in a Page Table entry p to a
specified value v

ptep_set_wrprotect() Like pte_wrprotect(), but acts on a pointer to a
Page Table entry

ptep_set_access_flags()

If the Dirty flag is set, sets the page's access rights
to a specified value and invokes flush_tlb_page()
(see the section "Translation Lookaside Buffers
(TLB)" later in this chapter)

ptep_mkdirty() Like pte_mkdirty() but acts on a pointer to a Page
Table entry

ptep_test_and_clear_dirty()
Like pte_mkclean() but acts on a pointer to a
Page Table entry and returns the old value of the
flag

ptep_test_and_clear_young() Like pte_mkold() but acts on a pointer to a Page
Table entry and returns the old value of the flag

Now, let's discuss the macros listed in Table 2-7 that combine a page address and a group of protection
flags into a page table entry or perform the reverse operation of extracting the page address from a page
table entry. Notice that some of these macros refer to a page through the linear address of its "page
descriptor" (see the section "Page Descriptors" in Chapter 8) rather than the linear address of the page
itself.

 Table 2-7. Macros acting on Page Table entries

Macro name Description

pgd_index(addr)
Yields the index (relative position) of the entry in
the Page Global Directory that maps the linear
address addr.

pgd_offset(mm, addr)

Receives as parameters the address of a memory
descriptor cw (see Chapter 9) and a linear address
addr. The macro yields the linear address of the
entry in a Page Global Directory that corresponds
to the address addr; the Page Global Directory is
found through a pointer within the memory
descriptor.

pgd_offset_k(addr)

Yields the linear address of the entry in the master
kernel Page Global Directory that corresponds to
the address addr (see the later section "Kernel
Page Tables").

pgd_page(pgd)

Yields the page descriptor address of the page
frame containing the Page Upper Directory
referred to by the Page Global Directory entry
pgd. In a two- or three-level paging system, this
macro is equivalent to pud_page() applied to the
folded Page Upper Directory entry.

pud_offset(pgd, addr)

Receives as parameters a pointer pgd to a Page
Global Directory entry and a linear address addr.
The macro yields the linear address of the entry in
a Page Upper Directory that corresponds to addr.
In a two- or three-level paging system, this macro
yields pgd, the address of a Page Global Directory
entry.

pud_page(pud)

Yields the linear address of the Page Middle
Directory referred to by the Page Upper Directory
entry pud. In a two-level paging system, this macro
is equivalent to pmd_page() applied to the folded
Page Middle Directory entry.

pmd_index(addr)
Yields the index (relative position) of the entry in
the Page Middle Directory that maps the linear
address addr.

pmd_offset(pud, addr)

Receives as parameters a pointer pud to a Page
Upper Directory entry and a linear address addr.
The macro yields the address of the entry in a Page
Middle Directory that corresponds to addr. In a
two-level paging system, it yields pud, the address
of a Page Global Directory entry.

pmd_page(pmd)

Yields the page descriptor address of the Page
Table referred to by the Page Middle Directory
entry pmd. In a two-level paging system, pmd is
actually an entry of a Page Global Directory.

mk_pte(p,prot)
Receives as parameters the address of a page
descriptor p and a group of access rights prot, and
builds the corresponding Page Table entry.

pte_index(addr) Yields the index (relative position) of the entry in
the Page Table that maps the linear address addr.

pte_offset_kernel(dir, addr)

Yields the linear address of the Page Table that
corresponds to the linear address addr mapped by
the Page Middle Directory dir. Used only on the
master kernel page tables (see the later section "
Kernel Page Tables").

pte_offset_map(dir, addr)

Receives as parameters a pointer dir to a Page
Middle Directory entry and a linear address addr;
it yields the linear address of the entry in the Page
Table that corresponds to the linear address addr.
If the Page Table is kept in high memory, the
kernel establishes a temporary kernel mapping (see
the section "Kernel Mappings of High-Memory
Page Frames" in Chapter 8), to be released by
means of pte_unmap. The macros
pte_offset_map_nested and pte_unmap_nested are
identical, but they use a different temporary kernel
mapping.

pte_page(x) Returns the page descriptor address of the page
referenced by the Page Table entry x.

pte_to_pgoff(pte)

Extracts from the content pte of a Page Table entry
the file offset corresponding to a page belonging to
a non-linear file memory mapping (see the section "
Non-Linear Memory Mappings" in Chapter 16).

pgoff_to_pte(offset)
Sets up the content of a Page Table entry for a
page belonging to a non-linear file memory
mapping.

The last group of functions of this long list was introduced to simplify the creation and deletion of page
table entries.

 When two-level paging is used, creating or deleting a Page Middle Directory entry is trivial. As we
explained earlier in this section, the Page Middle Directory contains a single entry that points to the
subordinate Page Table. Thus, the Page Middle Directory entry is the entry within the Page Global
Directory, too. When dealing with Page Tables, however, creating an entry may be more complex,
because the Page Table that is supposed to contain it might not exist. In such cases, it is necessary to
allocate a new page frame, fill it with zeros, and add the entry.

 If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new Page Global
Directory, it also allocates the four corresponding Page Middle Directories; these are freed only when the
parent Page Global Directory is released.

 When two or three-level paging is used, the Page Upper Directory entry is always mapped as a single
entry within the Page Global Directory.

 As usual, the description of the functions listed in Table 2-8 refers to the 80 x 86 architecture.

 Table 2-8. Page allocation functions

Function name Description

pgd_alloc(mm)

Allocates a new Page Global Directory; if PAE is
enabled, it also allocates the three children Page
Middle Directories that map the User Mode linear
addresses. The argument mm (the address of a
memory descriptor) is ignored on the 80 x 86
architecture.

pgd_free(pgd)

Releases the Page Global Directory at address
pgd; if PAE is enabled, it also releases the three
Page Middle Directories that map the User Mode
linear addresses.

pud_alloc(mm, pgd, addr)
In a two- or three-level paging system, this function
does nothing: it simply returns the linear address of
the Page Global Directory entry pgd.

pud_free(x) In a two- or three-level paging system, this macro
does nothing.

pmd_alloc(mm, pud, addr)

Defined so generic three-level paging systems can
allocate a new Page Middle Directory for the linear
address addr. If PAE is not enabled, the function
simply returns the input parameter pud that is, the
address of the entry in the Page Global Directory.
If PAE is enabled, the function returns the linear
address of the Page Middle Directory entry that
maps the linear address addr. The argument cw is
ignored.

pmd_free(x)
Does nothing, because Page Middle Directories
are allocated and deallocated together with their
parent Page Global Directory.

pte_alloc_map(mm, pmd, addr)

Receives as parameters the address of a Page
Middle Directory entry pmd and a linear address
addr, and returns the address of the Page Table
entry corresponding to addr. If the Page Middle
Directory entry is null, the function allocates a new
Page Table by invoking pte_alloc_one(). If a new
Page Table is allocated, the entry corresponding to
addr is initialized and the User/Supervisor flag is
set. If the Page Table is kept in high memory, the
kernel establishes a temporary kernel mapping (see
the section "Kernel Mappings of High-Memory
Page Frames" in Chapter 8), to be released by
pte_unmap.

pte_alloc_kernel(mm, pmd, addr)

If the Page Middle Directory entry pmd associated
with the address addr is null, the function allocates
a new Page Table. It then returns the linear address
of the Page Table entry associated with addr. Used
only for master kernel page tables (see the later
section "Kernel Page Tables").

pte_free(pte) Releases the Page Table associated with the pte
page descriptor pointer.

pte_free_kernel(pte) Equivalent to pte_free(), but used for master
kernel page tables.

clear_page_range(mmu, start,end)

Clears the contents of the page tables of a process
from linear address start to end by iteratively
releasing its Page Tables and clearing the Page
Middle Directory entries.

2.5.3. Physical Memory Layout

 During the initialization phase the kernel must build a physical addresses map that specifies which
physical address ranges are usable by the kernel and which are unavailable (either because they map
hardware devices' I/O shared memory or because the corresponding page frames contain BIOS data).

 The kernel considers the following page frames as reserved :


 Those falling in the unavailable physical address ranges


 Those containing the kernel's code and initialized data structures

 A page contained in a reserved page frame can never be dynamically assigned or swapped to disk.

 As a general rule, the Linux kernel is installed in RAM starting from the physical address 0x00100000
i.e., from the second megabyte. The total number of page frames required depends on how the kernel is
configured. A typical configuration yields a kernel that can be loaded in less than 3 MB of RAM.

 Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC architecture
has several peculiarities that must be taken into account. For example:



 Page frame 0 is used by BIOS to store the system hardware configuration detected during the
Power-On Self-Test(POST); the BIOS of many laptops, moreover, writes data on this page
frame even after the system is initialized.



 Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to BIOS routines
and to map the internal memory of ISA graphics cards. This area is the well-known hole from
640 KB to 1 MB in all IBM-compatible PCs: the physical addresses exist but they are reserved,
and the corresponding page frames cannot be used by the operating system.



 Additional page frames within the first megabyte may be reserved by specific computer models.
For example, the IBM ThinkPad maps the 0xa0 page frame into the 0x9f one.

 In the early stage of the boot sequence (see Appendix A), the kernel queries the BIOS and learns the
size of the physical memory. In recent computers, the kernel also invokes a BIOS procedure to build a
list of physical address ranges and their corresponding memory types.

 Later, the kernel executes the machine_specific_memory_setup() function, which builds the physical
addresses map (see Table 2-9 for an example). Of course, the kernel builds this table on the basis of the
BIOS list, if this is available; otherwise the kernel builds the table following the conservative default setup:
all page frames with numbers from 0x9f (LOWMEMSIZE()) to 0x100 (HIGH_MEMORY) are
marked as reserved.

 Table 2-9. Example of BIOS-provided physical addresses map

Start End Type

0x00000000 0x0009ffff Usable

0x000f0000 0x000fffff Reserved

0x00100000 0x07feffff Usable

0x07ff0000 0x07ff2fff ACPI data

0x07ff3000 0x07ffffff ACPI NVS

0xffff0000 0xffffffff Reserved

A typical configuration for a computer having 128 MB of RAM is shown in Table 2-9. The physical
address range from 0x07ff0000 to 0x07ff2fff stores information about the hardware devices of the
system written by the BIOS in the POST phase; during the initialization phase, the kernel copies such
information in a suitable kernel data structure, and then considers these page frames usable. Conversely,
the physical address range of 0x07ff3000 to 0x07ffffff is mapped to ROM chips of the hardware
devices. The physical address range starting from 0xffff0000 is marked as reserved, because it is
mapped by the hardware to the BIOS's ROM chip (see Appendix A). Notice that the BIOS may not
provide information for some physical address ranges (in the table, the range is 0x000a0000 to
0x000effff). To be on the safe side, Linux assumes that such ranges are not usable.

 The kernel might not see all physical memory reported by the BIOS: for instance, the kernel can address
only 4 GB of RAM if it has not been compiled with PAE support, even if a larger amount of physical
memory is actually available. The setup_memory() function is invoked right after
machine_specific_memory_setup(): it analyzes the table of physical memory regions and initializes a few
variables that describe the kernel's physical memory layout. These variables are shown in Table 2-10.

 Table 2-10. Variables describing the kernel's physical memory layout

Variable name Description

num_physpages Page frame number of the highest usable page
frame

totalram_pages Total number of usable page frames

min_low_pfn Page frame number of the first usable page frame
after the kernel image in RAM

max_pfn Page frame number of the last usable page frame

max_low_pfn Page frame number of the last page frame directly
mapped by the kernel (low memory)

totalhigh_pages Total number of page frames not directly mapped
by the kernel (high memory)

highstart_pfn Page frame number of the first page frame not
directly mapped by the kernel

highend_pfn Page frame number of the last page frame not
directly mapped by the kernel

To avoid loading the kernel into groups of noncontiguous page frames, Linux prefers to skip the first
megabyte of RAM. Clearly, page frames not reserved by the PC architecture will be used by Linux to
store dynamically assigned pages.

 Figure 2-13 shows how the first 3 MB of RAM are filled by Linux. We have assumed that the kernel
requires less than 3 MB of RAM.

 The symbol _text, which corresponds to physical address 0x00100000, denotes the address of the first
byte of kernel code. The end of the kernel code is similarly identified by the symbol _etext. Kernel data is
divided into two groups: initialized and uninitialized. The initialized data starts right after _etext and ends at
_edata. The uninitialized data follows and ends up at _end.

 The symbols appearing in the figure are not defined in Linux source code; they are produced while
compiling the kernel.[*]

[*] You can find the linear address of these symbols in the file System.map, which is created right after
the kernel is compiled.

 Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

 2.5.4. Process Page Tables

 The linear address space of a process is divided into two parts:


 Linear addresses from 0x00000000 to 0xbfffffff can be addressed when the process runs in
either User or Kernel Mode.



 Linear addresses from 0xc0000000 to 0xffffffff can be addressed only when the process runs in
Kernel Mode.

 When a process runs in User Mode, it issues linear addresses smaller than 0xc0000000; when it runs in
Kernel Mode, it is executing kernel code and the linear addresses issued are greater than or equal to
0xc0000000. In some cases, however, the kernel must access the User Mode linear address space to
retrieve or store data.

 The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the linear address space
of a process where the kernel lives. In this book, we often refer directly to the number 0xc0000000
instead.

 The content of the first entries of the Page Global Directory that map linear addresses lower than
0xc0000000 (the first 768 entries with PAE disabled, or the first 3 entries with PAE enabled) depends
on the specific process. Conversely, the remaining entries should be the same for all processes and equal
to the corresponding entries of the master kernel Page Global Directory (see the following section).

 2.5.5. Kernel Page Tables

 The kernel maintains a set of page tables for its own use, rooted at a so-called master kernel Page
Global Directory. After system initialization, this set of page tables is never directly used by any process
or kernel thread; rather, the highest entries of the master kernel Page Global Directory are the reference
model for the corresponding entries of the Page Global Directories of every regular process in the
system.

 We explain how the kernel ensures that changes to the master kernel Page Global Directory are
propagated to the Page Global Directories that are actually used by processes in the section "Linear
Addresses of Noncontiguous Memory Areas" in Chapter 8.

 We now describe how the kernel initializes its own page tables. This is a two-phase activity. In fact, right
after the kernel image is loaded into memory, the CPU is still running in real mode; thus, paging is not
enabled.

 In the first phase, the kernel creates a limited address space including the kernel's code and data
segments, the initial Page Tables, and 128 KB for some dynamic data structures. This minimal address
space is just large enough to install the kernel in RAM and to initialize its core data structures.

 In the second phase, the kernel takes advantage of all of the existing RAM and sets up the page tables
properly. Let us examine how this plan is executed.

 2.5.5.1. Provisional kernel Page Tables

 A provisional Page Global Directory is initialized statically during kernel compilation, while the
provisional Page Tables are initialized by the startup_32() assembly language function defined in
arch/i386/kernel/head.S . We won't bother mentioning the Page Upper Directories and Page Middle
Directories anymore, because they are equated to Page Global Directory entries. PAE support is not
enabled at this stage.

 The provisional Page Global Directory is contained in the swapper_pg_dir variable. The provisional
Page Tables are stored starting from pg0, right after the end of the kernel's uninitialized data segments
(symbol _end in Figure 2-13). For the sake of simplicity, let's assume that the kernel's segments, the
provisional Page Tables, and the 128 KB memory area fit in the first 8 MB of RAM. In order to map 8
MB of RAM, two Page Tables are required.

 The objective of this first phase of paging is to allow these 8 MB of RAM to be easily addressed both in
real mode and protected mode. Therefore, the kernel must create a mapping from both the linear
addresses 0x00000000 through 0x007fffff and the linear addresses 0xc0000000 through 0xc07fffff into
the physical addresses 0x00000000 through 0x007fffff. In other words, the kernel during its first phase
of initialization can address the first 8 MB of RAM by either linear addresses identical to the physical
ones or 8 MB worth of linear addresses, starting from 0xc0000000.

 The Kernel creates the desired mapping by filling all the swapper_pg_dir entries with zeroes, except for
entries 0, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the latter two entries span all linear
addresses between 0xc0000000 and 0xc07fffff. The 0, 1, 0x300, and 0x301 enTRies are initialized as
follows:



 The address field of entries 0 and 0x300 is set to the physical address of pg0, while the address
field of entries 1 and 0x301 is set to the physical address of the page frame following pg0.



 The Present, Read/Write, and User/Supervisor flags are set in all four entries.


 The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four entries.

 The startup_32() assembly language function also enables the paging unit. This is achieved by loading
the physical address of swapper_pg_dir into the cr3 control register and by setting the PG flag of the cr0
control register, as shown in the following equivalent code fragment:

 movl $swapper_pg_dir-0xc0000000,%eax

 movl %eax,%cr3 /* set the page table pointer.. */

 movl %cr0,%eax

 orl $0x80000000,%eax

 movl %eax,%cr0 /* ..and set paging (PG) bit */

2.5.5.2. Final kernel Page Table when RAM size is less than 896 MB

 The final mapping provided by the kernel page tables must transform linear addresses starting from
0xc0000000 into physical addresses starting from 0.

 The _ _pa macro is used to convert a linear address starting from PAGE_OFFSET to the
corresponding physical address, while the _ _va macro does the reverse.

 The master kernel Page Global Directory is still stored in swapper_pg_dir. It is initialized by the
paging_init() function, which does the following:

1.

1. Invokes pagetable_init() to set up the Page Table entries properly.
2.

2. Writes the physical address of swapper_pg_dir in the cr3 control register.
3.

3. If the CPU supports PAE and if the kernel is compiled with PAE support, sets the PAE flag in
the cr4 control register.

4.

4. Invokes _ _flush_tlb_all() to invalidate all TLB entries.

The actions performed by pagetable_init() depend on both the amount of RAM present and on the CPU
model. Let's start with the simplest case. Our computer has less than 896 MB[*] of RAM, 32-bit
physical addresses are sufficient to address all the available RAM, and there is no need to activate the
PAE mechanism. (See the earlier section "The Physical Address Extension (PAE) Paging Mechanism.")

[*] The highest 128 MB of linear addresses are left available for several kinds of mappings (see sections
"Fix-Mapped Linear Addresses" later in this chapter and "Linear Addresses of Noncontiguous Memory
Areas" in Chapter 8). The kernel address space left for mapping the RAM is thus 1 GB - 128 MB = 896
MB.

 The swapper_pg_dir Page Global Directory is reinitialized by a cycle equivalent to the following:

 pgd = swapper_pg_dir + pgd_index(PAGE_OFFSET); /* 768 */

 phys_addr = 0x00000000;

 while (phys_addr < (max_low_pfn * PAGE_SIZE)) {

 pmd = one_md_table_init(pgd); /* returns pgd itself */

 set_pmd(pmd, _ _pmd(phys_addr | pgprot_val(_ _pgprot(0x1e3))));

 /* 0x1e3 == Present, Accessed, Dirty, Read/Write,

 Page Size, Global */

 phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x400000 */

 ++pgd;

 }

We assume that the CPU is a recent 80 x 86 microprocessor supporting 4 MB pages and "global" TLB
entries. Notice that the User/Supervisor flags in all Page Global Directory entries referencing linear
addresses above 0xc0000000 are cleared, thus denying processes in User Mode access to the kernel
address space. Notice also that the Page Size flag is set so that the kernel can address the RAM by
making use of large pages (see the section "Extended Paging" earlier in this chapter).

 The identity mapping of the first megabytes of physical memory (8 MB in our example) built by the
startup_32() function is required to complete the initialization phase of the kernel. When this mapping is
no longer necessary, the kernel clears the corresponding page table entries by invoking the
zap_low_mappings() function.

 Actually, this description does not state the whole truth. As we'll see in the later section "Fix-Mapped
Linear Addresses," the kernel also adjusts the entries of Page Tables corresponding to the "fix-mapped
linear addresses ."

 2.5.5.3. Final kernel Page Table when RAM size is between 896 MB and 4096 MB

 In this case, the RAM cannot be mapped entirely into the kernel linear address space. The best Linux
can do during the initialization phase is to map a RAM window of size 896 MB into the kernel linear
address space. If a program needs to address other parts of the existing RAM, some other linear address
interval must be mapped to the required RAM. This implies changing the value of some page table
entries. We'll discuss how this kind of dynamic remapping is done in Chapter 8.

 To initialize the Page Global Directory, the kernel uses the same code as in the previous case.

 2.5.5.4. Final kernel Page Table when RAM size is more than 4096 MB

 Let's now consider kernel Page Table initialization for computers with more than 4 GB; more precisely,
we deal with cases in which the following happens:



 The CPU model supports Physical Address Extension (PAE).


 The amount of RAM is larger than 4 GB.


 The kernel is compiled with PAE support.

 Although PAE handles 36-bit physical addresses, linear addresses are still 32-bit addresses. As in the
previous case, Linux maps a 896-MB RAM window into the kernel linear address space; the remaining
RAM is left unmapped and handled by dynamic remapping, as described in Chapter 8. The main
difference with the previous case is that a three-level paging model is used, so the Page Global Directory
is initialized by a cycle equivalent to the following:

 pgd_idx = pgd_index(PAGE_OFFSET); /* 3 */

 for (i=0; i<pgd_idx; i++)

 set_pgd(swapper_pg_dir + i, _ _pgd(_ _pa(empty_zero_page) + 0x001));

 /* 0x001 == Present */

 pgd = swapper_pg_dir + pgd_idx;

 phys_addr = 0x00000000;

 for (; i<PTRS_PER_PGD; ++i, ++pgd) {

 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

 set_pgd(pgd, _ _pgd(_ _pa(pmd) | 0x001)); /* 0x001 == Present */

 if (phys_addr < max_low_pfn * PAGE_SIZE)

 for (j=0; j < PTRS_PER_PMD /* 512 */

 && phys_addr < max_low_pfn*PAGE_SIZE; ++j) {

 set_pmd(pmd, _ _pmd(phys_addr |

 pgprot_val(_ _pgprot(0x1e3))));

 /* 0x1e3 == Present, Accessed, Dirty, Read/Write,

 Page Size, Global */

 phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x200000 */

 }

 }

 swapper_pg_dir[0] = swapper_pg_dir[pgd_idx];

The kernel initializes the first three entries in the Page Global Directory corresponding to the user linear
address space with the address of an empty page (empty_zero_page). The fourth entry is initialized with
the address of a Page Middle Directory (pmd) allocated by invoking alloc_bootmem_low_pages(). The
first 448 entries in the Page Middle Directory (there are 512 entries, but the last 64 are reserved for
noncontiguous memory allocation; see the section "Noncontiguous Memory Area Management" in
Chapter 8) are filled with the physical address of the first 896 MB of RAM.

 Notice that all CPU models that support PAE also support large 2-MB pages and global pages. As in
the previous cases, whenever possible, Linux uses large pages to reduce the number of Page Tables.

 The fourth Page Global Directory entry is then copied into the first entry, so as to mirror the mapping of
the low physical memory in the first 896 MB of the linear address space. This mapping is required in
order to complete the initialization of SMP systems: when it is no longer necessary, the kernel clears the
corresponding page table entries by invoking the zap_low_mappings() function, as in the previous cases.

 2.5.6. Fix-Mapped Linear Addresses

 We saw that the initial part of the fourth gigabyte of kernel linear addresses maps the physical memory of
the system. However, at least 128 MB of linear addresses are always left available because the kernel
uses them to implement noncontiguous memory allocation and fix-mapped linear addresses.

 Noncontiguous memory allocation is just a special way to dynamically allocate and release pages of
memory, and is described in the section "Linear Addresses of Noncontiguous Memory Areas" in Chapter
8. In this section, we focus on fix-mapped linear addresses.

 Basically, a fix-mapped linear address is a constant linear address like 0xffffc000 whose corresponding
physical address does not have to be the linear address minus 0xc000000, but rather a physical address
set in an arbitrary way. Thus, each fix-mapped linear address maps one page frame of the physical
memory. As we'll see in later chapters, the kernel uses fix-mapped linear addresses instead of pointer
variables that never change their value.

 Fix-mapped linear addresses are conceptually similar to the linear addresses that map the first 896 MB
of RAM. However, a fix-mapped linear address can map any physical address, while the mapping
established by the linear addresses in the initial portion of the fourth gigabyte is linear (linear address X
maps physical address X-PAGE_OFFSET).

 With respect to variable pointers, fix-mapped linear addresses are more efficient. In fact, dereferencing a
variable pointer requires one memory access more than dereferencing an immediate constant address.
Moreover, checking the value of a variable pointer before dereferencing it is a good programming
practice; conversely, the check is never required for a constant linear address.

 Each fix-mapped linear address is represented by a small integer index defined in the enum
fixed_addresses data structure:

 enum fixed_addresses {

 FIX_HOLE,

 FIX_VSYSCALL,

 FIX_APIC_BASE,

 FIX_IO_APIC_BASE_0,

 [...]

 _ _end_of_fixed_addresses

 };

Fix-mapped linear addresses are placed at the end of the fourth gigabyte of linear addresses. The
fix_to_virt() function computes the constant linear address starting from the index:

 inline unsigned long fix_to_virt(const unsigned int idx)

 {

 if (idx >= _ _end_of_fixed_addresses)

 _ _this_fixmap_does_not_exist();

 return (0xfffff000UL - (idx << PAGE_SHIFT));

 }

Let's assume that some kernel function invokes fix_to_virt(FIX_IOAPIC_BASE_0). Because the
function is declared as "inline," the C compiler does not generate a call to fix_to_virt(), but inserts its
code in the calling function. Moreover, the check on the index value is never performed at runtime. In
fact, FIX_IOAPIC_BASE_0 is a constant equal to 3, so the compiler can cut away the if statement
because its condition is false at compile time. Conversely, if the condition is true or the argument of
fix_to_virt() is not a constant, the compiler issues an error during the linking phase because the symbol _
_this_fixmap_does_not_exist is not defined anywhere. Eventually, the compiler computes
0xfffff000-(3<<PAGE_SHIFT) and replaces the fix_to_virt() function call with the constant linear
address 0xffffc000.

 To associate a physical address with a fix-mapped linear address, the kernel uses the
set_fixmap(idx,phys) and set_fixmap_nocache(idx,phys) macros. Both of them initialize the Page Table
entry corresponding to the fix_to_virt(idx) linear address with the physical address phys; however, the
second function also sets the PCD flag of the Page Table entry, thus disabling the hardware cache when
accessing the data in the page frame (see the section "Hardware Cache" earlier in this chapter).
Conversely, clear_fixmap(idx) removes the linking between a fix-mapped linear address idx and the
physical address.

 2.5.7. Handling the Hardware Cache and the TLB

 The last topic of memory addressing deals with how the kernel makes an optimal use of the hardware
caches. Hardware caches and Translation Lookaside Buffers play a crucial role in boosting the
performance of modern computer architectures. Several techniques are used by kernel developers to
reduce the number of cache and TLB misses.

 2.5.7.1. Handling the hardware cache

 As mentioned earlier in this chapter, hardware caches are addressed by cache lines. The
L1_CACHE_BYTES macro yields the size of a cache line in bytes. On Intel models earlier than the
Pentium 4, the macro yields the value 32; on a Pentium 4, it yields the value 128.

 To optimize the cache hit rate, the kernel considers the architecture in making the following decisions.


 The most frequently used fields of a data structure are placed at the low offset within the data
structure, so they can be cached in the same line.



 When allocating a large set of data structures, the kernel tries to store each of them in memory in
such a way that all cache lines are used uniformly.

 Cache synchronization is performed automatically by the 80 x 86 microprocessors, thus the Linux kernel
for this kind of processor does not perform any hardware cache flushing. The kernel does provide,
however, cache flushing interfaces for processors that do not synchronize caches.

 2.5.7.2. Handling the TLB

 Processors cannot synchronize their own TLB cache automatically because it is the kernel, and not the
hardware, that decides when a mapping between a linear and a physical address is no longer valid.

 Linux 2.6 offers several TLB flush methods that should be applied appropriately, depending on the type
of page table change (see Table 2-11).

 Table 2-11. Architecture-independent TLB-invalidating methods

Method name Description Typically used when

flush_tlb_all

Flushes all TLB entries (including
those that refer to global pages,
that is, pages whose Global flag
is set)

Changing the kernel page table
entries

flush_tlb_kernel_range

Flushes all TLB entries in a given
range of linear addresses
(including those that refer to
global pages)

Changing a range of kernel page
table entries

flush_tlb
Flushes all TLB entries of the
non-global pages owned by the
current process

Performing a process switch

flush_tlb_mm
Flushes all TLB entries of the
non-global pages owned by a
given process

Forking a new process

flush_tlb_range
Flushes the TLB entries
corresponding to a linear address
interval of a given process

Releasing a linear address interval
of a process

flush_tlb_pgtables
Flushes the TLB entries of a
given contiguous subset of page
tables of a given process

Releasing some page tables of a
process

flush_tlb_page Flushes the TLB of a single Page
Table entry of a given process Processing a Page Fault

Despite the rich set of TLB methods offered by the generic Linux kernel, every microprocessor usually
offers a far more restricted set of TLB-invalidating assembly language instructions. In this respect, one of
the more flexible hardware platforms is Sun's UltraSPARC. In contrast, Intel microprocessors offers only
two TLB-invalidating techniques:



 All Pentium models automatically flush the TLB entries relative to non-global pages when a value
is loaded into the cr3 register.



 In Pentium Pro and later models, the invlpg assembly language instruction invalidates a single
TLB entry mapping a given linear address.

 Table 2-12 lists the Linux macros that exploit such hardware techniques; these macros are the basic
ingredients to implement the architecture-independent methods listed in Table 2-11.

 Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and later processors

Macro name Description Used by

_ _flush_tlb() Rewrites cr3 register back into
itself

flush_tlb,

flush_tlb_mm,flush_tlb_range

_ _flush_tlb_global()

Disables global pages by clearing
the PGE flag of cr4, rewrites cr3
register back into itself, and sets
again the PGE flag

flush_tlb_all,flush_tlb_kernel_ran
ge

_ _flush_tlb_single(addr)
Executes invlpg assembly
language instruction with
parameter addr

flush_tlb_page

Notice that the flush_tlb_pgtables method is missing from Table 2-12: in the 80 x 86 architecture nothing
has to be done when a page table is unlinked from its parent table, thus the function implementing this
method is empty.

 The architecture-independent TLB-invalidating methods are extended quite simply to multiprocessor
systems. The function running on a CPU sends an Interprocessor Interrupt (see "Interprocessor Interrupt
Handling" in Chapter 4) to the other CPUs that forces them to execute the proper TLB-invalidating
function.

 As a general rule, any process switch implies changing the set of active page tables. Local TLB entries
relative to the old page tables must be flushed; this is done automatically when the kernel writes the
address of the new Page Global Directory into the cr3 control register. The kernel succeeds, however, in
avoiding TLB flushes in the following cases:



 When performing a process switch between two regular processes that use the same set of page
tables (see the section "The schedule() Function" in Chapter 7).



 When performing a process switch between a regular process and a kernel thread. In fact, we'll
see in the section "Memory Descriptor of Kernel Threads" in Chapter 9, that kernel threads do
not have their own set of page tables; rather, they use the set of page tables owned by the regular
process that was scheduled last for execution on the CPU.

 Besides process switches, there are other cases in which the kernel needs to flush some entries in a
TLB. For instance, when the kernel assigns a page frame to a User Mode process and stores its physical
address into a Page Table entry, it must flush any local TLB entry that refers to the corresponding linear
address. On multiprocessor systems, the kernel also must flush the same TLB entry on the CPUs that are
using the same set of page tables, if any.

 To avoid useless TLB flushing in multiprocessor systems, the kernel uses a technique called lazy TLB
mode . The basic idea is the following: if several CPUs are using the same page tables and a TLB entry
must be flushed on all of them, then TLB flushing may, in some cases, be delayed on CPUs running
kernel threads.

 In fact, each kernel thread does not have its own set of page tables; rather, it makes use of the set of
page tables belonging to a regular process. However, there is no need to invalidate a TLB entry that
refers to a User Mode linear address, because no kernel thread accesses the User Mode address space.
[*]

[*] By the way, the flush_tlb_all method does not use the lazy TLB mode mechanism; it is usually
invoked whenever the kernel modifies a Page Table entry relative to the Kernel Mode address space.

 When some CPUs start running a kernel thread, the kernel sets it into lazy TLB mode. When requests
are issued to clear some TLB entries, each CPU in lazy TLB mode does not flush the corresponding
entries; however, the CPU remembers that its current process is running on a set of page tables whose
TLB entries for the User Mode addresses are invalid. As soon as the CPU in lazy TLB mode switches to
a regular process with a different set of page tables, the hardware automatically flushes the TLB entries,
and the kernel sets the CPU back in non-lazy TLB mode. However, if a CPU in lazy TLB mode
switches to a regular process that owns the same set of page tables used by the previously running kernel
thread, then any deferred TLB invalidation must be effectively applied by the kernel. This "lazy"
invalidation is effectively achieved by flushing all non-global TLB entries of the CPU.

 Some extra data structures are needed to implement the lazy TLB mode. The cpu_tlbstate variable is a
static array of NR_CPUS structures (the default value for this macro is 32; it denotes the maximum
number of CPUs in the system) consisting of an active_mm field pointing to the memory descriptor of the
current process (see Chapter 9) and a state flag that can assume only two values: TLBSTATE_OK
(non-lazy TLB mode) or TLBSTATE_LAZY (lazy TLB mode). Furthermore, each memory descriptor
includes a cpu_vm_mask field that stores the indices of the CPUs that should receive Interprocessor
Interrupts related to TLB flushing. This field is meaningful only when the memory descriptor belongs to a
process currently in execution.

 When a CPU starts executing a kernel thread, the kernel sets the state field of its cpu_tlbstate element to
TLBSTATE_LAZY; moreover, the cpu_vm_mask field of the active memory descriptor stores the
indices of all CPUs in the system, including the one that is entering in lazy TLB mode. When another
CPU wants to invalidate the TLB entries of all CPUs relative to a given set of page tables, it delivers an
Interprocessor Interrupt to all CPUs whose indices are included in the cpu_vm_mask field of the
corresponding memory descriptor.

 When a CPU receives an Interprocessor Interrupt related to TLB flushing and verifies that it affects the
set of page tables of its current process, it checks whether the state field of its cpu_tlbstate element is
equal to TLBSTATE_LAZY. In this case, the kernel refuses to invalidate the TLB entries and removes
the CPU index from the cpu_vm_mask field of the memory descriptor. This has two consequences:



 As long as the CPU remains in lazy TLB mode, it will not receive other Interprocessor Interrupts
related to TLB flushing.



 If the CPU switches to another process that is using the same set of page tables as the kernel
thread that is being replaced, the kernel invokes _ _flush_tlb() to invalidate all non-global TLB
entries of the CPU.

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 3. Processes
 The concept of a process is fundamental to any multiprogramming operating system. A process is usually
defined as an instance of a program in execution; thus, if 16 users are running vi at once, there are 16
separate processes (although they can share the same executable code). Processes are often called tasks
or threads in the Linux source code.

 In this chapter, we discuss static properties of processes and then describe how process switching is
performed by the kernel. The last two sections describe how processes can be created and destroyed.
We also describe how Linux supports multithreaded applications as mentioned in Chapter 1, it relies on
so-called lightweight processes (LWP).

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.1. Processes, Lightweight Processes, and Threads
 The term "process" is often used with several different meanings. In this book, we stick to the usual OS
textbook definition: a process is an instance of a program in execution. You might think of it as the
collection of data structures that fully describes how far the execution of the program has progressed.

 Processes are like human beings: they are generated, they have a more or less significant life, they
optionally generate one or more child processes, and eventually they die. A small difference is that sex is
not really common among processes each process has just one parent.

 From the kernel's point of view, the purpose of a process is to act as an entity to which system
resources (CPU time, memory, etc.) are allocated.

 When a process is created, it is almost identical to its parent. It receives a (logical) copy of the parent's
address space and executes the same code as the parent, beginning at the next instruction following the
process creation system call. Although the parent and child may share the pages containing the program
code (text), they have separate copies of the data (stack and heap), so that changes by the child to a
memory location are invisible to the parent (and vice versa).

 While earlier Unix kernels employed this simple model, modern Unix systems do not. They support
multithreaded applications user programs having many relatively independent execution flows sharing a
large portion of the application data structures. In such systems, a process is composed of several user
threads (or simply threads), each of which represents an execution flow of the process. Nowadays, most
multithreaded applications are written using standard sets of library functions called pthread (POSIX
thread) libraries .

 Older versions of the Linux kernel offered no support for multithreaded applications. From the kernel
point of view, a multithreaded application was just a normal process. The multiple execution flows of a
multithreaded application were created, handled, and scheduled entirely in User Mode, usually by means
of a POSIX-compliant pthread library.

 However, such an implementation of multithreaded applications is not very satisfactory. For instance,
suppose a chess program uses two threads: one of them controls the graphical chessboard, waiting for
the moves of the human player and showing the moves of the computer, while the other thread ponders
the next move of the game. While the first thread waits for the human move, the second thread should run
continuously, thus exploiting the thinking time of the human player. However, if the chess program is just
a single process, the first thread cannot simply issue a blocking system call waiting for a user action;
otherwise, the second thread is blocked as well. Instead, the first thread must employ sophisticated
nonblocking techniques to ensure that the process remains runnable.

 Linux uses lightweight processes to offer better support for multithreaded applications. Basically, two
lightweight processes may share some resources, like the address space, the open files, and so on.
Whenever one of them modifies a shared resource, the other immediately sees the change. Of course, the
two processes must synchronize themselves when accessing the shared resource.

 A straightforward way to implement multithreaded applications is to associate a lightweight process with
each thread. In this way, the threads can access the same set of application data structures by simply
sharing the same memory address space, the same set of open files, and so on; at the same time, each
thread can be scheduled independently by the kernel so that one may sleep while another remains
runnable. Examples of POSIX-compliant pthread libraries that use Linux's lightweight processes are
LinuxThreads, Native POSIX Thread Library (NPTL), and IBM's Next Generation Posix Threading
Package (NGPT).

 POSIX-compliant multithreaded applications are best handled by kernels that support "thread groups ."
In Linux a thread group is basically a set of lightweight processes that implement a multithreaded
application and act as a whole with regards to some system calls such as getpid() , kill() , and _exit() .
We are going to describe them at length later in this chapter.

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.2. Process Descriptor
 To manage processes, the kernel must have a clear picture of what each process is doing. It must know,
for instance, the process's priority, whether it is running on a CPU or blocked on an event, what address
space has been assigned to it, which files it is allowed to address, and so on. This is the role of the
process descriptor a task_struct type structure whose fields contain all the information related to a single
process.[*] As the repository of so much information, the process descriptor is rather complex. In
addition to a large number of fields containing process attributes, the process descriptor contains several
pointers to other data structures that, in turn, contain pointers to other structures. Figure 3-1 describes
the Linux process descriptor schematically.

[*] The kernel also defines the task_t data type to be equivalent to struct task_struct.

 The six data structures on the right side of the figure refer to specific resources owned by the process.
Most of these resources will be covered in future chapters. This chapter focuses on two types of fields
that refer to the process state and to process parent/child relationships.

 3.2.1. Process State

 As its name implies, the state field of the process descriptor describes what is currently happening to the
process. It consists of an array of flags, each of which describes a possible process state. In the current
Linux version, these states are mutually exclusive, and hence exactly one flag of state always is set; the
remaining flags are cleared. The following are the possible process states:

 TASK_RUNNING

 The process is either executing on a CPU or waiting to be executed.

TASK_INTERRUPTIBLE

 The process is suspended (sleeping) until some condition becomes true. Raising a hardware interrupt,
releasing a system resource the process is waiting for, or delivering a signal are examples of conditions
that might wake up the process (put its state back to TASK_RUNNING).

TASK_UNINTERRUPTIBLE

 Like TASK_INTERRUPTIBLE, except that delivering a signal to the sleeping process leaves its state
unchanged. This process state is seldom used. It is valuable, however, under certain specific conditions in
which a process must wait until a given event occurs without being interrupted. For instance, this state
may be used when a process opens a device file and the corresponding device driver starts probing for a
corresponding hardware device. The device driver must not be interrupted until the probing is complete,
or the hardware device could be left in an unpredictable state.

 Figure 3-1. The Linux process descriptor

 TASK_STOPPED

 Process execution has been stopped; the process enters this state after receiving a SIGSTOP,
SIGTSTP, SIGTTIN, or SIGTTOU signal.

TASK_TRACED

 Process execution has been stopped by a debugger. When a process is being monitored by another
(such as when a debugger executes a ptrace() system call to monitor a test program), each signal may
put the process in the TASK_TRACED state.

 Two additional states of the process can be stored both in the state field and in the exit_state field of the
process descriptor; as the field name suggests, a process reaches one of these two states only when its
execution is terminated:

 EXIT_ZOMBIE

 Process execution is terminated, but the parent process has not yet issued a wait4() or waitpid() system
call to return information about the dead process.[*] Before the wait()-like call is issued, the kernel
cannot discard the data contained in the dead process descriptor because the parent might need it. (See
the section "Process Removal" near the end of this chapter.)

[*] There are other wait() -like library functions, such as wait3() and wait(), but in Linux they are
implemented by means of the wait4() and waitpid() system calls.

EXIT_DEAD

 The final state: the process is being removed by the system because the parent process has just issued a
wait4() or waitpid() system call for it. Changing its state from EXIT_ZOMBIE to EXIT_DEAD avoids
race conditions due to other threads of execution that execute wait()-like calls on the same process (see
Chapter 5).

 The value of the state field is usually set with a simple assignment. For instance:

 p->state = TASK_RUNNING;

The kernel also uses the set_task_state and set_current_state macros: they set the state of a specified
process and of the process currently executed, respectively. Moreover, these macros ensure that the
assignment operation is not mixed with other instructions by the compiler or the CPU control unit. Mixing
the instruction order may sometimes lead to catastrophic results (see Chapter 5).

 3.2.2. Identifying a Process

 As a general rule, each execution context that can be independently scheduled must have its own
process descriptor; therefore, even lightweight processes, which share a large portion of their kernel data
structures, have their own task_struct structures.

 The strict one-to-one correspondence between the process and process descriptor makes the 32-bit
address[] of the task_struct structure a useful means for the kernel to identify processes. These
addresses are referred to as process descriptor pointers. Most of the references to processes that the
kernel makes are through process descriptor pointers.

[] As already noted in the section "Segmentation in Linux" in Chapter 2, although technically these 32
bits are only the offset component of a logical address, they coincide with the linear address.

 On the other hand, Unix-like operating systems allow users to identify processes by means of a number
called the Process ID (or PID), which is stored in the pid field of the process descriptor. PIDs are
numbered sequentially: the PID of a newly created process is normally the PID of the previously created
process increased by one. Of course, there is an upper limit on the PID values; when the kernel reaches
such limit, it must start recycling the lower, unused PIDs. By default, the maximum PID number is 32,767
(PID_MAX_DEFAULT - 1); the system administrator may reduce this limit by writing a smaller value
into the /proc /sys/kernel/pid_max file (/proc is the mount point of a special filesystem, see the section "
Special Filesystems" in Chapter 12). In 64-bit architectures, the system administrator can enlarge the
maximum PID number up to 4,194,303.

 When recycling PID numbers, the kernel must manage a pidmap_array bitmap that denotes which are
the PIDs currently assigned and which are the free ones. Because a page frame contains 32,768 bits, in
32-bit architectures the pidmap_array bitmap is stored in a single page. In 64-bit architectures, however,
additional pages can be added to the bitmap when the kernel assigns a PID number too large for the
current bitmap size. These pages are never released.

 Linux associates a different PID with each process or lightweight process in the system. (As we shall see
later in this chapter, there is a tiny exception on multiprocessor systems.) This approach allows the
maximum flexibility, because every execution context in the system can be uniquely identified.

 On the other hand, Unix programmers expect threads in the same group to have a common PID. For
instance, it should be possible to a send a signal specifying a PID that affects all threads in the group. In
fact, the POSIX 1003.1c standard states that all threads of a multithreaded application must have the
same PID.

 To comply with this standard, Linux makes use of thread groups. The identifier shared by the threads is
the PID of the thread group leader , that is, the PID of the first lightweight process in the group; it is
stored in the tgid field of the process descriptors. The getpid() system call returns the value of tgid
relative to the current process instead of the value of pid, so all the threads of a multithreaded application
share the same identifier. Most processes belong to a thread group consisting of a single member; as
thread group leaders, they have the tgid field equal to the pid field, thus the getpid() system call works as
usual for this kind of process.

 Later, we'll show you how it is possible to derive a true process descriptor pointer efficiently from its
respective PID. Efficiency is important because many system calls such as kill() use the PID to denote
the affected process.

 3.2.2.1. Process descriptors handling

 Processes are dynamic entities whose lifetimes range from a few milliseconds to months. Thus, the kernel
must be able to handle many processes at the same time, and process descriptors are stored in dynamic
memory rather than in the memory area permanently assigned to the kernel. For each process, Linux
packs two different data structures in a single per-process memory area: a small data structure linked to
the process descriptor, namely the thread_info structure, and the Kernel Mode process stack. The length
of this memory area is usually 8,192 bytes (two page frames). For reasons of efficiency the kernel stores
the 8-KB memory area in two consecutive page frames with the first page frame aligned to a multiple of
213; this may turn out to be a problem when little dynamic memory is available, because the free memory
may become highly fragmented (see the section "The Buddy System Algorithm" in Chapter 8). Therefore,
in the 80x86 architecture the kernel can be configured at compilation time so that the memory area
including stack and tHRead_info structure spans a single page frame (4,096 bytes).

 In the section "Segmentation in Linux" in Chapter 2, we learned that a process in Kernel Mode accesses
a stack contained in the kernel data segment, which is different from the stack used by the process in
User Mode. Because kernel control paths make little use of the stack, only a few thousand bytes of
kernel stack are required. Therefore, 8 KB is ample space for the stack and the tHRead_info structure.
However, when stack and thread_info structure are contained in a single page frame, the kernel uses a
few additional stacks to avoid the overflows caused by deeply nested interrupts and exceptions (see
Chapter 4).

 Figure 3-2 shows how the two data structures are stored in the 2-page (8 KB) memory area. The
thread_info structure resides at the beginning of the memory area, and the stack grows downward from
the end. The figure also shows that the tHRead_info structure and the task_struct structure are mutually
linked by means of the fields task and tHRead_info, respectively.

 Figure 3-2. Storing the thread_info structure and the process kernel stack in two page frames

 The esp register is the CPU stack pointer, which is used to address the stack's top location. On 80x86
systems, the stack starts at the end and grows toward the beginning of the memory area. Right after
switching from User Mode to Kernel Mode, the kernel stack of a process is always empty, and therefore
the esp register points to the byte immediately following the stack.

 The value of the esp is decreased as soon as data is written into the stack. Because the thread_info
structure is 52 bytes long, the kernel stack can expand up to 8,140 bytes.

 The C language allows the tHRead_info structure and the kernel stack of a process to be conveniently
represented by means of the following union construct:

 union thread_union {

 struct thread_info thread_info;

 unsigned long stack[2048]; /* 1024 for 4KB stacks */

 };

The tHRead_info structure shown in Figure 3-2 is stored starting at address 0x015fa000, and the stack
is stored starting at address 0x015fc000. The value of the esp register points to the current top of the
stack at 0x015fa878.

 The kernel uses the alloc_thread_info and free_thread_info macros to allocate and release the memory
area storing a thread_info structure and a kernel stack.

 3.2.2.2. Identifying the current process

 The close association between the thread_info structure and the Kernel Mode stack just described
offers a key benefit in terms of efficiency: the kernel can easily obtain the address of the thread_info
structure of the process currently running on a CPU from the value of the esp register. In fact, if the
thread_union structure is 8 KB (213 bytes) long, the kernel masks out the 13 least significant bits of esp
to obtain the base address of the thread_info structure; on the other hand, if the thread_union structure is
4 KB long, the kernel masks out the 12 least significant bits of esp. This is done by the
current_thread_info() function, which produces assembly language instructions like the following:

 movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */

 andl %esp,%ecx

 movl %ecx,p

After executing these three instructions, p contains the tHRead_info structure pointer of the process
running on the CPU that executes the instruction.

 Most often the kernel needs the address of the process descriptor rather than the address of the
thread_info structure. To get the process descriptor pointer of the process currently running on a CPU,
the kernel makes use of the current macro, which is essentially equivalent to current_thread_info()->task
and produces assembly language instructions like the following:

 movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */

 andl %esp,%ecx

 movl (%ecx),p

Because the task field is at offset 0 in the thread_info structure, after executing these three instructions p
contains the process descriptor pointer of the process running on the CPU.

 The current macro often appears in kernel code as a prefix to fields of the process descriptor. For
example, current->pid returns the process ID of the process currently running on the CPU.

 Another advantage of storing the process descriptor with the stack emerges on multiprocessor systems:
the correct current process for each hardware processor can be derived just by checking the stack, as
shown previously. Earlier versions of Linux did not store the kernel stack and the process descriptor
together. Instead, they were forced to introduce a global static variable called current to identify the
process descriptor of the running process. On multiprocessor systems, it was necessary to define current
as an arrayone element for each available CPU.

 3.2.2.3. Doubly linked lists

 Before moving on and describing how the kernel keeps track of the various processes in the system, we
would like to emphasize the role of special data structures that implement doubly linked lists.

 For each list, a set of primitive operations must be implemented: initializing the list, inserting and deleting
an element, scanning the list, and so on. It would be both a waste of programmers' efforts and a waste of
memory to replicate the primitive operations for each different list.

 Therefore, the Linux kernel defines the list_head data structure, whose only fields next and prev
represent the forward and back pointers of a generic doubly linked list element, respectively. It is
important to note, however, that the pointers in a list_head field store the addresses of other list_head
fields rather than the addresses of the whole data structures in which the list_head structure is included;
see Figure 3-3 (a).

 A new list is created by using the LIST_HEAD(list_name) macro. It declares a new variable named
list_name of type list_head, which is a dummy first element that acts as a placeholder for the head of the
new list, and initializes the prev and next fields of the list_head data structure so as to point to the
list_name variable itself; see Figure 3-3 (b).

 Figure 3-3. Doubly linked lists built with list_head data structures

 Several functions and macros implement the primitives, including those shown in Table Table 3-1.

 Table 3-1. List handling functions and macros

Name Description

list_add(n,p)

Inserts an element pointed to by n right after the
specified element pointed to by p. (To insert n at
the beginning of the list, set p to the address of the
list head.)

list_add_tail(n,p)

Inserts an element pointed to by n right before the
specified element pointed to by p. (To insert n at
the end of the list, set p to the address of the list
head.)

list_del(p) Deletes an element pointed to by p. (There is no
need to specify the head of the list.)

list_empty(p) Checks if the list specified by the address p of its
head is empty.

list_entry(p,t,m)
Returns the address of the data structure of type t
in which the list_head field that has the name m and
the address p is included.

list_for_each(p,h) Scans the elements of the list specified by the
address h of the head; in each iteration, a pointer to
the list_head structure of the list element is returned
in p.

list_for_each_entry(p,h,m)

Similar to list_for_each, but returns the address of
the data structure embedding the list_head
structure rather than the address of the list_head
structure itself.

The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs from a list_head list
because it is not circular; it is mainly used for hash tables, where space is important, and finding the the
last element in constant time is not. The list head is stored in an hlist_head data structure, which is simply
a pointer to the first element in the list (NULL if the list is empty). Each element is represented by an
hlist_node data structure, which includes a pointer next to the next element, and a pointer pprev to the
next field of the previous element. Because the list is not circular, the pprev field of the first element and
the next field of the last element are set to NULL. The list can be handled by means of several helper
functions and macros similar to those listed in Table 3-1: hlist_add_head(), hlist_del(), hlist_empty(),
hlist_entry, hlist_for_each_entry, and so on.

 3.2.2.4. The process list

 The first example of a doubly linked list we will examine is the process list, a list that links together all
existing process descriptors. Each task_struct structure includes a tasks field of type list_head whose
prev and next fields point, respectively, to the previous and to the next task_struct element.

 The head of the process list is the init_task task_struct descriptor; it is the process descriptor of the
so-called process 0 or swapper (see the section "Kernel Threads" later in this chapter). The tasks->prev
field of init_task points to the tasks field of the process descriptor inserted last in the list.

 The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process
descriptor in the process list, respectively. These macros also take care of the parenthood relationship of
the process (see the section "How Processes Are Organized" later in this chapter).

 Another useful macro, called for_each_process, scans the whole process list. It is defined as:

 #define for_each_process(p) \

 for (p=&init_task; (p=list_entry((p)->tasks.next, \

 struct task_struct, tasks) \

) != &init_task;)

The macro is the loop control statement after which the kernel programmer supplies the loop. Notice
how the init_task process descriptor just plays the role of list header. The macro starts by moving past
init_task to the next task and continues until it reaches init_task again (thanks to the circularity of the list).
At each iteration, the variable passed as the argument of the macro contains the address of the currently
scanned process descriptor, as returned by the list_entry macro.

 3.2.2.5. The lists of TASK_RUNNING processes

 When looking for a new process to run on a CPU, the kernel has to consider only the runnable
processes (that is, the processes in the TASK_RUNNING state).

 Earlier Linux versions put all runnable processes in the same list called runqueue. Because it would be
too costly to maintain the list ordered according to process priorities, the earlier schedulers were
compelled to scan the whole list in order to select the "best" runnable process.

 Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to select the best
runnable process in constant time, independently of the number of runnable processes. We'll defer to
Chapter 7 a detailed description of this new kind of runqueue, and we'll provide here only some basic
information.

 The trick used to achieve the scheduler speedup consists of splitting the runqueue in many lists of
runnable processes, one list per process priority. Each task_struct descriptor includes a run_list field of
type list_head. If the process priority is equal to k (a value ranging between 0 and 139), the run_list field
links the process descriptor into the list of runnable processes having priority k. Furthermore, on a
multiprocessor system, each CPU has its own runqueue, that is, its own set of lists of processes. This is a
classic example of making a data structures more complex to improve performance: to make scheduler
operations more efficient, the runqueue list has been split into 140 different lists!

 As we'll see, the kernel must preserve a lot of data for every runqueue in the system; however, the main
data structures of a runqueue are the lists of process descriptors belonging to the runqueue; all these lists
are implemented by a single prio_array_t data structure, whose fields are shown in Table 3-2.

 Table 3-2. The fields of the prio_array_t data structure

Type Field Description

int nr_active The number of process
descriptors linked into the lists

unsigned long [5] bitmap
A priority bitmap: each flag is set
if and only if the corresponding
priority list is not empty

struct list_head [140] queue The 140 heads of the priority lists

The enqueue_task(p,array) function inserts a process descriptor into a runqueue list; its code is essentially
equivalent to:

 list_add_tail(&p->run_list, &array->queue[p->prio]);

 __set_bit(p->prio, array->bitmap);

 array->nr_active++;

 p->array = array;

The prio field of the process descriptor stores the dynamic priority of the process, while the array field is
a pointer to the prio_array_t data structure of its current runqueue. Similarly, the dequeue_task(p,array)
function removes a process descriptor from a runqueue list.

 3.2.3. Relationships Among Processes

 Processes created by a program have a parent/child relationship. When a process creates multiple
children , these children have sibling relationships. Several fields must be introduced in a process
descriptor to represent these relationships; they are listed in Table 3-3 with respect to a given process P.
Processes 0 and 1 are created by the kernel; as we'll see later in the chapter, process 1 (init) is the
ancestor of all other processes.

 Table 3-3. Fields of a process descriptor used to express parenthood relationships

Field name Description

real_parent

Points to the process descriptor of the process that
created P or to the descriptor of process 1 (init) if
the parent process no longer exists. (Therefore,
when a user starts a background process and exits
the shell, the background process becomes the
child of init.)

parent

Points to the current parent of P (this is the process
that must be signaled when the child process
terminates); its value usually coincides with that of
real_parent. It may occasionally differ, such as
when another process issues a ptrace() system call
requesting that it be allowed to monitor P (see the
section "Execution Tracing" in Chapter 20).

children The head of the list containing all children created
by P.

sibling
The pointers to the next and previous elements in
the list of the sibling processes, those that have the
same parent as P.

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Process P0
successively created P1, P2, and P3. Process P3, in turn, created process P4.

 Furthermore, there exist other relationships among processes: a process can be a leader of a process
group or of a login session (see "Process Management" in Chapter 1), it can be a leader of a thread
group (see "Identifying a Process" earlier in this chapter), and it can also trace the execution of other
processes (see the section "Execution Tracing" in Chapter 20). Table 3-4 lists the fields of the process
descriptor that establish these relationships between a process P and the other processes.

 Table 3-4. The fields of the process descriptor that establish non-parenthood relationships

Field name Description

group_leader Process descriptor pointer of the group leader of P

signal->pgrp PID of the group leader of P

tgid PID of the thread group leader of P

signal->session PID of the login session leader of P

ptrace_children The head of a list containing all children of P being
traced by a debugger

ptrace_list The pointers to the next and previous elements in
the real parent's list of traced processes (used
when P is being traced)

Figure 3-4. Parenthood relationships among five processes

 3.2.3.1. The pidhash table and chained lists

 In several circumstances, the kernel must be able to derive the process descriptor pointer corresponding
to a PID. This occurs, for instance, in servicing the kill() system call. When process P1 wishes to send a
signal to another process, P2, it invokes the kill() system call specifying the PID of P2 as the parameter.
The kernel derives the process descriptor pointer from the PID and then extracts the pointer to the data
structure that records the pending signals from P2's process descriptor.

 Scanning the process list sequentially and checking the pid fields of the process descriptors is feasible
but rather inefficient. To speed up the search, four hash tables have been introduced. Why multiple hash
tables? Simply because the process descriptor includes fields that represent different types of PID (see
Table 3-5), and each type of PID requires its own hash table.

 Table 3-5. The four hash tables and corresponding fields in the process descriptor

Hash table type Field name Description

PIDTYPE_PID pid PID of the process

PIDTYPE_TGID tgid PID of thread group leader
process

PIDTYPE_PGID pgrp PID of the group leader process

PIDTYPE_SID session PID of the session leader process

The four hash tables are dynamically allocated during the kernel initialization phase, and their addresses
are stored in the pid_hash array. The size of a single hash table depends on the amount of available
RAM; for example, for systems having 512 MB of RAM, each hash table is stored in four page frames
and includes 2,048 entries.

 The PID is transformed into a table index using the pid_hashfn macro, which expands to:

 #define pid_hashfn(x) hash_long((unsigned long) x, pidhash_shift)

The pidhash_shift variable stores the length in bits of a table index (11, in our example). The hash_long()
function is used by many hash functions; on a 32-bit architecture it is essentially equivalent to:

 unsigned long hash_long(unsigned long val, unsigned int bits)

 {

 unsigned long hash = val * 0x9e370001UL;

 return hash >> (32 - bits);

 }

Because in our example pidhash_shift is equal to 11, pid_hashfn yields values ranging between 0 and 211
- 1 = 2047.

The Magic Constant
 You might wonder where the 0x9e370001 constant (= 2,654,404,609) comes from. This
hash function is based on a multiplication of the index by a suitable large number, so that the
result overflows and the value remaining in the 32-bit variable can be considered as the
result of a modulus operation. Knuth suggested that good results are obtained when the
large multiplier is a prime approximately in golden ratio to 232 (32 bit being the size of the
80x86's registers). Now, 2,654,404,609 is a prime near to that can also be
easily multiplied by additions and bit shifts, because it is equal to

As every basic computer science course explains, a hash function does not always ensure a one-to-one
correspondence between PIDs and table indexes. Two different PIDs that hash into the same table index
are said to be colliding.

 Linux uses chaining to handle colliding PIDs; each table entry is the head of a doubly linked list of
colliding process descriptors. Figure 3-5 illustrates a PID hash table with two lists. The processes having
PIDs 2,890 and 29,384 hash into the 200th element of the table, while the process having PID 29,385
hashes into the 1,466th element of the table.

 Hashing with chaining is preferable to a linear transformation from PIDs to table indexes because at any
given instance, the number of processes in the system is usually far below 32,768 (the maximum number
of allowed PIDs). It would be a waste of storage to define a table consisting of 32,768 entries, if, at any
given instance, most such entries are unused.

 The data structures used in the PID hash tables are quite sophisticated, because they must keep track of
the relationships between the processes. As an example, suppose that the kernel must retrieve all
processes belonging to a given thread group, that is, all processes whose tgid field is equal to a given
number. Looking in the hash table for the given thread group number returns just one process descriptor,
that is, the descriptor of the thread group leader. To quickly retrieve the other processes in the group, the
kernel must maintain a list of processes for each thread group. The same situation arises when looking for
the processes belonging to a given login session or belonging to a given process group.

 Figure 3-5. A simple PID hash table and chained lists

 The PID hash tables' data structures solve all these problems, because they allow the definition of a list
of processes for any PID number included in a hash table. The core data structure is an array of four pid
structures embedded in the pids field of the process descriptor; the fields of the pid structure are shown
in Table 3-6.

 Table 3-6. The fields of the pid data structures

Type Name Description

int nr The PID number

struct hlist_node pid_chain The links to the next and previous
elements in the hash chain list

struct list_head pid_list The head of the per-PID list

Figure 3-6 shows an example based on the PIDTYPE_TGID hash table. The second entry of the
pid_hash array stores the address of the hash table, that is, the array of hlist_head structures representing
the heads of the chain lists. In the chain list rooted at the 71st entry of the hash table, there are two
process descriptors corresponding to the PID numbers 246 and 4,351 (double-arrow lines represent a
couple of forward and backward pointers). The PID numbers are stored in the nr field of the pid
structure embedded in the process descriptor (by the way, because the thread group number coincides
with the PID of its leader, these numbers also are stored in the pid field of the process descriptors). Let
us consider the per-PID list of the thread group 4,351: the head of the list is stored in the pid_list field of
the process descriptor included in the hash table, while the links to the next and previous elements of the
per-PID list also are stored in the pid_list field of each list element.

 Figure 3-6. The PID hash tables

 The following functions and macros are used to handle the PID hash tables:

 do_each_task_pid(nr, type, task)

 while_each_task_pid(nr, type, task)

 Mark begin and end of a do-while loop that iterates over the per-PID list associated with the PID
number nr of type type; in any iteration, task points to the process descriptor of the currently scanned
element.

find_task_by_pid_type(type, nr)

 Looks for the process having PID nr in the hash table of type type. The function returns a process
descriptor pointer if a match is found, otherwise it returns NULL.

find_task_by_pid(nr)

 Same as find_task_by_pid_type(PIDTYPE_PID, nr).

attach_pid(task, type, nr)

 Inserts the process descriptor pointed to by task in the PID hash table of type type according to the PID
number nr; if a process descriptor having PID nr is already in the hash table, the function simply inserts
task in the per-PID list of the already present process.

detach_pid(task, type)

 Removes the process descriptor pointed to by task from the per-PID list of type type to which the
descriptor belongs. If the per-PID list does not become empty, the function terminates. Otherwise, the
function removes the process descriptor from the hash table of type type; finally, if the PID number does
not occur in any other hash table, the function clears the corresponding bit in the PID bitmap, so that the
number can be recycled.

next_thread(task)

 Returns the process descriptor address of the lightweight process that follows task in the hash table list
of type PIDTYPE_TGID. Because the hash table list is circular, when applied to a conventional process
the macro returns the descriptor address of the process itself.

 3.2.4. How Processes Are Organized

 The runqueue lists group all processes in a TASK_RUNNING state. When it comes to grouping
processes in other states, the various states call for different types of treatment, with Linux opting for one
of the choices shown in the following list.



 Processes in a TASK_STOPPED, EXIT_ZOMBIE, or EXIT_DEAD state are not linked in
specific lists. There is no need to group processes in any of these three states, because stopped,
zombie, and dead processes are accessed only via PID or via linked lists of the child processes
for a particular parent.



 Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are
subdivided into many classes, each of which corresponds to a specific event. In this case, the
process state does not provide enough information to retrieve the process quickly, so it is
necessary to introduce additional lists of processes. These are called wait queues and are
discussed next.

 3.2.4.1. Wait queues

 Wait queues have several uses in the kernel, particularly for interrupt handling, process synchronization,
and timing. Because these topics are discussed in later chapters, we'll just say here that a process must
often wait for some event to occur, such as for a disk operation to terminate, a system resource to be
released, or a fixed interval of time to elapse. Wait queues implement conditional waits on events: a
process wishing to wait for a specific event places itself in the proper wait queue and relinquishes control.
Therefore, a wait queue represents a set of sleeping processes, which are woken up by the kernel when
some condition becomes true.

 Wait queues are implemented as doubly linked lists whose elements include pointers to process
descriptors. Each wait queue is identified by a wait queue head, a data structure of type
wait_queue_head_t:

 struct _ _wait_queue_head {

 spinlock_t lock;

 struct list_head task_list;

 };

 typedef struct _ _wait_queue_head wait_queue_head_t;

Because wait queues are modified by interrupt handlers as well as by major kernel functions, the doubly
linked lists must be protected from concurrent accesses, which could induce unpredictable results (see
Chapter 5). Synchronization is achieved by the lock spin lock in the wait queue head. The task_list field
is the head of the list of waiting processes.

 Elements of a wait queue list are of type wait_queue_t:

 struct _ _wait_queue {

 unsigned int flags;

 struct task_struct * task;

 wait_queue_func_t func;

 struct list_head task_list;

 };

 typedef struct _ _wait_queue wait_queue_t;

Each element in the wait queue list represents a sleeping process, which is waiting for some event to
occur; its descriptor address is stored in the task field. The task_list field contains the pointers that link
this element to the list of processes waiting for the same event.

 However, it is not always convenient to wake up all sleeping processes in a wait queue. For instance, if
two or more processes are waiting for exclusive access to some resource to be released, it makes sense
to wake up just one process in the wait queue. This process takes the resource, while the other
processes continue to sleep. (This avoids a problem known as the "thundering herd," with which multiple
processes are wakened only to race for a resource that can be accessed by one of them, with the result
that remaining processes must once more be put back to sleep.)

 Thus, there are two kinds of sleeping processes: exclusive processes (denoted by the value 1 in the flags
field of the corresponding wait queue element) are selectively woken up by the kernel, while nonexclusive
processes (denoted by the value 0 in the flags field) are always woken up by the kernel when the event
occurs. A process waiting for a resource that can be granted to just one process at a time is a typical
exclusive process. Processes waiting for an event that may concern any of them are nonexclusive.
Consider, for instance, a group of processes that are waiting for the termination of a group of disk block
transfers: as soon as the transfers complete, all waiting processes must be woken up. As we'll see next,
the func field of a wait queue element is used to specify how the processes sleeping in the wait queue
should be woken up.

 3.2.4.2. Handling wait queues

 A new wait queue head may be defined by using the DECLARE_WAIT_QUEUE_HEAD(name)
macro, which statically declares a new wait queue head variable called name and initializes its lock and
task_list fields. The init_waitqueue_head() function may be used to initialize a wait queue head variable
that was allocated dynamically.

 The init_waitqueue_entry(q,p) function initializes a wait_queue_t structure q as follows:

 q->flags = 0;

 q->task = p;

 q->func = default_wake_function;

The nonexclusive process p will be awakened by default_wake_function(), which is a simple wrapper
for the TRy_to_wake_up() function discussed in Chapter 7.

 Alternatively, the DEFINE_WAIT macro declares a new wait_queue_t variable and initializes it with the
descriptor of the process currently executing on the CPU and the address of the
autoremove_wake_function() wake-up function. This function invokes default_wake_function() to
awaken the sleeping process, and then removes the wait queue element from the wait queue list. Finally,
a kernel developer can define a custom awakening function by initializing the wait queue element with the
init_waitqueue_func_entry() function.

 Once an element is defined, it must be inserted into a wait queue. The add_wait_queue() function inserts
a nonexclusive process in the first position of a wait queue list. The add_wait_queue_exclusive() function
inserts an exclusive process in the last position of a wait queue list. The remove_wait_queue() function
removes a process from a wait queue list. The waitqueue_active() function checks whether a given wait
queue list is empty.

 A process wishing to wait for a specific condition can invoke any of the functions shown in the following
list.



 The sleep_on() function operates on the current process:

 void sleep_on(wait_queue_head_t *wq)

 {

 wait_queue_t wait;

 init_waitqueue_entry(&wait, current);

 current->state = TASK_UNINTERRUPTIBLE;

 add_wait_queue(wq,&wait); /* wq points to the wait queue head */

 schedule();

 remove_wait_queue(wq, &wait);

 }

 The function sets the state of the current process to TASK_UNINTERRUPTIBLE and inserts it
into the specified wait queue. Then it invokes the scheduler, which resumes the execution of
another process. When the sleeping process is awakened, the scheduler resumes execution of the
sleep_on() function, which removes the process from the wait queue.



 The interruptible_sleep_on() function is identical to sleep_on(), except that it sets the state of the
current process to TASK_INTERRUPTIBLE instead of setting it to
TASK_UNINTERRUPTIBLE, so that the process also can be woken up by receiving a signal.



 The sleep_on_timeout() and interruptible_sleep_on_timeout() functions are similar to the
previous ones, but they also allow the caller to define a time interval after which the process will
be woken up by the kernel. To do this, they invoke the schedule_timeout() function instead of
schedule() (see the section "An Application of Dynamic Timers: the nanosleep() System Call" in
Chapter 6).



 The prepare_to_wait(), prepare_to_wait_exclusive(), and finish_wait() functions, introduced in
Linux 2.6, offer yet another way to put the current process to sleep in a wait queue. Typically,
they are used as follows:

 DEFINE_WAIT(wait);

 prepare_to_wait_exclusive(&wq, &wait, TASK_INTERRUPTIBLE);

 /* wq is the head of the wait queue */

 ...

 if (!condition)

 schedule();

 finish_wait(&wq, &wait);

 The prepare_to_wait() and prepare_to_wait_exclusive() functions set the process state to the
value passed as the third parameter, then set the exclusive flag in the wait queue element
respectively to 0 (nonexclusive) or 1 (exclusive), and finally insert the wait queue element wait
into the list of the wait queue head wq.

 As soon as the process is awakened, it executes the finish_wait() function, which sets again the
process state to TASK_RUNNING (just in case the awaking condition becomes true before
invoking schedule()), and removes the wait queue element from the wait queue list (unless this
has already been done by the wake-up function).



 The wait_event and wait_event_interruptible macros put the calling process to sleep on a wait
queue until a given condition is verified. For instance, the wait_event(wq,condition) macro
essentially yields the following fragment:

 DEFINE_WAIT(_ _wait);

 for (;;) {

 prepare_to_wait(&wq, &_ _wait, TASK_UNINTERRUPTIBLE);

 if (condition)

 break;

 schedule();

 }

 finish_wait(&wq, &_ _wait);

A few comments on the functions mentioned in the above list: the sleep_on()-like functions cannot be
used in the common situation where one has to test a condition and atomically put the process to sleep
when the condition is not verified; therefore, because they are a well-known source of race conditions,
their use is discouraged. Moreover, in order to insert an exclusive process into a wait queue, the kernel
must make use of the prepare_to_wait_exclusive() function (or just invoke add_wait_queue_exclusive()
directly); any other helper function inserts the process as nonexclusive. Finally, unless DEFINE_WAIT
or finish_wait() are used, the kernel must remove the wait queue element from the list after the waiting
process has been awakened.

 The kernel awakens processes in the wait queues, putting them in the TASK_RUNNING state, by
means of one of the following macros: wake_up, wake_up_nr, wake_up_all, wake_up_interruptible,
wake_up_interruptible_nr, wake_up_interruptible_all, wake_up_interruptible_sync, and
wake_up_locked. One can understand what each of these nine macros does from its name:



 All macros take into consideration sleeping processes in the TASK_INTERRUPTIBLE state; if
the macro name does not include the string "interruptible," sleeping processes in the
TASK_UNINTERRUPTIBLE state also are considered.



 All macros wake all nonexclusive processes having the required state (see the previous bullet
item).



 The macros whose name include the string "nr" wake a given number of exclusive processes
having the required state; this number is a parameter of the macro. The macros whose names
include the string "all" wake all exclusive processes having the required state. Finally, the macros
whose names don't include "nr" or "all" wake exactly one exclusive process that has the required
state.



 The macros whose names don't include the string "sync" check whether the priority of any of the
woken processes is higher than that of the processes currently running in the systems and invoke
schedule() if necessary. These checks are not made by the macro whose name includes the
string "sync"; as a result, execution of a high priority process might be slightly delayed.



 The wake_up_locked macro is similar to wake_up, except that it is called when the spin lock in
wait_queue_head_t is already held.

 For instance, the wake_up macro is essentially equivalent to the following code fragment:

 void wake_up(wait_queue_head_t *q)

 {

 struct list_head *tmp;

 wait_queue_t *curr;

 list_for_each(tmp, &q->task_list) {

 curr = list_entry(tmp, wait_queue_t, task_list);

 if (curr->func(curr, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE,

 0, NULL) && curr->flags)

 break;

 }

 }

The list_for_each macro scans all items in the q->task_list doubly linked list, that is, all processes in the
wait queue. For each item, the list_entry macro computes the address of the corresponding wait_queue_t
variable. The func field of this variable stores the address of the wake-up function, which tries to wake up
the process identified by the task field of the wait queue element. If a process has been effectively
awakened (the function returned 1) and if the process is exclusive (curr->flags equal to 1), the loop
terminates. Because all nonexclusive processes are always at the beginning of the doubly linked list and
all exclusive processes are at the end, the function always wakes the nonexclusive processes and then
wakes one exclusive process, if any exists.[*]

[*] By the way, it is rather uncommon that a wait queue includes both exclusive and nonexclusive
processes.

 3.2.5. Process Resource Limits

 Each process has an associated set of resource limits , which specify the amount of system resources it
can use. These limits keep a user from overwhelming the system (its CPU, disk space, and so on). Linux
recognizes the following resource limits illustrated in Table 3-7.

 The resource limits for the current process are stored in the current->signal->rlim field, that is, in a field
of the process's signal descriptor (see the section "Data Structures Associated with Signals" in Chapter
11). The field is an array of elements of type struct rlimit, one for each resource limit:

 struct rlimit {

 unsigned long rlim_cur;

 unsigned long rlim_max;

 };

Table 3-7. Resource limits

Field name Description

RLIMIT_AS The maximum size of process address space, in
bytes. The kernel checks this value when the
process uses malloc() or a related function to
enlarge its address space (see the section "The
Process's Address Space" in Chapter 9).

RLIMIT_CORE The maximum core dump file size, in bytes. The
kernel checks this value when a process is aborted,
before creating a core file in the current directory
of the process (see the section "Actions Performed
upon Delivering a Signal" in Chapter 11). If the
limit is 0, the kernel won't create the file.

RLIMIT_CPU The maximum CPU time for the process, in
seconds. If the process exceeds the limit, the
kernel sends it a SIGXCPU signal, and then, if the
process doesn't terminate, a SIGKILL signal (see
Chapter 11).

RLIMIT_DATA

The maximum heap size, in bytes. The kernel
checks this value before expanding the heap of the
process (see the section "Managing the Heap" in
Chapter 9).

RLIMIT_FSIZE
The maximum file size allowed, in bytes. If the
process tries to enlarge a file to a size greater than
this value, the kernel sends it a SIGXFSZ signal.

RLIMIT_LOCKS Maximum number of file locks (currently, not
enforced).

RLIMIT_MEMLOCK The maximum size of nonswappable memory, in
bytes. The kernel checks this value when the
process tries to lock a page frame in memory using
the mlock() or mlockall() system calls (see the
section "Allocating a Linear Address Interval" in
Chapter 9).

RLIMIT_MSGQUEUE
Maximum number of bytes in POSIX message
queues (see the section "POSIX Message Queues"
in Chapter 19).

RLIMIT_NOFILE

The maximum number of open file descriptors .
The kernel checks this value when opening a new
file or duplicating a file descriptor (see Chapter 12
).

RLIMIT_NPROC
The maximum number of processes that the user
can own (see the section "The clone(), fork(), and
vfork() System Calls" later in this chapter).

RLIMIT_RSS The maximum number of page frames owned by
the process (currently, not enforced).

RLIMIT_SIGPENDING The maximum number of pending signals for the
process (see Chapter 11).

RLIMIT_STACK The maximum stack size, in bytes. The kernel
checks this value before expanding the User Mode
stack of the process (see the section "Page Fault
Exception Handler" in Chapter 9).

The rlim_cur field is the current resource limit for the resource. For example,
current->signal->rlim[RLIMIT_CPU].rlim_cur represents the current limit on the CPU time of the
running process.

 The rlim_max field is the maximum allowed value for the resource limit. By using the getrlimit() and
setrlimit() system calls, a user can always increase the rlim_cur limit of some resource up to rlim_max.
However, only the superuser (or, more precisely, a user who has the CAP_SYS_RESOURCE
capability) can increase the rlim_max field or set the rlim_cur field to a value greater than the
corresponding rlim_max field.

 Most resource limits contain the value RLIM_INFINITY (0xffffffff), which means that no user limit is
imposed on the corresponding resource (of course, real limits exist due to kernel design restrictions,
available RAM, available space on disk, etc.). However, the system administrator may choose to impose
stronger limits on some resources. Whenever a user logs into the system, the kernel creates a process
owned by the superuser, which can invoke setrlimit() to decrease the rlim_max and rlim_cur fields for a
resource. The same process later executes a login shell and becomes owned by the user. Each new
process created by the user inherits the content of the rlim array from its parent, and therefore the user
cannot override the limits enforced by the administrator.

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.3. Process Switch
 To control the execution of processes, the kernel must be able to suspend the execution of the process
running on the CPU and resume the execution of some other process previously suspended. This activity
goes variously by the names process switch, task switch, or context switch. The next sections describe
the elements of process switching in Linux.

 3.3.1. Hardware Context

 While each process can have its own address space, all processes have to share the CPU registers. So
before resuming the execution of a process, the kernel must ensure that each such register is loaded with
the value it had when the process was suspended.

 The set of data that must be loaded into the registers before the process resumes its execution on the
CPU is called the hardware context . The hardware context is a subset of the process execution context,
which includes all information needed for the process execution. In Linux, a part of the hardware context
of a process is stored in the process descriptor, while the remaining part is saved in the Kernel Mode
stack.

 In the description that follows, we will assume the prev local variable refers to the process descriptor of
the process being switched out and next refers to the one being switched in to replace it. We can thus
define a process switch as the activity consisting of saving the hardware context of prev and replacing it
with the hardware context of next. Because process switches occur quite often, it is important to minimize
the time spent in saving and loading hardware contexts.

 Old versions of Linux took advantage of the hardware support offered by the 80x86 architecture and
performed a process switch through a far jmp instruction[*] to the selector of the Task State Segment
Descriptor of the next process. While executing the instruction, the CPU performs a hardware context
switch by automatically saving the old hardware context and loading a new one. But Linux 2.6 uses
software to perform a process switch for the following reasons:

[*] far jmp instructions modify both the cs and eip registers, while simple jmp instructions modify only
eip.



 Step-by-step switching performed through a sequence of mov instructions allows better control
over the validity of the data being loaded. In particular, it is possible to check the values of the ds
and es segmentation registers, which might have been forged by a malicious user. This type of
checking is not possible when using a single far jmp instruction.



 The amount of time required by the old approach and the new approach is about the same.
However, it is not possible to optimize a hardware context switch, while there might be room for
improving the current switching code.

 Process switching occurs only in Kernel Mode. The contents of all registers used by a process in User
Mode have already been saved on the Kernel Mode stack before performing process switching (see
Chapter 4). This includes the contents of the ss and esp pair that specifies the User Mode stack pointer
address.

 3.3.2. Task State Segment

 The 80x86 architecture includes a specific segment type called the Task State Segment (TSS), to store
hardware contexts. Although Linux doesn't use hardware context switches, it is nonetheless forced to set
up a TSS for each distinct CPU in the system. This is done for two main reasons:



 When an 80x86 CPU switches from User Mode to Kernel Mode, it fetches the address of the
Kernel Mode stack from the TSS (see the sections "Hardware Handling of Interrupts and
Exceptions" in Chapter 4 and "Issuing a System Call via the sysenter Instruction" in Chapter 10).



 When a User Mode process attempts to access an I/O port by means of an in or out instruction,
the CPU may need to access an I/O Permission Bitmap stored in the TSS to verify whether the
process is allowed to address the port.

 More precisely, when a process executes an in or out I/O instruction in User Mode, the control
unit performs the following operations:
1.

1. It checks the 2-bit IOPL field in the eflags register. If it is set to 3, the control unit executes
the I/O instructions. Otherwise, it performs the next check.

2.

2. It accesses the tr register to determine the current TSS, and thus the proper I/O Permission
Bitmap.

3.

3. It checks the bit of the I/O Permission Bitmap corresponding to the I/O port specified in the
I/O instruction. If it is cleared, the instruction is executed; otherwise, the control unit raises a
"General protection " exception.

The tss_struct structure describes the format of the TSS. As already mentioned in Chapter 2, the init_tss
array stores one TSS for each CPU on the system. At each process switch, the kernel updates some
fields of the TSS so that the corresponding CPU's control unit may safely retrieve the information it
needs. Thus, the TSS reflects the privilege of the current process on the CPU, but there is no need to
maintain TSSs for processes when they're not running.

 Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This descriptor includes a 32-bit
Base field that points to the TSS starting address and a 20-bit Limit field. The S flag of a TSSD is
cleared to denote the fact that the corresponding TSS is a System Segment (see the section "Segment
Descriptors" in Chapter 2).

 The Type field is set to either 9 or 11 to denote that the segment is actually a TSS. In the Intel's original
design, each process in the system should refer to its own TSS; the second least significant bit of the
Type field is called the Busy bit; it is set to 1 if the process is being executed by a CPU, and to 0
otherwise. In Linux design, there is just one TSS for each CPU, so the Busy bit is always set to 1.

 The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base address is
stored in the gdtr register of each CPU. The tr register of each CPU contains the TSSD Selector of the
corresponding TSS. The register also includes two hidden, nonprogrammable fields: the Base and Limit
fields of the TSSD. In this way, the processor can address the TSS directly without having to retrieve the
TSS address from the GDT.

 3.3.2.1. The thread field

 At every process switch, the hardware context of the process being replaced must be saved
somewhere. It cannot be saved on the TSS, as in the original Intel design, because Linux uses a single
TSS for each processor, instead of one for every process.

 Thus, each process descriptor includes a field called thread of type thread_struct, in which the kernel
saves the hardware context whenever the process is being switched out. As we'll see later, this data
structure includes fields for most of the CPU registers, except the general-purpose registers such as eax,
ebx, etc., which are stored in the Kernel Mode stack.

 3.3.3. Performing the Process Switch

 A process switch may occur at just one well-defined point: the schedule() function, which is discussed
at length in Chapter 7. Here, we are only concerned with how the kernel performs a process switch.

 Essentially, every process switch consists of two steps:
1.

1. Switching the Page Global Directory to install a new address space; we'll describe this step in
Chapter 9.

2.

2. Switching the Kernel Mode stack and the hardware context, which provides all the information
needed by the kernel to execute the new process, including the CPU registers.

Again, we assume that prev points to the descriptor of the process being replaced, and next to the
descriptor of the process being activated. As we'll see in Chapter 7, prev and next are local variables of
the schedule() function.

 3.3.3.1. The switch_to macro

 The second step of the process switch is performed by the switch_to macro. It is one of the most
hardware-dependent routines of the kernel, and it takes some effort to understand what it does.

 First of all, the macro has three parameters, called prev, next, and last. You might easily guess the role of
prev and next: they are just placeholders for the local variables prev and next, that is, they are input
parameters that specify the memory locations containing the descriptor address of the process being
replaced and the descriptor address of the new process, respectively.

 What about the third parameter, last? Well, in any process switch three processes are involved, not just
two. Suppose the kernel decides to switch off process A and to activate process B. In the schedule()
function, prev points to A's descriptor and next points to B's descriptor. As soon as the switch_to macro
deactivates A, the execution flow of A freezes.

 Later, when the kernel wants to reactivate A, it must switch off another process C (in general, this is
different from B) by executing another switch_to macro with prev pointing to C and next pointing to A.
When A resumes its execution flow, it finds its old Kernel Mode stack, so the prev local variable points
to A's descriptor and next points to B's descriptor. The scheduler, which is now executing on behalf of
process A, has lost any reference to C. This reference, however, turns out to be useful to complete the
process switching (see Chapter 7 for more details).

 The last parameter of the switch_to macro is an output parameter that specifies a memory location in
which the macro writes the descriptor address of process C (of course, this is done after A resumes its
execution). Before the process switching, the macro saves in the eax CPU register the content of the
variable identified by the first input parameter prevthat is, the prev local variable allocated on the Kernel
Mode stack of A. After the process switching, when A has resumed its execution, the macro writes the
content of the eax CPU register in the memory location of A identified by the third output parameter last.
Because the CPU register doesn't change across the process switch, this memory location receives the
address of C's descriptor. In the current implementation of schedule(), the last parameter identifies the
prev local variable of A, so prev is overwritten with the address of C.

 The contents of the Kernel Mode stacks of processes A, B, and C are shown in Figure 3-7, together
with the values of the eax register; be warned that the figure shows the value of the prev local variable
before its value is overwritten with the contents of the eax register.

 Figure 3-7. Preserving the reference to process C across a process switch

 The switch_to macro is coded in extended inline assembly language that makes for rather complex
reading: in fact, the code refers to registers by means of a special positional notation that allows the
compiler to freely choose the general-purpose registers to be used. Rather than follow the cumbersome
extended inline assembly language, we'll describe what the switch_to macro typically does on an 80x86
microprocessor by using standard assembly language:

1.

1. Saves the values of prev and next in the eax and edx registers, respectively:

1. movl prev, %eax

 movl next, %edx

2.

2. Saves the contents of the eflags and ebp registers in the prev Kernel Mode stack. They must be
saved because the compiler assumes that they will stay unchanged until the end of switch_to:

2. pushfl

 pushl %ebp

3.

3. Saves the content of esp in prev->thread.esp so that the field points to the top of the prev Kernel
Mode stack:

3. movl %esp,484(%eax)

3. The 484(%eax) operand identifies the memory cell whose address is the contents of eax plus
484.

4.

4. Loads next->thread.esp in esp. From now on, the kernel operates on the Kernel Mode stack of
next, so this instruction performs the actual process switch from prev to next. Because the
address of a process descriptor is closely related to that of the Kernel Mode stack (as explained
in the section "Identifying a Process" earlier in this chapter), changing the kernel stack means
changing the current process:

4. movl 484(%edx), %esp

5.

5. Saves the address labeled 1 (shown later in this section) in prev->thread.eip. When the process
being replaced resumes its execution, the process executes the instruction labeled as 1:

5. movl $1f, 480(%eax)

6.

6. On the Kernel Mode stack of next, the macro pushes the next->thread.eip value, which, in most
cases, is the address labeled as 1:

6. pushl 480(%edx)

7.

7. Jumps to the _ _switch_to() C function (see next):

7. jmp _ _switch_to

8.

8. Here process A that was replaced by B gets the CPU again: it executes a few instructions that
restore the contents of the eflags and ebp registers. The first of these two instructions is labeled
as 1:

8. 1:

 popl %ebp

 popfl

8. Notice how these pop instructions refer to the kernel stack of the prev process. They will be
executed when the scheduler selects prev as the new process to be executed on the CPU, thus
invoking switch_to with prev as the second parameter. Therefore, the esp register points to the
prev's Kernel Mode stack.

9.

9. Copies the content of the eax register (loaded in step 1 above) into the memory location
identified by the third parameter last of the switch_to macro:

9. movl %eax, last

9. As discussed earlier, the eax register points to the descriptor of the process that has just been
replaced.[*]

9. [*] As stated earlier in this section, the current implementation of the schedule() function reuses
the prev local variable, so that the assembly language instruction looks like movl %eax,prev.

3.3.3.2. The _ _switch_to () function

 The _ _switch_to() function does the bulk of the process switch started by the switch_to() macro. It
acts on the prev_p and next_p parameters that denote the former process and the new process. This
function call is different from the average function call, though, because _ _switch_to() takes the prev_p
and next_p parameters from the eax and edx registers (where we saw they were stored), not from the
stack like most functions. To force the function to go to the registers for its parameters, the kernel uses
the _ _attribute_ _ and regparm keywords, which are nonstandard extensions of the C language
implemented by the gcc compiler. The _ _switch_to() function is declared in the include /asm-i386
/system.h header file as follows:

 _ _switch_to(struct task_struct *prev_p,

 struct task_struct *next_p)

 _ _attribute_ _(regparm(3));

The steps performed by the function are the following:
1.

1. Executes the code yielded by the _ _unlazy_fpu() macro (see the section "Saving and Loading
the FPU , MMX, and XMM Registers" later in this chapter) to optionally save the contents of
the FPU, MMX, and XMM registers of the prev_p process.

1. _ _unlazy_fpu(prev_p);

2.

2. Executes the smp_processor_id() macro to get the index of the local CPU , namely the CPU
that executes the code. The macro gets the index from the cpu field of the tHRead_info structure
of the current process and stores it into the cpu local variable.

3.

3. Loads next_p->thread.esp0 in the esp0 field of the TSS relative to the local CPU; as we'll see in
the section "Issuing a System Call via the sysenter Instruction " in Chapter 10, any future privilege
level change from User Mode to Kernel Mode raised by a sysenter assembly instruction will
copy this address in the esp register:

3. init_tss[cpu].esp0 = next_p->thread.esp0;

4.

4. Loads in the Global Descriptor Table of the local CPU the Thread-Local Storage (TLS)
segments used by the next_p process; the three Segment Selectors are stored in the tls_array
array inside the process descriptor (see the section "Segmentation in Linux" in Chapter 2).

4. cpu_gdt_table[cpu][6] = next_p->thread.tls_array[0];

 cpu_gdt_table[cpu][7] = next_p->thread.tls_array[1];

 cpu_gdt_table[cpu][8] = next_p->thread.tls_array[2];

5.

5. Stores the contents of the fs and gs segmentation registers in prev_p->thread.fs and
prev_p->thread.gs, respectively; the corresponding assembly language instructions are:

5. movl %fs, 40(%esi)

 movl %gs, 44(%esi)

5. The esi register points to the prev_p->thread structure.
6.

6. If the fs or the gs segmentation register have been used either by the prev_p or by the next_p
process (i.e., if they have a nonzero value), loads into these registers the values stored in the
thread_struct descriptor of the next_p process. This step logically complements the actions
performed in the previous step. The main assembly language instructions are:

6. movl 40(%ebx),%fs

 movl 44(%ebx),%gs

6. The ebx register points to the next_p->thread structure. The code is actually more intricate, as an
exception might be raised by the CPU when it detects an invalid segment register value. The
code takes this possibility into account by adopting a "fix-up" approach (see the section "
Dynamic Address Checking: The Fix-up Code" in Chapter 10).

7.

7. Loads six of the dr0,..., dr7 debug registers [*] with the contents of the
next_p->thread.debugreg array. This is done only if next_p was using the debug registers when it
was suspended (that is, field next_p->thread.debugreg[7] is not 0). These registers need not be
saved, because the prev_p->thread.debugreg array is modified only when a debugger wants to
monitor prev:

7. [*] The 80x86 debug registers allow a process to be monitored by the hardware. Up to four
breakpoint areas may be defined. Whenever a monitored process issues a linear address
included in one of the breakpoint areas, an exception occurs.

7. if (next_p->thread.debugreg[7]){

 loaddebug(&next_p->thread, 0);

 loaddebug(&next_p->thread, 1);

 loaddebug(&next_p->thread, 2);

 loaddebug(&next_p->thread, 3);

 /* no 4 and 5 */

 loaddebug(&next_p->thread, 6);

 loaddebug(&next_p->thread, 7);

 }

8.

8. Updates the I/O bitmap in the TSS, if necessary. This must be done when either next_p or
prev_p has its own customized I/O Permission Bitmap:

8. if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap_ptr)

 handle_io_bitmap(&next_p->thread, &init_tss[cpu]);

8. Because processes seldom modify the I/O Permission Bitmap, this bitmap is handled in a "lazy"
mode: the actual bitmap is copied into the TSS of the local CPU only if a process actually
accesses an I/O port in the current timeslice. The customized I/O Permission Bitmap of a process
is stored in a buffer pointed to by the io_bitmap_ptr field of the tHRead_info structure. The
handle_io_bitmap() function sets up the io_bitmap field of the TSS used by the local CPU for
the next_p process as follows:
o

o If the next_p process does not have its own customized I/O Permission Bitmap, the
io_bitmap field of the TSS is set to the value 0x8000.

o

o If the next_p process has its own customized I/O Permission Bitmap, the io_bitmap field of
the TSS is set to the value 0x9000.

2. The io_bitmap field of the TSS should contain an offset inside the TSS where the actual bitmap is
stored. The 0x8000 and 0x9000 values point outside of the TSS limit and will thus cause a
"General protection " exception whenever the User Mode process attempts to access an I/O
port (see the section "Exceptions" in Chapter 4). The do_general_protection() exception handler
will check the value stored in the io_bitmap field: if it is 0x8000, the function sends a SIGSEGV
signal to the User Mode process; otherwise, if it is 0x9000, the function copies the process
bitmap (pointed to by the io_bitmap_ptr field in the tHRead_info structure) in the TSS of the
local CPU, sets the io_bitmap field to the actual bitmap offset (104), and forces a new execution
of the faulty assembly language instruction.

9.

9. Terminates. The _ _switch_to() C function ends by means of the statement:

9. return prev_p;

9. The corresponding assembly language instructions generated by the compiler are:

9. movl %edi,%eax

 ret

9. The prev_p parameter (now in edi) is copied into eax, because by default the return value of any
C function is passed in the eax register. Notice that the value of eax is thus preserved across the
invocation of _ _switch_to(); this is quite important, because the invoking switch_to macro
assumes that eax always stores the address of the process descriptor being replaced.

9. The ret assembly language instruction loads the eip program counter with the return address
stored on top of the stack. However, the _ _switch_to() function has been invoked simply by
jumping into it. Therefore, the ret instruction finds on the stack the address of the instruction
labeled as 1, which was pushed by the switch_to macro. If next_p was never suspended before
because it is being executed for the first time, the function finds the starting address of the
ret_from_fork() function (see the section "The clone(), fork(), and vfork() System Calls" later
in this chapter).

3.3.4. Saving and Loading the FPU, MMX, and XMM Registers

 Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been integrated into the
CPU. The name mathematical coprocessor continues to be used in memory of the days when
floating-point computations were executed by an expensive special-purpose chip. To maintain
compatibility with older models, however, floating-point arithmetic functions are performed with
ESCAPE instructions , which are instructions with a prefix byte ranging between 0xd8 and 0xdf. These
instructions act on the set of floating-point registers included in the CPU. Clearly, if a process is using
ESCAPE instructions, the contents of the floating-point registers belong to its hardware context and
should be saved.

 In later Pentium models, Intel introduced a new set of assembly language instructions into its
microprocessors. They are called MMX instructions and are supposed to speed up the execution of
multimedia applications. MMX instructions act on the floating-point registers of the FPU. The obvious
disadvantage of this architectural choice is that programmers cannot mix floating-point instructions and
MMX instructions. The advantage is that operating system designers can ignore the new instruction set,
because the same facility of the task-switching code for saving the state of the floating-point unit can also
be relied upon to save the MMX state.

 MMX instructions speed up multimedia applications, because they introduce a single-instruction
multiple-data (SIMD) pipeline inside the processor. The Pentium III model extends that SIMD capability:
it introduces the SSE extensions (Streaming SIMD Extensions), which adds facilities for handling
floating-point values contained in eight 128-bit registers called the XMM registers . Such registers do not
overlap with the FPU and MMX registers , so SSE and FPU/MMX instructions may be freely mixed.
The Pentium 4 model introduces yet another feature: the SSE2 extensions, which is basically an extension
of SSE supporting higher-precision floating-point values. SSE2 uses the same set of XMM registers as
SSE.

 The 80x86 microprocessors do not automatically save the FPU, MMX, and XMM registers in the TSS.
However, they include some hardware support that enables kernels to save these registers only when
needed. The hardware support consists of a TS (Task-Switching) flag in the cr0 register, which obeys
the following rules:



 Every time a hardware context switch is performed, the TS flag is set.


 Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS flag is set,
the control unit raises a "Device not available " exception (see Chapter 4).

 The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers only when really
needed. To illustrate how it works, suppose that a process A is using the mathematical coprocessor.
When a context switch occurs from A to B, the kernel sets the TS flag and saves the floating-point
registers into the TSS of process A. If the new process B does not use the mathematical coprocessor,
the kernel won't need to restore the contents of the floating-point registers. But as soon as B tries to
execute an ESCAPE or MMX instruction, the CPU raises a "Device not available" exception, and the
corresponding handler loads the floating-point registers with the values saved in the TSS of process B.

 Let's now describe the data structures introduced to handle selective loading of the FPU, MMX, and
XMM registers. They are stored in the thread.i387 subfield of the process descriptor, whose format is
described by the i387_union union:

 union i387_union {

 struct i387_fsave_struct fsave;

 struct i387_fxsave_struct fxsave;

 struct i387_soft_struct soft;

 };

As you see, the field may store just one of three different types of data structures. The i387_soft_struct
type is used by CPU models without a mathematical coprocessor; the Linux kernel still supports these
old chips by emulating the coprocessor via software. We don't discuss this legacy case further, however.
The i387_fsave_struct type is used by CPU models with a mathematical coprocessor and, optionally, an
MMX unit. Finally, the i387_fxsave_struct type is used by CPU models featuring SSE and SSE2
extensions.

 The process descriptor includes two additional flags:


 The TS_USEDFPU flag, which is included in the status field of the thread_info descriptor. It
specifies whether the process used the FPU, MMX, or XMM registers in the current execution
run.



 The PF_USED_MATH flag, which is included in the flags field of the task_struct descriptor. This
flag specifies whether the contents of the thread.i387 subfield are significant. The flag is cleared
(not significant) in two cases, shown in the following list.
o

o When the process starts executing a new program by invoking an execve() system call (see
Chapter 20). Because control will never return to the former program, the data currently
stored in thread.i387 is never used again.

o

o When a process that was executing a program in User Mode starts executing a signal handler
procedure (see Chapter 11). Because signal handlers are asynchronous with respect to the
program execution flow, the floating-point registers could be meaningless to the signal
handler. However, the kernel saves the floating-point registers in thread.i387 before starting
the handler and restores them after the handler terminates. Therefore, a signal handler is
allowed to use the mathematical coprocessor.

 3.3.4.1. Saving the FPU registers

 As stated earlier, the _ _switch_to() function executes the _ _unlazy_fpu macro, passing the process
descriptor of the prev process being replaced as an argument. The macro checks the value of the
TS_USEDFPU flags of prev. If the flag is set, prev has used an FPU, MMX, SSE, or SSE2 instructions;
therefore, the kernel must save the relative hardware context:

 if (prev->thread_info->status & TS_USEDFPU)

 save_init_fpu(prev);

The save_init_fpu() function, in turn, executes essentially the following operations:
1.

1. Dumps the contents of the FPU registers in the process descriptor of prev and then reinitializes
the FPU. If the CPU uses SSE/SSE2 extensions, it also dumps the contents of the XMM
registers and reinitializes the SSE/SSE2 unit. A couple of powerful extended inline assembly
language instructions take care of everything, either:

1. asm volatile("fxsave

 %0 ; fnclex"

 : "=m" (prev->thread.i387.fxsave));

1. if the CPU uses SSE/SSE2 extensions, or otherwise:

1. asm volatile("fnsave

 %0 ; fwait"

 : "=m" (prev->thread.i387.fsave));

2.

2. Resets the TS_USEDFPU flag of prev:

2. prev->thread_info->status &= ~TS_USEDFPU;

3.

3. Sets the CW flag of cr0 by means of the stts() macro, which in practice yields assembly
language instructions like the following:

3. movl %cr0, %eax

 orl $8,%eax

 movl %eax, %cr0

3.3.4.2. Loading the FPU registers

 The contents of the floating-point registers are not restored right after the next process resumes
execution. However, the TS flag of cr0 has been set by _ _unlazy_fpu(). Thus, the first time the next
process tries to execute an ESCAPE, MMX, or SSE/SSE2 instruction, the control unit raises a "Device
not available" exception, and the kernel (more precisely, the exception handler involved by the exception)
runs the math_state_restore() function. The next process is identified by this handler as current.

 void math_state_restore()

 {

 asm volatile ("clts"); /* clear the TS flag of cr0 */

 if (!(current->flags & PF_USED_MATH))

 init_fpu(current);

 restore_fpu(current);

 current->thread.status |= TS_USEDFPU;

 }

The function clears the CW flags of cr0, so that further FPU, MMX, or SSE/SSE2 instructions executed
by the process won't trigger the "Device not available" exception. If the contents of the thread.i387
subfield are not significant, i.e., if the PF_USED_MATH flag is equal to 0, init_fpu() is invoked to reset
the tHRead.i387 subfield and to set the PF_USED_MATH flag of current to 1. The restore_fpu()
function is then invoked to load the FPU registers with the proper values stored in the thread.i387
subfield. To do this, either the fxrstor or the frstor assembly language instructions are used, depending on
whether the CPU supports SSE/SSE2 extensions. Finally, math_state_restore() sets the TS_USEDFPU
flag.

 3.3.4.3. Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

 Even the kernel can make use of the FPU, MMX, or SSE/SSE2 units. In doing so, of course, it should
avoid interfering with any computation carried on by the current User Mode process. Therefore:



 Before using the coprocessor, the kernel must invoke kernel_fpu_begin(), which essentially calls
save_init_fpu() to save the contents of the registers if the User Mode process used the FPU
(TS_USEDFPU flag), and then resets the TS flag of the cr0 register.



 After using the coprocessor, the kernel must invoke kernel_fpu_end(), which sets the TS flag of
the cr0 register.

 Later, when the User Mode process executes a coprocessor instruction, the math_state_restore()
function will restore the contents of the registers, just as in process switch handling.

 It should be noted, however, that the execution time of kernel_fpu_begin() is rather large when the
current User Mode process is using the coprocessor, so much as to nullify the speedup obtained by using
the FPU, MMX, or SSE/SSE2 units. As a matter of fact, the kernel uses them only in a few places,
typically when moving or clearing large memory areas or when computing checksum functions.

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.4. Creating Processes
 Unix operating systems rely heavily on process creation to satisfy user requests. For example, the shell
creates a new process that executes another copy of the shell whenever the user enters a command.

 Traditional Unix systems treat all processes in the same way: resources owned by the parent process are
duplicated in the child process. This approach makes process creation very slow and inefficient, because
it requires copying the entire address space of the parent process. The child process rarely needs to read
or modify all the resources inherited from the parent; in many cases, it issues an immediate execve() and
wipes out the address space that was so carefully copied.

 Modern Unix kernels solve this problem by introducing three different mechanisms:


 The Copy On Write technique allows both the parent and the child to read the same physical
pages. Whenever either one tries to write on a physical page, the kernel copies its contents into a
new physical page that is assigned to the writing process. The implementation of this technique in
Linux is fully explained in Chapter 9.



 Lightweight processes allow both the parent and the child to share many per-process kernel data
structures, such as the paging tables (and therefore the entire User Mode address space), the
open file tables, and the signal dispositions.



 The vfork() system call creates a process that shares the memory address space of its parent.
To prevent the parent from overwriting data needed by the child, the parent's execution is
blocked until the child exits or executes a new program. We'll learn more about the vfork()
system call in the following section.

 3.4.1. The clone(), fork(), and vfork() System Calls

 Lightweight processes are created in Linux by using a function named clone(), which uses the following
parameters:

 fn

 Specifies a function to be executed by the new process; when the function returns, the child terminates.
The function returns an integer, which represents the exit code for the child process.

arg

 Points to data passed to the fn() function.

flags

 Miscellaneous information. The low byte specifies the signal number to be sent to the parent process
when the child terminates; the SIGCHLD signal is generally selected. The remaining three bytes encode a
group of clone flags, which are shown in Table 3-8.

child_stack

 Specifies the User Mode stack pointer to be assigned to the esp register of the child process. The
invoking process (the parent) should always allocate a new stack for the child.

tls

 Specifies the address of a data structure that defines a Thread Local Storage segment for the new
lightweight process (see the section "The Linux GDT" in Chapter 2). Meaningful only if the
CLONE_SETTLS flag is set.

ptid

 Specifies the address of a User Mode variable of the parent process that will hold the PID of the new
lightweight process. Meaningful only if the CLONE_PARENT_SETTID flag is set.

ctid

 Specifies the address of a User Mode variable of the new lightweight process that will hold the PID of
such process. Meaningful only if the CLONE_CHILD_SETTID flag is set.

 Table 3-8. Clone flags

Flag name Description

CLONE_VM Shares the memory descriptor and all Page Tables
(see Chapter 9).

CLONE_FS Shares the table that identifies the root directory
and the current working directory, as well as the
value of the bitmask used to mask the initial file
permissions of a new file (the so-called file umask
).

CLONE_FILES Shares the table that identifies the open files (see
Chapter 12).

CLONE_SIGHAND Shares the tables that identify the signal handlers
and the blocked and pending signals (see Chapter
11). If this flag is true, the CLONE_VM flag must
also be set.

CLONE_PTRACE If traced, the parent wants the child to be traced
too. Furthermore, the debugger may want to trace
the child on its own; in this case, the kernel forces
the flag to 1.

CLONE_VFORK Set when the system call issued is a vfork() (see
later in this section).

CLONE_PARENT
Sets the parent of the child (parent and real_parent
fields in the process descriptor) to the parent of the
calling process.

CLONE_THREAD Inserts the child into the same thread group of the
parent, and forces the child to share the signal
descriptor of the parent. The child's tgid and
group_leader fields are set accordingly. If this flag
is true, the CLONE_SIGHAND flag must also be
set.

CLONE_NEWNS Set if the clone needs its own namespace, that is,
its own view of the mounted filesystems (see
Chapter 12); it is not possible to specify both
CLONE_NEWNS and CLONE_FS.

CLONE_SYSVSEM
Shares the System V IPC undoable semaphore
operations (see the section "IPC Semaphores" in
Chapter 19).

CLONE_SETTLS

Creates a new Thread Local Storage (TLS)
segment for the lightweight process; the segment is
described in the structure pointed to by the tls
parameter.

CLONE_PARENT_SETTID
Writes the PID of the child into the User Mode
variable of the parent pointed to by the ptid
parameter.

CLONE_CHILD_CLEARTID When set, the kernel sets up a mechanism to be
triggered when the child process will exit or when it
will start executing a new program. In these cases,
the kernel will clear the User Mode variable
pointed to by the ctid parameter and will awaken
any process waiting for this event.

CLONE_DETACHED A legacy flag ignored by the kernel.

CLONE_UNTRACED Set by the kernel to override the value of the
CLONE_PTRACE flag (used for disabling tracing
of kernel threads ; see the section "Kernel Threads
" later in this chapter).

CLONE_CHILD_SETTID
Writes the PID of the child into the User Mode
variable of the child pointed to by the ctid
parameter.

CLONE_STOPPED Forces the child to start in the TASK_STOPPED
state.

clone() is actually a wrapper function defined in the C library (see the section "POSIX APIs and System
Calls" in Chapter 10), which sets up the stack of the new lightweight process and invokes a clone()
system call hidden to the programmer. The sys_clone() service routine that implements the clone()
system call does not have the fn and arg parameters. In fact, the wrapper function saves the pointer fn
into the child's stack position corresponding to the return address of the wrapper function itself; the
pointer arg is saved on the child's stack right below fn. When the wrapper function terminates, the CPU
fetches the return address from the stack and executes the fn(arg) function.

 The traditional fork() system call is implemented by Linux as a clone() system call whose flags
parameter specifies both a SIGCHLD signal and all the clone flags cleared, and whose child_stack
parameter is the current parent stack pointer. Therefore, the parent and child temporarily share the same
User Mode stack. But thanks to the Copy On Write mechanism, they usually get separate copies of the
User Mode stack as soon as one tries to change the stack.

 The vfork() system call, introduced in the previous section, is implemented by Linux as a clone() system
call whose flags parameter specifies both a SIGCHLD signal and the flags CLONE_VM and
CLONE_VFORK, and whose child_stack parameter is equal to the current parent stack pointer.

 3.4.1.1. The do_fork() function

 The do_fork() function, which handles the clone(), fork(), and vfork() system calls, acts on the
following parameters:

 clone_flags

 Same as the flags parameter of clone()

stack_start

 Same as the child_stack parameter of clone()

regs

 Pointer to the values of the general purpose registers saved into the Kernel Mode stack when switching
from User Mode to Kernel Mode (see the section "The do_IRQ() function" in Chapter 4)

stack_size

 Unused (always set to 0)

parent_tidptr, child_tidptr

 Same as the corresponding ptid and ctid parameters of clone()

 do_fork() makes use of an auxiliary function called copy_process() to set up the process descriptor
and any other kernel data structure required for child's execution. Here are the main steps performed by
do_fork():

1.

1. Allocates a new PID for the child by looking in the pidmap_array bitmap (see the earlier section
"Identifying a Process").

2.

2. Checks the ptrace field of the parent (current->ptrace): if it is not zero, the parent process is
being traced by another process, thus do_fork() checks whether the debugger wants to trace the
child on its own (independently of the value of the CLONE_PTRACE flag specified by the
parent); in this case, if the child is not a kernel thread (CLONE_UNTRACED flag cleared), the
function sets the CLONE_PTRACE flag.

3.

3. Invokes copy_process() to make a copy of the process descriptor. If all needed resources are
available, this function returns the address of the task_struct descriptor just created. This is the
workhorse of the forking procedure, and we will describe it right after do_fork().

4.

4. If either the CLONE_STOPPED flag is set or the child process must be traced, that is, the
PT_PTRACED flag is set in p->ptrace, it sets the state of the child to TASK_STOPPED and
adds a pending SIGSTOP signal to it (see the section "The Role of Signals" in Chapter 11). The
state of the child will remain TASK_STOPPED until another process (presumably the tracing
process or the parent) will revert its state to TASK_RUNNING, usually by means of a
SIGCONT signal.

5.

5. If the CLONE_STOPPED flag is not set, it invokes the wake_up_new_task() function, which
performs the following operations:
a.

a. Adjusts the scheduling parameters of both the parent and the child (see "The Scheduling
Algorithm" in Chapter 7).

b.

b. If the child will run on the same CPU as the parent,[*] and parent and child do not share the
same set of page tables (CLONE_VM flag cleared), it then forces the child to run before the
parent by inserting it into the parent's runqueue right before the parent. This simple step yields
better performance if the child flushes its address space and executes a new program right
after the forking. If we let the parent run first, the Copy On Write mechanism would give rise
to a series of unnecessary page duplications.

b. [*] The parent process might be moved on to another CPU while the kernel forks the new
process.

c.

c. Otherwise, if the child will not be run on the same CPU as the parent, or if parent and child
share the same set of page tables (CLONE_VM flag set), it inserts the child in the last
position of the parent's runqueue.

6.

6. If the CLONE_STOPPED flag is set, it puts the child in the TASK_STOPPED state.
7.

7. If the parent process is being traced, it stores the PID of the child in the ptrace_message field of
current and invokes ptrace_notify(), which essentially stops the current process and sends a
SIGCHLD signal to its parent. The "grandparent" of the child is the debugger that is tracing the
parent; the SIGCHLD signal notifies the debugger that current has forked a child, whose PID
can be retrieved by looking into the current->ptrace_message field.

8.

8. If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue and
suspends it until the child releases its memory address space (that is, until the child either
terminates or executes a new program).

9.

9. Terminates by returning the PID of the child.

3.4.1.2. The copy_process() function

 The copy_process() function sets up the process descriptor and any other kernel data structure
required for a child's execution. Its parameters are the same as do_fork(), plus the PID of the child.
Here is a description of its most significant steps:

1.

1. Checks whether the flags passed in the clone_flags parameter are compatible. In particular, it
returns an error code in the following cases:
a.

a. Both the flags CLONE_NEWNS and CLONE_FS are set.
b.

b. The CLONE_THREAD flag is set, but the CLONE_SIGHAND flag is cleared (lightweight
processes in the same thread group must share signals).

c.

c. The CLONE_SIGHAND flag is set, but the CLONE_VM flag is cleared (lightweight
processes sharing the signal handlers must also share the memory descriptor).

2.

2. Performs any additional security checks by invoking security_task_create() and, later,
security_task_alloc(). The Linux kernel 2.6 offers hooks for security extensions that enforce a
security model stronger than the one adopted by traditional Unix. See Chapter 20 for details.

3.

3. Invokes dup_task_struct() to get the process descriptor for the child. This function performs the
following actions:
a.

a. Invokes _ _unlazy_fpu() on the current process to save, if necessary, the contents of the
FPU, MMX, and SSE/SSE2 registers in the thread_info structure of the parent. Later,
dup_task_struct() will copy these values in the thread_info structure of the child.

b.

b. Executes the alloc_task_struct() macro to get a process descriptor (task_struct structure)
for the new process, and stores its address in the tsk local variable.

c.

c. Executes the alloc_thread_info macro to get a free memory area to store the thread_info
structure and the Kernel Mode stack of the new process, and saves its address in the ti local
variable. As explained in the earlier section "Identifying a Process," the size of this memory
area is either 8 KB or 4 KB.

d.

d. Copies the contents of the current's process descriptor into the task_struct structure pointed
to by tsk, then sets tsk->thread_info to ti.

e.

e. Copies the contents of the current's thread_info descriptor into the structure pointed to by ti,
then sets ti->task to tsk.

f.

f. Sets the usage counter of the new process descriptor (tsk->usage) to 2 to specify that the
process descriptor is in use and that the corresponding process is alive (its state is not
EXIT_ZOMBIE or EXIT_DEAD).

g.

g. Returns the process descriptor pointer of the new process (tsk).
4.

4. Checks whether the value stored in current->signal->rlim[RLIMIT_NPROC].rlim_cur is smaller
than or equal to the current number of processes owned by the user. If so, an error code is
returned, unless the process has root privileges. The function gets the current number of
processes owned by the user from a per-user data structure named user_struct. This data
structure can be found through a pointer in the user field of the process descriptor.

5.

5. Increases the usage counter of the user_struct structure (tsk->user->_ _count field) and the
counter of the processes owned by the user (tsk->user->processes).

6.

6. Checks that the number of processes in the system (stored in the nr_threads variable) does not
exceed the value of the max_threads variable. The default value of this variable depends on the
amount of RAM in the system. The general rule is that the space taken by all tHRead_info
descriptors and Kernel Mode stacks cannot exceed 1/8 of the physical memory. However, the
system administrator may change this value by writing in the /proc/sys/kernel/threads-max file.

7.

7. If the kernel functions implementing the execution domain and the executable format (see Chapter
20) of the new process are included in kernel modules, it increases their usage counters (see
Appendix B).

8.

8. Sets a few crucial fields related to the process state:
a.

a. Initializes the big kernel lock counter tsk->lock_depth to -1 (see the section "The Big Kernel
Lock" in Chapter 5).

b.

b. Initializes the tsk->did_exec field to 0: it counts the number of execve() system calls issued
by the process.

c.

c. Updates some of the flags included in the tsk->flags field that have been copied from the
parent process: first clears the PF_SUPERPRIV flag, which indicates whether the process
has used any of its superuser privileges, then sets the PF_FORKNOEXEC flag, which
indicates that the child has not yet issued an execve() system call.

9.

9. Stores the PID of the new process in the tsk->pid field.
10.

10. If the CLONE_PARENT_SETTID flag in the clone_flags parameter is set, it copies the child's
PID into the User Mode variable addressed by the parent_tidptr parameter.

11.

11. Initializes the list_head data structures and the spin locks included in the child's process
descriptor, and sets up several other fields related to pending signals, timers, and time statistics.

12.

12. Invokes copy_semundo(), copy_files(), copy_fs(), copy_sighand(), copy_signal(), copy_mm(
), and copy_namespace() to create new data structures and copy into them the values of the
corresponding parent process data structures, unless specified differently by the clone_flags
parameter.

13.

13. Invokes copy_thread() to initialize the Kernel Mode stack of the child process with the values
contained in the CPU registers when the clone() system call was issued (these values have been
saved in the Kernel Mode stack of the parent, as described in Chapter 10). However, the
function forces the value 0 into the field corresponding to the eax register (this is the child's return
value of the fork() or clone() system call). The tHRead.esp field in the descriptor of the child
process is initialized with the base address of the child's Kernel Mode stack, and the address of
an assembly language function (ret_from_fork()) is stored in the thread.eip field. If the parent
process makes use of an I/O Permission Bitmap, the child gets a copy of such bitmap. Finally, if
the CLONE_SETTLS flag is set, the child gets the TLS segment specified by the User Mode
data structure pointed to by the tls parameter of the clone() system call.[*]

13. [*] A careful reader might wonder how copy_thread() gets the value of the tls parameter of
clone(), because tls is not passed to do_fork() and nested functions. As we'll see in Chapter 10,
the parameters of the system calls are usually passed to the kernel by copying their values into
some CPU register; thus, these values are saved in the Kernel Mode stack together with the
other registers. The copy_thread() function just looks at the address saved in the Kernel Mode
stack location corresponding to the value of esi.

14.

14. If either CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID is set in the clone_flags
parameter, it copies the value of the child_tidptr parameter in the tsk->set_chid_tid or
tsk->clear_child_tid field, respectively. These flags specify that the value of the variable pointed
to by child_tidptr in the User Mode address space of the child has to be changed, although the
actual write operations will be done later.

15.

15.Turns off the TIF_SYSCALL_TRACE flag in the tHRead_info structure of the child, so that the
ret_from_fork() function will not notify the debugging process about the system call termination
(see the section "Entering and Exiting a System Call" in Chapter 10). (The system call tracing of
the child is not disabled, because it is controlled by the PTRACE_SYSCALL flag in
tsk->ptrace.)

16.

16. Initializes the tsk->exit_signal field with the signal number encoded in the low bits of the
clone_flags parameter, unless the CLONE_THREAD flag is set, in which case initializes the field
to -1. As we'll see in the section "Process Termination" later in this chapter, only the death of the
last member of a thread group (usually, the thread group leader) causes a signal notifying the
parent of the thread group leader.

17.

17. Invokes sched_fork() to complete the initialization of the scheduler data structure of the new
process. The function also sets the state of the new process to TASK_RUNNING and sets the
preempt_count field of the tHRead_info structure to 1, thus disabling kernel preemption (see the
section "Kernel Preemption" in Chapter 5). Moreover, in order to keep process scheduling fair,
the function shares the remaining timeslice of the parent between the parent and the child (see "
The scheduler_tick() Function" in Chapter 7).

18.

18.Sets the cpu field in the thread_info structure of the new process to the number of the local CPU
returned by smp_processor_id().

19.

19. Initializes the fields that specify the parenthood relationships. In particular, if CLONE_PARENT
or CLONE_THREAD are set, it initializes tsk->real_parent and tsk->parent to the value in
current->real_parent; the parent of the child thus appears as the parent of the current process.
Otherwise, it sets the same fields to current.

20.

20. If the child does not need to be traced (CLONE_PTRACE flag not set), it sets the tsk->ptrace
field to 0. This field stores a few flags used when a process is being traced by another process. In
such a way, even if the current process is being traced, the child will not.

21.

21.Executes the SET_LINKS macro to insert the new process descriptor in the process list.
22.

22. If the child must be traced (PT_PTRACED flag in the tsk->ptrace field set), it sets tsk->parent
to current->parent and inserts the child into the trace list of the debugger.

23.

23. Invokes attach_pid() to insert the PID of the new process descriptor in the
pidhash[PIDTYPE_PID] hash table.

24.

24. If the child is a thread group leader (flag CLONE_THREAD cleared):
a.

a. Initializes tsk->tgid to tsk->pid.
b.

b. Initializes tsk->group_leader to tsk.
c.

c. Invokes three times attach_pid() to insert the child in the PID hash tables of type
PIDTYPE_TGID, PIDTYPE_PGID, and PIDTYPE_SID.

25.

25.Otherwise, if the child belongs to the thread group of its parent (CLONE_THREAD flag set):
a.

a. Initializes tsk->tgid to tsk->current->tgid.
b.

b. Initializes tsk->group_leader to the value in current->group_leader.
c.

c. Invokes attach_pid() to insert the child in the PIDTYPE_TGID hash table (more specifically,
in the per-PID list of the current->group_leader process).

26.

26.A new process has now been added to the set of processes: increases the value of the
nr_threads variable.

27.

27. Increases the total_forks variable to keep track of the number of forked processes.
28.

28.Terminates by returning the child's process descriptor pointer (tsk).

Let's go back to what happens after do_fork() terminates. Now we have a complete child process in the
runnable state. But it isn't actually running. It is up to the scheduler to decide when to give the CPU to this
child. At some future process switch, the schedule bestows this favor on the child process by loading a
few CPU registers with the values of the thread field of the child's process descriptor. In particular, esp is
loaded with thread.esp (that is, with the address of child's Kernel Mode stack), and eip is loaded with
the address of ret_from_fork(). This assembly language function invokes the schedule_tail() function
(which in turn invokes the finish_task_switch() function to complete the process switch; see the section "
The schedule() Function" in Chapter 7), reloads all other registers with the values stored in the stack,
and forces the CPU back to User Mode. The new process then starts its execution right at the end of the
fork(), vfork(), or clone() system call. The value returned by the system call is contained in eax: the
value is 0 for the child and equal to the PID for the child's parent. To understand how this is done, look
back at what copy_thread() does on the eax register of the child's process (step 13 of copy_process()).

 The child process executes the same code as the parent, except that the fork returns a 0 (see step 13 of
copy_process()). The developer of the application can exploit this fact, in a manner familiar to Unix
programmers, by inserting a conditional statement in the program based on the PID value that forces the
child to behave differently from the parent process.

 3.4.2. Kernel Threads

 Traditional Unix systems delegate some critical tasks to intermittently running processes, including
flushing disk caches, swapping out unused pages, servicing network connections, and so on. Indeed, it is
not efficient to perform these tasks in strict linear fashion; both their functions and the end user processes
get better response if they are scheduled in the background. Because some of the system processes run
only in Kernel Mode, modern operating systems delegate their functions to kernel threads , which are not
encumbered with the unnecessary User Mode context. In Linux, kernel threads differ from regular
processes in the following ways:



 Kernel threads run only in Kernel Mode, while regular processes run alternatively in Kernel
Mode and in User Mode.



 Because kernel threads run only in Kernel Mode, they use only linear addresses greater than
PAGE_OFFSET. Regular processes, on the other hand, use all four gigabytes of linear
addresses, in either User Mode or Kernel Mode.

 3.4.2.1. Creating a kernel thread

 The kernel_thread() function creates a new kernel thread. It receives as parameters the address of the
kernel function to be executed (fn), the argument to be passed to that function (arg), and a set of clone
flags (flags). The function essentially invokes do_fork() as follows:

 do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, pregs, 0, NULL, NULL);

The CLONE_VM flag avoids the duplication of the page tables of the calling process: this duplication
would be a waste of time and memory, because the new kernel thread will not access the User Mode
address space anyway. The CLONE_UNTRACED flag ensures that no process will be able to trace the
new kernel thread, even if the calling process is being traced.

 The pregs parameter passed to do_fork() corresponds to the address in the Kernel Mode stack where
the copy_thread() function will find the initial values of the CPU registers for the new thread. The
kernel_thread() function builds up this stack area so that:



 The ebx and edx registers will be set by copy_thread() to the values of the parameters fn and
arg, respectively.



 The eip register will be set to the address of the following assembly language fragment:

 movl %edx,%eax

 pushl %edx

 call *%ebx

 pushl %eax

 call do_exit

Therefore, the new kernel thread starts by executing the fn(arg) function. If this function terminates, the
kernel thread executes the _exit() system call passing to it the return value of fn() (see the section "
Destroying Processes" later in this chapter).

 3.4.2.2. Process 0

 The ancestor of all processes, called process 0, the idle process, or, for historical reasons, the swapper
process, is a kernel thread created from scratch during the initialization phase of Linux (see Appendix A).
This ancestor process uses the following statically allocated data structures (data structures for all other
processes are dynamically allocated):



 A process descriptor stored in the init_task variable, which is initialized by the INIT_TASK
macro.



 A thread_info descriptor and a Kernel Mode stack stored in the init_thread_union variable and
initialized by the INIT_THREAD_INFO macro.



 The following tables, which the process descriptor points to:
o

o init_mm
o

o init_fs
o

o init_files
o

o init_signals
o

o init_sighand

 The tables are initialized, respectively, by the following macros:
o

o INIT_MM
o

o INIT_FS
o

o INIT_FILES
o

o INIT_SIGNALS
o

o INIT_SIGHAND


 The master kernel Page Global Directory stored in swapper_pg_dir (see the section "Kernel
Page Tables" in Chapter 2).

 The start_kernel() function initializes all the data structures needed by the kernel, enables interrupts, and
creates another kernel thread, named process 1 (more commonly referred to as the init process):

 kernel_thread(init, NULL, CLONE_FS|CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares all per-process kernel data structures with
process 0. When selected by the scheduler, the init process starts executing the init() function.

 After having created the init process, process 0 executes the cpu_idle() function, which essentially
consists of repeatedly executing the hlt assembly language instruction with the interrupts enabled (see
Chapter 4). Process 0 is selected by the scheduler only when there are no other processes in the
TASK_RUNNING state.

 In multiprocessor systems there is a process 0 for each CPU. Right after the power-on, the BIOS of the
computer starts a single CPU while disabling the others. The swapper process running on CPU 0
initializes the kernel data structures, then enables the other CPUs and creates the additional swapper
processes by means of the copy_process() function passing to it the value 0 as the new PID. Moreover,
the kernel sets the cpu field of the tHRead_info descriptor of each forked process to the proper CPU
index.

 3.4.2.3. Process 1

 The kernel thread created by process 0 executes the init() function, which in turn completes the
initialization of the kernel. Then init() invokes the execve() system call to load the executable program
init. As a result, the init kernel thread becomes a regular process having its own per-process kernel data
structure (see Chapter 20). The init process stays alive until the system is shut down, because it creates
and monitors the activity of all processes that implement the outer layers of the operating system.

 3.4.2.4. Other kernel threads

 Linux uses many other kernel threads. Some of them are created in the initialization phase and run until
shutdown; others are created "on demand," when the kernel must execute a task that is better performed
in its own execution context.

 A few examples of kernel threads (besides process 0 and process 1) are:

 keventd (also called events)

 Executes the functions in the keventd_wq workqueue (see Chapter 4).

kapmd

 Handles the events related to the Advanced Power Management (APM).

kswapd

 Reclaims memory, as described in the section "Periodic Reclaiming" in Chapter 17.

pdflush

 Flushes "dirty" buffers to disk to reclaim memory, as described in the section "The pdflush Kernel
Threads" in Chapter 15.

kblockd

 Executes the functions in the kblockd_workqueue workqueue. Essentially, it periodically activates the
block device drivers, as described in the section "Activating the Block Device Driver" in Chapter 14.

ksoftirqd

 Runs the tasklets (see section "Softirqs and Tasklets" in Chapter 4); there is one of these kernel threads
for each CPU in the system.

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.5. Destroying Processes
 Most processes "die" in the sense that they terminate the execution of the code they were supposed to
run. When this occurs, the kernel must be notified so that it can release the resources owned by the
process; this includes memory, open files, and any other odds and ends that we will encounter in this
book, such as semaphores.

 The usual way for a process to terminate is to invoke the exit() library function, which releases the
resources allocated by the C library, executes each function registered by the programmer, and ends up
invoking a system call that evicts the process from the system. The exit() library function may be inserted
by the programmer explicitly. Additionally, the C compiler always inserts an exit() function call right after
the last statement of the main() function.

 Alternatively, the kernel may force a whole thread group to die. This typically occurs when a process in
the group has received a signal that it cannot handle or ignore (see Chapter 11) or when an
unrecoverable CPU exception has been raised in Kernel Mode while the kernel was running on behalf of
the process (see Chapter 4).

 3.5.1. Process Termination

 In Linux 2.6 there are two system calls that terminate a User Mode application:


 The exit_group() system call, which terminates a full thread group, that is, a whole multithreaded
application. The main kernel function that implements this system call is called do_group_exit().
This is the system call that should be invoked by the exit() C library function.



 The _exit() system call, which terminates a single process, regardless of any other process in the
thread group of the victim. The main kernel function that implements this system call is called
do_exit(). This is the system call invoked, for instance, by the pthread_exit() function of the
LinuxThreads library.

 3.5.1.1. The do_group_exit() function

 The do_group_exit() function kills all processes belonging to the thread group of current. It receives as
a parameter the process termination code, which is either a value specified in the exit_group() system
call (normal termination) or an error code supplied by the kernel (abnormal termination). The function
executes the following operations:

1.

1. Checks whether the SIGNAL_GROUP_EXIT flag of the exiting process is not zero, which
means that the kernel already started an exit procedure for this thread group. In this case, it
considers as exit code the value stored in current->signal->group_exit_code, and jumps to step
4.

2.

2. Otherwise, it sets the SIGNAL_GROUP_EXIT flag of the process and stores the termination
code in the current->signal->group_exit_code field.

3.

3. Invokes the zap_other_threads() function to kill the other processes in the thread group of
current, if any. In order to do this, the function scans the per-PID list in the PIDTYPE_TGID
hash table corresponding to current->tgid; for each process in the list different from current, it
sends a SIGKILL signal to it (see Chapter 11). As a result, all such processes will eventually
execute the do_exit() function, and thus they will be killed.

4.

4. Invokes the do_exit() function passing to it the process termination code. As we'll see below,
do_exit() kills the process and never returns.

3.5.1.2. The do_exit() function

 All process terminations are handled by the do_exit() function, which removes most references to the
terminating process from kernel data structures. The do_exit() function receives as a parameter the
process termination code and essentially executes the following actions:

1.

1. Sets the PF_EXITING flag in the flag field of the process descriptor to indicate that the process
is being eliminated.

2.

2. Removes, if necessary, the process descriptor from a dynamic timer queue via the
del_timer_sync() function (see Chapter 6).

3.

3. Detaches from the process descriptor the data structures related to paging, semaphores,
filesystem, open file descriptors, namespaces, and I/O Permission Bitmap, respectively, with the
exit_mm(), exit_sem(), _ _exit_files(), _ _exit_fs(), exit_namespace(), and exit_thread()
functions. These functions also remove each of these data structures if no other processes are
sharing them.

4.

4. If the kernel functions implementing the execution domain and the executable format (see Chapter
20) of the process being killed are included in kernel modules, the function decreases their usage
counters.

5.

5. Sets the exit_code field of the process descriptor to the process termination code. This value is
either the _exit() or exit_group() system call parameter (normal termination), or an error code
supplied by the kernel (abnormal termination).

6.

6. Invokes the exit_notify() function to perform the following operations:
a.

a. Updates the parenthood relationships of both the parent process and the child processes. All
child processes created by the terminating process become children of another process in the
same thread group, if any is running, or otherwise of the init process.

b.

b. Checks whether the exit_signal process descriptor field of the process being terminated is
different from -1, and whether the process is the last member of its thread group (notice that
these conditions always hold for any normal process; see step 16 in the description of
copy_process() in the earlier section "The clone(), fork(), and vfork() System Calls"). In
this case, the function sends a signal (usually SIGCHLD) to the parent of the process being
terminated to notify the parent about a child's death.

c.

c. Otherwise, if the exit_signal field is equal to -1 or the thread group includes other processes,
the function sends a SIGCHLD signal to the parent only if the process is being traced (in this
case the parent is the debugger, which is thus informed of the death of the lightweight
process).

d.

d. If the exit_signal process descriptor field is equal to -1 and the process is not being traced, it
sets the exit_state field of the process descriptor to EXIT_DEAD, and invokes release_task(
) to reclaim the memory of the remaining process data structures and to decrease the usage
counter of the process descriptor (see the following section). The usage counter becomes
equal to 1 (see step 3f in the copy_process() function), so that the process descriptor itself is
not released right away.

e.

e. Otherwise, if the exit_signal process descriptor field is not equal to -1 or the process is being
traced, it sets the exit_state field to EXIT_ZOMBIE. We'll see what happens to zombie
processes in the following section.

f.

f. Sets the PF_DEAD flag in the flags field of the process descriptor (see the section "The
schedule() Function" in Chapter 7).

7.

7. Invokes the schedule() function (see Chapter 7) to select a new process to run. Because a
process in an EXIT_ZOMBIE state is ignored by the scheduler, the process stops executing right
after the switch_to macro in schedule() is invoked. As we'll see in Chapter 7, the scheduler will
check the PF_DEAD flag and will decrease the usage counter in the descriptor of the zombie
process being replaced to denote the fact that the process is no longer alive.

3.5.2. Process Removal

 The Unix operating system allows a process to query the kernel to obtain the PID of its parent process
or the execution state of any of its children. A process may, for instance, create a child process to
perform a specific task and then invoke some wait()-like library function to check whether the child has
terminated. If the child has terminated, its termination code will tell the parent process if the task has been
carried out successfully.

 To comply with these design choices, Unix kernels are not allowed to discard data included in a process
descriptor field right after the process terminates. They are allowed to do so only after the parent process
has issued a wait()-like system call that refers to the terminated process. This is why the
EXIT_ZOMBIE state has been introduced: although the process is technically dead, its descriptor must
be saved until the parent process is notified.

 What happens if parent processes terminate before their children? In such a case, the system could be
flooded with zombie processes whose process descriptors would stay forever in RAM. As mentioned
earlier, this problem is solved by forcing all orphan processes to become children of the init process. In
this way, the init process will destroy the zombies while checking for the termination of one of its
legitimate children through a wait()-like system call.

 The release_task() function detaches the last data structures from the descriptor of a zombie process; it
is applied on a zombie process in two possible ways: by the do_exit() function if the parent is not
interested in receiving signals from the child, or by the wait4() or waitpid() system calls after a signal has
been sent to the parent. In the latter case, the function also will reclaim the memory used by the process
descriptor, while in the former case the memory reclaiming will be done by the scheduler (see Chapter 7
). This function executes the following steps:

1.

1. Decreases the number of processes belonging to the user owner of the terminated process. This
value is stored in the user_struct structure mentioned earlier in the chapter (see step 4 of
copy_process()).

2.

2. If the process is being traced, the function removes it from the debugger's ptrace_children list and
assigns the process back to its original parent.

3.

3. Invokes _ _exit_signal() to cancel any pending signal and to release the signal_struct descriptor
of the process. If the descriptor is no longer used by other lightweight processes, the function
also removes this data structure. Moreover, the function invokes exit_itimers() to detach any
POSIX interval timer from the process.

4.

4. Invokes _ _exit_sighand() to get rid of the signal handlers.
5.

5. Invokes _ _unhash_process(), which in turn:
a.

a. Decreases by 1 the nr_threads variable.
b.

b. Invokes detach_pid() twice to remove the process descriptor from the pidhash hash tables
of type PIDTYPE_PID and PIDTYPE_TGID.

c.

c. If the process is a thread group leader, invokes again detach_pid() twice to remove the
process descriptor from the PIDTYPE_PGID and PIDTYPE_SID hash tables.

d.

d. Uses the REMOVE_LINKS macro to unlink the process descriptor from the process list.
6.

6. If the process is not a thread group leader, the leader is a zombie, and the process is the last
member of the thread group, the function sends a signal to the parent of the leader to notify it of
the death of the process.

7.

7. Invokes the sched_exit() function to adjust the timeslice of the parent process (this step logically
complements step 17 in the description of copy_process())

8.

8. Invokes put_task_struct() to decrease the process descriptor's usage counter; if the counter
becomes zero, the function drops any remaining reference to the process:
a.

a. Decreases the usage counter (_ _count field) of the user_struct data structure of the user that
owns the process (see step 5 of copy_process()), and releases that data structure if the
usage counter becomes zero.

b.

b. Releases the process descriptor and the memory area used to contain the tHRead_info
descriptor and the Kernel Mode stack.

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 4. Interrupts and Exceptions
 An interrupt is usually defined as an event that alters the sequence of instructions executed by a
processor. Such events correspond to electrical signals generated by hardware circuits both inside and
outside the CPU chip.

 Interrupts are often divided into synchronous and asynchronous interrupts :


 Synchronous interrupts are produced by the CPU control unit while executing instructions and
are called synchronous because the control unit issues them only after terminating the execution of
an instruction.



 Asynchronous interrupts are generated by other hardware devices at arbitrary times with respect
to the CPU clock signals.

 Intel microprocessor manuals designate synchronous and asynchronous interrupts as exceptions and
interrupts, respectively. We'll adopt this classification, although we'll occasionally use the term "interrupt
signal" to designate both types together (synchronous as well as asynchronous).

 Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a keystroke from a
user sets off an interrupt.

 Exceptions, on the other hand, are caused either by programming errors or by anomalous conditions that
must be handled by the kernel. In the first case, the kernel handles the exception by delivering to the
current process one of the signals familiar to every Unix programmer. In the second case, the kernel
performs all the steps needed to recover from the anomalous condition, such as a Page Fault or a
requestvia an assembly language instruction such as int or sysenter for a kernel service.

 We start by describing in the next section the motivation for introducing such signals. We then show how
the well-known IRQs (Interrupt ReQuests) issued by I/O devices give rise to interrupts, and we detail
how 80 x 86 processors handle interrupts and exceptions at the hardware level. Then we illustrate, in the
section "Initializing the Interrupt Descriptor Table," how Linux initializes all the data structures required by
the 80x86 interrupt architecture. The remaining three sections describe how Linux handles interrupt
signals at the software level.

 One word of caution before moving on: in this chapter, we cover only "classic" interrupts common to all
PCs; we do not cover the nonstandard interrupts of some architectures.

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.1. The Role of Interrupt Signals
 As the name suggests, interrupt signals provide a way to divert the processor to code outside the normal
flow of control. When an interrupt signal arrives, the CPU must stop what it's currently doing and switch
to a new activity; it does this by saving the current value of the program counter (i.e., the content of the
eip and cs registers) in the Kernel Mode stack and by placing an address related to the interrupt type into
the program counter.

 There are some things in this chapter that will remind you of the context switch described in the previous
chapter, carried out when a kernel substitutes one process for another. But there is a key difference
between interrupt handling and process switching: the code executed by an interrupt or by an exception
handler is not a process. Rather, it is a kernel control path that runs at the expense of the same process
that was running when the interrupt occurred (see the later section "Nested Execution of Exception and
Interrupt Handlers"). As a kernel control path, the interrupt handler is lighter than a process (it has less
context and requires less time to set up or tear down).

 Interrupt handling is one of the most sensitive tasks performed by the kernel, because it must satisfy the
following constraints:



 Interrupts can come anytime, when the kernel may want to finish something else it was trying to
do. The kernel's goal is therefore to get the interrupt out of the way as soon as possible and defer
as much processing as it can. For instance, suppose a block of data has arrived on a network
line. When the hardware interrupts the kernel, it could simply mark the presence of data, give the
processor back to whatever was running before, and do the rest of the processing later (such as
moving the data into a buffer where its recipient process can find it, and then restarting the
process). The activities that the kernel needs to perform in response to an interrupt are thus
divided into a critical urgent part that the kernel executes right away and a deferrable part that is
left for later.



 Because interrupts can come anytime, the kernel might be handling one of them while another one
(of a different type) occurs. This should be allowed as much as possible, because it keeps the
I/O devices busy (see the later section "Nested Execution of Exception and Interrupt Handlers").
As a result, the interrupt handlers must be coded so that the corresponding kernel control paths
can be executed in a nested manner. When the last kernel control path terminates, the kernel
must be able to resume execution of the interrupted process or switch to another process if the
interrupt signal has caused a rescheduling activity.



 Although the kernel may accept a new interrupt signal while handling a previous one, some
critical regions exist inside the kernel code where interrupts must be disabled. Such critical
regions must be limited as much as possible because, according to the previous requirement, the
kernel, and particularly the interrupt handlers, should run most of the time with the interrupts
enabled.

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.2. Interrupts and Exceptions
 The Intel documentation classifies interrupts and exceptions as follows:



 Interrupts:

 Maskable interrupts

 All Interrupt Requests (IRQs) issued by I/O devices give rise to maskable interrupts . A
maskable interrupt can be in two states: masked or unmasked; a masked interrupt is ignored by
the control unit as long as it remains masked.

 Nonmaskable interrupts

 Only a few critical events (such as hardware failures) give rise to nonmaskable interrupts .
Nonmaskable interrupts are always recognized by the CPU.



 Exceptions:

 Processor-detected exceptions

 Generated when the CPU detects an anomalous condition while executing an instruction. These
are further divided into three groups, depending on the value of the eip register that is saved on
the Kernel Mode stack when the CPU control unit raises the exception.

 Faults

 Can generally be corrected; once corrected, the program is allowed to restart with no loss of
continuity. The saved value of eip is the address of the instruction that caused the fault, and hence
that instruction can be resumed when the exception handler terminates. As we'll see in the section
"Page Fault Exception Handler" in Chapter 9, resuming the same instruction is necessary
whenever the handler is able to correct the anomalous condition that caused the exception.

 Traps

 Reported immediately following the execution of the trapping instruction; after the kernel returns
control to the program, it is allowed to continue its execution with no loss of continuity. The
saved value of eip is the address of the instruction that should be executed after the one that
caused the trap. A trap is triggered only when there is no need to reexecute the instruction that
terminated. The main use of traps is for debugging purposes. The role of the interrupt signal in this
case is to notify the debugger that a specific instruction has been executed (for instance, a
breakpoint has been reached within a program). Once the user has examined the data provided
by the debugger, she may ask that execution of the debugged program resume, starting from the
next instruction.

 Aborts

 A serious error occurred; the control unit is in trouble, and it may be unable to store in the eip
register the precise location of the instruction causing the exception. Aborts are used to report
severe errors, such as hardware failures and invalid or inconsistent values in system tables. The
interrupt signal sent by the control unit is an emergency signal used to switch control to the
corresponding abort exception handler. This handler has no choice but to force the affected
process to terminate.

 Programmed exceptions

 Occur at the request of the programmer. They are triggered by int or int3 instructions; the into
(check for overflow) and bound (check on address bound) instructions also give rise to a
programmed exception when the condition they are checking is not true. Programmed exceptions
are handled by the control unit as traps; they are often called software interrupts . Such
exceptions have two common uses: to implement system calls and to notify a debugger of a
specific event (see Chapter 10).

 Each interrupt or exception is identified by a number ranging from 0 to 255; Intel calls this 8-bit unsigned
number a vector. The vectors of nonmaskable interrupts and exceptions are fixed, while those of
maskable interrupts can be altered by programming the Interrupt Controller (see the next section).

 4.2.1. IRQs and Interrupts

 Each hardware device controller capable of issuing interrupt requests usually has a single output line
designated as the Interrupt ReQuest (IRQ) line.[*] All existing IRQ lines are connected to the input pins
of a hardware circuit called the Programmable Interrupt Controller, which performs the following actions:

[*] More sophisticated devices use several IRQ lines. For instance, a PCI card can use up to four IRQ
lines.

1.

1. Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are raised, selects
the one having the lower pin number.

2.

2. If a raised signal occurs on an IRQ line:
a.

a. Converts the raised signal received into a corresponding vector.
b.

b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to read it via the
data bus.

c.

c. Sends a raised signal to the processor INTR pinthat is, issues an interrupt.
d.

d. Waits until the CPU acknowledges the interrupt signal by writing into one of the
Programmable Interrupt Controllers (PIC) I/O ports; when this occurs, clears the INTR line.

3.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line is usually denoted as
IRQ 0. Intel's default vector associated with IRQ n is n+32. As mentioned before, the mapping between
IRQs and vectors can be modified by issuing suitable I/O instructions to the Interrupt Controller ports.

 Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs. That is,
the PIC can be told to stop issuing interrupts that refer to a given IRQ line, or to resume issuing them.
Disabled interrupts are not lost; the PIC sends them to the CPU as soon as they are enabled again. This
feature is used by most interrupt handlers, because it allows them to process IRQs of the same type
serially.

 Selective enabling/disabling of IRQs is not the same as global masking/unmasking of maskable interrupts.
When the IF flag of the eflags register is clear, each maskable interrupt issued by the PIC is temporarily
ignored by the CPU. The cli and sti assembly language instructions, respectively, clear and set that flag.

 Traditional PICs are implemented by connecting "in cascade" two 8259A-style external chips. Each chip
can handle up to eight different IRQ input lines. Because the INT output line of the slave PIC is
connected to the IRQ 2 pin of the master PIC, the number of available IRQ lines is limited to 15.

 4.2.1.1. The Advanced Programmable Interrupt Controller (APIC)

 The previous description refers to PICs designed for uniprocessor systems. If the system includes a
single CPU, the output line of the master PIC can be connected in a straightforward way to the INTR pin
the CPU. However, if the system includes two or more CPUs, this approach is no longer valid and more
sophisticated PICs are needed.

 Being able to deliver interrupts to each CPU in the system is crucial for fully exploiting the parallelism of
the SMP architecture. For that reason, Intel introduced starting with Pentium III a new component
designated as the I/O Advanced Programmable Interrupt Controller (I/O APIC). This chip is the
advanced version of the old 8259A Programmable Interrupt Controller; to support old operating
systems, recent motherboards include both types of chip. Moreover, all current 80 x 86 microprocessors
include a local APIC. Each local APIC has 32-bit registers, an internal clock; a local timer device; and
two additional IRQ lines, LINT 0 and LINT 1, reserved for local APIC interrupts. All local APICs are
connected to an external I/O APIC, giving rise to a multi-APIC system.

 Figure 4-1 illustrates in a schematic way the structure of a multi-APIC system. An APIC bus connects
the "frontend" I/O APIC to the local APICs. The IRQ lines coming from the devices are connected to
the I/O APIC, which therefore acts as a router with respect to the local APICs. In the motherboards of
the Pentium III and earlier processors, the APIC bus was a serial three-line bus; starting with the Pentium
4, the APIC bus is implemented by means of the system bus. However, because the APIC bus and its
messages are invisible to software, we won't give further details.

 Figure 4-1. Multi-APIC system

 The I/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table, programmable
registers, and a message unit for sending and receiving APIC messages over the APIC bus. Unlike IRQ
pins of the 8259A, interrupt priority is not related to pin number: each entry in the Redirection Table can
be individually programmed to indicate the interrupt vector and priority, the destination processor, and
how the processor is selected. The information in the Redirection Table is used to translate each external
IRQ signal into a message to one or more local APIC units via the APIC bus.

 Interrupt requests coming from external hardware devices can be distributed among the available CPUs
in two ways:

 Static distribution

 The IRQ signal is delivered to the local APICs listed in the corresponding Redirection Table entry. The
interrupt is delivered to one specific CPU, to a subset of CPUs, or to all CPUs at once (broadcast
mode).

Dynamic distribution

 The IRQ signal is delivered to the local APIC of the processor that is executing the process with the
lowest priority.

 Every local APIC has a programmable task priority register (TPR), which is used to compute the
priority of the currently running process. Intel expects this register to be modified in an operating system
kernel by each process switch.

 If two or more CPUs share the lowest priority, the load is distributed between them using a technique
called arbitration . Each CPU is assigned a different arbitration priority ranging from 0 (lowest) to 15
(highest) in the arbitration priority register of the local APIC.

 Every time an interrupt is delivered to a CPU, its corresponding arbitration priority is automatically set to
0, while the arbitration priority of any other CPU is increased. When the arbitration priority register
becomes greater than 15, it is set to the previous arbitration priority of the winning CPU increased by 1.
Therefore, interrupts are distributed in a round-robin fashion among CPUs with the same task priority.[*]

[*] The Pentium 4 local APIC doesn't have an arbitration priority register; the arbitration mechanism is
hidden in the bus arbitration circuitry. The Intel manuals state that if the operating system kernel does not
regularly update the task priority registers , performance may be suboptimal because interrupts might
always be serviced by the same CPU.

 Besides distributing interrupts among processors, the multi-APIC system allows CPUs to generate
interprocessor interrupts . When a CPU wishes to send an interrupt to another CPU, it stores the
interrupt vector and the identifier of the target's local APIC in the Interrupt Command Register (ICR) of
its own local APIC. A message is then sent via the APIC bus to the target's local APIC, which therefore
issues a corresponding interrupt to its own CPU.

 Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP architecture. They are
actively used by Linux to exchange messages among CPUs (see later in this chapter).

 Many of the current uniprocessor systems include an I/O APIC chip, which may be configured in two
distinct ways:



 As a standard 8259A-style external PIC connected to the CPU. The local APIC is disabled and
the two LINT 0 and LINT 1 local IRQ lines are configured, respectively, as the INTR and NMI
pins.



 As a standard external I/O APIC. The local APIC is enabled, and all external interrupts are
received through the I/O APIC.

 4.2.2. Exceptions

 The 80x86 microprocessors issue roughly 20 different exceptions .[*] The kernel must provide a
dedicated exception handler for each exception type. For some exceptions, the CPU control unit also
generates a hardware error code and pushes it on the Kernel Mode stack before starting the exception
handler.

[*] The exact number depends on the processor model.

 The following list gives the vector, the name, the type, and a brief description of the exceptions found in
80x86 processors. Additional information may be found in the Intel technical documentation.

 0 - "Divide error" (fault)

 Raised when a program issues an integer division by 0.

1- "Debug" (trap or fault)

 Raised when the TF flag of eflags is set (quite useful to implement single-step execution of a debugged
program) or when the address of an instruction or operand falls within the range of an active debug
register (see the section "Hardware Context" in Chapter 3).

2 - Not used

 Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - "Breakpoint" (trap)

 Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - "Overflow" (trap)

 An into (check for overflow) instruction has been executed while the OF (overflow) flag of eflags is set.

5 - "Bounds check" (fault)

 A bound (check on address bound) instruction is executed with the operand outside of the valid address
bounds.

6 - "Invalid opcode" (fault)

 The CPU execution unit has detected an invalid opcode (the part of the machine instruction that
determines the operation performed).

7 - "Device not available" (fault)

 An ESCAPE, MMX, or SSE/SSE2 instruction has been executed with the TS flag of cr0 set (see the
section "Saving and Loading the FPU, MMX, and XMM Registers" in Chapter 3).

8 - "Double fault" (abort)

 Normally, when the CPU detects an exception while trying to call the handler for a prior exception, the
two exceptions can be handled serially. In a few cases, however, the processor cannot handle them
serially, so it raises this exception.

9 - "Coprocessor segment overrun" (abort)

 Problems with the external mathematical coprocessor (applies only to old 80386 microprocessors).

10 - "Invalid TSS" (fault)

 The CPU has attempted a context switch to a process having an invalid Task State Segment.

11 - "Segment not present" (fault)

 A reference was made to a segment not present in memory (one in which the Segment-Present flag of
the Segment Descriptor was cleared).

12 - "Stack segment fault" (fault)

 The instruction attempted to exceed the stack segment limit, or the segment identified by ss is not present
in memory.

13 - "General protection" (fault)

 One of the protection rules in the protected mode of the 80x86 has been violated.

14 - "Page Fault" (fault)

 The addressed page is not present in memory, the corresponding Page Table entry is null, or a violation
of the paging protection mechanism has occurred.

15 - Reserved by Intel

 16 - "Floating-point error" (fault)

 The floating-point unit integrated into the CPU chip has signaled an error condition, such as numeric
overflow or division by 0.[*]

[*] The 80 x 86 microprocessors also generate this exception when performing a signed division whose
result cannot be stored as a signed integer (for instance, a division between -2,147,483,648 and -1).

17 - "Alignment check" (fault)

 The address of an operand is not correctly aligned (for instance, the address of a long integer is not a
multiple of 4).

18 - "Machine check" (abort)

 A machine-check mechanism has detected a CPU or bus error.

19 - "SIMD floating point exception" (fault)

 The SSE or SSE2 unit integrated in the CPU chip has signaled an error condition on a floating-point
operation.

 The values from 20 to 31 are reserved by Intel for future development. As illustrated in Table 4-1, each
exception is handled by a specific exception handler (see the section "Exception Handling" later in this
chapter), which usually sends a Unix signal to the process that caused the exception.

 Table 4-1. Signals sent by the exception handlers

Exception Exception handler Signal

0 Divide error divide_error() SIGFPE

1 Debug debug() SIGTRAP

2 NMI nmi() None

3 Breakpoint int3() SIGTRAP

4 Overflow overflow() SIGSEGV

5 Bounds check bounds() SIGSEGV

6 Invalid opcode invalid_op() SIGILL

7 Device not available device_not_available() None

8 Double fault doublefault_fn() None

9 Coprocessor segment
overrun

coprocessor_segment_o
verrun() SIGFPE

10 Invalid TSS invalid_TSS() SIGSEGV

11 Segment not present segment_not_present() SIGBUS

12 Stack segment fault stack_segment() SIGBUS

13 General protection general_protection() SIGSEGV

14 Page Fault page_fault() SIGSEGV

15 Intel-reserved None None

16 Floating-point error coprocessor_error() SIGFPE

17 Alignment check alignment_check() SIGBUS

18 Machine check machine_check() None

19 SIMD floating point simd_coprocessor_error
() SIGFPE

4.2.3. Interrupt Descriptor Table

 A system table called Interrupt Descriptor Table (IDT) associates each interrupt or exception vector
with the address of the corresponding interrupt or exception handler. The IDT must be properly initialized
before the kernel enables interrupts.

 The IDT format is similar to that of the GDT and the LDTs examined in Chapter 2. Each entry
corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor. Thus, a
maximum of 256 x 8 = 2048 bytes are required to store the IDT.

 The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both the IDT base
physical address and its limit (maximum length). It must be initialized before enabling interrupts by using
the lidt assembly language instruction.

 The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64 bits included
in each of them. In particular, the value of the Type field encoded in the bits 4043 identifies the descriptor
type.

 Figure 4-2. Gate descriptors' format

 The descriptors are:

 Task gate

 Includes the TSS selector of the process that must replace the current one when an interrupt signal
occurs.

Interrupt gate

 Includes the Segment Selector and the offset inside the segment of an interrupt or exception handler.
While transferring control to the proper segment, the processor clears the IF flag, thus disabling further
maskable interrupts.

Trap gate

 Similar to an interrupt gate, except that while transferring control to the proper segment, the processor
does not modify the IF flag.

 As we'll see in the later section "Interrupt, Trap, and System Gates," Linux uses interrupt gates to handle
interrupts and trap gates to handle exceptions.[*]

[*] The "Double fault " exception, which denotes a type of kernel misbehavior, is the only exception
handled by means of a task gate (see the section "Exception Handling" later in this chapter.).

 4.2.4. Hardware Handling of Interrupts and Exceptions

 We now describe how the CPU control unit handles interrupts and exceptions. We assume that the
kernel has been initialized, and thus the CPU is operating in Protected Mode.

 After executing an instruction, the cs and eip pair of registers contain the logical address of the next
instruction to be executed. Before dealing with that instruction, the control unit checks whether an
interrupt or an exception occurred while the control unit executed the previous instruction. If one
occurred, the control unit does the following:

1.

1. Determines the vector i (0 i 255) associated with the interrupt or the exception.
2.

2. Reads the i th entry of the IDT referred by the idtr register (we assume in the following
description that the entry contains an interrupt or a trap gate).

3.

3. Gets the base address of the GDT from the gdtr register and looks in the GDT to read the
Segment Descriptor identified by the selector in the IDT entry. This descriptor specifies the base
address of the segment that includes the interrupt or exception handler.

4.

4. Makes sure the interrupt was issued by an authorized source. First, it compares the Current
Privilege Level (CPL), which is stored in the two least significant bits of the cs register, with the
Descriptor Privilege Level (DPL) of the Segment Descriptor included in the GDT. Raises a
"General protection " exception if the CPL is lower than the DPL, because the interrupt handler
cannot have a lower privilege than the program that caused the interrupt. For programmed
exceptions, makes a further security check: compares the CPL with the DPL of the gate
descriptor included in the IDT and raises a "General protection" exception if the DPL is lower
than the CPL. This last check makes it possible to prevent access by user applications to specific
trap or interrupt gates.

5.

5. Checks whether a change of privilege level is taking place that is, if CPL is different from the
selected Segment Descriptor's DPL. If so, the control unit must start using the stack that is
associated with the new privilege level. It does this by performing the following steps:
a.

a. Reads the tr register to access the TSS segment of the running process.
b.

b. Loads the ss and esp registers with the proper values for the stack segment and stack pointer
associated with the new privilege level. These values are found in the TSS (see the section "
Task State Segment" in Chapter 3).

c.

c. In the new stack, it saves the previous values of ss and esp, which define the logical address
of the stack associated with the old privilege level.

6.

6. If a fault has occurred, it loads cs and eip with the logical address of the instruction that caused
the exception so that it can be executed again.

7.

7. Saves the contents of eflags , cs, and eip in the stack.
8.

8. If the exception carries a hardware error code, it saves it on the stack.
9.

9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of the Gate
Descriptor stored in the i th entry of the IDT. These values define the logical address of the first
instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or exception handler.
In other words, the instruction processed by the control unit after dealing with the interrupt signal is the
first instruction of the selected handler.

 After the interrupt or exception is processed, the corresponding handler must relinquish control to the
interrupted process by issuing the iret instruction, which forces the control unit to:

1.

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a hardware error
code has been pushed in the stack on top of the eip contents, it must be popped before executing
iret.

2.

2. Check whether the CPL of the handler is equal to the value contained in the two least significant
bits of cs (this means the interrupted process was running at the same privilege level as the
handler). If so, iret concludes execution; otherwise, go to the next step.

3.

3. Load the ss and esp registers from the stack and return to the stack associated with the old
privilege level.

4.

4. Examine the contents of the ds, es, fs, and gs segment registers; if any of them contains a selector
that refers to a Segment Descriptor whose DPL value is lower than CPL, clear the
corresponding segment register. The control unit does this to forbid User Mode programs that
run with a CPL equal to 3 from using segment registers previously used by kernel routines (with a
DPL equal to 0). If these registers were not cleared, malicious User Mode programs could
exploit them in order to access the kernel address space.

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.3. Nested Execution of Exception and Interrupt Handlers
 Every interrupt or exception gives rise to a kernel control path or separate sequence of instructions that
execute in Kernel Mode on behalf of the current process. For instance, when an I/O device raises an
interrupt, the first instructions of the corresponding kernel control path are those that save the contents of
the CPU registers in the Kernel Mode stack, while the last are those that restore the contents of the
registers.

 Kernel control paths may be arbitrarily nested; an interrupt handler may be interrupted by another
interrupt handler, thus giving rise to a nested execution of kernel control paths , as shown in Figure 4-3.
As a result, the last instructions of a kernel control path that is taking care of an interrupt do not always
put the current process back into User Mode: if the level of nesting is greater than 1, these instructions
will put into execution the kernel control path that was interrupted last, and the CPU will continue to run
in Kernel Mode.

 Figure 4-3. An example of nested execution of kernel control paths

 The price to pay for allowing nested kernel control paths is that an interrupt handler must never block,
that is, no process switch can take place until an interrupt handler is running. In fact, all the data needed
to resume a nested kernel control path is stored in the Kernel Mode stack, which is tightly bound to the
current process.

 Assuming that the kernel is bug free, most exceptions can occur only while the CPU is in User Mode.
Indeed, they are either caused by programming errors or triggered by debuggers. However, the "Page
Fault " exception may occur in Kernel Mode. This happens when the process attempts to address a page
that belongs to its address space but is not currently in RAM. While handling such an exception, the
kernel may suspend the current process and replace it with another one until the requested page is
available. The kernel control path that handles the "Page Fault" exception resumes execution as soon as
the process gets the processor again.

 Because the "Page Fault" exception handler never gives rise to further exceptions, at most two kernel
control paths associated with exceptions (the first one caused by a system call invocation, the second one
caused by a Page Fault) may be stacked, one on top of the other.

 In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures specific to the
current process, although the kernel control paths that handle them run on behalf of that process. As a
matter of fact, it is impossible to predict which process will be running when a given interrupt occurs.

 An interrupt handler may preempt both other interrupt handlers and exception handlers. Conversely, an
exception handler never preempts an interrupt handler. The only exception that can be triggered in Kernel
Mode is "Page Fault," which we just described. But interrupt handlers never perform operations that can
induce page faults, and thus, potentially, a process switch.

 Linux interleaves kernel control paths for two major reasons:


 To improve the throughput of programmable interrupt controllers and device controllers.
Assume that a device controller issues a signal on an IRQ line: the PIC transforms it into an
external interrupt, and then both the PIC and the device controller remain blocked until the PIC
receives an acknowledgment from the CPU. Thanks to kernel control path interleaving, the
kernel is able to send the acknowledgment even when it is handling a previous interrupt.



 To implement an interrupt model without priority levels. Because each interrupt handler may be
deferred by another one, there is no need to establish predefined priorities among hardware
devices. This simplifies the kernel code and improves its portability.

 On multiprocessor systems, several kernel control paths may execute concurrently. Moreover, a kernel
control path associated with an exception may start executing on a CPU and, due to a process switch,
migrate to another CPU.

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.4. Initializing the Interrupt Descriptor Table
 Now that we understand what the 80x86 microprocessors do with interrupts and exceptions at the
hardware level, we can move on to describe how the Interrupt Descriptor Table is initialized.

 Remember that before the kernel enables the interrupts, it must load the initial address of the IDT table
into the idtr register and initialize all the entries of that table. This activity is done while initializing the
system (see Appendix A).

 The int instruction allows a User Mode process to issue an interrupt signal that has an arbitrary vector
ranging from 0 to 255. Therefore, initialization of the IDT must be done carefully, to block illegal
interrupts and exceptions simulated by User Mode processes via int instructions. This can be achieved by
setting the DPL field of the particular Interrupt or Trap Gate Descriptor to 0. If the process attempts to
issue one of these interrupt signals, the control unit checks the CPL value against the DPL field and issues
a "General protection " exception.

 In a few cases, however, a User Mode process must be able to issue a programmed exception. To
allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate Descriptors to 3
that is, as high as possible.

 Let's now see how Linux implements this strategy.

 4.4.1. Interrupt, Trap, and System Gates

 As mentioned in the earlier section "Interrupt Descriptor Table," Intel provides three types of interrupt
descriptors : Task, Interrupt, and Trap Gate Descriptors. Linux uses a slightly different breakdown and
terminology from Intel when classifying the interrupt descriptors included in the Interrupt Descriptor
Table:

 Interrupt gate

 An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's DPL field is equal to
0). All Linux interrupt handlers are activated by means of interrupt gates , and all are restricted to Kernel
Mode.

System gate

 An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field is equal to 3).
The three Linux exception handlers associated with the vectors 4, 5, and 128 are activated by means of
system gates , so the three assembly language instructions into , bound , and int $0x80 can be issued in
User Mode.

System interrupt gate

 An Intel interrupt gate that can be accessed by a User Mode process (the gate's DPL field is equal to
3). The exception handler associated with the vector 3 is activated by means of a system interrupt gate,
so the assembly language instruction int3 can be issued in User Mode.

Trap gate

 An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL field is equal to 0).
Most Linux exception handlers are activated by means of trap gates .

Task gate

 An Intel task gate that cannot be accessed by a User Mode process (the gate's DPL field is equal to 0).
The Linux handler for the "Double fault " exception is activated by means of a task gate.

 The following architecture-dependent functions are used to insert gates in the IDT:

 set_intr_gate(n,addr)

 Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is set to the kernel
code's Segment Selector. The Offset field is set to addr, which is the address of the interrupt handler.
The DPL field is set to 0.

set_system_gate(n,addr)

 Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set to the kernel code's
Segment Selector. The Offset field is set to addr, which is the address of the exception handler. The DPL
field is set to 3.

set_system_intr_gate(n,addr)

 Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is set to the kernel
code's Segment Selector. The Offset field is set to addr, which is the address of the exception handler.
The DPL field is set to 3.

set_trap_gate(n,addr)

 Similar to the previous function, except the DPL field is set to 0.

set_task_gate(n,gdt)

 Inserts a task gate in the n th IDT entry. The Segment Selector inside the gate stores the index in the
GDT of the TSS containing the function to be activated. The Offset field is set to 0, while the DPL field is
set to 3.

 4.4.2. Preliminary Initialization of the IDT

 The IDT is initialized and used by the BIOS routines while the computer still operates in Real Mode.
Once Linux takes over, however, the IDT is moved to another area of RAM and initialized a second
time, because Linux does not use any BIOS routine (see Appendix A).

 The IDT is stored in the idt_table table, which includes 256 entries. The 6-byte idt_descr variable stores
both the size of the IDT and its address and is used in the system initialization phase when the kernel sets
up the idtr register with the lidt assembly language instruction.[*]

[*] Some old Pentium models have the notorious "f00f" bug, which allows User Mode programs to
freeze the system. When executing on such CPUs, Linux uses a workaround based on initializing the idtr
register with a fix-mapped read-only linear address pointing to the actual IDT (see the section "
Fix-Mapped Linear Addresses" in Chapter 2).

 During kernel initialization, the setup_idt() assembly language function starts by filling all 256 entries of
idt_table with the same interrupt gate, which refers to the ignore_int() interrupt handler:

 setup_idt:

 lea ignore_int, %edx

 movl $(_ _KERNEL_CS << 16), %eax

 movw %dx, %ax /* selector = 0x0010 = cs */

 movw $0x8e00, %dx /* interrupt gate, dpl=0, present */

 lea idt_table, %edi

 mov $256, %ecx

 rp_sidt:

 movl %eax, (%edi)

 movl %edx, 4(%edi)

 addl $8, %edi

 dec %ecx

 jne rp_sidt

 ret

The ignore_int() interrupt handler, which is in assembly language, may be viewed as a null handler that
executes the following actions:

1.

1. Saves the content of some registers in the stack.
2.

2. Invokes the printk() function to print an "Unknown interrupt" system message.
3.

3. Restores the register contents from the stack.
4.

4. Executes an iret instruction to restart the interrupted program.

The ignore_int() handler should never be executed. The occurrence of "Unknown interrupt" messages on
the console or in the log files denotes either a hardware problem (an I/O device is issuing unforeseen
interrupts) or a kernel problem (an interrupt or exception is not being handled properly).

 Following this preliminary initialization, the kernel makes a second pass in the IDT to replace some of the
null handlers with meaningful trap and interrupt handlers. Once this is done, the IDT includes a specialized
interrupt, trap, or system gate for each different exception issued by the control unit and for each IRQ
recognized by the interrupt controller.

 The next two sections illustrate in detail how this is done for exceptions and interrupts.

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.5. Exception Handling
 Most exceptions issued by the CPU are interpreted by Linux as error conditions. When one of them
occurs, the kernel sends a signal to the process that caused the exception to notify it of an anomalous
condition. If, for instance, a process performs a division by zero, the CPU raises a "Divide error "
exception, and the corresponding exception handler sends a SIGFPE signal to the current process, which
then takes the necessary steps to recover or (if no signal handler is set for that signal) abort.

 There are a couple of cases, however, where Linux exploits CPU exceptions to manage hardware
resources more efficiently. A first case is already described in the section "Saving and Loading the FPU,
MMX, and XMM Registers" in Chapter 3. The "Device not available " exception is used together with
the TS flag of the cr0 register to force the kernel to load the floating point registers of the CPU with new
values. A second case involves the "Page Fault " exception, which is used to defer allocating new page
frames to the process until the last possible moment. The corresponding handler is complex because the
exception may, or may not, denote an error condition (see the section "Page Fault Exception Handler" in
Chapter 9).

 Exception handlers have a standard structure consisting of three steps:
1.

1. Save the contents of most registers in the Kernel Mode stack (this part is coded in assembly
language).

2.

2. Handle the exception by means of a high-level C function.
3.

3. Exit from the handler by means of the ret_from_exception() function.

To take advantage of exceptions, the IDT must be properly initialized with an exception handler function
for each recognized exception. It is the job of the trap_init() function to insert the final valuesthe functions
that handle the exceptionsinto all IDT entries that refer to nonmaskable interrupts and exceptions. This is
accomplished through the set_trap_gate(), set_intr_gate(), set_system_gate(), set_system_intr_gate(),
and set_task_gate() functions:

 set_trap_gate(0,÷_error);

 set_trap_gate(1,&debug);

 set_intr_gate(2,&nmi);

 set_system_intr_gate(3,&int3);

 set_system_gate(4,&overflow);

 set_system_gate(5,&bounds);

 set_trap_gate(6,&invalid_op);

 set_trap_gate(7,&device_not_available);

 set_task_gate(8,31);

 set_trap_gate(9,&coprocessor_segment_overrun);

 set_trap_gate(10,&invalid_TSS);

 set_trap_gate(11,&segment_not_present);

 set_trap_gate(12,&stack_segment);

 set_trap_gate(13,&general_protection);

 set_intr_gate(14,&page_fault);

 set_trap_gate(16,&coprocessor_error);

 set_trap_gate(17,&alignment_check);

 set_trap_gate(18,&machine_check);

 set_trap_gate(19,&simd_coprocessor_error);

 set_system_gate(128,&system_call);

The "Double fault" exception is handled by means of a task gate instead of a trap or system gate, because
it denotes a serious kernel misbehavior. Thus, the exception handler that tries to print out the register
values does not trust the current value of the esp register. When such an exception occurs, the CPU
fetches the Task Gate Descriptor stored in the entry at index 8 of the IDT. This descriptor points to the
special TSS segment descriptor stored in the 32nd entry of the GDT. Next, the CPU loads the eip and
esp registers with the values stored in the corresponding TSS segment. As a result, the processor
executes the doublefault_fn() exception handler on its own private stack.

 Now we will look at what a typical exception handler does once it is invoked. Our description of
exception handling will be a bit sketchy for lack of space. In particular we won't be able to cover:

1.

1. The signal codes (see Table 11-8 in Chapter 11) sent by some handlers to the User Mode
processes.

2.

2. Exceptions that occur when the kernel is operating in MS-DOS emulation mode (vm86 mode),
which must be dealt with differently.

3.

3. "Debug " exceptions.

4.5.1. Saving the Registers for the Exception Handler

 Let's use handler_name to denote the name of a generic exception handler. (The actual names of all the
exception handlers appear on the list of macros in the previous section.) Each exception handler starts
with the following assembly language instructions:

 handler_name:

 pushl $0 /* only for some exceptions */

 pushl $do_handler_name

 jmp error_code

If the control unit is not supposed to automatically insert a hardware error code on the stack when the
exception occurs, the corresponding assembly language fragment includes a pushl $0 instruction to pad
the stack with a null value. Then the address of the high-level C function is pushed on the stack; its name
consists of the exception handler name prefixed by do_.

 The assembly language fragment labeled as error_code is the same for all exception handlers except the
one for the "Device not available " exception (see the section "Saving and Loading the FPU, MMX, and
XMM Registers" in Chapter 3). The code performs the following steps:

1.

1. Saves the registers that might be used by the high-level C function on the stack.
2.

2. Issues a cld instruction to clear the direction flag DF of eflags , thus making sure that
autoincreases on the edi and esi registers will be used with string instructions .[*]

2. [*] A single assembly language "string instruction," such as rep;movsb , is able to act on a whole
block of data (string).

3.

3. Copies the hardware error code saved in the stack at location esp+36 in edx. Stores the value -1
in the same stack location. As we'll see in the section "Reexecution of System Calls" in Chapter
11, this value is used to separate 0x80 exceptions from other exceptions.

4.

4. Loads edi with the address of the high-level do_handler_name() C function saved in the stack at
location esp+32; writes the contents of es in that stack location.

5.

5. Loads in the eax register the current top location of the Kernel Mode stack. This address
identifies the memory cell containing the last register value saved in step 1.

6.

6. Loads the user data Segment Selector into the ds and es registers.
7.

7. Invokes the high-level C function whose address is now stored in edi.

The invoked function receives its arguments from the eax and edx registers rather than from the stack.
We have already run into a function that gets its arguments from the CPU registers: the _ _switch_to()
function, discussed in the section "Performing the Process Switch" in Chapter 3.

 4.5.2. Entering and Leaving the Exception Handler

 As already explained, the names of the C functions that implement exception handlers always consist of
the prefix do_ followed by the handler name. Most of these functions invoke the do_trap() function to
store the hardware error code and the exception vector in the process descriptor of current, and then
send a suitable signal to that process:

 current->thread.error_code = error_code;

 current->thread.trap_no = vector;

 force_sig(sig_number, current);

The current process takes care of the signal right after the termination of the exception handler. The signal
will be handled either in User Mode by the process's own signal handler (if it exists) or in Kernel Mode.
In the latter case, the kernel usually kills the process (see Chapter 11). The signals sent by the exception
handlers are listed in Table 4-1.

 The exception handler always checks whether the exception occurred in User Mode or in Kernel Mode
and, in the latter case, whether it was due to an invalid argument passed to a system call. We'll describe
in the section "Dynamic Address Checking: The Fix-up Code" in Chapter 10 how the kernel defends
itself against invalid arguments passed to system calls. Any other exception raised in Kernel Mode is due
to a kernel bug. In this case, the exception handler knows the kernel is misbehaving. In order to avoid
data corruption on the hard disks, the handler invokes the die() function, which prints the contents of all
CPU registers on the console (this dump is called kernel oops) and terminates the current process by
calling do_exit() (see "Process Termination" in Chapter 3).

 When the C function that implements the exception handling terminates, the code performs a jmp
instruction to the ret_from_exception() function. This function is described in the later section "Returning
from Interrupts and Exceptions."

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.6. Interrupt Handling
 As we explained earlier, most exceptions are handled simply by sending a Unix signal to the process that
caused the exception. The action to be taken is thus deferred until the process receives the signal; as a
result, the kernel is able to process the exception quickly.

 This approach does not hold for interrupts, because they frequently arrive long after the process to
which they are related (for instance, a process that requested a data transfer) has been suspended and a
completely unrelated process is running. So it would make no sense to send a Unix signal to the current
process.

 Interrupt handling depends on the type of interrupt. For our purposes, we'll distinguish three main classes
of interrupts:

 I/O interrupts

 An I/O device requires attention; the corresponding interrupt handler must query the device to determine
the proper course of action. We cover this type of interrupt in the later section "I/O Interrupt Handling."

Timer interrupts

 Some timer, either a local APIC timer or an external timer, has issued an interrupt; this kind of interrupt
tells the kernel that a fixed-time interval has elapsed. These interrupts are handled mostly as I/O
interrupts; we discuss the peculiar characteristics of timer interrupts in Chapter 6.

Interprocessor interrupts

 A CPU issued an interrupt to another CPU of a multiprocessor system. We cover such interrupts in the
later section "Interprocessor Interrupt Handling."

 4.6.1. I/O Interrupt Handling

 In general, an I/O interrupt handler must be flexible enough to service several devices at the same time.
In the PCI bus architecture, for instance, several devices may share the same IRQ line. This means that
the interrupt vector alone does not tell the whole story. In the example shown in Table 4-3, the same
vector 43 is assigned to the USB port and to the sound card. However, some hardware devices found in
older PC architectures (such as ISA) do not reliably operate if their IRQ line is shared with other
devices.

 Interrupt handler flexibility is achieved in two distinct ways, as discussed in the following list.

 IRQ sharing

 The interrupt handler executes several interrupt service routines (ISRs). Each ISR is a function related to
a single device sharing the IRQ line. Because it is not possible to know in advance which particular
device issued the IRQ, each ISR is executed to verify whether its device needs attention; if so, the ISR
performs all the operations that need to be executed when the device raises an interrupt.

IRQ dynamic allocation

 An IRQ line is associated with a device driver at the last possible moment; for instance, the IRQ line of
the floppy device is allocated only when a user accesses the floppy disk device. In this way, the same
IRQ vector may be used by several hardware devices even if they cannot share the IRQ line; of course,
the hardware devices cannot be used at the same time. (See the discussion at the end of this section.)

 Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the interrupt
handler itself is not a suitable place for all kind of actions. Long noncritical operations should be deferred,
because while an interrupt handler is running, the signals on the corresponding IRQ line are temporarily
ignored. Most important, the process on behalf of which an interrupt handler is executed must always
stay in the TASK_RUNNING state, or a system freeze can occur. Therefore, interrupt handlers cannot
perform any blocking procedure such as an I/O disk operation. Linux divides the actions to be
performed following an interrupt into three classes:

 Critical

 Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the device controller,
or updating data structures accessed by both the device and the processor. These can be executed
quickly and are critical, because they must be performed as soon as possible. Critical actions are
executed within the interrupt handler immediately, with maskable interrupts disabled.

Noncritical

 Actions such as updating data structures that are accessed only by the processor (for instance, reading
the scan code after a keyboard key has been pushed). These actions can also finish quickly, so they are
executed by the interrupt handler immediately, with the interrupts enabled.

Noncritical deferrable

 Actions such as copying a buffer's contents into the address space of a process (for instance, sending the
keyboard line buffer to the terminal handler process). These may be delayed for a long time interval
without affecting the kernel operations; the interested process will just keep waiting for the data.
Noncritical deferrable actions are performed by means of separate functions that are discussed in the
later section "Softirqs and Tasklets."

 Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers perform the same
four basic actions:

1.

1. Save the IRQ value and the register's contents on the Kernel Mode stack.
2.

2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to issue further
interrupts.

3.

3. Execute the interrupt service routines (ISRs) associated with all the devices that share the IRQ.
4.

4. Terminate by jumping to the ret_from_intr() address.

Several descriptors are needed to represent both the state of the IRQ lines and the functions to be
executed when an interrupt occurs. Figure 4-4 represents in a schematic way the hardware circuits and
the software functions used to handle an interrupt. These functions are discussed in the following sections.

 4.6.1.1. Interrupt vectors

 As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range 32-238. However,
Linux uses vector 128 to implement system calls.

 The IBM-compatible PC architecture requires that some devices be statically connected to specific IRQ
lines. In particular:



 The interval timer device must be connected to the IRQ 0 line (see Chapter 6).


 The slave 8259A PIC must be connected to the IRQ 2 line (although more advanced PICs are
now being used, Linux still supports 8259A-style PICs).

 Figure 4-4. I/O interrupt handling




 The external mathematical coprocessor must be connected to the IRQ 13 line (although recent
80 x 86 processors no longer use such a device, Linux continues to support the hardy 80386
model).



 In general, an I/O device can be connected to a limited number of IRQ lines. (As a matter of
fact, when playing with an old PC where IRQ sharing is not possible, you might not succeed in
installing a new card because of IRQ conflicts with other already present hardware devices.)

 Table 4-2. Interrupt vectors in Linux

Vector range Use

019 (0x0-0x13) Nonmaskable interrupts and exceptions

2031 (0x14-0x1f) Intel-reserved

32127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls (see
Chapter 10)

129238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt (see Chapter 6)

240 (0xf0) Local APIC thermal interrupt (introduced in the
Pentium 4 models)

241250 (0xf1-0xfa) Reserved by Linux for future use

251253 (0xfb-0xfd)
Interprocessor interrupts (see the section "
Interprocessor Interrupt Handling" later in this
chapter)

254 (0xfe) Local APIC error interrupt (generated when the
local APIC detects an erroneous condition)

255 (0xff) Local APIC spurious interrupt (generated if the
CPU masks an interrupt while the hardware device
raises it)

There are three ways to select a line for an IRQ-configurable device:


 By setting hardware jumpers (only on very old device cards).


 By a utility program shipped with the device and executed when installing it. Such a program may
either ask the user to select an available IRQ number or probe the system to determine an
available number by itself.



 By a hardware protocol executed at system startup. Peripheral devices declare which interrupt
lines they are ready to use; the final values are then negotiated to reduce conflicts as much as
possible. Once this is done, each interrupt handler can read the assigned IRQ by using a function
that accesses some I/O ports of the device. For instance, drivers for devices that comply with the
Peripheral Component Interconnect (PCI) standard use a group of functions such as
pci_read_config_byte() to access the device configuration space.

 Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those that might be found
on one particular PC.

 Table 4-3. An example of IRQ assignment to I/O devices

IRQ INT Hardware device

0 32 Timer

1 33 Keyboard

2 34 PIC cascading

3 35 Second serial port

4 36 First serial port

6 38 Floppy disk

8 40 System clock

10 42 Network interface

11 43 USB port, sound card

12 44 PS/2 mouse

13 45 Mathematical coprocessor

14 46 EIDE disk controller's first chain

15 47 EIDE disk controller's second
chain

The kernel must discover which I/O device corresponds to the IRQ number before enabling interrupts.
Otherwise, for example, how could the kernel handle a signal from a SCSI disk without knowing which
vector corresponds to the device? The correspondence is established while initializing each device driver
(see Chapter 13).

 4.6.1.2. IRQ data structures

 As always, when discussing complicated operations involving state transitions, it helps to understand first
where key data is stored. Thus, this section explains the data structures that support interrupt handling
and how they are laid out in various descriptors. Figure 4-5 illustrates schematically the relationships
between the main descriptors that represent the state of the IRQ lines. (The figure does not illustrate the
data structures needed to handle softirqs and tasklets; they are discussed later in this chapter.)

 Figure 4-5. IRQ descriptors

 Every interrupt vector has its own irq_desc_t descriptor, whose fields are listed in Table 4-4. All such
descriptors are grouped together in the irq_desc array.

 Table 4-4. The irq_desc_t descriptor

Field Description

handler Points to the PIC object (hw_irq_controller
descriptor) that services the IRQ line.

handler_data Pointer to data used by the PIC methods.

action Identifies the interrupt service routines to be
invoked when the IRQ occurs. The field points to
the first element of the list of irqaction descriptors
associated with the IRQ. The irqaction descriptor
is described later in the chapter.

status A set of flags describing the IRQ line status (see
Table 4-5).

depth Shows 0 if the IRQ line is enabled and a positive
value if it has been disabled at least once.

irq_count Counter of interrupt occurrences on the IRQ line
(for diagnostic use only).

irqs_unhandled Counter of unhandled interrupt occurrences on the
IRQ line (for diagnostic use only).

lock A spin lock used to serialize the accesses to the
IRQ descriptor and to the PIC (see Chapter 5).

An interrupt is unexpected if it is not handled by the kernel, that is, either if there is no ISR associated
with the IRQ line, or if no ISR associated with the line recognizes the interrupt as raised by its own
hardware device. Usually the kernel checks the number of unexpected interrupts received on an IRQ
line, so as to disable the line in case a faulty hardware device keeps raising an interrupt over and over.
Because the IRQ line can be shared among several devices, the kernel does not disable the line as soon
as it detects a single unhandled interrupt. Rather, the kernel stores in the irq_count and irqs_unhandled
fields of the irq_desc_t descriptor the total number of interrupts and the number of unexpected interrupts,
respectively; when the 100,000th interrupt is raised, the kernel disables the line if the number of
unhandled interrupts is above 99,900 (that is, if less than 101 interrupts over the last 100,000 received
are expected interrupts from hardware devices sharing the line).

 The status of an IRQ line is described by the flags listed in Table 4-5.

 Table 4-5. Flags describing the IRQ line status

Flag name Description

IRQ_INPROGRESS A handler for the IRQ is being executed.

IRQ_DISABLED The IRQ line has been deliberately disabled by a
device driver.

IRQ_PENDING
An IRQ has occurred on the line; its occurrence
has been acknowledged to the PIC, but it has not
yet been serviced by the kernel.

IRQ_REPLAY
The IRQ line has been disabled but the previous
IRQ occurrence has not yet been acknowledged to
the PIC.

IRQ_AUTODETECT The kernel is using the IRQ line while performing a
hardware device probe.

IRQ_WAITING
The kernel is using the IRQ line while performing a
hardware device probe; moreover, the
corresponding interrupt has not been raised.

IRQ_LEVEL Not used on the 80 x 86 architecture.

IRQ_MASKED Not used.

IRQ_PER_CPU Not used on the 80 x 86 architecture.

The depth field and the IRQ_DISABLED flag of the irq_desc_t descriptor specify whether the IRQ line
is enabled or disabled. Every time the disable_irq() or disable_irq_nosync() function is invoked, the
depth field is increased; if depth is equal to 0, the function disables the IRQ line and sets its
IRQ_DISABLED flag.[*] Conversely, each invocation of the enable_irq() function decreases the field; if
depth becomes 0, the function enables the IRQ line and clears its IRQ_DISABLED flag.

[*] In contrast to disable_irq_nosync(), disable_irq(n) waits until all interrupt handlers for IRQ n that are
running on other CPUs have completed before returning.

 During system initialization, the init_IRQ() function sets the status field of each IRQ main descriptor to
IRQ _DISABLED. Moreover, init_IRQ() updates the IDT by replacing the interrupt gates set up by
setup_idt() (see the section "Preliminary Initialization of the IDT," earlier in this chapter) with new ones.
This is accomplished through the following statements:

 for (i = 0; i < NR_IRQS; i++)

 if (i+32 != 128)

 set_intr_gate(i+32,interrupt[i]);

This code looks in the interrupt array to find the interrupt handler addresses that it uses to set up the
interrupt gates . Each entry n of the interrupt array stores the address of the interrupt handler for IRQ n
(see the later section "Saving the registers for the interrupt handler"). Notice that the interrupt gate
corresponding to vector 128 is left untouched, because it is used for the system call's programmed
exception.

 In addition to the 8259A chip that was mentioned near the beginning of this chapter, Linux supports
several other PIC circuits such as the SMP IO-APIC, Intel PIIX4's internal 8259 PIC, and SGI's Visual
Workstation Cobalt (IO-)APIC. To handle all such devices in a uniform way, Linux uses a PIC object,
consisting of the PIC name and seven PIC standard methods. The advantage of this object-oriented
approach is that drivers need not to be aware of the kind of PIC installed in the system. Each
driver-visible interrupt source is transparently wired to the appropriate controller. The data structure that
defines a PIC object is called hw_interrupt_type (also called hw_irq_controller).

 For the sake of concreteness, let's assume that our computer is a uniprocessor with two 8259A PICs,
which provide 16 standard IRQs. In this case, the handler field in each of the 16 irq_desc_t descriptors
points to the i8259A_irq_type variable, which describes the 8259A PIC. This variable is initialized as
follows:

 struct hw_interrupt_type i8259A_irq_type = {

 .typename = "XT-PIC",

 .startup = startup_8259A_irq,

 .shutdown = shutdown_8259A_irq,

 .enable = enable_8259A_irq,

 .disable = disable_8259A_irq,

 .ack = mask_and_ack_8259A,

 .end = end_8259A_irq,

 .set_affinity = NULL

 };

The first field in this structure, "XT-PIC", is the PIC name. Next come the pointers to six different
functions used to program the PIC. The first two functions start up and shut down an IRQ line of the
chip, respectively. But in the case of the 8259A chip, these functions coincide with the third and fourth
functions, which enable and disable the line. The mask_and_ack_8259A() function acknowledges the
IRQ received by sending the proper bytes to the 8259A I/O ports. The end_8259A_irq() function is
invoked when the interrupt handler for the IRQ line terminates. The last set_affinity method is set to
NULL: it is used in multiprocessor systems to declare the "affinity" of CPUs for specified IRQs that is,
which CPUs are enabled to handle specific IRQs.

 As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains irqaction
descriptors (see Figure 4-5 earlier in this chapter), each of which refers to a specific hardware device
and a specific interrupt. The fields included in such descriptor are shown in Table 4-6, and the flags are
shown in Table 4-7.

 Table 4-6. Fields of the irqaction descriptor

Field name Description

handler
Points to the interrupt service routine for an I/O
device. This is the key field that allows many
devices to share the same IRQ.

flags
This field includes a few fields that describe the
relationships between the IRQ line and the I/O
device (see Table 4-7).

mask Not used.

name The name of the I/O device (shown when listing the
serviced IRQs by reading the /proc/interrupts file).

dev_id A private field for the I/O device. Typically, it
identifies the I/O device itself (for instance, it could
be equal to its major and minor numbers; see the
section "Device Files" in Chapter 13), or it points
to the device driver's data.

next
Points to the next element of a list of irqaction
descriptors. The elements in the list refer to
hardware devices that share the same IRQ.

irq IRQ line.

dir Points to the descriptor of the /proc/irq/n directory
associated with the IRQn.

Table 4-7. Flags of the irqaction descriptor

Flag name Description

SA_INTERRUPT The handler must execute with interrupts disabled.

SA_SHIRQ The device permits its IRQ line to be shared with
other devices.

SA_SAMPLE_RANDOM The device may be considered a source of events
that occurs randomly; it can thus be used by the
kernel random number generator. (Users can
access this feature by taking random numbers from
the /dev/random and /dev/urandom device files.)

Finally, the irq_stat array includes NR_CPUS entries, one for every possible CPU in the system. Each
entry of type irq_cpustat_t includes a few counters and flags used by the kernel to keep track of what
each CPU is currently doing (see Table 4-8).

 Table 4-8. Fields of the irq_cpustat_t structure

Field name Description

_ _softirq_pending Set of flags denoting the pending softirqs (see the
section "Softirqs" later in this chapter)

idle_timestamp Time when the CPU became idle (significant only if
the CPU is currently idle)

_ _nmi_count Number of occurrences of NMI interrupts

apic_timer_irqs Number of occurrences of local APIC timer
interrupts (see Chapter 6)

4.6.1.3. IRQ distribution in multiprocessor systems

 Linux sticks to the Symmetric Multiprocessing model (SMP); this means, essentially, that the kernel
should not have any bias toward one CPU with respect to the others. As a consequence, the kernel tries
to distribute the IRQ signals coming from the hardware devices in a round-robin fashion among all the
CPUs. Therefore, all the CPUs should spend approximately the same fraction of their execution time
servicing I/O interrupts.

 In the earlier section "The Advanced Programmable Interrupt Controller (APIC)," we said that the
multi-APIC system has sophisticated mechanisms to dynamically distribute the IRQ signals among the
CPUs.

 During system bootstrap, the booting CPU executes the setup_IO_APIC_irqs() function to initialize the
I/O APIC chip. The 24 entries of the Interrupt Redirection Table of the chip are filled, so that all IRQ
signals from the I/O hardware devices can be routed to each CPU in the system according to the "lowest
priority" scheme (see the earlier section "IRQs and Interrupts"). During system bootstrap, moreover, all
CPUs execute the setup_local_APIC() function, which takes care of initializing the local APICs. In
particular, the task priority register (TPR) of each chip is initialized to a fixed value, meaning that the CPU
is willing to handle every kind of IRQ signal, regardless of its priority. The Linux kernel never modifies
this value after its initialization.

 All task priority registers contain the same value, thus all CPUs always have the same priority. To break
a tie, the multi-APIC system uses the values in the arbitration priority registers of local APICs, as
explained earlier. Because such values are automatically changed after every interrupt, the IRQ signals
are, in most cases, fairly distributed among all CPUs.[*]

[*] There is an exception, though. Linux usually sets up the local APICs in such a way to honor the focus
processor, when it exists. A focus process will catch all IRQs of the same type as long as it has received
an IRQ of that type, and it has not finished executing the interrupt handler. However, Intel has dropped
support for focus processors in the Pentium 4 model.

 In short, when a hardware device raises an IRQ signal, the multi-APIC system selects one of the CPUs
and delivers the signal to the corresponding local APIC, which in turn interrupts its CPU. No other CPUs
are notified of the event.

 All this is magically done by the hardware, so it should be of no concern for the kernel after multi-APIC
system initialization. Unfortunately, in some cases the hardware fails to distribute the interrupts among the
microprocessors in a fair way (for instance, some Pentium 4-based SMP motherboards have this
problem). Therefore, Linux 2.6 makes use of a special kernel thread called kirqd to correct, if necessary,
the automatic assignment of IRQs to CPUs.

 The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affinity of a CPU: by
modifying the Interrupt Redirection Table entries of the I/O APIC, it is possible to route an interrupt
signal to a specific CPU. This can be done by invoking the set_ioapic_affinity_irq() function, which acts
on two parameters: the IRQ vector to be rerouted and a 32-bit mask denoting the CPUs that can receive
the IRQ. The IRQ affinity of a given interrupt also can be changed by the system administrator by writing
a new CPU bitmap mask into the /proc/irq/n/smp_affinity file (n being the interrupt vector).

 The kirqd kernel thread periodically executes the do_irq_balance() function, which keeps track of the
number of interrupt occurrences received by every CPU in the most recent time interval. If the function
discovers that the IRQ load imbalance between the heaviest loaded CPU and the least loaded CPU is
significantly high, then it either selects an IRQ to be "moved" from a CPU to another, or rotates all IRQs
among all existing CPUs.

 4.6.1.4. Multiple Kernel Mode stacks

 As mentioned in the section "Identifying a Process" in Chapter 3, the thread_info descriptor of each
process is coupled with a Kernel Mode stack in a thread_union data structure composed by one or two
page frames, according to an option selected when the kernel has been compiled. If the size of the
tHRead_union structure is 8 KB, the Kernel Mode stack of the current process is used for every type of
kernel control path: exceptions, interrupts, and deferrable functions (see the later section "Softirqs and
Tasklets"). Conversely, if the size of the thread_union structure is 4 KB, the kernel makes use of three
types of Kernel Mode stacks:



 The exception stack is used when handling exceptions (including system calls). This is the stack
contained in the per-process thread_union data structure, thus the kernel makes use of a different
exception stack for each process in the system.



 The hard IRQ stack is used when handling interrupts. There is one hard IRQ stack for each CPU
in the system, and each stack is contained in a single page frame.



 The soft IRQ stack is used when handling deferrable functions (softirqs or tasklets; see the later
section "Softirqs and Tasklets"). There is one soft IRQ stack for each CPU in the system, and
each stack is contained in a single page frame.

 All hard IRQ stacks are contained in the hardirq_stack array, while all soft IRQ stacks are contained in
the softirq_stack array. Each array element is a union of type irq_ctx that span a single page. At the
bottom of this page is stored a thread_info structure, while the spare memory locations are used for the
stack; remember that each stack grows towards lower addresses. Thus, hard IRQ stacks and soft IRQ
stacks are very similar to the exception stacks described in the section "Identifying a Process" in Chapter
3; the only difference is that the tHRead_info structure coupled with each stack is associated with a CPU
rather than a process.

 The hardirq_ctx and softirq_ctx arrays allow the kernel to quickly determine the hard IRQ stack and
soft IRQ stack of a given CPU, respectively: they contain pointers to the corresponding irq_ctx elements.

 4.6.1.5. Saving the registers for the interrupt handler

 When a CPU receives an interrupt, it starts executing the code at the address found in the corresponding
gate of the IDT (see the earlier section "Hardware Handling of Interrupts and Exceptions").

 As with other context switches, the need to save registers leaves the kernel developer with a somewhat
messy coding job, because the registers have to be saved and restored using assembly language code.
However, within those operations, the processor is expected to call and return from a C function. In this
section, we describe the assembly language task of handling registers; in the next, we show some of the
acrobatics required in the C function that is subsequently invoked.

 Saving registers is the first task of the interrupt handler. As already mentioned, the address of the
interrupt handler for IRQ n is initially stored in the interrupt[n] enTRy and then copied into the interrupt
gate included in the proper IDT entry.

 The interrupt array is built through a few assembly language instructions in the arch/i386/kernel/entry.S
file. The array includes NR_IRQS elements, where the NR_IRQS macro yields either the number 224 if
the kernel supports a recent I/O APIC chip,[*] or the number 16 if the kernel uses the older 8259A PIC
chips. The element at index n in the array stores the address of the following two assembly language
instructions:

[*] 256 vectors is an architectural limit for the 80x86 architecture. 32 of them are used or reserved for
the CPU, so the usable vector space consists of 224 vectors.

 pushl $n-256
 jmp common_interrupt

The result is to save on the stack the IRQ number associated with the interrupt minus 256. The kernel
represents all IRQs through negative numbers, because it reserves positive interrupt numbers to identify
system calls (see Chapter 10). The same code for all interrupt handlers can then be executed while
referring to this number. The common code starts at label common_interrupt and consists of the following
assembly language macros and instructions:

 common_interrupt:

 SAVE_ALL

 movl %esp,%eax

 call do_IRQ

 jmp ret_from_intr

The SAVE_ALL macro expands to the following fragment:

 cld

 push %es

 push %ds

 pushl %eax

 pushl %ebp

 pushl %edi

 pushl %esi

 pushl %edx

 pushl %ecx

 pushl %ebx

 movl $ _ _USER_DS,%edx

 movl %edx,%ds

 movl %edx,%es

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the stack, except
for eflags , cs, eip, ss, and esp, which are already saved automatically by the control unit (see the earlier
section "Hardware Handling of Interrupts and Exceptions"). The macro then loads the selector of the user
data segment into ds and es.

 After saving the registers, the address of the current top stack location is saved in the eax register; then,
the interrupt handler invokes the do_IRQ() function. When the ret instruction of do_IRQ() is executed
(when that function terminates) control is transferred to ret_from_intr() (see the later section "Returning
from Interrupts and Exceptions").

 4.6.1.6. The do_IRQ() function

 The do_IRQ() function is invoked to execute all interrupt service routines associated with an interrupt. It
is declared as follows:

 _ _attribute_ _((regparm(3))) unsigned int do_IRQ(struct pt_regs *regs)

The regparm keyword instructs the function to go to the eax register to find the value of the regs
argument; as seen above, eax points to the stack location containing the last register value pushed on by
SAVE_ALL.

 The do_IRQ() function executes the following actions:
1.

1. Executes the irq_enter() macro, which increases a counter representing the number of nested
interrupt handlers. The counter is stored in the preempt_count field of the tHRead_info structure
of the current process (see Table 4-10 later in this chapter).

2.

2. If the size of the thread_union structure is 4 KB, it switches to the hard IRQ stack.In particular,
the function performs the following substeps:
a.

a. Executes the current_thread_info() function to get the address of the tHRead_info descriptor
associated with the Kernel Mode stack addressed by the esp register (see the section "
Identifying a Process" in Chapter 3).

b.

b. Compares the address of the tHRead_info descriptor obtained in the previous step with the
address stored in hardirq_ctx[smp_processor_id()], that is, the address of the thread_info
descriptor associated with the local CPU. If the two addresses are equal, the kernel is
already using the hard IRQ stack, thus jumps to step 3. This happens when an IRQ is raised
while the kernel is still handling another interrupt.

c.

c. Here the Kernel Mode stack has to be switched. Stores the pointer to the current process
descriptor in the task field of the tHRead_info descriptor in irq_ctx union of the local CPU.
This is done so that the current macro works as expected while the kernel is using the hard
IRQ stack (see the section "Identifying a Process" in Chapter 3).

d.

d. Stores the current value of the esp stack pointer register in the previous_esp field of the
thread_info descriptor in the irq_ctx union of the local CPU (this field is used only when
preparing the function call trace for a kernel oops).

e.

e. Loads in the esp stack register the top location of the hard IRQ stack of the local CPU (the
value in hardirq_ctx[smp_processor_id()] plus 4096); the previous value of the esp register
is saved in the ebx register.

3.

3. Invokes the _ _do_IRQ() function passing to it the pointer regs and the IRQ number obtained
from the regs->orig_eax field (see the following section).

4.

4. If the hard IRQ stack has been effectively switched in step 2e above, the function copies the
original stack pointer from the ebx register into the esp register, thus switching back to the
exception stack or soft IRQ stack that were in use before.

5.

5. Executes the irq_exit() macro, which decreases the interrupt counter and checks whether
deferrable kernel functions are waiting to be executed (see the section "Softirqs and Tasklets"
later in this chapter).

6.

6. Terminates: the control is transferred to the ret_from_intr() function (see the later section "
Returning from Interrupts and Exceptions").

4.6.1.7. The _ _do_IRQ() function

 The _ _do_IRQ() function receives as its parameters an IRQ number (through the eax register) and a
pointer to the pt_regs structure where the User Mode register values have been saved (through the edx
register).

 The function is equivalent to the following code fragment:

 spin_lock(&(irq_desc[irq].lock));

 irq_desc[irq].handler->ack(irq);

 irq_desc[irq].status &= ~(IRQ_REPLAY | IRQ_WAITING);

 irq_desc[irq].status |= IRQ_PENDING;

 if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))

 && irq_desc[irq].action) {

 irq_desc[irq].status |= IRQ_INPROGRESS;

 do {

 irq_desc[irq].status &= ~IRQ_PENDING;

 spin_unlock(&(irq_desc[irq].lock));

 handle_IRQ_event(irq, regs, irq_desc[irq].action);

 spin_lock(&(irq_desc[irq].lock));

 } while (irq_desc[irq].status & IRQ_PENDING);

 irq_desc[irq].status &= ~IRQ_INPROGRESS;

 }

 irq_desc[irq].handler->end(irq);

 spin_unlock(&(irq_desc[irq].lock));

Before accessing the main IRQ descriptor, the kernel acquires the corresponding spin lock. We'll see in
Chapter 5 that the spin lock protects against concurrent accesses by different CPUs. This spin lock is
necessary in a multiprocessor system, because other interrupts of the same kind may be raised, and other
CPUs might take care of the new interrupt occurrences. Without the spin lock, the main IRQ descriptor
would be accessed concurrently by several CPUs. As we'll see, this situation must be absolutely avoided.

 After acquiring the spin lock, the function invokes the ack method of the main IRQ descriptor. When
using the old 8259A PIC, the corresponding mask_and_ack_8259A() function acknowledges the
interrupt on the PIC and also disables the IRQ line. Masking the IRQ line ensures that the CPU does not
accept further occurrences of this type of interrupt until the handler terminates. Remember that the _
_do_IRQ() function runs with local interrupts disabled; in fact, the CPU control unit automatically clears
the IF flag of the eflags register because the interrupt handler is invoked through an IDT's interrupt gate.
However, we'll see shortly that the kernel might re-enable local interrupts before executing the interrupt
service routines of this interrupt.

 When using the I/O APIC, however, things are much more complicated. Depending on the type of
interrupt, acknowledging the interrupt could either be done by the ack method or delayed until the
interrupt handler terminates (that is, acknowledgement could be done by the end method). In either case,
we can take for granted that the local APIC doesn't accept further interrupts of this type until the handler
terminates, although further occurrences of this type of interrupt may be accepted by other CPUs.

 The _ _do_IRQ() function then initializes a few flags of the main IRQ descriptor. It sets the
IRQ_PENDING flag because the interrupt has been acknowledged (well, sort of), but not yet really
serviced; it also clears the IRQ_WAITING and IRQ_REPLAY flags (but we don't have to care about
them now).

 Now _ _do_IRQ() checks whether it must really handle the interrupt. There are three cases in which
nothing has to be done. These are discussed in the following list.

 IRQ_DISABLED is set

 A CPU might execute the _ _do_IRQ() function even if the corresponding IRQ line is disabled; you'll
find an explanation for this nonintuitive case in the later section "Reviving a lost interrupt." Moreover,
buggy motherboards may generate spurious interrupts even when the IRQ line is disabled in the PIC.

IRQ_INPROGRESS is set

 In a multiprocessor system, another CPU might be handling a previous occurrence of the same interrupt.
Why not defer the handling of this occurrence to that CPU? This is exactly what is done by Linux. This
leads to a simpler kernel architecture because device drivers' interrupt service routines need not to be
reentrant (their execution is serialized). Moreover, the freed CPU can quickly return to what it was doing,
without dirtying its hardware cache; this is beneficial to system performance. The IRQ_INPROGRESS
flag is set whenever a CPU is committed to execute the interrupt service routines of the interrupt;
therefore, the _ _do_IRQ() function checks it before starting the real work.

irq_desc[irq].action is NULL

 This case occurs when there is no interrupt service routine associated with the interrupt. Normally, this
happens only when the kernel is probing a hardware device.

 Let's suppose that none of the three cases holds, so the interrupt has to be serviced. The _ _do_IRQ()
function sets the IRQ_INPROGRESS flag and starts a loop. In each iteration, the function clears the
IRQ_PENDING flag, releases the interrupt spin lock, and executes the interrupt service routines by
invoking handle_IRQ_event() (described later in the chapter). When the latter function terminates, _
_do_IRQ() acquires the spin lock again and checks the value of the IRQ_PENDING flag. If it is clear,
no further occurrence of the interrupt has been delivered to another CPU, so the loop ends. Conversely,
if IRQ_PENDING is set, another CPU has executed the do_IRQ() function for this type of interrupt
while this CPU was executing handle_IRQ_event(). Therefore, do_IRQ() performs another iteration of
the loop, servicing the new occurrence of the interrupt.[*]

[*] Because IRQ_PENDING is a flag and not a counter, only the second occurrence of the interrupt can
be recognized. Further occurrences in each iteration of the do_IRQ()'s loop are simply lost.

 Our _ _do_IRQ() function is now going to terminate, either because it has already executed the
interrupt service routines or because it had nothing to do. The function invokes the end method of the
main IRQ descriptor. When using the old 8259A PIC, the corresponding end_8259A_irq() function
reenables the IRQ line (unless the interrupt occurrence was spurious). When using the I/O APIC, the end
method acknowledges the interrupt (if not already done by the ack method).

 Finally, _ _do_IRQ() releases the spin lock: the hard work is finished!

 4.6.1.8. Reviving a lost interrupt

 The _ _do_IRQ() function is small and simple, yet it works properly in most cases. Indeed, the
IRQ_PENDING, IRQ_INPROGRESS, and IRQ_DISABLED flags ensure that interrupts are correctly
handled even when the hardware is misbehaving. However, things may not work so smoothly in a
multiprocessor system.

 Suppose that a CPU has an IRQ line enabled. A hardware device raises the IRQ line, and the
multi-APIC system selects our CPU for handling the interrupt. Before the CPU acknowledges the
interrupt, the IRQ line is masked out by another CPU; as a consequence, the IRQ_DISABLED flag is
set. Right afterwards, our CPU starts handling the pending interrupt; therefore, the do_IRQ() function
acknowledges the interrupt and then returns without executing the interrupt service routines because it
finds the IRQ_DISABLED flag set. Therefore, even though the interrupt occurred before the IRQ line
was disabled, it gets lost.

 To cope with this scenario, the enable_irq() function, which is used by the kernel to enable an IRQ line,
checks first whether an interrupt has been lost. If so, the function forces the hardware to generate a new
occurrence of the lost interrupt:

 spin_lock_irqsave(&(irq_desc[irq].lock), flags);

 if (--irq_desc[irq].depth == 0) {

 irq_desc[irq].status &= ~IRQ_DISABLED;

 if (irq_desc[irq].status & (IRQ_PENDING | IRQ_REPLAY))

 == IRQ_PENDING) {

 irq_desc[irq].status |= IRQ_REPLAY;

 hw_resend_irq(irq_desc[irq].handler,irq);

 }

 irq_desc[irq].handler->enable(irq);

 }

 spin_lock_irqrestore(&(irq_desc[irq].lock), flags);

The function detects that an interrupt was lost by checking the value of the IRQ_PENDING flag. The
flag is always cleared when leaving the interrupt handler; therefore, if the IRQ line is disabled and the flag
is set, then an interrupt occurrence has been acknowledged but not yet serviced. In this case the
hw_resend_irq() function raises a new interrupt. This is obtained by forcing the local APIC to generate a
self-interrupt (see the later section "Interprocessor Interrupt Handling"). The role of the IRQ_REPLAY
flag is to ensure that exactly one self-interrupt is generated. Remember that the _ _do_IRQ() function
clears that flag when it starts handling the interrupt.

 4.6.1.9. Interrupt service routines

 As mentioned previously, an interrupt service routine handles an interrupt by executing an operation
specific to one type of device. When an interrupt handler must execute the ISRs, it invokes the
handle_IRQ_event() function. This function essentially performs the following steps:

1.

1. Enables the local interrupts with the sti assembly language instruction if the SA_INTERRUPT
flag is clear.

2.

2. Executes each interrupt service routine of the interrupt through the following code:

2. retval = 0;

 do {

 retval |= action->handler(irq, action->dev_id, regs);

 action = action->next;

 } while (action);

2. At the start of the loop, action points to the start of a list of irqaction data structures that indicate
the actions to be taken upon receiving the interrupt (see Figure 4-5 earlier in this chapter).

3.

3. Disables local interrupts with the cli assembly language instruction.
4.

4. Terminates by returning the value of the retval local variable, that is, 0 if no interrupt service
routine has recognized interrupt, 1 otherwise (see next).

All interrupt service routines act on the same parameters (once again they are passed through the eax,
edx, and ecx registers, respectively):

 irq

 The IRQ number

dev_id

 The device identifier

regs

 A pointer to a pt_regs structure on the Kernel Mode (exception) stack containing the registers saved
right after the interrupt occurred. The pt_regs structure consists of 15 fields:



 The first nine fields are the register values pushed by SAVE_ALL


 The tenth field, referenced through a field called orig_eax, encodes the IRQ number


 The remaining fields correspond to the register values pushed on automatically by the control unit

 The first parameter allows a single ISR to handle several IRQ lines, the second one allows a single ISR
to take care of several devices of the same type, and the last one allows the ISR to access the execution
context of the interrupted kernel control path. In practice, most ISRs do not use these parameters.

 Every interrupt service routine returns the value 1 if the interrupt has been effectively handled, that is, if
the signal was raised by the hardware device handled by the interrupt service routine (and not by another
device sharing the same IRQ); it returns the value 0 otherwise. This return code allows the kernel to
update the counter of unexpected interrupts mentioned in the section "IRQ data structures" earlier in this
chapter.

 The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts must be enabled
or disabled when the do_IRQ() function invokes an ISR. An ISR that has been invoked with the
interrupts in one state is allowed to put them in the opposite state. In a uniprocessor system, this can be
achieved by means of the cli (disable interrupts) and sti (enable interrupts) assembly language instructions.

 The structure of an ISR depends on the characteristics of the device handled. We'll give a couple of
examples of ISRs in Chapter 6 and Chapter 13.

 4.6.1.10. Dynamic allocation of IRQ lines

 As noted in section "Interrupt vectors," a few vectors are reserved for specific devices, while the
remaining ones are dynamically handled. There is, therefore, a way in which the same IRQ line can be
used by several hardware devices even if they do not allow IRQ sharing. The trick is to serialize the
activation of the hardware devices so that just one owns the IRQ line at a time.

 Before activating a device that is going to use an IRQ line, the corresponding driver invokes request_irq(
). This function creates a new irqaction descriptor and initializes it with the parameter values; it then
invokes the setup_irq() function to insert the descriptor in the proper IRQ list. The device driver aborts
the operation if setup_irq() returns an error code, which usually means that the IRQ line is already in use
by another device that does not allow interrupt sharing. When the device operation is concluded, the
driver invokes the free_irq() function to remove the descriptor from the IRQ list and release the memory
area.

 Let's see how this scheme works on a simple example. Assume a program wants to address the
/dev/fd0 device file, which corresponds to the first floppy disk on the system.[*] The program can do
this either by directly accessing /dev/fd0 or by mounting a filesystem on it. Floppy disk controllers are
usually assigned IRQ 6; given this, a floppy driver may issue the following request:

[*] Floppy disks are "old" devices that do not usually allow IRQ sharing.

 request_irq(6, floppy_interrupt,

 SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL);

As can be observed, the floppy_interrupt() interrupt service routine must execute with the interrupts
disabled (SA_INTERRUPT flag set) and no sharing of the IRQ (SA_SHIRQ flag missing). The
SA_SAMPLE_RANDOM flag set means that accesses to the floppy disk are a good source of random
events to be used for the kernel random number generator. When the operation on the floppy disk is
concluded (either the I/O operation on /dev/fd0 terminates or the filesystem is unmounted), the driver
releases IRQ 6:

 free_irq(6, NULL);

To insert an irqaction descriptor in the proper list, the kernel invokes the setup_irq() function, passing to
it the parameters irq _nr, the IRQ number, and new (the address of a previously allocated irqaction
descriptor). This function:

1.

1. Checks whether another device is already using the irq _nr IRQ and, if so, whether the
SA_SHIRQ flags in the irqaction descriptors of both devices specify that the IRQ line can be
shared. Returns an error code if the IRQ line cannot be used.

2.

2. Adds *new (the new irqaction descriptor pointed to by new) at the end of the list to which irq
_desc[irq _nr]->action points.

3.

3. If no other device is sharing the same IRQ, the function clears the IRQ _DISABLED,
IRQ_AUTODETECT, IRQ_WAITING, and IRQ _INPROGRESS flags in the flags field of
*new and invokes the startup method of the irq_desc[irq_nr]->handler PIC object to make sure
that IRQ signals are enabled.

Here is an example of how setup_irq() is used, drawn from system initialization. The kernel initializes the
irq0 descriptor of the interval timer device by executing the following instructions in the time_init()
function (see Chapter 6):

 struct irqaction irq0 =

 {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};

 setup_irq(0, &irq0);

First, the irq0 variable of type irqaction is initialized: the handler field is set to the address of the
timer_interrupt() function, the flags field is set to SA_INTERRUPT, the name field is set to "timer", and
the fifth field is set to NULL to show that no dev_id value is used. Next, the kernel invokes setup_irq()
to insert irq0 in the list of irqaction descriptors associated with IRQ 0.

 4.6.2. Interprocessor Interrupt Handling

 Interprocessor interrupts allow a CPU to send interrupt signals to any other CPU in the system. As
explained in the section "The Advanced Programmable Interrupt Controller (APIC)" earlier in this
chapter, an interprocessor interrupt (IPI) is delivered not through an IRQ line, but directly as a message
on the bus that connects the local APIC of all CPUs (either a dedicated bus in older motherboards, or
the system bus in the Pentium 4-based motherboards).

 On multiprocessor systems, Linux makes use of three kinds of interprocessor interrupts (see also Table
4-2):

 CALL_FUNCTION_VECTOR (vector 0xfb)

 Sent to all CPUs but the sender, forcing those CPUs to run a function passed by the sender. The
corresponding interrupt handler is named call_function_interrupt(). The function (whose address is
passed in the call_data global variable) may, for instance, force all other CPUs to stop, or may force
them to set the contents of the Memory Type Range Registers (MTRRs).[*] Usually this interrupt is sent
to all CPUs except the CPU executing the calling function by means of the smp_call_function() facility
function.

[*] Starting with the Pentium Pro model, Intel microprocessors include these additional registers to easily
customize cache operations. For instance, Linux may use these registers to disable the hardware cache
for the addresses mapping the frame buffer of a PCI/AGP graphic card while maintaining the "write
combining" mode of operation: the paging unit combines write transfers into larger chunks before copying
them into the frame buffer.

RESCHEDULE_VECTOR (vector 0xfc)

 When a CPU receives this type of interrupt, the corresponding handler named reschedule_interrupt()
limits itself to acknowledging the interrupt. Rescheduling is done automatically when returning from the
interrupt (see the section "Returning from Interrupts and Exceptions" later in this chapter).

INVALIDATE_TLB_VECTOR (vector 0xfd)

 Sent to all CPUs but the sender, forcing them to invalidate their Translation Lookaside Buffers. The
corresponding handler, named invalidate_interrupt(), flushes some TLB entries of the processor as
described in the section "Handling the Hardware Cache and the TLB" in Chapter 2.

 The assembly language code of the interprocessor interrupt handlers is generated by the
BUILD_INTERRUPT macro: it saves the registers, pushes the vector number minus 256 on the stack,
and then invokes a high-level C function having the same name as the low-level handler preceded by
smp_. For instance, the high-level handler of the CALL_FUNCTION_VECTOR interprocessor
interrupt that is invoked by the low-level call_function_interrupt() handler is named
smp_call_function_interrupt(). Each high-level handler acknowledges the interprocessor interrupt on the
local APIC and then performs the specific action triggered by the interrupt.

 Thanks to the following group of functions, issuing interprocessor interrupts (IPIs) becomes an easy task:

 send_IPI_all()

 Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself()

 Sends an IPI to all CPUs except the sender

send_IPI_self()

 Sends an IPI to the sender CPU

send_IPI_mask()

 Sends an IPI to a group of CPUs specified by a bit mask

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.7. Softirqs and Tasklets
 We mentioned earlier in the section "Interrupt Handling" that several tasks among those executed by the
kernel are not critical: they can be deferred for a long period of time, if necessary. Remember that the
interrupt service routines of an interrupt handler are serialized, and often there should be no occurrence of
an interrupt until the corresponding interrupt handler has terminated. Conversely, the deferrable tasks can
execute with all interrupts enabled. Taking them out of the interrupt handler helps keep kernel response
time small. This is a very important property for many time-critical applications that expect their interrupt
requests to be serviced in a few milliseconds.

 Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible kernel functions: the
so-called deferrable functions[*] (softirqs and tasklets), and those executed by means of some work
queues (we will describe them in the section "Work Queues" later in this chapter).

[*] These are also called software interrupts, but we denote them as "deferrable functions" to avoid
confusion with programmed exceptions, which are referred to as "software interrupts " in Intel manuals.

 Softirqs and tasklets are strictly correlated, because tasklets are implemented on top of softirqs. As a
matter of fact, the term "softirq," which appears in the kernel source code, often denotes both kinds of
deferrable functions. Another widely used term is interrupt context : it specifies that the kernel is currently
executing either an interrupt handler or a deferrable function.

 Softirqs are statically allocated (i.e., defined at compile time), while tasklets can also be allocated and
initialized at runtime (for instance, when loading a kernel module). Softirqs can run concurrently on
several CPUs, even if they are of the same type. Thus, softirqs are reentrant functions and must explicitly
protect their data structures with spin locks. Tasklets do not have to worry about this, because their
execution is controlled more strictly by the kernel. Tasklets of the same type are always serialized: in
other words, the same type of tasklet cannot be executed by two CPUs at the same time. However,
tasklets of different types can be executed concurrently on several CPUs. Serializing the tasklet simplifies
the life of device driver developers, because the tasklet function needs not be reentrant.

 Generally speaking, four kinds of operations can be performed on deferrable functions:

 Initialization

 Defines a new deferrable function; this operation is usually done when the kernel initializes itself or a
module is loaded.

Activation

 Marks a deferrable function as "pending" to be run the next time the kernel schedules a round of
executions of deferrable functions. Activation can be done at any time (even while handling interrupts).

Masking

 Selectively disables a deferrable function so that it will not be executed by the kernel even if activated.
We'll see in the section "Disabling and Enabling Deferrable Functions" in Chapter 5 that disabling
deferrable functions is sometimes essential.

Execution

 Executes a pending deferrable function together with all other pending deferrable functions of the same
type; execution is performed at well-specified times, explained later in the section "Softirqs."

 Activation and execution are bound together: a deferrable function that has been activated by a given
CPU must be executed on the same CPU. There is no self-evident reason suggesting that this rule is
beneficial for system performance. Binding the deferrable function to the activating CPU could in theory
make better use of the CPU hardware cache. After all, it is conceivable that the activating kernel thread
accesses some data structures that will also be used by the deferrable function. However, the relevant
lines could easily be no longer in the cache when the deferrable function is run because its execution can
be delayed a long time. Moreover, binding a function to a CPU is always a potentially "dangerous"
operation, because one CPU might end up very busy while the others are mostly idle.

 4.7.1. Softirqs

 Linux 2.6 uses a limited number of softirqs . For most purposes, tasklets are good enough and are much
easier to write because they do not need to be reentrant.

 As a matter of fact, only the six kinds of softirqs listed in Table 4-9 are currently defined.

 Table 4-9. Softirqs used in Linux 2.6

Softirq Index (priority) Description

HI_SOFTIRQ 0 Handles high priority tasklets

TIMER_SOFTIRQ 1 Tasklets related to timer
interrupts

NET_TX_SOFTIRQ 2 Transmits packets to network
cards

NET_RX_SOFTIRQ 3 Receives packets from network
cards

SCSI_SOFTIRQ 4 Post-interrupt processing of
SCSI commands

TASKLET_SOFTIRQ 5 Handles regular tasklets

The index of a sofirq determines its priority: a lower index means higher priority because softirq functions
will be executed starting from index 0.

 4.7.1.1. Data structures used for softirqs

 The main data structure used to represent softirqs is the softirq_vec array, which includes 32 elements of
type softirq_action. The priority of a softirq is the index of the corresponding softirq_action element
inside the array. As shown in Table 4-9, only the first six entries of the array are effectively used. The
softirq_action data structure consists of two fields: an action pointer to the softirq function and a data
pointer to a generic data structure that may be needed by the softirq function.

 Another critical field used to keep track both of kernel preemption and of nesting of kernel control paths
is the 32-bit preempt_count field stored in the tHRead_info field of each process descriptor (see the
section "Identifying a Process" in Chapter 3). This field encodes three distinct counters plus a flag, as
shown in Table 4-10.

 Table 4-10. Subfields of the preempt_count field (continues)

Bits Description

07 Preemption counter (max value = 255)

815 Softirq counter (max value = 255).

1627 Hardirq counter (max value = 4096)

28 PREEMPT_ACTIVE flag

The first counter keeps track of how many times kernel preemption has been explicitly disabled on the
local CPU; the value zero means that kernel preemption has not been explicitly disabled at all. The
second counter specifies how many levels deep the disabling of deferrable functions is (level 0 means that
deferrable functions are enabled). The third counter specifies the number of nested interrupt handlers on
the local CPU (the value is increased by irq_enter() and decreased by irq_exit(); see the section "I/O
Interrupt Handling" earlier in this chapter).

 There is a good reason for the name of the preempt_count field: kernel preemptability has to be disabled
either when it has been explicitly disabled by the kernel code (preemption counter not zero) or when the
kernel is running in interrupt context. Thus, to determine whether the current process can be preempted,
the kernel quickly checks for a zero value in the preempt_count field. Kernel preemption will be
discussed in depth in the section "Kernel Preemption" in Chapter 5.

 The in_interrupt() macro checks the hardirq and softirq counters in the current_thread_info(
)->preempt_count field. If either one of these two counters is positive, the macro yields a nonzero value,
otherwise it yields the value zero. If the kernel does not make use of multiple Kernel Mode stacks, the
macro always looks at the preempt_count field of the thread_info descriptor of the current process. If,
however, the kernel makes use of multiple Kernel Mode stacks, the macro might look at the
preempt_count field in the tHRead_info descriptor contained in a irq_ctx union associated with the local
CPU. In this case, the macro returns a nonzero value because the field is always set to a positive value.

 The last crucial data structure for implementing the softirqs is a per-CPU 32-bit mask describing the
pending softirqs; it is stored in the _ _softirq_pending field of the irq_cpustat_t data structure (recall that
there is one such structure per each CPU in the system; see Table 4-8). To get and set the value of the
bit mask, the kernel makes use of the local_softirq_pending() macro that selects the softirq bit mask of
the local CPU.

 4.7.1.2. Handling softirqs

 The open_softirq() function takes care of softirq initialization. It uses three parameters: the softirq index,
a pointer to the softirq function to be executed, and a second pointer to a data structure that may be
required by the softirq function. open_softirq() limits itself to initializing the proper entry of the
softirq_vec array.

 Softirqs are activated by means of the raise_softirq() function. This function, which receives as its
parameter the softirq index nr, performs the following actions:

1.

1. Executes the local_irq_save macro to save the state of the IF flag of the eflags register and to
disable interrupts on the local CPU.

2.

2. Marks the softirq as pending by setting the bit corresponding to the index nr in the softirq bit
mask of the local CPU.

3.

3. If in_interrupt() yields the value 1, it jumps to step 5. This situation indicates either that
raise_softirq() has been invoked in interrupt context, or that the softirqs are currently disabled.

4.

4. Otherwise, invokes wakeup_softirqd() to wake up, if necessary, the ksoftirqd kernel thread of
the local CPU (see later).

5.

5. Executes the local_irq_restore macro to restore the state of the IF flag saved in step 1.

Checks for active (pending) softirqs should be perfomed periodically, but without inducing too much
overhead. They are performed in a few points of the kernel code. Here is a list of the most significant
points (be warned that number and position of the softirq checkpoints change both with the kernel
version and with the supported hardware architecture):



 When the kernel invokes the local_bh_enable() function[*] to enable softirqs on the local CPU

 [*] The name local_bh_enable() refers to a special type of deferrable function called "bottom
half" that no longer exists in Linux 2.6.



 When the do_IRQ() function finishes handling an I/O interrupt and invokes the irq_exit() macro


 If the system uses an I/O APIC, when the smp_apic_timer_interrupt() function finishes handling
a local timer interrupt (see the section "Timekeeping Architecture in Multiprocessor Systems" in
Chapter 6)



 In multiprocessor systems, when a CPU finishes handling a function triggered by a
CALL_FUNCTION_VECTOR interprocessor interrupt



 When one of the special ksoftirqd/n kernel threads is awakened (see later)

 4.7.1.3. The do_softirq() function

 If pending softirqs are detected at one such checkpoint (local_softirq_pending() is not zero), the kernel
invokes do_softirq() to take care of them. This function performs the following actions:

1.

1. If in_interrupt() yields the value one, this function returns. This situation indicates either that
do_softirq() has been invoked in interrupt context or that the softirqs are currently disabled.

2.

2. Executes local_irq_save to save the state of the IF flag and to disable the interrupts on the local
CPU.

3.

3. If the size of the thread_union structure is 4 KB, it switches to the soft IRQ stack, if necessary.
This step is very similar to step 2 of do_IRQ() in the earlier section "I/O Interrupt Handling;" of
course, the softirq_ctx array is used instead of hardirq_ctx.

4.

4. Invokes the _ _do_softirq() function (see the following section).
5.

5. If the soft IRQ stack has been effectively switched in step 3 above, it restores the original stack
pointer into the esp register, thus switching back to the exception stack that was in use before.

6.

6. Executes local_irq_restore to restore the state of the IF flag (local interrupts enabled or disabled)
saved in step 2 and returns.

4.7.1.4. The _ _do_softirq() function

 The _ _do_softirq() function reads the softirq bit mask of the local CPU and executes the deferrable
functions corresponding to every set bit. While executing a softirq function, new pending softirqs might
pop up; in order to ensure a low latency time for the deferrable funtions, _ _do_softirq() keeps running
until all pending softirqs have been executed. This mechanism, however, could force _ _do_softirq() to
run for long periods of time, thus considerably delaying User Mode processes. For that reason, _
_do_softirq() performs a fixed number of iterations and then returns. The remaining pending softirqs, if
any, will be handled in due time by the ksoftirqd kernel thread described in the next section. Here is a
short description of the actions performed by the function:

1.

1. Initializes the iteration counter to 10.
2.

2. Copies the softirq bit mask of the local CPU (selected by local_softirq_pending()) in the pending
local variable.

3.

3. Invokes local_bh_disable() to increase the softirq counter. It is somewhat counterintuitive that
deferrable functions should be disabled before starting to execute them, but it really makes a lot
of sense. Because the deferrable functions mostly run with interrupts enabled, an interrupt can be
raised in the middle of the _ _do_softirq() function. When do_IRQ() executes the irq_exit()
macro, another instance of the _ _do_softirq() function could be started. This has to be avoided,
because deferrable functions must execute serially on the CPU. Thus, the first instance of _
_do_softirq() disables deferrable functions, so that every new instance of the function will exit at
step 1 of do_softirq().

4.

4. Clears the softirq bitmap of the local CPU, so that new softirqs can be activated (the value of the
bit mask has already been saved in the pending local variable in step 2).

5.

5. Executes local_irq_enable() to enable local interrupts.
6.

6. For each bit set in the pending local variable, it executes the corresponding softirq function; recall
that the function address for the softirq with index n is stored in softirq_vec[n]->action.

7.

7. Executes local_irq_disable() to disable local interrupts.
8.

8. Copies the softirq bit mask of the local CPU into the pending local variable and decreases the
iteration counter one more time.

9.

9. If pending is not zeroat least one softirq has been activated since the start of the last iterationand
the iteration counter is still positive, it jumps back to step 4.

10.

10. If there are more pending softirqs, it invokes wakeup_softirqd() to wake up the kernel thread
that takes care of the softirqs for the local CPU (see next section).

11.

11.Subtracts 1 from the softirq counter, thus reenabling the deferrable functions.

4.7.1.5. The ksoftirqd kernel threads

 In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is the logical number
of the CPU). Each ksoftirqd/n kernel thread runs the ksoftirqd() function, which essentially executes the
following loop:

 for(;;) {

 set_current_state(TASK_INTERRUPTIBLE);

 schedule();

 /* now in TASK_RUNNING state */

 while (local_softirq_pending()) {

 preempt_disable();

 do_softirq();

 preempt_enable();

 cond_resched();

 }

 }

When awakened, the kernel thread checks the local_softirq_pending() softirq bit mask and invokes, if
necessary, do_softirq(). If there are no softirqs pending, the function puts the current process in the
TASK_INTERRUPTIBLE state and invokes then the cond_resched() function to perform a process
switch if required by the current process (flag TIF_NEED_RESCHED of the current thread_info set).

 The ksoftirqd/n kernel threads represent a solution for a critical trade-off problem.

 Softirq functions may reactivate themselves; in fact, both the networking softirqs and the tasklet softirqs
do this. Moreover, external events, such as packet flooding on a network card, may activate softirqs at
very high frequency.

 The potential for a continuous high-volume flow of softirqs creates a problem that is solved by
introducing kernel threads. Without them, developers are essentially faced with two alternative strategies.

 The first strategy consists of ignoring new softirqs that occur while do_softirq() is running. In other
words, the do_softirq() function could determine what softirqs are pending when the function is started
and then execute their functions. Next, it would terminate without rechecking the pending softirqs. This
solution is not good enough. Suppose that a softirq function is reactivated during the execution of
do_softirq(). In the worst case, the softirq is not executed again until the next timer interrupt, even if the
machine is idle. As a result, softirq latency time is unacceptable for networking developers.

 The second strategy consists of continuously rechecking for pending softirqs. The do_softirq() function
could keep checking the pending softirqs and would terminate only when none of them is pending. While
this solution might satisfy networking developers, it can certainly upset normal users of the system: if a
high-frequency flow of packets is received by a network card or a softirq function keeps activating itself,
the do_softirq() function never returns, and the User Mode programs are virtually stopped.

 The ksoftirqd/n kernel threads try to solve this difficult trade-off problem. The do_softirq() function
determines what softirqs are pending and executes their functions. After a few iterations, if the flow of
softirqs does not stop, the function wakes up the kernel thread and terminates (step 10 of _ _do_softirq(
)). The kernel thread has low priority, so user programs have a chance to run; but if the machine is idle,
the pending softirqs are executed quickly.

 4.7.2. Tasklets

 Tasklets are the preferred way to implement deferrable functions in I/O drivers. As already explained,
tasklets are built on top of two softirqs named HI_SOFTIRQ and TASKLET_SOFTIRQ. Several
tasklets may be associated with the same softirq, each tasklet carrying its own function. There is no real
difference between the two softirqs, except that do_softirq() executes HI_SOFTIRQ's tasklets before
TASKLET_SOFTIRQ's tasklets.

 Tasklets and high-priority tasklets are stored in the tasklet_vec and tasklet_hi_vec arrays, respectively.
Both of them include NR_CPUS elements of type tasklet_head, and each element consists of a pointer
to a list of tasklet descriptors. The tasklet descriptor is a data structure of type tasklet_struct, whose
fields are shown in Table 4-11.

 Table 4-11. The fields of the tasklet descriptor

Field name Description

next Pointer to next descriptor in the list

state Status of the tasklet

count Lock counter

func Pointer to the tasklet function

data An unsigned long integer that may be used by the
tasklet function

The state field of the tasklet descriptor includes two flags:

 TASKLET_STATE_SCHED

 When set, this indicates that the tasklet is pending (has been scheduled for execution); it also means that
the tasklet descriptor is inserted in one of the lists of the tasklet_vec and tasklet_hi_vec arrays.

TASKLET_STATE_RUN

 When set, this indicates that the tasklet is being executed; on a uniprocessor system this flag is not used
because there is no need to check whether a specific tasklet is running.

 Let's suppose you're writing a device driver and you want to use a tasklet: what has to be done? First of
all, you should allocate a new tasklet_struct data structure and initialize it by invoking tasklet_init(); this
function receives as its parameters the address of the tasklet descriptor, the address of your tasklet
function, and its optional integer argument.

 The tasklet may be selectively disabled by invoking either tasklet_disable_nosync() or tasklet_disable(
). Both functions increase the count field of the tasklet descriptor, but the latter function does not return
until an already running instance of the tasklet function has terminated. To reenable the tasklet, use
tasklet_enable().

 To activate the tasklet, you should invoke either the tasklet_schedule() function or the
tasklet_hi_schedule() function, according to the priority that you require for the tasklet. The two
functions are very similar; each of them performs the following actions:

1.

1. Checks the TASKLET_STATE_SCHED flag; if it is set, returns (the tasklet has already been
scheduled).

2.

2. Invokes local_irq_save to save the state of the IF flag and to disable local interrupts.
3.

3. Adds the tasklet descriptor at the beginning of the list pointed to by tasklet_vec[n] or
tasklet_hi_vec[n], where n denotes the logical number of the local CPU.

4.

4. Invokes raise_softirq_irqoff() to activate either the TASKLET_SOFTIRQ or the
HI_SOFTIRQ softirq (this function is similar to raise_softirq(), except that it assumes that local
interrupts are already disabled).

5.

5. Invokes local_irq_restore to restore the state of the IF flag.

Finally, let's see how the tasklet is executed. We know from the previous section that, once activated,
softirq functions are executed by the do_softirq() function. The softirq function associated with the
HI_SOFTIRQ softirq is named tasklet_hi_action(), while the function associated with
TASKLET_SOFTIRQ is named tasklet_action(). Once again, the two functions are very similar; each
of them:

1.

1. Disables local interrupts.
2.

2. Gets the logical number n of the local CPU.
3.

3. Stores the address of the list pointed to by tasklet_vec[n] or tasklet_hi_vec[n] in the list local
variable.

4.

4. Puts a NULL address in tasklet_vec[n] or tasklet_hi_vec[n], thus emptying the list of scheduled
tasklet descriptors.

5.

5. Enables local interrupts.
6.

6. For each tasklet descriptor in the list pointed to by list:
a.

a. In multiprocessor systems, checks the TASKLET_STATE_RUN flag of the tasklet.


 If it is set, a tasklet of the same type is already running on another CPU, so the function
reinserts the task descriptor in the list pointed to by tasklet_vec[n] or tasklet_hi_vec[n]
and activates the TASKLET_SOFTIRQ or HI_SOFTIRQ softirq again. In this way,
execution of the tasklet is deferred until no other tasklets of the same type are running on
other CPUs.



 Otherwise, the tasklet is not running on another CPU: sets the flag so that the tasklet
function cannot be executed on other CPUs.

b.

b. Checks whether the tasklet is disabled by looking at the count field of the tasklet descriptor.
If the tasklet is disabled, it clears its TASKLET_STATE_RUN flag and reinserts the task
descriptor in the list pointed to by tasklet_vec[n] or tasklet_hi_vec[n]; then the function
activates the TASKLET_SOFTIRQ or HI_SOFTIRQ softirq again.

c.

c. If the tasklet is enabled, it clears the TASKLET_STATE_SCHED flag and executes the
tasklet function.

Notice that, unless the tasklet function reactivates itself, every tasklet activation triggers at most one
execution of the tasklet function.

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.8. Work Queues
 The work queues have been introduced in Linux 2.6 and replace a similar construct called "task queue"
used in Linux 2.4. They allow kernel functions to be activated (much like deferrable functions) and later
executed by special kernel threads called worker threads .

 Despite their similarities, deferrable functions and work queues are quite different. The main difference is
that deferrable functions run in interrupt context while functions in work queues run in process context.
Running in process context is the only way to execute functions that can block (for instance, functions that
need to access some block of data on disk) because, as already observed in the section "Nested
Execution of Exception and Interrupt Handlers" earlier in this chapter, no process switch can take place
in interrupt context. Neither deferrable functions nor functions in a work queue can access the User
Mode address space of a process. In fact, a deferrable function cannot make any assumption about the
process that is currently running when it is executed. On the other hand, a function in a work queue is
executed by a kernel thread, so there is no User Mode address space to access.

 4.8.1.

4.8.1.1. Work queue data structures

 The main data structure associated with a work queue is a descriptor called workqueue_struct, which
contains, among other things, an array of NR_CPUS elements, the maximum number of CPUs in the
system.[*] Each element is a descriptor of type cpu_workqueue_struct, whose fields are shown in Table
4-12.

[*] The reason for duplicating the work queue data structures in multiprocessor systems is that per-CPU
local data structures yield a much more efficient code (see the section "Per-CPU Variables" in Chapter 5
).

 Table 4-12. The fields of the cpu_workqueue_struct structure

Field name Description

lock Spin lock used to protect the structure

remove_sequence Sequence number used by flush_workqueue()

insert_sequence Sequence number used by flush_workqueue()

worklist Head of the list of pending functions

more_work Wait queue where the worker thread waiting for
more work to be done sleeps

work_done Wait queue where the processes waiting for the
work queue to be flushed sleep

wq Pointer to the workqueue_struct structure
containing this descriptor

tHRead Process descriptor pointer of the worker thread of
the structure

run_depth
Current execution depth of run_workqueue() (this
field may become greater than one when a function
in the work queue list blocks)

The worklist field of the cpu_workqueue_struct structure is the head of a doubly linked list collecting the
pending functions of the work queue. Every pending function is represented by a work_struct data
structure, whose fields are shown in Table 4-13.

 Table 4-13. The fields of the work_struct structure

Field name Description

pending Set to 1 if the function is already in a work queue
list, 0 otherwise

entry Pointers to next and previous elements in the list of
pending functions

func Address of the pending function

data Pointer passed as a parameter to the pending
function

wq_data Usually points to the parent cpu_workqueue_struct
descriptor

timer Software timer used to delay the execution of the
pending function

4.8.1.2. Work queue functions

 The create_workqueue("foo") function receives as its parameter a string of characters and returns the
address of a workqueue_struct descriptor for the newly created work queue. The function also creates n
worker threads (where n is the number of CPUs effectively present in the system), named after the string
passed to the function: foo/0, foo/1, and so on. The create_singlethread_workqueue() function is similar,
but it creates just one worker thread, no matter what the number of CPUs in the system is. To destroy a
work queue the kernel invokes the destroy_workqueue() function, which receives as its parameter a
pointer to a workqueue_struct array.

 queue_work() inserts a function (already packaged inside a work_struct descriptor) in a work queue; it
receives a pointer wq to the workqueue_struct descriptor and a pointer work to the work_struct
descriptor. queue_work() essentially performs the following steps:

1.

1. Checks whether the function to be inserted is already present in the work queue
(work->pending field equal to 1); if so, terminates.

2.

2. Adds the work_struct descriptor to the work queue list, and sets work->pending to 1.
3.

3. If a worker thread is sleeping in the more_work wait queue of the local CPU's
cpu_workqueue_struct descriptor, the function wakes it up.

The queue_delayed_work() function is nearly identical to queue_work(), except that it receives a third
parameter representing a time delay in system ticks (see Chapter 6). It is used to ensure a minimum delay
before the execution of the pending function. In practice, queue_delayed_work() relies on the software
timer in the timer field of the work_struct descriptor to defer the actual insertion of the work_struct
descriptor in the work queue list. cancel_delayed_work() cancels a previously scheduled work queue
function, provided that the corresponding work_struct descriptor has not already been inserted in the
work queue list.

 Every worker thread continuously executes a loop inside the worker_thread() function; most of the time
the thread is sleeping and waiting for some work to be queued. Once awakened, the worker thread
invokes the run_workqueue() function, which essentially removes every work_struct descriptor from the
work queue list of the worker thread and executes the corresponding pending function. Because work
queue functions can block, the worker thread can be put to sleep and even migrated to another CPU
when resumed.[*]

[*] Strangely enough, a worker thread can be executed by every CPU, not just the CPU corresponding
to the cpu_workqueue_struct descriptor to which the worker thread belongs. Therefore, queue_work()
inserts a function in the queue of the local CPU, but that function may be executed by any CPU in the
systems.

 Sometimes the kernel has to wait until all pending functions in a work queue have been executed. The
flush_workqueue() function receives a workqueue_struct descriptor address and blocks the calling
process until all functions that are pending in the work queue terminate. The function, however, does not
wait for any pending function that was added to the work queue following flush_workqueue() invocation;
the remove_sequence and insert_sequence fields of every cpu_workqueue_struct descriptor are used to
recognize the newly added pending functions.

 4.8.1.3. The predefined work queue

 In most cases, creating a whole set of worker threads in order to run a function is overkill. Therefore, the
kernel offers a predefined work queue called events, which can be freely used by every kernel
developer. The predefined work queue is nothing more than a standard work queue that may include
functions of different kernel layers and I/O drivers; its workqueue_struct descriptor is stored in the
keventd_wq array. To make use of the predefined work queue, the kernel offers the functions listed in
Table 4-14.

 Table 4-14. Helper functions for the predefined work queue

Predefined work queue function Equivalent standard work queue function

schedule_work(w) queue_work(keventd_wq,w)

schedule_delayed_work(w,d) queue_delayed_work(keventd_wq,w,d) (on any
CPU)

schedule_delayed_work_on(cpu,w,d) queue_delayed_work(keventd_wq,w,d) (on a
given CPU)

flush_scheduled_work() flush_workqueue(keventd_wq)

The predefined work queue saves significant system resources when the function is seldom invoked. On
the other hand, functions executed in the predefined work queue should not block for a long time:
because the execution of the pending functions in the work queue list is serialized on each CPU, a long
delay negatively affects the other users of the predefined work queue.

 In addition to the general events queue, you'll find a few specialized work queues in Linux 2.6. The most
significant is the kblockd work queue used by the block device layer (see Chapter 14).

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.9. Returning from Interrupts and Exceptions
 We will finish the chapter by examining the termination phase of interrupt and exception handlers.
(Returning from a system call is a special case, and we shall describe it in Chapter 10.) Although the main
objective is clear namely, to resume execution of some program several issues must be considered before
doing it:

 Number of kernel control paths being concurrently executed

 If there is just one, the CPU must switch back to User Mode.

Pending process switch requests

 If there is any request, the kernel must perform process scheduling; otherwise, control is returned to the
current process.

Pending signals

 If a signal is sent to the current process, it must be handled.

Single-step mode

 If a debugger is tracing the execution of the current process, single-step mode must be restored before
switching back to User Mode.

Virtual-8086 mode

 If the CPU is in virtual-8086 mode, the current process is executing a legacy Real Mode program, thus
it must be handled in a special way.

 A few flags are used to keep track of pending process switch requests, of pending signals , and of single
step execution; they are stored in the flags field of the thread_info descriptor. The field stores other flags
as well, but they are not related to returning from interrupts and exceptions. See Table 4-15 for a
complete list of these flags.

 Table 4-15. The flags field of the thread_info descriptor (continues)

Flag name Description

TIF_SYSCALL_TRACE System calls are being traced

TIF_NOTIFY_RESUME Not used in the 80 x 86 platform

TIF_SIGPENDING The process has pending signals

TIF_NEED_RESCHED Scheduling must be performed

TIF_SINGLESTEP Restore single step execution on return to User
Mode

TIF_IRET Force return from system call via iret rather than
sysexit

TIF_SYSCALL_AUDIT System calls are being audited

TIF_POLLING_NRFLAG The idle process is polling the
TIF_NEED_RESCHED flag

TIF_MEMDIE
The process is being destroyed to reclaim memory
(see the section "The Out of Memory Killer" in
Chapter 17)

The kernel assembly language code that accomplishes all these things is not, technically speaking, a
function, because control is never returned to the functions that invoke it. It is a piece of code with two
different entry points: ret_from_intr() and ret_from_exception(). As their names suggest, the kernel
enters the former when terminating an interrupt handler, and it enters the latter when terminating an
exception handler. We shall refer to the two entry points as functions, because this makes the description
simpler.

 The general flow diagram with the corresponding two entry points is illustrated in Figure 4-6. The gray
boxes refer to assembly language instructions that implement kernel preemption (see Chapter 5); if you
want to see what the kernel does when it is compiled without support for kernel preemption, just ignore
the gray boxes. The ret_from_exception() and ret_from_intr() enTRy points look quite similar in the
flow diagram. A difference exists only if support for kernel preemption has been selected as a
compilation option: in this case, local interrupts are immediately disabled when returning from exceptions.

 Figure 4-6. Returning from interrupts and exceptions

 The flow diagram gives a rough idea of the steps required to resume the execution of an interrupted
program. Now we will go into detail by discussing the assembly language code.

 4.9.1.

4.9.1.1. The entry points

 The ret_from_intr() and ret_from_exception() entry points are essentially equivalent to the following
assembly language code:

 ret_from_exception:

 cli ; missing if kernel preemption is not supported

 ret_from_intr:

 movl $-8192, %ebp ; -4096 if multiple Kernel Mode stacks are used

 andl %esp, %ebp

 movl 0x30(%esp), %eax

 movb 0x2c(%esp), %al

 testl $0x00020003, %eax

 jnz resume_userspace

 jpm resume_kernel

Recall that when returning from an interrupt, the local interrupts are disabled (see step 3 in the earlier
description of handle_IRQ_event()); thus, the cli assembly language instruction is executed only when
returning from an exception.

 The kernel loads the address of the tHRead_info descriptor of current in the ebp register (see "
Identifying a Process" in Chapter 3).

 Next, the values of the cs and eflags registers, which were pushed on the stack when the interrupt or the
exception occurred, are used to determine whether the interrupted program was running in User Mode,
or if the VM flag of eflags was set.[*] In either case, a jump is made to the resume_userspace label.
Otherwise, a jump is made to the resume_kernel label.

[*] When this flag is set, programs are executed in virtual-8086 mode; see the Pentium manuals for more
details.

 4.9.1.2. Resuming a kernel control path

 The assembly language code at the resume_kernel label is executed if the program to be resumed is
running in Kernel Mode:

 resume_kernel:

 cli ; these three instructions are

 cmpl $0, 0x14(%ebp) ; missing if kernel preemption

 jz need_resched ; is not supported

 restore_all:

 popl %ebx

 popl %ecx

 popl %edx

 popl %esi

 popl %edi

 popl %ebp

 popl %eax

 popl %ds

 popl %es

 addl $4, %esp

 iret

If the preempt_count field of the tHRead_info descriptor is zero (kernel preemption enabled), the kernel
jumps to the need_resched label. Otherwise, the interrupted program is to be restarted. The function
loads the registers with the values saved when the interrupt or the exception started, and the function
yields control by executing the iret instruction.

 4.9.1.3. Checking for kernel preemption

 When this code is executed, none of the unfinished kernel control paths is an interrupt handler, otherwise
the preempt_count field would be greater than zero. However, as stated in "Nested Execution of
Exception and Interrupt Handlers" earlier in this chapter, there could be up to two kernel control paths
associated with exceptions (beside the one that is terminating).

 need_resched:

 movl 0x8(%ebp), %ecx

 testb $(1<<TIF_NEED_RESCHED), %cl

 jz restore_all

 testl $0x00000200,0x30(%esp)

 jz restore_all

 call preempt_schedule_irq

 jmp need_resched

If the TIF_NEED_RESCHED flag in the flags field of current->thread_info is zero, no process switch is
required, thus a jump is made to the restore_all label. Also a jump to the same label is made if the kernel
control path that is being resumed was running with the local interrupts disabled. In this case a process
switch could corrupt kernel data structures (see the section "When Synchronization Is Necessary" in
Chapter 5 for more details).

 If a process switch is required, the preempt_schedule_irq() function is invoked: it sets the
PREEMPT_ACTIVE flag in the preempt_count field, temporarily sets the big kernel lock counter to -1
(see the section "The Big Kernel Lock" in Chapter 5), enables the local interrupts, and invokes schedule(
) to select another process to run. When the former process will resume, preempt_schedule_irq()
restores the previous value of the big kernel lock counter, clears the PREEMPT_ACTIVE flag, and
disables local interrupts. The schedule() function will continue to be invoked as long as the
TIF_NEED_RESCHED flag of the current process is set.

 4.9.1.4. Resuming a User Mode program

 If the program to be resumed was running in User Mode, a jump is made to the resume_userspace label:

 resume_userspace:

 cli

 movl 0x8(%ebp), %ecx

 andl $0x0000ff6e, %ecx

 je restore_all

 jmp work_pending

After disabling the local interrupts, a check is made on the value of the flags field of current->thread_info.
If no flag except TIF_SYSCALL_TRACE, TIF_SYSCALL_AUDIT, or TIF_SINGLESTEP is set,
nothing remains to be done: a jump is made to the restore_all label, thus resuming the User Mode
program.

 4.9.1.5. Checking for rescheduling

 The flags in the thread_info descriptor state that additional work is required before resuming the
interrupted program.

 work_pending:

 testb $(1<<TIF_NEED_RESCHED), %cl

 jz work_notifysig

 work_resched:

 call schedule

 cli

 jmp resume_userspace

If a process switch request is pending, schedule() is invoked to select another process to run. When the
former process will resume, a jump is made back to resume_userspace.

 4.9.1.6. Handling pending signals, virtual-8086 mode, and single stepping

 There is other work to be done besides process switch requests:

 work_notifysig:

 movl %esp, %eax

 testl $0x00020000, 0x30(%esp)

 je 1f

 work_notifysig_v86:

 pushl %ecx

 call save_v86_state

 popl %ecx

 movl %eax, %esp

 1:

 xorl %edx, %edx

 call do_notify_resume

 jmp restore_all

If the VM control flag in the eflags register of the User Mode program is set, the save_v86_state()
function is invoked to build up the virtual-8086 mode data structures in the User Mode address space.
Then the do_notify_resume() function is invoked to take care of pending signals and single stepping.
Finally, a jump is made to the restore_all label to resume the interrupted program.

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 5. Kernel Synchronization
 You could think of the kernel as a server that answers requests; these requests can come either from a
process running on a CPU or an external device issuing an interrupt request. We make this analogy to
underscore that parts of the kernel are not run serially, but in an interleaved way. Thus, they can give rise
to race conditions, which must be controlled through proper synchronization techniques. A general
introduction to these topics can be found in the section "An Overview of Unix Kernels" in Chapter 1.

 We start this chapter by reviewing when, and to what extent, kernel requests are executed in an
interleaved fashion. We then introduce the basic synchronization primitives implemented by the kernel
and describe how they are applied in the most common cases. Finally, we illustrate a few practical
examples.

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.1. How the Kernel Services Requests
 To get a better grasp of how kernel's code is executed, we will look at the kernel as a waiter who must
satisfy two types of requests: those issued by customers and those issued by a limited number of different
bosses. The policy adopted by the waiter is the following:

1.

1. If a boss calls while the waiter is idle, the waiter starts servicing the boss.
2.

2. If a boss calls while the waiter is servicing a customer, the waiter stops servicing the customer
and starts servicing the boss.

3.

3. If a boss calls while the waiter is servicing another boss, the waiter stops servicing the first boss
and starts servicing the second one. When he finishes servicing the new boss, he resumes
servicing the former one.

4.

4. One of the bosses may induce the waiter to leave the customer being currently serviced. After
servicing the last request of the bosses, the waiter may decide to drop temporarily his customer
and to pick up a new one.

The services performed by the waiter correspond to the code executed when the CPU is in Kernel
Mode. If the CPU is executing in User Mode, the waiter is considered idle.

 Boss requests correspond to interrupts, while customer requests correspond to system calls or
exceptions raised by User Mode processes. As we shall see in detail in Chapter 10, User Mode
processes that want to request a service from the kernel must issue an appropriate instruction (on the
80x86, an int $0x80 or a sysenter instruction). Such instructions raise an exception that forces the CPU
to switch from User Mode to Kernel Mode. In the rest of this chapter, we will generally denote as
"exceptions" both the system calls and the usual exceptions.

 The careful reader has already associated the first three rules with the nesting of kernel control paths
described in "Nested Execution of Exception and Interrupt Handlers" in Chapter 4. The fourth rule
corresponds to one of the most interesting new features included in the Linux 2.6 kernel, namely kernel
preemption .

 5.1.1. Kernel Preemption

 It is surprisingly hard to give a good definition of kernel preemption. As a first try, we could say that a
kernel is preemptive if a process switch may occur while the replaced process is executing a kernel
function, that is, while it runs in Kernel Mode. Unfortunately, in Linux (as well as in any other real
operating system) things are much more complicated:



 Both in preemptive and nonpreemptive kernels, a process running in Kernel Mode can
voluntarily relinquish the CPU, for instance because it has to sleep waiting for some resource. We
will call this kind of process switch a planned process switch. However, a preemptive kernel
differs from a nonpreemptive kernel on the way a process running in Kernel Mode reacts to
asynchronous events that could induce a process switchfor instance, an interrupt handler that
awakes a higher priority process. We will call this kind of process switch a forced process
switch.



 All process switches are performed by the switch_to macro. In both preemptive and
nonpreemptive kernels, a process switch occurs when a process has finished some thread of
kernel activity and the scheduler is invoked. However, in nonpreemptive kernels, the current
process cannot be replaced unless it is about to switch to User Mode (see the section "
Performing the Process Switch" in Chapter 3).

 Therefore, the main characteristic of a preemptive kernel is that a process running in Kernel Mode can
be replaced by another process while in the middle of a kernel function.

 Let's give a couple of examples to illustrate the difference between preemptive and nonpreemptive
kernels.

 While process A executes an exception handler (necessarily in Kernel Mode), a higher priority process
B becomes runnable. This could happen, for instance, if an IRQ occurs and the corresponding handler
awakens process B. If the kernel is preemptive, a forced process switch replaces process A with B. The
exception handler is left unfinished and will be resumed only when the scheduler selects again process A
for execution. Conversely, if the kernel is nonpreemptive, no process switch occurs until process A either
finishes handling the exception handler or voluntarily relinquishes the CPU.

 For another example, consider a process that executes an exception handler and whose time quantum
expires (see the section "The scheduler_tick() Function" in Chapter 7). If the kernel is preemptive, the
process may be replaced immediately; however, if the kernel is nonpreemptive, the process continues to
run until it finishes handling the exception handler or voluntarily relinquishes the CPU.

 The main motivation for making a kernel preemptive is to reduce the dispatch latency of the User Mode
processes, that is, the delay between the time they become runnable and the time they actually begin
running. Processes performing timely scheduled tasks (such as external hardware controllers,
environmental monitors, movie players, and so on) really benefit from kernel preemption, because it
reduces the risk of being delayed by another process running in Kernel Mode.

 Making the Linux 2.6 kernel preemptive did not require a drastic change in the kernel design with
respect to the older nonpreemptive kernel versions. As described in the section "Returning from
Interrupts and Exceptions" in Chapter 4, kernel preemption is disabled when the preempt_count field in
the tHRead_info descriptor referenced by the current_thread_info() macro is greater than zero. The field
encodes three different counters, as shown in Table 4-10 in Chapter 4, so it is greater than zero when
any of the following cases occurs:

1.

1. The kernel is executing an interrupt service routine.
2.

2. The deferrable functions are disabled (always true when the kernel is executing a softirq or
tasklet).

3.

3. The kernel preemption has been explicitly disabled by setting the preemption counter to a
positive value.

The above rules tell us that the kernel can be preempted only when it is executing an exception handler
(in particular a system call) and the kernel preemption has not been explicitly disabled. Furthermore, as
described in the section "Returning from Interrupts and Exceptions" in Chapter 4, the local CPU must
have local interrupts enabled, otherwise kernel preemption is not performed.

 A few simple macros listed in Table 5-1 deal with the preemption counter in the prempt_count field.

 Table 5-1. Macros dealing with the preemption counter subfield

Macro Description

preempt_count() Selects the preempt_count field in the tHRead_info
descriptor

preempt_disable() Increases by one the value of the preemption
counter

preempt_enable_no_resched() Decreases by one the value of the preemption
counter

preempt_enable() Decreases by one the value of the preemption
counter, and invokes preempt_schedule() if the
TIF_NEED_RESCHED flag in the thread_info
descriptor is set

get_cpu() Similar to preempt_disable(), but also returns the
number of the local CPU

put_cpu() Same as preempt_enable()

put_cpu_no_resched() Same as preempt_enable_no_resched()

The preempt_enable() macro decreases the preemption counter, then checks whether the
TIF_NEED_RESCHED flag is set (see Table 4-15 in Chapter 4). In this case, a process switch request
is pending, so the macro invokes the preempt_schedule() function, which essentially executes the
following code:

 if (!current_thread_info->preempt_count && !irqs_disabled()) {

 current_thread_info->preempt_count = PREEMPT_ACTIVE;

 schedule();

 current_thread_info->preempt_count = 0;

 }

The function checks whether local interrupts are enabled and the preempt_count field of current is zero; if
both conditions are true, it invokes schedule() to select another process to run. Therefore, kernel
preemption may happen either when a kernel control path (usually, an interrupt handler) is terminated, or
when an exception handler reenables kernel preemption by means of preempt_enable(). As we'll see in
the section "Disabling and Enabling Deferrable Functions" later in this chapter, kernel preemption may
also happen when deferrable functions are enabled.

 We'll conclude this section by noticing that kernel preemption introduces a nonnegligible overhead. For
that reason, Linux 2.6 features a kernel configuration option that allows users to enable or disable kernel
preemption when compiling the kernel.

 5.1.2. When Synchronization Is Necessary

 Chapter 1 introduced the concepts of race condition and critical region for processes. The same
definitions apply to kernel control paths . In this chapter, a race condition can occur when the outcome of
a computation depends on how two or more interleaved kernel control paths are nested. A critical region
is a section of code that must be completely executed by the kernel control path that enters it before
another kernel control path can enter it.

 Interleaving kernel control paths complicates the life of kernel developers: they must apply special care in
order to identify the critical regions in exception handlers, interrupt handlers, deferrable functions, and
kernel threads . Once a critical region has been identified, it must be suitably protected to ensure that any
time at most one kernel control path is inside that region.

 Suppose, for instance, that two different interrupt handlers need to access the same data structure that
contains several related member variables for instance, a buffer and an integer indicating its length. All
statements affecting the data structure must be put into a single critical region. If the system includes a
single CPU, the critical region can be implemented by disabling interrupts while accessing the shared data
structure, because nesting of kernel control paths can only occur when interrupts are enabled.

 On the other hand, if the same data structure is accessed only by the service routines of system calls, and
if the system includes a single CPU, the critical region can be implemented quite simply by disabling
kernel preemption while accessing the shared data structure.

 As you would expect, things are more complicated in multiprocessor systems. Many CPUs may execute
kernel code at the same time, so kernel developers cannot assume that a data structure can be safely
accessed just because kernel preemption is disabled and the data structure is never addressed by an
interrupt, exception, or softirq handler.

 We'll see in the following sections that the kernel offers a wide range of different synchronization
techniques. It is up to kernel designers to solve each synchronization problem by selecting the most
efficient technique.

 5.1.3. When Synchronization Is Not Necessary

 Some design choices already discussed in the previous chapter simplify somewhat the synchronization of
kernel control paths. Let us recall them briefly:



 All interrupt handlers acknowledge the interrupt on the PIC and also disable the IRQ line.
Further occurrences of the same interrupt cannot occur until the handler terminates.



 Interrupt handlers, softirqs, and tasklets are both nonpreemptable and non-blocking, so they
cannot be suspended for a long time interval. In the worst case, their execution will be slightly
delayed, because other interrupts occur during their execution (nested execution of kernel control
paths).



 A kernel control path performing interrupt handling cannot be interrupted by a kernel control path
executing a deferrable function or a system call service routine.



 Softirqs and tasklets cannot be interleaved on a given CPU.


 The same tasklet cannot be executed simultaneously on several CPUs.

 Each of the above design choices can be viewed as a constraint that can be exploited to code some
kernel functions more easily. Here are a few examples of possible simplifications:



 Interrupt handlers and tasklets need not to be coded as reentrant functions.


 Per-CPU variables accessed by softirqs and tasklets only do not require synchronization.


 A data structure accessed by only one kind of tasklet does not require synchronization.

 The rest of this chapter describes what to do when synchronization is necessary i.e., how to prevent data
corruption due to unsafe accesses to shared data structures.

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.2. Synchronization Primitives
 We now examine how kernel control paths can be interleaved while avoiding race conditions among
shared data. Table 5-2 lists the synchronization techniques used by the Linux kernel. The "Scope" column
indicates whether the synchronization technique applies to all CPUs in the system or to a single CPU. For
instance, local interrupt disabling applies to just one CPU (other CPUs in the system are not affected);
conversely, an atomic operation affects all CPUs in the system (atomic operations on several CPUs
cannot interleave while accessing the same data structure).

 Table 5-2. Various types of synchronization techniques used by the kernel

Technique Description Scope

Per-CPU variables Duplicate a data structure among
the CPUs All CPUs

Atomic operation Atomic read-modify-write
instruction to a counter All CPUs

Memory barrier Avoid instruction reordering Local CPU or All CPUs

Spin lock Lock with busy wait All CPUs

Semaphore Lock with blocking wait (sleep) All CPUs

Seqlocks Lock based on an access counter All CPUs

Local interrupt disabling Forbid interrupt handling on a
single CPU Local CPU

Local softirq disabling Forbid deferrable function
handling on a single CPU Local CPU

Read-copy-update (RCU) Lock-free access to shared data
structures through pointers All CPUs

Let's now briefly discuss each synchronization technique. In the later section "Synchronizing Accesses to
Kernel Data Structures," we show how these synchronization techniques can be combined to effectively
protect kernel data structures.

 5.2.1. Per-CPU Variables

 The best synchronization technique consists in designing the kernel so as to avoid the need for
synchronization in the first place. As we'll see, in fact, every explicit synchronization primitive has a
significant performance cost.

 The simplest and most efficient synchronization technique consists of declaring kernel variables as
per-CPU variables . Basically, a per-CPU variable is an array of data structures, one element per each
CPU in the system.

 A CPU should not access the elements of the array corresponding to the other CPUs; on the other
hand, it can freely read and modify its own element without fear of race conditions, because it is the only
CPU entitled to do so. This also means, however, that the per-CPU variables can be used only in
particular casesbasically, when it makes sense to logically split the data across the CPUs of the system.

 The elements of the per-CPU array are aligned in main memory so that each data structure falls on a
different line of the hardware cache (see the section "Hardware Cache" in Chapter 2). Therefore,
concurrent accesses to the per-CPU array do not result in cache line snooping and invalidation, which
are costly operations in terms of system performance.

 While per-CPU variables provide protection against concurrent accesses from several CPUs, they do
not provide protection against accesses from asynchronous functions (interrupt handlers and deferrable
functions). In these cases, additional synchronization primitives are required.

 Furthermore, per-CPU variables are prone to race conditions caused by kernel preemption , both in
uniprocessor and multiprocessor systems. As a general rule, a kernel control path should access a
per-CPU variable with kernel preemption disabled. Just consider, for instance, what would happen if a
kernel control path gets the address of its local copy of a per-CPU variable, and then it is preempted and
moved to another CPU: the address still refers to the element of the previous CPU.

 Table 5-3 lists the main functions and macros offered by the kernel to use per-CPU variables.

 Table 5-3. Functions and macros for the per-CPU variables

Macro or function name Description

DEFINE_PER_CPU(type, name) Statically allocates a per-CPU array called name of
type data structures

per_cpu(name, cpu) Selects the element for CPU cpu of the per-CPU
array name

_ _get_cpu_var(name) Selects the local CPU's element of the per-CPU
array name

get_cpu_var(name) Disables kernel preemption, then selects the local
CPU's element of the per-CPU array name

put_cpu_var(name) Enables kernel preemption (name is not used)

alloc_percpu(type) Dynamically allocates a per-CPU array of type
data structures and returns its address

free_percpu(pointer) Releases a dynamically allocated per-CPU array at
address pointer

per_cpu_ptr(pointer, cpu) Returns the address of the element for CPU cpu of
the per-CPU array at address pointer

5.2.2. Atomic Operations

 Several assembly language instructions are of type "read-modify-write" that is, they access a memory
location twice, the first time to read the old value and the second time to write a new value.

 Suppose that two kernel control paths running on two CPUs try to "read-modify-write" the same
memory location at the same time by executing nonatomic operations. At first, both CPUs try to read the
same location, but the memory arbiter (a hardware circuit that serializes accesses to the RAM chips)
steps in to grant access to one of them and delay the other. However, when the first read operation has
completed, the delayed CPU reads exactly the same (old) value from the memory location. Both CPUs
then try to write the same (new) value to the memory location; again, the bus memory access is serialized
by the memory arbiter, and eventually both write operations succeed. However, the global result is
incorrect because both CPUs write the same (new) value. Thus, the two interleaving "read-modify-write"
operations act as a single one.

 The easiest way to prevent race conditions due to "read-modify-write" instructions is by ensuring that
such operations are atomic at the chip level. Every such operation must be executed in a single instruction
without being interrupted in the middle and avoiding accesses to the same memory location by other
CPUs. These very small atomic operations can be found at the base of other, more flexible mechanisms
to create critical regions.

 Let's review 80x86 Instructions According To That classification:


 Assembly language instructions that make zero or one aligned memory access are atomic.[*]

 [*] A data item is aligned in memory when its address is a multiple of its size in bytes. For
instance, the address of an aligned short integer must be a multiple of two, while the address of
an aligned integer must be a multiple of four. Generally speaking, an unaligned memory access is
not atomic.



 Read-modify-write assembly language instructions (such as inc or dec) that read data from
memory, update it, and write the updated value back to memory are atomic if no other processor
has taken the memory bus after the read and before the write. Memory bus stealing never
happens in a uniprocessor system.



 Read-modify-write assembly language instructions whose opcode is prefixed by the lock byte
(0xf0) are atomic even on a multiprocessor system. When the control unit detects the prefix, it
"locks" the memory bus until the instruction is finished. Therefore, other processors cannot access
the memory location while the locked instruction is being executed.



 Assembly language instructions whose opcode is prefixed by a rep byte (0xf2, 0xf3, which
forces the control unit to repeat the same instruction several times) are not atomic. The control
unit checks for pending interrupts before executing a new iteration.

 When you write C code, you cannot guarantee that the compiler will use an atomic instruction for an
operation like a=a+1 or even for a++. Thus, the Linux kernel provides a special atomic_t type (an
atomically accessible counter) and some special functions and macros (see Table 5-4) that act on
atomic_t variables and are implemented as single, atomic assembly language instructions. On
multiprocessor systems, each such instruction is prefixed by a lock byte.

 Table 5-4. Atomic operations in Linux

Function Description

atomic_read(v) Return *v

atomic_set(v,i) Set *v to i

atomic_add(i,v) Add i to *v

atomic_sub(i,v) Subtract i from *v

atomic_sub_and_test(i, v) Subtract i from *v and return 1 if the result is zero;
0 otherwise

atomic_inc(v) Add 1 to *v

atomic_dec(v) Subtract 1 from *v

atomic_dec_and_test(v) Subtract 1 from *v and return 1 if the result is zero;
0 otherwise

atomic_inc_and_test(v) Add 1 to *v and return 1 if the result is zero; 0
otherwise

atomic_add_negative(i, v) Add i to *v and return 1 if the result is negative; 0
otherwise

atomic_inc_return(v) Add 1 to *v and return the new value of *v

atomic_dec_return(v) Subtract 1 from *v and return the new value of *v

atomic_add_return(i, v) Add i to *v and return the new value of *v

atomic_sub_return(i, v) Subtract i from *v and return the new value of *v

Another class of atomic functions operate on bit masks (see Table 5-5).

 Table 5-5. Atomic bit handling functions in Linux

Function Description

test_bit(nr, addr) Return the value of the nrth bit of *addr

set_bit(nr, addr) Set the nrth bit of *addr

clear_bit(nr, addr) Clear the nrth bit of *addr

change_bit(nr, addr) Invert the nrth bit of *addr

test_and_set_bit(nr, addr) Set the nrth bit of *addr and return its old value

test_and_clear_bit(nr, addr) Clear the nrth bit of *addr and return its old value

test_and_change_bit(nr, addr) Invert the nrth bit of *addr and return its old value

atomic_clear_mask(mask, addr) Clear all bits of *addr specified by mask

atomic_set_mask(mask, addr) Set all bits of *addr specified by mask

5.2.3. Optimization and Memory Barriers

 When using optimizing compilers, you should never take for granted that instructions will be performed in
the exact order in which they appear in the source code. For example, a compiler might reorder the
assembly language instructions in such a way to optimize how registers are used. Moreover, modern
CPUs usually execute several instructions in parallel and might reorder memory accesses. These kinds of
reordering can greatly speed up the program.

 When dealing with synchronization, however, reordering instructions must be avoided. Things would
quickly become hairy if an instruction placed after a synchronization primitive is executed before the
synchronization primitive itself. Therefore, all synchronization primitives act as optimization and memory
barriers .

 An optimization barrier primitive ensures that the assembly language instructions corresponding to C
statements placed before the primitive are not mixed by the compiler with assembly language instructions
corresponding to C statements placed after the primitive. In Linux the barrier() macro, which expands
into asm volatile("":::"memory"), acts as an optimization barrier. The asm instruction tells the compiler to
insert an assembly language fragment (empty, in this case). The volatile keyword forbids the compiler to
reshuffle the asm instruction with the other instructions of the program. The memory keyword forces the
compiler to assume that all memory locations in RAM have been changed by the assembly language
instruction; therefore, the compiler cannot optimize the code by using the values of memory locations
stored in CPU registers before the asm instruction. Notice that the optimization barrier does not ensure
that the executions of the assembly language instructions are not mixed by the CPUthis is a job for a
memory barrier.

 A memory barrier primitive ensures that the operations placed before the primitive are finished before
starting the operations placed after the primitive. Thus, a memory barrier is like a firewall that cannot be
passed by an assembly language instruction.

 In the 80x86 processors, the following kinds of assembly language instructions are said to be "serializing"
because they act as memory barriers:



 All instructions that operate on I/O ports


 All instructions prefixed by the lock byte (see the section "Atomic Operations")


 All instructions that write into control registers, system registers, or debug registers (for instance,
cli and sti , which change the status of the IF flag in the eflags register)



 The lfence , sfence , and mfence assembly language instructions, which have been introduced in
the Pentium 4 microprocessor to efficiently implement read memory barriers, write memory
barriers, and read-write memory barriers, respectively.



 A few special assembly language instructions; among them, the iret instruction that terminates an
interrupt or exception handler

 Linux uses a few memory barrier primitives, which are shown in Table 5-6. These primitives act also as
optimization barriers , because we must make sure the compiler does not move the assembly language
instructions around the barrier. "Read memory barriers" act only on instructions that read from memory,
while "write memory barriers" act only on instructions that write to memory. Memory barriers can be
useful in both multiprocessor and uniprocessor systems. The smp_xxx() primitives are used whenever
the memory barrier should prevent race conditions that might occur only in multiprocessor systems; in
uniprocessor systems, they do nothing. The other memory barriers are used to prevent race conditions
occurring both in uniprocessor and multiprocessor systems.

 Table 5-6. Memory barriers in Linux

Macro Description

mb() Memory barrier for MP and UP

rmb() Read memory barrier for MP and UP

wmb() Write memory barrier for MP and UP

smp_mb() Memory barrier for MP only

smp_rmb() Read memory barrier for MP only

smp_wmb() Write memory barrier for MP only

The implementations of the memory barrier primitives depend on the architecture of the system. On an
80x86 microprocessor, the rmb() macro usually expands into asm volatile("lfence") if the CPU supports
the lfence assembly language instruction, or into asm volatile("lock;addl $0,0(%%esp)":::"memory")
otherwise. The asm statement inserts an assembly language fragment in the code generated by the
compiler and acts as an optimization barrier. The lock; addl $0,0(%%esp) assembly language instruction
adds zero to the memory location on top of the stack; the instruction is useless by itself, but the lock
prefix makes the instruction a memory barrier for the CPU.

 The wmb() macro is actually simpler because it expands into barrier(). This is because existing Intel
microprocessors never reorder write memory accesses, so there is no need to insert a serializing
assembly language instruction in the code. The macro, however, forbids the compiler from shuffling the
instructions.

 Notice that in multiprocessor systems, all atomic operations described in the earlier section "Atomic
Operations" act as memory barriers because they use the lock byte.

 5.2.4. Spin Locks

 A widely used synchronization technique is locking. When a kernel control path must access a shared
data structure or enter a critical region, it needs to acquire a "lock" for it. A resource protected by a
locking mechanism is quite similar to a resource confined in a room whose door is locked when someone
is inside. If a kernel control path wishes to access the resource, it tries to "open the door" by acquiring
the lock. It succeeds only if the resource is free. Then, as long as it wants to use the resource, the door
remains locked. When the kernel control path releases the lock, the door is unlocked and another kernel
control path may enter the room.

 Figure 5-1 illustrates the use of locks. Five kernel control paths (P0, P1, P2, P3, and P4) are trying to
access two critical regions (C1 and C2). Kernel control path P0 is inside C1, while P2 and P4 are
waiting to enter it. At the same time, P1 is inside C2, while P3 is waiting to enter it. Notice that P0 and
P1 could run concurrently. The lock for critical region C3 is open because no kernel control path needs
to enter it.

 Figure 5-1. Protecting critical regions with several locks

 Spin locks are a special kind of lock designed to work in a multiprocessor environment. If the kernel
control path finds the spin lock "open," it acquires the lock and continues its execution. Conversely, if the
kernel control path finds the lock "closed" by a kernel control path running on another CPU, it "spins"
around, repeatedly executing a tight instruction loop, until the lock is released.

 The instruction loop of spin locks represents a "busy wait." The waiting kernel control path keeps
running on the CPU, even if it has nothing to do besides waste time. Nevertheless, spin locks are usually
convenient, because many kernel resources are locked for a fraction of a millisecond only; therefore, it
would be far more time-consuming to release the CPU and reacquire it later.

 As a general rule, kernel preemption is disabled in every critical region protected by spin locks. In the
case of a uniprocessor system, the locks themselves are useless, and the spin lock primitives just disable
or enable the kernel preemption. Please notice that kernel preemption is still enabled during the busy wait
phase, thus a process waiting for a spin lock to be released could be replaced by a higher priority
process.

 In Linux, each spin lock is represented by a spinlock_t structure consisting of two fields:

 slock

 Encodes the spin lock state: the value 1 corresponds to the unlocked state, while every negative value
and 0 denote the locked state

break_lock

 Flag signaling that a process is busy waiting for the lock (present only if the kernel supports both SMP
and kernel preemption)

 Six macros shown in Table 5-7 are used to initialize, test, and set spin locks. All these macros are based
on atomic operations; this ensures that the spin lock will be updated properly even when multiple
processes running on different CPUs try to modify the lock at the same time.[*]

[*] Spin locks, ironically enough, are global and therefore must themselves be protected against
concurrent accesses.

 Table 5-7. Spin lock macros

Macro Description

spin_lock_init() Set the spin lock to 1 (unlocked)

spin_lock() Cycle until spin lock becomes 1 (unlocked), then
set it to 0 (locked)

spin_unlock() Set the spin lock to 1 (unlocked)

spin_unlock_wait() Wait until the spin lock becomes 1 (unlocked)

spin_is_locked() Return 0 if the spin lock is set to 1 (unlocked); 1
otherwise

spin_trylock() Set the spin lock to 0 (locked), and return 1 if the
previous value of the lock was 1; 0 otherwise

5.2.4.1. The spin_lock macro with kernel preemption

 Let's discuss in detail the spin_lock macro, which is used to acquire a spin lock. The following
description refers to a preemptive kernel for an SMP system. The macro takes the address slp of the
spin lock as its parameter and executes the following actions:

1.

1. Invokes preempt_disable() to disable kernel preemption.
2.

2. Invokes the _raw_spin_trylock() function, which does an atomic test-and-set operation on the
spin lock's slock field; this function executes first some instructions equivalent to the following
assembly language fragment:

2. movb $0, %al

 xchgb %al, slp->slock

2. The xchg assembly language instruction exchanges atomically the content of the 8-bit %al register
(storing zero) with the content of the memory location pointed to by slp->slock. The function
then returns the value 1 if the old value stored in the spin lock (in %al after the xchg instruction)
was positive, the value 0 otherwise.

3.

3. If the old value of the spin lock was positive, the macro terminates: the kernel control path has
acquired the spin lock.

4.

4. Otherwise, the kernel control path failed in acquiring the spin lock, thus the macro must cycle
until the spin lock is released by a kernel control path running on some other CPU. Invokes
preempt_enable() to undo the increase of the preemption counter done in step 1. If kernel
preemption was enabled before executing the spin_lock macro, another process can now replace
this process while it waits for the spin lock.

5.

5. If the break_lock field is equal to zero, sets it to one. By checking this field, the process owning
the lock and running on another CPU can learn whether there are other processes waiting for the
lock. If a process holds a spin lock for a long time, it may decide to release it prematurely to
allow another process waiting for the same spin lock to progress.

6.

6. Executes the wait cycle:

6. while (spin_is_locked(slp) && slp->break_lock)

 cpu_relax();

6. The cpu_relax() macro reduces to a pause assembly language instruction. This instruction has
been introduced in the Pentium 4 model to optimize the execution of spin lock loops. By
introducing a short delay, it speeds up the execution of code following the lock and reduces
power consumption. The pause instruction is backward compatible with earlier models of 80x86
microprocessors because it corresponds to the instruction rep;nop, that is, to a no-operation.

7.

7. Jumps back to step 1 to try once more to get the spin lock.

5.2.4.2. The spin_lock macro without kernel preemption

 If the kernel preemption option has not been selected when the kernel was compiled, the spin_lock
macro is quite different from the one described above. In this case, the macro yields a assembly language
fragment that is essentially equivalent to the following tight busy wait:[*]

[*] The actual implementation of the tight busy wait loop is slightly more complicated. The code at label
2, which is executed only if the spin lock is busy, is included in an auxiliary section so that in the most
frequent case (when the spin lock is already free) the hardware cache is not filled with code that won't be
executed. In our discussion, we omit these optimization details.

 1: lock; decb slp->slock

 jns 3f

 2: pause

 cmpb $0,slp->slock

 jle 2b

 jmp 1b

 3:

The decb assembly language instruction decreases the spin lock value; the instruction is atomic because it
is prefixed by the lock byte. A test is then performed on the sign flag. If it is clear, it means that the spin
lock was set to 1 (unlocked), so normal execution continues at label 3 (the f suffix denotes the fact that
the label is a "forward" one; it appears in a later line of the program). Otherwise, the tight loop at label 2
(the b suffix denotes a "backward" label) is executed until the spin lock assumes a positive value. Then
execution restarts from label 1, since it is unsafe to proceed without checking whether another processor
has grabbed the lock.

 5.2.4.3. The spin_unlock macro

 The spin_unlock macro releases a previously acquired spin lock; it essentially executes the assembly
language instruction:

 movb $1, slp->slock

and then invokes preempt_enable() (if kernel preemption is not supported, preempt_enable() does
nothing). Notice that the lock byte is not used because write-only accesses in memory are always
atomically executed by the current 80x86 microprocessors.

 5.2.5. Read/Write Spin Locks

 Read/write spin locks have been introduced to increase the amount of concurrency inside the kernel.
They allow several kernel control paths to simultaneously read the same data structure, as long as no
kernel control path modifies it. If a kernel control path wishes to write to the structure, it must acquire the
write version of the read/write lock, which grants exclusive access to the resource. Of course, allowing
concurrent reads on data structures improves system performance.

 Figure 5-2 illustrates two critical regions (C1 and C2) protected by read/write locks. Kernel control
paths R0 and R1 are reading the data structures in C1 at the same time, while W0 is waiting to acquire
the lock for writing. Kernel control path W1 is writing the data structures in C2, while both R2 and W2
are waiting to acquire the lock for reading and writing, respectively.

 Figure 5-2. Read/write spin locks

 Each read/write spin lock is a rwlock_t structure; its lock field is a 32-bit field that encodes two distinct
pieces of information:



 A 24-bit counter denoting the number of kernel control paths currently reading the protected
data structure. The two's complement value of this counter is stored in bits 023 of the field.



 An unlock flag that is set when no kernel control path is reading or writing, and clear otherwise.
This unlock flag is stored in bit 24 of the field.

 Notice that the lock field stores the number 0x01000000 if the spin lock is idle (unlock flag set and no
readers), the number 0x00000000 if it has been acquired for writing (unlock flag clear and no readers),
and any number in the sequence 0x00ffffff, 0x00fffffe, and so on, if it has been acquired for reading by
one, two, or more processes (unlock flag clear and the two's complement on 24 bits of the number of
readers). As the spinlock_t structure, the rwlock_t structure also includes a break_lock field.

 The rwlock_init macro initializes the lock field of a read/write spin lock to 0x01000000 (unlocked) and
the break_lock field to zero.

 5.2.5.1. Getting and releasing a lock for reading

 The read_lock macro, applied to the address rwlp of a read/write spin lock, is similar to the spin_lock
macro described in the previous section. If the kernel preemption option has been selected when the
kernel was compiled, the macro performs the very same actions as those of spin_lock(), with just one
exception: to effectively acquire the read/write spin lock in step 2, the macro executes the
_raw_read_trylock() function:

 int _raw_read_trylock(rwlock_t *lock)

 {

 atomic_t *count = (atomic_t *)lock->lock;

 atomic_dec(count);

 if (atomic_read(count) >= 0)

 return 1;

 atomic_inc(count);

 return 0;

 }

The lock fieldthe read/write lock counteris accessed by means of atomic operations. Notice, however,
that the whole function does not act atomically on the counter: for instance, the counter might change after
having tested its value with the if statement and before returning 1. Nevertheless, the function works
properly: in fact, the function returns 1 only if the counter was not zero or negative before the decrement,
because the counter is equal to 0x01000000 for no owner, 0x00ffffff for one reader, and 0x00000000
for one writer.

 If the kernel preemption option has not been selected when the kernel was compiled, the read_lock
macro yields the following assembly language code:

 movl $rwlp->lock,%eax

 lock; subl $1,(%eax)

 jns 1f

 call _ _read_lock_failed

 1:

where _ _read_lock_failed() is the following assembly language function:

 _ _read_lock_failed:

 lock; incl (%eax)

 1: pause

 cmpl $1,(%eax)

 js 1b

 lock; decl (%eax)

 js _ _read_lock_failed

 ret

The read_lock macro atomically decreases the spin lock value by 1, thus increasing the number of
readers. The spin lock is acquired if the decrement operation yields a nonnegative value; otherwise, the _
_read_lock_failed() function is invoked. The function atomically increases the lock field to undo the
decrement operation performed by the read_lock macro, and then loops until the field becomes positive
(greater than or equal to 1). Next, _ _read_lock_failed() tries to get the spin lock again (another kernel
control path could acquire the spin lock for writing right after the cmpl instruction).

 Releasing the read lock is quite simple, because the read_unlock macro must simply increase the counter
in the lock field with the assembly language instruction:

 lock; incl rwlp->lock

to decrease the number of readers, and then invoke preempt_enable() to reenable kernel preemption.

 5.2.5.2. Getting and releasing a lock for writing

 The write_lock macro is implemented in the same way as spin_lock() and read_lock(). For instance, if
kernel preemption is supported, the function disables kernel preemption and tries to grab the lock right
away by invoking _raw_write_trylock(). If this function returns 0, the lock was already taken, thus the
macro reenables kernel preemption and starts a busy wait loop, as explained in the description of
spin_lock() in the previous section.

 The _raw_write_trylock() function is shown below:

 int _raw_write_trylock(rwlock_t *lock)

 {

 atomic_t *count = (atomic_t *)lock->lock;

 if (atomic_sub_and_test(0x01000000, count))

 return 1;

 atomic_add(0x01000000, count);

 return 0;

 }

The _raw_write_trylock() function subtracts 0x01000000 from the read/write spin lock value, thus
clearing the unlock flag (bit 24). If the subtraction operation yields zero (no readers), the lock is acquired
and the function returns 1; otherwise, the function atomically adds 0x01000000 to the spin lock value to
undo the subtraction operation.

 Once again, releasing the write lock is much simpler because the write_unlock macro must simply set the
unlock flag in the lock field with the assembly language instruction:

 lock; addl $0x01000000,rwlp

and then invoke preempt_enable().

 5.2.6. Seqlocks

 When using read/write spin locks, requests issued by kernel control paths to perform a read_lock or a
write_lock operation have the same priority: readers must wait until the writer has finished and, similarly,
a writer must wait until all readers have finished.

 Seqlocks introduced in Linux 2.6 are similar to read/write spin locks, except that they give a much higher
priority to writers: in fact a writer is allowed to proceed even when readers are active. The good part of
this strategy is that a writer never waits (unless another writer is active); the bad part is that a reader may
sometimes be forced to read the same data several times until it gets a valid copy.

 Each seqlock is a seqlock_t structure consisting of two fields: a lock field of type spinlock_t and an
integer sequence field. This second field plays the role of a sequence counter. Each reader must read this
sequence counter twice, before and after reading the data, and check whether the two values coincide. In
the opposite case, a new writer has become active and has increased the sequence counter, thus
implicitly telling the reader that the data just read is not valid.

 A seqlock_t variable is initialized to "unlocked" either by assigning to it the value
SEQLOCK_UNLOCKED, or by executing the seqlock_init macro. Writers acquire and release a
seqlock by invoking write_seqlock() and write_sequnlock(). The first function acquires the spin lock in
the seqlock_t data structure, then increases the sequence counter by one; the second function increases
the sequence counter once more, then releases the spin lock. This ensures that when the writer is in the
middle of writing, the counter is odd, and that when no writer is altering data, the counter is even.
Readers implement a critical region as follows:

 unsigned int seq;

 do {

 seq = read_seqbegin(&seqlock);

 /* ... CRITICAL REGION ... */

 } while (read_seqretry(&seqlock, seq));

read_seqbegin() returns the current sequence number of the seqlock; read_seqretry() returns 1 if either
the value of the seq local variable is odd (a writer was updating the data structure when the
read_seqbegin() function has been invoked), or if the value of seq does not match the current value of
the seqlock's sequence counter (a writer started working while the reader was still executing the code in
the critical region).

 Notice that when a reader enters a critical region, it does not need to disable kernel preemption; on the
other hand, the writer automatically disables kernel preemption when entering the critical region, because
it acquires the spin lock.

 Not every kind of data structure can be protected by a seqlock. As a general rule, the following
conditions must hold:



 The data structure to be protected does not include pointers that are modified by the writers and
dereferenced by the readers (otherwise, a writer could change the pointer under the nose of the
readers)



 The code in the critical regions of the readers does not have side effects (otherwise, multiple
reads would have different effects from a single read)

 Furthermore, the critical regions of the readers should be short and writers should seldom acquire the
seqlock, otherwise repeated read accesses would cause a severe overhead. A typical usage of seqlocks
in Linux 2.6 consists of protecting some data structures related to the system time handling (see Chapter
6).

 5.2.7. Read-Copy Update (RCU)

 Read-copy update (RCU) is yet another synchronization technique designed to protect data structures
that are mostly accessed for reading by several CPUs. RCU allows many readers and many writers to
proceed concurrently (an improvement over seqlocks, which allow only one writer to proceed).
Moreover, RCU is lock-free, that is, it uses no lock or counter shared by all CPUs; this is a great
advantage over read/write spin locks and seqlocks, which have a high overhead due to cache
line-snooping and invalidation.

 How does RCU obtain the surprising result of synchronizing several CPUs without shared data
structures? The key idea consists of limiting the scope of RCU as follows:

1.

1. Only data structures that are dynamically allocated and referenced by means of pointers can be
protected by RCU.

2.

2. No kernel control path can sleep inside a critical region protected by RCU.

When a kernel control path wants to read an RCU-protected data structure, it executes the
rcu_read_lock() macro, which is equivalent to preempt_disable(). Next, the reader dereferences the
pointer to the data structure and starts reading it. As stated above, the reader cannot sleep until it finishes
reading the data structure; the end of the critical region is marked by the rcu_read_unlock() macro,
which is equivalent to preempt_enable().

 Because the reader does very little to prevent race conditions, we could expect that the writer has to
work a bit more. In fact, when a writer wants to update the data structure, it dereferences the pointer and
makes a copy of the whole data structure. Next, the writer modifies the copy. Once finished, the writer
changes the pointer to the data structure so as to make it point to the updated copy. Because changing
the value of the pointer is an atomic operation, each reader or writer sees either the old copy or the new
one: no corruption in the data structure may occur. However, a memory barrier is required to ensure that
the updated pointer is seen by the other CPUs only after the data structure has been modified. Such a
memory barrier is implicitly introduced if a spin lock is coupled with RCU to forbid the concurrent
execution of writers.

 The real problem with the RCU technique, however, is that the old copy of the data structure cannot be
freed right away when the writer updates the pointer. In fact, the readers that were accessing the data
structure when the writer started its update could still be reading the old copy. The old copy can be freed
only after all (potential) readers on the CPUs have executed the rcu_read_unlock() macro. The kernel
requires every potential reader to execute that macro before:



 The CPU performs a process switch (see restriction 2 earlier).


 The CPU starts executing in User Mode.


 The CPU executes the idle loop (see the section "Kernel Threads" in Chapter 3).

 In each of these cases, we say that the CPU has gone through a quiescent state.

 The call_rcu() function is invoked by the writer to get rid of the old copy of the data structure. It
receives as its parameters the address of an rcu_head descriptor (usually embedded inside the data
structure to be freed) and the address of a callback function to be invoked when all CPUs have gone
through a quiescent state. Once executed, the callback function usually frees the old copy of the data
structure.

 The call_rcu() function stores in the rcu_head descriptor the address of the callback and its parameter,
then inserts the descriptor in a per-CPU list of callbacks. Periodically, once every tick (see the section "
Updating Local CPU Statistics" in Chapter 6), the kernel checks whether the local CPU has gone
through a quiescent state. When all CPUs have gone through a quiescent state, a local taskletwhose
descriptor is stored in the rcu_tasklet per-CPU variableexecutes all callbacks in the list.

 RCU is a new addition in Linux 2.6; it is used in the networking layer and in the Virtual Filesystem.

 5.2.8. Semaphores

 We have already introduced semaphores in the section "Synchronization and Critical Regions" in
Chapter 1. Essentially, they implement a locking primitive that allows waiters to sleep until the desired
resource becomes free.

 Actually, Linux offers two kinds of semaphores:


 Kernel semaphores, which are used by kernel control paths


 System V IPC semaphores, which are used by User Mode processes

 In this section, we focus on kernel semaphores, while IPC semaphores are described in Chapter 19.

 A kernel semaphore is similar to a spin lock, in that it doesn't allow a kernel control path to proceed
unless the lock is open. However, whenever a kernel control path tries to acquire a busy resource
protected by a kernel semaphore, the corresponding process is suspended. It becomes runnable again
when the resource is released. Therefore, kernel semaphores can be acquired only by functions that are
allowed to sleep; interrupt handlers and deferrable functions cannot use them.

 A kernel semaphore is an object of type struct semaphore, containing the fields shown in the following
list.

 count

 Stores an atomic_t value. If it is greater than 0, the resource is free that is, it is currently available. If
count is equal to 0, the semaphore is busy but no other process is waiting for the protected resource.
Finally, if count is negative, the resource is unavailable and at least one process is waiting for it.

wait

 Stores the address of a wait queue list that includes all sleeping processes that are currently waiting for
the resource. Of course, if count is greater than or equal to 0, the wait queue is empty.

sleepers

 Stores a flag that indicates whether some processes are sleeping on the semaphore. We'll see this field in
operation soon.

 The init_MUTEX() and init_MUTEX_LOCKED() functions may be used to initialize a semaphore for
exclusive access: they set the count field to 1 (free resource with exclusive access) and 0 (busy resource
with exclusive access currently granted to the process that initializes the semaphore), respectively. The
DECLARE_MUTEX and DECLARE_MUTEX_LOCKED macros do the same, but they also statically
allocate the struct semaphore variable. Note that a semaphore could also be initialized with an arbitrary
positive value n for count. In this case, at most n processes are allowed to concurrently access the
resource.

 5.2.8.1. Getting and releasing semaphores

 Let's start by discussing how to release a semaphore, which is much simpler than getting one. When a
process wishes to release a kernel semaphore lock, it invokes the up() function. This function is
essentially equivalent to the following assembly language fragment:

 movl $sem->count,%ecx

 lock; incl (%ecx)

 jg 1f

 lea %ecx,%eax

 pushl %edx

 pushl %ecx

 call _ _up

 popl %ecx

 popl %edx

 1:

where _ _up() is the following C function:

 __attribute__((regparm(3))) void _ _up(struct semaphore *sem)

 {

 wake_up(&sem->wait);

 }

The up() function increases the count field of the *sem semaphore, and then it checks whether its value is
greater than 0. The increment of count and the setting of the flag tested by the following jump instruction
must be atomically executed, or else another kernel control path could concurrently access the field
value, with disastrous results. If count is greater than 0, there was no process sleeping in the wait queue,
so nothing has to be done. Otherwise, the _ _up() function is invoked so that one sleeping process is
woken up. Notice that _ _up() receives its parameter from the eax register (see the description of the _
_switch_to() function in the section "Performing the Process Switch" in Chapter 3).

 Conversely, when a process wishes to acquire a kernel semaphore lock, it invokes the down() function.
The implementation of down() is quite involved, but it is essentially equivalent to the following:

 down:

 movl $sem->count,%ecx

 lock; decl (%ecx);

 jns 1f

 lea %ecx, %eax

 pushl %edx

 pushl %ecx

 call _ _down

 popl %ecx

 popl %edx

 1:

where _ _down() is the following C function:

 __attribute__((regparm(3))) void _ _down(struct semaphore * sem)

 {

 DECLARE_WAITQUEUE(wait, current);

 unsigned long flags;

 current->state = TASK_UNINTERRUPTIBLE;

 spin_lock_irqsave(&sem->wait.lock, flags);

 add_wait_queue_exclusive_locked(&sem->wait, &wait);

 sem->sleepers++;

 for (;;) {

 if (!atomic_add_negative(sem->sleepers-1, &sem->count)) {

 sem->sleepers = 0;

 break;

 }

 sem->sleepers = 1;

 spin_unlock_irqrestore(&sem->wait.lock, flags);

 schedule();

 spin_lock_irqsave(&sem->wait.lock, flags);

 current->state = TASK_UNINTERRUPTIBLE;

 }

 remove_wait_queue_locked(&sem->wait, &wait);

 wake_up_locked(&sem->wait);

 spin_unlock_irqrestore(&sem->wait.lock, flags);

 current->state = TASK_RUNNING;

 }

The down() function decreases the count field of the *sem semaphore, and then checks whether its value
is negative. Again, the decrement and the test must be atomically executed. If count is greater than or
equal to 0, the current process acquires the resource and the execution continues normally. Otherwise,
count is negative, and the current process must be suspended. The contents of some registers are saved
on the stack, and then _ _down() is invoked.

 Essentially, the _ _down() function changes the state of the current process from TASK_RUNNING to
TASK_UNINTERRUPTIBLE, and it puts the process in the semaphore wait queue. Before accessing
the fields of the semaphore structure, the function also gets the sem->wait.lock spin lock that protects the
semaphore wait queue (see "How Processes Are Organized" in Chapter 3) and disables local interrupts.
Usually, wait queue functions get and release the wait queue spin lock as necessary when inserting and
deleting an element. The _ _down() function, however, uses the wait queue spin lock also to protect the
other fields of the semaphore data structure, so that no process running on another CPU is able to read
or modify them. To that end, _ _down() uses the "_locked" versions of the wait queue functions, which
assume that the spin lock has been already acquired before their invocations.

 The main task of the _ _down() function is to suspend the current process until the semaphore is
released. However, the way in which this is done is quite involved. To easily understand the code, keep
in mind that the sleepers field of the semaphore is usually set to 0 if no process is sleeping in the wait
queue of the semaphore, and it is set to 1 otherwise. Let's try to explain the code by considering a few
typical cases.

 MUTEX semaphore open (count equal to 1, sleepers equal to 0)

 The down macro just sets the count field to 0 and jumps to the next instruction of the main program;
therefore, the _ _down() function is not executed at all.

MUTEX semaphore closed, no sleeping processes (count equal to 0, sleepers equal to 0)

 The down macro decreases count and invokes the _ _down() function with the count field set to -1 and
the sleepers field set to 0. In each iteration of the loop, the function checks whether the count field is
negative. (Observe that the count field is not changed by atomic_add_negative() because sleepers is
equal to 0 when the function is invoked.)



 If the count field is negative, the function invokes schedule() to suspend the current process. The
count field is still set to -1, and the sleepers field to 1. The process picks up its run subsequently
inside this loop and issues the test again.



 If the count field is not negative, the function sets sleepers to 0 and exits from the loop. It tries to
wake up another process in the semaphore wait queue (but in our scenario, the queue is now
empty) and terminates holding the semaphore. On exit, both the count field and the sleepers field
are set to 0, as required when the semaphore is closed but no process is waiting for it.

 MUTEX semaphore closed, other sleeping processes (count equal to -1, sleepers equal to 1)

 The down macro decreases count and invokes the _ _down() function with count set to -2 and sleepers
set to 1. The function temporarily sets sleepers to 2, and then undoes the decrement performed by the
down macro by adding the value sleepers-1 to count. At the same time, the function checks whether
count is still negative (the semaphore could have been released by the holding process right before _
_down() entered the critical region).



 If the count field is negative, the function resets sleepers to 1 and invokes schedule() to suspend
the current process. The count field is still set to -1, and the sleepers field to 1.



 If the count field is not negative, the function sets sleepers to 0, tries to wake up another process
in the semaphore wait queue, and exits holding the semaphore. On exit, the count field is set to 0
and the sleepers field to 0. The values of both fields look wrong, because there are other sleeping
processes. However, consider that another process in the wait queue has been woken up. This
process does another iteration of the loop; the atomic_add_negative() function subtracts 1 from
count, restoring it to -1; moreover, before returning to sleep, the woken-up process resets
sleepers to 1.

 So, the code properly works in all cases. Consider that the wake_up() function in _ _down() wakes up
at most one process, because the sleeping processes in the wait queue are exclusive (see the section "
How Processes Are Organized" in Chapter 3).

 Only exception handlers , and particularly system call service routines , can use the down() function.
Interrupt handlers or deferrable functions must not invoke down(), because this function suspends the
process when the semaphore is busy. For this reason, Linux provides the down_trylock() function,
which may be safely used by one of the previously mentioned asynchronous functions. It is identical to
down() except when the resource is busy. In this case, the function returns immediately instead of putting
the process to sleep.

 A slightly different function called down_interruptible() is also defined. It is widely used by device
drivers, because it allows processes that receive a signal while being blocked on a semaphore to give up
the "down" operation. If the sleeping process is woken up by a signal before getting the needed resource,
the function increases the count field of the semaphore and returns the value -EINTR. On the other hand,
if down_interruptible() runs to normal completion and gets the resource, it returns 0. The device driver
may thus abort the I/O operation when the return value is -EINTR.

 Finally, because processes usually find semaphores in an open state, the semaphore functions are
optimized for this case. In particular, the up() function does not execute jump instructions if the
semaphore wait queue is empty; similarly, the down() function does not execute jump instructions if the
semaphore is open. Much of the complexity of the semaphore implementation is precisely due to the
effort of avoiding costly instructions in the main branch of the execution flow.

 5.2.9. Read/Write Semaphores

 Read/write semaphores are similar to the read/write spin locks described earlier in the section "
Read/Write Spin Locks," except that waiting processes are suspended instead of spinning until the
semaphore becomes open again.

 Many kernel control paths may concurrently acquire a read/write semaphore for reading; however,
every writer kernel control path must have exclusive access to the protected resource. Therefore, the
semaphore can be acquired for writing only if no other kernel control path is holding it for either read or
write access. Read/write semaphores improve the amount of concurrency inside the kernel and improve
overall system performance.

 The kernel handles all processes waiting for a read/write semaphore in strict FIFO order. Each reader
or writer that finds the semaphore closed is inserted in the last position of a semaphore's wait queue list.
When the semaphore is released, the process in the first position of the wait queue list are checked. The
first process is always awoken. If it is a writer, the other processes in the wait queue continue to sleep. If
it is a reader, all readers at the start of the queue, up to the first writer, are also woken up and get the
lock. However, readers that have been queued after a writer continue to sleep.

 Each read/write semaphore is described by a rw_semaphore structure that includes the following fields:

 count

 Stores two 16-bit counters. The counter in the most significant word encodes in two's complement form
the sum of the number of nonwaiting writers (either 0 or 1) and the number of waiting kernel control
paths. The counter in the less significant word encodes the total number of nonwaiting readers and
writers.

wait_list

 Points to a list of waiting processes. Each element in this list is a rwsem_waiter structure, including a
pointer to the descriptor of the sleeping process and a flag indicating whether the process wants the
semaphore for reading or for writing.

wait_lock

 A spin lock used to protect the wait queue list and the rw_semaphore structure itself.

 The init_rwsem() function initializes an rw_semaphore structure by setting the count field to 0, the
wait_lock spin lock to unlocked, and wait_list to the empty list.

 The down_read() and down_write() functions acquire the read/write semaphore for reading and
writing, respectively. Similarly, the up_read() and up_write() functions release a read/write semaphore
previously acquired for reading and for writing. The down_read_trylock() and down_write_trylock()
functions are similar to down_read() and down_write(), respectively, but they do not block the process
if the semaphore is busy. Finally, the downgrade_write() function atomically transforms a write lock into
a read lock. The implementation of these five functions is long, but easy to follow because it resembles
the implementation of normal semaphores; therefore, we avoid describing them.

 5.2.10. Completions

 Linux 2.6 also makes use of another synchronization primitive similar to semaphores: completions . They
have been introduced to solve a subtle race condition that occurs in multiprocessor systems when
process A allocates a temporary semaphore variable, initializes it as closed MUTEX, passes its address
to process B, and then invokes down() on it. Process A plans to destroy the semaphore as soon as it
awakens. Later on, process B running on a different CPU invokes up() on the semaphore. However, in
the current implementation up() and down() can execute concurrently on the same semaphore. Thus,
process A can be woken up and destroy the temporary semaphore while process B is still executing the
up() function. As a result, up() might attempt to access a data structure that no longer exists.

 Of course, it is possible to change the implementation of down() and up() to forbid concurrent
executions on the same semaphore. However, this change would require additional instructions, which is
a bad thing to do for functions that are so heavily used.

 The completion is a synchronization primitive that is specifically designed to solve this problem. The
completion data structure includes a wait queue head and a flag:

 struct completion {

 unsigned int done;

 wait_queue_head_t wait;

 };

The function corresponding to up() is called complete(). It receives as an argument the address of a
completion data structure, invokes spin_lock_irqsave() on the spin lock of the completion's wait queue,
increases the done field, wakes up the exclusive process sleeping in the wait wait queue, and finally
invokes spin_unlock_irqrestore().

 The function corresponding to down() is called wait_for_completion(). It receives as an argument the
address of a completion data structure and checks the value of the done flag. If it is greater than zero,
wait_for_completion() terminates, because complete() has already been executed on another CPU.
Otherwise, the function adds current to the tail of the wait queue as an exclusive process and puts current
to sleep in the TASK_UNINTERRUPTIBLE state. Once woken up, the function removes current from
the wait queue. Then, the function checks the value of the done flag: if it is equal to zero the function
terminates, otherwise, the current process is suspended again. As in the case of the complete() function,
wait_for_completion() makes use of the spin lock in the completion's wait queue.

 The real difference between completions and semaphores is how the spin lock included in the wait queue
is used. In completions, the spin lock is used to ensure that complete() and wait_for_completion()
cannot execute concurrently. In semaphores, the spin lock is used to avoid letting concurrent down()'s
functions mess up the semaphore data structure.

 5.2.11. Local Interrupt Disabling

 Interrupt disabling is one of the key mechanisms used to ensure that a sequence of kernel statements is
treated as a critical section. It allows a kernel control path to continue executing even when hardware
devices issue IRQ signals, thus providing an effective way to protect data structures that are also
accessed by interrupt handlers. By itself, however, local interrupt disabling does not protect against
concurrent accesses to data structures by interrupt handlers running on other CPUs, so in multiprocessor
systems, local interrupt disabling is often coupled with spin locks (see the later section "Synchronizing
Accesses to Kernel Data Structures").

 The local_irq_disable() macro, which makes use of the cli assembly language instruction, disables
interrupts on the local CPU. The local_irq_enable() macro, which makes use of the of the sti assembly
language instruction, enables them. As stated in the section "IRQs and Interrupts" in Chapter 4, the cli
and sti assembly language instructions, respectively, clear and set the IF flag of the eflags control register.
The irqs_disabled() macro yields the value one if the IF flag of the eflags register is clear, the value one if
the flag is set.

 When the kernel enters a critical section, it disables interrupts by clearing the IF flag of the eflags
register. But at the end of the critical section, often the kernel can't simply set the flag again. Interrupts
can execute in nested fashion, so the kernel does not necessarily know what the IF flag was before the
current control path executed. In these cases, the control path must save the old setting of the flag and
restore that setting at the end.

 Saving and restoring the eflags content is achieved by means of the local_irq_save and local_irq_restore
macros, respectively. The local_irq_save macro copies the content of the eflags register into a local
variable; the IF flag is then cleared by a cli assembly language instruction. At the end of the critical region,
the macro local_irq_restore restores the original content of eflags; therefore, interrupts are enabled only if
they were enabled before this control path issued the cli assembly language instruction.

 5.2.12. Disabling and Enabling Deferrable Functions

 In the section "Softirqs" in Chapter 4, we explained that deferrable functions can be executed at
unpredictable times (essentially, on termination of hardware interrupt handlers). Therefore, data structures
accessed by deferrable functions must be protected against race conditions.

 A trivial way to forbid deferrable functions execution on a CPU is to disable interrupts on that CPU.
Because no interrupt handler can be activated, softirq actions cannot be started asynchronously.

 As we'll see in the next section, however, the kernel sometimes needs to disable deferrable functions
without disabling interrupts. Local deferrable functions can be enabled or disabled on the local CPU by
acting on the softirq counter stored in the preempt_count field of the current's tHRead_info descriptor.

 Recall that the do_softirq() function never executes the softirqs if the softirq counter is positive.
Moreover, tasklets are implemented on top of softirqs, so setting this counter to a positive value disables
the execution of all deferrable functions on a given CPU, not just softirqs.

 The local_bh_disable macro adds one to the softirq counter of the local CPU, while the
local_bh_enable() function subtracts one from it. The kernel can thus use several nested invocations of
local_bh_disable; deferrable functions will be enabled again only by the local_bh_enable macro matching
the first local_bh_disable invocation.

 After having decreased the softirq counter, local_bh_enable() performs two important operations that
help to ensure timely execution of long-waiting threads:

1.

1. Checks the hardirq counter and the softirq counter in the preempt_count field of the local CPU;
if both of them are zero and there are pending softirqs to be executed, invokes do_softirq() to
activate them (see the section "Softirqs" in Chapter 4).

2.

2. Checks whether the TIF_NEED_RESCHED flag of the local CPU is set; if so, a process switch
request is pending, thus invokes the preempt_schedule() function (see the section "Kernel
Preemption" earlier in this chapter).

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.3. Synchronizing Accesses to Kernel Data Structures
 A shared data structure can be protected against race conditions by using some of the synchronization
primitives shown in the previous section. Of course, system performance may vary considerably,
depending on the kind of synchronization primitive selected. Usually, the following rule of thumb is
adopted by kernel developers: always keep the concurrency level as high as possible in the system.

 In turn, the concurrency level in the system depends on two main factors:


 The number of I/O devices that operate concurrently


 The number of CPUs that do productive work

 To maximize I/O throughput, interrupts should be disabled for very short periods of time. As described
in the section "IRQs and Interrupts" in Chapter 4, when interrupts are disabled, IRQs issued by I/O
devices are temporarily ignored by the PIC, and no new activity can start on such devices.

 To use CPUs efficiently, synchronization primitives based on spin locks should be avoided whenever
possible. When a CPU is executing a tight instruction loop waiting for the spin lock to open, it is wasting
precious machine cycles. Even worse, as we have already said, spin locks have negative effects on the
overall performance of the system because of their impact on the hardware caches.

 Let's illustrate a couple of cases in which synchronization can be achieved while still maintaining a high
concurrency level:



 A shared data structure consisting of a single integer value can be updated by declaring it as an
atomic_t type and by using atomic operations. An atomic operation is faster than spin locks and
interrupt disabling, and it slows down only kernel control paths that concurrently access the data
structure.



 Inserting an element into a shared linked list is never atomic, because it consists of at least two
pointer assignments. Nevertheless, the kernel can sometimes perform this insertion operation
without using locks or disabling interrupts. As an example of why this works, we'll consider the
case where a system call service routine (see "System Call Handler and Service Routines" in
Chapter 10) inserts new elements in a singly linked list, while an interrupt handler or deferrable
function asynchronously looks up the list.

 In the C language, insertion is implemented by means of the following pointer assignments:

 new->next = list_element->next;

 list_element->next = new;

 In assembly language, insertion reduces to two consecutive atomic instructions. The first
instruction sets up the next pointer of the new element, but it does not modify the list. Thus, if the
interrupt handler sees the list between the execution of the first and second instructions, it sees the
list without the new element. If the handler sees the list after the execution of the second
instruction, it sees the list with the new element. The important point is that in either case, the list
is consistent and in an uncorrupted state. However, this integrity is assured only if the interrupt
handler does not modify the list. If it does, the next pointer that was just set within the new
element might become invalid.

 However, developers must ensure that the order of the two assignment operations cannot be
subverted by the compiler or the CPU's control unit; otherwise, if the system call service routine
is interrupted by the interrupt handler between the two assignments, the handler finds a corrupted
list. Therefore, a write memory barrier primitive is required:

 new->next = list_element->next;

 wmb();

 list_element->next = new;

5.3.1. Choosing Among Spin Locks, Semaphores, and Interrupt Disabling

 Unfortunately, access patterns to most kernel data structures are a lot more complex than the simple
examples just shown, and kernel developers are forced to use semaphores, spin locks, interrupts, and
softirq disabling. Generally speaking, choosing the synchronization primitives depends on what kinds of
kernel control paths access the data structure, as shown in Table 5-8. Remember that whenever a kernel
control path acquires a spin lock (as well as a read/write lock, a seqlock, or a RCU "read lock"),
disables the local interrupts, or disables the local softirqs, kernel preemption is automatically disabled.

 Table 5-8. Protection required by data structures accessed by kernel control paths

Kernel control paths accessing
the data structure UP protection MP further protection

Exceptions Semaphore None

Interrupts Local interrupt disabling Spin lock

Deferrable functions None None or spin lock (see Table 5-9
)

Exceptions + Interrupts Local interrupt disabling Spin lock

Exceptions + Deferrable
functions Local softirq disabling Spin lock

Interrupts + Deferrable functions Local interrupt disabling Spin lock

Exceptions + Interrupts +
Deferrable functions Local interrupt disabling Spin lock

5.3.1.1. Protecting a data structure accessed by exceptions

 When a data structure is accessed only by exception handlers, race conditions are usually easy to
understand and prevent. The most common exceptions that give rise to synchronization problems are the
system call service routines (see the section "System Call Handler and Service Routines" in Chapter 10)
in which the CPU operates in Kernel Mode to offer a service to a User Mode program. Thus, a data
structure accessed only by an exception usually represents a resource that can be assigned to one or
more processes.

 Race conditions are avoided through semaphores, because these primitives allow the process to sleep
until the resource becomes available. Notice that semaphores work equally well both in uniprocessor and
multiprocessor systems.

 Kernel preemption does not create problems either. If a process that owns a semaphore is preempted, a
new process running on the same CPU could try to get the semaphore. When this occurs, the new
process is put to sleep, and eventually the old process will release the semaphore. The only case in which
kernel preemption must be explicitly disabled is when accessing per-CPU variables, as explained in the
section "Per-CPU Variables" earlier in this chapter.

 5.3.1.2. Protecting a data structure accessed by interrupts

 Suppose that a data structure is accessed by only the "top half" of an interrupt handler. We learned in the
section "Interrupt Handling" in Chapter 4 that each interrupt handler is serialized with respect to itself that
is, it cannot execute more than once concurrently. Thus, accessing the data structure does not require
synchronization primitives.

 Things are different, however, if the data structure is accessed by several interrupt handlers. A handler
may interrupt another handler, and different interrupt handlers may run concurrently in multiprocessor
systems. Without synchronization, the shared data structure might easily become corrupted.

 In uniprocessor systems, race conditions must be avoided by disabling interrupts in all critical regions of
the interrupt handler. Nothing less will do because no other synchronization primitives accomplish the job.
A semaphore can block the process, so it cannot be used in an interrupt handler. A spin lock, on the
other hand, can freeze the system: if the handler accessing the data structure is interrupted, it cannot
release the lock; therefore, the new interrupt handler keeps waiting on the tight loop of the spin lock.

 Multiprocessor systems, as usual, are even more demanding. Race conditions cannot be avoided by
simply disabling local interrupts. In fact, even if interrupts are disabled on a CPU, interrupt handlers can
still be executed on the other CPUs. The most convenient method to prevent the race conditions is to
disable local interrupts (so that other interrupt handlers running on the same CPU won't interfere) and to
acquire a spin lock or a read/write spin lock that protects the data structure. Notice that these additional
spin locks cannot freeze the system because even if an interrupt handler finds the lock closed, eventually
the interrupt handler on the other CPU that owns the lock will release it.

 The Linux kernel uses several macros that couple the enabling and disabling of local interrupts with spin
lock handling. Table 5-9 describes all of them. In uniprocessor systems, these macros just enable or
disable local interrupts and kernel preemption.

 Table 5-9. Interrupt-aware spin lock macros

Macro Description

spin_lock_irq(l) local_irq_disable(); spin_lock(l)

spin_unlock_irq(l) spin_unlock(l); local_irq_enable()

spin_lock_bh(l) local_bh_disable(); spin_lock(l)

spin_unlock_bh(l) spin_unlock(l); local_bh_enable()

spin_lock_irqsave(l,f) local_irq_save(f); spin_lock(l)

spin_unlock_irqrestore(l,f) spin_unlock(l); local_irq_restore(f)

read_lock_irq(l) local_irq_disable(); read_lock(l)

read_unlock_irq(l) read_unlock(l); local_irq_enable()

read_lock_bh(l) local_bh_disable(); read_lock(l)

read_unlock_bh(l) read_unlock(l); local_bh_enable()

write_lock_irq(l) local_irq_disable(); write_lock(l)

write_unlock_irq(l) write_unlock(l); local_irq_enable()

write_lock_bh(l) local_bh_disable(); write_lock(l)

write_unlock_bh(l) write_unlock(l); local_bh_enable()

read_lock_irqsave(l,f) local_irq_save(f); read_lock(l)

read_unlock_irqrestore(l,f) read_unlock(l); local_irq_restore(f)

write_lock_irqsave(l,f) local_irq_save(f); write_lock(l)

write_unlock_irqrestore(l,f) write_unlock(l); local_irq_restore(f)

read_seqbegin_irqsave(l,f) local_irq_save(f); read_seqbegin(l)

read_seqretry_irqrestore(l,v,f) read_seqretry(l,v); local_irq_restore(f)

write_seqlock_irqsave(l,f) local_irq_save(f); write_seqlock(l)

write_sequnlock_irqrestore(l,f) write_sequnlock(l); local_irq_restore(f)

write_seqlock_irq(l) local_irq_disable(); write_seqlock(l)

write_sequnlock_irq(l) write_sequnlock(l); local_irq_enable()

write_seqlock_bh(l) local_bh_disable(); write_seqlock(l);

write_sequnlock_bh(l) write_sequnlock(l); local_bh_enable()

5.3.1.3. Protecting a data structure accessed by deferrable functions

 What kind of protection is required for a data structure accessed only by deferrable functions? Well, it
mostly depends on the kind of deferrable function. In the section "Softirqs and Tasklets" in Chapter 4, we
explained that softirqs and tasklets essentially differ in their degree of concurrency.

 First of all, no race condition may exist in uniprocessor systems. This is because execution of deferrable
functions is always serialized on a CPU that is, a deferrable function cannot be interrupted by another
deferrable function. Therefore, no synchronization primitive is ever required.

 Conversely, in multiprocessor systems, race conditions do exist because several deferrable functions
may run concurrently. Table 5-10 lists all possible cases.

 Table 5-10. Protection required by data structures accessed by deferrable functions in SMP

Deferrable functions accessing the data structure Protection

Softirqs Spin lock

One tasklet None

Many tasklets Spin lock

A data structure accessed by a softirq must always be protected, usually by means of a spin lock,
because the same softirq may run concurrently on two or more CPUs. Conversely, a data structure
accessed by just one kind of tasklet need not be protected, because tasklets of the same kind cannot run
concurrently. However, if the data structure is accessed by several kinds of tasklets, then it must be
protected.

 5.3.1.4. Protecting a data structure accessed by exceptions and interrupts

 Let's consider now a data structure that is accessed both by exceptions (for instance, system call service
routines) and interrupt handlers.

 On uniprocessor systems, race condition prevention is quite simple, because interrupt handlers are not
reentrant and cannot be interrupted by exceptions. As long as the kernel accesses the data structure with
local interrupts disabled, the kernel cannot be interrupted when accessing the data structure. However, if
the data structure is accessed by just one kind of interrupt handler, the interrupt handler can freely access
the data structure without disabling local interrupts.

 On multiprocessor systems, we have to take care of concurrent executions of exceptions and interrupts
on other CPUs. Local interrupt disabling must be coupled with a spin lock, which forces the concurrent
kernel control paths to wait until the handler accessing the data structure finishes its work.

 Sometimes it might be preferable to replace the spin lock with a semaphore. Because interrupt handlers
cannot be suspended, they must acquire the semaphore using a tight loop and the down_trylock()
function; for them, the semaphore acts essentially as a spin lock. System call service routines, on the
other hand, may suspend the calling processes when the semaphore is busy. For most system calls, this is
the expected behavior. In this case, semaphores are preferable to spin locks, because they lead to a
higher degree of concurrency of the system.

 5.3.1.5. Protecting a data structure accessed by exceptions and deferrable functions

 A data structure accessed both by exception handlers and deferrable functions can be treated like a data
structure accessed by exception and interrupt handlers. In fact, deferrable functions are essentially
activated by interrupt occurrences, and no exception can be raised while a deferrable function is running.
Coupling local interrupt disabling with a spin lock is therefore sufficient.

 Actually, this is much more than sufficient: the exception handler can simply disable deferrable functions
instead of local interrupts by using the local_bh_disable() macro (see the section "Softirqs" in Chapter 4
). Disabling only the deferrable functions is preferable to disabling interrupts, because interrupts continue
to be serviced by the CPU. Execution of deferrable functions on each CPU is serialized, so no race
condition exists.

 As usual, in multiprocessor systems, spin locks are required to ensure that the data structure is accessed
at any time by just one kernel control.

 5.3.1.6. Protecting a data structure accessed by interrupts and deferrable functions

 This case is similar to that of a data structure accessed by interrupt and exception handlers. An interrupt
might be raised while a deferrable function is running, but no deferrable function can stop an interrupt
handler. Therefore, race conditions must be avoided by disabling local interrupts during the deferrable
function. However, an interrupt handler can freely touch the data structure accessed by the deferrable
function without disabling interrupts, provided that no other interrupt handler accesses that data structure.

 Again, in multiprocessor systems, a spin lock is always required to forbid concurrent accesses to the
data structure on several CPUs.

 5.3.1.7. Protecting a data structure accessed by exceptions, interrupts, and deferrable
functions

 Similarly to previous cases, disabling local interrupts and acquiring a spin lock is almost always
necessary to avoid race conditions. Notice that there is no need to explicitly disable deferrable functions,
because they are essentially activated when terminating the execution of interrupt handlers; disabling local
interrupts is therefore sufficient.

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.4. Examples of Race Condition Prevention
 Kernel developers are expected to identify and solve the synchronization problems raised by interleaving
kernel control paths. However, avoiding race conditions is a hard task because it requires a clear
understanding of how the various components of the kernel interact. To give a feeling of what's really
inside the kernel code, let's mention a few typical usages of the synchronization primitives defined in this
chapter.

 5.4.1. Reference Counters

 Reference counters are widely used inside the kernel to avoid race conditions due to the concurrent
allocation and releasing of a resource. A reference counter is just an atomic_t counter associated with a
specific resource such as a memory page, a module, or a file. The counter is atomically increased when a
kernel control path starts using the resource, and it is decreased when a kernel control path finishes using
the resource. When the reference counter becomes zero, the resource is not being used, and it can be
released if necessary.

 5.4.2. The Big Kernel Lock

 In earlier Linux kernel versions, a big kernel lock (also known as global kernel lock, or BKL) was
widely used. In Linux 2.0, this lock was a relatively crude spin lock, ensuring that only one processor at a
time could run in Kernel Mode. The 2.2 and 2.4 kernels were considerably more flexible and no longer
relied on a single spin lock; rather, a large number of kernel data structures were protected by many
different spin locks. In Linux kernel version 2.6, the big kernel lock is used to protect old code (mostly
functions related to the VFS and to several filesystems).

 Starting from kernel version 2.6.11, the big kernel lock is implemented by a semaphore named
kernel_sem (in earlier 2.6 versions, the big kernel lock was implemented by means of a spin lock). The
big kernel lock is slightly more sophisticated than a simple semaphore, however.

 Every process descriptor includes a lock_depth field, which allows the same process to acquire the big
kernel lock several times. Therefore, two consecutive requests for it will not hang the processor (as for
normal locks). If the process has not acquired the lock, the field has the value -1; otherwise, the field
value plus 1 specifies how many times the lock has been taken. The lock_depth field is crucial for
allowing interrupt handlers, exception handlers, and deferrable functions to take the big kernel lock:
without it, every asynchronous function that tries to get the big kernel lock could generate a deadlock if
the current process already owns the lock.

 The lock_kernel() and unlock_kernel() functions are used to get and release the big kernel lock. The
former function is equivalent to:

 depth = current->lock_depth + 1;

 if (depth == 0)

 down(&kernel_sem);

 current->lock_depth = depth;

while the latter is equivalent to:

 if (--current->lock_depth < 0)

 up(&kernel_sem);

Notice that the if statements of the lock_kernel() and unlock_kernel() functions need not be executed
atomically because lock_depth is not a global variable each CPU addresses a field of its own current
process descriptor. Local interrupts inside the if statements do not induce race conditions either. Even if
the new kernel control path invokes lock_kernel(), it must release the big kernel lock before terminating.

 Surprisingly enough, a process holding the big kernel lock is allowed to invoke schedule(), thus
relinquishing the CPU. The schedule() function, however, checks the lock_depth field of the process
being replaced and, if its value is zero or positive, automatically releases the kernel_sem semaphore (see
the section "The schedule() Function" in Chapter 7). Thus, no process that explicitly invokes schedule()
can keep the big kernel lock across the process switch. The schedule() function, however, will reacquire
the big kernel lock for the process when it will be selected again for execution.

 Things are different, however, if a process that holds the big kernel lock is preempted by another
process. Up to kernel version 2.6.10 this case could not occur, because acquiring a spin lock
automatically disables kernel preemption. The current implementation of the big kernel lock, however, is
based on a semaphore, and acquiring it does not automatically disable kernel preemption. Actually,
allowing kernel preemption inside critical regions protected by the big kernel lock has been the main
reason for changing its implementation. This, in turn, has beneficial effects on the response time of the
system.

 When a process holding the big kernel lock is preempted, schedule() must not release the semaphore
because the process executing the code in the critical region has not voluntarily triggered a process
switch, thus if the big kernel lock would be released, another process might take it and corrupt the data
structures accessed by the preempted process.

 To avoid the preempted process losing the big kernel lock, the preempt_schedule_irq() function
temporarily sets the lock_depth field of the process to -1 (see the section "Returning from Interrupts and
Exceptions" in Chapter 4). Looking at the value of this field, schedule() assumes that the process being
replaced does not hold the kernel_sem semaphore and thus does not release it. As a result, the
kernel_sem semaphore continues to be owned by the preempted process. Once this process is selected
again by the scheduler, the preempt_schedule_irq() function restores the original value of the lock_depth
field and lets the process resume execution in the critical section protected by the big kernel lock.

 5.4.3. Memory Descriptor Read/Write Semaphore

 Each memory descriptor of type mm_struct includes its own semaphore in the mmap_sem field (see the
section "The Memory Descriptor" in Chapter 9). The semaphore protects the descriptor against race
conditions that could arise because a memory descriptor can be shared among several lightweight
processes.

 For instance, let's suppose that the kernel must create or extend a memory region for some process; to
do this, it invokes the do_mmap() function, which allocates a new vm_area_struct data structure. In
doing so, the current process could be suspended if no free memory is available, and another process
sharing the same memory descriptor could run. Without the semaphore, every operation of the second
process that requires access to the memory descriptor (for instance, a Page Fault due to a Copy on
Write) could lead to severe data corruption.

 The semaphore is implemented as a read/write semaphore, because some kernel functions, such as the
Page Fault exception handler (see the section "Page Fault Exception Handler" in Chapter 9), need only to
scan the memory descriptors.

 5.4.4. Slab Cache List Semaphore

 The list of slab cache descriptors (see the section "Cache Descriptor" in Chapter 8) is protected by the
cache_chain_sem semaphore, which grants an exclusive right to access and modify the list.

 A race condition is possible when kmem_cache_create() adds a new element in the list, while
kmem_cache_shrink() and kmem_cache_reap() sequentially scan the list. However, these functions are
never invoked while handling an interrupt, and they can never block while accessing the list. The
semaphore plays an active role both in multiprocessor systems and in uniprocessor systems with kernel
preemption supported.

 5.4.5. Inode Semaphore

 As we'll see in "Inode Objects" in Chapter 12, Linux stores the information on a disk file in a memory
object called an inode. The corresponding data structure includes its own semaphore in the i_sem field.

 A huge number of race conditions can occur during filesystem handling. Indeed, each file on disk is a
resource held in common for all users, because all processes may (potentially) access the file content,
change its name or location, destroy or duplicate it, and so on. For example, let's suppose that a process
lists the files contained in some directory. Each disk operation is potentially blocking, and therefore even
in uniprocessor systems, other processes could access the same directory and modify its content while
the first process is in the middle of the listing operation. Or, again, two different processes could modify
the same directory at the same time. All these race conditions are avoided by protecting the directory file
with the inode semaphore.

 Whenever a program uses two or more semaphores, the potential for deadlock is present, because two
different paths could end up waiting for each other to release a semaphore. Generally speaking, Linux has
few problems with deadlocks on semaphore requests, because each kernel control path usually needs to
acquire just one semaphore at a time. However, in some cases, the kernel must get two or more locks.
Inode semaphores are prone to this scenario; for instance, this occurs in the service routine in the
rename() system call. In this case, two different inodes are involved in the operation, so both
semaphores must be taken. To avoid such deadlocks, semaphore requests are performed in predefined
address order.

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 6. Timing Measurements
 Countless computerized activities are driven by timing measurements , often behind the user's back. For
instance, if the screen is automatically switched off after you have stopped using the computer's console,
it is due to a timer that allows the kernel to keep track of how much time has elapsed since you pushed a
key or moved the mouse. If you receive a warning from the system asking you to remove a set of unused
files, it is the outcome of a program that identifies all user files that have not been accessed for a long
time. To do these things, programs must be able to retrieve a timestamp identifying its last access time
from each file. Such a timestamp must be automatically written by the kernel. More significantly, timing
drives process switches along with even more visible kernel activities such as checking for time-outs.

 We can distinguish two main kinds of timing measurement that must be performed by the Linux kernel:


 Keeping the current time and date so they can be returned to user programs through the time(),
ftime(), and gettimeofday() APIs (see the section "The time() and gettimeofday() System Calls"
later in this chapter) and used by the kernel itself as timestamps for files and network packets



 Maintaining timers mechanisms that are able to notify the kernel (see the later section "Software
Timers and Delay Functions") or a user program (see the later sections "The setitimer() and
alarm() System Calls" and "System Calls for POSIX Timers") that a certain interval of time has
elapsed

 Timing measurements are performed by several hardware circuits based on fixed-frequency oscillators
and counters. This chapter consists of four different parts. The first two sections describe the hardware
devices that underly timing and give an overall picture of Linux timekeeping architecture. The following
sections describe the main time-related duties of the kernel: implementing CPU time sharing, updating
system time and resource usage statistics, and maintaining software timers. The last section discusses the
system calls related to timing measurements and the corresponding service routines.

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.1. Clock and Timer Circuits
 On the 80x86 architecture, the kernel must explicitly interact with several kinds of clocks and timer
circuits . The clock circuits are used both to keep track of the current time of day and to make precise
time measurements. The timer circuits are programmed by the kernel, so that they issue interrupts at a
fixed, predefined frequency; such periodic interrupts are crucial for implementing the software timers used
by the kernel and the user programs. We'll now briefly describe the clock and hardware circuits that can
be found in IBM-compatible PCs.

 6.1.1. Real Time Clock (RTC)

 All PCs include a clock called Real Time Clock (RTC), which is independent of the CPU and all other
chips.

 The RTC continues to tick even when the PC is switched off, because it is energized by a small battery.
The CMOS RAM and RTC are integrated in a single chip (the Motorola 146818 or an equivalent).

 The RTC is capable of issuing periodic interrupts on IRQ 8 at frequencies ranging between 2 Hz and
8,192 Hz. It can also be programmed to activate the IRQ 8 line when the RTC reaches a specific value,
thus working as an alarm clock.

 Linux uses the RTC only to derive the time and date; however, it allows processes to program the RTC
by acting on the /dev/rtc device file (see Chapter 13). The kernel accesses the RTC through the 0x70
and 0x71 I/O ports. The system administrator can read and write the RTC by executing the clock Unix
system program that acts directly on these two I/O ports.

 6.1.2. Time Stamp Counter (TSC)

 All 80x86 microprocessors include a CLK input pin, which receives the clock signal of an external
oscillator. Starting with the Pentium, 80x86 microprocessors sport a counter that is increased at each
clock signal. The counter is accessible through the 64-bit Time Stamp Counter(TSC) register, which can
be read by means of the rdtsc assembly language instruction. When using this register, the kernel has to
take into consideration the frequency of the clock signal: if, for instance, the clock ticks at 1 GHz, the
Time Stamp Counter is increased once every nanosecond.

 Linux may take advantage of this register to get much more accurate time measurements than those
delivered by the Programmable Interval Timer. To do this, Linux must determine the clock signal
frequency while initializing the system. In fact, because this frequency is not declared when compiling the
kernel, the same kernel image may run on CPUs whose clocks may tick at any frequency.

 The task of figuring out the actual frequency of a CPU is accomplished during the system's boot. The
calibrate_tsc() function computes the frequency by counting the number of clock signals that occur in a
time interval of approximately 5 milliseconds. This time constant is produced by properly setting up one
of the channels of the Programmable Interval Timer (see the next section).[*]

[*] To avoid losing significant digits in the integer divisions, calibrate_tsc() returns the duration, in
microseconds, of a clock tick multiplied by 232.

 6.1.3. Programmable Interval Timer (PIT)

 Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs include another type
of time-measuring device called Programmable Interval Timer(PIT). The role of a PIT is similar to the
alarm clock of a microwave oven: it makes the user aware that the cooking time interval has elapsed.
Instead of ringing a bell, this device issues a special interrupt called timer interrupt, which notifies the
kernel that one more time interval has elapsed.[] Another difference from the alarm clock is that the PIT
goes on issuing interrupts forever at some fixed frequency established by the kernel. Each
IBM-compatible PC includes at least one PIT, which is usually implemented by an 8254 CMOS chip
using the 0x40-0x43 I/O ports.

[] The PIT is also used to drive an audio amplifier connected to the computer's internal speaker.

 As we'll see in detail in the next paragraphs, Linux programs the PIT of IBM-compatible PCs to issue
timer interrupts on the IRQ 0 at a (roughly) 1000-Hz frequency that is, once every 1 millisecond. This
time interval is called a tick, and its length in nanoseconds is stored in the tick_nsec variable. On a PC,
tick_nsec is initialized to 999,848 nanoseconds (yielding a clock signal frequency of about 1000.15 Hz),
but its value may be automatically adjusted by the kernel if the computer is synchronized with an external
clock (see the later section "The adjtimex() System Call"). The ticks beat time for all activities in the
system; in some sense, they are like the ticks sounded by a metronome while a musician is rehearsing.

 Generally speaking, shorter ticks result in higher resolution timers, which help with smoother multimedia
playback and faster response time when performing synchronous I/O multiplexing (poll() and select()
system calls). This is a trade-off however: shorter ticks require the CPU to spend a larger fraction of its
time in Kernel Mode that is, a smaller fraction of time in User Mode. As a consequence, user programs
run slower.

 The frequency of timer interrupts depends on the hardware architecture. The slower machines have a
tick of roughly 10 milliseconds (100 timer interrupts per second), while the faster ones have a tick of
roughly 1 millisecond (1000 or 1024 timer interrupts per second).

 A few macros in the Linux code yield some constants that determine the frequency of timer interrupts.
These are discussed in the following list.



 HZ yields the approximate number of timer interrupts per second that is, their frequency. This
value is set to 1000 for IBM PCs.



 CLOCK_TICK_RATE yields the value 1,193,182, which is the 8254 chip's internal oscillator
frequency.



 LATCH yields the ratio between CLOCK_TICK_RATE and HZ, rounded to the nearest
integer. It is used to program the PIT.

 The PIT is initialized by setup_pit_timer() as follows:

 spin_lock_irqsave(&i8253_lock, flags);

 outb_p(0x34,0x43);

 udelay(10);

 outb_p(LATCH & 0xff, 0x40);

 udelay(10);

 outb

(LATCH >> 8, 0x40);

 spin_unlock_irqrestore(&i8253_lock, flags);

The outb() C function is equivalent to the outb assembly language instruction: it copies the first operand
into the I/O port specified as the second operand. The outb_p() function is similar to outb(), except that
it introduces a pause by executing a no-op instruction to keep the hardware from getting confused. The
udelay() macro introduces a further small delay (see the later section "Delay Functions"). The first outb_
p() invocation is a command to the PIT to issue interrupts at a new rate. The next two outb_ p() and
outb() invocations supply the new interrupt rate to the device. The 16-bit LATCH constant is sent to the
8-bit 0x40 I/O port of the device as two consecutive bytes. As a result, the PIT issues timer interrupts at
a (roughly) 1000-Hz frequency (that is, once every 1 ms).

 6.1.4. CPU Local Timer

 The local APIC present in recent 80 x 86 microprocessors (see the section "Interrupts and Exceptions"
in Chapter 4) provides yet another time-measuring device: the CPU local timer .

 The CPU local timer is a device similar to the Programmable Interval Timer just described that can issue
one-shot or periodic interrupts. There are, however, a few differences:



 The APIC's timer counter is 32 bits long, while the PIT's timer counter is 16 bits long; therefore,
the local timer can be programmed to issue interrupts at very low frequencies (the counter stores
the number of ticks that must elapse before the interrupt is issued).



 The local APIC timer sends an interrupt only to its processor, while the PIT raises a global
interrupt, which may be handled by any CPU in the system.



 The APIC's timer is based on the bus clock signal (or the APIC bus signal, in older machines). It
can be programmed in such a way to decrease the timer counter every 1, 2, 4, 8, 16, 32, 64, or
128 bus clock signals. Conversely, the PIT, which makes use of its own clock signals, can be
programmed in a more flexible way.

 6.1.5. High Precision Event Timer (HPET)

 The High Precision Event Timer (HPET) is a new timer chip developed jointly by Intel and Microsoft.
Although HPETs are not yet very common in end-user machines, Linux 2.6 already supports them, so
we'll spend a few words describing their characteristics.

 The HPET provides a number of hardware timers that can be exploited by the kernel. Basically, the chip
includes up to eight 32-bit or 64-bit independent counters . Each counter is driven by its own clock
signal, whose frequency must be at least 10 MHz; therefore, the counter is increased at least once in 100
nanoseconds. Any counter is associated with at most 32 timers, each of which is composed by a
comparator and a match register. The comparator is a circuit that checks the value in the counter against
the value in the match register, and raises a hardware interrupt if a match is found. Some of the timers can
be enabled to generate a periodic interrupt.

 The HPET chip can be programmed through registers mapped into memory space (much like the I/O
APIC). The BIOS establishes the mapping during the bootstrapping phase and reports to the operating
system kernel its initial memory address. The HPET registers allow the kernel to read and write the
values of the counters and of the match registers , to program one-shot interrupts, and to enable or
disable periodic interrupts on the timers that support them.

 The next generation of motherboards will likely sport both the HPET and the 8254 PIT; in some future
time, however, the HPET is expected to completely replace the PIT.

 6.1.6. ACPI Power Management Timer

 The ACPI Power Management Timer (or ACPI PMT) is yet another clock device included in almost all
ACPI-based motherboards. Its clock signal has a fixed frequency of roughly 3.58 MHz. The device is
actually a simple counter increased at each clock tick; to read the current value of the counter, the kernel
accesses an I/O port whose address is determined by the BIOS during the initialization phase (see
Appendix A).

 The ACPI Power Management Timer is preferable to the TSC if the operating system or the BIOS may
dynamically lower the frequency or voltage of the CPU to save battery power. When this happens, the
frequency of the TSC changesthus causing time warps and others unpleasant effectswhile the frequency
of the ACPI PMT does not. On the other hand, the high-frequency of the TSC counter is quite handy for
measuring very small time intervals.

 However, if an HPET device is present, it should always be preferred to the other circuits because of its
richer architecture. Table 6-2 later in this chapter illustrates how Linux takes advantage of the available
timing circuits.

 Now that we understand what the hardware timers are, we may discuss how the Linux kernel exploits
them to conduct all activities of the system.

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.2. The Linux Timekeeping Architecture
 Linux must carry on several time-related activities. For instance, the kernel periodically:



 Updates the time elapsed since system startup.


 Updates the time and date.


 Determines, for every CPU, how long the current process has been running, and preempts it if it
has exceeded the time allocated to it. The allocation of time slots (also called "quanta") is
discussed in Chapter 7.



 Updates resource usage statistics.


 Checks whether the interval of time associated with each software timer (see the later section "
Software Timers and Delay Functions") has elapsed.

 Linux's timekeeping architecture is the set of kernel data structures and functions related to the flow of
time. Actually, 80 x 86-based multiprocessor machines have a timekeeping architecture that is slightly
different from the timekeeping architecture of uniprocessor machines:



 In a uniprocessor system, all time-keeping activities are triggered by interrupts raised by the
global timer (either the Programmable Interval Timer or the High Precision Event Timer).



 In a multiprocessor system, all general activities (such as handling of software timers) are
triggered by the interrupts raised by the global timer, while CPU-specific activities (such as
monitoring the execution time of the currently running process) are triggered by the interrupts
raised by the local APIC timer.

 Unfortunately, the distinction between the two cases is somewhat blurred. For instance, some early
SMP systems based on Intel 80486 processors didn't have local APICs. Even nowadays, there are
SMP motherboards so buggy that local timer interrupts are not usable at all. In these cases, the SMP
kernel must resort to the UP timekeeping architecture. On the other hand, recent uniprocessor systems
feature one local APIC, so the UP kernel often makes use of the SMP timekeeping architecture.
However, to simplify our description, we won't discuss these hybrid cases and will stick to the two "pure"
timekeeping architectures.

 Linux's timekeeping architecture depends also on the availability of the Time Stamp Counter (TSC), of
the ACPI Power Management Timer, and of the High Precision Event Timer (HPET). The kernel uses
two basic timekeeping functions: one to keep the current time up-to-date and another to count the
number of nanoseconds that have elapsed within the current second. There are different ways to get the
last value. Some methods are more precise and are available if the CPU has a Time Stamp Counter or a
HPET; a less-precise method is used in the opposite case (see the later section "The time() and
gettimeofday() System Calls").

 6.2.1. Data Structures of the Timekeeping Architecture

 The timekeeping architecture of Linux 2.6 makes use of a large number of data structures. As usual, we
will describe the most important variables by referring to the 80 x 86 architecture.

 6.2.1.1. The timer object

 In order to handle the possible timer sources in a uniform way, the kernel makes use of a "timer object,"
which is a descriptor of type timer_opts consisting of the timer name and of four standard methods
shown in Table 6-1.

 Table 6-1. The fields of the timer_opts data structure

Field name Description

name A string identifying the timer source

mark_offset Records the exact time of the last tick; it is invoked
by the timer interrupt handler

get_offset Returns the time elapsed since the last tick

monotonic_clock Returns the number of nanoseconds since the
kernel initialization

delay Waits for a given number of "loops" (see the later
section "Delay Functions")

The most important methods of the timer object are mark_offset and get_offset. The mark_offset method
is invoked by the timer interrupt handler, and records in a suitable data structure the exact time at which
the tick occurred. Using the saved value, the get_offset method computes the time in microseconds
elapsed since the last timer interrupt (tick). Thanks to these two methods, Linux timekeeping architecture
achieves a sub-tick resolutionthat is, the kernel is able to determine the current time with a precision much
higher than the tick duration. This operation is called time interpolation .

 The cur_timer variable stores the address of the timer object corresponding to the "best" timer source
available in the system. Initially, cur_timer points to timer_none, which is the object corresponding to a
dummy timer source used when the kernel is being initialized. During kernel initialization, the select_timer(
) function sets cur_timer to the address of the appropriate timer object. Table 6-2 shows the most
common timer objects used in the 80x86 architecture, in order of preference. As you see, select_timer()
selects the HPET, if available; otherwise, it selects the ACPI Power Management Timer , if available, or
the TSC. As the last resort, select_timer() selects the always-present PIT. The "Time interpolation"
column lists the timer sources used by the mark_offset and get_offset methods of the timer object; the
"Delay" column lists the timer sources used by the delay method.

 Table 6-2. Typical timer objects of the 80x86 architecture, in order of preference

Timer object name Description Time interpolation Delay

timer_hpet High Precision Event
Timer (HPET) HPET HPET

timer_pmtmr
ACPI Power
Management Timer
(ACPI PMT)

ACPI PMT TSC

timer_tsc Time Stamp Counter
(TSC) TSC TSC

timer_pit Programmable Interval
Timer (PIT) PIT Tight loop

timer_none
Generic dummy timer
source(used during
kernel initialization)

(none) Tight loop

Notice that local APIC timers do not have a corresponding timer object. The reason is that local APIC
timers are used only to generate periodic interrupts and are never used to achieve sub-tick resolution.

 6.2.1.2. The jiffies variable

 The jiffies variable is a counter that stores the number of elapsed ticks since the system was started. It is
increased by one when a timer interrupt occursthat is, on every tick. In the 80 x 86 architecture, jiffies is
a 32-bit variable, therefore it wraps around in approximately 50 daysa relatively short time interval for a
Linux server. However, the kernel handles cleanly the overflow of jiffies thanks to the time_after,
time_after_eq, time_before, and time_before_eq macros: they yield the correct value even if a
wraparound occurred.

 You might suppose that jiffies is initialized to zero at system startup. Actually, this is not the case: jiffies is
initialized to 0xfffb6c20, which corresponds to the 32-bit signed value 300,000; therefore, the counter
will overflow five minutes after the system boot. This is done on purpose, so that buggy kernel code that
does not check for the overflow of jiffies shows up very soon in the developing phase and does not pass
unnoticed in stable kernels.

 In a few cases, however, the kernel needs the real number of system ticks elapsed since the system
boot, regardless of the overflows of jiffies. Therefore, in the 80 x 86 architecture the jiffies variable is
equated by the linker to the 32 less significant bits of a 64-bit counter called jiffies_64. With a tick of 1
millisecond, the jiffies_64 variable wraps around in several hundreds of millions of years, thus we can
safely assume that it never overflows.

 You might wonder why jiffies has not been directly declared as a 64-bit unsigned long long integer on
the 80 x 86 architecture. The answer is that accesses to 64-bit variables in 32-bit architectures cannot be
done atomically. Therefore, every read operation on the whole 64 bits requires some synchronization
technique to ensure that the counter is not updated while the two 32-bit half-counters are read; as a
consequence, every 64-bit read operation is significantly slower than a 32-bit read operation.

 The get_jiffies_64() function reads the value of jiffies_64 and returns its value:

 unsigned long long get_jiffies_64(void)

 {

 unsigned long seq;

 unsigned long long ret;

 do {

 seq = read_seqbegin(&xtime_lock);

 ret = jiffies_64;

 } while (read_seqretry(&xime_lock, seq));

 return ret;

 }

The 64-bit read operation is protected by the xtime_lock seqlock (see the section "Seqlocks" in Chapter
5): the function keeps reading the jiffies_64 variable until it knows for sure that it has not been
concurrently updated by another kernel control path.

 Conversely, the critical region increasing the jiffies_64 variable must be protected by means of
write_seqlock(&xtime_lock) and write_sequnlock(&xtime_lock). Notice that the ++jiffies_64
instruction also increases the 32-bit jiffies variable, because the latter corresponds to the lower half of
jiffies_64.

 6.2.1.3. The xtime variable

 The xtime variable stores the current time and date; it is a structure of type timespec having two fields:

 tv_sec

 Stores the number of seconds that have elapsed since midnight of January 1, 1970 (UTC)

tv_nsec

 Stores the number of nanoseconds that have elapsed within the last second (its value ranges between 0
and 999,999,999)

 The xtime variable is usually updated once in a tickthat is, roughly 1000 times per second. As we'll see in
the later section "System Calls Related to Timing Measurements," user programs get the current time and
date from the xtime variable. The kernel also often refers to it, for instance, when updating inode
timestamps (see the section "File Descriptor and Inode" in Chapter 1).

 The xtime_lock seqlock avoids the race conditions that could occur due to concurrent accesses to the
xtime variable. Remember that xtime_lock also protects the jiffies_64 variable; in general, this seqlock is
used to define several critical regions of the timekeeping architecture.

 6.2.2. Timekeeping Architecture in Uniprocessor Systems

 In a uniprocessor system, all time-related activities are triggered by the interrupts raised by the
Programmable Interval Timer on IRQ line 0. As usual, in Linux, some of these activities are executed as
soon as possible right after the interrupt is raised, while the remaining activities are carried on by
deferrable functions (see the later section "Dynamic Timers").

 6.2.2.1. Initialization phase

 During kernel initialization, the time_init() function is invoked to set up the timekeeping architecture. It
usually[*] performs the following operations:

[*] The time_init() function is executed before mem_init(), which initializes the memory data structures.
Unfortunately, the HPET registers are memory mapped, therefore initialization of the HPET chip has to
be done after the execution of mem_init(). Linux 2.6 adopts a cumbersome solution: if the kernel
supports the HPET chip, the time_init() function limits itself to trigger the activation of the hpet_time_init(
) function.The latter function is executed after mem_init() and performs the operations described in this
section.

1.

1. Initializes the xtime variable. The number of seconds elapsed since the midnight of January 1,
1970 is read from the Real Time Clock by means of the get_cmos_time() function. The tv_nsec
field of xtime is set, so that the forthcoming overflow of the jiffies variable will coincide with an
increment of the tv_sec fieldthat is, it will fall on a second boundary.

2.

2. Initializes the wall_to_monotonic variable. This variable is of the same type timespec as xtime,
and it essentially stores the number of seconds and nanoseconds to be added to xtime in order to
get a monotonic (ever increasing) flow of time. In fact, both leap seconds and synchronization
with external clocks might suddenly change the tv_sec and tv_nsec fields of xtime so that they are
no longer monotonically increased. As we'll see in the later section "System Calls for POSIX
Timers," sometimes the kernel needs a truly monotonic time source.

3.

3. If the kernel supports HPET, it invokes the hpet_enable() function to determine whether the
ACPI firmware has probed the chip and mapped its registers in the memory address space. In
the affirmative case, hpet_enable() programs the first timer of the HPET chip so that it raises the
IRQ 0 interrupt 1000 times per second. Otherwise, if the HPET chip is not available, the kernel
will use the PIT: the chip has already been programmed by the init_IRQ() function to raise 1000
timer interrupts per second, as described in the earlier section "Programmable Interval Timer
(PIT)."

4.

4. Invokes select_timer() to select the best timer source available in the system, and sets the
cur_timer variable to the address of the corresponding timer object.

5.

5. Invokes setup_irq(0,&irq0) to set up the interrupt gate corresponding to IRQ0the line
associated with the system timer interrupt source (PIT or HPET).The irq0 variable is statically
defined as:

5. struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0,

 "timer", NULL, NULL };

5. From now on, the timer_interrupt() function will be invoked once every tick with interrupts
disabled, because the status field of IRQ 0's main descriptor has the SA_INTERRUPT flag set.

6.2.2.2. The timer interrupt handler

 The timer_interrupt() function is the interrupt service routine (ISR) of the PIT or of the HPET; it
performs the following steps:

1.

1. Protects the time-related kernel variables by issuing a write_seqlock() on the xtime_lock
seqlock (see the section "Seqlocks" in Chapter 5).

2.

2. Executes the mark_offset method of the cur_timer timer object. As explained in the earlier
section "Data Structures of the Timekeeping Architecture," there are four possible cases:
a.

a. cur_timer points to the timer_hpet object: in this case, the HPET chip is the source of timer
interrupts. The mark_offset method checks that no timer interrupt has been lost since the last
tick; in this unlikely case, it updates jiffies_64 accordingly. Next, the method records the
current value of the periodic HPET counter.

b.

b. cur_timer points to the timer_pmtmr object: in this case, the PIT chip is the source of timer
interrupts, but the kernel uses the APIC Power Management Timer to measure time with a
finer resolution. The mark_offset method checks that no timer interrupt has been lost since
the last tick and updates jiffies_64 if necessary. Then, it records the current value of the
APIC Power Management Timer counter.

c.

c. cur_timer points to the timer_tsc object: in this case, the PIT chip is the source of timer
interrupts, but the kernel uses the Time Stamp Counter to measure time with a finer
resolution. The mark_offset method performs the same operations as in the previous case: it
checks that no timer interrupt has been lost since the last tick and updates jiffies_64 if
necessary. Then, it records the current value of the TSC counter.

d.

d. cur_timer points to the timer_pit object: in this case, the PIT chip is the source of timer
interrupts, and there is no other timer circuit. The mark_offset method does nothing.

3.

3. Invokes the do_timer_interrupt() function, which in turn performs the following actions:
a.

a. Increases by one the value of jiffies_64. Notice that this can be done safely, because the
kernel control path still holds the xtime_lock seqlock for writing.

b.

b. Invokes the update_times() function to update the system date and time and to compute the
current system load; these activities are discussed later in the sections "Updating the Time
and Date" and "Updating System Statistics."

c.

c. Invokes the update_process_times() function to perform several time-related accounting
operations for the local CPU (see the section "Updating Local CPU Statistics" later in this
chapter).

d.

d. Invokes the profile_tick() function (see the section "Profiling the Kernel Code" later in this
chapter).

e.

e. If the system clock is synchronized with an external clock (an adjtimex() system call has
been previously issued), invokes the set_rtc_mmss() function once every 660 seconds
(every 11 minutes) to adjust the Real Time Clock. This feature helps systems on a network
synchronize their clocks (see the later section "The adjtimex() System Call").

4.

4. Releases the xtime_lock seqlock by invoking write_sequnlock().
5.

5. Returns the value 1 to notify that the interrupt has been effectively handled (see the section "I/O
Interrupt Handling" in Chapter 4).

6.2.3. Timekeeping Architecture in Multiprocessor Systems

 Multiprocessor systems can rely on two different sources of timer interrupts: those raised by the
Programmable Interval Timer or the High Precision Event Timer, and those raised by the CPU local
timers.

 In Linux 2.6, global timer interruptsraised by the PIT or the HPETsignal activities not related to a
specific CPU, such as handling of software timers and keeping the system time up-to-date. Conversely, a
CPU local timer interrupt signals timekeeping activities related to the local CPU, such as monitoring how
long the current process has been running and updating the resource usage statistics.

 6.2.3.1. Initialization phase

 The global timer interrupt handler is initialized by the time_init() function, which has already been
described in the earlier section "Timekeeping Architecture in Uniprocessor Systems."

 The Linux kernel reserves the interrupt vector 239 (0xef) for local timer interrupts (see Table 4-2 in
Chapter 4). During kernel initialization, the apic_intr_init() function sets up the IDT's interrupt gate
corresponding to vector 239 with the address of the low-level interrupt handler apic_timer_interrupt().
Moreover, each APIC has to be told how often to generate a local time interrupt. The
calibrate_APIC_clock() function computes how many bus clock signals are received by the local APIC
of the booting CPU during a tick (1 ms). This exact value is then used to program the local APICs in
such a way to generate one local timer interrupt every tick. This is done by the setup_APIC_timer()
function, which is executed once for every CPU in the system.

 All local APIC timers are synchronized because they are based on the common bus clock signal. This
means that the value computed by calibrate_APIC_clock() for the boot CPU is also good for the other
CPUs in the system.

 6.2.3.2. The global timer interrupt handler

 The SMP version of the timer_interrupt() handler differs from the UP version in a few points:


 The do_timer_interrupt() function, invoked by timer_interrupt(), writes into a port of the I/O
APIC chip to acknowledge the timer IRQ.



 The update_process_times() function is not invoked, because this function performs actions
related to a specific CPU.



 The profile_tick() function is not invoked, because this function also performs actions related to
a specific CPU.

 6.2.3.3. The local timer interrupt handler

 This handler performs the timekeeping activities related to a specific CPU in the system, namely profiling
the kernel code and checking how long the current process has been running on a given CPU.

 The apic_timer_interrupt() assembly language function is equivalent to the following code:

 apic_timer_interrupt:

 pushl $(239-256)

 SAVE_ALL

 movl %esp, %eax

 call smp_apic_timer_interrupt

 jmp ret_from_intr

As you can see, the low-level handler is very similar to the other low-level interrupt handlers already
described in Chapter 4. The high-level interrupt handler called smp_apic_timer_interrupt() executes the
following steps:

1.

1. Gets the CPU logical number (say, n).
2.

2. Increases the apic_timer_irqs field of the nth entry of the irq_stat array (see the section "
Checking the NMI Watchdogs" later in this chapter).

3.

3. Acknowledges the interrupt on the local APIC.
4.

4. Calls the irq_enter() function (see the section "The do_IRQ() function" in Chapter 4).
5.

5. Invokes the smp_local_timer_interrupt() function.
6.

6. Calls the irq_exit() function.

The smp_local_timer_interrupt() function executes the per-CPU timekeeping activities. Actually, it
performs the following main steps:

1.

1. Invokes the profile_tick() function (see the section "Profiling the Kernel Code" later in this
chapter).

2.

2. Invokes the update_process_times() function to check how long the current process has been
running and to update some local CPU statistics (see the section "Updating Local CPU Statistics"
later in this chapter).

The system administrator can change the sample frequency of the kernel code profiler by writing into the
/proc/profile file.To carry out the change, the kernel modifies the frequency at which local timer
interrupts are generated. However, the smp_local_timer_interrupt() function keeps invoking the
update_process_times() function exactly once every tick.

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.3. Updating the Time and Date
 User programs get the current time and date from the xtime variable. The kernel must periodically
update this variable, so that its value is always reasonably accurate.

 The update_times() function, which is invoked by the global timer interrupt handler, updates the value of
the xtime variable as follows:

 void update_times(void)

 {

 unsigned long ticks;

 ticks = jiffies - wall_jiffies;

 if (ticks) {

 wall_jiffies += ticks;

 update_wall_time(ticks);

 }

 calc_load(ticks);

 }

We recall from the previous description of the timer interrupt handler that when the code of this function
is executed, the xtime_lock seqlock has already been acquired for writing.

 The wall_jiffies variable stores the time of the last update of the xtime variable. Observe that the value of
wall_jiffies can be smaller than jiffies-1, since a few timer interrupts can be lost, for instance when
interrupts remain disabled for a long period of time; in other words, the kernel does not necessarily
update the xtime variable at every tick. However, no tick is definitively lost, and in the long run, xtime
stores the correct system time. The check for lost timer interrupts is done in the mark_offset method of
cur_timer; see the earlier section "Timekeeping Architecture in Uniprocessor Systems."

 The update_wall_time() function invokes the update_wall_time_one_tick() function ticks consecutive
times; normally, each invocation adds 1,000,000 to the xtime.tv_nsec field. If the value of xtime.tv_nsec
becomes greater than 999,999,999, the update_wall_time() function also updates the tv_sec field of
xtime. If an adjtimex() system call has been issued, for reasons explained in the section "The adjtimex()
System Call" later in this chapter, the function might tune the value 1,000,000 slightly so the clock speeds
up or slows down a little.

 The calc_load() function is described in the section "Keeping Track of System Load" later in this
chapter.

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.4. Updating System Statistics
 The kernel, among the other time-related duties, must periodically collect various data used for:



 Checking the CPU resource limit of the running processes


 Updating statistics about the local CPU workload


 Computing the average system load


 Profiling the kernel code

 6.4.1. Updating Local CPU Statistics

 We have mentioned that the update_process_times() function is invokedeither by the global timer
interrupt handler on uniprocessor systems or by the local timer interrupt handler in multiprocessor
systemsto update some kernel statistics. This function performs the following steps:

1.

1. Checks how long the current process has been running. Depending on whether the current
process was running in User Mode or in Kernel Mode when the timer interrupt occurred,
invokes either account_user_time() or account_system_time(). Each of these functions performs
essentially the following steps:
a.

a. Updates either the utime field (ticks spent in User Mode) or the stime field (ticks spent in
Kernel Mode) of the current process descriptor. Two additional fields called cutime and
cstime are provided in the process descriptor to count the number of CPU ticks spent by the
process children in User Mode and Kernel Mode, respectively. For reasons of efficiency,
these fields are not updated by update_process_times(), but rather when the parent process
queries the state of one of its children (see the section "Destroying Processes" in Chapter 3).

b.

b. Checks whether the total CPU time limit has been reached; if so, sends SIGXCPU and
SIGKILL signals to current. The section "Process Resource Limits" in Chapter 3 describes
how the limit is controlled by the signal->rlim[RLIMIT_CPU].rlim_cur field of each process
descriptor.

c.

c. Invokes account_it_virt() and account_it_prof() to check the process timers (see the
section "The setitimer() and alarm() System Calls" later in this chapter).

d.

d. Updates some kernel statistics stored in the kstat per-CPU variable.
2.

2. Invokes raise_softirq() to activate the TIMER_SOFTIRQ tasklet on the local CPU (see the
section "Software Timers and Delay Functions" later in this chapter).

3.

3. If some old version of an RCU-protected data structure has to be reclaimed, checks whether the
local CPU has gone through a quiescent state and invokes tasklet_schedule() to activate the
rcu_tasklet tasklet of the local CPU (see the section "Read-Copy Update (RCU)" in Chapter 5).

4.

4. Invokes the scheduler_tick() function, which decreases the time slice counter of the current
process, and checks whether its quantum is exhausted. We'll discuss in depth these operations in
the section "The scheduler_tick() Function" in Chapter 7.

6.4.2. Keeping Track of System Load

 Every Unix kernel keeps track of how much CPU activity is being carried on by the system. These
statistics are used by various administration utilities such as top. A user who enters the uptime command
sees the statistics as the "load average" relative to the last minute, the last 5 minutes, and the last 15
minutes. On a uniprocessor system, a value of 0 means that there are no active processes (besides the
swapper process 0) to run, while a value of 1 means that the CPU is 100 percent busy with a single
process, and values greater than 1 mean that the CPU is shared among several active processes.[*]

[*] Linux includes in the load average all processes that are in the TASK_RUNNING and
TASK_UNINTERRUPTIBLE states. However, under normal conditions, there are few
TASK_UNINTERRUPTIBLE processes, so a high load usually means that the CPU is busy.

 At every tick, update_times() invokes the calc_load() function, which counts the number of processes
in the TASK_RUNNING or TASK_UNINTERRUPTIBLE state and uses this number to update the
average system load.

 6.4.3. Profiling the Kernel Code

 Linux includes a minimalist code profiler called readprofile used by Linux developers to discover where
the kernel spends its time in Kernel Mode. The profiler identifies the hot spots of the kernel the most
frequently executed fragments of kernel code. Identifying the kernel hot spots is very important, because
they may point out kernel functions that should be further optimized.

 The profiler is based on a simple Monte Carlo algorithm: at every timer interrupt occurrence, the kernel
determines whether the interrupt occurred in Kernel Mode; if so, the kernel fetches the value of the eip
register before the interruption from the stack and uses it to discover what the kernel was doing before
the interrupt. In the long run, the samples accumulate on the hot spots.

 The profile_tick() function collects the data for the code profiler. It is invoked either by the
do_timer_interrupt() function in uniprocessor systems (by the global timer interrupt handler) or by the
smp_local_timer_interrupt() function in multiprocessor systems (by the local timer interrupt handler).

 To enable the code profiler, the Linux kernel must be booted by passing as a parameter the string
profile=N, where 2N denotes the size of the code fragments to be profiled. The collected data can be
read from the /proc/profile file. The counters are reset by writing in the same file; in multiprocessor
systems, writing into the file can also change the sample frequency (see the earlier section "Timekeeping
Architecture in Multiprocessor Systems"). However, kernel developers do not usually access
/proc/profile directly; instead, they use the readprofile system command.

 The Linux 2.6 kernel includes yet another profiler called oprofile. Besides being more flexible and
customizable than readprofile, oprofile can be used to discover hot spots in kernel code, User Mode
applications, and system libraries. When oprofile is being used, profile_tick() invokes the timer_notify()
function to collect the data used by this new profiler.

 6.4.4. Checking the NMI Watchdogs

 In multiprocessor systems, Linux offers yet another feature to kernel developers: a watchdog system ,
which might be quite useful to detect kernel bugs that cause a system freeze. To activate such a
watchdog, the kernel must be booted with the nmi_watchdog parameter.

 The watchdog is based on a clever hardware feature of local and I/O APICs: they can generate periodic
NMI interrupts on every CPU. Because NMI interrupts are not masked by the cli assembly language
instruction, the watchdog can detect deadlocks even when interrupts are disabled.

 As a consequence, once every tick, all CPUs, regardless of what they are doing, start executing the
NMI interrupt handler; in turn, the handler invokes do_nmi(). This function gets the logical number n of
the CPU, and then checks the apic_timer_irqs field of the nth entry of irq_stat (see Table 4-8 in Chapter
4). If the CPU is working properly, the value must be different from the value read at the previous NMI
interrupt. When the CPU is running properly, the nth entry of the apic_timer_irqs field is increased by the
local timer interrupt handler (see the earlier section "The local timer interrupt handler"); if the counter is
not increased, the local timer interrupt handler has not been executed in a whole tick. Not a good thing,
you know.

 When the NMI interrupt handler detects a CPU freeze, it rings all the bells: it logs scary messages in the
system logfiles, dumps the contents of the CPU registers and of the kernel stack (kernel oops), and finally
kills the current process. This gives kernel developers a chance to discover what's gone wrong.

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.5. Software Timers and Delay Functions
 A timer is a software facility that allows functions to be invoked at some future moment, after a given
time interval has elapsed; a time-out denotes a moment at which the time interval associated with a timer
has elapsed.

 Timers are widely used both by the kernel and by processes. Most device drivers use timers to detect
anomalous conditions floppy disk drivers, for instance, use timers to switch off the device motor after the
floppy has not been accessed for a while, and parallel printer drivers use them to detect erroneous printer
conditions.

 Timers are also used quite often by programmers to force the execution of specific functions at some
future time (see the later section "The setitimer() and alarm() System Calls").

 Implementing a timer is relatively easy. Each timer contains a field that indicates how far in the future the
timer should expire. This field is initially calculated by adding the right number of ticks to the current value
of jiffies. The field does not change. Every time the kernel checks a timer, it compares the expiration field
to the value of jiffies at the current moment, and the timer expires when jiffies is greater than or equal to
the stored value.

 Linux considers two types of timers called dynamic timers and interval timers . The first type is used by
the kernel, while interval timers may be created by processes in User Mode.

 One word of caution about Linux timers: since checking for timer functions is always done by deferrable
functions that may be executed a long time after they have been activated, the kernel cannot ensure that
timer functions will start right at their expiration times. It can only ensure that they are executed either at
the proper time or after with a delay of up to a few hundreds of milliseconds. For this reason, timers are
not appropriate for real-time applications in which expiration times must be strictly enforced.

 Besides software timers , the kernel also makes use of delay functions , which execute a tight instruction
loop until a given time interval elapses. We will discuss them in the later section "Delay Functions."

 6.5.1. Dynamic Timers

 Dynamic timers may be dynamically created and destroyed. No limit is placed on the number of
currently active dynamic timers.

 A dynamic timer is stored in the following timer_list structure:

 struct timer_list {

 struct list_head entry;

 unsigned long expires;

 spinlock_t lock;

 unsigned long magic;

 void (*function)(unsigned long);

 unsigned long data;

 tvec_base_t *base;

 };

The function field contains the address of the function to be executed when the timer expires. The data
field specifies a parameter to be passed to this timer function. Thanks to the data field, it is possible to
define a single general-purpose function that handles the time-outs of several device drivers; the data field
could store the device ID or other meaningful data that could be used by the function to differentiate the
device.

 The expires field specifies when the timer expires; the time is expressed as the number of ticks that have
elapsed since the system started up. All timers that have an expires value smaller than or equal to the
value of jiffies are considered to be expired or decayed.

 The entry field is used to insert the software timer into one of the doubly linked circular lists that group
together the timers according to the value of their expires field. The algorithm that uses these lists is
described later in this chapter.

 To create and activate a dynamic timer, the kernel must:
1.

1. Create, if necessary, a new timer_list object for example, t. This can be done in several ways by:
o

o Defining a static global variable in the code.
o

o Defining a local variable inside a function; in this case, the object is stored on the Kernel
Mode stack.

o

o Including the object in a dynamically allocated descriptor.
2.

2. Initialize the object by invoking the init_timer(&t) function. This essentially sets the t.base pointer
field to NULL and sets the t.lock spin lock to "open."

3.

3. Load the function field with the address of the function to be activated when the timer decays. If
required, load the data field with a parameter value to be passed to the function.

4.

4. If the dynamic timer is not already inserted in a list, assign a proper value to the expires field and
invoke the add_timer(&t) function to insert the t element in the proper list.

5.

5. Otherwise, if the dynamic timer is already inserted in a list, update the expires field by invoking
the mod_timer() function, which also takes care of moving the object into the proper list
(discussed next).

Once the timer has decayed, the kernel automatically removes the t element from its list. Sometimes,
however, a process should explicitly remove a timer from its list using the del_timer(), del_timer_sync(),
or del_singleshot_timer_sync() functions. Indeed, a sleeping process may be woken up before the
time-out is over; in this case, the process may choose to destroy the timer. Invoking del_timer() on a
timer already removed from a list does no harm, so removing the timer within the timer function is
considered a good practice.

 In Linux 2.6, a dynamic timer is bound to the CPU that activated itthat is, the timer function will always
run on the same CPU that first executed the add_timer() or later the mod_timer() function. The
del_timer() and companion functions, however, can deactivate every dynamic timer, even if it is not
bound to the local CPU.

 6.5.1.1. Dynamic timers and race conditions

 Being asynchronously activated, dynamic timers are prone to race conditions. For instance, consider a
dynamic timer whose function acts on a discardable resource (e.g., a kernel module or a file data
structure). Releasing the resource without stopping the timer may lead to data corruption if the timer
function got activated when the resource no longer exists. Thus, a rule of thumb is to stop the timer
before releasing the resource:

 ...

 del_timer(&t);

 X_Release_Resources();

 ...

In multiprocessor systems, however, this code is not safe because the timer function might already be
running on another CPU when del_timer() is invoked. As a result, resources may be released while the
timer function is still acting on them. To avoid this kind of race condition, the kernel offers the
del_timer_sync() function. It removes the timer from the list, and then it checks whether the timer
function is executed on another CPU; in such a case, del_timer_sync() waits until the timer function
terminates.

 The del_timer_sync() function is rather complex and slow, because it has to carefully take into
consideration the case in which the timer function reactivates itself. If the kernel developer knows that the
timer function never reactivates the timer, she can use the simpler and faster del_singleshot_timer_sync()
function to deactivate a timer and wait until the timer function terminates.

 Other types of race conditions exist, of course. For instance, the right way to modify the expires field of
an already activated timer consists of using mod_timer(), rather than deleting the timer and re-creating it
thereafter. In the latter approach, two kernel control paths that want to modify the expires field of the
same timer may mix each other up badly. The implementation of the timer functions is made SMP-safe by
means of the lock spin lock included in every timer_list object: every time the kernel must access a
dynamic timer, it disables the interrupts and acquires this spin lock.

 6.5.1.2. Data structures for dynamic timers

 Choosing the proper data structure to implement dynamic timers is not easy. Stringing together all timers
in a single list would degrade system performance, because scanning a long list of timers at every tick is
costly. On the other hand, maintaining a sorted list would not be much more efficient, because the
insertion and deletion operations would also be costly.

 The adopted solution is based on a clever data structure that partitions the expires values into blocks of
ticks and allows dynamic timers to percolate efficiently from lists with larger expires values to lists with
smaller ones. Moreover, in multiprocessor systems the set of active dynamic timers is split among the
various CPUs.

 The main data structure for dynamic timers is a per-CPU variable (see the section "Per-CPU Variables"
in Chapter 5) named tvec_bases: it includes NR_CPUS elements, one for each CPU in the system. Each
element is a tvec_base_t structure, which includes all data needed to handle the dynamic timers bound to
the corresponding CPU:

 typedef struct tvec_t_base_s {

 spinlock_t lock;

 unsigned long timer_jiffies;

 struct timer_list *running_timer;

 tvec_root_t tv1;

 tvec_t tv2;

 tvec_t tv3;

 tvec_t tv4;

 tvec_t tv5;

 } tvec_base_t;

The tv1 field is a structure of type tvec_root_t, which includes a vec array of 256 list_head elements that
is, lists of dynamic timers. It contains all dynamic timers, if any, that will decay within the next 255 ticks.

 The tv2, tv3, and tv4 fields are structures of type tvec_t consisting of a vec array of 64 list_head
elements. These lists contain all dynamic timers that will decay within the next 214-1, 220-1, and 226-1
ticks, respectively.

 The tv5 field is identical to the previous ones, except that the last entry of the vec array is a list that
includes dynamic timers with extremely large expires fields. It never needs to be replenished from another
array. Figure 6-1 illustrates in a schematic way the five groups of lists.

 The timer_jiffies field represents the earliest expiration time of the dynamic timers yet to be checked: if it
coincides with the value of jiffies, no backlog of deferrable functions has accumulated; if it is smaller than
jiffies, then lists of dynamic timers that refer to previous ticks must be dealt with. The field is set to jiffies
at system startup and is increased only by the run_timer_softirq() function described in the next section.
Notice that the timer_jiffies field might drop a long way behind jiffies when the deferrable functions that
handle dynamic timers are not executed for a long timefor instance because these functions have been
disabled or because a large number of interrupt handlers have been executed.

 Figure 6-1. The groups of lists associated with dynamic timers

 In multiprocessor systems, the running_timer field points to the timer_list structure of the dynamic timer
that is currently handled by the local CPU.

 6.5.1.3. Dynamic timer handling

 Despite the clever data structures, handling software timers is a time-consuming activity that should not
be performed by the timer interrupt handler. In Linux 2.6 this activity is carried on by a deferrable
function, namely the TIMER_SOFTIRQ softirq.

 The run_timer_softirq() function is the deferrable function associated with the TIMER_SOFTIRQ
softirq. It essentially performs the following actions:

1.

1. Stores in the base local variable the address of the tvec_base_t data structure associated with
the local CPU.

2.

2. Acquires the base->lock spin lock and disables local interrupts.
3.

3. Starts a while loop, which ends when base->timer_jiffies becomes greater than the value of
jiffies. In every single execution of the cycle, performs the following substeps:
a.

a. Computes the index of the list in base->tv1 that holds the next timers to be handled:

a. index = base->timer_jiffies & 255;

b.

b. If index is zero, all lists in base->tv1 have been checked, so they are empty: the function
therefore percolates the dynamic timers by invoking cascade():

b. if (!index &&

 (!cascade(base, &base->tv2, (base->timer_jiffies>> 8)&63)) &&

 (!cascade(base, &base->tv3, (base->timer_jiffies>>14)&63)) &&

 (!cascade(base, &base->tv4, (base->timer_jiffies>>20)&63)))

 cascade(base, &base->tv5, (base->timer_jiffies>>26)&63);

b. Consider the first invocation of the cascade() function: it receives as arguments the address
in base, the address of base->tv2, and the index of the list in base->tv2 including the timers
that will decay in the next 256 ticks. This index is determined by looking at the proper bits of
the base->timer_jiffies value. cascade() moves all dynamic timers in the base->tv2 list into
the proper lists of base->tv1; then, it returns a positive value, unless all base->tv2 lists are
now empty. If so, cascade() is invoked once more to replenish base->tv2 with the timers
included in a list of base->tv3, and so on.

c.

c. Increases by one base->timer_jiffies.
d.

d. For each dynamic timer in the base->tv1.vec[index] list, executes the corresponding timer
function. In particular, for each timer_list element t in the list essentially performs the following
steps:
1.

1. Removes t from the base->tv1's list.
2.

2. In multiprocessor systems, sets base->running_timer to &t.
3.

3. Sets t.base to NULL.
4.

4. Releases the base->lock spin lock, and enables local interrupts.
5.

5. Executes the timer function t.function passing as argument t.data.
6.

6. Acquires the base->lock spin lock, and disables local interrupts.
7.

7. Continues with the next timer in the list, if any.
e.

e. All timers in the list have been handled. Continues with the next iteration of the outermost
while cycle.

4.

4. The outermost while cycle is terminated, which means that all decayed timers have been handled.
In multiprocessor systems, sets base->running_timer to NULL.

5.

5. Releases the base->lock spin lock and enables local interrupts.

Because the values of jiffies and timer_jiffies usually coincide, the outermost while cycle is often executed
only once. In general, the outermost loop is executed jiffies - base->timer_jiffies + 1 consecutive times.
Moreover, if a timer interrupt occurs while run_timer_softirq() is being executed, dynamic timers that
decay at this tick occurrence are also considered, because the jiffies variable is asynchronously increased
by the global timer interrupt handler (see the earlier section "The timer interrupt handler").

 Notice that run_timer_softirq() disables interrupts and acquires the base->lock spin lock just before
entering the outermost loop; interrupts are enabled and the spin lock is released right before invoking
each dynamic timer function, until its termination. This ensures that the dynamic timer data structures are
not corrupted by interleaved kernel control paths.

 To sum up, this rather complex algorithm ensures excellent performance. To see why, assume for the
sake of simplicity that the TIMER_SOFTIRQ softirq is executed right after the corresponding timer
interrupt occurs. Then, in 255 timer interrupt occurrences out of 256 (in 99.6% of the cases), the
run_timer_softirq() function just runs the functions of the decayed timers, if any. To replenish
base->tv1.vec periodically, it is sufficient 63 times out of 64 to partition one list of base->tv2 into the 256
lists of base->tv1. The base->tv2.vec array, in turn, must be replenished in 0.006 percent of the cases
(that is, once every 16.4 seconds). Similarly, base->tv3.vec is replenished every 17 minutes and 28
seconds, and base->tv4.vec is replenished every 18 hours and 38 minutes. base->tv5.vec doesn't need
to be replenished.

 6.5.2. An Application of Dynamic Timers: the nanosleep() System Call

 To show how the outcomes of all the previous activities are actually used in the kernel, we'll show an
example of the creation and use of a process time-out.

 Let's consider the service routine of the nanosleep() system call, that is, sys_nanosleep(), which receives
as its parameter a pointer to a timespec structure and suspends the invoking process until the specified
time interval elapses. The service routine first invokes copy_from_user() to copy the values contained in
the User Mode timespec structure into the local variable t. Assuming that the timespec structure defines a
non-null delay, the function then executes the following code:

 current->state = TASK_INTERRUPTIBLE;

 remaining = schedule_timeout(timespec_to_jiffies(&t)+1);

The timespec_to_jiffies() function converts in ticks the time interval stored in the timespec structure. To
be on the safe side, sys_nanosleep() adds one tick to the value computed by timespec_to_jiffies().

 The kernel implements process time-outs by using dynamic timers. They appear in the schedule_timeout(
) function, which essentially executes the following statements:

 struct timer_list timer;

 unsigned long expire = timeout + jiffies;

 init_timer(&timer);

 timer.expires = expire;

 timer.data = (unsigned long) current;

 timer.function = process_timeout;

 add_timer(&timer);

 schedule(); /* process suspended until timer expires */

 del_singleshot_timer_sync(&timer);

 timeout = expire - jiffies;

 return (timeout < 0 ? 0 : timeout);

When schedule() is invoked, another process is selected for execution; when the former process
resumes its execution, the function removes the dynamic timer. In the last statement, the function either
returns 0, if the time-out is expired, or the number of ticks left to the time-out expiration if the process
was awakened for some other reason.

 When the time-out expires, the timer's function is executed:

 void process_timeout(unsigned long __data)

 {

 wake_up_process((task_t *)__data);

 }

The process_timeout() receives as its parameter the process descriptor pointer stored in the data field of
the timer object. As a result, the suspended process is awakened.

 Once awakened, the process continues the execution of the sys_nanosleep() system call. If the value
returned by schedule_timeout() specifies that the process time-out is expired (value zero), the system call
terminates. Otherwise, the system call is automatically restarted, as explained in the section "Reexecution
of System Calls" in Chapter 11.

 6.5.3. Delay Functions

 Software timers are useless when the kernel must wait for a short time intervallet's say, less than a few
milliseconds. For instance, often a device driver has to wait for a predefined number of microseconds
until the hardware completes some operation. Because a dynamic timer has a significant setup overhead
and a rather large minimum wait time (1 millisecond), the device driver cannot conveniently use it.

 In these cases, the kernel makes use of the udelay() and ndelay() functions: the former receives as its
parameter a time interval in microseconds and returns after the specified delay has elapsed; the latter is
similar, but the argument specifies the delay in nanoseconds.

 Essentially, the two functions are defined as follows:

void udelay(unsigned long usecs)

 {

 unsigned long loops;

 loops = (usecs*HZ*current_cpu_data.loops_per_jiffy)/1000000;

 cur_timer->delay(loops);

 }

 void ndelay(unsigned long nsecs)

 {

 unsigned long loops;

 loops = (nsecs*HZ*current_cpu_data.loops_per_jiffy)/1000000000;

 cur_timer->delay(loops);

 }

Both functions rely on the delay method of the cur_timer timer object (see the earlier section "Data
Structures of the Timekeeping Architecture"), which receives as its parameter a time interval in "loops."
The exact duration of one "loop," however, depends on the timer object referred by cur_timer (see Table
6-2 earlier in this chapter):



 If cur_timer points to the timer_hpet, timer_pmtmr, and timer_tsc objects, one "loop"
corresponds to one CPU cyclethat is, the time interval between two consecutive CPU clock
signals (see the earlier section "Time Stamp Counter (TSC)").



 If cur_timer points to the timer_none or timer_pit objects, one "loop" corresponds to the time
duration of a single iteration of a tight instruction loop.

 During the initialization phase, after cur_timer has been set up by select_timer(), the kernel executes the
calibrate_delay() function, which determines how many "loops" fit in a tick. This value is then saved in
the current_cpu_data.loops_per_jiffy variable, so that it can be used by udelay() and ndelay() to
convert microseconds and nanoseconds, respectively, to "loops."

 Of course, the cur_timer->delay() method makes use of the HPET or TSC hardware circuitry, if
available, to get an accurate measurement of time. Otherwise, if no HPET or TSC is available, the
method executes loops iterations of a tight instruction loop.

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.6. System Calls Related to Timing Measurements
 Several system calls allow User Mode processes to read and modify the time and date and to create
timers. Let's briefly review these and discuss how the kernel handles them.

 6.6.1. The time() and gettimeofday() System Calls

 Processes in User Mode can get the current time and date by means of several system calls:

 time()

 Returns the number of elapsed seconds since midnight at the start of January 1, 1970 (UTC).

gettimeofday()

 Returns, in a data structure named timeval, the number of elapsed seconds since midnight of January 1,
1970 (UTC) and the number of elapsed microseconds in the last second (a second data structure named
timezone is not currently used).

 The time() system call is superseded by gettimeofday(), but it is still included in Linux for backward
compatibility. Another widely used function, ftime(), which is no longer implemented as a system call,
returns the number of elapsed seconds since midnight of January 1, 1970 (UTC) and the number of
elapsed milliseconds in the last second.

 The gettimeofday() system call is implemented by the sys_gettimeofday() function. To compute the
current date and time of the day, this function invokes do_gettimeofday(), which executes the following
actions:

1.

1. Acquires the xtime_lock seqlock for reading.
2.

2. Determines the number of microseconds elapsed since the last timer interrupt by invoking the
get_offset method of the cur_timer timer object:

2. usec = cur_timer->getoffset();

2. As explained in the earlier section "Data Structures of the Timekeeping Architecture," there are
four possible cases:
a.

a. If cur_timer points to the timer_hpet object, the method compares the current value of the
HPET counter with the value of the same counter saved in the last execution of the timer
interrupt handler.

b.

b. If cur_timer points to the timer_pmtmr object, the method compares the current value of the
ACPI PMT counter with the value of the same counter saved in the last execution of the
timer interrupt handler.

c.

c. If cur_timer points to the timer_tsc object, the method compares the current value of the
Time Stamp Counter with the value of the TSC saved in the last execution of the timer
interrupt handler.

d.

d. If cur_timer points to the timer_pit object, the method reads the current value of the PIT
counter to compute the number of microseconds elapsed since the last PIT's timer interrupt.

3.

3. If some timer interrupt has been lost (see the section "Updating the Time and Date" earlier in this
chapter), the function adds to usec the corresponding delay:

3. usec += (jiffies - wall_jiffies) * 1000;

4.

4. Adds to usec the microseconds elapsed in the last second:

4. usec += (xtime.tv_nsec / 1000);

5.

5. Copies the contents of xtime into the user-space buffer specified by the system call parameter tv,
adding to the microseconds field the value of usec:

5. tv->tv_sec = xtime->tv_sec;

 tv->tv_usec = xtime->tv_usec + usec;

6.

6. Invokes read_seqretry() on the xtime_lock seqlock, and jumps back to step 1 if another kernel
control path has concurrently acquired xtime_lock for writing.

7.

7. Checks for an overflow in the microseconds field, adjusting both that field and the second field if
necessary:

7. while (tv->tv_usec >= 1000000) {

 tv->tv_usec -= 1000000;

 tv->tv_sec++;

 }

Processes in User Mode with root privilege may modify the current date and time by using either the
obsolete stime() or the settimeofday() system call. The sys_settimeofday() function invokes
do_settimeofday(), which executes operations complementary to those of do_gettimeofday().

 Notice that both system calls modify the value of xtime while leaving the RTC registers unchanged.
Therefore, the new time is lost when the system shuts down, unless the user executes the clock program
to change the RTC value.

 6.6.2. The adjtimex() System Call

 Although clock drift ensures that all systems eventually move away from the correct time, changing the
time abruptly is both an administrative nuisance and risky behavior. Imagine, for instance, programmers
trying to build a large program and depending on file timestamps to make sure that out-of-date object
files are recompiled. A large change in the system's time could confuse the make program and lead to an
incorrect build. Keeping the clocks tuned is also important when implementing a distributed filesystem on
a network of computers. In this case, it is wise to adjust the clocks of the interconnected PCs, so that the
timestamp values associated with the inodes of the accessed files are coherent. Thus, systems are often
configured to run a time synchronization protocol such as Network Time Protocol (NTP) on a regular
basis to change the time gradually at each tick. This utility depends on the adjtimex() system call in Linux.

 This system call is present in several Unix variants, although it should not be used in programs intended
to be portable. It receives as its parameter a pointer to a timex structure, updates kernel parameters from
the values in the timex fields, and returns the same structure with current kernel values. Such kernel values
are used by update_wall_time_one_tick() to slightly adjust the number of microseconds added to
xtime.tv_usec at each tick.

 6.6.3. The setitimer() and alarm() System Calls

 Linux allows User Mode processes to activate special timers called interval timers .[*] The timers cause
Unix signals (see Chapter 11) to be sent periodically to the process. It is also possible to activate an
interval timer so that it sends just one signal after a specified delay. Each interval timer is therefore
characterized by:

[*] These software constructs have nothing in common with the Programmable Interval Timer chip
described earlier in this chapter.



 The frequency at which the signals must be emitted, or a null value if just one signal has to be
generated



 The time remaining until the next signal is to be generated

 The earlier warning about accuracy applies to these timers. They are guaranteed to execute after the
requested time has elapsed, but it is impossible to predict exactly when they will be delivered.

 Interval timers are activated by means of the POSIX setitimer() system call. The first parameter
specifies which of the following policies should be adopted:

 ITIMER_REAL

 The actual elapsed time; the process receives SIGALRM signals.

ITIMER_VIRTUAL

 The time spent by the process in User Mode; the process receives SIGVTALRM signals.

ITIMER_PROF

 The time spent by the process both in User and in Kernel Mode; the process receives SIGPROF
signals.

 The interval timers can be either single-shot or periodic. The second parameter of setitimer() points to a
structure of type itimerval that specifies the initial duration of the timer (in seconds and nanoseconds) and
the duration to be used when the timer is automatically reactivated (or zero for single-shot timers).The
third parameter of setitimer() is an optional pointer to an itimerval structure that is filled by the system call
with the previous timer parameters.

 To implement an interval timer for each of the preceding policies, the process descriptor includes three
pairs of fields:



 it_real_incr and it_real_value


 it_virt_incr and it_virt_value


 it_prof_incr and it_prof_value

 The first field of each pair stores the interval in ticks between two signals; the other field stores the
current value of the timer.

 The ITIMER_REAL interval timer is implemented by using dynamic timers because the kernel must send
signals to the process even when it is not running on the CPU. Therefore, each process descriptor
includes a dynamic timer object called real_timer. The setitimer() system call initializes the real_timer
fields and then invokes add_timer() to insert the dynamic timer in the proper list. When the timer expires,
the kernel executes the it_real_fn() timer function. In turn, the it_real_fn() function sends a SIGALRM
signal to the process; then, if it_real_incr is not null, it sets the expires field again, reactivating the timer.

 The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers, because
they can be updated while the process is running. The account_it_virt() and account_it_prof() functions
are invoked by update_ process_times(), which is called either by the PIT's timer interrupt handler (UP)
or by the local timer interrupt handlers (SMP). Therefore, the two interval timers are updated once every
tick, and if they are expired, the proper signal is sent to the current process.

 The alarm() system call sends a SIGALRM signal to the calling process when a specified time interval
has elapsed. It is very similar to setitimer() when invoked with the ITIMER_REAL parameter, because it
uses the real_timer dynamic timer included in the process descriptor. Therefore, alarm() and setitimer()
with parameter ITIMER_REAL cannot be used at the same time.

 6.6.4. System Calls for POSIX Timers

 The POSIX 1003.1b standard introduced a new type of software timers for User Mode programsin
particular, for multithreaded and real-time applications. These timers are often referred to as POSIX
timers .

 Every implementation of the POSIX timers must offer to the User Mode programs a few POSIX clocks
, that is, virtual time sources having predefined resolutions and properties. Whenever an application wants
to make use of a POSIX timer, it creates a new timer resource specifying one of the existing POSIX
clocks as the timing base. The system calls that allow users to handle POSIX clocks and timers are listed
in Table 6-3.

 Table 6-3. System calls for POSIX timers and clocks

System call Description

clock_gettime() Gets the current value of a POSIX clock

clock_settime() Sets the current value of a POSIX clock

clock_getres() Gets the resolution of a POSIX clock

timer_create() Creates a new POSIX timer based on a specified
POSIX clock

timer_gettime() Gets the current value and increment of a POSIX
timer

timer_settime() Sets the current value and increment of a POSIX
timer

timer_getoverrun() Gets the number of overruns of a decayed POSIX
timer

timer_delete() Destroys a POSIX timer

clock_nanosleep() Puts the process to sleep using a POSIX clock as
time source

The Linux 2.6 kernel offers two types of POSIX clocks:

 CLOCK_REALTIME

 This virtual clock represents the real-time clock of the systemessentially the value of the xtime variable
(see the earlier section "Updating the Time and Date"). The resolution returned by the clock_getres()
system call is 999,848 nanoseconds, which corresponds to roughly 1000 updates of xtime in a second.

CLOCK_MONOTONIC

 This virtual clock represents the real-time clock of the system purged of every time warp due to the
synchronization with an external time source. Essentially, this virtual clock is represented by the sum of
the two variables xtime and wall_to_monotonic (see the earlier section "Timekeeping Architecture in
Uniprocessor Systems"). The resolution of this POSIX clock, returned by clock_getres(), is 999,848
nanoseconds.

 The Linux kernel implements the POSIX timers by means of dynamic timers. Thus, they are similar to
the traditional ITIMER_REAL interval timers we described in the previous section. POSIX timers,
however, are much more flexible and reliable than traditional interval timers. A couple of significant
differences between them are:



 When a traditional interval timer decays, the kernel always sends a SIGALRM signal to the
process that activated the timer. Instead, when a POSIX timer decays, the kernel can send every
kind of signal, either to the whole multithreaded application or to a single specified thread. The
kernel can also force the execution of a notifier function in a thread of the application, or it can
even do nothing (it is up to a User Mode library to handle the event).



 If a traditional interval timer decays many times but the User Mode process cannot receive the
SIGALRM signal (for instance because the signal is blocked or the process is not running), only
the first signal is received: all other occurrences of SIGALRM are lost. The same holds for
POSIX timers, but the process can invoke the timer_getoverrun() system call to get the number
of times the timer decayed since the generation of the first signal.

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 7. Process Scheduling
 Like every time sharing system, Linux achieves the magical effect of an apparent simultaneous execution
of multiple processes by switching from one process to another in a very short time frame. Process
switching itself was discussed in Chapter 3; this chapter deals with scheduling , which is concerned with
when to switch and which process to choose.

 The chapter consists of three parts. The section "Scheduling Policy" introduces the choices made by
Linux in the abstract to schedule processes. The section "The Scheduling Algorithm" discusses the data
structures used to implement scheduling and the corresponding algorithm. Finally, the section "System
Calls Related to Scheduling" describes the system calls that affect process scheduling.

 To simplify the description, we refer as usual to the 80 x 86 architecture; in particular, we assume that
the system uses the Uniform Memory Access model, and that the system tick is set to 1 ms.

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.1. Scheduling Policy
 The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting objectives:
fast process response time, good throughput for background jobs, avoidance of process starvation,
reconciliation of the needs of low- and high-priority processes, and so on. The set of rules used to
determine when and how to select a new process to run is called scheduling policy .

 Linux scheduling is based on the time sharing technique: several processes run in "time multiplexing"
because the CPU time is divided into slices, one for each runnable process.[*] Of course, a single
processor can run only one process at any given instant. If a currently running process is not terminated
when its time slice or quantum expires, a process switch may take place. Time sharing relies on timer
interrupts and is thus transparent to processes. No additional code needs to be inserted in the programs
to ensure CPU time sharing.

[*] Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run
on a CPU.

 The scheduling policy is also based on ranking processes according to their priority. Complicated
algorithms are sometimes used to derive the current priority of a process, but the end result is the same:
each process is associated with a value that tells the scheduler how appropriate it is to let the process run
on a CPU.

 In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing and
adjusts their priorities periodically; in this way, processes that have been denied the use of a CPU for a
long time interval are boosted by dynamically increasing their priority. Correspondingly, processes
running for a long time are penalized by decreasing their priority.

 When speaking about scheduling, processes are traditionally classified as I/O-bound or CPU-bound.
The former make heavy use of I/O devices and spend much time waiting for I/O operations to complete;
the latter carry on number-crunching applications that require a lot of CPU time.

 An alternative classification distinguishes three classes of processes:

 Interactive processes

 These interact constantly with their users, and therefore spend a lot of time waiting for keypresses and
mouse operations. When input is received, the process must be woken up quickly, or the user will find
the system to be unresponsive. Typically, the average delay must fall between 50 and 150 milliseconds.
The variance of such delay must also be bounded, or the user will find the system to be erratic. Typical
interactive programs are command shells, text editors, and graphical applications.

Batch processes

 These do not need user interaction, and hence they often run in the background. Because such
processes do not need to be very responsive, they are often penalized by the scheduler. Typical batch
programs are programming language compilers, database search engines, and scientific computations.

Real-time processes

 These have very stringent scheduling requirements. Such processes should never be blocked by
lower-priority processes and should have a short guaranteed response time with a minimum variance.
Typical real-time programs are video and sound applications, robot controllers, and programs that collect
data from physical sensors.

 The two classifications we just offered are somewhat independent. For instance, a batch process can be
either I/O-bound (e.g., a database server) or CPU-bound (e.g., an image-rendering program). While
real-time programs are explicitly recognized as such by the scheduling algorithm in Linux, there is no easy
way to distinguish between interactive and batch programs. The Linux 2.6 scheduler implements a
sophisticated heuristic algorithm based on the past behavior of the processes to decide whether a given
process should be considered as interactive or batch. Of course, the scheduler tends to favor interactive
processes over batch ones.

 Programmers may change the scheduling priorities by means of the system calls illustrated in Table 7-1.
More details are given in the section "System Calls Related to Scheduling."

 Table 7-1. System calls related to scheduling

System call Description

nice() Change the static priority of a conventional process

getpriority() Get the maximum static priority of a group of
conventional processes

setpriority() Set the static priority of a group of conventional
processes

sched_getscheduler() Get the scheduling policy of a process

sched_setscheduler() Set the scheduling policy and the real-time priority
of a process

sched_getparam() Get the real-time priority of a process

sched_setparam() Set the real-time priority of a process

sched_yield() Relinquish the processor voluntarily without
blocking

sched_get_ priority_min() Get the minimum real-time priority value for a
policy

sched_get_ priority_max() Get the maximum real-time priority value for a
policy

sched_rr_get_interval() Get the time quantum value for the Round Robin
policy

sched_setaffinity() Set the CPU affinity mask of a process

sched_getaffinity() Get the CPU affinity mask of a process

7.1.1. Process Preemption

 As mentioned in the first chapter, Linux processes are preemptable. When a process enters the
TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the priority of
the currently running process. If it is, the execution of current is interrupted and the scheduler is invoked
to select another process to run (usually the process that just became runnable). Of course, a process
also may be preempted when its time quantum expires. When this occurs, the TIF_NEED_RESCHED
flag in the thread_info structure of the current process is set, so the scheduler is invoked when the timer
interrupt handler terminates.

 For instance, let's consider a scenario in which only two programsa text editor and a compilerare being
executed. The text editor is an interactive program, so it has a higher dynamic priority than the compiler.
Nevertheless, it is often suspended, because the user alternates between pauses for think time and data
entry; moreover, the average delay between two keypresses is relatively long. However, as soon as the
user presses a key, an interrupt is raised and the kernel wakes up the text editor process. The kernel also
determines that the dynamic priority of the editor is higher than the priority of current, the currently
running process (the compiler), so it sets the TIF_NEED_RESCHED flag of this process, thus forcing
the scheduler to be activated when the kernel finishes handling the interrupt. The scheduler selects the
editor and performs a process switch; as a result, the execution of the editor is resumed very quickly and
the character typed by the user is echoed to the screen. When the character has been processed, the text
editor process suspends itself waiting for another keypress and the compiler process can resume its
execution.

 Be aware that a preempted process is not suspended, because it remains in the TASK_RUNNING
state; it simply no longer uses the CPU. Moreover, remember that the Linux 2.6 kernel is preemptive,
which means that a process can be preempted either when executing in Kernel or in User Mode; we
discussed in depth this feature in the section "Kernel Preemption" in Chapter 5.

 7.1.2. How Long Must a Quantum Last?

 The quantum duration is critical for system performance: it should be neither too long nor too short.

 If the average quantum duration is too short, the system overhead caused by process switches becomes
excessively high. For instance, suppose that a process switch requires 5 milliseconds; if the quantum is
also set to 5 milliseconds, then at least 50 percent of the CPU cycles will be dedicated to process
switching.[*]

[*] Actually, things could be much worse than this; for example, if the time required for the process
switch is counted in the process quantum, all CPU time is devoted to the process switch and no process
can progress toward its termination.

 If the average quantum duration is too long, processes no longer appear to be executed concurrently.
For instance, let's suppose that the quantum is set to five seconds; each runnable process makes progress
for about five seconds, but then it stops for a very long time (typically, five seconds times the number of
runnable processes).

 It is often believed that a long quantum duration degrades the response time of interactive applications.
This is usually false. As described in the section "Process Preemption" earlier in this chapter, interactive
processes have a relatively high priority, so they quickly preempt the batch processes, no matter how
long the quantum duration is.

 In some cases, however, a very long quantum duration degrades the responsiveness of the system. For
instance, suppose two users concurrently enter two commands at the respective shell prompts; one
command starts a CPU-bound process, while the other launches an interactive application. Both shells
fork a new process and delegate the execution of the user's command to it; moreover, suppose such new
processes have the same initial priority (Linux does not know in advance if a program to be executed is
batch or interactive). Now if the scheduler selects the CPU-bound process to run first, the other process
could wait for a whole time quantum before starting its execution. Therefore, if the quantum duration is
long, the system could appear to be unresponsive to the user that launched the interactive application.

 The choice of the average quantum duration is always a compromise. The rule of thumb adopted by
Linux is choose a duration as long as possible, while keeping good system response time.

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.2. The Scheduling Algorithm
 The scheduling algorithm used in earlier versions of Linux was quite simple and straightforward: at every
process switch the kernel scanned the list of runnable processes, computed their priorities, and selected
the "best" process to run. The main drawback of that algorithm is that the time spent in choosing the best
process depends on the number of runnable processes; therefore, the algorithm is too costlythat is, it
spends too much timein high-end systems running thousands of processes.

 The scheduling algorithm of Linux 2.6 is much more sophisticated. By design, it scales well with the
number of runnable processes, because it selects the process to run in constant time, independently of the
number of runnable processes. It also scales well with the number of processors because each CPU has
its own queue of runnable processes. Furthermore, the new algorithm does a better job of distinguishing
interactive processes and batch processes. As a consequence, users of heavily loaded systems feel that
interactive applications are much more responsive in Linux 2.6 than in earlier versions.

 The scheduler always succeeds in finding a process to be executed; in fact, there is always at least one
runnable process: the swapper process, which has PID 0 and executes only when the CPU cannot
execute other processes. As mentioned in Chapter 3, every CPU of a multiprocessor system has its own
swapper process with PID equal to 0.

 Every Linux process is always scheduled according to one of the following scheduling classes :

 SCHED_FIFO

 A First-In, First-Out real-time process. When the scheduler assigns the CPU to the process, it leaves
the process descriptor in its current position in the runqueue list. If no other higher-priority real-time
process is runnable, the process continues to use the CPU as long as it wishes, even if other real-time
processes that have the same priority are runnable.

SCHED_RR

 A Round Robin real-time process. When the scheduler assigns the CPU to the process, it puts the
process descriptor at the end of the runqueue list. This policy ensures a fair assignment of CPU time to all
SCHED_RR real-time processes that have the same priority.

SCHED_NORMAL

 A conventional, time-shared process.

 The scheduling algorithm behaves quite differently depending on whether the process is conventional or
real-time.

 7.2.1. Scheduling of Conventional Processes

 Every conventional process has its own static priority, which is a value used by the scheduler to rate the
process with respect to the other conventional processes in the system. The kernel represents the static
priority of a conventional process with a number ranging from 100 (highest priority) to 139 (lowest
priority); notice that static priority decreases as the values increase.

 A new process always inherits the static priority of its parent. However, a user can change the static
priority of the processes that he owns by passing some "nice values" to the nice() and setpriority()
system calls (see the section "System Calls Related to Scheduling" later in this chapter).

 7.2.1.1. Base time quantum

 The static priority essentially determines the base time quantum of a process, that is, the time quantum
duration assigned to the process when it has exhausted its previous time quantum. Static priority and base
time quantum are related by the following formula:

 As you see, the higher the static priority (i.e., the lower its numerical value), the longer the base time
quantum. As a consequence, higher priority processes usually get longer slices of CPU time with respect
to lower priority processes. Table 7-2 shows the static priority, the base time quantum values, and the
corresponding nice values for a conventional process having highest static priority, default static priority,
and lowest static priority. (The table also lists the values of the interactive delta and of the sleep time
threshold, which are explained later in this chapter.)

 Table 7-2. Typical priority values for a conventional process

Description Static priority Nice value Base time
quantum Interactivedelta Sleep time

threshold

Highest static
priority 100 -20 800 ms -3 299 ms

High static
priority 110 -10 600 ms -1 499 ms

Default static
priority 120 0 100 ms +2 799 ms

Low static
priority 130 +10 50 ms +4 999 ms

Lowest static
priority 139 +19 5 ms +6 1199 ms

7.2.1.2. Dynamic priority and average sleep time

 Besides a static priority, a conventional process also has a dynamic priority, which is a value ranging
from 100 (highest priority) to 139 (lowest priority). The dynamic priority is the number actually looked
up by the scheduler when selecting the new process to run. It is related to the static priority by the
following empirical formula:

dynamic priority = max (100, min (static priority - bonus
 + 5, 139)) (2)

The bonus is a value ranging from 0 to 10; a value less than 5 represents a penalty that lowers the
dynamic priority, while a value greater than 5 is a premium that raises the dynamic priority. The value of
the bonus, in turn, depends on the past history of the process; more precisely, it is related to the average
sleep time of the process.

 Roughly, the average sleep time is the average number of nanoseconds that the process spent while
sleeping. Be warned, however, that this is not an average operation on the elapsed time. For instance,
sleeping in TASK_INTERRUPTIBLE state contributes to the average sleep time in a different way from
sleeping in TASK_UNINTERRUPTIBLE state. Moreover, the average sleep time decreases while a
process is running. Finally, the average sleep time can never become larger than 1 second.

 The correspondence between average sleep times and bonus values is shown in Table 7-3. (The table
lists also the corresponding granularity of the time slice, which will be discussed later.)

 Table 7-3. Average sleep times, bonus values, and time slice granularity

Average sleep time Bonus Granularity

Greater than or equal to 0 but
smaller than 100 ms 0 5120

Greater than or equal to 100 ms
but smaller than 200 ms 1 2560

Greater than or equal to 200 ms
but smaller than 300 ms 2 1280

Greater than or equal to 300 ms
but smaller than 400 ms 3 640

Greater than or equal to 400 ms
but smaller than 500 ms 4 320

Greater than or equal to 500 ms
but smaller than 600 ms 5 160

Greater than or equal to 600 ms
but smaller than 700 ms 6 80

Greater than or equal to 700 ms
but smaller than 800 ms 7 40

Greater than or equal to 800 ms
but smaller than 900 ms 8 20

Greater than or equal to 900 ms
but smaller than 1000 ms 9 10

1 second 10 10

The average sleep time is also used by the scheduler to determine whether a given process should be
considered interactive or batch. More precisely, a process is considered "interactive" if it satisfies the
following formula:

dynamic priority 3 x static priority / 4 + 28 (3)

which is equivalent to the following:

bonus - 5 static priority / 4 - 28

The expression static priority / 4 - 28 is called the interactive delta ; some typical values of this term are
listed in Table 7-2. It should be noted that it is far easier for high priority than for low priority processes
to become interactive. For instance, a process having highest static priority (100) is considered
interactive when its bonus value exceeds 2, that is, when its average sleep time exceeds 200 ms.
Conversely, a process having lowest static priority (139) is never considered as interactive, because the
bonus value is always smaller than the value 11 required to reach an interactive delta equal to 6. A
process having default static priority (120) becomes interactive as soon as its average sleep time exceeds
700 ms.

 7.2.1.3. Active and expired processes

 Even if conventional processes having higher static priorities get larger slices of the CPU time, they
should not completely lock out the processes having lower static priority. To avoid process starvation,
when a process finishes its time quantum, it can be replaced by a lower priority process whose time
quantum has not yet been exhausted. To implement this mechanism, the scheduler keeps two disjoint sets
of runnable processes:

 Active processes

 These runnable processes have not yet exhausted their time quantum and are thus allowed to run.

Expired processes

 These runnable processes have exhausted their time quantum and are thus forbidden to run until all active
processes expire.

 However, the general schema is slightly more complicated than this, because the scheduler tries to boost
the performance of interactive processes. An active batch process that finishes its time quantum always
becomes expired. An active interactive process that finishes its time quantum usually remains active: the
scheduler refills its time quantum and leaves it in the set of active processes. However, the scheduler
moves an interactive process that finished its time quantum into the set of expired processes if the eldest
expired process has already waited for a long time, or if an expired process has higher static priority
(lower value) than the interactive process. As a consequence, the set of active processes will eventually
become empty and the expired processes will have a chance to run.

 7.2.2. Scheduling of Real-Time Processes

 Every real-time process is associated with a real-time priority, which is a value ranging from 1 (highest
priority) to 99 (lowest priority). The scheduler always favors a higher priority runnable process over a
lower priority one; in other words, a real-time process inhibits the execution of every lower-priority
process while it remains runnable. Contrary to conventional processes, real-time processes are always
considered active (see the previous section). The user can change the real-time priority of a process by
means of the sched_setparam() and sched_setscheduler() system calls (see the section "System Calls
Related to Scheduling" later in this chapter).

 If several real-time runnable processes have the same highest priority, the scheduler chooses the process
that occurs first in the corresponding list of the local CPU's runqueue (see the section "The lists of
TASK_RUNNING processes" in Chapter 3).

 A real-time process is replaced by another process only when one of the following events occurs:


 The process is preempted by another process having higher real-time priority.


 The process performs a blocking operation, and it is put to sleep (in state
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE).



 The process is stopped (in state TASK_STOPPED or TASK_TRACED), or it is killed (in state
EXIT_ZOMBIE or EXIT_DEAD).



 The process voluntarily relinquishes the CPU by invoking the sched_yield() system call (see the
section "System Calls Related to Scheduling" later in this chapter).



 The process is Round Robin real-time (SCHED_RR), and it has exhausted its time quantum.

 The nice() and setpriority() system calls, when applied to a Round Robin real-time process, do not
change the real-time priority but rather the duration of the base time quantum. In fact, the duration of the
base time quantum of Round Robin real-time processes does not depend on the real-time priority, but
rather on the static priority of the process, according to the formula (1) in the earlier section "Scheduling
of Conventional Processes."

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.3. Data Structures Used by the Scheduler
 Recall from the section "Identifying a Process" in Chapter 3 that the process list links all process
descriptors, while the runqueue lists link the process descriptors of all runnable processesthat is, of those
in a TASK_RUNNING stateexcept the swapper process (idle process).

 7.3.1. The runqueue Data Structure

 The runqueue data structure is the most important data structure of the Linux 2.6 scheduler. Each CPU
in the system has its own runqueue; all runqueue structures are stored in the runqueues per-CPU variable
(see the section "Per-CPU Variables" in Chapter 5). The this_rq() macro yields the address of the
runqueue of the local CPU, while the cpu_rq(n) macro yields the address of the runqueue of the CPU
having index n.

 Table 7-4 lists the fields included in the runqueue data structure; we will discuss most of them in the
following sections of the chapter.

 Table 7-4. The fields of the runqueue structure

Type Name Description

spinlock_t lock Spin lock protecting the lists of
processes

unsigned long nr_running Number of runnable processes in
the runqueue lists

unsigned long cpu_load
CPU load factor based on the
average number of processes in
the runqueue

unsigned long nr_switches Number of process switches
performed by the CPU

unsigned long nr_uninterruptible

Number of processes that were
previously in the runqueue lists
and are now sleeping in
TASK_UNINTERRUPTIBLE
state (only the sum of these fields
across all runqueues is
meaningful)

unsigned long expired_timestamp Insertion time of the eldest
process in the expired lists

unsigned long long timestamp_last_tick Timestamp value of the last timer
interrupt

task_t * curr
Process descriptor pointer of the
currently running process (same
as current for the local CPU)

task_t * idle Process descriptor pointer of the
swapper process for this CPU

struct mm_struct * prev_mm

Used during a process switch to
store the address of the memory
descriptor of the process being
replaced

prio_array_t * active Pointer to the lists of active
processes

prio_array_t * expired Pointer to the lists of expired
processes

prio_array_t [2] arrays The two sets of active and
expired processes

int best_expired_prio
The best static priority (lowest
value) among the expired
processes

atomic_t nr_iowait

Number of processes that were
previously in the runqueue lists
and are now waiting for a disk
I/O operation to complete

struct sched_domain * sd

Points to the base scheduling
domain of this CPU (see the
section "Scheduling Domains"
later in this chapter)

int active_balance
Flag set if some process shall be
migrated from this runqueue to
another (runqueue balancing)

int push_cpu Not used

task_t * migration_thread Process descriptor pointer of the
migration kernel thread

struct list_head migration_queue List of processes to be removed
from the runqueue

The most important fields of the runqueue data structure are those related to the lists of runnable
processes. Every runnable process in the system belongs to one, and just one, runqueue. As long as a
runnable process remains in the same runqueue, it can be executed only by the CPU owning that
runqueue. However, as we'll see later, runnable processes may migrate from one runqueue to another.

 The arrays field of the runqueue is an array consisting of two prio_array_t structures. Each data structure
represents a set of runnable processes, and includes 140 doubly linked list heads (one list for each
possible process priority), a priority bitmap, and a counter of the processes included in the set (see Table
3-2 in the section Chapter 3).

 Figure 7-1. The runqueue structure and the two sets of runnable processes

 As shown in Figure 7-1, the active field of the runqueue structure points to one of the two prio_array_t
data structures in arrays: the corresponding set of runnable processes includes the active processes.
Conversely, the expired field points to the other prio_array_t data structure in arrays: the corresponding
set of runnable processes includes the expired processes.

 Periodically, the role of the two data structures in arrays changes: the active processes suddenly become
the expired processes, and the expired processes become the active ones. To achieve this change, the
scheduler simply exchanges the contents of the active and expired fields of the runqueue.

 7.3.2. Process Descriptor

 Each process descriptor includes several fields related to scheduling; they are listed in Table 7-5.

 Table 7-5. Fields of the process descriptor related to the scheduler

Type Name Description

unsigned long thread_info->flags

Stores the
TIF_NEED_RESCHED flag,
which is set if the scheduler must
be invoked (see the section "
Returning from Interrupts and
Exceptions" in Chapter 4)

unsigned int thread_info->cpu
Logical number of the CPU
owning the runqueue to which the
runnable process belongs

unsigned long state
The current state of the process
(see the section "Process State"
in Chapter 3)

int prio Dynamic priority of the process

int static_prio Static priority of the process

struct list_head run_list
Pointers to the next and previous
elements in the runqueue list to
which the process belongs

prio_array_t * array
Pointer to the runqueue's
prio_array_t set that includes the
process

unsigned long sleep_avg Average sleep time of the
process

unsigned long long timestamp

Time of last insertion of the
process in the runqueue, or time
of last process switch involving
the process

unsigned long long last_ran Time of last process switch that
replaced the process

int activated Condition code used when the
process is awakened

unsigned long policy
The scheduling class of the
process (SCHED_NORMAL,
SCHED_RR, or SCHED_FIFO)

cpumask_t cpus_allowed Bit mask of the CPUs that can
execute the process

unsigned int time_slice Ticks left in the time quantum of
the process

unsigned int first_time_slice Flag set to 1 if the process never
exhausted its time quantum

unsigned long rt_priority Real-time priority of the process

When a new process is created, sched_fork(), invoked by copy_process(), sets the time_slice field of
both current (the parent) and p (the child) processes in the following way:

p->time_slice = (current->time_slice + 1) >> 1;

current->time_slice >>= 1;

In other words, the number of ticks left to the parent is split in two halves: one for the parent and one for
the child. This is done to prevent users from getting an unlimited amount of CPU time by using the
following method: the parent process creates a child process that runs the same code and then kills itself;
by properly adjusting the creation rate, the child process would always get a fresh quantum before the
quantum of its parent expires. This programming trick does not work because the kernel does not reward
forks. Similarly, a user cannot hog an unfair share of the processor by starting several background
processes in a shell or by opening a lot of windows on a graphical desktop. More generally speaking, a
process cannot hog resources (unless it has privileges to give itself a real-time policy) by forking multiple
descendents.

 If the parent had just one tick left in its time slice, the splitting operation forces current->time_slice to 0,
thus exhausting the quantum of the parent. In this case, copy_process() sets current->time_slice back to
1, then invokes scheduler_tick() to decrease the field (see the following section).

 The copy_process() function also initializes a few other fields of the child's process descriptor related to
scheduling:

p->first_time_slice = 1;

p->timestamp = sched_clock();

The first_time_slice flag is set to 1, because the child has never exhausted its time quantum (if a process
terminates or executes a new program during its first time slice, the parent process is rewarded with the
remaining time slice of the child). The timestamp field is initialized with a timestamp value produced by
sched_clock(): essentially, this function returns the contents of the 64-bit TSC register (see the section "
Time Stamp Counter (TSC)" in Chapter 6) converted to nanoseconds.

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.4. Functions Used by the Scheduler
 The scheduler relies on several functions in order to do its work; the most important are:

 scheduler_tick()

 Keeps the time_slice counter of current up-to-date

try_to_wake_up()

 Awakens a sleeping process

recalc_task_prio()

 Updates the dynamic priority of a process

schedule()

 Selects a new process to be executed

load_balance()

 Keeps the runqueues of a multiprocessor system balanced

 7.4.1. The scheduler_tick() Function

 We have already explained in the section "Updating Local CPU Statistics" in Chapter 6 how
scheduler_tick() is invoked once every tick to perform some operations related to scheduling. It
executes the following main steps:

1.

1. Stores in the timestamp_last_tick field of the local runqueue the current value of the TSC
converted to nanoseconds; this timestamp is obtained from the sched_clock() function (see the
previous section).

2.

2. Checks whether the current process is the swapper process of the local CPU. If so, it performs
the following substeps:
a.

a. If the local runqueue includes another runnable process besides swapper, it sets the
TIF_NEED_RESCHED flag of the current process to force rescheduling. As we'll see in the
section "The schedule() Function" later in this chapter, if the kernel supports the
hyper-threading technology (see the section "Runqueue Balancing in Multiprocessor Systems
" later in this chapter), a logical CPU might be idle even if there are runnable processes in its
runqueue, as long as those processes have significantly lower priorities than the priority of a
process already executing on another logical CPU associated with the same physical CPU.

b.

b. Jumps to step 7 (there is no need to update the time slice counter of the swapper process).
3.

3. Checks whether current->array points to the active list of the local runqueue. If not, the process
has expired its time quantum, but it has not yet been replaced: sets the TIF_NEED_RESCHED
flag to force rescheduling, and jumps to step 7.

4.

4. Acquires the this_rq()->lock spin lock.
5.

5. Decreases the time slice counter of the current process, and checks whether the quantum is
exhausted. The operations performed by the function are quite different according to the
scheduling class of the process; we will discuss them in a moment.

6.

6. Releases the this_rq()->lock spin lock.
7.

7. Invokes the rebalance_tick() function, which should ensure that the runqueues of the various
CPUs contain approximately the same number of runnable processes. We will discuss runqueue
balancing in the later section "Runqueue Balancing in Multiprocessor Systems."

7.4.1.1. Updating the time slice of a real-time process

 If the current process is a FIFO real-time process, scheduler_tick() has nothing to do. In this case, in
fact, current cannot be preempted by lower or equal priority processes, thus it does not make sense to
keep its time slice counter up-to-date.

 If current is a Round Robin real-time process, scheduler_tick() decreases its time slice counter and
checks whether the quantum is exhausted:

if (current->policy == SCHED_RR && !--current->time_slice) {

 current->time_slice = task_timeslice(current);

 current->first_time_slice = 0;

 set_tsk_need_resched(current);

 list_del(¤t->run_list);

 list_add_tail(¤t->run_list,

 this_rq()->active->queue+current->prio);

}

If the function determines that the time quantum is effectively exhausted, it performs a few operations
aimed to ensure that current will be preempted, if necessary, as soon as possible.

 The first operation consists of refilling the time slice counter of the process by invoking task_timeslice().
This function considers the static priority of the process and returns the corresponding base time
quantum, according to the formula (1) shown in the earlier section "Scheduling of Conventional Processes
." Moreover, the first_time_slice field of current is cleared: this flag is set by copy_process() in the
service routine of the fork() system call, and should be cleared as soon as the first time quantum of the
process elapses.

 Next, scheduler_tick() invokes the set_tsk_need_resched() function to set the
TIF_NEED_RESCHED flag of the process. As described in the section "Returning from Interrupts and
Exceptions" in Chapter 4, this flag forces the invocation of the schedule() function, so that current can be
replaced by another real-time process having equal (or higher) priority, if any.

 The last operation of scheduler_tick() consists of moving the process descriptor to the last position of
the runqueue active list corresponding to the priority of current. Placing current in the last position ensures
that it will not be selected again for execution until every real-time runnable process having the same
priority as current will get a slice of the CPU time. This is the meaning of round-robin scheduling. The
descriptor is moved by first invoking list_del() to remove the process from the runqueue active list, then
by invoking list_add_tail() to insert back the process in the last position of the same list.

 7.4.1.2. Updating the time slice of a conventional process

 If the current process is a conventional process, the scheduler_tick() function performs the following
operations:

1.

1. Decreases the time slice counter (current->time_slice).
2.

2. Checks the time slice counter. If the time quantum is exhausted, the function performs the
following operations:
a.

a. Invokes dequeue_task() to remove current from the this_rq()->active set of runnable
processes.

b.

b. Invokes set_tsk_need_resched() to set the TIF_NEED_RESCHED flag.
c.

c. Updates the dynamic priority of current:

c. current->prio = effective_prio(current);

c. The effective_prio() function reads the static_prio and sleep_avg fields of current, and
computes the dynamic priority of the process according to the formula (2) shown in the
earlier section "Scheduling of Conventional Processes."

d.

d. Refills the time quantum of the process:

d. current->time_slice = task_timeslice(current);

 current->first_time_slice = 0;

e.

e. If the expired_timestamp field of the local runqueue data structure is equal to zero (that is, the
set of expired processes is empty), writes into the field the value of the current tick:

e. if (!this_rq()->expired_timestamp)

 this_rq()->expired_timestamp = jiffies;

f.

f. Inserts the current process either in the active set or in the expired set:

f. if (!TASK_INTERACTIVE(current) || EXPIRED_STARVING(this_rq()) {

 enqueue_task(current, this_rq()->expired);

 if (current->static_prio < this_rq()->best_expired_prio)

 this_rq()->best_expired_prio = current->static_prio;

 } else

 enqueue_task(current, this_rq()->active);

f. The TASK_INTERACTIVE macro yields the value one if the process is recognized as
interactive using the formula (3) shown in the earlier section "Scheduling of Conventional
Processes." The EXPIRED_STARVING macro checks whether the first expired process in
the runqueue had to wait for more than 1000 ticks times the number of runnable processes in
the runqueue plus one; if so, the macro yields the value one. The EXPIRED_STARVING
macro also yields the value one if the static priority value of the current process is greater
than the static priority value of an already expired process.

3.

3. Otherwise, if the time quantum is not exhausted (current->time_slice is not zero), checks whether
the remaining time slice of the current process is too long:

3. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -

 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&

 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&

 (p->array == rq->active)) {

 list_del(¤t->run_list);

 list_add_tail(¤t->run_list,

 this_rq()->active->queue+current->prio);

 set_tsk_need_resched(p);

}

3. The TIMESLICE_GRANULARITY macro yields the product of the number of CPUs in the
system and a constant proportional to the bonus of the current process (see Table 7-3 earlier in
the chapter). Basically, the time quantum of interactive processes with high static priorities is split
into several pieces of TIMESLICE_GRANULARITY size, so that they do not monopolize the
CPU.

7.4.2. The try_to_wake_up() Function

 The TRy_to_wake_up() function awakes a sleeping or stopped process by setting its state to
TASK_RUNNING and inserting it into the runqueue of the local CPU. For instance, the function is
invoked to wake up processes included in a wait queue (see the section "How Processes Are Organized"
in Chapter 3) or to resume execution of processes waiting for a signal (see Chapter 11). The function
receives as its parameters:



 The descriptor pointer (p) of the process to be awakened


 A mask of the process states (state) that can be awakened


 A flag (sync) that forbids the awakened process to preempt the process currently running on the
local CPU

 The function performs the following operations:
1.

1. Invokes the task_rq_lock() function to disable local interrupts and to acquire the lock of the
runqueue rq owned by the CPU that was last executing the process (it could be different from the
local CPU). The logical number of that CPU is stored in the p->thread_info->cpu field.

2.

2. Checks if the state of the process p->state belongs to the mask of states state passed as
argument to the function; if this is not the case, it jumps to step 9 to terminate the function.

3.

3. If the p->array field is not NULL, the process already belongs to a runqueue; therefore, it jumps
to step 8.

4.

4. In multiprocessor systems, it checks whether the process to be awakened should be migrated
from the runqueue of the lastly executing CPU to the runqueue of another CPU. Essentially, the
function selects a target runqueue according to some heuristic rules. For example:
o

o If some CPU in the system is idle, it selects its runqueue as the target. Preference is given to
the previously executing CPU and to the local CPU, in this order.

o

o If the workload of the previously executing CPU is significantly lower than the workload of
the local CPU, it selects the old runqueue as the target.

o

o If the process has been executed recently, it selects the old runqueue as the target (the
hardware cache might still be filled with the data of the process).

o

o If moving the process to the local CPU reduces the unbalance between the CPUs, the target
is the local runqueue (see the section "Runqueue Balancing in Multiprocessor Systems" later
in this chapter).

4. After this step has been executed, the function has identified a target CPU that will execute the
awakened process and, correspondingly, a target runqueue rq in which to insert the process.

1.

1. If the process is in the TASK_UNINTERRUPTIBLE state, it decreases the nr_uninterruptible
field of the target runqueue, and sets the p->activated field of the process descriptor to -1. See
the later section "The recalc_task_prio() Function" for an explanation of the activated field.

2.

2. Invokes the activate_task() function, which in turn performs the following substeps:
a.

a. Invokes sched_clock() to get the current timestamp in nanoseconds. If the target CPU is not
the local CPU, it compensates for the drift of the local timer interrupts by using the
timestamps relative to the last occurrences of the timer interrupts on the local and target
CPUs:

a. now = (sched_clock() - this_rq()->timestamp_last_tick)

 + rq->timestamp_last_tick;

b.

b. Invokes recalc_task_prio(), passing to it the process descriptor pointer and the timestamp
computed in the previous step. The recalc_task_prio() function is described in the next
section.

c.

c. Sets the value of the p->activated field according to Table 7-6 later in this chapter.
d.

d. Sets the p->timestamp field with the timestamp computed in step 6a.
e.

e. Inserts the process descriptor in the active set:

e. enqueue_task(p, rq->active);

rq->nr_running++;

3.

3. If either the target CPU is not the local CPU or if the sync flag is not set, it checks whether the
new runnable process has a dynamic priority higher than that of the current process of the rq
runqueue (p->prio < rq->curr->prio); if so, invokes resched_task() to preempt rq->curr. In
uniprocessor systems the latter function just executes set_tsk_need_resched() to set the
TIF_NEED_RESCHED flag of the rq->curr process. In multiprocessor systems resched_task()
also checks whether the old value of whether TIF_NEED_RESCHED flag was zero, the target
CPU is different from the local CPU, and whether the TIF_POLLING_NRFLAG flag of the
rq->curr process is clear (the target CPU is not actively polling the status of the
TIF_NEED_RESCHED flag of the process). If so, resched_task() invokes
smp_send_reschedule() to raise an IPI and force rescheduling on the target CPU (see the
section "Interprocessor Interrupt Handling" in Chapter 4).

4.

4. Sets the p->state field of the process to TASK_RUNNING.
5.

5. Invokes task_rq_unlock() to unlock the rq runqueue and reenable the local interrupts.
6.

6. Returns 1 (if the process has been successfully awakened) or 0 (if the process has not been
awakened).

7.4.3. The recalc_task_prio() Function

 The recalc_task_prio() function updates the average sleep time and the dynamic priority of a process. It
receives as its parameters a process descriptor pointer p and a timestamp now computed by the
sched_clock() function.

 The function executes the following operations:
1.

1. Stores in the sleep_time local variable the result of:

1. min (now - p->timestamp, 109)

1. The p->timestamp field contains the timestamp of the process switch that put the process to
sleep; therefore, sleep_time stores the number of nanoseconds that the process spent sleeping
since its last execution (or the equivalent of 1 second, if the process slept more).

2.

2. If sleep_time is not greater than zero, it jumps to step 8 so as to skip updating the average sleep
time of the process.

3.

3. Checks whether the process is not a kernel thread, whether it is awakening from the
TASK_UNINTERRUPTIBLE state (p->activated field equal to -1; see step 5 in the previous
section), and whether it has been continuously asleep beyond a given sleep time threshold. If
these three conditions are fulfilled, the function sets the p->sleep_avg field to the equivalent of
900 ticks (an empirical value obtained by subtracting the duration of the base time quantum of a
standard process from the maximum average sleep time). Then, it jumps to step 8.

3. The sleep time threshold depends on the static priority of the process; some typical values are
shown in Table 7-2. In short, the goal of this empirical rule is to ensure that processes that have
been asleep for a long time in uninterruptible modeusually waiting for disk I/O operationsget a
predefined sleep average value that is large enough to allow them to be quickly serviced, but it is
also not so large to cause starvation for other processes.

4.

4. Executes the CURRENT_BONUS macro to compute the bonus value of the previous average
sleep time of the process (see Table 7-3). If (10 - bonus) is greater than zero, the function
multiplies sleep_time by this value. Since sleep_time will be added to the average sleep time of
the process (see step 6 below), the lower the current average sleep time is, the more rapidly it
will rise.

5.

5. If the process is in TASK_UNINTERRUPTIBLE mode and it is not a kernel thread, it performs
the following substeps:
a.

a. Checks whether the average sleep time p->sleep_avg is greater than or equal to its sleep
time threshold (see Table 7-2 earlier in this chapter). If so, it resets the sleep_avg local
variable to zerothus skipping the adjustment of the average sleep timeand jumps to step 6.

b.

b. If the sum sleep_avg + p->sleep_avg is greater than or equal to the sleep time threshold, it
sets the p->sleep_avg field to the sleep time threshold, and sets sleep_avg to zero.

2. By somewhat limiting the increment of the average sleep time of the process, the function does
not reward too much batch processes that sleep for a long time.

6.

6. Adds sleep_time to the average sleep time of the process (p->sleep_avg).
7.

7. Checks whether p->sleep_avg exceeds 1000 ticks (in nanoseconds); if so, the function cuts it
down to 1000 ticks (in nanoseconds).

8.

8. Updates the dynamic priority of the process:

8. p->prio = effective_prio(p);

8. The effective_prio() function has already been discussed in the section "The scheduler_tick()
Function" earlier in this chapter.

7.4.4. The schedule() Function

 The schedule() function implements the scheduler. Its objective is to find a process in the runqueue list
and then assign the CPU to it. It is invoked, directly or in a lazy (deferred) way, by several kernel
routines.

 7.4.4.1. Direct invocation

 The scheduler is invoked directly when the current process must be blocked right away because the
resource it needs is not available. In this case, the kernel routine that wants to block it proceeds as
follows:

1.

1. Inserts current in the proper wait queue.
2.

2. Changes the state of current either to TASK_INTERRUPTIBLE or to
TASK_UNINTERRUPTIBLE.

3.

3. Invokes schedule().
4.

4. Checks whether the resource is available; if not, goes to step 2.
5.

5. Once the resource is available, removes current from the wait queue.

The kernel routine checks repeatedly whether the resource needed by the process is available; if not, it
yields the CPU to some other process by invoking schedule(). Later, when the scheduler once again
grants the CPU to the process, the availability of the resource is rechecked. These steps are similar to
those performed by wait_event() and similar functions described in the section "How Processes Are
Organized" in Chapter 3.

 The scheduler is also directly invoked by many device drivers that execute long iterative tasks. At each
iteration cycle, the driver checks the value of the TIF_NEED_RESCHED flag and, if necessary, invokes
schedule() to voluntarily relinquish the CPU.

 7.4.4.2. Lazy invocation

 The scheduler can also be invoked in a lazy way by setting the TIF_NEED_RESCHED flag of current
to 1. Because a check on the value of this flag is always made before resuming the execution of a User
Mode process (see the section "Returning from Interrupts and Exceptions" in Chapter 4), schedule() will
definitely be invoked at some time in the near future.

 Typical examples of lazy invocation of the scheduler are:


 When current has used up its quantum of CPU time; this is done by the scheduler_tick()
function.



 When a process is woken up and its priority is higher than that of the current process; this task is
performed by the try_to_wake_up() function.



 When a sched_setscheduler() system call is issued (see the section "System Calls Related to
Scheduling" later in this chapter).

 7.4.4.3. Actions performed by schedule() before a process switch

 The goal of the schedule() function consists of replacing the currently executing process with another
one. Thus, the key outcome of the function is to set a local variable called next, so that it points to the
descriptor of the process selected to replace current. If no runnable process in the system has priority
greater than the priority of current, at the end, next coincides with current and no process switch takes
place.

 The schedule() function starts by disabling kernel preemption and initializing a few local variables:

need_resched:

preempt_disable();

prev = current;

rq = this_rq();

As you see, the pointer returned by current is saved in prev, and the address of the runqueue data
structure corresponding to the local CPU is saved in rq.

 Next, schedule() makes sure that prev doesn't hold the big kernel lock (see the section "The Big Kernel
Lock" in Chapter 5):

if (prev->lock_depth >= 0)

 up(&kernel_sem);

Notice that schedule() doesn't change the value of the lock_depth field; when prev resumes its
execution, it reacquires the kernel_flag spin lock if the value of this field is not negative. Thus, the big
kernel lock is automatically released and reacquired across a process switch.

 The sched_clock() function is invoked to read the TSC and convert its value to nanoseconds; the
timestamp obtained is saved in the now local variable. Then, schedule() computes the duration of the
CPU time slice used by prev:

now = sched_clock();

run_time = now - prev->timestamp;

if (run_time > 1000000000)

 run_time = 1000000000;

The usual cut-off at 1 second (converted to nanoseconds) applies. The run_time value is used to charge
the process for the CPU usage. However, a process having a high average sleep time is favored:

run_time /= (CURRENT_BONUS(prev) ? : 1);

Remember that CURRENT_BONUS returns a value between 0 and 10 that is proportional to the
average sleep time of the process.

 Before starting to look at the runnable processes, schedule() must disable the local interrupts and
acquire the spin lock that protects the runqueue:

spin_lock_irq(&rq->lock);

As explained in the section "Process Termination" in Chapter 3, prev might be a process that is being
terminated. To recognize this case, schedule() looks at the PF_DEAD flag:

if (prev->flags & PF_DEAD)

 prev->state = EXIT_DEAD;

Next, schedule() examines the state of prev. If it is not runnable and it has not been preempted in Kernel
Mode (see the section "Returning from Interrupts and Exceptions" in Chapter 4), then it should be
removed from the runqueue. However, if it has nonblocked pending signals and its state is
TASK_INTERRUPTIBLE, the function sets the process state to TASK_RUNNING and leaves it into
the runqueue. This action is not the same as assigning the processor to prev; it just gives prev a chance to
be selected for execution:

if (prev->state != TASK_RUNNING &&

 !(preempt_count() & PREEMPT_ACTIVE)) {

 if (prev->state == TASK_INTERRUPTIBLE && signal_pending(prev))

 prev->state = TASK_RUNNING;

 else {

 if (prev->state == TASK_UNINTERRUPTIBLE)

 rq->nr_uninterruptible++;

 deactivate_task(prev, rq);

 }

}

The deactivate_task() function removes the process from the runqueue:

rq->nr_running--;

dequeue_task(p, p->array);

p->array = NULL;

Now, schedule() checks the number of runnable processes left in the runqueue. If there are some
runnable processes, the function invokes the dependent_sleeper() function. In most cases, this function
immediately returns zero. If, however, the kernel supports the hyper-threading technology (see the
section "Runqueue Balancing in Multiprocessor Systems" later in this chapter), the function checks
whether the process that is going to be selected for execution has significantly lower priority than a sibling
process already running on a logical CPU of the same physical CPU; in this particular case, schedule()
refuses to select the lower privilege process and executes the swapper process instead.

if (rq->nr_running) {

 if (dependent_sleeper(smp_processor_id(), rq)) {

 next = rq->idle;

 goto switch_tasks;

 }

}

If no runnable process exists, the function invokes idle_balance() to move some runnable process from
another runqueue to the local runqueue; idle_balance() is similar to load_balance(), which is described
in the later section "The load_balance() Function."

if (!rq->nr_running) {

 idle_balance(smp_processor_id(), rq);

 if (!rq->nr_running) {

 next = rq->idle;

 rq->expired_timestamp = 0;

 wake_sleeping_dependent(smp_processor_id(), rq);

 if (!rq->nr_running)

 goto switch_tasks;

 }

}

If idle_balance() fails in moving some process in the local runqueue, schedule() invokes
wake_sleeping_dependent() to reschedule runnable processes in idle CPUs (that is, in every CPU that
runs the swapper process). As explained earlier when discussing the dependent_sleeper() function, this
unusual case might happen when the kernel supports the hyper-threading technology. However, in
uniprocessor systems, or when all attempts to move a runnable process in the local runqueue have failed,
the function picks the swapper process as next and continues with the next phase.

 Let's suppose that the schedule() function has determined that the runqueue includes some runnable
processes; now it has to check that at least one of these runnable processes is active. If not, the function
exchanges the contents of the active and expired fields of the runqueue data structure; thus, all expired
processes become active, while the empty set is ready to receive the processes that will expire in the
future.

array = rq->active;

if (!array->nr_active) {

 rq->active = rq->expired;

 rq->expired = array;

 array = rq->active;

 rq->expired_timestamp = 0;

 rq->best_expired_prio = 140;

}

It is time to look up a runnable process in the active prio_array_t data structure (see the section "
Identifying a Process" in Chapter 3). First of all, schedule() searches for the first nonzero bit in the
bitmask of the active set. Remember that a bit in the bitmask is set when the corresponding priority list is
not empty. Thus, the index of the first nonzero bit indicates the list containing the best process to run.
Then, the first process descriptor in that list is retrieved:

idx = sched_find_first_bit(array->bitmap);

next = list_entry(array->queue[idx].next, task_t, run_list);

The sched_find_first_bit() function is based on the bsfl assembly language instruction, which returns the
bit index of the least significant bit set to one in a 32-bit word.

 The next local variable now stores the descriptor pointer of the process that will replace prev. The
schedule() function looks at the next->activated field. This field encodes the state of the process when it
was awakened, as illustrated in Table 7-6.

 Table 7-6. The meaning of the activated field in the process descriptor

Value Description

0 The process was in TASK_RUNNING state.

1
The process was in TASK_INTERRUPTIBLE or
TASK_STOPPED state, and it is being awakened
by a system call service routine or a kernel thread.

2
The process was in TASK_INTERRUPTIBLE or
TASK_STOPPED state, and it is being awakened
by an interrupt handler or a deferrable function.

-1
The process was in
TASK_UNINTERRUPTIBLE state and it is being
awakened.

If next is a conventional process and it is being awakened from the TASK_INTERRUPTIBLE or
TASK_STOPPED state, the scheduler adds to the average sleep time of the process the nanoseconds
elapsed since the process was inserted into the runqueue. In other words, the sleep time of the process is
increased to cover also the time spent by the process in the runqueue waiting for the CPU:

if (next->prio >= 100 && next->activated > 0) {

 unsigned long long delta = now - next->timestamp;

 if (next->activated == 1)

 delta = (delta * 38) / 128;

 array = next->array;

 dequeue_task(next, array);

 recalc_task_prio(next, next->timestamp + delta);

 enqueue_task(next, array);

}

next->activated = 0;

Observe that the scheduler makes a distinction between a process awakened by an interrupt handler or
deferrable function, and a process awakened by a system call service routine or a kernel thread. In the
former case, the scheduler adds the whole runqueue waiting time, while in the latter it adds just a fraction
of that time. This is because interactive processes are more likely to be awakened by asynchronous
events (think of the user pressing keys on the keyboard) rather than by synchronous ones.

 7.4.4.4. Actions performed by schedule() to make the process switch

 Now the schedule() function has determined the next process to run. In a moment, the kernel will
access the tHRead_info data structure of next, whose address is stored close to the top of next's process
descriptor:

switch_tasks:

prefetch(next);

The prefetch macro is a hint to the CPU control unit to bring the contents of the first fields of next's
process descriptor in the hardware cache. It is here just to improve the performance of schedule(),
because the data are moved in parallel to the execution of the following instructions, which do not affect
next.

 Before replacing prev, the scheduler should do some administrative work:

clear_tsk_need_resched(prev);

rcu_qsctr_inc(prev->thread_info->cpu);

The clear_tsk_need_resched() function clears the TIF_NEED_RESCHED flag of prev, just in case
schedule() has been invoked in the lazy way. Then, the function records that the CPU is going through a
quiescent state (see the section "Read-Copy Update (RCU)" in Chapter 5).

 The schedule() function must also decrease the average sleep time of prev, charging to it the slice of
CPU time used by the process:

prev->sleep_avg -= run_time;

if ((long)prev->sleep_avg <= 0)

 prev->sleep_avg = 0;

prev->timestamp = prev->last_ran = now;

The timestamps of the process are then updated.

 It is quite possible that prev and next are the same process: this happens if no other higher or equal
priority active process is present in the runqueue. In this case, the function skips the process switch:

if (prev == next) {

 spin_unlock_irq(&rq->lock);

 goto finish_schedule;

}

At this point, prev and next are different processes, and the process switch is for real:

next->timestamp = now;

rq->nr_switches++;

rq->curr = next;

prev = context_switch(rq, prev, next);

The context_switch() function sets up the address space of next. As we'll see in "Memory Descriptor of
Kernel Threads" in Chapter 9, the active_mm field of the process descriptor points to the memory
descriptor that is used by the process, while the mm field points to the memory descriptor owned by the
process. For normal processes, the two fields hold the same address; however, a kernel thread does not
have its own address space and its mm field is always set to NULL. The context_switch() function
ensures that if next is a kernel thread, it uses the address space used by prev:

if (!next->mm) {

 next->active_mm = prev->active_mm;

 atomic_inc(&prev->active_mm->mm_count);

 enter_lazy_tlb(prev->active_mm, next);

}

Up to Linux version 2.2, kernel threads had their own address space. That design choice was
suboptimal, because the Page Tables had to be changed whenever the scheduler selected a new process,
even if it was a kernel thread. Because kernel threads run in Kernel Mode, they use only the fourth
gigabyte of the linear address space, whose mapping is the same for all processes in the system. Even
worse, writing into the cr3 register invalidates all TLB entries (see "Translation Lookaside Buffers (TLB)"
in Chapter 2), which leads to a significant performance penalty. Linux is nowadays much more efficient
because Page Tables aren't touched at all if next is a kernel thread. As further optimization, if next is a
kernel thread, the schedule() function sets the process into lazy TLB mode (see the section "Translation
Lookaside Buffers (TLB)" in Chapter 2).

 Conversely, if next is a regular process, the context_switch() function replaces the address space of
prev with the one of next:

if (next->mm)

 switch_mm(prev->active_mm, next->mm, next);

If prev is a kernel thread or an exiting process, the context_switch() function saves the pointer to the
memory descriptor used by prev in the runqueue's prev_mm field, then resets prev->active_mm:

if (!prev->mm) {

 rq->prev_mm = prev->active_mm;

 prev->active_mm = NULL;

}

Now context_switch() can finally invoke switch_to() to perform the process switch between prev and
next (see the section "Performing the Process Switch" in Chapter 3):

switch_to(prev, next, prev);

return prev;

7.4.4.5. Actions performed by schedule() after a process switch

 The instructions of the context_switch() and schedule() functions following the switch_to macro
invocation will not be performed right away by the next process, but at a later time by prev when the
scheduler selects it again for execution. However, at that moment, the prev local variable does not point
to our original process that was to be replaced when we started the description of schedule(), but rather
to the process that was replaced by our original prev when it was scheduled again. (If you are confused,
go back and read the section "Performing the Process Switch" in Chapter 3.) The first instructions after a
process switch are:

barrier();

finish_task_switch(prev);

Right after the invocation of the context_switch() function in schedule(), the barrier() macro yields an
optimization barrier for the code (see the section "Optimization and Memory Barriers" in Chapter 5).
Then, the finish_task_switch() function is executed:

mm = this_rq()->prev_mm;

this_rq()->prev_mm = NULL;

prev_task_flags = prev->flags;

spin_unlock_irq(&this_rq()->lock);

if (mm)

 mmdrop(mm);

if (prev_task_flags & PF_DEAD)

 put_task_struct(prev);

If prev is a kernel thread, the prev_mm field of the runqueue stores the address of the memory descriptor
that was lent to prev. As we'll see in Chapter 9, mmdrop() decreases the usage counter of the memory
descriptor; if the counter reaches 0 (likely because prev is a zombie process), the function also frees the
descriptor together with the associated Page Tables and virtual memory regions.

 The finish_task_switch() function also releases the spin lock of the runqueue and enables the local
interrupts. Then, it checks whether prev is a zombie task that is being removed from the system (see the
section "Process Termination" in Chapter 3); if so, it invokes put_task_struct() to free the process
descriptor reference counter and drop all remaining references to the process (see the section "Process
Removal" in Chapter 3).

 The very last instructions of the schedule() function are:

finish_schedule:

prev = current;

if (prev->lock_depth >= 0)

 _ _reacquire_kernel_lock();

preempt_enable_no_resched();

if (test_bit(TIF_NEED_RESCHED, ¤t_thread_info()->flags)

 goto need_resched;

return;

As you see, schedule() reacquires the big kernel lock if necessary, reenables kernel preemption, and
checks whether some other process has set the TIF_NEED_RESCHED flag of the current process. In
this case, the whole schedule() function is reexecuted from the beginning; otherwise, the function
terminates.

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.5. Runqueue Balancing in Multiprocessor Systems
 We have seen in Chapter 4 that Linux sticks to the Symmetric Multiprocessing model (SMP); this
means, essentially, that the kernel should not have any bias toward one CPU with respect to the others.
However, multiprocessor machines come in many different flavors, and the scheduler behaves differently
depending on the hardware characteristics. In particular, we will consider the following three types of
multiprocessor machines:

 Classic multiprocessor architecture

 Until recently, this was the most common architecture for multiprocessor machines. These machines have
a common set of RAM chips shared by all CPUs.

Hyper-threading

 A hyper-threaded chip is a microprocessor that executes several threads of execution at once; it includes
several copies of the internal registers and quickly switches between them. This technology, which was
invented by Intel, allows the processor to exploit the machine cycles to execute another thread while the
current thread is stalled for a memory access. A hyper-threaded physical CPU is seen by Linux as
several different logical CPUs.

NUMA

 CPUs and RAM chips are grouped in local "nodes" (usually a node includes one CPU and a few RAM
chips). The memory arbiter (a special circuit that serializes the accesses to RAM performed by the CPUs
in the system, see the section "Memory Addresses" in Chapter 2) is a bottleneck for the performance of
the classic multiprocessor systems. In a NUMA architecture, when a CPU accesses a "local" RAM chip
inside its own node, there is little or no contention, thus the access is usually fast; on the other hand,
accessing a "remote" RAM chip outside of its node is much slower. We'll mention in the section "
Non-Uniform Memory Access (NUMA)" in Chapter 8 how the Linux kernel memory allocator supports
NUMA architectures.

 These basic kinds of multiprocessor systems are often combined. For instance, a motherboard that
includes two different hyper-threaded CPUs is seen by the kernel as four logical CPUs.

 As we have seen in the previous section, the schedule() function picks the new process to run from the
runqueue of the local CPU. Therefore, a given CPU can execute only the runnable processes that are
contained in the corresponding runqueue. On the other hand, a runnable process is always stored in
exactly one runqueue: no runnable process ever appears in two or more runqueues. Therefore, until a
process remains runnable, it is usually bound to one CPU.

 This design choice is usually beneficial for system performance, because the hardware cache of every
CPU is likely to be filled with data owned by the runnable processes in the runqueue. In some cases,
however, binding a runnable process to a given CPU might induce a severe performance penalty. For
instance, consider a large number of batch processes that make heavy use of the CPU: if most of them
end up in the same runqueue, one CPU in the system will be overloaded, while the others will be nearly
idle.

 Therefore, the kernel periodically checks whether the workloads of the runqueues are balanced and, if
necessary, moves some process from one runqueue to another. However, to get the best performance
from a multiprocessor system, the load balancing algorithm should take into consideration the topology of
the CPUs in the system. Starting from kernel version 2.6.7, Linux sports a sophisticated runqueue
balancing algorithm based on the notion of "scheduling domains." Thanks to the scheduling domains, the
algorithm can be easily tuned for all kinds of existing multiprocessor architectures (and even for recent
architectures such as those based on the "multi-core" microprocessors).

 7.5.1. Scheduling Domains

 Essentially, a scheduling domain is a set of CPUs whose workloads should be kept balanced by the
kernel. Generally speaking, scheduling domains are hierarchically organized: the top-most scheduling
domain, which usually spans all CPUs in the system, includes children scheduling domains, each of which
include a subset of the CPUs. Thanks to the hierarchy of scheduling domains, workload balancing can be
done in a rather efficient way.

 Every scheduling domain is partitioned, in turn, in one or more groups, each of which represents a subset
of the CPUs of the scheduling domain. Workload balancing is always done between groups of a
scheduling domain. In other words, a process is moved from one CPU to another only if the total
workload of some group in some scheduling domain is significantly lower than the workload of another
group in the same scheduling domain.

 Figure 7-2 illustrates three examples of scheduling domain hierarchies, corresponding to the three main
architectures of multiprocessor machines.

 Figure 7-2. Three examples of scheduling domain hierarchies

 Figure 7-2 (a) represents a hierarchy composed by a single scheduling domain for a 2-CPU classic
multiprocessor architecture. The scheduling domain includes only two groups, each of which includes one
CPU.

 Figure 7-2 (b) represents a two-level hierarchy for a 2-CPU multiprocessor box with hyper-threading
technology. The top-level scheduling domain spans all four logical CPUs in the system, and it is
composed by two groups. Each group of the top-level domain corresponds to a child scheduling domain
and spans a physical CPU. The bottom-level scheduling domains (also called base scheduling domains)
include two groups, one for each logical CPU.

 Finally, Figure 7-2 (c) represents a two-level hierarchy for an 8-CPU NUMA architecture with two
nodes and four CPUs per node. The top-level domain is organized in two groups, each of which
corresponds to a different node. Every base scheduling domain spans the CPUs inside a single node and
has four groups, each of which spans a single CPU.

 Every scheduling domain is represented by a sched_domain descriptor, while every group inside a
scheduling domain is represented by a sched_group descriptor. Each sched_domain descriptor includes
a field groups, which points to the first element in a list of group descriptors. Moreover, the parent field of
the sched_domain structure points to the descriptor of the parent scheduling domain, if any.

 The sched_domain descriptors of all physical CPUs in the system are stored in the per-CPU variable
phys_domains. If the kernel does not support the hyper-threading technology, these domains are at the
bottom level of the domain hierarchy, and the sd fields of the runqueue descriptors point to themthat is,
they are the base scheduling domains. Conversely, if the kernel supports the hyper-threading technology,
the bottom-level scheduling domains are stored in the per-CPU variable cpu_domains.

 7.5.2. The rebalance_tick() Function

 To keep the runqueues in the system balanced, the rebalance_tick() function is invoked by
scheduler_tick() once every tick. It receives as its parameters the index this_cpu of the local CPU, the
address this_rq of the local runqueue, and a flag, idle, which can assume the following values:

 SCHED_IDLE

 The CPU is currently idle, that is, current is the swapper process.

NOT_IDLE

 The CPU is not currently idle, that is, current is not the swapper process.

 The rebalance_tick() function determines first the number of processes in the runqueue and updates the
runqueue's average workload; to do this, the function accesses the nr_running and cpu_load fields of the
runqueue descriptor.

 Then, rebalance_tick() starts a loop over all scheduling domains in the path from the base domain
(referenced by the sd field of the local runqueue descriptor) to the top-level domain. In each iteration the
function determines whether the time has come to invoke the load_balance() function, thus executing a
rebalancing operation on the scheduling domain. The value of idle and some parameters stored in the
sched_domain descriptor determine the frequency of the invocations of load_balance(). If idle is equal to
SCHED_IDLE, then the runqueue is empty, and rebalance_tick() invokes load_balance() quite often
(roughly once every one or two ticks for scheduling domains corresponding to logical and physical
CPUs). Conversely, if idle is equal to NOT_IDLE, rebalance_tick() invokes load_balance() sparingly
(roughly once every 10 milliseconds for scheduling domains corresponding to logical CPUs, and once
every 100 milliseconds for scheduling domains corresponding to physical CPUs).

 7.5.3. The load_balance() Function

 The load_balance() function checks whether a scheduling domain is significantly unbalanced; more
precisely, it checks whether unbalancing can be reduced by moving some processes from the busiest
group to the runqueue of the local CPU. If so, the function attempts this migration. It receives four
parameters:

 this_cpu

 The index of the local CPU

this_rq

 The address of the descriptor of the local runqueue

sd

 Points to the descriptor of the scheduling domain to be checked

idle

 Either SCHED_IDLE (local CPU is idle) or NOT_IDLE

 The function performs the following operations:
1.

1. Acquires the this_rq->lock spin lock.
2.

2. Invokes the find_busiest_group() function to analyze the workloads of the groups inside the
scheduling domain. The function returns the address of the sched_group descriptor of the busiest
group, provided that this group does not include the local CPU; in this case, the function also
returns the number of processes to be moved into the local runqueue to restore balancing. On the
other hand, if either the busiest group includes the local CPU or all groups are essentially
balanced, the function returns NULL. This procedure is not trivial, because the function tries to
filter the statistical fluctuations in the workloads.

3.

3. If find_busiest_group() did not find a group not including the local CPU that is significantly busier
than the other groups in the scheduling domain, the function releases the this_rq->lock spin lock,
tunes the parameters in the scheduling domain descriptor so as to delay the next invocation of
load_balance() on the local CPU, and terminates.

4.

4. Invokes the find_busiest_queue() function to find the busiest CPUs in the group found in step 2.
The function returns the descriptor address busiest of the corresponding runqueue.

5.

5. Acquires a second spin lock, namely the busiest->lock spin lock. To prevent deadlocks, this has
to be done carefully: the this_rq->lock is first released, then the two locks are acquired by
increasing CPU indices.

6.

6. Invokes the move_tasks() function to try moving some processes from the busiest runqueue to
the local runqueue this_rq (see the next section).

7.

7. If the move_task() function failed in migrating some process to the local runqueue, the scheduling
domain is still unbalanced. Sets to 1 the busiest->active_balance flag and wakes up the migration
kernel thread whose descriptor is stored in busiest->migration_thread. The migration kernel
thread walks the chain of the scheduling domain, from the base domain of the busiest runqueue to
the top domain, looking for an idle CPU. If an idle CPU is found, the kernel thread invokes
move_tasks() to move one process into the idle runqueue.

8.

8. Releases the busiest->lock and this_rq->lock spin locks.
9.

9. Terminates.

7.5.4. The move_tasks() Function

 The move_tasks() function moves processes from a source runqueue to the local runqueue. It receives
six parameters: this_rq and this_cpu (the local runqueue descriptor and the local CPU index), busiest (the
source runqueue descriptor), max_nr_move (the maximum number of processes to be moved), sd (the
address of the scheduling domain descriptor in which this balancing operation is carried on), and the idle
flag (beside SCHED_IDLE and NOT_IDLE, this flag can also be set to NEWLY_IDLE when the
function is indirectly invoked by idle_balance(); see the section "The schedule() Function" earlier in this
chapter).

 The function first analyzes the expired processes of the busiest runqueue, starting from the higher priority
ones. When all expired processes have been scanned, the function scans the active processes of the
busiest runqueue. For each candidate process, the function invokes can_migrate_task(), which returns 1
if all the following conditions hold:



 The process is not being currently executed by the remote CPU.


 The local CPU is included in the cpus_allowed bitmask of the process descriptor.


 At least one of the following holds:
o

o The local CPU is idle. If the kernel supports the hyper-threading technology, all logical CPUs
in the local physical chip must be idle.

o

o The kernel is having trouble in balancing the scheduling domain, because repeated attempts
to move processes have failed.

o

o The process to be moved is not "cache hot" (it has not recently executed on the remote
CPU, so one can assume that no data of the process is included in the hardware cache of the
remote CPU).

 If can_migrate_task() returns the value 1, move_tasks() invokes the pull_task() function to move the
candidate process to the local runqueue. Essentially, pull_task() executes dequeue_task() to remove the
process from the remote runqueue, then executes enqueue_task() to insert the process in the local
runqueue, and finally, if the process just moved has higher dynamic priority than current, invokes
resched_task() to preempt the current process of the local CPU.

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.6. System Calls Related to Scheduling
 Several system calls have been introduced to allow processes to change their priorities and scheduling
policies. As a general rule, users are always allowed to lower the priorities of their processes. However,
if they want to modify the priorities of processes belonging to some other user or if they want to increase
the priorities of their own processes, they must have superuser privileges.

 7.6.1. The nice() System Call

 The nice()[*] system call allows processes to change their base priority. The integer value contained in
the increment parameter is used to modify the nice field of the process descriptor. The nice Unix
command, which allows users to run programs with modified scheduling priority, is based on this system
call.

[*] Because this system call is usually invoked to lower the priority of a process, users who invoke it for
their processes are "nice" to other users.

 The sys_nice() service routine handles the nice() system call. Although the increment parameter may
have any value, absolute values larger than 40 are trimmed down to 40. Traditionally, negative values
correspond to requests for priority increments and require superuser privileges, while positive ones
correspond to requests for priority decreases. In the case of a negative increment, the function invokes
the capable() function to verify whether the process has a CAP_SYS_NICE capability. Moreover, the
function invokes the security_task_setnice() security hook. We discuss that function in Chapter 20. If the
user turns out to have the privilege required to change priorities, sys_nice() converts current->static_prio
to the range of nice values, adds the value of increment, and invokes the set_user_nice() function. In
turn, the latter function gets the local runqueue lock, updates the static priority of current, invokes the
resched_task() function to allow other processes to preempt current, and release the runqueue lock.

 The nice() system call is maintained for backward compatibility only; it has been replaced by the
setpriority() system call described next.

 7.6.2. The getpriority() and setpriority() System Calls

 The nice() system call affects only the process that invokes it. Two other system calls, denoted as
getpriority() and setpriority(), act on the base priorities of all processes in a given group. getpriority()
returns 20 minus the lowest nice field value among all processes in a given groupthat is, the highest
priority among those processes; setpriority() sets the base priority of all processes in a given group to a
given value.

 The kernel implements these system calls by means of the sys_getpriority() and sys_setpriority() service
routines. Both of them act essentially on the same group of parameters:

 which

 The value that identifies the group of processes; it can assume one of the following:

 PRIO_PROCESS

 Selects the processes according to their process ID (pid field of the process descriptor).

PRIO_PGRP

 Selects the processes according to their group ID (pgrp field of the process descriptor).

PRIO_USER

 Selects the processes according to their user ID (uid field of the process descriptor).

who

 The value of the pid, pgrp, or uid field (depending on the value of which) to be used for selecting the
processes. If who is 0, its value is set to that of the corresponding field of the current process.

niceval

 The new base priority value (needed only by sys_setpriority()). It should range between - 20 (highest
priority) and + 19 (lowest priority).

 As stated before, only processes with a CAP_SYS_NICE capability are allowed to increase their own
base priority or to modify that of other processes.

 As we will see in Chapter 10, system calls return a negative value only if some error occurred. For this
reason, getpriority() does not return a normal nice value ranging between - 20 and + 19, but rather a
nonnegative value ranging between 1 and 40.

 7.6.3. The sched_getaffinity() and sched_setaffinity() System Calls

 The sched_getaffinity() and sched_setaffinity() system calls respectively return and set up the CPU
affinity mask of a processthe bit mask of the CPUs that are allowed to execute the process. This mask is
stored in the cpus_allowed field of the process descriptor.

 The sys_sched_getaffinity() system call service routine looks up the process descriptor by invoking
find_task_by_pid(), and then returns the value of the corresponding cpus_allowed field ANDed with the
bitmap of the available CPUs.

 The sys_sched_setaffinity() system call is a bit more complicated. Besides looking for the descriptor of
the target process and updating the cpus_allowed field, this function has to check whether the process is
included in a runqueue of a CPU that is no longer present in the new affinity mask. In the worst case, the
process has to be moved from one runqueue to another one. To avoid problems due to deadlocks and
race conditions, this job is done by the migration kernel threads (there is one thread per CPU).
Whenever a process has to be moved from a runqueue rq1 to another runqueue rq2, the system call
awakes the migration thread of rq1 (rq1->migration_thread), which in turn removes the process from rq1
and inserts it into rq2.

 7.6.4. System Calls Related to Real-Time Processes

 We now introduce a group of system calls that allow processes to change their scheduling discipline and,
in particular, to become real-time processes. As usual, a process must have a CAP_SYS_NICE
capability to modify the values of the rt_priority and policy process descriptor fields of any process,
including itself.

 7.6.4.1. The sched_getscheduler() and sched_setscheduler() system calls

 The sched_getscheduler() system call queries the scheduling policy currently applied to the process
identified by the pid parameter. If pid equals 0, the policy of the calling process is retrieved. On success,
the system call returns the policy for the process: SCHED_FIFO, SCHED_RR, or SCHED_NORMAL
(the latter is also called SCHED_OTHER). The corresponding sys_sched_getscheduler() service routine
invokes find_process_by_pid(), which locates the process descriptor corresponding to the given pid and
returns the value of its policy field.

 The sched_setscheduler() system call sets both the scheduling policy and the associated parameters for
the process identified by the parameter pid. If pid is equal to 0, the scheduler parameters of the calling
process will be set.

 The corresponding sys_sched_setscheduler() system call service routine simply invokes
do_sched_setscheduler(). The latter function checks whether the scheduling policy specified by the
policy parameter and the new priority specified by the param->sched_priority parameter are valid. It also
checks whether the process has CAP_SYS_NICE capability or whether its owner has superuser rights.
If everything is OK, it removes the process from its runqueue (if it is runnable); updates the static,
real-time, and dynamic priorities of the process; inserts the process back in the runqueue; and finally
invokes, if necessary, the resched_task() function to preempt the current process of the runqueue.

 7.6.4.2. The sched_ getparam() and sched_setparam() system calls

 The sched_getparam() system call retrieves the scheduling parameters for the process identified by pid.
If pid is 0, the parameters of the current process are retrieved. The corresponding sys_sched_getparam(
) service routine, as one would expect, finds the process descriptor pointer associated with pid, stores its
rt_priority field in a local variable of type sched_param, and invokes copy_to_user() to copy it into the
process address space at the address specified by the param parameter.

 The sched_setparam() system call is similar to sched_setscheduler(). The difference is that
sched_setparam() does not let the caller set the policy field's value.[*] The corresponding
sys_sched_setparam() service routine invokes do_sched_setscheduler(), with almost the same
parameters as sys_sched_setscheduler().

[*] This anomaly is caused by a specific requirement of the POSIX standard.

 7.6.4.3. The sched_ yield() system call

 The sched_yield() system call allows a process to relinquish the CPU voluntarily without being
suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it either in the
expired set of the runqueue (if the process is a conventional one), or at the end of the runqueue list (if the
process is a real-time one). The schedule() function is then invoked. In this way, other processes that
have the same dynamic priority have a chance to run. The call is used mainly by SCHED_FIFO real-time
processes.

 7.6.4.4. The sched_ get_priority_min() and sched_ get_priority_max() system calls

 The sched_get_priority_min() and sched_get_priority_max() system calls return, respectively, the
minimum and the maximum real-time static priority value that can be used with the scheduling policy
identified by the policy parameter.

 The sys_sched_get_priority_min() service routine returns 1 if current is a real-time process, 0
otherwise.

 The sys_sched_get_priority_max() service routine returns 99 (the highest priority) if current is a
real-time process, 0 otherwise.

 7.6.4.5. The sched_rr_ get_interval() system call

 The sched_rr_get_interval() system call writes into a structure stored in the User Mode address space
the Round Robin time quantum for the real-time process identified by the pid parameter. If pid is zero,
the system call writes the time quantum of the current process.

 The corresponding sys_sched_rr_get_interval() service routine invokes, as usual, find_process_by_pid(
) to retrieve the process descriptor associated with pid. It then converts the base time quantum of the
selected process into seconds and nanoseconds and copies the numbers into the User Mode structure.
Conventionally, the time quantum of a FIFO real-time process is equal to zero.

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 8. Memory Management
 We saw in Chapter 2 how Linux takes advantage of 80 x 86's segmentation and paging circuits to
translate logical addresses into physical ones. We also mentioned that some portion of RAM is
permanently assigned to the kernel and used to store both the kernel code and the static kernel data
structures.

 The remaining part of the RAM is called dynamic memory . It is a valuable resource, needed not only by
the processes but also by the kernel itself. In fact, the performance of the entire system depends on how
efficiently dynamic memory is managed. Therefore, all current multitasking operating systems try to
optimize the use of dynamic memory, assigning it only when it is needed and freeing it as soon as
possible. Figure 8-1 shows schematically the page frames used as dynamic memory; see the section "
Physical Memory Layout" in Chapter 2 for details.

 This chapter, which consists of three main sections, describes how the kernel allocates dynamic memory
for its own use. The sections "Page Frame Management" and "Memory Area Management" illustrate two
different techniques for handling physically contiguous memory areas, while the section "Noncontiguous
Memory Area Management" illustrates a third technique that handles noncontiguous memory areas. In
these sections we'll cover topics such as memory zones, kernel mappings, the buddy system, the slab
cache, and memory pools.

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.1. Page Frame Management
 We saw in the section "Paging in Hardware" in Chapter 2 how the Intel Pentium processor can use two
different page frame sizes: 4 KB and 4 MB (or 2 MB if PAE is enabledsee the section "The Physical
Address Extension (PAE) Paging Mechanism" in Chapter 2). Linux adopts the smaller 4 KB page frame
size as the standard memory allocation unit. This makes things simpler for two reasons:



 The Page Fault exceptions issued by the paging circuitry are easily interpreted. Either the page
requested exists but the process is not allowed to address it, or the page does not exist. In the
second case, the memory allocator must find a free 4 KB page frame and assign it to the
process.



 Although both 4 KB and 4 MB are multiples of all disk block sizes, transfers of data between
main memory and disks are in most cases more efficient when the smaller size is used.

 Figure 8-1. Dynamic memory

 8.1.1. Page Descriptors

 The kernel must keep track of the current status of each page frame. For instance, it must be able to
distinguish the page frames that are used to contain pages that belong to processes from those that
contain kernel code or kernel data structures. Similarly, it must be able to determine whether a page
frame in dynamic memory is free. A page frame in dynamic memory is free if it does not contain any
useful data. It is not free when the page frame contains data of a User Mode process, data of a software
cache, dynamically allocated kernel data structures, buffered data of a device driver, code of a kernel
module, and so on.

 State information of a page frame is kept in a page descriptor of type page, whose fields are shown in
Table 8-1. All page descriptors are stored in the mem_map array. Because each descriptor is 32 bytes
long, the space required by mem_map is slightly less than 1% of the whole RAM. The
virt_to_page(addr) macro yields the address of the page descriptor associated with the linear address
addr. The pfn_to_page(pfn) macro yields the address of the page descriptor associated with the page
frame having number pfn.

 Table 8-1. The fields of the page descriptor

Type Name Description

unsigned long flags
Array of flags (see Table 8-2).
Also encodes the zone number to
which the page frame belongs.

atomic_t _count Page frame's reference counter.

atomic_t _mapcount
Number of Page Table entries
that refer to the page frame (-1 if
none).

unsigned long private

Available to the kernel
component that is using the page
(for instance, it is a buffer head
pointer in case of buffer page; see
"Block Buffers and Buffer Heads"
in Chapter 15). If the page is
free, this field is used by the
buddy system (see later in this
chapter).

struct

address_space *
mapping

Used when the page is inserted
into the page cache (see the
section "The Page Cache" in
Chapter 15), or when it belongs
to an anonymous region (see the
section "Reverse Mapping for
Anonymous Pages" in Chapter
17).

unsigned long index

Used by several kernel
components with different
meanings. For instance, it
identifies the position of the data
stored in the page frame within
the page's disk image or within an
anonymous region (Chapter 15),
or it stores a swapped-out page
identifier (Chapter 17).

struct list_head lru
Contains pointers to the least
recently used doubly linked list of
pages.

You don't have to fully understand the role of all fields in the page descriptor right now. In the following
chapters, we often come back to the fields of the page descriptor. Moreover, several fields have different
meaning, according to whether the page frame is free or what kernel component is using the page frame.

 Let's describe in greater detail two of the fields:

 _count

 A usage reference counter for the page. If it is set to -1, the corresponding page frame is free and can be
assigned to any process or to the kernel itself. If it is set to a value greater than or equal to 0, the page
frame is assigned to one or more processes or is used to store some kernel data structures. The
page_count() function returns the value of the _count field increased by one, that is, the number of users
of the page.

flags

 Includes up to 32 flags (see Table 8-2) that describe the status of the page frame. For each PG_xyz flag,
the kernel defines some macros that manipulate its value. Usually, the PageXyz macro returns the value of
the flag, while the SetPageXyz and ClearPageXyz macro set and clear the corresponding bit,
respectively.

 Table 8-2. Flags describing the status of a page frame

Flag name Meaning

PG_locked The page is locked; for instance, it is involved in a
disk I/O operation.

PG_error An I/O error occurred while transferring the page.

PG_referenced The page has been recently accessed.

PG_uptodate This flag is set after completing a read operation,
unless a disk I/O error happened.

PG_dirty The page has been modified (see the section "
Implementing the PFRA" in Chapter 17).

PG_lru
The page is in the active or inactive page list (see
the section "The Least Recently Used (LRU) Lists"
in Chapter 17).

PG_active
The page is in the active page list (see the section "
The Least Recently Used (LRU) Lists" in Chapter
17).

PG_slab
The page frame is included in a slab (see the
section "Memory Area Management" later in this
chapter).

PG_highmem

The page frame belongs to the
ZONE_HIGHMEM zone (see the following
section "Non-Uniform Memory Access (NUMA)
").

PG_checked Used by some filesystems such as Ext2 and Ext3
(see Chapter 18).

PG_arch_1 Not used on the 80 x 86 architecture.

PG_reserved The page frame is reserved for kernel code or is
unusable.

PG_private The private field of the page descriptor stores
meaningful data.

PG_writeback The page is being written to disk by means of the
writepage method (see Chapter 16) .

PG_nosave Used for system suspend/resume.

PG_compound
The page frame is handled through the extended
paging mechanism (see the section "Extended
Paging" in Chapter 2).

PG_swapcache The page belongs to the swap cache (see the
section "The Swap Cache" in Chapter 17).

PG_mappedtodisk All data in the page frame corresponds to blocks
allocated on disk.

PG_reclaim The page has been marked to be written to disk in
order to reclaim memory.

PG_nosave_free Used for system suspend/resume.

8.1.2. Non-Uniform Memory Access (NUMA)

 We are used to thinking of the computer's memory as a homogeneous, shared resource. Disregarding
the role of the hardware caches, we expect the time required for a CPU to access a memory location to
be essentially the same, regardless of the location's physical address and the CPU. Unfortunately, this
assumption is not true in some architectures. For instance, it is not true for some multiprocessor Alpha or
MIPS computers.

 Linux 2.6 supports the Non-Uniform Memory Access (NUMA) model, in which the access times for
different memory locations from a given CPU may vary. The physical memory of the system is partitioned
in several nodes . The time needed by a given CPU to access pages within a single node is the same.
However, this time might not be the same for two different CPUs. For every CPU, the kernel tries to
minimize the number of accesses to costly nodes by carefully selecting where the kernel data structures
that are most often referenced by the CPU are stored.[*]

[*] Furthermore, the Linux kernel makes use of NUMA even for some peculiar uniprocessor systems
that have huge "holes" in the physical address space. The kernel handles these architectures by assigning
the contiguous subranges of valid physical addresses to different memory nodes .

 The physical memory inside each node can be split into several zones, as we will see in the next section.
Each node has a descriptor of type pg_data_t, whose fields are shown in Table 8-3. All node descriptors
are stored in a singly linked list, whose first element is pointed to by the pgdat_list variable.

 Table 8-3. The fields of the node descriptor

Type Name Description

struct zone [] node_zones Array of zone descriptors of the
node

struct zonelist [] node_zonelists

Array of zonelist data structures
used by the page allocator (see
the later section "Memory Zones
")

int nr_zones Number of zones in the node

struct page * node_mem_map Array of page descriptors of the
node

struct

bootmem_data *
bdata Used in the kernel initialization

phase

unsigned long node_start_pfn Index of the first page frame in
the node

unsigned long node_present_pages Size of the memory node,
excluding holes (in page frames)

unsigned long node_spanned_pages Size of the node, including holes
(in page frames)

int node_id Identifier of the node

pg_data_t * pgdat_next Next item in the memory node list

wait_queue_head_t kswapd_wait

Wait queue for the kswapd
pageout daemon (see the section
"Periodic Reclaiming" in Chapter
17)

struct task_struct * kswapd Pointer to the process descriptor
of the kswapd kernel thread

int kswapd_max_order Logarithmic size of free blocks to
be created by kswapd

As usual, we are mostly concerned with the 80 x 86 architecture. IBM-compatible PCs use the Uniform
Memory Access model (UMA), thus the NUMA support is not really required. However, even if
NUMA support is not compiled in the kernel, Linux makes use of a single node that includes all system
physical memory. Thus, the pgdat_list variable points to a list consisting of a single elementthe node 0
descriptorstored in the contig_page_data variable.

 On the 80 x 86 architecture, grouping the physical memory in a single node might appear useless;
however, this approach makes the memory handling code more portable, because the kernel can assume
that the physical memory is partitioned in one or more nodes in all architectures.[*]

[*] We have another example of this kind of design choice: Linux uses four levels of Page Tables even
when the hardware architecture defines just two levels (see the section "Paging in Linux" in Chapter 2).

 8.1.3. Memory Zones

 In an ideal computer architecture, a page frame is a memory storage unit that can be used for anything:
storing kernel and user data, buffering disk data, and so on. Every kind of page of data can be stored in a
page frame, without limitations.

 However, real computer architectures have hardware constraints that may limit the way page frames can
be used. In particular, the Linux kernel must deal with two hardware constraints of the 80 x 86
architecture:



 The Direct Memory Access (DMA) processors for old ISA buses have a strong limitation: they
are able to address only the first 16 MB of RAM.



 In modern 32-bit computers with lots of RAM, the CPU cannot directly access all physical
memory because the linear address space is too small.

 To cope with these two limitations, Linux 2.6 partitions the physical memory of every memory node into
three zones. In the 80 x 86 UMA architecture the zones are:

 ZONE_DMA

 Contains page frames of memory below 16 MB

ZONE_NORMAL

 Contains page frames of memory at and above 16 MB and below 896 MB

ZONE_HIGHMEM

 Contains page frames of memory at and above 896 MB

 The ZONE_DMA zone includes page frames that can be used by old ISA-based devices by means of
the DMA. (The section "Direct Memory Access (DMA)" in Chapter 13 gives further details on DMA.)

 The ZONE_DMA and ZONE_NORMAL zones include the "normal" page frames that can be directly
accessed by the kernel through the linear mapping in the fourth gigabyte of the linear address space (see
the section "Kernel Page Tables" in Chapter 2). Conversely, the ZONE_HIGHMEM zone includes page
frames that cannot be directly accessed by the kernel through the linear mapping in the fourth gigabyte of
linear address space (see the section "Kernel Mappings of High-Memory Page Frames" later in this
chapter). The ZONE_HIGHMEM zone is always empty on 64-bit architectures.

 Each memory zone has its own descriptor of type zone. Its fields are shown in Table 8-4.

 Table 8-4. The fields of the zone descriptor

Type Name Description

unsigned long free_pages Number of free pages in the
zone.

unsigned long pages_min

Number of reserved pages of the
zone (see the section "The Pool
of Reserved Page Frames" later
in this chapter).

unsigned long pages_low

Low watermark for page frame
reclaiming; also used by the zone
allocator as a threshold value (see
the section "The Zone Allocator"
later in this chapter).

unsigned long pages_high
High watermark for page frame
reclaiming; also used by the zone
allocator as a threshold value.

unsigned long [] lowmem_reserve

Specifies how many page frames
in each zone must be reserved for
handling low-on-memory critical
situations.

struct per_cpu_pageset[] pageset

Data structure used to implement
special caches of single page
frames (see the section "The
Per-CPU Page Frame Cache"
later in this chapter).

spinlock_t lock Spin lock protecting the
descriptor.

struct free_area [] free_area

Identifies the blocks of free page
frames in the zone (see the
section "The Buddy System
Algorithm" later in this chapter).

spinlock_t lru_lock Spin lock for the active and
inactive lists.

struct list head active_list List of active pages in the zone
(see Chapter 17).

struct list head inactive_list List of inactive pages in the zone
(see Chapter 17).

unsigned long nr_scan_active

Number of active pages to be
scanned when reclaiming memory
(see the section "Low On
Memory Reclaiming" in Chapter
17).

unsigned long nr_scan_inactive
Number of inactive pages to be
scanned when reclaiming
memory.

unsigned long nr_active Number of pages in the zone's
active list.

unsigned long nr_inactive Number of pages in the zone's
inactive list.

unsigned long pages_scanned Counter used when doing page
frame reclaiming in the zone.

int all_unreclaimable Flag set when the zone is full of
unreclaimable pages.

int temp_priority
Temporary zone's priority (used
when doing page frame
reclaiming).

int prev_priority

Zone's priority ranging between
12 and 0 (used by the page frame
reclaiming algorithm, see the
section "Low On Memory
Reclaiming" in Chapter 17).

wait_queue_head_t * wait_table
Hash table of wait queues of
processes waiting for one of the
pages of the zone.

unsigned long wait_table_size Size of the wait queue hash table.

unsigned long wait_table_bits Power-of-2 order of the size of
the wait queue hash table array.

struct pglist_data * zone_pgdat
Memory node (see the earlier
section "Non-Uniform Memory
Access (NUMA)").

struct page * zone_mem_map Pointer to first page descriptor of
the zone.

unsigned long zone_start_pfn Index of the first page frame of
the zone.

unsigned long spanned_pages Total size of zone in pages,
including holes.

unsigned long present_pages Total size of zone in pages,
excluding holes.

char * name
Pointer to the conventional name
of the zone: "DMA," "Normal,"
or "HighMem."

Many fields of the zone structure are used for page frame reclaiming and will be described in Chapter 17.

 Each page descriptor has links to the memory node and to the zone inside the node that includes the
corresponding page frame. To save space, these links are not stored as classical pointers; rather, they are
encoded as indices stored in the high bits of the flags field. In fact, the number of flags that characterize a
page frame is limited, thus it is always possible to reserve the most significant bits of the flags field to
encode the proper memory node and zone number.[*] The page_zone() function receives as its
parameter the address of a page descriptor; it reads the most significant bits of the flags field in the page
descriptor, then it determines the address of the corresponding zone descriptor by looking in the
zone_table array. This array is initialized at boot time with the addresses of all zone descriptors of all
memory nodes.

[*] The number of bits reserved for the indices depends on whether the kernel supports the NUMA
model and on the size of the flags field. If NUMA is not supported, the flags field has two bits for the
zone index and one bitalways set to zerofor the node index. On NUMA 32-bit architectures, flags has
two bits for the zone index and six bits for the node number. Finally, on NUMA 64-bit architectures, the
64-bit flags field has 2 bits for the zone index and 10 bits for the node number.

 When the kernel invokes a memory allocation function, it must specify the zones that contain the
requested page frames. The kernel usually specifies which zones it's willing to use. For instance, if a page
frame must be directly mapped in the fourth gigabyte of linear addresses but it is not going to be used for
ISA DMA transfers, then the kernel requests a page frame either in ZONE_NORMAL or in
ZONE_DMA. Of course, the page frame should be obtained from ZONE_DMA only if
ZONE_NORMAL does not have free page frames. To specify the preferred zones in a memory
allocation request, the kernel uses the zonelist data structure, which is an array of zone descriptor
pointers.

 8.1.4. The Pool of Reserved Page Frames

 Memory allocation requests can be satisfied in two different ways. If enough free memory is available,
the request can be satisfied immediately. Otherwise, some memory reclaiming must take place, and the
kernel control path that made the request is blocked until additional memory has been freed.

 However, some kernel control paths cannot be blocked while requesting memorythis happens, for
instance, when handling an interrupt or when executing code inside a critical region. In these cases, a
kernel control path should issue atomic memory allocation requests (using the GFP_ATOMIC flag; see
the later section "The Zoned Page Frame Allocator"). An atomic request never blocks: if there are not
enough free pages, the allocation simply fails.

 Although there is no way to ensure that an atomic memory allocation request never fails, the kernel tries
hard to minimize the likelihood of this unfortunate event. In order to do this, the kernel reserves a pool of
page frames for atomic memory allocation requests to be used only on low-on-memory conditions.

 The amount of the reserved memory (in kilobytes) is stored in the min_free_kbytes variable. Its initial
value is set during kernel initialization and depends on the amount of physical memory that is directly
mapped in the kernel's fourth gigabyte of linear addressesthat is, it depends on the number of page
frames included in the ZONE_DMA and ZONE_NORMAL memory zones:

 However, initially min_free_kbytes cannot be lower than 128 and greater than 65,536.[*]

[*] The amount of reserved memory can be changed later by the system administrator either by writing in
the /proc/sys/vm/min_free_kbytes file or by issuing a suitable sysctl() system call.

 The ZONE_DMA and ZONE_NORMAL memory zones contribute to the reserved memory with a
number of page frames proportional to their relative sizes. For instance, if the ZONE_NORMAL zone is
eight times bigger than ZONE_DMA, seven-eighths of the page frames will be taken from
ZONE_NORMAL and one-eighth from ZONE_DMA.

 The pages_min field of the zone descriptor stores the number of reserved page frames inside the zone.
As we'll see in Chapter 17, this field plays also a role for the page frame reclaiming algorithm, together
with the pages_low and pages_high fields. The pages_low field is always set to 5/4 of the value of
pages_min, and pages_high is always set to 3/2 of the value of pages_min.

 8.1.5. The Zoned Page Frame Allocator

 The kernel subsystem that handles the memory allocation requests for groups of contiguous page frames
is called the zoned page frame allocator . Its main components are shown in Figure 8-2.

 The component named "zone allocator " receives the requests for allocation and deallocation of dynamic
memory. In the case of allocation requests, the component searches a memory zone that includes a group
of contiguous page frames that can satisfy the request (see the later section "The Zone Allocator"). Inside
each zone, page frames are handled by a component named "buddy system " (see the later section "The
Buddy System Algorithm"). To get better system performance, a small number of page frames are kept in
cache to quickly satisfy the allocation requests for single page frames (see the later section "The
Per-CPU Page Frame Cache").

 Figure 8-2. Components of the zoned page frame allocator

 8.1.5.1. Requesting and releasing page frames

 Page frames can be requested by using six slightly different functions and macros. Unless otherwise
stated, they return the linear address of the first allocated page or return NULL if the allocation failed.

 alloc_pages(gfp_mask, order)

 Macro used to request 2order contiguous page frames. It returns the address of the descriptor of the
first allocated page frame or returns NULL if the allocation failed.

alloc_page(gfp_mask)

 Macro used to get a single page frame; it expands to:

alloc_pages(gfp_mask, 0)

It returns the address of the descriptor of the allocated page frame or returns NULL if the allocation
failed.

_ _get_free_pages(gfp_mask, order)

 Function that is similar to alloc_pages(), but it returns the linear address of the first allocated page.

_ _get_free_page(gfp_mask)

 Macro used to get a single page frame; it expands to:

_ _get_free_pages(gfp_mask, 0)

get_zeroed_page(gfp_mask)

 Function used to obtain a page frame filled with zeros; it invokes:

alloc_pages(gfp_mask | _ _GFP_ZERO, 0)

and returns the linear address of the obtained page frame.

_ _get_dma_pages(gfp_mask, order)

 Macro used to get page frames suitable for DMA; it expands to:

_ _get_free_pages(gfp_mask | _ _GFP_DMA, order)

The parameter gfp_mask is a group of flags that specify how to look for free page frames. The flags that
can be used in gfp_mask are shown in Table 8-5.

 Table 8-5. Flag used to request page frames

Flag Description

_ _GFP_DMA The page frame must belong to the ZONE_DMA
memory zone. Equivalent to GFP_DMA.

_ _GFP_HIGHMEM The page frame may belong to the
ZONE_HIGHMEM memory zone.

_ _GFP_WAIT The kernel is allowed to block the current process
waiting for free page frames.

_ _GFP_HIGH The kernel is allowed to access the pool of
reserved page frames.

_ _GFP_IO The kernel is allowed to perform I/O transfers on
low memory pages in order to free page frames.

_ _GFP_FS If clear, the kernel is not allowed to perform
filesystem-dependent operations.

_ _GFP_COLD The requested page frames may be "cold" (see the
later section "The Per-CPU Page Frame Cache").

_ _GFP_NOWARN A memory allocation failure will not produce a
warning message.

_ _GFP_REPEAT The kernel keeps retrying the memory allocation
until it succeeds.

_ _GFP_NOFAIL Same as _ _GFP_REPEAT.

_ _GFP_NORETRY Do not retry a failed memory allocation.

_ _GFP_NO_GROW
The slab allocator does not allow a slab cache to
be enlarged (see the later section "The Slab
Allocator").

_ _GFP_COMP The page frame belongs to an extended page (see
the section "Extended Paging" in Chapter 2).

_ _GFP_ZERO The page frame returned, if any, must be filled with
zeros.

In practice, Linux uses the predefined combinations of flag values shown in Table 8-6; the group name is
what you'll encounter as the argument of the six page frame allocation functions.

 Table 8-6. Groups of flag values used to request page frames

Group name Corresponding flags

GFP_ATOMIC _ _GFP_HIGH

GFP_NOIO _ _GFP_WAIT

GFP_NOFS _ _GFP_WAIT | _ _GFP_IO

GFP_KERNEL _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS

GFP_USER _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS

GFP_HIGHUSER _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS | _
_GFP_HIGHMEM

The _ _GFP_DMA and _ _GFP_HIGHMEM flags are called zone modifiers ; they specify the zones
searched by the kernel while looking for free page frames. The node_zonelists field of the
contig_page_data node descriptor is an array of lists of zone descriptors representing the fallback zones:
for each setting of the zone modifiers, the corresponding list includes the memory zones that could be
used to satisfy the memory allocation request in case the original zone is short on page frames. In the 80 x
86 UMA architecture, the fallback zones are the following:



 If the _ _GFP_DMA flag is set, page frames can be taken only from the ZONE_DMA memory
zone.



 Otherwise, if the _ _GFP_HIGHMEM flag is not set, page frames can be taken only from the
ZONE_NORMAL and the ZONE_DMA memory zones, in order of preference.



 Otherwise (the _ _GFP_HIGHMEM flag is set), page frames can be taken from
ZONE_HIGHMEM, ZONE_NORMAL, and ZONE_DMA memory zones, in order of
preference.

 Page frames can be released through each of the following four functions and macros:

 _ _free_pages(page, order)

 This function checks the page descriptor pointed to by page; if the page frame is not reserved (i.e., if the
PG_reserved flag is equal to 0), it decreases the count field of the descriptor. If count becomes 0, it
assumes that 2order contiguous page frames starting from the one corresponding to page are no longer
used. In this case, the function releases the page frames as explained in the later section "The Zone
Allocator."

free_pages(addr, order)

 This function is similar to _ _free_pages(), but it receives as an argument the linear address addr of the
first page frame to be released.

_ _free_page(page)

 This macro releases the page frame having the descriptor pointed to by page; it expands to:

_ _free_pages(page, 0)

free_page(addr)

 This macro releases the page frame having the linear address addr; it expands to:

free_pages(addr, 0)

8.1.6. Kernel Mappings of High-Memory Page Frames

 The linear address that corresponds to the end of the directly mapped physical memory, and thus to the
beginning of the high memory, is stored in the high_memory variable, which is set to 896 MB. Page
frames above the 896 MB boundary are not generally mapped in the fourth gigabyte of the kernel linear
address spaces, so the kernel is unable to directly access them. This implies that each page allocator
function that returns the linear address of the assigned page frame doesn't work for high-memory page
frames, that is, for page frames in the ZONE_HIGHMEM memory zone.

 For instance, suppose that the kernel invoked _ _get_free_pages(GFP_HIGHMEM,0) to allocate a
page frame in high memory. If the allocator assigned a page frame in high memory, _ _get_free_pages()
cannot return its linear address because it doesn't exist; thus, the function returns NULL. In turn, the
kernel cannot use the page frame; even worse, the page frame cannot be released because the kernel has
lost track of it.

 This problem does not exist on 64-bit hardware platforms, because the available linear address space is
much larger than the amount of RAM that can be installedin short, the ZONE_HIGHMEM zone of these
architectures is always empty. On 32-bit platforms such as the 80 x 86 architecture, however, Linux
designers had to find some way to allow the kernel to exploit all the available RAM, up to the 64 GB
supported by PAE. The approach adopted is the following:



 The allocation of high-memory page frames is done only through the alloc_pages() function and
its alloc_page() shortcut. These functions do not return the linear address of the first allocated
page frame, because if the page frame belongs to the high memory, such linear address simply
does not exist. Instead, the functions return the linear address of the page descriptor of the first
allocated page frame. These linear addresses always exist, because all page descriptors are
allocated in low memory once and forever during the kernel initialization.



 Page frames in high memory that do not have a linear address cannot be accessed by the kernel.
Therefore, part of the last 128 MB of the kernel linear address space is dedicated to mapping
high-memory page frames. Of course, this kind of mapping is temporary, otherwise only 128 MB
of high memory would be accessible. Instead, by recycling linear addresses the whole high
memory can be accessed, although at different times.

 The kernel uses three different mechanisms to map page frames in high memory; they are called
permanent kernel mapping, temporary kernel mapping, and noncontiguous memory allocation. In this
section, we'll cover the first two techniques; the third one is discussed in the section "Noncontiguous
Memory Area Management" later in this chapter.

 Establishing a permanent kernel mapping may block the current process; this happens when no free
Page Table entries exist that can be used as "windows" on the page frames in high memory. Thus, a
permanent kernel mapping cannot be established in interrupt handlers and deferrable functions.
Conversely, establishing a temporary kernel mapping never requires blocking the current process; its
drawback, however, is that very few temporary kernel mappings can be established at the same time.

 A kernel control path that uses a temporary kernel mapping must ensure that no other kernel control
path is using the same mapping. This implies that the kernel control path can never block, otherwise
another kernel control path might use the same window to map some other high memory page.

 Of course, none of these techniques allow addressing the whole RAM simultaneously. After all, less than
128 MB of linear address space are left for mapping the high memory, while PAE supports systems
having up to 64 GB of RAM.

 8.1.6.1. Permanent kernel mappings

 Permanent kernel mappings allow the kernel to establish long-lasting mappings of high-memory page
frames into the kernel address space. They use a dedicated Page Table in the master kernel page tables .
The pkmap_page_table variable stores the address of this Page Table, while the LAST_PKMAP macro
yields the number of entries. As usual, the Page Table includes either 512 or 1,024 entries, according to
whether PAE is enabled or disabled (see the section "The Physical Address Extension (PAE) Paging
Mechanism" in Chapter 2); thus, the kernel can access at most 2 or 4 MB of high memory at once.

 The Page Table maps the linear addresses starting from PKMAP_BASE. The pkmap_count array
includes LAST_PKMAP counters, one for each entry of the pkmap_page_table Page Table. We
distinguish three cases:

 The counter is 0

 The corresponding Page Table entry does not map any high-memory page frame and is usable.

The counter is 1

 The corresponding Page Table entry does not map any high-memory page frame, but it cannot be used
because the corresponding TLB entry has not been flushed since its last usage.

The counter is n (greater than 1)

 The corresponding Page Table entry maps a high-memory page frame, which is used by exactly n - 1
kernel components.

 To keep track of the association between high memory page frames and linear addresses induced by
permanent kernel mappings , the kernel makes use of the page_address_htable hash table. This table
contains one page_address_map data structure for each page frame in high memory that is currently
mapped. In turn, this data structure contains a pointer to the page descriptor and the linear address
assigned to the page frame.

 The page_address() function returns the linear address associated with the page frame, or NULL if the
page frame is in high memory and is not mapped. This function, which receives as its parameter a page
descriptor pointer page, distinguishes two cases:

1.

1. If the page frame is not in high memory (PG_highmem flag clear), the linear address always
exists and is obtained by computing the page frame index, converting it into a physical address,
and finally deriving the linear address corresponding to the physical address. This is accomplished
by the following code:

1. _ _va((unsigned long)(page - mem_map) << 12)

2.

2. If the page frame is in high memory (PG_highmem flag set), the function looks into the
page_address_htable hash table. If the page frame is found in the hash table, page_address()
returns its linear address, otherwise it returns NULL.

The kmap() function establishes a permanent kernel mapping. It is essentially equivalent to the following
code:

void * kmap(struct page * page)

{

 if (!PageHighMem(page))

 return page_address(page);

 return kmap_high(page);

}

The kmap_high() function is invoked if the page frame really belongs to high memory. The function is
essentially equivalent to the following code:

void * kmap_high(struct page * page)

{

 unsigned long vaddr;

 spin_lock(&kmap_lock);

 vaddr = (unsigned long) page_address(page);

 if (!vaddr)

 vaddr = map_new_virtual(page);

 pkmap_count[(vaddr-PKMAP_BASE) >> PAGE_SHIFT]++;

 spin_unlock(&kmap_lock);

 return (void *) vaddr;

}

The function gets the kmap_lock spin lock to protect the Page Table against concurrent accesses in
multiprocessor systems. Notice that there is no need to disable the interrupts, because kmap() cannot be
invoked by interrupt handlers and deferrable functions. Next, the kmap_high() function checks whether
the page frame is already mapped by invoking page_address(). If not, the function invokes
map_new_virtual() to insert the page frame physical address into an entry of pkmap_page_table and to
add an element to the page_address_htable hash table. Then kmap_high() increases the counter
corresponding to the linear address of the page frame to take into account the new kernel component
that invoked this function. Finally, kmap_high() releases the kmap_lock spin lock and returns the linear
address that maps the page frame.

 The map_new_virtual() function essentially executes two nested loops:

 for (;;) {

 int count;

 DECLARE_WAITQUEUE(wait, current);

 for (count = LAST_PKMAP; count > 0; --count) {

 last_pkmap_nr = (last_pkmap_nr + 1) & (LAST_PKMAP - 1);

 if (!last_pkmap_nr) {

 flush_all_zero_pkmaps();

 count = LAST_PKMAP;

 }

 if (!pkmap_count[last_pkmap_nr]) {

 unsigned long vaddr = PKMAP_BASE +

 (last_pkmap_nr << PAGE_SHIFT);

 set_pte(&(pkmap_page_table[last_pkmap_nr]),

 mk_pte(page, _ _pgprot(0x63)));

 pkmap_count[last_pkmap_nr] = 1;

 set_page_address(page, (void *) vaddr);

 return vaddr;

 }

 }

 current->state = TASK_UNINTERRUPTIBLE;

 add_wait_queue(&pkmap_map_wait, &wait);

 spin_unlock(&kmap_lock);

 schedule();

 remove_wait_queue(&pkmap_map_wait, &wait);

 spin_lock(&kmap_lock);

 if (page_address(page))

 return (unsigned long) page_address(page);

 }

In the inner loop, the function scans all counters in pkmap_count until it finds a null value. The large if
block runs when an unused entry is found in pkmap_count. That block determines the linear address
corresponding to the entry, creates an entry for it in the pkmap_page_table Page Table, sets the count to
1 because the entry is now used, invokes set_page_address() to insert a new element in the
page_address_htable hash table, and returns the linear address.

 The function starts where it left off last time, cycling through the pkmap_count array. It does this by
preserving in a variable named last_pkmap_nr the index of the last used entry in the pkmap_page_table
Page Table. Thus, the search starts from where it was left in the last invocation of the map_new_virtual()
function.

 When the last counter in pkmap_count is reached, the search restarts from the counter at index 0.
Before continuing, however, map_new_virtual() invokes the flush_all_zero_pkmaps() function, which
starts another scan of the counters, looking for those that have the value 1. Each counter that has a value
of 1 denotes an entry in pkmap_page_table that is free but cannot be used because the corresponding
TLB entry has not yet been flushed. flush_all_zero_pkmaps() resets their counters to zero, deletes the
corresponding elements from the page_address_htable hash table, and issues TLB flushes on all entries
of pkmap_page_table.

 If the inner loop cannot find a null counter in pkmap_count, the map_new_virtual() function blocks the
current process until some other process releases an entry of the pkmap_page_table Page Table. This is
achieved by inserting current in the pkmap_map_wait wait queue, setting the current state to
TASK_UNINTERRUPTIBLE, and invoking schedule() to relinquish the CPU. Once the process is
awakened, the function checks whether another process has mapped the page by invoking
page_address(); if no other process has mapped the page yet, the inner loop is restarted.

 The kunmap() function destroys a permanent kernel mapping established previously by kmap(). If the
page is really in the high memory zone, it invokes the kunmap_high() function, which is essentially
equivalent to the following code:

void kunmap_high(struct page * page)

{

 spin_lock(&kmap_lock);

 if ((--pkmap_count[((unsigned long)page_address(page)

 -PKMAP_BASE)>>PAGE_SHIFT]) == 1)

 if (waitqueue_active(&pkmap_map_wait))

 wake_up(&pkmap_map_wait);

 spin_unlock(&kmap_lock);

}

The expression within the brackets computes the index into the pkmap_count array from the page's linear
address. The counter is decreased and compared to 1. A successful comparison indicates that no
process is using the page. The function can finally wake up processes in the wait queue filled by
map_new_virtual(), if any.

 8.1.6.2. Temporary kernel mappings

 Temporary kernel mappings are simpler to implement than permanent kernel mappings; moreover, they
can be used inside interrupt handlers and deferrable functions, because requesting a temporary kernel
mapping never blocks the current process.

 Every page frame in high memory can be mapped through a window in the kernel address spacenamely,
a Page Table entry that is reserved for this purpose. The number of windows reserved for temporary
kernel mappings is quite small.

 Each CPU has its own set of 13 windows, represented by the enum km_type data structure. Each
symbol defined in this data structuresuch as KM_BOUNCE_READ, KM_USER0, or
KM_PTE0identifies the linear address of a window.

 The kernel must ensure that the same window is never used by two kernel control paths at the same
time. Thus, each symbol in the km_type structure is dedicated to one kernel component and is named
after the component. The last symbol, KM_TYPE_NR, does not represent a linear address by itself, but
yields the number of different windows usable by every CPU.

 Each symbol in km_type, except the last one, is an index of a fix-mapped linear address (see the section
"Fix-Mapped Linear Addresses" in Chapter 2). The enum fixed_addresses data structure includes the
symbols FIX_KMAP_BEGIN and FIX_KMAP_END; the latter is assigned to the index
FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS) - 1. In this manner, there are KM_TYPE_NR
fix-mapped linear addresses for each CPU in the system. Furthermore, the kernel initializes the kmap_pte
variable with the address of the Page Table entry corresponding to the fix_to_virt(FIX_KMAP_BEGIN)
linear address.

 To establish a temporary kernel mapping, the kernel invokes the kmap_atomic() function, which is
essentially equivalent to the following code:

void * kmap_atomic(struct page * page, enum km_type type)

{

 enum fixed_addresses idx;

 unsigned long vaddr;

 current_thread_info()->preempt_count++;

 if (!PageHighMem(page))

 return page_address(page);

 idx = type + KM_TYPE_NR * smp_processor_id();

 vaddr = fix_to_virt(FIX_KMAP_BEGIN + idx);

 set_pte(kmap_pte-idx, mk_pte(page, 0x063));

 _ _flush_tlb_single(vaddr);

 return (void *) vaddr;

}

The type argument and the CPU identifier retrieved through smp_processor_id() specify what
fix-mapped linear address has to be used to map the request page. The function returns the linear
address of the page frame if it doesn't belong to high memory; otherwise, it sets up the Page Table entry
corresponding to the fix-mapped linear address with the page's physical address and the bits Present,
Accessed, Read/Write, and Dirty. Finally, the function flushes the proper TLB entry and returns the linear
address.

 To destroy a temporary kernel mapping, the kernel uses the kunmap_atomic() function. In the 80 x 86
architecture, this function decreases the preempt_count of the current process; thus, if the kernel control
path was preemptable right before requiring a temporary kernel mapping, it will be preemptable again
after it has destroyed the same mapping. Moreover, kunmap_atomic() checks whether the
TIF_NEED_RESCHED flag of current is set and, if so, invokes schedule().

 8.1.7. The Buddy System Algorithm

 The kernel must establish a robust and efficient strategy for allocating groups of contiguous page frames.
In doing so, it must deal with a well-known memory management problem called external fragmentation:
frequent requests and releases of groups of contiguous page frames of different sizes may lead to a
situation in which several small blocks of free page frames are "scattered" inside blocks of allocated page
frames. As a result, it may become impossible to allocate a large block of contiguous page frames, even if
there are enough free pages to satisfy the request.

 There are essentially two ways to avoid external fragmentation:


 Use the paging circuitry to map groups of noncontiguous free page frames into intervals of
contiguous linear addresses.



 Develop a suitable technique to keep track of the existing blocks of free contiguous page frames,
avoiding as much as possible the need to split up a large free block to satisfy a request for a
smaller one.

 The second approach is preferred by the kernel for three good reasons:


 In some cases, contiguous page frames are really necessary, because contiguous linear
addresses are not sufficient to satisfy the request. A typical example is a memory request for
buffers to be assigned to a DMA processor (see Chapter 13). Because most DMAs ignore the
paging circuitry and access the address bus directly while transferring several disk sectors in a
single I/O operation, the buffers requested must be located in contiguous page frames.



 Even if contiguous page frame allocation is not strictly necessary, it offers the big advantage of
leaving the kernel paging tables unchanged. What's wrong with modifying the Page Tables? As
we know from Chapter 2, frequent Page Table modifications lead to higher average memory
access times, because they make the CPU flush the contents of the translation lookaside buffers.



 Large chunks of contiguous physical memory can be accessed by the kernel through 4 MB
pages. This reduces the translation lookaside buffers misses, thus significantly speeding up the
average memory access time (see the section "Translation Lookaside Buffers (TLB)" in Chapter
2).

 The technique adopted by Linux to solve the external fragmentation problem is based on the well-known
buddy system algorithm. All free page frames are grouped into 11 lists of blocks that contain groups of 1,
2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 contiguous page frames, respectively. The largest request
of 1024 page frames corresponds to a chunk of 4 MB of contiguous RAM. The physical address of the
first page frame of a block is a multiple of the group sizefor example, the initial address of a
16-page-frame block is a multiple of 16 x 212 (212 = 4,096, which is the regular page size).

 We'll show how the algorithm works through a simple example:

 Assume there is a request for a group of 256 contiguous page frames (i.e., one megabyte). The
algorithm checks first to see whether a free block in the 256-page-frame list exists. If there is no such
block, the algorithm looks for the next larger blocka free block in the 512-page-frame list. If such a
block exists, the kernel allocates 256 of the 512 page frames to satisfy the request and inserts the
remaining 256 page frames into the list of free 256-page-frame blocks. If there is no free 512-page
block, the kernel then looks for the next larger block (i.e., a free 1024-page-frame block). If such a
block exists, it allocates 256 of the 1024 page frames to satisfy the request, inserts the first 512 of the
remaining 768 page frames into the list of free 512-page-frame blocks, and inserts the last 256 page
frames into the list of free 256-page-frame blocks. If the list of 1024-page-frame blocks is empty, the
algorithm gives up and signals an error condition.

 The reverse operation, releasing blocks of page frames, gives rise to the name of this algorithm. The
kernel attempts to merge pairs of free buddy blocks of size b together into a single block of size 2b. Two
blocks are considered buddies if:



 Both blocks have the same size, say b.


 They are located in contiguous physical addresses.


 The physical address of the first page frame of the first block is a multiple of 2 x b x 212.

 The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and tries again so as to
create even bigger blocks.

 8.1.7.1. Data structures

 Linux 2.6 uses a different buddy system for each zone. Thus, in the 80 x 86 architecture, there are 3
buddy systems: the first handles the page frames suitable for ISA DMA, the second handles the "normal"
page frames, and the third handles the high-memory page frames. Each buddy system relies on the
following main data structures :



 The mem_map array introduced previously. Actually, each zone is concerned with a subset of
the mem_map elements. The first element in the subset and its number of elements are specified,
respectively, by the zone_mem_map and size fields of the zone descriptor.



 An array consisting of eleven elements of type free_area, one element for each group size. The
array is stored in the free_area field of the zone descriptor.

 Let us consider the kth element of the free_area array in the zone descriptor, which identifies all the free
blocks of size 2k. The free_list field of this element is the head of a doubly linked circular list that collects
the page descriptors associated with the free blocks of 2k pages. More precisely, this list includes the
page descriptors of the starting page frame of every block of 2k free page frames; the pointers to the
adjacent elements in the list are stored in the lru field of the page descriptor.[*]

[*] As we'll see later, the lru field of the page descriptor can be used with other meanings when the page
is not free.

 Besides the head of the list, the kth element of the free_area array includes also the field nr_free, which
specifies the number of free blocks of size 2k pages. Of course, if there are no blocks of 2k free page
frames, nr_free is equal to 0 and the free_list list is empty (both pointers of free_list point to the free_list
field itself).

 Finally, the private field of the descriptor of the first page in a block of 2k free pages stores the order of
the block, that is, the number k. Thanks to this field, when a block of pages is freed, the kernel can
determine whether the buddy of the block is also free and, if so, it can coalesce the two blocks in a single
block of 2k+1 pages. It should be noted that up to Linux 2.6.10, the kernel used 10 arrays of flags to
encode this information.

 8.1.7.2. Allocating a block

 The _ _rmqueue() function is used to find a free block in a zone. The function takes two arguments: the
address of the zone descriptor, and order, which denotes the logarithm of the size of the requested block
of free pages (0 for a one-page block, 1 for a two-page block, and so forth). If the page frames are
successfully allocated, the _ _rmqueue() function returns the address of the page descriptor of the first
allocated page frame. Otherwise, the function returns NULL.

 The _ _rmqueue() function assumes that the caller has already disabled local interrupts and acquired the
zone->lock spin lock, which protects the data structures of the buddy system. It performs a cyclic search
through each list for an available block (denoted by an entry that doesn't point to the entry itself), starting
with the list for the requested order and continuing if necessary to larger orders:

struct free_area *area;

unsigned int current_order;

for (current_order=order; current_order<11; ++current_order) {

 area = zone->free_area + current_order;

 if (!list_empty(&area->free_list))

 goto block_found;

}

return NULL;

If the loop terminates, no suitable free block has been found, so _ _rmqueue() returns a NULL value.
Otherwise, a suitable free block has been found; in this case, the descriptor of its first page frame is
removed from the list and the value of free_ pages in the zone descriptor is decreased:

block_found:

 page = list_entry(area->free_list.next, struct page, lru);

 list_del(&page->lru);

 ClearPagePrivate(page);

 page->private = 0;

 area->nr_free--;

 zone->free_pages -= 1UL << order;

If the block found comes from a list of size curr_order greater than the requested size order, a while
cycle is executed. The rationale behind these lines of codes is as follows: when it becomes necessary to
use a block of 2k page frames to satisfy a request for 2h page frames (h < k), the program allocates the
first 2h page frames and iteratively reassigns the last 2k - 2h page frames to the free_area lists that have
indexes between h and k:

 size = 1 << curr_order;

 while (curr_order > order) {

 area--;

 curr_order--;

 size >>= 1;

 buddy = page + size;

 /* insert buddy as first element in the list */

 list_add(&buddy->lru, &area->free_list);

 area->nr_free++;

 buddy->private = curr_order;

 SetPagePrivate(buddy);

 }

 return page;

Because the _ _rmqueue() function has found a suitable free block, it returns the address page of the
page descriptor associated with the first allocated page frame.

 8.1.7.3. Freeing a block

 The _ _free_pages_bulk() function implements the buddy system strategy for freeing page frames. It
uses three basic input parameters:[*]

[*] For performance reasons, this inline function also uses another parameter; its value, however, can be
determined by the three basic parameters shown in the text.

 page

 The address of the descriptor of the first page frame included in the block to be released

zone

 The address of the zone descriptor

order

 The logarithmic size of the block

 The function assumes that the caller has already disabled local interrupts and acquired the zone->lock
spin lock, which protects the data structure of the buddy system. _ _free_pages_bulk() starts by
declaring and initializing a few local variables:

struct page * base = zone->zone_mem_map;

unsigned long buddy_idx, page_idx = page - base;

struct page * buddy, * coalesced;

int order_size = 1 << order;

The page_idx local variable contains the index of the first page frame in the block with respect to the first
page frame of the zone.

 The order_size local variable is used to increase the counter of free page frames in the zone:

zone->free_pages += order_size;

The function now performs a cycle executed at most 10- order times, once for each possibility for
merging a block with its buddy. The function starts with the smallest-sized block and moves up to the top
size:

while (order < 10) {

 buddy_idx = page_idx ^ (1 << order);

 buddy = base + buddy_idx;

 if (!page_is_buddy(buddy, order))

 break;

 list_del(&buddy->lru);

 zone->free_area[order].nr_free--;

 ClearPagePrivate(buddy);

 buddy->private = 0;

 page_idx &= buddy_idx;

 order++;

}

In the body of the loop, the function looks for the index buddy_idx of the block, which is buddy to the
one having the page descriptor index page_idx. It turns out that this index can be easily computed as:

buddy_idx = page_idx ^ (1 << order);

In fact, an Exclusive OR (XOR) using the (1<<order) mask switches the value of the order-th bit of
page_idx. Therefore, if the bit was previously zero, buddy_idx is equal to page_idx+ order_size;
conversely, if the bit was previously one, buddy_idx is equal to page_idx - order_size.

 Once the buddy block index is known, the page descriptor of the buddy block can be easily obtained
as:

buddy = base + buddy_idx;

Now the function invokes page_is_buddy() to check if buddy describes the first page of a block of
order_size free page frames.

int page_is_buddy(struct page *page, int order)

{

 if (PagePrivate(buddy) && page->private == order &&

 !PageReserved(buddy) && page_count(page) ==0)

 return 1;

 return 0;

}

As you see, the buddy's first page must be free (_count field equal to -1), it must belong to the dynamic
memory (PG_reserved bit clear), its private field must be meaningful (PG_private bit set), and finally the
private field must store the order of the block being freed.

 If all these conditions are met, the buddy block is free and the function removes the buddy block from
the list of free blocks of order order, and performs one more iteration looking for buddy blocks twice as
big.

 If at least one of the conditions in page_is_buddy() is not met, the function breaks out of the cycle,
because the free block obtained cannot be merged further with other free blocks. The function inserts it in
the proper list and updates the private field of the first page frame with the order of the block size:

coalesced = base + page_idx;

coalesced->private = order;

SetPagePrivate(coalesced);

list_add(&coalesced->lru, &zone->free_area[order].free_list);

zone->free_area[order].nr_free++;

8.1.8. The Per-CPU Page Frame Cache

 As we will see later in this chapter, the kernel often requests and releases single page frames. To boost
system performance, each memory zone defines a per-CPU page frame cache. Each per-CPU cache
includes some pre-allocated page frames to be used for single memory requests issued by the local CPU.

 Actually, there are two caches for each memory zone and for each CPU: a hot cache , which stores
page frames whose contents are likely to be included in the CPU's hardware cache, and a cold cache .

 Taking a page frame from the hot cache is beneficial for system performance if either the kernel or a
User Mode process will write into the page frame right after the allocation. In fact, every access to a
memory cell of the page frame will result in a line of the hardware cache being "stolen" from another page
frameunless, of course, the hardware cache already includes a line that maps the cell of the "hot" page
frame just accessed.

 Conversely, taking a page frame from the cold cache is convenient if the page frame is going to be filled
with a DMA operation. In this case, the CPU is not involved and no line of the hardware cache will be
modified. Taking the page frame from the cold cache preserves the reserve of hot page frames for the
other kinds of memory allocation requests.

 The main data structure implementing the per-CPU page frame cache is an array of per_cpu_pageset
data structures stored in the pageset field of the memory zone descriptor. The array includes one element
for each CPU; this element, in turn, consists of two per_cpu_pages descriptors, one for the hot cache
and the other for the cold cache. The fields of the per_cpu_pages descriptor are listed in Table 8-7.

 Table 8-7. The fields of the per_cpu_pages descriptor

Type Name Description

int count Number of pages frame in the
cache

int low Low watermark for cache
replenishing

int high High watermark for cache
depletion

int batch
Number of page frames to be
added or subtracted from the
cache

struct list_head list List of descriptors of the page
frames included in the cache

The kernel monitors the size of the both the hot and cold caches by using two watermarks: if the number
of page frames falls below the low watermark, the kernel replenishes the proper cache by allocating
batch single page frames from the buddy system; otherwise, if the number of page frames rises above the
high watermark, the kernel releases to the buddy system batch page frames in the cache. The values of
batch, low, and high essentially depend on the number of page frames included in the memory zone.

 8.1.8.1. Allocating page frames through the per-CPU page frame caches

 The buffered_rmqueue() function allocates page frames in a given memory zone. It makes use of the
per-CPU page frame caches to handle single page frame requests.

 The parameters are the address of the memory zone descriptor, the order of the memory allocation
request order, and the allocation flags gfp_flags. If the _ _GFP_COLD flag is set in gfp_flags, the page
frame should be taken from the cold cache, otherwise it should be taken from the hot cache (this flag is
meaningful only for single page frame requests). The function essentially executes the following
operations:

1.

1. If order is not equal to 0, the per-CPU page frame cache cannot be used: the function jumps to
step 4.

2.

2. Checks whether the memory zone's local per-CPU cache identified by the value of the _
_GFP_COLD flag has to be replenished (the count field of the per_cpu_pages descriptor is
lower than or equal to the low field). In this case, it executes the following substeps:
a.

a. Allocates batch single page frames from the buddy system by repeatedly invoking the _
_rmqueue() function.

b.

b. Inserts the descriptors of the allocated page frames in the cache's list.
c.

c. Updates the value of count by adding the number of page frames actually allocated.
3.

3. If count is positive, the function gets a page frame from the cache's list, decreases count, and
jumps to step 5. (Observe that a per-CPU page frame cache could be empty; this happens when
the _ _rmqueue() function invoked in step 2a fails to allocate any page frames.)

4.

4. Here, the memory request has not yet been satisfied, either because the request spans several
contiguous page frames, or because the selected page frame cache is empty. Invokes the _
_rmqueue() function to allocate the requested page frames from the buddy system.

5.

5. If the memory request has been satisfied, the function initializes the page descriptor of the (first)
page frame: clears some flags, sets the private field to zero, and sets the page frame reference
counter to one. Moreover, if the _ _GPF_ZERO flag in gfp_flags is set, it fills the allocated
memory area with zeros.

6.

6. Returns the page descriptor address of the (first) page frame, or NULL if the memory allocation
request failed.

8.1.8.2. Releasing page frames to the per-CPU page frame caches

 In order to release a single page frame to a per-CPU page frame cache, the kernel makes use of the
free_hot_page() and free_cold_page() functions. Both of them are simple wrappers for the
free_hot_cold_page() function, which receives as its parameters the descriptor address page of the page
frame to be released and a cold flag specifying either the hot cache or the cold cache.

 The free_hot_cold_page() function executes the following operations:
1.

1. Gets from the page->flags field the address of the memory zone descriptor including the page
frame (see the earlier section "Non-Uniform Memory Access (NUMA)").

2.

2. Gets the address of the per_cpu_pages descriptor of the zone's cache selected by the cold flag.
3.

3. Checks whether the cache should be depleted: if count is higher than or equal to high, invokes the
free_pages_bulk() function, passing to it the zone descriptor, the number of page frames to be
released (batch field), the address of the cache's list, and the number zero (for 0-order page
frames). In turn, the latter function invokes repeatedly the _ _free_pages_bulk() function to
releases the specified number of page framestaken from the cache's listto the buddy system of the
memory zone.

4.

4. Adds the page frame to be released to the cache's list, and increases the count field.

It should be noted that in the current version of the Linux 2.6 kernel, no page frame is ever released to
the cold cache: the kernel always assumes the freed page frame is hot with respect to the hardware
cache. Of course, this does not mean that the cold cache is empty: the cache is replenished by
buffered_rmqueue() when the low watermark has been reached.

 8.1.9. The Zone Allocator

 The zone allocator is the frontend of the kernel page frame allocator. This component must locate a
memory zone that includes a number of free page frames large enough to satisfy the memory request.
This task is not as simple as it could appear at a first glance, because the zone allocator must satisfy
several goals:



 It should protect the pool of reserved page frames (see the earlier section "The Pool of
Reserved Page Frames").



 It should trigger the page frame reclaiming algorithm (see Chapter 17) when memory is scarce
and blocking the current process is allowed; once some page frames have been freed, the zone
allocator will retry the allocation.



 It should preserve the small, precious ZONE_DMA memory zone, if possible. For instance, the
zone allocator should be somewhat reluctant to assign page frames in the ZONE_DMA memory
zone if the request was for ZONE_NORMAL or ZONE_HIGHMEM page frames.

 We have seen in the earlier section "The Zoned Page Frame Allocator" that every request for a group of
contiguous page frames is eventually handled by executing the alloc_pages macro. This macro, in turn,
ends up invoking the _ _alloc_pages() function, which is the core of the zone allocator. It receives three
parameters:

 gfp_mask

 The flags specified in the memory allocation request (see earlier Table 8-5)

order

 The logarithmic size of the group of contiguous page frames to be allocated

zonelist

 Pointer to a zonelist data structure describing, in order of preference, the memory zones suitable for the
memory allocation

 The _ _alloc_pages() function scans every memory zone included in the zonelist data structure. The
code that does this looks like the following:

for (i = 0; (z=zonelist->zones[i]) != NULL; i++) {

 if (zone_watermark_ok(z, order, ...)) {

 page = buffered_rmqueue(z, order, gfp_mask);

 if (page)

 return page;

 }

}

For each memory zone, the function compares the number of free page frames with a threshold value that
depends on the memory allocation flags, on the type of current process, and on how many times the zone
has already been checked by the function. In fact, if free memory is scarce, every memory zone is
typically scanned several times, each time with lower threshold on the minimal amount of free memory
required for the allocation. The previous block of code is thus replicated several timeswith minor
variationsin the body of the _ _alloc_pages() function. The buffered_rmqueue() function has been
described already in the earlier section "The Per-CPU Page Frame Cache:" it returns the page descriptor
of the first allocated page frame, or NULL if the memory zone does not include a group of contiguous
page frames of the requested size.

 The zone_watermark_ok() auxiliary function receives several parameters, which determine a threshold
min on the number of free page frames in the memory zone. In particular, the function returns the value 1
if the following two conditions are met:

1.

1. Besides the page frames to be allocated, there are at least min free page frames in the memory
zone, not including the page frames in the low-on-memory reserve (lowmem_reserve field of the
zone descriptor).

2.

2. Besides the page frames to be allocated, there are at least free page frames in blocks of
order at least k, for each k between 1 and the order of the allocation. Therefore, if order is
greater than zero, there must be at least min/2 free page frames in blocks of size at least 2; if
order is greater than one, there must be at least min/4 free page frames in blocks of size at least
4; and so on.

The value of the threshold min is determined by zone_watermark_ok() as follows:


 The base value is passed as a parameter of the function and can be one of the pages_min,
pages_low, and pages_high zone's watermarks (see the section "The Pool of Reserved Page
Frames" earlier in this chapter).



 The base value is divided by two if the gfp_high flag passed as parameter is set. Usually, this flag
is equal to one if the _ _GFP_HIGHMEM flag is set in the gfp_mask, that is, if the page frames
can be allocated from high memory.



 The threshold value is further reduced by one-fourth if the can_try_harder flag passed as
parameter is set. This flag is usually equal to one if either the _ _GFP_WAIT flag is set in
gfp_mask, or if the current process is a real-time process and the memory allocation is done in
process context (outside of interrupt handlers and deferrable functions).

 The _ _alloc_pages() function essentially executes the following steps:
1.

1. Performs a first scanning of the memory zones (see the block of code shown earlier). In this first
scan, the min threshold value is set to z->pages_low, where z points to the zone descriptor being
analyzed (the can_try_harder and gfp_high parameters are set to zero).

2.

2. If the function did not terminate in the previous step, there is not much free memory left: the
function awakens the kswapd kernel threads to start reclaiming page frames asynchronously (see
Chapter 17).

3.

3. Performs a second scanning of the memory zones, passing as base threshold the value
z->pages_min. As explained previously, the actual threshold is determined also by the
can_try_harder and gfp_high flags. This step is nearly identical to step 1, except that the function
is using a lower threshold.

4.

4. If the function did not terminate in the previous step, the system is definitely low on memory. If
the kernel control path that issued the memory allocation request is not an interrupt handler or a
deferrable function and it is trying to reclaim page frames (either the PF_MEMALLOC flag or
the PF_MEMDIE flag of current is set), the function then performs a third scanning of the
memory zones, trying to allocate the page frames ignoring the low-on-memory thresholdsthat is,
without invoking zone_watermark_ok(). This is the only case where the kernel control path is
allowed to deplete the low-on-memory reserve of pages specified by the lowmem_reserve field
of the zone descriptor. In fact, in this case the kernel control path that issued the memory request
is ultimately trying to free page frames, thus it should get what it has requested, if at all possible. If
no memory zone includes enough page frames, the function returns NULL to notify the caller of
the failure.

5.

5. Here, the invoking kernel control path is not trying to reclaim memory. If the _ _GFP_WAIT flag
of gfp_mask is not set, the function returns NULL to notify the kernel control path of the memory
allocation failure: in this case, there is no way to satisfy the request without blocking the current
process.

6.

6. Here the current process can be blocked: invokes cond_resched() to check whether some other
process needs the CPU.

7.

7. Sets the PF_MEMALLOC flag of current, to denote the fact that the process is ready to
perform memory reclaiming.

8.

8. Stores in current->reclaim_state a pointer to a reclaim_state structure. This structure includes just
one field, reclaimed_slab, initialized to zero (we'll see how this field is used in the section "
Interfacing the Slab Allocator with the Zoned Page Frame Allocator" later in this chapter).

9.

9. Invokes TRy_to_free_pages() to look for some page frames to be reclaimed (see the section "
Low On Memory Reclaiming" in Chapter 17). The latter function may block the current process.
Once that function returns, _ _alloc_pages() resets the PF_MEMALLOC flag of current and
invokes once more cond_resched().

10.

10. If the previous step has freed some page frames, the function performs yet another scanning of
the memory zones equal to the one performed in step 3. If the memory allocation request cannot
be satisfied, the function determines whether it should continue scanning the memory zone: if the _
_GFP_NORETRY flag is clear and either the memory allocation request spans up to eight page
frames, or one of the _ _GFP_REPEAT and _ _GFP_NOFAIL flags is set, the function invokes
blk_congestion_wait() to put the process asleep for awhile (see Chapter 14), and it jumps back
to step 6. Otherwise, the function returns NULL to notify the caller that the memory allocation
failed.

11.

11. If no page frame has been freed in step 9, the kernel is in deep trouble, because free memory is
dangerously low and it was not possible to reclaim any page frame. Perhaps the time has come to
take a crucial decision. If the kernel control path is allowed to perform the filesystem-dependent
operations needed to kill a process (the _ _GFP_FS flag in gfp_mask is set) and the _
_GFP_NORETRY flag is clear, performs the following substeps:
a.

a. Scans once again the memory zones with a threshold value equal to z->pages_high.
b.

b. Invokes out_of_memory() to start freeing some memory by killing a victim process (see "The
Out of Memory Killer" in Chapter 17).

c.

c. Jumps back to step 1.

3. Because the watermark used in step 11a is much higher than the watermarks used in the previous
scannings, that step is likely to fail. Actually, step 11a succeeds only if another kernel control path
is already killing a process to reclaim its memory. Thus, step 11a avoids that two innocent
processes are killed instead of one.

8.1.9.1. Releasing a group of page frames

 The zone allocator also takes care of releasing page frames; thankfully, releasing memory is a lot easier
than allocating it.

 All kernel macros and functions that release page framesdescribed in the earlier section "The Zoned
Page Frame Allocator"rely on the _ _free_pages() function. It receives as its parameters the address of
the page descriptor of the first page frame to be released (page), and the logarithmic size of the group of
contiguous page frames to be released (order). The function executes the following steps:

1.

1. Checks that the first page frame really belongs to dynamic memory (its PG_reserved flag is
cleared); if not, terminates.

2.

2. Decreases the page->_count usage counter; if it is still greater than or equal to zero, terminates.
3.

3. If order is equal to zero, the function invokes free_hot_page() to release the page frame to the
per-CPU hot cache of the proper memory zone (see the earlier section "The Per-CPU Page
Frame Cache").

4.

4. If order is greater than zero, it adds the page frames in a local list and invokes the
free_pages_bulk() function to release them to the buddy system of the proper memory zone (see
step 3 in the description of free_hot_cold_page() in the earlier section "The Per-CPU Page
Frame Cache").

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.2. Memory Area Management
 This section deals with memory areas that is, with sequences of memory cells having contiguous physical
addresses and an arbitrary length.

 The buddy system algorithm adopts the page frame as the basic memory area. This is fine for dealing
with relatively large memory requests, but how are we going to deal with requests for small memory
areas, say a few tens or hundreds of bytes?

 Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. A better approach
instead consists of introducing new data structures that describe how small memory areas are allocated
within the same page frame. In doing so, we introduce a new problem called internal fragmentation. It is
caused by a mismatch between the size of the memory request and the size of the memory area allocated
to satisfy the request.

 A classical solution (adopted by early Linux versions) consists of providing memory areas whose sizes
are geometrically distributed; in other words, the size depends on a power of 2 rather than on the size of
the data to be stored. In this way, no matter what the memory request size is, we can ensure that the
internal fragmentation is always smaller than 50 percent. Following this approach, the kernel creates 13
geometrically distributed lists of free memory areas whose sizes range from 32 to 131, 072 bytes. The
buddy system is invoked both to obtain additional page frames needed to store new memory areas and,
conversely, to release page frames that no longer contain memory areas. A dynamic list is used to keep
track of the free memory areas contained in each page frame.

 8.2.1. The Slab Allocator

 Running a memory area allocation algorithm on top of the buddy algorithm is not particularly efficient. A
better algorithm is derived from the slab allocator schema that was adopted for the first time in the Sun
Microsystems Solaris 2.4 operating system. It is based on the following premises:



 The type of data to be stored may affect how memory areas are allocated; for instance, when
allocating a page frame to a User Mode process, the kernel invokes the get_zeroed_page()
function, which fills the page with zeros.

 The concept of a slab allocator expands upon this idea and views the memory areas as objects
consisting of both a set of data structures and a couple of functions or methods called the
constructor and destructor. The former initializes the memory area while the latter deinitializes it.

 To avoid initializing objects repeatedly, the slab allocator does not discard the objects that have
been allocated and then released but instead saves them in memory. When a new object is then
requested, it can be taken from memory without having to be reinitialized.



 The kernel functions tend to request memory areas of the same type repeatedly. For instance,
whenever the kernel creates a new process, it allocates memory areas for some fixed size tables
such as the process descriptor, the open file object, and so on (see Chapter 3). When a process
terminates, the memory areas used to contain these tables can be reused. Because processes are
created and destroyed quite frequently, without the slab allocator, the kernel wastes time
allocating and deallocating the page frames containing the same memory areas repeatedly; the
slab allocator allows them to be saved in a cache and reused quickly.



 Requests for memory areas can be classified according to their frequency. Requests of a
particular size that are expected to occur frequently can be handled most efficiently by creating a
set of special-purpose objects that have the right size, thus avoiding internal fragmentation.
Meanwhile, sizes that are rarely encountered can be handled through an allocation scheme based
on objects in a series of geometrically distributed sizes (such as the power-of-2 sizes used in
early Linux versions), even if this approach leads to internal fragmentation.



 There is another subtle bonus in introducing objects whose sizes are not geometrically distributed:
the initial addresses of the data structures are less prone to be concentrated on physical
addresses whose values are a power of 2. This, in turn, leads to better performance by the
processor hardware cache.



 Hardware cache performance creates an additional reason for limiting calls to the buddy system
allocator as much as possible. Every call to a buddy system function "dirties" the hardware cache,
thus increasing the average memory access time. The impact of a kernel function on the hardware
cache is called the function footprint; it is defined as the percentage of cache overwritten by the
function when it terminates. Clearly, large footprints lead to a slower execution of the code
executed right after the kernel function, because the hardware cache is by now filled with useless
information.

 The slab allocator groups objects into caches . Each cache is a "store" of objects of the same type. For
instance, when a file is opened, the memory area needed to store the corresponding "open file" object is
taken from a slab allocator cache named filp (for "file pointer").

 The area of main memory that contains a cache is divided into slabs ; each slab consists of one or more
contiguous page frames that contain both allocated and free objects (see Figure 8-3).

 Figure 8-3. The slab allocator components

 As we'll see in Chapter 17, the kernel periodically scans the caches and releases the page frames
corresponding to empty slabs.

 8.2.2. Cache Descriptor

 Each cache is described by a structure of type kmem_cache_t (which is equivalent to the type struct
kmem_cache_s), whose fields are listed in Table 8-8. We omitted from the table several fields used for
collecting statistical information and for debugging.

 Table 8-8. The fields of the kmem_cache_t descriptor

Type Name Description

struct

array_cache * []
array

Per-CPU array of pointers to
local caches of free objects (see
the section "Local Caches of
Free Slab Objects" later in this
chapter).

unsigned int batchcount
Number of objects to be
transferred in bulk to or from the
local caches.

unsigned int limit
Maximum number of free objects
in the local caches. This is
tunable.

struct kmem_list3 lists See next table.

unsigned int objsize Size of the objects included in the
cache.

unsigned int flags
Set of flags that describes
permanent properties of the
cache.

unsigned int num
Number of objects packed into a
single slab. (All slabs of the cache
have the same size.)

unsigned int free_limit Upper limit of free objects in the
whole slab cache.

spinlock_t spinlock Cache spin lock.

unsigned int gfporder
Logarithm of the number of
contiguous page frames included
in a single slab.

unsigned int gfpflags
Set of flags passed to the buddy
system function when allocating
page frames.

size_t colour
Number of colors for the slabs
(see the section "Slab Coloring"
later in this chapter).

unsigned int colour_off Basic alignment offset in the
slabs.

unsigned int colour_next Color to use for the next
allocated slab.

kmem_cache_t * slabp_cache

Pointer to the general slab cache
containing the slab descriptors
(NULL if internal slab descriptors
are used; see next section).

unsigned int slab_size The size of a single slab.

unsigned int dflags Set of flags that describe dynamic
properties of the cache.

void * ctor Pointer to constructor method
associated with the cache.

void * dtor Pointer to destructor method
associated with the cache.

const char * name Character array storing the name
of the cache.

struct list_head next Pointers for the doubly linked list
of cache descriptors.

The lists field of the kmem_cache_t descriptor, in turn, is a structure whose fields are listed in Table 8-9.

 Table 8-9. The fields of the kmem_list3 structure

Type Name Description

struct list_head slabs_partial
Doubly linked circular list of slab
descriptors with both free and
nonfree objects

struct list_head slabs_full Doubly linked circular list of slab
descriptors with no free objects

struct list_head slabs_free Doubly linked circular list of slab
descriptors with free objects only

unsigned long free_objects Number of free objects in the
cache

int free_touched
Used by the slab allocator's page
reclaiming algorithm (see Chapter
17)

unsigned long next_reap
Used by the slab allocator's page
reclaiming algorithm (see Chapter
17)

struct

array_cache *
shared

Pointer to a local cache shared
by all CPUs (see the later section
"Local Caches of Free Slab
Objects")

8.2.3. Slab Descriptor

 Each slab of a cache has its own descriptor of type slab illustrated in Table 8-10.

 Table 8-10. The fields of the slab descriptor

Type Name Description

struct list_head list

Pointers for one of the three
doubly linked list of slab
descriptors (either the slabs_full,
slabs_partial, or slabs_free list in
the kmem_list3 structure of the
cache descriptor)

unsigned long colouroff
Offset of the first object in the
slab (see the section "Slab
Coloring" later in this chapter)

void * s_mem Address of first object (either
allocated or free) in the slab

unsigned int inuse Number of objects in the slab
that are currently used (not free)

unsigned int free

Index of next free object in the
slab, or BUFCTL_END if there
are no free objects left (see the
section "Object Descriptor" later
in this chapter)

Slab descriptors can be stored in two possible places:

 External slab descriptor

 Stored outside the slab, in one of the general caches not suitable for ISA DMA pointed to by
cache_sizes (see the next section).

Internal slab descriptor

 Stored inside the slab, at the beginning of the first page frame assigned to the slab.

 The slab allocator chooses the second solution when the size of the objects is smaller than 512MB or
when internal fragmentation leaves enough space for the slab descriptor and the object descriptors (as
described later)inside the slab. The CFLGS_OFF_SLAB flag in the flags field of the cache descriptor is
set to one if the slab descriptor is stored outside the slab; it is set to zero otherwise.

 Figure 8-4 illustrates the major relationships between cache and slab descriptors. Full slabs, partially full
slabs, and free slabs are linked in different lists.

 8.2.4. General and Specific Caches

 Caches are divided into two types: general and specific. General caches are used only by the slab
allocator for its own purposes, while specific caches are used by the remaining parts of the kernel.

 Figure 8-4. Relationship between cache and slab descriptors

 The general caches are:


 A first cache called kmem_cache whose objects are the cache descriptors of the remaining
caches used by the kernel. The cache_cache variable contains the descriptor of this special
cache.



 Several additional caches contain general purpose memory areas. The range of the memory area
sizes typically includes 13 geometrically distributed sizes. A table called malloc_sizes (whose
elements are of type cache_sizes) points to 26 cache descriptors associated with memory areas
of size 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 32,768, 65,536, and
131,072 bytes. For each size, there are two caches: one suitable for ISA DMA allocations and
the other for normal allocations.

 The kmem_cache_init() function is invoked during system initialization to set up the general caches.

 Specific caches are created by the kmem_cache_create() function. Depending on the parameters, the
function first determines the best way to handle the new cache (for instance, whether to include the slab
descriptor inside or outside of the slab). It then allocates a cache descriptor for the new cache from the
cache_cache general cache and inserts the descriptor in the cache_chain list of cache descriptors (the
insertion is done after having acquired the cache_chain_sem semaphore that protects the list from
concurrent accesses).

 It is also possible to destroy a cache and remove it from the cache_chain list by invoking
kmem_cache_destroy(). This function is mostly useful to modules that create their own caches when
loaded and destroy them when unloaded. To avoid wasting memory space, the kernel must destroy all
slabs before destroying the cache itself. The kmem_cache_shrink() function destroys all the slabs in a
cache by invoking slab_destroy() iteratively (see the later section "Releasing a Slab from a Cache").

 The names of all general and specific caches can be obtained at runtime by reading /proc/slabinfo; this
file also specifies the number of free objects and the number of allocated objects in each cache.

 8.2.5. Interfacing the Slab Allocator with the Zoned Page Frame Allocator

 When the slab allocator creates a new slab, it relies on the zoned page frame allocator to obtain a group
of free contiguous page frames. For this purpose, it invokes the kmem_getpages() function, which is
essentially equivalent, on a UMA system, to the following code fragment:

void * kmem_getpages(kmem_cache_t *cachep, int flags)

{

 struct page *page;

 int i;

 flags |= cachep->gfpflags;

 page = alloc_pages(flags, cachep->gfporder);

 if (!page)

 return NULL;

 i = (1 << cache->gfporder);

 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)

 atomic_add(i, &slab_reclaim_pages);

 while (i--)

 SetPageSlab(page++);

 return page_address(page);

}

The two parameters have the following meaning:

 cachep

 Points to the cache descriptor of the cache that needs additional page frames (the number of required
page frames is determined by the order in the cachep->gfporder field).

flags

 Specifies how the page frame is requested (see the section "The Zoned Page Frame Allocator" earlier in
this chapter). This set of flags is combined with the specific cache allocation flags stored in the gfpflags
field of the cache descriptor.

 The size of the memory allocation request is specified by the gfporder field of the cache descriptor,
which encodes the size of a slab in the cache.[*] If the slab cache has been created with the
SLAB_RECLAIM_ACCOUNT flag set, the page frames assigned to the slabs are accounted for as
reclaimable pages when the kernel checks whether there is enough memory to satisfy some User Mode
requests. The function also sets the PG_slab flag in the page descriptors of the allocated page frames.

[*] Notice that it is not possible to allocate page frames from the ZONE_HIGHMEM memory zone,
because the kmem_getpages() function returns the linear address yielded by the page_address()
function; as explained in the section "Kernel Mappings of High-Memory Page Frames" earlier in this
chapter, this function returns NULL for unmapped high-memory page frames.

 In the reverse operation, page frames assigned to a slab can be released (see the section "Releasing a
Slab from a Cache" later in this chapter) by invoking the kmem_freepages() function:

void kmem_freepages(kmem_cache_t *cachep, void *addr)

{

 unsigned long i = (1<<cachep->gfporder);

 struct page *page = virt_to_page(addr);

 if (current->reclaim_state)

 current->reclaim_state->reclaimed_slab += i;

 while (i--)

 ClearPageSlab(page++);

 free_pages((unsigned long) addr, cachep->gfporder);

 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)

 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);

}

The function releases the page frames, starting from the one having the linear address addr, that had been
allocated to the slab of the cache identified by cachep. If the current process is performing memory
reclaiming (current->reclaim_state field not NULL), the reclaimed_slab field of the reclaim_state
structure is properly increased, so that the pages just freed can be accounted for by the page frame
reclaiming algorithm (see the section "Low On Memory Reclaiming" in Chapter 17). Moreover, if the
SLAB_RECLAIM_ACCOUNT flag is set (see above), the slab_reclaim_pages variable is properly
decreased.

 8.2.6. Allocating a Slab to a Cache

 A newly created cache does not contain a slab and therefore does not contain any free objects. New
slabs are assigned to a cache only when both of the following are true:



 A request has been issued to allocate a new object.


 The cache does not include a free object.

 Under these circumstances, the slab allocator assigns a new slab to the cache by invoking cache_grow(
). This function calls kmem_ getpages() to obtain from the zoned page frame allocator the group of page
frames needed to store a single slab; it then calls alloc_slabmgmt() to get a new slab descriptor. If the
CFLGS_OFF_SLAB flag of the cache descriptor is set, the slab descriptor is allocated from the general
cache pointed to by the slabp_cache field of the cache descriptor; otherwise, the slab descriptor is
allocated in the first page frame of the slab.

 The kernel must be able to determine, given a page frame, whether it is used by the slab allocator and, if
so, to derive quickly the addresses of the corresponding cache and slab descriptors. Therefore, cache_
grow() scans all page descriptors of the page frames assigned to the new slab, and loads the next and
prev subfields of the lru fields in the page descriptors with the addresses of, respectively, the cache
descriptor and the slab descriptor. This works correctly because the lru field is used by functions of the
buddy system only when the page frame is free, while page frames handled by the slab allocator functions
have the PG_slab flag set and are not free as far as the buddy system is concerned.[*] The opposite
questiongiven a slab in a cache, which are the page frames that implement it?can be answered by using
the s_mem field of the slab descriptor and the gfporder field (the size of a slab) of the cache descriptor.

[*] As we'll in Chapter 17, the lru field is also used by the page frame reclaiming algorithm.

 Next, cache_grow() calls cache_init_objs(), which applies the constructor method (if defined) to all the
objects contained in the new slab.

 Finally, cache_ grow() calls list_add_tail() to add the newly obtained slab descriptor *slabp at the end
of the fully free slab list of the cache descriptor *cachep, and updates the counter of free objects in the
cache:

list_add_tail(&slabp->list, &cachep->lists->slabs_free);

cachep->lists->free_objects += cachep->num;

8.2.7. Releasing a Slab from a Cache

 Slabs can be destroyed in two cases:


 There are too many free objects in the slab cache (see the later section "Releasing a Slab from a
Cache").



 A timer function invoked periodically determines that there are fully unused slabs that can be
released (see Chapter 17).

 In both cases, the slab_destroy() function is invoked to destroy a slab and release the corresponding
page frames to the zoned page frame allocator:

void slab_destroy(kmem_cache_t *cachep, slab_t *slabp)

{

 if (cachep->dtor) {

 int i;

 for (i = 0; i < cachep->num; i++) {

 void* objp = slabp->s_mem+cachep->objsize*i;

 (cachep->dtor)(objp, cachep, 0);

 }

 }

 kmem_freepages(cachep, slabp->s_mem - slabp->colouroff);

 if (cachep->flags & CFLGS_OFF_SLAB)

 kmem_cache_free(cachep->slabp_cache, slabp);

}

The function checks whether the cache has a destructor method for its objects (the dtor field is not
NULL), in which case it applies the destructor to all the objects in the slab; the objp local variable keeps
track of the currently examined object. Next, it calls kmem_freepages(), which returns all the contiguous
page frames used by the slab to the buddy system. Finally, if the slab descriptor is stored outside of the
slab, the function releases it from the cache of slab descriptors .

 Actually, the function is slightly more complicated. For example, a slab cache can be created with the
SLAB_DESTROY_BY_RCU flag, which means that slabs should be released in a deferred way by
registering a callback with the call_rcu() function (see the section "Read-Copy Update (RCU)" in
Chapter 5). The callback function, in turn, invokes kmem_freepages() and, possibly, the
kmem_cache_free(), as in the main case shown above.

 8.2.8. Object Descriptor

 Each object has a short descriptor of type kmem_bufctl_t. Object descriptors are stored in an array
placed right after the corresponding slab descriptor. Thus, like the slab descriptors themselves, the object
descriptors of a slab can be stored in two possible ways that are illustrated in Figure 8-5.

 External object descriptors

 Stored outside the slab, in the general cache pointed to by the slabp_cache field of the cache descriptor.
The size of the memory area, and thus the particular general cache used to store object descriptors,
depends on the number of objects stored in the slab (num field of the cache descriptor).

Internal object descriptors

 Stored inside the slab, right before the objects they describe.

 The first object descriptor in the array describes the first object in the slab, and so on. An object
descriptor is simply an unsigned short integer, which is meaningful only when the object is free. It contains
the index of the next free object in the slab, thus implementing a simple list of free objects inside the slab.
The object descriptor of the last element in the free object list is marked by the conventional value
BUFCTL_END (0xffff).

 Figure 8-5. Relationships between slab and object descriptors

 8.2.9. Aligning Objects in Memory

 The objects managed by the slab allocator are aligned in memorythat is, they are stored in memory cells
whose initial physical addresses are multiples of a given constant, which is usually a power of 2. This
constant is called the alignment factor.

 The largest alignment factor allowed by the slab allocator is 4,096the page frame size. This means that
objects can be aligned by referring to either their physical addresses or their linear addresses. In both
cases, only the 12 least significant bits of the address may be altered by the alignment.

 Usually, microcomputers access memory cells more quickly if their physical addresses are aligned with
respect to the word size (that is, to the width of the internal memory bus of the computer). Thus, by
default, the kmem_cache_create() function aligns objects according to the word size specified by the
BYTES_PER_WORD macro. For 80 x 86 processors, the macro yields the value 4 because the word
is 32 bits long.

 When creating a new slab cache, it's possible to specify that the objects included in it be aligned in the
first-level hardware cache. To achieve this, the kernel sets the SLAB_HWCACHE_ALIGN cache
descriptor flag. The kmem_cache_create() function handles the request as follows:



 If the object's size is greater than half of a cache line, it is aligned in RAM to a multiple of
L1_CACHE_BYTESthat is, at the beginning of the line.



 Otherwise, the object size is rounded up to a submultiple of L1_CACHE_BYTES; this ensures
that a small object will never span across two cache lines.

 Clearly, what the slab allocator is doing here is trading memory space for access time; it gets better
cache performance by artificially increasing the object size, thus causing additional internal fragmentation.

 8.2.10. Slab Coloring

 We know from Chapter 2 that the same hardware cache line maps many different blocks of RAM. In
this chapter, we have also seen that objects of the same size end up being stored at the same offset within
a cache. Objects that have the same offset within different slabs will, with a relatively high probability, end
up mapped in the same cache line. The cache hardware might therefore waste memory cycles transferring
two objects from the same cache line back and forth to different RAM locations, while other cache lines
go underutilized. The slab allocator tries to reduce this unpleasant cache behavior by a policy called slab
coloring : different arbitrary values called colors are assigned to the slabs.

 Before examining slab coloring, we have to look at the layout of objects in the cache. Let's consider a
cache whose objects are aligned in RAM. This means that the object address must be a multiple of a
given positive value, say aln. Even taking the alignment constraint into account, there are many possible
ways to place objects inside the slab. The choices depend on decisions made for the following variables:

 num

 Number of objects that can be stored in a slab (its value is in the num field of the cache descriptor).

osize

 Object size, including the alignment bytes.

dsize

 Slab descriptor size plus all object descriptors size, rounded up to the smallest multiple of the hardware
cache line size. Its value is equal to 0 if the slab and object descriptors are stored outside of the slab.

free

 Number of unused bytes (bytes not assigned to any object) inside the slab.

 The total length in bytes of a slab can then be expressed as:

slab length = (num x osize) + dsize+ free

free is always smaller than osize, because otherwise, it would be possible to place additional objects
inside the slab. However, free could be greater than aln.

 The slab allocator takes advantage of the free unused bytes to color the slab. The term "color" is used
simply to subdivide the slabs and allow the memory allocator to spread objects out among different linear
addresses. In this way, the kernel obtains the best possible performance from the microprocessor's
hardware cache.

 Slabs having different colors store the first object of the slab in different memory locations, while
satisfying the alignment constraint. The number of available colors is free/aln (this value is stored in the
colour field of the cache descriptor). Thus, the first color is denoted as 0 and the last one is denoted as
(free / aln)-1. (As a particular case, if free is lower than aln, colour is set to 0, nevertheless all slabs use
color 0, thus really the number of colors is one.)

 If a slab is colored with color col, the offset of the first object (with respect to the slab initial address) is
equal to colx aln + dsize bytes. Figure 8-6 illustrates how the placement of objects inside the slab
depends on the slab color. Coloring essentially leads to moving some of the free area of the slab from the
end to the beginning.

 Figure 8-6. Slab with color col and alignment aln

 Coloring works only when free is large enough. Clearly, if no alignment is required for the objects or if
the number of unused bytes inside the slab is smaller than the required alignment (free < aln), the only
possible slab coloring is the one that has the color 0the one that assigns a zero offset to the first object.

 The various colors are distributed equally among slabs of a given object type by storing the current color
in a field of the cache descriptor called colour_next. The cache_ grow() function assigns the color
specified by colour_next to a new slab and then increases the value of this field. After reaching colour, it
wraps around again to 0. In this way, each slab is created with a different color from the previous one, up
to the maximum available colors. The cache_grow() function, moreover, gets the value aln from the
colour_off field of the cache descriptor, computes dsize according to the number of objects inside the
slab, and finally stores the value colx aln + dsize in the colouroff field of the slab descriptor.

 8.2.11. Local Caches of Free Slab Objects

 The Linux 2.6 implementation of the slab allocator for multiprocessor systems differs from that of the
original Solaris 2.4. To reduce spin lock contention among processors and to make better use of the
hardware caches, each cache of the slab allocator includes a per-CPU data structure consisting of a
small array of pointers to freed objects called the slab local cache . Most allocations and releases of slab
objects affect the local cache only; the slab data structures get involved only when the local cache
underflows or overflows. This technique is quite similar to the one illustrated in the section "The Per-CPU
Page Frame Cache" earlier in this chapter.

 The array field of the cache descriptor is an array of pointers to array_cache data structures, one
element for each CPU in the system. Each array_cache data structure is a descriptor of the local cache of
free objects, whose fields are illustrated in Table 8-11.

 Table 8-11. The fields of the array_cache structure

Type Name Description

unsigned int avail

Number of pointers to available
objects in the local cache. The
field also acts as the index of the
first free slot in the cache.

unsigned int limit
Size of the local cachethat is, the
maximum number of pointers in
the local cache.

unsigned int batchcount Chunk size for local cache refill
or emptying.

unsigned int touched Flag set to 1 if the local cache has
been recently used.

Notice that the local cache descriptor does not include the address of the local cache itself; in fact, the
local cache is placed right after the descriptor. Of course, the local cache stores the pointers to the freed
objects, not the object themselves, which are always placed inside the slabs of the cache.

 When creating a new slab cache, the kmem_cache_create() function determines the size of the local
caches (storing this value in the limit field of the cache descriptor), allocates them, and stores their
pointers into the array field of the cache descriptor.

 When creating a new slab cache, the kmem_cache_create() function determines the size of the local
caches (storing this value in the limit field of the cache descriptor), allocates them, and stores their
pointers into the array field of the cache descriptor. The size depends on the size of the objects stored in
the slab cache, and ranges from 1 for very large objects to 120 for small ones. Moreover, the initial value
of the batchcount field, which is the number of objects added or removed in a chunk from a local cache,
is initially set to half of the local cache size.[*]

[*] The system administrator can tunefor each cachethe size of the local caches and the value of the
batchcount field by writing into the /proc/slabinfo file.

 In multiprocessor systems, slab caches for small objects also sport an additional local cache, whose
address is stored in the lists.shared field of the cache descriptor. The shared local cache is, as the name
suggests, shared among all CPUs, and it makes the task of migrating free objects from a local cache to
another easier (see the following section). Its initial size is equal to eight times the value of the batchcount
field.

 8.2.12. Allocating a Slab Object

 New objects may be obtained by invoking the kmem_cache_alloc() function. The parameter cachep
points to the cache descriptor from which the new free object must be obtained, while the parameter flag
represents the flags to be passed to the zoned page frame allocator functions, should all slabs of the
cache be full.

 The function is essentially equivalent to the following:

void * kmem_cache_alloc(kmem_cache_t *cachep, int flags)

{

 unsigned long save_flags;

 void *objp;

 struct array_cache *ac;

 local_irq_save(save_flags);

 ac = cache_p->array[smp_processor_id()];

 if (ac->avail) {

 ac->touched = 1;

 objp = ((void **)(ac+1))[--ac->avail];

 } else

 objp = cache_alloc_refill(cachep, flags);

 local_irq_restore(save_flags);

 return objp;

}

The function tries first to retrieve a free object from the local cache. If there are free objects, the avail
field contains the index in the local cache of the entry that points to the last freed object. Because the
local cache array is stored right after the ac descriptor, ((void**)(ac+1))[--ac->avail] gets the address of
that free object and decreases the value of ac->avail. The cache_alloc_refill() function is invoked to
repopulate the local cache and get a free object when there are no free objects in the local cache.

 The cache_alloc_refill() function essentially performs the following steps:
1.

1. Stores in the ac local variable the address of the local cache descriptor:

1. ac = cachep->array[smp_processor_id()];

2.

2. Gets the cachep->spinlock.
3.

3. If the slab cache includes a shared local cache, and if the shared local cache includes some free
objects, it refills the CPU's local cache by moving up to ac->batchcount pointers from the shared
local cache. Then, it jumps to step 6.

4.

4. Tries to fill the local cache with up to ac->batchcount pointers to free objects included in the
slabs of the cache:
a.

a. Looks in the slabs_partial and slabs_free lists of the cache descriptor, and gets the address
slabp of a slab descriptor whose corresponding slab is either partially filled or empty. If no
such descriptor exists, the function goes to step 5.

b.

b. For each free object in the slab, the function increases the inuse field of the slab descriptor,
inserts the object's address in the local cache, and updates the free field so that it stores the
index of the next free object in the slab:

b. slabp->inuse++;

((void**)(ac+1))[ac->avail++] =

 slabp->s_mem + slabp->free * cachep->obj_size;

slabp->free = ((kmem_bufctl_t*)(slabp+1))[slabp->free];

c.

c. Inserts, if necessary, the depleted slab in the proper list, either the slab_full or the slab_partial
list.

5.

5. At this point, the number of pointers added to the local cache is stored in the ac->avail field: the
function decreases the free_objects field of the kmem_list3 structure of the same amount to
specify that the objects are no longer free.

6.

6. Releases the cachep->spinlock.
7.

7. If the ac->avail field is now greater than 0 (some cache refilling took place), it sets the
ac->touched field to 1 and returns the free object pointer that was last inserted in the local cache:

7. return ((void**)(ac+1))[--ac->avail];

8.

8. Otherwise, no cache refilling took place: invokes cache_grow() to get a new slab, and thus new
free objects.

9.

9. If cache_grow() fails, it returns NULL; otherwise it goes back to step 1 to repeat the procedure.

8.2.13. Freeing a Slab Object

 The kmem_cache_free() function releases an object previously allocated by the slab allocator to some
kernel function. Its parameters are cachep, the address of the cache descriptor, and objp, the address of
the object to be released:

void kmem_cache_free(kmem_cache_t *cachep, void *objp)

{

 unsigned long flags;

 struct array_cache *ac;

 local_irq_save(flags);

 ac = cachep->array[smp_processor_id()];

 if (ac->avail == ac->limit)

 cache_flusharray(cachep, ac);

 ((void**)(ac+1))[ac->avail++] = objp;

 local_irq_restore(flags);

}

The function checks first whether the local cache has room for an additional pointer to a free object. If
so, the pointer is added to the local cache and the function returns. Otherwise it first invokes
cache_flusharray() to deplete the local cache and then adds the pointer to the local cache.

 The cache_flusharray() function performs the following operations:
1.

1. Acquires the cachep->spinlock spin lock.
2.

2. If the slab cache includes a shared local cache, and if the shared local cache is not already full, it
refills the shared local cache by moving up to ac->batchcount pointers from the CPU's local
cache. Then, it jumps to step 4.

3.

3. Invokes the free_block() function to give back to the slab allocator up to ac->batchcount
objects currently included in the local cache. For each object at address objp, the function
executes the following steps:
a.

a. Increases the lists.free_objects field of the cache descriptor.
b.

b. Determines the address of the slab descriptor containing the object:

b. slabp = (struct slab *)(virt_to_page(objp)->lru.prev);

b. (Remember that the lru.prev field of the descriptor of the slab page points to the
corresponding slab descriptor.)

c.

c. Removes the slab descriptor from its slab cache list (either cachep->lists.slabs_partial or
cachep->lists.slabs_full).

d.

d. Computes the index of the object inside the slab:

d. objnr = (objp - slabp->s_mem) / cachep->objsize;

e.

e. Stores in the object descriptor the current value of the slabp->free, and puts in slabp->free
the index of the object (the last released object will be the first object to be allocated again):

e. ((kmem_bufctl_t *)(slabp+1))[objnr] = slabp->free;

slabp->free = objnr;

f.

f. Decreases the slabp->inuse field.
g.

g. If slabp->inuse is equal to zeroall objects in the slab are freeand the number of free objects in
the whole slab cache (cachep->lists.free_objects) is greater than the limit stored in the
cachep->free_limit field, then the function releases the slab's page frame(s) to the zoned page
frame allocator:

g. cachep->lists.free_objects -= cachep->num;

slab_destroy(cachep, slabp);

g. The value stored in the cachep->free_limit field is usually equal to cachep->num+ (1+N) x
cachep->batchcount, where N denotes the number of CPUs of the system.

h.

h. Otherwise, if slab->inuse is equal to zero but the number of free objects in the whole slab
cache is less than cachep->free_limit, it inserts the slab descriptor in the
cachep->lists.slabs_free list.

i.

i. Finally, if slab->inuse is greater than zero, the slab is partially filled, so the function inserts the
slab descriptor in the cachep->lists.slabs_partial list.

4.

4. Releases the cachep->spinlock spin lock.
5.

5. Updates the avail field of the local cache descriptor by subtracting the number of objects moved
to the shared local cache or released to the slab allocator.

6.

6. Moves all valid pointers in the local cache at the beginning of the local cache's array. This step is
necessary because the first object pointers have been removed from the local cache, thus the
remaining ones must be moved up.

8.2.14. General Purpose Objects

 As stated earlier in the section "The Buddy System Algorithm," infrequent requests for memory areas are
handled through a group of general caches whose objects have geometrically distributed sizes ranging
from a minimum of 32 to a maximum of 131,072 bytes.

 Objects of this type are obtained by invoking the kmalloc() function, which is essentially equivalent to
the following code fragment:

void * kmalloc(size_t size, int flags)

{

 struct cache_sizes *csizep = malloc_sizes;

 kmem_cache_t * cachep;

 for (; csizep->cs_size; csizep++) {

 if (size > csizep->cs_size)

 continue;

 if (flags & _ _GFP_DMA)

 cachep = csizep->cs_dmacachep;

 else

 cachep = csizep->cs_cachep;

 return kmem_cache_alloc(cachep, flags);

 }

 return NULL;

}

The function uses the malloc_sizes table to locate the nearest power-of-2 size to the requested size. It
then calls kmem_cache_alloc() to allocate the object, passing to it either the cache descriptor for the
page frames usable for ISA DMA or the cache descriptor for the "normal" page frames, depending on
whether the caller specified the _ _GFP_DMA flag.

 Objects obtained by invoking kmalloc() can be released by calling kfree():

void kfree(const void *objp)

{

 kmem_cache_t * c;

 unsigned long flags;

 if (!objp)

 return;

 local_irq_save(flags);

 c = (kmem_cache_t *)(virt_to_page(objp)->lru.next);

 kmem_cache_free(c, (void *)objp);

 local_irq_restore(flags);

}

The proper cache descriptor is identified by reading the lru.next subfield of the descriptor of the first page
frame containing the memory area. The memory area is released by invoking kmem_cache_free().

 8.2.15. Memory Pools

 Memory pools are a new feature of Linux 2.6. Basically, a memory pool allows a kernel componentsuch
as the block device subsystemto allocate some dynamic memory to be used only in low-on-memory
emergencies.

 Memory pools should not be confused with the reserved page frames described in the earlier section "
The Pool of Reserved Page Frames." In fact, those page frames can be used only to satisfy atomic
memory allocation requests issued by interrupt handlers or inside critical regions. Instead, a memory pool
is a reserve of dynamic memory that can be used only by a specific kernel component, namely the
"owner" of the pool. The owner does not normally use the reserve; however, if dynamic memory
becomes so scarce that all usual memory allocation requests are doomed to fail, the kernel component
can invoke, as a last resort, special memory pool functions that dip in the reserve and get the memory
needed. Thus, creating a memory pool is similar to keeping a reserve of canned foods on hand and using
a can opener only when no fresh food is available.

 Often, a memory pool is stacked over the slab allocatorthat is, it is used to keep a reserve of slab
objects. Generally speaking, however, a memory pool can be used to allocate every kind of dynamic
memory, from whole page frames to small memory areas allocated with kmalloc(). Therefore, we will
generically refer to the memory units handled by a memory pool as "memory elements."

 A memory pool is described by a mempool_t object, whose fields are shown in Table 8-12.

 Table 8-12. The fields of the mempool_t object

Type Name Description

spinlock_t lock Spin lock protecting the object
fields

int min_nr Maximum number of elements in
the memory pool

int curr_nr Current number of elements in the
memory pool

void ** elements Pointer to an array of pointers to
the reserved elements

void * pool_data Private data available to the
pool's owner

mempool_alloc_t * alloc Method to allocate an element

mempool_free_t * free Method to free an element

wait_queue_head_t wait Wait queue used when the
memory pool is empty

The min_nr field stores the initial number of elements in the memory pool. In other words, the value
stored in this field represents the number of memory elements that the owner of the memory pool is sure
to obtain from the memory allocator. The curr_nr field, which is always lower than or equal to min_nr,
stores the number of memory elements currently included in the memory pool. The memory elements
themselves are referenced by an array of pointers, whose address is stored in the elements field.

 The alloc and free methods interface with the underlying memory allocator to get and release a memory
element, respectively. Both methods may be custom functions provided by the kernel component that
owns the memory pool.

 When the memory elements are slab objects, the alloc and free methods are commonly implemented by
the mempool_alloc_slab() and mempool_free_slab() functions, which just invoke the
kmem_cache_alloc() and kmem_cache_free() functions, respectively. In this case, the pool_data field
of the mempool_t object stores the address of the slab cache descriptor.

 The mempool_create() function creates a new memory pool; it receives the number of memory
elements min_nr, the addresses of the functions that implement the alloc and free methods, and an
optional value for the pool_data field. The function allocates memory for the mempool_t object and the
array of pointers to the memory elements, then repeatedly invokes the alloc method to get the min_nr
memory elements. Conversely, the mempool_destroy() function releases all memory elements in the
pool, then releases the array of elements and the mempool_t object themselves.

 To allocate an element from a memory pool, the kernel invokes the mempool_alloc() function, passing
to it the address of the mempool_t object and the memory allocation flags (see Table 8-5 and Table 8-6
earlier in this chapter). Essentially, the function tries to allocate a memory element from the underlying
memory allocator by invoking the alloc method, according to the memory allocation flags specified as
parameters. If the allocation succeeds, the function returns the memory element obtained, without
touching the memory pool. Otherwise, if the allocation fails, the memory element is taken from the
memory pool. Of course, too many allocations in a low-on-memory condition can exhaust the memory
pool: in this case, if the _ _GFP_WAIT flag is not set, mempool_alloc() blocks the current process until a
memory element is released to the memory pool.

 Conversely, to release an element to a memory pool, the kernel invokes the mempool_free() function. If
the memory pool is not full (curr_min is smaller than min_nr), the function adds the element to the
memory pool. Otherwise, mempool_free() invokes the free method to release the element to the
underlying memory allocator.

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.3. Noncontiguous Memory Area Management
 We already know that it is preferable to map memory areas into sets of contiguous page frames, thus
making better use of the cache and achieving lower average memory access times. Nevertheless, if the
requests for memory areas are infrequent, it makes sense to consider an allocation scheme based on
noncontiguous page frames accessed through contiguous linear addresses . The main advantage of this
schema is to avoid external fragmentation, while the disadvantage is that it is necessary to fiddle with the
kernel Page Tables. Clearly, the size of a noncontiguous memory area must be a multiple of 4,096. Linux
uses noncontiguous memory areas in several ways for instance, to allocate data structures for active swap
areas (see the section "Activating and Deactivating a Swap Area" in Chapter 17), to allocate space for a
module (see Appendix B), or to allocate buffers to some I/O drivers. Furthermore, noncontiguous
memory areas provide yet another way to make use of high memory page frames (see the later section "
Allocating a Noncontiguous Memory Area").

 8.3.1. Linear Addresses of Noncontiguous Memory Areas

 To find a free range of linear addresses, we can look in the area starting from PAGE_OFFSET (usually
0xc0000000, the beginning of the fourth gigabyte). Figure 8-7 shows how the fourth gigabyte linear
addresses are used:



 The beginning of the area includes the linear addresses that map the first 896 MB of RAM (see
the section "Process Page Tables" in Chapter 2); the linear address that corresponds to the end
of the directly mapped physical memory is stored in the high_memory variable.



 The end of the area contains the fix-mapped linear addresses (see the section "Fix-Mapped
Linear Addresses" in Chapter 2).



 Starting from PKMAP_BASE we find the linear addresses used for the persistent kernel
mapping of high-memory page frames (see the section "Kernel Mappings of High-Memory Page
Frames" earlier in this chapter).



 The remaining linear addresses can be used for noncontiguous memory areas. A safety interval of
size 8 MB (macro VMALLOC_OFFSET) is inserted between the end of the physical memory
mapping and the first memory area; its purpose is to "capture" out-of-bounds memory accesses.
For the same reason, additional safety intervals of size 4 KB are inserted to separate
noncontiguous memory areas.

 Figure 8-7. The linear address interval starting from PAGE_OFFSET

 The VMALLOC_START macro defines the starting address of the linear space reserved for
noncontiguous memory areas, while VMALLOC_END defines its ending address.

 8.3.2. Descriptors of Noncontiguous Memory Areas

 Each noncontiguous memory area is associated with a descriptor of type vm_struct, whose fields are
listed in Table 8-13.

 Table 8-13. The fields of the vm_struct descriptor

Type Name Description

void * addr Linear address of the first
memory cell of the area

unsigned long size Size of the area plus 4,096
(inter-area safety interval)

unsigned long flags Type of memory mapped by the
noncontiguous memory area

struct page ** pages Pointer to array of nr_pages
pointers to page descriptors

unsigned int nr_pages Number of pages filled by the
area

unsigned long phys_addr
Set to 0 unless the area has been
created to map the I/O shared
memory of a hardware device

struct vm_struct * next Pointer to next vm_struct
structure

These descriptors are inserted in a simple list by means of the next field; the address of the first element
of the list is stored in the vmlist variable. Accesses to this list are protected by means of the vmlist_lock
read/write spin lock. The flags field identifies the type of memory mapped by the area: VM_ALLOC for
pages obtained by means of vmalloc(), VM_MAP for already allocated pages mapped by means of
vmap() (see the next section), and VM_IOREMAP for on-board memory of hardware devices mapped
by means of ioremap() (see Chapter 13).

 The get_vm_area() function looks for a free range of linear addresses between VMALLOC_START
and VMALLOC_END. This function acts on two parameters: the size (size) in bytes of the memory
region to be created, and a flag (flag) specifying the type of region (see above). The steps performed are
the following:

1.

1. Invokes kmalloc() to obtain a memory area for the new descriptor of type vm_struct.
2.

2. Gets the vmlist_lock lock for writing and scans the list of descriptors of type vm_struct looking
for a free range of linear addresses that includes at least size + 4096 addresses (4096 is the size
of the safety interval between the memory areas).

3.

3. If such an interval exists, the function initializes the fields of the descriptor, releases the
vmlist_lock lock, and terminates by returning the initial address of the noncontiguous memory
area.

4.

4. Otherwise, get_vm_area() releases the descriptor obtained previously, releases the vmlist_lock
lock, and returns NULL.

8.3.3. Allocating a Noncontiguous Memory Area

 The vmalloc() function allocates a noncontiguous memory area to the kernel. The parameter size
denotes the size of the requested area. If the function is able to satisfy the request, it then returns the initial
linear address of the new area; otherwise, it returns a NULL pointer:

void * vmalloc(unsigned long size)

{

 struct vm_struct *area;

 struct page **pages;

 unsigned int array_size, i;

 size = (size + PAGE_SIZE - 1) & PAGE_MASK;

 area = get_vm_area(size, VM_ALLOC);

 if (!area)

 return NULL;

 area->nr_pages = size >> PAGE_SHIFT;

 array_size = (area->nr_pages * sizeof(struct page *));

 area->pages = pages = kmalloc(array_size, GFP_KERNEL);

 if (!area_pages) {

 remove_vm_area(area->addr);

 kfree(area);

 return NULL;

 }

 memset(area->pages, 0, array_size);

 for (i=0; i<area->nr_pages; i++) {

 area->pages[i] = alloc_page(GFP_KERNEL|_ _GFP_HIGHMEM);

 if (!area->pages[i]) {

 area->nr_pages = i;

 fail: vfree(area->addr);

 return NULL;

 }

 }

 if (map_vm_area(area, _ _pgprot(0x63), &pages))

 goto fail;

 return area->addr;

}

The function starts by rounding up the value of the size parameter to a multiple of 4,096 (the page frame
size). Then vmalloc() invokes get_vm_area(), which creates a new descriptor and returns the linear
addresses assigned to the memory area. The flags field of the descriptor is initialized with the
VM_ALLOC flag, which means that the noncontiguous page frames will be mapped into a linear address
range by means of the vmalloc() function. Then the vmalloc() function invokes kmalloc() to request a
group of contiguous page frames large enough to contain an array of page descriptor pointers. The
memset() function is invoked to set all these pointers to NULL. Next the alloc_page() function is called
repeatedly, once for each of the nr_pages of the region, to allocate a page frame and store the address of
the corresponding page descriptor in the area->pages array. Observe that using the area->pages array is
necessary because the page frames could belong to the ZONE_HIGHMEM memory zone, thus right
now they are not necessarily mapped to a linear address.

 Now comes the tricky part. Up to this point, a fresh interval of contiguous linear addresses has been
obtained and a group of noncontiguous page frames has been allocated to map these linear addresses.
The last crucial step consists of fiddling with the page table entries used by the kernel to indicate that each
page frame allocated to the noncontiguous memory area is now associated with a linear address included
in the interval of contiguous linear addresses yielded by vmalloc(). This is what map_vm_area() does.

 The map_vm_area() function uses three parameters:

 area

 The pointer to the vm_struct descriptor of the area.

prot

 The protection bits of the allocated page frames. It is always set to 0x63, which corresponds to Present,
Accessed, Read/Write, and Dirty.

pages

 The address of a variable pointing to an array of pointers to page descriptors (thus, struct page *** is
used as the data type!).

 The function starts by assigning the linear addresses of the start and end of the area to the address and
end local variables, respectively:

address = area->addr;

end = address + (area->size - PAGE_SIZE);

Remember that area->size stores the actual size of the area plus the 4 KB inter-area safety interval. The
function then uses the pgd_offset_k macro to derive the entry in the master kernel Page Global Directory
related to the initial linear address of the area; it then acquires the kernel Page Table spin lock:

pgd = pgd_offset_k(address);

spin_lock(&init_mm.page_table_lock);

The function then executes the following cycle:

int ret = 0;

for (i = pgd_index(address); i < pgd_index(end-1); i++) {

 pud_t *pud = pud_alloc(&init_mm, pgd, address);

 ret = -ENOMEM;

 if (!pud)

 break;

 next = (address + PGDIR_SIZE) & PGDIR_MASK;

 if (next < address || next > end)

 next = end;

 if (map_area_pud(pud, address, next, prot, pages))

 break;

 address = next;

 pgd++;

 ret = 0;

}

spin_unlock(&init_mm.page_table_lock);

flush_cache_vmap((unsigned long)area->addr, end);

return ret;

In each cycle, it first invokes pud_alloc() to create a Page Upper Directory for the new area and writes
its physical address in the right entry of the kernel Page Global Directory. It then calls map_area_pud()
to allocate all the page tables associated with the new Page Upper Directory. It adds the size of the range
of linear addresses spanned by a single Page Upper Directorythe constant 230 if PAE is enabled, 222
otherwiseto the current value of address, and it increases the pointer pgd to the Page Global Directory.

 The cycle is repeated until all Page Table entries referring to the noncontiguous memory area are set up.

 The map_area_pud() function executes a similar cycle for all the page tables that a Page Upper
Directory points to:

do {

 pmd_t * pmd = pmd_alloc(&init_mm, pud, address);

 if (!pmd)

 return -ENOMEM;

 if (map_area_pmd(pmd, address, end-address, prot, pages))

 return -ENOMEM;

 address = (address + PUD_SIZE) & PUD_MASK;

 pud++;

} while (address < end);

The map_area_pmd() function executes a similar cycle for all the Page Tables that a Page Middle
Directory points to:

do {

 pte_t * pte = pte_alloc_kernel(&init_mm, pmd, address);

 if (!pte)

 return -ENOMEM;

 if (map_area_pte(pte, address, end-address, prot, pages))

 return -ENOMEM;

 address = (address + PMD_SIZE) & PMD_MASK;

 pmd++;

} while (address < end);

The pte_alloc_kernel() function (see the section "Page Table Handling" in Chapter 2) allocates a new
Page Table and updates the corresponding entry in the Page Middle Directory. Next, map_area_pte()
allocates all the page frames corresponding to the entries in the Page Table. The value of address is
increased by 222the size of the linear address interval spanned by a single Page Tableand the cycle is
repeated.

 The main cycle of map_area_pte() is:

do {

 struct page * page = **pages;

 set_pte(pte, mk_pte(page, prot));

 address += PAGE_SIZE;

 pte++;

 (*pages)++;

} while (address < end);

The page descriptor address page of the page frame to be mapped is read from the array's entry pointed
to by the variable at address pages. The physical address of the new page frame is written into the Page
Table by the set_pte and mk_pte macros. The cycle is repeated after adding the constant 4,096 (the
length of a page frame) to address.

 Notice that the Page Tables of the current process are not touched by map_vm_area(). Therefore,
when a process in Kernel Mode accesses the noncontiguous memory area, a Page Fault occurs, because
the entries in the process's Page Tables corresponding to the area are null. However, the Page Fault
handler checks the faulty linear address against the master kernel Page Tables (which are init_mm.pgd
Page Global Directory and its child page tables; see the section "Kernel Page Tables" in Chapter 2).
Once the handler discovers that a master kernel Page Table includes a non-null entry for the address, it
copies its value into the corresponding process's Page Table entry and resumes normal execution of the
process. This mechanism is described in the section "Page Fault Exception Handler" in Chapter 9.

 Beside the vmalloc() function, a noncontiguous memory area can be allocated by the vmalloc_32()
function, which is very similar to vmalloc() but only allocates page frames from the ZONE_NORMAL
and ZONE_DMA memory zones.

 Linux 2.6 also features a vmap() function, which maps page frames already allocated in a noncontiguous
memory area: essentially, this function receives as its parameter an array of pointers to page descriptors,
invokes get_vm_area() to get a new vm_struct descriptor, and then invokes map_vm_area() to map the
page frames. The function is thus similar to vmalloc(), but it does not allocate page frames.

 8.3.4. Releasing a Noncontiguous Memory Area

 The vfree() function releases noncontiguous memory areas created by vmalloc() or vmalloc_32(),
while the vunmap() function releases memory areas created by vmap(). Both functions have one
parameterthe address of the initial linear address of the area to be released; they both rely on the _
_vunmap() function to do the real work.

 The _ _vunmap() function receives two parameters: the address addr of the initial linear address of the
area to be released, and the flag deallocate_pages, which is set if the page frames mapped in the area
should be released to the zoned page frame allocator (vfree()'s invocation), and cleared otherwise
(vunmap()'s invocation). The function performs the following operations:

1.

1. Invokes the remove_vm_area() function to get the address area of the vm_struct descriptor and
to clear the kernel's page table entries corresponding to the linear address in the noncontiguous
memory area.

2.

2. If the deallocate_pages flag is set, it scans the area->pages array of pointers to the page
descriptor; for each element of the array, invokes the _ _free_page() function to release the page
frame to the zoned page frame allocator. Moreover, executes kfree(area->pages) to release the
array itself.

3.

3. Invokes kfree(area) to release the vm_struct descriptor.

The remove_vm_area() function performs the following cycle:

write_lock(&vmlist_lock);

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {

 if (tmp->addr == addr) {

 unmap_vm_area(tmp);

 *p = tmp->next;

 break;

 }

}

write_unlock(&vmlist_lock);

return tmp;

The area itself is released by invoking unmap_vm_area(). This function acts on a single parameter,
namely a pointer area to the vm_struct descriptor of the area. It executes the following cycle to reverse
the actions performed by map_vm_area():

address = area->addr;

end = address + area->size;

pgd = pgd_offset_k(address);

for (i = pgd_index(address); i <= pgd_index(end-1); i++) {

 next = (address + PGDIR_SIZE) & PGDIR_MASK;

 if (next <= address || next > end)

 next = end;

 unmap_area_pud(pgd, address, next - address);

 address = next;

 pgd++;

}

In turn, unmap_area_pud() reverses the actions of map_area_pud() in the cycle:

do {

 unmap_area_pmd(pud, address, end-address);

 address = (address + PUD_SIZE) & PUD_MASK;

 pud++;

} while (address && (address < end));

The unmap_area_pmd() function reverses the actions of map_area_pmd() in the cycle:

do {

 unmap_area_pte(pmd, address, end-address);

 address = (address + PMD_SIZE) & PMD_MASK;

 pmd++;

} while (address < end);

Finally, unmap_area_pte() reverses the actions of map_area_pte() in the cycle:

do {

 pte_t page = ptep_get_and_clear(pte);

 address += PAGE_SIZE;

 pte++;

 if (!pte_none(page) && !pte_present(page))

 printk("Whee... Swapped out page in kernel page table\n");

} while (address < end);

In every iteration of the cycle, the page table entry pointed to by pte is set to 0 by the
ptep_get_and_clear macro.

 As for vmalloc(), the kernel modifies the entries of the master kernel Page Global Directory and its child
page tables (see the section "Kernel Page Tables" in Chapter 2), but it leaves unchanged the entries of
the process page tables mapping the fourth gigabyte. This is fine because the kernel never reclaims Page
Upper Directories, Page Middle Directories, and Page Tables rooted at the master kernel Page Global
Directory.

 For instance, suppose that a process in Kernel Mode accessed a noncontiguous memory area that later
got released. The process's Page Global Directory entries are equal to the corresponding entries of the
master kernel Page Global Directory, thanks to the mechanism explained in the section "Page Fault
Exception Handler" in Chapter 9; they point to the same Page Upper Directories, Page Middle
Directories, and Page Tables. The unmap_area_pte() function clears only the entries of the page tables
(without reclaiming the page tables themselves). Further accesses of the process to the released
noncontiguous memory area will trigger Page Faults because of the null page table entries. However, the
handler will consider such accesses a bug, because the master kernel page tables do not include valid
entries.

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 9. Process Address Space
 As seen in the previous chapter, a kernel function gets dynamic memory in a fairly straightforward
manner by invoking one of a variety of functions: _ _get_free_pages() or alloc_pages() to get pages
from the zoned page frame allocator, kmem_cache_alloc() or kmalloc() to use the slab allocator for
specialized or general-purpose objects, and vmalloc() or vmalloc_32() to get a noncontiguous memory
area. If the request can be satisfied, each of these functions returns a page descriptor address or a linear
address identifying the beginning of the allocated dynamic memory area.

 These simple approaches work for two reasons:


 The kernel is the highest-priority component of the operating system. If a kernel function makes
a request for dynamic memory, it must have a valid reason to issue that request, and there is no
point in trying to defer it.



 The kernel trusts itself. All kernel functions are assumed to be error-free, so the kernel does not
need to insert any protection against programming errors.

 When allocating memory to User Mode processes, the situation is entirely different:


 Process requests for dynamic memory are considered non-urgent. When a process's executable
file is loaded, for instance, it is unlikely that the process will address all the pages of code in the
near future. Similarly, when a process invokes malloc() to get additional dynamic memory, it
doesn't mean the process will soon access all the additional memory obtained. Thus, as a general
rule, the kernel tries to defer allocating dynamic memory to User Mode processes.



 Because user programs cannot be trusted, the kernel must be prepared to catch all addressing
errors caused by processes in User Mode.

 As this chapter describes, the kernel succeeds in deferring the allocation of dynamic memory to
processes by using a new kind of resource. When a User Mode process asks for dynamic memory, it
doesn't get additional page frames; instead, it gets the right to use a new range of linear addresses, which
become part of its address space. This interval is called a "memory region."

 In the next section, we discuss how the process views dynamic memory. We then describe the basic
components of the process address space in the section "Memory Regions." Next, we examine in detail
the role played by the Page Fault exception handler in deferring the allocation of page frames to
processes and illustrate how the kernel creates and deletes whole process address spaces. Last, we
discuss the APIs and system calls related to address space management.

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.1. The Process's Address Space
 The address space of a process consists of all linear addresses that the process is allowed to use. Each
process sees a different set of linear addresses; the address used by one process bears no relation to the
address used by another. As we will see later, the kernel may dynamically modify a process address
space by adding or removing intervals of linear addresses.

 The kernel represents intervals of linear addresses by means of resources called memory regions , which
are characterized by an initial linear address, a length, and some access rights. For reasons of efficiency,
both the initial address and the length of a memory region must be multiples of 4,096, so that the data
identified by each memory region completely fills up the page frames allocated to it. Following are some
typical situations in which a process gets new memory regions:



 When the user types a command at the console, the shell process creates a new process to
execute the command. As a result, a fresh address space, and thus a set of memory regions, is
assigned to the new process (see the section "Creating and Deleting a Process Address Space"
later in this chapter; also, see Chapter 20).



 A running process may decide to load an entirely different program. In this case, the process ID
remains unchanged, but the memory regions used before loading the program are released and a
new set of memory regions is assigned to the process (see the section "The exec Functions" in
Chapter 20).



 A running process may perform a "memory mapping" on a file (or on a portion of it). In such
cases, the kernel assigns a new memory region to the process to map the file (see the section "
Memory Mapping" in Chapter 16).



 A process may keep adding data on its User Mode stack until all addresses in the memory
region that map the stack have been used. In this case, the kernel may decide to expand the size
of that memory region (see the section "Page Fault Exception Handler" later in this chapter).



 A process may create an IPC-shared memory region to share data with other cooperating
processes. In this case, the kernel assigns a new memory region to the process to implement this
construct (see the section "IPC Shared Memory" in Chapter 19).



 A process may expand its dynamic area (the heap) through a function such as malloc(). As a
result, the kernel may decide to expand the size of the memory region assigned to the heap (see
the section "Managing the Heap" later in this chapter).

 Table 9-1 illustrates some of the system calls related to the previously mentioned tasks. brk() is
discussed at the end of this chapter, while the remaining system calls are described in other chapters.

 Table 9-1. System calls related to memory region creation and deletion

System call Description

brk() Changes the heap size of the process

execve() Loads a new executable file, thus changing the
process address space

_exit() Terminates the current process and destroys its
address space

fork() Creates a new process, and thus a new address
space

mmap(), mmap2() Creates a memory mapping for a file, thus enlarging
the process address space

mremap() Expands or shrinks a memory region

remap_file_pages() Creates a non-linear mapping for a file (see
Chapter 16)

munmap() Destroys a memory mapping for a file, thus
contracting the process address space

shmat() Attaches a shared memory region

shmdt() Detaches a shared memory region

As we'll see in the later section "Page Fault Exception Handler," it is essential for the kernel to identify the
memory regions currently owned by a process (the address space of a process), because that allows the
Page Fault exception handler to efficiently distinguish between two types of invalid linear addresses that
cause it to be invoked:



 Those caused by programming errors.


 Those caused by a missing page; even though the linear address belongs to the process's address
space, the page frame corresponding to that address has yet to be allocated.

 The latter addresses are not invalid from the process's point of view; the induced Page Faults are
exploited by the kernel to implement demand paging : the kernel provides the missing page frame and lets
the process continue.

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.2. The Memory Descriptor
 All information related to the process address space is included in an object called the memory
descriptor of type mm_struct. This object is referenced by the mm field of the process descriptor. The
fields of a memory descriptor are listed in Table 9-2.

 Table 9-2. The fields of the memory descriptor

Type Field Description

struct

vm_area_struct *

mmap Pointer to the head of the list of
memory region objects

struct rb_root mm_rb
Pointer to the root of the
red-black tree of memory region
objects

struct

vm_area_struct *

mmap_cache Pointer to the last referenced
memory region object

unsigned long (*)() get_unmapped_area
Method that searches an
available linear address interval in
the process address space

void (*)() unmap_area Method invoked when releasing a
linear address interval

unsigned long mmap_base Identifies the linear address of the
first allocated anonymous
memory region or file memory
mapping (see the section "
Program Segments and Process
Memory Regions" in Chapter 20)

unsigned long free_area_cache

Address from which the kernel
will look for a free interval of
linear addresses in the process
address space

pgd_t * pgd Pointer to the Page Global
Directory

atomic_t mm_users Secondary usage counter

atomic_t mm_count Main usage counter

int map_count Number of memory regions

struct

rw_semaphore

mmap_sem Memory regions' read/write
semaphore

spinlock_t page_table_lock Memory regions' and Page
Tables' spin lock

struct list_head mmlist Pointers to adjacent elements in
the list of memory descriptors

unsigned long start_code Initial address of executable code

unsigned long end_code Final address of executable code

unsigned long start_data Initial address of initialized data

unsigned long end_data Final address of initialized data

unsigned long start_brk Initial address of the heap

unsigned long brk Current final address of the heap

unsigned long start_stack Initial address of User Mode
stack

unsigned long arg_start Initial address of command-line
arguments

unsigned long arg_end Final address of command-line
arguments

unsigned long env_start Initial address of environment
variables

unsigned long env_end Final address of environment
variables

unsigned long rss Number of page frames allocated
to the process

unsigned long anon_rss Number of page frames assigned
to anonymous memory mappings

unsigned long total_vm Size of the process address
space (number of pages)

unsigned long locked_vm
Number of "locked" pages that
cannot be swapped out (see
Chapter 17)

unsigned long shared_vm Number of pages in shared file
memory mappings

unsigned long exec_vm Number of pages in executable
memory mappings

unsigned long stack_vm Number of pages in the User
Mode stack

unsigned long reserved_vm Number of pages in reserved or
special memory regions

unsigned long def_flags Default access flags of the
memory regions

unsigned long nr_ptes Number of Page Tables of this
process

unsigned long []
saved_auxv Used when starting the execution

of an ELF program (see Chapter
20)

unsigned int dumpable
Flag that specifies whether the
process can produce a core
dump of the memory

cpumask_t cpu_vm_mask Bit mask for lazy TLB switches
(see Chapter 2)

mm_context_t context

Pointer to table for
architecture-specific information
(e.g., LDT's address in 80 86
platforms)

unsigned long swap_token_time

When this process will become
eligible for having the swap token
(see the section "The Swap
Token" in Chapter 17)

char recent_pagein Flag set if a major Page Fault has
recently occurred

int core_waiters Number of lightweight processes
that are dumping the contents of
the process address space to a
core file (see the section "Deleting
a Process Address Space" later
in this chapter)

struct completion * core_startup_done

Pointer to a completion used
when creating a core file (see the
section "Completions" in Chapter
5)

struct completion core_done Completion used when creating a
core file

rwlock_t ioctx_list_lock
Lock used to protect the list of
asynchronous I/O contexts (see
Chapter 16)

struct kioctx * ioctx_list List of asynchronous I/O contexts
(see Chapter 16)

struct kioctx default_kioctx Default asynchronous I/O context
(see Chapter 16)

unsigned long hiwater_rss Maximum number of page frames
ever owned by the process

unsigned long hiwater_vm
Maximum number of pages ever
included in the memory regions of
the process

All memory descriptors are stored in a doubly linked list. Each descriptor stores the address of the
adjacent list items in the mmlist field. The first element of the list is the mmlist field of init_mm, the memory
descriptor used by process 0 in the initialization phase. The list is protected against concurrent accesses
in multiprocessor systems by the mmlist_lock spin lock.

 The mm_users field stores the number of lightweight processes that share the mm_struct data structure
(see the section "The clone(), fork(), and vfork() System Calls" in Chapter 3). The mm_count field is
the main usage counter of the memory descriptor; all "users" in mm_users count as one unit in mm_count.
Every time the mm_count field is decreased, the kernel checks whether it becomes zero; if so, the
memory descriptor is deallocated because it is no longer in use.

 We'll try to explain the difference between the use of mm_users and mm_count with an example.
Consider a memory descriptor shared by two lightweight processes. Normally, its mm_users field stores
the value 2, while its mm_count field stores the value 1 (both owner processes count as one).

 If the memory descriptor is temporarily lent to a kernel thread (see the next section), the kernel increases
the mm_count field. In this way, even if both lightweight processes die and the mm_users field becomes
zero, the memory descriptor is not released until the kernel thread finishes using it because the mm_count
field remains greater than zero.

 If the kernel wants to be sure that the memory descriptor is not released in the middle of a lengthy
operation, it might increase the mm_users field instead of mm_count (this is what the try_to_unuse()
function does; see the section "Activating and Deactivating a Swap Area" in Chapter 17). The final result
is the same because the increment of mm_users ensures that mm_count does not become zero even if all
lightweight processes that own the memory descriptor die.

 The mm_alloc() function is invoked to get a new memory descriptor. Because these descriptors are
stored in a slab allocator cache, mm_alloc() calls kmem_cache_alloc(), initializes the new memory
descriptor, and sets the mm_count and mm_users field to 1.

 Conversely, the mmput() function decreases the mm_users field of a memory descriptor. If that field
becomes 0, the function releases the Local Descriptor Table, the memory region descriptors (see later in
this chapter), and the Page Tables referenced by the memory descriptor, and then invokes mmdrop().
The latter function decreases mm_count and, if it becomes zero, releases the mm_struct data structure.

 The mmap, mm_rb, mmlist, and mmap_cache fields are discussed in the next section.

 9.2.1. Memory Descriptor of Kernel Threads

 Kernel threads run only in Kernel Mode, so they never access linear addresses below TASK_SIZE
(same as PAGE_OFFSET, usually 0xc0000000). Contrary to regular processes, kernel threads do not
use memory regions, therefore most of the fields of a memory descriptor are meaningless for them.

 Because the Page Table entries that refer to the linear address above TASK_SIZE should always be
identical, it does not really matter what set of Page Tables a kernel thread uses. To avoid useless TLB
and cache flushes, a kernel thread uses the set of Page Tables of the last previously running regular
process. To that end, two kinds of memory descriptor pointers are included in every process descriptor:
mm and active_mm.

 The mm field in the process descriptor points to the memory descriptor owned by the process, while the
active_mm field points to the memory descriptor used by the process when it is in execution. For regular
processes, the two fields store the same pointer. Kernel threads, however, do not own any memory
descriptor, thus their mm field is always NULL. When a kernel thread is selected for execution, its
active_mm field is initialized to the value of the active_mm of the previously running process (see the
section "The schedule() Function" in Chapter 7).

 There is, however, a small complication. Whenever a process in Kernel Mode modifies a Page Table
entry for a "high" linear address (above TASK_SIZE), it should also update the corresponding entry in
the sets of Page Tables of all processes in the system. In fact, once set by a process in Kernel Mode, the
mapping should be effective for all other processes in Kernel Mode as well. Touching the sets of Page
Tables of all processes is a costly operation; therefore, Linux adopts a deferred approach.

 We already mentioned this deferred approach in the section "Noncontiguous Memory Area
Management" in Chapter 8: every time a high linear address has to be remapped (typically by vmalloc()
or vfree()), the kernel updates a canonical set of Page Tables rooted at the swapper_pg_dir master
kernel Page Global Directory (see the section "Kernel Page Tables" in Chapter 2). This Page Global
Directory is pointed to by the pgd field of a master memory descriptor , which is stored in the init_mm
variable.[*]

[*] We mentioned in the section "Kernel Threads" in Chapter 3 that the swapper process uses init_mm
during the initialization phase. However, swapper never uses this memory descriptor once the initialization
phase completes.

 Later, in the section "Handling Noncontiguous Memory Area Accesses," we'll describe how the Page
Fault handler takes care of spreading the information stored in the canonical Page Tables when effectively
needed.

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.3. Memory Regions
 Linux implements a memory region by means of an object of type vm_area_struct; its fields are shown
in Table 9-3.[*]

[*] We omitted describing a few additional fields used in NUMA systems.

 Table 9-3. The fields of the memory region object

Type Field Description

struct mm_struct * vm_mm Pointer to the memory descriptor
that owns the region.

unsigned long vm_start First linear address inside the
region.

unsigned long vm_end First linear address after the
region.

struct

vm_area_struct *

vm_next Next region in the process list.

pgprot_t vm_page_prot Access permissions for the page
frames of the region.

unsigned long vm_flags Flags of the region.

struct rb_node vm_rb Data for the red-black tree (see
later in this chapter).

union shared Links to the data structures used
for reverse mapping (see the
section "Reverse Mapping for
Mapped Pages" in Chapter 17).

struct list_head anon_vma_node Pointers for the list of anonymous
memory regions (see the section "
Reverse Mapping for
Anonymous Pages" in Chapter
17).

struct anon_vma * anon_vma Pointer to the anon_vma data
structure (see the section "
Reverse Mapping for
Anonymous Pages" in Chapter
17).

struct

vm_operations_struct*

vm_ops Pointer to the methods of the
memory region.

unsigned long vm_pgoff Offset in mapped file (see
Chapter 16). For anonymous
pages, it is either zero or equal to
vm_start/PAGE_SIZE (see
Chapter 17).

struct file * vm_file Pointer to the file object of the
mapped file, if any.

void * vm_private_data Pointer to private data of the
memory region.

unsigned long vm_truncate_count
Used when releasing a linear
address interval in a non-linear
file memory mapping.

Each memory region descriptor identifies a linear address interval. The vm_start field contains the first
linear address of the interval, while the vm_end field contains the first linear address outside of the
interval; vm_end-vm_start thus denotes the length of the memory region. The vm_mm field points to the
mm_struct memory descriptor of the process that owns the region. We will describe the other fields of
vm_area_struct as they come up.

 Memory regions owned by a process never overlap, and the kernel tries to merge regions when a new
one is allocated right next to an existing one. Two adjacent regions can be merged if their access rights
match.

 As shown in Figure 9-1, when a new range of linear addresses is added to the process address space,
the kernel checks whether an already existing memory region can be enlarged (case a). If not, a new
memory region is created (case b). Similarly, if a range of linear addresses is removed from the process
address space, the kernel resizes the affected memory regions (case c). In some cases, the resizing forces
a memory region to split into two smaller ones (case d) .[*]

[*] Removing a linear address interval may theoretically fail because no free memory is available for a
new memory descriptor.

 Figure 9-1. Adding or removing a linear address interval

 The vm_ops field points to a vm_operations_struct data structure, which stores the methods of the
memory region. Only four methodsillustrated in Table 9-4are applicable to UMA systems.

 Table 9-4. The methods to act on a memory region

Method Description

open Invoked when the memory region is added to the
set of regions owned by a process.

close Invoked when the memory region is removed from
the set of regions owned by a process.

nopage Invoked by the Page Fault exception handler when
a process tries to access a page not present in
RAM whose linear address belongs to the memory
region (see the later section "Page Fault Exception
Handler").

populate Invoked to set the page table entries corresponding
to the linear addresses of the memory region
(prefaulting). Mainly used for non-linear file
memory mappings.

9.3.1. Memory Region Data Structures

 All the regions owned by a process are linked in a simple list. Regions appear in the list in ascending
order by memory address; however, successive regions can be separated by an area of unused memory
addresses. The vm_next field of each vm_area_struct element points to the next element in the list. The
kernel finds the memory regions through the mmap field of the process memory descriptor, which points
to the first memory region descriptor in the list.

 The map_count field of the memory descriptor contains the number of regions owned by the process.
By default, a process may own up to 65,536 different memory regions; however, the system
administrator may change this limit by writing in the /proc/sys/vm/max_map_count file.

 Figure 9-2 illustrates the relationships among the address space of a process, its memory descriptor, and
the list of memory regions.

 Figure 9-2. Descriptors related to the address space of a process

 A frequent operation performed by the kernel is to search the memory region that includes a specific
linear address. Because the list is sorted, the search can terminate as soon as a memory region that ends
after the specific linear address is found.

 However, using the list is convenient only if the process has very few memory regionslet's say less than a
few tens of them. Searching, inserting elements, and deleting elements in the list involve a number of
operations whose times are linearly proportional to the list length.

 Although most Linux processes use very few memory regions, there are some large applications, such as
object-oriented databases or specialized debuggers for the usage of malloc(), that have many hundreds
or even thousands of regions. In such cases, the memory region list management becomes very inefficient,
hence the performance of the memory-related system calls degrades to an intolerable point.

 Therefore, Linux 2.6 stores memory descriptors in data structures called red-black trees . In a red-black
tree, each element (or node) usually has two children: a left child and a right child. The elements in the
tree are sorted. For each node N, all elements of the subtree rooted at the left child of N precede N,
while, conversely, all elements of the subtree rooted at the right child of N follow N (see Figure 9-3(a);
the key of the node is written inside the node itself. Moreover, a red-black tree must satisfy four
additional rules:

1.

1. Every node must be either red or black.
2.

2. The root of the tree must be black.
3.

3. The children of a red node must be black.
4.

4. Every path from a node to a descendant leaf must contain the same number of black nodes .
When counting the number of black nodes, null pointers are counted as black nodes.

Figure 9-3. Example of red-black trees

 These four rules ensure that every red-black tree with n internal nodes has a height of at most 2 x log(n +
1).

 Searching an element in a red-black tree is thus very efficient, because it requires operations whose
execution time is linearly proportional to the logarithm of the tree size. In other words, doubling the
number of memory regions adds just one more iteration to the operation.

 Inserting and deleting an element in a red-black tree is also efficient, because the algorithm can quickly
traverse the tree to locate the position at which the element will be inserted or from which it will be
removed. Each new node must be inserted as a leaf and colored red. If the operation breaks the rules, a
few nodes of the tree must be moved or recolored.

 For instance, suppose that an element having the value 4 must be inserted in the red-black tree shown in
Figure 9-3(a). Its proper position is the right child of the node that has key 3, but once it is inserted, the
red node that has the value 3 has a red child, thus breaking rule 3. To satisfy the rule, the color of nodes
that have the values 3, 4, and 7 is changed. This operation, however, breaks rule 4, thus the algorithm
performs a "rotation" on the subtree rooted at the node that has the key 19, producing the new red-black
tree shown in Figure 9-3(b). This looks complicated, but inserting or deleting an element in a red-black
tree requires a small number of operationsa number linearly proportional to the logarithm of the tree size.

 Therefore, to store the memory regions of a process, Linux uses both a linked list and a red-black tree.
Both data structures contain pointers to the same memory region descriptors. When inserting or removing
a memory region descriptor, the kernel searches the previous and next elements through the red-black
tree and uses them to quickly update the list without scanning it.

 The head of the linked list is referenced by the mmap field of the memory descriptor. Each memory
region object stores the pointer to the next element of the list in the vm_next field. The head of the
red-black tree is referenced by the mm_rb field of the memory descriptor. Each memory region object
stores the color of the node, as well as the pointers to the parent, the left child, and the right child, in the
vm_rb field of type rb_node.

 In general, the red-black tree is used to locate a region including a specific address, while the linked list
is mostly useful when scanning the whole set of regions.

 9.3.2. Memory Region Access Rights

 Before moving on, we should clarify the relation between a page and a memory region. As mentioned in
Chapter 2, we use the term "page" to refer both to a set of linear addresses and to the data contained in
this group of addresses. In particular, we denote the linear address interval ranging between 0 and 4,095
as page 0, the linear address interval ranging between 4,096 and 8,191 as page 1, and so forth. Each
memory region therefore consists of a set of pages that have consecutive page numbers.

 We have already discussed two kinds of flags associated with a page:


 A few flags such as Read/Write, Present, or User/Supervisor stored in each Page Table entry
(see the section "Regular Paging" in Chapter 2).



 A set of flags stored in the flags field of each page descriptor (see the section "Page Frame
Management" in Chapter 8).

 The first kind of flag is used by the 80 x 86 hardware to check whether the requested kind of addressing
can be performed; the second kind is used by Linux for many different purposes (see Table 8-2).

 We now introduce a third kind of flag: those associated with the pages of a memory region. They are
stored in the vm_flags field of the vm_area_struct descriptor (see Table 9-5). Some flags offer the kernel
information about all the pages of the memory region, such as what they contain and what rights the
process has to access each page. Other flags describe the region itself, such as how it can grow.

 Table 9-5. The memory region flags

Flag name Description

VM_READ Pages can be read

VM_WRITE Pages can be written

VM_EXEC Pages can be executed

VM_SHARED Pages can be shared by several processes

VM_MAYREAD VM_READ flag may be set

VM_MAYWRITE VM_WRITE flag may be set

VM_MAYEXEC VM_EXEC flag may be set

VM_MAYSHARE VM_SHARE flag may be set

VM_GROWSDOWN The region can expand toward lower addresses

VM_GROWSUP The region can expand toward higher addresses

VM_SHM The region is used for IPC's shared memory

VM_DENYWRITE The region maps a file that cannot be opened for
writing

VM_EXECUTABLE The region maps an executable file

VM_LOCKED Pages in the region are locked and cannot be
swapped out

VM_IO The region maps the I/O address space of a device

VM_SEQ_READ The application accesses the pages sequentially

VM_RAND_READ The application accesses the pages in a truly
random order

VM_DONTCOPY Do not copy the region when forking a new
process

VM_DONTEXPAND Forbid region expansion through mremap() system
call

VM_RESERVED
The region is special (for instance, it maps the I/O
address space of a device), so its pages must not
be swapped out

VM_ACCOUNT
Check whether there is enough free memory for
the mapping when creating an IPC shared memory
region (see Chapter 19)

VM_HUGETLB
The pages in the region are handled through the
extended paging mechanism (see the section "
Extended Paging" in Chapter 2)

VM_NONLINEAR The region implements a non-linear file mapping

Page access rights included in a memory region descriptor may be combined arbitrarily. It is possible, for
instance, to allow the pages of a region to be read but not executed. To implement this protection scheme
efficiently, the Read, Write, and Execute access rights associated with the pages of a memory region
must be duplicated in all the corresponding Page Table entries, so that checks can be directly performed
by the Paging Unit circuitry. In other words, the page access rights dictate what kinds of access should
generate a Page Fault exception. As we'll see shortly, the job of figuring out what caused the Page Fault
is delegated by Linux to the Page Fault handler, which implements several page-handling strategies.

 The initial values of the Page Table flags (which must be the same for all pages in the memory region, as
we have seen) are stored in the vm_ page_ prot field of the vm_area_struct descriptor. When adding a
page, the kernel sets the flags in the corresponding Page Table entry according to the value of the vm_
page_ prot field.

 However, translating the memory region's access rights into the page protection bits is not
straightforward for the following reasons:



 In some cases, a page access should generate a Page Fault exception even when its access type
is granted by the page access rights specified in the vm_flags field of the corresponding memory
region. For instance, as we'll see in the section "Copy On Write" later in this chapter, the kernel
may wish to store two identical, writable private pages (whose VM_SHARE flags are cleared)
belonging to two different processes in the same page frame; in this case, an exception should be
generated when either one of the processes tries to modify the page.



 As mentioned in Chapter 2, 80 x 86 processors's Page Tables have just two protection bits,
namely the Read/Write and User/Supervisor flags. Moreover, the User/Supervisor flag of every
page included in a memory region must always be set, because the page must always be
accessible by User Mode processes.



 Recent Intel Pentium 4 microprocessors with PAE enabled sport a NX (No eXecute) flag in
each 64-bit Page Table entry.

 If the kernel has been compiled without support for PAE, Linux adopts the following rules, which
overcome the hardware limitation of the 80 x 86 microprocessors:



 The Read access right always implies the Execute access right, and vice versa.


 The Write access right always implies the Read access right.

 Conversely, if the kernel has been compiled with support for PAE and the CPU has the NX flag, Linux
adopts different rules:



 The Execute access right always implies the Read access right.


 The Write access right always implies the Read access right.

 Moreover, to correctly defer the allocation of page frames through the "Copy On Write" technique (see
later in this chapter), the page frame is write-protected whenever the corresponding page must not be
shared by several processes.

 Therefore, the 16 possible combinations of the Read, Write, Execute, and Share access rights are scaled
down according to the following rules:



 If the page has both Write and Share access rights, the Read/Write bit is set.


 If the page has the Read or Execute access right but does not have either the Write or the Share
access right, the Read/Write bit is cleared.



 If the NX bit is supported and the page does not have the Execute access right, the NX bit is set.


 If the page does not have any access rights, the Present bit is cleared so that each access
generates a Page Fault exception. However, to distinguish this condition from the real
page-not-present case, Linux also sets the Page size bit to 1.[*]

 [*] You might consider this use of the Page size bit to be a dirty trick, because the bit was meant
to indicate the real page size. But Linux can get away with the deception because the 80 x 86
chip checks the Page size bit in Page Directory entries, but not in Page Table entries.

 The downscaled protection bits corresponding to each combination of access rights are stored in the 16
elements of the protection_map array.

 9.3.3. Memory Region Handling

 Having the basic understanding of data structures and state information that control memory handling ,
we can look at a group of low-level functions that operate on memory region descriptors. They should be
considered auxiliary functions that simplify the implementation of do_mmap() and do_munmap(). Those
two functions, which are described in the sections "Allocating a Linear Address Interval" and "Releasing a
Linear Address Interval" later in this chapter, enlarge and shrink the address space of a process,
respectively. Working at a higher level than the functions we consider here, they do not receive a memory
region descriptor as their parameter, but rather the initial address, the length, and the access rights of a
linear address interval.

 9.3.3.1. Finding the closest region to a given address: find_vma()

 The find_vma() function acts on two parameters: the address mm of a process memory descriptor and a
linear address addr. It locates the first memory region whose vm_end field is greater than addr and
returns the address of its descriptor; if no such region exists, it returns a NULL pointer. Notice that the
region selected by find_vma() does not necessarily include addr because addr may lie outside of any
memory region.

 Each memory descriptor includes an mmap_cache field that stores the descriptor address of the region
that was last referenced by the process. This additional field is introduced to reduce the time spent in
looking for the region that contains a given linear address. Locality of address references in programs
makes it highly likely that if the last linear address checked belonged to a given region, the next one to be
checked belongs to the same region.

 The function thus starts by checking whether the region identified by mmap_cache includes addr. If so, it
returns the region descriptor pointer:

 vma = mm->mmap_cache;

 if (vma && vma->vm_end > addr && vma->vm_start <= addr)

 return vma;

Otherwise, the memory regions of the process must be scanned, and the function looks up the memory
region in the red-black tree:

 rb_node = mm->mm_rb.rb_node;

 vma = NULL;

 while (rb_node) {

 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

 if (vma_tmp->vm_end > addr) {

 vma = vma_tmp;

 if (vma_tmp->vm_start <= addr)

 break;

 rb_node = rb_node->rb_left;

 } else

 rb_node = rb_node->rb_right;

 }

 if (vma)

 mm->mmap_cache = vma;

 return vma;

The function uses the rb_entry macro, which derives from a pointer to a node of the red-black tree the
address of the corresponding memory region descriptor.

 The find_vma_prev() function is similar to find_vma(), except that it writes in an additional pprev
parameter a pointer to the descriptor of the memory region that precedes the one selected by the
function.

 Finally, the find_vma_prepare() function locates the position of the new leaf in the red-black tree that
corresponds to a given linear address and returns the addresses of the preceding memory region and of
the parent node of the leaf to be inserted.

 9.3.3.2. Finding a region that overlaps a given interval: find_vma_intersection()

 The find_vma_intersection() function finds the first memory region that overlaps a given linear address
interval; the mm parameter points to the memory descriptor of the process, while the start_addr and
end_addr linear addresses specify the interval:

 vma = find_vma(mm,start_addr);

 if (vma && end_addr <= vma->vm_start)

 vma = NULL;

 return vma;

The function returns a NULL pointer if no such region exists. To be exact, if find_vma() returns a valid
address but the memory region found starts after the end of the linear address interval, vma is set to
NULL.

 9.3.3.3. Finding a free interval: get_unmapped_area()

 The get_unmapped_area() function searches the process address space to find an available linear
address interval. The len parameter specifies the interval length, while a non-null addr parameter specifies
the address from which the search must be started. If the search is successful, the function returns the
initial address of the new interval; otherwise, it returns the error code -ENOMEM.

 If the addr parameter is not NULL, the function checks that the specified address is in the User Mode
address space and that it is aligned to a page boundary. Next, the function invokes either one of two
methods, depending on whether the linear address interval should be used for a file memory mapping or
for an anonymous memory mapping. In the former case, the function executes the get_unmapped_area
file operation; this is discussed in Chapter 16.

 In the latter case, the function executes the get_unmapped_area method of the memory descriptor. In
turn, this method is implemented by either the arch_get_unmapped_area() function, or the
arch_get_unmapped_area_topdown() function, according to the memory region layout of the process.
As we'll see in the section "Program Segments and Process Memory Regions" in Chapter 20, every
process can have two different layouts for the memory regions allocated through the mmap() system call:
either they start from the linear address 0x40000000 and grow towards higher addresses, or they start
right above the User Mode stack and grow towards lower addresses.

 Let us discuss the arch_get_unmapped_area() function, which is used when the memory regions are
allocated moving from lower addresses to higher ones. It is essentially equivalent to the following code
fragment:

 if (len > TASK_SIZE)

 return -ENOMEM;

 addr = (addr + 0xfff) & 0xfffff000;

 if (addr && addr + len <= TASK_SIZE) {

 vma = find_vma(current->mm, addr);

 if (!vma || addr + len <= vma->vm_start)

 return addr;

 }

 start_addr = addr = mm->free_area_cache;

 for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {

 if (addr + len > TASK_SIZE) {

 if (start_addr == (TASK_SIZE/3+0xfff)&0xfffff000)

 return -ENOMEM;

 start_addr = addr = (TASK_SIZE/3+0xfff)&0xfffff000;

 vma = find_vma(current->mm, addr);

 }

 if (!vma || addr + len <= vma->vm_start) {

 mm->free_area_cache = addr + len;

 return addr;

 }

 addr = vma->vm_end;

 }

The function starts by checking to make sure the interval length is within TASK_SIZE, the limit imposed
on User Mode linear addresses (usually 3 GB). If addr is different from zero, the function tries to allocate
the interval starting from addr. To be on the safe side, the function rounds up the value of addr to a
multiple of 4 KB.

 If addr is 0 or the previous search failed, the arch_get_unmapped_area() function scans the User Mode
linear address space looking for a range of linear addresses not included in any memory region and large
enough to contain the new region. To speed up the search, the search's starting point is usually set to the
linear address following the last allocated memory region. The mm->free_area_cache field of the memory
descriptor is initialized to one-third of the User Mode linear address spaceusually, 1 GBand then updated
as new memory regions are created. If the function fails in finding a suitable range of linear addresses, the
search restarts from the beginningthat is, from one-third of the User Mode linear address space: in fact,
the first third of the User Mode linear address space is reserved for memory regions having a predefined
starting linear address, typically the text, data, and bss segments of an executable file (see Chapter 20).

 The function invokes find_vma() to locate the first memory region ending after the search's starting
point, then repeatedly considers all the following memory regions. Three cases may occur:



 The requested interval is larger than the portion of linear address space yet to be scanned (addr
+ len > TASK_SIZE): in this case, the function either restarts from one-third of the User Mode
address space or, if the second search has already been done, returns -ENOMEM (there are not
enough linear addresses to satisfy the request).



 The hole following the last scanned region is not large enough (vma != NULL &&
vma->vm_start < addr + len). In this case, the function considers the next region.



 If neither one of the preceding conditions holds, a large enough hole has been found. In this case,
the function returns addr.

 9.3.3.4. Inserting a region in the memory descriptor list: insert_vm_struct()

 insert_vm_struct() inserts a vm_area_struct structure in the memory region object list and red-black tree
of a memory descriptor. It uses two parameters: mm, which specifies the address of a process memory
descriptor, and vma, which specifies the address of the vm_area_struct object to be inserted. The
vm_start and vm_end fields of the memory region object must have already been initialized. The function
invokes the find_vma_prepare() function to look up the position in the red-black tree mm->mm_rb
where vma should go. Then insert_vm_struct() invokes the vma_link() function, which in turn:

1.

1. Inserts the memory region in the linked list referenced by mm->mmap.
2.

2. Inserts the memory region in the red-black tree mm->mm_rb.
3.

3. If the memory region is anonymous, inserts the region in the list headed at the corresponding
anon_vma data structure (see the section "Reverse Mapping for Anonymous Pages" in Chapter
17).

4.

4. Increases the mm->map_count counter.

If the region contains a memory-mapped file, the vma_link() function performs additional tasks that are
described in Chapter 17.

 The _ _vma_unlink() function receives as its parameters a memory descriptor address mm and two
memory region object addresses vma and prev. Both memory regions should belong to mm, and prev
should precede vma in the memory region ordering. The function removes vma from the linked list and
the red-black tree of the memory descriptor. It also updates mm->mmap_cache, which stores the last
referenced memory region, if this field points to the memory region just deleted.

 9.3.4. Allocating a Linear Address Interval

 Now let's discuss how new linear address intervals are allocated. To do this, the do_mmap() function
creates and initializes a new memory region for the current process. However, after a successful
allocation, the memory region could be merged with other memory regions defined for the process.

 The function uses the following parameters:

 file and offset

 File object pointer file and file offset offset are used if the new memory region will map a file into
memory. This topic is discussed in Chapter 16. In this section, we assume that no memory mapping is
required and that file and offset are both NULL.

addr

 This linear address specifies where the search for a free interval must start.

len

 The length of the linear address interval.

prot

 This parameter specifies the access rights of the pages included in the memory region. Possible flags are
PROT_READ, PROT_WRITE, PROT_EXEC, and PROT_NONE. The first three flags mean the same
things as the VM_READ, VM_WRITE, and VM_EXEC flags. PROT_NONE indicates that the
process has none of those access rights.

flag

 This parameter specifies the remaining memory region flags:

 MAP_GROWSDOWN, MAP_LOCKED, MAP_DENYWRITE, and MAP_EXECUTABLE

 Their meanings are identical to those of the flags listed in Table 9-5.

MAP_SHARED and MAP_PRIVATE

 The former flag specifies that the pages in the memory region can be shared among several processes;
the latter flag has the opposite effect. Both flags refer to the VM_SHARED flag in the vm_area_struct
descriptor.

MAP_FIXED

 The initial linear address of the interval must be exactly the one specified in the addr parameter.

MAP_ANONYMOUS

 No file is associated with the memory region (see Chapter 16).

MAP_NORESERVE

 The function doesn't have to do a preliminary check on the number of free page frames.

MAP_POPULATE

 The function should pre-allocate the page frames required for the mapping established by the memory
region. This flag is significant only for memory regions that map files (see Chapter 16) and for IPC shared
memory regions (see Chapter 19).

MAP_NONBLOCK

 Significant only when the MAP_POPULATE flag is set: when pre-allocating the page frames, the
function must not block.

 The do_mmap() function performs some preliminary checks on the value of offset and then executes the
do_mmap_pgoff() function. In this chapter we will suppose that the new interval of linear address does
not map a file on diskfile memory mapping is discussed in detail in Chapter 16. Here is a description of
the do_mmap_pgoff() function for anonymous memory regions:

1.

1. Checks whether the parameter values are correct and whether the request can be satisfied. In
particular, it checks for the following conditions that prevent it from satisfying the request:
o

o The linear address interval has zero length or includes addresses greater than TASK_SIZE.
o

o The process has already mapped too many memory regionsthat is, the value of the
map_count field of its mm memory descriptor exceeds the allowed maximum value.

o

o The flag parameter specifies that the pages of the new linear address interval must be locked
in RAM, but the process is not allowed to create locked memory regions, or the number of
pages locked by the process exceeds the threshold stored in the
signal->rlim[RLIMIT_MEMLOCK].rlim_cur field of the process descriptor.

3. If any of the preceding conditions holds, do_mmap_pgoff() terminates by returning a negative
value. If the linear address interval has a zero length, the function returns without performing any
action.

2.

2. Invokes get_unmapped_area() to obtain a linear address interval for the new region (see the
previous section "Memory Region Handling").

3.

3. Computes the flags of the new memory region by combining the values stored in the prot and
flags parameters:

3. vm_flags = calc_vm_prot_bits(prot,flags) |

 calc_vm_flag_bits(prot,flags) |

 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

 if (flags & MAP_SHARED)

 vm_flags |= VM_SHARED | VM_MAYSHARE;

3. The calc_vm_prot_bits() function sets the VM_READ, VM_WRITE, and VM_EXEC flags in
vm_flags only if the corresponding PROT_READ, PROT_WRITE, and PROT_EXEC flags in
prot are set. The calc_vm_flag_bits() function sets the VM_GROWSDOWN,
VM_DENYWRITE, VM_EXECUTABLE, and VM_LOCKED flags in vm_flags only if the
corresponding MAP_GROWSDOWN, MAP_DENYWRITE, MAP_EXECUTABLE, and
MAP_LOCKED flags in flags are set. A few other flags are set in vm_flags: VM_MAYREAD,
VM_MAYWRITE, VM_MAYEXEC, the default flags for all memory regions in
mm->def_flags,[*] and both VM_SHARED and VM_MAYSHARE if the pages of the memory
region have to be shared with other processes.

3. [*] Actually, the def_flags field of the memory descriptor is modified only by the mlockall()
system call, which can be used to set the VM_LOCKED flag, thus locking all future pages of the
calling process in RAM.

4.

4. Invokes find_vma_prepare() to locate the object of the memory region that shall precede the
new interval, as well as the position of the new region in the red-black tree:

4. for (;;) {

 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);

 if (!vma || vma->vm_start >= addr + len)

 break;

 if (do_munmap(mm, addr, len))

 return -ENOMEM;

 }

4. The find_vma_prepare() function also checks whether a memory region that overlaps the new
interval already exists. This occurs when the function returns a non-NULL address pointing to a
region that starts before the end of the new interval. In this case, do_mmap_pgoff() invokes
do_munmap() to remove the new interval and then repeats the whole step (see the later section "
Releasing a Linear Address Interval").

5.

5. Checks whether inserting the new memory region causes the size of the process address space
(mm->total_vm<<PAGE_SHIFT)+len to exceed the threshold stored in the
signal->rlim[RLIMIT_AS].rlim_cur field of the process descriptor. If so, it returns the error code
-ENOMEM. Notice that the check is done here and not in step 1 with the other checks, because
some memory regions could have been removed in step 4.

6.

6. Returns the error code -ENOMEM if the MAP_NORESERVE flag was not set in the flags
parameter, the new memory region contains private writable pages, and there are not enough free
page frames; this last check is performed by the security_vm_enough_memory() function.

7.

7. If the new interval is private (VM_SHARED not set) and it does not map a file on disk, it
invokes vma_merge() to check whether the preceding memory region can be expanded in such
a way to include the new interval. Of course, the preceding memory region must have exactly the
same flags as those memory regions stored in the vm_flags local variable. If the preceding
memory region can be expanded, vma_merge() also tries to merge it with the following memory
region (this occurs when the new interval fills the hole between two memory regions and all three
have the same flags). In case it succeeds in expanding the preceding memory region, the function
jumps to step 12.

8.

8. Allocates a vm_area_struct data structure for the new memory region by invoking the
kmem_cache_alloc() slab allocator function.

9.

9. Initializes the new memory region object (pointed to by vma):

9. vma->vm_mm = mm;

 vma->vm_start = addr;

 vma->vm_end = addr + len;

 vma->vm_flags = vm_flags;

 vma->vm_page_prot = protection_map[vm_flags & 0x0f];

 vma->vm_ops = NULL;

 vma->vm_pgoff = pgoff;

 vma->vm_file = NULL;

 vma->vm_private_data = NULL;

 vma->vm_next = NULL;

 INIT_LIST_HEAD(&vma->shared);

10.

10. If the MAP_SHARED flag is set (and the new memory region doesn't map a file on disk), the
region is a shared anonymous region: invokes shmem_zero_setup() to initialize it. Shared
anonymous regions are mainly used for interprocess communications; see the section "IPC
Shared Memory" in Chapter 19.

11.

11. Invokes vma_link() to insert the new region in the memory region list and red-black tree (see the
earlier section "Memory Region Handling").

12.

12. Increases the size of the process address space stored in the total_vm field of the memory
descriptor.

13.

13. If the VM_LOCKED flag is set, it invokes make_pages_present() to allocate all the pages of
the memory region in succession and lock them in RAM:

13. if (vm_flags & VM_LOCKED) {
 mm->locked_vm += len >> PAGE_SHIFT;

 make_pages_present(addr, addr + len);

 }

13.The make_pages_present() function, in turn, invokes get_user_pages() as follows:

13. write = (vma->vm_flags & VM_WRITE) != 0;
 get_user_pages(current, current->mm, addr, len, write, 0, NULL, NULL);

13.The get_user_pages() function cycles through all starting linear addresses of the pages between
addr and addr+len; for each of them, it invokes follow_page() to check whether there is a
mapping to a physical page in the current's Page Tables. If no such physical page exists,
get_user_pages() invokes handle_mm_fault(), which, as we'll see in the section "Handling a
Faulty Address Inside the Address Space," allocates one page frame and sets its Page Table
entry according to the vm_flags field of the memory region descriptor.

14.

14.Finally, it terminates by returning the linear address of the new memory region.

9.3.5. Releasing a Linear Address Interval

 When the kernel must delete a linear address interval from the address space of the current process, it
uses the do_munmap() function. The parameters are: the address mm of the process's memory
descriptor, the starting address start of the interval, and its length len. The interval to be deleted does not
usually correspond to a memory region; it may be included in one memory region or span two or more
regions.

 9.3.5.1. The do_munmap() function

 The function goes through two main phases. In the first phase (steps 16), it scans the list of memory
regions owned by the process and unlinks all regions included in the linear address interval from the
process address space. In the second phase (steps 712), the function updates the process Page Tables
and removes the memory regions identified in the first phase. The function makes use of the split_vma()
and unmap_region() functions, which will be described later. do_munmap() executes the following
steps:

1.

1. Performs some preliminary checks on the parameter values. If the linear address interval includes
addresses greater than TASK_SIZE, if start is not a multiple of 4,096, or if the linear address
interval has a zero length, the function returns the error code -EINVAL.

2.

2. Locates the first memory region mpnt that ends after the linear address interval to be deleted
(mpnt->end > start), if any:

2. mpnt = find_vma_prev(mm, start, &prev);

3.

3. If there is no such memory region, or if the region does not overlap with the linear address
interval, nothing has to be done because there is no memory region in the interval:

3. end = start + len;

 if (!mpnt || mpnt->vm_start >= end)

 return 0;

4.

4. If the linear address interval starts inside the mpnt memory region, it invokes split_vma()
(described below) to split the mpnt memory region into two smaller regions: one outside the
interval and the other inside the interval:

4. if (start > mpnt->vm_start) {

 if (split_vma(mm, mpnt, start, 0))

 return -ENOMEM;

 prev = mpnt;

 }

4. The prev local variable, which previously stored the pointer to the memory region preceding
mpnt, is updated so that it points to mpntthat is, to the new memory region lying outside the linear
address interval. In this way, prev still points to the memory region preceding the first memory
region to be removed.

5.

5. If the linear address interval ends inside a memory region, it invokes split_vma() once again to
split the last overlapping memory region into two smaller regions: one inside the interval and the
other outside the interval:[*]

5. [*] If the linear address interval is properly contained inside a memory region, the region must be
replaced by two new smaller regions. When this case occurs, step 4 and step 5 break the
memory region in three smaller regions: the middle region is destroyed, while the first and the last
ones will be preserved.

5. last = find_vma(mm, end);

 if (last && end > last->vm_start)){

 if (split_vma(mm, last, start, end, 1))

 return -ENOMEM;

 }

6.

6. Updates the value of mpnt so that it points to the first memory region in the linear address
interval. If prev is NULLthat is, there is no preceding memory regionthe address of the first
memory region is taken from mm->mmap:

6. mpnt = prev ? prev->vm_next : mm->mmap;

7.

7. Invokes detach_vmas_to_be_unmapped() to remove the memory regions included in the linear
address interval from the process's linear address space. This function essentially executes the
following code:

7. vma = mpnt;

 insertion_point = (prev ? &prev->vm_next : &mm->mmap);

 do {

 rb_erase(&vma->vm_rb, &mm->mm_rb);

 mm->map_count--;

 tail_vma = vma;

 vma = vma->next;

 } while (vma && vma->start < end);

 *insertion_point = vma;

 tail_vma->vm_next = NULL;

 mm->map_cache = NULL;

7. The descriptors of the regions to be removed are stored in an ordered list, whose head is pointed
to by the mpnt local variable (actually, this list is just a fragment of the original process's list of
memory regions).

8.

8. Gets the mm->page_table_lock spin lock.
9.

9. Invokes unmap_region() to clear the Page Table entries covering the linear address interval and
to free the corresponding page frames (discussed later):

9. unmap_region(mm, mpnt, prev, start, end);

10.

10.Releases the mm->page_table_lock spin lock.
11.

11.Releases the descriptors of the memory regions collected in the list built in step 7:

11. do {
 struct vm_area_struct * next = mpnt->vm_next;

 unmap_vma(mm, mpnt);

 mpnt = next;

 } while (mpnt != NULL);

11.The unmap_vma() function is invoked on every memory region in the list; it essentially executes
the following steps:
a.

a. Updates the mm->total_vm and mm->locked_vm fields.
b.

b. Executes the mm->unmap_area method of the memory descriptor. This method is
implemented either by arch_unmap_area() or by arch_unmap_area_topdown(), according
to the memory region layout of the process (see the earlier section "Memory Region Handling
"). In both cases, the mm->free_area_cache field is updated, if needed.

c.

c. Invokes the close method of the memory region, if defined.
d.

d. If the memory region is anonymous, the function removes it from the anonymous memory
region list headed at mm->anon_vma.

e.

e. Invokes kmem_cache_free() to release the memory region descriptor.
12.

12.Returns 0 (success).

9.3.5.2. The split_vma() function

 The purpose of the split_vma() function is to split a memory region that intersects a linear address
interval into two smaller regions, one outside of the interval and the other inside. The function receives
four parameters: a memory descriptor pointer mm, a memory area descriptor pointer vma that identifies
the region to be split, an address addr that specifies the intersection point between the interval and the
memory region, and a flag new_below that specifies whether the intersection occurs at the beginning or at
the end of the interval. The function performs the following basic steps:

1.

1. Invokes kmem_cache_alloc() to get an additional vm_area_struct descriptor, and stores its
address in the new local variable. If no free memory is available, it returns -ENOMEM.

2.

2. Initializes the fields of the new descriptor with the contents of the fields of the vma descriptor.
3.

3. If the new_below flag is 0, the linear address interval starts inside the vma region, so the new
region must be placed after the vma region. Thus, the function sets both the new->vm_start and
the vma->vm_end fields to addr.

4.

4. Conversely, if the new_below flag is equal to 1, the linear address interval ends inside the vma
region, so the new region must be placed before the vma region. Thus, the function sets both the
new->vm_end and the vma->vm_start fields to addr.

5.

5. If the open method of the new memory region is defined, the function executes it.
6.

6. Links the new memory region descriptor to the mm->mmap list of memory regions and to the
mm->mm_rb red-black tree. Moreover, the function adjusts the red-black tree to take care of
the new size of the memory region vma.

7.

7. Returns 0 (success).

9.3.5.3. The unmap_region() function

 The unmap_region() function walks through a list of memory regions and releases the page frames
belonging to them. It acts on five parameters: a memory descriptor pointer mm, a pointer vma to the
descriptor of the first memory region being removed, a pointer prev to the memory region preceding vma
in the process's list (see steps 2 and 4 in do_munmap()), and two addresses start and end that delimit the
linear address interval being removed. The function essentially executes the following steps:

1.

1. Invokes lru_add_drain() (see Chapter 17).
2.

2. Invokes the tlb_gather_mmu() function to initialize a per-CPU variable named mmu_gathers.
The contents of mmu_gathers are architecture-dependent: generally speaking, the variable should
store all information required for a successful updating of the page table entries of a process. In
the 80 x 86 architecture, the tlb_gather_mmu() function simply saves the value of the mm
memory descriptor pointer in the mmu_gathers variable of the local CPU.

3.

3. Stores the address of the mmu_gathers variable in the tlb local variable.
4.

4. Invokes unmap_vmas() to scan all Page Table entries belonging to the linear address interval: if
only one CPU is available, the function invokes free_swap_and_cache() repeatedly to release
the corresponding pages (see Chapter 17); otherwise, the function saves the pointers of the
corresponding page descriptors in the mmu_gathers local variable.

5.

5. Invokes free_pgtables(tlb,prev,start,end) to try to reclaim the Page Tables of the process that
have been emptied in the previous step.

6.

6. Invokes tlb_finish_mmu(tlb,start,end) to finish the work: in turn, this function:
a.

a. Invokes flush_tlb_mm() to flush the TLB (see the section "Handling the Hardware Cache
and the TLB" in Chapter 2).

b.

b. In multiprocessor system, invokes free_pages_and_swap_cache() to release the page
frames whose pointers have been collected in the mmu_gather data structure. This function is
described in Chapter 17.

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.4. Page Fault Exception Handler
 As stated previously, the Linux Page Fault exception handler must distinguish exceptions caused by
programming errors from those caused by a reference to a page that legitimately belongs to the process
address space but simply hasn't been allocated yet.

 The memory region descriptors allow the exception handler to perform its job quite efficiently. The
do_page_fault() function, which is the Page Fault interrupt service routine for the 80 x 86 architecture,
compares the linear address that caused the Page Fault against the memory regions of the current process;
it can thus determine the proper way to handle the exception according to the scheme that is illustrated in
Figure 9-4.

 Figure 9-4. Overall scheme for the Page Fault handler

 In practice, things are a lot more complex because the Page Fault handler must recognize several particular
subcases that fit awkwardly into the overall scheme, and it must distinguish several kinds of legal access. A
detailed flow diagram of the handler is illustrated in Figure 9-5.

 The identifiers vmalloc_fault, good_area, bad_area, and no_context are labels appearing in do_page_fault(
) that should help you to relate the blocks of the flow diagram to specific lines of code.

 The do_ page_fault() function accepts the following input parameters:


 The regs address of a pt_regs structure containing the values of the microprocessor registers when
the exception occurred.



 A 3-bit error_code, which is pushed on the stack by the control unit when the exception occurred
(see "Hardware Handling of Interrupts and Exceptions" in Chapter 4). The bits have the following
meanings:
o

o If bit 0 is clear, the exception was caused by an access to a page that is not present (the
Present flag in the Page Table entry is clear); otherwise, if bit 0 is set, the exception was caused
by an invalid access right.

o Figure 9-5. The flow diagram of the Page Fault handler

o

o

o If bit 1 is clear, the exception was caused by a read or execute access; if set, the exception
was caused by a write access.

o

o If bit 2 is clear, the exception occurred while the processor was in Kernel Mode; otherwise, it
occurred in User Mode.

 The first operation of do_ page_fault() consists of reading the linear address that caused the Page Fault.
When the exception occurs, the CPU control unit stores that value in the cr2 control register:

 asm("movl %%cr2,%0":"=r" (address));

 if (regs->eflags & 0x00020200)

 local_irq_enable();

 tsk = current;

The linear address is saved in the address local variable. The function also ensures that local interrupts are
enabled if they were enabled before the fault or the CPU was running in virtual-8086 mode, and saves the
pointers to the process descriptor of current in the tsk local variable.

 As shown at the top of Figure 9-5, do_ page_fault() checks whether the faulty linear address belongs to
the fourth gigabyte:

 info.si_code = SEGV_MAPERR;

 if (address >= TASK_SIZE) {

 if (!(error_code & 0x101))

 goto vmalloc_fault;

 goto bad_area_nosemaphore;

 }

If the exception was caused by the kernel trying to access a nonexisting page frame, a jump is made to the
code at label vmalloc_fault, which takes care of faults that were likely caused by accessing a noncontiguous
memory area in Kernel Mode; we describe this case in the later section "Handling Noncontiguous Memory
Area Accesses." Otherwise, a jump is made to the code at the bad_area_nosemaphore label, described in
the later section "Handling a Faulty Address Outside the Address Space."

 Next, the handler checks whether the exception occurred while the kernel was executing some critical
routine or running a kernel thread (remember that the mm field of the process descriptor is always NULL
for kernel threads):

 if (in_atomic() || !tsk->mm)

 goto bad_area_nosemaphore;

The in_atomic() macro yields the value one if the fault occurred while either one of the following conditions
holds:



 The kernel was executing an interrupt handler or a deferrable function.


 The kernel was executing a critical region with kernel preemption disabled (see the section "Kernel
Preemption" in Chapter 5).

 If the Page Fault did occur in an interrupt handler, in a deferrable function, in a critical region, or in a kernel
thread, do_ page_fault() does not try to compare the linear address with the memory regions of current.
Kernel threads never use linear addresses below TASK_SIZE. Similarly, interrupt handlers, deferrable
functions, and code of critical regions should not use linear addresses below TASK_SIZE because this
might block the current process. (See the section "Handling a Faulty Address Outside the Address Space"
later in this chapter for information on the info local variable and a description of the code at the
bad_area_nosemaphore label.)

 Let's suppose that the Page Fault did not occur in an interrupt handler, in a deferrable function, in a critical
region, or in a kernel thread. Then the function must inspect the memory regions owned by the process to
determine whether the faulty linear address is included in the process address space. In order to this, it must
acquire the mmap_sem read/write semaphore of the process:

 if (!down_read_trylock(&tsk->mm>mmap_sem)) {

 if ((error_code & 4) == 0 &&

 !search_exception_table(regs->eip))

 goto bad_area_nosemaphore;

 down_read(&tsk->mm->mmap_sem);

 }

If kernel bugs and hardware malfunctioning can be ruled out, the current process has not already acquired
the mmap_sem semaphore for writing when the Page Fault occurs. However, do_page_fault() wants to be
sure that this is actually true, because otherwise a deadlock would occur. For that reason, the function
makes use of down_read_trylock() instead of down_read() (see the section "Read/Write Semaphores" in
Chapter 5). If the semaphore is closed and the Page Fault occurred in Kernel Mode, do_page_fault()
determines whether the exception occurred while using some linear address that has been passed to the
kernel as a parameter of a system call (see the next section "Handling a Faulty Address Outside the
Address Space"). In this case, do_page_fault() knows for sure that the semaphore is owned by another
processbecause every system call service routine carefully avoids acquiring the mmap_sem semaphore for
writing before accessing the User Mode address spaceso the function waits until the semaphore is released.
Otherwise, the Page Fault is due to a kernel bug or to a serious hardware problem, so the function jumps to
the bad_area_nosemaphore label.

 Let's assume that the mmap_sem semaphore has been safely acquired for reading. Now do_page_fault()
looks for a memory region containing the faulty linear address:

 vma = find_vma(tsk->mm, address);

 if (!vma)

 goto bad_area;

 if (vma->vm_start <= address)

 goto good_area;

If vma is NULL, there is no memory region ending after address, and thus the faulty address is certainly
bad. On the other hand, if the first memory region ending after address includes address, the function jumps
to the code at label good_area.

 If none of the two "if" conditions are satisfied, the function has determined that address is not included in
any memory region; however, it must perform an additional check, because the faulty address may have
been caused by a push or pusha instruction on the User Mode stack of the process.

 Let's make a short digression to explain how stacks are mapped into memory regions. Each region that
contains a stack expands toward lower addresses; its VM_GROWSDOWN flag is set, so the value of its
vm_end field remains fixed while the value of its vm_start field may be decreased. The region boundaries
include, but do not delimit precisely, the current size of the User Mode stack. The reasons for the fuzz
factor are:



 The region size is a multiple of 4 KB (it must include complete pages) while the stack size is
arbitrary.



 Page frames assigned to a region are never released until the region is deleted; in particular, the
value of the vm_start field of a region that includes a stack can only decrease; it can never increase.
Even if the process executes a series of pop instructions, the region size remains unchanged.

 It should now be clear how a process that has filled up the last page frame allocated to its stack may cause
a Page Fault exception: the push refers to an address outside of the region (and to a nonexistent page
frame). Notice that this kind of exception is not caused by a programming error; thus it must be handled
separately by the Page Fault handler.

 We now return to the description of do_ page_fault(), which checks for the case described previously:

 if (!(vma->vm_flags & VM_GROWSDOWN))

 goto bad_area;

 if (error_code & 4 /* User Mode */

 && address + 32 < regs->esp)

 goto bad_area;

 if (expand_stack(vma, address))

 goto bad_area;

 goto good_area;

If the VM_GROWSDOWN flag of the region is set and the exception occurred in User Mode, the function
checks whether address is smaller than the regs->esp stack pointer (it should be only a little smaller).
Because a few stack-related assembly language instructions (such as pusha) perform a decrement of the
esp register only after the memory access, a 32-byte tolerance interval is granted to the process. If the
address is high enough (within the tolerance granted), the code invokes the expand_stack() function to
check whether the process is allowed to extend both its stack and its address space; if everything is OK, it
sets the vm_start field of vma to address and returns 0; otherwise, it returns -ENOMEM.

 Note that the preceding code skips the tolerance check whenever the VM_GROWSDOWN flag of the
region is set and the exception did not occur in User Mode. These conditions mean that the kernel is
addressing the User Mode stack and that the code should always run expand_stack().

 9.4.1. Handling a Faulty Address Outside the Address Space

 If address does not belong to the process address space, do_page_fault() proceeds to execute the
statements at the label bad_area. If the error occurred in User Mode, it sends a SIGSEGV signal to current
(see the section "Generating a Signal" in Chapter 11) and terminates:

 bad_area:

 up_read(&tsk->mm->mmap_sem);

 bad_area_nosemaphore:

 if (error_code & 4) { /* User Mode */

 tsk->thread.cr2 = address;

 tsk->thread.error_code = error_code | (address >= TASK_SIZE);

 tsk->thread.trap_no = 14;

 info.si_signo = SIGSEGV;

 info.si_errno = 0;

 info.si_addr = (void *) address;

 force_sig_info(SIGSEGV, &info, tsk);

 return;

 }

The force_sig_info() function makes sure that the process does not ignore or block the SIGSEGV signal,
and sends the signal to the User Mode process while passing some additional information in the info local
variable (see the section "Generating a Signal" in Chapter 11). The info.si_code field is already set to
SEGV_MAPERR (if the exception was due to a nonexisting page frame) or to SEGV_ACCERR (if the
exception was due to an invalid access to an existing page frame).

 If the exception occurred in Kernel Mode (bit 2 of error_code is clear), there are still two alternatives:


 The exception occurred while using some linear address that has been passed to the kernel as a
parameter of a system call.



 The exception is due to a real kernel bug.

 The function distinguishes these two alternatives as follows:

 no_context:

 if ((fixup = search_exception_table(regs->eip)) != 0) {

 regs->eip = fixup;

 return;

 }

In the first case, it jumps to a "fixup code," which typically sends a SIGSEGV signal to current or terminates
a system call handler with a proper error code (see the section "Dynamic Address Checking: The Fix-up
Code" in Chapter 10).

 In the second case, the function prints a complete dump of the CPU registers and of the Kernel Mode
stack both on the console and on a system message buffer; it then kills the current process by invoking the
do_exit() function (see Chapter 20). This is the so-called "Kernel oops" error, named after the message
displayed. The dumped values can be used by kernel hackers to reconstruct the conditions that triggered
the bug, and thus find and correct it.

 9.4.2. Handling a Faulty Address Inside the Address Space

 If address belongs to the process address space, do_ page_fault() proceeds to the statement labeled
good_area:

 good_area:

 info.si_code = SEGV_ACCERR;

 write = 0;

 if (error_code & 2) { /* write access */

 if (!(vma->vm_flags & VM_WRITE))

 goto bad_area;

 write++;

 } else /* read access */

 if ((error_code & 1) || !(vma->vm_flags & (VM_READ | VM_EXEC)))

 goto bad_area;

If the exception was caused by a write access, the function checks whether the memory region is writable.
If not, it jumps to the bad_area code; if so, it sets the write local variable to 1.

 If the exception was caused by a read or execute access, the function checks whether the page is already
present in RAM. In this case, the exception occurred because the process tried to access a privileged page
frame (one whose User/Supervisor flag is clear) in User Mode, so the function jumps to the bad_area code.
[*] If the page is not present, the function also checks whether the memory region is readable or
executable.

[*] However, this case should never happen, because the kernel does not assign privileged page frames to
the processes.

 If the memory region access rights match the access type that caused the exception, the handle_mm_fault(
) function is invoked to allocate a new page frame:

 survive:

 ret = handle_mm_fault(tsk->mm, vma, address, write);

 if (ret == VM_FAULT_MINOR || ret == VM_FAULT_MAJOR) {

 if (ret == VM_FAULT_MINOR) tsk->min_flt++; else tsk->maj_flt++;

 up_read(&tsk->mm->mmap_sem);

 return;

 }

The handle_mm_fault() function returns VM_FAULT_MINOR or VM_FAULT_MAJOR if it succeeded
in allocating a new page frame for the process. The value VM_FAULT_MINOR indicates that the Page
Fault has been handled without blocking the current process; this kind of Page Fault is called minor fault.
The value VM_FAULT_MAJOR indicates that the Page Fault forced the current process to sleep (most
likely because time was spent while filling the page frame assigned to the process with data read from disk);
a Page Fault that blocks the current process is called a major fault. The function can also return
VM_FAULT_OOM (for not enough memory) or VM_FAULT_SIGBUS (for every other error).

 If handle_mm_fault() returns the value VM_FAULT_SIGBUS, a SIGBUS signal is sent to the process:

 if (ret == VM_FAULT_SIGBUS) {

 do_sigbus:

 up_read(&tsk->mm->mmap_sem);

 if (!(error_code & 4)) /* Kernel Mode */

 goto no_context;

 tsk->thread.cr2 = address;

 tsk->thread.error_code = error_code;

 tsk->thread.trap_no = 14;

 info.si_signo = SIGBUS;

 info.si_errno = 0;

 info.si_code = BUS_ADRERR;

 info.si_addr = (void *) address;

 force_sig_info(SIGBUS, &info, tsk);

 }

If handle_mm_fault() cannot allocate the new page frame, it returns the value VM_FAULT_OOM; in this
case, the kernel usually kills the current process. However, if current is the init process, it is just put at the
end of the run queue and the scheduler is invoked; once init resumes its execution, handle_mm_fault() is
executed again:

 if (ret == VM_FAULT_OOM) {

 out_of_memory:

 up_read(&tsk->mm->mmap_sem);

 if (tsk->pid != 1) {

 if (error_code & 4) /* User Mode */

 do_exit(SIGKILL);

 goto no_context;

 }

 yield();

 down_read(&tsk->mm->mmap_sem);

 goto survive;

 }

The handle_mm_fault() function acts on four parameters:

 mm

 A pointer to the memory descriptor of the process that was running on the CPU when the exception
occurred

vma

 A pointer to the descriptor of the memory region, including the linear address that caused the exception

address

 The linear address that caused the exception

write_access

 Set to 1 if tsk attempted to write in address and to 0 if tsk attempted to read or execute it

 The function starts by checking whether the Page Middle Directory and the Page Table used to map
address exist. Even if address belongs to the process address space, the corresponding Page Tables might
not have been allocated, so the task of allocating them precedes everything else:

 pgd = pgd_offset(mm, address);

 spin_lock(&mm->page_table_lock);

 pud = pud_alloc(mm, pgd, address);

 if (pud) {

 pmd = pmd_alloc(mm, pud, address);

 if (pmd) {

 pte = pte_alloc_map(mm, pmd, address);

 if (pte)

 return handle_pte_fault(mm, vma, address,

 write_access, pte, pmd);

 }

 }

 spin_unlock(&mm->page_table_lock);

 return VM_FAULT_OOM;

The pgd local variable contains the Page Global Directory entry that refers to address; pud_alloc() and
pmd_alloc() are invoked to allocate, if needed, a new Page Upper Directory and a new Page Middle
Directory, respectively.[*] pte_alloc_map() is then invoked to allocate, if needed, a new Page Table. If
both operations are successful, the pte local variable points to the Page Table entry that refers to address.
The handle_pte_fault() function is then invoked to inspect the Page Table entry corresponding to address
and to determine how to allocate a new page frame for the process:

[*] On 80 x 86 microprocessors, these allocations never occur, because the Page Upper Directories are
always included in the Page Global Directory, and the Page Middle Directories are either included in the
Page Upper Directory (PAE not enabled) or allocated together with the Page Upper Directory (PAE
enabled).



 If the accessed page is not presentthat is, if it is not already stored in any page framethe kernel
allocates a new page frame and initializes it properly; this technique is called demand paging .



 If the accessed page is present but is marked read-onlyi.e., if it is already stored in a page framethe
kernel allocates a new page frame and initializes its contents by copying the old page frame data;
this technique is called Copy On Write.

 9.4.3. Demand Paging

 The term demand paging denotes a dynamic memory allocation technique that consists of deferring page
frame allocation until the last possible momentuntil the process attempts to address a page that is not
present in RAM, thus causing a Page Fault exception.

 The motivation behind demand paging is that processes do not address all the addresses included in their
address space right from the start; in fact, some of these addresses may never be used by the process.
Moreover, the program locality principle (see the section "Hardware Cache" in Chapter 2) ensures that, at
each stage of program execution, only a small subset of the process pages are really referenced, and
therefore the page frames containing the temporarily useless pages can be used by other processes.
Demand paging is thus preferable to global allocation (assigning all page frames to the process right from the
start and leaving them in memory until program termination), because it increases the average number of
free page frames in the system and therefore allows better use of the available free memory. From another
viewpoint, it allows the system as a whole to get better throughput with the same amount of RAM.

 The price to pay for all these good things is system overhead: each Page Fault exception induced by
demand paging must be handled by the kernel, thus wasting CPU cycles. Fortunately, the locality principle
ensures that once a process starts working with a group of pages, it sticks with them without addressing
other pages for quite a while. Thus, Page Fault exceptions may be considered rare events.

 An addressed page may not be present in main memory either because the page was never accessed by
the process, or because the corresponding page frame has been reclaimed by the kernel (see Chapter 17).

 In both cases, the page fault handler must assign a new page frame to the process. How this page frame is
initialized, however, depends on the kind of page and on whether the page was previously accessed by the
process. In particular:

1.

1. Either the page was never accessed by the process and it does not map a disk file, or the page
maps a disk file. The kernel can recognize these cases because the Page Table entry is filled with
zerosi.e., the pte_none macro returns the value 1.

2.

2. The page belongs to a non-linear disk file mapping (see the section "Non-Linear Memory
Mappings" in Chapter 16). The kernel can recognize this case, because the Present flag is cleared
and the Dirty flag is seti.e., the pte_file macro returns the value 1.

3.

3. The page was already accessed by the process, but its content is temporarily saved on disk. The
kernel can recognize this case because the Page Table entry is not filled with zeros, but the Present
and Dirty flags are cleared.

Thus, the handle_ pte_fault() function is able to distinguish the three cases by inspecting the Page Table
entry that refers to address:

 entry = *pte;

 if (!pte_present(entry)) {

 if (pte_none(entry))

 return do_no_page(mm, vma, address, write_access, pte, pmd);

 if (pte_file(entry))

 return do_file_page(mm, vma, address, write_access, pte, pmd);

 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);

 }

We'll examine cases 2 and 3 in Chapter 16 and in Chapter 17, respectively.

 In case 1, when the page was never accessed or the page linearly maps a disk file, the do_no_page()
function is invoked. There are two ways to load the missing page, depending on whether the page is
mapped to a disk file. The function determines this by checking the nopage method of the vma memory
region object, which points to the function that loads the missing page from disk into RAM if the page is
mapped to a file. Therefore, the possibilities are:



 The vma->vm_ops->nopage field is not NULL. In this case, the memory region maps a disk file
and the field points to the function that loads the page. This case is covered in the section "Demand
Paging for Memory Mapping" in Chapter 16 and in the section "IPC Shared Memory" in Chapter
19.



 Either the vma->vm_ops field or the vma->vm_ops->nopage field is NULL. In this case, the
memory region does not map a file on diski.e., it is an anonymous mapping . Thus, do_no_ page()
invokes the do_anonymous_page() function to get a new page frame:

 if (!vma->vm_ops || !vma->vm_ops->nopage)

 return do_anonymous_page(mm, vma, page_table, pmd,

 write_access, address);

The do_anonymous_page() function[*] handles write and read requests separately:

[*] To simplify the description of this function, we skip the statements that deal with reverse mapping, a
topic that will be covered in the section "Reverse Mapping" in Chapter 17.

 if (write_access) {

 pte_unmap(page_table);

 spin_unlock(&mm->page_table_lock);

 page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);

 spin_lock(&mm->page_table_lock);

 page_table = pte_offset_map(pmd, addr);

 mm->rss++;

 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,

 vma->vm_page_prot)), vma);

 lru_cache_add_active(page);

 SetPageReferenced(page);

 set_pte(page_table, entry);

 pte_unmap(page_table);

 spin_unlock(&mm->page_table_lock);

 return VM_FAULT_MINOR;

 }

The first execution of the pte_unmap macro releases the temporary kernel mapping for the high-memory
physical address of the Page Table entry established by pte_offset_map before invoking the
handle_pte_fault() function (see Table 2-7 in the section "Page Table Handling" in Chapter 2). The
following pair or pte_offset_map and pte_unmap macros acquires and releases the same temporary kernel
mapping. The temporary kernel mapping has to be released before invoking alloc_page(), because this
function might block the current process.

 The function increases the rss field of the memory descriptor to keep track of the number of page frames
allocated to the process. The Page Table entry is then set to the physical address of the page frame, which
is marked as writable[] and dirty. The lru_cache_add_active() function inserts the new page frame in the
swap-related data structures; we discuss it in Chapter 17.

[] If a debugger attempts to write in a page belonging to a read-only memory region of the traced process,
the kernel does not set the Read/Write flag. The maybe_mkwrite() function takes care of this special case.

 Conversely, when handling a read access, the content of the page is irrelevant because the process is
addressing it for the first time. It is safer to give a page filled with zeros to the process rather than an old
page filled with information written by some other process. Linux goes one step further in the spirit of
demand paging. There is no need to assign a new page frame filled with zeros to the process right away,
because we might as well give it an existing page called zero page , thus deferring further page frame
allocation. The zero page is allocated statically during kernel initialization in the empty_zero_page variable
(an array of 4,096 bytes filled with zeros).

 The Page Table entry is thus set with the physical address of the zero page:

 entry = pte_wrprotect(mk_pte(virt_to_page(empty_zero_page),

 vma->vm_page_prot));

 set_pte(page_table, entry);

 spin_unlock(&mm->page_table_lock);

 return VM_FAULT_MINOR;

Because the page is marked as nonwritable, if the process attempts to write in it, the Copy On Write
mechanism is activated. Only then does the process get a page of its own to write in. The mechanism is
described in the next section.

 9.4.4. Copy On Write

 First-generation Unix systems implemented process creation in a rather clumsy way: when a fork() system
call was issued, the kernel duplicated the whole parent address space in the literal sense of the word and
assigned the copy to the child process. This activity was quite time consuming since it required:



 Allocating page frames for the Page Tables of the child process


 Allocating page frames for the pages of the child process


 Initializing the Page Tables of the child process


 Copying the pages of the parent process into the corresponding pages of the child process

 This way of creating an address space involved many memory accesses, used up many CPU cycles, and
completely spoiled the cache contents. Last but not least, it was often pointless because many child
processes start their execution by loading a new program, thus discarding entirely the inherited address
space (see Chapter 20).

 Modern Unix kernels, including Linux, follow a more efficient approach called Copy On Write (COW).
The idea is quite simple: instead of duplicating page frames, they are shared between the parent and the
child process. However, as long as they are shared, they cannot be modified. Whenever the parent or the
child process attempts to write into a shared page frame, an exception occurs. At this point, the kernel
duplicates the page into a new page frame that it marks as writable. The original page frame remains
write-protected: when the other process tries to write into it, the kernel checks whether the writing process
is the only owner of the page frame; in such a case, it makes the page frame writable for the process.

 The _count field of the page descriptor is used to keep track of the number of processes that are sharing
the corresponding page frame. Whenever a process releases a page frame or a Copy On Write is executed
on it, its _count field is decreased; the page frame is freed only when _count becomes -1 (see the section "
Page Descriptors" in Chapter 8).

 Let's now describe how Linux implements COW. When handle_ pte_fault() determines that the Page
Fault exception was caused by an access to a page present in memory, it executes the following
instructions:

 if (pte_present(entry)) {

 if (write_access) {

 if (!pte_write(entry))

 return do_wp_page(mm, vma, address, pte, pmd, entry);

 entry = pte_mkdirty(entry);

 }

 entry = pte_mkyoung(entry);

 set_pte(pte, entry);

 flush_tlb_page(vma, address);

 pte_unmap(pte);

 spin_unlock(&mm->page_table_lock);

 return VM_FAULT_MINOR;

 }

The handle_pte_fault() function is architecture-independent: it considers each possible violation of the page
access rights. However, in the 80 x 86 architecture, if the page is present, the access was for writing and
the page frame is write-protected (see the earlier section "Handling a Faulty Address Inside the Address
Space"). Thus, the do_wp_page() function is always invoked.

 The do_wp_page() function[*] starts by deriving the page descriptor of the page frame referenced by the
Page Table entry involved in the Page Fault exception. Next, the function determines whether the page must
really be duplicated. If only one process owns the page, Copy On Write does not apply, and the process
should be free to write the page. Basically, the function reads the _count field of the page descriptor: if it is
equal to 0 (a single owner), COW must not be done. Actually, the check is slightly more complicated,
because the _count field is also increased when the page is inserted into the swap cache (see the section "
The Swap Cache" in Chapter 17) and when the PG_private flag in the page descriptor is set. However,
when COW is not to be done, the page frame is marked as writable, so that it does not cause further Page
Fault exceptions when writes are attempted:

[*] To simplify the description of this function, we skip the statements that deal with reverse mapping, a
topic that will be covered in the section "Reverse Mapping" in Chapter 17.

 set_pte(page_table, maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),vma));

 flush_tlb_page(vma, address);

 pte_unmap(page_table);

 spin_unlock(&mm->page_table_lock);

 return VM_FAULT_MINOR;

If the page is shared among several processes by means of COW, the function copies the content of the old
page frame (old_page) into the newly allocated one (new_page). To avoid race conditions, get_page() is
invoked to increase the usage counter of old_page before starting the copy operation:

 old_page = pte_page(pte);

 pte_unmap(page_table);

 get_page(old_page);

 spin_unlock(&mm->page_table_lock);

 if (old_page == virt_to_page(empty_zero_page))

 new_page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);

 } else {

 new_page = alloc_page(GFP_HIGHUSER);

 vfrom = kmap_atomic(old_page, KM_USER0)

 vto = kmap_atomic(new_page, KM_USER1);

 copy_page(vto, vfrom);

 kunmap_atomic(vfrom, KM_USER0);

 kunmap_atomic(vto, KM_USER0);

 }

If the old page is the zero page, the new frame is efficiently filled with zeros when it is allocated (_
_GFP_ZERO flag). Otherwise, the page frame content is copied using the copy_page() macro. Special
handling for the zero page is not strictly required, but it improves the system performance, because it
preserves the microprocessor hardware cache by making fewer address references.

 Because the allocation of a page frame can block the process, the function checks whether the Page Table
entry has been modified since the beginning of the function (pte and *page_table do not have the same
value). In this case, the new page frame is released, the usage counter of old_page is decreased (to undo
the increment made previously), and the function terminates.

 If everything looks OK, the physical address of the new page frame is finally written into the Page Table
entry, and the corresponding TLB register is invalidated:

 spin_lock(&mm->page_table_lock);

 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page,

 vma->vm_page_prot)),vma);

 set_pte(page_table, entry);

 flush_tlb_page(vma, address);

 lru_cache_add_active(new_page);

 pte_unmap(page_table);

 spin_unlock(&mm->page_table_lock);

The lru_cache_add_active() function inserts the new page frame in the swap-related data structures; see
Chapter 17 for its description.

 Finally, do_wp_page() decreases the usage counter of old_page twice. The first decrement undoes the
safety increment made before copying the page frame contents; the second decrement reflects the fact that
the current process no longer owns the page frame.

 9.4.5. Handling Noncontiguous Memory Area Accesses

 We have seen in the section "Noncontiguous Memory Area Management" in Chapter 8 that the kernel is
quite lazy in updating the Page Table entries corresponding to noncontiguous memory areas. In fact, the
vmalloc() and vfree() functions limit themselves to updating the master kernel Page Tables (i.e., the Page
Global Directory init_mm.pgd and its child Page Tables).

 However, once the kernel initialization phase ends, the master kernel Page Tables are not directly used by
any process or kernel thread. Thus, consider the first time that a process in Kernel Mode accesses a
noncontiguous memory area. When translating the linear address into a physical address, the CPU's
memory management unit encounters a null Page Table entry and raises a Page Fault. However, the handler
recognizes this special case because the exception occurred in Kernel Mode, and the faulty linear address is
greater than TASK_SIZE. Thus, the do_page_fault() handler checks the corresponding master kernel
Page Table entry:

 vmalloc_fault:

 asm("movl %%cr3

,%0":"=r" (pgd_paddr));

 pgd = pgd_index(address) + (pgd_t *) _ _va(pgd_paddr);

 pgd_k = init_mm.pgd + pgd_index(address);

 if (!pgd_present(*pgd_k))

 goto no_context;

 pud = pud_offset(pgd, address);

 pud_k = pud_offset(pgd_k, address);

 if (!pud_present(*pud_k))

 goto no_context;

 pmd = pmd_offset(pud, address);

 pmd_k = pmd_offset(pud_k, address);

 if (!pmd_present(*pmd_k))

 goto no_context;

 set_pmd(pmd, *pmd_k);

 pte_k = pte_offset_kernel(pmd_k, address);

 if (!pte_present(*pte_k))

 goto no_context;

 return;

The pgd_paddr local variable is loaded with the physical address of the Page Global Directory of the
current process, which is stored in the cr3 register.[*] The pgd local variable is then loaded with the linear
address corresponding to pgd_paddr, and the pgd_k local variable is loaded with the linear address of the
master kernel Page Global Directory.

[*] The kernel doesn't use current->mm->pgd to derive the address because this fault can occur anytime,
even during a process switch.

 If the master kernel Page Global Directory entry corresponding to the faulty linear address is null, the
function jumps to the code at the no_context label (see the earlier section "Handling a Faulty Address
Outside the Address Space"). Otherwise, the function looks at the master kernel Page Upper Directory
entry and at the master kernel Page Middle Directory entry corresponding to the faulty linear address.
Again, if either one of these entries is null, a jump is done to the no_context label. Otherwise, the master
entry is copied into the corresponding entry of the process's Page Middle Directory.[*] Then the whole
operation is repeated with the master Page Table entry.

[*] You might remember from the section "Paging in Linux" in Chapter 2 that if PAE is enabled then the
Page Upper Directory entry cannot be null; otherwise, if PAE is disabled, setting the Page Middle Directory
entry implicitly sets the Page Upper Directory entry, too.

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.5. Creating and Deleting a Process Address Space
 Of the six typical cases mentioned earlier in the section "The Process's Address Space," in which a
process gets new memory regions, the first oneissuing a fork() system callrequires the creation of a
whole new address space for the child process. Conversely, when a process terminates, the kernel
destroys its address space. In this section, we discuss how these two activities are performed by Linux.

 9.5.1. Creating a Process Address Space

 In the section "The clone(), fork(), and vfork() System Calls" in Chapter 3, we mentioned that the
kernel invokes the copy_mm() function while creating a new process. This function creates the process
address space by setting up all Page Tables and memory descriptors of the new process.

 Each process usually has its own address space, but lightweight processes can be created by calling
clone() with the CLONE_VM flag set. These processes share the same address space; that is, they are
allowed to address the same set of pages.

 Following the COW approach described earlier, traditional processes inherit the address space of their
parent: pages stay shared as long as they are only read. When one of the processes attempts to write one
of them, however, the page is duplicated; after some time, a forked process usually gets its own address
space that is different from that of the parent process. Lightweight processes, on the other hand, use the
address space of their parent process. Linux implements them simply by not duplicating address space.
Lightweight processes can be created considerably faster than normal processes, and the sharing of
pages can also be considered a benefit as long as the parent and children coordinate their accesses
carefully.

 If the new process has been created by means of the clone() system call and if the CLONE_VM flag of
the flag parameter is set, copy_mm() gives the clone (tsk) the address space of its parent (current):

 if (clone_flags & CLONE_VM) {

 atomic_inc(¤t->mm->mm_users);

 spin_unlock_wait(¤t->mm->page_table_lock);

 tsk->mm = current->mm;

 tsk->active_mm = current->mm;

 return 0;

 }

Invoking the spin_unlock_wait() function ensures that, if the page table spin lock of the process is held
by some other CPU, the page fault handler does not terminate until that lock is released. In fact, beside
protecting the page tables, this spin lock must forbid the creation of new lightweight processes sharing the
current->mm descriptor.

 If the CLONE_VM flag is not set, copy_mm() must create a new address space (even though no
memory is allocated within that address space until the process requests an address). The function
allocates a new memory descriptor, stores its address in the mm field of the new process descriptor tsk,
and copies the contents of current->mm into tsk->mm. It then changes a few fields of the new descriptor:

 tsk->mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL);

 memcpy(tsk->mm, current->mm, sizeof(*tsk->mm));

 atomic_set(&tsk->mm->mm_users, 1);

 atomic_set(&tsk->mm->mm_count, 1);

 init_rwsem(&tsk->mm->mmap_sem);

 tsk->mm->core_waiters = 0;

 tsk->mm->page_table_lock = SPIN_LOCK_UNLOCKED;

 tsk->mm->ioctx_list_lock = RW_LOCK_UNLOCKED;

 tsk->mm->ioctx_list = NULL;

 tsk->mm->default_kioctx = INIT_KIOCTX(tsk->mm->default_kioctx,

 *tsk->mm);

 tsk->mm->free_area_cache = (TASK_SIZE/3+0xfff)&0xfffff000;

 tsk->mm->pgd = pgd_alloc(tsk->mm);

 tsk->mm->def_flags = 0;

Remember that the pgd_alloc() macro allocates a Page Global Directory for the new process.

 The architecture-dependent init_new_context() function is then invoked: when dealing with 80 x 86
processors, this function checks whether the current process owns a customized Local Descriptor Table;
if so, init_new_context() makes a copy of the Local Descriptor Table of current and adds it to the
address space of tsk.

 Finally, the dup_mmap() function is invoked to duplicate both the memory regions and the Page Tables
of the parent process. This function inserts the new memory descriptor tsk->mm in the global list of
memory descriptors. Then it scans the list of regions owned by the parent process, starting from the one
pointed to by current->mm->mmap. It duplicates each vm_area_struct memory region descriptor
encountered and inserts the copy in the list of regions and in the red-black tree owned by the child
process.

 Right after inserting a new memory region descriptor, dup_mmap() invokes copy_page_range() to
create, if necessary, the Page Tables needed to map the group of pages included in the memory region
and to initialize the new Page Table entries. In particular, each page frame corresponding to a private,
writable page (VM_SHARED flag off and VM_MAYWRITE flag on) is marked as read-only for both
the parent and the child, so that it will be handled with the Copy On Write mechanism.

 9.5.2. Deleting a Process Address Space

 When a process terminates, the kernel invokes the exit_mm() function to release the address space
owned by that process:

 mm_release(tsk, tsk->mm);

 if (!(mm = tsk->mm)) /* kernel thread ? */

 return;

 down_read(&mm->mmap_sem);

The mm_release() function essentially wakes up all processes sleeping in the tsk->vfork_done
completion (see the section "Completions" in Chapter 5). Typically, the corresponding wait queue is
nonempty only if the exiting process was created by means of the vfork() system call (see the section "
The clone(), fork(), and vfork() System Calls" in Chapter 3).

 If the process being terminated is not a kernel thread, the exit_mm() function must release the memory
descriptor and all related data structures. First of all, it checks whether the mm->core_waiters flag is set:
if it does, then the process is dumping the contents of the memory to a core file. To avoid corruption in
the core file, the function makes use of the mm->core_done and mm->core_startup_done completions to
serialize the execution of the lightweight processes sharing the same memory descriptor mm.

 Next, the function increases the memory descriptor's main usage counter, resets the mm field of the
process descriptor, and puts the processor in lazy TLB mode (see "Handling the Hardware Cache and
the TLB" in Chapter 2):

 atomic_inc(&mm->mm_count);

 spin_lock(tsk->alloc_lock);

 tsk->mm = NULL;

 up_read(&mm->map_sem);

 enter_lazy_tlb(mm, current);

 spin_unlock(tsk->alloc_lock);

 mmput(mm);

Finally, the mmput() function is invoked to release the Local Descriptor Table, the memory region
descriptors, and the Page Tables. The memory descriptor itself, however, is not released, because
exit_mm() has increased the main usage counter. The descriptor will be released by the
finish_task_switch() function when the process being terminated will be effectively evicted from the local
CPU (see the section "The schedule() Function" in Chapter 7).

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.6. Managing the Heap
 Each Unix process owns a specific memory region called the heap, which is used to satisfy the process's
dynamic memory requests. The start_brk and brk fields of the memory descriptor delimit the starting and
ending addresses, respectively, of that region.

 The following APIs can be used by the process to request and release dynamic memory:

 malloc(size)

 Requests size bytes of dynamic memory; if the allocation succeeds, it returns the linear address of the
first memory location.

calloc(n,size)

 Requests an array consisting of n elements of size size; if the allocation succeeds, it initializes the array
components to 0 and returns the linear address of the first element.

realloc(ptr,size)

 Changes the size of a memory area previously allocated by malloc() or calloc() .

free(addr)

 Releases the memory region allocated by malloc() or calloc() that has an initial address of addr.

brk(addr)

 Modifies the size of the heap directly; the addr parameter specifies the new value of current->mm->brk,
and the return value is the new ending address of the memory region (the process must check whether it
coincides with the requested addr value).

sbrk(incr)

 Is similar to brk() , except that the incr parameter specifies the increment or decrement of the heap size
in bytes.

 The brk() function differs from the other functions listed because it is the only one implemented as a
system call. All the other functions are implemented in the C library by using brk() and mmap().[*]

[*] The realloc() library function can also make use of the mremap() system call.

 When a process in User Mode invokes the brk() system call, the kernel executes the sys_brk(addr)
function. This function first verifies whether the addr parameter falls inside the memory region that
contains the process code; if so, it returns immediately because the heap cannot overlap with memory
region containing the process's code:

 mm = current->mm;

 down_write(&mm->mmap_sem);

 if (addr < mm->end_code) {

 out:

 up_write(&mm->mmap_sem);

 return mm->brk;

 }

Because the brk() system call acts on a memory region, it allocates and deallocates whole pages.
Therefore, the function aligns the value of addr to a multiple of PAGE_SIZE and compares the result with
the value of the brk field of the memory descriptor:

 newbrk = (addr + 0xfff) & 0xfffff000;

 oldbrk = (mm->brk + 0xfff) & 0xfffff000;

 if (oldbrk == newbrk) {

 mm->brk = addr;

 goto out;

 }

If the process asked to shrink the heap, sys_brk() invokes the do_munmap() function to do the job and
then returns:

 if (addr <= mm->brk) {

 if (!do_munmap(mm, newbrk, oldbrk-newbrk))

 mm->brk = addr;

 goto out;

 }

If the process asked to enlarge the heap, sys_brk() first checks whether the process is allowed to do so.
If the process is trying to allocate memory outside its limit, the function simply returns the original value of
mm->brk without allocating more memory:

 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;

 if (rlim < RLIM_INFINITY && addr - mm->start_data > rlim)

 goto out;

The function then checks whether the enlarged heap would overlap some other memory region belonging
to the process and, if so, returns without doing anything:

 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

 goto out;

If everything is OK, the do_brk() function is invoked. If it returns the oldbrk value, the allocation was
successful and sys_brk() returns the value addr; otherwise, it returns the old mm->brk value:

 if (do_brk(oldbrk, newbrk-oldbrk) == oldbrk)

 mm->brk = addr;

 goto out;

The do_brk() function is actually a simplified version of do_mmap() that handles only anonymous
memory regions. Its invocation might be considered equivalent to:

 do_mmap(NULL, oldbrk, newbrk-oldbrk, PROT_READ|PROT_WRITE|PROT_EXEC,

 MAP_FIXED|MAP_PRIVATE, 0)

do_brk() is slightly faster than do_mmap(), because it avoids several checks on the memory region
object fields by assuming that the memory region doesn't map a file on disk.

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 10. System Calls
 Operating systems offer processes running in User Mode a set of interfaces to interact with hardware
devices such as the CPU, disks, and printers. Putting an extra layer between the application and the
hardware has several advantages. First, it makes programming easier by freeing users from studying
low-level programming characteristics of hardware devices. Second, it greatly increases system security,
because the kernel can check the accuracy of the request at the interface level before attempting to
satisfy it. Last but not least, these interfaces make programs more portable, because they can be
compiled and executed correctly on every kernel that offers the same set of interfaces.

 Unix systems implement most interfaces between User Mode processes and hardware devices by
means of system calls issued to the kernel. This chapter examines in detail how Linux implements system
calls that User Mode programs issue to the kernel.

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.1. POSIX APIs and System Calls
 Let's start by stressing the difference between an application programmer interface (API) and a system
call. The former is a function definition that specifies how to obtain a given service, while the latter is an
explicit request to the kernel made via a software interrupt.

 Unix systems include several libraries of functions that provide APIs to programmers. Some of the APIs
defined by the libc standard C library refer to wrapper routines (routines whose only purpose is to issue a
system call). Usually, each system call has a corresponding wrapper routine, which defines the API that
application programs should employ.

 The converse is not true, by the wayan API does not necessarily correspond to a specific system call.
First of all, the API could offer its services directly in User Mode. (For something abstract such as math
functions, there may be no reason to make system calls.) Second, a single API function could make
several system calls. Moreover, several API functions could make the same system call, but wrap extra
functionality around it. For instance, in Linux, the malloc() , calloc() , and free() APIs are implemented
in the libc library. The code in this library keeps track of the allocation and deallocation requests and uses
the brk() system call to enlarge or shrink the process heap (see the section "Managing the Heap" in
Chapter 9).

 The POSIX standard refers to APIs and not to system calls. A system can be certified as
POSIX-compliant if it offers the proper set of APIs to the application programs, no matter how the
corresponding functions are implemented. As a matter of fact, several non-Unix systems have been
certified as POSIX-compliant, because they offer all traditional Unix services in User Mode libraries.

 From the programmer's point of view, the distinction between an API and a system call is irrelevantthe
only things that matter are the function name, the parameter types, and the meaning of the return code.
From the kernel designer's point of view, however, the distinction does matter because system calls
belong to the kernel, while User Mode libraries don't.

 Most wrapper routines return an integer value, whose meaning depends on the corresponding system
call. A return value of -1 usually indicates that the kernel was unable to satisfy the process request. A
failure in the system call handler may be caused by invalid parameters, a lack of available resources,
hardware problems, and so on. The specific error code is contained in the errno variable, which is
defined in the libc library.

 Each error code is defined as a macro constant, which yields a corresponding positive integer value. The
POSIX standard specifies the macro names of several error codes. In Linux, on 80 x 86 systems, these
macros are defined in the header file include/asm-i386/errno.h. To allow portability of C programs
among Unix systems, the include/asm-i386/errno.h header file is included, in turn, in the standard
/usr/include/errno.h C library header file. Other systems have their own specialized subdirectories of
header files.

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.2. System Call Handler and Service Routines
 When a User Mode process invokes a system call, the CPU switches to Kernel Mode and starts the
execution of a kernel function. As we will see in the next section, in the 80 x 86 architecture a Linux
system call can be invoked in two different ways. The net result of both methods, however, is a jump to
an assembly language function called the system call handler.

 Because the kernel implements many different system calls, the User Mode process must pass a
parameter called the system call number to identify the required system call; the eax register is used by
Linux for this purpose. As we'll see in the section "Parameter Passing" later in this chapter, additional
parameters are usually passed when invoking a system call.

 All system calls return an integer value. The conventions for these return values are different from those
for wrapper routines. In the kernel, positive or 0 values denote a successful termination of the system call,
while negative values denote an error condition. In the latter case, the value is the negation of the error
code that must be returned to the application program in the errno variable. The errno variable is not set
or used by the kernel. Instead, the wrapper routines handle the task of setting this variable after a return
from a system call.

 The system call handler, which has a structure similar to that of the other exception handlers, performs
the following operations:



 Saves the contents of most registers in the Kernel Mode stack (this operation is common to all
system calls and is coded in assembly language).



 Handles the system call by invoking a corresponding C function called the system call service
routine.



 Exits from the handler: the registers are loaded with the values saved in the Kernel Mode stack,
and the CPU is switched back from Kernel Mode to User Mode (this operation is common to all
system calls and is coded in assembly language).

 The name of the service routine associated with the xyz() system call is usually sys_xyz(); there are,
however, a few exceptions to this rule.

 Figure 10-1 illustrates the relationships between the application program that invokes a system call, the
corresponding wrapper routine, the system call handler, and the system call service routine. The arrows
denote the execution flow between the functions. The terms "SYSCALL" and "SYSEXIT" are
placeholders for the actual assembly language instructions that switch the CPU, respectively, from User
Mode to Kernel Mode and from Kernel Mode to User Mode.

 Figure 10-1. Invoking a system call

 To associate each system call number with its corresponding service routine, the kernel uses a system
call dispatch table, which is stored in the sys_call_table array and has NR_syscalls entries (289 in the
Linux 2.6.11 kernel). The nth entry contains the service routine address of the system call having number
n.

 The NR_syscalls macro is just a static limit on the maximum number of implementable system calls; it
does not indicate the number of system calls actually implemented. Indeed, each entry of the dispatch
table may contain the address of the sys_ni_syscall() function, which is the service routine of the
"nonimplemented" system calls; it just returns the error code -ENOSYS.

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.3. Entering and Exiting a System Call
 Native applications[*] can invoke a system call in two different ways:

[*] As we will see in the section "Execution Domains" in Chapter 20, Linux can execute programs
compiled for "foreign" operating systems. Therefore, the kernel offers a compatibility mode to enter a
system call: User Mode processes executing iBCS and Solaris /x86 programs can enter the kernel by
jumping into suitable call gates included in the default Local Descriptor Table (see the section "The Linux
LDTs" in Chapter 2).



 By executing the int $0x80 assembly language instruction; in older versions of the Linux kernel,
this was the only way to switch from User Mode to Kernel Mode.



 By executing the sysenter assembly language instruction, introduced in the Intel Pentium II
microprocessors; this instruction is now supported by the Linux 2.6 kernel.

 Similarly, the kernel can exit from a system callthus switching the CPU back to User Modein two ways:


 By executing the iret assembly language instruction.


 By executing the sysexit assembly language instruction, which was introduced in the Intel Pentium
II microprocessors together with the sysenter instruction.

 However, supporting two different ways to enter the kernel is not as simple as it might look, because:


 The kernel must support both older libraries that only use the int $0x80 instruction and more
recent ones that also use the sysenter instruction.



 A standard library that makes use of the sysenter instruction must be able to cope with older
kernels that support only the int $0x80 instruction.



 The kernel and the standard library must be able to run both on older processors that do not
include the sysenter instruction and on more recent ones that include it.

 We will see in the section "Issuing a System Call via the sysenter Instruction" later in this chapter how the
Linux kernel solves these compatibility problems.

 10.3.1. Issuing a System Call via the int $0x80 Instruction

 The "traditional" way to invoke a system call makes use of the int assembly language instruction, which
was discussed in the section "Hardware Handling of Interrupts and Exceptions" in Chapter 4.

 The vector 128in hexadecimal, 0x80is associated with the kernel entry point. The trap_init() function,
invoked during kernel initialization, sets up the Interrupt Descriptor Table entry corresponding to vector
128 as follows:

 set_system_gate(0x80, &system_call);

The call loads the following values into the gate descriptor fields (see the section "Interrupt, Trap, and
System Gates" in Chapter 4):

 Segment Selector

 The _ _KERNEL_CS Segment Selector of the kernel code segment.

Offset

 The pointer to the system_call() system call handler.

Type

 Set to 15. Indicates that the exception is a Trap and that the corresponding handler does not disable
maskable interrupts.

DPL (Descriptor Privilege Level)

 Set to 3. This allows processes in User Mode to invoke the exception handler (see the section "
Hardware Handling of Interrupts and Exceptions" in Chapter 4).

 Therefore, when a User Mode process issues an int $0x80 instruction, the CPU switches into Kernel
Mode and starts executing instructions from the system_call address.

 10.3.1.1. The system_call() function

 The system_call() function starts by saving the system call number and all the CPU registers that may be
used by the exception handler on the stackexcept for eflags, cs, eip, ss, and esp, which have already
been saved automatically by the control unit (see the section "Hardware Handling of Interrupts and
Exceptions" in Chapter 4). The SAVE_ALL macro, which was already discussed in the section "I/O
Interrupt Handling" in Chapter 4, also loads the Segment Selector of the kernel data segment in ds and
es:

 system_call:

 pushl %eax

 SAVE_ALL

 movl $0xffffe000, %ebx /* or 0xfffff000 for 4-KB stacks */

 andl %esp, %ebx

The function then stores the address of the thread_info data structure of the current process in ebx (see
the section "Identifying a Process" in Chapter 3). This is done by taking the value of the kernel stack
pointer and rounding it up to a multiple of 4 or 8 KB (see the section "Identifying a Process" in Chapter 3
).

 Next, the system_call() function checks whether either one of the TIF_SYSCALL_TRACE and
TIF_SYSCALL_AUDIT flags included in the flags field of the thread_info structure is setthat is, whether
the system call invocations of the executed program are being traced by a debugger. If this is the case,
system_call() invokes the do_syscall_trace() function twice: once right before and once right after the
execution of the system call service routine (as described later). This function stops current and thus
allows the debugging process to collect information about it.

 A validity check is then performed on the system call number passed by the User Mode process. If it is
greater than or equal to the number of entries in the system call dispatch table, the system call handler
terminates:

 cmpl $NR_syscalls, %eax

 jb nobadsys

 movl $(-ENOSYS), 24(%esp)

 jmp resume_userspace

 nobadsys:

If the system call number is not valid, the function stores the -ENOSYS value in the stack location where
the eax register has been savedthat is, at offset 24 from the current stack top. It then jumps to
resume_userspace (see below). In this way, when the process resumes its execution in User Mode, it will
find a negative return code in eax.

 Finally, the specific service routine associated with the system call number contained in eax is invoked:

 call *sys_call_table(0, %eax, 4)

Because each entry in the dispatch table is 4 bytes long, the kernel finds the address of the service routine
to be invoked by multiplying the system call number by 4, adding the initial address of the sys_call_table
dispatch table, and extracting a pointer to the service routine from that slot in the table.

 10.3.1.2. Exiting from the system call

 When the system call service routine terminates, the system_call() function gets its return code from eax
and stores it in the stack location where the User Mode value of the eax register is saved:

 movl %eax, 24(%esp)

Thus, the User Mode process will find the return code of the system call in the eax register.

 Then, the system_call() function disables the local interrupts and checks the flags in the thread_info
structure of current:

 cli

 movl 8(%ebp), %ecx

 testw $0xffff, %cx

 je restore_all

The flags field is at offset 8 in the tHRead_info structure; the mask 0xffff selects the bits corresponding to
all flags listed in Table 4-15 except TIF_POLLING_NRFLAG. If none of these flags is set, the function
jumps to the restore_all label: as described in the section "Returning from Interrupts and Exceptions" in
Chapter 4, this code restores the contents of the registers saved on the Kernel Mode stack and executes
an iret assembly language instruction to resume the User Mode process. (You might refer to the flow
diagram in Figure 4-6.)

 If any of the flags is set, then there is some work to be done before returning to User Mode. If the
TIF_SYSCALL_TRACE flag is set, the system_call() function invokes for the second time the
do_syscall_trace() function, then jumps to the resume_userspace label. Otherwise, if the
TIF_SYSCALL_TRACE flag is not set, the function jumps to the work_pending label.

 As explained in the section "Returning from Interrupts and Exceptions" in Chapter 4, that code at the
resume_userspace and work_pending labels checks for rescheduling requests, virtual-8086 mode,
pending signals, and single stepping; then eventually a jump is done to the restore_all label to resume the
execution of the User Mode process.

 10.3.2. Issuing a System Call via the sysenter Instruction

 The int assembly language instruction is inherently slow because it performs several consistency and
security checks. (The instruction is described in detail in the section "Hardware Handling of Interrupts
and Exceptions" in Chapter 4.)

 The sysenter instruction, dubbed in Intel documentation as "Fast System Call," provides a faster way to
switch from User Mode to Kernel Mode.

 10.3.2.1. The sysenter instruction

 The sysenter assembly language instruction makes use of three special registers that must be loaded with
the following information:[*]

[*] "MSR" is an acronym for "Model-Specific Register" and denotes a register that is present only in
some models of 80 x 86 microprocessors.

 SYSENTER_CS_MSR

 The Segment Selector of the kernel code segment

SYSENTER_EIP_MSR

 The linear address of the kernel entry point

SYSENTER_ESP_MSR

 The kernel stack pointer

 When the sysenter instruction is executed, the CPU control unit:
1.

1. Copies the content of SYSENTER_CS_MSR into cs.
2.

2. Copies the content of SYSENTER_EIP_MSR into eip.
3.

3. Copies the content of SYSENTER_ESP_MSR into esp.
4.

4. Adds 8 to the value of SYSENTER_CS_MSR, and loads this value into ss.

Therefore, the CPU switches to Kernel Mode and starts executing the first instruction of the kernel entry
point. As we have seen in the section "The Linux GDT" in Chapter 2, the kernel stack segment coincides
with the kernel data segment, and the corresponding descriptor follows the descriptor of the kernel code
segment in the Global Descriptor Table; therefore, step 4 loads the proper Segment Selector in the ss
register.

 The three model-specific registers are initialized by the enable_sep_cpu() function, which is executed
once by every CPU in the system during the initialization of the kernel. The function performs the
following steps:

1.

1. Writes the Segment Selector of the kernel code (_ _KERNEL_CS) in the
SYSENTER_CS_MSR register.

2.

2. Writes in the SYSENTER_CS_EIP register the linear address of the sysenter_entry() function
described below.

3.

3. Computes the linear address of the end of the local TSS, and writes this value in the
SYSENTER_CS_ESP register.[*]

3. [*] The encoding of the local TSS address written in SYSENTER_ESP_MSR is due to the fact
that the register should point to a real stack, which grows towards lower address. In practice,
initializing the register with any value would work, provided that it is possible to get the address
of the local TSS from such a value.

The setting of the SYSENTER_CS_ESP register deserves some comments. When a system call starts,
the kernel stack is empty, thus the esp register should point to the end of the 4- or 8-KB memory area
that includes the kernel stack and the descriptor of the current process (see Figure 3-2). The User Mode
wrapper routine cannot properly set this register, because it does not know the address of this memory
area; on the other hand, the value of the register must be set before switching to Kernel Mode.
Therefore, the kernel initializes the register so as to encode the address of the Task State Segment of the
local CPU. As we have described in step 3 of the _ _switch_to() function (see the section "Performing
the Process Switch" in Chapter 3), at every process switch the kernel saves the kernel stack pointer of
the current process in the esp0 field of the local TSS. Thus, the system call handler reads the esp register,
computes the address of the esp0 field of the local TSS, and loads into the same esp register the proper
kernel stack pointer.

 10.3.2.2. The vsyscall page

 A wrapper function in the libc standard library can make use of the sysenter instruction only if both the
CPU and the Linux kernel support it.

 This compatibility problem calls for a quite sophisticated solution. Essentially, in the initialization phase
the sysenter_setup() function builds a page frame called vsyscall page containing a small ELF shared
object (i.e., a tiny ELF dynamic library). When a process issues an execve() system call to start
executing an ELF program, the code in the vsyscall page is dynamically linked to the process address
space (see the section "The exec Functions" in Chapter 20). The code in the vsyscall page makes use of
the best available instruction to issue a system call.

 The sysenter_setup() function allocates a new page frame for the vsyscall page and associates its
physical address with the FIX_VSYSCALL fix-mapped linear address (see the section "Fix-Mapped
Linear Addresses" in Chapter 2). Then, the function copies in the page either one of two predefined ELF
shared objects:



 If the CPU does not support sysenter, the function builds a vsyscall page that includes the code:

 _ _kernel_vsyscall:

 int

 $0x80

 ret



 Otherwise, if the CPU does support sysenter, the function builds a vsyscall page that includes the
code:

 _ _kernel_vsyscall:

 pushl %ecx

 pushl %edx

 pushl %ebp

 movl %esp, %ebp

 sysenter

When a wrapper routine in the standard library must invoke a system call, it calls the _ _kernel_vsyscall(
) function, whatever it may be.

 A final compatibility problem is due to old versions of the Linux kernel that do not support the sysenter
instruction; in this case, of course, the kernel does not build the vsyscall page and the _ _kernel_vsyscall(
) function is not linked to the address space of the User Mode processes. When recent standard libraries
recognize this fact, they simply execute the int $0x80 instruction to invoke the system calls.

 10.3.2.3. Entering the system call

 The sequence of steps performed when a system call is issued via the sysenter instruction is the
following:

1.

1. The wrapper routine in the standard library loads the system call number into the eax register
and calls the _ _kernel_vsyscall() function.

2.

2. The _ _kernel_vsyscall() function saves on the User Mode stack the contents of ebp, edx, and
ecx (these registers are going to be used by the system call handler), copies the user stack
pointer in ebp, then executes the sysenter instruction.

3.

3. The CPU switches from User Mode to Kernel Mode, and the kernel starts executing the
sysenter_entry() function (pointed to by the SYSENTER_EIP_MSR register).

4.

4. The sysenter_entry() assembly language function performs the following steps:
a.

a. Sets up the kernel stack pointer:

a. movl -508(%esp), %esp

a. Initially, the esp register points to the first location after the local TSS, which is 512bytes
long. Therefore, the instruction loads in the esp register the contents of the field at offset 4 in
the local TSS, that is, the contents of the esp0 field. As already explained, the esp0 field
always stores the kernel stack pointer of the current process.

b.

b. Enables local interrupts:

b. sti

c.

c. Saves in the Kernel Mode stack the Segment Selector of the user data segment, the current
user stack pointer, the eflags register, the Segment Selector of the user code segment, and
the address of the instruction to be executed when exiting from the system call:

c. pushl $(__USER_DS)

 pushl %ebp

 pushfl

 pushl $(__USER_CS)

 pushl $SYSENTER_RETURN

c. Observe that these instructions emulate some operations performed by the int assembly
language instruction (steps 5c and 7 in the description of int in the section "Hardware
Handling of Interrupts and Exceptions" in Chapter 4).

d.

d. Restores in ebp the original value of the register passed by the wrapper routine:

d. movl (%ebp), %ebp

d. This instruction does the job, because _ _kernel_vsyscall() saved on the User Mode stack
the original value of ebp and then loaded in ebp the current value of the user stack pointer.

e.

e. Invokes the system call handler by executing a sequence of instructions identical to that
starting at the system_call label described in the earlier section "Issuing a System Call via the
int $0x80 Instruction."

10.3.2.4. Exiting from the system call

 When the system call service routine terminates, the sysenter_entry() function executes essentially the
same operations as the system_call() function (see previous section). First, it gets the return code of the
system call service routine from eax and stores it in the kernel stack location where the User Mode value
of the eax register is saved. Then, the function disables the local interrupts and checks the flags in the
thread_info structure of current.

 If any of the flags is set, then there is some work to be done before returning to User Mode. In order to
avoid code duplication, this case is handled exactly as in the system_call() function, thus the function
jumps to the resume_userspace or work_pending labels (see flow diagram in Figure 4-6 in Chapter 4).
Eventually, the iret assembly language instruction fetches from the Kernel Mode stack the five arguments
saved in step 4c by the sysenter_entry() function, and thus switches the CPU back to User Mode and
starts executing the code at the SYSENTER_RETURN label (see below).

 If the sysenter_entry() function determines that the flags are cleared, it performs a quick return to User
Mode:

 movl 40(%esp), %edx

 movl 52(%esp), %ecx

 xorl %ebp, %ebp

 sti

 sysexit

The edx and ecx registers are loaded with a couple of the stack values saved by sysenter_entry() in step
4c in the previos section: edx gets the address of the SYSENTER_RETURN label, while ecx gets the
current user data stack pointer.

 10.3.2.5. The sysexit instruction

 The sysexit assembly language instruction is the companion of sysenter: it allows a fast switch from
Kernel Mode to User Mode. When the instruction is executed, the CPU control unit performs the
following steps:

1.

1. Adds 16 to the value in the SYSENTER_CS_MSR register, and loads the result in the cs
register.

2.

2. Copies the content of the edx register into the eip register.
3.

3. Adds 24 to the value in the SYSENTER_CS_MSR register, and loads the result in the ss
register.

4.

4. Copies the content of the ecx register into the esp register.

Because the SYSENTER_CS_MSR register is loaded with the Segment Selector of the kernel code, the
cs register is loaded with the Segment Selector of the user code, while the ss register is loaded with the
Segment Selector of the user data segment (see the section "The Linux GDT" in Chapter 2).

 As a result, the CPU switches from Kernel Mode to User Mode and starts executing the instruction
whose address is stored in the edx register.

 10.3.2.6. The SYSENTER_RETURN code

 The code at the SYSENTER_RETURN label is stored in the vsyscall page, and it is executed when a
system call entered via sysenter is being terminated, either by the iret instruction or the sysexit instruction.

 The code simply restores the original contents of the ebp, edx, and ecx registers saved in the User Mode
stack, and returns the control to the wrapper routine in the standard library:

 SYSENTER_RETURN:

 popl %ebp

 popl %edx

 popl %ecx

 ret

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.4. Parameter Passing
 Like ordinary functions, system calls often require some input/output parameters, which may consist of
actual values (i.e., numbers), addresses of variables in the address space of the User Mode process, or
even addresses of data structures including pointers to User Mode functions (see the section "System
Calls Related to Signal Handling" in Chapter 11).

 Because the system_call() and the sysenter_entry() functions are the common entry points for all
system calls in Linux, each of them has at least one parameter: the system call number passed in the eax
register. For instance, if an application program invokes the fork() wrapper routine, the eax register is set
to 2 (i.e., _ _NR_fork) before executing the int $0x80 or sysenter assembly language instruction.
Because the register is set by the wrapper routines included in the libc library, programmers do not
usually care about the system call number.

 The fork() system call does not require other parameters. However, many system calls do require
additional parameters, which must be explicitly passed by the application program. For instance, the
mmap() system call may require up to six additional parameters (besides the system call number).

 The parameters of ordinary C functions are usually passed by writing their values in the active program
stack (either the User Mode stack or the Kernel Mode stack). Because system calls are a special kind of
function that cross over from user to kernel land, neither the User Mode or the Kernel Mode stacks can
be used. Rather, system call parameters are written in the CPU registers before issuing the system call.
The kernel then copies the parameters stored in the CPU registers onto the Kernel Mode stack before
invoking the system call service routine, because the latter is an ordinary C function.

 Why doesn't the kernel copy parameters directly from the User Mode stack to the Kernel Mode stack?
First of all, working with two stacks at the same time is complex; second, the use of registers makes the
structure of the system call handler similar to that of other exception handlers.

 However, to pass parameters in registers, two conditions must be satisfied:


 The length of each parameter cannot exceed the length of a register (32 bits).[*]

 [*] We refer, as usual, to the 32-bit architecture of the 80 x 86 processors. The discussion in this
section does not apply to 64-bit architectures.



 The number of parameters must not exceed six, besides the system call number passed in eax,
because 80 x 86 processors have a very limited number of registers.

 The first condition is always true because, according to the POSIX standard, large parameters that
cannot be stored in a 32-bit register must be passed by reference. A typical example is the settimeofday(
) system call, which must read a 64-bit structure.

 However, system calls that require more than six parameters exist. In such cases, a single register is used
to point to a memory area in the process address space that contains the parameter values. Of course,
programmers do not have to care about this workaround. As with every C function call, parameters are
automatically saved on the stack when the wrapper routine is invoked. This routine will find the
appropriate way to pass the parameters to the kernel.

 The registers used to store the system call number and its parameters are, in increasing order, eax (for
the system call number), ebx, ecx, edx, esi, edi, and ebp. As seen before, system_call() and
sysenter_entry() save the values of these registers on the Kernel Mode stack by using the SAVE_ALL
macro. Therefore, when the system call service routine goes to the stack, it finds the return address to
system_call() or to sysenter_entry(), followed by the parameter stored in ebx (the first parameter of the
system call), the parameter stored in ecx, and so on (see the section "Saving the registers for the interrupt
handler" in Chapter 4). This stack configuration is exactly the same as in an ordinary function call, and
therefore the service routine can easily refer to its parameters by using the usual C-language constructs.

 Let's look at an example. The sys_write() service routine, which handles the write() system call, is
declared as:

 int sys_write (unsigned int fd, const char * buf, unsigned int count)

The C compiler produces an assembly language function that expects to find the fd, buf, and count
parameters on top of the stack, right below the return address, in the locations used to save the contents
of the ebx, ecx, and edx registers, respectively.

 In a few cases, even if the system call doesn't use any parameters, the corresponding service routine
needs to know the contents of the CPU registers right before the system call was issued. For example,
the do_fork() function that implements fork() needs to know the value of the registers in order to
duplicate them in the child process thread field (see the section "The thread field" in Chapter 3). In these
cases, a single parameter of type pt_regs allows the service routine to access the values saved in the
Kernel Mode stack by the SAVE_ALL macro (see the section "The do_IRQ() function" in Chapter 4):

 int sys_fork (struct pt_regs regs)

The return value of a service routine must be written into the eax register. This is automatically done by
the C compiler when a return n; instruction is executed.

 10.4.1. Verifying the Parameters

 All system call parameters must be carefully checked before the kernel attempts to satisfy a user request.
The type of check depends both on the system call and on the specific parameter. Let's go back to the
write() system call introduced before: the fd parameter should be a file descriptor that identifies a specific
file, so sys_write() must check whether fd really is a file descriptor of a file previously opened and
whether the process is allowed to write into it (see the section "File-Handling System Calls" in Chapter 1
). If any of these conditions are not true, the handler must return a negative valuein this case, the error
code -EBADF.

 One type of checking, however, is common to all system calls. Whenever a parameter specifies an
address, the kernel must check whether it is inside the process address space. There are two possible
ways to perform this check:



 Verify that the linear address belongs to the process address space and, if so, that the memory
region including it has the proper access rights.



 Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it doesn't fall within the
range of interval addresses reserved to the kernel).

 Early Linux kernels performed the first type of checking. But it is quite time consuming because it must
be executed for each address parameter included in a system call; furthermore, it is usually pointless
because faulty programs are not very common.

 Therefore, starting with Version 2.2, Linux employs the second type of checking. This is much more
efficient because it does not require any scan of the process memory region descriptors. Obviously, this
is a very coarse check: verifying that the linear address is smaller than PAGE_OFFSET is a necessary
but not sufficient condition for its validity. But there's no risk in confining the kernel to this limited kind of
check because other errors will be caught later.

 The approach followed is thus to defer the real checking until the last possible momentthat is, until the
Paging Unit translates the linear address into a physical one. We will discuss in the section "Dynamic
Address Checking: The Fix-up Code," later in this chapter, how the Page Fault exception handler
succeeds in detecting those bad addresses issued in Kernel Mode that were passed as parameters by
User Mode processes.

 One might wonder at this point why the coarse check is performed at all. This type of checking is
actually crucial to preserve both process address spaces and the kernel address space from illegal
accesses. We saw in Chapter 2 that the RAM is mapped starting from PAGE_OFFSET. This means
that kernel routines are able to address all pages present in memory. Thus, if the coarse check were not
performed, a User Mode process might pass an address belonging to the kernel address space as a
parameter and then be able to read or write every page present in memory without causing a Page Fault
exception.

 The check on addresses passed to system calls is performed by the access_ok() macro, which acts on
two parameters: addr and size. The macro checks the address interval delimited by addr and addr + size
- 1. It is essentially equivalent to the following C function:

 int access_ok(const void * addr, unsigned long size)

 {

 unsigned long a = (unsigned long) addr;

 if (a + size < a ||

 a + size > current_thread_info()->addr_limit.seg)

 return 0;

 return 1;

 }

The function first verifies whether addr + size, the highest address to be checked, is larger than 232-1;
because unsigned long integers and pointers are represented by the GNU C compiler (gcc) as 32-bit
numbers, this is equivalent to checking for an overflow condition. The function also checks whether addr
+ size exceeds the value stored in the addr_limit.seg field of the thread_info structure of current. This field
usually has the value PAGE_OFFSET for normal processes and the value 0xffffffff for kernel threads .
The value of the addr_limit.seg field can be dynamically changed by the get_fs and set_fs macros; this
allows the kernel to bypass the security checks made by access_ok(), so that it can invoke system call
service routines, directly passing to them addresses in the kernel data segment.

 The verify_area() function performs the same check as the access_ok() macro; although this function is
considered obsolete, it is still widely used in the source code.

 10.4.2. Accessing the Process Address Space

 System call service routines often need to read or write data contained in the process's address space.
Linux includes a set of macros that make this access easier. We'll describe two of them, called get_user(
) and put_user(). The first can be used to read 1, 2, or 4 consecutive bytes from an address, while the
second can be used to write data of those sizes into an address.

 Each function accepts two arguments, a value x to transfer and a variable ptr. The second variable also
determines how many bytes to transfer. Thus, in get_user(x,ptr), the size of the variable pointed to by ptr
causes the function to expand into a _ _get_user_1(), _ _get_user_2(), or _ _get_user_4() assembly
language function. Let's consider one of them, _ _get_user_2():

 _ _get_user_2:

 addl $1, %eax

 jc bad_get_user

 movl $0xffffe000, %edx /* or 0xfffff000 for 4-KB stacks */

 andl %esp, %edx

 cmpl 24(%edx), %eax

 jae bad_get_user

 2: movzwl

 -1(%eax), %edx

 xorl %eax, %eax

 ret

 bad_get_user:

 xorl %edx, %edx

 movl $-EFAULT, %eax

 ret

The eax register contains the address ptr of the first byte to be read. The first six instructions essentially
perform the same checks as the access_ok() macro: they ensure that the 2 bytes to be read have
addresses less than 4 GB as well as less than the addr_limit.seg field of the current process. (This field is
stored at offset 24 in the thread_info structure of current, which appears in the first operand of the cmpl
instruction.)

 If the addresses are valid, the function executes the movzwl instruction to store the data to be read in the
two least significant bytes of edx register while setting the high-order bytes of edx to 0; then it sets a 0
return code in eax and terminates. If the addresses are not valid, the function clears edx, sets the
-EFAULT value into eax, and terminates.

 The put_user(x,ptr) macro is similar to the one discussed before, except it writes the value x into the
process address space starting from address ptr. Depending on the size of x, it invokes either the _
_put_user_asm() macro (size of 1, 2, or 4 bytes) or the _ _put_user_u64() macro (size of 8 bytes).
Both macros return the value 0 in the eax register if they succeed in writing the value, and -EFAULT
otherwise.

 Several other functions and macros are available to access the process address space in Kernel Mode;
they are listed in Table 10-1. Notice that many of them also have a variant prefixed by two underscores
(_ _). The ones without initial underscores take extra time to check the validity of the linear address
interval requested, while the ones with the underscores bypass that check. Whenever the kernel must
repeatedly access the same memory area in the process address space, it is more efficient to check the
address once at the start and then access the process area without making any further checks.

 Table 10-1. Functions and macros that access the process address space

Function Action

get_user _ _get_user Reads an integer value from user space (1, 2, or 4
bytes)

put_user _ _put_user Writes an integer value to user space (1, 2, or 4
bytes)

copy_from_user _ _copy_from_user Copies a block of arbitrary size from user space

copy_to_user _ _copy_to_user Copies a block of arbitrary size to user space

strncpy_from_user _ _strncpy_from_user Copies a null-terminated string from user space

strlen_user strnlen_user Returns the length of a null-terminated string in user
space

clear_user _ _clear_user Fills a memory area in user space with zeros

10.4.3. Dynamic Address Checking: The Fix-up Code

 As seen previously, access_ok() makes a coarse check on the validity of linear addresses passed as
parameters of a system call. This check only ensures that the User Mode process is not attempting to
fiddle with the kernel address space; however, the linear addresses passed as parameters still might not
belong to the process address space. In this case, a Page Fault exception will occur when the kernel tries
to use any of such bad addresses.

 Before describing how the kernel detects this type of error, let's specify the three cases in which Page
Fault exceptions may occur in Kernel Mode. These cases must be distinguished by the Page Fault
handler, because the actions to be taken are quite different.

1.

1. The kernel attempts to address a page belonging to the process address space, but either the
corresponding page frame does not exist or the kernel tries to write a read-only page. In these
cases, the handler must allocate and initialize a new page frame (see the sections "Demand Paging
" and "Copy On Write" in Chapter 9).

2.

2. The kernel addresses a page belonging to its address space, but the corresponding Page Table
entry has not yet been initialized (see the section "Handling Noncontiguous Memory Area
Accesses" in Chapter 9). In this case, the kernel must properly set up some entries in the Page
Tables of the current process.

3.

3. Some kernel functions include a programming bug that causes the exception to be raised when
that program is executed; alternatively, the exception might be caused by a transient hardware
error. When this occurs, the handler must perform a kernel oops (see the section "Handling a
Faulty Address Inside the Address Space" in Chapter 9).

4.

4. The case introduced in this chapter: a system call service routine attempts to read or write into a
memory area whose address has been passed as a system call parameter, but that address does
not belong to the process address space.

The Page Fault handler can easily recognize the first case by determining whether the faulty linear address
is included in one of the memory regions owned by the process. It is also able to detect the second case
by checking whether the corresponding master kernel Page Table entry includes a proper non-null entry
that maps the address. Let's now explain how the handler distinguishes the remaining two cases.

 10.4.4. The Exception Tables

 The key to determining the source of a Page Fault lies in the narrow range of calls that the kernel uses to
access the process address space. Only the small group of functions and macros described in the
previous section are used to access this address space; thus, if the exception is caused by an invalid
parameter, the instruction that caused it must be included in one of the functions or else be generated by
expanding one of the macros. The number of the instructions that address user space is fairly small.

 Therefore, it does not take much effort to put the address of each kernel instruction that accesses the
process address space into a structure called the exception table. If we succeed in doing this, the rest is
easy. When a Page Fault exception occurs in Kernel Mode, the do_ page_fault() handler examines the
exception table: if it includes the address of the instruction that triggered the exception, the error is caused
by a bad system call parameter; otherwise, it is caused by a more serious bug.

 Linux defines several exception tables . The main exception table is automatically generated by the C
compiler when building the kernel program image. It is stored in the _ _ex_table section of the kernel
code segment, and its starting and ending addresses are identified by two symbols produced by the C
compiler: _ _start_ _ _ex_table and _ _stop_ _ _ex_table.

 Moreover, each dynamically loaded module of the kernel (see Appendix B) includes its own local
exception table. This table is automatically generated by the C compiler when building the module image,
and it is loaded into memory when the module is inserted in the running kernel.

 Each entry of an exception table is an exception_table_entry structure that has two fields:

 insn

 The linear address of an instruction that accesses the process address space

fixup

 The address of the assembly language code to be invoked when a Page Fault exception triggered by the
instruction located at insn occurs

 The fixup code consists of a few assembly language instructions that solve the problem triggered by the
exception. As we will see later in this section, the fix usually consists of inserting a sequence of
instructions that forces the service routine to return an error code to the User Mode process. These
instructions, which are usually defined in the same macro or function that accesses the process address
space, are placed by the C compiler into a separate section of the kernel code segment called .fixup.

 The search_exception_tables() function is used to search for a specified address in all exception tables:
if the address is included in a table, the function returns a pointer to the corresponding
exception_table_entry structure; otherwise, it returns NULL. Thus the Page Fault handler do_page_fault(
) executes the following statements:

 if ((fixup = search_exception_tables(regs->eip))) {

 regs->eip = fixup->fixup;

 return 1;

 }

The regs->eip field contains the value of the eip register saved on the Kernel Mode stack when the
exception occurred. If the value in the register (the instruction pointer) is in an exception table,
do_page_fault() replaces the saved value with the address found in the entry returned by
search_exception_tables(). Then the Page Fault handler terminates and the interrupted program resumes
with execution of the fixup code .

 10.4.5. Generating the Exception Tables and the Fixup Code

 The GNU Assembler .section directive allows programmers to specify which section of the executable
file contains the code that follows. As we will see in Chapter 20, an executable file includes a code
segment, which in turn may be subdivided into sections. Thus, the following assembly language
instructions add an entry into an exception table; the "a" attribute specifies that the section must be loaded
into memory together with the rest of the kernel image:

 .section _ _ex_table, "a"

 .long faulty_instruction_address, fixup_code_address

 .previous

The .previous directive forces the assembler to insert the code that follows into the section that was
active when the last .section directive was encountered.

 Let's consider again the _ _get_user_1(), _ _get_user_2(), and _ _get_user_4() functions mentioned
before. The instructions that access the process address space are those labeled as 1, 2, and 3:

 _ _get_user_1:

 [...]

 1: movzbl (%eax), %edx

 [...]

 _ _get_user_2:

 [...]

 2: movzwl -1(%eax), %edx

 [...]

 _ _get_user_4:

 [...]

 3: movl -3(%eax), %edx

 [...]

 bad_get_user:

 xorl %edx, %edx

 movl $-EFAULT, %eax

 ret

 .section _ _ex_table,"a"

 .long 1b, bad_get_user

 .long 2b, bad_get_user

 .long 3b, bad_get_user

 .previous

Each exception table entry consists of two labels. The first one is a numeric label with a b suffix to
indicate that the label is "backward;" in other words, it appears in a previous line of the program. The
fixup code is common to the three functions and is labeled as bad_get_user. If a Page Fault exception is
generated by the instructions at label 1, 2, or 3, the fixup code is executed. It simply returns an
-EFAULT error code to the process that issued the system call.

 Other kernel functions that act in the User Mode address space use the fixup code technique. Consider,
for instance, the strlen_user(string) macro. This macro returns either the length of a null-terminated string
passed as a parameter in a system call or the value 0 on error. The macro essentially yields the following
assembly language instructions:

 movl $0, %eax

 movl $0x7fffffff, %ecx

 movl %ecx, %ebx

 movl string, %edi

 0: repne; scasb

 subl %ecx, %ebx

 movl %ebx, %eax

 1:

 .section .fixup,"ax"

 2: xorl %eax, %eax

 jmp 1b

 .previous

 .section _ _ex_table,"a"

 .long 0b, 2b

 .previous

The ecx and ebx registers are initialized with the 0x7fffffff value, which represents the maximum allowed
length for the string in the User Mode address space. The repne;scasb assembly language instructions
iteratively scan the string pointed to by the edi register, looking for the value 0 (the end of string \0
character) in eax. Because scasb decreases the ecx register at each iteration, the eax register ultimately
stores the total number of bytes scanned in the string (that is, the length of the string).

 The fixup code of the macro is inserted into the .fixup section. The "ax" attributes specify that the section
must be loaded into memory and that it contains executable code. If a Page Fault exception is generated
by the instructions at label 0, the fixup code is executed; it simply loads the value 0 in eaxthus forcing the
macro to return a 0 error code instead of the string lengthand then jumps to the 1 label, which
corresponds to the instruction following the macro.

 The second .section directive adds an entry containing the address of the repne; scasb instruction and
the address of the corresponding fixup code in the _ _ex_table section.

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.5. Kernel Wrapper Routines
 Although system calls are used mainly by User Mode processes, they can also be invoked by kernel
threads , which cannot use library functions. To simplify the declarations of the corresponding wrapper
routines , Linux defines a set of seven macros called _syscall0 through _syscall6.

 In the name of each macro, the numbers 0 through 6 correspond to the number of parameters used by
the system call (excluding the system call number). The macros are used to declare wrapper routines that
are not already included in the libc standard library (for instance, because the Linux system call is not yet
supported by the library); however, they cannot be used to define wrapper routines for system calls that
have more than six parameters (excluding the system call number) or for system calls that yield
nonstandard return values.

 Each macro requires exactly 2 + 2 x n parameters, with n being the number of parameters of the system
call. The first two parameters specify the return type and the name of the system call; each additional pair
of parameters specifies the type and the name of the corresponding system call parameter. Thus, for
instance, the wrapper routine of the fork() system call may be generated by:

 _syscall0(int,fork)

while the wrapper routine of the write() system call may be generated by:

 _syscall3(int,write,int,fd,const char *,buf,unsigned int,count)

In the latter case, the macro yields the following code:

 int write(int fd,const char * buf,unsigned int count)

 {

 long _ _res;

 asm("int $0x80"

 : "=a" (_ _res)

 : "0" (_ _NR_write), "b" ((long)fd),

 "c" ((long)buf), "d" ((long)count));

 if ((unsigned long)_ _res >= (unsigned long)-129) {

 errno = -_ _res;

 _ _res = -1;

 }

 return (int) _ _res;

 }

The _ _NR_write macro is derived from the second parameter of _syscall3; it expands into the system
call number of write(). When compiling the preceding function, the following assembly language code is
produced:

 write:

 pushl %ebx ; push ebx into stack

 movl 8(%esp), %ebx ; put first parameter in ebx

 movl 12(%esp), %ecx ; put second parameter in ecx

 movl 16(%esp), %edx ; put third parameter in edx

 movl $4, %eax ; put _ _NR_write in eax

 int

 $0x80 ; invoke system call

 cmpl $-125, %eax ; check return code

 jbe .L1 ; if no error, jump

 negl %eax ; complement the value of eax

 movl %eax, errno ; put result in errno

 movl $-1, %eax ; set eax to -1

 .L1: popl %ebx ; pop ebx from stack

 ret ; return to calling program

Notice how the parameters of the write() function are loaded into the CPU registers before the int
$0x80 instruction is executed. The value returned in eax must be interpreted as an error code if it lies
between -1 and -129 (the kernel assumes that the largest error code defined in include/generic/errno.h is
129). If this is the case, the wrapper routine stores the value of -eax in errno and returns the value -1;
otherwise, it returns the value of eax.

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 11. Signals
 Signals were introduced by the first Unix systems to allow interactions between User Mode processes;
the kernel also uses them to notify processes of system events. Signals have been around for 30 years
with only minor changes.

 The first sections of this chapter examine in detail how signals are handled by the Linux kernel, then we
discuss the system calls that allow processes to exchange signals.

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.1. The Role of Signals
 A signal is a very short message that may be sent to a process or a group of processes. The only
information given to the process is usually a number identifying the signal; there is no room in standard
signals for arguments, a message, or other accompanying information.

 A set of macros whose names start with the prefix SIG is used to identify signals; we have already made
a few references to them in previous chapters. For instance, the SIGCHLD macro was mentioned in the
section "The clone(), fork(), and vfork() System Calls" in Chapter 3. This macro, which expands into
the value 17 in Linux, yields the identifier of the signal that is sent to a parent process when a child stops
or terminates. The SIGSEGV macro, which expands into the value 11, was mentioned in the section "
Page Fault Exception Handler" in Chapter 9; it yields the identifier of the signal that is sent to a process
when it makes an invalid memory reference.

 Signals serve two main purposes:


 To make a process aware that a specific event has occurred


 To cause a process to execute a signal handler function included in its code

 Of course, the two purposes are not mutually exclusive, because often a process must react to some
event by executing a specific routine.

 Table 11-1 lists the first 31 signals handled by Linux 2.6 for the 80x86 architecture (some signal
numbers, such those associated with SIGCHLD or SIGSTOP, are architecture-dependent; furthermore,
some signals such as SIGSTKFLT are defined only for specific architectures). The meanings of the
default actions are described in the next section.

 Table 11-1. The first 31 signals in Linux/i386

Signal name Default action Comment POSIX

1 SIGHUP Terminate Hang up controlling
terminal or process Yes

2 SIGINT Terminate Interrupt from
keyboard Yes

3 SIGQUIT Dump Quit from
keyboard Yes

4 SIGILL Dump Illegal instruction Yes

5 SIGTRAP Dump Breakpoint for
debugging No

6 SIGABRT Dump Abnormal
termination Yes

6 SIGIOT Dump Equivalent to
SIGABRT No

7 SIGBUS Dump Bus error No

8 SIGFPE Dump Floating-point
exception Yes

9 SIGKILL Terminate Forced-process
termination Yes

10 SIGUSR1 Terminate Available to
processes Yes

11 SIGSEGV Dump Invalid memory
reference Yes

12 SIGUSR2 Terminate Available to
processes Yes

13 SIGPIPE Terminate Write to pipe with
no readers Yes

14 SIGALRM Terminate Real-timerclock Yes

15 SIGTERM Terminate Process termination Yes

16 SIGSTKFLT Terminate Coprocessor stack
error No

17 SIGCHLD Ignore

Child process
stopped or
terminated, or got
signal if traced

Yes

18 SIGCONT Continue Resume execution,
if stopped Yes

19 SIGSTOP Stop Stop process
execution Yes

20 SIGTSTP Stop Stop process
issued from tty Yes

21 SIGTTIN Stop
Background
process requires
input

Yes

22 SIGTTOU Stop
Background
process requires
output

Yes

23 SIGURG Ignore Urgent condition
on socket No

24 SIGXCPU Dump CPU time limit
exceeded No

25 SIGXFSZ Dump File size limit
exceeded No

26 SIGVTALRM Terminate Virtual timer clock No

27 SIGPROF Terminate Profile timer clock No

28 SIGWINCH Ignore Window resizing No

29 SIGIO Terminate I/O now possible No

29 SIGPOLL Terminate Equivalent to
SIGIO No

30 SIGPWR Terminate Power supply
failure No

31 SIGSYS Dump Bad system call No

31 SIGUNUSED Dump Equivalent to
SIGSYS No

Besides the regular signals described in this table, the POSIX standard has introduced a new class of
signals denoted as real-time signals ; their signal numbers range from 32 to 64 on Linux. They mainly
differ from regular signals because they are always queued so that multiple signals sent will be received.
On the other hand, regular signals of the same kind are not queued: if a regular signal is sent many times in
a row, just one of them is delivered to the receiving process. Although the Linux kernel does not use
real-time signals, it fully supports the POSIX standard by means of several specific system calls.

 A number of system calls allow programmers to send signals and determine how their processes
respond to the signals they receive. Table 11-2 summarizes these calls; their behavior is described in
detail in the later section "System Calls Related to Signal Handling."

 Table 11-2. The most significant system calls related to signals

System call Description

kill() Send a signal to a thread group

tkill() Send a signal to a process

tgkill() Send a signal to a process in a specific thread
group

sigaction() Change the action associated with a signal

signal() Similar to sigaction()

sigpending() Check whether there are pending signals

sigprocmask() Modify the set of blocked signals

sigsuspend() Wait for a signal

rt_sigaction() Change the action associated with a real-time
signal

rt_sigpending() Check whether there are pending real-time signals

rt_sigprocmask() Modify the set of blocked real-time signals

rt_sigqueueinfo() Send a real-time signal to a thread group

rt_sigsuspend() Wait for a real-time signal

rt_sigtimedwait() Similar to rt_sigsuspend()

An important characteristic of signals is that they may be sent at any time to a process whose state is
usually unpredictable. Signals sent to a process that is not currently executing must be saved by the kernel
until that process resumes execution. Blocking a signal (described later) requires that delivery of the signal
be held off until it is later unblocked, which exacerbates the problem of signals being raised before they
can be delivered.

 Therefore, the kernel distinguishes two different phases related to signal transmission:

 Signal generation

 The kernel updates a data structure of the destination process to represent that a new signal has been
sent.

Signal delivery

 The kernel forces the destination process to react to the signal by changing its execution state, by starting
the execution of a specified signal handler, or both.

 Each signal generated can be delivered once, at most. Signals are consumable resources: once they have
been delivered, all process descriptor information that refers to their previous existence is canceled.

 Signals that have been generated but not yet delivered are called pending signals . At any time, only one
pending signal of a given type may exist for a process; additional pending signals of the same type to the
same process are not queued but simply discarded. Real-time signals are different, though: there can be
several pending signals of the same type.

 In general, a signal may remain pending for an unpredictable amount of time. The following factors must
be taken into consideration:



 Signals are usually delivered only to the currently running process (that is, to the current
process).



 Signals of a given type may be selectively blocked by a process (see the later section "Modifying
the Set of Blocked Signals"). In this case, the process does not receive the signal until it removes
the block.



 When a process executes a signal-handler function, it usually masks the corresponding signali.e.,
it automatically blocks the signal until the handler terminates. A signal handler therefore cannot be
interrupted by another occurrence of the handled signal, and the function doesn't need to be
reentrant.

 Although the notion of signals is intuitive, the kernel implementation is rather complex. The kernel must:


 Remember which signals are blocked by each process.


 When switching from Kernel Mode to User Mode, check whether a signal for a process has
arrived. This happens at almost every timer interrupt (roughly every millisecond).



 Determine whether the signal can be ignored. This happens when all of the following conditions
are fulfilled:
o

o The destination process is not traced by another process (the PT_PTRACED flag in the
process descriptor ptrace field is equal to 0).[*]

o [*] If a process receives a signal while it is being traced, the kernel stops the process and
notifies the tracing process by sending a SIGCHLD signal to it. The tracing process may, in
turn, resume execution of the traced process by means of a SIGCONT signal.

o

o The signal is not blocked by the destination process.
o

o The signal is being ignored by the destination process (either because the process explicitly
ignored it or because the process did not change the default action of the signal and that
action is "ignore").



 Handle the signal, which may require switching the process to a handler function at any point
during its execution and restoring the original execution context after the function returns.

 Moreover, Linux must take into account the different semantics for signals adopted by BSD and System
V ; furthermore, it must comply with the rather cumbersome POSIX requirements.

 11.1.1. Actions Performed upon Delivering a Signal

 There are three ways in which a process can respond to a signal:
1.

1. Explicitly ignore the signal.
2.

2. Execute the default action associated with the signal (see Table 11-1). This action, which is
predefined by the kernel, depends on the signal type and may be any one of the following:

2. Terminate

2. The process is terminated (killed).

2. Dump

2. The process is terminated (killed) and a core file containing its execution context is created, if
possible; this file may be used for debug purposes.

2. Ignore

2. The signal is ignored.

2. Stop

2. The process is stoppedi.e., put in the TASK_STOPPED state (see the section "Process State"
in Chapter 3).

2. Continue

2. If the process was stopped (TASK_STOPPED), it is put into the TASK_RUNNING state.
3.

3. Catch the signal by invoking a corresponding signal-handler function.

Notice that blocking a signal is different from ignoring it. A signal is not delivered as long as it is blocked;
it is delivered only after it has been unblocked. An ignored signal is always delivered, and there is no
further action.

 The SIGKILL and SIGSTOP signals cannot be ignored, caught, or blocked, and their default actions
must always be executed. Therefore, SIGKILL and SIGSTOP allow a user with appropriate privileges
to terminate and to stop, respectively, every process,[*] regardless of the defenses taken by the program
it is executing.

[*] There are two exceptions: it is not possible to send a signal to process 0 (swapper), and signals sent
to process 1 (init) are always discarded unless they are caught. Therefore, process 0 never dies, while
process 1 dies only when the init program terminates.

 A signal is fatal for a given process if delivering the signal causes the kernel to kill the process. The
SIGKILL signal is always fatal; moreover, each signal whose default action is "Terminate" and which is
not caught by a process is also fatal for that process. Notice, however, that a signal caught by a process
and whose corresponding signal-handler function terminates the process is not fatal, because the process
chose to terminate itself rather than being killed by the kernel.

 11.1.2. POSIX Signals and Multithreaded Applications

 The POSIX 1003.1 standard has some stringent requirements for signal handling of multithreaded
applications:



 Signal handlers must be shared among all threads of a multithreaded application; however, each
thread must have its own mask of pending and blocked signals.



 The kill() and sigqueue() POSIX library functions (see the later section "System Calls Related to
Signal Handling") must send signals to whole multithreaded applications, not to a specific thread.
The same holds for all signals (such as SIGCHLD, SIGINT, or SIGQUIT) generated by the
kernel.



 Each signal sent to a multithreaded application will be delivered to just one thread, which is
arbitrarily chosen by the kernel among the threads that are not blocking that signal.



 If a fatal signal is sent to a multithreaded application, the kernel will kill all threads of the
applicationnot just the thread to which the signal has been delivered.

 In order to comply with the POSIX standard, the Linux 2.6 kernel implements a multithreaded
application as a set of lightweight processes belonging to the same thread group (see the section "
Processes, Lightweight Processes, and Threads" in Chapter 3).

 In this chapter the term "thread group" denotes any thread group, even if it is composed by a single
(conventional) process. For instance, when we state that kill() can send a signal to a thread group, we
imply that this system call can send a signal to a conventional process, too. We will use the term
"process" to denote either a conventional process or a lightweight processthat is, a specific member of a
thread group.

 Furthermore, a pending signal is private if it has been sent to a specific process; it is shared if it has been
sent to a whole thread group.

 11.1.3. Data Structures Associated with Signals

 For each process in the system, the kernel must keep track of what signals are currently pending or
masked; the kernel must also keep track of how every thread group is supposed to handle every signal.
To do this, the kernel uses several data structures accessible from the process descriptor. The most
significant ones are shown in Figure 11-1.

 Figure 11-1. The most significant data structures related to signal handling

 The fields of the process descriptor related to signal handling are listed in Table 11-3.

 Table 11-3. Process descriptor fields related to signal handling

Type Name Description

struct signal_struct * signal Pointer to the process's signal
descriptor

struct sighand_struct * sighand Pointer to the process's signal
handler descriptor

sigset_t blocked Mask of blocked signals

sigset_t real_blocked
Temporary mask of blocked
signals (used by the
rt_sigtimedwait() system call)

struct sigpending pending Data structure storing the private
pending signals

unsigned long sas_ss_sp Address of alternative signal
handler stack

size_t sas_ss_size Size of alternative signal handler
stack

int (*) (void *) notifier
Pointer to a function used by a
device driver to block some
signals of the process

void * notifier_data
Pointer to data that might be used
by the notifier function (previous
field of table)

sigset_t * notifier_mask
Bit mask of signals blocked by a
device driver through a notifier
function

The blocked field stores the signals currently masked out by the process. It is a sigset_t array of bits, one
for each signal type:

 typedef struct {

 unsigned long sig[2];

 } sigset_t;

Because each unsigned long number consists of 32 bits, the maximum number of signals that may be
declared in Linux is 64 (the _NSIG macro specifies this value). No signal can have number 0, so the
signal number corresponds to the index of the corresponding bit in a sigset_t variable plus one. Numbers
between 1 and 31 correspond to the signals listed in Table 11-1, while numbers between 32 and 64
correspond to real-time signals.

 11.1.3.1. The signal descriptor and the signal handler descriptor

 The signal field of the process descriptor points to a signal descriptor, a signal_struct structure that keeps
track of the shared pending signals. Actually, the signal descriptor also includes fields not strictly related
to signal handling, such as the rlim per-process resource limit array (see the section "Process Resource
Limits" in Chapter 3), or the pgrp and session fields, which store the PIDs of the group leader and of the
session leader of the process, respectively (see the section "Relationships Among Processes" in Chapter
3). In fact, as mentioned in the section "The clone() , fork(), and vfork() System Calls" in Chapter 3,
the signal descriptor is shared by all processes belonging to the same thread groupthat is, all processes
created by invoking the clone() system call with the CLONE_THREAD flag setthus the signal descriptor
includes the fields that must be identical for every process in the same thread group.

 The fields of a signal descriptor somewhat related to signal handling are shown in Table 11-4.

 Table 11-4. The fields of the signal descriptor related to signal handling

Type Name Description

atomic_t count Usage counter of the signal
descriptor

atomic_t live Number of live processes in the
thread group

wait_queue_head_t wait_chldexit Wait queue for the processes
sleeping in a wait4() system call

struct task_struct * curr_target
Descriptor of the last process in
the thread group that received a
signal

struct sigpending shared_pending Data structure storing the shared
pending signals

int group_exit_code Process termination code for the
thread group

struct task_struct * group_exit_task Used when killing a whole thread
group

int notify_count Used when killing a whole thread
group

int group_stop_count Used when stopping a whole
thread group

unsigned int flags
Flags used when delivering
signals that modify the status of
the process

Besides the signal descriptor, every process refers also to a signal handler descriptor, which is a
sighand_struct structure describing how each signal must be handled by the thread group. Its fields are
shown in Table 11-5.

 Table 11-5. The fields of the signal handler descriptor

Type Name Description

atomic_t count Usage counter of the signal
handler descriptor

struct k_sigaction [64] action
Array of structures specifying the
actions to be performed upon
delivering the signals

spinlock_t siglock
Spin lock protecting both the
signal descriptor and the signal
handler descriptor

As mentioned in the section "The clone(), fork(), and vfork() System Calls" in Chapter 3, the signal
handler descriptor may be shared by several processes by invoking the clone() system call with the
CLONE_SIGHAND flag set; the count field in this descriptor specifies the number of processes that
share the structure. In a POSIX multithreaded application, all lightweight processes in the thread group
refer to the same signal descriptor and to the same signal handler descriptor.

 11.1.3.2. The sigaction data structure

 Some architectures assign properties to a signal that are visible only to the kernel. Thus, the properties of
a signal are stored in a k_sigaction structure, which contains both the properties hidden from the User
Mode process and the more familiar sigaction structure that holds all the properties a User Mode
process can see. Actually, on the 80 x 86 platform, all signal properties are visible to User Mode
processes. Thus the k_sigaction structure simply reduces to a single sa structure of type sigaction, which
includes the following fields:[*]

[*] The sigaction structure used by User Mode applications to pass parameters to the signal() and
sigaction() system calls is slightly different from the structure used by the kernel, although it stores
essentially the same information.

 sa_handler

 This field specifies the type of action to be performed; its value can be a pointer to the signal handler,
SIG_DFL (that is, the value 0) to specify that the default action is performed, or SIG_IGN (that is, the
value 1) to specify that the signal is ignored.

sa_flags

 This set of flags specifies how the signal must be handled; some of them are listed in Table 11-6.[]

[] For historical reasons, these flags have the same prefix "SA_" as the flags of the irqaction descriptor
(see Table 4-7 in Chapter 4); nevertheless there is no relation between the two sets of flags.

sa_mask

 This sigset_t variable specifies the signals to be masked when running the signal handler.

 Table 11-6. Flags specifying how to handle a signal

Flag Name Description

SA_NOCLDSTOP
Applies only to SIGCHLD; do not send
SIGCHLD to the parent when the process is
stopped

SA_NOCLDWAIT Applies only to SIGCHLD; do not create a zombie
when the process terminates

SA_SIGINFO Provide additional information to the signal handler
(see the later section "Changing a Signal Action")

SA_ONSTACK Use an alternative stack for the signal handler (see
the later section "Catching the Signal")

SA_RESTART
Interrupted system calls are automatically restarted
(see the later section "Reexecution of System Calls
")

SA_NODEFER, SA_NOMASK Do not mask the signal while executing the signal
handler

SA_RESETHAND,

SA_ONESHOT

Reset to default action after executing the signal
handler

11.1.3.3. The pending signal queues

 As we have seen in Table 11-2 earlier in the chapter, there are several system calls that can generate a
signal: some of themkill() and rt_sigqueueinfo() send a signal to a whole thread group, while otherstkill()
and tgkill() send a signal to a specific process.

 Thus, in order to keep track of what signals are currently pending, the kernel associates two pending
signal queues to each process:



 The shared pending signal queue, rooted at the shared_pending field of the signal descriptor,
stores the pending signals of the whole thread group.



 The private pending signal queue, rooted at the pending field of the process descriptor, stores the
pending signals of the specific (lightweight) process.

 A pending signal queue consists of a sigpending data structure, which is defined as follows:

 struct sigpending {

 struct list_head list;

 sigset_t signal;

 }

The signal field is a bit mask specifying the pending signals, while the list field is the head of a doubly
linked list containing sigqueue data structures; the fields of this structure are shown in Table 11-7.

 Table 11-7. The fields of the sigqueue data structure

Type Name Description

struct list_head list Links for the pending signal
queue's list

spinlock_t * lock

Pointer to the siglock field in the
signal handler descriptor
corresponding to the pending
signal

int flags Flags of the sigqueue data
structure

siginfo_t info Describes the event that raised
the signal

struct

user_struct *
user

Pointer to the per-user data
structure of the process's owner
(see the section "The clone(),
fork(), and vfork() System Calls
" in Chapter 3)

The siginfo_t data structure is a 128-byte data structure that stores information about an occurrence of a
specific signal; it includes the following fields:

 si_signo

 The signal number

si_errno

 The error code of the instruction that caused the signal to be raised, or 0 if there was no error

si_code

 A code identifying who raised the signal (see Table 11-8)

 Table 11-8. The most significant signal sender codes

Code Name Sender

SI_USER kill() and raise() (see the later section "System
Calls Related to Signal Handling")

SI_KERNEL Generic kernel function

SI_QUEUE sigqueue() (see the later section "System Calls
Related to Signal Handling")

SI_TIMER Timer expiration

SI_ASYNCIO Asynchronous I/O completion

SI_TKILL tkill() and tgkill() (see the later section "System
Calls Related to Signal Handling")

_sifields

 A union storing information depending on the type of signal. For instance, the siginfo_t data structure
relative to an occurrence of the SIGKILL signal records the PID and the UID of the sender process
here; conversely, the data structure relative to an occurrence of the SIGSEGV signal stores the memory
address whose access caused the signal to be raised.

 11.1.4. Operations on Signal Data Structures

 Several functions and macros are used by the kernel to handle signals. In the following description, set is
a pointer to a sigset_t variable, nsig is the number of a signal, and mask is an unsigned long bit mask.

 sigemptyset(set) and sigfillset(set)

 Sets the bits in the sigset_t variable to 0 or 1, respectively.

sigaddset(set,nsig) and sigdelset(set,nsig)

 Sets the bit of the sigset_t variable corresponding to signal nsig to 1 or 0, respectively. In practice,
sigaddset() reduces to:

 set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32);

and sigdelset() to:

 set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32));

sigaddsetmask(set,mask) and sigdelsetmask(set,mask)

 Sets all the bits of the sigset_t variable whose corresponding bits of mask are on 1 or 0, respectively.
They can be used only with signals that are between 1 and 32. The corresponding functions reduce to:

 set->sig[0] |= mask;

and to:

 set->sig[0] &= ~mask;

sigismember(set,nsig)

 Returns the value of the bit of the sigset_t variable corresponding to the signal nsig. In practice, this
function reduces to:

 return 1 & (set->sig[(nsig-1) / 32] >> ((nsig-1) % 32));

sigmask(nsig)

 Yields the bit index of the signal nsig. In other words, if the kernel needs to set, clear, or test a bit in an
element of sigset_t that corresponds to a particular signal, it can derive the proper bit through this macro.

sigandsets(d,s1,s2), sigorsets(d,s1,s2), and signandsets(d,s1,s2)

 Performs a logical AND, a logical OR, and a logical NAND, respectively, between the sigset_t
variables to which s1 and s2 point; the result is stored in the sigset_t variable to which d points.

 sigtestsetmask(set,mask)

 Returns the value 1 if any of the bits in the sigset_t variable that correspond to the bits set to 1 in mask is
set; it returns 0 otherwise. It can be used only with signals that have a number between 1 and 32.

siginitset(set,mask)

 Initializes the low bits of the sigset_t variable corresponding to signals between 1 and 32 with the bits
contained in mask, and clears the bits corresponding to signals between 33 and 63.

siginitsetinv(set,mask)

 Initializes the low bits of the sigset_t variable corresponding to signals between 1 and 32 with the
complement of the bits contained in mask, and sets the bits corresponding to signals between 33 and 63.

signal_pending(p)

 Returns the value 1 (true) if the process identified by the *p process descriptor has nonblocked pending
signals, and returns the value 0 (false) if it doesn't. The function is implemented as a simple check on the
TIF_SIGPENDING flag of the process.

recalc_sigpending_tsk(t) and recalc_sigpending()

 The first function checks whether there are pending signals either for the process identified by the
process descriptor at *t (by looking at the t->pending->signal field) or for the thread group to which the
process belongs (by looking at the t->signal->shared_pending->signal field). The function then sets
accordingly the TIF_SIGPENDING flag in t->thread_info->flags. The recalc_sigpending() function is
equivalent to recalc_sigpending_tsk(current).

rm_from_queue(mask,q)

 Removes from the pending signal queue q the pending signals corresponding to the bit mask mask.

flush_sigqueue(q)

 Removes from the pending signal queue q all pending signals.

flush_signals(t)

 Deletes all signals sent to the process identified by the process descriptor at *t. This is done by clearing
the TIF_SIGPENDING flag in t->thread_info->flags and invoking twice flush_sigqueue() on the
t->pending and t->signal->shared_pending queues.

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.2. Generating a Signal
 Many kernel functions generate signals: they accomplish the first phase of signal handlingdescribed earlier
in the section "The Role of Signals"by updating one or more process descriptors as needed. They do not
directly perform the second phase of delivering the signal but, depending on the type of signal and the
state of the destination processes, may wake up some processes and force them to receive the signal.

 When a signal is sent to a process, either from the kernel or from another process, the kernel generates it
by invoking one of the functions listed in Table 11-9.

 Table 11-9. Kernel functions that generate a signal for a process

Name Description

send_sig() Sends a signal to a single process

send_sig_info() Like send_sig(), with extended information in a
siginfo_t structure

force_sig() Sends a signal that cannot be explicitly ignored or
blocked by the process

force_sig_info() Like force_sig(), with extended information in a
siginfo_t structure

force_sig_specific() Like force_sig(), but optimized for SIGSTOP and
SIGKILL signals

sys_tkill() System call handler of tkill() (see the later section "
System Calls Related to Signal Handling")

sys_tgkill() System call handler of tgkill()

 All functions in Table 11-9 end up invoking the specific_send_sig_info() function described in the next
section.

 When a signal is sent to a whole thread group, either from the kernel or from another process, the kernel
generates it by invoking one of the functions listed in Table 11-10.

 Table 11-10. Kernel functions that generate a signal for a thread group

Name Description

send_group_sig_info() Sends a signal to a single thread group identified by
the process descriptor of one of its members

kill_pg()
Sends a signal to all thread groups in a process
group (see the section "Process Management" in
Chapter 1)

kill_pg_info() Like kill_pg(), with extended information in a
siginfo_t structure

kill_proc() Sends a signal to a single thread group identified by
the PID of one of its members

kill_proc_info() Like kill_proc(), with extended information in a
siginfo_t structure

sys_kill() System call handler of kill() (see the later section "
System Calls Related to Signal Handling")

sys_rt_sigqueueinfo() System call handler of rt_sigqueueinfo()

All functions in Table 11-10 end up invoking the group_send_sig_info() function, which is described in
the later section "The group_send_sig_info() Function."

 11.2.1. The specific_send_sig_info() Function

 The specific_send_sig_info() function sends a signal to a specific process. It acts on three parameters:

 sig

 The signal number.

info

 Either the address of a siginfo_t table or one of three special values: 0 means that the signal has been
sent by a User Mode process, 1 means that it has been sent by the kernel, and 2 means that is has been
sent by the kernel and the signal is SIGSTOP or SIGKILL.

t

 A pointer to the descriptor of the destination process.

 The specific_send_sig_info() function must be invoked with local interrupts disabled and the
t->sighand->siglock spin lock already acquired. The function executes the following steps:

1.

1. Checks whether the process ignores the signal; in the affirmative case, returns 0 (signal not
generated). The signal is ignored when all three conditions for ignoring a signal are satisfied, that
is:
o

o The process is not being traced (PT_PTRACED flag in t->ptrace clear).
o

o The signal is not blocked (sigismember(&t->blocked, sig) returns 0).
o

o The signal is either explicitly ignored (the sa_handler field of t->sighand->action[sig-1] is
equal to SIG_IGN) or implicitly ignored (the sa_handler field is equal to SIG_DFL and the
signal is SIGCONT, SIGCHLD, SIGWINCH, or SIGURG).

2.

2. Checks whether the signal is non-real-time (sig<32) and another occurrence of the same signal is
already pending in the private pending signal queue of the process
(sigismember(&t->pending.signal,sig) returns 1): in the affirmative case, nothing has to be done,
thus returns 0.

3.

3. Invokes send_signal(sig, info, t, &t->pending) to add the signal to the set of pending signals of
the process; this function is described in detail in the next section.

4.

4. If send_signal() successfully terminated and the signal is not blocked
(sigismember(&t->blocked,sig) returns 0), invokes the signal_wake_up() function to notify the
process about the new pending signal. In turn, this function executes the following steps:
o

o Sets the TIF_SIGPENDING flags in t->tHRead_info->flags.
o

o Invokes try_to_wake_up()see the section "The try_to_wake_up() Function" in Chapter 7to
awake the process if it is either in TASK_INTERRUPTIBLE state, or in TASK_STOPPED
state and the signal is SIGKILL.

o

o If try_to_wake_up() returned 0, the process was already runnable: if so, it checks whether
the process is already running on another CPU and, in this case, sends an interprocessor
interrupt to that CPU to force a reschedule of the current process (see the section "
Interprocessor Interrupt Handling" in Chapter 4). Because each process checks the existence
of pending signals when returning from the schedule() function, the interprocessor interrupt
ensures that the destination process quickly notices the new pending signal.

5.

5. Returns 1 (the signal has been successfully generated).

11.2.2. The send_signal() Function

 The send_signal() function inserts a new item in a pending signal queue. It receives as its parameters the
signal number sig, the address info of a siginfo_t data structure (or a special code, see the description of
specific_send_sig_info() in the previous section), the address t of the descriptor of the target process,
and the address signals of the pending signal queue.

 The function executes the following steps:
1.

1. If the value of info is 2, the signal is either SIGKILL or SIGSTOP and it has been generated by
the kernel via the force_sig_specific() function: in this case, it jumps to step 9. The action
corresponding to these signals is immediately enforced by the kernel, thus the function may skip
adding the signal to the pending signal queue.

2.

2. If the number of pending signals of the process's owner (t->user->sigpending) is smaller than the
current process's resource limit (t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur), the function
allocates a sigqueue data structure for the new occurrence of the signal:

2. q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);

3.

3. If the number of pending signals of the process's owner is too high or the memory allocation in
the previous step failed, it jumps to step 9.

4.

4. Increases the number of pending signals of the owner (t->user->sigpending) and the reference
counter of the per-user data structure pointed to by t->user.

5.

5. Adds the sigqueue data structure in the pending signal queue signals:

5. list_add_tail(&q->list, &signals->list);

6.

6. Fills the siginfo_t table inside the sigqueue data structure:

6. if ((unsigned long)info == 0) {

 q->info.si_signo = sig;

 q->info.si_errno = 0;

 q->info.si_code = SI_USER;

 q->info._sifields._kill._pid = current->pid;

 q->info._sifields._kill._uid = current->uid;

 } else if ((unsigned long)info == 1) {

 q->info.si_signo = sig;

 q->info.si_errno = 0;

 q->info.si_code = SI_KERNEL;

 q->info._sifields._kill._pid = 0;

 q->info._sifields._kill._uid = 0;

 } else

 copy_siginfo(&q->info, info);

6. The copy_siginfo() function copies the siginfo_t table passed by the caller.
7.

7. Sets the bit corresponding to the signal in the bit mask of the queue:

7. sigaddset(&signals->signal, sig);

8.

8. Returns 0: the signal has been successfully appended to the pending signal queue.
9.

9. Here, an item will not be added to the signal pending queue, because there are already too many
pending signals, or there is no free memory for the sigqueue data structure, or the signal is
immediately enforced by the kernel. If the signal is real-time and was sent through a kernel
function that is explicitly required to queue it, the function returns the error code -EAGAIN:

9. if (sig>=32 && info && (unsigned long) info != 1 &&

 info->si_code != SI_USER)

 return -EAGAIN;

10.

10.Sets the bit corresponding to the signal in the bit mask of the queue:

10. sigaddset(&signals->signal, sig);

11.

11.Returns 0: even if the signal has not been appended to the queue, the corresponding bit has been
set in the bit mask of pending signals.

It is important to let the destination process receive the signal even if there is no room for the
corresponding item in the pending signal queue. Suppose, for instance, that a process is consuming too
much memory. The kernel must ensure that the kill() system call succeeds even if there is no free
memory; otherwise, the system administrator doesn't have any chance to recover the system by
terminating the offending process.

 11.2.3. The group_send_sig_info() Function

 The group_send_sig_info() function sends a signal to a whole thread group. It acts on three parameters:
a signal number sig, the address info of a siginfo_t tableor alternatively the special values 0, 1, or 2, as
explained in the earlier section "The specific_send_sig_info() Function"and the address p of a process
descriptor.

 The function essentially executes the following steps:
1.

1. Checks that the parameter sig is correct:

1. if (sig < 0 || sig > 64)

 return -EINVAL;

2.

2. If the signal is being sent by a User Mode process, it checks whether the operation is allowed.
The signal is delivered only if at least one of the following conditions holds:
o

o The owner of the sending process has the proper capability (usually, this simply means the
signal was issued by the system administrator; see Chapter 20).

o

o The signal is SIGCONT and the destination process is in the same login session of the
sending process.

o

o Both processes belong to the same user.

3. If the User Mode process is not allowed to send the signal, the function returns the value
-EPERM.

3.

3. If the sig parameter has the value 0, it returns immediately without generating any signal:

3. if (!sig || !p->sighand)

 return 0;

3. Because 0 is not a valid signal number, it is used to allow the sending process to check whether it
has the required privileges to send a signal to the destination thread group. The function also
returns if the destination process is being killed, indicated by checking whether its signal handler
descriptor has been released.

4.

4. Acquires the p->sighand->siglock spin lock and disables local interrupts.
5.

5. Invokes the handle_stop_signal() function, which checks for some types of signals that might
nullify other pending signals for the destination thread group. The latter function executes the
following steps:
o

o If the thread group is being killed (SIGNAL_GROUP_EXIT flag in the flags field of the
signal descriptor set), it returns.

o

o If sig is a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, the function invokes the
rm_from_queue() function to remove the SIGCONT signal from the shared pending signal
queue p->signal->shared_pending and from the private queues of all members of the thread
group.

o

o If sig is SIGCONT, it invokes the rm_from_queue() function to remove any SIGSTOP,
SIGTSTP, SIGTTIN, and SIGTTOU signal from the shared pending signal queue
p->signal->shared_pending; then, removes the same signals from the private pending signal
queues of the processes belonging to the thread group, and awakens them:

o rm_from_queue(0x003c0000, &p->signal->shared_pending);

 t = p;

 do {

 rm_from_queue(0x003c0000, &t->pending);

 try_to_wake_up(t, TASK_STOPPED, 0);

 t = next_thread(t);

 } while (t != p);

o The mask 0x003c0000 selects the four stop signals. At each iteration, the next_thread macro
returns the descriptor address of a different lightweight process in the thread group (see the
section "Relationships Among Processes" in Chapter 3).[*]

o [*] The actual code is more complicated than the fragment just shown, because
handle_stop_signal() also takes care of the unusual case of the SIGCONT signal being
caught, as well as of the race conditions due to a SIGCONT signal occurring while all
processes in the thread group are being stopped.

6.

6. Checks whether the thread group ignores the signal; if so, returns the value 0 (success). The
signal is ignored when all three conditions for ignoring a signal that are mentioned in the earlier
section "The Role of Signals" are satisfied (see also step 1 in the earlier section "The
specific_send_sig_info() Function").

7.

7. Checks whether the signal is non-real-time and another occurrence of the same signal is already
pending in the shared pending signal queue of the thread group: if so, nothing has to be done, thus
returns the value 0 (success):

7. if (sig<32 && sigismember(&p->signal->shared_pending.signal,sig))

 return 0;

8.

8. Invokes send_signal() to append the signal to the shared pending signal queue (see the previous
section "The send_signal() Function"). If send_signal() returns a nonzero error code, it
terminates while returning the same value.

9.

9. Invokes the _ _group_complete_signal() function to wake up one lightweight process in the
thread group (see below).

10.

10.Releases the p->sighand->siglock spin lock and enables local interrupts.
11.

11.Returns 0 (success).

The _ _group_complete_signal() function scans the processes in the thread group, looking for a process
that can receive the new signal. A process may be selected if it satisfies all the following conditions:



 The process does not block the signal.


 The process is not in state EXIT_ZOMBIE, EXIT_DEAD, TASK_TRACED, or
TASK_STOPPED (as an exception, the process can be in the TASK_TRACED or
TASK_STOPPED states if the signal is SIGKILL).



 The process is not being killedthat is, its PF_EXITING flag is not set.


 Either the process is currently in execution on a CPU, or its TIF_SIGPENDING flag is not
already set. (In fact, there is no point in awakening a process that has pending signals: in general,
this operation has been already performed by the kernel control path that set the
TIF_SIGPENDING flag. On the other hand, if a process is currently in execution, it should be
notified of the new pending signal.)

 A thread group might include many processes that satisfy the above conditions. The function selects one
of them as follows:



 If the process identified by pthe descriptor address passed as parameter of the
group_send_sig_info() functionsatisfies all the prior rules and can thus receive the signal, the
function selects it.



 Otherwise, the function searches for a suitable process by scanning the members of the thread
group, starting from the process that received the last thread group's signal
(p->signal->curr_target).

 If _ _group_complete_signal() succeeds in finding a suitable process, it sets up the delivery of the signal
to the selected process. First, the function checks whether the signal is fatal: in this case, the whole thread
group is killed by sending SIGKILL signals to each lightweight process in the group. Otherwise, if the
signal is not fatal, the function invokes the signal_wake_up() function to notify the selected process that it
has a new pending signal (see step 4 in the earlier section "The specific_send_sig_info() Function").

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.3. Delivering a Signal
 We assume that the kernel noticed the arrival of a signal and invoked one of the functions mentioned in
the previous sections to prepare the process descriptor of the process that is supposed to receive the
signal. But in case that process was not running on the CPU at that moment, the kernel deferred the task
of delivering the signal. We now turn to the activities that the kernel performs to ensure that pending
signals of a process are handled.

 As mentioned in the section "Returning from Interrupts and Exceptions" in Chapter 4, the kernel checks
the value of the TIF_SIGPENDING flag of the process before allowing the process to resume its
execution in User Mode. Thus, the kernel checks for the existence of pending signals every time it finishes
handling an interrupt or an exception.

 To handle the nonblocked pending signals, the kernel invokes the do_signal() function, which receives
two parameters:

 regs

 The address of the stack area where the User Mode register contents of the current process are saved.

oldset

 The address of a variable where the function is supposed to save the bit mask array of blocked signals.
It is NULL if there is no need to save the bit mask array.

 Our description of the do_signal() function will focus on the general mechanism of signal delivery; the
actual code is burdened with lots of details dealing with race conditions and other special casessuch as
freezing the system, generating core dumps, stopping and killing a whole thread group, and so on. We
will quietly skip all these details.

 As already mentioned, the do_signal() function is usually only invoked when the CPU is going to return
in User Mode. For that reason, if an interrupt handler invokes do_signal(), the function simply returns:

 if ((regs->xcs & 3) != 3)

 return 1;

If the oldset parameter is NULL, the function initializes it with the address of the current->blocked field:

 if (!oldset)

 oldset = ¤t->blocked;

The heart of the do_signal() function consists of a loop that repeatedly invokes the dequeue_signal()
function until no nonblocked pending signals are left in both the private and shared pending signal queues.
The return code of dequeue_signal() is stored in the signr local variable. If its value is 0, it means that all
pending signals have been handled and do_signal() can finish. As long as a nonzero value is returned, a
pending signal is waiting to be handled. dequeue_signal() is invoked again after do_signal() handles the
current signal.

 The dequeue_signal() considers first all signals in the private pending signal queue, starting from the
lowest-numbered signal, then the signals in the shared queue. It updates the data structures to indicate
that the signal is no longer pending and returns its number. This task involves clearing the corresponding
bit in current->pending.signal or current->signal->shared_pending.signal, and invoking
recalc_sigpending() to update the value of the TIF_SIGPENDING flag.

 Let's see how the do_signal() function handles each pending signal whose number is returned by
dequeue_signal(). First, it checks whether the current receiver process is being monitored by some other
process; in this case, do_signal() invokes do_notify_parent_cldstop() and schedule() to make the
monitoring process aware of the signal handling.

 Then do_signal() loads the ka local variable with the address of the k_sigaction data structure of the
signal to be handled:

 ka = ¤t->sig->action[signr-1];

Depending on the contents, three kinds of actions may be performed: ignoring the signal, executing a
default action, or executing a signal handler.

 When a delivered signal is explicitly ignored, the do_signal() function simply continues with a new
execution of the loop and therefore considers another pending signal:

 if (ka->sa.sa_handler == SIG_IGN)

 continue;

In the following two sections we will describe how a default action and a signal handler are executed.

 11.3.1. Executing the Default Action for the Signal

 If ka->sa.sa_handler is equal to SIG_DFL, do_signal() must perform the default action of the signal.
The only exception comes when the receiving process is init, in which case the signal is discarded as
described in the earlier section "Actions Performed upon Delivering a Signal":

 if (current->pid == 1)

 continue;

For other processes, the signals whose default action is "ignore" are also easily handled:

 if (signr==SIGCONT || signr==SIGCHLD ||

 signr==SIGWINCH || signr==SIGURG)

 continue;

The signals whose default action is "stop" may stop all processes in the thread group. To do this,
do_signal() sets their states to TASK_STOPPED and then invokes the schedule() function (see the
section "The schedule() Function" in Chapter 7):

 if (signr==SIGSTOP || signr==SIGTSTP ||

 signr==SIGTTIN || signr==SIGTTOU) {

 if (signr != SIGSTOP &&

 is_orphaned_pgrp(current->signal->pgrp))

 continue;

 do_signal_stop(signr);

 }

The difference between SIGSTOP and the other signals is subtle: SIGSTOP always stops the thread
group, while the other signals stop the thread group only if it is not in an "orphaned process group." The
POSIX standard specifies that a process group is not orphaned as long as there is a process in the group
that has a parent in a different process group but in the same session. Thus, if the parent process dies but
the user who started the process is still logged in, the process group is not orphaned.

 The do_signal_stop() function checks whether current is the first process being stopped in the thread
group. If so, it activates a "group stop": essentially, the function sets the group_stop_count field in the
signal descriptor to a positive value, and awakens each process in the thread group. Each such process,
in turn, looks at this field to recognize that a group stop is in progress, changes its state to
TASK_STOPPED, and invokes schedule(). The do_signal_stop() function also sends a SIGCHLD
signal to the parent process of the thread group leader, unless the parent has set the SA_NOCLDSTOP
flag of SIGCHLD.

 The signals whose default action is "dump" may create a core file in the process working directory; this
file lists the complete contents of the process's address space and CPU registers. After do_signal()
creates the core file, it kills the thread group. The default action of the remaining 18 signals is "terminate,"
which consists of simply killing the thread group. To kill the whole thread group, the function invokes
do_group_exit(), which executes a clean "group exit" procedure (see the section "Process Termination"
in Chapter 3).

 11.3.2. Catching the Signal

 If a handler has been established for the signal, the do_signal() function must enforce its execution. It
does this by invoking handle_signal():

 handle_signal(signr, &info, &ka, oldset, regs);

 if (ka->sa.sa_flags & SA_ONESHOT)

 ka->sa.sa_handler = SIG_DFL;

 return 1;

If the received signal has the SA_ONESHOT flag set, it must be reset to its default action, so that further
occurrences of the same signal will not trigger again the execution of the signal handler. Notice how
do_signal() returns after having handled a single signal. Other pending signals won't be considered until
the next invocation of do_signal(). This approach ensures that real-time signals will be dealt with in the
proper order.

 Executing a signal handler is a rather complex task because of the need to juggle stacks carefully while
switching between User Mode and Kernel Mode. We explain exactly what is entailed here:

 Signal handlers are functions defined by User Mode processes and included in the User Mode code
segment. The handle_signal() function runs in Kernel Mode while signal handlers run in User Mode; this
means that the current process must first execute the signal handler in User Mode before being allowed
to resume its "normal" execution. Moreover, when the kernel attempts to resume the normal execution of
the process, the Kernel Mode stack no longer contains the hardware context of the interrupted program,
because the Kernel Mode stack is emptied at every transition from User Mode to Kernel Mode.

 An additional complication is that signal handlers may invoke system calls. In this case, after the service
routine executes, control must be returned to the signal handler instead of to the normal flow of code of
the interrupted program.

 The solution adopted in Linux consists of copying the hardware context saved in the Kernel Mode stack
onto the User Mode stack of the current process. The User Mode stack is also modified in such a way
that, when the signal handler terminates, the sigreturn() system call is automatically invoked to copy the
hardware context back on the Kernel Mode stack and to restore the original content of the User Mode
stack.

 Figure 11-2 illustrates the flow of execution of the functions involved in catching a signal. A nonblocked
signal is sent to a process. When an interrupt or exception occurs, the process switches into Kernel
Mode. Right before returning to User Mode, the kernel executes the do_signal() function, which in turn
handles the signal (by invoking handle_signal()) and sets up the User Mode stack (by invoking
setup_frame() or setup_rt_frame()). When the process switches again to User Mode, it starts executing
the signal handler, because the handler's starting address was forced into the program counter. When that
function terminates, the return code placed on the User Mode stack by the setup_frame() or
setup_rt_frame() function is executed. This code invokes the sigreturn() or the rt_sigreturn() system
call; the corresponding service routines copy the hardware context of the normal program to the Kernel
Mode stack and restore the User Mode stack back to its original state (by invoking restore_sigcontext(
)). When the system call terminates, the normal program can thus resume its execution.

 Figure 11-2. Catching a signal

 Let's now examine in detail how this scheme is carried out.

 11.3.2.1. Setting up the frame

 To properly set the User Mode stack of the process, the handle_signal() function invokes either
setup_frame() (for signals that do not require a siginfo_t table; see the section "System Calls Related to
Signal Handling" later in this chapter) or setup_rt_frame() (for signals that do require a siginfo_t table).
To choose among these two functions, the kernel checks the value of the SA_SIGINFO flag in the
sa_flags field of the sigaction table associated with the signal.

 The setup_frame() function receives four parameters, which have the following meanings:

 sig

 Signal number

ka

 Address of the k_sigaction table associated with the signal

oldset

 Address of a bit mask array of blocked signals

regs

 Address in the Kernel Mode stack area where the User Mode register contents are saved

 The setup_frame() function pushes onto the User Mode stack a data structure called a frame, which
contains the information needed to handle the signal and to ensure the correct return to the sys_sigreturn(
) function. A frame is a sigframe table that includes the following fields (see Figure 11-3):

 pretcode

 Return address of the signal handler function; it points to the code at the _ _kernel_sigreturn label (see
below).

sig

 The signal number; this is the parameter required by the signal handler.

sc

 S tructure of type sigcontext containing the hardware context of the User Mode process right before
switching to Kernel Mode (this information is copied from the Kernel Mode stack of current). It also
contains a bit array that specifies the blocked regular signals of the process.

fpstate

 Structure of type _fpstate that may be used to store the floating point registers of the User Mode
process (see the section "Saving and Loading the FPU, MMX, and XMM Registers" in Chapter 3).

extramask

 Bit array that specifies the blocked real-time signals.

retcode

 8-byte code issuing a sigreturn() system call. In earlier versions of Linux, this code was effectively
executed to return from the signal handler; in Linux 2.6, however, it is used only as a signature, so that
debuggers can recognize the signal stack frame.

 Figure 11-3. Frame on the User Mode stack

 The setup_frame() function starts by invoking get_sigframe() to compute the first memory location of
the frame. That memory location is usually[*] in the User Mode stack, so the function returns the value:

[*] Linux allows processes to specify an alternative stack for their signal handlers by invoking the
signaltstack() system call; this feature is also required by the X/Open standard. When an alternative
stack is present, the get_sigframe() function returns an address inside that stack. We don't discuss this
feature further, because it is conceptually similar to regular signal handling.

 (regs->esp - sizeof(struct sigframe)) & 0xfffffff8

Because stacks grow toward lower addresses, the initial address of the frame is obtained by subtracting
its size from the address of the current stack top and aligning the result to a multiple of 8.

 The returned address is then verified by means of the access_ok macro; if it is valid, the function
repeatedly invokes _ _put_user() to fill all the fields of the frame. The pretcode field in the frame is
initialized to &_ _kernel_sigreturn, the address of some glue code placed in the vsyscall page (see the
section "Issuing a System Call via the sysenter Instruction" in Chapter 10).

 Once this is done, the function modifies the regs area of the Kernel Mode stack, thus ensuring that
control is transferred to the signal handler when current resumes its execution in User Mode:

 regs->esp = (unsigned long) frame;

 regs->eip = (unsigned long) ka->sa.sa_handler;

 regs->eax = (unsigned long) sig;

 regs->edx = regs->ecx = 0;

 regs->xds = regs->xes = regs->xss = _ _USER_DS;

 regs->xcs = _ _USER_CS;

The setup_frame() function terminates by resetting the segmentation registers saved on the Kernel Mode
stack to their default value. Now the information needed by the signal handler is on the top of the User
Mode stack.

 The setup_rt_frame() function is similar to setup_frame(), but it puts on the User Mode stack an
extended frame (stored in the rt_sigframe data structure) that also includes the content of the siginfo_t
table associated with the signal. Moreover, this function sets the pretcode field so that it points to the _
_kernel_rt_sigreturn code in the vsyscall page.

 11.3.2.2. Evaluating the signal flags

 After setting up the User Mode stack, the handle_signal() function checks the values of the flags
associated with the signal. If the signal does not have the SA_NODEFER flag set, the signals in the
sa_mask field of the sigaction table must be blocked during the execution of the signal handler:

 if (!(ka->sa.sa_flags & SA_NODEFER)) {

 spin_lock_irq(¤t->sighand->siglock);

 sigorsets(¤t->blocked, ¤t->blocked, &ka->sa.sa_mask);

 sigaddset(¤t->blocked, sig);

 recalc_sigpending(current);

 spin_unlock_irq(¤t->sighand->siglock);

 }

As described earlier, the recalc_sigpending() function checks whether the process has nonblocked
pending signals and sets its TIF_SIGPENDING flag accordingly.

 The function returns then to do_signal(), which also returns immediately.

 11.3.2.3. Starting the signal handler

 When do_signal() returns, the current process resumes its execution in User Mode. Because of the
preparation by setup_frame() described earlier, the eip register points to the first instruction of the signal
handler, while esp points to the first memory location of the frame that has been pushed on top of the
User Mode stack. As a result, the signal handler is executed.

 11.3.2.4. Terminating the signal handler

 When the signal handler terminates, the return address on top of the stack points to the code in the
vsyscall page referenced by the pretcode field of the frame:

 _ _kernel_sigreturn:

 popl %eax

 movl $_ _NR_sigreturn, %eax

 int $0x80

Therefore, the signal number (that is, the sig field of the frame) is discarded from the stack; the sigreturn(
) system call is then invoked.

 The sys_sigreturn() function computes the address of the pt_regs data structure regs, which contains the
hardware context of the User Mode process (see the section "Parameter Passing" in Chapter 10). From
the value stored in the esp field, it can thus derive and check the frame address inside the User Mode
stack:

 frame = (struct sigframe *)(regs.esp - 8);

 if (verify_area(VERIFY_READ, frame, sizeof(*frame)) {

 force_sig(SIGSEGV, current);

 return 0;

 }

Then the function copies the bit array of signals that were blocked before invoking the signal handler from
the sc field of the frame to the blocked field of current. As a result, all signals that have been masked for
the execution of the signal handler are unblocked. The recalc_sigpending() function is then invoked.

 The sys_sigreturn() function must at this point copy the process hardware context from the sc field of
the frame to the Kernel Mode stack and remove the frame from the User Mode stack; it performs these
two tasks by invoking the restore_sigcontext() function.

 If the signal was sent by a system call such as rt_sigqueueinfo() that required a siginfo_t table to be
associated with the signal, the mechanism is similar. The pretcode field of the extended frame points to
the _ _kernel_rt_sigreturn code in the vsyscall page, which in turn invokes the rt_sigreturn() system call;
the corresponding sys_rt_sigreturn() service routine copies the process hardware context from the
extended frame to the Kernel Mode stack and restores the original User Mode stack content by
removing the extended frame from it.

 11.3.3. Reexecution of System Calls

 The request associated with a system call cannot always be immediately satisfied by the kernel; when
this happens, the process that issued the system call is put in a TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE state.

 If the process is put in a TASK_INTERRUPTIBLE state and some other process sends a signal to it,
the kernel puts it in the TASK_RUNNING state without completing the system call (see the section "
Returning from Interrupts and Exceptions" in Chapter 4). The signal is delivered to the process while
switching back to User Mode. When this happens, the system call service routine does not complete its
job, but returns an EINTR, ERESTARTNOHAND, ERESTART_RESTARTBLOCK,
ERESTARTSYS, or ERESTARTNOINTR error code.

 In practice, the only error code a User Mode process can get in this situation is EINTR, which means
that the system call has not been completed. (The application programmer may check this code and
decide whether to reissue the system call.) The remaining error codes are used internally by the kernel to
specify whether the system call may be reexecuted automatically after the signal handler termination.

 Table 11-11 lists the error codes related to unfinished system calls and their impact for each of the three
possible signal actions. The terms that appear in the entries are defined in the following list:

 Terminate

 The system call will not be automatically reexecuted; the process will resume its execution in User Mode
at the instruction following the int $0x80 or sysenter one and the eax register will contain the -EINTR
value.

Reexecute

 The kernel forces the User Mode process to reload the eax register with the system call number and to
reexecute the int $0x80 or sysenter instruction; the process is not aware of the reexecution and the error
code is not passed to it.

Depends

 The system call is reexecuted only if the SA_RESTART flag of the delivered signal is set; otherwise, the
system call terminates with a -EINTR error code.

 Table 11-11. Reexecution of system calls

Error codes and their impact on system call execution

Signal

Action
EINTR ERESTARTSYS

ERESTARTNO
HAND

ERESTART_RE
STARTBLOCKa

ERESTARTNOIN
TR

Default Terminate Reexecute Reexecute Reexecute

Ignore Terminate Reexecute Reexecute Reexecute

Catch Terminate Depends Terminate Reexecute

a The ERESTARTNOHAND and ERESTART_RESTARTBLOCK error codes differ on the
mechanism used to restart the system call (see below).

When delivering a signal, the kernel must be sure that the process really issued a system call before
attempting to reexecute it. This is where the orig_eax field of the regs hardware context plays a critical
role. Let's recall how this field is initialized when the interrupt or exception handler starts:

 Interrupt

 The field contains the IRQ number associated with the interrupt minus 256 (see the section "Saving the
registers for the interrupt handler" in Chapter 4).

0x80 exception (also sysenter)

 The field contains the system call number (see the section "Entering and Exiting a System Call" in
Chapter 10).

Other exceptions

 The field contains the value -1 (see the section "Saving the Registers for the Exception Handler" in
Chapter 4).

 Therefore, a nonnegative value in the orig_eax field means that the signal has woken up a
TASK_INTERRUPTIBLE process that was sleeping in a system call. The service routine recognizes
that the system call was interrupted, and thus returns one of the previously mentioned error codes.

 11.3.3.1. Restarting a system call interrupted by a non-caught signal

 If the signal is explicitly ignored or if its default action is enforced, do_signal() analyzes the error code of
the system call to decide whether the unfinished system call must be automatically reexecuted, as
specified in Table 11-11. If the call must be restarted, the function modifies the regs hardware context so
that, when the process is back in User Mode, eip points either to the int $0x80 instruction or to the
sysenter instruction, and eax contains the system call number:

 if (regs->orig_eax >= 0) {

 if (regs->eax == -ERESTARTNOHAND || regs->eax == -ERESTARTSYS ||

 regs->eax == -ERESTARTNOINTR) {

 regs->eax = regs->orig_eax;

 regs->eip -= 2;

 }

 if (regs->eax == -ERESTART_RESTARTBLOCK) {

 regs->eax = _ _NR_restart_syscall;

 regs->eip -= 2;

 }

 }

The regs->eax field is filled with the return code of a system call service routine (see the section "Entering
and Exiting a System Call" in Chapter 10). Notice that both the int $0x80 and sysreturn instructions are
two bytes long so the function subtracts 2 from eip in order to set it to the instruction that triggers the
system call.

 The error code ERESTART_RESTARTBLOCK is special, because the eax register is set to the
number of the restart_syscall() system call; thus, the User Mode process does not restart the same
system call that was interrupted by the signal. This error code is only used by time-related system calls
that, when restarted, should adjust their User Mode parameters. A typical example is the nanosleep()
system call (see the section "An Application of Dynamic Timers: the nanosleep() System Call" in Chapter
6): suppose that a process invokes it to pause the execution for 20 milliseconds, and that a signal occurs
10 milliseconds later. If the system call would be restarted as usual, the total delay time would exceed 30
milliseconds.

 Instead, the service routine of the nanosleep() system call fills the restart_block field in the current's
thread_info structure with the address of a special service routine to be used when restarting, and returns
-ERESTART_RESTARTBLOCK if interrupted. The sys_restart_syscall() service routine just executes
the special nanosleep()'s service routine, which adjusts the delay to consider the time elapsed between
the invocation of the original system call and its restarting.

 11.3.3.2. Restarting a system call for a caught signal

 If the signal is caught, handle_signal() analyzes the error code and, possibly, the SA_RESTART flag of
the sigaction table to decide whether the unfinished system call must be reexecuted:

 if (regs->orig_eax >= 0) {

 switch (regs->eax) {

 case -ERESTART_RESTARTBLOCK:

 case -ERESTARTNOHAND:

 regs->eax = -EINTR;

 break;

 case -ERESTARTSYS:

 if (!(ka->sa.sa_flags & SA_RESTART)) {

 regs->eax = -EINTR;

 break;

 }

 /* fallthrough */

 case -ERESTARTNOINTR:

 regs->eax = regs->orig_eax;

 regs->eip -= 2;

 }

 }

If the system call must be restarted, handle_signal() proceeds exactly as do_signal(); otherwise, it
returns an -EINTR error code to the User Mode process.

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.4. System Calls Related to Signal Handling
 As stated in the introduction of this chapter, programs running in User Mode are allowed to send and
receive signals. This means that a set of system calls must be defined to allow these kinds of operations.
Unfortunately, for historical reasons, several system calls exist that serve essentially the same purpose. As
a result, some of these system calls are never invoked. For instance, sys_sigaction() and
sys_rt_sigaction() are almost identical, so the sigaction() wrapper function included in the C library ends
up invoking sys_rt_sigaction() instead of sys_sigaction(). We will describe some of the most significant
system calls in the following sections.

 11.4.1. The kill() System Call

 The kill(pid,sig) system call is commonly used to send signals to conventional processes or multithreaded
applications; its corresponding service routine is the sys_kill() function. The integer pid parameter has
several meanings, depending on its numerical value:

 pid > 0

 The sig signal is sent to the thread group of the process whose PID is equal to pid.

pid = 0

 The sig signal is sent to all thread groups of the processes in the same process group as the calling
process.

pid = -1

 The signal is sent to all processes, except swapper (PID 0), init (PID 1), and current.

pid < -1

 The signal is sent to all thread groups of the processes in the process group -pid.

 The sys_kill() function sets up a minimal siginfo_t table for the signal, and then invokes
kill_something_info():

 info.si_signo = sig;

 info.si_errno = 0;

 info.si_code = SI_USER;

 info._sifields._kill._pid = current->tgid;

 info._sifields._kill._uid = current->uid;

 return kill_something_info(sig, &info, pid);

The kill_something_info() function, in turn, invokes either kill_proc_info() (to send the signal to a single
thread group via group_send_sig_info()), or kill_pg_info() (to scan all processes in the destination
process group and invoke send_sig_info() for each of them), or repeatedly group_send_sig_info() for
each process in the system (if pid is -1).

 The kill() system call is able to send every signal, even the so-called real-time signals that have numbers
ranging from 32 to 64. However, as we saw in the earlier section "Generating a Signal," the kill() system
call does not ensure that a new element is added to the pending signal queue of the destination process,
so multiple instances of pending signals can be lost. Real-time signals should be sent by means of a
system call such as rt_sigqueueinfo() (see the later section "System Calls for Real-Time Signals").

 System V and BSD Unix variants also have a killpg() system call, which is able to explicitly send a
signal to a group of processes. In Linux, the function is implemented as a library function that uses the kill(
) system call. Another variation is raise() , which sends a signal to the current process (that is, to the
process executing the function). In Linux, raise() is implemented as a library function.

 11.4.2. The tkill() and tgkill() System Calls

 The tkill() and tgkill() system calls send a signal to a specific process in a thread group. The
pthread_kill() function of every POSIX-compliant pthread library invokes either of them to send a signal
to a specific lightweight process.

 The tkill() system call expects two parameters: the PID pid of the process to be signaled and the signal
number sig. The sys_tkill() service routine fills a siginfo table, gets the process descriptor address, makes
some permission checks (such as those in step 2 in the section "The group_send_sig_info() Function"),
and invokes specific_send_sig_info() to send the signal.

 The tgkill() system call differs from tkill() because it has a third parameter: the thread group ID (tgid) of
the thread group that includes the process to be signaled. The sys_tgkill() service routine performs
exactly the same operations as sys_tkill(), but also checks that the process being signaled actually
belongs to the thread group tgid. This additional check solves a race condition that occurs when a signal
is sent to a process that is being killed: if another multithreaded application is creating lightweight
processes fast enough, the signal could be delivered to the wrong process. The tgkill() system call solves
the problem, because the thread group ID is never changed during the life span of a multithreaded
application.

 11.4.3. Changing a Signal Action

 The sigaction(sig,act,oact) system call allows users to specify an action for a signal; of course, if no signal
action is defined, the kernel executes the default action associated with the delivered signal.

 The corresponding sys_sigaction() service routine acts on two parameters: the sig signal number and the
act table of type old_sigaction that specifies the new action. A third oact optional output parameter may
be used to get the previous action associated with the signal. (The old_sigaction data structure contains
the same fields as the sigaction structure described in the earlier section "Data Structures Associated with
Signals," but in a different order.)

 The function checks first whether the act address is valid. Then it fills the sa_handler, sa_flags, and
sa_mask fields of a new_ka local variable of type k_sigaction with the corresponding fields of *act:

 _ _get_user(new_ka.sa.sa_handler, &act->sa_handler);

 _ _get_user(new_ka.sa.sa_flags, &act->sa_flags);

 _ _get_user(mask, &act->sa_mask);

 siginitset(&new_ka.sa.sa_mask, mask);

The function invokes do_sigaction() to copy the new new_ka table into the entry at the sig-1 position of
current->sig->action (the number of the signal is one higher than the position in the array because there is
no zero signal):

 k = ¤t->sig->action[sig-1];

 if (act) {

 *k = *act;

 sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP));

 if (k->sa.sa_handler == SIG_IGN || (k->sa.sa_handler == SIG_DFL &&

 (sig==SIGCONT || sig==SIGCHLD || sig==SIGWINCH || sig==SIGURG))) {

 rm_from_queue(sigmask(sig), ¤t->signal->shared_pending);

 t = current;

 do {

 rm_from_queue(sigmask(sig), ¤t->pending);

 recalc_sigpending_tsk(t);

 t = next_thread(t);

 } while (t != current);

 }

 }

The POSIX standard requires that setting a signal action to either SIG_IGN or SIG_DFL when the
default action is "ignore" causes every pending signal of the same type to be discarded. Moreover, notice
that no matter what the requested masked signals are for the signal handler, SIGKILL and SIGSTOP are
never masked.

 The sigaction() system call also allows the user to initialize the sa_flags field in the sigaction table. We
listed the values allowed for this field and the related meanings in Table 11-6 (earlier in this chapter).

 Older System V Unix variants offered the signal() system call, which is still widely used by
programmers. Recent C libraries implement signal() by means of rt_sigaction() . However, Linux still
supports older C libraries and offers the sys_signal() service routine:

 new_sa.sa.sa_handler = handler;

 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;

 ret = do_sigaction(sig, &new_sa, &old_sa);

 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

11.4.4. Examining the Pending Blocked Signals

 The sigpending() system call allows a process to examine the set of pending blocked signalsi.e., those
that have been raised while blocked. The corresponding sys_sigpending() service routine acts on a single
parameter, set, namely, the address of a user variable where the array of bits must be copied:

 sigorsets(&pending, ¤t->pending.signal,

 ¤t->signal->shared_pending.signal);

 sigandsets(&pending, ¤t->blocked, &pending);

 copy_to_user(set, &pending, 4);

11.4.5. Modifying the Set of Blocked Signals

 The sigprocmask() system call allows processes to modify the set of blocked signals; it applies only to
regular (non-real-time) signals. The corresponding sys_sigprocmask() service routine acts on three
parameters:

 oset

 Pointer in the process address space to a bit array where the previous bit mask must be stored.

set

 Pointer in the process address space to the bit array containing the new bit mask.

how

 Flag that may have one of the following values:

 SIG_BLOCK

 The *set bit mask array specifies the signals that must be added to the bit mask array of blocked signals.

SIG_UNBLOCK

 The *set bit mask array specifies the signals that must be removed from the bit mask array of blocked
signals.

SIG_SETMASK

 The *set bit mask array specifies the new bit mask array of blocked signals.

 The function invokes copy_from_user() to copy the value pointed to by the set parameter into the
new_set local variable and copies the bit mask array of standard blocked signals of current into the
old_set local variable. It then acts as the how flag specifies on these two variables:

 if (copy_from_user(&new_set, set, sizeof(*set)))

 return -EFAULT;

 new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));

 old_set = current->blocked.sig[0];

 if (how == SIG_BLOCK)

 sigaddsetmask(¤t->blocked, new_set);

 else if (how == SIG_UNBLOCK)

 sigdelsetmask(¤t->blocked, new_set);

 else if (how == SIG_SETMASK)

 current->blocked.sig[0] = new_set;

 else

 return -EINVAL;

 recalc_sigpending(current);

 if (oset && copy_to_user(oset, &old_set, sizeof(*oset)))

 return -EFAULT;

 return 0;

11.4.6. Suspending the Process

 The sigsuspend() system call puts the process in the TASK_INTERRUPTIBLE state, after having
blocked the standard signals specified by a bit mask array to which the mask parameter points. The
process will wake up only when a nonignored, nonblocked signal is sent to it.

 The corresponding sys_sigsuspend() service routine executes these statements:

 mask &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));

 saveset = current->blocked;

 siginitset(¤t->blocked, mask);

 recalc_sigpending(current);

 regs->eax = -EINTR;

 while (1) {

 current->state = TASK_INTERRUPTIBLE;

 schedule();

 if (do_signal(regs, &saveset))

 return -EINTR;

 }

The schedule() function selects another process to run. When the process that issued the sigsuspend()
system call is executed again, sys_sigsuspend() invokes the do_signal() function to deliver the signal that
has awakened the process. If that function returns the value 1, the signal is not ignored. Therefore the
system call terminates by returning the error code -EINTR.

 The sigsuspend() system call may appear redundant, because the combined execution of sigprocmask()
and sleep() apparently yields the same result. But this is not true: because processes can be interleaved
at any time, one must be conscious that invoking a system call to perform action A followed by another
system call to perform action B is not equivalent to invoking a single system call that performs action A
and then action B.

 In this particular case, sigprocmask() might unblock a signal that is delivered before invoking sleep(). If
this happens, the process might remain in a TASK_INTERRUPTIBLE state forever, waiting for the
signal that was already delivered. On the other hand, the sigsuspend() system call does not allow signals
to be sent after unblocking and before the schedule() invocation, because other processes cannot grab
the CPU during that time interval.

 11.4.7. System Calls for Real-Time Signals

 Because the system calls previously examined apply only to standard signals, additional system calls
must be introduced to allow User Mode processes to handle real-time signals .

 Several system calls for real-time signals (rt_sigaction() , rt_sigpending() , rt_sigprocmask() , and
rt_sigsuspend()) are similar to those described earlier and won't be discussed further. For the same
reason, we won't discuss two other system calls that deal with queues of real-time signals:

 rt_sigqueueinfo()

 Sends a real-time signal so that it is added to the shared pending signal queue of the destination process.
Usually invoked through the sigqueue() standard library function.

rt_sigtimedwait()

 Dequeues a blocked pending signal without delivering it and returns the signal number to the caller; if no
blocked signal is pending, suspends the current process for a fixed amount of time. Usually invoked
through the sigwaitinfo() and sigtimedwait() standard library functions.

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 12. The Virtual Filesystem
 One of Linux's keys to success is its ability to coexist comfortably with other systems. You can
transparently mount disks or partitions that host file formats used by Windows , other Unix systems, or
even systems with tiny market shares like the Amiga. Linux manages to support multiple filesystem types
in the same way other Unix variants do, through a concept called the Virtual Filesystem.

 The idea behind the Virtual Filesystem is to put a wide range of information in the kernel to represent
many different types of filesystems ; there is a field or function to support each operation provided by all
real filesystems supported by Linux. For each read, write, or other function called, the kernel substitutes
the actual function that supports a native Linux filesystem, the NTFS filesystem, or whatever other
filesystem the file is on.

 This chapter discusses the aims, structure, and implementation of Linux's Virtual Filesystem. It focuses
on three of the five standard Unix file typesnamely, regular files, directories, and symbolic links. Device
files are covered in Chapter 13, while pipes are discussed in Chapter 19. To show how a real filesystem
works, Chapter 18 covers the Second Extended Filesystem that appears on nearly all Linux systems.

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.1. The Role of the Virtual Filesystem (VFS)
 The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel software layer that
handles all system calls related to a standard Unix filesystem. Its main strength is providing a common
interface to several kinds of filesystems.

 For instance, let's assume that a user issues the shell command:

 $ cp /floppy/TEST /tmp/test

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Second Extended
Filesystem (Ext2) directory. The VFS is an abstraction layer between the application program and the
filesystem implementations (see Figure 12-1(a)). Therefore, the cp program is not required to know the
filesystem types of /floppy/TEST and /tmp/test. Instead, cp interacts with the VFS by means of generic
system calls known to anyone who has done Unix programming (see the section "File-Handling System
Calls" in Chapter 1); the code executed by cp is shown in Figure 12-1(b).

 Figure 12-1. VFS role in a simple file copy operation

 Filesystems supported by the VFS may be grouped into three main classes:

 Disk-based filesystems

 These manage memory space available in a local disk or in some other device that emulates a disk (such
as a USB flash drive). Some of the well-known disk-based filesystems supported by the VFS are:



 Filesystems for Linux such as the widely used Second Extended Filesystem (Ext2), the recent
Third Extended Filesystem (Ext3), and the Reiser Filesystems (ReiserFS)[*]

 [*] Although these filesystems owe their birth to Linux, they have been ported to several other
operating systems.



 Filesystems for Unix variants such as sysv filesystem (System V , Coherent , Xenix), UFS (BSD
, Solaris , NEXTSTEP), MINIX filesystem, and VERITAS VxFS (SCO UnixWare)



 Microsoft filesystems such as MS-DOS, VFAT (Windows 95 and later releases), and NTFS
(Windows NT 4 and later releases)



 ISO9660 CD-ROM filesystem (formerly High Sierra Filesystem) and Universal Disk Format
(UDF) DVD filesystem



 Other proprietary filesystems such as IBM's OS/2 (HPFS), Apple's Macintosh (HFS), Amiga's
Fast Filesystem (AFFS), and Acorn Disk Filing System (ADFS)



 Additional journaling filesystems originating in systems other than Linux such as IBM's JFS and
SGI's XFS

 Network filesystems

 These allow easy access to files included in filesystems belonging to other networked computers. Some
well-known network filesystems supported by the VFS are NFS , Coda , AFS (Andrew filesystem),
CIFS (Common Internet File System, used in Microsoft Windows), and NCP (Novell's NetWare Core
Protocol).

Special filesystems

 These do not manage disk space, either locally or remotely. The /proc filesystem is a typical example of
a special filesystem (see the later section "Special Filesystems").

 In this book, we describe in detail the Ext2 and Ext3 filesystems only (see Chapter 18); the other
filesystems are not covered for lack of space.

 As mentioned in the section "An Overview of the Unix Filesystem" in Chapter 1, Unix directories build a
tree whose root is the / directory. The root directory is contained in the root filesystem, which in Linux, is
usually of type Ext2 or Ext3. All other filesystems can be "mounted" on subdirectories of the root
filesystem.[*]

[*] When a filesystem is mounted on a directory, the contents of the directory in the parent filesystem are
no longer accessible, because every pathname, including the mount point, will refer to the mounted
filesystem. However, the original directory's content shows up again when the filesystem is unmounted.
This somewhat surprising feature of Unix filesystems is used by system administrators to hide files; they
simply mount a filesystem on the directory containing the files to be hidden.

 A disk-based filesystem is usually stored in a hardware block device such as a hard disk, a floppy, or a
CD-ROM. A useful feature of Linux's VFS allows it to handle virtual block devices such as /dev/loop0,
which may be used to mount filesystems stored in regular files. As a possible application, a user may
protect her own private filesystem by storing an encrypted version of it in a regular file.

 The first Virtual Filesystem was included in Sun Microsystems's SunOS in 1986. Since then, most Unix
filesystems include a VFS. Linux's VFS, however, supports the widest range of filesystems.

 12.1.1. The Common File Model

 The key idea behind the VFS consists of introducing a common file model capable of representing all
supported filesystems. This model strictly mirrors the file model provided by the traditional Unix
filesystem. This is not surprising, because Linux wants to run its native filesystem with minimum overhead.
However, each specific filesystem implementation must translate its physical organization into the VFS's
common file model.

 For instance, in the common file model, each directory is regarded as a file, which contains a list of files
and other directories. However, several non-Unix disk-based filesystems use a File Allocation Table
(FAT), which stores the position of each file in the directory tree. In these filesystems, directories are not
files. To stick to the VFS's common file model, the Linux implementations of such FAT-based filesystems
must be able to construct on the fly, when needed, the files corresponding to the directories. Such files
exist only as objects in kernel memory.

 More essentially, the Linux kernel cannot hardcode a particular function to handle an operation such as
read() or ioctl() . Instead, it must use a pointer for each operation; the pointer is made to point to the
proper function for the particular filesystem being accessed.

 Let's illustrate this concept by showing how the read() shown in Figure 12-1 would be translated by the
kernel into a call specific to the MS-DOS filesystem. The application's call to read() makes the kernel
invoke the corresponding sys_read() service routine, like every other system call. The file is represented
by a file data structure in kernel memory, as we'll see later in this chapter. This data structure contains a
field called f_op that contains pointers to functions specific to MS-DOS files, including a function that
reads a file. sys_read() finds the pointer to this function and invokes it. Thus, the application's read() is
turned into the rather indirect call:

 file->f_op->read(...);

Similarly, the write() operation triggers the execution of a proper Ext2 write function associated with the
output file. In short, the kernel is responsible for assigning the right set of pointers to the file variable
associated with each open file, and then for invoking the call specific to each filesystem that the f_op field
points to.

 One can think of the common file model as object-oriented, where an object is a software construct that
defines both a data structure and the methods that operate on it. For reasons of efficiency, Linux is not
coded in an object-oriented language such as C++. Objects are therefore implemented as plain C data
structures with some fields pointing to functions that correspond to the object's methods.

 The common file model consists of the following object types:

 The superblock object

 Stores information concerning a mounted filesystem. For disk-based filesystems, this object usually
corresponds to a filesystem control block stored on disk.

The inode object

 Stores general information about a specific file. For disk-based filesystems, this object usually
corresponds to a file control block stored on disk. Each inode object is associated with an inode number,
which uniquely identifies the file within the filesystem.

The file object

 Stores information about the interaction between an open file and a process. This information exists only
in kernel memory during the period when a process has the file open.

The dentry object

 Stores information about the linking of a directory entry (that is, a particular name of the file) with the
corresponding file. Each disk-based filesystem stores this information in its own particular way on disk.

 Figure 12-2 illustrates with a simple example how processes interact with files. Three different processes
have opened the same file, two of them using the same hard link. In this case, each of the three processes
uses its own file object, while only two dentry objects are requiredone for each hard link. Both dentry
objects refer to the same inode object, which identifies the superblock object and, together with the
latter, the common disk file.

 Figure 12-2. Interaction between processes and VFS objects

 Besides providing a common interface to all filesystem implementations, the VFS has another important
role related to system performance. The most recently used dentry objects are contained in a disk cache
named the dentry cache , which speeds up the translation from a file pathname to the inode of the last
pathname component.

 Generally speaking, a disk cache is a software mechanism that allows the kernel to keep in RAM some
information that is normally stored on a disk, so that further accesses to that data can be quickly satisfied
without a slow access to the disk itself.

 Notice how a disk cache differs from a hardware cache or a memory cache, neither of which has
anything to do with disks or other devices. A hardware cache is a fast static RAM that speeds up
requests directed to the slower dynamic RAM (see the section "Hardware Cache" in Chapter 2). A
memory cache is a software mechanism introduced to bypass the Kernel Memory Allocator (see the
section "The Slab Allocator" in Chapter 8).

 Beside the dentry cache and the inode cache, Linux uses other disk caches. The most important one,
called the page cache, is described in detail in Chapter 15.

 12.1.2. System Calls Handled by the VFS

 Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files, directories, and
symbolic links. A few other system calls handled by the VFS, such as ioperm() , ioctl() , pipe() , and
mknod() , refer to device files and pipes. These are discussed in later chapters. A last group of system
calls handled by the VFS, such as socket() , connect() , and bind() , refer to sockets and are used to
implement networking. Some of the kernel service routines that correspond to the system calls listed in
Table 12-1 are discussed either in this chapter or in Chapter 18.

 Table 12-1. Some system calls handled by the VFS

System call name Description

mount() umount() umount2() Mount/unmount filesystems

sysfs() Get filesystem information

statfs() fstatfs() statfs64() fstatfs64()

 ustat()

Get filesystem statistics

chroot() pivot_root() Change root directory

chdir() fchdir() getcwd() Manipulate current directory

mkdir() rmdir() Create and destroy directories

getdents() getdents64() readdir() link()

 unlink() rename() lookup_dcookie()
Manipulate directory entries

readlink() symlink() Manipulate soft links

chown() fchown() lchown() chown16()

 fchown16() lchown16()
Modify file owner

chmod() fchmod() utime() Modify file attributes

stat() fstat() lstat() access() oldstat() oldfstat()
oldlstat() stat64() lstat64()

 fstat64()

Read file status

open() close() creat() umask() Open, close, and create files

dup() dup2() fcntl() fcntl64() Manipulate file descriptors

select() poll() Wait for events on a set of file descriptors

truncate() ftruncate() truncate64()

 ftruncate64()
Change file size

lseek() _llseek() Change file pointer

read() write() readv() writev() sendfile()
sendfile64() readahead() Carry out file I/O operations

io_setup() io_submit() io_getevents() io_cancel(
) io_destroy()

Asynchronous I/O (allows multiple outstanding
read and write requests)

pread64() pwrite64() Seek file and access it

mmap() mmap2() munmap() madvise() mincore(
)

 remap_file_pages()

Handle file memory mapping

fdatasync() fsync() sync() msync() Synchronize file data

flock() Manipulate file lock

setxattr() lsetxattr() fsetxattr() getxattr()
lgetxattr() fgetxattr() listxattr() llistxattr()
flistxattr() removexattr() lremovexattr()
fremovexattr()

Manipulate file extended attributes

We said earlier that the VFS is a layer between application programs and specific filesystems. However,
in some cases, a file operation can be performed by the VFS itself, without invoking a lower-level
procedure. For instance, when a process closes an open file, the file on disk doesn't usually need to be
touched, and hence the VFS simply releases the corresponding file object. Similarly, when the lseek()
system call modifies a file pointer, which is an attribute related to the interaction between an opened file
and a process, the VFS needs to modify only the corresponding file object without accessing the file on
disk, and therefore it does not have to invoke a specific filesystem procedure. In some sense, the VFS
could be considered a "generic" filesystem that relies, when necessary, on specific ones.

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.2. VFS Data Structures
 Each VFS object is stored in a suitable data structure, which includes both the object attributes and a
pointer to a table of object methods. The kernel may dynamically modify the methods of the object and,
hence, it may install specialized behavior for the object. The following sections explain the VFS objects
and their interrelationships in detail.

 12.2.1. Superblock Objects

 A superblock object consists of a super_block structure whose fields are described in Table 12-2.

 Table 12-2. The fields of the superblock object

Type Field Description

struct list_head s_list Pointers for superblock list

dev_t s_dev Device identifier

unsigned long s_blocksize Block size in bytes

unsigned long s_old_blocksize
Block size in bytes as reported
by the underlying block device
driver

unsigned char s_blocksize_bits Block size in number of bits

unsigned char s_dirt Modified (dirty) flag

unsigned long long s_maxbytes Maximum size of the files

struct

 file_system_type *
s_type Filesystem type

struct

 super_operations *
s_op Superblock methods

struct dquot_operations * dq_op Disk quota handling methods

struct quotactl_ops * s_qcop Disk quota administration
methods

struct export_operations * s_export_op Export operations used by
network filesystems

unsigned long s_flags Mount flags

unsigned long s_magic Filesystem magic number

struct dentry * s_root Dentry object of the filesystem's
root directory

struct rw_semaphore s_umount Semaphore used for unmounting

struct semaphore s_lock Superblock semaphore

int s_count Reference counter

int s_syncing
Flag indicating that inodes of the
superblock are being
synchronized

int s_need_sync_fs Flag used when synchronizing the
superblock's mounted filesystem

atomic_t s_active Secondary reference counter

void * s_security Pointer to superblock security
structure

struct xattr_handler ** s_xattr Pointer to superblock extended
attribute structure

struct list_head s_inodes List of all inodes

struct list_head s_dirty List of modified inodes

struct list_head s_io List of inodes waiting to be
written to disk

struct hlist_head s_anon
List of anonymous dentries for
handling remote network
filesystems

struct list_head s_files List of file objects

struct block_device * s_bdev Pointer to the block device driver
descriptor

struct list_head s_instances

Pointers for a list of superblock
objects of a given filesystem type
(see the later section "Filesystem
Type Registration")

struct quota_info s_dquot Descriptor for disk quota

int s_frozen
Flag used when freezing the
filesystem (forcing it to a
consistent state)

wait_queue_head_t s_wait_unfrozen
Wait queue where processes
sleep until the filesystem is
unfrozen

char[] s_id Name of the block device
containing the superblock

void * s_fs_info Pointer to superblock information
of a specific filesystem

struct semaphore s_vfs_rename_sem Semaphore used by VFS when
renaming files across directories

u32 s_time_gran Timestamp's granularity (in
nanoseconds)

All superblock objects are linked in a circular doubly linked list. The first element of this list is
represented by the super_blocks variable, while the s_list field of the superblock object stores the
pointers to the adjacent elements in the list. The sb_lock spin lock protects the list against concurrent
accesses in multiprocessor systems.

 The s_fs_info field points to superblock information that belongs to a specific filesystem; for instance, as
we'll see later in Chapter 18, if the superblock object refers to an Ext2 filesystem, the field points to an
ext2_sb_info structure, which includes the disk allocation bit masks and other data of no concern to the
VFS common file model.

 In general, data pointed to by the s_fs_info field is information from the disk duplicated in memory for
reasons of efficiency. Each disk-based filesystem needs to access and update its allocation bitmaps in
order to allocate or release disk blocks. The VFS allows these filesystems to act directly on the s_fs_info
field of the superblock in memory without accessing the disk.

 This approach leads to a new problem, however: the VFS superblock might end up no longer
synchronized with the corresponding superblock on disk. It is thus necessary to introduce an s_dirt flag,
which specifies whether the superblock is dirtythat is, whether the data on the disk must be updated. The
lack of synchronization leads to the familiar problem of a corrupted filesystem when a site's power goes
down without giving the user the chance to shut down a system cleanly. As we'll see in the section "
Writing Dirty Pages to Disk" in Chapter 15, Linux minimizes this problem by periodically copying all dirty
superblocks to disk.

 The methods associated with a superblock are called superblock operations . They are described by the
super_operations structure whose address is included in the s_op field.

 Each specific filesystem can define its own superblock operations. When the VFS needs to invoke one
of them, say read_inode(), it executes the following:

 sb->s_op->read_inode(inode);

where sb stores the address of the superblock object involved. The read_inode field of the
super_operations table contains the address of the suitable function, which is therefore directly invoked.

 Let's briefly describe the superblock operations, which implement higher-level operations like deleting
files or mounting disks. They are listed in the order they appear in the super_operations table:

 alloc_inode(sb)

 Allocates space for an inode object, including the space required for filesystem-specific data.

destroy_inode(inode)

 Destroys an inode object, including the filesystem-specific data.

read_inode(inode)

 Fills the fields of the inode object passed as the parameter with the data on disk; the i_ino field of the
inode object identifies the specific filesystem inode on the disk to be read.

dirty_inode(inode)

 Invoked when the inode is marked as modified (dirty). Used by filesystems such as ReiserFS and Ext3
to update the filesystem journal on disk.

write_inode(inode, flag)

 Updates a filesystem inode with the contents of the inode object passed as the parameter; the i_ino field
of the inode object identifies the filesystem inode on disk that is concerned. The flag parameter indicates
whether the I/O operation should be synchronous.

put_inode(inode)

 Invoked when the inode is releasedits reference counter is decreasedto perform filesystem-specific
operations.

drop_inode(inode)

 Invoked when the inode is about to be destroyedthat is, when the last user releases the inode;
filesystems that implement this method usually make use of generic_drop_inode(). This function removes
every reference to the inode from the VFS data structures and, if the inode no longer appears in any
directory, invokes the delete_inode superblock method to delete the inode from the filesystem.

delete_inode(inode)

 Invoked when the inode must be destroyed. Deletes the VFS inode in memory and the file data and
metadata on disk.

put_super(super)

 Releases the superblock object passed as the parameter (because the corresponding filesystem is
unmounted).

write_super(super)

 Updates a filesystem superblock with the contents of the object indicated.

sync_fs(sb, wait)

 Invoked when flushing the filesystem to update filesystem-specific data structures on disk (used by
journaling filesystems).

write_super_lockfs(super)

 Blocks changes to the filesystem and updates the superblock with the contents of the object indicated.
This method is invoked when the filesystem is frozen, for instance by the Logical Volume Manager
(LVM) driver.

unlockfs(super)

 Undoes the block of filesystem updates achieved by the write_super_lockfs superblock method.

statfs(super, buf)

 Returns statistics on a filesystem by filling the buf buffer.

remount_fs(super, flags, data)

 Remounts the filesystem with new options (invoked when a mount option must be changed).

clear_inode(inode)

 Invoked when a disk inode is being destroyed to perform filesystem-specific operations.

umount_begin(super)

 Aborts a mount operation because the corresponding unmount operation has been started (used only by
network filesystems).

show_options(seq_file, vfsmount)

 Used to display the filesystem-specific options

quota_read(super, type, data, size, offset)

 Used by the quota system to read data from the file that specifies the limits for this filesystem.[*]

[*] The quota system defines for each user and/or group limits on the amount of space that can be used
on a given filesystem (see the quotactl() system call.)

quota_write(super, type, data, size, offset)

 Used by the quota system to write data into the file that specifies the limits for this filesystem.

 The preceding methods are available to all possible filesystem types. However, only a subset of them
applies to each specific filesystem; the fields corresponding to unimplemented methods are set to NULL.
Notice that no get_super method to read a superblock is definedhow could the kernel invoke a method
of an object yet to be read from disk? We'll find an equivalent get_sb method in another object
describing the filesystem type (see the later section "Filesystem Type Registration").

 12.2.2. Inode Objects

 All information needed by the filesystem to handle a file is included in a data structure called an inode. A
filename is a casually assigned label that can be changed, but the inode is unique to the file and remains
the same as long as the file exists. An inode object in memory consists of an inode structure whose fields
are described in Table 12-3.

 Table 12-3. The fields of the inode object

Type Field Description

struct hlist_node i_hash Pointers for the hash list

struct list_head i_list Pointers for the list that describes
the inode's current state

struct list_head i_sb_list Pointers for the list of inodes of
the superblock

struct list_head i_dentry The head of the list of dentry
objects referencing this inode

unsigned long i_ino inode number

atomic_t i_count Usage counter

umode_t i_mode File type and access rights

unsigned int i_nlink Number of hard links

uid_t i_uid Owner identifier

gid_t i_gid Group identifier

dev_t i_rdev Real device identifier

loff_t i_size File length in bytes

struct timespec i_atime Time of last file access

struct timespec i_mtime Time of last file write

struct timespec i_ctime Time of last inode change

unsigned int i_blkbits Block size in number of bits

unsigned long i_blksize Block size in bytes

unsigned long i_version Version number, automatically
increased after each use

unsigned long i_blocks Number of blocks of the file

unsigned short i_bytes Number of bytes in the last block
of the file

unsigned char i_sock Nonzero if file is a socket

spinlock_t i_lock Spin lock protecting some fields
of the inode

struct semaphore i_sem inode semaphore

struct rw_semaphore i_alloc_sem
Read/write semaphore protecting
against race conditions in direct
I/O file operations

struct inode_operations * i_op inode operations

struct file_operations * i_fop Default file operations

struct super_block * i_sb Pointer to superblock object

struct file_lock * i_flock Pointer to file lock list

struct address_space * i_mapping Pointer to an address_space
object (see Chapter 15)

struct address_space i_data address_space object of the file

struct dquot * [] i_dquot inode disk quotas

struct list_head i_devices
Pointers for a list of inodes
relative to a specific character or
block device (see Chapter 13)

struct pipe_inode_info * i_pipe Used if the file is a pipe (see
Chapter 19)

struct block_device * i_bdev Pointer to the block device driver

struct cdev * i_cdev Pointer to the character device
driver

int i_cindex Index of the device file within a
group of minor numbers

_ _u32 i_generation inode version number (used by
some filesystems)

unsigned long i_dnotify_mask Bit mask of directory notify
events

struct dnotify_struct * i_dnotify Used for directory notifications

unsigned long i_state inode state flags

unsigned long dirtied_when Dirtying time (in ticks) of the
inode

unsigned int i_flags Filesystem mount flags

atomic_t i_writecount Usage counter for writing
processes

void * i_security Pointer to inode's security
structure

void * u.generic_ip Pointer to private data

seqcount_t i_size_seqcount
Sequence counter used in SMP
systems to get consistent values
for i_size

Each inode object duplicates some of the data included in the disk inodefor instance, the number of
blocks allocated to the file. When the value of the i_state field is equal to I_DIRTY_SYNC,
I_DIRTY_DATASYNC, or I_DIRTY_PAGES, the inode is dirtythat is, the corresponding disk inode
must be updated. The I_DIRTY macro can be used to check the value of these three flags at once (see
later for details). Other values of the i_state field are I_LOCK (the inode object is involved in an I/O
transfer), I_FREEING (the inode object is being freed), I_CLEAR (the inode object contents are no
longer meaningful), and I_NEW (the inode object has been allocated but not yet filled with data read
from the disk inode).

 Each inode object always appears in one of the following circular doubly linked lists (in all cases, the
pointers to the adjacent elements are stored in the i_list field):



 The list of valid unused inodes, typically those mirroring valid disk inodes and not currently used
by any process. These inodes are not dirty and their i_count field is set to 0. The first and last
elements of this list are referenced by the next and prev fields, respectively, of the inode_unused
variable. This list acts as a disk cache.



 The list of in-use inodes, that is, those mirroring valid disk inodes and used by some process.
These inodes are not dirty and their i_count field is positive. The first and last elements are
referenced by the inode_in_use variable.



 The list of dirty inodes. The first and last elements are referenced by the s_dirty field of the
corresponding superblock object.

 Each of the lists just mentioned links the i_list fields of the proper inode objects.

 Moreover, each inode object is also included in a per-filesystem doubly linked circular list headed at the
s_inodes field of the superblock object; the i_sb_list field of the inode object stores the pointers for the
adjacent elements in this list.

 Finally, the inode objects are also included in a hash table named inode_hashtable. The hash table
speeds up the search of the inode object when the kernel knows both the inode number and the address
of the superblock object corresponding to the filesystem that includes the file. Because hashing may
induce collisions, the inode object includes an i_hash field that contains a backward and a forward
pointer to other inodes that hash to the same position; this field creates a doubly linked list of those
inodes.

 The methods associated with an inode object are also called inode operations . They are described by
an inode_operations structure, whose address is included in the i_op field. Here are the inode operations
in the order they appear in the inode_operations table:

 create(dir, dentry, mode, nameidata)

 Creates a new disk inode for a regular file associated with a dentry object in some directory.

lookup(dir, dentry, nameidata)

 Searches a directory for an inode corresponding to the filename included in a dentry object.

link(old_dentry, dir, new_dentry)

 Creates a new hard link that refers to the file specified by old_dentry in the directory dir; the new hard
link has the name specified by new_dentry.

unlink(dir, dentry)

 Removes the hard link of the file specified by a dentry object from a directory.

symlink(dir, dentry, symname)

 Creates a new inode for a symbolic link associated with a dentry object in some directory.

mkdir(dir, dentry, mode)

 Creates a new inode for a directory associated with a dentry object in some directory.

rmdir(dir, dentry)

 Removes from a directory the subdirectory whose name is included in a dentry object.

mknod(dir, dentry, mode, rdev)

 Creates a new disk inode for a special file associated with a dentry object in some directory. The mode
and rdev parameters specify, respectively, the file type and the device's major and minor numbers.

rename(old_dir, old_dentry, new_dir, new_dentry)

 Moves the file identified by old_entry from the old_dir directory to the new_dir one. The new filename is
included in the dentry object that new_dentry points to.

readlink(dentry, buffer, buflen)

 Copies into a User Mode memory area specified by buffer the file pathname corresponding to the
symbolic link specified by the dentry.

follow_link(inode, nameidata)

 Translates a symbolic link specified by an inode object; if the symbolic link is a relative pathname, the
lookup operation starts from the directory specified in the second parameter.

put_link(dentry, nameidata)

 Releases all temporary data structures allocated by the follow_link method to translate a symbolic link.

truncate(inode)

 Modifies the size of the file associated with an inode. Before invoking this method, it is necessary to set
the i_size field of the inode object to the required new size.

permission(inode, mask, nameidata)

 Checks whether the specified access mode is allowed for the file associated with inode.

setattr(dentry, iattr)

 Notifies a "change event" after touching the inode attributes.

getattr(mnt, dentry, kstat)

 Used by some filesystems to read inode attributes.

setxattr(dentry, name, value, size, flags)

 Sets an "extended attribute" of an inode (extended attributes are stored on disk blocks outside of any
inode).

getxattr(dentry, name, buffer, size)

 Gets an extended attribute of an inode.

listxattr(dentry, buffer, size)

 Gets the whole list of extended attribute names.

removexattr(dentry, name)

 Removes an extended attribute of an inode.

 The methods just listed are available to all possible inodes and filesystem types. However, only a subset
of them applies to a specific inode and filesystem; the fields corresponding to unimplemented methods are
set to NULL.

 12.2.3. File Objects

 A file object describes how a process interacts with a file it has opened. The object is created when the
file is opened and consists of a file structure, whose fields are described in Table 12-4. Notice that file
objects have no corresponding image on disk, and hence no "dirty" field is included in the file structure to
specify that the file object has been modified.

 Table 12-4. The fields of the file object

Type Field Description

struct list_head f_list Pointers for generic file object list

struct dentry * f_dentry dentry object associated with the
file

struct vfsmount * f_vfsmnt Mounted filesystem containing the
file

struct file_operations * f_op Pointer to file operation table

atomic_t f_count File object's reference counter

unsigned int f_flags Flags specified when opening the
file

mode_t f_mode Process access mode

int f_error Error code for network write
operation

loff_t f_pos Current file offset (file pointer)

struct fown_struct f_owner Data for I/O event notification via
signals

unsigned int f_uid User's UID

unsigned int f_gid User group ID

struct file_ra_state f_ra File read-ahead state (see
Chapter 16)

size_t f_maxcount

Maximum number of bytes that
can be read or written with a
single operation (currently set to
231-1)

unsigned long f_version Version number, automatically
increased after each use

void * f_security Pointer to file object's security
structure

void * private_data Pointer to data specific for a
filesystem or a device driver

struct list_head f_ep_links Head of the list of event poll
waiters for this file

spinlock_t f_ep_lock Spin lock protecting the
f_ep_links list

struct address_space * f_mapping Pointer to file's address space
object (see Chapter 15)

The main information stored in a file object is the file pointerthe current position in the file from which the
next operation will take place. Because several processes may access the same file concurrently, the file
pointer must be kept in the file object rather than the inode object.

 File objects are allocated through a slab cache named filp, whose descriptor address is stored in the
filp_cachep variable. Because there is a limit on the number of file objects that can be allocated, the
files_stat variable specifies in the max_files field the maximum number of allocatable file objectsi.e., the
maximum number of files that can be accessed at the same time in the system.[*]

[*] The files_init() function, executed during kernel initialization, sets the max_files field to one-tenth of
the available RAM in kilobytes, but the system administrator can tune this parameter by writing into the
/proc/sys/fs/file-max file. Moreover, the superuser can always get a file object, even if max_files file
objects have already been allocated.

 "In use" file objects are collected in several lists rooted at the superblocks of the owning filesystems.
Each superblock object stores in the s_files field the head of a list of file objects; thus, file objects of files
belonging to different filesystems are included in different lists. The pointers to the previous and next
element in the list are stored in the f_list field of the file object. The files_lock spin lock protects the
superblock s_files lists against concurrent accesses in multiprocessor systems.

 The f_count field of the file object is a reference counter: it counts the number of processes that are using
the file object (remember however that lightweight processes created with the CLONE_FILES flag share
the table that identifies the open files, thus they use the same file objects). The counter is also increased
when the file object is used by the kernel itselffor instance, when the object is inserted in a list, or when a
dup() system call has been issued.

 When the VFS must open a file on behalf of a process, it invokes the get_empty_filp() function to
allocate a new file object. The function invokes kmem_cache_alloc() to get a free file object from the filp
cache, then it initializes the fields of the object as follows:

 memset(f, 0, sizeof(*f));

 INIT_LIST_HEAD(&f->f_ep_links);

 spin_lock_init(&f->f_ep_lock);

 atomic_set(&f->f_count, 1);

 f->f_uid = current->fsuid;

 f->f_gid = current->fsgid;

 f->f_owner.lock = RW_LOCK_UNLOCKED;

 INIT_LIST_HEAD(&f->f_list);

 f->f_maxcount = INT_MAX;

As we explained earlier in the section "The Common File Model," each filesystem includes its own set of
file operations that perform such activities as reading and writing a file. When the kernel loads an inode
into memory from disk, it stores a pointer to these file operations in a file_operations structure whose
address is contained in the i_fop field of the inode object. When a process opens the file, the VFS
initializes the f_op field of the new file object with the address stored in the inode so that further calls to
file operations can use these functions. If necessary, the VFS may later modify the set of file operations
by storing a new value in f_op.

 The following list describes the file operations in the order in which they appear in the file_operations
table:

 llseek(file, offset, origin)

 Updates the file pointer.

read(file, buf, count, offset)

 Reads count bytes from a file starting at position *offset; the value *offset (which usually corresponds to
the file pointer) is then increased.

aio_read(req, buf, len, pos)

 Starts an asynchronous I/O operation to read len bytes into buf from file position pos (introduced to
support the io_submit() system call).

write(file, buf, count, offset)

 Writes count bytes into a file starting at position *offset; the value *offset (which usually corresponds to
the file pointer) is then increased.

aio_write(req, buf, len, pos)

 Starts an asynchronous I/O operation to write len bytes from buf to file position pos.

readdir(dir, dirent, filldir)

 Returns the next directory entry of a directory in dirent; the filldir parameter contains the address of an
auxiliary function that extracts the fields in a directory entry.

poll(file, poll_table)

 Checks whether there is activity on a file and goes to sleep until something happens on it.

ioctl(inode, file, cmd, arg)

 Sends a command to an underlying hardware device. This method applies only to device files.

unlocked_ioctl(file, cmd, arg)

 Similar to the ioctl method, but it does not take the big kernel lock (see the section "The Big Kernel
Lock" in Chapter 5). It is expected that all device drivers and all filesystems will implement this new
method instead of the ioctl method.

compat_ioctl(file, cmd, arg)

 Method used to implement the ioctl() 32-bit system call by 64-bit kernels.

mmap(file, vma)

 Performs a memory mapping of the file into a process address space (see the section "Memory Mapping
" in Chapter 16).

open(inode, file)

 Opens a file by creating a new file object and linking it to the corresponding inode object (see the
section "The open() System Call" later in this chapter).

flush(file)

 Called when a reference to an open file is closed. The actual purpose of this method is
filesystem-dependent.

release(inode, file)

 Releases the file object. Called when the last reference to an open file is closedthat is, when the f_count
field of the file object becomes 0.

fsync(file, dentry, flag)

 Flushes the file by writing all cached data to disk.

aio_fsync(req, flag)

 Starts an asynchronous I/O flush operation.

fasync(fd, file, on)

 Enables or disables I/O event notification by means of signals.

lock(file, cmd, file_lock)

 Applies a lock to the file (see the section "File Locking" later in this chapter).

readv(file, vector, count, offset)

 Reads bytes from a file and puts the results in the buffers described by vector; the number of buffers is
specified by count.

writev(file, vector, count, offset)

 Writes bytes into a file from the buffers described by vector; the number of buffers is specified by count.

sendfile(in_file, offset, count, file_send_actor, out_file)

 Transfers data from in_file to out_file (introduced to support the sendfile() system call).

sendpage(file, page, offset, size, pointer, fill)

 Transfers data from file to the page cache's page; this is a low-level method used by sendfile() and by
the networking code for sockets.

get_unmapped_area(file, addr, len, offset, flags)

 Gets an unused address range to map the file.

check_flags(flags)

 Method invoked by the service routine of the fcntl() system call to perform additional checks when
setting the status flags of a file (F_SETFL command). Currently used only by the NFS network
filesystem.

dir_notify(file, arg)

 Method invoked by the service routine of the fcntl() system call when establishing a directory change
notification (F_NOTIFY command). Currently used only by the Common Internet File System (CIFS)
network filesystem.

flock(file, flag, lock)

 Used to customize the behavior of the flock() system call. No official Linux filesystem makes use of this
method.

 The methods just described are available to all possible file types. However, only a subset of them apply
to a specific file type; the fields corresponding to unimplemented methods are set to NULL.

 12.2.4. dentry Objects

 We mentioned in the section "The Common File Model" that the VFS considers each directory a file that
contains a list of files and other directories. We will discuss in Chapter 18 how directories are
implemented on a specific filesystem. Once a directory entry is read into memory, however, it is
transformed by the VFS into a dentry object based on the dentry structure, whose fields are described
in Table 12-5. The kernel creates a dentry object for every component of a pathname that a process
looks up; the dentry object associates the component to its corresponding inode. For example, when
looking up the /tmp/test pathname, the kernel creates a dentry object for the / root directory, a second
dentry object for the tmp entry of the root directory, and a third dentry object for the test entry of the
/tmp directory.

 Notice that dentry objects have no corresponding image on disk, and hence no field is included in the
dentry structure to specify that the object has been modified. Dentry objects are stored in a slab allocator
cache whose descriptor is dentry_cache; dentry objects are thus created and destroyed by invoking
kmem_cache_alloc() and kmem_cache_free().

 Table 12-5. The fields of the dentry object

Type Field Description

atomic_t d_count Dentry object usage counter

unsigned int d_flags Dentry cache flags

spinlock_t d_lock Spin lock protecting the dentry
object

struct inode * d_inode Inode associated with filename

struct dentry * d_parent Dentry object of parent directory

struct qstr d_name Filename

struct list_head d_lru Pointers for the list of unused
dentries

struct list_head d_child
For directories, pointers for the
list of directory dentries in the
same parent directory

struct list_head d_subdirs For directories, head of the list of
subdirectory dentries

struct list_head d_alias
Pointers for the list of dentries
associated with the same inode
(alias)

unsigned long d_time Used by d_revalidate method

struct dentry_operations* d_op Dentry methods

struct super_block * d_sb Superblock object of the file

void * d_fsdata Filesystem-dependent data

struct rcu_head d_rcu

The RCU descriptor used when
reclaiming the dentry object (see
the section "Read-Copy Update
(RCU)" in Chapter 5)

struct dcookie_struct * d_cookie Pointer to structure used by
kernel profilers

struct hlist_node d_hash Pointer for list in hash table entry

int d_mounted
For directories, counter for the
number of filesystems mounted
on this dentry

unsigned char[] d_iname Space for short filename

Each dentry object may be in one of four states:

 Free

 The dentry object contains no valid information and is not used by the VFS. The corresponding memory
area is handled by the slab allocator.

Unused

 The dentry object is not currently used by the kernel. The d_count usage counter of the object is 0, but
the d_inode field still points to the associated inode. The dentry object contains valid information, but its
contents may be discarded if necessary in order to reclaim memory.

In use

 The dentry object is currently used by the kernel. The d_count usage counter is positive, and the
d_inode field points to the associated inode object. The dentry object contains valid information and
cannot be discarded.

Negative

 The inode associated with the dentry does not exist, either because the corresponding disk inode has
been deleted or because the dentry object was created by resolving a pathname of a nonexistent file. The
d_inode field of the dentry object is set to NULL, but the object still remains in the dentry cache, so that
further lookup operations to the same file pathname can be quickly resolved. The term "negative" is
somewhat misleading, because no negative value is involved.

 The methods associated with a dentry object are called dentry operations ; they are described by the
dentry_operations structure, whose address is stored in the d_op field. Although some filesystems define
their own dentry methods, the fields are usually NULL and the VFS replaces them with default functions.
Here are the methods, in the order they appear in the dentry_operations table:

 d_revalidate(dentry, nameidata)

 Determines whether the dentry object is still valid before using it for translating a file pathname. The
default VFS function does nothing, although network filesystems may specify their own functions.

d_hash(dentry, name)

 Creates a hash value; this function is a filesystem-specific hash function for the dentry hash table. The
dentry parameter identifies the directory containing the component. The name parameter points to a
structure containing both the pathname component to be looked up and the value produced by the hash
function.

d_compare(dir, name1, name2)

 Compares two filenames ; name1 should belong to the directory referenced by dir. The default VFS
function is a normal string match. However, each filesystem can implement this method in its own way.
For instance, MS-DOS does not distinguish capital from lowercase letters.

d_delete(dentry)

 Called when the last reference to a dentry object is deleted (d_count becomes 0). The default VFS
function does nothing.

d_release(dentry)

 Called when a dentry object is going to be freed (released to the slab allocator). The default VFS
function does nothing.

d_iput(dentry, ino)

 Called when a dentry object becomes "negative"that is, it loses its inode. The default VFS function
invokes iput() to release the inode object.

 12.2.5. The dentry Cache

 Because reading a directory entry from disk and constructing the corresponding dentry object requires
considerable time, it makes sense to keep in memory dentry objects that you've finished with but might
need later. For instance, people often edit a file and then compile it, or edit and print it, or copy it and
then edit the copy. In such cases, the same file needs to be repeatedly accessed.

 To maximize efficiency in handling dentries, Linux uses a dentry cache, which consists of two kinds of
data structures:



 A set of dentry objects in the in-use, unused, or negative state.


 A hash table to derive the dentry object associated with a given filename and a given directory
quickly. As usual, if the required object is not included in the dentry cache, the search function
returns a null value.

 The dentry cache also acts as a controller for an inode cache . The inodes in kernel memory that are
associated with unused dentries are not discarded, because the dentry cache is still using them. Thus, the
inode objects are kept in RAM and can be quickly referenced by means of the corresponding dentries.

 All the "unused" dentries are included in a doubly linked "Least Recently Used" list sorted by time of
insertion. In other words, the dentry object that was last released is put in front of the list, so the least
recently used dentry objects are always near the end of the list. When the dentry cache has to shrink, the
kernel removes elements from the tail of this list so that the most recently used objects are preserved. The
addresses of the first and last elements of the LRU list are stored in the next and prev fields of the
dentry_unused variable of type list_head. The d_lru field of the dentry object contains pointers to the
adjacent dentries in the list.

 Each "in use" dentry object is inserted into a doubly linked list specified by the i_dentry field of the
corresponding inode object (because each inode could be associated with several hard links, a list is
required). The d_alias field of the dentry object stores the addresses of the adjacent elements in the list.
Both fields are of type struct list_head.

 An "in use" dentry object may become "negative" when the last hard link to the corresponding file is
deleted. In this case, the dentry object is moved into the LRU list of unused dentries. Each time the
kernel shrinks the dentry cache, negative dentries move toward the tail of the LRU list so that they are
gradually freed (see the section "Reclaiming Pages of Shrinkable Disk Caches" in Chapter 17).

 The hash table is implemented by means of a dentry_hashtable array. Each element is a pointer to a list
of dentries that hash to the same hash table value. The array's size usually depends on the amount of
RAM installed in the system; the default value is 256 entries per megabyte of RAM. The d_hash field of
the dentry object contains pointers to the adjacent elements in the list associated with a single hash value.
The hash function produces its value from both the dentry object of the directory and the filename.

 The dcache_lock spin lock protects the dentry cache data structures against concurrent accesses in
multiprocessor systems. The d_lookup() function looks in the hash table for a given parent dentry object
and filename; to avoid race conditions, it makes use of a seqlock (see the section "Seqlocks" in Chapter
5). The _ _d_lookup() function is similar, but it assumes that no race condition can happen, so it does
not use the seqlock.

 12.2.6. Files Associated with a Process

 We mentioned in the section "An Overview of the Unix Filesystem" in Chapter 1 that each process has
its own current working directory and its own root directory. These are only two examples of data that
must be maintained by the kernel to represent the interactions between a process and a filesystem. A
whole data structure of type fs_struct is used for that purpose (see Table 12-6), and each process
descriptor has an fs field that points to the process fs_struct structure.

 Table 12-6. The fields of the fs_struct structure

Type Field Description

atomic_t count Number of processes sharing this
table

rwlock_t lock Read/write spin lock for the table
fields

int umask Bit mask used when opening the
file to set the file permissions

struct dentry * root Dentry of the root directory

struct dentry * pwd Dentry of the current working
directory

struct dentry * altroot
Dentry of the emulated root
directory (always NULL for the
80 x 86 architecture)

struct vfsmount * rootmnt Mounted filesystem object of the
root directory

struct vfsmount * pwdmnt Mounted filesystem object of the
current working directory

struct vfsmount * altrootmnt

Mounted filesystem object of the
emulated root directory (always
NULL for the 80 x 86
architecture)

A second table, whose address is contained in the files field of the process descriptor, specifies which
files are currently opened by the process. It is a files_struct structure whose fields are illustrated in Table
12-7.

 Table 12-7. The fields of the files_struct structure

Type Field Description

atomic_t count Number of processes sharing this
table

rwlock_t file_lock Read/write spin lock for the table
fields

int max_fds Current maximum number of file
objects

int max_fdset Current maximum number of file
descriptors

int next_fd Maximum file descriptors ever
allocated plus 1

struct file ** fd Pointer to array of file object
pointers

fd_set * close_on_exec Pointer to file descriptors to be
closed on exec()

fd_set * open_fds Pointer to open file descriptors

fd_set close_on_exec_init Initial set of file descriptors to be
closed on exec()

fd_set open_fds_init Initial set of file descriptors

struct file *[] fd_array Initial array of file object pointers

The fd field points to an array of pointers to file objects. The size of the array is stored in the max_fds
field. Usually, fd points to the fd_array field of the files_struct structure, which includes 32 file object
pointers. If the process opens more than 32 files, the kernel allocates a new, larger array of file pointers
and stores its address in the fd fields; it also updates the max_fds field.

 For every file with an entry in the fd array, the array index is the file descriptor. Usually, the first element
(index 0) of the array is associated with the standard input of the process, the second with the standard
output, and the third with the standard error (see Figure 12-3). Unix processes use the file descriptor as
the main file identifier. Notice that, thanks to the dup() , dup2() , and fcntl() system calls, two file
descriptors may refer to the same opened filethat is, two elements of the array could point to the same file
object. Users see this all the time when they use shell constructs such as 2>&1 to redirect the standard
error to the standard output.

 A process cannot use more than NR_OPEN (usually, 1, 048, 576) file descriptors. The kernel also
enforces a dynamic bound on the maximum number of file descriptors in the
signal->rlim[RLIMIT_NOFILE] structure of the process descriptor; this value is usually 1,024, but it can
be raised if the process has root privileges.

 The open_fds field initially contains the address of the open_fds_init field, which is a bitmap that
identifies the file descriptors of currently opened files. The max_fdset field stores the number of bits in the
bitmap. Because the fd_set data structure includes 1,024 bits, there is usually no need to expand the size
of the bitmap. However, the kernel may dynamically expand the size of the bitmap if this turns out to be
necessary, much as in the case of the array of file objects.

 Figure 12-3. The fd array

 The kernel provides an fget() function to be invoked when the kernel starts using a file object. This
function receives as its parameter a file descriptor fd. It returns the address in current->files->fd[fd] (that
is, the address of the corresponding file object), or NULL if no file corresponds to fd. In the first case,
fget() increases the file object usage counter f_count by 1.

 The kernel also provides an fput() function to be invoked when a kernel control path finishes using a file
object. This function receives as its parameter the address of a file object and decreases its usage
counter, f_count. Moreover, if this field becomes 0, the function invokes the release method of the file
operations (if defined), decreases the i_writecount field in the inode object (if the file was opened for
writing), removes the file object from the superblock's list, releases the file object to the slab allocator,
and decreases the usage counters of the associated dentry object and of the filesystem descriptor (see
the later section "Filesystem Mounting).

 The fget_light() and fput_light() functions are faster versions of fget() and fput(): the kernel uses them
when it can safely assume that the current process already owns the file objectthat is, the process has
already previously increased the file object's reference counter. For instance, they are used by the service
routines of the system calls that receive a file descriptor as an argument, because the file object's
reference counter has been increased by a previous open() system call.

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.3. Filesystem Types
 The Linux kernel supports many different types of filesystems. In the following, we introduce a few
special types of filesystems that play an important role in the internal design of the Linux kernel.

 Next, we'll discuss filesystem registrationthat is, the basic operation that must be performed, usually
during system initialization, before using a filesystem type. Once a filesystem is registered, its specific
functions are available to the kernel, so that type of filesystem can be mounted on the system's directory
tree.

 12.3.1. Special Filesystems

 While network and disk-based filesystems enable the user to handle information stored outside the
kernel, special filesystems may provide an easy way for system programs and administrators to
manipulate the data structures of the kernel and to implement special features of the operating system.
Table 12-8 lists the most common special filesystems used in Linux; for each of them, the table reports its
suggested mount point and a short description.

 Notice that a few filesystems have no fixed mount point (keyword "any" in the table). These filesystems
can be freely mounted and used by the users. Moreover, some other special filesystems do not have a
mount point at all (keyword "none" in the table). They are not for user interaction, but the kernel can use
them to easily reuse some of the VFS layer code; for instance, we'll see in Chapter 19 that, thanks to the
pipefs special filesystem, pipes can be treated in the same way as FIFO files.

 Table 12-8. Most common special filesystems

Name Mount point Description

bdev none Block devices (see Chapter 13)

binfmt_misc any Miscellaneous executable formats
(see Chapter 20)

devpts /dev/pts Pseudoterminal support (Open
Group's Unix98 standard)

eventpollfs none Used by the efficient event polling
mechanism

futexfs none Used by the futex (Fast
Userspace Locking) mechanism

pipefs none Pipes (see Chapter 19)

proc /proc General access point to kernel
data structures

rootfs none Provides an empty root directory
for the bootstrap phase

shm none IPC-shared memory regions
(see Chapter 19)

mqueue any
Used to implement POSIX
message queues (see Chapter 19
)

sockfs none Sockets

sysfs /sys General access point to system
data (see Chapter 13)

tmpfs any Temporary files (kept in RAM
unless swapped)

usbfs /proc/bus/usb USB devices

Special filesystems are not bound to physical block devices. However, the kernel assigns to each
mounted special filesystem a fictitious block device that has the value 0 as major number and an arbitrary
value (different for each special filesystem) as a minor number. The set_anon_super() function is used to
initialize superblocks of special filesystems; this function essentially gets an unused minor number dev and
sets the s_dev field of the new superblock with major number 0 and minor number dev. Another function
called kill_anon_super() removes the superblock of a special filesystem. The unnamed_dev_idr variable
includes pointers to auxiliary structures that record the minor numbers currently in use. Although some
kernel designers dislike the fictitious block device identifiers, they help the kernel to handle special
filesystems and regular ones in a uniform way.

 We'll see a practical example of how the kernel defines and initializes a special filesystem in the later
section "Mounting a Generic Filesystem."

 12.3.2. Filesystem Type Registration

 Often, the user configures Linux to recognize all the filesystems needed when compiling the kernel for his
system. But the code for a filesystem actually may either be included in the kernel image or dynamically
loaded as a module (see Appendix B). The VFS must keep track of all filesystem types whose code is
currently included in the kernel. It does this by performing filesystem type registration .

 Each registered filesystem is represented as a file_system_type object whose fields are illustrated in
Table 12-9.

 Table 12-9. The fields of the file_system_type object

Type Field Description

const char * name Filesystem name

int fs_flags Filesystem type flags

struct super_block * (*)() get_sb Method for reading a superblock

void (*)() kill_sb Method for removing a
superblock

struct module * owner
Pointer to the module
implementing the filesystem (see
Appendix B)

struct file_system_type * next Pointer to the next element in the
list of filesystem types

struct list_head fs_supers
Head of a list of superblock
objects having the same
filesystem type

All filesystem-type objects are inserted into a singly linked list. The file_systems variable points to the first
item, while the next field of the structure points to the next item in the list. The file_systems_lock
read/write spin lock protects the whole list against concurrent accesses.

 The fs_supers field represents the head (first dummy element) of a list of superblock objects
corresponding to mounted filesystems of the given type. The backward and forward links of a list element
are stored in the s_instances field of the superblock object.

 The get_sb field points to the filesystem-type-dependent function that allocates a new superblock object
and initializes it (if necessary, by reading a disk). The kill_sb field points to the function that destroys a
superblock.

 The fs_flags field stores several flags, which are listed in Table 12-10.

 Table 12-10. The filesystem type flags

Name Description

FS_REQUIRES_DEV Every filesystem of this type must be located on a
physical disk device.

FS_BINARY_MOUNTDATA The filesystem uses binary mount data.

FS_REVAL_DOT Always revalidate the "." and ".." paths in the
dentry cache (for network filesystems).

FS_ODD_RENAME "Rename" operations are "move" operations (for
network filesystems).

During system initialization, the register_filesystem() function is invoked for every filesystem specified at
compile time; the function inserts the corresponding file_system_type object into the filesystem-type list.

 The register_filesystem() function is also invoked when a module implementing a filesystem is loaded. In
this case, the filesystem may also be unregistered (by invoking the unregister_filesystem() function) when
the module is unloaded.

 The get_fs_type() function, which receives a filesystem name as its parameter, scans the list of
registered filesystems looking at the name field of their descriptors, and returns a pointer to the
corresponding file_system_type object, if it is present.

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.4. Filesystem Handling
 Like every traditional Unix system, Linux makes use of a system's root filesystem : it is the filesystem that
is directly mounted by the kernel during the booting phase and that holds the system initialization scripts
and the most essential system programs.

 Other filesystems can be mountedeither by the initialization scripts or directly by the userson directories
of already mounted filesystems. Being a tree of directories, every filesystem has its own root directory.
The directory on which a filesystem is mounted is called the mount point. A mounted filesystem is a child
of the mounted filesystem to which the mount point directory belongs. For instance, the /proc virtual
filesystem is a child of the system's root filesystem (and the system's root filesystem is the parent of /proc
). The root directory of a mounted filesystem hides the content of the mount point directory of the parent
filesystem, as well as the whole subtree of the parent filesystem below the mount point.[*]

[*] The root directory of a filesystem can be different from the root directory of a process: as we have
seen in the earlier section "Files Associated with a Process," the process's root directory is the directory
corresponding to the "/" pathname. By default, the process' root directory coincides with the root
directory of the system's root filesystem (or more precisely, with the root directory of the root filesystem
in the namespace of the process, described in the following section), but it can be changed by invoking
the chroot() system call.

 12.4.1. Namespaces

 In a traditional Unix system, there is only one tree of mounted filesystems: starting from the system's root
filesystem, each process can potentially access every file in a mounted filesystem by specifying the proper
pathname. In this respect, Linux 2.6 is more refined: every process might have its own tree of mounted
filesystemsthe so-called namespace of the process.

 Usually most processes share the same namespace, which is the tree of mounted filesystems that is
rooted at the system's root filesystem and that is used by the init process. However, a process gets a new
namespace if it is created by the clone() system call with the CLONE_NEWNS flag set (see the section
"The clone(), fork(), and vfork() System Calls" in Chapter 3). The new namespace is then inherited by
children processes if the parent creates them without the CLONE_NEWNS flag.

 When a process mountsor unmountsa filesystem, it only modifies its namespace. Therefore, the change is
visible to all processes that share the same namespace, and only to them. A process can even change the
root filesystem of its namespace by using the Linux-specific pivot_root() system call.

 The namespace of a process is represented by a namespace structure pointed to by the namespace field
of the process descriptor. The fields of the namespace structure are shown in Table 12-11.

 Table 12-11. The fields of the namespace structure

Type Field Description

atomic_t count Usage counter (how many
processes share the namespace)

struct vfsmount * root
Mounted filesystem descriptor for
the root directory of the
namespace

struct list_head list Head of list of all mounted
filesystem descriptors

struct rw_semaphore sem Read/write semaphore protecting
this structure

The list field is the head of a doubly linked circular list collecting all mounted filesystems that belong to the
namespace. The root field specifies the mounted filesystem that represents the root of the tree of mounted
filesystems of this namespace. As we will see in the next section, mounted filesystems are represented by
vfsmount structures.

 12.4.2. Filesystem Mounting

 In most traditional Unix-like kernels, each filesystem can be mounted only once. Suppose that an Ext2
filesystem stored in the /dev/fd0 floppy disk is mounted on /flp by issuing the command:

 mount -t ext2 /dev/fd0 /flp

Until the filesystem is unmounted by issuing a umount command, every other mount command acting on
/dev/fd0 fails.

 However, Linux is different: it is possible to mount the same filesystem several times. Of course, if a
filesystem is mounted n times, its root directory can be accessed through n mount points, one per mount
operation. Although the same filesystem can be accessed by using different mount points, it is really
unique. Thus, there is only one superblock object for all of them, no matter of how many times it has
been mounted.

 Mounted filesystems form a hierarchy: the mount point of a filesystem might be a directory of a second
filesystem, which in turn is already mounted over a third filesystem, and so on.[*]

[*] Quite surprisingly, the mount point of a filesystem might be a directory of the same filesystem,
provided that it was already mounted. For instance:

 mount -t ext2 /dev/fd0 /flp; touch /flp/foo

 mkdir /flp/mnt; mount -t ext2 /dev/fd0 /flp/mnt

Now, the empty foo file on the floppy filesystem can be accessed both as /flp/foo and /flp/mnt/foo.

 It is also possible to stack multiple mounts on a single mount point. Each new mount on the same mount
point hides the previously mounted filesystem, although processes already using the files and directories
under the old mount can continue to do so. When the topmost mounting is removed, then the next lower
mount is once more made visible.

 As you can imagine, keeping track of mounted filesystems can quickly become a nightmare. For each
mount operation, the kernel must save in memory the mount point and the mount flags, as well as the
relationships between the filesystem to be mounted and the other mounted filesystems. Such information
is stored in a mounted filesystem descriptor of type vfsmount. The fields of this descriptor are shown in
Table 12-12.

 Table 12-12. The fields of the vfsmount data structure

Type Field Description

struct list_head mnt_hash Pointers for the hash table list.

struct vfsmount * mnt_parent Points to the parent filesystem on
which this filesystem is mounted.

struct dentry * mnt_mountpoint
Points to the dentry of the mount
point directory where the
filesystem is mounted.

struct dentry * mnt_root Points to the dentry of the root
directory of this filesystem.

struct super_block * mnt_sb Points to the superblock object
of this filesystem.

struct list_head mnt_mounts
Head of a list including all
filesystem descriptors mounted
on directories of this filesystem.

struct list_head mnt_child
Pointers for the mnt_mounts list
of mounted filesystem
descriptors.

atomic_t mnt_count Usage counter (increased to
forbid filesystem unmounting).

int mnt_flags Flags.

int mnt_expiry_mark

Flag set to true if the filesystem is
marked as expired (the filesystem
can be automatically unmounted if
the flag is set and no one is using
it).

char * mnt_devname Device filename.

struct list_head mnt_list Pointers for namespace's list of
mounted filesystem descriptors.

struct list_head mnt_fslink Pointers for the
filesystem-specific expire list.

struct namespace * mnt_namespace
Pointer to the namespace of the
process that mounted the
filesystem.

The vfsmount data structures are kept in several doubly linked circular lists:


 A hash table indexed by the address of the vfsmount descriptor of the parent filesystem and the
address of the dentry object of the mount point directory. The hash table is stored in the
mount_hashtable array, whose size depends on the amount of RAM in the system. Each item of
the table is the head of a circular doubly linked list storing all descriptors that have the same hash
value. The mnt_hash field of the descriptor contains the pointers to adjacent elements in this list.



 For each namespace, a circular doubly linked list including all mounted filesystem descriptors
belonging to the namespace. The list field of the namespace structure stores the head of the list,
while the mnt_list field of the vfsmount descriptor contains the pointers to adjacent elements in the
list.



 For each mounted filesystem, a circular doubly linked list including all child mounted filesystems.
The head of each list is stored in the mnt_mounts field of the mounted filesystem descriptor;
moreover, the mnt_child field of the descriptor stores the pointers to the adjacent elements in the
list.

 The vfsmount_lock spin lock protects the lists of mounted filesystem objects from concurrent accesses.

 The mnt_flags field of the descriptor stores the value of several flags that specify how some kinds of files
in the mounted filesystem are handled. These flags, which can be set through options of the mount
command, are listed in Table 12-13.

 Table 12-13. Mounted filesystem flags

Name Description

MNT_NOSUID Forbid setuid and setgid flags in the mounted
filesystem

MNT_NODEV Forbid access to device files in the mounted
filesystem

MNT_NOEXEC Disallow program execution in the mounted
filesystem

Here are some functions that handle the mounted filesystem descriptors:

 alloc_vfsmnt(name)

 Allocates and initializes a mounted filesystem descriptor

free_vfsmnt(mnt)

 Frees a mounted filesystem descriptor pointed to by mnt

lookup_mnt(mnt, dentry)

 Looks up a descriptor in the hash table and returns its address

 12.4.3. Mounting a Generic Filesystem

 We'll now describe the actions performed by the kernel in order to mount a filesystem. We'll start by
considering a filesystem that is going to be mounted over a directory of an already mounted filesystem (in
this discussion we will refer to this new filesystem as "generic").

 The mount() system call is used to mount a generic filesystem; its sys_mount() service routine acts on
the following parameters:



 The pathname of a device file containing the filesystem, or NULL if it is not required (for
instance, when the filesystem to be mounted is network-based)



 The pathname of the directory on which the filesystem will be mounted (the mount point)


 The filesystem type, which must be the name of a registered filesystem


 The mount flags (permitted values are listed in Table 12-14)


 A pointer to a filesystem-dependent data structure (which may be NULL)

 Table 12-14. Flags used by the mount() system call

Macro Description

MS_RDONLY Files can only be read

MS_NOSUID Forbid setuid and setgid flags

MS_NODEV Forbid access to device files

MS_NOEXEC Disallow program execution

MS_SYNCHRONOUS Write operations on files and directories are
immediate

MS_REMOUNT Remount the filesystem changing the mount flags

MS_MANDLOCK Mandatory locking allowed

MS_DIRSYNC Write operations on directories are immediate

MS_NOATIME Do not update file access time

MS_NODIRATIME Do not update directory access time

MS_BIND

Create a "bind mount," which allows making a file
or directory visible at another point of the system
directory tree (option --bind of the mount
command)

MS_MOVE
Atomically move a mounted filesystem to another
mount point (option --move of the mount
command)

MS_REC Recursively create "bind mounts" for a directory
subtree

MS_VERBOSE Generate kernel messages on mount errors

The sys_mount() function copies the value of the parameters into temporary kernel buffers, acquires the
big kernel lock , and invokes the do_mount() function. Once do_mount() returns, the service routine
releases the big kernel lock and frees the temporary kernel buffers.

 The do_mount() function takes care of the actual mount operation by performing the following
operations:

1.

1. If some of the MS_NOSUID, MS_NODEV, or MS_NOEXEC mount flags are set, it clears
them and sets the corresponding flag (MNT_NOSUID, MNT_NODEV, MNT_NOEXEC) in
the mounted filesystem object.

2.

2. Looks up the pathname of the mount point by invoking path_lookup(); this function stores the
result of the pathname lookup in the local variable nd of type nameidata (see the later section "
Pathname Lookup").

3.

3. Examines the mount flags to determine what has to be done. In particular:
a.

a. If the MS_REMOUNT flag is specified, the purpose is usually to change the mount flags in
the s_flags field of the superblock object and the mounted filesystem flags in the mnt_flags
field of the mounted filesystem object. The do_remount() function performs these changes.

b.

b. Otherwise, it checks the MS_BIND flag. If it is specified, the user is asking to make visible a
file or directory on another point of the system directory tree.

c.

c. Otherwise, it checks the MS_MOVE flag. If it is specified, the user is asking to change the
mount point of an already mounted filesystem. The do_move_mount() function does this
atomically.

d.

d. Otherwise, it invokes do_new_mount(). This is the most common case. It is triggered when
the user asks to mount either a special filesystem or a regular filesystem stored in a disk
partition. do_new_mount() invokes the do_kern_mount() function passing to it the
filesystem type, the mount flags, and the block device name. This function, which takes care
of the actual mount operation and returns the address of a new mounted filesystem
descriptor, is described below. Next, do_new_mount() invokes do_add_mount(), which
essentially performs the following actions:
1.

1. Acquires for writing the namespace->sem semaphore of the current process, because the
function is going to modify the namespace.

2.

2. The do_kern_mount() function might put the current process to sleep; meanwhile,
another process might mount a filesystem on the very same mount point as ours or even
change our root filesystem (current->namespace->root). Verifies that the lastly mounted
filesystem on this mount point still refers to the current's namespace; if not, releases the
read/write semaphore and returns an error code.

3.

3. If the filesystem to be mounted is already mounted on the mount point specified as
parameter of the system call, or if the mount point is a symbolic link, it releases the
read/write semaphore and returns an error code.

4.

4. Initializes the flags in the mnt_flags field of the new mounted filesystem object allocated
by do_kern_mount().

5.

5. Invokes graft_tree() to insert the new mounted filesystem object in the namespace list, in
the hash table, and in the children list of the parent-mounted filesystem.

6.

6. Releases the namespace->sem read/write semaphore and returns.
4.

4. Invokes path_release() to terminate the pathname lookup of the mount point (see the later
section "Pathname Lookup") and returns 0.

12.4.3.1. The do_kern_mount() function

 The core of the mount operation is the do_kern_mount() function, which checks the filesystem type
flags to determine how the mount operation is to be done. This function receives the following
parameters:

 fstype

 The name of the filesystem type to be mounted

flags

 The mount flags (see Table 12-14)

name

 The pathname of the block device storing the filesystem (or the filesystem type name for special
filesystems)

data

 Pointer to additional data to be passed to the read_super method of the filesystem

 The function takes care of the actual mount operation by performing essentially the following operations:
1.

1. Invokes get_fs_type() to search in the list of filesystem types and locate the name stored in the
fstype parameter; get_fs_type() returns in the local variable type the address of the
corresponding file_system_type descriptor.

2.

2. Invokes alloc_vfsmnt() to allocate a new mounted filesystem descriptor and stores its address in
the mnt local variable.

3.

3. Invokes the type->get_sb() filesystem-dependent function to allocate a new superblock and to
initialize it (see below).

4.

4. Initializes the mnt->mnt_sb field with the address of the new superblock object.
5.

5. Initializes the mnt->mnt_root field with the address of the dentry object corresponding to the root
directory of the filesystem, and increases the usage counter of the dentry object.

6.

6. Initializes the mnt->mnt_parent field with the value in mnt (for generic filesystems, the proper
value of mnt_parent will be set when the mounted filesystem descriptor is inserted in the proper
lists by graft_tree(); see step 3d5 of do_mount()).

7.

7. Initializes the mnt->mnt_namespace field with the value in current->namespace.
8.

8. Releases the s_umount read/write semaphore of the superblock object (it was acquired when the
object was allocated in step 3).

9.

9. Returns the address mnt of the mounted filesystem object.

12.4.3.2. Allocating a superblock object

 The get_sb method of the filesystem object is usually implemented by a one-line function. For instance,
in the Ext2 filesystem the method is implemented as follows:

 struct super_block * ext2_get_sb(struct file_system_type *type,

 int flags, const char *dev_name, void *data)

 {

 return get_sb_bdev(type, flags, dev_name, data, ext2_fill_super);

 }

The get_sb_bdev() VFS function allocates and initializes a new superblock suitable for disk-based
filesystems ; it receives the address of the ext2_fill_super() function, which reads the disk superblock
from the Ext2 disk partition.

 To allocate superblocks suitable for special filesystems , the VFS also provides the get_sb_pseudo()
function (for special filesystems with no mount point such as pipefs), the get_sb_single() function (for
special filesystems with single mount point such as sysfs), and the get_sb_nodev() function (for special
filesystems that can be mounted several times such as tmpfs ; see below).

 The most important operations performed by get_sb_bdev() are the following:
1.

1. Invokes open_bdev_excl() to open the block device having device file name dev_name (see the
section "Character Device Drivers" in Chapter 13).

2.

2. Invokes sget() to search the list of superblock objects of the filesystem (type->fs_supers, see the
earlier section "Filesystem Type Registration"). If a superblock relative to the block device is
already present, the function returns its address. Otherwise, it allocates and initializes a new
superblock object, inserts it into the filesystem list and in the global list of superblocks, and
returns its address.

3.

3. If the superblock is not new (it was not allocated in the previous step, because the filesystem is
already mounted), it jumps to step 6.

4.

4. Copies the value of the flags parameter into the s_flags field of the superblock and sets the s_id,
s_old_blocksize, and s_blocksize fields with the proper values for the block device.

5.

5. Invokes the filesystem-dependent function passed as last argument to get_sb_bdev() to access
the superblock information on disk and fill the other fields of the new superblock object.

6.

6. Returns the address of the new superblock object.

12.4.4. Mounting the Root Filesystem

 Mounting the root filesystem is a crucial part of system initialization. It is a fairly complex procedure,
because the Linux kernel allows the root filesystem to be stored in many different places, such as a hard
disk partition, a floppy disk, a remote filesystem shared via NFS, or even a ramdisk (a fictitious block
device kept in RAM).

 To keep the description simple, let's assume that the root filesystem is stored in a partition of a hard disk
(the most common case, after all). While the system boots, the kernel finds the major number of the disk
that contains the root filesystem in the ROOT_DEV variable (see Appendix A). The root filesystem can
be specified as a device file in the /dev directory either when compiling the kernel or by passing a suitable
"root" option to the initial bootstrap loader. Similarly, the mount flags of the root filesystem are stored in
the root_mountflags variable. The user specifies these flags either by using the rdev external program on
a compiled kernel image or by passing a suitable rootflags option to the initial bootstrap loader (see
Appendix A).

 Mounting the root filesystem is a two-stage procedure, shown in the following list:
1.

1. The kernel mounts the special rootfs filesystem, which simply provides an empty directory that
serves as initial mount point.

2.

2. The kernel mounts the real root filesystem over the empty directory.

Why does the kernel bother to mount the rootfs filesystem before the real one? Well, the rootfs filesystem
allows the kernel to easily change the real root filesystem. In fact, in some cases, the kernel mounts and
unmounts several root filesystems, one after the other. For instance, the initial bootstrap CD of a
distribution might load in RAM a kernel with a minimal set of drivers, which mounts as root a minimal
filesystem stored in a ramdisk. Next, the programs in this initial root filesystem probe the hardware of the
system (for instance, they determine whether the hard disk is EIDE, SCSI, or whatever), load all needed
kernel modules, and remount the root filesystem from a physical block device.

 12.4.4.1. Phase 1: Mounting the rootfs filesystem

 The first stage is performed by the init_rootfs() and init_mount_tree() functions, which are executed
during system initialization.

 The init_rootfs() function registers the special filesystem type rootfs:

 struct file_system_type rootfs_fs_type = {

 .name = "rootfs";

 .get_sb = rootfs_get_sb;

 .kill_sb = kill_litter_super;

 };

 register_filesystem(&rootfs_fs_type);

The init_mount_tree() function executes the following operations:
1.

1. Invokes do_kern_mount() passing to it the string "rootfs" as filesystem type, and stores the
address of the mounted filesystem descriptor returned by this function in the mnt local variable.
As explained in the previous section, do_kern_mount() ends up invoking the get_sb method of
the rootfs filesystem, that is, the rootfs_get_sb() function:

1. struct superblock *rootfs_get_sb(struct file_system_type *fs_type,

 int flags, const char *dev_name, void *data)

 {

 return get_sb_nodev(fs_type, flags|MS_NOUSER, data,

 ramfs_fill_super);

 }

1. The get_sb_nodev() function, in turn, executes the following steps:
a.

a. Invokes sget() to allocate a new superblock passing as parameter the address of the
set_anon_super() function (see the earlier section "Special Filesystems"). As a result, the
s_dev field of the superblock is set in the appropriate way: major number 0, minor number
different from those of other mounted special filesystems.

b.

b. Copies the value of the flags parameter into the s_flags field of the superblock.
c.

c. Invokes ramfs_fill_super() to allocate an inode object and a corresponding dentry object,
and to fill the superblock fields. Because rootfs is a special filesystem that has no disk
superblock, only a couple of superblock operations need to be implemented.

d.

d. Returns the address of the new superblock.
2.

2. Allocates a namespace object for the namespace of process 0, and inserts into it the mounted
filesystem descriptor returned by do_kern_mount():

2. namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);

 list_add(&mnt->mnt_list, &namespace->list);

 namespace->root = mnt;

 mnt->mnt_namespace = init_task.namespace = namespace;

3.

3. Sets the namespace field of every other process in the system to the address of the namespace
object; also initializes the namespace->count usage counter. (By default, all processes share the
same, initial namespace.)

4.

4. Sets the root directory and the current working directory of process 0 to the root filesystem.

12.4.4.2. Phase 2: Mounting the real root filesystem

 The second stage of the mount operation for the root filesystem is performed by the kernel near the end
of the system initialization. There are several ways to mount the real root filesystem, according to the
options selected when the kernel has been compiled and to the boot options passed by the kernel loader.
For the sake of brevity, we consider the case of a disk-based filesystem whose device file name has been
passed to the kernel by means of the "root" boot parameter. We also assume that no initial special
filesystem is used, except the rootfs filesystem.

 The prepare_namespace() function executes the following operations:
1.

1. Sets the root_device_name variable with the device filename obtained from the "root" boot
parameter. Also, sets the ROOT_DEV variable with the major and minor numbers of the same
device file.

2.

2. Invokes the mount_root() function, which in turn:
a.

a. Invokes sys_mknod() (the service routine of the mknod() system call) to create a /dev/root
device file in the rootfs initial root filesystem, having the major and minor numbers as in
ROOT_DEV.

b.

b. Allocates a buffer and fills it with a list of filesystem type names. This list is either passed to
the kernel in the "rootfstype" boot parameter or built by scanning the elements in the singly
linked list of filesystem types.

c.

c. Scans the list of filesystem type names built in the previous step. For each name, it invokes
sys_mount() to try to mount the given filesystem type on the root device. Because each
filesystem-specific method uses a different magic number, all get_sb() invocations will fail
except the one that attempts to fill the superblock by using the function of the filesystem really
used on the root device. The filesystem is mounted on a directory named /root of the rootfs
filesystem.

d.

d. Invokes sys_chdir("/root") to change the current directory of the process.
3.

3. Moves the mount point of the mounted filesystem on the root directory of the rootfs filesystem:

3. sys_mount(".", "/", NULL, MS_MOVE, NULL);

 sys_chroot(".");

Notice that the rootfs special filesystem is not unmounted: it is only hidden under the disk-based root
filesystem.

 12.4.5. Unmounting a Filesystem

 The umount() system call is used to unmount a filesystem. The corresponding sys_umount() service
routine acts on two parameters: a filename (either a mount point directory or a block device filename)
and a set of flags. It performs the following actions:

1.

1. Invokes path_lookup() to look up the mount point pathname; this function returns the results of
the lookup operation in a local variable nd of type nameidata (see next section).

2.

2. If the resulting directory is not the mount point of a filesystem, it sets the retval return code to
-EINVAL and jumps to step 6. This check is done by verifying that nd->mnt->mnt_root
contains the address of the dentry object pointed to by nd.dentry.

3.

3. If the filesystem to be unmounted has not been mounted in the namespace, it sets the retval return
code to -EINVAL and jumps to step 6. (Recall that some special filesystems have no mount
point.) This check is done by invoking the check_mnt() function on nd->mnt.

4.

4. If the user does not have the privileges required to unmount the filesystem, it sets the retval return
code to -EPERM and jumps to step 6.

5.

5. Invokes do_umount() passing as parameters nd.mnt (the mounted filesystem object) and flags
(the set of flags). This function performs essentially the following operations:
a.

a. Retrieves the address of the sb superblock object from the mnt_sb field of the mounted
filesystem object.

b.

b. If the user asked to force the unmount operation, it interrupts any ongoing mount operation
by invoking the umount_begin superblock operation.

c.

c. If the filesystem to be unmounted is the root filesystem and the user didn't ask to actually
detach it, it invokes do_remount_sb() to remount the root filesystem read-only and
terminates.

d.

d. Acquires for writing the namespace->sem read/write semaphore of the current process, and
gets the vfsmount_lock spin lock.

e.

e. If the mounted filesystem does not include mount points for any child mounted filesystem, or
if the user asked to forcibly detach the filesystem, it invokes umount_tree() to unmount the
filesystem (together with all children filesystems).

f.

f. Releases the vfsmount_lock spin lock and the namespace->sem read/write semaphore of the
current process.

6.

6. Decreases the usage counters of the dentry object corresponding to the root directory of the
filesystem and of the mounted filesystem descriptor; these counters were increased by
path_lookup().

7.

7. Returns the retval value.

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.5. Pathname Lookup
 When a process must act on a file, it passes its file pathname to some VFS system call, such as open() ,
mkdir(), rename() , or stat() . In this section, we illustrate how the VFS performs a pathname lookup ,
that is, how it derives an inode from the corresponding file pathname.

 The standard procedure for performing this task consists of analyzing the pathname and breaking it into a
sequence of filenames . All filenames except the last must identify directories.

 If the first character of the pathname is /, the pathname is absolute, and the search starts from the
directory identified by current->fs->root (the process root directory). Otherwise, the pathname is
relative, and the search starts from the directory identified by current->fs->pwd (the process-current
directory).

 Having in hand the dentry, and thus the inode, of the initial directory, the code examines the entry
matching the first name to derive the corresponding inode. Then the directory file that has that inode is
read from disk and the entry matching the second name is examined to derive the corresponding inode.
This procedure is repeated for each name included in the path.

 The dentry cache considerably speeds up the procedure, because it keeps the most recently used dentry
objects in memory. As we saw before, each such object associates a filename in a specific directory to
its corresponding inode. In many cases, therefore, the analysis of the pathname can avoid reading the
intermediate directories from disk.

 However, things are not as simple as they look, because the following Unix and VFS filesystem features
must be taken into consideration:



 The access rights of each directory must be checked to verify whether the process is allowed to
read the directory's content.



 A filename can be a symbolic link that corresponds to an arbitrary pathname; in this case, the
analysis must be extended to all components of that pathname.



 Symbolic links may induce circular references; the kernel must take this possibility into account
and break endless loops when they occur.



 A filename can be the mount point of a mounted filesystem. This situation must be detected, and
the lookup operation must continue into the new filesystem.



 Pathname lookup has to be done inside the namespace of the process that issued the system call.
The same pathname used by two processes with different namespaces may specify different files.

 Pathname lookup is performed by the path_lookup() function, which receives three parameters:

 name

 A pointer to the file pathname to be resolved.

flags

 The value of flags that represent how the looked-up file is going to be accessed. The allowed values are
included later in Table 12-16.

nd

 The address of a nameidata data structure, which stores the results of the lookup operation and whose
fields are shown in Table 12-15.

 When path_lookup() returns, the nameidata structure pointed to by nd is filled with data pertaining to
the pathname lookup operation.

 Table 12-15. The fields of the nameidata data structure

Type Field Description

struct dentry * dentry Address of the dentry object

struct vfs_mount * mnt Address of the mounted
filesystem object

struct qstr last
Last component of the pathname
(used when the
LOOKUP_PARENT flag is set)

unsigned int flags Lookup flags

int last_type
Type of last component of the
pathname (used when the
LOOKUP_PARENT flag is set)

unsigned int depth
Current level of symbolic link
nesting (see below); it must be
smaller than 6

char[] * saved_names Array of pathnames associated
with nested symbolic links

union intent One-member union specifying
how the file will be accessed

The dentry and mnt fields point respectively to the dentry object and the mounted filesystem object of the
last resolved component in the pathname. These two fields "describe" the file that is identified by the given
pathname.

 Because the dentry object and the mounted filesystem object returned by the path_lookup() function in
the nameidata structure represent the result of a lookup operation, both objects should not be freed until
the caller of path_lookup() finishes using them. Therefore, path_lookup() increases the usage counters
of both objects. If the caller wants to release these objects, it invokes the path_release() function passing
as parameter the address of a nameidata structure.

 The flags field stores the value of some flags used in the lookup operation; they are listed in Table 12-16.
Most of these flags can be set by the caller in the flags parameter of path_lookup().

 Table 12-16. The flags of the lookup operation

Macro Description

LOOKUP_FOLLOW If the last component is a symbolic link, interpret
(follow) it

LOOKUP_DIRECTORY The last component must be a directory

LOOKUP_CONTINUE There are still filenames to be examined in the
pathname

LOOKUP_PARENT Look up the directory that includes the last
component of the pathname

LOOKUP_NOALT Do not consider the emulated root directory
(useless in the 80x86 architecture)

LOOKUP_OPEN Intent is to open a file

LOOKUP_CREATE Intent is to create a file (if it doesn't exist)

LOOKUP_ACCESS Intent is to check user's permission for a file

The path_lookup() function executes the following steps:
1.

1. Initializes some fields of the nd parameter as follows:
a.

a. Sets the last_type field to LAST_ROOT (this is needed if the pathname is a slash or a
sequence of slashes; see the later section "Parent Pathname Lookup").

b.

b. Sets the flags field to the value of the flags parameter
c.

c. Sets the depth field to 0.
2.

2. Acquires for reading the current->fs->lock read/write semaphore of the current process.
3.

3. If the first character in the pathname is a slash (/), the lookup operation must start from the root
directory of current: the function gets the addresses of the corresponding mounted filesystem
object (current->fs->rootmnt) and dentry object (current->fs->root), increases their usage
counters, and stores the addresses in nd->mnt and nd->dentry, respectively.

4.

4. Otherwise, if the first character in the pathname is not a slash, the lookup operation must start
from the current working directory of current: the function gets the addresses of the
corresponding mounted filesystem object (current->fs->pwdmnt) and dentry object
(current->fs->pwd), increases their usage counters, and stores the addresses in nd->mnt and
nd->dentry, respectively.

5.

5. Releases the current->fs->lock read/write semaphore of the current process.
6.

6. Sets the total_link_count field in the descriptor of the current process to 0 (see the later section "
Lookup of Symbolic Links").

7.

7. Invokes the link_path_walk() function to take care of the undergoing lookup operation:

7. return link_path_walk(name, nd);

We are now ready to describe the core of the pathname lookup operation, namely the link_path_walk()
function. It receives as its parameters a pointer name to the pathname to be resolved and the address nd
of a nameidata data structure.

 To make things a bit easier, we first describe what link_path_walk() does when LOOKUP_PARENT
is not set and the pathname does not contain symbolic links (standard pathname lookup). Next, we
discuss the case in which LOOKUP_PARENT is set: this type of lookup is required when creating,
deleting, or renaming a directory entry, that is, during a parent pathname lookup. Finally, we explain how
the function resolves symbolic links.

 12.5.1. Standard Pathname Lookup

 When the LOOKUP_PARENT flag is cleared, link_path_walk() performs the following steps.
1.

1. Initializes the lookup_flags local variable with nd->flags.
2.

2. Skips all leading slashes (/) before the first component of the pathname.
3.

3. If the remaining pathname is empty, it returns the value 0. In the nameidata data structure, the
dentry and mnt fields point to the objects relative to the last resolved component of the original
pathname.

4.

4. If the depth field of the nd descriptor is positive, it sets the LOOKUP_FOLLOW flag in the
lookup_flags local variable (see the section "Lookup of Symbolic Links").

5.

5. Executes a cycle that breaks the pathname passed in the name parameter into components (the
intermediate slashes are treated as filename separators); for each component found, the function:
a.

a. Retrieves the address of the inode object of the last resolved component from
nd->dentry->d_inode. (In the first iteration, the inode refers to the directory from where to
start the pathname lookup.)

b.

b. Checks that the permissions of the last resolved component stored into the inode allow
execution (in Unix, a directory can be traversed only if it is executable). If the inode has a
custom permission method, the function executes it; otherwise, it executes the
exec_permission_lite() function, which examines the access mode stored in the i_mode
inode field and the privileges of the running process. In both cases, if the last resolved
component does not allow execution, link_path_walk() breaks out of the cycle and returns
an error code.

c.

c. Considers the next component to be resolved. From its name, the function computes a 32-bit
hash value to be used when looking in the dentry cache hash table.

d.

d. Skips any trailing slash (/) after the slash that terminates the name of the component to be
resolved.

e.

e. If the component to be resolved is the last one in the original pathname, it jumps to step 6.
f.

f. If the name of the component is "." (a single dot), it continues with the next component ("."
refers to the current directory, so it has no effect inside a pathname).

g.

g. If the name of the component is ".." (two dots), it tries to climb to the parent directory:
1.

1. If the last resolved directory is the process's root directory (nd->dentry is equal to
current->fs->root and nd->mnt is equal to current->fs->rootmnt), then climbing is not
allowed: it invokes follow_mount() on the last resolved component (see below) and
continues with the next component.

2.

2. If the last resolved directory is the root directory of the nd->mnt filesystem (nd->dentry
is equal to nd->mnt->mnt_root) and the nd->mnt filesystem is not mounted on top of
another filesystem (nd->mnt is equal to nd->mnt->mnt_parent), then the nd->mnt
filesystem is usually[*] the namespace's root filesystem: in this case, climbing is
impossible, thus invokes follow_mount() on the last resolved component (see below)
and continues with the next component.

2. [*] This case can also occur for network filesystems disconnected from the namespace's
directory tree.

3.

3. If the last resolved directory is the root directory of the nd->mnt filesystem and the
nd->mnt filesystem is mounted on top of another filesystem, a filesystem switch is
required. So, the function sets nd->dentry to nd->mnt->mnt_mountpoint, and nd->mnt
to nd->mnt->mnt_parent, then restarts step 5g (recall that several filesystems can be
mounted on the same mount point).

4.

4. If the last resolved directory is not the root directory of a mounted filesystem, then the
function must simply climb to the parent directory: it sets nd->dentry to
nd->dentry->d_parent, invokes follow_mount() on the parent directory, and continues
with the next component.

d. The follow_mount() function checks whether nd->dentry is a mount point for some
filesystem (nd->dentry->d_mounted is greater than zero); in this case, it invokes
lookup_mnt() to search the root directory of the mounted filesystem in the dentry cache ,
and updates nd->dentry and nd->mnt with the object addresses corresponding to the
mounted filesystem; then, it repeats the whole operation (there can be several filesystems
mounted on the same mount point). Essentially, invoking the follow_mount() function when
climbing to the parent directory is required because the process could start the pathname
lookup from a directory included in a filesystem hidden by another filesystem mounted over
the parent directory.

h.

h. The component name is neither "." nor "..", so the function must look it up in the dentry
cache. If the low-level filesystem has a custom d_hash dentry method, the function invokes it
to modify the hash value already computed in step 5c.

i.

i. Sets the LOOKUP_CONTINUE flag in nd->flags to denote that there is a next component
to be analyzed.

j.

j. Invokes do_lookup() to derive the dentry object associated with a given parent directory
(nd->dentry) and filename (the pathname component being resolved). The function essentially
invokes _ _d_lookup() first to search the dentry object of the component in the dentry
cache. If no such object exists, do_lookup() invokes real_lookup(). This latter function
reads the directory from disk by executing the lookup method of the inode, creates a new
dentry object and inserts it in the dentry cache, then creates a new inode object and inserts it
into the inode cache .[*] At the end of this step, the dentry and mnt fields of the next local
variable will point, respectively, to the dentry object and the mounted filesystem object of the
component name to be resolved in this cycle.

j. [*] In a few cases, the function might find the required inode already in the inode cache. This
happens when the pathname component is the last one and it does not refer to a directory,
the corresponding file has several hard links, and finally the file has been recently accessed
through a hard link different from the one used in this pathname.

k.

k. Invokes the follow_mount() function to check whether the component just resolved
(next.dentry) refers to a directory that is a mount point for some filesystem
(next.dentry->d_mounted is greater than zero). follow_mount() updates next.dentry and
next.mnt so that they point to the dentry object and mounted filesystem object of the upmost
filesystem mounted on the directory specified by this pathname component (see step 5g).

l.

l. Checks whether the component just resolved refers to a symbolic link (next.dentry->d_inode
has a custom follow_link method). We'll deal with this case in the later section "Lookup of
Symbolic Links."

m.

m. Checks whether the component just resolved refers to a directory (next.dentry->d_inode has
a custom lookup method). If not, returns the error -ENOTDIR, because the component is in
the middle of the original pathname.

n.

n. Sets nd->dentry to next.dentry and nd->mnt to next.mnt, then continues with the next
component of the pathname.

6.

6. Now all components of the original pathname are resolved except the last one. Clears the
LOOKUP_CONTINUE flag in nd->flags.

7.

7. If the pathname has a trailing slash, it sets the LOOKUP_FOLLOW and
LOOKUP_DIRECTORY flags in the lookup_flags local variable to force the last component to
be interpreted by later functions as a directory name.

8.

8. Checks the value of the LOOKUP_PARENT flag in the lookup_flags variable. In the following,
we assume that the flag is set to 0, and we postpone the opposite case to the next section.

9.

9. If the name of the last component is "." (a single dot), terminates the execution and returns the
value 0 (no error). In the nameidata structure that nd points to, the dentry and mnt fields refer to
the objects relative to the next-to-last component of the pathname (each component "." has no
effect inside a pathname).

10.

10. If the name of the last component is ".." (two dots), it tries to climb to the parent directory:
a.

a. If the last resolved directory is the process's root directory (nd->dentry is equal to
current->fs->root and nd->mnt is equal to current->fs->rootmnt), it invokes follow_mount()
on the next-to-last component and terminates the execution and returns the value 0 (no
error). nd->dentry and nd->mnt refer to the objects relative to the next-to-last component of
the pathnamethat is, to the root directory of the process.

b.

b. If the last resolved directory is the root directory of the nd->mnt filesystem (nd->dentry is
equal to nd->mnt->mnt_root) and the nd->mnt filesystem is not mounted on top of another
filesystem (nd->mnt is equal to nd->mnt->mnt_parent), then climbing is impossible, thus
invokes follow_mount() on the next-to-last component and terminates the execution and
returns the value 0 (no error).

c.

c. If the last resolved directory is the root directory of the nd->mnt filesystem and the nd->mnt
filesystem is mounted on top of another filesystem, it sets nd->dentry to
nd->mnt->mnt_mountpoint and nd->mnt to nd->mnt->mnt_parent, then restarts step 10.

d.

d. If the last resolved directory is not the root directory of a mounted filesystem, it sets
nd->dentry to nd->dentry->d_parent, invokes follow_mount() on the parent directory, and
terminates the execution and returns the value 0 (no error). nd->dentry and nd->mnt refer to
the objects relative to the component preceding the next-to-last component of the pathname.

11.

11.The name of the last component is neither "." nor "..", so the function must look it up in the dentry
cache. If the low-level filesystem has a custom d_hash dentry method, the function invokes it to
modify the hash value already computed in step 5c.

12.

12. Invokes do_lookup() to derive the dentry object associated with the parent directory and the
filename (see step 5j). At the end of this step, the next local variable contains the pointers to both
the dentry and the mounted filesystem descriptor relative to the last component name.

13.

13. Invokes follow_mount() to check whether the last component is a mount point for some
filesystem and, if this is the case, to update the next local variable with the addresses of the dentry
object and mounted filesystem object relative to the root directory of the upmost mounted
filesystem.

14.

14.Checks whether the LOOKUP_FOLLOW flag is set in lookup_flags and the inode object
next.dentry->d_inode has a custom follow_link method. If this is the case, the component is a
symbolic link that must be interpreted, as described in the later section "Lookup of Symbolic
Links."

15.

15.The component is not a symbolic link or the symbolic link should not be interpreted. Sets the
nd->mnt and nd->dentry fields with the value stored in next.mnt and next.dentry, respectively.
The final dentry object is the result of the whole lookup operation.

16.

16.Checks whether nd->dentry->d_inode is NULL. This happens when there is no inode
associated with the dentry object, usually because the pathname refers to a nonexistent file. In
this case, the function returns the error code -ENOENT.

17.

17.There is an inode associated with the last component of the pathname. If the
LOOKUP_DIRECTORY flag is set in lookup_flags, it checks that the inode has a custom
lookup methodthat is, it is a directory. If not, the function returns the error code -ENOTDIR.

18.

18.Returns the value 0 (no error). nd->dentry and nd->mnt refer to the last component of the
pathname.

12.5.2. Parent Pathname Lookup

 In many cases, the real target of a lookup operation is not the last component of the pathname, but the
next-to-last one. For example, when a file is created, the last component denotes the filename of the not
yet existing file, and the rest of the pathname specifies the directory in which the new link must be
inserted. Therefore, the lookup operation should fetch the dentry object of the next-to-last component.
For another example, unlinking a file identified by the pathname /foo/bar consists of removing bar from
the directory foo. Thus, the kernel is really interested in accessing the directory foo rather than bar.

 The LOOKUP_PARENT flag is used whenever the lookup operation must resolve the directory
containing the last component of the pathname, rather than the last component itself.

 When the LOOKUP_PARENT flag is set, the link_path_walk() function also sets up the last and
last_type fields of the nameidata data structure. The last field stores the name of the last component in the
pathname. The last_type field identifies the type of the last component; it may be set to one of the values
shown in Table 12-17.

 Table 12-17. The values of the last_type field in the nameidata data structure

Value Description

LAST_NORM Last component is a regular filename

LAST_ROOT Last component is "/ " (that is, the entire pathname
is "/ ")

LAST_DOT Last component is "."

LAST_DOTDOT Last component is ".."

LAST_BIND Last component is a symbolic link into a special
filesystem

The LAST_ROOT flag is the default value set by path_lookup() when the whole pathname lookup
operation starts (see the description at the beginning of the section "Pathname Lookup"). If the pathname
turns out to be simply "/ ", the kernel does not change the initial value of the last_type field.

 The remaining values of the last_type field are set by link_path_walk() when the LOOKUP_PARENT
flag is set; in this case, the function performs the same steps described in the previous section up to step
8. From step 8 onward, however, the lookup operation for the last component of the pathname is
different:

1.

1. Sets nd->last to the name of the last component.
2.

2. Initializes nd->last_type to LAST_NORM.
3.

3. If the name of the last component is "." (a single dot), it sets nd->last_type to LAST_DOT.
4.

4. If the name of the last component is ".." (two dots), it sets nd->last_type to LAST_DOTDOT.
5.

5. Returns the value 0 (no error).

As you can see, the last component is not interpreted at all. Thus, when the function terminates, the
dentry and mnt fields of the nameidata data structure point to the objects relative to the directory that
includes the last component.

 12.5.3. Lookup of Symbolic Links

 Recall that a symbolic link is a regular file that stores a pathname of another file. A pathname may include
symbolic links, and they must be resolved by the kernel.

 For example, if /foo/bar is a symbolic link pointing to (containing the pathname) ../dir, the pathname
/foo/bar/file must be resolved by the kernel as a reference to the file /dir/file. In this example, the kernel
must perform two different lookup operations. The first one resolves /foo/bar: when the kernel discovers
that bar is the name of a symbolic link, it must retrieve its content and interpret it as another pathname.
The second pathname operation starts from the directory reached by the first operation and continues
until the last component of the symbolic link pathname has been resolved. Next, the original lookup
operation resumes from the dentry reached in the second one and with the component following the
symbolic link in the original pathname.

 To further complicate the scenario, the pathname included in a symbolic link may include other symbolic
links. You might think that the kernel code that resolves the symbolic links is hard to understand, but this
is not true; the code is actually quite simple because it is recursive.

 However, untamed recursion is intrinsically dangerous. For instance, suppose that a symbolic link points
to itself. Of course, resolving a pathname including such a symbolic link may induce an endless stream of
recursive invocations, which in turn quickly leads to a kernel stack overflow. The link_count field in the
descriptor of the current process is used to avoid the problem: the field is increased before each recursive
execution and decreased right after. If a sixth nested lookup operation is attempted, the whole lookup
operation terminates with an error code. Therefore, the level of nesting of symbolic links can be at most
5.

 Furthermore, the total_link_count field in the descriptor of the current process keeps track of how many
symbolic links (even nonnested) were followed in the original lookup operation. If this counter reaches
the value 40, the lookup operation aborts. Without this counter, a malicious user could create a
pathological pathname including many consecutive symbolic links that freeze the kernel in a very long
lookup operation.

 This is how the code basically works: once the link_path_walk() function retrieves the dentry object
associated with a component of the pathname, it checks whether the corresponding inode object has a
custom follow_link method (see step 5l and step 14 in the section "Standard Pathname Lookup"). If so,
the inode is a symbolic link that must be interpreted before proceeding with the lookup operation of the
original pathname.

 In this case, the link_path_walk() function invokes do_follow_link(), passing to it the address dentry of
the dentry object of the symbolic link and the address nd of the nameidata data structure. In turn,
do_follow_link() performs the following steps:

1.

1. Checks that current->link_count is less than 5; otherwise, it returns the error code -ELOOP.
2.

2. Checks that current->total_link_count is less than 40; otherwise, it returns the error code
-ELOOP.

3.

3. Invokes cond_resched() to perform a process switch if required by the current process (flag
TIF_NEED_RESCHED in the tHRead_info descriptor of the current process set).

4.

4. Increases current->link_count, current->total_link_count, and nd->depth.
5.

5. Updates the access time of the inode object associated with the symbolic link to be resolved.
6.

6. Invokes the filesystem-dependent function that implements the follow_link method passing to it
the dentry and nd parameters. This function extracts the pathname stored in the symbolic link's
inode, and saves this pathname in the proper entry of the nd->saved_names array.

7.

7. Invokes the _ _vfs_follow_link() function passing to it the address nd and the address of the
pathname in the nd->saved_names array (see below).

8.

8. If defined, executes the put_link method of the inode object, thus releasing the temporary data
structures allocated by the follow_link method.

9.

9. Decreases the current->link_count and nd->depth fields.
10.

10.Returns the error code returned by the _ _vfs_follow_link() function (0 for no error).

In turn, the _ _vfs_follow_link() does essentially the following:
1.

1. Checks whether the first character of the pathname stored in the symbolic link is a slash: in this
case an absolute pathname has been found, so there is no need to keep in memory any
information about the previous path. If so, invokes path_release() on the nameidata structure,
thus releasing the objects resulting from the previous lookup steps; then, the function sets the
dentry and mnt fields of the nameidata data structure to the current process root directory.

2.

2. Invokes link_path_walk() to resolve the symbolic link pathname, passing to it as parameters the
pathname and nd.

3.

3. Returns the value taken from link_path_walk().

When do_follow_link() finally terminates, it has set the dentry field of the next local variable with the
address of the dentry object referred to by the symbolic link to the original execution of link_path_walk(
). The link_path_walk() function can then proceed with the next step.

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.6. Implementations of VFS System Calls
 For the sake of brevity, we cannot discuss the implementation of all the VFS system calls listed in Table
12-1. However, it could be useful to sketch out the implementation of a few system calls, in order to
show how VFS's data structures interact.

 Let's reconsider the example proposed at the beginning of this chapter: a user issues a shell command
that copies the MS-DOS file /floppy/TEST to the Ext2 file /tmp/test. The command shell invokes an
external program such as cp, which we assume executes the following code fragment:

 inf = open("/floppy/TEST", O_RDONLY, 0);

 outf = open("/tmp/test", O_WRONLY | O_CREAT | O_TRUNC, 0600);

 do {

 len = read(inf, buf, 4096);

 write(outf, buf, len);

 } while (len);

 close(outf);

 close(inf);

Actually, the code of the real cp program is more complicated, because it must also check for possible
error codes returned by each system call. In our example, we focus our attention on the "normal"
behavior of a copy operation.

 12.6.1. The open() System Call

 The open() system call is serviced by the sys_open() function, which receives as its parameters the
pathname filename of the file to be opened, some access mode flags flags, and a permission bit mask
mode if the file must be created. If the system call succeeds, it returns a file descriptorthat is, the index
assigned to the new file in the current->files->fd array of pointers to file objects; otherwise, it returns -1.

 In our example, open() is invoked twice; the first time to open /floppy/TEST for reading (O_RDONLY
flag) and the second time to open /tmp/test for writing (O_WRONLY flag). If /tmp/test does not
already exist, it is created (O_CREAT flag) with exclusive read and write access for the owner (octal
0600 number in the third parameter).

 Conversely, if the file already exists, it is rewritten from scratch (O_TRUNC flag). Table 12-18 lists all
flags of the open() system call.

 Table 12-18. The flags of the open() system call

Flag name Description

O_RDONLY Open for reading

O_WRONLY Open for writing

O_RDWR Open for both reading and writing

O_CREAT Create the file if it does not exist

O_EXCL With O_CREAT, fail if the file already exists

O_NOCTTY Never consider the file as a controlling terminal

O_TRUNC Truncate the file (remove all existing contents)

O_APPEND Always write at end of the file

O_NONBLOCK No system calls will block on the file

O_NDELAY Same as O_NONBLOCK

O_SYNC Synchronous write (block until physical write
terminates)

FASYNC I/O event notification via signals

O_DIRECT Direct I/O transfer (no kernel buffering)

O_LARGEFILE Large file (size greater than 2 GB)

O_DIRECTORY Fail if file is not a directory

O_NOFOLLOW Do not follow a trailing symbolic link in pathname

O_NOATIME Do not update the inode's last access time

Let's describe the operation of the sys_open() function. It performs the following steps:
1.

1. Invokes getname() to read the file pathname from the process address space.
2.

2. Invokes get_unused_fd() to find an empty slot in current->files->fd. The corresponding index
(the new file descriptor) is stored in the fd local variable.

3.

3. Invokes the filp_open() function, passing as parameters the pathname, the access mode flags,
and the permission bit mask. This function, in turn, executes the following steps:
a.

a. Copies the access mode flags into namei_flags, but encodes the access mode flags
O_RDONLY, O_WRONLY, and O_RDWR with a special format: the bit at index 0
(lowest-order) of namei_flags is set only if the file access requires read privileges; similarly,
the bit at index 1 is set only if the file access requires write privileges. Notice that it is not
possible to specify in the open() system call that a file access does not require either read or
write privileges; this makes sense, however, in a pathname lookup operation involving
symbolic links.

b.

b. Invokes open_namei(), passing to it the pathname, the modified access mode flags, and the
address of a local nameidata data structure. The function performs the lookup operation in
the following manner:


 If O_CREAT is not set in the access mode flags, starts the lookup operation with the
LOOKUP_PARENT flag not set and the LOOKUP_OPEN flag set. Moreover, the
LOOKUP_FOLLOW flag is set only if O_NOFOLLOW is cleared, while the
LOOKUP_DIRECTORY flag is set only if the O_DIRECTORY flag is set.



 If O_CREAT is set in the access mode flags, starts the lookup operation with the
LOOKUP_PARENT, LOOKUP_OPEN, and LOOKUP_CREATE flags set. Once
the path_lookup() function successfully returns, checks whether the requested file
already exists. If not, allocates a new disk inode by invoking the create method of the
parent inode.

b. The open_namei() function also executes several security checks on the file located by the
lookup operation. For instance, the function checks whether the inode associated with the
dentry object found really exists, whether it is a regular file, and whether the current process
is allowed to access it according to the access mode flags. Also, if the file is opened for
writing, the function checks that the file is not locked by other processes.

c.

c. Invokes the dentry_open() function, passing to it the addresses of the dentry object and the
mounted filesystem object located by the lookup operation, and the access mode flags. In
turn, this function:


 Allocates a new file object.


 Initializes the f_flags and f_mode fields of the file object according to the access mode
flags passed to the open() system call.



 Initializes the f_dentry and f_vfsmnt fields of the file object according to the addresses of
the dentry object and the mounted filesystem object passed as parameters.



 Sets the f_op field to the contents of the i_fop field of the corresponding inode object.
This sets up all the methods for future file operations.



 Inserts the file object into the list of opened files pointed to by the s_files field of the
filesystem's superblock.



 If the open method of the file operations is defined, the function invokes it.


 Invokes file_ra_state_init() to initialize the read-ahead data structures (see Chapter 16).


 If the O_DIRECT flag is set, it checks whether direct I/O operations can be performed
on the file (see Chapter 16).



 Returns the address of the file object.
d.

d. Returns the address of the file object.
4.

4. Sets current->files->fd[fd] to the address of the file object returned by dentry_open().
5.

5. Returns fd.

12.6.2. The read() and write() System Calls

 Let's return to the code in our cp example. The open() system calls return two file descriptors, which
are stored in the inf and outf variables. Then the program starts a loop: at each iteration, a portion of the
/floppy/TEST file is copied into a local buffer (read() system call), and then the data in the local buffer is
written into the /tmp/test file (write() system call).

 The read() and write() system calls are quite similar. Both require three parameters: a file descriptor fd,
the address buf of a memory area (the buffer containing the data to be transferred), and a number count
that specifies how many bytes should be transferred. Of course, read() transfers the data from the file
into the buffer, while write() does the opposite. Both system calls return either the number of bytes that
were successfully transferred or -1 to signal an error condition.

 A return value less than count does not mean that an error occurred. The kernel is always allowed to
terminate the system call even if not all requested bytes were transferred, and the user application must
accordingly check the return value and reissue, if necessary, the system call. Typically, a small value is
returned when reading from a pipe or a terminal device, when reading past the end of the file, or when
the system call is interrupted by a signal. The end-of-file condition (EOF) can easily be recognized by a
zero return value from read(). This condition will not be confused with an abnormal termination due to a
signal, because if read() is interrupted by a signal before a data is read, an error occurs.

 The read or write operation always takes place at the file offset specified by the current file pointer (field
f_pos of the file object). Both system calls update the file pointer by adding the number of transferred
bytes to it.

 In short, both sys_read() (the read()'s service routine) and sys_write() (the write()'s service routine)
perform almost the same steps:

1.

1. Invokes fget_light() to derive from fd the address file of the corresponding file object (see the
earlier section "Files Associated with a Process").

2.

2. If the flags in file->f_mode do not allow the requested access (read or write operation), it returns
the error code -EBADF.

3.

3. If the file object does not have a read() or aio_read() (write() or aio_write()) file operation, it
returns the error code -EINVAL.

4.

4. Invokes access_ok() to perform a coarse check on the buf and count parameters (see the
section "Verifying the Parameters" in Chapter 10).

5.

5. Invokes rw_verify_area() to check whether there are conflicting mandatory locks for the file
portion to be accessed. If so, it returns an error code, or puts the current process to sleep if the
lock has been requested with a F_SETLKW command (see the section "File Locking" later in
this chapter).

6.

6. If defined, it invokes either the file->f_op->read or file->f_op->write method to transfer the data;
otherwise, invokes either the file->f_op->aio_read or file->f_op->aio_write method. All these
methods, which are discussed in Chapter 16, return the number of bytes that were actually
transferred. As a side effect, the file pointer is properly updated.

7.

7. Invokes fput_light() to release the file object.
8.

8. Returns the number of bytes actually transferred.

12.6.3. The close() System Call

 The loop in our example code terminates when the read() system call returns the value 0that is, when all
bytes of /floppy/TEST have been copied into /tmp/test. The program can then close the open files,
because the copy operation has completed.

 The close() system call receives as its parameter fd, which is the file descriptor of the file to be closed.
The sys_close() service routine performs the following operations:

1.

1. Gets the file object address stored in current->files->fd[fd]; if it is NULL, returns an error code.
2.

2. Sets current->files->fd[fd] to NULL. Releases the file descriptor fd by clearing the
corresponding bits in the open_fds and close_on_exec fields of current->files (see Chapter 20
for the Close on Execution flag).

3.

3. Invokes filp_close(), which performs the following operations:
a.

a. Invokes the flush method of the file operations, if defined.
b.

b. Releases all mandatory locks on the file, if any (see next section).
c.

c. Invokes fput() to release the file object.
4.

4. Returns 0 or an error code. An error code can be raised by the flush method or by an error in a
previous write operation on the file.

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.7. File Locking
 When a file can be accessed by more than one process, a synchronization problem occurs. What
happens if two processes try to write in the same file location? Or again, what happens if a process reads
from a file location while another process is writing into it?

 In traditional Unix systems, concurrent accesses to the same file location produce unpredictable results.
However, Unix systems provide a mechanism that allows the processes to lock a file region so that
concurrent accesses may be easily avoided.

 The POSIX standard requires a file-locking mechanism based on the fcntl() system call. It is possible to
lock an arbitrary region of a file (even a single byte) or to lock the whole file (including data appended in
the future). Because a process can choose to lock only a part of a file, it can also hold multiple locks on
different parts of the file.

 This kind of lock does not keep out another process that is ignorant of locking. Like a semaphore used
to protect a critical region in code, the lock is considered "advisory" because it doesn't work unless other
processes cooperate in checking the existence of a lock before accessing the file. Therefore, POSIX's
locks are known as advisory locks .

 Traditional BSD variants implement advisory locking through the flock() system call. This call does not
allow a process to lock a file region, only the whole file. Traditional System V variants provide the lockf(
) library function, which is simply an interface to fcntl().

 More importantly, System V Release 3 introduced mandatory locking: the kernel checks that every
invocation of the open() , read() , and write() system calls does not violate a mandatory lock on the file
being accessed. Therefore, mandatory locks are enforced even between noncooperative processes.[*]

[*] Oddly enough, a process may still unlink (delete) a file even if some other process owns a mandatory
lock on it! This perplexing situation is possible because when a process deletes a file hard link, it does not
modify its contents, but only the contents of its parent directory.

 Whether processes use advisory or mandatory locks, they can use both shared read locks and exclusive
write locks . Several processes may have read locks on some file region, but only one process can have
a write lock on it at the same time. Moreover, it is not possible to get a write lock when another process
owns a read lock for the same file region, and vice versa.

 12.7.1. Linux File Locking

 Linux supports all types of file locking: advisory and mandatory locks, plus the fcntl() and flock()
system calls (lockf() is implemented as a standard library function).

 The expected behavior of the flock() system call in every Unix-like operating system is to produce
advisory locks only, without regard for the MS_MANDLOCK mount flag. In Linux, however, a special
kind of flock()'s mandatory lock is used to support some proprietary network filesystems . It is the
so-called share-mode mandatory lock; when set, no other process may open a file that would conflict
with the access mode of the lock. Use of this feature for native Unix applications is discouraged, because
the resulting source code will be nonportable.

 Another kind of fcntl()-based mandatory lock called lease has been introduced in Linux. When a
process tries to open a file protected by a lease, it is blocked as usual. However, the process that owns
the lock receives a signal. Once informed, it should first update the file so that its content is consistent,
and then release the lock. If the owner does not do this in a well-defined time interval (tunable by writing
a number of seconds into /proc /sys/fs/lease-break-time, usually 45 seconds), the lease is automatically
removed by the kernel and the blocked process is allowed to continue.

 A process can get or release an advisory file lock on a file in two possible ways:


 By issuing the flock() system call. The two parameters of the system call are the fd file
descriptor, and a command to specify the lock operation. The lock applies to the whole file.



 By using the fcntl() system call. The three parameters of the system call are the fd file descriptor,
a command to specify the lock operation, and a pointer to a flock structure (see Table 12-20). A
couple of fields in this structure allow the process to specify the portion of the file to be locked.
Processes can thus hold several locks on different portions of the same file.

 Both the fcntl() and the flock() system call may be used on the same file at the same time, but a file
locked through fcntl() does not appear locked to flock(), and vice versa. This has been done on
purpose in order to avoid the deadlocks occurring when an application using a type of lock relies on a
library that uses the other type.

 Handling mandatory file locks is a bit more complex. Here are the steps to follow:
1.

1. Mount the filesystem where mandatory locking is required using the -o mand option in the
mount command, which sets the MS_MANDLOCK flag in the mount() system call. The default
is to disable mandatory locking.

2.

2. Mark the files as candidates for mandatory locking by setting their set-group bit (SGID) and
clearing the group-execute permission bit. Because the set-group bit makes no sense when the
group-execute bit is off, the kernel interprets that combination as a hint to use mandatory locks
instead of advisory ones.

3.

3. Uses the fcntl() system call (see below) to get or release a file lock.

Handling leases is much simpler than handling mandatory locks: it is sufficient to invoke a fcntl() system
call with a F_SETLEASE or F_GETLEASE command. Another fcntl() invocation with the F_SETSIG
command may be used to change the type of signal to be sent to the lease process holder.

 Besides the checks in the read() and write() system calls, the kernel takes into consideration the
existence of mandatory locks when servicing all system calls that could modify the contents of a file. For
instance, an open() system call with the O_TRUNC flag set fails if any mandatory lock exists for the file.

 The following section describes the main data structure used by the kernel to handle file locks issued by
means of the flock() system call (FL_FLOCK locks) and of the fcntl() system call (FL_POSIX locks).

 12.7.2. File-Locking Data Structures

 All type of Linux locks are represented by the same file_lock data structure whose fields are shown in
Table 12-19.

 Table 12-19. The fields of the file_lock data structure

Type Field Description

struct file_lock * fl_next Next element in list of locks
associated with the inode

struct list_head fl_link Pointers for active or blocked list

struct list_head fl_block Pointers for the lock's waiters list

struct files_struct * fl_owner Owner's files_struct

unsigned int fl_pid PID of the process owner

wait_queue_head_t fl_wait Wait queue of blocked processes

struct file * fl_file Pointer to file object

unsigned char fl_flags Lock flags

unsigned char fl_type Lock type

loff_t fl_start Starting offset of locked region

loff_t fl_end Ending offset of locked region

struct fasync_struct * fl_fasync Used for lease break notifications

unsigned long fl_break_time Remaining time before end of
lease

struct file_lock_operations * fl_ops Pointer to file lock operations

struct lock_manager_operations
* fl_mops Pointer to lock manager

operations

union fl_u Filesystem-specific information

All lock_file structures that refer to the same file on disk are collected in a singly linked list, whose first
element is pointed to by the i_flock field of the inode object. The fl_next field of the lock_file structure
specifies the next element in the list.

 When a process issues a blocking system call to require an exclusive lock while there are shared locks
on the same file, the lock request cannot be satisfied immediately and the process must be suspended.
The process is thus inserted into a wait queue pointed to by the fl_wait field of the blocked lock's
file_lock structure. Two lists are used to distinguish lock requests that have been satisfied (active locks)
from those that cannot be satisfied right away (blocked locks).

 All active locks are linked together in the "global file lock list" whose head element is stored in the
file_lock_list variable. Similarly, all blocked locks are linked together in the "blocked list" whose head
element is stored in the blocked_list variable. The fl_link field is used to insert a lock_file structure in
either one of these two lists.

 Last but not least, the kernel must keep track of all blocked locks (the "waiters") associated with a given
active lock (the "blocker"): this is the purpose of a list that links together all waiters with respect to a
given blocker. The fl_block field of the blocker is the dummy head of the list, while the fl_block fields of
the waiters store the pointers to the adjacent elements in the list.

 12.7.3. FL_FLOCK Locks

 An FL_FLOCK lock is always associated with a file object and is thus owned by the process that
opened the file (or by all clone processes sharing the same opened file). When a lock is requested and
granted, the kernel replaces every other lock that the process is holding on the same file object with the
new lock. This happens only when a process wants to change an already owned read lock into a write
one, or vice versa. Moreover, when a file object is being freed by the fput() function, all FL_FLOCK
locks that refer to the file object are destroyed. However, there could be other FL_FLOCK read locks
set by other processes for the same file (inode), and they still remain active.

 The flock() system call allows a process to apply or remove an advisory lock on an open file. It acts on
two parameters: the fd file descriptor of the file to be acted upon and a cmd parameter that specifies the
lock operation. A cmd parameter of LOCK_SH requires a shared lock for reading, LOCK_EX requires
an exclusive lock for writing, and LOCK_UN releases the lock.[*]

[*] Actually, the flock() system call can also establish share-mode mandatory locks by specifying the
command LOCK_MAND. However, we'll not further discuss this case.

 Usually this system call blocks the current process if the request cannot be immediately satisfied, for
instance if the process requires an exclusive lock while some other process has already acquired the
same lock. However, if the LOCK_NB flag is passed together with the LOCK_SH or LOCK_EX
operation, the system call does not block; in other words, if the lock cannot be immediately obtained, the
system call returns an error code.

 When the sys_flock() service routine is invoked, it performs the following steps:
1.

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets the address filp of
the corresponding file object.

2.

2. Checks that the process has read and/or write permission on the open file; if not, returns an error
code.

3.

3. Gets a new file_lock object lock and initializes it in the appropriate way: the fl_type field is set
according to the value of the parameter cmd, the fl_file field is set to the address filp of the file
object, the fl_flags field is set to FL_FLOCK, the fl_pid field is set to current->tgid, and the
fl_end field is set to -1 to denote the fact that locking refers to the whole file (and not to a portion
of it).

4.

4. If the cmd parameter does not include the LOCK_NB bit, it adds to the fl_flags field the
FL_SLEEP flag.

5.

5. If the file has a flock file operation, the routine invokes it, passing as its parameters the file object
pointer filp, a flag (F_SETLKW or F_SETLK depending on the value of the LOCK_NB bit),
and the address of the new file_lock object lock.

6.

6. Otherwise, if the flock file operation is not defined (the common case), invokes
flock_lock_file_wait() to try to perform the required lock operation. Two parameters are
passed: filp, a file object pointer, and lock, the address of the new file_lock object created in
step 3.

7.

7. If the file_lock descriptor has not been inserted in the active or blocked lists in the previous step,
the routine releases it.

8.

8. Returns 0 in case of success.

The flock_lock_file_wait() function executes a cycle consisting of the following steps:
1.

1. Invokes flock_lock_file() passing as parameters the file object pointer filp and the address of
the new file_lock object lock. This function performs, in turn, the following operations:
a.

a. Searches the list that filp->f_dentry->d_inode->i_flock points to. If an FL_FLOCK lock for
the same file object is found, checks its type (LOCK_SH or LOCK_EX): if it is equal to the
type of the new lock, returns 0 (nothing has to be done). Otherwise, the function removes the
old element from the list of locks on the inode and the global file lock list, wakes up all
processes sleeping in the wait queues of the locks in the fl_block list, and frees the file_lock
structure.

b.

b. If the process is performing an unlock (LOCK_UN), nothing else needs to be done: the lock
was nonexisting or it has already been released, thus returns 0.

c.

c. If an FL_FLOCK lock for the same file object has been foundthus the process is changing
an already owned read lock into a write one (or vice versa)gives some other higher-priority
process, in particular every process previously blocked on the old file lock, a chance to run
by invoking cond_resched().

d.

d. Searches the list of locks on the inode again to verify that no existing FL_FLOCK lock
conflicts with the requested one. There must be no FL_FLOCK write lock in the list, and
moreover, there must be no FL_FLOCK lock at all if the process is requesting a write lock.

e.

e. If no conflicting lock exists, it inserts the new file_lock structure into the inode's lock list and
into the global file lock list, then returns 0 (success).

f.

f. A conflicting lock has been found: if the FL_SLEEP flag in the fl_flags field is set, it inserts
the new lock (the waiter lock) in the circular list of the blocker lock and in the global blocked
list.

g.

g. Returns the error code -EAGAIN.
2.

2. Checks the return code of flock_lock_file():
a.

a. If the return code is 0 (no conflicting looks), it returns 0 (success).
b.

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is cleared, it releases the
lock file_lock descriptor and returns -EAGAIN.

c.

c. Otherwise, there are incompatibilities but the process can sleep: invokes
wait_event_interruptible() to insert the current process in the lock->fl_wait wait queue and
to suspend it. When the process is awakened (right after the blocker lock has been
released), it jumps to step 1 to retry the operation.

12.7.4. FL_POSIX Locks

 An FL_POSIX lock is always associated with a process and with an inode; the lock is automatically
released either when the process dies or when a file descriptor is closed (even if the process opened the
same file twice or duplicated a file descriptor). Moreover, FL_POSIX locks are never inherited by a
child across a fork().

 When used to lock files, the fcntl() system call acts on three parameters: the fd file descriptor of the file
to be acted upon, a cmd parameter that specifies the lock operation, and an fl pointer to a flock data
structure[*] stored in the User Mode process address space; its fields are described in Table 12-20.

[*] Linux also defines a flock64 structure, which uses 64-bit long integers for the offset and length fields.
In the following, we focus on the flock data structure, but the description is valid for flock64 too.

 Table 12-20. The fields of the flock data structure

Type Field Description

short l_type

F_RDLOCK (requests a shared
lock), F_WRLOCK (requests an
exclusive lock), F_UNLOCK
(releases the lock)

short l_whence

SEEK_SET (from beginning of
file), SEEK_CURRENT (from
current file pointer), SEEK_END
(from end of file)

off_t l_start Initial offset of the locked region
relative to the value of l_whence

off_t l_len

Length of locked region (0 means
that the region includes all
potential writes past the current
end of the file)

pid_t l_pid PID of the owner

The sys_fcntl() service routine behaves differently, depending on the value of the flag set in the cmd
parameter:

 F_GETLK

 Determines whether the lock described by the flock structure conflicts with some FL_POSIX lock
already obtained by another process. In this case, the flock structure is overwritten with the information
about the existing lock.

F_SETLK

 Sets the lock described by the flock structure. If the lock cannot be acquired, the system call returns an
error code.

F_SETLKW

 Sets the lock described by the flock structure. If the lock cannot be acquired, the system call blocks;
that is, the calling process is put to sleep until the lock is available.

F_GETLK64, F_SETLK64, F_SETLKW64

 Identical to the previous ones, but the flock64 data structure is used rather than flock.

 The sys_fcntl() service routine gets first a file object corresponding to the fd parameter and invokes then
fcntl_getlk() or fcntl_setlk(), depending on the command passed as its parameter (F_GETBLK for the
former function, F_SETLK or F_SETLKW for the latter one). We'll consider the second case only.

 The fcntl_setlk() function acts on three parameters: a filp pointer to the file object, a cmd command
(F_SETLK or F_SETLKW), and a pointer to a flock data structure. The steps performed are the
following:

1.

1. Reads the structure pointed to by the fl parameter in a local variable of type flock.
2.

2. Checks whether the lock should be a mandatory one and the file has a shared memory mapping
(see the section "Memory Mapping" in Chapter 16). In this case, the function refuses to create
the lock and returns the -EAGAIN error code, because the file is already being accessed by
another process.

3.

3. Initializes a new file_lock structure according to the contents of the user's flock structure and to
the file size stored in the file's inode.

4.

4. If the command is F_SETLKW, the function sets the FL_SLEEP flag in the fl_flags field of the
file_lock structure.

5.

5. If the l_type field in the flock structure is equal to F_RDLCK, it checks whether the process is
allowed to read from the file; similarly, if l_type is equal to F_WRLCK, checks whether the
process is allowed to write into the file. If not, it returns an error code.

6.

6. Invokes the lock method of the file operations, if defined. Usually for disk-based filesystems , this
method is not defined.

7.

7. Invokes _ _posix_lock_file() passing as parameters the address of the file's inode object and the
address of the file_lock object. This function performs, in turn, the following operations:
a.

a. Invokes posix_locks_conflict() for each FL_POSIX lock in the inode's lock list. The
function checks whether the lock conflicts with the requested one. Essentially, there must be
no FL_POSIX write lock for the same region in the inode list, and there may be no
FL_POSIX lock at all for the same region if the process is requesting a write lock. However,
locks owned by the same process never conflict; this allows a process to change the
characteristics of a lock it already owns.

b.

b. If a conflicting lock is found, the function checks whether fcntl() was invoked with the
F_SETLKW command. If so, the current process must be suspended: invokes
posix_locks_deadlock() to check that no deadlock condition is being created among
processes waiting for FL_POSIX locks, then inserts the new lock (waiter lock) both in the
blocker list of the conflicting lock (blocker lock) and in the blocked list, and finally returns an
error code. Otherwise, if fcntl() was invoked with the F_SETLK command, returns an error
code.

c.

c. As soon as the inode's lock list includes no conflicting lock, the function checks all the
FL_POSIX locks of the current process that overlap the file region that the current process
wants to lock, and combines and splits adjacent areas as required. For example, if the
process requested a write lock for a file region that falls inside a read-locked wider region,
the previous read lock is split into two parts covering the nonoverlapping areas, while the
central region is protected by the new write lock. In case of overlaps, newer locks always
replace older ones.

d.

d. Inserts the new file_lock structure in the global file lock list and in the inode list.
e.

e. Returns the value 0 (success).
8.

8. Checks the return code of _ _posix_lock_file():
a.

a. If the return code is 0 (no conflicting locks), it returns 0 (success).
b.

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is cleared, it releases the
new file_lock descriptor and returns -EAGAIN.

c.

c. Otherwise, if there are incompatibilities but the process can sleep, it invokes
wait_event_interruptible() to insert the current process in the lock->fl_wait wait queue and
to suspend it. When the process is awakened (right after the blocker lock has been
released), it jumps to step 7 to retry the operation.

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 13. I/O Architecture and Device
Drivers
 The Virtual File System in the last chapter depends on lower-level functions to carry out each read,
write, or other operation in a manner suited to each device. The previous chapter included a brief
discussion of how operations are handled by different filesystems. In this chapter, we look at how the
kernel invokes the operations on actual devices.

 In the section "I/O Architecture," we give a brief survey of the 80 x 86 I/O architecture. In the section "
The Device Driver Model," we introduce the Linux device driver model. Next, in the section "Device
Files," we show how the VFS associates a special file called "device file" with each different hardware
device, so that application programs can use all kinds of devices in the same way. We then introduce in
the section "Device Drivers" some common characteristics of device drivers. Finally, in the section "
Character Device Drivers," we illustrate the overall organization of character device drivers in Linux.
We'll defer the discussion of block device drivers to the next chapters.

 Readers interested in developing device drivers on their own may want to refer to Jonathan Corbet,
Alessandro Rubini, and Greg Kroah-Hartman's Linux Device Drivers, Third Edition (O'Reilly).

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.1. I/O Architecture
 To make a computer work properly, data paths must be provided that let information flow between
CPU(s), RAM, and the score of I/O devices that can be connected to a personal computer. These data
paths, which are denoted as the buses , act as the primary communication channels inside the computer.

 Any computer has a system bus that connects most of the internal hardware devices. A typical system
bus is the PCI (Peripheral Component Interconnect) bus. Several other types of buses, such as ISA,
EISA, MCA, SCSI, and USB, are currently in use. Typically, the same computer includes several buses
of different types, linked together by hardware devices called bridges . Two high-speed buses are
dedicated to the data transfers to and from the memory chips: the frontside bus connects the CPUs to the
RAM controller, while the backside bus connects the CPUs directly to the external hardware cache. The
host bridge links together the system bus and the frontside bus.

 Any I/O device is hosted by one, and only one, bus. The bus type affects the internal design of the I/O
device, as well as how the device has to be handled by the kernel. In this section, we discuss the
functional characteristics common to all PC architectures, without giving details about a specific bus type.

 The data path that connects a CPU to an I/O device is generically called an I/O bus. The 80 x 86
microprocessors use 16 of their address pins to address I/O devices and 8, 16, or 32 of their data pins
to transfer data. The I/O bus, in turn, is connected to each I/O device by means of a hierarchy of
hardware components including up to three elements: I/O ports , interfaces, and device controllers.
Figure 13-1 shows the components of the I/O architecture.

 Figure 13-1. PC's I/O architecture

 13.1.1. I/O Ports

 Each device connected to the I/O bus has its own set of I/O addresses, which are usually called I/O
ports. In the IBM PC architecture, the I/O address space provides up to 65,536 8-bit I/O ports. Two
consecutive 8-bit ports may be regarded as a single 16-bit port, which must start on an even address.
Similarly, two consecutive 16-bit ports may be regarded as a single 32-bit port, which must start on an
address that is a multiple of 4. Four special assembly language instructions called in, ins , out , and outs
allow the CPU to read from and write into an I/O port. While executing one of these instructions, the
CPU selects the required I/O port and transfers the data between a CPU register and the port.

 I/O ports may also be mapped into addresses of the physical address space. The processor is then able
to communicate with an I/O device by issuing assembly language instructions that operate directly on
memory (for instance, mov, and, or, and so on). Modern hardware devices are more suited to mapped
I/O, because it is faster and can be combined with DMA.

 An important objective for system designers is to offer a unified approach to I/O programming without
sacrificing performance. Toward that end, the I/O ports of each device are structured into a set of
specialized registers, as shown in Figure 13-2. The CPU writes the commands to be sent to the device
into the device control register and reads a value that represents the internal state of the device from the
device status register. The CPU also fetches data from the device by reading bytes from the device input
register and pushes data to the device by writing bytes into the device output register.

 Figure 13-2. Specialized I/O ports

 To lower costs, the same I/O port is often used for different purposes. For instance, some bits describe
the device state, while others specify the command to be issued to the device. Similarly, the same I/O
port may be used as an input register or an output register.

 13.1.1.1. Accessing I/O ports

 The in, out, ins, and outs assembly language instructions access I/O ports. The following auxiliary
functions are included in the kernel to simplify such accesses:

 inb(), inw(), inl()

 Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix "b," "w," or "l" refers,
respectively, to a byte (8 bits), a word (16 bits), and a long (32 bits).

inb_p(), inw_p(), inl_p()

 Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port, and then execute a "dummy"
instruction to introduce a pause.

outb(), outw(), outl()

 Write 1, 2, or 4 consecutive bytes, respectively, to an I/O port.

outb_p(), outw_p(), outl_p()

 Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port, and then execute a "dummy"
instruction to introduce a pause.

insb(), insw(), insl()

 Read sequences of consecutive bytes in groups of 1, 2, or 4, respectively, from an I/O port. The length
of the sequence is specified as a parameter of the functions.

outsb(), outsw(), outsl()

 Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an I/O port.

 While accessing I/O ports is simple, detecting which I/O ports have been assigned to I/O devices may
not be easy, in particular, for systems based on an ISA bus. Often a device driver must blindly write into
some I/O port to probe the hardware device; if, however, this I/O port is already used by some other
hardware device, a system crash could occur. To prevent such situations, the kernel keeps track of I/O
ports assigned to each hardware device by means of "resources ."

 A resource represents a portion of some entity that can be exclusively assigned to a device driver. In our
case, a resource represents a range of I/O port addresses. The information relative to each resource is
stored in a resource data structure, whose fields are shown in Table 13-1. All resources of the same kind
are inserted in a tree-like data structure; for instance, all resources representing I/O port address ranges
are included in a tree rooted at the node ioport_resource.

 Table 13-1. The fields of the resource data structure

Type Field Description

const char * name Description of owner of the
resource

unsigned long start Start of the resource range

unsigned long end End of the resource range

unsigned long flags Various flags

struct resource * parent Pointer to parent in the resource
tree

struct resource * sibling Pointer to a sibling in the resource
tree

struct resource * child Pointer to first child in the
resource tree

The children of a node are collected in a list whose first element is pointed to by the child field. The
sibling field points to the next node in the list.

 Why use a tree? Well, consider, for instance, the I/O port addresses used by an IDE hard disk
interfacelet's say from 0xf000 to 0xf00f. A resource with the start field set to 0xf000 and the end field set
to 0xf00f is then included in the tree, and the conventional name of the controller is stored in the name
field. However, the IDE device driver needs to remember another bit of information, namely that the
subrange from 0xf000 to 0xf007 is used for the master disk of the IDE chain, while the subrange from
0xf008 to 0xf00f is used for the slave disk. To do this, the device driver inserts two children below the
resource corresponding to the whole range from 0xf000 to 0xf00f, one child for each subrange of I/O
ports. As a general rule, each node of the tree must correspond to a subrange of the range associated
with the parent. The root of the I/O port resource tree (ioport_resource) spans the whole I/O address
space (from port number 0 to 65535).

 Each device driver may use the following three functions, passing to them the root node of the resource
tree and the address of a resource data structure of interest:

 request_resource()

 Assigns a given range to an I/O device.

allocate_resource()

 Finds an available range having a given size and alignment in the resource tree; if it exists, assigns the
range to an I/O device (mainly used by drivers of PCI devices, which can be configured to use arbitrary
port numbers and on-board memory addresses).

release_resource()

 Releases a given range previously assigned to an I/O device.

 The kernel also defines some shortcuts to the above functions that apply to I/O ports: request_region()
assigns a given interval of I/O ports and release_region() releases a previously assigned interval of I/O
ports. The tree of all I/O addresses currently assigned to I/O devices can be obtained from the
/proc/ioports file.

 13.1.2. I/O Interfaces

 An I/O interface is a hardware circuit inserted between a group of I/O ports and the corresponding
device controller. It acts as an interpreter that translates the values in the I/O ports into commands and
data for the device. In the opposite direction, it detects changes in the device state and correspondingly
updates the I/O port that plays the role of status register. This circuit can also be connected through an
IRQ line to a Programmable Interrupt Controller, so that it issues interrupt requests on behalf of the
device.

 There are two types of interfaces:

 Custom I/O interfaces

 Devoted to one specific hardware device. In some cases, the device controller is located in the same
card[*] that contains the I/O interface. The devices attached to a custom I/O interface can be either
internal devices (devices located inside the PC's cabinet) or external devices (devices located outside the
PC's cabinet).

[*] Each card must be inserted in one of the available free bus slots of the PC. If the card can be
connected to an external device through an external cable, the card sports a suitable connector in the rear
panel of the PC.

General-purpose I/O interfaces

 Used to connect several different hardware devices. Devices attached to a general-purpose I/O
interface are usually external devices.

 13.1.2.1. Custom I/O interfaces

 Just to give an idea of how much variety is encompassed by custom I/O interfacesthus by the devices
currently installed in a PCwe'll list some of the most commonly found:

 Keyboard interface

 Connected to a keyboard controller that includes a dedicated microprocessor. This microprocessor
decodes the combination of pressed keys, generates an interrupt, and puts the corresponding scan code
in an input register.

Graphic interface

 Packed together with the corresponding controller in a graphic card that has its own frame buffer, as
well as a specialized processor and some code stored in a Read-Only Memory chip (ROM). The frame
buffer is an on-board memory containing a description of the current screen contents.

Disk interface

 Connected by a cable to the disk controller, which is usually integrated with the disk. For instance, the
IDE interface is connected by a 40-wire flat conductor cable to an intelligent disk controller that can be
found on the disk itself.

Bus mouse interface

 Connected by a cable to the corresponding controller, which is included in the mouse.

Network interface

 Packed together with the corresponding controller in a network card used to receive or transmit
network packets. Although there are several widely adopted network standards, Ethernet (IEEE 802.3)
is the most common.

 13.1.2.2. General-purpose I/O interfaces

 Modern PCs include several general-purpose I/O interfaces , which connect a wide range of external
devices. The most common interfaces are:

 Parallel port

 Traditionally used to connect printers, it can also be used to connect removable disks, scanners, backup
units, and other computers. The data is transferred 1 byte (8 bits) at a time.

Serial port

 Like the parallel port, but the data is transferred 1 bit at a time. It includes a Universal Asynchronous
Receiver and Transmitter (UART) chip to string out the bytes to be sent into a sequence of bits and to
reassemble the received bits into bytes. Because it is intrinsically slower than the parallel port, this
interface is mainly used to connect external devices that do not operate at a high speed, such as modems,
mouses, and printers.

PCMCIA interface

 Included mostly on portable computers. The external device, which has the shape of a credit card, can
be inserted into and removed from a slot without rebooting the system. The most common PCMCIA
devices are hard disks, modems, network cards, and RAM expansions.

SCSI (Small Computer System Interface) interface

 A circuit that connects the main PC bus to a secondary bus called the SCSI bus. The SCSI-2 bus
allows up to eight PCs and external deviceshard disks, scanners, CD-ROM writers, and so onto be
connected. Wide SCSI-2 and the SCSI-3 interfaces allow you to connect 16 devices or more if
additional interfaces are present. The SCSI standard is the communication protocol used to connect
devices via the SCSI bus.

Universal serial bus (USB)

 A general-purpose I/O interface that operates at a high speed and may be used for the external devices
traditionally connected to the parallel port, the serial port, and the SCSI interface.

 13.1.3. Device Controllers

 A complex device may require a device controller to drive it. Essentially, the controller plays two
important roles:



 It interprets the high-level commands received from the I/O interface and forces the device to
execute specific actions by sending proper sequences of electrical signals to it.



 It converts and properly interprets the electrical signals received from the device and modifies
(through the I/O interface) the value of the status register.

 A typical device controller is the disk controller, which receives high-level commands such as a "write
this block of data" from the microprocessor (through the I/O interface) and converts them into low-level
disk operations such as "position the disk head on the right track" and "write the data inside the track."
Modern disk controllers are very sophisticated, because they can keep the disk data in on-board fast
disk caches and can reorder the CPU high-level requests optimized for the actual disk geometry.

 Simpler devices do not have a device controller; examples include the Programmable Interrupt
Controller (see the section "Interrupts and Exceptions" in Chapter 4) and the Programmable Interval
Timer (see the section "Programmable Interval Timer (PIT)" in Chapter 6).

 Several hardware devices include their own memory, which is often called I/O shared memory . For
instance, all recent graphic cards include tens of megabytes of RAM in the frame buffer, which is used to
store the screen image to be displayed on the monitor. We will discuss I/O shared memory in the section
"Accessing the I/O Shared Memory" later in this chapter.

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.2. The Device Driver Model
 Earlier versions of the Linux kernel offered few basic functionalities to the device driver developers:
allocating dynamic memory, reserving a range of I/O addresses or an IRQ line, activating an interrupt
service routine in response to a device's interrupt. Older hardware devices, in fact, were cumbersome
and difficult to program, and two different hardware devices had little in common even if they were
hosted on the same bus. Thus, there was no point in trying to offer a unifying model to the device driver
developers.

 Things are different now. Bus types such as PCI put strong demands on the internal design of the
hardware devices; as a consequence, recent hardware devices, even of different classes, sport similar
functionalities. Drivers for such devices should typically take care of:



 Power management (handling of different voltage levels on the device's power line)


 Plug and play (transparent allocation of resources when configuring the device)


 Hot-plugging (support for insertion and removal of the device while the system is running)

 Power management is performed globally by the kernel on every hardware device in the system. For
instance, when a battery-powered computer enters the "standby" state, the kernel must force every
hardware device (hard disks, graphics card, sound card, network card, bus controllers, and so on) in a
low-power state. Thus, each driver of a device that can be put in the "standby" state must include a
callback function that puts the hardware device in the low-power state. Moreover, the hardware devices
must be put in the "standby" state in a precise order, otherwise some devices could be left in the wrong
power state. For instance, the kernel must put in "standby" first the hard disks and then their disk
controller, because in the opposite case it would be impossible to send commands to the hard disks.

 To implement these kinds of operations, Linux 2.6 provides some data structures and helper functions
that offer a unifying view of all buses, devices, and device drivers in the system; this framework is called
the device driver model .

 13.2.1. The sysfs Filesystem

 The sysfs filesystem is a special filesystem similar to /proc that is usually mounted on the /sys directory.
The /proc filesystem was the first special filesystem designed to allow User Mode applications to access
kernel internal data structures. The /sysfs filesystem has essentially the same objective, but it provides
additional information on kernel data structures; furthermore, /sysfs is organized in a more structured way
than /proc. Likely, both /proc and /sysfs will continue to coexist in the near future.

 A goal of the sysfs filesystem is to expose the hierarchical relationships among the components of the
device driver model. The related top-level directories of this filesystem are:

 block

 The block devices, independently from the bus to which they are connected.

devices

 All hardware devices recognized by the kernel, organized according to the bus in which they are
connected.

bus

 The buses in the system, which host the devices.

drivers

 The device drivers registered in the kernel.

class

 The types of devices in the system (audio cards, network cards, graphics cards, and so on); the same
class may include devices hosted by different buses and driven by different drivers.

power

 Files to handle the power states of some hardware devices.

firmware

 Files to handle the firmware of some hardware devices.

 Relationships between components of the device driver models are expressed in the sysfs filesystem as
symbolic links between directories and files. For example, the /sys/block/sda/device file can be a
symbolic link to a subdirectory nested in /sys/devices/pci0000:00 representing the SCSI controller
connected to the PCI bus. Moreover, the /sys/block/sda/device/block file is a symbolic link to
/sys/block/sda, stating that this PCI device is the controller of the SCSI disk.

 The main role of regular files in the sysfs filesystem is to represent attributes of drivers and devices. For
instance, the dev file in the /sys/block/hda directory contains the major and minor numbers of the master
disk in the first IDE chain.

 13.2.2. Kobjects

 The core data structure of the device driver model is a generic data structure named kobject, which is
inherently tied to the sysfs filesystem: each kobject corresponds to a directory in that filesystem.

 Kobjects are embedded inside larger objectsthe so-called "containers"that describe the components of
the device driver model.[*] The descriptors of buses, devices, and drivers are typical examples of
containers; for instance, the descriptor of the first partition in the first IDE disk corresponds to the
/sys/block/hda/hda1 directory.

[*] Kobjects are mainly used to implement the device driver model; however, there is an ongoing effort
to change some other kernel componentssuch as the module subsystemso as to use them.

 Embedding a kobject inside a container allows the kernel to:


 Keep a reference counter for the container


 Maintain hierarchical lists or sets of containers (for instance, a sysfs directory associated with a
block device includes a different subdirectory for each disk partition)



 Provide a User Mode view for the attributes of the container

 13.2.2.1. Kobjects, ksets, and subsystems

 A kobject is represented by a kobject data structure, whose fields are listed in Table 13-2.

 Table 13-2. The fields of the kobject data structure

Type Field Description

char * k_name Pointer to a string holding the
name of the container

char [] name String holding the name of the
container, if it fits in 20 bytes

struct k_ref kref The reference counter for the
container

struct list_head entry Pointers for the list in which the
kobject is inserted

struct kobject * parent Pointer to the parent kobject, if
any

struct kset * kset Pointer to the containing kset

struct kobj_type * ktype Pointer to the kobject type
descriptor

struct dentry * dentry Pointer to the dentry of the sysfs
file associated with the kobject

The ktype field points to a kobj_type object representing the "type" of the kobjectessentially, the type of
the container that includes the kobject. The kobj_type data structure includes three fields: a release
method (executed when the kobject is being freed), a sysfs_ops pointer to a table of sysfs operations,
and a list of default attributes for the sysfs filesystem.

 The kref field is a structure of type k_ref consisting of a single refcount field. As the name implies, this
field is the reference counter for the kobject, but it may act also as the reference counter for the container
of the kobject. The kobject_get() and kobject_put() functions increase and decrease, respectively, the
reference counter; if the counter reaches the value zero, the resources used by the kobject are released
and the release method of the kobj_type object of the kobject is executed. This method, which is usually
defined only if the container of the kobject was allocated dynamically, frees the container itself.

 The kobjects can be organized in a hierarchical tree by means of ksets . A kset is a collection of
kobjects of the same typethat is, included in the same type of container. The fields of the kset data
structure are listed in Table 13-3.

 Table 13-3. The fields of the kset data structure

Type Field Description

struct subsystem * subsys Pointer to the subsystem
descriptor

struct kobj_type * ktype Pointer to the kobject type
descriptor of the kset

struct list_head list Head of the list of kobjects
included in the kset

struct kobject kobj Embedded kobject (see text)

struct kset_hotplug_ops * hotplug_ops
Pointer to a table of callback
functions for kobject filtering and
hot-plugging

The list field is the head of the doubly linked circular list of kobjects included in the kset; the ktype field
points to the same kobj_type descriptor shared by all kobjects in the kset.

 The kobj field is a kobject embedded in the kset data structure; the parent field of the kobjects
contained in the kset points to this embedded kobject. Thus, a kset is a collection of kobjects, but it
relies on a kobject of higher level for reference counting and linking in the hierarchical tree. This design
choice is code-efficient and allows the greatest flexibility. For instance, the kset_get() and kset_put()
functions, which increase and decrease respectively the reference counter of the kset, simply invoke
kobject_get() and kobject_put() on the embedded kobject; because the reference counter of a kset is
merely the reference counter of the kobj kobject embedded in the kset. Moreover, thanks to the
embedded kobject, the kset data structure can be embedded in a "container" object, exactly as for the
kobject data structure. Finally, a kset can be made a member of another kset: it suffices to insert the
embedded kobject in the higher-level kset.

 Collections of ksets called subsystems also exist. A subsystem may include ksets of different types, and
it is represented by a subsystem data structure having just two fields:

 kset

 An embedded kset that stores the ksets included in the subsystem

rwsem

 A read-write semaphore that protects all ksets and kobjects recursively included in the subsystem

 Even the subsystem data structure can be embedded in a larger "container" object; the reference counter
of the container is thus the reference counter of the embedded subsystemthat is, the reference counter of
the kobject embedded in the kset embedded in the subsystem. The subsys_get() and subsys_put()
functions respectively increase and decrease this reference counter.

 Figure 13-3 illustrates an example of the device driver model hierarchy. The bus subsystem includes a
pci subsystem, which, in turn, includes a drivers kset. This kset contains a serial kobjectcorresponding
to the device driver for the serial porthaving a single new-id attribute.

 Figure 13-3. An example of device driver model hierarchy

 13.2.2.2. Registering kobjects, ksets, and subsystems

 As a general rule, if you want a kobject, kset, or subsystem to appear in the sysfs subtree, you must first
register it. The directory associated with a kobject always appears in the directory of the parent kobject.
For instance, the directories of kobjects included in the same kset appear in the directory of the kset
itself. Therefore, the structure of the sysfs subtree represents the hierarchical relationships between the
various registered kobjects and, consequently, between the various container objects. Usually, the
top-level directories of the sysfs filesystem are associated with the registered subsystems.

 The kobject_register() function initializes a kobject and adds the corresponding directory to the sysfs
filesystem. Before invoking it, the caller should set the kset field in the kobject so that it points to the
parent kset, if any. The kobject_unregister() function removes a kobject's directory from the sysfs
filesystem. To make life easier for kernel developers, Linux also offers the kset_register() and
kset_unregister() functions, and the subsystem_register() and subsystem_unregister() functions, but they
are essentially wrapper functions around kobject_register() and kobject_unregister().

 As stated before, many kobject directories include regular files called attributes . The sysfs_create_file()
function receives as its parameters the addresses of a kobject and an attribute descriptor, and creates the
special file in the proper directory. Other relationships between the objects represented in the sysfs
filesystem are established by means of symbolic links: the sysfs_create_link() function creates a symbolic
link for a given kobject in a directory associated with another kobject.

 13.2.3. Components of the Device Driver Model

 The device driver model is built upon a handful of basic data structures, which represent buses, devices,
device drivers, etc. Let us examine them.

 13.2.3.1. Devices

 Each device in the device driver model is represented by a device object, whose fields are shown in
Table 13-4.

 Table 13-4. The fields of the device object

Type Field Description

struct list_head node Pointers for the list of sibling
devices

struct list_head bus_list Pointers for the list of devices on
the same bus type

struct list_head driver_list Pointers for the driver's list of
devices

struct list_head children Head of the list of children
devices

struct device * parent Pointer to the parent device

struct kobject kobj Embedded kobject

char [] bus_id Device position on the hosting
bus

struct bus_type * bus Pointer to the hosting bus

struct device_driver * driver Pointer to the controlling device
driver

void * driver_data Pointer to private data for the
driver

void * platform_data Pointer to private data for legacy
device drivers

struct dev_pm_info power Power management information

unsigned long detach_state Power state to be entered when
unloading the device driver

unsigned long long * dma_mask
Pointer to the DMA mask of the
device (see the later section "
Direct Memory Access (DMA)")

unsigned long long coherent_dma_mask Mask for coherent DMA of the
device

struct list_head dma_pools Head of a list of aggregate DMA
buffers

struct dma_coherent_mem * dma_mem

Pointer to a descriptor of the
coherent DMA memory used by
the device (see the later section "
Direct Memory Access (DMA)")

void (*)(struct device *) release Callback function for releasing
the device descriptor

The device objects are globally collected in the devices_subsys subsystem, which is associated with the
/sys/devices directory (see the earlier section "Kobjects"). The devices are organized hierarchically: a
device is the "parent" of some "children" devices if the children devices cannot work properly without the
parent device. For instance, in a PCI-based computer, a bridge between the PCI bus and the USB bus
is the parent device of every device hosted on the USB bus. The parent field of the device object points
to the descriptor of the parent device, the children field is the head of the list of children devices, and the
node field stores the pointers to the adjacent elements in the children list. The parenthood relationships
between the kobjects embedded in the device objects reflect also the device hierarchy; thus, the structure
of the directories below /sys/devices matches the physical organization of the hardware devices.

 Each driver keeps a list of device objects including all managed devices; the driver_list field of the device
object stores the pointers to the adjacent elements, while the driver field points to the descriptor of the
device driver. For each bus type, moreover, there is a list including all devices that are hosted on the
buses of the given type; the bus_list field of the device object stores the pointers to the adjacent elements,
while the bus field points to the bus type descriptor.

 A reference counter keeps track of the usage of the device object; it is included in the kobj kobject
embedded in the descriptor. The counter is increased by invoking get_device(), and it is decreased by
invoking put_device().

 The device_register() function inserts a new device object in the device driver model, and automatically
creates a new directory for it under /sys/devices . Conversely, the device_unregister() function removes
a device from the device driver model.

 Usually, the device object is statically embedded in a larger descriptor. For instance, PCI devices are
described by pci_dev data structures; the dev field of this structure is a device object, while the other
fields are specific to the PCI bus. The device_register() and device_unregister() functions are executed
when the device is being registered or de-registered in the PCI kernel layer.

 13.2.3.2. Drivers

 Each driver in the device driver model is described by a device_driver object, whose fields are listed in
Table 13-5.

 Table 13-5. The fields of the device_driver object

Type Field Description

char * name Name of the device driver

struct bus_type * bus Pointer to descriptor of the bus
that hosts the supported devices

struct semaphore unload_sem

Semaphore to forbid device
driver unloading; it is released
when the reference counter
reaches zero

struct kobject kobj Embedded kobject

struct list_head devices Head of the list including all
devices supported by the driver

struct module * owner
Identifies the module that
implements the device driver, if
any (see Appendix B)

int (*)(struct device *) probe
Method for probing a device
(checking that it can be handled
by the device driver)

int (*)(struct device *) remove Method invoked on a device
when it is removed

void (*)(struct device *) shutdown
Method invoked on a device
when it is powered off (shut
down)

int (*)(struct device *, unsigned
long, unsigned long) suspend Method invoked on a device

when it is put in low-power state

int (*)(struct device *, unsigned
long) resume

Method invoked on a device
when it is put back in the normal
state (full power)

The device_driver object includes four methods for handling hot-plugging, plug and play, and power
management. The probe method is invoked whenever a bus device driver discovers a device that could
possibly be handled by the driver; the corresponding function should probe the hardware to perform
further checks on the device. The remove method is invoked on a hot-pluggable device whenever it is
removed; it is also invoked on every device handled by the driver when the driver itself is unloaded. The
shutdown, suspend, and resume methods are invoked on a device when the kernel must change its
power state.

 The reference counter included in the kobj kobject embedded in the descriptor keeps track of the usage
of the device_driver object. The counter is increased by invoking get_driver(), and it is decreased by
invoking put_driver().

 The driver_register() function inserts a new device_driver object in the device driver model, and
automatically creates a new directory for it in the sysfs filesystem. Conversely, the driver_unregister()
function removes a driver from the device driver model.

 Usually, the device_driver object is statically embedded in a larger descriptor. For instance, PCI device
drivers are described by pci_driver data structures; the driver field of this structure is a device_driver
object, while the other fields are specific to the PCI bus.

 13.2.3.3. Buses

 Each bus type supported by the kernel is described by a bus_type object, whose fields are listed in
Table 13-6.

 Table 13-6. The fields of the bus_type object

Type Field Description

char * name Name of the bus type

struct subsystem subsys Kobject subsystem associated
with this bus type

struct kset drivers The set of kobjects of the drivers

struct kset devices The set of kobjects of the devices

struct bus_attribute * bus_attrs

Pointer to the object including the
bus attributes and the methods
for exporting them to the sysfs
filesystem

struct device_attribute * dev_attrs

Pointer to the object including the
device attributes and the methods
for exporting them to the sysfs
filesystem

struct driver_attribute * drv_attrs

Pointer to the object including the
device driver attributes and the
methods for exporting them to the
sysfs filesystem

int (*)(struct device *, struct
device_driver *) match

Method for checking whether a
given driver supports a given
device

int (*)(struct device *, char **,
int, char *, int) hotplug Method invoked when a device is

being registered

int (*)(struct device *, unsigned
long) suspend

Method for saving the hardware
context state and changing the
power level of a device

int (*)(struct device *) resume
Method for changing the power
level and restoring the hardware
context of a device

Each bus_type object includes an embedded subsystem; the subsystem stored in the bus_subsys variable
collects all subsystems embedded in the bus_type objects. The bus_subsys subsystem is associated with
the /sys/bus directory; thus, for example, there exists a /sys/bus/pci directory associated with the PCI bus
type. The per-bus subsystem typically includes only two ksets named drivers and devices (corresponding
to the drivers and devices fields of the bus_type object, respectively).

 The drivers kset contains the device_driver descriptors of all device drivers pertaining to the bus type,
while the devices kset contains the device descriptors of all devices of the given bus type. Because the
directories of the devices' kobjects already appear in the sysfs filesystem under /sys/devices, the devices
directory of the per-bus subsystem stores symbolic links pointing to directories under /sys/devices. The
bus_for_each_drv() and bus_for_each_dev() functions iterate over the elements of the lists of drivers
and devices, respectively.

 The match method is executed when the kernel must check whether a given device can be handled by a
given driver. Even if each device's identifier has a format specific to the bus that hosts the device, the
function that implements the method is usually simple, because it searches the device's identifier in the
driver's table of supported identifiers. The hotplug method is executed when a device is being registered
in the device driver model; the implementing function should add bus-specific information to be passed as
environment variables to a User Mode program that is notified about the new available device (see the
later section "Device Driver Registration"). Finally, the suspend and resume methods are executed when
a device on a bus of the given type must change its power state.

 13.2.3.4. Classes

 Each class is described by a class object. All class objects belong to the class_subsys subsystem
associated with the /sys/class directory. Each class object, moreover, includes an embedded subsystem;
thus, for example, there exists a /sys/class/input directory associated with the input class of the device
driver model.

 Each class object includes a list of class_device descriptors, each of which represents a single logical
device belonging to the class. The class_device structure includes a dev field that points to a device
descriptor, thus a logical device always refers to a given device in the device driver model. However,
there can be several class_device descriptors that refer to the same device. In fact, a hardware device
might include several different sub-devices, each of which requires a different User Mode interface. For
example, the sound card is a hardware device that usually includes a DSP, a mixer, a game port
interface, and so on; each sub-device requires its own User Mode interface, thus it is associated with its
own directory in the sysfs filesystem.

 Device drivers in the same class are expected to offer the same functionalities to the User Mode
applications; for instance, all device drivers of sound cards should offer a way to write sound samples to
the DSP.

 The classes of the device driver model are essentially aimed to provide a standard method for exporting
to User Mode applications the interfaces of the logical devices . Each class_device descriptor embeds a
kobject having an attribute (special file) named dev. Such attribute stores the major and minor numbers
of the device file that is needed to access to the corresponding logical device (see the next section).

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.3. Device Files
 As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a file, which is just
an information container structured as a sequence of bytes. According to this approach, I/O devices are
treated as special files called device files ; thus, the same system calls used to interact with regular files on
disk can be used to directly interact with I/O devices. For example, the same write() system call may be
used to write data into a regular file or to send it to a printer by writing to the /dev/lp0 device file.

 According to the characteristics of the underlying device drivers, device files can be of two types: block
or character. The difference between the two classes of hardware devices is not so clear-cut. At least we
can assume the following:



 The data of a block device can be addressed randomly, and the time needed to transfer a data
block is small and roughly the same, at least from the point of view of the human user. Typical
examples of block devices are hard disks, floppy disks , CD-ROM drives, and DVD players.



 The data of a character device either cannot be addressed randomly (consider, for instance, a
sound card), or they can be addressed randomly, but the time required to access a random
datum largely depends on its position inside the device (consider, for instance, a magnetic tape
driver).

 Network cards are a notable exception to this schema, because they are hardware devices that are not
directly associated with device files.

 Device files have been in use since the early versions of the Unix operating system. A device file is
usually a real file stored in a filesystem. Its inode, however, doesn't need to include pointers to blocks of
data on the disk (the file's data) because there are none. Instead, the inode must include an identifier of
the hardware device corresponding to the character or block device file.

 Traditionally, this identifier consists of the type of device file (character or block) and a pair of numbers.
The first number, called the major number, identifies the device type. Traditionally, all device files that
have the same major number and the same type share the same set of file operations, because they are
handled by the same device driver. The second number, called the minor number, identifies a specific
device among a group of devices that share the same major number. For instance, a group of disks
managed by the same disk controller have the same major number and different minor numbers .

 The mknod() system call is used to create device files. It receives the name of the device file, its type,
and the major and minor numbers as its parameters. Device files are usually included in the /dev
directory. Table 13-7 illustrates the attributes of some device files. Notice that character and block
devices have independent numbering, so block device (3,0) is different from character device (3,0).

 Table 13-7. Examples of device files

Name Type Major Minor Description

/dev/fd0 block 2 0 Floppy disk

/dev/hda block 3 0 First IDE disk

/dev/hda2 block 3 2
Second primary
partition of first
IDE disk

/dev/hdb block 3 64 Second IDE disk

/dev/hdb3 block 3 67
Third primary
partition of second
IDE disk

/dev/ttyp0 char 3 0 Terminal

/dev/console char 5 1 Console

/dev/lp1 char 6 1 Parallel printer

/dev/ttyS0 char 4 64 First serial port

/dev/rtc char 10 135 Real-time clock

/dev/null char 1 3 Null device (black
hole)

Usually, a device file is associated with a hardware device (such as a hard diskfor instance, /dev/hda) or
with some physical or logical portion of a hardware device (such as a disk partitionfor instance,
/dev/hda2). In some cases, however, a device file is not associated with any real hardware device, but
represents a fictitious logical device. For instance, /dev/null is a device file corresponding to a "black
hole;" all data written into it is simply discarded, and the file always appears empty.

 As far as the kernel is concerned, the name of the device file is irrelevant. If you create a device file
named /tmp/disk of type "block" with the major number 3 and minor number 0, it would be equivalent to
the /dev/hda device file shown in the table. On the other hand, device filenames may be significant for
some application programs. For example, a communication program might assume that the first serial
port is associated with the /dev/ttyS0 device file. But most application programs can be configured to
interact with arbitrarily named device files.

 13.3.1. User Mode Handling of Device Files

 In traditional Unix systems (and in earlier versions of Linux), the major and minor numbers of the device
files are 8 bits long. Thus, there could be at most 65,536 block device files and 65,536 character device
files. You might expect they will suffice, but unfortunately they don't.

 The real problem is that device files are traditionally allocated once and forever in the /dev directory;
therefore, each logical device in the system should have an associated device file with a well-defined
device number. The official registry of allocated device numbers and /dev directory nodes is stored in
the Documentation/devices.txt file; the macros corresponding to the major numbers of the devices may
also be found in the include/linux/major.h file.

 Unfortunately, the number of different hardware devices is so large nowadays that almost all device
numbers have already been allocated. The official registry of device numbers works well for the average
Linux system; however, it may not be well suited for large-scale systems. Furthermore, high-end systems
may use hundreds or thousands of disks of the same type, and an 8-bit minor number is not sufficient.
For instance, the registry reserves device numbers for 16 SCSI disks having 15 partitions each; if a
high-end system has more than 16 SCSI disks, the standard assignment of major and minor numbers has
to be changeda non trivial task that requires modifying the kernel source code and makes the system hard
to maintain.

 In order to solve this kind of problem, the size of the device numbers has been increased in Linux 2.6:
the major number is now encoded in 12 bits, while the minor number is encoded in 20 bits. Both
numbers are usually kept in a single 32-bit variable of type dev_t; the MAJOR and MINOR macros
extract the major and minor numbers, respectively, from a dev_t value, while the MKDEV macro
encodes the two device numbers in a dev_t value. For backward compatibility, the kernel handles
properly old device files encoded with 16-bit device numbers.

 The additional available device numbers are not being statically allocated in the official registry, because
they should be used only when dealing with unusual demands for device numbers. Actually, today's
preferred way to deal with device files is highly dynamic, both in the device number assignment and in the
device file creation.

 13.3.1.1. Dynamic device number assignment

 Each device driver specifies in the registration phase the range of device numbers that it is going to
handle (see the later section "Device Driver Registration"). The driver can, however, require the
allocation of an interval of device numbers without specifying the exact values: in this case, the kernel
allocates a suitable range of numbers and assigns them to the driver.

 Therefore, device drivers of new hardware devices no longer require an assignment in the official registry
of device numbers; they can simply use whatever numbers are currently available in the system.

 In this case, however, the device file cannot be created once and forever; it must be created right after
the device driver initialization with the proper major and minor numbers. Thus, there must be a standard
way to export the device numbers used by each driver to the User Mode applications. As we have seen
in the earlier section "Components of the Device Driver Model," the device driver model provides an
elegant solution: the major and minor numbers are stored in the dev attributes contained in the
subdirectories of /sys/class.

 13.3.1.2. Dynamic device file creation

 The Linux kernel can create the device files dynamically: there is no need to fill the /dev directory with
the device files of every conceivable hardware device, because the device files can be created "on
demand." Thanks to the device driver model, the kernel 2.6 offers a very simple way to do so. A set of
User Mode programs, collectively known as the udev toolset, must be installed in the system. At the
system startup the /dev directory is emptied, then a udev program scans the subdirectories of /sys/class
looking for the dev files. For each such file, which represents a combination of major and minor number
for a logical device supported by the kernel, the program creates a corresponding device file in /dev. It
also assigns device filenames and creates symbolic links according to a configuration file, in such a way to
resemble the traditional naming scheme for Unix device files. Eventually, /dev is filled with the device files
of all devices supported by the kernel on this system, and nothing else.

 Often a device file is created after the system has been initialized. This happens either when a module
containing a device driver for a still unsupported device is loaded, or when a hot-pluggable devicesuch as
a USB peripheralis plugged in the system. The udev toolset can automatically create the corresponding
device file, because the device driver model supports device hotplugging . Whenever a new device is
discovered, the kernel spawns a new process that executes the User Mode /sbin/hotplug shell script,[*]
passing to it any useful information on the discovered device as environment variables. The User Mode
scripts usually reads a configuration file and takes care of any operation required to complete the
initialization of the new device. If udev is installed, the script also creates the proper device file in the /dev
directory.

[*] The pathname of the User Mode program invoked on hot-plugging events can be changed by writing
into the /proc/sys/kernel/hotplug file.

 13.3.2. VFS Handling of Device Files

 Device files live in the system directory tree but are intrinsically different from regular files and
directories. When a process accesses a regular file, it is accessing some data blocks in a disk partition
through a filesystem; when a process accesses a device file, it is just driving a hardware device. For
instance, a process might access a device file to read the room temperature from a digital thermometer
connected to the computer. It is the VFS's responsibility to hide the differences between device files and
regular files from application programs.

 To do this, the VFS changes the default file operations of a device file when it is opened; as a result,
each system call on the device file is translated to an invocation of a device-related function instead of the
corresponding function of the hosting filesystem. The device-related function acts on the hardware device
to perform the operation requested by the process.[]

[] Notice that, thanks to the name-resolving mechanism explained in the section "Pathname Lookup" in
Chapter 12, symbolic links to device files work just like device files.

 Let's suppose that a process executes an open() system call on a device file (either of type block or
character). The operations performed by the system call have already been described in the section "The
open() System Call" in Chapter 12. Essentially, the corresponding service routine resolves the pathname
to the device file and sets up the corresponding inode object, dentry object, and file object.

 The inode object is initialized by reading the corresponding inode on disk through a suitable function of
the filesystem (usually ext2_read_inode() or ext3_read_inode(); see Chapter 18). When this function
determines that the disk inode is relative to a device file, it invokes init_special_inode(), which initializes
the i_rdev field of the inode object to the major and minor numbers of the device file, and sets the i_fop
field of the inode object to the address of either the def_blk_fops or the def_chr_fops file operation
table, according to the type of device file. The service routine of the open() system call also invokes the
dentry_open() function, which allocates a new file object and sets its f_op field to the address stored in
i_fopthat is, to the address of def_blk_fops or def_chr_fops once again. Thanks to these two tables,
every system call issued on a device file will activate a device driver's function rather than a function of
the underlying filesystem.

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.4. Device Drivers
 A device driver is the set of kernel routines that makes a hardware device respond to the programming
interface defined by the canonical set of VFS functions (open, read, lseek, ioctl, and so forth) that
control a device. The actual implementation of all these functions is delegated to the device driver.
Because each device has a different I/O controller, and thus different commands and different state
information, most I/O devices have their own drivers.

 There are many types of device drivers . They mainly differ in the level of support that they offer to the
User Mode applications, as well as in their buffering strategies for the data collected from the hardware
devices. Because these choices greatly influence the internal structure of a device driver, we discuss them
in the sections "Direct Memory Access (DMA)" and "Buffering Strategies for Character Devices."

 A device driver does not consist only of the functions that implement the device file operations. Before
using a device driver, several activities must have taken place. We'll examine them in the following
sections.

 13.4.1. Device Driver Registration

 We know that each system call issued on a device file is translated by the kernel into an invocation of a
suitable function of a corresponding device driver. To achieve this, a device driver must register itself. In
other words, registering a device driver means allocating a new device_driver descriptor, inserting it in
the data structures of the device driver model (see the earlier section "Components of the Device Driver
Model"), and linking it to the corresponding device file(s). Accesses to device files whose corresponding
drivers have not been previously registered return the error code -ENODEV.

 If a device driver is statically compiled in the kernel, its registration is performed during the kernel
initialization phase. Conversely, if a device driver is compiled as a kernel module (see Appendix B), its
registration is performed when the module is loaded. In the latter case, the device driver can also
unregister itself when the module is unloaded.

 Let us consider, for instance, a generic PCI device. To properly handle it, its device driver must allocate
a descriptor of type pci_driver, which is used by the PCI kernel layer to handle the device. After having
initialized some fields of this descriptor, the device driver invokes the pci_register_driver() function.
Actually, the pci_driver descriptor includes an embedded device_driver descriptor (see the earlier
section "Components of the Device Driver Model"); the pci_register_function() simply initializes the
fields of the embedded driver descriptor and invokes driver_register() to insert the driver in the data
structures of the device driver model.

 When a device driver is being registered, the kernel looks for unsupported hardware devices that could
be possibly handled by the driver. To do this, it relies on the match method of the relevant bus_type bus
type descriptor, and on the probe method of the device_driver object. If a hardware device that can be
handled by the driver is discovered, the kernel allocates a device object and invokes device_register() to
insert the device in the device driver model.

 13.4.2. Device Driver Initialization

 Registering a device driver and initializing it are two different things. A device driver is registered as soon
as possible, so User Mode applications can use it through the corresponding device files. In contrast, a
device driver is initialized at the last possible moment. In fact, initializing a driver means allocating
precious resources of the system, which are therefore not available to other drivers.

 We already have seen an example in the section "I/O Interrupt Handling" in Chapter 4: the assignment of
IRQs to devices is usually made dynamically, right before using them, because several devices may share
the same IRQ line. Other resources that can be allocated at the last possible moment are page frames for
DMA transfer buffers and the DMA channel itself (for old non-PCI devices such as the floppy disk
driver).

 To make sure the resources are obtained when needed but are not requested in a redundant manner
when they have already been granted, device drivers usually adopt the following schema:



 A usage counter keeps track of the number of processes that are currently accessing the device
file. The counter is increased in the open method of the device file and decreased in the release
method.[*]

 [*] More precisely, the usage counter keeps track of the number of file objects referring to the
device file, because clone processes could share the same file object.



 The open method checks the value of the usage counter before the increment. If the counter is
zero, the device driver must allocate the resources and enable interrupts and DMA on the
hardware device.



 The release method checks the value of the usage counter after the decrement. If the counter is
zero, no more processes are using the hardware device. If so, the method disables interrupts and
DMA on the I/O controller, and then releases the allocated resources.

 13.4.3. Monitoring I/O Operations

 The duration of an I/O operation is often unpredictable. It can depend on mechanical considerations (the
current position of a disk head with respect to the block to be transferred), on truly random events (when
a data packet arrives on the network card), or on human factors (when a user presses a key on the
keyboard or when she notices that a paper jam occurred in the printer). In any case, the device driver
that started an I/O operation must rely on a monitoring technique that signals either the termination of the
I/O operation or a time-out.

 In the case of a terminated operation, the device driver reads the status register of the I/O interface to
determine whether the I/O operation was carried out successfully. In the case of a time-out, the driver
knows that something went wrong, because the maximum time interval allowed to complete the operation
elapsed and nothing happened.

 The two techniques available to monitor the end of an I/O operation are called the polling mode and the
interrupt mode.

 13.4.3.1. Polling mode

 According to this technique, the CPU checks (polls) the device's status register repeatedly until its value
signals that the I/O operation has been completed. We have already encountered a technique based on
polling in the section "Spin Locks" in Chapter 5: when a processor tries to acquire a busy spin lock, it
repeatedly polls the variable until its value becomes 0. However, polling applied to I/O operations is
usually more elaborate, because the driver must also remember to check for possible time-outs. A simple
example of polling looks like the following:

 for (;;) {

 if (read_status(device) & DEVICE_END_OPERATION) break;

 if (--count == 0) break;

 }

The count variable, which was initialized before entering the loop, is decreased at each iteration, and thus
can be used to implement a rough time-out mechanism. Alternatively, a more precise time-out mechanism
could be implemented by reading the value of the tick counter jiffies at each iteration (see the section "
Updating the Time and Date" in Chapter 6) and comparing it with the old value read before starting the
wait loop.

 If the time required to complete the I/O operation is relatively high, say in the order of milliseconds, this
schema becomes inefficient because the CPU wastes precious machine cycles while waiting for the I/O
operation to complete. In such cases, it is preferable to voluntarily relinquish the CPU after each polling
operation by inserting an invocation of the schedule() function inside the loop.

 13.4.3.2. Interrupt mode

 Interrupt mode can be used only if the I/O controller is capable of signaling, via an IRQ line, the end of
an I/O operation.

 We'll show how interrupt mode works on a simple case. Let's suppose we want to implement a driver
for a simple input character device. When the user issues a read() system call on the corresponding
device file, an input command is sent to the device's control register. After an unpredictably long time
interval, the device puts a single byte of data in its input register. The device driver then returns this byte
as the result of the read() system call.

 This is a typical case in which it is preferable to implement the driver using the interrupt mode.
Essentially, the driver includes two functions:

1.

1. The foo_read() function that implements the read method of the file object.
2.

2. The foo_interrupt() function that handles the interrupt.

The foo_read() function is triggered whenever the user reads the device file:

 ssize_t foo_read(struct file *filp, char *buf, size_t count,

 loff_t *ppos)

 {

 foo_dev_t * foo_dev = filp->private_data;

 if (down_interruptible(&foo_dev->sem)

 return -ERESTARTSYS;

 foo_dev->intr = 0;

 outb(DEV_FOO_READ, DEV_FOO_CONTROL_PORT);

 wait_event_interruptible(foo_dev->wait, (foo_dev->intr= =1));

 if (put_user(foo_dev->data, buf))

 return -EFAULT;

 up(&foo_dev->sem);

 return 1;

 }

The device driver relies on a custom descriptor of type foo_dev_t; it includes a semaphore sem that
protects the hardware device from concurrent accesses, a wait queue wait, a flag intr that is set when the
device issues an interrupt, and a single-byte buffer data that is written by the interrupt handler and read
by the read method. In general, all I/O drivers that use interrupts rely on data structures accessed by both
the interrupt handler and the read and write methods. The address of the foo_dev_t descriptor is usually
stored in the private_data field of the device file's file object or in a global variable.

 The main operations of the foo_read() function are the following:
1.

1. Acquires the foo_dev->sem semaphore, thus ensuring that no other process is accessing the
device.

2.

2. Clears the intr flag.
3.

3. Issues the read command to the I/O device.
4.

4. Executes wait_event_interruptible to suspend the process until the intr flag becomes 1. This
macro is described in the section "Wait queues" in Chapter 3.

After some time, our device issues an interrupt to signal that the I/O operation is completed and that the
data is ready in the proper DEV_FOO_DATA_PORT data port. The interrupt handler sets the intr flag
and wakes the process. When the scheduler decides to reexecute the process, the second part of
foo_read() is executed and does the following:

1.

1. Copies the character ready in the foo_dev->data variable into the user address space.
2.

2. Terminates after releasing the foo_dev->sem semaphore.

For simplicity, we didn't include any time-out control. In general, time-out control is implemented through
static or dynamic timers (see Chapter 6); the timer must be set to the right time before starting the I/O
operation and removed when the operation terminates.

 Let's now look at the code of the foo_interrupt() function:

 irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

 {

 foo->data = inb(DEV_FOO_DATA_PORT);

 foo->intr = 1;

 wake_up_interruptible(&foo->wait);

 return 1;

 }

The interrupt handler reads the character from the input register of the device and stores it in the data
field of the foo_dev_t descriptor of the device driver pointed to by the foo global variable. It then sets the
intr flag and invokes wake_up_interruptible() to wake the process blocked in the foo->wait wait queue.

 Notice that none of the three parameters are used by our interrupt handler. This is a rather common
case.

 13.4.4. Accessing the I/O Shared Memory

 Depending on the device and on the bus type, I/O shared memory in the PC's architecture may be
mapped within different physical address ranges. Typically:

 For most devices connected to the ISA bus

 The I/O shared memory is usually mapped into the 16-bit physical addresses ranging from 0xa0000 to
0xfffff; this gives rise to the "hole" between 640 KB and 1 MB mentioned in the section "Physical
Memory Layout" in Chapter 2.

For devices connected to the PCI bus

 The I/O shared memory is mapped into 32-bit physical addresses near the 4 GB boundary. This kind of
device is much simpler to handle.

 A few years ago, Intel introduced the Accelerated Graphics Port (AGP) standard, which is an
enhancement of PCI for high-performance graphic cards. Beside having its own I/O shared memory, this
kind of card is capable of directly addressing portions of the motherboard's RAM by means of a special
hardware circuit named Graphics Address Remapping Table (GART). The GART circuitry enables
AGP cards to sustain much higher data transfer rates than older PCI cards. From the kernel's point of
view, however, it doesn't really matter where the physical memory is located, and GART-mapped
memory is handled like the other kinds of I/O shared memory.

 How does a device driver access an I/O shared memory location? Let's start with the PC's architecture,
which is relatively simple to handle, and then extend the discussion to other architectures.

 Remember that kernel programs act on linear addresses, so the I/O shared memory locations must be
expressed as addresses greater than PAGE_OFFSET. In the following discussion, we assume that
PAGE_OFFSET is equal to 0xc0000000that is, that the kernel linear addresses are in the fourth
gigabyte.

 Device drivers must translate I/O physical addresses of I/O shared memory locations into linear
addresses in kernel space. In the PC architecture, this can be achieved simply by ORing the 32-bit
physical address with the 0xc0000000 constant. For instance, suppose the kernel needs to store the
value in the I/O location at physical address 0x000b0fe4 in t1 and the value in the I/O location at physical
address 0xfc000000 in t2. One might think that the following statements could do the job:

 t1 = *((unsigned char *)(0xc00b0fe4));

 t2 = *((unsigned char *)(0xfc000000));

During the initialization phase, the kernel maps the available RAM's physical addresses into the initial
portion of the fourth gigabyte of the linear address space. Therefore, the Paging Unit maps the
0xc00b0fe4 linear address appearing in the first statement back to the original I/O physical address
0x000b0fe4, which falls inside the "ISA hole" between 640 KB and 1 MB (see the section "Paging in
Linux" in Chapter 2). This works fine.

 There is a problem, however, for the second statement, because the I/O physical address is greater than
the last physical address of the system RAM. Therefore, the 0xfc000000 linear address does not
correspond to the 0xfc000000 physical address. In such cases, the kernel Page Tables must be modified
to include a linear address that maps the I/O physical address. This can be done by invoking the
ioremap() or ioremap_nocache() functions. The first function, which is similar to vmalloc(), invokes
get_vm_area() to create a new vm_struct descriptor (see the section "Descriptors of Noncontiguous
Memory Areas" in Chapter 8) for a linear address interval that has the size of the required I/O shared
memory area. The functions then update the corresponding Page Table entries of the canonical kernel
Page Tables appropriately. The ioremap_nocache() function differs from ioremap() in that it also
disables the hardware cache when referencing the remapped linear addresses properly.

 The correct form for the second statement might therefore look like:

 io_mem = ioremap(0xfb000000, 0x200000);

 t2 = *((unsigned char *)(io_mem + 0x100000));

The first statement creates a new 2 MB linear address interval, which maps physical addresses starting
from 0xfb000000; the second one reads the memory location that has the 0xfc000000 address. To
remove the mapping later, the device driver must use the iounmap() function.

 On some architectures other than the PC, I/O shared memory cannot be accessed by simply
dereferencing the linear address pointing to the physical memory location. Therefore, Linux defines the
following architecture-dependent functions, which should be used when accessing I/O shared memory:

 readb(), readw(), readl()

 Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location

writeb(), writew(), writel()

 Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location

memcpy_fromio(), memcpy_toio()

 Copies a block of data from an I/O shared memory location to dynamic memory and vice versa

memset_io()

 Fills an I/O shared memory area with a fixed value

 The recommended way to access the 0xfc000000 I/O location is thus:

 io_mem = ioremap(0xfb000000, 0x200000);

 t2 = readb(io_mem + 0x100000);

Thanks to these functions, all dependencies on platform-specific ways of accessing the I/O shared
memory can be hidden.

 13.4.5. Direct Memory Access (DMA)

 In the original PC architecture, the CPU is the only bus master of the system, that is, the only hardware
device that drives the address/data bus in order to fetch and store values in the RAM's locations. With
more modern bus architectures such as PCI, each peripheral can act as bus master, if provided with the
proper circuitry. Thus, nowadays all PCs include auxiliary DMA circuits , which can transfer data
between the RAM and an I/O device. Once activated by the CPU, the DMA is able to continue the data
transfer on its own; when the data transfer is completed, the DMA issues an interrupt request. The
conflicts that occur when CPUs and DMA circuits need to access the same memory location at the same
time are resolved by a hardware circuit called a memory arbiter (see the section "Atomic Operations" in
Chapter 5).

 The DMA is mostly used by disk drivers and other devices that transfer a large number of bytes at once.
Because setup time for the DMA is relatively high, it is more efficient to directly use the CPU for the data
transfer when the number of bytes is small.

 The first DMA circuits for the old ISA buses were complex, hard to program, and limited to the lower
16 MB of physical memory. More recent DMA circuits for the PCI and SCSI buses rely on dedicated
hardware circuits in the buses and make life easier for device driver developers.

 13.4.5.1. Synchronous and asynchronous DMA

 A device driver can use the DMA in two different ways called synchronous DMA and asynchronous
DMA. In the first case, the data transfers are triggered by processes; in the second case the data
transfers are triggered by hardware devices.

 An example of synchronous DMA is a sound card that is playing a sound track. A User Mode
application writes the sound data (called samples) on a device file associated with the digital signal
processor (DSP) of the sound card. The device driver of the sound card accumulates these samples in a
kernel buffer. At the same time, the device driver instructs the sound card to copy the samples from the
kernel buffer to the DSP with a well-defined timing. When the sound card finishes the data transfer, it
raises an interrupt, and the device driver checks whether the kernel buffer still contains samples yet to be
played; if so, the driver activates another DMA data transfer.

 An example of asynchronous DMA is a network card that is receiving a frame (data packet) from a
LAN. The peripheral stores the frame in its I/O shared memory, then raises an interrupt. The device
driver of the network card acknowledges the interrupt, then instructs the peripheral to copy the frame
from the I/O shared memory into a kernel buffer. When the data transfer completes, the network card
raises another interrupt, and the device driver notifies the upper kernel layer about the new frame.

 13.4.5.2. Helper functions for DMA transfers

 When designing a driver for a device that makes use of DMA, the developer should write code that is
both architecture-independent and, as far as DMA is concerned, bus-independent. This goal is now
feasible thanks to the rich set of DMA helper functions provided by the kernel. These helper functions
hide the differences in the DMA mechanisms of the various hardware architectures.

 There are two subsets of DMA helper functions: an older subset provides architecture-independent
functions for PCI devices; a more recent subset ensures both bus and architecture independence. We'll
now examine some of these functions while pointing out some hardware peculiarities of DMAs.

 13.4.5.3. Bus addresses

 Every DMA transfer involves (at least) one memory buffer, which contains the data to be read or written
by the hardware device. In general, before activating the transfer, the device driver must ensure that the
DMA circuit can directly access the RAM locations.

 Until now we have distinguished three kinds of memory addresses: logical and linear addresses, which
are used internally by the CPU, and physical addresses, which are the memory addresses used by the
CPU to physically drive the data bus. However, there is a fourth kind of memory address: the so-called
bus address. It corresponds to the memory addresses used by all hardware devices except the CPU to
drive the data bus.

 Why should the kernel be concerned at all about bus addresses ? Well, in a DMA operation, the data
transfer takes place without CPU intervention; the data bus is driven directly by the I/O device and the
DMA circuit. Therefore, when the kernel sets up a DMA operation, it must write the bus address of the
memory buffer involved in the proper I/O ports of the DMA or I/O device.

 In the 80 x 86 architecture, bus addresses coincide with physical addresses. However, other
architectures such as Sun's SPARC and Hewlett-Packard's Alpha include a hardware circuit called the
I/O Memory Management Unit (IO-MMU), analog to the paging unit of the microprocessor, which
maps physical addresses into bus addresses. All I/O drivers that make use of DMAs must set up
properly the IO-MMU before starting the data transfer.

 Different buses have different bus address sizes. For instance, bus addresses for ISA are 24-bits long,
thus in the 80 x 86 architecture DMA transfers can be done only on the lower 16 MB of physical
memorythat's why the memory for the buffer used by such DMA has to be allocated in the ZONE_DMA
memory zone with the GFP_DMA flag. The original PCI standard defines bus addresses of 32 bits;
however, some PCI hardware devices have been originally designed for the ISA bus, thus they still
cannot access RAM locations above physical address 0x00ffffff. The recent PCI-X standard uses 64-bit
bus addresses and allows DMA circuits to address directly the high memory.

 In Linux, the dma_addr_t type represents a generic bus address. In the 80 x 86 architecture
dma_addr_t corresponds to a 32-bit integer, unless the kernel supports PAE (see the section "The
Physical Address Extension (PAE) Paging Mechanism" in Chapter 2), in which case dma_addr_t
corresponds to a 64-bit integer.

 The pci_set_dma_mask() and dma_set_mask() helper functions check whether the bus accepts a given
size for the bus addresses (mask) and, if so, notify the bus layer that the given peripheral will use that size
for its bus addresses.

 13.4.5.4. Cache coherency

 The system architecture does not necessarily offer a coherency protocol between the hardware cache
and the DMA circuits at the hardware level, so the DMA helper functions must take into consideration
the hardware cache when implementing DMA mapping operations. To see why, suppose that the device
driver fills the memory buffer with some data, then immediately instructs the hardware device to read that
data with a DMA transfer. If the DMA accesses the physical RAM locations but the corresponding
hardware cache lines have not yet been written to RAM, then the hardware device fetches the old values
of the memory buffer.

 Device driver developers may handle DMA buffers in two different ways by making use of two different
classes of helper functions. Using Linux terminology, the developer chooses between two different DMA
mapping types :

 Coherent DMA mapping

 When using this mapping, the kernel ensures that there will be no cache coherency problems between
the memory and the hardware device; this means that every write operation performed by the CPU on a
RAM location is immediately visible to the hardware device, and vice versa. This type of mapping is also
called "synchronous" or "consistent."

Streaming DMA mapping

 When using this mapping, the device driver must take care of cache coherency problems by using the
proper synchronization helper functions. This type of mapping is also called "asynchronous" or
"non-coherent."

 In the 80 x 86 architecture there are never cache coherency problems when using the DMA, because
the hardware devices themselves take care of "snooping" the accesses to the hardware caches.
Therefore, a driver for a hardware device designed specifically for the 80 x 86 architecture may choose
either one of the two DMA mapping types: they are essentially equivalent. On the other hand, in many
architecturessuch as MIPS, SPARC, and some models of PowerPChardware devices do not always
snoop in the hardware caches, so cache coherency problems arise. In general, choosing the proper
DMA mapping type for an architecture-independent driver is not trivial.

 As a general rule, if the buffer is accessed in unpredictable ways by the CPU and the DMA processor,
coherent DMA mapping is mandatory (for instance, buffers for SCSI adapters' command data
structures). In other cases, streaming DMA mapping is preferable, because in some architectures
handling the coherent DMA mapping is cumbersome and may lead to lower system performance.

 13.4.5.5. Helper functions for coherent DMA mappings

 Usually, the device driver allocates the memory buffer and establishes the coherent DMA mapping in the
initialization phase; it releases the mapping and the buffer when it is unloaded. To allocate a memory
buffer and to establish a coherent DMA mapping, the kernel provides the architecture-dependent
pci_alloc_consistent() and dma_alloc_coherent() functions. They both return the linear address and the
bus address of the new buffer. In the 80 x 86 architecture, they return the linear address and the physical
address of the new buffer. To release the mapping and the buffer, the kernel provides the
pci_free_consistent() and the dma_free_coherent() functions.

 13.4.5.6. Helper functions for streaming DMA mappings

 Memory buffers for streaming DMA mappings are usually mapped just before the transfer and
unmapped thereafter. It is also possible to keep the same mapping among several DMA transfers, but in
this case the device driver developer must be aware of the hardware cache lying between the memory
and the peripheral.

 To set up a streaming DMA transfer, the driver must first dynamically allocate the memory buffer by
means of the zoned page frame allocator (see the section "The Zoned Page Frame Allocator" in Chapter
8) or the generic memory allocator (see the section "General Purpose Objects" in Chapter 8). Then, the
drivers must establish the streaming DMA mapping by invoking either the pci_map_single() or the
dma_map_single() function, which receives as its parameter the linear address of the buffer and returns
its bus address. To release the mapping, the driver invokes the corresponding pci_unmap_single() or
dma_unmap_single() functions.

 To avoid cache coherency problems, right before starting a DMA transfer from the RAM to the device,
the driver should invoke pci_dma_sync_single_for_device() or dma_sync_single_for_device(), which
flush, if necessary, the cache lines corresponding to the DMA buffer. Similarly, a device driver should not
access a memory buffer right after the end of a DMA transfer from the device to the RAM: instead,
before reading the buffer, the driver should invoke pci_dma_sync_single_for_cpu() or
dma_sync_single_for_cpu(), which invalidate, if necessary, the corresponding hardware cache lines. In
the 80 x 86 architecture, these functions do almost nothing, because the coherency between hardware
caches and DMAs is maintained by the hardware.

 Even buffers in high memory (see the section "Kernel Mappings of High-Memory Page Frames" in
Chapter 8) can be used for DMA transfers; the developer uses pci_map_page()or dma_map_page(
)passing to it the descriptor address of the page including the buffer and the offset of the buffer inside the
page. Correspondingly, to release the mapping of the high memory buffer, the developer uses
pci_unmap_page() or dma_unmap_page().

 13.4.6. Levels of Kernel Support

 The Linux kernel does not fully support all possible existing I/O devices. Generally speaking, in fact,
there are three possible kinds of support for a hardware device:

 No support at all

 The application program interacts directly with the device's I/O ports by issuing suitable in and out
assembly language instructions.

Minimal support

 The kernel does not recognize the hardware device, but does recognize its I/O interface. User programs
are able to treat the interface as a sequential device capable of reading and/or writing sequences of
characters.

Extended support

 The kernel recognizes the hardware device and handles the I/O interface itself. In fact, there might not
even be a device file for the device.

 The most common example of the first approach, which does not rely on any kernel device driver, is
how the X Window System traditionally handles the graphic display. This is quite efficient, although it
constrains the X server from using the hardware interrupts issued by the I/O device. This approach also
requires some additional effort to allow the X server to access the required I/O ports. As mentioned in
the section "Task State Segment" in Chapter 3, the iopl() and ioperm() system calls grant a process the
privilege to access I/O ports. They can be invoked only by programs having root privileges. But such
programs can be made available to users by setting the setuid flag of the executable file (see the section "
Process Credentials and Capabilities" in Chapter 20).

 Recent Linux versions support several widely used graphic cards. The /dev/fb device file provides an
abstraction for the frame buffer of the graphic card and allows application software to access it without
needing to know anything about the I/O ports of the graphics interface. Furthermore, the kernel supports
the Direct Rendering Infrastructure (DRI) that allows application software to exploit the hardware of
accelerated 3D graphics cards. In any case, the traditional do-it-yourself X Window System server is still
widely adopted.

 The minimal support approach is used to handle external hardware devices connected to a
general-purpose I/O interface. The kernel takes care of the I/O interface by offering a device file (and
thus a device driver); the application program handles the external hardware device by reading and
writing the device file.

 Minimal support is preferable to extended support because it keeps the kernel size small. However,
among the general-purpose I/O interfaces commonly found on a PC, only the serial port and the parallel
port can be handled with this approach. Thus, a serial mouse is directly controlled by an application
program, such as the X server, and a serial modem always requires a communication program, such as
Minicom, Seyon, or a Point-to-Point Protocol (PPP) daemon.

 Minimal support has a limited range of applications, because it cannot be used when the external device
must interact heavily with internal kernel data structures. For example, consider a removable hard disk
that is connected to a general-purpose I/O interface. An application program cannot interact with all
kernel data structures and functions needed to recognize the disk and to mount its filesystem, so extended
support is mandatory in this case.

 In general, every hardware device directly connected to the I/O bus, such as the internal hard disk, is
handled according to the extended support approach: the kernel must provide a device driver for each
such device. External devices attached to the Universal Serial Bus (USB), the PCMCIA port found in
many laptops, or the SCSI interfacein short, every general-purpose I/O interface except the serial and
the parallel portsalso require extended support.

 It is worth noting that the standard file-related system calls such as open() , read() , and write() do not
always give the application full control of the underlying hardware device. In fact, the
lowest-common-denominator approach of the VFS does not include room for special commands that
some devices need or let an application check whether the device is in a specific internal state.

 The ioctl() system call was introduced to satisfy such needs. Besides the file descriptor of the device file
and a second 32-bit parameter specifying the request, the system call can accept an arbitrary number of
additional parameters. For example, specific ioctl() requests exist to get the CD-ROM sound volume or
to eject the CD-ROM media. Application programs may provide the user interface of a CD player using
these kinds of ioctl() requests.

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.5. Character Device Drivers
 Handling a character device is relatively easy, because usually sophisticated buffering strategies are not
needed and disk caches are not involved. Of course, character devices differ in their requirements: some
of them must implement a sophisticated communication protocol to drive the hardware device, while
others just have to read a few values from a couple of I/O ports of the hardware devices. For instance,
the device driver of a multiport serial card device (a hardware device offering many serial ports) is much
more complicated than the device driver of a bus mouse.

 Block device drivers, on the other hand, are inherently more complex than character device drivers . In
fact, applications are entitled to ask repeatedly to read or write the same block of data. Furthermore,
accesses to these devices are usually very slow. These peculiarities have a profound impact on the
structure of the disk drivers. As we 'll see in the next chapters, however, the kernel provides
sophisticated componentssuch as the page cache and the block I/O subsystemto handle them. In the rest
of this chapter we focus our attention on the character device drivers.

 A character device driver is described by a cdev structure, whose fields are listed in Table 13-8.

 Table 13-8. The fields of the cdev structure

Type Field Description

struct kobject kobj Embedded kobject

struct module * owner Pointer to the module
implementing the driver, if any

struct file_operations * ops Pointer to the file operations table
of the device driver

struct list_head list
Head of the list of inodes relative
to device files for this character
device

dev_t dev Initial major and minor numbers
assigned to the device driver

unsigned int count
Size of the range of device
numbers assigned to the device
driver

The list field is the head of a doubly linked circular list collecting inodes of character device files that refer
to the same character device driver. There could be many device files having the same device number,
and all of them refer to the same character device. Moreover, a device driver can be associated with a
range of device numbers, not just a single one; all device files whose numbers fall in the range are handled
by the same character device driver. The size of the range is stored in the count field.

 The cdev_alloc() function allocates dynamically a cdev descriptor and initializes the embedded kobject
so that the descriptor is automatically freed when the reference counter becomes zero.

 The cdev_add() function registers a cdev descriptor in the device driver model. The function initializes
the dev and count fields of the cdev descriptor, then invokes the kobj_map() function. This function, in
turn, sets up the device driver model's data structures that glue the interval of device numbers to the
device driver descriptor.

 The device driver model defines a kobject mapping domain for the character devices, which is
represented by a descriptor of type kobj_map and is referenced by the cdev_map global variable. The
kobj_map descriptor includes a hash table of 255 entries indexed by the major number of the intervals.
The hash table stores objects of type probe, one for each registered range of major and minor numbers,
whose fields are listed in Table 13-9.

 Table 13-9. The fields of the probe object

Type Field Description

struct probe * next Next element in hash collision list

dev_t dev Initial device number (major and
minor) of the interval

unsigned long range Size of the interval

struct module * owner
Pointer to the module that
implements the device driver, if
any

struct kobject *(*)

(dev_t, int *, void *)
get Method for probing the owner of

the interval

int (*)(dev_t, void *) lock
Method for increasing the
reference counter of the owner of
the interval

void * data Private data for the owner of the
interval

When the kobj_map() function is invoked, the specified interval of device numbers is added to the hash
table. The data field of the corresponding probe object points to the cdev descriptor of the device driver.
The value of this field is passed to the get and lock methods when they are executed. In this case, the get
method is implemented by a short function that returns the address of the kobject embedded in the cdev
descriptor; the lock method, instead, essentially increases the reference counter in the embedded
kobject.

 The kobj_lookup() function receives as input parameters a kobject mapping domain and a device
number; it searches the hash table and returns the address of the kobject of the owner of the interval
including the number, if it was found. When applied to the mapping domain of the character devices, the
function returns the address of the kobject embedded in the cdev descriptor of the device driver that
owns the interval of device numbers.

 13.5.1. Assigning Device Numbers

 To keep track of which character device numbers are currently assigned, the kernel uses a hash table
chrdevs, which contains intervals of device numbers. Two intervals may share the same major number,
but they cannot overlap, thus their minor numbers should be all different. The table includes 255 entries,
and the hash function masks out the four higher-order bits of the major numbertherefore, major numbers
less than 255 are hashed in different entries. Each entry points to the first element of a collision list
ordered by increasing major and minor numbers.

 Each list element is a char_device_struct structure, whose fields are shown in Table 13-10.

 Table 13-10. The fields of the char_device_struct descriptor

Type Field Description

unsigned char_device_struct * next The pointer to next element in
hash collision list

unsigned int major The major number of the interval

unsigned int baseminor The initial minor number of the
interval

int minorct The interval size

const char * name The name of the device driver
that handles the interval

struct file_operations * fops Not used

struct cdev * cdev Pointer to the character device
driver descriptor

There are essentially two methods for assigning a range of device numbers to a character device driver.
The first method, which should be used for all new device drivers, relies on the register_chrdev_region()
and alloc_chrdev_region() functions, and assigns an arbitrary range of device numbers. For instance, to
get an interval of numbers starting from the dev_t value dev and of size size:

 register_chrdev_region(dev, size, "foo");

These functions do not execute cdev_add(), so the device driver must execute cdev_add() after the
requested interval has been successfully assigned.

 The second method makes use of the register_chrdev() function and assigns a fixed interval of device
numbers including a single major number and minor numbers from 0 to 255. In this case, the device
driver must not invoke cdev_add().

 13.5.1.1. The register_chrdev_region() and alloc_chrdev_region() functions

 The register_chrdev_region() function receives three parameters: the initial device number (major and
minor numbers), the size of the requested range of device numbers (as the number of minor numbers),
and the name of the device driver that is requesting the device numbers. The function checks whether the
requested range spans several major numbers and, if so, determines the major numbers and the
corresponding intervals that cover the whole range; then, the function invokes _ _register_chrdev_region(
) (described below) on each of these intervals.

 The alloc_chrdev_region() function is similar, but it is used to allocate dynamically a major number; thus,
it receives as its parameters the initial minor number of the interval, the size of the interval, and the name
of the device driver. This function also ends up invoking _ _register_chrdev_region().

 The _ _register_chrdev_region() function executes the following steps:
1.

1. Allocates a new char_device_struct structure, and fills it with zeros.
2.

2. If the major number of the interval is zero, then the device driver has requested the dynamic
allocation of the major number. Starting from the last hash table entry and proceeding backward,
the function looks for an empty collision list (NULL pointer), which corresponds to a yet unused
major number. If no empty entry is found, the function returns an error code.[*]

2. [*] Notice that the kernel can dynamically allocate only major numbers less than 255, and that in
some cases allocation can fail even if there is a unused major number less than 255. We might
expect that these constraints will be removed in the future.

3.

3. Initializes the fields of the char_device_struct structure with the initial device number of the
interval, the interval size, and the name of the device driver.

4.

4. Executes the hash function to compute the hash table index corresponding to the major number.
5.

5. Walks the collision list, looking for the correct position of the new char_device_struct structure.
Meanwhile, if an interval overlapping with the requested one is found, it returns an error code.

6.

6. Inserts the new char_device_struct descriptor in the collision list.
7.

7. Returns the address of the new char_device_struct descriptor.

13.5.1.2. The register_chrdev() function

 The register_chrdev() function is used by drivers that require an old-style interval of device numbers: a
single major number and minor numbers ranging from 0 to 255. The function receives as its parameters
the requested major number major (zero for dynamic allocation), the name of the device driver name,
and a pointer fops to a table of file operations specific to the character device files in the interval. It
executes the following operations:

1.

1. Invokes the _ _register_chrdev_region() function to allocate the requested interval. If the
function returns an error code (the interval cannot be assigned), it terminates.

2.

2. Allocates a new cdev structure for the device driver.
3.

3. Initializes the cdev structure:
a.

a. Sets the type of the embedded kobject to the ktype_cdev_dynamic type descriptor (see the
earlier section "Kobjects").

b.

b. Sets the owner field with the contents of fops->owner.
c.

c. Sets the ops field with the address fops of the table of file operations.
d.

d. Copies the characters of the device driver name into the name field of the embedded
kobject.

4.

4. Invokes the cdev_add() function (explained previously).
5.

5. Sets the cdev field of the char_device_struct descriptor _ _register_chrdev_region() returned in
step 1 with the address of the cdev descriptor of the device driver.

6.

6. Returns the major number of the assigned interval.

13.5.2. Accessing a Character Device Driver

 We mentioned in the earlier section "VFS Handling of Device Files" that the dentry_open() function
triggered by the open() system call service routine customizes the f_op field in the file object of the
character device file so that it points to the def_chr_fops table. This table is almost empty; it only defines
the chrdev_open() function as the open method of the device file. This method is immediately invoked by
dentry_open().

 The chrdev_open() function receives as its parameters the addresses inode and filp of the inode and file
objects relative to the device file being opened. It executes essentially the following operations:

1.

1. Checks the inode->i_cdev pointer to the device driver's cdev descriptor. If this field is not
NULL, then the inode has already been accessed: increases the reference counter of the cdev
descriptor and jumps to step 6.

2.

2. Invokes the kobj_lookup() function to search the interval including the number. If such interval
does not exists, it returns an error code; otherwise, it computes the address of the cdev
descriptor associated with the interval.

3.

3. Sets the inode->i_cdev field of the inode object to the address of the cdev descriptor.
4.

4. Sets the inode->i_cindex field to the relative index of the device number inside the interval of the
device driver (index zero for the first minor number in the interval, one for the second, and so
on).

5.

5. Adds the inode object into the list pointed to by the list field of the cdev descriptor.
6.

6. Initializes the filp->f_ops file operations pointer with the contents of the ops field of the cdev
descriptor.

7.

7. If the filp->f_ops->open method is defined, the function executes it. If the device driver handles
more than one device number, typically this function sets the file operations of the file object once
again, so as to install the file operations suitable for the accessed device file.

8.

8. Terminates by returning zero (success).

13.5.3. Buffering Strategies for Character Devices

 Traditionally, Unix-like operating systems divide hardware devices into block and character devices.
However, this classification does not tell the whole story. Some devices are capable of transferring
sizeable amounts of data in a single I/O operation, while others transfer only a few characters.

 For instance, a PS/2 mouse driver gets a few bytes in each read operation corresponding to the status of
the mouse button and to the position of the mouse pointer on the screen. This kind of device is the easiest
to handle. Input data is first read one character at a time from the device input register and stored in a
proper kernel data structure; the data is then copied at leisure into the process address space. Similarly,
output data is first copied from the process address space to a proper kernel data structure and then
written one at a time into the I/O device output register. Clearly, I/O drivers for such devices do not use
the DMA, because the CPU time spent to set up a DMA I/O operation is comparable to the time spent
to move the data to or from the I/O ports.

 On the other hand, the kernel must also be ready to deal with devices that yield a large number of bytes
in each I/O operation, either sequential devices such as sound cards or network cards, or random access
devices such as disks of all kinds (floppy, CD-ROM, SCSI disk, etc.).

 Suppose, for instance, that you have set up the sound card of your computer so that you are able to
record sounds coming from a microphone. The sound card samples the electrical signal coming from the
microphone at a fixed rate, say 44.14 kHz, and produces a stream of 16-bit numbers divided into blocks
of input data. The sound card driver must be able to cope with this avalanche of data in all possible
situations, even when the CPU is temporarily busy running some other process.

 This can be done by combining two different techniques:


 Use of DMA to transfer blocks of data.


 Use of a circular buffer of two or more elements, each element having the size of a block of data.
When an interrupt occurs signaling that a new block of data has been read, the interrupt handler
advances a pointer to the elements of the circular buffer so that further data will be stored in an
empty element. Conversely, whenever the driver succeeds in copying a block of data into user
address space, it releases an element of the circular buffer so that it is available for saving new
data from the hardware device.

 The role of the circular buffer is to smooth out the peaks of CPU load; even if the User Mode
application receiving the data is slowed down because of other higher-priority tasks, the DMA is able to
continue filling elements of the circular buffer because the interrupt handler executes on behalf of the
currently running process.

 A similar situation occurs when receiving packets from a network card, except that in this case, the flow
of incoming data is asynchronous. Packets are received independently from each other and the time
interval that occurs between two consecutive packet arrivals is unpredictable.

 All considered, buffer handling for sequential devices is easy because the same buffer is never reused: an
audio application cannot ask the microphone to retransmit the same block of data.

 We'll see in Chapter 15 that buffering for random access devices (all kinds of disks) is much more
complicated.

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 14. Block Device Drivers
 This chapter deals with I/O drivers for block devices, i.e., for disks of every kind. The key aspect of a
block device is the disparity between the time taken by the CPU and buses to read or write data and the
speed of the disk hardware. Block devices have very high average access times. Each operation requires
several milliseconds to complete, mainly because the disk controller must move the heads on the disk
surface to reach the exact position where the data is recorded. However, when the heads are correctly
placed, data transfer can be sustained at rates of tens of megabytes per second.

 The organization of Linux block device handlers is quite involved. We won't be able to discuss in detail
all the functions that are included in the block I/O subsystem of the kernel; however, we'll outline the
general software architecture. As in the previous chapter, our objective is to explain how Linux supports
the implementation of block device drivers , rather than showing how to implement one of them.

 We start in the first section "Block Devices Handling" to explain the general architecture of the Linux
block I/O subsystem. In the sections "The Generic Block Layer," "The I/O Scheduler," and "Block
Device Drivers," we will describe the main components of the block I/O subsystem. Finally, in the last
section, "Opening a Block Device File," we will outline the steps performed by the kernel when opening a
block device file.

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.1. Block Devices Handling
 Each operation on a block device driver involves a large number of kernel components; the most
important ones are shown in Figure 14-1.

 Let us suppose, for instance, that a process issued a read() system call on some disk filewe'll see that
write requests are handled essentially in the same way. Here is what the kernel typically does to service
the process request:

1.

1. The service routine of the read() system call activates a suitable VFS function, passing to it a file
descriptor and an offset inside the file. The Virtual Filesystem

1. Figure 14-1. Kernel components affected by a block device operation

1.

1. is the upper layer of the block device handling architecture, and it provides a common file model
adopted by all filesystems supported by Linux. We have described at length the VFS layer in
Chapter 12.

2.

2. The VFS function determines if the requested data is already available and, if necessary, how to
perform the read operation. Sometimes there is no need to access the data on disk, because the
kernel keeps in RAM the data most recently read fromor written toa block device. The disk
cache mechanism is explained in Chapter 15, while details on how the VFS handles the disk
operations and how it interfaces with the disk cache and the filesystems are given in Chapter 16.

3.

3. Let's assume that the kernel must read the data from the block device, thus it must determine the
physical location of that data. To do this, the kernel relies on the mapping layer , which typically
executes two steps:
a.

a. It determines the block size of the filesystem including the file and computes the extent of the
requested data in terms of file block numbers . Essentially, the file is seen as split in many
blocks, and the kernel determines the numbers (indices relative to the beginning of file) of the
blocks containing the requested data.

b.

b. Next, the mapping layer invokes a filesystem-specific function that accesses the file's disk
inode and determines the position of the requested data on disk in terms of logical block
numbers. Essentially, the disk is seen as split in blocks, and the kernel determines the
numbers (indices relative to the beginning of the disk or partition) corresponding to the
blocks storing the requested data. Because a file may be stored in nonadjacent blocks on
disk, a data structure stored in the disk inode maps each file block number to a logical block
number.[*]

b. [*] However, if the read access was done on a raw block device file, the mapping layer does
not invoke a filesystem-specific method; rather, it translates the offset in the block device file
to a position inside the diskor disk partitioncorresponding to the device file.

2. We will see the mapping layer in action in Chapter 16, while we will present some typical
disk-based filesystems in Chapter 18.

4.

4. The kernel can now issue the read operation on the block device. It makes use of the generic
block layer , which starts the I/O operations that transfer the requested data. In general, each I/O
operation involves a group of blocks that are adjacent on disk. Because the requested data is not
necessarily adjacent on disk, the generic block layer might start several I/O operations. Each I/O
operation is represented by a "block I/O" (in short, "bio") structure, which collects all information
needed by the lower components to satisfy the request.

4. The generic block layer hides the peculiarities of each hardware block device, thus offering an
abstract view of the block devices. Because almost all block devices are disks, the generic block
layer also provides some general data structures that describe "disks" and "disk partitions." We
will discuss the generic block layer and the bio structure in the section "The Generic Block Layer"
later in this chapter.

5.

5. Below the generic block layer, the "I/O scheduler " sorts the pending I/O data transfer requests
according to predefined kernel policies. The purpose of the scheduler is to group requests of
data that lie near each other on the physical medium. We will describe this component in the
section "The I/O Scheduler" later in this chapter.

6.

6. Finally, the block device drivers take care of the actual data transfer by sending suitable
commands to the hardware interfaces of the disk controllers. We will explain the overall
organization of a generic block device driver in the section "Block Device Drivers" later in this
chapter.

As you can see, there are many kernel components that are concerned with data stored in block devices;
each of them manages the disk data using chunks of different length:



 The controllers of the hardware block devices transfer data in chunks of fixed length called
"sectors." Therefore, the I/O scheduler and the block device drivers must manage sectors of
data.



 The Virtual Filesystem, the mapping layer, and the filesystems group the disk data in logical units
called "blocks." A block corresponds to the minimal disk storage unit inside a filesystem.



 As we will see shortly, block device drivers should be able to cope with "segments" of data: each
segment is a memory pageor a portion of a memory pageincluding chunks of data that are
physically adjacent on disk.



 The disk caches work on "pages" of disk data, each of which fits in a page frame.


 The generic block layer glues together all the upper and lower components, thus it knows about
sectors , blocks, segments, and pages of data.

 Even if there are many different chunks of data, they usually share the same physical RAM cells. For
instance, Figure 14-2 shows the layout of a 4,096-byte page. The upper kernel components see the page
as composed of four block buffers of 1,024 bytes each. The last three blocks of the page are being
transferred by the block device driver, thus they are inserted in a segment covering the last 3,072 bytes
of the page. The hard disk controller considers the segment as composed of six 512-byte sectors.

 Figure 14-2. Typical layout of a page including disk data

 In this chapter we describe the lower kernel components that handle the block devicesgeneric block
layer, I/O scheduler, and block device driversthus we focus our attention on sectors, blocks, and
segments.

 14.1.1. Sectors

 To achieve acceptable performance, hard disks and similar devices transfer several adjacent bytes at
once. Each data transfer operation for a block device acts on a group of adjacent bytes called a sector.
In the following discussion, we say that groups of bytes are adjacent when they are recorded on the disk
surface in such a manner that a single seek operation can access them. Although the physical geometry of
a disk is usually very complicated, the hard disk controller accepts commands that refer to the disk as a
large array of sectors.

 In most disk devices, the size of a sector is 512 bytes, although there are devices that use larger sectors
(1,024 and 2,048 bytes). Notice that the sector should be considered as the basic unit of data transfer; it
is never possible to transfer less than one sector, although most disk devices are capable of transferring
several adjacent sectors at once.

 In Linux, the size of a sector is conventionally set to 512 bytes; if a block device uses larger sectors, the
corresponding low-level block device driver will do the necessary conversions. Thus, a group of data
stored in a block device is identified on disk by its positionthe index of the first 512-byte sectorand its
length as number of 512-byte sectors. Sector indices are stored in 32- or 64-bit variables of type
sector_t.

 14.1.2. Blocks

 While the sector is the basic unit of data transfer for the hardware devices, the block is the basic unit of
data transfer for the VFS and, consequently, for the filesystems. For example, when the kernel accesses
the contents of a file, it must first read from disk a block containing the disk inode of the file (see the
section "Inode Objects" in Chapter 12). This block on disk corresponds to one or more adjacent
sectors, which are looked at by the VFS as a single data unit.

 In Linux, the block size must be a power of 2 and cannot be larger than a page frame. Moreover, it must
be a multiple of the sector size, because each block must include an integral number of sectors.
Therefore, on 80 x 86 architecture, the permitted block sizes are 512, 1,024, 2,048, and 4,096 bytes.

 The block size is not specific to a block device. When creating a disk-based filesystem, the administrator
may select the proper block size. Thus, several partitions on the same disk might make use of different
block sizes. Furthermore, each read or write operation issued on a block device file is a "raw" access
that bypasses the disk-based filesystem; the kernel executes it by using blocks of largest size (4,096
bytes).

 Each block requires its own block buffer, which is a RAM memory area used by the kernel to store the
block's content. When the kernel reads a block from disk, it fills the corresponding block buffer with the
values obtained from the hardware device; similarly, when the kernel writes a block on disk, it updates
the corresponding group of adjacent bytes on the hardware device with the actual values of the
associated block buffer. The size of a block buffer always matches the size of the corresponding block.

 Each buffer has a "buffer head" descriptor of type buffer_head. This descriptor contains all the
information needed by the kernel to know how to handle the buffer; thus, before operating on each
buffer, the kernel checks its buffer head. We will give a detailed explanation of all fields of the buffer head
in Chapter 15; in the present chapter, however, we will only consider a few fields: b_page, b_data,
b_blocknr, and b_bdev.

 The b_page field stores the page descriptor address of the page frame that includes the block buffer. If
the page frame is in high memory, the b_data field stores the offset of the block buffer inside the page;
otherwise, it stores the starting linear address of the block buffer itself. The b_blocknr field stores the
logical block number (i.e., the index of the block inside the disk partition). Finally, the b_bdev field
identifies the block device that is using the buffer head (see the section "Block Devices" later in this
chapter).

 14.1.3. Segments

 We know that each disk I/O operation consists of transferring the contents of some adjacent sectors
fromor tosome RAM locations. In almost all cases, the data transfer is directly performed by the disk
controller with a DMA operation (see the section "Direct Memory Access (DMA)" in Chapter 13). The
block device driver simply triggers the data transfer by sending suitable commands to the disk controller;
once the data transfer is finished, the controller raises an interrupt to notify the block device driver.

 The data transferred by a single DMA operation must belong to sectors that are adjacent on disk. This is
a physical constraint: a disk controller that allows DMA transfers to non-adjacent sectors would have a
poor transfer rate, because moving a read/write head on the disk surface is quite a slow operation.

 Older disk controllers support "simple" DMA operations only: in each such operation, data is transferred
from or to memory cells that are physically contiguous in RAM. Recent disk controllers, however, may
also support the so-called scatter-gather DMA transfers : in each such operation, the data can be
transferred from or to several noncontiguous memory areas.

 For each scatter-gather DMA transfer, the block device driver must send to the disk controller:


 The initial disk sector number and the total number of sectors to be transferred


 A list of descriptors of memory areas, each of which consists of an address and a length.

 The disk controller takes care of the whole data transfer; for instance, in a read operation the controller
fetches the data from the adjacent disk sectors and scatters it into the various memory areas.

 To make use of scatter-gather DMA operations, block device drivers must handle the data in units
called segments . A segment is simply a memory pageor a portion of a memory pagethat includes the
data of some adjacent disk sectors. Thus, a scatter-gather DMA operation may involve several segments
at once.

 Notice that a block device driver does not need to know about blocks, block sizes, and block buffers.
Thus, even if a segment is seen by the higher levels as a page composed of several block buffers, the
block device driver does not care about it.

 As we'll see, the generic block layer can merge different segments if the corresponding page frames
happen to be contiguous in RAM and the corresponding chunks of disk data are adjacent on disk. The
larger memory area resulting from this merge operation is called physical segment.

 Yet another merge operation is allowed on architectures that handle the mapping between bus addresses
and physical addresses through a dedicated bus circuitry (the IO-MMU; see the section "Direct Memory
Access (DMA)" in Chapter 13). The memory area resulting from this kind of merge operation is called
hardware segment . Because we will focus on the 80 x 86 architecture, which has no such dynamic
mapping between bus addresses and physical addresses, we will assume in the rest of this chapter that
hardware segments always coincide with physical segments .

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.2. The Generic Block Layer
 The generic block layer is a kernel component that handles the requests for all block devices in the
system. Thanks to its functions, the kernel may easily:



 Put data buffers in high memorythe page frame(s) will be mapped in the kernel linear address
space only when the CPU must access the data, and will be unmapped right after.



 Implementwith some additional efforta "zero-copy" schema, where disk data is directly put in the
User Mode address space without being copied to kernel memory first; essentially, the buffer
used by the kernel for the I/O transfer lies in a page frame mapped in the User Mode linear
address space of a process.



 Manage logical volumessuch as those used by LVM (the Logical Volume Manager) and RAID
(Redundant Array of Inexpensive Disks): several disk partitions, even on different block devices,
can be seen as a single partition.



 Exploit the advanced features of the most recent disk controllers, such as large onboard disk
caches , enhanced DMA capabilities, onboard scheduling of the I/O transfer requests, and so on.

 14.2.1. The Bio Structure

 The core data structure of the generic block layer is a descriptor of an ongoing I/O block device
operation called bio. Each bio essentially includes an identifier for a disk storage areathe initial sector
number and the number of sectors included in the storage areaand one or more segments describing the
memory areas involved in the I/O operation. A bio is implemented by the bio data structure, whose fields
are listed in Table 14-1.

 Table 14-1. The fields of the bio structure

Type Field Description

sector_t bi_sector First sector on disk of block I/O
operation

struct bio * bi_next Link to the next bio in the request
queue

struct

block_device *
bi_bdev Pointer to block device

descriptor

unsigned long bi_flags Bio status flags

unsigned long bi_rw I/O operation flags

unsigned short bi_vcnt Number of segments in the bio's
bio_vec array

unsigned short bi_idx Current index in the bio's bio_vec
array of segments

unsigned short bi_phys_segments Number of physical segments of
the bio after merging

unsigned short bi_hw_segments Number of hardware segments
after merging

unsigned int bi_size Bytes (yet) to be transferred

unsigned int bi_hw_front_size Used by the hardware segment
merge algorithm

unsigned int bi_hw_back_size Used by the hardware segment
merge algorithm

unsigned int bi_max_vecs
Maximum allowed number of
segments in the bio's bio_vec
array

struct bio_vec * bi_io_vec Pointer to the bio's bio_vec array
of segments

bio_end_io_t * bi_end_io Method invoked at the end of
bio's I/O operation

atomic_t bi_cnt Reference counter for the bio

void * bi_private
Pointer used by the generic block
layer and the I/O completion
method of the block device driver

bio_destructor_t * bi_destructor
Destructor method (usually
bio_destructor()) invoked when
the bio is being freed

Each segment in a bio is represented by a bio_vec data structure, whose fields are listed in Table 14-2.
The bi_io_vec field of the bio points to the first element of an array of bio_vec data structures, while the
bi_vcnt field stores the current number of elements in the array.

 Table 14-2. The fields of the bio_vec structure

Type Field Description

struct page * bv_page Pointer to the page descriptor of
the segment's page frame

unsigned int bv_len Length of the segment in bytes

unsigned int bv_offset Offset of the segment's data in the
page frame

The contents of a bio descriptor keep changing during the block I/O operation. For instance, if the block
device driver cannot perform the whole data transfer with one scatter-gather DMA operation, the bi_idx
field is updated to keep track of the first segment in the bio that is yet to be transferred. To iterate over
the segments of a biostarting from the current segment at index bi_idxa device driver can execute the
bio_for_each_segment macro.

 When the generic block layer starts a new I/O operation, it allocates a new bio structure by invoking the
bio_alloc() function. Usually, bios are allocated through the slab allocator, but the kernel also keeps a
small memory pool of bios to be used when memory is scarce (see the section "Memory Pools" in
Chapter 8). The kernel also keeps a memory pool for the bio_vec structuresafter all, it would not make
sense to allocate a bio without being able to allocate the segment descriptors to be included in the bio.
Correspondingly, the bio_put() function decrements the reference counter (bi_cnt) of a bio and, if the
counter becomes zero, it releases the bio structure and the related bio_vec structures.

 14.2.2. Representing Disks and Disk Partitions

 A disk is a logical block device that is handled by the generic block layer. Usually a disk corresponds to
a hardware block device such as a hard disk, a floppy disk, or a CD-ROM disk. However, a disk can
be a virtual device built upon several physical disk partitions, or a storage area living in some dedicated
pages of RAM. In any case, the upper kernel components operate on all disks in the same way thanks to
the services offered by the generic block layer.

 A disk is represented by the gendisk object, whose fields are shown in Table 14-3.

 Table 14-3. The fields of the gendisk object

Type Field Description

int major Major number of the disk

int first_minor First minor number associated
with the disk

int minors Range of minor numbers
associated with the disk

char [32] disk_name
Conventional name of the disk
(usually, the canonical name of
the corresponding device file)

struct hd_struct ** part Array of partition descriptors for
the disk

struct

block_device_operations *
fops Pointer to a table of block device

methods

struct request_queue * queue
Pointer to the request queue of
the disk (see "Request Queue
Descriptors" later in this chapter)

void * private_data Private data of the block device
driver

sector_t capacity Size of the storage area of the
disk (in number of sectors)

int flags Flags describing the kind of disk
(see below)

char [64] devfs_name
Device filename in the (nowadays
deprecated) devfs special
filesystem

int number No longer used

struct device * driverfs_dev

Pointer to the device object of
the disk's hardware device (see
the section "Components of the
Device Driver Model" in Chapter
13)

struct kobject kobj
Embedded kobject (see the
section "Kobjects" in Chapter 13
)

struct timer_rand_state * random

Pointer to a data structure that
records the timing of the disk's
interrupts; used by the kernel
built-in random number generator

int policy
Set to 1 if the disk is read-only
(write operations forbidden), 0
otherwise

atomic_t sync_io Counter of sectors written to
disk, used only for RAID

unsigned long stamp Timestamp used to determine
disk queue usage statistics

unsigned long stamp_idle Same as above

int in_flight Number of ongoing I/O
operations

struct disk_stats * dkstats Statistics about per-CPU disk
usage

The flags field stores information about the disk. The most important flag is GENHD_FL_UP: if it is set,
the disk is initialized and working. Another relevant flag is GENHD_FL_REMOVABLE, which is set if
the disk is a removable support, such as a floppy disk or a CD-ROM.

 The fops field of the gendisk object points to a block_device_operations table, which stores a few
custom methods for crucial operations of the block device (see Table 14-4).

 Table 14-4. The methods of the block devices

Method Triggers

open Opening the block device file

release Closing the last reference to a block device file

ioctl Issuing an ioctl() system call on the block device
file (uses the big kernel lock)

compat_ioctl Issuing an ioctl() system call on the block device
file (does not use the big kernel lock)

media_changed Checking whether the removable media has been
changed (e.g., floppy disk)

revalidate_disk Checking whether the block device holds valid
data

Hard disks are commonly split into logical partitions . Each block device file may represent either a whole
disk or a partition inside the disk. For instance, a master EIDE disk might be represented by a device file
/dev/hda having major number 3 and minor number 0; the first two partitions inside the disk might be
represented by device files /dev/hda1 and /dev/hda2 having major number 3 and minor numbers 1 and
2, respectively. In general, the partitions inside a disk are characterized by consecutive minor numbers.

 If a disk is split in partitions, their layout is kept in an array of hd_struct structures whose address is
stored in the part field of the gendisk object. The array is indexed by the relative index of the partition
inside the disk. The fields of the hd_struct descriptor are listed in Table 14-5.

 Table 14-5. The fields of the hd_struct descriptor

Type Field Description

sector_t start_sect Starting sector of the partition
inside the disk

sector_t nr_sects Length of the partition (number of
sectors)

struct kobject kobj
Embedded kobject (see the
section "Kobjects" in Chapter 13
)

unsigned int reads Number of read operations
issued on the partition

unsigned int read_sectors Number of sectors read from the
partition

unsigned int writes Number of write operations
issued on the partition

unsigned int write_sectors Number of sectors written into
the partition

int policy Set to 1 if the partition is
read-only, 0 otherwise

int partno The relative index of the partition
inside the disk

When the kernel discovers a new disk in the system (in the boot phase, or when a removable media is
inserted in a drive, or when an external disk is attached at run-time), it invokes the alloc_disk() function,
which allocates and initializes a new gendisk object and, if the new disk is split in several partitions, a
suitable array of hd_struct descriptors. Then, it invokes the add_disk() function to insert the new gendisk
descriptor into the data structures of the generic block layer (see the section "Device Driver Registration
and Initialization" later in this chapter).

 14.2.3. Submitting a Request

 Let us describe the common sequence of steps executed by the kernel when submitting an I/O operation
request to the generic block layer. We'll assume that the requested chunks of data are adjacent on disk
and that the kernel has already determined their physical location.

 The first step consists in executing the bio_alloc() function to allocate a new bio descriptor. Then, the
kernel initializes the bio descriptor by setting a few fields:



 The bi_sector field is set to the initial sector number of the data (if the block device is split in
several partitions, the sector number is relative to the start of the partition).



 The bi_size field is set to the number of sectors covering the data.


 The bi_bdev field is set to the address of the block device descriptor (see the section "Block
Devices" later in this chapter).



 The bi_io_vec field is set to the initial address of an array of bio_vec data structures, each of
which describes a segment (memory buffer) involved in the I/O operation; moreover, the bi_vcnt
field is set to the total number of segments in the bio.



 The bi_rw field is set with the flags of the requested operation. The most important flag specifies
the data transfer direction: READ (0) or WRITE (1).



 The bi_end_io field is set to the address of a completion procedure that is executed whenever the
I/O operation on the bio is completed.

 Once the bio descriptor has been properly initialized, the kernel invokes the generic_make_request()
function, which is the main entry point of the generic block layer. The function essentially executes the
following steps:

1.

1. Checks that bio->bi_sector does not exceed the number of sectors of the block device. If it
does, the function sets the BIO_EOF flag of bio->bi_flags, prints a kernel error message,
invokes the bio_endio() function, and terminates. bio_endio() updates the bi_size and bi_sector
fields of the bio descriptor, and it invokes the bi_end_io bio's method. The implementation of the
latter function essentially depends on the kernel component that has triggered the I/O data
transfer; we will see some examples of bi_end_io methods in the following chapters.

2.

2. Gets the request queue q associated with the block device (see the section "Request Queue
Descriptors" later in this chapter); its address can be found in the bd_disk field of the block
device descriptor, which in turn is pointed to by the bio->bi_bdev field.

3.

3. Invokes block_wait_queue_running() to check whether the I/O scheduler currently in use is
being dynamically replaced; in this case, the function puts the process to sleep until the new I/O
scheduler is started (see the next section "The I/O Scheduler").

4.

4. Invokes blk_partition_remap() to check whether the block device refers to a disk partition
(bio->bi_bdev not equal to bio->bi_dev->bd_contains; see the section "Block Devices" later in
this chapter). In this case, the function gets the hd_struct descriptor of the partition from the
bio->bi_bdev field to perform the following substeps:
a.

a. Updates the read_sectors and reads fields, or the write_sectors and writes fields, of the
hd_struct descriptor, according to the direction of data transfer.

b.

b. Adjusts the bio->bi_sector field so as to transform the sector number relative to the start of
the partition to a sector number relative to the whole disk.

c.

c. Sets the bio->bi_bdev field to the block device descriptor of the whole disk
(bio->bd_contains).

3. From now on, the generic block layer, the I/O scheduler, and the device driver forget about disk
partitioning, and work directly with the whole disk.

5.

5. Invokes the q->make_request_fn method to insert the bio request in the request queue q.
6.

6. Returns.

We will discuss a typical implementation of the make_request_fn method in the section "Issuing a
Request to the I/O Scheduler" later in this chapter.

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.3. The I/O Scheduler
 Although block device drivers are able to transfer a single sector at a time, the block I/O layer does not
perform an individual I/O operation for each sector to be accessed on disk; this would lead to poor disk
performance, because locating the physical position of a sector on the disk surface is quite
time-consuming. Instead, the kernel tries, whenever possible, to cluster several sectors and handle them
as a whole, thus reducing the average number of head movements.

 When a kernel component wishes to read or write some disk data, it actually creates a block device
request. That request essentially describes the requested sectors and the kind of operation to be
performed on them (read or write). However, the kernel does not satisfy a request as soon as it is
createdthe I/O operation is just scheduled and will be performed at a later time. This artificial delay is
paradoxically the crucial mechanism for boosting the performance of block devices. When a new block
data transfer is requested, the kernel checks whether it can be satisfied by slightly enlarging a previous
request that is still waiting (i.e., whether the new request can be satisfied without further seek operations).
Because disks tend to be accessed sequentially, this simple mechanism is very effective.

 Deferring requests complicates block device handling. For instance, suppose a process opens a regular
file and, consequently, a filesystem driver wants to read the corresponding inode from disk. The block
device driver puts the request on a queue, and the process is suspended until the block storing the inode
is transferred. However, the block device driver itself cannot be blocked, because any other process
trying to access the same disk would be blocked as well.

 To keep the block device driver from being suspended, each I/O operation is processed
asynchronously. In particular, block device drivers are interrupt-driven (see the section "Monitoring I/O
Operations" in the previous chapter): the generic block layer invokes the I/O scheduler to create a new
block device request or to enlarge an already existing one and then terminates. The block device driver,
which is activated at a later time, invokes the strategy routine to select a pending request and satisfy it by
issuing suitable commands to the disk controller. When the I/O operation terminates, the disk controller
raises an interrupt and the corresponding handler invokes the strategy routine again, if necessary, to
process another pending request.

 Each block device driver maintains its own request queue, which contains the list of pending requests for
the device. If the disk controller is handling several disks, there is usually one request queue for each
physical block device. I/O scheduling is performed separately on each request queue, thus increasing
disk performance.

 14.3.1. Request Queue Descriptors

 Each request queue is represented by means of a large request_queue data structure whose fields are
listed in Table 14-6.

 Table 14-6. The fields of the request queue descriptor

Type Field Description

struct list_head queue_head List of pending requests

struct request * last_merge

Pointer to descriptor of the
request in the queue to be
considered first for possible
merging

elevator_t * elevator
Pointer to the elevator object
(see the later section "I/O
Scheduling Algorithms")

struct request_list rq Data structure used for allocation
of request descriptors

request_fn_proc * request_fn
Method that implements the entry
point of the strategy routine of the
driver

merge_request_fn * back_merge_fn
Method to check whether it is
possible to merge a bio to the last
request in the queue

merge_request_fn * front_merge_fn
Method to check whether it is
possible to merge a bio to the
first request in the queue

merge_requests_fn * merge_requests_fn Method to attempt merging two
adjacent requests in the queue

make_request_fn * make_request_fn
Method invoked when a new
request has to be inserted in the
queue

prep_rq_fn * prep_rq_fn
Method to build the commands
to be sent to the hardware device
to process this request

unplug_fn * unplug_fn

Method to unplug the block
device (see the section "
Activating the Block Device
Driver" later in the chapter)

merge_bvec_fn * merge_bvec_fn

Method that returns the number
of bytes that can be inserted into
an existing bio when adding a
new segment (usually undefined)

activity_fn * activity_fn
Method invoked when a request
is added to a queue (usually
undefined)

issue_flush_fn * issue_flush_fn

Method invoked when a request
queue is flushed (the queue is
emptied by processing all
requests in a row)

struct timer_list unplug_timer

Dynamic timer used to perform
device plugging (see the later
section "Activating the Block
Device Driver")

int unplug_thresh

If the number of pending requests
in the queue exceeds this value,
the device is immediately
unplugged (default is 4)

unsigned long unplug_delay
Time delay before device
unplugging (default is 3
milliseconds)

struct work_struct unplug_work

Work queue used to unplug the
device (see the later section "
Activating the Block Device
Driver")

struct

backing_dev_info
backing_dev_info See the text following this table

void * queuedata Pointer to private data of the
block device driver

void * activity_data Private data used by the
activity_fn method

unsigned long bounce_pfn

Page frame number above which
buffer bouncing must be used
(see the section "Submitting a
Request" later in this chapter)

int bounce_gfp Memory allocation flags for
bounce buffers

unsigned long queue_flags Set of flags describing the queue
status

spinlock_t * queue_lock Pointer to request queue lock

struct kobject kobj Embedded kobject for the
request queue

unsigned long nr_requests Maximum number of requests in
the queue

unsigned int nr_congestion_on
Queue is considered congested if
the number of pending requests
rises above this threshold

unsigned int nr_congestion_off

Queue is considered not
congested if the number of
pending requests falls below this
threshold

unsigned int nr_batching

Maximum number (usually 32) of
pending requests that can be
submitted even when the queue is
full by a special "batcher" process

unsigned short max_sectors
Maximum number of sectors
handled by a single request
(tunable)

unsigned short max_hw_sectors
Maximum number of sectors
handled by a single request
(hardware constraint)

unsigned short max_phys_segments
Maximum number of physical
segments handled by a single
request

unsigned short max_hw_segments

Maximum number of hardware
segments handled by a single
request (the maximum number of
distinct memory areas in a
scatter-gather DMA operation)

unsigned short hardsect_size Size in bytes of a sector

unsigned int max_segment_size Maximum size of a physical
segment (in bytes)

unsigned long seg_boundary_mask Memory boundary mask for
segment merging

unsigned int dma_alignment
Alignment bitmap for initial
address and length of DMA
buffers (default 511)

struct

blk_queue_tag *
queue_tags Bitmap of free/busy tags (used

for tagged requests)

atomic_t refcnt Reference counter of the queue

unsigned int in_flight Number of pending requests in
the queue

unsigned int sg_timeout
User-defined command time-out
(used only by SCSI generic
devices)

unsigned int sg_reserved_size Essentially unused

struct list_head drain_list
Head of a list of requests
temporarily delayed until the I/O
scheduler is dynamically replaced

Essentially, a request queue is a doubly linked list whose elements are request descriptors (that is, request
data structures; see the next section). The queue_head field of the request queue descriptor stores the
head (the first dummy element) of the list, while the pointers in the queuelist field of the request descriptor
link each request to the previous and next elements in the list. The ordering of the elements in the queue
list is specific to each block device driver; the I/O scheduler offers, however, several predefined ways of
ordering elements, which are discussed in the later section "The I/O Scheduler."

 The backing_dev_info field is a small object of type backing_dev_info, which stores information about
the I/O data flow traffic for the underlying hardware block device. For instance, it holds information
about read-ahead and about request queue congestion state.

 14.3.2. Request Descriptors

 Each pending request for a block device is represented by a request descriptor, which is stored in the
request data structure illustrated in Table 14-7.

 Table 14-7. The fields of the request descriptor

Type Field Description

struct list_head queuelist Pointers for request queue list

unsigned long flags Flags of the request (see below)

sector_t sector Number of the next sector to be
transferred

unsigned long nr_sectors Number of sectors yet to be
transferred in the whole request

unsigned int current_nr_sectors
Number of sectors in the current
segment of the current bio yet to
be transferred

sector_t hard_sector Number of the next sector to be
transferred

unsigned long hard_nr_sectors

Number of sectors yet to be
transferred in the whole request
(updated by the generic block
layer)

unsigned int hard_cur_sectors

Number of sectors in the current
segment of the current bio yet to
be transferred (updated by the
generic block layer)

struct bio * bio First bio in the request that has
not been completely transferred

struct bio * biotail Last bio in the request list

void * elevator_private Pointer to private data for the I/O
scheduler

int rq_status
Request status: essentially, either
RQ_ACTIVE or
RQ_INACTIVE

struct gendisk * rq_disk The descriptor of the disk
referenced by the request

int errors
Counter for the number of I/O
errors that occurred on the
current transfer

unsigned long start_time Request's starting time (in jiffies)

unsigned short nr_phys_segments Number of physical segments of
the request

unsigned short nr_hw_segments Number of hardware segments of
the request

int tag

Tag associated with the request
(only for hardware devices
supporting multiple outstanding
data transfers)

char * buffer
Pointer to the memory buffer of
the current data transfer (NULL
if the buffer is in high-memory)

int ref_count Reference counter for the request

request_queue_t * q
Pointer to the descriptor of the
request queue containing the
request

struct request_list * rl Pointer to request_list data
structure

struct completion * waiting

Completion for waiting for the
end of the data transfers (see the
section "Completions" in Chapter
5)

void * special
Pointer to data used when the
request includes a "special"
command to the hardware device

unsigned int cmd_len Length of the commands in the
cmd field

unsigned char [] cmd

Buffer containing the pre-built
commands prepared by the
request queue's prep_rq_fn
method

unsigned int data_len Usually, the length of data in the
buffer pointed to by the data field

void * data
Pointer used by the device driver
to keep track of the data to be
transferred

unsigned int sense_len
Length of buffer pointed to by the
sense field (0 if the sense field is
NULL)

void * sense Pointer to buffer used for output
of sense commands

unsigned int timeout Request's time-out

struct

request_pm_state *
pm

Pointer to a data structure used
for power-management
commands

Each request consists of one or more bio structures. Initially, the generic block layer creates a request
including just one bio. Later, the I/O scheduler may "extend" the request either by adding a new segment
to the original bio, or by linking another bio structure into the request. This is possible when the new data
is physically adjacent to the data already in the request. The bio field of the request descriptor points to
the first bio structure in the request, while the biotail field points to the last bio. The rq_for_each_bio
macro implements a loop that iterates over all bios included in a request.

 Several fields of the request descriptor may dynamically change. For instance, as soon as the chunks of
data referenced in a bio have all been transferred, the bio field is updated so that it points to the next bio
in the request list. Meanwhile, new bios can be added to the tail of the request list, so the biotail field may
also change.

 Several other fields of the request descriptor are modified either by the I/O scheduler or the device
driver while the disk sectors are being transferred. For instance, the nr_sectors field stores the number of
sectors yet to be transferred in the whole request, while the current_nr_sectors field stores the number of
sectors yet to be transferred in the current bio.

 The flags field stores a large number of flags, which are listed in Table 14-8. The most important one is,
by far, REQ_RW, which determines the direction of the data transfer.

 Table 14-8. The flags of the request descriptor

Flag Description

REQ_RW Direction of data transfer: READ (0) or WRITE
(1)

REQ_FAILFAST Requests says to not retry the I/O operation in
case of error

REQ_SOFTBARRIER Request acts as a barrier for the I/O scheduler

REQ_HARDBARRIER
Request acts as a barrier for the I/O scheduler and
the device driverit should be processed after older
requests and before newer ones

REQ_CMD Request includes a normal read or write I/O data
transfer

REQ_NOMERGE Request should not be extended or merged with
other requests

REQ_STARTED Request is being processed

REQ_DONTPREP
Do not invoke the prep_rq_fn request queue's
method to prepare in advance the commands to be
sent to the hardware device

REQ_QUEUED
Request is taggedthat is, it refers to a hardware
device that can manage many outstanding data
transfers at the same time

REQ_PC Request includes a direct command to be sent to
the hardware device

REQ_BLOCK_PC Same as previous flag, but the command is
included in a bio

REQ_SENSE Request includes a "sense" request command (for
SCSI and ATAPI devices)

REQ_FAILED Set when a sense or direct command in the request
did not work as expected

REQ_QUIET Request says to not generate kernel messages in
case of I/O errors

REQ_SPECIAL Request includes a special command for the
hardware device (e.g., drive reset)

REQ_DRIVE_CMD Request includes a special command for IDE disks

REQ_DRIVE_TASK Request includes a special command for IDE disks

REQ_DRIVE_TASKFILE Request includes a special command for IDE disks

REQ_PREEMPT Request replaces the current request in front of the
queue (only for IDE disks)

REQ_PM_SUSPEND Request includes a power-management command
to suspend the hardware device

REQ_PM_RESUME Request includes a power-management command
to awaken the hardware device

REQ_PM_SHUTDOWN Request includes a power-management command
to switch off the hardware device

REQ_BAR_PREFLUSH Request includes a "flush queue" command to be
sent to the disk controller

REQ_BAR_POSTFLUSH Request includes a "flush queue" command, which
has been sent to the disk controller

14.3.2.1. Managing the allocation of request descriptors

 The limited amount of free dynamic memory may become, under very heavy loads and high disk activity,
a bottleneck for processes that want to add a new request into a request queue q. To cope with this kind
of situation, each request_queue descriptor includes a request_list data structure, which consists of:



 A pointer to a memory pool of request descriptors (see the section "Memory Pools" in Chapter
8).



 Two counters for the number of requests descriptors allocated for READ and WRITE requests,
respectively.



 Two flags indicating whether a recent allocation for a READ or WRITE request, respectively,
failed.



 Two wait queues storing the processes sleeping for available READ and WRITE request
descriptors, respectively.



 A wait queue for the processes waiting for a request queue to be flushed (emptied).

 The blk_get_request() function tries to get a free request descriptor from the memory pool of a given
request queue; if memory is scarce and the memory pool is exhausted, the function either puts the current
process to sleep orif the kernel control path cannot blockreturns NULL. If the allocation succeeds, the
function stores in the rl field of the request descriptor the address of the request_list data structure of the
request queue. The blk_put_request() function releases a request descriptor; if its reference counter
becomes zero, the descriptor is given back to the memory pool from which it was taken.

 14.3.2.2. Avoiding request queue congestion

 Each request queue has a maximum number of allowed pending requests. The nr_requests field of the
request descriptor stores the maximum number of allowed pending requests for each data transfer
direction. By default, a queue has at most 128 pending read requests and 128 pending write requests. If
the number of pending read (write) requests exceeds nr_requests, the queue is marked as full by setting
the QUEUE_FLAG_READFULL (QUEUE_FLAG_WRITEFULL) flag in the queue_flags field of the
request queue descriptor, and blockable processes trying to add requests for that data transfer direction
are put to sleep in the corresponding wait queue of the request_list data structure.

 A filled-up request queue impacts negatively on the system's performance, because it forces many
processes to sleep while waiting for the completion of I/O data transfers. Thus, if the number of pending
requests for a given direction exceeds the value stored in the nr_congestion_on field of the request
descriptor (by default, 113), the kernel regards the queue as congested and tries to slow down the
creation rate of the new requests. A congested request queue becomes uncongested when the number of
pending requests falls below the value of the nr_congestion_off field (by default, 111). The
blk_congestion_wait() function puts the current process to sleep until any request queue becomes
uncongested or a time-out elapses.

 14.3.3. Activating the Block Device Driver

 As we saw earlier, it's expedient to delay activation of the block device driver in order to increase the
chances of clustering requests for adjacent blocks. The delay is accomplished through a technique known
as device plugging and unplugging.[*] As long as a block device driver is plugged, the device driver is not
activated even if there are requests to be processed in the driver's queues.

[*] If you are confused by the terms "plugging" and "unplugging," you might consider them equivalent to
"de-activating" and "activating," respectively.

 The blk_plug_device() function plugs a block deviceor more precisely, a request queue serviced by
some block device driver. Essentially, the function receives as an argument the address q of a request
queue descriptor. It sets the QUEUE_FLAG_PLUGGED bit in the q->queue_flags field; then, it restarts
the dynamic timer embedded in the q->unplug_timer field.

 The blk_remove_plug() function unplugs a request queue q: it clears the QUEUE_FLAG_PLUGGED
flag and cancels the execution of the q->unplug_timer dynamic timer. This function can be explicitly
invoked by the kernel when all mergeable requests "in sight" have been added to the queue. Moreover,
the I/O scheduler unplugs a request queue if the number of pending requests in the queue exceeds the
value stored in the unplug_thres field of the request queue descriptor (by default, 4).

 If a device remains plugged for a time interval of length q->unplug_delay (usually 3 milliseconds), the
dynamic timer activated by blk_plug_device() elapses, thus the blk_unplug_timeout() function is
executed. As a consequence, the kblockd kernel thread servicing the kblockd_workqueue work queue
is awakened (see the section "Work Queues" in Chapter 4). This kernel thread executes the function
whose address is stored in the q->unplug_work data structurethat is, the blk_unplug_work() function. In
turn, this function invokes the q->unplug_fn method of the request queue, which is usually implemented
by the generic_unplug_device() function. The generic_unplug_device() function takes care of unplugging
the block device: first, it checks whether the queue is still active; then, it invokes blk_remove_plug(); and
finally, it executes the strategy routinerequest_fn methodto start processing the next request in the queue
(see the section "Device Driver Registration and Initialization" later in this chapter).

 14.3.4. I/O Scheduling Algorithms

 When a new request is added to a request queue, the generic block layer invokes the I/O scheduler to
determine that exact position of the new element in the queue. The I/O scheduler tries to keep the request
queue sorted sector by sector. If the requests to be processed are taken sequentially from the list, the
amount of disk seeking is significantly reduced because the disk head moves in a linear way from the
inner track to the outer one (or vice versa) instead of jumping randomly from one track to another. This
heuristic is reminiscent of the algorithm used by elevators when dealing with requests coming from
different floors to go up or down. The elevator moves in one direction; when the last booked floor is
reached in one direction, the elevator changes direction and starts moving in the other direction. For this
reason, I/O schedulers are also called elevators.

 Under heavy load, an I/O scheduling algorithm that strictly follows the order of the sector numbers is not
going to work well. In this case, indeed, the completion time of a data transfer strongly depends on the
physical position of the data on the disk. Thus, if a device driver is processing requests near the top of the
queue (lower sector numbers), and new requests with low sector numbers are continuously added to the
queue, then the requests in the tail of the queue can easily starve. I/O scheduling algorithms are thus quite
sophisticated.

 Currently, Linux 2.6 offers four different types of I/O schedulersor elevatorscalled "Anticipatory,"
"Deadline," "CFQ (Complete Fairness Queueing)," and "Noop (No Operation)." The default elevator
used by the kernel for most block devices is specified at boot time with the kernel parameter
elevator=<name>, where <name> is one of the following: as, deadline, cfq, and noop. If no boot time
argument is given, the kernel uses the "Anticipatory" I/O scheduler. Anyway, a device driver can replace
the default elevator with another one; a device driver can also define its custom I/O scheduling algorithm,
but this is very seldom done.

 Furthermore, the system administrator can change at runtime the I/O scheduler for a specific block
device. For instance, to change the I/O scheduler used in the master disk of the first IDE channel, the
administrator can write an elevator name into the /sys/block/hda/queue/scheduler file of the sysfs special
filesystem (see the section "The sysfs Filesystem" in Chapter 13).

 The I/O scheduler algorithm used in a request queue is represented by an elevator object of type
elevator_t; its address is stored in the elevator field of the request queue descriptor. The elevator object
includes several methods covering all possible operations of the elevator: linking and unlinking the
elevator to a request queue, adding and merging requests to the queue, removing requests from the
queue, getting the next request to be processed from the queue, and so on. The elevator object also
stores the address of a table including all information required to handle the request queue. Furthermore,
each request descriptor includes an elevator_private field that points to an additional data structure used
by the I/O scheduler to handle the request.

 Let us now briefly describe the four I/O scheduling algorithms, from the simplest one to the most
sophisticated one. Be warned that designing an I/O scheduler is much like designing a CPU scheduler
(see Chapter 7): the heuristics and the values of the adopted constants are the result of an extensive
amount of testing and benchmarking.

 Generally speaking, all algorithms make use of a dispatch queue, which includes all requests sorted
according to the order in which the requests should be processed by the device driverthe next request to
be serviced by the device driver is always the first element in the dispatch queue. The dispatch queue is
actually the request queue rooted at the queue_head field of the request queue descriptor. Almost all
algorithms also make use of additional queues to classify and sort requests. All of them allow the device
driver to add bios to existing requests and, if necessary, to merge two "adjacent" requests.

 14.3.4.1. The "Noop" elevator

 This is the simplest I/O scheduling algorithm. There is no ordered queue: new requests are always added
either at the front or at the tail of the dispatch queue, and the next request to be processed is always the
first request in the queue.

 14.3.4.2. The "CFQ" elevator

 The main goal of the "Complete Fairness Queueing" elevator is ensuring a fair allocation of the disk I/O
bandwidth among all the processes that trigger the I/O requests. To achieve this result, the elevator
makes use of a large number of sorted queuesby default, 64that store the requests coming from the
different processes. Whenever a requested is handed to the elevator, the kernel invokes a hash function
that converts the thread group identifier of the current process (usually it corresponds to the PID, see the
section "Identifying a Process" in Chapter 3) into the index of a queue; then, the elevator inserts the new
request at the tail of this queue. Therefore, requests coming from the same process are always inserted in
the same queue.

 To refill the dispatch queue, the elevator essentially scans the I/O input queues in a round-robin fashion,
selects the first nonempty queue, and moves a batch of requests from that queue into the tail of the
dispatch queue.

 14.3.4.3. The "Deadline" elevator

 Besides the dispatch queue, the "Deadline" elevator makes use of four queues. Two of themthe sorted
queues include the read and write requests, respectively, ordered according to their initial sector
numbers. The other twothe deadline queues include the same read and write requests sorted according to
their "deadlines." These queues are introduced to avoid request starvation , which occurs when the
elevator policy ignores for a very long time a request because it prefers to handle other requests that are
closer to the last served one. A request deadline is essentially an expire timer that starts ticking when the
request is passed to the elevator. By default, the expire time of read requests is 500 milliseconds, while
the expire time for write requests is 5 secondsread requests are privileged over write requests because
they usually block the processes that issued them. The deadline ensures that the scheduler looks at a
request if it's been waiting a long time, even if it is low in the sort.

 When the elevator must replenish the dispatch queue, it first determines the data direction of the next
request. If there are both read and write requests to be dispatched, the elevator chooses the "read"
direction, unless the "write" direction has been discarded too many times (to avoid write requests
starvation).

 Next, the elevator checks the deadline queue relative to the chosen direction: if the deadline of the first
request in the queue is elapsed, the elevator moves that request to the tail of the dispatch queue; it also
moves a batch of requests taken from the sorted queue, starting from the request following the expired
one. The length of this batch is longer if the requests happen to be physically adjacent on disks, shorter
otherwise.

 Finally, if no request is expired, the elevator dispatches a batch of requests starting with the request
following the last one taken from the sorted queue. When the cursor reaches the tail of the sorted queue,
the search starts again from the top ("one-way elevator").

 14.3.4.4. The "Anticipatory" elevator

 The "Anticipatory" elevator is the most sophisticated I/O scheduler algorithm offered by Linux. Basically,
it is an evolution of the "Deadline" elevator, from which it borrows the fundamental mechanism: there are
two deadline queues and two sorted queues; the I/O scheduler keeps scanning the sorted queues,
alternating between read and write requests, but giving preference to the read ones. The scanning is
basically sequential, unless a request expires. The default expire time for read requests is 125
milliseconds, while the default expire time for write requests is 250 milliseconds. The elevator, however,
follows some additional heuristics:



 In some cases, the elevator might choose a request behind the current position in the sorted
queue, thus forcing a backward seek of the disk head. This happens, typically, when the seek
distance for the request behind is less than half the seek distance of the request after the current
position in the sorted queue.



 The elevator collects statistics about the patterns of I/O operations triggered by every process in
the system. Right after dispatching a read request that comes from some process P, the elevator
checks whether the next request in the sorted queue comes from the same process P. If so, the
next request is dispatched immediately. Otherwise, the elevator looks at the collected statistics
about process P: if it decides that process P will likely issue another read request soon, then it
stalls for a short period of time (by default, roughly 7 milliseconds). Thus, the elevator might
anticipate a read request coming from process P that is "close" on disk to the request just
dispatched.

 14.3.5. Issuing a Request to the I/O Scheduler

 As seen in the section "Submitting a Request" earlier in this chapter, the generic_make_request()
function invokes the make_request_fn method of the request queue descriptor to transmit a request to the
I/O scheduler. This method is usually implemented by the _ _make_request() function; it receives as its
parameters a request_queue descriptor q and a bio descriptor bio, and it performs the following
operations:

1.

1. Invokes the blk_queue_bounce() function to set up a bounce buffer, if required (see later). If a
bounce buffer was created, the _ _make_request() function operates on it rather than on the
original bio.

2.

2. Invokes the I/O scheduler function elv_queue_empty() to check whether there are pending
requests in the request queuenotice that the dispatch queue might be empty, but other queues of
the I/O scheduler might contain pending requests. If there are no pending requests, it invokes the
blk_plug_device() function to plug the request queue (see the section "Activating the Block
Device Driver" earlier in this chapter), and jumps to step 5.

3.

3. Here the request queue includes pending requests. Invokes the elv_merge() I/O scheduler
function to check whether the new bio can be merged inside an existing request. The function
may return three possible values:
o

o ELEVATOR_NO_MERGE: the bio cannot be included in an already existing request: in that
case, the function jumps to step 5.

o

o ELEVATOR_BACK_MERGE: the bio might be added as the last bio of some request req:
in that case, the function invokes the q->back_merge_fn method to check whether the
request can be extended. If not, the function jumps to step 5. Otherwise it inserts the bio
descriptor at the tail of the req's list and updates the req's fields. Then, it tries to merge the
request with a following request (the new bio might fill a hole between the two requests).

o

o ELEVATOR_FRONT_MERGE: the bio can be added as the first bio of some request req:
in that case, the function invokes the q->front_merge_fn method to check whether the
request can be extended. If not, it jumps to step 5. Otherwise, it inserts the bio descriptor at
the head of the req's list and updates the req's fields. Then, the function tries to merge the
request with the preceding request.

4.

4. The bio has been merged inside an already existing request. Jumps to step 7 to terminate the
function.

5.

5. Here the bio must be inserted in a new request. Allocates a new request descriptor. If there is no
free memory, the function suspends the current process, unless the BIO_RW_AHEAD flag in
bio->bi_rw is set, which means that the I/O operation is a read-ahead (see Chapter 16); in this
case, the function invokes bio_endio() and terminates: the data transfer will not be executed. For
a description of bio_endio(), see step 1 of generic_make_request() in the earlier section "
Submitting a Request."

6.

6. Initializes the fields of the request descriptor. In particular:
o

o Initializes the various fields that store the sector numbers, the current bio, and the current
segment according to the contents of the bio descriptor.

o

o Sets the REQ_CMD flag in the flags field (this is a normal read or write operation).
o

o If the page frame of the first bio segment is in low memory, it sets the buffer field to the linear
address of that buffer.

o

o Sets the rq_disk field with the bio->bi_bdev->bd_disk address.
o

o Inserts the bio in the request list.
o

o Sets the start_time field to the value of jiffies.
7.

7. All done. Before terminating, however, it checks whether the BIO_RW_SYNC flag in
bio->bi_rw is set. If so, it invokes generic_unplug_device() on the request queue to unplug the
driver (see the section "Activating the Block Device Driver" earlier in this chapter).

8.

8. Terminates.

If the request queue was not empty before invoking _ _make_request(), either the request queue is
already unplugged, or it will be unplugged soonbecause each plugged request queue q with pending
requests has a running q->unplug_timer dynamic timer. On the other hand, if the request queue was
empty, the _ _make_request() function plugs it. Sooner (on exiting from _ _make_request(), if the
BIO_RW_SYNC bio flag is set) or later (in the worst case, when the unplug timer decays), the request
queue will be unplugged. In any case, eventually the strategy routine of the block device driver will take
care of the requests in the dispatch queue (see the section "Device Driver Registration and Initialization"
earlier in this chapter).

 14.3.5.1. The blk_queue_bounce() function

 The blk_queue_bounce() function looks at the flags in q->bounce_gfp and at the threshold in
q->bounce_pfn to determine whether buffer bouncing might be required. This happens when some of the
buffers in the request are located in high memory and the hardware device is not able to address them.

 Older DMA for ISA buses only handled 24-bit physical addresses. In this case, the buffer bouncing
threshold is set to 16 MB, that is, to page frame number 4096. Block device drivers, however, do not
usually rely on buffer bouncing when dealing with older devices; rather, they prefer to directly allocate the
DMA buffers in the ZONE_DMA memory zone.

 If the hardware device cannot cope with buffers in high memory, the function checks whether some of
the buffers in the bio must really be bounced. In this case, it makes a copy of the bio descriptor, thus
creating a bounce bio; then, for each segment's page frame having number equal to or greater than
q->bounce_pfn, it performs the following steps:

1.

1. Allocates a page frame in the ZONE_NORMAL or ZONE_DMA memory zone, according to
the allocation flags.

2.

2. Updates the bv_page field of the segment in the bounce bio so that it points to the descriptor of
the new page frame.

3.

3. If bio->bio_rw specifies a write operation, it invokes kmap() to temporarily map the high
memory page in the kernel address space, copies the high memory page onto the low memory
page, and invokes kunmap() to release the mapping.

The blk_queue_bounce() function then sets the BIO_BOUNCED flag in the bounce bio, initializes a
specific bi_end_io method for the bounce bio, and finally stores in the bi_private field of the bounce bio
the pointer to the original bio. When the I/O data transfer on the bounce bio terminates, the function that
implements the bi_end_io method copies the data to the high memory buffer (only for a read operation)
and releases the bounce bio.

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.4. Block Device Drivers
 Block device drivers are the lowest component of the Linux block subsystem. They get requests from
I/O scheduler, and do whatever is required to process them.

 Block device drivers are, of course, integrated within the device driver model described in the section "
The Device Driver Model" in Chapter 13. Therefore, each of them refers to a device_driver descriptor;
moreover, each disk handled by the driver is associated with a device descriptor. These descriptors,
however, are rather generic: the block I/O subsystem must store additional information for each block
device in the system.

 14.4.1. Block Devices

 A block device driver may handle several block devices. For instance, the IDE device driver can handle
several IDE disks, each of which is a separate block device. Furthermore, each disk is usually
partitioned, and each partition can be seen as a logical block device. Clearly, the block device driver
must take care of all VFS system calls issued on the block device files associated with the corresponding
block devices.

 Each block device is represented by a block_device descriptor, whose fields are listed in Table 14-9.

 Table 14-9. The fields of the block device descriptor

Type Field Description

dev_t bd_dev Major and minor numbers of the
block device

struct inode * bd_inode
Pointer to the inode of the file
associated with the block device
in the bdev filesystem

int bd_openers Counter of how many times the
block device has been opened

struct semaphore bd_sem
Semaphore protecting the
opening and closing of the block
device

struct semaphore bd_mount_sem Semaphore used to forbid new
mounts on the block device

struct list_head bd_inodes
Head of a list of inodes of
opened block device files for this
block device

void * bd_holder Current holder of block device
descriptor

int bd_holders Counter for multiple settings of
the bd_holder field

struct

block_device *
bd_contains

If block device is a partition, it
points to the block device
descriptor of the whole disk;
otherwise, it points to this block
device descriptor

unsigned bd_block_size Block size

struct hd_struct * bd_part
Pointer to partition descriptor
(NULL if this block device is not
a partition)

unsigned bd_part_count
Counter of how many times
partitions included in this block
device have been opened

int bd_invalidated
Flag set when the partition table
on this block device needs to be
read

struct gendisk * bd_disk Pointer to gendisk structure of the
disk underlying this block device

struct list_head * bd_list Pointers for the block device
descriptor list

struct

backing_dev_info *

bd_inode_back

ing_dev_info

Pointer to a specialized
backing_dev_info descriptor for
this block device (usually NULL)

unsigned long bd_private Pointer to private data of the
block device holder

All block device descriptors are inserted in a global list, whose head is represented by the all_bdevs
variable; the pointers for list linkage are in the bd_list field of the block device descriptor.

 If the block device descriptor refers to a disk partition, the bd_contains field points to the descriptor of
the block device associated with the whole disk, while the bd_part field points to the hd_struct partition
descriptor (see the section "Representing Disks and Disk Partitions" earlier in this chapter). Otherwise, if
the block device descriptor refers to a whole disk, the bd_contains field points to the block device
descriptor itself, and the bd_part_count field records how many times the partitions on the disk have
been opened.

 The bd_holder field stores a linear address representing the holder of the block device. The holder is not
the block device driver that services the I/O data transfers of the device; rather, it is a kernel component
that makes use of the device and has exclusive, special privileges (for instance, it can freely use the
bd_private field of the block device descriptor). Typically, the holder of a block device is the filesystem
mounted over it. Another common case occurs when a block device file is opened for exclusive access:
the holder is the corresponding file object.

 The bd_claim() function sets the bd_holder field with a specified address; conversely, the bd_release()
function resets the field to NULL. Be aware, however, that the same kernel component can invoke
bd_claim() many times; each invocation increases the bd_holders field. To release the block device, the
kernel component must invoke bd_release() a corresponding number of times.

 Figure 14-3 refers to a whole disk and illustrates how the block device descriptors are linked to the
other main data structures of the block I/O subsystem.

 Figure 14-3. Linking the block device descriptors with the other structures of the block
subsystem

 14.4.1.1. Accessing a block device

 When the kernel receives a request for opening a block device file, it must first determine whether the
device file is already open. In fact, if the file is already open, the kernel must not create and initialize a
new block device descriptor; rather, it should update the already existing block device descriptor. To
complicate life, block device files that have the same major and minor numbers but different pathnames
are viewed by the VFS as different files, although they really refer to the same block device. Therefore,
the kernel cannot determine whether a block device is already in use by simply checking for the existence
in the inode cache of an object for a block device file.

 The relationship between a major and minor number and the corresponding block device descriptor is
maintained through the bdev special filesystem (see the section "Special Filesystems" in Chapter 12).
Each block device descriptor is coupled with a bdev special file: the bd_inode field of the block device
descriptor points to the corresponding bdev inode; conversely, such an inode encodes both the major
and minor numbers of the block device and the address of the corresponding descriptor.

 The bdget() function receives as its parameter the major and minor numbers of a block device: It looks
up in the bdev filesystem the associated inode; if such inode does not exist, the function allocates a new
inode and new block device descriptor. In any case, the function returns the address of the block device
descriptor corresponding to given major and minor numbers.

 Once the block device descriptor for a block device has been found, the kernel can determine whether
the block device is currently in use by checking the value of the bd_openers field: if it is positive, the
block device is already in use (possibly by means of a different device file). The kernel also maintains a
list of inode objects relative to opened block device files. This list is rooted at the bd_inodes field of the
block device descriptor; the i_devices field of the inode object stores the pointers for the previous and
next element in this list.

 14.4.2. Device Driver Registration and Initialization

 Let's now explain the essential steps involved in setting up a new device driver for a block device.
Clearly, the description that follows is very succinct, nevertheless it could be useful to understand how
and when the main data structures used by the block I/O subsystem are initialized.

 We silently omit many steps required for all kinds of device drivers and already mentioned in Chapter 13
. For example, we skip all steps required for registering the driver itself (see the section "The Device
Driver Model" in Chapter 13). Usually, the block device belongs to a standard bus architecture such as
PCI or SCSI, and the kernel offers helper functions that, as a side effect, register the driver in the device
driver model.

 14.4.2.1. Defining a custom driver descriptor

 First of all, the device driver needs a custom descriptor foo of type foo_dev_t holding the data required
to drive the hardware device. For every device, the descriptor will store information such as the I/O
ports used to program the device, the IRQ line of the interrupts raised by the device, the internal status of
the device, and so on. The descriptor must also include a few fields required by the block I/O subsystem:

struct foo_dev_t {

 [...]

 spinlock_t lock;

 struct gendisk *gd;

 [...]

} foo;

The lock field is a spin lock used to protect the fields of the foo descriptor; its address is often passed to
kernel helper functions, which can thus protect the data structures of the block I/O subsystem specific to
the driver. The gd field is a pointer to the gendisk descriptor that represents the whole block device
(disk) handled by this driver.

 Reserving the major number

 The device driver must reserve a major number for its own purposes. Traditionally, this is done by
invoking the register_blkdev() function:

err = register_blkdev(FOO_MAJOR, "foo");

if (err) goto error_major_is_busy;

This function is very similar to register_chrdev() presented in the section "Assigning Device Numbers" in
Chapter 13: it reserves the major number FOO_MAJOR and associates the name foo to it. Notice that
there is no way to allocate a subrange of minor numbers, because there is no analog of
register_chrdev_region(); moreover, no link is established between the reserved major number and the
data structures of the driver. The only visible effect of register_blkdev() is to include a new item in the list
of registered major numbers in the /proc/devices special file.

 14.4.2.2. Initializing the custom descriptor

 All the fields of the foo descriptor must be initialized properly before making use of the driver. To
initialize the fields related to the block I/O subsystem, the device driver could execute the following
instructions:

spin_lock_init(&foo.lock);
foo.gd = alloc_disk(16);
if (!foo.gd) goto error_no_gendisk;

The driver initializes the spin lock, then allocates the disk descriptor. As shown earlier in Figure 14-3, the
gendisk structure is crucial for the block I/O subsystem, because it references many other data structures.
The alloc_disk() function allocates also the array that stores the partition descriptors of the disk. The
argument of the function is the number of hd_struct elements in the array; the value 16 means that the
driver can support disks containing up to 15 partitions (partition 0 is not used).

 14.4.2.3. Initializing the gendisk descriptor

 Next, the driver initializes some fields of the gendisk descriptor:

foo.gd->private_data = &foo;

foo.gd->major = FOO_MAJOR;

foo.gd->first_minor = 0;

foo.gd->minors = 16;

set_capacity(foo.gd, foo_disk_capacity_in_sectors);

strcpy(foo.gd->disk_name, "foo");

foo.gd->fops = &foo_ops;

The address of the foo descriptor is saved in the private_data of the gendisk structure, so that low-level
driver functions invoked as methods by the block I/O subsystem can quickly find the driver descriptorthis
improves efficiency if the driver can handle more than one disk at a time. The set_capacity() function
initializes the capacity field with the size of the disk in 512-byte sectorsthis value is likely determined by
probing the hardware and asking about the disk parameters.

 14.4.2.4. Initializing the table of block device methods

 The fops field of the gendisk descriptor is initialized with the address of a custom table of block device
methods (see Table 14-4 earlier in this chapter).[*] Quite likely, the foo_ops table of the device driver
includes functions specific to the device driver. As an example, if the hardware device supports
removable disks, the generic block layer may invoke the media_changed method to check whether the
disk is changed since the last mount or open operation on the block device. This check is usually done by
sending some low-level commands to the hardware controller, thus the implementation of the
media_changed method is always specific to the device driver.

[*] The block device methods should not be confused with the block device file operations; see the
section "Opening a Block Device File" later in this chapter.

 Similarly, the ioctl method is only invoked when the generic block layer does not know how to handle
some ioctl command. For instance, the method is typically invoked when an ioctl() system call asks
about the disk geometry , that is, the number of cylinders, tracks, sectors, and heads used by the disk.
Thus, the implementation of this method is specific to the device driver.

 14.4.2.5. Allocating and initializing a request queue

 Our brave device driver designer might now set up a request queue that will collect the requests waiting
to be serviced. This can be easily done as follows:

foo.gd->rq = blk_init_queue(foo_strategy, &foo.lock);

if (!foo.gd->rq) goto error_no_request_queue;

blk_queue_hardsect_size(foo.gd->rd, foo_hard_sector_size);

blk_queue_max_sectors(foo.gd->rd, foo_max_sectors);

blk_queue_max_hw_segments(foo.gd->rd, foo_max_hw_segments);

blk_queue_max_phys_segments(foo.gd->rd, foo_max_phys_segments);

The blk_init_queue() function allocates a request queue descriptor and initializes many of its fields with
default values. It receives as its parameters the address of the device descriptor's spin lockfor the foo
.gd->rq->queue_lock fieldand the address of the strategy routine of the device driverfor the foo
.gd->rq->request_fn field; see the next section; "The Strategy Routine." The blk_init_queue() function
also initializes the foo.gd->rq->elevator field, forcing the driver to use the default I/O scheduler algorithm.
If the device driver wants to use a different elevator, it may later override the address in the elevator field.

 Next, some helper functions set various fields of the request queue descriptor with the proper values for
the device driver (look at Table 14-6 for the similarly named fields).

 14.4.2.6. Setting up the interrupt handler

 As described in the section "I/O Interrupt Handling" in Chapter 4, the driver needs to register the IRQ
line for the device. This can be done as follows:

request_irq(foo_irq, foo_interrupt,

 SA_INTERRUPT|SA_SHIRQ, "foo", NULL);

The foo_interrupt() function is the interrupt handler for the device; we discuss some of its peculiarities in
the section "The Interrupt Handler" later in this chapter).

 14.4.2.7. Registering the disk

 Finally, all the device driver's data structures are ready: the last step of the initialization phase consists of
"registering" and activating the disk. This can be achieved simply by executing:

add_disk(foo.gd);

The add_disk() function receives as its parameter the address of the gendisk descriptor, and essentially
executes the following operations:

1.

1. Sets the GENHD_FL_UP flag of gd->flags.
2.

2. Invokes kobj_map() to establish the link between the device driver and the device's major
number with its associated range of minor numbers (see the section "Character Device Drivers"
in Chapter 13; be warned that in this case the kobject mapping domain is represented by the
bdev_map variable).

3.

3. Registers the kobject included in the gendisk descriptor in the device driver model as a new
device serviced by the device driver (e.g., /sys/block/foo).

4.

4. Scans the partition table included in the disk, if any; for each partition found, properly initializes
the corresponding hd_struct descriptor in the foo.gd->part array. Also registers the partitions in
the device driver model (e.g., /sys/block/foo/foo1).

5.

5. Registers the kobject embedded in the request queue descriptor in the device driver model (e.g.,
/sys/block/foo/queue).

Once add_disk() returns, the device driver is actively working. The function that carried on the
initialization phase terminates; the strategy routine and the interrupt handler take care of each request
passed to the device driver by the I/O scheduler.

 14.4.3. The Strategy Routine

 The strategy routine is a functionor a group of functionsof the block device driver that interacts with the
hardware block device to satisfy the requests collected in the dispatch queue. The strategy routine is
invoked by means of the request_fn method of the request queue descriptorthe foo_strategy() function in
the example carried on in the previous section. The I/O scheduler layer passes to this function the
address q of the request queue descriptor.

 As we'll see, the strategy routine is usually started after inserting a new request in an empty request
queue. Once activated, the block device driver should handle all requests in the queue and terminate
when the queue is empty.

 A na?e implementation of the strategy routine could be the following: for each element in the dispatch
queue, remove it from the queue, interact with the block device controller to service the request, and wait
until the data transfer completes. Then proceed with the next request in the dispatch queue.

 Such an implementation is not very efficient. Even assuming that the data can be transferred using DMA,
the strategy routine must suspend itself while waiting for I/O completion. This means that the strategy
routine should execute on a dedicated kernel thread (we don't want to penalize an unrelated user
process, do we?). Moreover, such a driver would not be able to support modern disk controllers that
can process multiple I/O data transfers at a time.

 Therefore, most block device drivers adopt the following strategy:


 The strategy routine starts a data transfer for the first request in the queue and sets up the block
device controller so that it raises an interrupt when the data transfer completes. Then the strategy
routine terminates.



 When the disk controller raises the interrupt, the interrupt handler invokes the strategy routine
again (often directly, sometimes by activating a work queue). The strategy routine either starts
another data transfer for the current request or, if all the chunks of data of the request have been
transferred, removes the request from the dispatch queue and starts processing the next request.

 Requests can be composed of several bios, which in turn can be composed of several segments.
Basically, block device drivers make use of DMA in two ways:



 The driver sets up a different DMA transfer to service each segment in each bio of the request


 The driver sets up a single scatter-gather DMA transfer to service all segments in all bios of the
request

 Ultimately, the design of the strategy routine of the device drivers depends on the characteristics of the
block controller. Each physical block device is inherently different from all others (for example, a floppy
driver groups blocks in disk tracks and transfers a whole track in a single I/O operation), so making
general assumptions on how a device driver should service a request is meaningless.

 In our example, the foo_strategy() strategy routine could execute the following actions:
1.

1. Gets the current request from the dispatch queue by invoking the elv_next_request() I/O
scheduler helper function. If the dispatch queue is empty, the strategy routine returns:

1. req = elv_next_request(q);

if (!req) return;

2.

2. Executes the blk_fs_request macro to check whether the REQ_CMD flag of the request is set,
that is, whether the request contains a normal read or write operation:

2. if (!blk_fs_request(req))

 goto handle_special_request;

3.

3. If the block device controller supports scatter-gather DMA, it programs the disk controller so as
to perform the data transfer for the whole request and to raise an interrupt when the transfer
completes. The blk_rq_map_sg() helper function returns a scatter-gather list that can be
immediately used to start the transfer.

4.

4. Otherwise, the device driver must transfer the data segment by segment. In this case, the strategy
routine executes the rq_for_each_bio and bio_for_each_segment macros, which walk the list of
bios and the list of segments inside each bio, respectively:

4. rq_for_each_bio(bio, rq)

 bio_for_each_segment(bvec, bio, i) {

 /* transfer the i-th segment bvec */

 local_irq_save(flags);

 addr = kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);

 foo_start_dma_transfer(addr+bvec->bv_offset, bvec->bv_len);

 kunmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);

 local_irq_restore(flags);

 }

4. The kmap_atomic() and kunmap_atomic() functions are required if the data to be transferred
can be in high memory. The foo_start_dma_transfer() function programs the hardware device so
as to start the DMA transfer and to raise an interrupt when the I/O operation completes.

5.

5. Returns.

14.4.4. The Interrupt Handler

 The interrupt handler of a block device driver is activated when a DMA transfer terminates. It should
check whether all chunks of data in the request have been transferred. If so, the interrupt handler invokes
the strategy routine to process the next request in the dispatch queue. Otherwise, the interrupt handler
updates the field of the request descriptor and invokes the strategy routine to process the data transfer
yet to be performed.

 A typical fragment of the interrupt handler of our foo device driver is the following:

irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

 struct foo_dev_t *p = (struct foo_dev_t *) dev_id;

 struct request_queue *rq = p->gd->rq;

 [...]

 if (!end_that_request_first(rq, uptodate, nr_sectors)) {

 blkdev_dequeue_request(rq);

 end_that_request_last(rq);

 }

 rq->request_fn(rq);

 [...]

 return IRQ_HANDLED;

}

The job of ending a request is split in two functions called end_that_request_first() and
end_that_request_last().

 The end_that_request_first() function receives as arguments a request descriptor, a flag indicating if the
DMA data transfer completed successfully, and the number of sectors transferred in the DMA transfer
(the end_that_request_chunk() function is similar, but it receives the number of bytes transferred instead
of the number of sectors). Essentially, the function scans the bios in the request and the segments inside
each bio, then updates the fields of the request descriptor in such a way to:



 Set the bio field so that it points to the first unfinished bio in the request.


 Set the bi_idx of the unfinished bio so that it points to the first unfinished segment.


 Set the bv_offset and bv_len fields of the unfinished segment so that they specify the data yet to
be transferred.

 The function also invokes bio_endio() on each bio that has been completely transferred.

 The end_that_request_first() function returns 0 if all chunks of data in the request have been transferred;
otherwise, it returns 1. If the returned value is 1, the interrupt handler restarts the strategy routine, which
thus continues processing the same request. Otherwise, the interrupt handler removes the request from
the request queue (typically by using blkdev_dequeue_request()), invokes the end_that_request_last()
helper function, and restarts the strategy routine to process the next request in the dispatch queue.

 The end_that_request_last() function updates some disk usage statistics, removes the request descriptor
from the dispatch queue of the rq->elevator I/O scheduler, wakes up any process sleeping in the waiting
completion of the request descriptor, and releases that descriptor.

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.5. Opening a Block Device File
 We conclude this chapter by describing the steps performed by the VFS when opening a block device
file.

 The kernel opens a block device file every time that a filesystem is mounted over a disk or partition,
every time that a swap partition is activated, and every time that a User Mode process issues an open()
system call on a block device file. In all cases, the kernel executes essentially the same operations: it
looks for the block device descriptor (possibly allocating a new descriptor if the block device is not
already in use), and sets up the file operation methods for the forthcoming data transfers.

 In the section "VFS Handling of Device Files" in Chapter 13, we described how the dentry_open()
function customizes the methods of the file object when a device file is opened. In this case, the f_op field
of the file object is set to the address of the def_blk_fops table, whose content is shown in Table 14-10.

 Table 14-10. The default block device file operations (def_blk_fops table)

Method Function

open blkdev_open()

release blkdev_close()

llseek block_llseek()

read generic_file_read()

write blkdev_file_write()

aio_read generic_file_aio_read()

aio_write blkdev_file_aio_write()

mmap generic_file_mmap()

fsync block_fsync()

ioctl block_ioctl()

compat-ioctl compat_blkdev_ioctl()

readv generic_file_readv()

writev generic_file_write_nolock()

sendfile generic_file_sendfile()

Here we are only concerned with the open method, which is invoked by the dentry_open() function. The
blkdev_open() function receives as its parameters inode and filp, which store the addresses of the inode
and file objects respectively; the function essentially executes the following steps:

1.

1. Executes bd_acquire(inode) to get the address bdev of the block device descriptor. In turn, this
function receives the inode object address and performs the following steps:
a.

a. Checks whether the inode->i_bdev field of the inode object is not NULL; if it is, the block
device file has been opened already, and this field stores the address of the corresponding
block descriptor. In this case, the function increases the usage counter of the
inode->i_bdev->bd_inode inode of the bdev special filesystem associated with the block
device, and returns the address inode->i_bdev of the descriptor.

b.

b. Here the block device file has not been opened yet. Executes bdget(inode->i_rdev) to get
the address of the block device descriptor corresponding to the major and minor number of
the block device file (see the section "Block Devices" earlier in this chapter). If the descriptor
does not already exist, bdget() allocates it; notice however that the descriptor might already
exist, for instance because the block device is already being accessed by means of another
block device file.

c.

c. Stores the block device descriptor address in inode->i_bdev, so as to speed up future
opening operations on the same block device file.

d.

d. Sets the inode->i_mapping field with the value of the corresponding field in the bdev inode.
This is the pointer to the address space object, which will be explained in the section "The
address_space Object" in Chapter 15.

e.

e. Inserts inode into the list of opened inodes of the block device descriptor rooted at
bdev->bd_inodes.

f.

f. Returns the address bdev of the descriptor.
2.

2. Sets the filp->i_mapping field with the value of inode->i_mapping (see step 1(d) above).
3.

3. Gets the address of the gendisk descriptor relative to this block device:

3. disk = get_gendisk(bdev->bd_dev, &part);

3. If the block device being opened is a partition, the function also returns its index in the part local
variable; otherwise, part is set to zero. The get_gendisk() function simply invokes kobj_lookup(
) on the bdev_map kobject mapping domain passing the major and minor number of the device
(see also the section "Device Driver Registration and Initialization" earlier in this chapter).

4.

4. If bdev->bd_openers is not equal to zero, the block device has already been opened. Checks
the bdev->bd_contains field:
a.

a. If it is equal to bdev, the block device is a whole disk: invokes the
bdev->bd_disk->fops->open block device method, if defined, then checks the
bdev->bd_invalidated field and invokes, if necessary, the rescan_partitions() functions (see
comments on steps 6a and 6c later).

b.

b. If it not equal to bdev, the block device is a partition: increases the
bdev->bd_contains->bd_part_count counter.

2. Then, jumps to step 8.
5.

5. Here the block device is being accessed for the first time. Initializes bdev->bd_disk with the
address disk of the gendisk descriptor.

6.

6. If the block device is a whole disk (part is zero), it executes the following substeps:
a.

a. If defined, it executes the disk->fops->open block device method: it is a custom function
defined by the block device driver to perform any specific last-minute initialization.

b.

b. Gets from the hardsect_size field of the disk->queue request queue the sector size in bytes,
and uses this value to set properly the bdev->bd_block_size and
bdev->bd_inode->i_blkbits fields. Sets also the bdev->bd_inode->i_size field with the size
of the disk computed from disk->capacity.

c.

c. If the bdev->bd_invalidated flag is set, it invokes rescan_partitions() to scan the partition
table and update the partition descriptors. The flag is set by the check_disk_change block
device method, which applies only to removable devices.

7.

7. Otherwise if the block device is a partition (part is not zero), it executes the following substeps:
a.

a. Invokes bdget() againthis time passing the disk->first_minor minor numberto get the address
whole of the block descriptor for the whole disk.

b.

b. Repeats steps from 3 to 6 for the block device descriptor of the whole disk, thus initializing it
if necessary.

c.

c. Sets bdev->bd_contains to the address of the descriptor of the whole disk.
d.

d. Increases whole->bd_part_count to account for the new open operation on the partition of
the disk.

e.

e. Sets bdev->bd_part with the value in disk->part[part-1]; it is the address of the hd_struct
descriptor of the partition. Also, executes kobject_get(&bdev->bd_part->kobj) to increase
the reference counter of the partition.

f.

f. As in step 6b, sets the inode fields that specify size and sector size of the partition.
8.

8. Increases the bdev->bd_openers counter.
9.

9. If the block device file is being opened in exclusive mode (O_EXCL flag in filp->f_flags set), it
invokes bd_claim(bdev, filp) to set the holder of the block device (see the section "Block
Devices" earlier in this chapter). In case of errorblock device has already an holderit releases the
block device descriptor and returns the error code -EBUSY.

10.

10.Terminates by returning 0 (success).

Once the blkdev_open() function terminates, the open() system call proceeds as usual. Every future
system call issued on the opened file will trigger one of the default block device file operations. As we will
see in Chapter 16, each data transfer to or from the block device is effectively implemented by submitting
requests to the generic block layer.

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 15. The Page Cache
 As already mentioned in the section "The Common File Model" in Chapter 12, a disk cache is a
software mechanism that allows the system to keep in RAM some data that is normally stored on a disk,
so that further accesses to that data can be satisfied quickly without accessing the disk.

 Disk caches are crucial for system performance, because repeated accesses to the same disk data are
quite common. A User Mode process that interacts with a disk is entitled to ask repeatedly to read or
write the same disk data. Moreover, different processes may also need to address the same disk data at
different times. As an example, you may use the cp command to copy a text file and then invoke your
favorite editor to modify it. To satisfy your requests, the command shell will create two different
processes that access the same file at different times.

 We have already encountered other disk caches in Chapter 12: the dentry cache , which stores dentry
objects representing filesystem pathnames, and the inode cache , which stores inode objects representing
disk inodes. Notice, however, that dentry objects and inode objects are not mere buffers storing the
contents of some disk blocks; thus, the dentry cache and the inode cache are rather peculiar as disk
caches.

 This chapter deals with the page cache , which is a disk cache working on whole pages of data. We
introduce the page cache in the first section. Then, we discuss in the section "Storing Blocks in the Page
Cache" how the page cache can be used to retrieve single blocks of data (for instance, superblocks and
inodes); this feature is crucial to speed up the VFS and the disk-based filesystems. Next, we describe in
the section "Writing Dirty Pages to Disk" how the dirty pages in the page cache are written back to disk.
Finally, we mention in the last section "The sync(), fsync(), and fdatasync() System Calls" some system
calls that allow a user to flush the contents of the page cache so as to update the disk contents.

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.1. The Page Cache
 The page cache is the main disk cache used by the Linux kernel. In most cases, the kernel refers to the
page cache when reading from or writing to disk. New pages are added to the page cache to satisfy
User Mode processes's read requests. If the page is not already in the cache, a new entry is added to the
cache and filled with the data read from the disk. If there is enough free memory, the page is kept in the
cache for an indefinite period of time and can then be reused by other processes without accessing the
disk.

 Similarly, before writing a page of data to a block device, the kernel verifies whether the corresponding
page is already included in the cache; if not, a new entry is added to the cache and filled with the data to
be written on disk. The I/O data transfer does not start immediately: the disk update is delayed for a few
seconds, thus giving a chance to the processes to further modify the data to be written (in other words,
the kernel implements deferred write operations).

 Kernel code and kernel data structures don't need to be read from or written to disk.[*] Thus, the pages
included in the page cache can be of the following types:

[*] Well, almost never: if you want to resume the whole state of the system after a shutdown, you can
perform a "suspend to disk" operation (hibernation), which saves the content of the whole RAM on a
swap partition. We won't further discuss this case.



 Pages containing data of regular files; in Chapter 16, we describe how the kernel handles read,
write, and memory mapping operations on them.



 Pages containing directories; as we'll see in Chapter 18, Linux handles the directories much like
regular files.



 Pages containing data directly read from block device files (skipping the filesystem layer); as
discussed in Chapter 16, the kernel handles them using the same set of functions as for pages
containing data of regular files.



 Pages containing data of User Mode processes that have been swapped out on disk. As we'll
see in Chapter 17, the kernel could be forced to keep in the page cache some pages whose
contents have been already written on a swap area (either a regular file or a disk partition).



 Pages belonging to files of special filesystems, such as the shm special filesystem used for
Interprocess Communication (IPC) shared memory region (see Chapter 19).

 As you can see, each page included in the page cache contains data belonging to some file. This fileor
more precisely the file's inodeis called the page's owner. (As we will see in Chapter 17, pages containing
swapped-out data have the same owner even if they refer to different swap areas.)

 Practically all read() and write() file operations rely on the page cache. The only exception occurs when
a process opens a file with the O_DIRECT flag set: in this case, the page cache is bypassed and the I/O
data transfers make use of buffers in the User Mode address space of the process (see the section "
Direct I/O Transfers" in Chapter 16); several database applications make use of the O_DIRECT flag so
that they can use their own disk caching algorithm.

 Kernel designers have implemented the page cache to fulfill two main requirements:


 Quickly locate a specific page containing data relative to a given owner. To take the maximum
advantage from the page cache, searching it should be a very fast operation.



 Keep track of how every page in the cache should be handled when reading or writing its
content. For instance, reading a page from a regular file, a block device file, or a swap area must
be performed in different ways, thus the kernel must select the proper operation depending on
the page's owner.

 The unit of information kept in the page cache is, of course, a whole page of data. As we'll see in
Chapter 18, a page does not necessarily contain physically adjacent disk blocks, so it cannot be
identified by a device number and a block number. Instead, a page in the page cache is identified by an
owner and by an index within the owner's datausually, an inode and an offset inside the corresponding
file.

 15.1.1. The address_space Object

 The core data structure of the page cache is the address_space object, a data structure embedded in the
inode object that owns the page.[*] Many pages in the cache may refer to the same owner, thus they
may be linked to the same address_space object. This object also establishes a link between the owner's
pages and a set of methods that operate on these pages.

[*] An exception occurs for pages that have been swapped out. As we will see in Chapter 17, these
pages have a common address_space object not included in any inode.

 Each page descriptor includes two fields called mapping and index, which link the page to the page
cache (see the section "Page Descriptors" in Chapter 8). The first field points to the address_space
object of the inode that owns the page. The second field specifies the offset in page-size units within the
owner's "address space," that is, the position of the page's data inside the owner's disk image. These two
fields are used when looking for a page in the page cache.

 Quite surprisingly, the page cache may happily contain multiple copies of the same disk data. For
instance, the same 4-KB block of data of a regular file can be accessed in the following ways:



 Reading the file; hence, the data is included in a page owned by the regular file's inode.


 Reading the block from the device file (disk partition) that hosts the file; hence, the data is
included in a page owned by the master inode of the block device file.

 Thus, the same disk data appears in two different pages referenced by two different address_space
objects.

 The fields of the address_space object are shown in Table 15-1.

 Table 15-1. The fields of the address_space object

Type Field Description

struct inode * host Pointer to the inode hosting this
object, if any

struct

radix_tree_root

page_tree Root of radix tree identifying the
owner's pages

spinlock_t tree_lock Spin lock protecting the radix
tree

unsigned int i_mmap_writable Number of shared memory
mappings in the address space

struct

prio_tree_root

i_mmap Root of the radix priority search
tree (see Chapter 17)

struct list_head i_mmap_nonlinear List of non-linear memory regions
in the address space

spinlock_t i_mmap_lock Spin lock protecting the radix
priority search tree

unsigned int TRuncate_count Sequence counter used when
truncating the file

unsigned long nrpages Total number of owner's pages

unsigned long writeback_index Page index of the last write-back
operation on the owner's pages

struct address_space_operations
* a_ops Methods that operate on the

owner's pages

unsigned long flags Error bits and memory allocator
flags

struct backing_dev_info * backing_dev_info
Pointer to the backing_dev_info
of the block device holding the
data of this owner

spinlock_t private_lock Usually, spin lock used when
managing the private_list list

struct list head private_list
Usually, a list of dirty buffers of
indirect blocks associated with
the inode

struct address_space * assoc_mapping Usually, pointer to the
address_space object of the
block device including the indirect
blocks

If the owner of a page in the page cache is a file, the address_space object is embedded in the i_data
field of a VFS inode object. The i_mapping field of the inode always points to the address_space object
of the owner of the pages containing the inode's data. The host field of the address_space object points
to the inode object in which the descriptor is embedded.

 Thus, if a page belongs to a file that is stored in an Ext3 filesystem , the owner of the page is the inode of
the file and the corresponding address_space object is stored in the i_data field of the VFS inode object.
The i_mapping field of the inode points to the i_data field of the same inode, and the host field of the
address_space object points to the same inode.

 Sometimes, however, things are more complicated. If a page contains data read from a block device
filethat is, it stores "raw" data of a block devicethe address_space object is embedded in the "master"
inode of the file in the bdev special filesystem associated with the block device (this inode is referenced
by the bd_inode field of the block device descriptor, see the section "Block Devices" in Chapter 14).
Therefore, the i_mapping field of an inode of a block device file points to the address_space object
embedded in the master inode; correspondingly, the host field of the address_space object points to the
master inode. In this way, all pages containing data read from a block device have the same
address_space object, even if they have been accessed by referring to different block device files.

 The i_mmap, i_mmap_writable, i_mmap_nonlinear, and i_mmap_lock fields refer to memory mapping
and reverse mapping. We'll discuss these topics in Chapter 16 and Chapter 17.

 The backing_dev_info field points the backing_dev_info descriptor associated with the block device
storing the data of the owner. As explained in the section "Request Queue Descriptors" in Chapter 14,
the backing_dev_info structure is usually embedded in the request queue descriptor of the block device.

 The private_list field is the head of a generic list that can be freely used by the filesystem for its specific
purposes. For example, the Ext2 filesystem makes use of this list to collect the dirty buffers of "indirect"
blocks associated with the inode (see the section "Data Blocks Addressing" in Chapter 18). When a flush
operation forces the inode to be written to disk, the kernel flushes also all the buffers in this list.
Moreover, the Ext2 filesystem stores in the assoc_mapping field a pointer to the address_space object of
the block device containing the indirect blocks; it also uses the assoc_mapping->private_lock spin lock
to protect the lists of indirect blocks in multiprocessor systems.

 A crucial field of the address_space object is a_ops, which points to a table of type
address_space_operations containing the methods that define how the owner's pages are handled. These
methods are shown in Table 15-2.

 Table 15-2. The methods of the address_space object

Method Description

writepage Write operation (from the page to the owner's disk
image)

readpage Read operation (from the owner's disk image to
the page)

sync_page Start the I/O data transfer of already scheduled
operations on owner's pages

writepages Write back to disk a given number of dirty owner's
pages

set_page_dirty Set an owner's page as dirty

readpages Read a list of owner's pages from disk

prepare_write Prepare a write operation (used by disk-based
filesystems)

commit_write Complete a write operation (used by disk-based
filesystems)

bmap Get a logical block number from a file block index

invalidatepage Invalidate owner's pages (used when truncating the
file)

releasepage Used by journaling filesystems to prepare the
release of a page

direct_IO Direct I/O transfer of the owner's pages (bypassing
the page cache)

The most important methods are readpage, writepage, prepare_write, and commit_write. We discuss
them in Chapter 16. In most cases, the methods link the owner inode objects with the low-level drivers
that access the physical devices. For instance, the function that implements the readpage method for an
inode of a regular file knows how to locate the positions on the physical disk device of the blocks
corresponding to each page of the file. In this chapter, however, we don't have to discuss the
address_space methods further.

 15.1.2. The Radix Tree

 In Linux, files can have large sizes, even a few terabytes. When accessing a large file, the page cache
may become filled with so many of the file's pages that sequentially scanning all of them would be too
time-consuming. In order to perform page cache lookup efficiently, Linux 2.6 makes use of a large set of
search trees, one for each address_space object.

 The page_tree field of an address_space object is the root of a radix tree, which contains pointers to the
descriptors of the owner's pages. Given a page index denoting the position of the page inside the owner's
disk image, the kernel can perform a very fast lookup operation in order to determine whether the
required page is already included in the page cache. When looking up the page, the kernel interprets the
index as a path inside the radix tree and quickly reaches the position where the page descriptor isor
should bestored. If found, the kernel can retrieve from the radix tree the descriptor of the page; it can
also quickly determine whether the page is dirty (i.e., to be flushed to disk) and whether an I/O transfer
for its data is currently on-going.

 Each node of the radix tree can have up to 64 pointers to other nodes or to page descriptors. Nodes at
the bottom level store pointers to page descriptors (the leaves), while nodes at higher levels store
pointers to other nodes (the children). Each node is represented by the radix_tree_node data structure,
which includes three fields: slots is an array of 64 pointers, count is a counter of how many pointers in the
node are not NULL, and tags is a two-component array of flags that will be discussed in the section "The
Tags of the Radix Tree" later in this chapter. The root of the tree is represented by a radix_tree_root data
structure, having three fields: height denotes the current tree's height (number of levels excluding the
leaves), gfp_mask specifies the flags used when requesting memory for a new node, and rnode points to
the radix_tree_node data structure corresponding to the node at level 1 of the tree (if any).

 Let us consider a simple example. If none of the indices stored in the tree is greater than 63, the tree
height is equal to one, because the 64 potential leaves can all be stored in the node at level 1 (see Figure
15-1 (a)). If, however, a new page descriptor corresponding to index 131 must be stored in the page
cache, the tree height is increased to two, so that the radix tree can pinpoint indices up to 4095 (see
Figure 15-1(b)).

 Figure 15-1. Two examples of a radix tree

 Table 15-3 shows the highest page index and the corresponding maximum file size for each given height
of the radix tree on a 32-bit architecture. In this case, the maximum height of a radix tree is six, although it
is quite unlikely that the page cache of your system will make use of a radix tree that huge. Because the
page index is stored in a 32-bit variable, when the tree has height equal to six, the node at the highest
level can have at most four children.

 Table 15-3. Highest index and maximum file size for each radix tree height

Radix tree height Highest index Maximum file size

0 none 0 bytes

1 26 -1 = 63 256 kilobytes

2 212 -1 = 4 095 16 megabytes

3 218 -1 = 262 143 1 gigabyte

4 224-1 = 16 777 215 64 gigabytes

5 230 -1 = 1 073 741 823 4 terabytes

6 232 -1 = 4 294 967 295 16 terabytes

The best way to understand how page lookup is performed is to recall how the paging system makes use
of the page tables to translate linear addresses into physical addresses. As discussed in the section "
Regular Paging" in Chapter 2, the 20 most significant bits of a linear address are split into two 10-bit long
fields: the first field is an offset in the Page Directory, while the second one is an offset in the Page Table
pointed to by the proper Page Directory entry.

 A similar approach is used in the radix tree. The equivalent of the linear address is the page's index.
However, the number of fields to be considered in the page's index depends on the height of the radix
tree. If the radix tree has height 1, only indices ranging from 0 to 63 can be represented, thus the 6 less
significant bits of the page's index are interpreted as the slots array index for the single node at level 1. If
the radix tree has height 2, the indices that can be represented range from 0 to 4095; the 12 less
significant bits of the page's index are thus split in 2 fields of 6 bits each; the most significant field is used
as an array index for the node at level 1, while the less significant field is used as an array index for the
node at level 2. The procedure is similar for every other radix tree's height. If the height is equal to 6, the
2 most significant bits of the page's index are the array index for the node at level 1, the following 6 bits
are the array index for the node at level 2, and so on up to the 6 less significant bits, which are the array
index for the node at level 6.

 If the highest index of a radix tree is smaller than the index of a page that should be added, then the
kernel increases the tree height correspondingly; the intermediate nodes of the radix tree depend on the
value of the page index (see Figure 15-1 for an example).

 15.1.3. Page Cache Handling Functions

 The basic high-level functions that use the page cache involve finding, adding, and removing a page.
Another function based on the previous ones ensures that the cache includes an up-to-date version of a
given page.

 15.1.3.1. Finding a page

 The find_get_page() function receives as its parameters a pointer to an address_space object and an
offset value. It acquires the address space's spin lock and invokes the radix_tree_lookup() function to
search for a leaf node of the radix tree having the required offset. This function, in turn, starts from the
root node of the tree and goes down according to the bits of the offset value, as explained in the previous
section. If a NULL pointer is encountered, the function returns NULL; otherwise, it returns the address
of a leaf node, that is, the pointer of the required page descriptor. If the requested page is found,
find_get_page() increases its usage counter, releases the spin lock, and returns its address; otherwise,
the function releases the spin lock and returns NULL.

 The find_get_pages() function is similar to find_get_page(), but it performs a page cache lookup for a
group of pages having contiguous indices. It receives as its parameters a pointer to an address_space
object, the offset in the address space from where to start searching, the maximum number of pages to
be retrieved, and a pointer to an array of pages descriptors to be filled by the function. To perform the
lookup operation, find_get_pages() relies on the radix_tree_gang_lookup() function, which fills the array
of pointers and returns the number of pages found. The returned pages have ascending indices, although
there may be holes in the indices because some pages may not be in the page cache.

 There are several other functions that perform search operations on the page cache. For example, the
find_lock_page() function is similar to find_get_page(), but it increases the usage counter of the returned
page and invokes lock_page() to set the PG_locked flagthus, when the function returns, the page can be
accessed exclusively by the caller. The lock_page() function, in turn, blocks the current process if the
page is already locked. To that end, it invokes the _ _wait_on_bit_lock() function on the PG_locked bit.
The latter function puts the current process in the TASK_UNINTERRUPTIBLE state, stores the
process descriptor in a wait queue, executes the sync_page method of the address_space object to
unplug the request queue of the block device containing the file, and finally invokes schedule() to
suspend the process until the PG_locked flag of the page is cleared. To unlock a page and wake up the
processes sleeping in the wait queue, the kernel makes use of the unlock_page() function.

 The find_trylock_page() function is similar to find_lock_page(), except that it never blocks: if the
requested page is already locked, the function returns an error code. Finally, the find_or_create_page()
function executes find_lock_page(); however, if the page is not found, a new page is allocated and
inserted in the page cache.

 15.1.3.2. Adding a page

 The add_to_page_cache() function inserts a new page descriptor in the page cache. It receives as its
parameters the address page of the page descriptor, the address mapping of an address_space object,
the value offset representing the page index inside the address space, and the memory allocation flags
gfp_mask to be used when allocating the new nodes of the radix tree. The function performs the
following operations:

1.

1. Invokes radix_tree_preload(), which disables kernel preemption and fills the per-CPU variable
radix_tree_preloads with a few free radix_tree_node structures. Allocation of radix_tree_node
structures is done by means of the radix_tree_node_cachep slab allocator cache. If
radix_tree_preload() fails in preallocating the radix_tree_node structures, the
add_to_page_cache() function terminates by returning the error code -ENOMEM. Otherwise, if
radix_tree_preload() succeeds, add_to_page_cache() can be sure that the insertion of the new
page descriptor will not fail for lack of free memory, at least for files of size up to 64 GB.

2.

2. Acquires the mapping->tree_lock spin locknotice that kernel preemption has already been
disabled by radix_tree_preload().

3.

3. Invokes radix_tree_insert() to insert the new node in the tree. This function performs the
following steps:
a.

a. Invokes radix_tree_maxindex() to get the maximum index that can be inserted in the radix
tree with its current height; if the index of the new page cannot be represented with the
current height, it invokes radix_tree_extend() to increase the height of the tree by adding the
proper number of nodes (for instance, when applied to the radix tree shown in Figure 15-1
(a), radix_tree_extend() would add a single node on top of it). New nodes are allocated by
executing the radix_tree_node_alloc() function, which tries to get a radix_tree_node
structure from the slab allocator cache or, if this allocation fails, from the pool of preallocated
structures stored in radix_tree_preloads.

b.

b. Starting from the root (mapping->page_tree), it traverses the tree according to the offset
page's index until the leaf is reached, as described in the previous section. If required, it
allocates new intermediate nodes by invoking radix_tree_node_alloc().

c.

c. Stores the page descriptor address in the proper slot of the last traversed node of the radix
tree, and returns 0.

4.

4. Increases the usage counter page->_count of the page descriptor.
5.

5. Because the page is new, its content is invalid: the function sets the PG_locked flag of the page
frame to protect the page against concurrent accesses from other kernel control paths.

6.

6. Initializes page->mapping and page->index with the parameters mapping and offset.
7.

7. Increases the counter of cached pages in the address space (mapping->nrpages).
8.

8. Releases the address space's spin lock.
9.

9. Invokes radix_tree_preload_end() to reenable kernel preemption.
10.

10.Returns 0 (success).

15.1.3.3. Removing a page

 The remove_from_page_cache() function removes a page descriptor from the page cache. This is
achieved in the following way:

1.

1. Acquires the page->mapping->tree_lock spin lock and disables interrupts.
2.

2. Invokes radix_tree_delete() to delete the node from the tree. This function receives as its
parameters the address of the tree's root (page->mapping->page_tree) and the index of the page
to be removed and performs the following steps:
a.

a. Starting from the root, it traverses the tree according to the page's index until the leaf is
reached, as described in the previous section. While doing so, it builds up an array of
radix_tree_path structures that describe the components of the path from the root to the leaf
corresponding to the page to be deleted.

b.

b. Starts a cycle on the nodes collected in the path array, starting with the last node, which
contains the pointer to the page descriptor. For each node, it sets to NULL the element of
the slots array pointing to the next node (or to the page descriptor) and decreases the count
field. If count becomes zero, it removes the node from the tree and releases the
radix_tree_node structure to the slab allocator cache, then continues the cycle with the
preceding node in the path array; otherwise, if count does not become zero, it continues with
the next step.

c.

c. Returns the pointer to the page descriptor that has been removed from the tree.
3.

3. Sets the page->mapping field to NULL.
4.

4. Decreases by one the page->mapping->nrpages counter of cached pages.
5.

5. Releases the page->mapping->tree_lock spin lock, enables the interrupts, and terminates.

15.1.3.4. Updating a page

 The read_cache_page() function ensures that the cache includes an up-to-date version of a given page.
Its parameters are a pointer mapping to an address_space object, an offset value index that specifies the
requested page, a pointer filler to a function that reads the page's data from disk (usually it is the function
that implements the address space's readpage method), and a pointer data that is passed to the filler
function (usually, it is NULL). Here is a simplified description of what the function does:

1.

1. Invokes find_get_page() to check whether the page is already in the page cache.
2.

2. If the page is not in the page cache, it performs the following substeps:
a.

a. Invokes alloc_pages() to allocate a new page frame.
b.

b. Invokes add_to_page_cache() to insert the corresponding page descriptor into the page
cache.

c.

c. Invokes lru_cache_add() to insert the page in the zone's inactive LRU list (see the section "
The Least Recently Used (LRU) Lists" in Chapter 17).

3.

3. Here the page is in the page cache. Invokes mark_page_accessed() to record the fact that the
page has been accessed (see the section "The Least Recently Used (LRU) Lists" in Chapter 17).

4.

4. If the page is not up-to-date (PG_uptodate flag clear), it invokes the filler function to read from
disk the page.

5.

5. Returns the address of the page descriptor.

15.1.4. The Tags of the Radix Tree

 As stated previously, the page cache not only allows the kernel to quickly retrieve a page containing
specified data of a block device; the cache also allows the kernel to quickly retrieve pages in the cache
that are in a given state.

 For instance, let us suppose that the kernel must retrieve all pages in the cache that belong to a given
owner and that are dirty, that is, the pages whose contents have not yet been written to disk. The
PG_dirty flag stored in the page descriptor specifies whether a page is dirty or not; however, traversing
the whole radix tree to sequentially access all the leavesthat is, the page descriptorswould be an unduly
slow operation if most pages are not dirty.

 Instead, to allow a quick search of dirty pages, each intermediate node in the radix tree contains a dirty
tag for each child node (or leaf); this flag is set if and only if at least one of the dirty tags of the child node
is set. The dirty tags of the nodes at the bottom level are usually copies of the PG_dirty flags of the page
descriptors. In this way, when the kernel traverses a radix tree looking for dirty pages, it can skip each
subtree rooted at an intermediate node whose dirty tag is clear: it knows for sure that all page descriptors
stored in the subtree are not dirty.

 The same idea applies to the PG_writeback flag, which denotes that a page is currently being written
back to disk. Thus, each node of the radix tree propagates two flags of the page descriptor: PG_dirty
and PG_writeback (see the section "Page Descriptors" in Chapter 8). To store them, each node includes
two arrays of 64 bits in the tags field. The tags[0] array (PAGECACHE_TAG_DIRTY) is the dirty tag,
while the tags[1] (PAGECACHE_TAG_WRITEBACK) array is the writeback tag.

 The radix_tree_tag_set() function is invoked when setting the PG_dirty or the PG_writeback flag of a
cached page; it acts on three parameters: the root of the radix tree, the page's index, and the type of tag
to be set (PAGECACHE_TAG_DIRTY or PAGECACHE_TAG_WRITEBACK). The function starts
from the root of the tree and goes down to the leaf corresponding to the given index; for each node of the
path leading from the root to the leaf, the function sets the tag associated with the pointer to the next node
in the path. The function then returns the address of the page descriptor. As a result, each in node in the
path that goes down from the root to the leaf is tagged in the appropriate way.

 The radix_tree_tag_clear() function is invoked when clearing the PG_dirty or the PG_writeback flag of
a cached page; it acts on the same parameters as radix_tree_tag_set(). The function starts from the root
of the tree and goes down to the leaf, building an array of radix_tree_path structures describing the path.
Then, the function proceeds backward from the leaf to the root: it clears the tag of the node at the bottom
level, then it checks whether all tags in the node's array are now cleared; if so, the function clears the
proper tag in the parent node at the upper level, checks whether all tags in that node are cleared, and so
on. The function then returns the address of the page descriptor.

 When a page descriptor is removed from a radix tree, the proper tags in the nodes belonging to the path
from the root to the leaf must be updated. The radix_tree_delete() function does this properly (even if
we omitted mentioning this fact in the previous section). The radix_tree_insert() function, however,
doesn't update the tags, because each page descriptor inserted in the radix tree is supposed to have the
PG_dirty and PG_writeback flags cleared. If necessary, the kernel may later invoke the
radix_tree_tag_set() function.

 The radix_tree_tagged() function takes advantage of the arrays of flags included in all nodes of the tree
to test whether a radix tree includes at least one page in a given state. The function performs this task
quite simply by executing the following code (root is a pointer to the radix_tree_root structure of the
radix tree, and tag is the flag to be tested):

 for (idx = 0; idx < 2; idx++) {

 if (root->rnode->tags[tag][idx])

 return 1;

 }

 return 0;

Because the tags of all nodes of the radix tree can be assumed to be properly updated,
radix_tree_tagged() needs only to check the tags of the node at level 1. An example of use of such
function occurs when determining whether an inode contains dirty pages to be written to disk. Notice that
in each iteration the function tests whether any of the 32 flags stored in an unsigned long is set.

 The find_get_pages_tag() function is similar to find_get_pages() except that it returns only pages that
are tagged with the tag parameter. As we'll see in the section "Writing Dirty Pages to Disk," this function
is crucial to quickly identify all the dirty pages of an inode.

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.2. Storing Blocks in the Page Cache
 We have seen in the section "Block Devices Handling" in Chapter 14 that the VFS, the mapping layer,
and the various filesystems group the disk data in logical units called "blocks."

 In old versions of the Linux kernel, there were two different main disk caches: the page cache, which
stored whole pages of disk data resulting from accesses to the contents of the disk files, and the buffer
cache , which was used to keep in memory the contents of the blocks accessed by the VFS to manage
the disk-based filesystems.

 Starting from stable version 2.4.10, the buffer cache does not really exist anymore. In fact, for reasons
of efficiency, block buffers are no longer allocated individually; instead, they are stored in dedicated
pages called "buffer pages ," which are kept in the page cache.

 Formally, a buffer page is a page of data associated with additional descriptors called "buffer heads ,"
whose main purpose is to quickly locate the disk address of each individual block in the page. In fact, the
chunks of data stored in a page belonging to the page cache are not necessarily adjacent on disk.

 15.2.1. Block Buffers and Buffer Heads

 Each block buffer has a buffer head descriptor of type buffer_head. This descriptor contains all the
information needed by the kernel to know how to handle the block; thus, before operating on each
block, the kernel checks its buffer head. The fields of a buffer head are listed in Table 15-4.

 Table 15-4. The fields of a buffer head

Type Field Description

unsigned long b_state Buffer status flags

struct buffer_head * b_this_page Pointer to the next element in the
buffer page's list

struct page * b_page Pointer to the descriptor of the
buffer page holding this block

atomic_t b_count Block usage counter

u32 b_size Block size

sector_t b_blocknr
Block number relative to the
block device (logical block
number)

char * b_data Position of the block inside the
buffer page

struct block_device * b_bdev Pointer to block device
descriptor

bh_end_io_t * b_end_io I/O completion method

void * b_private Pointer to data for the I/O
completion method

struct list_head b_assoc_buffers Pointers for the list of indirect
blocks associated with an inode
(see the section "The
address_space Object" earlier in
this chapter)

Two fields of the buffer head encode the disk address of the block: the b_bdev field identifies the block
deviceusually, a disk or a partitionthat contains the block (see the section "Block Devices" in Chapter 14
), while the b_blocknr field stores the logical block number, that is, the index of the block inside its disk
or partition.

 The b_data field specifies the position of the block buffer inside the buffer page. Actually, the encoding
of this position depends on whether the page is in high memory or not. If the page is in high memory, the
b_data field contains the offset of the block buffer with respect to the beginning of the page; otherwise,
b_data contains the linear address of the block buffer.

 The b_state field may store several flags. Some of them are of general use and are listed in Table 15-5.
Each filesystem may also define its own private buffer head flags.

 Table 15-5. The buffer head's general flags

Flag Description

BH_Uptodate Set if the buffer contains valid data

BH_Dirty Set if the buffer is dirtythat is, it contains data that
must be written to the block device

BH_Lock Set if the buffer is locked, which usually happens
when the buffer is involved in a disk transfer

BH_Req Set if data transfer for initializing the buffer has
already been requested

BH_Mapped
Set if the buffer is mapped to diskthat is, if the
b_bdev and b_blocknr fields of the corresponding
buffer head are significant

BH_New Set if the corresponding block has just been
allocated and has never been accessed

BH_Async_Read Set if the buffer is being read asynchronously

BH_Async_Write Set if the buffer is being written asynchronously

BH_Delay Set if the buffer is not yet allocated on disk

BH_Boundary Set if the block to be submitted after this one will
not be adjacent to this one

BH_Write_EIO Set if there was an I/O error when writing this
block

BH_Ordered
Set if the block should be written strictly after the
blocks submitted before it (used by journaling
filesystems)

BH_Eopnotsupp Set if the block device driver does not support the
operation requested

15.2.2. Managing the Buffer Heads

 The buffer heads have their own slab allocator cache, whose kmem_cache_s descriptor is stored in the
bh_cachep variable. The alloc_buffer_head() and free_buffer_head() functions are used to get and
release a buffer head, respectively.

 The b_count field of the buffer head is a usage counter for the corresponding block buffer. The counter
is increased right before each operation on the block buffer and decreased right after. The block buffers
kept in the page cache are examined both periodically and when free memory becomes scarce, and only
the block buffers having null usage counters may be reclaimed (see Chapter 17).

 When a kernel control path wishes to access a block buffer, it should first increase the usage counter.
The function that locates a block inside the page cache (_ _getblk(); see the section "Searching Blocks in
the Page Cache" later in this chapter) does this automatically, hence the higher-level functions do not
usually increase the block buffer's usage counter.

 When a kernel control path stops accessing a block buffer, it should invoke either _ _brelse() or _
_bforget() to decrease the corresponding usage counter. The difference between these two functions is
that _ _bforget() also removes the block from any list of indirect blocks (b_assoc_buffers buffer head
field; see the previous section "Block Buffers and Buffer Heads") and marks the buffer as clean, thus
forcing the kernel to forget any change in the buffer that has yet to be written on disk.

 15.2.3. Buffer Pages

 Whenever the kernel must individually address a block, it refers to the buffer page that holds the block
buffer and checks the corresponding buffer head.

 Here are two common cases in which the kernel creates buffer pages:


 When reading or writing pages of a file that are not stored in contiguous disk blocks. This
happens either because the filesystem has allocated noncontiguous blocks to the file, or because
the file contains "holes" (see the section "File Holes" in Chapter 18).



 When accessing a single disk block (for instance, when reading a superblock or an inode block).

 In the first case, the buffer page's descriptor is inserted in the radix tree of a regular file. The buffer heads
are preserved because they store precious information: the block device and the logical block number
that specify the position of the data in the disk. We will see how the kernel makes use of this type of
buffer page in Chapter 16.

 In the second case, the buffer page's descriptor is inserted in the radix tree rooted at the address_space
object of the inode in the bdev special filesystem associated with the block device (see the section "The
address_space Object" earlier in this chapter). This kind of buffer pages must satisfy a strong constraint:
all the block buffers must refer to adjacent blocks of the underlying block device.

 An instance of where this is useful is when the VFS wants to read the 1,024-byte inode block containing
the inode of a given file. Instead of allocating a single buffer, the kernel must allocate a whole page storing
four buffers; these buffers will contain the data of a group of four adjacent blocks on the block device,
including the requested inode block.

 In this chapter we will focus our attention on the second type of buffer pages, the so-called block device
buffer pages (sometimes shortened to blockdev's pages).

 All the block buffers within a single buffer page must have the same size; hence, on the 80 x 86
architecture, a buffer page can include from one to eight buffers, depending on the block size.

 When a page acts as a buffer page, all buffer heads associated with its block buffers are collected in a
singly linked circular list. The private field of the descriptor of the buffer page points to the buffer head of
the first block in the page;[*] every buffer head stores in the b_this_page field a pointer to the next buffer
head in the list. Moreover, every buffer head stores the address of the buffer page's descriptor in the
b_page field. Figure 15-2 shows a buffer page containing four block buffers and the corresponding buffer
heads.

[*] Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the
page contains disk data and the PG_private flag is set, then the page is a buffer page. Notice, however,
that other kernel components not related to the block I/O subsystem use the private and PG_private
fields for other purposes.

 Figure 15-2. A buffer page including four buffers and their buffer heads

 15.2.4. Allocating Block Device Buffer Pages

 The kernel allocates a new block device buffer page when it discovers that the page cache does not
include a page containing the buffer for a given block (see the section "Searching Blocks in the Page
Cache" later in this chapter). In particular, the lookup operation for the block might fail for the following
reasons:

1.

1. The radix tree of the block device does not include a page containing the data of the block: in
this case a new page descriptor must be added to the radix tree.

2.

2. The radix tree of the block device includes a page containing the data of the block, but this page
is not a buffer page: in this case new buffer heads must be allocated and linked to the page, thus
transforming it into a block device buffer page.

3.

3. The radix tree of the block device includes a buffer page containing the data of the block, but the
page has been split in blocks of size different from the size of the requested block: in this case the
old buffer heads must be released, and a new set of buffer heads must be allocated and linked to
the page.

In order to add a block device buffer page to the page cache, the kernel invokes the grow_buffers()
function, which receives three parameters that identify the block:



 The address bdev of the block_device descriptor


 The logical block number block the position of the block inside the block device


 The block size size

 The function essentially performs the following actions:
1.

1. Computes the offset index of the page of data within the block device that includes the requested
block.

2.

2. Invokes grow_dev_page() to create a new block device buffer page, if necessary. In turn, this
function performs the following substeps:
a.

a. Invokes find_or_create_page(), passing to it the address_space object of the block device
(bdev->bd_inode->i_mapping), the page offset index, and the GFP_NOFS flag. As
described in the earlier section "Page Cache Handling Functions," find_or_create_page()
looks for the page in the page cache and, if necessary, inserts a new page in the cache.

b.

b. Now the required page is in the page cache, and the function has the address of its
descriptor. The function checks its PG_private flag; if it is NULL, the page is not yet a buffer
page (it has no associated buffer heads): it jumps to step 2e.

c.

c. The page is already a buffer page. Gets from the private field of its descriptor the address bh
of the first buffer head, and checks whether the block size bh->size is equal to the size of the
requested block; if so, the page found in the page cache is a valid buffer page: it jumps to
step 2g.

d.

d. The page has blocks of the wrong size: it invokes try_to_free_buffers() (see the next section)
to release the previous buffer heads of the buffer page.

e.

e. Invokes the alloc_page_buffers() function to allocate the buffer heads for the blocks of the
requested size within the page and insert them into the singly linked circular list implemented
by the b_this_page fields. Moreover, the function initializes the b_page fields of the buffer
heads with the address of the page descriptor, and the b_data fields with the offset or linear
address of the block buffer inside the page.

f.

f. Stores the address of the first buffer head in the private field, sets the PG_private field, and
increases the usage counter of the page (the block buffers inside the page counts as a page
user).

g.

g. Invokes the init_page_buffers() function to initialize the b_bdev, b_blocknr, and b_bstate
fields of the buffer heads linked to the page. All blocks are adjacent on disk, hence the
logical block numbers are consecutive and can be easily derived from block.

h.

h. Returns the page descriptor address.
3.

3. Unlocks the page (the page was locked by find_or_create_page()).
4.

4. Decreases the page's usage counter (again, the counter was increased by find_or_create_page(
)).

5.

5. Returns 1 (success).

15.2.5. Releasing Block Device Buffer Pages

 As we will see in Chapter 17, block device buffer pages are released when the kernel tries to get
additional free memory. Clearly a buffer page cannot be freed if it contains dirty or locked buffers. To
release buffer pages, the kernel invokes the TRy_to_release_page() function, which receives the address
page of a page descriptor and performs the following actions:[*]

[*] The TRy_to_release_page() function can also be invoked on buffer pages owned by regular files.
1.

1. If the PG_writeback flag of the page is set, it returns 0 (no release is possible because the page
is being written back to disk).

2.

2. If defined, it invokes the releasepage method of the block device's address_space object. (The
method is usually not defined for block devices.)

3.

3. Invokes the try_to_free_buffers() function, and returns its error code.

In turn, the try_to_free_buffers() function scans the buffer heads linked to the buffer page; it performs
essentially the following actions:

1.

1. Checks the flags of all the buffer heads of buffers included in the page. If some buffer head has
the BH_Dirty or BH_Locked flag set, the function terminates by returning 0 (failure): it is not
possible to release the buffers.

2.

2. If a buffer head is inserted in a list of indirect buffers (see the section "Block Buffers and Buffer
Heads" earlier in this chapter), the function removes it from the list.

3.

3. Clears the PG_private flag of the page descriptor, sets the private field to NULL, and decreases
the page's usage counter.

4.

4. Clears the PG_dirty flag of the page.
5.

5. Invokes repeatedly free_buffer_head() on the buffer heads of the page to free all of them.
6.

6. Returns 1 (success).

15.2.6. Searching Blocks in the Page Cache

 When the kernel needs to read or write a single block of a physical device (for instance, a superblock),
it must check whether the required block buffer is already included in the page cache. Searching the page
cache for a given block bufferspecified by the address bdev of a block device descriptor and by a logical
block number nris a three stage process:

1.

1. Get a pointer to the address_space object of the block device containing the block
(bdev->bd_inode->i_mapping).

2.

2. Get the block size of the device (bdev->bd_block_size), and compute the index of the page that
contains the block. This is always a bit shift operation on the logical block number. For instance,
if the block size is 1,024 bytes, each buffer page contains four block buffers, thus the page's
index is nr/4.

3.

3. Searches for the buffer page in the radix tree of the block device. After obtaining the page
descriptor, the kernel has access to the buffer heads that describe the status of the block buffers
inside the page.

Details are slightly more complicated than this, however. In order to enhance system performance, the
kernel manages a bh_lrus array of small disk caches , one for each CPU, called the Least Recently Used
(LRU) block cache. Each disk cache contains eight pointers to buffer heads that have been recently
accessed by a given CPU. The elements in each CPU array are sorted so that the pointer to the most
recently used buffer head has index 0. The same buffer head might appear on several CPU arrays (but
never twice in the same CPU array); for each occurrence of a buffer head in the LRU block cache , the
buffer head's b_count usage counter is increased by one.

 15.2.6.1. The _ _find_get_block() function

 The _ _find_get_block() function receives as its parameters the address bdev of a block_device
descriptor, the block number block, and the block size size, and returns the address of the buffer head
associated with the block buffer inside the page cache, or NULL if no such block buffer exists. The
function performs essentially the following actions:

1.

1. Checks whether the LRU block cache array of the executing CPU includes a buffer head whose
b_bdev, b_blocknr, and b_size fields are equal to bdev, block, and size, respectively.

2.

2. If the buffer head is in the LRU block cache, it reshuffles the elements in the array so as to put the
pointer to the just discovered buffer head in the first position (index 0), increases its b_count
field, and jumps to step 8.

3.

3. Here the buffer head is not in the LRU block cache: it derives from the block number and the
block size the page index relative to the block device as:

3. index = block >> (PAGE_SHIFT - bdev->bd_inode->i_blkbits);

4.

4. Invokes find_get_page() to locate, in the page cache, the descriptor of the buffer page
containing the required block buffer. The function passes as parameters a pointer to the
address_space object of the block device (bdev->bd_inode->i_mapping) and the page index to
locate in the page cache the descriptor of the buffer page containing the required block buffer. If
there is no such page in the cache, returns NULL (failure).

5.

5. At this point, the function has the address of a descriptor for the buffer page: it scans the list of
buffer heads linked to the buffer page, looking for the block having logical block number equal to
block.

6.

6. Decreases the count field of the page descriptor (it was increased by find_get_page()).
7.

7. Moves all elements in the LRU block cache one position down, and inserts the pointer to the
buffer head of the requested block in the first position. If a buffer head has been dropped out of
the LRU block cache, it decreases its b_count usage counter.

8.

8. Invokes mark_page_accessed() to move the buffer page in the proper LRU list, if necessary
(see the section "The Least Recently Used (LRU) Lists" in Chapter 17).

9.

9. Returns the buffer head pointer.

15.2.6.2. The _ _getblk() function

 The _ _getblk() function receives the same parameters as _ _find_get_block(), namely the address
bdev of a block_device descriptor, the block number block, and the block size size, and returns the
address of a buffer head associated with the buffer. The function never fails: even if the block does not
exist at all, the _ _getblk() obligingly allocates a block device buffer page and returns a pointer to the
buffer head that should describe the block. Notice that the block buffer returned by _ _getblk() does not
necessarily contain valid datathe BH_Uptodate flag of the buffer head might be cleared.

 The _ _getblk() function essentially performs the following steps:
1.

1. Invokes _ _find_get_block() to check whether the block is already in the page cache. If the
block is found, the function returns the address of its buffer head.

2.

2. Otherwise, it invokes grow_buffers() to allocate a new buffer page for the requested block (see
the section "Allocating Block Device Buffer Pages" earlier in this chapter).

3.

3. If grow_buffers() fails in allocating such a page, _ _getblk() tries to reclaim some memory by
invoking free_more_memory() (see Chapter 17).

4.

4. Jumps back to step 1.

15.2.6.3. The _ _bread() function

 The _ _bread() function receives the same parameters as _ _getblk(), namely the address bdev of a
block_device descriptor, the block number block, and the block size size, and returns the address of a
buffer head associated with the buffer. Contrary to _ _getblk(), the function reads the block from disk, if
necessary, before returning the buffer head. The _ _bread() function performs the following steps:

1.

1. Invokes _ _getblk() to find in the page cache the buffer page associated with the required block
and to get a pointer to the corresponding buffer head.

2.

2. If the block is already in the page cache and the buffer contains valid data (flag BH_Uptodate
set), it returns the address of the buffer head.

3.

3. Otherwise, it increases the usage counter of the buffer head.
4.

4. Sets the b_end_io field to the address of end_buffer_read_sync() (see the next section).
5.

5. Invokes submit_bh() to transmit the buffer head to the generic block layer (see next section).
6.

6. Invokes wait_on_buffer() to put the current process in a wait queue until the read I/O operation
is completed, that is, until the BH_Lock flag of the buffer head is cleared.

7.

7. Returns the address of the buffer head.

15.2.7. Submitting Buffer Heads to the Generic Block Layer

 A couple of functions, submit_bh() and ll_rw_block(), allow the kernel to start an I/O data transfer on
one or more buffers described by their buffer heads.

 15.2.7.1. The submit_bh() function

 To transmit a single buffer head to the generic block layer, and thus to require the transfer of a single
block of data, the kernel makes use of the submit_bh() function. Its parameters are the direction of data
transfer (essentially READ or WRITE) and a pointer bh to the buffer head describing the block buffer.

 The submit_bh() function assumes that the buffer head is fully initialized; in particular, the b_bdev,
b_blocknr, and b_size fields must be properly set to identify the block on disk containing the requested
data. If the block buffer belongs to a block device buffer page, the initialization of the buffer head is done
by _ _find_get_block(), as described in the previous section. However, as we will see in the next
chapter, submit_bh() can also be invoked on blocks belonging to buffer pages owned by regular files.

 The submit_bh() function is little else than a glue function that creates a bio request from the contents of
the buffer head and then invokes generic_make_request() (see the section "Submitting a Request" in
Chapter 14). The main steps performed by it are the following:

1.

1. Sets the BH_Req flag of the buffer head to record that the block has been submitted at least one
time; moreover, if the direction of the data transfer is WRITE, clears the BH_Write_EIO flag.

2.

2. Invokes bio_alloc() to allocate a new bio descriptor (see the section "The Bio Structure" in
Chapter 14).

3.

3. Initializes the fields of the bio descriptor according to the contents of the buffer head:
a.

a. Sets the bi_sector field to the number of the first sector in the block (bh->b_blocknr *
bh->b_size / 512);

b.

b. Sets the bi_bdev field with the address of the block device descriptor (bh->b_bdev);
c.

c. Sets the bi_size field with the block size (bh->b_size);
d.

d. Initializes the first element of the bi_io_vec array so that the segment corresponds to the
block buffer: bi_io_vec[0].bv_page is set to bh->b_page, bi_io_vec[0].bv_len is set to
bh->b_size, and bi_io_vec[0].bv_offset is set to the offset of the block buffer in the page as
specified by bh->b_data;

e.

e. Sets bi_vcnt to 1 (just one segment on the bio), and bi_idx to 0 (the current segment to be
transferred);

f.

f. Sets the bi_end_io field to the address of end_bio_bh_io_sync(), and sets the bi_private
field to the address of the buffer head; the function will be invoked when the data transfer
terminates (see below).

4.

4. Increases the reference counter of the bio (it becomes equal to 2).
5.

5. Invokes submit_bio(), which sets the bi_rw flag with the direction of the data transfer, updates
the page_states per-CPU variable to keep track of the number of sectors read and written, and
invokes the generic_make_request() function on the bio descriptor.

6.

6. Decreases the usage counter of the bio; the bio descriptor is not freed, because it is now inserted
in a queue of the I/O scheduler.

7.

7. Returns 0 (success).

When the I/O data transfer on the bio terminates, the kernel executes the bi_end_io method, in this
particular case the end_bio_bh_io_sync() function. The latter function essentially gets the address of the
buffer head from the bi_private field of the bio, then invokes the b_end_io method of the buffer headit
was properly set before invoking submit_bh()and finally invokes bio_put() to destroy the bio structure.

 15.2.7.2. The ll_rw_block() function

 Sometimes the kernel must trigger the data transfer of several data blocks at once, which are not
necessarily physically adjacent. The ll_rw_block() function receives as its parameters the direction of
data transfer (essentially READ or WRITE), the number of blocks to be transferred, and an array of
pointers to buffer heads describing the corresponding block buffers. The function iterates over all buffer
heads; for each of them, it executes the following actions:

1.

1. Tests and sets the BH_Lock flag of the buffer head; if the buffer was already locked, the data
transfer has been activated by another kernel control path, so just skips the buffer by jumping to
step 9.

2.

2. Increases by one the usage counter b_count of the buffer head.
3.

3. If the data transfer direction is WRITE, it sets the b_end_io method of the buffer head to point to
the address of the end_buffer_write_sync() function; otherwise, it sets the b_end_io method to
point to the address of the end_buffer_read_sync() function.

4.

4. If the data transfer direction is WRITE, it tests and clears the BH_Dirty flag of the buffer head. If
the flag was not set, there is no need to write the block on disk, so it jumps to step 7.

5.

5. If the data transfer direction is READ or READA (read-ahead), it checks whether the
BH_Uptodate flag of the buffer head is set; if so, there is no need to read the block from disk, so
it jumps to step 7.

6.

6. Here the block has to be read or written: it invokes the submit_bh() function to pass the buffer
head to the generic block layer, then jumps to step 9.

7.

7. Unlocks the buffer head by clearing the BH_Lock flag, and awakens every process that was
waiting for the block being unlocked.

8.

8. Decreases the b_count field of the buffer head.
9.

9. If there are other buffer heads in the array to be processed, it selects the next one and jumps
back to step 1; otherwise, it terminates.

Notice that if the ll_rw_block() function passes a buffer head to the generic block layer, it leaves the
buffer locked and its reference counter increased, so that the buffer cannot be accessed and cannot be
freed until the data transfer completes. The kernel executes the b_end_io completion method of the
buffer head when the data transfer for the block terminates. Assuming that there was no I/O error, the
end_buffer_write_sync() and end_buffer_read_sync() functions simply set the BH_Uptodate field of the
buffer head, unlock the buffer, and decrease its usage counter.

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.3. Writing Dirty Pages to Disk
 As we have seen, the kernel keeps filling the page cache with pages containing data of block devices.
Whenever a process modifies some data, the corresponding page is marked as dirtythat is, its PG_dirty
flag is set.

 Unix systems allow the deferred writes of dirty pages into block devices, because this noticeably
improves system performance. Several write operations on a page in cache could be satisfied by just one
slow physical update of the corresponding disk sectors. Moreover, write operations are less critical than
read operations, because a process is usually not suspended due to delayed writings, while it is most
often suspended because of delayed reads. Thanks to deferred writes, each physical block device will
service, on the average, many more read requests than write ones.

 A dirty page might stay in main memory until the last possible moment that is, until system shutdown.
However, pushing the delayed-write strategy to its limits has two major drawbacks:



 If a hardware or power supply failure occurs, the contents of RAM can no longer be retrieved,
so many file updates that were made since the system was booted are lost.



 The size of the page cache, and hence of the RAM required to contain it, would have to be
hugeat least as big as the size of the accessed block devices.

 Therefore, dirty pages are flushed (written) to disk under the following conditions:


 The page cache gets too full and more pages are needed, or the number of dirty pages becomes
too large.



 Too much time has elapsed since a page has stayed dirty.


 A process requests all pending changes of a block device or of a particular file to be flushed; it
does this by invoking a sync(), fsync(), or fdatasync() system call (see the section "The sync(),
fsync(), and fdatasync() System Calls" later in this chapter).

 Buffer pages introduce a further complication. The buffer heads associated with each buffer page allow
the kernel to keep track of the status of each individual block buffer. The PG_dirty flag of the buffer page
should be set if at least one of the associated buffer heads has the BH_Dirty flag set. When the kernel
selects a dirty buffer page for flushing, it scans the associated buffer heads and effectively writes to disk
only the contents of the dirty blocks. As soon as the kernel flushes all dirty blocks in a buffer page to
disk, it clears the PG_dirty flag of the page.

 15.3.1. The pdflush Kernel Threads

 Earlier versions of Linux used a kernel thread called bdflush to systematically scan the page cache
looking for dirty pages to flush, and they used a second kernel thread called kupdate to ensure that no
page remains dirty for too long. Linux 2.6 has replaced both of them with a group of general purpose
kernel threads called pdflush.

 These kernel threads have a flexible structure. They act on two parameters: a pointer to a function to be
executed by the thread and a parameter for the function. The number of pdflush kernel threads in the
system is dynamically adjusted: new threads are created when they are too few and existing threads are
killed when they are too many. Because the functions executed by these kernel threads can block,
creating several pdflush kernel threads instead of a single one, leads to better system performance.

 Births and deaths are governed by the following rules:


 There must be at least two pdflush kernel threads and at most eight.


 If there were no idle pdflush during the last second, a new pdflush should be created.


 If more than one second elapsed since the last pdflush became idle, a pdflush should be
removed.

 Each pdflush kernel thread has a pdflush_work descriptor (see Table 15-6). The descriptors of idle
pdflush kernel threads are collected in the pdflush_list list; the pdflush_lock spin lock protects that list
from concurrent accesses in multiprocessor systems. The nr_pdflush_threads variable[*] stores the total
number of pdflush kernel threads (idle and busy). Finally, the last_empty_jifs variable stores the last time
(in jiffies) since the pdflush_list list of pdflush threads became empty.

[*] The value of this variable can be read from the /proc/sys/vm/nr_pdflush_threads file.

 Table 15-6. The fields of the pdflush_work descriptor

Type Field Description

struct task_struct * who Pointer to kernel thread
descriptor

void(*)(unsigned long) fn Callback function to be executed
by the kernel thread

unsigned long arg0 Argument to callback function

struct list head list Links for the pdflush_list list

unsigned long when_i_went_to_sleep Time in jiffies when kernel thread
became available

Each pdflush kernel thread executes the _ _pdflush() function, which essentially loops in an endless cycle
until the kernel thread dies. Let's suppose that the pdflush kernel thread is idle; then, the process is
sleeping in TASK_INTERRUPTIBLE state. As soon as the kernel thread is woken up, _ _pdflush()
accesses its pdflush_work descriptor and executes the callback function stored in the fn field, passing to
it the argument stored in the arg0 field. When the callback function terminates, _ _pdflush() checks the
value of the last_empty_jifs variable: if there was no idle pdflush kernel thread for more than one second
and if there are less than eight pdflush kernel threads, _ _pdflush() starts another kernel thread.
Otherwise, if the last entry in the pdflush_list list is idle for more than one second, and there are more than
two pdflush kernel threads, _ _pdflush() terminates: as explained in the section "Kernel Threads" in
Chapter 3, the corresponding kernel thread executes the _exit() system call and it is thus destroyed.
Otherwise, _ _pdflush() reinserts the pdflush_work descriptor of the kernel thread in the pdflush_list list
and puts the kernel thread to sleep.

 The pdflush_operation() function is used to activate an idle pdflush kernel thread. This function acts on
two parameters: a pointer fn to the function that must be executed and an argument arg0; it performs the
following steps:

1.

1. Extracts from the pdflush_list list a pointer pdf to the pdflush_work descriptor of an idle pdflush
kernel thread. If the list is empty, it returns -1. If the list contained just one element, it sets the
value of the last_empty_jifs variable to jiffies.

2.

2. Stores in pdf->fn and in pdf->arg0 the parameters fn and arg0.
3.

3. Invokes wake_up_process() to wake up the idle pdflush kernel thread, that is, pdf->who.

What kinds of jobs are delegated to the pdflush kernel threads? There are a few of them, all related to
flushing of dirty data. In particular, pdflush usually executes one of the following callback functions:



 background_writeout(): systematically walks the page cache looking for dirty pages to be
flushed (see the next section "Looking for Dirty Pages To Be Flushed").



 wb_kupdate(): checks that no page in the page cache remains dirty for too long (see the section
"Retrieving Old Dirty Pages" later in this chapter).

 15.3.2. Looking for Dirty Pages To Be Flushed

 Every radix tree could include dirty pages to be flushed. Retrieving all of them thus involves an
exhaustive search among all address_space objects associated with inodes having an image on disk.
Because the page cache might include a large number of pages, scanning the whole cache in a single run
might keep the CPU and the disks busy for a long time. Therefore, Linux adopts a sophisticated
mechanism that splits the page cache scanning in several runs of execution.

 The wakeup_bdflush() function receives as argument the number of dirty pages in the page cache that
should be flushed; the value zero means that all dirty pages in the cache should be written back to disk.
The function invokes pdflush_operation() to wake up a pdflush kernel thread (see the previous section)
and delegate to it the execution of the background_writeout() callback function. The latter function
effectively retrieves the specified number of dirty pages from the page cache and writes them back to
disk.

 The wakeup_bdflush() function is executed when either memory is scarce or a user makes an explicit
request for a flush operation. In particular, the function is invoked when:



 The User Mode process issues a sync() system call (see the section "The sync(), fsync(), and
fdatasync() System Calls" later in this chapter).



 The grow_buffers() function fails to allocate a new buffer page (see the earlier section "
Allocating Block Device Buffer Pages").



 The page frame reclaiming algorithm invokes free_more_memory() or TRy_to_free_pages()
(see Chapter 17).



 The mempool_alloc() function fails to allocate a new memory pool element (see the section "
Memory Pools" in Chapter 8).

 Moreover, a pdflush kernel thread executing the background_writeout() callback function is woken up
by every process that modifies the contents of pages in the page cache and causes the fraction of dirty
pages to rise above some dirty background threshold. The background threshold is typically set to 10%
of all pages in the system, but its value can be adjusted by writing in the
/proc/sys/vm/dirty_background_ratio file.

 The background_writeout() function relies on a writeback_control structure, which acts as a two-way
communication device: on one hand, it tells an auxiliary function called writeback_inodes() what to do;
on the other hand, it stores some statistics about the number of pages written to disk. The most important
fields of this structure are the following:

 sync_mode

 Specifies the synchronization mode: WB_SYNC_ALL means that if a locked inode is encountered, it
must be waited upon and not just skipped over; WB_SYNC_HOLD means that locked inodes are put
in a list for later consideration; and WB_SYNC_NONE means that locked inodes are simply skipped.

bdi

 If not NULL, it points to a backing_dev_info structure; in this case, only dirty pages belonging to the
underlying block device will be flushed.

older_than_this

 If not null, it means that inodes younger than the specified value should be skipped.

nr_to_write

 Number of dirty pages yet to be written in this run of execution.

nonblocking

 If this flag is set, the process cannot be blocked.

 The background_writeout() function acts on a single parameter: nr_pages, the minimum number of
pages that should be flushed to disk. It essentially executes the following steps:

1.

1. Reads from the page_state per-CPU variable the number of pages and dirty pages currently
stored in the page cache. If the fraction of dirty pages is below a given threshold and at least
nr_pages have been flushed to disk, the function terminates. The value of this threshold is
typically set to about 40% of the number of pages in the system; it could be adjusted by writing
into the /proc/sys/vm/dirty_ratio file.

2.

2. Invokes writeback_inodes() to try to write 1, 024 dirty pages (see below).
3.

3. Checks the number of pages effectively written and decreases the number of pages yet to be
written.

4.

4. If less than 1,024 pages have been written or if pages have been skipped, probably the request
queue of the block device is congested: the function puts the current process to sleep in a special
wait queue for 100 milliseconds or until the queue becomes uncongested.

5.

5. Goes back to step 1.

The writeback_inodes() function acts on a single parameter, namely a pointer wbc to a
writeback_control descriptor. The nr_to_write field of this descriptor contains the number of pages to be
flushed to disk. When the function returns, the same field contains the number of pages remaining to be
flushed; if everything went smoothly, this field will be set to 0.

 Let us suppose that writeback_inodes() is called with the wbc->bdi and wbc->older_than_this pointers
set to NULL, the WB_SYNC_NONE synchronization mode, and the wbc->nonblocking flag setthese
are the values set by background_writeout(). The function scans the list of superblocks rooted at the
super_blocks variable (see the section "Superblock Objects" in Chapter 12). The scanning ends when
either the whole list has been traversed, or the target number of pages to be flushed has been reached.
For each superblock sb, the function executes the following steps:

1.

1. Checks whether the sb->s_dirty or sb->s_io lists are empty: the first list collects the dirty inodes
of the superblock, while the second list collects the inodes waiting to be transferred to disk (see
below). If both lists are empty, the inodes on this filesystem have no dirty pages, so the function
considers the next superblock in the list.

2.

2. Here the superblock has dirty inodes. Invokes sync_sb_inodes() on the sb superblock. This
function:
a.

a. Puts all the inodes of sb->s_dirty into the list pointed to by sb->s_io and clears the list of
dirty inodes.

b.

b. Gets the next inode pointer from sb->s_io. If this list is empty, it returns.
c.

c. If the inode was dirtied after sync_sb_inodes() started, it skips the inode's dirty pages and
returns. Notice that some dirty inodes might remain in the sb->s_io list.

d.

d. If the current process is a pdflush kernel thread, it checks whether another pdflush kernel
thread running on another CPU is already trying to flush dirty pages for files belonging to this
block device. This can be done by an atomic test and set operation on the BDI_pdflush flag
of the inode's backing_dev_info. Essentially, it is pointless to have more than one pdflush
kernel thread on the same request queue (see the section "The pdflush Kernel Threads"
earlier in this chapter).

e.

e. Increases by one the inode's usage counter.
f.

f. Invokes _ _writeback_single_inode() to write back the dirty buffers associated with the
selected inode:
1.

1. If the inode is locked, it moves inode into the list of dirty inodes (inode->i_sb->s_dirty)
and returns 0. (Since we are assuming that the wbc->sync_mode field is not
WB_SYNC_ALL, the function does not block waiting for the inode to unlock.)

2.

2. Uses the writepages method of the inode's address space, or the mpage_writepages()
function if no such method exists, to write up to wbc->nr_to_write dirty pages. This
function uses the find_get_pages_tag() function to retrieve quickly all dirty pages in the
inode's address space (see the section "The Tags of the Radix Tree" earlier in this
chapter). Details will be given in the next chapter.

3.

3. If the inode is dirty, it uses the superblock's write_inode method to write the inode to
disk. The functions that implement this method usually rely on submit_bh() to transfer a
single block of data (see the section "Submitting Buffer Heads to the Generic Block
Layer" earlier in this chapter).

4.

4. Checks the status of the inode; accordingly, moves the inode back into the sb->s_dirty
list if some page of the inode is still dirty, or in the inode_unused list if the inode's
reference counter is zero, or in the inode_in_use list otherwise (see the section "Inode
Objects" in Chapter 12).

5.

5. Returns the error code of the function invoked in step 2f2.
g.

g. Back into the sync_sb_inodes() function. If the current process is the pdflush kernel thread,
it clears the BDI_pdflush flag set in step 2d.

h.

h. If some pages were skipped in the inode just processed, then the inode includes locked
buffers: moves all inodes remaining in the sb->s_io list back into the sb->s_dirty list: they will
be reconsidered at a later time.

i.

i. Decreases by one the usage counter of the inode.
j.

j. If wbc->nr_to_write is greater than 0, goes back to step 2b to look for other dirty inodes of
the same superblock. Otherwise, the sync_sb_inodes() function terminates.

3.

3. Back into the writeback_inodes() function. If wbc->nr_to_write is greater than zero, it jumps to
step 1 and continues with the next superblock in the global list. Otherwise, it returns.

15.3.3. Retrieving Old Dirty Pages

 As stated earlier, the kernel tries to avoid the risk of starvation that occurs when some pages are not
flushed for a long period of time. Hence, if a page remains dirty for a predefined amount of time, the
kernel explicitly starts an I/O data transfer that writes its contents to disk.

 The job of retrieving old dirty pages is delegated to a pdflush kernel thread that is periodically woken up.
During the kernel initialization, the page_writeback_init() function sets up the wb_timer dynamic timer so
that it decays after dirty_writeback_centisecs hundreds of a second (usually 500, but this value can be
adjusted by writing in the /proc/sys/vm/dirty_writeback_centisecs file). The timer function, which is
called wb_timer_fn(), essentially invokes the pdflush_operation() function passing to it the address of
the wb_kupdate() callback function.

 The wb_kupdate() function walks the page cache looking for "old" dirty inodes; it executes the
following steps:

1.

1. Invokes the sync_supers() function to write the dirty superblocks to disk (see the next section).
Although not strictly related to the flushing of the pages in the page cache, this invocation ensures
that no superblock remains dirty for more than, usually, five seconds.

2.

2. Stores in the older_than_this field of a writeback_control descriptor a pointer to a value in jiffies
corresponding to the current time minus 30 seconds. Thirty seconds is the longest time for which
a page is allowed to remain dirty.

3.

3. Determines from the per-CPU page_state variable the rough number of dirty pages currently in
the page cache.

4.

4. Invokes repeatedly writeback_inodes() until either the number of pages written to disk reaches
the value determined in the previous step, or all pages older than 30 seconds have been written.
During this cycle the function might sleep if some request queue becomes congested.

5.

5. Uses mod_timer() to restart the wb_timer dynamic timer: it will decay once again
dirty_writeback_centisecs hundreds of seconds since the invocation of this function (or one
second since now if this execution lasted too long).

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.4. The sync(), fsync(), and fdatasync() System Calls
 In this section, we examine briefly the three system calls available to user applications to flush dirty
buffers to disk:

 sync()

 Allows a process to flush all dirty buffers to disk

fsync()

 Allows a process to flush all blocks that belong to a specific open file to disk

fdatasync()

 Very similar to fsync(), but doesn't flush the inode block of the file

 15.4.1. The sync () System Call

 The service routine sys_sync() of the sync() system call invokes a series of auxiliary functions:

 wakeup_bdflush(0);

 sync_inodes(0);

 sync_supers();

 sync_filesystems(0);

 sync_filesystems(1);

 sync_inodes(1);

As described in the previous section, wakeup_bdflush() starts a pdflush kernel thread, which flushes to
disk all dirty pages contained in the page cache.

 The sync_inodes() function scans the list of superblocks looking for dirty inodes to be flushed; it acts on
a wait parameter that specifies whether it must wait until flushing has been performed or not. The function
scans the superblocks of all currently mounted filesystems; for each superblock containing dirty inodes,
sync_inodes() first invokes sync_sb_inodes() to flush the corresponding dirty pages (we described this
function earlier in the section "Looking for Dirty Pages To Be Flushed"), then invokes sync_blockdev()
to explicitly flush the dirty buffer pages owned by the block device that includes the superblock. This is
done because the write_inode superblock method of many disk-based filesystems simply marks the
block buffer corresponding to the disk inode as dirty; the sync_blockdev() function makes sure that the
updates made by sync_sb_inodes() are effectively written to disk.

 The sync_supers() function writes the dirty superblocks to disk, if necessary, by using the proper
write_super superblock operations. Finally, the sync_filesystems() executes the sync_fs superblock
method for all writable filesystems. This method is simply a hook offered to a filesystem in case it needs
to perform some peculiar operation at each sync; this method is only used by journaling filesystems such
as Ext3 (see Chapter 18).

 Notice that sync_inodes() and sync_filesystems() are invoked twice, once with the wait parameter
equal to 0 and the second time with the parameter equal to 1. This is done on purpose: first, they quickly
flush to disk the unlocked inodes; next, they wait for each locked inode to become unlocked and finish
writing them one by one.

 15.4.2. The fsync () and fdatasync () System Calls

 The fsync() system call forces the kernel to write to disk all dirty buffers that belong to the file specified
by the fd file descriptor parameter (including the buffer containing its inode, if necessary). The
corresponding service routine derives the address of the file object and then invokes the fsync method.
Usually, this method ends up invoking the _ _writeback_single_inode() function to write back both the
dirty pages associated with the selected inode and the inode itself (see the section "Looking for Dirty
Pages To Be Flushed" earlier in this chapter).

 The fdatasync() system call is very similar to fsync(), but writes to disk only the buffers that contain the
file's data, not those that contain inode information. Because Linux 2.6 does not have a specific file
method for fdatasync(), this system call uses the fsync method and is thus identical to fsync().

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 16. Accessing Files
 Accessing a disk-based file is a complex activity that involves the VFS abstraction layer (Chapter 12),
handling block devices (Chapter 14), and the use of the page cache (Chapter 15). This chapter shows
how the kernel builds on all those facilities to carry out file reads and writes. The topics covered in this
chapter apply both to regular files stored in disk-based filesystems and to block device files; these two
kinds of files will be referred to simply as "files."

 The stage we are working at in this chapter starts after the proper read or write method of a particular
file has been called (as described in Chapter 12). We show here how each read ends with the desired
data delivered to a User Mode process and how each write ends with data marked ready for transfer to
disk. The rest of the transfer is handled by the facilities described in Chapter 14 and Chapter 15.

 There are many different ways to access a file. In this chapter we will consider the following cases:

 Canonical mode

 The file is opened with the O_SYNC and O_DIRECT flags cleared, and its content is accessed by
means of the read() and write() system calls. In this case, the read() system call blocks the calling
process until the data is copied into the User Mode address space (however, the kernel is always
allowed to return fewer bytes than requested!). The write() system call is different, because it terminates
as soon as the data is copied into the page cache (deferred write). This case is covered in the section "
Reading and Writing a File."

Synchronous mode

 The file is opened with the O_SYNC flag setor the flag is set at a later time by the fcntl() system call.
This flag affects only the write operation (read operations are always blocking), which blocks the calling
process until the data is effectively written to disk. The section "Reading and Writing a File" covers this
case, too.

Memory mapping mode

 After opening the file, the application issues an mmap() system call to map the file into memory. As a
result, the file appears as an array of bytes in RAM, and the application accesses directly the array
elements instead of using read() , write(), or lseek(). This case is discussed in the section "Memory
Mapping."

Direct I/O mode

 The file is opened with the O_DIRECT flag set. Any read or write operation transfers data directly from
the User Mode address space to disk, or vice versa, bypassing the page cache. We discuss this case in
the section "Direct I/O Transfers." (The values of the O_SYNC and O_DIRECT flags can be combined
in four meaningful ways.)

Asynchronous mode

 The file is accessedeither through a group of POSIX APIs or by means of Linux-specific system callsin
such a way to perform "asynchronous I/O:" this means the requests for data transfers never block the
calling process; rather, they are carried on "in the background" while the application continues its normal
execution. We discuss this case in the section "Asynchronous I/O."

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.1. Reading and Writing a File
 The section "The read() and write() System Calls" in Chapter 12 described how the read() and write(
) system calls are implemented. The corresponding service routines end up invoking the file object's read
and write methods, which may be filesystem-dependent. For disk-based filesystems, these methods
locate the physical blocks that contain the data being accessed and activate the block device driver to
start the data transfer.

 Reading a file is page-based: the kernel always transfers whole pages of data at once. If a process issues
a read() system call to get a few bytes, and that data is not already in RAM, the kernel allocates a new
page frame, fills the page with the suitable portion of the file, adds the page to the page cache, and finally
copies the requested bytes into the process address space. For most filesystems, reading a page of data
from a file is just a matter of finding what blocks on disk contain the requested data. Once this is done,
the kernel fills the pages by submitting the proper I/O operations to the generic block layer. In practice,
the read method of all disk-based filesystems is implemented by a common function named
generic_file_read().

 Write operations on disk-based files are slightly more complicated to handle, because the file size could
increase, and therefore the kernel might allocate some physical blocks on the disk. Of course, how this is
precisely done depends on the filesystem type. However, many disk-based filesystems implement their
write methods by means of a common function named generic_file_write(). Examples of such filesystems
are Ext2, System V /Coherent /Xenix , and MINIX . On the other hand, several other filesystems, such
as journaling and network filesystems , implement the write method by means of custom functions.

 16.1.1. Reading from a File

 The generic_file_read() function is used to implement the read method for block device files and for
regular files of almost all disk-based filesystems. This function acts on the following parameters:

 filp

 Address of the file object

buf

 Linear address of the User Mode memory area where the characters read from the file must be stored

count

 Number of characters to be read

ppos

 Pointer to a variable that stores the offset from which reading must start (usually the f_pos field of the filp
file object)

 As a first step, the function initializes two descriptors. The first descriptor is stored in the local variable
local_iov of type iovec; it contains the address (buf) and the length (count) of the User Mode buffer that
shall receive the data read from the file. The second descriptor is stored in the local variable kiocb of
type kiocb; it is used to keep track of the completion status of an ongoing synchronous or asynchronous
I/O operation. The main fields of the kiocb descriptor are shown in Table 16-1.

 Table 16-1. The main fields of the kiocb descriptor

Type Field Description

struct list_head ki_run_list Pointers for the list of I/O
operations to be retried later

long ki_flags Flags of the kiocb descriptor

int ki_users Usage counter of the kiocb
descriptor

unsigned int ki_key

Identifier of the asynchronous I/O
operation, or
KIOCB_SYNC_KEY (0xffffffff)
for synchronous I/O operations

struct file * ki_filp
Pointer to the file object
associated with the ongoing I/O
operation

struct kioctx * ki_ctx

Pointer to the asynchronous I/O
context descriptor for this
operation (see the section "
Asynchronous I/O" later in this
chapter)

int (*)

(struct kiocb *,

struct io_event *)

ki_cancel Method invoked when canceling
an asynchronous I/O operation

ssize_t (*)

(struct kiocb *)
ki_retry Method invoked when retrying an

asynchronous I/O operation

void (*)

(struct kiocb *)
ki_dtor Method invoked when destroying

the kiocb descriptor

struct list_head ki_list
Pointers for the list of active
ongoing I/O operation on an
asynchronous I/O context

union ki_obj

For synchronous operations,
pointer to the process descriptor
that issued the I/O operation; for
asynchronous operations, pointer
to the iocb User Mode data
structure

_ _ u64 ki_user_data Value to be returned to the User
Mode process

loff_t ki_pos Current file position of the
ongoing I/O operation

unsigned short ki_opcode Type of operation (read, write, or
sync)

size_t ki_nbytes Number of bytes to be
transferred

char * ki_buf Current position in the User
Mode buffer

size_t ki_left Number of bytes yet to be
transferred

wait_queue_t ki_wait Wait queue used for
asynchronous I/O operations

void * private Freely usable by the filesystem
layer

The generic_file_read() function initializes the kiocb descriptor by executing the init_sync_kiocb macro,
which sets the fields of the object for a synchronous operation. In particular, the macro sets the ki_key
field to KIOCB_SYNC_KEY, the ki_filp field to filp, and the ki_obj field to current.

 Then, generic_file_read() invokes _ _generic_file_aio_read() passing to it the addresses of the iovec
and kiocb descriptors just filled. The latter function returns a value, which is usually the number of bytes
effectively read from the file; generic_file_read() terminates by returning this value.

 The _ _generic_file_aio_read() function is a general-purpose routine used by all filesystems to
implement both synchronous and asynchronous read operations. The function receives four parameters:
the address iocb of a kiocb descriptor, the address iov of an array of iovec descriptors, the length of this
array, and the address ppos of a variable that stores the file's current pointer. When invoked by
generic_file_read(), the array of iovec descriptors is composed of just one element describing the User
Mode buffer that will receive the data.[*]

[*] A variant of the read() system callnamed readv() allows an application to define multiple User Mode
buffers in which the kernel scatters the data read from the file; the _ _generic_file_aio_read() function
handles this case, too. In the following, we will assume that the data read from the file will be copied into
just one User Mode buffer; however, guessing the additional steps to be performed when using multiple
buffers is straightforward.

 We now explain the actions of the _ _generic_file_aio_read() function; for the sake of simplicity, we
restrict the description to the most common case: a synchronous operation raised by a read() system call
on a page-cached file. Later in this chapter we describe how this function behaves in other cases. As
usual, we do not discuss how errors and anomalous conditions are handled.

 Here are the steps performed by the function:
1.

1. Invokes access_ok() to verify that the User Mode buffer described by the iovec descriptor is
valid. Because the starting address and length have been received from the sys_read() service
routine, they must be checked before using them (see the section "Verifying the Parameters" in
Chapter 10). If the parameters are not valid, returns the -EFAULT error code.

2.

2. Sets up a read operation descriptor namely, a data structure of type read_descriptor_t that
stores the current status of the ongoing file read operation relative to a single User Mode buffer.
The fields of this descriptor are shown in Table 16-2.

3.

3. Invokes do_generic_file_read(), passing to it the file object pointer filp, the pointer to the file
offset ppos, the address of the just allocated read operation descriptor, and the address of the
file_read_actor() function (see later).

4.

4. Returns the number of bytes copied into the User Mode buffer; that is, the value found in the
written field of the read_descriptor_t data structure.

Table 16-2. The fields of the read operation descriptor

Type Field Description

size_t written How many bytes have been
copied into the User Mode buffer

size_t count How many bytes are yet to be
transferred

char * arg.buf Current position in the User
Mode buffer

int error Error code of the read operation
(0 for no error)

The do_generic_file_read() function reads the requested pages from disk and copies them into the User
Mode buffer. In particular, the function performs the following actions:

1.

1. Gets the address_space object corresponding to the file being read; its address is stored in
filp->f_mapping.

2.

2. Gets the owner of the address_space object, that is, the inode object that will own the pages to
be filled with file's data; its address is stored in the host field of the address_space object. If the
file being read is a block device file, the owner is an inode in the bdev special filesystem rather
than the inode pointed to by filp->f_dentry->d_inode (see "The address_space Object" in
Chapter 15).

3.

3. Considers the file as subdivided in pages of data (4,096 bytes per page). The function derives
from the file pointer *ppos the logical number of the page that includes the first requested
bytethat is, the page's index in the address spaceand stores it in the index local variable. The
function also stores in the offset local variable the displacement inside the page of the first
requested byte.

4.

4. Starts a cycle to read all pages that include the requested bytes; the number of bytes to be read is
stored in the count field of the read_descriptor_t descriptor. During a single iteration, the function
transfers a page of data by performing the following substeps:
a.

a. If index*4096+offset exceeds the file size stored in the i_size field of the inode object, it exits
from the cycle and goes to step 5.

b.

b. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current process
and, if the flag is set, to invoke the schedule() function.

c.

c. If additional pages must be read in advance, it invokes page_cache_readahead() to read
them. We defer discussing read-ahead until the later section "Read-Ahead of Files."

d.

d. Invokes find_get_page() passing as parameters a pointer to the address_space object and
the value of index; the function looks up the page cache to find the descriptor of the page that
stores the requested data, if any.

e.

e. If find_get_page() returned a NULL pointer, the page requested is not in the page cache. In
that case, it performs the following actions:
1.

1. Invokes handle_ra_miss() to tune the parameters used by the read-ahead system.
2.

2. Allocates a new page.
3.

3. Inserts the descriptor of the new page into the page cache by invoking
add_to_page_cache(). Remember that this function sets the PG_locked flag of the new
page.

4.

4. Inserts the descriptor of the new page into the LRU list by invoking lru_cache_add()
(see Chapter 17).

5.

5. Jumps to step 4j to start reading the file's data.
f.

f. If the function has reached this point, the page is in the page cache. Checks the PG_uptodate
flag; if it is set, the data stored in the page is up-to-date, hence there is no need to read it
from disk: jumps to step 4m.

g.

g. The data on the page is not valid, so it must be read from disk. The function gains exclusive
access to the page by invoking the lock_page() function. As described in the section "Page
Cache Handling Functions" in Chapter 15, lock_page() suspends the current process if the
PG_locked flag is already set, until that bit is cleared.

h.

h. Now the page is locked by the current process. However, another process might have
removed the page from the page cache right before the previous step; hence, it checks
whether the mapping field of the page descriptor is NULL; in this case, it unlocks the page
by invoking unlock_page(), decreases its usage counter (it was increased by find_get_page(
)), and jumps back to step 4a starting over with the same page.

i.

i. If the function has reached this point, the page is locked and still present in the page cache.
Checks the PG_uptodate flag again, because another kernel control path could have
completed the necessary read between steps 4f and 4g. If the flag is set, it invokes
unlock_page() and jumps to step 4m to skip the read operation.

j.

j. Now the actual I/O operation can be started. Invokes the readpage method of the
address_space object of the file. The corresponding function takes care of activating the I/O
data transfer from the disk to the page. We discuss later what this function does for regular
files and block device files.

k.

k. If the PG_uptodate flag is still cleared, it waits until the page has been effectively read by
invoking the lock_page() function. The page, which was locked in step 4g, will be unlocked
as soon as the read operation finishes. Therefore, the current process sleeps until the I/O
data transfer terminates.

l.

l. If index exceeds the file size in pages (this number is obtained by dividing the value of the
i_size field of the inode object by 4,096), it decreases the page's usage counter, and exits
from the cycle jumping to step 5. This case occurs when the file being read is concurrently
truncated by another process.

m.

m. Stores in the nr local variable the number of bytes in the page that should be copied into the
User Mode buffer. This value is equal to the page size (4,096 bytes) unless either offset is not
zerothis can happen only for the first or last page of requested dataor the file does not contain
all requested bytes.

n.

n. Invokes mark_page_accessed() to set the PG_referenced or the PG_active flag, hence
denoting the fact that the page is being used and should not be swapped out (see Chapter 17
). If the same page (or part thereof) is read several times in successive executions of
do_generic_file_read(), this step is executed only during the first read.

o.

o. Now it is time to copy the data on the page into the User Mode buffer. To do this,
do_generic_file_read() invokes the file_read_actor() function, whose address has been
passed as a parameter. In turn, file_read_actor() essentially executes the following steps:
1.

1. Invokes kmap(), which establishes a permanent kernel mapping for the page if it is in
high memory (see the section "Kernel Mappings of High-Memory Page Frames" in
Chapter 8).

2.

2. Invokes _ _copy_to_user(), which copies the data on the page in the User Mode
address space (see the section "Accessing the Process Address Space" in Chapter 10).
Notice that this operation might block the process because of page faults while accessing
the User Mode address space.

3.

3. Invokes kunmap() to release any permanent kernel mapping of the page.
4.

4. Updates the count, written, and buf fields of the read_descriptor_t descriptor.
p.

p. Updates the index and offset local variables according to the number of bytes effectively
transferred in the User Mode buffer. Typically, if the last byte in the page has been copied
into the User Mode buffer, index is increased by one and offset is set to zero; otherwise,
index is not increased and offset is set to the number of bytes in the page that have been
copied into the User Mode buffer.

q.

q. Decreases the page descriptor usage counter.
r.

r. If the count field of the read_descriptor_t descriptor is not zero, there is other data to be
read from the file: jumps to step 4a to continue the loop with the next page of data in the file.

5.

5. All requestedor availablebytes have been read. The function updates the filp->f_ra read-ahead
data structure to record the fact that data is being read sequentially from the file (see the later
section "Read-Ahead of Files").

6.

6. Assigns to *ppos the value index*4096+offset, thus storing the next position where a sequential
access is to occur for a future invocation of the read() and write() system calls.

7.

7. Invokes update_atime() to store the current time in the i_atime field of the file's inode and to
mark the inode as dirty, and returns.

16.1.1.1. The readpage method for regular files

 As we saw, the readpage method is used repeatedly by do_generic_file_read() to read individual pages
from disk into memory.

 The readpage method of the address_space object stores the address of the function that effectively
activates the I/O data transfer from the physical disk to the page cache. For regular files, this field
typically points to a wrapper that invokes the mpage_readpage() function. For instance, the readpage
method of the Ext3 filesystem is implemented by the following function:

int ext3_readpage(struct file *file, struct page *page)

{

 return mpage_readpage(page, ext3_get_block);

}

The wrapper is needed because the mpage_readpage() function receives as its parameters the
descriptor page of the page to be filled and the address get_block of a function that helps
mpage_readpage() find the right block. The wrapper is filesystem-specific and can therefore supply the
proper function to get a block. This function translates the block numbers relative to the beginning of the
file into logical block numbers relative to positions of the block in the disk partition (for an example, see
Chapter 18). Of course, the latter parameter depends on the type of filesystem to which the regular file
belongs; in the previous example, the parameter is the address of the ext3_get_block() function. The
function passed as get_block always uses a buffer head to store precious information about the block
device (b_dev field), the position of the requested data on the device (b_blocknr field), and the block
status (b_state field).

 The mpage_readpage() function chooses between two different strategies when reading a page from
disk. If the blocks that contain the requested data are contiguously located on disk, then the function
submits the read I/O operation to the generic block layer by using a single bio descriptor. In the opposite
case, each block in the page is read by using a different bio descriptor. The filesystem-dependent
get_block function plays the crucial role of determining whether the next block in the file is also the next
block on the disk.

 Specifically, mpage_readpage() performs the following steps:
1.

1. Checks the PG_private field of the page descriptor: if it is set, the page is a buffer page, that is,
the page is associated with a list of buffer heads describing the blocks that compose the page
(see the section "Storing Blocks in the Page Cache" in Chapter 15). This means that the page has
already been read from disk in the past, and that the blocks in the page are not adjacent on disk:
jumps to step 11 to read the page one block at a time.

2.

2. Retrieves the block size (stored in the page->mapping->host->i_blkbits inode field), and
computes two values required to access all blocks on that page: the number of blocks stored in
the page and the file block number of the first block in the pagethat is, the index of the first block
in the page relative to the beginning of the file.

3.

3. For each block in the page, invokes the filesystem-dependent get_block function passed as a
parameter to get the logical block number, that is, the index of the block relative to the beginning
of the disk or partition. The logical block numbers of all blocks in the page are stored in a local
array.

4.

4. Checks for any anomalous condition that could occur while executing the previous step. In
particular, if some blocks are not adjacent on disk, or some block falls inside a "file hole" (see the
section "File Holes" in Chapter 18), or a block buffer has been already filled by the get_block
function, then jumps to step 11 to read the page one block at a time.

5.

5. If the function has reached this point, all blocks on the page are adjacent on disk. However, the
page could be the last page of data in the file, hence some of the blocks in the page might not
have an image on disk. If so, it fills the corresponding block buffers in the page with zeros;
otherwise, it sets the PG_mappedtodisk flag of the page descriptor.

6.

6. Invokes bio_alloc() to allocate a new bio descriptor consisting of a single segment and to
initialize its bi_bdev and bi_sector fields with the address of the block device descriptor and the
logical block number of the first block in the page, respectively. Both pieces of information have
been determined in step 3 above.

7.

7. Sets the bio_vec descriptor of the bio's segment with the initial address of the page, the offset of
the first byte to be read (zero), and the total number of bytes to be read.

8.

8. Stores the address of the mpage_end_io_read() function in the bio->bi_end_io field (see
below).

9.

9. Invokes submit_bio(), which sets the bi_rw flag with the direction of the data transfer, updates
the page_states per-CPU variable to keep track of the number of read sectors, and invokes the
generic_make_request() function on the bio descriptor (see the section "Issuing a Request to the
I/O Scheduler" in Chapter 14).

10.

10.Returns the value zero (success).
11.

11. If the function jumps here, the page contains blocks that are not adjacent on disk. If the page is
up-to-date (PG_uptodate flag set), the function invokes unlock_page() to unlock the page;
otherwise, it invokes block_read_full_page() to start reading the page one block at a time (see
below).

12.

12.Returns the value zero (success).

The mpage_end_io_read() function is the completion method of the bio; it is executed as soon as the I/O
data transfer terminates. Assuming that there was no I/O error, the function essentially sets the
PG_uptodate flag of the page descriptor, invokes unlock_page() to unlock the page and to wake up any
process sleeping for this event, and invokes bio_put() to destroy the bio descriptor.

 16.1.1.2. The readpage method for block device files

 In the sections "VFS Handling of Device Files" in Chapter 13 and "Opening a Block Device File" in
Chapter 14, we discussed how the kernel handles requests to open a block device file. We saw how the
init_special_inode() function sets up the device inode and how the blkdev_open() function completes
the opening phase.

 Block devices use an address_space object that is stored in the i_data field of the corresponding block
device inode in the bdev special filesystem. Unlike regular files whose readpage method in the
address_space object depends on the filesystem type to which the file belongs the readpage method of
block device files is always the same. It is implemented by the blkdev_readpage() function, which calls
block_read_full_page():

int blkdev_readpage(struct file * file, struct * page page)

{

 return block_read_full_page(page, blkdev_get_block);

}

As you can see, the function is once again a wrapper, this time for the block_read_full_page() function.
This time the second parameter points to a function that translates the file block number relative to the
beginning of the file into a logical block number relative to the beginning of the block device. For block
device files, however, the two numbers coincide; therefore, the blkdev_get_block() function performs
the following steps:

1.

1. Checks whether the number of the first block in the page exceeds the index of the last block in
the block device (this index is obtained by dividing the size of the block device stored in
bdev->bd_inode->i_size by the block size stored in bdev->bd_block_size; bdev points to the
descriptor of the block device). If so, it returns -EIO for a write operation, or zero for a read
operation. (Reading beyond the end of a block device is not allowed, either, but the error code
should not be returned here: the kernel could just be trying to dispatch a read request for the last
data of a block device, and the corresponding buffer page is only partially mapped.)

2.

2. Sets the b_dev field of the buffer head to bdev.
3.

3. Sets the b_blocknr field of the buffer head to the file block number, which was passed as a
parameter of the function.

4.

4. Sets the BH_Mapped flag of the buffer head to state that the b_dev and b_blocknr fields of the
buffer head are significant.

The block_read_full_page() function reads a page of data one block at a time. As we have seen, it is
used both when reading block device files and when reading pages of regular files whose blocks are not
adjacent on disk. It performs the following steps:

1.

1. Checks the PG_private flag of the page descriptor; if it is set, the page is associated with a list of
buffer heads describing the blocks that compose the page (see the section "Storing Blocks in the
Page Cache" in Chapter 15). Otherwise, the function invokes create_empty_buffers() to allocate
buffer heads for all block buffers included in the page. The address of the buffer head for the first
buffer in the page is stored in the page->private field. The b_this_page field of each buffer head
points to the buffer head of the next buffer in the page.

2.

2. Derives from the file offset relative to the page (page->index field) the file block number of the
first block in the page.

3.

3. For each buffer head of the buffers in the page, it performs the following substeps:
a.

a. If the BH_Uptodate flag is set, it skips the buffer and continues with the next buffer in the
page.

b.

b. If the BH_Mapped flag is not set and the block is not beyond the end of the file, it invokes
the filesystem-dependent get_block function whose address has been passed as a parameter.
For a regular file, the function looks in the on-disk data structures of the filesystem and finds
the logical block number of the buffer relative to the beginning of the disk or partition.
Conversely, for a block device file, the function regards the file block number as the logical
block number. In both cases the function stores the logical block number in the b_blocknr
field of the corresponding buffer head and sets the BH_Mapped flag.[*]

b. [*] When accessing a regular file, the get_block function might not find the block if it falls in a
"file hole" (see the section "File Holes" in Chapter 18). In this case, the function fills the block
buffer with zeros and sets the BH_Uptodate flag of the buffer head.

c.

c. Tests again the BH_Uptodate flag because the filesystem-dependent get_block function
could have triggered a block I/O operation that updated the buffer. If BH_Uptodate is set, it
continues with the next buffer in the page.

d.

d. Stores the address of the buffer head in arr local array, and continues with the next buffer in
the page.

4.

4. If no file hole has been encountered in the previous step, the function sets the PG_mappedtodisk
flag of the page.

5.

5. Now the arr local array stores the addresses of the buffer heads that correspond to the buffers
whose content is not up-to-date. If this array is empty, all buffers in the page are valid. So the
function sets the PG_uptodate flag of the page descriptor, unlocks the page by invoking
unlock_page(), and returns.

6.

6. The arr local array is not empty. For each buffer head in the array, block_read_full_page()
performs the following substeps:
a.

a. Sets the BH_Lock flag. If the flag was already set, the function waits until the buffer is
released.

b.

b. Sets the b_end_io field of the buffer head to the address of the end_buffer_async_read()
function (see below) and sets the BH_Async_Read flag of the buffer head.

7.

7. For each buffer head in the arr local array, it invokes the submit_bh() function on it, specifying
the operation type READ. As we saw earlier, this function triggers the I/O data transfer of the
corresponding block.

8.

8. Returns 0.

The end_buffer_async_read() function is the completion method of the buffer head; it is executed as
soon as the I/O data transfer on the block buffer terminates. Assuming that there was no I/O error, the
function sets the BH_Uptodate flag of the buffer head and clears the BH_Async_Read flag. Then, the
function gets the descriptor of the buffer page containing the block buffer (its address is stored in the
b_page field of the buffer head) and checks whether all blocks in the page are up-to-date; if so, the
function sets the PG_uptodate flag of the page and invokes unlock_page().

 16.1.2. Read-Ahead of Files

 Many disk accesses are sequential. As we will see in Chapter 18, regular files are stored on disk in large
groups of adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads.
When a program reads or copies a file, it often accesses it sequentially, from the first byte to the last one.
Therefore, many adjacent sectors on disk are likely to be fetched when handling a series of a process's
read requests on the same file.

 Read-ahead consists of reading several adjacent pages of data of a regular file or block device file
before they are actually requested. In most cases, read-ahead significantly enhances disk performance,
because it lets the disk controller handle fewer commands, each of which refers to a larger chunk of
adjacent sectors. Moreover, it improves system responsiveness. A process that is sequentially reading a
file does not usually have to wait for the requested data because it is already available in RAM.

 However, read-ahead is of no use when an application performs random accesses to files; in this case, it
is actually detrimental because it tends to waste space in the page cache with useless information.
Therefore, the kernel reducesor stopsread-ahead when it determines that the most recently issued I/O
access is not sequential to the previous one.

 Read-ahead of files requires a sophisticated algorithm for several reasons:


 Because data is read page by page, the read-ahead algorithm does not have to consider the
offsets inside the page, but only the positions of the accessed pages inside the file.



 Read-ahead may be gradually increased as long as the process keeps accessing the file
sequentially.



 Read-ahead must be scaled down or even disabled when the current access is not sequential
with respect to the previous one (random access).



 Read-ahead should be stopped when a process keeps accessing the same pages over and over
again (only a small portion of the file is being used), or when almost all pages of the file are
already in the page cache.



 The low-level I/O device driver should be activated at the proper time, so that the future pages
will have been transferred when the process needs them.

 The kernel considers a file access as sequential with respect to the previous file access if the first page
requested is the page following the last page requested in the previous access.

 While accessing a given file, the read-ahead algorithm makes use of two sets of pages, each of which
corresponds to a contiguous portion of the file. These two sets are called the current window and the
ahead window .

 The current window consists of pages requested by the process or read in advance by the kernel and
included in the page cache. (A page in the current window is not necessarily up-to-date, because its I/O
data transfer could be still in progress.) The current window contains both the last pages sequentially
accessed by the process and possibly some of the pages that have been read in advance by the kernel
but that have not yet been requested by the process.

 The ahead window consists of pagesfollowing the ones in the current windowthat are being currently
being read in advance by the kernel. No page in the ahead window has yet been requested by the
process, but the kernel assumes that sooner or later the process will request them.

 When the kernel recognizes a sequential access and the initial page belongs to the current window, it
checks whether the ahead window has already been set up. If not, the kernel creates a new ahead
window and triggers the read operations for the corresponding pages. In the ideal case, the process still
requests pages from the current window while the pages in the ahead window are being transferred.
When the process requests a page included in the ahead window, the ahead window becomes the new
current window.

 The main data structure used by the read-ahead algorithm is the file_ra_state descriptor whose fields are
listed in Table 16-3. Each file object includes such a descriptor in its f_ra field.

 Table 16-3. The fields of the file_ra_state descriptor

Type Field Description

unsigned long start Index of first page in the current
window

unsigned long size

Number of pages included in the
current window (-1 for
read-ahead temporarily disabled,
0 for empty current window)

unsigned long flags Flags used to control the
read-ahead

unsigned long cache_hit
Number of consecutive cache hits
(pages requested by the process
and found in the page cache)

unsigned long prev_page Index of the last page requested
by the process

unsigned long ahead_start Index of the first page in the
ahead window

unsigned long ahead_size
Number of pages in the ahead
window (0 for an empty ahead
window)

unsigned long ra_pages

Maximum size in pages of a
read-ahead window (0 for
read-ahead permanently
disabled)

unsigned long mmap_hit Read-ahead hit counter (used for
memory mapped files)

unsigned long mmap_miss Read-ahead miss counter (used
for memory mapped files)

When a file is opened, all the fields of its file_ra_state descriptor are set to zero except the prev_page
and ra_pages fields.

 The prev_page field stores the index of the last page requested by the process in the previous read
operation; initially, the field contains the value -1.

 The ra_pages field represents the maximum size in pages for the current window, that is, the maximum
read-ahead allowed for the file. The initial (default) value for this field is stored in the backing_dev_info
descriptor of the block device that includes the file (see the section "Request Queue Descriptors" in
Chapter 14). An application can tune the read-ahead algorithm for a given opened file by modifying the
ra_pages field; this can be done by invoking the posix_fadvise() system call, passing to it the commands
POSIX_FADV_NORMAL (set read-ahead maximum size to default, usually 32 pages),
POSIX_FADV_SEQUENTIAL (set read-ahead maximum size to two times the default), and
POSIX_FADV_RANDOM (set read-ahead maximum size to zero, thus permanently disabling
read-ahead).

 The flags field contains two flags called RA_FLAG_MISS and RA_FLAG_INCACHE that play an
important role. The first flag is set when a page that has been read in advance is not found in the page
cache (likely because it has been reclaimed by the kernel in order to free memory; see Chapter 17): in
this case, the size of the next ahead window to be created is somewhat reduced. The second flag is set
when the kernel determines that the last 256 pages requested by the process have all been found in the
page cache (the value of consecutive cache hits is stored in the ra->cache_hit field). In this case,
read-ahead is turned off because the kernel assumes that all the pages required by the process are
already in the cache.

 When is the read-ahead algorithm executed? This happens in the following cases:


 When the kernel handles a User Mode request to read pages of file data; this event triggers the
invocation of the page_cache_readahead() function (see step 4c in the description of the
do_generic_file_read() function in the section "Reading from a File" earlier in this chapter).



 When the kernel allocates a page for a file memory mapping (see the filemap_nopage() function
in the section "Demand Paging for Memory Mapping" later in this chapter, which again invokes
the page_cache_readahead() function).



 When a User Mode application executes the readahead() system call, which explicitly triggers
some read-ahead activity on a file descriptor.



 When a User Mode application executes the posix_fadvise() system call with the
POSIX_FADV_NOREUSE or POSIX_FADV_WILLNEED commands, which inform the
kernel that a given range of file pages will be accessed in the near future.



 When a User Mode application executes the madvise() system call with the
MADV_WILLNEED command, which informs the kernel that a given range of pages in a file
memory mapping region will be accessed in the near future.

 16.1.2.1. The page_cache_readahead() function

 The page_cache_readahead() function takes care of all read-ahead operations that are not explicitly
triggered by ad-hoc system calls. It replenishes the current and ahead windows, updating their sizes
according to the number of read-ahead hits, that is, according to how successful the read-ahead strategy
was in the past accesses to the file.

 The function is invoked when the kernel must satisfy a read request for one or more pages of a file, and
acts on five parameters:

 mapping

 Pointer to the address_space object that describes the owner of the page

ra

 Pointer to the file_ra_state descriptor of the file containing the page

filp

 Address of the file object

offset

 Offset of the page within the file

req_size

 Number of pages yet to be read to complete the current read operation[*]

[*] Actually, if the read operation involves a number of pages larger than the maximum size of the
read-ahead window, the page_cache_readahead() function is invoked several times. Thus, the req_size
parameter might be smaller than the number of pages yet to be read to complete the read operation.

 Figure 16-1 shows the flow diagram of page_cache_readahead(). The function essentially acts on the
fields of the file_ra_state descriptor; thus, although the description of the actions in the flow diagram is
quite informal, you can easily determine the actual steps performed by the function. For instance, in order
to check whether the requested page is the same as the page previously read, the function checks
whether the values of the ra->prev_page field and of the offset parameter coincide (see Table 16-3
earlier).

 When the process accesses the file for the first time and the first requested page is the page at offset zero
in the file, the function assumes that the process will perform sequential accesses. Thus, the function
creates a new current window starting from the first page. The length of the initial current windowalways
a power of twois somewhat related to the number of pages requested by the process in the first read
operation: the higher the number of requested pages, the larger the current window, up to the maximum
value stored in the ra->ra_pages field. Conversely, when the process accesses the file for the first time
but the first requested page is not at offset zero, the function assumes that the process will not perform
sequential accesses. Thus, the function temporarily disables read-ahead (ra->size field is set to -1).
However, a new current window is created when the function recognizes a sequential access while
read-ahead is temporarily disabled.

 If the ahead window does not already exist, it is created as soon as the function recognizes that the
process has performed a sequential access in the current window. The ahead window always starts from
the page following the last page of the current window. Its length, however, is related to the length of the
current window as follows: if the RA_FLAG_MISS flag is set, the length of the ahead window is the
length of the current window minus 2, or four pages if the result is less than four; otherwise, the length of
the ahead window is either four times or two times the length of the current window. If the process
continues to access the file in a sequential way, eventually the ahead window becomes the new current
window, and a new ahead window is created. Thus, read-ahead is aggressively enhanced if the process
reads the file sequentially.

 As soon as the function recognizes a file access that is not sequential with respect to the previous one,
the current and ahead windows are cleared (emptied) and the read-ahead is temporarily disabled.
Read-ahead is restarted from scratch as soon as the process performs a read operation that is sequential
with respect to the previous file access.

 Figure 16-1. The flow diagram of the page_cache_readahead() function

 Every time page_cache_readahead() creates a new window, it starts the read operations for the
included pages. In order to read a chunk of pages, page_cache_readahead() invokes the
blockable_page_cache_readahead() function. To reduce kernel overhead, the latter function adopts the
following clever features:



 No reading is performed if the request queue that services the block device is read-congested (it
does not make sense to increase congestion and block read-ahead).



 The page cache is checked against each page to be read; if the page is already in the page cache,
it is simply skipped over.



 All the page frames needed by the read request are allocated at once before performing the read
from disk. If not all page frames can be obtained, the read-ahead operation is performed only on
the available pages. Again, there is little sense in deferring read-ahead until all page frames
become available.



 Whenever possible, the read operations are submitted to the generic block layer by using
multi-segment bio descriptors (see the section "Segments" in Chapter 14). This is done by the
specialized readpages method of the address_space object, if defined; otherwise, it is done by
repeatedly invoking the readpage method. The readpage method is described in the earlier
section "Reading from a File" for the single-segment case only, but it is easy to adapt the
description for the multi-segment case.

 16.1.2.2. The handle_ra_miss() function

 In some cases, the kernel must correct the read-ahead parameters, because the read-ahead strategy
does not seem very effective. Let us consider the do_generic_file_read() function described in the
section "Reading from a File" earlier in this chapter. The page_cache_readahead() function is invoked in
step 4c. The flow diagram in Figure 16-1 depicts two cases: either the requested page is in the current
window or in the ahead window, hence it should have been read in advance, or it is not, and the function
invokes blockable_page_cache_readahead() to read it. In both cases, do_generic_file_read() should
find the page in the page cache in step 4d. If it is not found, this means that the page frame reclaiming
algorithm has removed the page from the cache. In this case, do_generic_file_read() invokes the
handle_ra_miss() function, which tunes the read-ahead algorithm by setting the RA_FLAG_MISS flag
and by clearing the RA_FLAG_INCACHE flag.

 16.1.3. Writing to a File

 Recall that the write() system call involves moving data from the User Mode address space of the
calling process into the kernel data structures, and then to disk. The write method of the file object
permits each filesystem type to define a specialized write operation. In Linux 2.6, the write method of
each disk-based filesystem is a procedure that basically identifies the disk blocks involved in the write
operation, copies the data from the User Mode address space into some pages belonging to the page
cache, and marks the buffers in those pages as dirty.

 Many filesystems (including Ext2 or JFS) implement the write method of the file object by means of the
generic_file_write() function, which acts on the following parameters:

 file

 File object pointer

buf

 Address in the User Mode address space where the characters to be written into the file must be
fetched

count

 Number of characters to be written

ppos

 Address of a variable storing the file offset from which writing must start

 The function performs the following steps:
1.

1. Initializes a local variable of type iovec containing the address and length of the User Mode
buffer (see also the description of the generic_file_read() function in the section "Reading from a
File" earlier in this chapter).

2.

2. Determines the address inode of the inode object that corresponds to the file to be written
(file->f_mapping->host) and acquires the semaphore inode->i_sem. Thanks to this semaphore,
only one process at a time can issue a write() system call on the file.

3.

3. Invokes the init_sync_kiocb macro to initialize a local variable of type kiocb. As explained in the
section "Reading from a File" earlier in this chapter, the macro sets the ki_key field to
KIOCB_SYNC_KEY (synchronous I/O operation), the ki_filp field to file, and the ki_obj field
to current.

4.

4. Invokes _ _generic_file_aio_write_nolock() (see below) to mark the affected pages as dirty,
passing the address of the local variables of type iovec and kiocb, the number of segments for the
User Mode bufferonly one in this caseand the parameter ppos.

5.

5. Releases the inode->i_sem semaphore.
6.

6. Checks the O_SYNC flag of the file, the S_SYNC flag of the inode, and the
MS_SYNCHRONOUS flag of the superblock; if at least one of them is set, it invokes the
sync_page_range() function to force the kernel to flush all pages in the page cache that have
been touched in step 4, blocking the current process until the I/O data transfers terminate. In
turn, sync_page_range() executes either the writepages method of the address_space object, if
defined, or the mpage_writepages() function (see the section "Writing Dirty Pages to Disk" later
in this chapter) to start the I/O transfers for the dirty pages; then, it invokes generic_osync_inode(
) to flush to disk the inode and the associated buffers, and finally invokes wait_on_page_bit() to
suspend the current process until all PG_writeback bits of the flushed pages are cleared.

7.

7. Returns the code returned by _ _generic_file_aio_write_nolock(), usually the number of bytes
effectively written.

The _ _generic_file_aio_write_nolock() function receives four parameters: the address iocb of a kiocb
descriptor, the address iov of an array of iovec descriptors, the length of this array, and the address ppos
of a variable that stores the file's current pointer. When invoked by generic_file_write(), the array of
iovec descriptors is composed of just one element describing the User Mode buffer that contains the data
to be written.[*]

[*] A variant of the write() system callnamed writev() allows an application to define multiple User
Mode buffers from which the kernel fetches the data to be written on the file; the
generic_file_aio_write_nolock() function handles this case too. In the following pages, we will assume
that the data will be fetched from just one User Mode buffer; however, guessing the additional steps to
be performed when using multiple buffers is straightforward.

 We now explain the actions of the _ _generic_file_aio_write_nolock() function; for the sake of
simplicity, we restrict the description to the most common case: a common mode operation raised by a
write() system call on a page-cached file. Later in this chapter we describe how this function behaves in
other cases. As usual, we do not discuss how errors and anomalous conditions are handled.

 The function executes the following steps:
1.

1. Invokes access_ok() to verify that the User Mode buffer described by the iovec descriptor is
valid (the starting address and length have been received from the sys_write() service routine,
thus they must be checked before using them; see the section "Verifying the Parameters" in
Chapter 10). If the parameters are not valid, it returns the -EFAULT error code.

2.

2. Determines the address inode of the inode object that corresponds to the file to be written
(file->f_mapping->host). Remember that if the file is a block device file, this is an inode in the
bdev special filesystem (see Chapter 14).

3.

3. Sets current->backing_dev_info to the address of the backing_dev_info descriptor of the file
(file->f_mapping->backing_dev_info). Essentially, this setting allows the current process to write
back the dirty pages owned by file->f_mapping even if the corresponding request queue is
congested; see Chapter 17.

4.

4. If the O_APPEND flag of file->flags is on and the file is regular (not a block device file), it sets
*ppos to the end of the file so that all new data is appended to it.

5.

5. Performs several checks on the size of the file. For instance, the write operation must not enlarge
a regular file so much as to exceed the per-user limit stored in
current->signal->rlim[RLIMIT_FSIZE] (see the section "Process Resource Limits" in Chapter 3)
and the filesystem limit stored in inode->i_sb->s_maxbytes. Moreover, if the file is not a "large
file" (flag O_LARGEFILE of file->f_flags cleared), its size cannot exceed 2 GB. If any of these
constraints is not enforced, it reduces the number of bytes to be written.

6.

6. If set, it clears the suid flag of the file; also clears the sgid flag if the file is executable (see the
section "Access Rights and File Mode" in Chapter 1). We don't want users to be able to modify
setuid files.

7.

7. Stores the current time of day in the inode->mtime field (the time of last file write operation) and
in the inode->ctime field (the time of last inode change), and marks the inode object as dirty.

8.

8. Starts a cycle to update all the pages of the file involved in the write operation. During each
iteration, it performs the following substeps:
a.

a. Invokes find_lock_page() to search the page in the page cache (see the section "Page
Cache Handling Functions" in Chapter 15). If this function finds the page, it increases its
usage counter and sets its PG_locked flag.

b.

b. If the page is not in the page cache, it allocates a new page frame and invokes
add_to_page_cache() to insert the page into the page cache; as explained in the section "
Page Cache Handling Functions" in Chapter 15, this function also increases the usage counter
and sets the PG_locked flag. Moreover, the function inserts the new page into the inactive list
of the memory zone (see Chapter 17).

c.

c. Invokes the prepare_write method of the address_space object of the inode
(file->f_mapping). The corresponding function takes care of allocating and initializing buffer
heads for the page. We'll discuss in subsequent sections what this function does for regular
files and block device files.

d.

d. If the buffer is in high memory, it establishes a kernel mapping of the User Mode buffer (see
the section "Kernel Mappings of High-Memory Page Frames" in Chapter 8). Then, it invokes
_ _copy_from_user() to copy the characters from the User Mode buffer to the page, and
releases the kernel mapping.

e.

e. Invokes the commit_write method of the address_space object of the inode
(file->f_mapping). The corresponding function marks the underlying buffers as dirty so they
are written to disk later. We discuss what this function does for regular files and block device
files in the next two sections.

f.

f. Invokes unlock_page() to clear the PG_locked flag and wake up any process that is waiting
for the page.

g.

g. Invokes mark_page_accessed() to update the page status for the memory reclaiming
algorithm (see the section "The Least Recently Used (LRU) Lists" in Chapter 17).

h.

h. Decreases the page usage counter to undo the increment in step 8a or 8b.
i.

i. In this iteration, yet another page has been dirtied: it checks whether the ratio of dirty pages
in the page cache has risen above a fixed threshold (usually, 40% of the pages in the system);
if so, it invokes writeback_inodes() to start flushing a few tens of pages to disk (see the
section "Looking for Dirty Pages To Be Flushed" in Chapter 15).

j.

j. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current process
and, if the flag is set, to invoke the schedule() function.

9.

9. Now all pages of the file involved in the write operation have been handled.Updates the value of
*ppos to point right after the last character written.

10.

10.Sets current->backing_dev_info to NULL (see step 3).
11.

11.Terminates by returning the number of bytes effectively written.

16.1.3.1. The prepare_write and commit_write methods for regular files

 The prepare_write and commit_write methods of the address_space object specialize the generic write
operation implemented by generic_file_write() for regular files and block device files. Both of them are
invoked once for every page of the file that is affected by the write operation.

 Each disk-based filesystem defines its own prepare_write method. As with read operations, this method
is simply a wrapper for a common function. For instance, the Ext2 filesystem usually implements the
prepare_write method by means of the following function:

int ext2_prepare_write(struct file *file, struct page *page,

 unsigned from, unsigned to)

{

 return block_prepare_write(page, from, to, ext2_get_block);

}

The ext2_get_block() function was already mentioned in the earlier section "Reading from a File"; it
translates the block number relative to the file into a logical block number, which represents the position
of the data on the physical block device.

 The block_prepare_write() function takes care of preparing the buffers and the buffer heads of the file's
page by performing essentially the following steps:

1.

1. Checks if the page is a buffer page (flag PG_Private set); if this flag is cleared, invokes
create_empty_buffers() to allocate buffer heads for all buffers included in the page (see the
section "Buffer Pages" in Chapter 15).

2.

2. For each buffer head relative to a buffer included in the page and affected by the write operation,
the following is performed:
a.

a. Resets the BH_New flag, if it is set (see below).
b.

b. If the BH_Mapped flag is not set, the function performs the following substeps:
1.

1. Invokes the filesystem-dependent function whose address get_block was passed as a
parameter. This function looks in the on-disk data structures of the filesystem and finds
the logical block number of the buffer (relative to the beginning of the disk partition rather
than the beginning of the regular file). The filesystem-dependent function stores this
number in the b_blocknr field of the corresponding buffer head and sets its BH_Mapped
flag. The get_block function could allocate a new physical block for the file (for instance,
if the accessed block falls inside a "hole" of the regular file; see the section "File Holes" in
Chapter 18). In this case, it sets the BH_New flag.

2.

2. Checks the value of the BH_New flag; if it is set, invokes unmap_underlying_metadata()
to check whether some block device buffer page in the page cache includes a buffer
referencing the same block on disk.[*] This function essentially invokes _
_find_get_block() to look up the old block in the page cache (see the section "Searching
Blocks in the Page Cache" in Chapter 15). If such a block is found, the function clears its
BH_Dirty flag and waits until any I/O data transfer on that buffer completes. Moreover, if
the write operation does not rewrite the whole buffer in the page, it fills the unwritten
portion with zero's. Then it considers the next buffer in the page.

2. [*] Although unlikely, this case might happen if a user writes blocks directly on the block
device file, thus bypassing the filesystem.

c.

c. If the write operation does not rewrite the whole buffer and its BH_Delay and BH_Uptodate
flags are not set (that is, the block has been allocated in the on-disk filesystem data structures
and the buffer in RAM does not contain a valid image of the data), the function invokes
ll_rw_block() on the block to read its content from disk (see the section "Submitting Buffer
Heads to the Generic Block Layer" in Chapter 15).

3.

3. Blocks the current process until all read operations triggered in step 2c have been completed.
4.

4. Returns 0.

Once the prepare_write method returns, the generic_file_write() function updates the page with the data
stored in the User Mode address space. Next, it invokes the commit_write method of the address_space
object. This method is implemented by the generic_commit_write() function for almost all disk-based
non-journaling filesystems.

 The generic_commit_write() function performs essentially the following steps:
1.

1. Invokes the _ _block_commit_write() function. In turn, this function does the following:
a.

a. Considers all buffers in the page that are affected by the write operation; for each of them,
sets the BH_Uptodate and BH_Dirty flags of the corresponding buffer head.

b.

b. Marks the corresponding inode as dirty. As seen in the section "Looking for Dirty Pages To
Be Flushed" in Chapter 15, this activity may require adding the inode to the list of dirty
inodes of the superblock.

c.

c. If all buffers in the buffer page are now up-to-date, it sets the PG_uptodate flag of the page.
d.

d. Sets the PG_dirty flag of the page, and tags the page as dirty in its radix tree (see the section
"The Radix Tree" in Chapter 15).

2.

2. Checks whether the write operation enlarged the file. In this case, the function updates the i_size
field of the file's inode.

3.

3. Returns 0.

16.1.3.2. The prepare_write and commit_write methods for block device files

 Write operations into block device files are very similar to the corresponding operations on regular files.
In fact, the prepare_write method of the address_space object of block device files is usually
implemented by the following function:

int blkdev_prepare_write(struct file *file, struct page *page,

 unsigned from, unsigned to)

{

 return block_prepare_write(page, from, to, blkdev_get_block);

}

As you can see, the function is simply a wrapper to the block_prepare_write() function already
discussed in the previous section. The only difference, of course, is in the second parameter, which points
to the function that must translate the file block number relative to the beginning of the file to a logical
block number relative to the beginning of the block device. Remember that for block device files, the two
numbers coincide. (See the earlier section "Reading from a File" for a discussion of the
blkdev_get_block() function.)

 The commit_write method for block device files is implemented by the following simple wrapper
function:

int blkdev_commit_write(struct file *file, struct page *page,

 unsigned from, unsigned to)

{

 return block_commit_write(page, from, to);

}

As you can see, the commit_write method for block device files does essentially the same things as the
commit_write method for regular files (we described the block_commit_write() function in the previous
section). The only difference is that the method does not check whether the write operation has enlarged
the file; you simply cannot enlarge a block device file by appending characters to its last position.

 16.1.4. Writing Dirty Pages to Disk

 The net effect of the write() system call consists of modifying the contents of some pages in the page
cacheoptionally allocating the pages and adding them to the page cache if they were not already present.
In some cases (for instance, if the file has been opened with the O_SYNC flag), the I/O data transfers
start immediately (see step 6 of generic_file_write() in the section "Writing to a File" earlier in this
chapter). Usually, however, the I/O data transfer is delayed, as explained in the section "Writing Dirty
Pages to Disk" in Chapter 15.

 When the kernel wants to effectively start the I/O data transfer, it ends up invoking the writepages
method of the file's address_space object, which searches for dirty pages in the radix-tree and flushes
them to disk. For instance, the Ext2 filesystem implements the writepages method by means of the
following function:

int ext2_writepages(struct address_space *mapping,

 struct writeback_control *wbc)

{

 return mpage_writepages(mapping, wbc, ext2_get_block);

}

As you can see, this function is a simple wrapper for the general-purpose mpage_writepages() function;
as a matter of fact, if a filesystem does not define the writepages method, the kernel invokes directly
mpage_writepages() passing NULL as third argument. The ext2_get_block() function was already
mentioned in the earlier section "Reading from a File;" it is the filesystem-dependent function that
translates a file block number into a logical block number.

 The writeback_control data structure is a descriptor that controls how the writeback operation has to be
performed; we have already described it in the section "Looking for Dirty Pages To Be Flushed" in
Chapter 15.

 The mpage_writepages() function essentially performs the following actions:
1.

1. If the request queue is write-congested and the process does not want to block, it returns
without writing any page to disk.

2.

2. Determines the file's initial page to be considered. If the writeback_control descriptor specifies
the initial position in the file, the function translates it into a page index. Otherwise, if the
writeback_control descriptor specifies that the process does not want to wait for the I/O data
transfer to complete, it sets the initial page index to the value stored in
mapping->writeback_index (that is, scanning begins from the last page considered in the previous
writeback operation). Finally, if the process must wait until I/O data transfers complete, scanning
starts from the first page of the file.

3.

3. Invokes find_get_pages_tag() to look up the descriptor of the dirty pages in the page cache (see
the section "The Tags of the Radix Tree" in Chapter 15).

4.

4. For each page descriptor retrieved in the previous step, the function performs the following steps:
a.

a. Invokes lock_page() to lock up the page.
b.

b. Checks that the page is still valid and in the page cache (because another kernel control path
could have acted upon the page between steps 3 and 4a).

c.

c. Checks the PG_writeback flag of the page. If it is set, the page is already being flushed to
disk. If the process must wait for the I/O data transfer to complete, it invokes
wait_on_page_bit() to block the current process until the PG_writeback flag is cleared;
when this function terminates, any previously ongoing writeback operation is terminated.
Otherwise, if the process does not want to wait, it checks the PG_dirty flag: if it is now
cleared, the on-going writeback will take care of the page, thus unlocks it and jumps back to
step 4a to continue with the next page.

d.

d. If the get_block parameter is NULL (no writepages method defined), it invokes the
mapping->writepage method of the address_space object of the file to flush the page to disk.
Otherwise, if the get_block parameter is not NULL, it invokes the mpage_writepage()
function. See step 8 for details.

5.

5. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current process and,
if the flag is set, to invoke the schedule() function.

6.

6. If the function has not scanned all pages in the given range, or if the number of pages effectively
written to disk is smaller than the value originally specified in the writeback_control descriptor, it
jumps back to step 3.

7.

7. If the writeback_control descriptor does not specify the initial position in the file, it sets the
mapping->writeback_index field with the index of the last scanned page.

8.

8. If the mpage_writepage() function has been invoked in step 4d, and if that function returned the
address of a bio descriptor, it invokes mpage_bio_submit() (see below).

A typical filesystem such as Ext2 implements the writepage method as a wrapper for the general-purpose
block_write_full_page() function, passing to it the address of the filesystem-dependent get_block
function. In turn, the block_write_full_page() function is similar to block_read_full_page() described in
the section "Reading from a File" earlier in this chapter: it allocates buffer heads for the page (if the page
was not already a buffer page), and invokes the submit_bh() function on each of them, specifying the
WRITE operation. As far as block device files are concerned, they implement the writepage method by
using blkdev_writepage(), which is a wrapper for block_write_full_page().

 Many non-journaling filesystems rely on the mpage_writepage() function rather than on the custom
writepage method. This can improve performance because the mpage_writepage() function tries to
submit the I/O transfers by collecting as many pages as possible in the same bio descriptor; in turn, this
allows the block device drivers to exploit the scatter-gather DMA capabilities of the modern hard disk
controllers.

 To make a long story short, the mpage_writepage() function checks whether the page to be written
contains blocks that are not adjacent to disk, or whether the page includes a file hole, or whether some
block on the page is not dirty or not up-to-date. If at least one of these conditions holds, the function falls
back on the filesystem-dependent writepage method, as above. Otherwise, the function adds the page as
a segment of a bio descriptor. The address of the bio descriptor is passed as parameter to the function; if
it is NULL, mpage_writepage() initializes a new bio descriptor and returns its address to the calling
function, which in turn passes it back in the future invocations of mpage_writepage(). In this way, several
pages can be added to the same bio. If a page is not adjacent to the last added page in the bio,
mpage_writepage() invokes mpage_bio_submit() to start the I/O data transfer on the bio, and allocates
a new bio for the page.

 The mpage_bio_submit() function sets the bi_end_io method of the bio to the address of
mpage_end_io_write(), then invokes submit_bio() to start the transfer (see the section "Submitting
Buffer Heads to the Generic Block Layer" in Chapter 15). Once the data transfer successfully terminates,
the completion function mpage_end_io_write() wakes up any process waiting for the page transfer to
complete, and destroys the bio descriptor.

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.2. Memory Mapping
 As already mentioned in the section "Memory Regions" in Chapter 9, a memory region can be
associated with some portion of either a regular file in a disk-based filesystem or a block device file. This
means that an access to a byte within a page of the memory region is translated by the kernel into an
operation on the corresponding byte of the file. This technique is called memory mapping.

 Two kinds of memory mapping exist:

 Shared

 Each write operation on the pages of the memory region changes the file on disk; moreover, if a process
writes into a page of a shared memory mapping, the changes are visible to all other processes that map
the same file.

Private

 Meant to be used when the process creates the mapping just to read the file, not to write it. For this
purpose, private mapping is more efficient than shared mapping. But each write operation on a privately
mapped page will cause it to stop mapping the page in the file. Thus, a write does not change the file on
disk, nor is the change visible to any other processes that access the same file. However, pages of a
private memory mapping that have not been modified by the process are affected by file updates
performed by other processes.

 A process can create a new memory mapping by issuing an mmap() system call (see the section "
Creating a Memory Mapping" later in this chapter). Programmers must specify either the
MAP_SHARED flag or the MAP_PRIVATE flag as a parameter of the system call; as you can easily
guess, in the former case the mapping is shared, while in the latter it is private. Once the mapping is
created, the process can read the data stored in the file by simply reading from the memory locations of
the new memory region. If the memory mapping is shared, the process can also modify the
corresponding file by simply writing into the same memory locations. To destroy or shrink a memory
mapping, the process may use the munmap() system call (see the later section "Destroying a Memory
Mapping").

 As a general rule, if a memory mapping is shared, the corresponding memory region has the
VM_SHARED flag set; if it is private, the VM_SHARED flag is cleared. As we'll see later, an exception
to this rule exists for read-only shared memory mappings.

 16.2.1. Memory Mapping Data Structures

 A memory mapping is represented by a combination of the following data structures :


 The inode object associated with the mapped file


 The address_space object of the mapped file


 A file object for each different mapping performed on the file by different processes


 A vm_area_struct descriptor for each different mapping on the file


 A page descriptor for each page frame assigned to a memory region that maps the file

 Figure 16-2 illustrates how the data structures are linked. On the left side of the image we show the
inode, which identifies the file. The i_mapping field of each inode object points to the address_space
object of the file. In turn, the page_tree field of each address_space object points to the radix tree of
pages belonging to the address space (see the section "The Radix Tree" in Chapter 15), while the
i_mmap field points to a second tree called the radix priority search tree (PST) of memory regions
belonging to the address space. The main use of PST is for performing "reverse mapping," that is, for
identifying quickly all processes that share a given page. We'll cover in detail PSTs in the next chapter,
because they are used for page frame reclaiming. The link between file objects relative to the same file
and the inode is established by means of the f_mapping field.

 Each memory region descriptor has a vm_file field that links it to the file object of the mapped file (if that
field is null, the memory region is not used in a memory mapping). The position of the first mapped
location is stored into the vm_pgoff field of the memory region descriptor; it represents the file offset as a
number of page-size units. The length of the mapped file portion is simply the length of the memory
region, which can be computed from the vm_start and vm_end fields.

 Figure 16-2. Data structures for file memory mapping

 Pages of shared memory mappings are always included in the page cache; pages of private memory
mappings are included in the page cache as long as they are unmodified. When a process tries to modify
a page of a private memory mapping, the kernel duplicates the page frame and replaces the original page
frame with the duplicate in the process Page Table; this is one of the applications of the Copy On Write
mechanism that we discussed in Chapter 8. The original page frame still remains in the page cache,
although it no longer belongs to the memory mapping since it is replaced by the duplicate. In turn, the
duplicate is not inserted into the page cache because it no longer contains valid data representing the file
on disk.

 Figure 16-2 also shows a few page descriptors of pages included in the page cache that refer to the
memory-mapped file. Notice that the first memory region in the figure is three pages long, but only two
page frames are allocated for it; presumably, the process owning the memory region has never accessed
the third page.

 The kernel offers several hooks to customize the memory mapping mechanism for every different
filesystem. The core of memory mapping implementation is delegated to a file object's method named
mmap. For most disk-based filesystems and for block device files, this method is implemented by a
general function called generic_file_mmap(), which is described in the next section.

 File memory mapping depends on the demand paging mechanism described in the section "Demand
Paging" in Chapter 9. In fact, a newly established memory mapping is a memory region that doesn't
include any page; as the process references an address inside the region, a Page Fault occurs and the
Page Fault handler checks whether the nopage method of the memory region is defined. If nopage is not
defined, the memory region doesn't map a file on disk; otherwise, it does, and the method takes care of
reading the page by accessing the block device. Almost all disk-based filesystems and block device files
implement the nopage method by means of the filemap_nopage() function.

 16.2.2. Creating a Memory Mapping

 To create a new memory mapping, a process issues an mmap() system call, passing the following
parameters to it:



 A file descriptor identifying the file to be mapped.


 An offset inside the file specifying the first character of the file portion to be mapped.


 The length of the file portion to be mapped.


 A set of flags. The process must explicitly set either the MAP_SHARED flag or the
MAP_PRIVATE flag to specify the kind of memory mapping requested.[*]

 [*] The process could also set the MAP_ANONYMOUS flag to specify that the new memory
region is anonymous that is, not associated with any disk-based file (see the section "Demand
Paging" in Chapter 9). A process can also create a memory region that is both MAP_SHARED
and MAP_ANONYMOUS: in this case, the region maps a special file in the tmpfs filesystem
(see the section "IPC Shared Memory" in Chapter 19), which can be accessed by all the
process's descendants.



 A set of permissions specifying one or more types of access to the memory region: read access
(PROT_READ), write access (PROT_WRITE), or execution access (PROT_EXEC).



 An optional linear address, which is taken by the kernel as a hint of where the new memory
region should start. If the MAP_FIXED flag is specified and the kernel cannot allocate the new
memory region starting from the specified linear address, the system call fails.

 The mmap() system call returns the linear address of the first location in the new memory region. For
compatibility reasons, in the 80 x 86 architecture, the kernel reserves two entries in the system call table
for mmap() : one at index 90 and the other at index 192. The former entry corresponds to the
old_mmap() service routine (used by older C libraries), while the latter one corresponds to the
sys_mmap2() service routine (used by recent C libraries). The two service routines differ only in how the
six parameters of the system call are passed. Both of them end up invoking the do_mmap_pgoff()
function described in the section "Allocating a Linear Address Interval" in Chapter 9. We now complete
that description by detailing the steps performed only when creating a memory region that maps a file.
We thus describe the case where the file parameter (pointer to a file object) of do_mmap_pgoff() is
non-null. For the sake of clarity, we refer to the enumeration used to describe do_mmap_pgoff() and
point out the additional steps performed under the new condition.

 Step 1

 Checks whether the mmap file operation for the file to be mapped is defined; if not, it returns an error
code. A NULL value for mmap in the file operation table indicates that the corresponding file cannot be
mapped (for instance, because it is a directory).

Step 2

 The get_unmapped_area() function invokes the get_unmapped_area method of the file object, if it is
defined, so as to allocate an interval of linear addresses suitable for the memory mapping of the file. The
disk-based filesystems do not define this method; in this case, as explained in the section "Memory
Region Handling" in Chapter 9, the get_unmapped_area() function ends up invoking the
get_unmapped_area method of the memory descriptor.

Step 3

 In addition to the usual consistency checks, it compares the kind of memory mapping requested (stored
in the flags parameter of the mmap() system call) and the flags specified when the file was opened
(stored in the file->f_mode field). In particular:



 If a shared writable memory mapping is required, it checks that the file was opened for writing
and that it was not opened in append mode (O_APPEND flag of the open() system call).



 If a shared memory mapping is required, it checks that there is no mandatory lock on the file (see
the section "File Locking" in Chapter 12).



 For every kind of memory mapping, it checks that the file was opened for reading.

 If any of these conditions is not fulfilled, an error code is returned.

 Moreover, when initializing the value of the vm_flags field of the new memory region descriptor, it sets
the VM_READ, VM_WRITE, VM_EXEC, VM_SHARED, VM_MAYREAD, VM_MAYWRITE,
VM_MAYEXEC, and VM_MAYSHARE flags according to the access rights of the file and the kind of
requested memory mapping (see the section "Memory Region Access Rights" in Chapter 9). As an
optimization, the VM_SHARED and VM_MAYWRITE flags are cleared for nonwritable shared
memory mapping. This can be done because the process is not allowed to write into the pages of the
memory region, so the mapping is treated the same as a private mapping; however, the kernel actually
allows other processes that share the file to read the pages in this memory region.

Step 10

 Initializes the vm_file field of the memory region descriptor with the address of the file object and
increases the file's usage counter. Invokes the mmap method for the file being mapped, passing as
parameters the address of the file object and the address of the memory region descriptor. For most
filesystems, this method is implemented by the generic_file_mmap() function, which performs the
following operations:

a.

a. Stores the current time in the i_atime field of the file's inode and marks the inode as dirty.
b.

b. Initializes the vm_ops field of the memory region descriptor with the address of the
generic_file_vm_ops table. All methods in this table are null, except the nopage method, which is
implemented by the filemap_nopage() function, and the populate method, which is implemented
by the filemap_populate() function (see "Non-Linear Memory Mappings" later in this chapter).

Step 11

 Increases the i_writecount field of the file's inode, that is, the usage counter for writing processes.

 16.2.3. Destroying a Memory Mapping

 When a process is ready to destroy a memory mapping, it invokes munmap(); this system call can also
be used to reduce the size of each kind of memory region. The parameters used are:



 The address of the first location in the linear address interval to be removed.


 The length of the linear address interval to be removed.

 The sys_munmap() service routine of the system call essentially invokes the do_munmap() function
already described in the section "Releasing a Linear Address Interval" in Chapter 9. Notice that there is
no need to flush to disk the contents of the pages included in a writable shared memory mapping to be
destroyed. In fact, these pages continue to act as a disk cache because they are still included in the page
cache.

 16.2.4. Demand Paging for Memory Mapping

 For reasons of efficiency, page frames are not assigned to a memory mapping right after it has been
created, but at the last possible momentthat is, when the process attempts to address one of its pages,
thus causing a Page Fault exception.

 We saw in the section "Page Fault Exception Handler" in Chapter 9 how the kernel verifies whether the
faulty address is included in some memory region of the process; if so, the kernel checks the Page Table
entry corresponding to the faulty address and invokes the do_no_page() function if the entry is null (see
the section "Demand Paging" in Chapter 9).

 The do_no_page() function performs all the operations that are common to all types of demand paging,
such as allocating a page frame and updating the Page Tables. It also checks whether the nopage method
of the memory region involved is defined. In the section "Demand Paging" in Chapter 9, we described the
case in which the method is undefined (anonymous memory region); now we complete the description by
discussing the main actions performed by the function when the method is defined:

1.

1. Invokes the nopage method, which returns the address of a page frame that contains the
requested page.

2.

2. If the process is trying to write into the page and the memory mapping is private, it avoids a
future Copy On Write fault by making a copy of the page just read and inserting it into the
inactive list of pages (see Chapter 17). If the private memory mapping region does not already
have a slave anonymous memory region that includes the new page, it either adds a new slave
anonymous memory region or extends an existing one (see the section "Memory Regions" in
Chapter 9). In the following steps, the function uses the new page instead of the page returned by
the nopage method, so that the latter is not modified by the User Mode process.

3.

3. If some other process has truncated or invalidated the page (the truncate_count field of the
address_space descriptor is used for this kind of check), the function retries getting the page by
jumping back to step 1.

4.

4. Increases the rss field of the process memory descriptor to indicate that a new page frame has
been assigned to the process.

5.

5. Sets up the Page Table entry corresponding to the faulty address with the address of the page
frame and the page access rights included in the memory region vm_page_prot field.

6.

6. If the process is trying to write into the page, it forces the Read/Write and Dirty bits of the Page
Table entry to 1. In this case, either the page frame is exclusively assigned to the process, or the
page is shared; in both cases, writing to it should be allowed.

The core of the demand paging algorithm consists of the memory region's nopage method. Generally
speaking, it must return the address of a page frame that contains the page accessed by the process. Its
implementation depends on the kind of memory region in which the page is included.

 When handling memory regions that map files on disk, the nopage method must first search for the
requested page in the page cache. If the page is not found, the method must read it from disk. Most
filesystems implement the nopage method by means of the filemap_nopage() function, which receives
three parameters:

 area

 Descriptor address of the memory region, including the required page

address

 Linear address of the required page

type

 Pointer to a variable in which the function writes the type of page fault detected by the function
(VM_FAULT_MAJOR or VM_FAULT_MINOR)

 The filemap_nopage() function executes the following steps:
1.

1. Gets the file object address file from the area->vm_file field. Derives the address_space object
address from file->f_mapping. Derives the inode object address from the host field of the
address_space object.

2.

2. Uses the vm_start and vm_pgoff fields of area to determine the offset within the file of the data
corresponding to the page starting from address.

3.

3. Checks whether the file offset exceeds the file size. When this happens, it returns NULL, which
means failure in allocating the new page, unless the Page Fault was caused by a debugger tracing
another process through the ptrace() system call. We are not going to discuss this special case.

4.

4. If the VM_RAND_READ flag of the memory region is set (see below), we may assume that the
process is reading the pages of the memory mapping in a random way. In this case, it ignores
read-ahead by jumping to step 10.

5.

5. If the VM_SEQ_READ flag of the memory region is set (see below), we may assume that the
process is reading the pages of the memory mapping in a strictly sequential way. In this case, it
invokes page_cache_readahead() to perform read-ahead starting from the faulty page (see the
section "Read-Ahead of Files" earlier in this chapter).

6.

6. Invokes find_get_page() to look in the page cache for the page identified by the address_space
object and the file offset. If the page is found, it jumps to step 11.

7.

7. If the function has reached this point, the page has not been found in the page cache. Checks the
VM_SEQ_READ flag of the memory region:
o

o If the flag is set, the kernel is aggressively reading in advance the pages of the memory region,
hence the read-ahead algorithm has failed: it invokes handle_ra_miss() to tune up the
read-ahead parameters (see the section "Read-Ahead of Files" earlier in this chapter), then
jumps to step 10.

o

o Otherwise, if the flag is clear, it increases by one the mmap_miss counter in the file_ra_state
descriptor of the file. If the number of misses is much larger than the number of hits (stored in
the mmap_hit counter), it ignores read-ahead by jumping to step 10.

8.

8. If read-ahead is not permanently disabled (ra_pages field in the file_ra_state descriptor greater
than zero), it invokes do_page_cache_readahead() to read a set of pages surrounding the
requested page.

9.

9. Invokes find_get_page() to check whether the requested page is in the page cache; if it is there,
jumps to step 11.

10.

10. Invokes page_cache_read(). This function checks whether the requested page is already in the
page cache and, if it is not there, allocates a new page frame, adds it to the page cache, and
executes the mapping->a_ops->readpage method to schedule an I/O operation that reads the
page's contents from disk.

11.

11. Invokes the grab_swap_token() function to possibly assign the swap token to the current
process (see the section "The Swap Token" in Chapter 17).

12.

12.The requested page is now in the page cache. Increases by one the mmap_hit counter of the
file_ra_state descriptor of the file.

13.

13. If the page is not up-to-date (PG_uptodate flag clear), it invokes lock_page() to lock up the
page, executes the mapping->a_ops->readpage method to trigger the I/O data transfer, and
invokes wait_on_page_bit() to sleep until the page is unlockedthat is, until the data transfer
completes.

14.

14. Invokes mark_page_accessed() to mark the requested page as accessed (see next chapter).
15.

15. If an up-to-date version of the page was found in the page cache, it sets *type to
VM_FAULT_MINOR; otherwise sets it to VM_FAULT_MAJOR.

16.

16.Returns the address of the requested page.

A User Mode process can tailor the read-ahead behavior of the filemap_nopage() function by using the
madvise() system call. The MADV_RANDOM command sets the VM_RAND_READ flag of the
memory region to specify that the pages of the memory region will be accessed in random order; the
MADV_SEQUENTIAL command sets the VM_SEQ_READ flag to specify that the pages will be
accessed in strictly sequential order; finally, the MADV_NORMAL command resets both the
VM_RAND_READ and VM_SEQ_READ flags to specify that the pages will be accessed in a
unspecified order.

 16.2.5. Flushing Dirty Memory Mapping Pages to Disk

 The msync() system call can be used by a process to flush to disk dirty pages belonging to a shared
memory mapping. It receives as its parameters the starting address of an interval of linear addresses, the
length of the interval, and a set of flags that have the following meanings:

 MS_SYNC

 Asks the system call to suspend the process until the I/O operation completes. In this way, the calling
process can assume that when the system call terminates, all pages of its memory mapping have been
flushed to disk.

MS_ASYNC (complement of MS_SYNC)

 Asks the system call to return immediately without suspending the calling process.

MS_INVALIDATE

 Asks the system call to invalidate other memory mappings of the same file (not really implemented,
because useless in Linux).

 The sys_msync() service routine invokes msync_interval() on each memory region included in the
interval of linear addresses. In turn, the latter function performs the following operations:

1.

1. If the vm_file field of the memory region descriptor is NULL, or if the VM_SHARED flag is
clear, it returns 0 (the memory region is not a writable shared memory mapping of a file).

2.

2. Invokes the filemap_sync() function, which scans the Page Table entries corresponding to the
linear address intervals included in the memory region. For each page found, it resets the Dirty
flag in the corresponding page table entry and invokes flush_tlb_page() to flush the
corresponding translation lookaside buffers; then, it sets the PG_dirty flag in the page descriptor
to mark the page as dirty.

3.

3. If the MS_ASYNC flag is set, it returns. Therefore, the practical effect of the MS_ASYNC flag
consists of setting the PG_dirty flags of the pages in the memory region; the system call does not
actually start the I/O data transfers.

4.

4. If the function has reached this point, the MS_SYNC flag is set, hence the function must flush the
pages in the memory region to disk and put the current process to sleep until all I/O data
transfers terminate. In order to do this, the function acquires the i_sem semaphore of the file's
inode.

5.

5. Invokes the filemap_fdatawrite() function, which receives the address of the file's address_space
object. This function essentially sets up a writeback_control descriptor with the
WB_SYNC_ALL synchronization mode, and checks whether the address space has a built-in
writepages method. If so, it invokes the corresponding function and returns. In the opposite case,
it executes the mpage_writepages() function. (See the section "Writing Dirty Pages to Disk"
earlier in this chapter.)

6.

6. Checks whether the fsync method of the file object is defined; if so, executes it. For regular files,
this method usually limits itself to flushing the inode object of the file to disk. For block device
files, however, the method invokes sync_blockdev(), which activates the I/O data transfer of all
dirty buffers of the device.

7.

7. Executes the filemap_fdatawait() function. We recall from the section "The Tags of the Radix
Tree" in Chapter 15 that a radix tree in the page cache identifies all pages that are currently being
written to disk by means of the PAGECACHE_TAG_WRITEBACK tag. The function quickly
scans the portion of the radix tree that covers the given interval of linear addresses looking for
pages having the PG_writeback flag set; for each such page, the function invokes
wait_on_page_bit() to sleep until the PG_writeback flag is cleared that is, until the ongoing I/O
data transfer on the page terminates.

8.

8. Releases the i_sem semaphore of the file and returns.

16.2.6. Non-Linear Memory Mappings

 The Linux 2.6 kernel offers yet another kind of access method for regular files: the non-linear memory
mappings. Basically, a non-linear memory mapping is a file memory mapping as described previously, but
its memory pages are not mapped to sequential pages on the file; rather, each memory page maps a
random (arbitrary) page of file's data.

 Of course, a User Mode application might achieve the same result by invoking the mmap() system call
repeatedly, each time on a different 4096-byte-long portion of the file. However, this approach is not
very efficient for non-linear mapping of large files, because each mapping page requires its own memory
region.

 In order to support non-linear memory mapping, the kernel makes use of a few additional data
structures. First of all, the VM_NONLINEAR flag of the memory region descriptor specifies that the
memory region contains a non-linear mapping. All descriptors of non-linear mapping memory regions for
a given file are collected in a doubly linked circular list rooted at the i_mmap_nonlinear field of the
address_space object.

 To create a non-linear memory mapping, the User Mode application first creates a normal shared
memory mapping with the mmap() system call. Then, the application remaps some of the pages in the
memory mapping region by invoking remap_file_pages(). The sys_remap_file_pages() service routine of
the system call receives four parameters:

 start

 A linear address inside a shared file memory mapping region of the calling process

size

 Size of the remapped portion of the file in bytes

prot

 Unused (must be zero)

pgoff

 Page index of the initial file's page to be remapped

flags

 Flags controlling the non-linear memory mapping

 The service routine remaps the portion of the file's data identified by the pgoff and size parameters
starting from the start linear address. If either the memory region is not shared or it is not large enough to
include all the pages requested for the mapping, the system call fails and an error code is returned.
Essentially, the service routine inserts the memory region in the i_mmap_nonlinear list of the file and
invokes the populate method of the memory region.

 For all regular files, the populate method is implemented by the filemap_populate() function, which
executes the following steps:

1.

1. Checks whether the MAP_NONBLOCK flag in the flags parameter of the remap_file_pages()
system call is clear; if so, it invokes do_page_cache_readahead() to read in advance the pages
of the file to be remapped.

2.

2. For each page to be remapped, performs the following substeps:
a.

a. Checks whether the page descriptor is already included in the page cache; if it is not there
and the MAP_NONBLOCK flag is cleared, it reads the page from disk.

b.

b. If the page descriptor is in the page cache, it updates the Page Table entry of the
corresponding linear address so that it points to the page frame, and updates the counter of
pages in the memory region descriptor.

c.

c. Otherwise, if the page descriptor has not been found in the page cache, it stores the offset of
the file's page in the 32 highest-order bits of the Page Table entry for the corresponding linear
address; also, clears the Present bit of the Page Table entry and sets the Dirty bit.

As explained in the section "Demand Paging" in Chapter 9, when handling a demand-paging fault the
handle_ pte_fault() function checks the Present and Dirty bits in the Page Table entry; if they have the
values corresponding to a non-linear memory mapping, handle_pte_fault() invokes the do_file_page()
function, which extracts the index of the requested file's page from the high-order bits of the Page Table
entry; then, do_file_page() invokes the populate method of the memory region to read the page from
disk and update the Page Table entry itself.

 Because the memory pages of a non-linear memory mapping are included in the page cache according
to the page index relative to the beginning of the filerather than the index relative to the beginning of the
memory regionnon-linear memory mappings are flushed to disk exactly like linear memory mappings (see
the section "Flushing Dirty Memory Mapping Pages to Disk" earlier in this chapter).

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.3. Direct I/O Transfers
 As we have seen, in Version 2.6 of Linux, there is no substantial difference between accessing a regular
file through the filesystem, accessing it by referencing its blocks on the underlying block device file, or
even establishing a file memory mapping. There are, however, some highly sophisticated programs
(self-caching applications) that would like to have full control of the whole I/O data transfer mechanism.
Consider, for example, high-performance database servers: most of them implement their own caching
mechanisms that exploit the peculiar nature of the queries to the database. For these kinds of programs,
the kernel page cache doesn't help; on the contrary, it is detrimental for the following reasons:



 Lots of page frames are wasted to duplicate disk data already in RAM (in the user-level disk
cache).



 The read() and write() system calls are slowed down by the redundant instructions that handle
the page cache and the read-ahead; ditto for the paging operations related to the file memory
mappings.



 Rather than transferring the data directly between the disk and the user memory, the read() and
write() system calls make two transfers: between the disk and a kernel buffer and between the
kernel buffer and the user memory.

 Because block hardware devices must be handled through interrupts and Direct Memory Access
(DMA), and this can be done only in Kernel Mode, some sort of kernel support is definitely required to
implement self-caching applications.

 Linux offers a simple way to bypass the page cache: direct I/O transfers. In each I/O direct transfer, the
kernel programs the disk controller to transfer the data directly from/to pages belonging to the User
Mode address space of a self-caching application.

 As we know, each data transfer proceeds asynchronously. While it is in progress, the kernel may switch
the current process, the CPU may return to User Mode, the pages of the process that raised the data
transfer might be swapped out, and so on. This works just fine for ordinary I/O data transfers because
they involve pages of the disk caches . Disk caches are owned by the kernel, cannot be swapped out,
and are visible to all processes in Kernel Mode.

 On the other hand, direct I/O transfers should move data within pages that belong to the User Mode
address space of a given process. The kernel must take care that these pages are accessible by every
process in Kernel Mode and that they are not swapped out while the data transfer is in progress. Let us
see how this is achieved.

 When a self-caching application wishes to directly access a file, it opens the file specifying the
O_DIRECT flag (see the section "The open() System Call" in Chapter 12). While servicing the open()
system call, the dentry_open() function checks whether the direct_IO method is implemented for the
address_space object of the file being opened, and returns an error code in the opposite case. The
O_DIRECT flag can also be set for a file already opened by using the F_SETFL command of the fcntl()
system call.

 Let us consider first the case where the self-caching application issues a read() system call on a file with
O_DIRECT. As mentioned in the section "Reading from a File" earlier in this chapter, the read file
method is usually implemented by the generic_file_read() function, which initializes the iovec and kiocb
descriptors and invokes _ _generic_file_aio_read(). The latter function verifies that the User Mode
buffer described by the iovec descriptor is valid, then checks whether the O_DIRECT flag of the file is
set. When invoked by a read() system call, the function executes a code fragment essentially equivalent
to the following:

if (filp->f_flags & O_DIRECT) {

 if (count == 0 || *ppos > filp->f_mapping->host->i_size)

 return 0;

 retval = generic_file_direct_IO(READ, iocb, iov, *ppos, 1);

 if (retval > 0)

 *ppos += retval;

 file_accessed(filp);

 return retval;

}

The function checks the current values of the file pointer, the file size, and the number of requested
characters, and then invokes the generic_file_direct_IO() function, passing to it the READ operation
type, the iocb descriptor, the iovec descriptor, the current value of the file pointer, and the number of
User Mode buffers specified in the io_vec descriptor (one). When generic_file_direct_IO() terminates, _
_generic_file_aio_read() updates the file pointer, sets the access timestamp on the file's inode, and
returns.

 Something similar happens when a write() system call is issued on a file having the O_DIRECT flag set.
As mentioned in the section "Writing to a File" earlier in this chapter, the write method of the file ends up
invoking generic_file_aio_write_nolock(): this function checks whether the O_DIRECT flag is set and, if
so, invokes the generic_file_direct_IO() function, this time specifying the WRITE operation type.

 The generic_file_direct_IO() function acts on the following parameters:

 rw

 Type of operation: READ or WRITE

iocb

 Pointer to a kiocb descriptor (see Table 16-1)

iov

 Pointer to an array of iovec descriptors (see the section "Reading from a File" earlier in this chapter)

offset

 File offset

nr_segs

 Number of iovec descriptors in the iov array

 The steps performed by generic_file_direct_IO() are the following:
1.

1. Gets the address file of the file object from the ki_filp field of the kiocb descriptor, and the
address mapping of the address_space object from the file->f_mapping field.

2.

2. If the type of operation is WRITE and if one or more processes have created a memory mapping
associated with a portion of the file, it invokes unmap_mapping_range() to unmap all pages of
the file. This function also ensures that if any Page Table entry corresponding to a page to be
unmapped has the Dirty bit set, then the corresponding page is marked as dirty in the page
cache.

3.

3. If the radix tree rooted at mapping is not empty (mapping->nrpages greater than zero), it invokes
the filemap_fdatawrite() and filemap_fdatawait() functions to flush all dirty pages to disk and to
wait until the I/O operations complete (see the section "Flushing Dirty Memory Mapping Pages
to Disk" earlier in this chapter). (Even if the self-caching application is accessing the file directly,
there could be other applications in the system that access the file through the page cache. To
avoid data loss, the disk image is synchronized with the page cache before starting the direct I/O
transfer.)

4.

4. Invokes the direct_IO method of the mapping address space (see the following paragraphs).
5.

5. If the operation type was WRITE, it invokes invalidate_inode_pages2() to scan all pages in the
radix tree of mapping and to release them. The function also clears the User Mode Page Table
entries that refer to those pages.

In most cases, the direct_IO method is a wrapper for the _ _blockdev_direct_IO() function. This
function is quite complex and invokes a large number of auxiliary data structures and functions; however,
it executes essentially the same kind of operations already described in this chapter: it splits the data to be
read or written in suitable blocks, locates the data on disk, and fills up one or more bio descriptors that
describe the I/O operations to be performed. Of course, the data will be read or written directly in the
User Mode buffers specified by the iovec descriptors in the iov array. The bio descriptors are submitted
to the generic block layer by invoking the submit_bio() function (see the section "Submitting Buffer
Heads to the Generic Block Layer" in Chapter 15). Usually, the _ _blockdev_direct_IO() function does
not return until all direct I/O transfers have been completed; thus, once the read() or write() system call
returns, the self-caching application can safely access the buffers containing the file data.

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.4. Asynchronous I/O
 The POSIX 1003.1 standard defines a set of library functionslisted in Table 16-4for accessing the files
in an asynchronous way. "Asynchronous" essentially means that when a User Mode process invokes a
library function to read or write a file, the function terminates as soon as the read or write operation has
been enqueued, possibly even before the actual I/O data transfer takes place. The calling process can
thus continue its execution while the data is being transferred.

 Table 16-4. The POSIX library functions for asynchronous I/O

Function Description

aio_read() Asynchronously reads some data from a file

aio_write() Asynchronously writes some data into a file

aio_fsync() Requests a flush operation for all outstanding
asynchronous I/O operations (does not block)

aio_error() Gets the error code for an outstanding
asynchronous I/O operation

aio_return() Gets the return code for a completed asynchronous
I/O operation

aio_cancel() Cancels an outstanding asynchronous I/O
operation

aio_suspend() Suspends the process until at least one of several
outstanding I/O operations completes

Using asynchronous I/O is quite simple. The application opens the file by means of the usual open()
system call. Then, it fills up a control block of type struct aiocb with the information describing the
requested operation. The most commonly used fields of the struct aiocb control block are:

 aio_fildes

 The file descriptor of the file (as returned by the open() system call)

aio_buf

 The User Mode buffer for the file's data

aio_nbytes

 How many bytes should be transferred

aio_offset

 Position in the file where the read or write operation will start (it is independent of the "synchronous" file
pointer)

 Finally, the application passes the address of the control block to either aio_read() or aio_write() ; both
functions terminate as soon as the requested I/O data transfer has been enqueued by the system library
or kernel. The application can later check the status of the outstanding I/O operation by invoking
aio_error(), which returns EINPROGRESS if the data transfer is still in progress, 0 if it is successfully
completed, or an error code in case of failure. The aio_return() function returns the number of bytes
effectively read or written by a completed asynchronous I/O operation, or -1 in case of failure.

 16.4.1. Asynchronous I/O in Linux 2.6

 Asynchronous I/O can be implemented by a system library without any kernel support at all. Essentially,
the aio_read() or aio_write() library function clones the current process and lets the child invoke the
synchronous read() or write() system calls; then, the parent terminates the aio_read() or aio_write()
function and continues the execution of the program, hence it does not wait for the synchronous operation
started by the child to finish. However, this "poor man's" version of the POSIX functions is significantly
slower than a version that uses a kernel-level implementation of asynchronous I/O.

 The Linux 2.6 kernel version sports a set of system calls for asynchronous I/O. However, in Linux
2.6.11 this feature is a work in progress, and asyncronous I/O works properly only for files opened with
the O_DIRECT flag set (see the previous section). The system calls for asynchronous I/O are listed in
Table 16-5.

 Table 16-5. Linux system calls for asynchronous I/O

System call Description

io_setup() Initializes an asynchronous context for the current
process

io_submit() Submits one or more asynchronous I/O operations

io_getevents() Gets the completion status of some outstanding
asynchronous I/O operations

io_cancel() Cancels an outstanding I/O operation

io_destroy() Removes an asynchronous context for the current
process

16.4.1.1. The asynchronous I/O context

 If a User Mode process wants to make use of the io_submit() system call to start an asynchronous I/O
operation, it must create beforehand an asynchronous I/O context.

 Basically, an asynchronous I/O context (in short, AIO context) is a set of data structures that keep track
of the on-going progresses of the asynchronous I/O operations requested by the process. Each AIO
context is associated with a kioctx object, which stores all information relevant for the context. An
application might create several AIO contexts; all kioctx descriptors of a given process are collected in a
singly linked list rooted at the ioctx_list field of the memory descriptor (see Table 9-2 in Chapter 9).

 We are not going to discuss in detail the kioctx object; however, we should pinpoint an important data
structure referenced by the kioctx object: the AIO ring.

 The AIO ring is a memory buffer in the address space of the User Mode process that is also accessible
by all processes in Kernel Mode. The User Mode starting address and length of the AIO ring are stored
in the ring_info.mmap_base and ring_info.mmap_size fields of the kioctx object, respectively. The
descriptors of all page frames composing the AIO ring are stored in an array pointed to by the
ring_info.ring_pages field.

 The AIO ring is essentially a circular buffer where the kernel writes the completion reports of the
outstanding asynchronous I/O operations. The first bytes of the AIO ring contain an header (a struct
aio_ring data structure); the remaining bytes store io_event data structures, each of which describes a
completed asynchronous I/O operation. Because the pages of the AIO ring are mapped in the User
Mode address space of the process, the application can check directly the progress of the outstanding
asynchronous I/O operations, thus avoiding using a relatively slow system call.

 The io_setup() system call creates a new AIO context for the calling process. It expects two
parameters: the maximum number of outstanding asynchronous I/O operations, which ultimately
determines the size of the AIO ring, and a pointer to a variable that will store a handle to the context; this
handle is also the base address of the AIO ring. The sys_io_setup() service routine essentially invokes
do_mmap() to allocate a new anonymous memory region for the process that will contain the AIO ring
(see the section "Allocating a Linear Address Interval" in Chapter 9), and creates and initializes a kioctx
object describing the AIO context.

 Conversely, the io_destroy() system call removes an AIO context; it also destroys the anonymous
memory region containing the corresponding AIO ring. The system call blocks the current process until
all outstanding asynchronous I/O operations are complete.

 16.4.1.2. Submitting the asynchronous I/O operations

 To start some asynchronous I/O operations, the application invokes the io_submit() system call. The
system call has three parameters:

 ctx_id

 The handle returned by io_setup(), which identifies the AIO context

iocbpp

 The address of an array of pointers to descriptors of type iocb, each of which describes one
asynchronous I/O operation

nr

 The length of the array pointed to by iocbpp

 The iocb data structure includes the same fields as the POSIX aiocb descriptor (aio_fildes, aio_buf,
aio_nbytes, aio_offset) plus the aio_lio_opcode field that stores the type of the requested operation
(typically read, write, or sync).

 The service routine sys_io_submit() performs essentially the following steps:
1.

1. Verifies that the array of iocb descriptors is valid.
2.

2. Searches the kioctx object corresponding to the ctx_id handle in the list rooted at the ioctx_list
field of the memory descriptor.

3.

3. For each iocb descriptor in the array, it executes the following substeps:
a.

a. Gets the address of the file object corresponding to the file descriptor stored in the aio_fildes
field.

b.

b. Allocates and initializes a new kiocb descriptor for the I/O operation.
c.

c. Checks that there is a free slot in the AIO ring to store the completion result of the operation.
d.

d. Sets the ki_retry method of the kiocb descriptor according to the type of the operation (see
below).

e.

e. Executes the aio_run_iocb() function, which essentially invokes the ki_retry method to start
the I/O data transfer for the corresponding asynchronous I/O operation. If the ki_retry
method returns the value -EIOCBRETRY, the asynchronous I/O operation has been
submitted but not yet fully satisfied: the aio_run_iocb() function will be invoked again on this
kiocb at a later time (see below). Otherwise, it invokes aio_complete() to add a completion
event for the asynchronous I/O operation in the ring of the AIO context.

If the asynchronous I/O operation is a read request, the ki_retry method of the corresponding kiocb
descriptor is implemented by aio_pread(). This function essentially executes the aio_read method of the
file object, then updates the ki_buf and ki_left fields of the kiocb descriptor (see Table 16-1 earlier in this
chapter) according to the value returned by the aio_read method. Finally, aio_pread() returns the
number of bytes effectively read from the file, or the value -EIOCBRETRY if the function determines that
not all requested bytes have been transferred. For most filesystems, the aio_read method of the file
object ends up invoking the _ _generic_file_aio_read() function. Assuming that the O_DIRECT flag of
the file is set, this function ends up invoking the generic_file_direct_IO() function, as described in the
previous section. In this case, however, the _ _blockdev_direct_IO() function does not block the
current process waiting for the I/O data transfer to complete; instead, the function returns immediately.
Because the asynchronous I/O operation is still outstanding, the aio_run_iocb() will be invoked again,
this time by the aio kernel thread of the aio_wq work queue. The kiocb descriptor keeps track of the
progress of the I/O data transfer; eventually all requested data will be transferred and the completion
result will be added to the AIO ring.

 Similarly, if the asynchronous I/O operation is a write request, the ki_retry method of the kiocb
descriptor is implemented by aio_pwrite(). This function essentially executes the aio_write method of the
file object, then updates the ki_buf and ki_left fields of the kiocb descriptor (see Table 16-1 earlier in this
chapter) according to the value returned by the aio_write method. Finally, aio_pwrite() returns the
number of bytes effectively written to the file, or the value -EIOCBRETRY if the function determines that
not all requested bytes have been transferred. For most filesystems, the aio_write method of the file
object ends up invoking the generic_file_aio_write_nolock() function. Assuming that the O_DIRECT
flag of the file is set, this function ends up invoking the generic_file_direct_IO() function, as above.

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 17. Page Frame Reclaiming
 In previous chapters, we explained how the kernel handles dynamic memory by keeping track of free
and busy page frames. We have also discussed how every process in User Mode has its own address
space and has its requests for memory satisfied by the kernel one page at a time, so that page frames can
be assigned to the process at the very last possible moment. Last but not least, we have shown how the
kernel makes use of dynamic memory to implement both memory and disk caches .

 In this chapter, we complete our description of the virtual memory subsystem by discussing page frame
reclaiming. We'll start in the first section, "The Page Frame Reclaiming Algorithm," explaining why the
kernel needs to reclaim page frames and what strategy it uses to achieve this. We then make a technical
digression in the section "Reverse Mapping" to discuss the data structures used by the kernel to locate
quickly all the Page Table entries that point to the same page frame. The section "Implementing the
PFRA" is devoted to the page frame reclaiming algorithm used by Linux. The last main section, "
Swapping," is almost a chapter by itself: it covers the swap subsystem, a kernel component used to save
anonymous (not mapping data of files) pages on disk.

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.1. The Page Frame Reclaiming Algorithm
 One of the fascinating aspects of Linux is that the checks performed before allocating dynamic memory
to User Mode processes or to the kernel are somewhat perfunctory.

 No rigorous check is made, for instance, on the total amount of RAM assigned to the processes created
by a single user (the limits mentioned in the section "Process Resource Limits" in Chapter 3 mostly affect
single processes). Similarly, no limit is placed on the size of the many disk caches and memory caches
used by the kernel.

 This lack of controls is a design choice that allows the kernel to use the available RAM in the best
possible way. When the system load is low, the RAM is filled mostly by the disk caches and the few
running processes can benefit from the information stored in them. However, when the system load
increases, the RAM is filled mostly by pages of the processes and the caches are shrunken to make room
for additional processes.

 As we saw in previous chapters, both memory and disk caches grab more and more page frames but
never release any of them. This is reasonable because cache systems don't know if and when processes
will reuse some of the cached data and are therefore unable to identify the portions of cache that should
be released. Moreover, thanks to the demand paging mechanism described in Chapter 9, User Mode
processes get page frames as long as they proceed with their execution; however, demand paging has no
way to force processes to release the page frames whenever they are no longer used.

 Thus, sooner or later all the free memory will be assigned to processes and caches. The page frame
reclaiming algorithm of the Linux kernel refills the lists of free blocks of the buddy system by "stealing"
page frames from both User Mode processes and kernel caches.

 Actually, page frame reclaiming must be performed before all the free memory has been used up.
Otherwise, the kernel might be easily trapped in a deadly chain of memory requests that leads to a
system crash. Essentially, to free a page frame the kernel must write its data to disk; however, to
accomplish this operation, the kernel requires another page frame (for instance, to allocate the buffer
heads for the I/O data transfer). If no free page frame exists, no page frame can be freed.

 One of the goals of page frame reclaiming is thus to conserve a minimal pool of free page frames so that
the kernel may safely recover from "low on memory" conditions.

 17.1.1. Selecting a Target Page

 The objective of the page frame reclaiming algorithm (PFRA) is to pick up page frames and make them
free. Clearly the page frames selected by the PFRA must be non-free , that is, they must not be already
included in one of the free_area arrays used by the buddy system (see the section "The Buddy System
Algorithm" in Chapter 8).

 The PFRA handles the page frames in different ways, according to their contents. We can distinguish
between unreclaimable pages, swappable pages, syncable pages, and discardable pages. These types
are explained in Table 17-1.

 Table 17-1. The types of pages considered by the PFRA

Type of pages Description Reclaim action

Unreclaimable

Free pages (included in buddy
system lists)

Reserved pages (with
PG_reserved flag set)

Pages dynamically allocated by
the kernel

Pages in the Kernel Mode stacks
of the processes

Temporarily locked pages (with
PG_locked flag set)

Memory locked pages (in
memory regions with
VM_LOCKED flag set)

(No reclaiming allowed or
needed)

Swappable

Anonymous pages in User Mode
address spaces

 Mapped pages of tmpfs
filesystem (e.g., pages of IPC
shared memory)

Save the page contents in a swap
area

Syncable

Mapped pages in User Mode
address spaces

Pages included in the page cache
and containing data of disk files

Block device buffer pages

Pages of some disk caches (e.g.,
the inode cache)

Synchronize the page with its
image on disk, if necessary

Discardable

Unused pages included in
memory caches (e.g., slab
allocator caches)

Unused pages of the dentry
cache

Nothing to be done

In the above table, a page is said to be mapped if it maps a portion of a file. For instance, all pages in the
User Mode address spaces belonging to file memory mappings are mapped, as well as any other page
included in the page cache. In almost all cases, mapped pages are syncable: in order to reclaim the page
frame, the kernel must check whether the page is dirty and, if necessary, write the page contents in the
corresponding disk file.

 Conversely, a page is said to be anonymous if it belongs to an anonymous memory region of a process
(for instance, all pages in the User Mode heap or stack of a process are anonymous). In order to reclaim
the page frame, the kernel must save the page contents in a dedicated disk partition or disk file called
"swap area" (see the later section "Swapping"); therefore, all anonymous pages are swappable.

 Usually, the pages of special filesystems are not reclaimable. The only exceptions are the pages of the
tmpfs special filesystem, which can be reclaimed by saving them in a swap area. As we'll see in Chapter
19, the tmpfs special filesystem is used by the IPC shared memory mechanism.

 When the PFRA must reclaim a page frame belonging to the User Mode address space of a process, it
must take into consideration whether the page frame is shared or non-shared . A shared page frame
belongs to multiple User Mode address spaces, while a non-shared page frame belongs to just one.
Notice that a non-shared page frame might belong to several lightweight processes referring to the same
memory descriptor.

 Shared page frames are typically created when a process spawns a child; as explained in the section "
Copy On Write" in Chapter 9, the page tables of the child are copied from those of the parent, thus
parent and child share the same page frames. Another common case occurs when two or more
processes access the same file by means of a shared memory mapping (see the section "Memory
Mapping" in Chapter 16).[*]

[*] It should be noted, however, that when a single process accesses a file through a shared memory
mapping, the corresponding pages are non-shared as far as the PFRA is concerned. Similarly, a page
belonging to a private memory mapping may be treated as shared by the PFRA (for instance, because
two processes read the same file portion and none of them modified the data in the page).

 17.1.2. Design of the PFRA

 While it is easy to identify the page candidates for memory reclaimingroughly speaking, any page
belonging to a disk or memory cache, or to the User Mode address space of a processselecting the
proper target pages is perhaps the most sensitive issue in kernel design.

 As a matter of fact, the hardest job of a developer working on the virtual memory subsystem consists of
finding an algorithm that ensures acceptable performance both for desktop machines (on which memory
requests are quite limited but system responsiveness is crucial) and for high-level machines such as large
database servers (on which memory requests tend to be huge).

 Unfortunately, finding a good page frame reclaiming algorithm is a rather empirical job, with very little
support from theory. The situation is somewhat similar to evaluating the factors that determine the
dynamic priority of a process: the main objective is to tune the parameters in such a way to achieve good
system performance, without asking too many questions about why it works well. Often, it's just a matter
of "let's try this approach and see what happens." An unpleasant side effect of this empirical design is that
the code changes quickly. For that reason, we cannot ensure that the memory reclaiming algorithm we
are going to describethe one used in Linux 2.6.11will be exactly the same, by the time you'll read this
chapter, as the one adopted by the most up-to-date version of the Linux 2.6 kernel. However, the
general ideas and the main heuristic rules described here should continue to hold.

 Looking too close to the trees' leaves might lead us to miss the whole forest. Therefore, let us present a
few general rules adopted by the PFRA. These rules are embedded in the functions that will be described
later in this chapter.

 Free the "harmless" pages first

 Pages included in disk and memory caches not referenced by any process should be reclaimed before
pages belonging to the User Mode address spaces of the processes; in the former case, in fact, the page
frame reclaiming can be done without modifying any Page Table entry. As we will see in the section "The
Least Recently Used (LRU) Lists" later in this chapter, this rule is somewhat mitigated by introducing a
"swap tendency factor."

Make all pages of a User Mode process reclaimable

 With the exception of locked pages, the PFRA must be able to steal any page of a User Mode process,
including the anonymous pages. In this way, processes that have been sleeping for a long period of time
will progressively lose all their page frames.

Reclaim a shared page frame by unmapping at once all page table entries that reference it

 When the PFRA wants to free a page frame shared by several processes, it clears all page table entries
that refer to the shared page frame, and then reclaims the page frame.

Reclaim "unused" pages only

 The PFRA uses a simplified Least Recently Used (LRU) replacement algorithm to classify pages as
in-use and unused.[*] If a page has not been accessed for a long time, the probability that it will be
accessed in the near future is low and it can be considered "unused;" on the other hand, if a page has
been accessed recently, the probability that it will continue to be accessed is high and it must be
considered as "in-use." The PFRA reclaims only unused pages. This is just another application of the
locality principle mentioned in the section "Hardware Cache" in Chapter 2.

[*] The PFRA could also be considered as a "used-once" algorithm, which has its roots in the 2Q buffer
management replacement algorithm proposed by T. Johnson and D. Shasha in 1994.

 The main idea behind the LRU algorithm is to associate a counter storing the age of the page with each
page in RAMthat is, the interval of time elapsed since the last access to the page. This counter allows the
PFRA to reclaim only the oldest page of any process. Some computer platforms provide sophisticated
support for LRU algorithms;[] unfortunately, 80 x 86 processors do not offer such a hardware feature,
thus the Linux kernel cannot rely on a page counter that keeps track of the age of every page. To cope
with this restriction, Linux takes advantage of the Accessed bit included in each Page Table entry, which
is automatically set by the hardware when the page is accessed; moreover, the age of a page is
represented by the position of the page descriptor in one of two different lists (see the section "The Least
Recently Used (LRU) Lists" later in this chapter).

[] For instance, the CPUs of some mainframes automatically update the value of a counter included in
each page table entry to specify the age of the corresponding page.

 Therefore, the page frame reclaiming algorithm is a blend of several heuristics:


 Careful selection of the order in which caches are examined.


 Ordering of pages based on aging (least recently used pages should be freed before pages
accessed recently).



 Distinction of pages based on the page state (for example, non-dirty pages are better candidates
than dirty pages because they don't have to be written to disk).

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.2. Reverse Mapping
 As stated in the previous section, one of the objectives of the PFRA is to be able to free a shared page
frame. To that end, the Linux 2.6 kernel is able to locate quickly all the Page Table entries that point to
the same page frame. This activity is called reverse mapping .

 A trivial solution for reverse mapping would be to include in each page descriptor additional fields to link
together all the Page Table entries that point to the page frame associated with the page descriptor.
However, keeping such lists up-to-date would increase significantly the kernel overhead; for that reason,
more sophisticated solutions have been devised. The technique used in Linux 2.6 is named object-based
reverse mapping. Essentially, for any reclaimable User Mode page, the kernel stores the backward links
to all memory regions in the system (the "objects") that include the page itself. Each memory region
descriptor stores a pointer to a memory descriptor, which in turn includes a pointer to a Page Global
Directory. Therefore, the backward links enable the PFRA to retrieve all Page Table entries referencing
a given a page. Because there are fewer memory region descriptors than page descriptors, updating the
backward links of a shared page is less time consuming. Let's see how this scheme is worked out.

 First of all, the PFRA must have a way to determine whether the page to be reclaimed is shared or
non-shared, and whether it is mapped or anonymous. In order to do this, the kernel looks at two fields of
the page descriptor: _mapcount and mapping.

 The _mapcount field stores the number of Page Table entries that refer to the page frame. The counter
starts from -1: this value means that no Page Table entry references the page frame. Thus, if the counter
is zero, the page is non-shared, while if it is greater than zero the page is shared. The page_mapcount()
function receives the address of a page descriptor and returns the value of its _mapcount plus one (thus,
for instance, it returns one for a non-shared page included in the User Mode address space of some
process).

 The mapping field of the page descriptor determines whether the page is mapped or anonymous, as
follows:



 If the mapping field is NULL, the page belongs to the swap cache (see the section "The Swap
Cache" later in this chapter).



 If the mapping field is not NULL and its least significant bit is 1, it means the page is anonymous
and the mapping field encodes the pointer to an anon_vma descriptor (see the next section, "
Reverse Mapping for Anonymous Pages").



 If the mapping field is non-NULL and its least significant bit is 0, the page is mapped; the
mapping field points to the address_space object of the corresponding file (see the section "The
address_space Object" in Chapter 15).

 Every address_space object used by Linux is aligned in RAM so that its starting linear address is a
multiple of four. Therefore, the least significant bit of the mapping field can be used as a flag denoting
whether the field contains a pointer to an address_space object or to an anon_vma descriptor. This is a
dirty programming trick, but the kernel uses a lot of page descriptors, thus these data structures should
be as small as possible. The PageAnon() function receives as its parameter the address of a page
descriptor and returns 1 if the least significant bit of the mapping field is set, 0 otherwise.

 The TRy_to_unmap() function, which receives as its parameter a pointer to a page descriptor, tries to
clear all the Page Table entries that point to the page frame associated with that page descriptor. The
function returns SWAP_SUCCESS (zero) if the function succeeded in removing any reference to the
page frame from all Page Table entries, it returns SWAP_AGAIN (one) if some reference could not be
removed, and returns SWAP_FAIL (two) in case of errors. The function is quite short:

int try_to_unmap(struct page *page)

{

 int ret;

 if (PageAnon(page))

 ret = try_to_unmap_anon(page);

 else

 ret = try_to_unmap_file(page);

 if (!page_mapped(page))

 ret = SWAP_SUCCESS;

 return ret;

}

The TRy_to_unmap_anon() and try_to_unmap_file() functions take care of anonymous pages and
mapped pages, respectively. These functions will be described in the forthcoming sections.

 17.2.1. Reverse Mapping for Anonymous Pages

 Anonymous pages are often shared among several processes. The most common case occurs when
forking a new process: as explained in the section "Copy On Write" in Chapter 9, all page frames owned
by the parentincluding the anonymous pagesare assigned also to the child. Another (quite unusual) case
occurs when a process creates a memory region specifying both the MAP_ANONYMOUS and
MAP_SHARED flag: the pages of such a region will be shared among the future descendants of the
process.

 The strategy to link together all the anonymous pages that refer to the same page frame is simple: the
anonymous memory regions that include the page frame are collected in a doubly linked circular list. Be
warned that, even if an anonymous memory region includes different pages, there always is just one
reverse mapping list for all the page frames in the region.

 When the kernel assigns the first page frame to an anonymous region, it creates a new anon_vma data
structure, which includes just two fields: lock, a spin lock for protecting the list against race conditions,
and head, the head of the doubly linked circular list of memory region descriptors. Then, the kernel
inserts the vm_area_struct descriptor of the anonymous memory region in the anon_vma's list; to that
end, the vm_area_struct data structure includes two fields related to this list: anon_vma_node stores the
pointers to the next and previous elements in the list, while anon_vma points to the anon_vma data
structure. Finally, the kernel stores the address of the anon_vma data structure in the mapping field of the
descriptor of the anonymous page, as described previously. See Figure 17-1.

 When a page frame already referenced by one process is inserted into a Page Table entry of another
process (for instance, as a consequence of a fork() system call, see

 Figure 17-1. Object-based reverse mapping for anonymous pages

 the section "The clone(), fork(), and vfork() System Calls" in Chapter 3); the kernel simply inserts the
anonymous memory region of the second process in the doubly linked circular list of the anon_vma data
structure pointed to by the anon_vma field of the first process's memory region. Therefore, any
anon_vma's list typically includes memory regions owned by different processes.[*]

[*] An anon_vma's list may also include several adjacent anonymous memory regions owned by the
same process. Usually this occurs when an anonymous memory region is split in two or more regions by
the mprotect() system call.

 As shown in Figure 17-1, the anon_vma's list allows the kernel to quickly locate all Page Table entries
that refer to the same anonymous page frame. In fact, each region descriptor stores in the vm_mm field
the address of the memory descriptor, which in turn includes a field pgd containing the address of the
Page Global Directory of the process. The Page Table entry can then be determined by considering the
starting linear address of the anonymous page, which is easily obtained from the memory region
descriptor and the index field of the page descriptor.

 17.2.1.1. The try_to_unmap_anon() function

 When reclaiming an anonymous page frame, the PFRA must scan all memory regions in the anon_vma's
list and carefully check whether each region actually includes an anonymous page whose underlying page
frame is the target page frame. This job is done by the try_to_unmap_anon() function, which receives as
its parameter the descriptor of the target page frame and performs essentially the following steps:

1.

1. Acquires the lock spin lock of the anon_vma data structure pointed to by the mapping field of
the page descriptor.

2.

2. Scans the anon_vma's list of memory region descriptors; for each vma memory region descriptor
found in that list, it invokes the try_to_unmap_one() function passing as parameters vma and the
page descriptor (see below). If for some reason this function returns a SWAP_FAIL value, or if
the _mapcount field of the page descriptor indicates that all Page Table entries referencing the
page frame have been found, the scanning terminates before reaching the end of the list.

3.

3. Releases the spin lock obtained in step 1.
4.

4. Returns the value computed by the last invocation of TRy_to_unmap_one(): SWAP_AGAIN
(partial success) or SWAP_FAIL (failure).

17.2.1.2. The try_to_unmap_one() function

 The TRy_to_unmap_one() function is called repeatedly both from try_to_unmap_anon() and from
TRy_to_unmap_file(). It acts on two parameters: a pointer page to a target page descriptor and a
pointer vma to a memory region descriptor. The function essentially performs the following actions:

1.

1. Computes the linear address of the page to be reclaimed from the starting linear address of the
memory region (vma->vm_start), the offset of the memory region in the mapped file
(vma->vm_pgoff), and the offset of the page inside the mapped file (page->index). For
anonymous pages, the vma->vm_pgoff field is either zero or equal to vm_start/PAGE_SIZE;
correspondingly, the page->index field is either the index of the page inside the region or the
linear address of the page divided by PAGE_SIZE.

2.

2. If the target page is anonymous, it checks whether its linear address falls inside the memory
region; if not, it terminates by returning SWAP_AGAIN. (As explained when introducing reverse
mapping for anonymous pages, the anon_vma's list may include memory regions that do not
contain the target page.)

3.

3. Gets the address of the memory descriptor from vma->vm_mm, and acquires the
vma->vm_mm->page_table_lock spin lock that protects the page tables.

4.

4. Invokes successively pgd_offset(), pud_offset(), pmd_offset(), and pte_offset_map() to get
the address of the Page Table entry that corresponds to the linear address of the target page.

5.

5. Performs a few checks to verify that the target page is effectively reclaimable. If any of the
following checks fails, the function jumps to step 12 to terminate by returning a proper error
number, either SWAP_AGAIN or SWAP_FAIL:
a.

a. Checks that the Page Table entry points to the target page; if not, the function returns
SWAP_AGAIN. This can happen in the following cases:


 The Page Table entry refers to a page frame assigned with COW , but the anonymous
memory region identified by vma still belongs to the anon_vma list of the original page
frame.



 The mremap() system call may remap memory regions and move the pages into the User
Mode address space by directly modifying the page table entries. In this particular case,
object-based reverse mapping does not work, because the index field of the page
descriptor cannot be used to determine the actual linear address of the page.



 The file memory mapping is non-linear (see the section "Non-Linear Memory Mappings"
in Chapter 16).

b.

b. Checks that the memory region is not locked (VM_LOCKED) or reserved
(VM_RESERVED); if one of these restrictions is in place, the function returns
SWAP_FAIL.

c.

c. Checks that the Accessed bit inside the Page Table entry is cleared; if not, the function clears
the bit and returns SWAP_FAIL. If the Accessed bit is set, the page is considered in-use,
thus it should not be reclaimed.

d.

d. Checks whether the page belongs to the swap cache (see the section "The Swap Cache"
later in this chapter) and it is currently being handled by get_user_pages() (see the section "
Allocating a Linear Address Interval" in Chapter 9); in this case, to avoid a nasty race
condition, the function returns SWAP_FAIL.

6.

6. The page can be reclaimed: if the Dirty bit in the Page Table entry is set, sets the PG_dirty flag of
the page.

7.

7. Clears the Page Table entry and flushes the corresponding TLBs.
8.

8. If the page is anonymous, the function inserts a swapped-out page identifier in the Page Table
entry so that further accesses to this page will swap in the page (see the section "Swapping" later
in this chapter). Moreover, it decreases the counter of anonymous pages stored in the anon_rss
field of the memory descriptor.

9.

9. Decreases the counter of page frames allocated to the process stored in the rss field of the
memory descriptor.

10.

10.Decreases the _mapcount field of the page descriptor, because a reference to this page frame in
the User Mode Page Table entries has been deleted.

11.

11.Decreases the usage counter of the page frame, which is stored in the _count field of the page
descriptor. If the counter becomes negative, it removes the page descriptor from the active or
inactive list (see the section "The Least Recently Used (LRU) Lists" later in this chapter), and
invokes free_hot_page() to release the page frame (see the section "The Per-CPU Page Frame
Cache" in Chapter 8).

12.

12. Invokes pte_unmap() to release the temporary kernel mapping that could have been allocated
by pte_offset_map() in step 4 (see the section "Kernel Mappings of High-Memory Page Frames
" in Chapter 8).

13.

13.Releases the vma->vm_mm->page_table_lock spin lock acquired in step 3.
14.

14.Returns the proper error code (SWAP_AGAIN in case of success).

17.2.2. Reverse Mapping for Mapped Pages

 As with anonymous pages, object-based reverse mapping for mapped pages is based on a simple idea:
it is always possible to retrieve the Page Table entries that refer to a given page frame by accessing the
descriptors of the memory regions that include the corresponding mapped pages. Thus, the core of
reverse mapping is a clever data structure that collects all memory region descriptors relative to a given
page frame.

 We have seen in the previous section that descriptors for anonymous memory regions are collected in
doubly linked circular lists; retrieving all page table entries referencing a given page frame involves a linear
scanning of the elements in the list. The number of shared anonymous page frames is never very large,
hence this approach works well.

 Contrary to anonymous pages, mapped pages are frequently shared, because many different processes
may share the same pages of code. For instance, consider that nearly all processes in the system share
the pages containing the code of the standard C library (see the section "Libraries" in Chapter 20). For
this reason, Linux 2.6 relies on special search trees, called "priority search trees ," to quickly locate all the
memory regions that refer to the same page frame.

 There is a priority search tree for every file; its root is stored in the i_mmap field of the address_space
object embedded in the file's inode object. It is always possible to quickly retrieve the root of the search
tree, because the mapping field in the descriptor of a mapped page points to the address_space object.

 17.2.2.1. The priority search tree

 The priority search tree (PST) used by Linux 2.6 is based on a data structure introduced by Edward
McCreight in 1985 to represent a set of overlapping intervals. McCreight's tree is a hybrid of a heap and
a balanced search tree, and it is used to perform queries on the set of intervalse.g., "what intervals are
contained in a given interval?" and "what intervals intersect a given interval?"in an amount of time directly
proportional to the height of the tree and the number of intervals in the answer.

 Each interval in a PST corresponds to a node of the tree, and it is characterized by two indices: the radix
index, which corresponds to the starting point of the interval, and the heap index, which corresponds to
the final point. The PST is essentially a search tree on the radix index, with the additional heap-like
property that the heap index of a node is never smaller than the heap indices of its children.

 The Linux priority search tree differs from McCreight's data structure in two important aspects: first, the
Linux tree is not always kept balanced (the balancing algorithm is costly both in memory space and in
execution time); second, the Linux tree is adapted so as to store memory regions instead of linear
intervals.

 Each memory region can be considered as an interval of file pages identified by the initial position in the
file (the radix index) and the final position (the heap index). However, memory regions tend to start from
the same pages (typically, from page index 0). Unfortunately, McCreight's original data structure cannot
store intervals having the very same starting point. As a partial solution, each node of a PST carries an
additional size indexother than the radix and heap indicescorresponding to the size of the memory region
in pages minus one. The size index allows the search program to distinguish different memory regions that
start at the same file position.

 The size index, however, increases significantly the number of different nodes that may end up in a PST.
In particular, if there are too many nodes having the same radix index but different heap indices, the PST
could not contain all of them. To solve this problem, the PST may include overflow subtrees rooted at the
leaves of the PST and containing nodes having a common radix tree.

 Furthermore, different processes may own memory regions that map exactly the same portion of the
same file (just consider the example of the standard C library mentioned above). In that case, all nodes
corresponding to these memory regions have the same radix, heap, and size indices . When the kernel
must insert in a PST a memory region having the same indices as the ones of a node already existing, it
inserts the memory region descriptor in a doubly linked circular list rooted at the older PST node.

 Figure 17-2 shows a simple example of priority search tree. In the left side of the figure, we show seven
memory regions covering the first six pages of a file; each interval is labeled with the radix index, size
index, and heap index. In the right side of the figure, we draw the corresponding PST. Notice that no
child node has a heap index greater than the heap index of the parent. Also observe that the radix index
of the left child of any node is never greater than the radix index of the right child; in case of tie between
the radix indices, the ordering is given by the size index. Let us suppose that the PFRA must retrieve all
memory regions that include the page at index five. The search algorithm starts at the root (0,5,5):
because the corresponding interval includes the page, this is the first retrieved memory region. Then the
algorithm visits the left child (0,4,4) of the root and compares the heap index (four) with the page index:
because the heap index is smaller, the interval does not include the page; moreover, thanks to the
heap-like property of the PST, none of the children of this node can include the page. Thus the algorithm
directly jumps to the right child (2,3,5) of the root. The corresponding interval includes the page, hence it
is retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers that neither of them
include the page.

 Figure 17-2. A simple example of priority search tree

 We won't be able, for lack of space, to describe in detail the data structures and the functions that
implement the Linux PSTs. We'll only mention that a node of a PST is represented by a prio_tree_node
data structure, which is embedded in the shared.prio_tree_node field of each memory region descriptor.
The shared.vm_set data structure is usedas an alternative to shared.prio_tree_nodeto insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and removed by executing
the vma_prio_tree_insert() and vma_prio_tree_remove() functions; both of them receive as their
parameters the address of a memory region descriptor and the address of a PST root. Queries on the
PST can be performed by executing the vma_prio_tree_foreach macro, which implements a loop over all
memory region descriptors that includes at least one page in a specified range of linear addresses.

 17.2.2.2. The try_to_unmap_file() function

 The try_to_unmap_file() function is invoked by TRy_to_unmap() to perform the reverse mapping of
mapped pages. This function is quite simple to describe when the memory mapping is linear (see the
section "Memory Mapping" in Chapter 16). In this case, it performs the following actions:

1.

1. Gets the page->mapping->i_mmap_lock spin lock.
2.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose root is stored in
the page->mapping->i_mmap field. For each vm_area_struct descriptor found by the macro, the
function invokes try_to_unmap_one() to try to clear the Page Table entry of the memory region
that contains the page (see the earlier section "Reverse Mapping for Anonymous Pages"). If for
some reason this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have been found, the
scanning terminates immediately.

3.

3. Releases the page->mapping->i_mmap_lock spin lock.
4.

4. Returns either SWAP_AGAIN or SWAP_FAIL according to whether all page table entries
have been cleared.

If the mapping is non-linear (see the section "Non-Linear Memory Mappings" in Chapter 16), the
try_to_unmap_one() function may fail to clear some Page Table entries, because the index field of the
page descriptor, which as usual stores the position of the page in the file, is no longer related to the
position of the page in the memory region. Therefore, try_to_unmap_one() cannot determine the linear
address of the page, hence it cannot get the Page Table entry address.

 The only solution is an exhaustive search in all the non-linear memory regions of the file. The doubly
linked list rooted at the i_mmap_nonlinear field of the page->mapping file's address_space object
includes the descriptors of all non-linear memory regions of the file. For each such memory region,
try_to_unmap_file() invokes the TRy_to_unmap_cluster() function, which scans all Page Table entries
corresponding to the linear addresses of the memory region and tries to clear them.

 Because the search might be quite time-consuming, a limited scan is performed and a heuristic rule
determines the portion of the memory region to be scanned: the vm_private_data field of the
vma_area_struct descriptor holds the current cursor in the current scan. This means that
try_to_unmap_file() might in some cases end up missing the page to be unmapped. When this occurs,
try_to_unmap() discovers that the page is still mapped and return SWAP_AGAIN instead of
SWAP_SUCCESS.

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.3. Implementing the PFRA
 The page frame reclaiming algorithm must take care of many kinds of pages owned by User Mode
processes, disk caches and memory caches; moreover, it has to obey several heuristic rules. Thus, it is
not surprising that the PFRA is composed of a large number of functions. Figure 17-3 shows the main
PFRA functions; an arrow denotes a function invocation, thus for instance try_to_free_pages() invokes
shrink_caches(), shrink_slab(), and out_of_memory().

 As you can see, there are several "entry points" for the PFRA. Actually, page frame reclaiming is
performed on essentially three occasions:

 Low on memory reclaiming

 The kernel detects a "low on memory" condition.

Hibernation reclaiming

 The kernel must free memory because it is entering in the suspend-to-disk state (we don't further discuss
this case).

Periodic reclaiming

 A kernel thread is activated periodically to perform memory reclaiming, if necessary.

 Figure 17-3. The main functions of the PFRA

 Low on memory reclaiming is activated in the following cases:


 The grow_buffers() function, invoked by _ _getblk(), fails to allocate a new buffer page (see
the section "Searching Blocks in the Page Cache" in Chapter 15).



 The alloc_page_buffers() function, invoked by create_empty_buffers(), fails to allocate the
temporary buffer heads for a page (see the section "Reading and Writing a File" in Chapter 16).



 The _ _alloc_pages() function fails in allocating a group of contiguous page frames in a given list
of memory zones (see the section "The Buddy System Algorithm" in Chapter 8).

 Periodic reclaiming is activated by two different types of kernel threads:


 The kswapd kernel threads, which check whether the number of free page frames in some
memory zone has fallen below the pages_high watermark (see the later section "Periodic
Reclaiming").



 The events kernel threads, which are the worker threads of the predefined work queue (see the
section "Work Queues" in Chapter 4); the PFRA periodically schedules the execution of a task in
the predefined work queue to reclaim all free slabs included in the memory caches handled by the
slab allocator (see the section "The Slab Allocator" in Chapter 8).

 We are now going to discuss in detail the various components of the page frame reclaiming algorithm,
including all functions shown in Figure 17-3.

 17.3.1. The Least Recently Used (LRU) Lists

 All pages belonging to the User Mode address space of processes or to the page cache are grouped
into two lists called the active list and the inactive list ; they are also collectively denoted as LRU lists .
The former list tends to include the pages that have been accessed recently, while the latter tends to
include the pages that have not been accessed for some time. Clearly, pages should be stolen from the
inactive list.

 The active list and the inactive list of pages are the core data structures of the page frame reclaiming
algorithm. The heads of these two doubly linked lists are stored, respectively, in the active_list and
inactive_list fields of each zone descriptor (see the section "Memory Zones" in Chapter 8). The nr_active
and nr_inactive fields in the same descriptor store the number of pages in the two lists. Finally, the
lru_lock field is a spin lock that protects the two lists against concurrent accesses in SMP systems.

 If a page belongs to an LRU list, its PG_lru flag in the page descriptor is set. Moreover, if the page
belongs to the active list, the PG_active flag is set, while if it belongs to the inactive list, the PG_active flag
is cleared. The lru field of the page descriptor stores the pointers to the next and previous elements in the
LRU list.

 Several auxiliary functions are available to handle the LRU lists:

 add_page_to_active_list()

 Adds the page to the head of the zone's active list and increases the nr_active field of the zone
descriptor.

add_page_to_inactive_list()

 Adds the page to the head of the zone's inactive list and increases the nr_inactive field of the zone
descriptor.

del_page_from_active_list()

 Removes the page from the zone's active list and decreases the nr_active field of the zone descriptor.

del_page_from_inactive_list()

 Removes the page from the zone's inactive list and decreases the nr_inactive field of the zone descriptor.

del_page_from_lru()

 Checks the PG_active flag of a page; according to the result, removes the page from the active or
inactive list, decreases the nr_active or nr_inactive field of the zone descriptor, and clears, if necessary,
the PG_active flag.

activate_page()

 Checks the PG_active flag; if it is clear (the page is in the inactive list), it moves the page into the active
list: invokes del_page_from_inactive_list(), then invokes add_page_to_active_list(), and finally sets the
PG_active flag. The zone's lru_lock spin lock is acquired before moving the page.

lru_cache_add()

 If the page is not included in an LRU list, it sets the PG_lru flag, acquires the zone's lru_lock spin lock,
and invokes add_page_to_inactive_list() to insert the page in the zone's inactive list.

lru_cache_add_active()

 If the page is not included in an LRU list, it sets the PG_lru and PG_active flags, acquires the zone's
lru_lock spin lock, and invokes add_page_to_active_list() to insert the page in the zone's active list.

 Actually, the last two functions, lru_cache_add() and lru_cache_add_active(), are slightly more
complicated. In fact, the two functions do not immediately move the page into an LRU; instead, they
accumulate the pages in temporary data structures of type pagevec, each of which may contain up to 14
page descriptor pointers. The pages will be effectively moved in an LRU list only when a pagevec
structure is completely filled. This mechanism enhances the system performance, because the LRU spin
lock is acquired only when the LRU lists are effectively modified.

 17.3.1.1. Moving pages across the LRU lists

 The PFRA collects the pages that were recently accessed in the active list so that it will not scan them
when looking for a page frame to reclaim. Conversely, the PFRA collects the pages that have not been
accessed for a long time in the inactive list. Of course, pages should move from the inactive list to the
active list and back, according to whether they are being accessed.

 Clearly, two page states ("active" and "inactive") are not sufficient to describe all possible access
patterns. For instance, suppose a logger process writes some data in a page once every hour. Although
the page is "inactive" for most of the time, the access makes it "active," thus denying the reclaiming of the
corresponding page frame, even if it is not going to be accessed for an entire hour. Of course, there is no
general solution to this problem, because the PFRA has no way to predict the behavior of User Mode
processes; however, it seems reasonable that pages should not change their status on every single access.

 The PG_referenced flag in the page descriptor is used to double the number of accesses required to
move a page from the inactive list to the active list; it is also used to double the number of "missing
accesses" required to move a page from the active list to the inactive list (see below). For instance,
suppose that a page in the inactive list has the PG_referenced flag set to 0. The first page access sets the
value of the flag to 1, but the page remains in the inactive list. The second page access finds the flag set
and causes the page to be moved in the active list. If, however, the second access does not occur within
a given time interval after the first one, the page frame reclaiming algorithm may reset the PG_referenced
flag.

 As shown in Figure 17-4, the PFRA uses the mark_page_accessed(), page_referenced(), and
refill_inactive_zone() functions to move the pages across the LRU lists. In the figure, the LRU list
including the page is specified by the status of the PG_active flag.

 Figure 17-4. Moving pages across the LRU lists

 17.3.1.2. The mark_page_accessed() function

 Whenever the kernel must mark a page as accessed, it invokes the mark_page_accessed() function.
This happens every time the kernel determines that a page is being referenced by a User Mode process,
a filesystem layer, or a device driver. For instance, mark_page_accessed() is invoked in the following
cases:



 When loading on demand an anonymous page of a process (performed by the
do_anonymous_page() function; see the section "Demand Paging" in Chapter 9).



 When loading on demand a page of a memory mapped file (performed by the filemap_nopage()
function; see the section "Demand Paging for Memory Mapping" in Chapter 16).



 When loading on demand a page of an IPC shared memory region (performed by the
shmem_nopage() function; see the section "IPC Shared Memory" in Chapter 19).



 When reading a page of data from a file (performed by the do_generic_file_read() function; see
the section "Reading from a File" in Chapter 16).



 When swapping in a page (performed by the do_swap_page() function; see the section "
Swapping in Pages" later in this chapter).



 When looking up a buffer page in the page cache (see the _ _find_get_block() function in the
section "Searching Blocks in the Page Cache" in Chapter 15).

 The mark_page_accessed() function executes the following code fragment:

if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {

 activate_page(page);

 ClearPageReferenced(page);

} else if (!PageReferenced(page))

 SetPageReferenced(page);

As shown in Figure 17-4, the function moves the page from the inactive list to the active list only if the
PG_referenced flag is set before the invocation.

 17.3.1.3. The page_referenced() function

 The page_referenced() function, which is invoked once for every page scanned by the PFRA, returns 1
if either the PG_referenced flag or some of the Accessed bits in the Page Table entries was set; it returns
0 otherwise. This function first checks the PG_referenced flag of the page descriptor; if the flag is set, it
clears it. Next, it makes use of the object-based reverse mapping mechanism to check and clear the
Accessed bits in all User Mode Page Table entries that refer to the page frame. To do this, the function
makes use of three ancillary functions; page_referenced_anon(), page_referenced_file(), and
page_referenced_one(), which are analogous to the try_to_unmap_xxx() functions described in the
section "Reverse Mapping" earlier in this chapter. The page_referenced() function also honors the swap
token; see the section "The Swap Token" later in this chapter.

 The page_referenced() function never moves a page from the active list to the inactive list; this job is
done by refill_inactive_zone(). In practice, this function does a lot more than move pages from the active
to the inactive list, so we are going to describe it in greater detail.

 17.3.1.4. The refill_inactive_zone() function

 As illustrated in Figure 17-3, the refill_inactive_zone() function is invoked by shrink_zone(), which
performs the reclaiming of pages in the page cache and in the User Mode address spaces (see the
section "Low On Memory Reclaiming" later in this chapter). The function receives two parameters: a
pointer zone to a memory zone descriptor, and a pointer sc to a scan_control structure. The latter data
structure is widely used by the PFRA and contains information about the ongoing reclaiming operation; its
fields are shown in Table 17-2.

 Table 17-2. The fields of the scan_control descriptor

Type Field Description

unsigned long nr_to_scan Target number of pages to be
scanned in the active list.

unsigned long nr_scanned Number of inactive pages
scanned in the current iteration.

unsigned long nr_reclaimed Number of pages reclaimed in the
current iteration.

unsigned long nr_mapped Number of pages referenced in
the User Mode address spaces.

int nr_to_reclaim Target number of pages to be
reclaimed.

unsigned int priority

Priority of the scanning, ranging
between 12 and 0. Lower
priority implies scanning more
pages.

unsigned int gfp_mask GFP mask passed from calling
function.

int may_writepage
If set, writing a dirty page to disk
is allowed (only for laptop
mode).

The role of refill_inactive_zone() is critical because moving a page from an active list to an inactive list
means making the page eligible to fall prey, sooner or later, to the PFRA. If the function is too aggressive,
it will move a lot of pages from the active list to the inactive list; as a consequence, the PFRA will reclaim
a large number of page frames, and the system performance will be hit. On the other hand, if the function
is too lazy, the inactive list will not be replenished with a large enough number of unused pages, and the
PFRA will fail in reclaiming memory. Thus, the function implements an adaptive behavior: it starts by
scanning, at every invocation, a small number of pages in the active list; however, if the PFRA is having
trouble in reclaiming page frames, refill_inactive_zone() keeps increasing the number of active pages
scanned at every invocation. This behavior is controlled by the value of the priority field in the
scan_control data structure (a lower value means a more urgent priority).

 Another heuristic rule regulates the behavior of the refill_inactive_zone() function. The LRU lists include
two kinds of pages: those belonging to the User Mode address spaces, and those included in the page
cache that do not belong to any User Mode process. As stated earlier, the PFRA should tend to shrink
the page cache while leaving in RAM the pages owned by the User Mode processes. However, no fixed
"golden rule" may yield good performance in every scenario, thus the refill_inactive_zone() function relies
on a swap tendency heuristic value: it determines whether the function will move all kinds of pages, or just
the pages that do not belong to the User Mode address spaces.[*] The swap tendency value is
computed by the function as follows:

[*] The name "swap tendency" is a bit misleading, because the pages in User Mode address spaces can
be swappable, syncable, or discardable. However, the swap tendency value certainly controls the
amount of swapping performed by the PFRA, because almost all swappable pages belong to the User
Mode address spaces.

 swap tendency = mapped ratio / 2 + distress + swappiness

 The mapped ratio value is the percentage of pages in all memory zones that belong to User Mode
address spaces (sc->nr_mapped) with respect to the total number of allocatable page frames. A high
value of mapped_ratio means that the dynamic memory is mostly used by User Mode processes, while a
low value means that it is mostly used by the page cache.

 The distress value is a measure of how effectively the PFRA is reclaiming page frames in this zone; it is
based on the scanning priority of the zone in the previous run of the PFRA, which is stored in the
prev_priority field of the zone descriptor. The distress value depends on the zone's previous priority as
follows:

Zone
prev.
priority

12...7 6 5 4 3 2 1 0

Distress
value 0 1 3 6 12 25 50 100

Finally, the swappiness value is a user-defined constant, which is usually set to 60. The system
administrator may tune this value by writing in the /proc/sys/vm/swappiness file or by issuing the proper
sysctl() system call.

 Pages will be reclaimed from the address spaces of processes only if the zone's swap tendency is greater
than or equal to 100. Thus, if the system administrator sets swappiness to 0, then the PFRA never
reclaims pages in the User Mode address spaces unless the zone's previous priority is zero (an unlikely
event); if the administrator sets swappiness to 100, then the PFRA reclaims pages in the User Mode
address spaces at every invocation.

 Here is a succinct description of what the refill_inactive_zone() function does:
1.

1. Invokes lru_add_drain() to move into the active and inactive lists any page still contained in the
pagevec data structures.

2.

2. Gets the zone->lru_lock spin lock.
3.

3. Performs a first cycle scanning the pages in zone->active_list, starting from the tail of the list and
moving backwards. Continues until the list is empty or until sc->nr_to_scan pages have been
scanned. For each page scanned in this cycle, the function increases by one its reference counter,
removes the page descriptor from zone->active_list, and puts it in a temporary l_hold local list.
However, if the reference counter of the page frame was zero, it puts back the page in the active
list. In fact, page frames having a reference counter equal to zero should belong to the zone's
Buddy system; however, to free a page frame, first its usage counter is decreased and then the
page frame is removed from the LRU lists and inserted in the buddy system's list. Therefore,
there is a small time window in which the PFRA may see a free page in an LRU list.

4.

4. Adds to zone->pages_scanned the number of active pages that have been scanned.
5.

5. Subtracts from zone->nr_active the number of pages that have been moved into the l_hold local
list.

6.

6. Releases the zone->lru_lock spin lock.
7.

7. Computes the swap tendency value (see above).
8.

8. Performs a second cycle on the pages in the l_hold local list. The objective of this cycle is to split
the pages of l_hold into two local sublists called l_active and l_inactive. A page belonging to the
User Mode address space of some processthat is, a page whose page->_mapcount is
nonnegativeis added to l_active if the swap tendency value is smaller than 100, or if the page is
anonymous but no swap area is active, or finally if the page_referenced() function applied to the
page returns a positive value, which means that the page has been recently accessed. In all other
cases, the page is added to the l_inactive list.[*]

8. [*] Notice that a page that does not belong to any User Mode process address space is moved
into the inactive list; however, since its PG_referenced flag is not cleared, the first access to the
page causes the mark_page_accessed() function to move the page back into the active list (see
Figure 17-4).

9.

9. Gets the zone->lru_lock spin lock.
10.

10.Performs a third cycle on the pages in the l_inactive local list to move them in the
zone->inactive_list list and updates the zone->nr_inactive field. In doing so, it decreases the
usage counters of the moved page frames to undo the increments done in step 3.

11.

11.Performs a fourth and last cycle on the pages in the l_active local list to move them into the
zone->active_list list and updates the zone->nr_active field. In doing so, it decreases the usage
counters of the moved page frames to undo the increments done in step 3.

12.

12.Releases the zone->lru_lock spin lock and returns.

It should be noted that refill_inactive_zone() checks the PG_referenced flag only for pages that belong to
the User Mode address spaces (see step 8); in the opposite case, the pages are in the tail of the active
listhence they were accessed some time agoand it is unlikely that they will be accessed in the near future.
On the other hand, the function does not evict a page from the active list if it is owned by some User
Mode process and has been recently used.

 17.3.2. Low On Memory Reclaiming

 Low on memory reclaiming is activated when a memory allocation fails. As shown in Figure 17-3, the
kernel invokes free_more_memory() while allocating a VFS buffer or a buffer head, and it invokes
try_to_free_pages() while allocating one or more page frames from the buddy system.

 17.3.2.1. The free_more_memory() function

 The free_more_memory() function performs the following actions:
1.

1. Invokes wakeup_bdflush() to wake a pdflush kernel thread and trigger write operations for
1024 dirty pages in the page cache (see the section "The pdflush Kernel Threads" in Chapter 15
). Writing dirty pages to disk may eventually make freeable the page frames containing buffers,
buffers heads, and other VFS data structures.

2.

2. Invokes the service routine of the sched_yield() system call to give the pdflush kernel thread a
chance to run.

3.

3. Starts a loop over all memory nodes in the system (see the section "Non-Uniform Memory
Access (NUMA)" in Chapter 8). For each node, invokes the try_to_free_pages() function
passing to it a list of the "low" memory zones (in the 80 x 86 architecture, ZONE_DMA and
ZONE_NORMAL; see the section "Memory Zones" in Chapter 8).

17.3.2.2. The try_to_free_pages() function

 The TRy_to_free_pages() function receives three parameters:

 zones

 A list of memory zones in which pages should be reclaimed (see the section "Memory Zones" in Chapter
8)

gfp_mask

 The set of allocation flags that were used by the failed memory allocation (see the section "The Zoned
Page Frame Allocator" in Chapter 8)

order

 Not used

 The goal of the function is to free at least 32 page frames by repeatedly invoking the shrink_caches()
and shrink_slab() functions, each time with a higher priority than the previous invocation. The ancillary
functions get the priority levelas well as other parameters of the ongoing scan operationin a descriptor of
type scan_control (see Table 17-2 earlier in this chapter). The lowest, initial priority level is 12, while the
highest, final priority level is 0. If TRy_to_free_pages() does not succeed in reclaiming at least 32 page
frames in one of the 13 repeated invocations of shrink_caches() and shrink_slab(), the PFRA is in
serious trouble, and it has just one last resort: killing a process to free all its page frames. This operation is
performed by the out_of_memory() function (see the section "The Out of Memory Killer" later in this
chapter).

 The function performs the following main steps:
1.

1. Allocates and initializes a scan_control descriptor. In particular, stores the gfp_mask allocation
mask in the gfp_mask field.

2.

2. For each zone in the zones lists, it sets the temp_priority field of the zone descriptor to the initial
priority (12). Moreover, it computes the total number of pages contained in the LRU lists of the
zones.

3.

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iteration performs
the following substeps:
a.

a. Updates some field of the scan_control descriptor. In particular, it stores in the nr_mapped
field the total number of pages owned by User Mode processes, and in the priority field the
current priority of this iteration. Also, it sets to zero the nr_scanned and nr_reclaimed fields.

b.

b. Invokes shrink_caches() passing as arguments the zones list and the address of the
scan_control descriptor. This function scans the inactive pages of the zones (see below).

c.

c. Invokes shrink_slab() to reclaim pages from the shrinkable kernel caches (see the section "
Reclaiming Pages of Shrinkable Disk Caches" later in this chapter).

d.

d. If the current->reclaim_state field is not NULL, it adds to the nr_reclaimed field of the
scan_control descriptor the number of pages reclaimed from the slab allocator caches; this
number is stored in a small data structure pointed to by the process descriptor field. The _
_alloc_pages() function sets up the current->reclaim_state field before invoking the
TRy_to_free_pages() function, and clears the field right after its termination. (Oddly, the
free_more_memory() function does not set this field.)

e.

e. If the target has been reached (the nr_reclaimed field of the scan_control descriptor is greater
than or equal to 32), it breaks the loop and jumps to step 4.

f.

f. The target has not yet been reached. If at least 49 pages have been scanned so far, the
function invokes wakeup_bdflush() to activate a pdflush kernel thread and write some dirty
pages in the page cache to disk (see the section "Looking for Dirty Pages To Be Flushed" in
Chapter 15).

g.

g. If the function has already performed four iterations without reaching the target, it invokes
blk_congestion_wait() to suspend the current process until any WRITE request queue
becomes uncongested or until a 100 ms time-out elapses (see the section "Request
Descriptors" in Chapter 14).

4.

4. Sets the prev_priority field of each zone descriptor to the priority level used in the last invocation
of shrink_caches(); it is stored in the temp_priority field of the zone descriptor.

5.

5. Returns 1 if the reclaiming was successful, 0 otherwise.

17.3.2.3. The shrink_caches() function

 The shrink_caches() function is invoked by TRy_to_free_pages(). It acts on two parameters: the zones
list of memory zones, and the address sc of a scan_control descriptor.

 The purpose of this function is simply to invoke the shrink_zone() function on each zone in the zones list.
However, before invoking shrink_zone() on a given zone, shrink_caches() updates the temp_priority
field of the zone's descriptor by using the value stored in the sc->priority field; this is the current priority
level of the scanning operation. Moreover, if the priority value of the previous invocation of the PFRA is
higher than the current priority valuethat is, page frame reclaiming in this zone is now harder to
doshrink_caches() copies the current priority level into the prev_priority field of the zone descriptor.
Finally, shrink_caches() does not invoke shrink_zone() on a given zone if the all_unreclaimable flag in
the zone descriptor is set and the current priority level is less than 12that is, shrink_caches() is not being
invoked in the very first iteration of try_to_free_pages(). The PFRA sets the all_unreclaimable flag when
it decides that a zone is so full of unreclaimable pages that scanning the zone's pages is just a waste of
time.

 17.3.2.4. The shrink_zone() function

 The shrink_zone() function acts on two parameters: zone, a pointer to a struct_zone descriptor, and sc,
a pointer to a scan_control descriptor. The goal of this function is to reclaim 32 pages from the zone's
inactive list; the function tries to reach this goal by invoking repeatedly an auxiliary function called
shrink_cache(), each time on larger portion of the zone's inactive list. Moreover, shrink_zone()
replenishes the zone's inactive list by repeatedly invoking the refill_inactive_zone() function described in
the earlier section "The Least Recently Used (LRU) Lists."

 The nr_scan_active and nr_scan_inactive fields of the zone descriptor play a special role here. To be
efficient, the function works on batches of 32 pages. Thus, if the function is running at a low privilege level
(high value of sc->priority) and one of the LRU lists does not contain enough pages, the function skips
the scanning on that list. However, the number of active or inactive pages thus skipped is recorded in
nr_scan_active or nr_scan_inactive, so that the skipped pages will be considered in the next invocation of
the function.

 Specifically, the shrink_zone() function performs the following steps:
1.

1. Increases the zone->nr_scan_active by a fraction of the total number of elements in the active list
(zone->nr_active). The actual increment is determined by the current priority level and ranges
from zone->nr_active/212 to zone->nr_active/20 (i.e., the whole number of active pages in the
zone).

2.

2. Increases the zone->nr_scan_inactive by a fraction of the total number of elements in the active
list (zone->nr_inactive). The actual increment is determined by the current priority level and
ranges from zone->nr_inactive/212 to zone->nr_inactive.

3.

3. If the zone->nr_scan_active field is greater than or equal to 32, the function copies its value in the
nr_active local variable and sets the field to zero; otherwise, it sets nr_active to zero.

4.

4. If the zone->nr_scan_inactive field is greater than or equal to 32, the function copies its value in
the nr_inactive local variable and sets the field to zero; otherwise, it sets nr_inactive to zero.

5.

5. Sets the sc->nr_to_reclaim field of the scan_control descriptor to 32.
6.

6. If both nr_active and nr_inactive are 0, there is nothing to be done: the function terminates. This is
an unlikely situation where User Mode processes have no page frames allocated to them.

7.

7. If nr_active is positive, it replenishes the zone's inactive list:

7. sc->nr_to_scan = min(nr_active, 32);

nr_active -= sc->nr_to_scan;

refill_inactive_zone(zone, sc);

8.

8. If nr_inactive is positive, it tries to reclaim at most 32 pages from the inactive list:

8. sc->nr_to_scan = min(nr_inactive, 32);

nr_inactive -= sc->nr_to_scan;

shrink_cache(zone, sc);

9.

9. If shrink_zone() succeeds in reclaiming 32 pages (sc->nr_to_reclaim is now zero or negative), it
terminates. Otherwise, it jumps back to step 6.

17.3.2.5. The shrink_cache() function

 The shrink_cache() function is yet another auxiliary function whose main purpose is to extract from the
zone's inactive list a group of pages, put them in a temporary list, and invoke the shrink_list() function to
effectively perform page frame reclaiming on every page in that list. The shrink_cache() function acts on
the same parameters as shrink_zones(), namely zone and sc, and performs the following main steps:

1.

1. Invokes lru_add_drain() to move into the active and inactive lists any page still contained in the
pagevec data structures (see the section "The Least Recently Used (LRU) Lists" earlier in this
chapter).

2.

2. Gets the zone->lru_lock spin lock.
3.

3. Considers at most 32 pages in the inactive list; for each page, the function increases its usage
counter, checks whether the page is not being freed to the buddy system (see the discussion at
step 3 of refill_inactive_zone()), and moves the page from the zone's inactive list to a local list.

4.

4. Decreases the counter zone->nr_inactive by the number of pages removed from the inactive list.
5.

5. Increases the counter zone->pages_scanned by the number of pages effectively examined in the
inactive list.

6.

6. Releases the zone->lru_lock spin lock.
7.

7. Invokes the shrink_list() function passing to it the (local list of) pages collected in step 3 above.
This function is discussed below (as you were no doubt expecting).

8.

8. Decreases the sc->nr_to_reclaim field by the number of pages actually reclaimed by shrink_list(
).

9.

9. Gets again the zone->lru_lock spin lock.
10.

10.Puts back in the inactive or active list all pages of the local list that shrink_list() did not succeed
in freeing. Notice that shrink_list() might mark a page as active by setting its PG_active flag. This
operation is performed in a batch of pages using a pagevec data structure (see the section "The
Least Recently Used (LRU) Lists" earlier in this chapter).

11.

11. If the function scanned at least sc->nr_to_scan pages, and if it didn't succeed in reclaiming the
target number of pages (i.e., sc->nr_to_reclaim is still positive), it jumps back to step 3.

12.

12.Releases the zone->lru_lock spin lock and terminates.

17.3.2.6. The shrink_list() function

 We have now reached the heart of page frame reclaiming. While the purpose of the functions illustrated
so far, from try_to_free_pages() to shrink_cache(), was to select the proper set of pages candidates for
reclaiming, the shrink_list() function effectively tries to reclaim the pages passed as a parameter in the
page_list list. The second parameter, namely sc, is the usual pointer to a scan_control descriptor. When
shrink_list() returns, page_list contains the pages that couldn't be freed.

 The function performs the following actions:
1.

1. If the need_resched field of the current process is set, it invokes schedule().
2.

2. Starts a cycle on every page descriptor included in the page_list list. For each list item, it removes
the page descriptor from the list and tries to reclaim the page frame; if for some reason the page
frame could not be freed, it inserts the page descriptor in a local list.

3.

3. Now the page_list list is empty: the function moves back the page descriptors from the local list
to the page_list list.

4.

4. Increases the sc->nr_reclaimed field by the number of page frames reclaimed in step 2, and
returns that number.

Of course, what is really interesting in shrink_list() is the code that tries to reclaim a page frame. The
flow diagram of this code is shown in Figure 17-5.

 There are only three possible outcomes for each page frame handled by shrink_list():


 The page is released to the zone's buddy system by invoking the free_cold_page() function (see
the section "The Per-CPU Page Frame Cache" in Chapter 8); hence, the page is effectively
reclaimed.



 The page is not reclaimed, thus it will be reinserted in the page_list list; however, shrink_list()
assumes that it will be possible to reclaim the page in the near future. Thus, the function leaves the
PG_active flag in the page descriptor cleared, so that the page will be put back in the inactive list
of the memory zone (see step 9 in the descriptor of shrink_cache() above). This event
corresponds to the small boxes labeled as "INACTIVE" in Figure 17-5.



 The page is not reclaimed, thus it will be reinserted in the page_list list; however, either the page
is in active use, or shrink_list() assumes that it will be impossible to reclaim the page in the
foreseeable future. Thus, the function sets the PG_active flag in the page descriptor, so that the
page will be put in the active list of the memory zone. This event corresponds to the small boxes
labeled as "ACTIVE" in Figure 17-5.

 The shrink_list() function never tries to reclaim a page that is locked (PG_locked flag set) or under
writeback (PG_writeback flag set). In order to test whether the page was recently referenced,
shrink_list() invokes page_referenced(), which was described in the section "The Least Recently Used
(LRU) Lists" earlier in this chapter.

 Figure 17-5. The page reclaiming logic of the shrink_list() function

 To reclaim an anonymous page, the page must be added to the swap cache, and a new slot in a swap
area must be reserved for it; see the section "Swapping" later in this chapter for details.

 If the page is in the User Mode address space of some process (the _mapcount field in the page
descriptor is greater than or equal to zero), shrink_list() invokes the try_to_unmap() function to locate
all User Mode Page Table entries that refer to the page frame (see the section "Reverse Mapping" earlier
in this chapter). Of course, reclaiming may proceed only if this function returns SWAP_SUCCESS.

 If the page is dirty, it cannot be reclaimed unless it is written to disk. To do this, shrink_list() relies on
the pageout() function, which is described next. The reclaiming of the page frame may proceed only if
either pageout() does not have to issue a write operation, or if the write operation finishes soon.

 If the page contains VFS buffers, shrink_list() invokes TRy_to_release_page() to release the
associated buffer heads (see the section "Releasing Block Device Buffer Pages" in Chapter 15).

 Finally, if everything went smoothly, shrink_list() checks the reference counter of the page: if it is equal
to two, the page has just two owners: the page cache (or the swap cache, in case of anonymous pages),
and the PFRA itself (the reference counter was increased in step 3 of shrink_cache(); see earlier). In this
case, the page can be reclaimed, provided it is still not dirty. To do this, first the page is removed from
the page cache or the swap cache, according to the value of the PG_swapcache flag of the page
descriptor; then, the free_cold_page() function is executed.

 17.3.2.7. The pageout() function

 The pageout() function is invoked by shrink_list() when a dirty page must be written to disk.
Essentially, the function performs the following operations:

1.

1. Checks that the page is included in the page cache or in the swap cache (see the section "The
Swap Cache" later in this chapter). Moreover, checks that the page is owned only by the page
cacheor the swap cacheand the PFRA. Returns PAGE_KEEP if a check has failed (it does not
make sense to write the page to disk if it is not reclaimable by shrink_list()).

2.

2. Checks that the writepage method of the address_space object is defined; returns
PAGE_ACTIVATE otherwise.

3.

3. Checks that the current process can issue write requests to the request queue of the block device
associated with the address_space object. Essentially, the kswapd and pdflush kernel threads
may always issue the write request; normal processes can issue the write request only if the
request queue is not congested, unless the current->backing_dev_info field points to the
backing_dev_info data structure of the block device (see step 3 of the description of the
generic_file_aio_write_nolock() function in the section "Writing to a File" in Chapter 16).

4.

4. Checks that the page is still dirty; if not, returns PAGE_CLEAN.
5.

5. Sets up a writeback_control descriptor and invokes the writepage method of the address_space
object to start a write back operation (see the section "Writing Dirty Pages to Disk" in Chapter
16).

6.

6. If the writepage method returned an error code, the function returns PAGE_ACTIVATE.
7.

7. Returns PAGE_SUCCESS.

17.3.3. Reclaiming Pages of Shrinkable Disk Caches

 We know from the previous chapters that the kernel uses other disk caches beside the page cache, for
instance the dentry cache and the inode cache (see the section "The dentry Cache" in Chapter 12). When
the PFRA tries to reclaim page frames, it should also check whether some of these disk caches can be
shrunk.

 Every disk cache that is considered by the PFRA must have a shrinker function registered at initialization
time. The shrinker function expects two parameters: the target number of page frames to be reclaimed,
and a set of GFP allocation flags; the function does what is required to reclaim the pages from the disk
cache, then it returns the number of reclaimable pages remaining in the cache.

 The set_shrinker() function registers a shrinker function with the PFRA. This function allocates a
descriptor of type shrinker, stores the address of the shrinker function in the descriptor, and then inserts
the descriptor in a global list rooted at the shrinker_list global variable. The set_shrinker() function also
initializes the seeks field of the shrinker descriptor: informally, it is a parameter that indicates how much it
costs to re-create one item of the cache once it is removed.

 In Linux 2.6.11 there are few disk caches registered with the PFRA: besides the dentry cache and the
inode cache, only the disk quota layer, the filesystem meta information block cache (mainly used for
filesystems' extended attributes), and the XFS journaling filesystem register shrinker functions .

 The PFRA's function that reclaims pages from the shrinkable disk caches is called shrink_slab() (the
name is a bit misleading, because the function has little to do with the slab allocator caches). This function
is invoked by TRy_to_free_pages(), as explained in the earlier section "Low On Memory Reclaiming,"
and by balance_pgdat(), which is described in the later section "Periodic Reclaiming."

 The shrink_slab() function tries to balance the cost of reclaiming from the shrinkable disk cache with the
cost of reclaiming from the LRU lists (performed by shrink_list()). Essentially, the function walks the list
in the shrinker descriptors to invoke the shrinker functions and get the total number of reclaimable pages
in the disk caches. Then, the function scans again the list of the shrinker descriptor; for each shrinkable
disk cache, the function heuristically computes a target number of page frames to be reclaimedbased on
the number of reclaimable pages in the disk caches, on the relative cost of re-creating a page in the disk
cache, and on the number of pages in the LRU listsand invokes the shrinker function to try to reclaim
batches of at least 128 pages.

 For lack of space, we'll limit ourselves to describe briefly the shrinker functions of the dentry cache and
of the inode cache.

 17.3.3.1. Reclaiming page frames from the dentry cache

 The shrink_dcache_memory() function is the shrinker function for the dentry cache; it searches the
cache for unused dentry objectsthat is, objects not referenced by any process, see the section "dentry
Objects" in Chapter 12and releases them.

 Because the dentry cache objects are allocated through the slab allocator, the shrink_dcache_memory()
function may lead some slabs to become free, causing some page frames to be consequently reclaimed
by cache_reap() (see the section "Periodic Reclaiming" later in this chapter). Moreover, the dentry cache
acts as a controller of the inode cache. Therefore, when a dentry object is released, the pages storing the
corresponding inode may become unused, and thus eventually released.

 The shrink_dcache_memory() function receives as its parameters the number of page frames to reclaim
and a GFP mask. It starts by checking whether the _ _GFP_FS bit in the GFP mask is clear; if so, the
function returns -1, because releasing a dentry may trigger an operation on a disk-based filesystem. Page
frame reclaiming is effectively done by invoking prune_dcache(). This function scans the list of unused
dentrieswhose head is stored in the dentry_unused variableuntil it reaches the requested number of freed
objects or until the whole list is scanned. On each object that wasn't recently referenced, the function:

1.

1. Removes the dentry object from the dentry hash table, from the list of dentry objects in its parent
directory, and from the list of dentry objects of the owner inode.

2.

2. Decreases the usage counter of the dentry's inode by invoking the d_iput dentry method, if
defined, or the iput() function.

3.

3. Invokes the d_release method of the dentry object, if defined.
4.

4. Invokes the call_rcu() function to register a callback function that will remove the dentry object
(see the section "Read-Copy Update (RCU)" in Chapter 5). The callback function, in turn, will
invoke kmem_cache_free() to release the object to the slab allocator (see the section "Freeing a
Slab Object" in Chapter 8).

5.

5. Decreases the usage counter of the parent directory.

Finally, shrink_dcache_memory() returns a value based on the number of unused dentries still contained
in the dentry cache. More precisely, the returned value is the number of unused dentries multiplied by
100 and divided by the content of the sysctl_vfs_cache_pressure global variable. By default, this variable
is equal to 100, thus the returned value is essentially the number of unused dentries. However, the system
administrator may modify the variable by writing in the /proc/sys/vm/vfs_cache_pressure or by issuing a
suitable sysctl() system call. Setting this variable to a value smaller than 100 causes shrink_slab() to
reclaim fewer pages from the dentry cache (and the inode cache; see the next section) with respect to the
pages reclaimed from the LRU lists; conversely, setting the variable to a value greater than 100 causes
shrink_slab() to reclaim more pages from the dentry and inode caches with respect to the pages
reclaimed from the LRU lists.

 17.3.3.2. Reclaiming page frames from the inode cache

 The shrink_icache_memory() function is invoked to remove unused inode objects from the inode cache;
here, "unused" means that the inode no longer has a controlling dentry object. The function is similar to
the shrink_dcache_memory() described previously. It checks the _ _GFP_FS bit in the gfp_mask
parameter, then it invokes the prune_icache() function, and finally it returns a value based both on the
number of unused inodes still included in the inode cache and the value of the sysctl_vfs_cache_pressure
variable, as previously.

 The prune_icache() function, in turn, scans the inode_unused list (see the section "Inode Objects" in
Chapter 12); to free an inode, the function releases any private buffer associated with the inode, it
invalidates the clean page frames in the page cache that refer to the inode and are not longer in use, and
then it makes use of the clear_inode() and destroy_inode() functions to destroy the inode object.

 17.3.4. Periodic Reclaiming

 The PFRA performs periodic reclaiming by using two different mechanisms: the kswapd kernel threads,
which invoke shrink_zone() and shrink_slab() to reclaim pages from the LRU lists, and the cache_reap
function, which is invoked periodically to reclaim unused slabs from the slab allocator.

 17.3.4.1. The kswapd kernel threads

 The kswapd kernel threads are another kernel mechanism that activates page frame reclaiming. Why is it
necessary? Is it not sufficient to invoke TRy_to_free_pages() when free memory becomes really scarce
and another memory allocation request is issued?

 Unfortunately, this is not the case. Some memory allocation requests are performed by interrupt and
exception handlers, which cannot block the current process waiting for a page frame to be freed;
moreover, some memory allocation requests are done by kernel control paths that have already acquired
exclusive access to critical resources and that, therefore, cannot activate I/O data transfers. In the
infrequent case in which all memory allocation requests are done by such sorts of kernel control paths,
the kernel is never able to free memory.

 The kswapd kernel threads also have a beneficial effect on system performance by keeping memory free
in what would otherwise be idle time for the machine; processes can thus get their pages much faster.

 There is a different kswapd kernel thread for each memory node (see the section "Non-Uniform
Memory Access (NUMA)" in Chapter 8). Each such thread is usually sleeping in the wait queue headed
at the kswapd_wait field of the node descriptor. However, if _ _alloc_pages() discovers that all memory
zones suitable for a memory allocation have a number of free page frames below a "warning"
thresholdessentially, a value based on the pages_low and protection fields of the memory zone
descriptorthen the function wakes up the kswapd kernel threads of the corresponding memory nodes
(see the section "The Zone Allocator" in Chapter 8.) Essentially, the kernel starts to reclaim some page
frames in order to avoid much more dramatic "low on memory" conditions.

 As explained in the section "The Pool of Reserved Page Frames" in Chapter 8, every zone descriptor
also includes a pages_min fielda threshold that specifies the minimum number of free page frames that
should always be preservedand a pages_high fielda threshold that specifies the "safe" number of free
page frames above which page frame reclaiming should be stopped.

 The kswapd kernel thread executes the kswapd() function. It initializes the kernel thread by binding the
kernel thread to the CPUs that may access the memory node, by storing in the current->reclaim_state
field of the process descriptor the address of a reclaim_state descriptor (see step 3d in the description of
TRy_to_free_pages() earlier in this chapter), and by setting the PF_MEMALLOC and PF_KSWAP
flags in the current->flags fieldthese flags indicate that the process is reclaiming memory and that it is
allowed to use all the free memory available when doing its job. Every time the kswapd kernel thread is
awakened, the kswapd() function performs essentially the following steps:

1.

1. Invokes finish_wait() to remove the kernel thread from the node's kswapd_wait wait queue (see
the section "How Processes Are Organized" in Chapter 3).

2.

2. Invokes balance_pgdat() to perform the memory reclaiming on the kswapd's memory node (see
below).

3.

3. Invokes prepare_to_wait() to set the process in the TASK_INTERRUPTIBLE state and to put
it to sleep in the node's kswapd_wait wait queue.

4.

4. Invokes schedule() to yield the CPU to some other runnable process.

The balance_pgdat() function performs, in turn, the following basic steps:
1.

1. Sets up a scan_control descriptor (see Table 17-2 earlier in this chapter).
2.

2. Sets the temp_priority field of each zone descriptor in the memory node to 12 (lowest priority).
3.

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iteration performs
the following substeps:
a.

a. Scans the memory zones to find the highest zone (from ZONE_DMA to
ZONE_HIGHMEM) having an insufficient number of free page frames. Each test is done by
executing the zone_watermark_ok() function described in the section "The Zone Allocator"
in Chapter 8. If all zones have a large number of free page frames, it jumps to step 4.

b.

b. Scans again the memory zones proceeding from ZONE_DMA to the zone found in step 3a.
For each zone, it updates, if necessary, the prev_priority field of the zone descriptor with the
current priority level, and invokes successively shrink_zone() to reclaim pages from the zone
(see the earlier section "Low On Memory Reclaiming"). Next, it invokes shrink_slab() to
reclaim pages from the shrinkable disk caches (see the earlier section "Reclaiming Pages of
Shrinkable Disk Caches").

c.

c. If at least 32 pages have been reclaimed, it breaks the loop and jumps to step 4.
4.

4. Updates the prev_priority field of each zone descriptor with the value stored in the corresponding
temp_priority field.

5.

5. If some "low on memory" zone still exists, it invokes schedule() if the need_resched field of the
process is set; when in execution again, it jumps back to step 1.

6.

6. Returns the number of pages reclaimed.

17.3.4.2. The cache_reap() function

 The PFRA must also reclaim the pages owned by the slab allocator caches (see the section "Memory
Area Management " in Chapter 8). To do this, it relies on the cache_reap() function, which is
periodically scheduledapproximately once every two secondsin the predefined events work queue (see
the section "Work Queues" in Chapter 4). The address of the cache_reap() function is stored in the func
field of the reap_work per-CPU variable of type work_struct.

 The cache_reap() function essentially performs the following steps:
1.

1. Tries to acquire the cache_chain_sem semaphore, which protects the list of slab cache
descriptors; if the semaphore is already taken, it invokes schedule_delayed_work() to schedule
the next invocation of the function, and terminates.

2.

2. Otherwise, scans the kmem_cache_t descriptors collected in the cache_chain list. For each
cache descriptor found, the function performs the following steps:
a.

a. If the SLAB_NO_REAP flag in the cache descriptor is set, page frame reclaiming has been
disabled, hence it continues with the next cache in the list.

b.

b. Drains the slab local cache (see the section "Local Caches of Free Slab Objects" in Chapter
8); this operation could cause new slabs to become free.

c.

c. Each cache has a "reap time" stored in the next_reap field of the kmem_list3 structure inside
the cache descriptor (see the section "Cache Descriptor" in Chapter 8); if jiffies is still smaller
than next_reap, it continues with the next cache in the list.

d.

d. Sets the next "reap time" in the next_reap field to a value four seconds from the current time.
e.

e. In multiprocessor systems, the function drains the slab shared cache (see the section "Local
Caches of Free Slab Objects" in Chapter 8); this operation could cause new slabs to
become free.

f.

f. If a new slab has been recently added to the cachethat is, if the free_touched flag of the
kmem_list3 structure inside the cache descriptor is setit skips this cache and continues with
the next cache in the list.

g.

g. Computes according to a heuristic formula the number of slabs to be freed. Basically, this
number depends on the upper limit of free objects in the cache and on the number of objects
packed into a single slab.

h.

h. Repeatedly invokes slab_destroy() on the slabs included in the list of free slabs of the cache,
until the list is empty or the target number of free slab has been reached.

i.

i. Invokes cond_resched() to check the TIF_NEED_RESCHED flag of the current process
and to invoke schedule(), if the flag is set.

3.

3. Releases the cache_chain_sem semaphore.
4.

4. Invokes schedule_delayed_work() to schedule the next invocation of the function, and
terminates.

17.3.5. The Out of Memory Killer

 Despite the PFRA effort to keep a reserve of free page frames, it is possible for the pressure on the
virtual memory subsystem to become so high that all available memory becomes exhausted. This situation
could quickly induce a freeze of every activity in the system: the kernel keeps trying to free memory in
order to satisfy some urgent request, but it does not succeed because the swap areas are full and all disk
caches have already been shrunken. As a consequence, no process can proceed with its execution, thus
no process will eventually free up the page frames that it owns.

 To cope with this dramatic situation, the PFRA makes use of a so-called out of memory (OOM) killer,
which selects a process in the system and abruptly kills it to free its page frames. The OOM killer is like a
surgeon that amputates the limb of a man to save his life: losing a limb is not a nice thing, but sometimes
there is nothing better to do.

 The out_of_memory() function is invoked by _ _alloc_pages() when the free memory is very low and
the PFRA has not succeeded in reclaiming any page frames (see the section "The Zone Allocator" in
Chapter 8). The function invokes select_bad_process() to select a victim among the existing processes,
then invokes oom_kill_process() to perform the sacrifice.

 Of course, select_bad_process() does not simply pick a process at random. The selected process
should satisfy several requisites:



 The victim should own a large number of page frames, so that the amount of memory that can be
freed is significant. (As a countermeasure against the "fork-bomb" processes, the function
considers the amount of memory eaten by all children owned by the parent, too.)



 Killing the victim should lose a small amount of workit is not a good idea to kill a batch process
that has been working for hours or days.



 The victim should be a low static priority processthe users tend to assign lower priorities to less
important processes.



 The victim should not be a process with root privilegesthey usually perform important tasks.


 The victim should not directly access hardware devices (such as the X Window server), because
the hardware could be left in an unpredictable state.



 The victim cannot be swapper (process 0), init (process 1), or any other kernel thread.

 The select_bad_process() function scans every process in the system, uses an empirical formula to
compute from the above rules a value that denotes how good selecting that process is, and returns the
process descriptor address of the "best" candidate for eviction. Then, the out_of_memory() function
invokes oom_kill_process() to send a deadly signalusually SIGKILL; see Chapter 11either to a child of
that process or, if this is not possible, to the process itself. The oom_kill_process() function also kills all
clones that share the same memory descriptor with the selected victim.

 17.3.6. The Swap Token

 As you might have realized while reading this chapter, the Linux VM subsystemand particularly the
PFRAis so complex a piece of code that is quite hard to predict its behavior with an arbitrary workload.
There are cases, moreover, in which the VM subsystem exhibits pathological behaviors. An example is
the so-called swap thrashing phenomenon: essentially, when the system is short of free memory, the
PFRA tries hard to free memory by writing pages to disk and stealing the underlying page frames from
some processes; at the same time, however, these processes want to proceed with their executions,
hence they try hard to access their pages. As a consequence, the kernel assigns to the processes the
page frames just freed by the PFRA and reads their contents from disk. The net result is that pages are
continuously written to and read back from the disk; most of the time is spent accessing the disk, hence
no process makes substantial progress towards its termination.

 To mitigate the likelihood of swap thrashing, a technique proposed by Jiang and Zhang in 2004 has been
implemented in the kernel version 2.6.9: essentially, a so-called swap token is assigned to a single
process in the system; the token exempts the process from the page frame reclaiming, so the process can
make substantial progress and, hopefully, terminate even when memory is scarce.

 The swap token is implemented as a swap_token_mm memory descriptor pointer. When a process
owns the swap token, swap_token_mm is set to the address of the process's memory descriptor.

 Immunity from page frame reclaiming is granted in an elegant and simple way. As we have seen in the
section "The Least Recently Used (LRU) Lists," a page is moved from the active to the inactive list only if
it was not recently referenced. The check is done by the page_referenced() function, which honors the
swap token and returns 1 (referenced) if the page belongs to a memory region of the process that owns
the swap token. Actually, in a couple of cases the swap token is not considered: when the PFRA is
executing on behalf of the process that owns the swap token, and when the PFRA has reached the
hardest priority level in page frame reclaiming (level 0).

 The grab_swap_token() function determines whether the swap token should be assigned to the current
process. It is invoked on each major page fault, namely on just two occasions:



 When the filemap_nopage() function discovers that the required page is not in the page cache
(see the section "Demand Paging for Memory Mapping" in Chapter 16).



 When the do_swap_page() function has read a new page from a swap area (see the section "
Swapping in Pages" later in this chapter).

 The grab_swap_token() function makes some checks before assigning the token. In particular, the
token is granted if all of the following conditions hold:



 At least two seconds have elapsed since the last invocation of grab_swap_token().


 The current token-holding process has not raised a major page fault since the last execution of
grab_swap_token(), or has been holding the token since at least swap_token_default_timeout
ticks.



 The swap token has not been recently assigned to the current process.

 The token holding time should ideally be rather long, even in the order of minutes, because the goal is to
allow a process to finish its execution. In Linux 2.6.11 the token holding time is set by default to a very
low value, namely one tick. However, the system administrator can tune the value of the
swap_token_default_timeout variable by writing in the /proc/sys/vm/swap_token_default_timeout file
or by issuing a proper sysctl() system call.

 When a process is killed, the kernel checks whether that process was holding the swap token and, if so,
releases it; this is done by the mmput() function (see the section "The Memory Descriptor" in Chapter 9).

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.4. Swapping
 Swapping has been introduced to offer a backup on disk for unmapped pages. We know from the
previous discussion that there are three kinds of pages that must be handled by the swapping subsystem:



 Pages that belong to an anonymous memory region of a process (User Mode stack or heap)


 Dirty pages that belong to a private memory mapping of a process


 Pages that belong to an IPC shared memory region (see the section "IPC Shared Memory" in
Chapter 19)

 Like demand paging, swapping must be transparent to programs. In other words, no special instruction
related to swapping needs to be inserted into the code. To understand how this can be done, recall from
the section "Regular Paging" in Chapter 2 that each Page Table entry includes a Present flag. The kernel
exploits this flag to signal that a page belonging to a process address space has been swapped out.
Besides that flag, Linux also takes advantage of the remaining bits of the Page Table entry to store into
them a "swapped-out page identifier" that encodes the location of the swapped-out page on disk. When
a Page Fault exception occurs, the corresponding exception handler can detect that the page is not
present in RAM and invoke the function that swaps in the missing page from disk.

 The main features of the swapping subsystem can be summarized as follows:


 Set up "swap areas" on disk to store pages that do not have a disk image.


 Manage the space on swap areas allocating and freeing "page slots" as the need occurs.


 Provide functions both to "swap out" pages from RAM into a swap area and to "swap in" pages
from a swap area into RAM.



 Make use of "swapped-out page identifiers" in the Page Table entries of pages that are currently
swapped out to keep track of the positions of data in the swap areas.

 To sum up, swapping is the crowning feature of page frame reclaiming. If we want to be sure that all the
page frames obtained by a process, and not only those containing pages that have an image on disk, can
be reclaimed at will by the PFRA, then swapping has to be used. Of course, you might turn off swapping
by using the swapoff command; in this case, however, disk thrashing is likely to occur sooner when the
system load increases.

 We should also mention that swapping can be used to expand the memory address space that is
effectively usable by the User Mode processes. In fact, large swap areas allow the kernel to launch
several demanding applications whose total memory requests exceed the amount of physical RAM
installed in the system. However, simulation of RAM is not like RAM in terms of performance. Every
access by a process to a page that is currently swapped out is of several orders of magnitude longer than
an access to a page in RAM. In short, if performance is of great importance, swapping should be used
only as a last resort; adding RAM chips still remains the best solution to cope with increasing computing
needs.

 17.4.1. Swap Area

 The pages swapped out from memory are stored in a swap area, which may be implemented either as a
disk partition of its own or as a file included in a larger partition. Several different swap areas may be
defined, up to a maximum number specified by the MAX_SWAPFILES macro (usually set to 32).

 Having multiple swap areas allows a system administrator to spread a lot of swap space among several
disks so that the hardware can act on them concurrently; it also lets swap space be increased at runtime
without rebooting the system.

 Each swap area consists of a sequence of page slots : 4,096-byte blocks used to contain a swapped-out
page. The first page slot of a swap area is used to persistently store some information about the swap
area; its format is described by the swap_header union composed of two structures, info and magic. The
magic structure provides a string that marks part of the disk unambiguously as a swap area; it consists of
just one field, magic.magic, which contains a 10-character "magic" string. The magic structure essentially
allows the kernel to unambiguously identify a file or a partition as a swap area; the text of the string,
namely "SWAPSPACE2," is always located at the end of the first page slot.

 The info structure includes the following fields:

 bootbits

 Not used by the swapping algorithm; this field corresponds to the first 1,024 bytes of the swap area,
which may store partition data, disk labels, and so on.

version

 Swapping algorithm version.

last_page

 Last page slot that is effectively usable.

nr_badpages

 Number of defective page slots.

padding[125]

 Padding bytes.

badpages[1]

 Up to 637 numbers specifying the location of defective page slots.

 17.4.1.1. Creating and activating a swap area

 The data stored in a swap area is meaningful as long as the system is on. When the system is switched
off, all processes are killed, so the data stored by processes in swap areas is discarded. For this reason,
swap areas contain very little control information: essentially, the swap area type and the list of defective
page slots. This control information easily fits in a single 4 KB page.

 Usually, the system administrator creates a swap partition when creating the other partitions on the Linux
system, and then uses the mkswap command to set up the disk area as a new swap area. That command
initializes the fields just described within the first page slot. Because the disk may include some bad
blocks, the program also examines all other page slots to locate the defective ones. But executing the
mkswap command leaves the swap area in an inactive state. Each swap area can be activated in a script
file at system boot or dynamically after the system is running.

 Each swap area consists of one or more swap extents , each of which is represented by a swap_extent
descriptor. Each extent corresponds to a group of pagesor more accurately, page slotsthat are physically
adjacent on disk. Hence, the swap_extent descriptor includes the index of the first page of the extent in
the swap area, the length in pages of the extent, and the starting disk sector number of the extent. An
ordered list of the extents that compose a swap area is created when activating the swap area itself. A
swap area stored in a disk partition is composed of just one extent; conversely, a swap area stored in a
regular file can be composed of several extents, because the filesystem may not have allocated the whole
file in contiguous blocks on disk.

 17.4.1.2. How to distribute pages in the swap areas

 When swapping out, the kernel tries to store pages in contiguous page slots to minimize disk seek time
when accessing the swap area; this is an important element of an efficient swapping algorithm.

 However, if more than one swap area is used, things become more complicated. Faster swap
areasswap areas stored in faster disksget a higher priority. When looking for a free slot, the search starts
in the swap area that has the highest priority. If there are several of them, swap areas of the same priority
are cyclically selected to avoid overloading one of them. If no free slot is found in the swap areas that
have the highest priority, the search continues in the swap areas that have a priority next to the highest
one, and so on.

 17.4.2. Swap Area Descriptor

 Each active swap area has its own swap_info_struct descriptor in memory. The fields of the descriptor
are illustrated in Table 17-3.

 Table 17-3. Fields of a swap area descriptor

Type Field Description

unsigned int flags Swap area flags

spinlock_t sdev_lock Spin lock protecting the swap
area

struct file * swap_file
Pointer to the file object of the
regular file or device file that
stores the swap area

struct

block_device *
bdev Descriptor of the block device

containing the swap area

struct list head extent_list Head of the list of extents that
compose the swap area

int nr_extents Number of extents composing the
swap area

struct

swap_extent *
curr_swap_extent Pointer to the most recently used

extent descriptor

unsigned int old_block_size Natural block size of the partition
containing the swap area

unsigned short * swap_map Pointer to an array of counters,
one for each swap area page slot

unsigned int lowest_bit First page slot to be scanned
when searching for a free one

unsigned int highest_bit Last page slot to be scanned
when searching for a free one

unsigned int cluster_next Next page slot to be scanned
when searching for a free one

unsigned int cluster_nr
Number of free page slot
allocations before restarting from
the beginning

int prio Swap area priority

int pages Number of usable page slots

unsigned long max Size of swap area in pages

unsigned long inuse_pages Number of used page slots in the
swap area

int next Pointer to next swap area
descriptor

The flags field includes three overlapping subfields:

 SWP_USED

 1 if the swap area is active; 0 if it is inactive.

SWP_WRITEOK

 1 if it is possible to write into the swap area; 0 if the swap area is read-only (it is being activated or
inactivated).

SWP_ACTIVE

 This 2-bit field is actually the combination of SWP_USED and SWP_WRITEOK; the flag is set when
both the previous flags are set.

 The swap_map field points to an array of counters, one for each swap area page slot. If the counter is
equal to 0, the page slot is free; if it is positive, the page slot is filled with a swapped-out page.
Essentially, the page slot counter denotes the number of processes that share the swapped-out page. If
the counter has the value SWAP_MAP_MAX (equal to 32, 767), the page stored in the page slot is
"permanent" and cannot be removed from the corresponding slot. If the counter has the value
SWAP_MAP_BAD (equal to 32,768), the page slot is considered defective, and thus unusable.[*]

[*] "Permanent" page slots protect against overflows of swap_map counters. Without them, valid page
slots could become "defective" if they are referenced too many times, thus leading to data losses.
However, no one really expects that a page slot counter could reach the value 32,768. It's just a "belt
and suspenders" approach.

 The prio field is a signed integer that denotes the order in which the swap subsystem should consider
each swap area.

 The sdev_lock field is a spin lock that protects the swap area's data structureschiefly, the swap
descriptoragainst concurrent accesses in SMP systems.

 The swap_info array includes MAX_SWAPFILES swap area descriptors. Only the areas whose
SWP_USED flags are set are used, because they are the activated areas. Figure 17-6 illustrates the
swap_info array, one swap area, and the corresponding array of counters.

 Figure 17-6. Swap area data structures

 The nr_swapfiles variable stores the index of the last array element that contains, or that has contained, a
used swap area descriptor. Despite its name, the variable does not contain the number of active swap
areas.

 Descriptors of active swap areas are also inserted into a list sorted by the swap area priority. The list is
implemented through the next field of the swap area descriptor, which stores the index of the next
descriptor in the swap_info array. This use of the field as an index is different from most fields with the
name next, which are usually pointers.

 The swap_list variable, of type swap_list_t, includes the following fields:

 head

 Index in the swap_info array of the first list element.

next

 Index in the swap_info array of the descriptor of the next swap area to be selected for swapping out
pages. This field is used to implement a Round Robin algorithm among maximum-priority swap areas
with free slots.

 The swaplock spin lock protects the list against concurrent accesses in multiprocessor systems.

 The max field of the swap area descriptor stores the size of the swap area in pages, while the pages field
stores the number of usable page slots. These numbers differ because pages does not take the first page
slot and the defective page slots into consideration.

 Finally, the nr_swap_pages variable contains the number of available (free and nondefective) page slots
in all active swap areas, while the total_swap_pages variable contains the total number of nondefective
page slots.

 17.4.3. Swapped-Out Page Identifier

 A swapped-out page is uniquely identified quite simply by specifying the index of the swap area in the
swap_info array and the page slot index inside the swap area. Because the first page (with index 0) of the
swap area is reserved for the swap_header union discussed earlier, the first useful page slot has index 1.
The format of a swapped-out page identifier is illustrated in Figure 17-7.

 Figure 17-7. Swapped-out page identifier

 The swp_entry(type,offset) function constructs a swapped-out page identifier from the swap area index
type and the page slot index offset. Conversely, the swp_type and swp_offset functions extract from a
swapped-out page identifier the swap area index and the page slot index, respectively.

 When a page is swapped out, its identifier is inserted as the page's entry into the Page Table so the page
can be found again when needed. Notice that the least-significant bit of such an identifier, which
corresponds to the Present flag, is always cleared to denote the fact that the page is not currently in
RAM. However, at least one of the remaining 31 bits has to be set because no page is ever stored in slot
0 of swap area 0. It is therefore possible to identify three different cases from the value of a Page Table
entry:

 Null entry

 The page does not belong to the process address space, or the underlying page frame has not yet been
assigned to the process (demand paging).

First 31 most-significant bits not all equal to 0, last bit equal to 0

 The page is currently swapped out.

Least-significant bit equal to 1

 The page is contained in RAM.

 The maximum size of a swap area is determined by the number of bits available to identify a slot. On the
80 x 86 architecture, the 24 bits available limit the size of a swap area to 224 slots (that is, to 64 GB).

 Because a page may belong to the address spaces of several processes (see the earlier section "Reverse
Mapping"), it may be swapped out from the address space of one process and still remain in main
memory; therefore, it is possible to swap out the same page several times. A page is physically swapped
out and stored just once, of course, but each subsequent attempt to swap it out increases the swap_map
counter.

 The swap_duplicate() function is usually invoked while trying to swap out an already swapped-out
page. It simply verifies that the swapped-out page identifier passed as its parameter is valid and increases
the corresponding swap_map counter. More precisely, it performs the following actions:

1.

1. Uses the swp_type and swp_offset functions to extract the swap area number and the page slot
index from the parameter.

2.

2. Checks whether the swap area number identified is active; if not, it returns 0 (invalid identifier).
3.

3. Checks whether the page slot is valid and not free (its swap_map counter is greater than 0 and
less than SWAP_MAP_BAD); if not, it returns 0 (invalid identifier).

4.

4. Otherwise, the swapped-out page identifier locates a valid page. Increases the swap_map
counter of the page slot if it has not already reached the value SWAP_MAP_MAX.

5.

5. Returns 1 (valid identifier).

17.4.4. Activating and Deactivating a Swap Area

 Once a swap area is initialized, the superuser (or, more precisely, every user having the
CAP_SYS_ADMIN capability, as described in the section "Process Credentials and Capabilities" in
Chapter 20) may use the swapon and swapoff programs to activate and deactivate the swap area,
respectively. These programs use the swapon() and swapoff() system calls; we'll briefly sketch out the
corresponding service routines.

 17.4.4.1. The sys_swapon() service routine

 The sys_swapon() service routine receives the following as its parameters:

 specialfile

 This parameter points to the pathname (in the User Mode address space) of the device file (partition) or
plain file used to implement the swap area.

swap_flags

 This parameter consists of a single SWAP_FLAG_PREFER bit plus 31 bits of priority of the swap area
(these bits are significant only if the SWAP_FLAG_PREFER bit is on).

 The function checks the fields of the swap_header union that was put in the first slot when the swap area
was created. The function performs these main steps:

1.

1. Checks that the current process has the CAP_SYS_ADMIN capability.
2.

2. Looks in the first nr_swapfiles components of the swap_info array of swap area descriptors for
the first descriptor having the SWP_USED flag cleared, meaning that the corresponding swap
area is inactive. If an inactive swap area is found, it goes to step 4.

3.

3. The new swap area array index is equal to nr_swapfiles: it checks that the number of bits
reserved for the swap area index is sufficiently large to encode the new index; if not, returns an
error code; otherwise, it increases by one the value of nr_swapfiles.

4.

4. An index of an unused swap area has been found: it initializes the descriptor's fields; in particular,
it sets flags to SWP_USED, and sets lowest_bit and highest_bit to 0.

5.

5. If the swap_flags parameter specifies a priority for the new swap area, the function sets the prio
field of the descriptor. Otherwise, it initializes the field to one less than the lowest priority among
all active swap areas (thus assuming that the last activated swap area is on the slowest block
device). If no other swap areas are already active, the function assigns the value -1.

6.

6. Copies the string pointed to by the specialfile parameter from the User Mode address space.
7.

7. Invokes filp_open() to open the file specified by the specialfile parameter (see the section "The
open() System Call" in Chapter 12).

8.

8. Stores the addresses of the file object returned by filp_open() in the swap_file field of the swap
area descriptor.

9.

9. Makes sure that the swap area is not already activated by looking at the other active swap areas
in swap_info. This is done by checking the addresses of the address_space objects stored in the
swap_file->f_mapping field of the swap area descriptors. If the swap area is already active, it
returns an error code.

10.

10. If the specialfile parameter identifies a block device file, it performs the following substeps:
a.

a. Invokes bd_claim() to set the swapping subsystem as the holder of the block device (see the
section "Block Devices" in Chapter 14). If the block device already has a holder, it returns an
error code.

b.

b. Stores the address of the block_device descriptor in the bdev field of the swap area
descriptor.

c.

c. Stores the current block size of the device in the old_block_size field of the swap area
descriptor, then sets the block size of the device to 4,096 bytes (the page size).

11.

11. If the specialfile parameter identifies a regular file, it performs the following substeps:
a.

a. Checks the S_SWAPFILE field of the i_flags field of the file's inode. If this flag is set, it
returns an error code because the file is already being used as a swap area.

b.

b. Stores the descriptor address of the block device containing the file in the bdev field of the
swap area descriptor.

12.

12.Reads the swap_header descriptor stored in slot 0 of the swap area. To that end, it invokes
read_cache_page() passing as parameters the address_space object pointed to by
swap_file->f_mapping, the page index 0, the address of the file's readpage method (stored in
swap_file->f_mapping->a_ops->readpage), and the pointer to the file object swap_file. Waits
until the page has been read into memory.

13.

13.Checks that the magic string in the last 10 characters of the first page is equal to
"SWAPSPACE2." If not, it returns an error code.

14.

14. Initializes the lowest_bit and highest_bit fields of the swap area descriptor according to the size of
the swap area stored in the info.last_page field of the swap_header union.

15.

15. Invokes vmalloc() to create the array of counters associated with the new swap area and stores
its address in the swap_map field of the swap descriptor. Initializes the elements of the array to 0
or to SWAP_MAP_BAD, according to the list of defective page slots stored in the
info.bad_pages field of the swap_header union.

16.

16.Computes the number of useful page slots by accessing the info.last_page and info.nr_badpages
fields in the first page slot, and stores it in the pages field of the swap area descriptor. Also sets
the max field with the total number of pages in the swap area.

17.

17.Builds the extent_list list of swap extents for the new swap area (only one if the swap area is a
disk partition), and sets properly the nr_extents and curr_swap_extent fields in the swap area
descriptor.

18.

18.Sets the flags field of the swap area descriptor to SWP_ACTIVE.
19.

19.Updates the nr_good_pages, nr_swap_pages, and total_swap_pages global variables.
20.

20. Inserts the swap area descriptor in the list to which the swap_list variable points.
21.

21.Returns 0 (success).

17.4.4.2. The sys_swapoff() service routine

 The sys_swapoff() service routine deactivates a swap area identified by the parameter specialfile. It is
much more complex and time-consuming than sys_swapon(), since the partition to be deactivated might
still contain pages that belong to several processes. The function is thus forced to scan the swap area and
to swap in all existing pages. Because each swap-in requires a new page frame, it might fail if there are no
free page frames left. In this case, the function returns an error code. All this is achieved by performing
the following major steps:

1.

1. Checks that the current process has the CAP_SYS_ADMIN capability.
2.

2. Copies the string pointed to by the specialfile parameter in kernel space.
3.

3. Invokes filp_open() to open the file referenced by the specialfile parameter; as usual, this
function returns the address of a file object.

4.

4. Scans the swap_list list of the swap area descriptor, and compares the address of the file object
returned by filp_open() with the addresses stored in the swap_file fields of the active swap area
descriptors. If no match is found, an invalid parameter was passed to the function, so it returns an
error code.

5.

5. Invokes cap_vm_enough_memory() to check whether there are enough free page frames to
swap in all pages stored in the swap area. If not, the swap area cannot be deactivated; it releases
the file object and returns an error code. This is only a rough check, but it could save the kernel
from a lot of useless disk activity. While performing this check, cap_vm_enough_memory()
takes into account the page frames allocated through slab caches having the
SLAB_RECLAIM_ACCOUNT flag set (see the section "Interfacing the Slab Allocator with the
Zoned Page Frame Allocator" in Chapter 8). The number of such pages, which are considered
as reclaimable, is stored in the slab_reclaim_pages variable.

6.

6. Removes the swap area descriptor from the swap_list list.
7.

7. Updates the nr_swap_pages and total_swap_pages variables by subtracting the value in the
pages field of the swap area descriptor.

8.

8. Clears the SWP_WRITEOK flag in the flags field of the swap area descriptor; this forbids the
PFRA from swapping out more pages in the swap area.

9.

9. Invokes try_to_unuse() (see below) to successively force all pages left in the swap area into
RAM and to correspondingly update the Page Tables of the processes that use these pages.
While executing this function, the current process, which is executing the swapoff command, has
the PF_SWAPOFF flag set. Setting this flag has just one consequence: in case of a dramatic
shortage of page frames, the select_bad_process() function will be forced to select and kill this
process! (See the section "The Out of Memory Killer" earlier in this chapter.)

10.

10.Waits until the block device driver that contains the swap area is unplugged (see the section "
Activating the Block Device Driver" in Chapter 14). In this way, the reading requests submitted
by TRy_to_unuse() will be handled by the driver before the swap area is deactivated.

11.

11. If TRy_to_unuse() fails in allocating all requested page frames, the swap area cannot be
deactivated. Therefore, the function executes the following substeps:
a.

a. Reinserts the swap area descriptor in the swap_list list and sets its flags field to
SWP_WRITEOK.

b.

b. Restores the original contents of the nr_swap_pages and total_swap_pages variables by
adding the value in the pages field of the swap area descriptor.

c.

c. Invokes filp_close() to close the file opened in step 3 (see the section "The close() System
Call" in Chapter 12), and returns an error code.

12.

12.Otherwise, all used page slots have been successfully transferred to RAM. Therefore, the
function executes the following substeps:
a.

a. Releases the memory areas used to store the swap_map array and the extent descriptors.
b.

b. If the swap area is stored in a disk partition, it restores the block size to its original value,
which is stored in the old_block_size field of the swap area descriptor; moreover, it invokes
the bd_release() function so that the swap subsystem no longer holds the block device (see
step 10a in the description of sys_swapon()).

c.

c. If the swap area is stored in a regular file, it clears the S_SWAPFILE flag of the file's inode.
d.

d. Invokes filp_close() twice, the first time on the swap_file file object, the second time on the
object returned by filp_open() in step 3.

e.

e. Returns 0 (success).

17.4.4.3. The try_to_unuse() function

 The TRy_to_unuse() function acts on an index parameter that identifies the swap area to be emptied; it
swaps in pages and updates all the Page Tables of processes that have swapped out pages in this swap
area. To that end, the function visits the address spaces of all kernel threads and processes, starting with
the init_mm memory descriptor that is used as a marker. It is a time-consuming function that runs mostly
with the interrupts enabled. Synchronization with other processes is therefore critical.

 The TRy_to_unuse() function scans the swap_map array of the swap area. When the function finds a
in-use page slot, it first swaps in the page, and then starts looking for the processes that reference the
page. The ordering of these two operations is crucial to avoid race conditions. While the I/O data
transfer is ongoing, the page is locked, so no process can access it. Once the I/O data transfer
completes, the page is locked again by try_to_unuse(), so it cannot be swapped out again by another
kernel control path. Race conditions are also avoided because each process looks up the page cache
before starting a swap-in or swap-out operation (see the later section "The Swap Cache"). Finally, the
swap area considered by try_to_unuse() is marked as nonwritable (SWP_WRITEOK flag is not set),
so no process can perform a swap-out on a page slot of this area.

 However, try_to_unuse() might be forced to scan the swap_map array of usage counters of the swap
area several times. This is because memory regions that contain references to swapped-out pages might
disappear during one scan and later reappear in the process lists.

 For instance, recall the description of the do_munmap() function (in the section "Releasing a Linear
Address Interval" in Chapter 9): whenever a process releases an interval of linear addresses,
do_munmap() removes from the process list all memory regions that include the affected linear
addresses; later, the function reinserts the memory regions that have been only partially unmapped in the
process list. do_munmap() takes care of freeing the swapped-out pages that belong to the interval of
released linear addresses. It commendably doesn't free the swapped-out pages that belong to the
memory regions that have to be reinserted in the process list.

 Hence, TRy_to_unuse() might fail in finding a process that references a given page slot because the
corresponding memory region is temporarily not included in the process list. To cope with this fact,
try_to_unuse() keeps scanning the swap_map array until all reference counters are null. Eventually, the
ghost memory regions referencing the swapped-out pages will reappear in the process lists, so
TRy_to_unuse() will succeed in freeing all page slots.

 Let's describe now the major operations executed by TRy_to_unuse(). It executes a continuous loop on
the reference counters in the swap_map array of the swap area passed as its parameter. This loop is
interrupted and the function returns an error code if the current process receives a signal. For each
reference counter, the function performs the following steps:

1.

1. If the counter is equal to 0 (no page is stored there) or to SWAP_MAP_BAD, it continues with
the next page slot.

2.

2. Otherwise, it invokes the read_swap_cache_async() function (see the section "Swapping in
Pages" later in this chapter) to swap in the page. This consists of allocating, if necessary, a new
page frame, filling it with the data stored in the page slot, and putting the page in the swap cache.

3.

3. Waits until the new page has been properly updated from disk and locks it.
4.

4. While the function was executing the previous step, the process could have been suspended.
Therefore, it checks again whether the reference counter of the page slot is null; if so, this swap
page has been freed by another kernel control path, so the function continues with the next page
slot.

5.

5. Invokes unuse_process() on every memory descriptor in the doubly linked list whose head is
init_mm (see the section "The Memory Descriptor" in Chapter 9). This time-consuming function
scans all Page Table entries of the process that owns the memory descriptor, and replaces each
occurrence of the swapped-out page identifier with the physical address of the page frame. To
reflect this move, the function also decreases the page slot counter in the swap_map array (unless
it is equal to SWAP_MAP_MAX) and increases the usage counter of the page frame.

6.

6. Invokes shmem_unuse() to check whether the swapped-out page is used as an IPC shared
memory resource and to properly handle that case (see the section "IPC Shared Memory" in
Chapter 19).

7.

7. Checks the value of the reference counter of the page. If it is equal to SWAP_MAP_MAX, the
page slot is "permanent." To free it, it forces the value 1 into the reference counter.

8.

8. The swap cache might own the page as well (it contributes to the value of the reference counter).
If the page belongs to the swap cache, it invokes the swap_writepage() function to flush its
contents to disk (if the page is dirty) and invokes delete_from_swap_cache() to remove the
page from the swap cache and to decrease its reference counter.

9.

9. Sets the PG_dirty flag of the page descriptor, unlocks the page frame, and decreases its
reference counter (to undo the increment done in step 5).

10.

10.Checks the need_resched field of the current process; if it is set, it invokes schedule() to
relinquish the CPU. Deactivating a swap area is a long job, and the kernel must ensure that the
other processes in the system still continue to execute. The try_to_unuse() function continues
from this step whenever the process is selected again by the scheduler.

11.

11.Proceeds with the next page slot, starting at step 1.

The function continues until every reference counter in the swap_map array is null. Recall that even if the
function starts examining the next page slot, the reference counter of the previous page slot could still be
positive. In fact, a "ghost" process could still reference the page, typically because some memory regions
have been temporarily removed from the process list scanned in step 5. Eventually, try_to_unuse()
catches every reference. In the meantime, however, the page is no longer in the swap cache, it is
unlocked, and a copy is still included in the page slot of the swap area being deactivated.

 One might expect that this situation could lead to data loss. For instance, suppose that some "ghost"
process accesses the page slot and starts swapping the page in. Because the page is no longer in the
swap cache, the process fills a new page frame with the data read from disk. However, this page frame
would be different from the page frames owned by the processes that are supposed to share the page
with the "ghost" process.

 This problem does not arise when deactivating a swap area, because interference from a ghost process
could happen only if a swapped-out page belongs to a private anonymous memory mapping.[*] In this
case, the page frame is handled by means of the Copy On Write mechanism described in Chapter 9, so it
is perfectly legal to assign different page frames to the processes that reference the page. However, the
try_to_unuse() function marks the page as "dirty" (step 9); otherwise, the shrink_list() function might
later drop the page from the Page Table of some process without saving it in an another swap area (see
the later section "Swapping Out Pages").

[*] Actually, the page might also belong to an IPC shared memory region; Chapter 19 has a discussion
of this case.

 17.4.5. Allocating and Releasing a Page Slot

 As we will see later, when freeing memory, the kernel swaps out many pages in a short period of time. It
is therefore important to try to store these pages in contiguous slots to minimize disk seek time when
accessing the swap area.

 A first approach to an algorithm that searches for a free slot could choose one of two simplistic, rather
extreme strategies:



 Always start from the beginning of the swap area. This approach may increase the average seek
time during swap-out operations, because free page slots may be scattered far away from one
another.



 Always start from the last allocated page slot. This approach increases the average seek time
during swap-in operations if the swap area is mostly free (as is usually the case), because the
handful of occupied page slots may be scattered far away from one another.

 Linux adopts a hybrid approach. It always starts from the last allocated page slot unless one of these
conditions occurs:



 The end of the swap area is reached.


 SWAPFILE_CLUSTER (usually 256) free page slots were allocated after the last restart from
the beginning of the swap area.

 The cluster_nr field in the swap_info_struct descriptor stores the number of free page slots allocated.
This field is reset to 0 when the function restarts allocation from the beginning of the swap area. The
cluster_next field stores the index of the first page slot to be examined in the next allocation.[*]

[*] As you may have noticed, the names of Linux data structures are not always appropriate. In this case,
the kernel does not really "cluster" page slots of a swap area.

 To speed up the search for free page slots, the kernel keeps the lowest_bit and highest_bit fields of each
swap area descriptor up-to-date. These fields specify the first and the last page slots that could be free;
in other words, every page slot below lowest_bit and above highest_bit is known to be occupied.

 17.4.5.1. The scan_swap_map() function

 The scan_swap_map() function is used to find a free page slot in a given swap area. It acts on a single
parameter, which points to a swap area descriptor and returns the index of a free page slot. It returns 0 if
the swap area does not contain any free slots. The function performs the following steps:

1.

1. It tries first to use the current cluster. If the cluster_nr field of the swap area descriptor is
positive, it scans the swap_map array of counters starting from the element at index cluster_next
and looks for a null entry. If a null entry is found, it decreases the cluster_nr field and goes to step
4.

2.

2. If this point is reached, either the cluster_nr field is null or the search starting from cluster_next
didn't find a null entry in the swap_map array. It is time to try the second stage of the hybrid
search. The function reinitializes cluster_nr to SWAPFILE_CLUSTER and restarts scanning the
array from the lowest_bit index trying to find a group of SWAPFILE_CLUSTER free page slots.
If such a group is found, it goes to step 4.

3.

3. No group of SWAPFILE_CLUSTER free page slots exists. The function restarts scanning the
array from the lowest_bit index trying to find a single free page slot. If no null entry is found, it
sets the lowest_bit field to the maximum index in the array, the highest_bit field to 0, and returns
0 (the swap area is full).

4.

4. A null entry is found. Puts the value 1 in the entry, decreases nr_swap_pages, updates the
lowest_bit and highest_bit fields if necessary, increases the inuse_pages field by one, and sets the
cluster_next field to the index of the page slot just allocated plus 1.

5.

5. Returns the index of the allocated page slot.

17.4.5.2. The get_swap_page() function

 The get_swap_page() function is used to find a free page slot by searching all the active swap areas.
The function, which returns the swapped-out page identifier of a newly allocated page slot or 0 if all swap
areas are filled, takes into consideration the different priorities of the active swap areas.

 Two passes are done in order to minimize runtime when it's easy to find a page slot. The first pass is
partial and applies only to areas that have a single priority; the function searches such areas in a Round
Robin fashion for a free slot. If no free page slot is found, a second pass is made starting from the
beginning of the swap area list; during this second pass, all swap areas are examined. More precisely, the
function performs the following steps:

1.

1. If nr_swap_pages is null or if there are no active swap areas, it returns 0.
2.

2. Starts by considering the swap area pointed to by swap_list.next (recall that the swap area list is
sorted by decreasing priorities).

3.

3. If the swap area is active, it invokes scan_swap_map() to allocate a free page slot. If
scan_swap_map() returns a page slot index, the function's job is essentially done, but it must
prepare for its next invocation. Thus, it updates swap_list.next to point to the next swap area in
the swap area list, if the latter has the same priority (thus continuing the round-robin use of these
swap areas). If the next swap area does not have the same priority as the current one, the
function sets swap_list.next to the first swap area in the list (so that the next search will start with
the swap areas that have the highest priority). The function finishes by returning the swapped-out
page identifier corresponding to the page slot just allocated.

4.

4. Either the swap area is not writable, or it does not have free page slots. If the next swap area in
the swap area list has the same priority as the current one, the function makes it the current one
and goes to step 3.

5.

5. At this point, the next swap area in the swap area list has a lower priority than the previous one.
The next step depends on which of the two passes the function is performing.
a.

a. If this is the first (partial) pass, it considers the first swap area in the list and goes to step 3,
thus starting the second pass.

b.

b. Otherwise, it checks if there is a next element in the list; if so, it considers it and goes to step
3.

6.

6. At this point the list is completely scanned by the second pass and no free page slot has been
found; it returns 0.

17.4.5.3. The swap_free() function

 The swap_free() function is invoked when swapping in a page to decrease the corresponding
swap_map counter (see Table 17-3). When the counter reaches 0, the page slot becomes free since its
identifier is no longer included in any Page Table entry. We'll see in the later section "The Swap Cache,"
however, that the swap cache counts as an owner of the page slot.

 The function acts on a single entry parameter that specifies a swapped-out page identifier and performs
the following steps:

1.

1. Derives the swap area index and the offset page slot index from the entry parameter and gets the
address of the swap area descriptor.

2.

2. Checks whether the swap area is active and returns right away if it is not.
3.

3. If the swap_map counter corresponding to the page slot being freed is smaller than
SWAP_MAP_MAX, the function decreases it. Recall that entries that have the
SWAP_MAP_MAX value are considered persistent (undeletable).

4.

4. If the swap_map counter becomes 0, the function increases the value of nr_swap_pages,
decreases the inuse_pages field, and updates, if necessary, the lowest_bit and highest_bit fields
of the swap area descriptor.

17.4.6. The Swap Cache

 Transferring pages to and from a swap area is an activity that can induce many race conditions. In
particular, the swapping subsystem must handle carefully the following cases:

 Multiple swap-ins

 Two processes may concurrently try to swap in the same shared anonymous page.

Concurrent swap-ins and swap-outs

 A process may swap-in a page that is being swapped out by the PFRA.

 The swap cache has been introduced to solve these kinds of synchronization problems. The key rule is
that nobody can start a swap-in or swap-out without checking whether the swap cache already includes
the affected page. Thanks to the swap cache, concurrent swap operations affecting the same page
always act on the same page frame; therefore, the kernel may safely rely on the PG_locked flag of the
page descriptor to avoid any race condition.

 For example, consider two processes that share the same swapped-out page. When the first process
tries to access the page, the kernel starts the swap-in operation. The very first step consists of checking
whether the page frame is already included in the swap cache. Let's suppose it isn't: then, the kernel
allocates a new page frame and inserts it into the swap cache; next, it starts the I/O operation to read the
page's contents from the swap area. Meanwhile, the second process accesses the shared anonymous
page. As above, the kernel starts a swap-in operation and checks whether the affected page frame is
already included in the swap cache. Now, it is included, thus the kernel simply accesses the page frame
descriptor and puts the current process to sleep until the PG_locked flag is cleared, that is, until the I/O
data transfer completes.

 The swap cache plays a crucial role also when concurrent swap-in and swap-out operations mix up. As
explained in the section "Low On Memory Reclaiming" earlier in this chapter, the shrink_list() function
starts swapping out an anonymous page only if TRy_to_unmap() succeeds in removing the page frame
from the User Mode Page Tables of all processes that own the page. However, one of these processes
may access the page and cause a swap-in while the swap-out write operation is still in progress.

 Before being written to disk, each page to be swapped out is stored in the swap cache by shrink_list().
Consider a page P that is shared among two processes, A and B. Initially, the Page Table entries of both
processes contain a reference to the page frame, and the page has two owners; this case is illustrated in
Figure 17-8(a). When the PFRA selects the page for reclaiming, shrink_list() inserts the page frame in
the swap cache. As illustrated in Figure 17-8(b), now the page frame has three owners, while the page
slot in the swap area is referenced only by the swap cache. Next, the PFRA invokes try_to_unmap() to
remove the references to the page frame from the Page Table of the processes; once this function
terminates, the page frame is referenced only by the swap cache, while the page slot is referenced by the
two processes and the swap cache, as illustrated in Figure 17-8(c). Let's suppose that, while the page's
contents are being written to disk, process B accesses the pagethat is, it tries to access a memory cell
using a linear address inside the page. Then, the page fault handler finds the page frame in the swap cache
and puts back its physical address in the Page Table entry of process B, as illustrated in Figure 17-8(d).
Conversely, if the swap-out operation terminates without concurrent swap-in operations, the shrink_list()
function removes the page frame from the swap cache and releases the page frame to the Buddy system,
as illustrated in Figure 17-8(e).

 Figure 17-8. The role of the swap cache

 You might consider the swap cache as a transit area containing the page descriptors of anonymous
pages that are being currently swapped-in or swapped out. When the swap-in or swap-out terminates (in
the case of shared anonymous pages, the swap-in or swap-out must have been performed on all the
processes that share the page), the page descriptor of the anonymous page may be removed from the
swap cache.[*]

[*] In some cases, the swap cache improves also the system performance: consider a server daemon that
services requests by creating child processes. Under heavy system load, a page can get swapped out
from the parent process, and it will never be paged in for the parent process. Without the swap cache,
every child process that gets forked off needs to fault that page in from the swap area.

 17.4.6.1. Swap cache implementation

 The swap cache is implemented by the page cache data structures and procedures, which are described
in the section "The Page Cache" in Chapter 15. Recall that the core of the page cache is a set of radix
trees that allows the algorithm to quickly derive the address of a page descriptor from the address of an
address_space object identifying the owner of the page as well as from an offset value.

 Pages in the swap cache are stored as every other page in the page cache, with the following special
treatment:



 The mapping field of the page descriptor is set to NULL.


 The PG_swapcache flag of the page descriptor is set.


 The private field stores the swapped-out page identifier associated with the page.

 Moreover, when the page is put in the swap cache, both the count field of the page descriptor and the
page slot usage counters are increased, because the swap cache uses both the page frame and the page
slot.

 Finally, a single swapper_space address space is used for all pages in the swap cache, so a single radix
tree pointed to by swapper_space.page_tree addresses the pages in the swap cache. The nrpages field
of the swapper_space address space stores the number of pages contained in the swap cache.

 17.4.6.2. Swap cache helper functions

 The kernel uses several functions to handle the swap cache; they are based mainly on those discussed in
the section "The Page Cache" in Chapter 15. We show later how these relatively low-level functions are
invoked by higher-level functions to swap pages in and out as needed.

 The main functions that handle the swap cache are:

 lookup_swap_cache()

 Finds a page in the swap cache through its swapped-out page identifier passed as a parameter and
returns the page descriptor address. It returns 0 if the page is not present in the cache. To find the
required page, it invokes radix_tree_lookup(), passing as parameters a pointer to
swapper_space.page_treethe radix tree used for pages in the swap cacheand the swapped-out page
identifier.

add_to_swap_cache()

 Inserts a page into the swap cache. It essentially invokes swap_duplicate() to check whether the page
slot passed as a parameter is valid and to increase the page slot usage counter; then, it invokes
radix_tree_insert() to insert the page into the cache; finally, it increases the page's reference counter and
sets the PG_swapcache and PG_locked flags.

_ _add_to_swap_cache()

 Similar to add_to_swap_cache(), except that the function does not invoke swap_duplicate() before
inserting the page frame in the swap cache.

delete_from_swap_cache()

 Removes a page from the swap cache by invoking radix_tree_delete(), decreases the corresponding
usage counter in swap_map, and decreases the page reference counter.

free_page_and_swap_cache()

 Removes a page from the swap cache if no User Mode process besides current is referencing the
corresponding page slot, and decreases the page's usage counter.

free_pages_and_swap_cache()

 Analogous to free_page_and_swap_cache(), but operates on a set of pages.

free_swap_and_cache()

 Frees a swap entry, and checks whether the page referenced by the entry is in the swap cache. If either
no User Mode process, besides current, is referencing the page or more than 50% of the swap entries
are busy, the function removes the page from the swap cache.

 17.4.7. Swapping Out Pages

 We have seen in the section "Low On Memory Reclaiming" earlier in this chapter how the PFRA
determines whether a given anonymous page should be swapped out. In this section we show how the
kernel performs a swap-out.

 17.4.7.1. Inserting the page frame in the swap cache

 The first step of a swap-out operation consists of preparing the swap cache. If the shrink_list() function
determines that a page is anonymous (the PageAnon() function returns 1) and that the swap cache does
not include the corresponding page frame (the PG_swapcache flag in the page descriptor is clear), the
kernel invokes the add_to_swap() function.

 The add_to_swap() function allocates a new page slot in a swap area and inserts a page framewhose
page descriptor address is passed as its parameterin the swap cache. Essentially, the function performs
the following steps:

1.

1. Invokes get_swap_page() to allocate a new page slot; see the section "Allocating and Releasing
a Page Slot" earlier in this chapter. Returns 0 in case of failure (for example, no free page slot
found).

2.

2. Invokes _ _add_to_page_cache(), passing to it the page slot index, the page descriptor address,
and some allocation flags.

3.

3. Sets the PG_uptodate and PG_dirty flags in the page descriptor, so that the shrink_list() function
will be forced to write the page to disk (see the next section).

4.

4. Returns 1 (success).

17.4.7.2. Updating the Page Table entries

 Once add_to_swap() terminates, shrink_list() invokes try_to_unmap(), which determines the address
of every User Mode page table entry referring to the anonymous page and writes into it a swapped-out
page identifier; this is described in the section "Reverse Mapping for Anonymous Pages" earlier in this
chapter.

 17.4.7.3. Writing the page into the swap area

 The next action to be performed to complete the swap-out consists of writing the page's contents into
the swap area. This I/O transfer is activated by the shrink_list() function, which checks whether the
PG_dirty flag of the page frame is set and consequently executes the pageout() function (see Figure 17-5
earlier in this chapter).

 As explained in the section "Low On Memory Reclaiming" earlier in this chapter, the pageout() function
sets up a writeback_control descriptor and invokes the writepage method of the page's address_space
object. The writepage method of the swapper_state object is implemented by the swap_writepage()
function.

 The swap_writepage() function, in turn, performs essentially the following steps:
1.

1. Checks whether at least one User Mode process is referencing the page. If not, it removes the
page from the swap cache and returns 0. This check is necessary because a process might race
with the PRFA and release a page after the check performed by shrink_list().

2.

2. Invokes get_swap_bio() to allocate and initialize a bio descriptor (see the section "The Bio
Structure" in Chapter 14). The function derives the address of the swap area descriptor from the
swapped-out page identifier; then, it walks the swap extent lists to determine the initial disk
sector of the page slot. The bio descriptor will include a request for a single page of data (the
page slot); the completion method is set to the end_swap_bio_write() function.

3.

3. Sets the PG_writeback flag in the page descriptor and the writeback tags in the swap cache's
radix tree (see the section "The Tags of the Radix Tree" in Chapter 15). Moreover, the function
resets the PG_locked flag.

4.

4. Invokes submit_bio(), passing to it the WRITE command and the bio descriptor address.
5.

5. Returns 0.

Once the I/O data transfer terminates, the end_swap_bio_write() function is executed. Essentially, this
function wakes up any process waiting until the PG_writeback flag of the page is cleared, clears the
PG_writeback flag and the corresponding tags in the radix tree, and releases the bio descriptor used for
the I/O transfer.

 17.4.7.4. Removing the page frame from the swap cache

 The last step of the swap-out operation is performed once more by shrink_list(): if it verifies that no
process has tried to access the page frame while doing the I/O data transfer, it essentially invokes
delete_from_swap_cache() to remove the page frame from the swap cache. Because the swap cache
was the only owner of the page, the page frame is released to the buddy system.

 17.4.8. Swapping in Pages

 Swap-in takes place when a process attempts to address a page that has been swapped out to disk.
The Page Fault exception handler triggers a swap-in operation when the following conditions occur (see
the section "Handling a Faulty Address Inside the Address Space" in Chapter 9):



 The page including the address that caused the exception is a valid onethat is, it belongs to a
memory region of the current process.



 The page is not present in memorythat is, the Present flag in the Page Table entry is cleared.


 The Page Table entry associated with the page is not null, but the Dirty bit is clear; this means
that the entry contains a swapped-out page identifier (see the section "Demand Paging" in
Chapter 9).

 If all the above conditions are satisfied, handle_pte_fault() invokes a quite handy do_swap_page()
function to swap in the page required.

 17.4.8.1. The do_swap_page() function

 The do_swap_page() function acts on the following parameters:

 mm

 Memory descriptor address of the process that caused the Page Fault exception

vma

 Memory region descriptor address of the region that includes address

address

 Linear address that causes the exception

page_table

 Address of the Page Table entry that maps address

pmd

 Address of the Page Middle Directory that maps address

orig_pte

 Content of the Page Table entry that maps address

write_access

 Flag denoting whether the attempted access was a read or a write

 Contrary to other functions, do_swap_page() never returns 0. It returns 1 if the page is already in the
swap cache (minor fault), 2 if the page was read from the swap area (major fault), and -1 if an error
occurred while performing the swap-in. It essentially executes the following steps:

1.

1. Gets the swapped-out page identifier from orig_pte.
2.

2. Invokes pte_unmap() to release any temporary kernel mapping for the Page Table created by
the handle_mm_fault() function (see the section "Handling a Faulty Address Inside the Address
Space" in Chapter 9). As explained in the section "Kernel Mappings of High-Memory Page
Frames" in Chapter 8, a kernel mapping is required to access a page table in high memory.

3.

3. Releases the page_table_lock spin lock of the memory descriptor (it was acquired by the caller
function handle_pte_fault()).

4.

4. Invokes lookup_swap_cache() to check whether the swap cache already contains a page
corresponding to the swapped-out page identifier; if the page is already in the swap cache, it
jumps to step 6.

5.

5. Invokes the swapin_readahead() function to read from the swap area a group of at most 2n
pages, including the requested one. The value n is stored in the page_cluster variable, and is
usually equal to 3.[*] Each page is read by invoking the read_swap_cache_async() function (see
below).

5. [*] The system administrator may tune this value by writing into the /proc/sys/vm/page-cluster
file. Swap-in read-ahead can be disabled by setting page_cluster to 0.

6.

6. Invokes read_swap_cache_async() once more to swap in precisely the page accessed by the
process that caused the Page Fault. This step might appear redundant, but it isn't really. The
swapin_readahead() function might fail in reading the requested pagefor instance, because
page_cluster is set to 0 or the function tried to read a group of pages including a free page slot or
a defective page slot (SWAP_MAP_BAD). On the other hand, if swapin_readahead()
succeeded, this invocation of read_swap_cache_async() terminates quickly because it finds the
page in the swap cache.

7.

7. If, despite all efforts, the requested page was not added to the swap cache, another kernel
control path might have already swapped in the requested page on behalf of a clone of this
process. This case is checked by temporarily acquiring the page_table_lock spin lock and
comparing the entry to which page_table points with orig_pte. If they differ, the page has already
been swapped in by some other kernel control path, so the function returns 1 (minor fault);
otherwise, it returns -1 (failure).

8.

8. At this point, we know that the page is in the swap cache. If the page has been effectively
swapped in (major fault), the function invokes grab_swap_token() to try to grab the swap token
(see the section "The Swap Token" earlier in this chapter).

9.

9. Invokes mark_page_accessed() (see the earlier section "The Least Recently Used (LRU) Lists")
and locks the page.

10.

10.Acquires the page_table_lock spin lock.
11.

11.Checks whether another kernel control path has swapped in the requested page on behalf of a
clone of this process. In this case, it releases the page_table_lock spin lock, unlocks the page,
and returns 1 (minor fault).

12.

12. Invokes swap_free() to decrease the usage counter of the page slot corresponding to enTRy.
13.

13.Checks whether the swap cache is at least 50 percent full (nr_swap_pages is smaller than half of
total_swap_pages). If so, it checks whether the page is owned only by the process that caused
the fault (or one of its clones); if this is the case, removes the page from the swap cache.

14.

14. Increases the rss field of the process's memory descriptor.
15.

15.Updates the Page Table entry so the process can find the page. The function accomplishes this
by writing the physical address of the requested page and the protection bits found in the
vm_page_prot field of the memory region into the Page Table entry addressed by page_table.
Moreover, if the access that caused the fault was a write and the faulting process is the unique
owner of the page, the function also sets the Dirty flag and the Read/Write flag to prevent a
useless Copy On Write fault.

16.

16.Unlocks the page.
17.

17. Invokes page_add_anon_rmap() to insert the anonymous page in the object-based reverse
mapping data structures (see the section "Reverse Mapping for Anonymous Pages" earlier in this
chapter.)

18.

18. If the write_access parameter is equal to 1, the function invokes do_wp_page() to make a copy
of the page frame (see the section "Copy On Write" in Chapter 9).

19.

19.Releases the mm->page_table_lock spin lock and returns the ret return code: 1 (minor fault) or 2
(major fault).

17.4.8.2. The read_swap_cache_async() function

 The read_swap_cache_async() function is invoked whenever the kernel must swap in a page. It acts on
three parameters:

 entry

 A swapped-out page identifier

vma

 A pointer to the memory region that should contain the page

addr

 The linear address of the page

 As we know, before accessing the swap partition, the function must check whether the swap cache
already includes the desired page frame. Therefore, the function essentially executes the following
operations:

1.

1. Invokes radix_tree_lookup() to locate in the radix tree of the swapper_space object a page
frame at the position given by the swapped-out page identifier enTRy. If the page is found, it
increases its reference counter and returns the address of its descriptor.

2.

2. The page is not included in the swap cache. Invokes alloc_pages() to allocate a new page frame.
If no free page frame is available, it returns 0 (indicating the system is out of memory).

3.

3. Invokes add_to_swap_cache() to insert the page descriptor of the new page frame into the
swap cache. As mentioned in the earlier section "Swap cache helper functions," this function also
locks the page.

4.

4. The previous step might fail if add_to_swap_cache() finds a duplicate of the page in the swap
cache. For instance, the process could block in step 2, thus allowing another process to start a
swap-in operation on the same page slot. In this case, it releases the page frame allocated in step
2 and restarts from step 1.

5.

5. Invokes lru_cache_add_active() to insert the page in the LRU active list (see the section "The
Least Recently Used (LRU) Lists" earlier in this chapter).

6.

6. The page descriptor of the new page frame is now in the swap cache. Invokes swap_readpage()
to read the page's contents from the swap area. This function is quite similar to swap_writepage(
) described in the earlier section "Swapping Out Pages:" it clears the PG_uptodate flag of the
page descriptor, invokes get_swap_bio() to allocate and initialize a bio descriptor for the I/O
transfer, and invokes submit_bio() to submit the I/O request to the block subsystem layer.

7.

7. Returns the address of the page descriptor.

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 305

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 18. The Ext2 and Ext3 Filesystems
 In this chapter, we finish our extensive discussion of I/O and filesystems by taking a look at the details
the kernel has to take care of when interacting with a specific filesystem. Because the Second Extended
Filesystem (Ext2) is native to Linux and is used on virtually every Linux system, it is a natural choice for
this discussion. Furthermore, Ext2 illustrates a lot of good practices in its support for modern filesystem
features with fast performance. To be sure, other filesystems supported by Linux include many interesting
features, but we have no room to examine all of them.

 After introducing Ext2 in the section "General Characteristics of Ext2," we describe the data structures
needed, just as in other chapters. Because we are looking at a specific way to store data on disk, we
have to consider two versions of the same data structures. The section "Ext2 Disk Data Structures"
shows the data structures stored by Ext2 on disk, while "Ext2 Memory Data Structures" shows the
corresponding versions in memory.

 Then we get to the operations performed on the filesystem. In the section "Creating the Ext2 Filesystem,"
we discuss how Ext2 is created in a disk partition. The next sections describe the kernel activities
performed whenever the disk is used. Most of these are relatively low-level activities dealing with the
allocation of disk space to inodes and data blocks.

 In the last section, we give a short description of the Ext3 filesystem, which is the next step in the
evolution of the Ext2 filesystem .

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 307

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.1. General Characteristics of Ext2
 Unix-like operating systems use several types of filesystems. Although the files of all such filesystems
have a common subset of attributes required by a few POSIX APIs such as stat(), each filesystem is
implemented in a different way.

 The first versions of Linux were based on the MINIX filesystem. As Linux matured, the Extended
Filesystem (Ext FS) was introduced; it included several significant extensions, but offered unsatisfactory
performance. The Second Extended Filesystem (Ext2) was introduced in 1994; besides including several
new features , it is quite efficient and robust and is, together with its offspring Ext3, the most widely used
Linux filesystem.

 The following features contribute to the efficiency of Ext2:


 When creating an Ext2 filesystem, the system administrator may choose the optimal block size
(from 1,024 to 4,096 bytes), depending on the expected average file length. For instance, a
1,024-block size is preferable when the average file length is smaller than a few thousand bytes
because this leads to less internal fragmentationthat is, less of a mismatch between the file length
and the portion of the disk that stores it (see the section "Memory Area Management" in Chapter
8, where internal fragmentation for dynamic memory was discussed). On the other hand, larger
block sizes are usually preferable for files greater than a few thousand bytes because this leads to
fewer disk transfers, thus reducing system overhead.



 When creating an Ext2 filesystem, the system administrator may choose how many inodes to
allow for a partition of a given size, depending on the expected number of files to be stored on it.
This maximizes the effectively usable disk space.



 The filesystem partitions disk blocks into groups. Each group includes data blocks and inodes
stored in adjacent tracks. Thanks to this structure, files stored in a single block group can be
accessed with a lower average disk seek time.



 The filesystem preallocates disk data blocks to regular files before they are actually used. Thus,
when the file increases in size, several blocks are already reserved at physically adjacent
positions, reducing file fragmentation.



 Fast symbolic links (see the section "Hard and Soft Links" in Chapter 1) are supported. If the
symbolic link represents a short pathname (at most 60 characters), it can be stored in the inode
and can thus be translated without reading a data block.

 Moreover, the Second Extended Filesystem includes other features that make it both robust and flexible:


 A careful implementation of file-updating that minimizes the impact of system crashes. For
instance, when creating a new hard link for a file, the counter of hard links in the disk inode is
increased first, and the new name is added into the proper directory next. In this way, if a
hardware failure occurs after the inode update but before the directory can be changed, the
directory is consistent, even if the inode's hard link counter is wrong. Deleting the file does not
lead to catastrophic results, although the file's data blocks cannot be automatically reclaimed. If
the reverse were done (changing the directory before updating the inode), the same hardware
failure would produce a dangerous inconsistency: deleting the original hard link would remove its
data blocks from disk, yet the new directory entry would refer to an inode that no longer exists.
If that inode number were used later for another file, writing into the stale directory entry would
corrupt the new file.



 Support for automatic consistency checks on the filesystem status at boot time. The checks are
performed by the e2fsck external program, which may be activated not only after a system crash,
but also after a predefined number of filesystem mounts (a counter is increased after each mount
operation) or after a predefined amount of time has elapsed since the most recent check.



 Support for immutable files (they cannot be modified, deleted, or renamed) and for append-only
files (data can be added only to the end of them).



 Compatibility with both the Unix System V Release 4 and the BSD semantics of the user group
ID for a new file. In SVR4, the new file assumes the user group ID of the process that creates it;
in BSD, the new file inherits the user group ID of the directory containing it. Ext2 includes a
mount option that specifies which semantic to use.

 Even if the Ext2 filesystem is a mature, stable program, several additional features have been considered
for inclusion. Some of them have already been coded and are available as external patches. Others are
just planned, but in some cases, fields have already been introduced in the Ext2 inode for them. The most
significant features being considered are:

 Block fragmentation

 System administrators usually choose large block sizes for accessing disks, because computer
applications often deal with large files. As a result, small files stored in large blocks waste a lot of disk
space. This problem can be solved by allowing several files to be stored in different fragments of the
same block.

Handling of transparently compressed and encrypted files

 These new options, which must be specified when creating a file, allow users to transparently store
compressed and/or encrypted versions of their files on disk.

Logical deletion

 An undelete option allows users to easily recover, if needed, the contents of a previously removed file.

Journaling

 Journaling avoids the time-consuming check that is automatically performed on a filesystem when it is
abruptly unmounted for instance, as a consequence of a system crash.

 In practice, none of these features has been officially included in the Ext2 filesystem. One might say that
Ext2 is victim of its success; it has been the preferred filesystem adopted by most Linux distribution
companies until a few years ago, and the millions of users who relied on it every day would have looked
suspiciously at any attempt to replace Ext2 with some other filesystem.

 The most compelling feature missing from Ext2 is journaling, which is required by high-availability
servers. To provide for a smooth transition, journaling has not been introduced in the Ext2 filesystem;
rather, as we'll discuss in the later section "The Ext3 Filesystem," a more recent filesystem that is fully
compatible with Ext2 has been created, which also offers journaling. Users who do not really require
journaling may continue to use the good old Ext2 filesystem, while the others will likely adopt the new
filesystem. Nowadays, most distributions adopt Ext3 as the standard filesystem.

Page 308

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 309

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 310

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.2. Ext2 Disk Data Structures
 The first block in each Ext2 partition is never managed by the Ext2 filesystem, because it is reserved for
the partition boot sector (see Appendix A). The rest of the Ext2 partition is split into block groups , each
of which has the layout shown in Figure 18-1. As you will notice from the figure, some data structures
must fit in exactly one block, while others may require more than one block. All the block groups in the
filesystem have the same size and are stored sequentially, thus the kernel can derive the location of a
block group in a disk simply from its integer index.

 Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group

 Block groups reduce file fragmentation, because the kernel tries to keep the data blocks belonging to a
file in the same block group, if possible. Each block in a block group contains one of the following pieces
of information:



 A copy of the filesystem's superblock


 A copy of the group of block group descriptors


 A data block bitmap


 An inode bitmap


 A table of inodes


 A chunk of data that belongs to a file; i.e., data blocks

 If a block does not contain any meaningful information, it is said to be free.

 As you can see from Figure 18-1, both the superblock and the group descriptors are duplicated in each
block group. Only the superblock and the group descriptors included in block group 0 are used by the
kernel, while the remaining superblocks and group descriptors are left unchanged; in fact, the kernel
doesn't even look at them. When the e2fsck program executes a consistency check on the filesystem
status, it refers to the superblock and the group descriptors stored in block group 0, and then copies
them into all other block groups. If data corruption occurs and the main superblock or the main group
descriptors in block group 0 become invalid, the system administrator can instruct e2fsck to refer to the
old copies of the superblock and the group descriptors stored in a block groups other than the first.
Usually, the redundant copies store enough information to allow e2fsck to bring the Ext2 partition back
to a consistent state.

 How many block groups are there? Well, that depends both on the partition size and the block size. The
main constraint is that the block bitmap, which is used to identify the blocks that are used and free inside
a group, must be stored in a single block. Therefore, in each block group, there can be at most 8xb
blocks, where b is the block size in bytes. Thus, the total number of block groups is roughly s/(8xb),
where s is the partition size in blocks.

 For example, let's consider a 32-GB Ext2 partition with a 4-KB block size. In this case, each 4-KB
block bitmap describes 32K data blocks that is, 128 MB. Therefore, at most 256 block groups are
needed. Clearly, the smaller the block size, the larger the number of block groups.

 18.2.1. Superblock

 An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are listed in Table
18-1.[*] The _ _u8, _ _u16, and _ _u32 data types denote unsigned numbers of length 8, 16, and 32
bits respectively, while the _ _s8, _ _s16, _ _s32 data types denote signed numbers of length 8, 16, and
32 bits. To explicitly specify the order in which the bytes of a word or double-word are stored on disk,
the kernel also makes use of the _ _le16, _ _le32, _ _be16, and _ _be32 data types; the former two
types denote the little-endian ordering for words and double-words (the least significant byte is stored at
the highest address), respectively, while the latter two types denote the big-endian ordering (the most
significant byte is stored at the highest address).

[*] To ensure compatibility between the Ext2 and Ext3 filesystems, the ext2_super_block data structure
includes some Ext3-specific fields, which are not shown in Table 18-1.

 Table 18-1. The fields of the Ext2 superblock

Type Field Description

_ _le32 s_inodes_count Total number of inodes

_ _le32 s_blocks_count Filesystem size in blocks

_ _le32 s_r_blocks_count Number of reserved blocks

_ _le32 s_free_blocks_count Free blocks counter

_ _le32 s_free_inodes_count Free inodes counter

_ _le32 s_first_data_block Number of first useful block
(always 1)

_ _le32 s_log_block_size Block size

_ _le32 s_log_frag_size Fragment size

_ _le32 s_blocks_per_group Number of blocks per group

_ _le32 s_frags_per_group Number of fragments per group

_ _le32 s_inodes_per_group Number of inodes per group

_ _le32 s_mtime Time of last mount operation

_ _le32 s_wtime Time of last write operation

_ _le16 s_mnt_count Mount operations counter

_ _le16 s_max_mnt_count Number of mount operations
before check

_ _le16 s_magic Magic signature

_ _le16 s_state Status flag

_ _le16 s_errors Behavior when detecting errors

_ _le16 s_minor_rev_level Minor revision level

_ _le32 s_lastcheck Time of last check

_ _le32 s_checkinterval Time between checks

_ _le32 s_creator_os OS where filesystem was created

_ _le32 s_rev_level Revision level of the filesystem

_ _le16 s_def_resuid Default UID for reserved blocks

_ _le16 s_def_resgid Default user group ID for
reserved blocks

_ _le32 s_first_ino Number of first nonreserved
inode

_ _le16 s_inode_size Size of on-disk inode structure

_ _le16 s_block_group_nr Block group number of this
superblock

_ _le32 s_feature_compat Compatible features bitmap

_ _le32 s_feature_incompat Incompatible features bitmap

_ _le32 s_feature_ro_compat Read-only compatible features
bitmap

_ _u8 [16] s_uuid 128-bit filesystem identifier

char [16] s_volume_name Volume name

char [64] s_last_mounted Pathname of last mount point

_ _le32 s_algorithm_usage_bitmap Used for compression

_ _u8 s_prealloc_blocks Number of blocks to preallocate

_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate
for directories

_ _u16 s_padding1 Alignment to word

_ _u32 [204] s_reserved Nulls to pad out 1,024 bytes

The s_inodes_count field stores the number of inodes, while the s_blocks_count field stores the number
of blocks in the Ext2 filesystem.

 The s_log_block_size field expresses the block size as a power of 2, using 1,024 bytes as the unit. Thus,
0 denotes 1,024-byte blocks, 1 denotes 2,048-byte blocks, and so on. The s_log_frag_size field is
currently equal to s_log_block_size, because block fragmentation is not yet implemented.

 The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the number of
blocks, fragments, and inodes in each block group, respectively.

 Some disk blocks are reserved to the superuser (or to some other user or group of users selected by the
s_def_resuid and s_def_resgid fields). These blocks allow the system administrator to continue to use the
filesystem even when no more free blocks are available for normal users.

 The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up the Ext2 filesystem
to be checked automatically at boot time. These fields cause e2fsck to run after a predefined number of
mount operations has been performed, or when a predefined amount of time has elapsed since the last
consistency check. (Both kinds of checks can be used together.) The consistency check is also enforced
at boot time if the filesystem has not been cleanly unmounted (for instance, after a system crash) or when
the kernel discovers some errors in it. The s_state field stores the value 0 if the filesystem is mounted or
was not cleanly unmounted, 1 if it was cleanly unmounted, and 2 if it contains errors.

 18.2.2. Group Descriptor and Bitmap

 Each block group has its own group descriptor, an ext2_group_desc structure whose fields are
illustrated in Table 18-2.

 Table 18-2. The fields of the Ext2 group descriptor

Type Field Description

_ _le32 bg_block_bitmap Block number of block bitmap

_ _le32 bg_inode_bitmap Block number of inode bitmap

_ _le32 bg_inode_table Block number of first inode table
block

_ _le16 bg_free_blocks_count Number of free blocks in the
group

_ _le16 bg_free_inodes_count Number of free inodes in the
group

_ _le16 bg_used_dirs_count Number of directories in the
group

_ _le16 bg_pad Alignment to word

_ _le32 [3] bg_reserved Nulls to pad out 24 bytes

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are used when
allocating new inodes and data blocks. These fields determine the most suitable block in which to allocate
each data structure. The bitmaps are sequences of bits, where the value 0 specifies that the
corresponding inode or data block is free and the value 1 specifies that it is used. Because each bitmap
must be stored inside a single block and because the block size can be 1,024, 2,048, or 4,096 bytes, a
single bitmap describes the state of 8,192, 16,384, or 32,768 blocks.

 18.2.3. Inode Table

 The inode table consists of a series of consecutive blocks, each of which contains a predefined number
of inodes. The block number of the first block of the inode table is stored in the bg_inode_table field of
the group descriptor.

 All inodes have the same size: 128 bytes. A 1,024-byte block contains 8 inodes, while a 4,096-byte
block contains 32 inodes. To figure out how many blocks are occupied by the inode table, divide the
total number of inodes in a group (stored in the s_inodes_per_group field of the superblock) by the
number of inodes per block.

 Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 18-3.

 Table 18-3. The fields of an Ext2 disk inode

Type Field Description

_ _le16 i_mode File type and access rights

_ _le16 i_uid Owner identifier

_ _le32 i_size File length in bytes

_ _le32 i_atime Time of last file access

_ _le32 i_ctime Time that inode last changed

_ _le32 i_mtime Time that file contents last
changed

_ _le32 i_dtime Time of file deletion

_ _le16 i_gid User group identifier

_ _le16 i_links_count Hard links counter

_ _le32 i_blocks Number of data blocks of the file

_ _le32 i_flags File flags

union osd1 Specific operating system
information

_ _le32 [EXT2_N_BLOCKS] i_block Pointers to data blocks

_ _le32 i_generation

File version (used when the file is
accessed by a

network filesystem)

_ _le32 i_file_acl File access control list

_ _le32 i_dir_acl Directory access control list

_ _le32 i_faddr Fragment address

union osd2 Specific operating system
information

Many fields related to POSIX specifications are similar to the corresponding fields of the VFS's inode
object and have already been discussed in the section "Inode Objects" in Chapter 12. The remaining
ones refer to the Ext2-specific implementation and deal mostly with block allocation.

 In particular, the i_size field stores the effective length of the file in bytes, while the i_blocks field stores
the number of data blocks (in units of 512 bytes) that have been allocated to the file.

 The values of i_size and i_blocks are not necessarily related. Because a file is always stored in an integer
number of blocks, a nonempty file receives at least one data block (since fragmentation is not yet
implemented) and i_size may be smaller than 512 xi_blocks. On the other hand, as we'll see in the
section "File Holes" later in this chapter, a file may contain holes. In that case, i_size may be greater than
512 xi_blocks.

 The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to identify the
data blocks allocated to the file (see the section "Data Blocks Addressing" later in this chapter).

 The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the highest-order bit of the
i_size field is not used, so the maximum file size is limited to 2 GB. However, the Ext2 filesystem includes
a "dirty trick" that allows larger files on systems that sport a 64-bit processor such as AMD's Opteron or
IBM's PowerPC G5. Essentially, the i_dir_acl field of the inode, which is not used for regular files,
represents a 32-bit extension of the i_size field. Therefore, the file size is stored in the inode as a 64-bit
integer. The 64-bit version of the Ext2 filesystem is somewhat compatible with the 32-bit version because
an Ext2 filesystem created on a 64-bit architecture may be mounted on a 32-bit architecture, and vice
versa. On a 32-bit architecture, a large file cannot be accessed, unless opening the file with the
O_LARGEFILE flag set (see the section "The open() System Call" in Chapter 12).

 Recall that the VFS model requires each file to have a different inode number. In Ext2, there is no need
to store on disk a mapping between an inode number and the corresponding block number because the
latter value can be derived from the block group number and the relative position inside the inode table.
For example, suppose that each block group contains 4,096 inodes and that we want to know the
address on disk of inode 13,021. In this case, the inode belongs to the third block group and its disk
address is stored in the 733rd entry of the corresponding inode table. As you can see, the inode number
is just a key used by the Ext2 routines to retrieve the proper inode descriptor on disk quickly.

 18.2.4. Extended Attributes of an Inode

 The Ext2 inode format is a kind of straitjacket for filesystem designers. The length of an inode must be a
power of 2 to avoid internal fragmentation in the blocks that store the inode table. Actually, most of the
128 characters of an Ext2 inode are currently packed with information, and there is little room left for
additional fields. On the other hand, expanding the inode length to 256 would be quite wasteful, besides
introducing compatibility problems between Ext2 filesystems that use different inode lengths.

 Extended attributes have been introduced to overcome the above limitation. These attributes are stored
on a disk block allocated outside of any inode. The i_file_acl field of an inode points to the block
containing the extended attributes . Different inodes that have the same set of extended attributes may
share the same block.

 Each extended attribute has a name and a value. Both of them are encoded as variable length arrays of
characters, as specified by the ext2_xattr_entry descriptor. Figure 18-2 shows the layout in Ext2 of the
extended attributes inside a block. Each attribute is split in two parts: the ext2_xattr_entry descriptor
together with the name of the attribute are placed at the beginning of the block, while the value of the
attribute is placed at the end of the block. The entries at the beginning of the block are ordered according
to the attribute names, while the positions of the values are fixed, because they are determined by the
allocation order of the attributes.

 Figure 18-2. Layout of a block containing extended attributes

 There are many system calls used to set, retrieve, list, and remove the extended attributes of a file. The
setxattr() , lsetxattr() , and fsetxattr() system calls set an extended attribute of a file; essentially, they
differ in how symbolic links are handled, and in how the file is specified (either passing a pathname or a
file descriptor). Similarly, the getxattr() , lgetxattr() , and fgetxattr() system calls return the value of an
extended attribute. The listxattr(), llistxattr() , and flistxattr() list all extended attributes of a file. Finally,
the removexattr() , lremovexattr() , and fremovexattr() system calls remove an extended attribute from
a file.

 18.2.5. Access Control Lists

 Access control lists were proposed a long time ago to improve the file protection mechanism in Unix
filesystems. Instead of classifying the users of a file under three classesowner, group, and othersan access
control list (ACL) can be associated with each file. Thanks to this kind of list, a user may specify for each
of his files the names of specific users (or groups of users) and the privileges to be given to these users.

 Linux 2.6 fully supports ACLs by making use of inode extended attributes. As a matter of fact, extended
attributes have been introduced mainly to support ACLs. Therefore, the chacl() , setfacl() , and getfacl(
) library functions, which allow you to manipulate the ACLs of a file, rely essentially upon the setxattr()
and getxattr() system calls introduced in the previous section.

 Unfortunately, the outcome of a working group that defined security extensions within the POSIX
1003.1 family of standards has never been formalized as a new POSIX standard. As a result, ACLs are
supported nowadays on different filesystem types on many UNIX-like systems, albeit with a number of
subtle differences among the different implementations.

 18.2.6. How Various File Types Use Disk Blocks

 The different types of files recognized by Ext2 (regular files, pipes, etc.) use data blocks in different
ways. Some files store no data and therefore need no data blocks at all. This section discusses the
storage requirements for each type, which are listed in Table 18-4.

 Table 18-4. Ext2 file types

File_type Description

0 Unknown

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe

6 Socket

7 Symbolic link

18.2.6.1. Regular file

 Regular files are the most common case and receive almost all the attention in this chapter. But a regular
file needs data blocks only when it starts to have data. When first created, a regular file is empty and
needs no data blocks; it can also be emptied by the truncate() or open() system calls. Both situations
are common; for instance, when you issue a shell command that includes the string >filename, the shell
creates an empty file or truncates an existing one.

 18.2.6.2. Directory

 Ext2 implements directories as a special kind of file whose data blocks store filenames together with the
corresponding inode numbers. In particular, such data blocks contain structures of type
ext2_dir_entry_2. The fields of that structure are shown in Table 18-5. The structure has a variable
length, because the last name field is a variable length array of up to EXT2_NAME_LEN characters
(usually 255). Moreover, for reasons of efficiency, the length of a directory entry is always a multiple of 4
and, therefore, null characters (\0) are added for padding at the end of the filename, if necessary. The
name_len field stores the actual filename length (see Figure 18-3).

 Table 18-5. The fields of an Ext2 directory entry

Type Field Description

_ _le32 inode Inode number

_ _le16 rec_len Directory entry length

_ _u8 name_len Filename length

_ _u8 file_type File type

char [EXT2_NAME_LEN] name Filename

The file_type field stores a value that specifies the file type (see Table 18-4). The rec_len field may be
interpreted as a pointer to the next valid directory entry: it is the offset to be added to the starting address
of the directory entry to get the starting address of the next valid directory entry. To delete a directory
entry, it is sufficient to set its inode field to 0 and suitably increment the value of the rec_len field of the
previous valid entry. Read the rec_len field of Figure 18-3 carefully; you'll see that the oldfile entry was
deleted because the rec_len field of usr is set to 12+16 (the lengths of the usr and oldfile entries).

 Figure 18-3. An example of the Ext2 directory

 18.2.6.3. Symbolic link

 As stated before, if the pathname of a symbolic link has up to 60 characters, it is stored in the i_block
field of the inode, which consists of an array of 15 4-byte integers; no data block is therefore required. If
the pathname is longer than 60 characters, however, a single data block is required.

 18.2.6.4. Device file, pipe, and socket

 No data blocks are required for these kinds of files. All the necessary information is stored in the inode.

Page 311

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 312

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 313

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.3. Ext2 Memory Data Structures
 For the sake of efficiency, most information stored in the disk data structures of an Ext2 partition are
copied into RAM when the filesystem is mounted, thus allowing the kernel to avoid many subsequent
disk read operations. To get an idea of how often some data structures change, consider some
fundamental operations:



 When a new file is created, the values of the s_free_inodes_count field in the Ext2 superblock
and of the bg_free_inodes_count field in the proper group descriptor must be decreased.



 If the kernel appends some data to an existing file so that the number of data blocks allocated for
it increases, the values of the s_free_blocks_count field in the Ext2 superblock and of the
bg_free_blocks_count field in the group descriptor must be modified.



 Even just rewriting a portion of an existing file involves an update of the s_wtime field of the Ext2
superblock.

 Because all Ext2 disk data structures are stored in blocks of the Ext2 partition, the kernel uses the page
cache to keep them up-to-date (see the section "Writing Dirty Pages to Disk" in Chapter 15).

 Table 18-6 specifies, for each type of data related to Ext2 filesystems and files, the data structure used
on the disk to represent its data, the data structure used by the kernel in memory, and a rule of thumb
used to determine how much caching is used. Data that is updated very frequently is always cached; that
is, the data is permanently stored in memory and included in the page cache until the corresponding Ext2
partition is unmounted. The kernel gets this result by keeping the page's usage counter greater than 0 at
all times.

 Table 18-6. VFS images of Ext2 data structures

Type Disk data structure Memory data structure Caching mode

Superblock ext2_super_block ext2_sb_info Always cached

Group descriptor ext2_group_desc ext2_group_desc Always cached

Block bitmap Bit array in block Bit array in buffer Dynamic

inode bitmap Bit array in block Bit array in buffer Dynamic

inode ext2_inode ext2_inode_info Dynamic

Data block Array of bytes VFS buffer Dynamic

Free inode ext2_inode None Never

Free block Array of bytes None Never

The never-cached data is not kept in any cache because it does not represent meaningful information.
Conversely, the always-cached data is always present in RAM, thus it is never necessary to read the
data from disk (periodically, however, the data must be written back to disk). In between these extremes
lies the dynamic mode. In this mode, the data is kept in a cache as long as the associated object (inode,
data block, or bitmap) is in use; when the file is closed or the data block is deleted, the page frame
reclaiming algorithm may remove the associated data from the cache.

 It is interesting to observe that inode and block bitmaps are not kept permanently in memory; rather,
they are read from disk when needed. Actually, many disk reads are avoided thanks to the page cache,
which keeps in memory the most recently used disk blocks (see the section "Storing Blocks in the Page
Cache" in Chapter 15).[*]

[*] In Linux 2.4 and earlier versions, the most recently used inode and block bitmaps were stored in
ad-hoc caches of bounded size.

 18.3.1. The Ext2 Superblock Object

 As stated in the section "Superblock Objects" in Chapter 12, the s_fs_info field of the VFS superblock
points to a structure containing filesystem-specific data. In the case of Ext2, this field points to a structure
of type ext2_sb_info, which includes the following information:



 Most of the disk superblock fields


 An s_sbh pointer to the buffer head of the buffer containing the disk superblock


 An s_es pointer to the buffer containing the disk superblock


 The number of group descriptors, s_desc_ per_block, that can be packed in a block


 An s_group_desc pointer to an array of buffer heads of buffers containing the group descriptors
(usually, a single entry is sufficient)



 Other data related to mount state, mount options, and so on

 Figure 18-4 shows the links between the ext2_sb_info data structures and the buffers and buffer heads
relative to the Ext2 superblock and to the group descriptors.

 When the kernel mounts an Ext2 filesystem, it invokes the ext2_fill_super() function to allocate space
for the data structures and to fill them with data read from disk (see the section "Mounting a Generic
Filesystem" in Chapter 12). This is a simplified description of the function, which emphasizes the memory
allocations for buffers and descriptors:

1.

1. Allocates an ext2_sb_info descriptor and stores its address in the s_fs_info field of the
superblock object passed as the parameter.

1. Figure 18-4. The ext2_sb_info data structure

1.
2.

2. Invokes _ _bread() to allocate a buffer in a buffer page together with the corresponding buffer
head, and to read the superblock from disk into the buffer; as discussed in the section "Searching
Blocks in the Page Cache" in Chapter 15, no allocation is performed if the block is already
stored in a buffer page in the page cache and it is up-to-date. Stores the buffer head address in
the s_sbh field of the Ext2 superblock object.

3.

3. Allocates an array of bytesone byte for each groupand stores its address in the s_debts field of
the ext2_sb_info descriptor (see the section "Creating inodes" later in this chapter).

4.

4. Allocates an array of pointers to buffer heads, one for each group descriptor, and stores the
address of the array in the s_group_desc field of the ext2_sb_info descriptor.

5.

5. Invokes repeatedly _ _bread() to allocate buffers and to read from disk the blocks containing
the Ext2 group descriptors; stores the addresses of the buffer heads in the s_group_desc array
allocated in the previous step.

6.

6. Allocates an inode and a dentry object for the root directory, and sets up a few fields of the
superblock object so that it will be possible to read the root inode from disk.

Clearly, all the data structures allocated by ext2_fill_super() are kept in memory after the function
returns; they will be released only when the Ext2 filesystem will be unmounted. When the kernel must
modify a field in the Ext2 superblock, it simply writes the new value in the proper position of the
corresponding buffer and then marks the buffer as dirty.

 18.3.2. The Ext2 inode Object

 When opening a file, a pathname lookup is performed. For each component of the pathname that is not
already in the dentry cache , a new dentry object and a new inode object are created (see the section "
Standard Pathname Lookup" in Chapter 12). When the VFS accesses an Ext2 disk inode, it creates a
corresponding inode descriptor of type ext2_inode_info. This descriptor includes the following
information:



 The whole VFS inode object (see Table 12-3 in Chapter 12) stored in the field vfs_inode


 Most of the fields found in the disk's inode structure that are not kept in the VFS inode


 The i_block_group block group index at which the inode belongs (see the section "Ext2 Disk
Data Structures" earlier in this chapter)



 The i_next_alloc_block and i_next_alloc_goal fields, which store the logical block number and
the physical block number of the disk block that was most recently allocated to the file,
respectively



 The i_prealloc_block and i_prealloc_count fields, which are used for data block preallocation
(see the section "Allocating a Data Block" later in this chapter)



 The xattr_sem field, a read/write semaphore that allows extended attributes to be read
concurrently with the file data



 The i_acl and i_default_acl fields, which point to the ACLs of the file

 When dealing with Ext2 files, the alloc_inode superblock method is implemented by means of the
ext2_alloc_inode() function. It gets first an ext2_inode_info descriptor from the ext2_inode_cachep slab
allocator cache, then it returns the address of the inode object embedded in the new ext2_inode_info
descriptor.

Page 314

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 315

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 316

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.4. Creating the Ext2 Filesystem
 There are generally two stages to creating a filesystem on a disk. The first step is to format it so that the
disk driver can read and write blocks on it. Modern hard disks come preformatted from the factory and
need not be reformatted; floppy disks may be formatted on Linux using a utility program such as
superformat or fdformat. The second step involves creating a filesystem, which means setting up the
structures described in detail earlier in this chapter.

 Ext2 filesystems are created by the mke2fs utility program; it assumes the following default options,
which may be modified by the user with flags on the command line:



 Block size: 1,024 bytes (default value for a small filesystem)


 Fragment size: block size (block fragmentation is not implemented)


 Number of allocated inodes: 1 inode for each 8,192 bytes


 Percentage of reserved blocks: 5 percent

 The program performs the following actions:
1.

1. Initializes the superblock and the group descriptors.
2.

2. Optionally, checks whether the partition contains defective blocks; if so, it creates a list of
defective blocks.

3.

3. For each block group, reserves all the disk blocks needed to store the superblock, the group
descriptors, the inode table, and the two bitmaps.

4.

4. Initializes the inode bitmap and the data map bitmap of each block group to 0.
5.

5. Initializes the inode table of each block group.
6.

6. Creates the /root directory.
7.

7. Creates the lost+found directory, which is used by e2fsck to link the lost and found defective
blocks.

8.

8. Updates the inode bitmap and the data block bitmap of the block group in which the two
previous directories have been created.

9.

9. Groups the defective blocks (if any) in the lost+found directory.

Let's consider how an Ext2 1.44 MB floppy disk is initialized by mke2fs with the default options.

 Once mounted, it appears to the VFS as a volume consisting of 1,412 blocks; each one is 1,024 bytes
in length. To examine the disk's contents, we can execute the Unix command:

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex

to get a file containing the hexadecimal dump of the floppy disk contents in the /tmp directory.[*]

[*] Most information on an Ext2 filesystem could also be obtained by using the dumpe2fs and debugfs
utility programs.

 By looking at that file, we can see that, due to the limited capacity of the disk, a single group descriptor
is sufficient. We also notice that the number of reserved blocks is set to 72 (5 percent of 1,440) and,
according to the default option, the inode table must include 1 inode for each 8,192 bytes that is, 184
inodes stored in 23 blocks.

 Table 18-7 summarizes how the Ext2 filesystem is created on a floppy disk when the default options are
selected.

 Table 18-7. Ext2 block allocation for a floppy disk

Block Content

0 Boot block

1 Superblock

2 Block containing a single block group descriptor

3 Data block bitmap

4 inode bitmap

5-27
inode table: inodes up to 10: reserved (inode 2 is
the root); inode 11: lost+found; inodes 12-184:
free

28 Root directory (includes ., .., and lost+found)

29 lost+found directory (includes . and ..)

30-40 Reserved blocks preallocated for lost+found
directory

41-1439 Free blocks

Page 317

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 318

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 319

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.5. Ext2 Methods
 Many of the VFS methods described in Chapter 12 have a corresponding Ext2 implementation.
Because it would take a whole book to describe all of them, we limit ourselves to briefly reviewing the
methods implemented in Ext2. Once the disk and the memory data structures are clearly understood, the
reader should be able to follow the code of the Ext2 functions that implement them.

 18.5.1. Ext2 Superblock Operations

 Many VFS superblock operations have a specific implementation in Ext2, namely alloc_inode,
destroy_inode, read_inode, write_inode, delete_inode, put_super, write_super, statfs, remount_fs, and
clear_inode. The addresses of the superblock methods are stored in the ext2_sops array of pointers.

 18.5.2. Ext2 inode Operations

 Some of the VFS inode operations have a specific implementation in Ext2, which depends on the type of
the file to which the inode refers.

 The inode operations for Ext2 regular files and Ext2 directories are shown in Table 18-8; the purpose of
each method is described in the section "Inode Objects" in Chapter 12. The table does not show the
methods that are undefined (a NULL pointer) for both regular files and directories; recall that if a method
is undefined, the VFS either invokes a generic function or does nothing at all. The addresses of the Ext2
methods for regular files and directories are stored in the ext2_file_inode_operations and
ext2_dir_inode_operations tables, respectively.

 Table 18-8. Ext2 inode operations for regular files and directories

VFS inode operation Regular file Directory

create NULL ext2_create()

lookup NULL ext2_lookup()

link NULL ext2_link()

unlink NULL ext2_unlink()

symlink NULL ext2_symlink()

mkdir NULL ext2_mkdir()

rmdir NULL ext2_rmdir()

mknod NULL ext2_mknod()

rename NULL ext2_rename()

truncate ext2_TRuncate() NULL

permission ext2_permission() ext2_permission()

setattr ext2_setattr() ext2_setattr()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

The inode operations for Ext2 symbolic links are shown in Table 18-9 (undefined methods have been
omitted). Actually, there are two types of symbolic links: the fast symbolic links represent pathnames that
can be fully stored inside the inodes, while the regular symbolic links represent longer pathnames.
Accordingly, there are two sets of inode operations, which are stored in the
ext2_fast_symlink_inode_operations and ext2_symlink_inode_operations tables, respectively.

 Table 18-9. Ext2 inode operations for fast and regular symbolic links

VFS inode operation Fast symbolic link Regular symbolic link

readlink generic_readlink() generic_readlink()

follow_link ext2_follow_link() page_follow_link_light()

put_link NULL page_put_link()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

If the inode refers to a character device file, to a block device file, or to a named pipe (see "FIFOs" in
Chapter 19), the inode operations do not depend on the filesystem. They are specified in the
chrdev_inode_operations, blkdev_inode_operations, and fifo_inode_operations tables, respectively.

 18.5.3. Ext2 File Operations

 The file operations specific to the Ext2 filesystem are listed in Table 18-10. As you can see, several VFS
methods are implemented by generic functions that are common to many filesystems. The addresses of
these methods are stored in the ext2_file_operations table.

 Table 18-10. Ext2 file operations

VFS file operation Ext2 method

llseek generic_file_llseek()

read generic_file_read()

write generic_file_write()

aio_read generic_file_aio_read()

aio_write generic_file_aio_write()

ioctl ext2_ioctl()

mmap generic_file_mmap()

open generic_file_open()

release ext2_release_file()

fsync ext2_sync_file()

readv generic_file_readv()

writev generic_file_writev()

sendfile generic_file_sendfile()

Notice that the Ext2's read and write methods are implemented by the generic_file_read() and
generic_file_write() functions, respectively. These are described in the sections "Reading from a File"
and "Writing to a File" in Chapter 16.

Page 320

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 321

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 322

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.6. Managing Ext2 Disk Space
 The storage of a file on disk differs from the view the programmer has of the file in two ways: blocks can
be scattered around the disk (although the filesystem tries hard to keep blocks sequential to improve
access time), and files may appear to a programmer to be bigger than they really are because a program
can introduce holes into them (through the lseek() system call).

 In this section, we explain how the Ext2 filesystem manages the disk space how it allocates and
deallocates inodes and data blocks. Two main problems must be addressed:



 Space management must make every effort to avoid file fragmentation the physical storage of a
file in several, small pieces located in non-adjacent disk blocks. File fragmentation increases the
average time of sequential read operations on the files, because the disk heads must be frequently
repositioned during the read operation.[*] This problem is similar to the external fragmentation of
RAM discussed in the section "The Buddy System Algorithm" in Chapter 8.

 [*] Please note that fragmenting a file across block groups (A Bad Thing) is quite different from
the not-yet-implemented fragmentation of blocks to store many files in one block (A Good
Thing).



 Space management must be time-efficient; that is, the kernel should be able to quickly derive
from a file offset the corresponding logical block number in the Ext2 partition. In doing so, the
kernel should limit as much as possible the number of accesses to addressing tables stored on
disk, because each such intermediate access considerably increases the average file access time.

 18.6.1. Creating inodes

 The ext2_new_inode() function creates an Ext2 disk inode, returning the address of the corresponding
inode object (or NULL, in case of failure). The function carefully selects the block group that contains
the new inode; this is done to spread unrelated directories among different groups and, at the same time,
to put files into the same group as their parent directories. To balance the number of regular files and
directories in a block group, Ext2 introduces a "debt" parameter for every block group.

 The function acts on two parameters: the address dir of the inode object that refers to the directory into
which the new inode must be inserted and a mode that indicates the type of inode being created. The
latter argument also includes the MS_SYNCHRONOUS mount flag (see the section "Mounting a
Generic Filesystem" in Chapter 12) that requires the current process to be suspended until the inode is
allocated. The function performs the following actions:

1.

1. Invokes new_inode() to allocate a new VFS inode object; initializes its i_sb field to the
superblock address stored in dir->i_sb, and adds it to the in-use inode list and to the
superblock's list (see the section "Inode Objects" in Chapter 12).

2.

2. If the new inode is a directory, the function invokes find_group_orlov() to find a suitable block
group for the directory.[*] This function implements the following heuristics:

2. [*] The Ext2 filesystem may also be mounted with an option flag that forces the kernel to make
use of a simpler, older allocation strategy, which is implemented by the find_group_dir()
function.
a.

a. Directories having as parent the filesystem root should be spread among all block groups.
Thus, the function searches the block groups looking for a group having a number of free
inodes and a number of free blocks above the average. If there is no such group, it jumps to
step 2c.

b.

b. Nested directoriesnot having the filesystem root as parentshould be put in the group of the
parent if it satisfies the following rules:


 The group does not contain too many directories


 The group has a sufficient number of free inodes left


 The group has a small "debt" (the debt of a block group is stored in the array of counters
pointed to by the s_debts field of the ext2_sb_info descriptor; the debt is increased each
time a new directory is added and decreased each time another type of file is added)

c. If the parent's group does not satisfy these rules, it picks the first group that satisfies them. If
no such group exists, it jumps to step 2c.

c.

c. This is the "fallback" rule, to be used if no good group has been found. The function starts
with the block group containing the parent directory and selects the first block group that has
more free inodes than the average number of free inodes per block group.

3.

3. If the new inode is not a directory, it invokes find_group_other() to allocate it in a block group
having a free inode. This function selects the group by starting from the one that contains the
parent directory and moving farther away from it; to be precise:
a.

a. Performs a quick logarithmic search starting from the block group that includes the parent
directory dir. The algorithm searches log(n) block groups, where n is the total number of
block groups. The algorithm jumps further ahead until it finds an available block group for
example, if we call the number of the starting block group i, the algorithm considers block
groups i mod(n), i+1 mod(n), i+1+2 mod(n), i+1+2+4 mod(n), etc.

b.

b. If the logarithmic search failed in finding a block group with a free inode, the function
performs an exhaustive linear search starting from the block group that includes the parent
directory dir.

4.

4. Invokes read_inode_bitmap() to get the inode bitmap of the selected block group and searches
for the first null bit into it, thus obtaining the number of the first free disk inode.

5.

5. Allocates the disk inode: sets the corresponding bit in the inode bitmap and marks the buffer
containing the bitmap as dirty. Moreover, if the filesystem has been mounted specifying the
MS_SYNCHRONOUS flag (see the section "Mounting a Generic Filesystem" in Chapter 12),
the function invokes sync_dirty_buffer() to start the I/O write operation and waits until the
operation terminates.

6.

6. Decreases the bg_free_inodes_count field of the group descriptor. If the new inode is a
directory, the function increases the bg_used_dirs_count field and marks the buffer containing the
group descriptor as dirty.

7.

7. Increases or decreases the group's counter in the s_debts array of the superblock, according to
whether the inode refers to a regular file or a directory.

8.

8. Decreases the s_freeinodes_counter field of the ext2_sb_info data structure; moreover, if the
new inode is a directory, it increases the s_dirs_counter field in the ext2_sb_info data structure.

9.

9. Sets the s_dirt flag of the superblock to 1, and marks the buffer that contains it to as dirty.
10.

10.Sets the s_dirt field of the VFS's superblock object to 1.
11.

11. Initializes the fields of the inode object. In particular, it sets the inode number i_no and copies the
value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also loads the i_block_group field in the
ext2_inode_info structure with the block group index. Refer to Table 18-3 for the meaning of
these fields.

12.

12. Initializes the ACLs of the inode.
13.

13. Inserts the new inode object into the hash table inode_hashtable and invokes mark_inode_dirty(
) to move the inode object into the superblock's dirty inode list (see the section "Inode Objects"
in Chapter 12).

14.

14. Invokes ext2_preread_inode() to read from disk the block containing the inode and to put the
block in the page cache. This type of read-ahead is done because it is likely that a recently
created inode will be written back soon.

15.

15.Returns the address of the new inode object.

18.6.2. Deleting inodes

 The ext2_free_inode() function deletes a disk inode, which is identified by an inode object whose
address inode is passed as the parameter. The kernel should invoke the function after a series of cleanup
operations involving internal data structures and the data in the file itself. It should come after the inode
object has been removed from the inode hash table, after the last hard link referring to that inode has
been deleted from the proper directory and after the file is truncated to 0 length to reclaim all its data
blocks (see the section "Releasing a Data Block" later in this chapter). It performs the following actions:

1.

1. Invokes clear_inode(), which in turn executes the following operations:
a.

a. Removes any dirty "indirect" buffer associated with the inode (see the later section "Data
Blocks Addressing"); they are collected in the list headed at the private_list field of the
address_space object inode->i_data (see the section "The address_space Object" in
Chapter 15).

b.

b. If the I_LOCK flag of the inode is set, some of the inode's buffers are involved in I/O data
transfers; the function suspends the current process until these I/O data transfers terminate.

c.

c. Invokes the clear_inode method of the superblock object, if defined; the Ext2 filesystem
does not define it.

d.

d. If the inode refers to a device file, it removes the inode object from the device's list of inodes;
this list is rooted either in the list field of the cdev character device descriptor (see the section
"Character Device Drivers" in Chapter 13) or in the bd_inodes field of the block_device
block device descriptor (see the section "Block Devices" in Chapter 14).

e.

e. Sets the state of the inode to I_CLEAR (the inode object contents are no longer meaningful).
2.

2. Computes the index of the block group containing the disk inode from the inode number and the
number of inodes in each block group.

3.

3. Invokes read_inode_bitmap() to get the inode bitmap.
4.

4. Increases the bg_free_inodes_count() field of the group descriptor. If the deleted inode is a
directory, it decreases the bg_used_dirs_count field. Marks the buffer that contains the group
descriptor as dirty.

5.

5. If the deleted inode is a directory, it decreases the s_dirs_counter field in the ext2_sb_info data
structure, sets the s_dirt flag of the superblock to 1, and marks the buffer that contains it as dirty.

6.

6. Clears the bit corresponding to the disk inode in the inode bitmap and marks the buffer that
contains the bitmap as dirty. Moreover, if the filesystem has been mounted with the
MS_SYNCHRONIZE flag, it invokes sync_dirty_buffer() to wait until the write operation on
the bitmap's buffer terminates.

18.6.3. Data Blocks Addressing

 Each nonempty regular file consists of a group of data blocks . Such blocks may be referred to either by
their relative position inside the file their file block numberor by their position inside the disk partitiontheir
logical block number (see the section "Block Devices Handling" in Chapter 14).

 Deriving the logical block number of the corresponding data block from an offset f inside a file is a
two-step process:

1.

1. Derive from the offset f the file block number the index of the block that contains the character at
offset f.

2.

2. Translate the file block number to the corresponding logical block number.

Because Unix files do not include any control characters, it is quite easy to derive the file block number
containing the f th character of a file: simply take the quotient of f and the filesystem's block size and
round down to the nearest integer.

 For instance, let's assume a block size of 4 KB. If f is smaller than 4,096, the character is contained in
the first data block of the file, which has file block number 0. If f is equal to or greater than 4,096 and
less than 8,192, the character is contained in the data block that has file block number 1, and so on.

 This is fine as far as file block numbers are concerned. However, translating a file block number into the
corresponding logical block number is not nearly as straightforward, because the data blocks of an Ext2
file are not necessarily adjacent on disk.

 The Ext2 filesystem must therefore provide a method to store the connection between each file block
number and the corresponding logical block number on disk. This mapping, which goes back to early
versions of Unix from AT&T, is implemented partly inside the inode. It also involves some specialized
blocks that contain extra pointers, which are an inode extension used to handle large files.

 The i_block field in the disk inode is an array of EXT2_N_BLOCKS components that contain logical
block numbers. In the following discussion, we assume that EXT2_N_BLOCKS has the default value,
namely 15. The array represents the initial part of a larger data structure, which is illustrated in Figure
18-5. As can be seen in the figure, the 15 components of the array are of 4 different types:



 The first 12 components yield the logical block numbers corresponding to the first 12 blocks of
the fileto the blocks that have file block numbers from 0 to 11.



 The component at index 12 contains the logical block number of a block, called indirect block,
that represents a second-order array of logical block numbers. They correspond to the file block
numbers ranging from 12 to b/4+11, where b is the filesystem's block size (each logical block
number is stored in 4 bytes, so we divide by 4 in the formula). Therefore, the kernel must look in
this component for a pointer to a block, and then look in that block for another pointer to the
ultimate block that contains the file contents.



 The component at index 13 contains the logical block number of an indirect block containing a
second-order array of logical block numbers; in turn, the entries of this second-order array point
to third-order arrays, which store the logical block numbers that correspond to the file block
numbers ranging from b/4+12 to (b/4)2+(b/4)+11.



 Finally, the component at index 14 uses triple indirection: the fourth-order arrays store the logical
block numbers corresponding to the file block numbers ranging from (b/4)2+(b/4)+12 to
(b/4)3+(b/4)2+(b/4)+11.

 Figure 18-5. Data structures used to address the file's data blocks

 In Figure 18-5, the number inside a block represents the corresponding file block number. The arrows,
which represent logical block numbers stored in array components, show how the kernel finds its way
through indirect blocks to reach the block that contains the actual contents of the file.

 Notice how this mechanism favors small files. If the file does not require more than 12 data blocks,
every data can be retrieved in two disk accesses: one to read a component in the i_block array of the
disk inode and the other to read the requested data block. For larger files, however, three or even four
consecutive disk accesses may be needed to access the required block. In practice, this is a worst-case
estimate, because dentry, inode, and page caches contribute significantly to reduce the number of real
disk accesses.

 Notice also how the block size of the filesystem affects the addressing mechanism, because a larger
block size allows the Ext2 to store more logical block numbers inside a single block. Table 18-11 shows
the upper limit placed on a file's size for each block size and each addressing mode. For instance, if the
block size is 1,024 bytes and the file contains up to 268 kilobytes of data, the first 12 KB of a file can be
accessed through direct mapping and the remaining 13-268 KB can be addressed through simple
indirection. Files larger than 2 GB must be opened on 32-bit architectures by specifying the
O_LARGEFILE opening flag.

 Table 18-11. File-size upper limits for data block addressing

Block size Direct 1-Indirect 2-Indirect 3-Indirect

1,024 12 KB 268 KB 64.26 MB 16.06 GB

2,048 24 KB 1.02 MB 513.02 MB 256.5 GB

4,096 48 KB 4.04 MB 4 GB ~ 4 TB

18.6.4. File Holes

 A file hole is a portion of a regular file that contains null characters and is not stored in any data block on
disk. Holes are a long-standing feature of Unix files. For instance, the following Unix command creates a
file in which the first bytes are a hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet the file occupies
just one data block on disk.

 File holes were introduced to avoid wasting disk space. They are used extensively by database
applications and, more generally, by all applications that perform hashing on files.

 The Ext2 implementation of file holes is based on dynamic data block allocation: a block is actually
assigned to a file only when the process needs to write data into it. The i_size field of each inode defines
the size of the file as seen by the program, including the holes, while the i_blocks field stores the number
of data blocks effectively assigned to the file (in units of 512 bytes).

 In our earlier example of the dd command, suppose the /tmp/hole file was created on an Ext2 partition
that has blocks of size 4,096. The i_size field of the corresponding disk inode stores the number 6,145,
while the i_blocks field stores the number 8 (because each 4,096-byte block includes eight 512-byte
blocks). The second element of the i_block array (corresponding to the block having file block number
1) stores the logical block number of the allocated block, while all other elements in the array are null
(see Figure 18-6).

 Figure 18-6. A file with an initial hole

 18.6.5. Allocating a Data Block

 When the kernel has to locate a block holding data for an Ext2 regular file, it invokes the
ext2_get_block() function. If the block does not exist, the function automatically allocates the block to
the file. Remember that this function may be invoked every time the kernel issues a read or write
operation on an Ext2 regular file (see the sections "Reading from a File" and "Writing to a File" in Chapter
16); clearly, this function is invoked only if the affected block is not included in the page cache.

 The ext2_get_block() function handles the data structures already described in the section "Data Blocks
Addressing," and when necessary, invokes the ext2_alloc_block() function to actually search for a free
block in the Ext2 partition. If necessary, the function also allocates the blocks used for indirect addressing
(see Figure 18-5).

 To reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file near the last block
already allocated for the file. Failing that, the filesystem searches for a new block in the block group that
includes the file's inode. As a last resort, the free block is taken from one of the other block groups.

 The Ext2 filesystem uses preallocation of data blocks. The file does not get only the requested block, but
rather a group of up to eight adjacent blocks. The i_prealloc_count field in the ext2_inode_info structure
stores the number of data blocks preallocated to a file that are still unused, and the i_prealloc_block field
stores the logical block number of the next preallocated block to be used. All preallocated blocks that
remain unused are freed when the file is closed, when it is truncated, or when a write operation is not
sequential with respect to the write operation that triggered the block preallocation.

 The ext2_alloc_block() function receives as its parameters a pointer to an inode object, a goal , and the
address of a variable that will store an error code. The goal is a logical block number that represents the
preferred position of the new block. The ext2_get_block() function sets the goal parameter according to
the following heuristic:

1.

1. If the block that is being allocated and the previously allocated block have consecutive file block
numbers, the goal is the logical block number of the previous block plus 1; it makes sense that
consecutive blocks as seen by a program should be adjacent on disk.

2.

2. If the first rule does not apply and at least one block has been previously allocated to the file, the
goal is one of these blocks' logical block numbers. More precisely, it is the logical block number
of the already allocated block that precedes the block to be allocated in the file.

3.

3. If the preceding rules do not apply, the goal is the logical block number of the first block (not
necessarily free) in the block group that contains the file's inode.

The ext2_alloc_block() function checks whether the goal refers to one of the preallocated blocks of the
file. If so, it allocates the corresponding block and returns its logical block number; otherwise, the
function discards all remaining preallocated blocks and invokes ext2_new_block().

 This latter function searches for a free block inside the Ext2 partition with the following strategy:
1.

1. If the preferred block passed to ext2_alloc_block()the block that is the goalis free, the function
allocates the block.

2.

2. If the goal is busy, the function checks whether one of the next blocks after the preferred block is
free.

3.

3. If no free block is found in the near vicinity of the preferred block, the function considers all
block groups, starting from the one including the goal. For each block group, the function does
the following:
a.

a. Looks for a group of at least eight adjacent free blocks.
b.

b. If no such group is found, looks for a single free block.

The search ends as soon as a free block is found. Before terminating, the ext2_new_block() function
also tries to preallocate up to eight free blocks adjacent to the free block found and sets the
i_prealloc_block and i_prealloc_count fields of the disk inode to the proper block location and number
of blocks.

 18.6.6. Releasing a Data Block

 When a process deletes a file or truncates it to 0 length, all its data blocks must be reclaimed. This is
done by ext2_truncate(), which receives the address of the file's inode object as its parameter. The
function essentially scans the disk inode's i_block array to locate all data blocks and all blocks used for
the indirect addressing. These blocks are then released by repeatedly invoking ext2_free_blocks().

 The ext2_free_blocks() function releases a group of one or more adjacent data blocks. Besides its use
by ext2_truncate(), the function is invoked mainly when discarding the preallocated blocks of a file (see
the earlier section "Allocating a Data Block"). Its parameters are:

 inode

 The address of the inode object that describes the file

block

 The logical block number of the first block to be released

count

 The number of adjacent blocks to be released

 The function performs the following actions for each block to be released:
1.

1. Gets the block bitmap of the block group that includes the block to be released
2.

2. Clears the bit in the block bitmap that corresponds to the block to be released and marks the
buffer that contains the bitmap as dirty.

3.

3. Increases the bg_free_blocks_count field in the block group descriptor and marks the
corresponding buffer as dirty.

4.

4. Increases the s_free_blocks_count field of the disk superblock, marks the corresponding buffer
as dirty, and sets the s_dirt flag of the superblock object.

5.

5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, it invokes
sync_dirty_buffer() and waits until the write operation on the bitmap's buffer terminates.

Page 323

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 324

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

18.7. The Ext3 Filesystem
 In this section we'll briefly describe the enhanced filesystem that has evolved from Ext2, named Ext3.
The new filesystem has been designed with two simple concepts in mind:



 To be a journaling filesystem (see the next section)


 To be, as much as possible, compatible with the old Ext2 filesystem

 Ext3 achieves both the goals very well. In particular, it is largely based on Ext2, so its data structures on
disk are essentially identical to those of an Ext2 filesystem. As a matter of fact, if an Ext3 filesystem has
been cleanly unmounted, it can be remounted as an Ext2 filesystem; conversely, creating a journal of an
Ext2 filesystem and remounting it as an Ext3 filesystem is a simple, fast operation.

 Thanks to the compatibility between Ext3 and Ext2, most descriptions in the previous sections of this
chapter apply to Ext3 as well. Therefore, in this section, we focus on the new feature offered by Ext3
"the journal."

 18.7.1. Journaling Filesystems

 As disks became larger, one design choice of traditional Unix filesystems (such as Ext2) turns out to be
inappropriate. As we know from Chapter 14, updates to filesystem blocks might be kept in dynamic
memory for long period of time before being flushed to disk. A dramatic event such as a power-down
failure or a system crash might thus leave the filesystem in an inconsistent state. To overcome this
problem, each traditional Unix filesystem is checked before being mounted; if it has not been properly
unmounted, then a specific program executes an exhaustive, time-consuming check and fixes all the
filesystem's data structures on disk.

 For instance, the Ext2 filesystem status is stored in the s_mount_state field of the superblock on disk.
The e2fsck utility program is invoked by the boot script to check the value stored in this field; if it is not
equal to EXT2_VALID_FS, the filesystem was not properly unmounted, and therefore e2fsck starts
checking all disk data structures of the filesystem.

 Clearly, the time spent checking the consistency of a filesystem depends mainly on the number of files
and directories to be examined; therefore, it also depends on the disk size. Nowadays, with filesystems
reaching hundreds of gigabytes, a single consistency check may take hours. The involved downtime is
unacceptable for every production environment or high-availability server.

 The goal of a journaling filesystem is to avoid running time-consuming consistency checks on the whole
filesystem by looking instead in a special disk area that contains the most recent disk write operations
named journal. Remounting a journaling filesystem after a system failure is a matter of a few seconds.

 18.7.2. The Ext3 Journaling Filesystem

 The idea behind Ext3 journaling is to perform each high-level change to the filesystem in two steps. First,
a copy of the blocks to be written is stored in the journal; then, when the I/O data transfer to the journal
is completed (in short, data is committed to the journal), the blocks are written in the filesystem. When
the I/O data transfer to the filesystem terminates (data is committed to the filesystem), the copies of the
blocks in the journal are discarded.

 While recovering after a system failure, the e2fsck program distinguishes the following two cases:

 The system failure occurred before a commit to the journal

 Either the copies of the blocks relative to the high-level change are missing from the journal or they are
incomplete; in both cases, e2fsck ignores them.

The system failure occurred after a commit to the journal

 The copies of the blocks are valid, and e2fsck writes them into the filesystem.

 In the first case, the high-level change to the filesystem is lost, but the filesystem state is still consistent. In
the second case, e2fsck applies the whole high-level change, thus fixing every inconsistency due to
unfinished I/O data transfers into the filesystem.

 Don't expect too much from a journaling filesystem; it ensures consistency only at the system call level.
For instance, a system failure that occurs while you are copying a large file by issuing several write()
system calls will interrupt the copy operation, thus the duplicated file will be shorter than the original one.

 Furthermore, journaling filesystems do not usually copy all blocks into the journal. In fact, each
filesystem consists of two kinds of blocks: those containing the so-called metadata and those containing
regular data. In the case of Ext2 and Ext3, there are six kinds of metadata: superblocks, group block
descriptors, inodes, blocks used for indirect addressing (indirection blocks), data bitmap blocks, and
inode bitmap blocks. Other filesystems may use different metadata.

 Several journaling filesystems, such as SGI's XFS and IBM's JFS , limit themselves to logging the
operations affecting metadata. In fact, metadata's log records are sufficient to restore the consistency of
the on-disk filesystem data structures. However, since operations on blocks of file data are not logged,
nothing prevents a system failure from corrupting the contents of the files.

 The Ext3 filesystem, however, can be configured to log the operations affecting both the filesystem
metadata and the data blocks of the files. Because logging every kind of write operation leads to a
significant performance penalty, Ext3 lets the system administrator decide what has to be logged; in
particular, it offers three different journaling modes :

 Journal

 All filesystem data and metadata changes are logged into the journal. This mode minimizes the chance of
losing the updates made to each file, but it requires many additional disk accesses. For example, when a
new file is created, all its data blocks must be duplicated as log records. This is the safest and slowest
Ext3 journaling mode.

Ordered

 Only changes to filesystem metadata are logged into the journal. However, the Ext3 filesystem groups
metadata and relative data blocks so that data blocks are written to disk before the metadata. This way,
the chance to have data corruption inside the files is reduced; for instance, each write access that enlarges
a file is guaranteed to be fully protected by the journal. This is the default Ext3 journaling mode.

Writeback

 Only changes to filesystem metadata are logged; this is the method found on the other journaling
filesystems and is the fastest mode.

 The journaling mode of the Ext3 filesystem is specified by an option of the mount system command. For
instance, to mount an Ext3 filesystem stored in the /dev/sda2 partition on the /jdisk mount point with the
"writeback" mode, the system administrator can type the command:

mount -t ext3 -o data=writeback /dev/sda2 /jdisk

18.7.3. The Journaling Block Device Layer

 The Ext3 journal is usually stored in a hidden file named .journal located in the root directory of the
filesystem.

 The Ext3 filesystem does not handle the journal on its own; rather, it uses a general kernel layer named
Journaling Block Device, or JBD. Right now, only Ext3 uses the JBD layer, but other filesystems might
use it in the future.

 The JBD layer is a rather complex piece of software. The Ext3 filesystem invokes the JBD routines to
ensure that its subsequent operations don't corrupt the disk data structures in case of system failure.
However, JBD typically uses the same disk to log the changes performed by the Ext3 filesystem, and it is
therefore vulnerable to system failures as much as Ext3. In other words, JBD must also protect itself from
system failures that could corrupt the journal.

 Therefore, the interaction between Ext3 and JBD is essentially based on three fundamental units:

 Log record

 Describes a single update of a disk block of the journaling filesystem.

Atomic operation handle

 Includes log records relative to a single high-level change of the filesystem; typically, each system call
modifying the filesystem gives rise to a single atomic operation handle.

Transaction

 Includes several atomic operation handles whose log records are marked valid for e2fsck at the same
time.

 18.7.3.1. Log records

 A log record is essentially the description of a low-level operation that is going to be issued by the
filesystem. In some journaling filesystems, the log record consists of exactly the span of bytes modified by
the operation, together with the starting position of the bytes inside the filesystem. The JBD layer,
however, uses log records consisting of the whole buffer modified by the low-level operation. This
approach may waste a lot of journal space (for instance, when the low-level operation just changes the
value of a bit in a bitmap), but it is also much faster because the JBD layer can work directly with buffers
and their buffer heads.

 Log records are thus represented inside the journal as normal blocks of data (or metadata). Each such
block, however, is associated with a small tag of type journal_block_tag_t, which stores the logical block
number of the block inside the filesystem and a few status flags.

 Later, whenever a buffer is being considered by the JBD, either because it belongs to a log record or
because it is a data block that should be flushed to disk before the corresponding metadata block (in the
"ordered" journaling mode), the kernel attaches a journal_head data structure to the buffer head. In this
case, the b_private field of the buffer head stores the address of the journal_head data structure and the
BH_JBD flag is set (see the section "Block Buffers and Buffer Heads" in Chapter 15).

 18.7.3.2. Atomic operation handles

 Every system call modifying the filesystem is usually split into a series of low-level operations that
manipulate disk data structures.

 For instance, suppose that Ext3 must satisfy a user request to append a block of data to a regular file.
The filesystem layer must determine the last block of the file, locate a free block in the filesystem, update
the data block bitmap inside the proper block group, store the logical number of the new block either in
the file's inode or in an indirect addressing block, write the contents of the new block, and finally, update
several fields of the inode. As you see, the append operation translates into many lower-level operations
on the data and metadata blocks of the filesystem.

 Now, just imagine what could happen if a system failure occurred in the middle of an append operation,
when some of the lower-level manipulations have already been executed while others have not. Of
course, the scenario could be even worse, with high-level operations affecting two or more files (for
example, moving a file from one directory to another).

 To prevent data corruption, the Ext3 filesystem must ensure that each system call is handled in an atomic
way. An atomic operation handle is a set of low-level operations on the disk data structures that
correspond to a single high-level operation. When recovering from a system failure, the filesystem ensures
that either the whole high-level operation is applied or none of its low-level operations is.

 Each atomic operation handle is represented by a descriptor of type handle_t. To start an atomic
operation, the Ext3 filesystem invokes the journal_start() JBD function, which allocates, if necessary, a
new atomic operation handle and inserts it into the current transactions (see the next section). Because
every low-level operation on the disk might suspend the process, the address of the active handle is
stored in the journal_info field of the process descriptor. To notify that an atomic operation is completed,
the Ext3 filesystem invokes the journal_stop() function.

 18.7.3.3. Transactions

 For reasons of efficiency, the JBD layer manages the journal by grouping the log records that belong to
several atomic operation handles into a single transaction. Furthermore, all log records relative to a
handle must be included in the same transaction.

 All log records of a transaction are stored in consecutive blocks of the journal. The JBD layer handles
each transaction as a whole. For instance, it reclaims the blocks used by a transaction only after all data
included in its log records is committed to the filesystem.

 As soon as it is created, a transaction may accept log records of new handles. The transaction stops
accepting new handles when either of the following occurs:



 A fixed amount of time has elapsed, typically 5 seconds.


 There are no free blocks in the journal left for a new handle.

 A transaction is represented by a descriptor of type TRansaction_t. The most important field is t_state,
which describes the current status of the transaction.

 Essentially, a transaction can be:

 Complete

 All log records included in the transaction have been physically written onto the journal. When
recovering from a system failure, e2fsck considers every complete transaction of the journal and writes
the corresponding blocks into the filesystem. In this case, the t_state field stores the value T_FINISHED.

Incomplete

 At least one log record included in the transaction has not yet been physically written to the journal, or
new log records are still being added to the transaction. In case of system failure, the image of the
transaction stored in the journal is likely not up-to-date. Therefore, when recovering from a system
failure, e2fsck does not trust the incomplete transactions in the journal and skips them. In this case, the
t_state field stores one of the following values:

 T_RUNNING

 Still accepting new atomic operation handles.

T_LOCKED

 Not accepting new atomic operation handles, but some of them are still unfinished.

T_FLUSH

 All atomic operation handles have finished, but some log records are still being written to the journal.

T_COMMIT

 All log records of the atomic operation handles have been written to disk, but the transaction has yet to
be marked as completed on the journal.

 At any time the journal may include several transactions, but only one of them is in the T_RUNNING
state it is the active transaction that is accepting the new atomic operation handle requests issued by the
Ext3 filesystem.

 Several transactions in the journal might be incomplete, because the buffers containing the relative log
records have not yet been written to the journal.

 If a transaction is complete, all its log records have been written to the journal but some of the
corresponding buffers have yet to be written onto the filesystem. A complete transaction is deleted from
the journal when the JBD layer verifies that all buffers described by the log records have been
successfully written onto the Ext3 filesystem.

 18.7.4. How Journaling Works

 Let's try to explain how journaling works with an example: the Ext3 filesystem layer receives a request to
write some data blocks of a regular file.

 As you might easily guess, we are not going to describe in detail every single operation of the Ext3
filesystem layer and of the JBD layer. There would be far too many issues to be covered! However, we
describe the essential actions:

1.

1. The service routine of the write() system call triggers the write method of the file object
associated with the Ext3 regular file. For Ext3, this method is implemented by the
generic_file_write() function, already described in the section "Writing to a File" in Chapter 16.

2.

2. The generic_file_write() function invokes the prepare_write method of the address_space object
several times, once for every page of data involved by the write operation. For Ext3, this method
is implemented by the ext3_prepare_write() function.

3.

3. The ext3_prepare_write() function starts a new atomic operation by invoking the journal_start()
JBD function. The handle is added to the active transaction. Actually, the atomic operation
handle is created only when executing the first invocation of the journal_start() function.
Following invocations verify that the journal_info field of the process descriptor is already set and
use the referenced handle.

4.

4. The ext3_prepare_write() function invokes the block_prepare_write() function already
described in Chapter 16, passing to it the address of the ext3_get_block() function. Remember
that block_prepare_write() takes care of preparing the buffers and the buffer heads of the file's
page.

5.

5. When the kernel must determine the logical number of a block of the Ext3 filesystem, it executes
the ext3_get_block() function. This function is actually similar to ext2_get_block(), which is
described in the earlier section "Allocating a Data Block." A crucial difference, however, is that
the Ext3 filesystem invokes functions of the JBD layer to ensure that the low-level operations are
logged:
o

o Before issuing a low-level write operation on a metadata block of the filesystem, the function
invokes journal_get_write_access(). Basically, this latter function adds the metadata buffer
to a list of the active transaction. However, it must also check whether the metadata is
included in an older incomplete transaction of the journal; in this case, it duplicates the buffer
to make sure that the older transactions are committed with the old content.

o

o After updating the buffer containing the metadata block, the Ext3 filesystem invokes
journal_dirty_metadata() to move the metadata buffer to the proper dirty list of the active
transaction and to log the operation in the journal.

2. Notice that metadata buffers handled by the JBD layer are not usually included in the dirty lists of
buffers of the inode, so they are not written to disk by the normal disk cache flushing mechanisms
described in Chapter 15.

6.

6. If the Ext3 filesystem has been mounted in "journal" mode, the ext3_prepare_write() function
also invokes journal_get_write_access() on every buffer touched by the write operation.

7.

7. Control returns to the generic_file_write() function, which updates the page with the data stored
in the User Mode address space and then invokes the commit_write method of the
address_space object. For Ext3, the function that implements this method depends on how the
Ext3 filesystem has been mounted:
o

o If the Ext3 filesystem has been mounted in "journal" mode, the commit_write method is
implemented by the ext3_journalled_commit_write() function, which invokes
journal_dirty_metadata() on every buffer of data (not metadata) in the page. This way, the
buffer is included in the proper dirty list of the active transaction and not in the dirty list of the
owner inode; moreover, the corresponding log records are written to the journal. Finally,
ext3_journalled_commit_write() invokes journal_stop() to notify the JBD layer that the
atomic operation handle is closed.

o

o If the Ext3 filesystem has been mounted in "ordered" mode, the commit_write method is
implemented by the ext3_ordered_commit_write() function, which invokes the
journal_dirty_data() function on every buffer of data in the page to insert the buffer in a
proper list of the active transactions. The JBD layer ensures that all buffers in this list are
written to disk before the metadata buffers of the transaction. No log record is written onto
the journal. Next, ext3_ordered_commit_write() executes the normal
generic_commit_write() function described in Chapter 15, which inserts the data buffers in
the list of the dirty buffers of the owner inode. Finally, ext3_ordered_commit_write()
invokes journal_stop() to notify the JBD layer that the atomic operation handle is closed.

o

o If the Ext3 filesystem has been mounted in "writeback" mode, the commit_write method is
implemented by the ext3_writeback_commit_write() function, which executes the normal
generic_commit_write() function described in Chapter 15, which inserts the data buffers in
the list of the dirty buffers of the owner inode. Then, ext3_writeback_commit_write()
invokes journal_stop() to notify the JBD layer that the atomic operation handle is closed.

8.

8. The service routine of the write() system call terminates here. However, the JBD layer has not
finished its work. Eventually, our transaction becomes complete when all its log records have
been physically written to the journal. Then journal_commit_transaction() is executed.

9.

9. If the Ext3 filesystem has been mounted in "ordered" mode, the journal_commit_transaction()
function activates the I/O data transfers for all data buffers included in the list of the transaction
and waits until all data transfers terminate.

10.

10.The journal_commit_transaction() function activates the I/O data transfers for all metadata
buffers included in the transaction (and also for all data buffers, if Ext3 was mounted in "journal"
mode).

11.

11.Periodically, the kernel activates a checkpoint activity for every complete transaction in the
journal. The checkpoint basically involves verifying whether the I/O data transfers triggered by
journal_commit_transaction() have successfully terminated. If so, the transaction can be deleted
from the journal.

Of course, the log records in the journal never play an active role until a system failure occurs. Only
during system reboot does the e2fsck utility program scan the journal stored in the filesystem and
reschedule all write operations described by the log records of the complete transactions.

Page 326

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 327

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 328

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Chapter 19. Process Communication
 This chapter explains how User Mode processes can synchronize their actions and exchange data. We
already covered several synchronization topics in Chapter 5, but the actors there were kernel control
paths, not User Mode programs. We are now ready, after having discussed I/O management and
filesystems at length, to extend the discussion to User Mode processes. These processes must rely on the
kernel to facilitate interprocess synchronization and communication.

 As we saw in the section "Linux File Locking" in Chapter 12, a form of synchronization among User
Mode processes can be achieved by creating a (possibly empty) file and using suitable VFS system calls
to lock and unlock it. While processes can similarly share data via temporary files protected by locks,
this approach is costly because it requires accesses to the filesystem on disk. For this reason, all Unix
kernels include a set of system calls that supports process communication without interacting with the
filesystem; furthermore, several wrapper functions were developed and inserted in suitable libraries to
expedite how processes issue their synchronization requests to the kernel.

 As usual, application programmers have a variety of needs that call for different communication
mechanisms. Here are the basic mechanisms that Unix systems offer to allow interprocess
communication:

 Pipes and FIFOs (named pipes)

 Best suited to implement producer/consumer interactions among processes. Some processes fill the pipe
with data, while others extract data from the pipe. They are covered in the sections "Pipes" and "FIFOs."

Semaphores

 Represent, as the name implies, the User Mode version of the kernel semaphores discussed in the
section "Semaphores" in Chapter 5. They are described in the section "System V IPC."

Messages

 Allow processes to exchange messages (short blocks of data) by reading and writing them in predefined
message queues. The Linux kernel offers two different versions of messages: System V IPC messages
(covered in the section "System V IPC") and POSIX messages (described in the section "POSIX
Message Queues").

Shared memory regions

 Allow processes to exchange information via a shared block of memory. In applications that must share
large amounts of data, this can be the most efficient form of process communication. They are described
in the section "System V IPC."

Sockets

 Allow processes on different computers to exchange data through a network. Sockets can also be used
as a communication tool for processes located on the same host computer; the X Window System
graphic interface, for instance, uses a socket to allow client programs to exchange data with the X server.

Page 329

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 330

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 331

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

19.1. Pipes
 Pipes are an interprocess communication mechanism that is provided in all flavors of Unix. A pipe is a
one-way flow of data between processes: all data written by a process to the pipe is routed by the kernel
to another process, which can thus read it.

 In Unix command shells, pipes can be created by means of the | operator. For instance, the following
statement instructs the shell to create two processes connected by a pipe:

$ ls | more

The standard output of the first process, which executes the ls program, is redirected to the pipe; the
second process, which executes the more program, reads its input from the pipe.

 Note that the same results can also be obtained by issuing two commands such as the following:

$ ls > temp

$ more < temp

The first command redirects the output of ls into a regular file; then the second command forces more to
read its input from the same file. Of course, using pipes instead of temporary files is usually more
convenient due to the following reasons:



 The shell statement is much shorter and simpler.


 There is no need to create temporary regular files, which must be deleted later.

 19.1.1. Using a Pipe

 Pipes may be considered open files that have no corresponding image in the mounted filesystems. A
process creates a new pipe by means of the pipe() system call, which returns a pair of file descriptors ;
the process may then pass these descriptors to its descendants through fork() , thus sharing the pipe with
them. The processes can read from the pipe by using the read() system call with the first file descriptor;
likewise, they can write into the pipe by using the write() system call with the second file descriptor.

 POSIX defines only half-duplex pipes , so even though the pipe() system call returns two file
descriptors, each process must close one before using the other. If a two-way flow of data is required,
the processes must use two different pipes by invoking pipe() twice.

 Several Unix systems, such as System V Release 4, implement full-duplex pipes . In a full-duplex pipe,
both descriptors can be written into and read from, thus there are two bidirectional channels of
information. Linux adopts yet another approach: each pipe's file descriptors are still one-way, but it is not
necessary to close one of them before using the other.

 Let's resume the previous example. When the command shell interprets the ls|more statement, it
essentially performs the following actions:

1.

1. Invokes the pipe() system call; let's assume that pipe() returns the file descriptors 3 (the pipe's
read channel) and 4 (the write channel).

2.

2. Invokes the fork() system call twice.
3.

3. Invokes the close() system call twice to release file descriptors 3 and 4.

The first child process, which must execute the ls program, performs the following operations:
1.

1. Invokes dup2(4,1) to copy file descriptor 4 to file descriptor 1. From now on, file descriptor 1
refers to the pipe's write channel.

2.

2. Invokes the close() system call twice to release file descriptors 3 and 4.
3.

3. Invokes the execve() system call to execute the ls program (see the section "The exec Functions
" in Chapter 20). The program writes its output to the file that has file descriptor 1 (the standard
output); i.e., it writes into the pipe.

The second child process must execute the more program; therefore, it performs the following
operations:

1.

1. Invokes dup2(3,0) to copy file descriptor 3 to file descriptor 0. From now on, file descriptor 0
refers to the pipe's read channel.

2.

2. Invokes the close() system call twice to release file descriptors 3 and 4.
3.

3. Invokes the execve() system call to execute more. By default, that program reads its input from
the file that has file descriptor 0 (the standard input); i.e., it reads from the pipe.

In this simple example, the pipe is used by exactly two processes. Because of its implementation, though,
a pipe can be used by an arbitrary number of processes.[*] Clearly, if two or more processes read or
write the same pipe, they must explicitly synchronize their accesses by using file locking (see the section "
Linux File Locking" in Chapter 12) or IPC semaphores (see the section "IPC Semaphores" later in this
chapter).

[*] Because most shells offer pipes that connect only two processes, applications requiring pipes used by
more than two processes must be coded in a programming language such as C.

 Many Unix systems provide, besides the pipe() system call, two wrapper functions named popen() and
pclose() that handle all the dirty work usually done when using pipes. Once a pipe has been created by
means of the popen() function, it can be used with the high-level I/O functions included in the C library
(fprintf(), fscanf(), and so on.

 In Linux, popen() and pclose() are included in the C library. The popen() function receives two
parameters: the filename pathname of an executable file and a type string specifying the direction of the
data transfer. It returns the pointer to a FILE data structure. The popen() function essentially performs
the following operations:

1.

1. Creates a new pipe by using the pipe() system call.
2.

2. Forks a new process, which in turn executes the following operations:
a.

a. If type is r, it duplicates the file descriptor associated with the pipe's write channel as file
descriptor 1 (standard output); otherwise, if type is w, it duplicates the file descriptor
associated with the pipe's read channel as file descriptor 0 (standard input).

b.

b. Closes the file descriptors returned by pipe().
c.

c. Invokes the execve() system call to execute the program specified by filename.
3.

3. If type is r, it closes the file descriptor associated with the pipe's write channel; otherwise, if type
is w, it closes the file descriptor associated with the pipe's read channel.

4.

4. Returns the address of the FILE file pointer that refers to whichever file descriptor for the pipe is
still open.

After the popen() invocation, parent and child can exchange information through the pipe: the parent can
read (if type is r) or write (if type is w) data by using the FILE pointer returned by the function. The data
is written to the standard output or read from the standard input, respectively, by the program executed
by the child process.

 The pclose() function (which receives the file pointer returned by popen() as its parameter) simply
invokes the wait4() system call and waits for the termination of the process created by popen().

 19.1.2. Pipe Data Structures

 We now have to start thinking again at the system call level. Once a pipe is created, a process uses the
read() and write() VFS system calls to access it. Therefore, for each pipe, the kernel creates an inode
object plus two file objectsone for reading and the other for writing. When a process wants to read from
or write to the pipe, it must use the proper file descriptor.

 When the inode object refers to a pipe, its i_pipe field points to a pipe_inode_info structure shown in
Table 19-1.

 Table 19-1. The pipe_inode_info structure

Type Field Description

struct wait_queue * wait Pipe/FIFO wait queue

unsigned int nrbufs Number of buffers containing
data to be read

unsigned int curbuf Index of first buffer containing
data to be read

struct pipe_buffer [16] bufs Array of pipe's buffer descriptors

struct page * tmp_page Pointer to a cached page frame

unsigned int start Read position in current pipe
buffer

unsigned int readers Flag for (or number of) reading
processes

unsigned int writers Flag for (or number of) writing
processes

unsigned int waiting_writers Number of writing processes
sleeping in the wait queue

unsigned int r_counter
Like readers, but used when
waiting for a process that reads
from the FIFO

unsigned int w_counter
Like writers, but used when
waiting for a process that writes
into the FIFO

struct

fasync_struct *
fasync_readers Used for asynchronous I/O

notification via signals

struct

fasync_struct *
fasync_writers Used for asynchronous I/O

notification via signals

Besides one inode and two file objects, each pipe has its own set of pipe buffers . Essentially, a pipe
buffer is a page frame that contains data written into the pipe and yet to be read. Up to Linux 2.6.10,
each pipe had just one pipe buffer. In the 2.6.11 kernel, however, data buffering for pipes (and FIFOs)
has been heavily revised, and now each pipe makes use of 16 pipe buffers. This change greatly enhances
the performance of User Mode applications that write large chunks of data in a pipe.

 The bufs field of the pipe_inode_info data structure stores an array of 16 pipe_buffer objects, each of
which describes a pipe buffer. The fields of this object are shown in Table 19-2.

 Table 19-2. The fields of the pipe_buffer object

Type Field Description

struct page * page Address of the descriptor of the
page frame for the pipe buffer

unsigned int offset Current position of the significant
data inside the page frame

unsigned int len Length of the significant data in
the pipe buffer

struct

pipe_buf_operations *
ops

Address of a table of methods
relative to the pipe buffer (NULL
if the pipe buffer is empty)

The ops field points to the anon_pipe_buf_ops table of the pipe buffer's methods, which is a data
structure of type pipe_buf_operations. Essentially, the table includes three methods:

 map

 Invoked before accessing data in the pipe buffer. It simply invokes kmap() on the pipe buffer's page
frame, just in case the pipe buffer is stored in high memory (see the section "Kernel Mappings of
High-Memory Page Frames" in Chapter 8).

unmap

 Invoked when no longer accessing data in the pipe buffer. It invokes kunmap() on the pipe buffer's page
frame.

release

 Invoked when a pipe buffer is being released. The method implements a one-page memory cache: the
page frame released is not the one storing the buffer, but a cached page frame pointed to by the
tmp_page field of the pipe_inode_info data structure (if not NULL). The page frame that stored the
buffer becomes the new cached page frame.

 The 16 pipe buffers can be seen as a global, circular buffer: writing processes keep adding data to this
large buffer, while reading process keep removing them. The number of bytes currently written in all pipe
buffers and yet to be read is the so-called pipe size. For reasons of efficiency, the data yet to be read can
be spread among several partially filled pipe buffers: in fact, each write operation may copy the data in a
fresh, empty pipe buffer if the previous pipe buffer has not enough free space to store the new data.
Hence, the kernel must keep track of:



 The pipe buffer that includes the next byte to be read, and the corresponding offset inside the
page frame. The index of this pipe buffer is stored in the curbuf field of the pipe_inode_info data
structure, while the offset is stored in the offset field of the corresponding pipe_buffer object.



 The first empty pipe buffer. Its index can be computed by adding (modulo 16) the index of the
current pipe buffer, which is stored in the curbuf field of the pipe_inode_info data structure, and
the number of pipe buffers with significant data, which is stored in the nrbufs field.

 To avoid race conditions on the pipe's data structures, the kernel makes use of the i_sem semaphore
included in the inode object.

 19.1.2.1. The pipefs special filesystem

 A pipe is implemented as a set of VFS objects, which have no corresponding disk images. In Linux 2.6,
these VFS objects are organized into the pipefs special filesystem to expedite their handling (see the
section "Special Filesystems" in Chapter 12). Because this filesystem has no mount point in the system
directory tree, users never see it. However, thanks to pipefs, the pipes are fully integrated in the VFS
layer, and the kernel can handle them in the same way as named pipes or FIFOs, which truly exist as files
recognizable to end users (see the later section "FIFOs").

 The init_pipe_fs() function, typically executed during kernel initialization, registers the pipefs filesystem
and mounts it (refer to the discussion in the section "Mounting a Generic Filesystem" in Chapter 12):

struct file_system_type pipe_fs_type;

pipe_fs_type.name = "pipefs";

pipe_fs_type.get_sb = pipefs_get_sb;

pipe_fs.kill_sb = kill_anon_super;

register_filesystem(&pipe_fs_type);

pipe_mnt = do_kern_mount("pipefs", 0, "pipefs", NULL);

The mounted filesystem object that represents the root directory of pipefs is stored in the pipe_mnt
variable.

 19.1.3. Creating and Destroying a Pipe

 The pipe() system call is serviced by the sys_pipe() function, which in turn invokes the do_pipe()
function. To create a new pipe, do_pipe() performs the following operations:

1.

1. Invokes the get_pipe_inode() function, which allocates and initializes an inode object for the
pipe in the pipefs filesystem. In particular, this function executes the following actions:
a.

a. Allocates a new inode in the pipefs filesystem.
b.

b. Allocates a pipe_inode_info data structure and stores its address in the i_pipe field of the
inode.

c.

c. Sets the curbuf and nrbufs fields of the pipe_inode_info structure to 0; also, fills with zeros all
fields of the pipe buffer objects in the bufs array.

d.

d. Initializes the r_counter and w_counter fields of the pipe_inode_info structure to 1.
e.

e. Sets the readers and writers fields of the pipe_inode_info structure to 1.
2.

2. Allocates a file object and a file descriptor for the read channel of the pipe, sets the f_flag field of
the file object to O_RDONLY, and initializes the f_op field with the address of the read_
pipe_fops table.

3.

3. Allocates a file object and a file descriptor for the write channel of the pipe, sets the flag field of
the file object to O_WRONLY, and initializes the f_op field with the address of the write_
pipe_fops table.

4.

4. Allocates a dentry object and uses it to link the two file objects and the inode object (see the
section "The Common File Model" in Chapter 12); then inserts the new inode in the pipefs
special filesystem.

5.

5. Returns the two file descriptors to the User Mode process.

The process that issues a pipe() system call is initially the only process that can access the new pipe,
both for reading and writing. To represent that the pipe has both a reader and a writer, the readers and
writers fields of the pipe_inode_info data structure are initialized to 1. In general, each of these two fields
is set to 1 only if the corresponding pipe's file object is still opened by a process; the field is set to 0 if the
corresponding file object has been released, because it is no longer accessed by any process.

 Forking a new process does not increase the value of the readers and writers fields, so they never rise
above 1;[*] however, it does increase the value of the usage counters of all file objects still used by the
parent process (see the section "The clone(), fork(), and vfork() System Calls" in Chapter 3). Thus, the
objects are not released even when the parent dies, and the pipe stays open for use by the children.

[*] As we'll see, the readers and writers fields act as counters instead of flags when associated with
FIFOs.

 Whenever a process invokes the close() system call on a file descriptor associated with a pipe, the
kernel executes the fput() function on the corresponding file object, which decreases the usage counter.
If the counter becomes 0, the function invokes the release method of the file operations (see the sections
"The close() System Call" and "Files Associated with a Process" in Chapter 12).

 Depending on whether the file is associated with the read or write channel, the release method is
implemented by either pipe_read_release() or pipe_write_release(); both functions invoke pipe_release(
), which sets either the readers field or the writers field of the pipe_inode_info structure to 0. The function
checks whether both the readers and writers fields are equal to 0; in this case, it invokes the pipe buffer's
release method of all pipe buffers, thus releasing to the buddy system all pipe's page frames; moreover,
the function releases the cached page frame pointed to by the tmp_page field. Otherwise, if either the
readers field or the writers field is not zero, the function wakes up the processes sleeping in the pipe's
wait queue so they can recognize the change in the pipe state.

 19.1.4. Reading from a Pipe

 A process wishing to get data from a pipe issues a read() system call, specifying the file descriptor
associated with the pipe's reading end. As described in the section "The read() and write() System Calls
" in Chapter 12, the kernel ends up invoking the read method found in the file operation table associated
with the proper file object. In the case of a pipe, the entry for the read method in the read_pipe_fops
table points to the pipe_read() function.

 The pipe_read() function is quite involved, because the POSIX standard specifies several requirements
for the pipe's read operations. Table 19-3 summarizes the expected behavior of a read() system call that
requests n bytes from a pipe that has a pipe size (number of bytes in the pipe buffers yet to be read)
equal to p.

 The system call might block the current process in two cases:


 The pipe buffer is empty when the system call starts.


 The pipe buffer does not include all requested bytes, and a writing process was previously put to
sleep while waiting for space in the buffer.

 Notice that the read operation can be nonblocking: in this case, it completes as soon as all available
bytes (even none) are copied into the user address space.[*]

[*] Nonblocking operations are usually requested by specifying the O_NONBLOCK flag in the open()
system call. This method does not work for pipes, because they cannot be opened. A process can,
however, require a nonblocking operation on a pipe by issuing a fcntl() system call on the corresponding
file descriptor.

 Notice also that the value 0 is returned by the read() system call only if the pipe is empty and no
process is currently using the file object associated with the pipe's write channel.

 Table 19-3. Reading n bytes from a pipe

At least one writing process No writing process

Blocking read Nonblocking read

Pipe Size p Sleeping writer No sleeping writer

p = 0

Copy n bytes and
return n, waiting for
data when the pipe
buffer is empty.

Wait for some
data, copy it, and
return its size.

Return

-EAGAIN.
Return 0.

0 < p < n Copy p bytes and return p: 0 bytes are left in the pipe buffer.

p n Copy n bytes and return n: p-n bytes are left in the pipe buffer.

The function performs the following operations:
1.

1. Acquires the i_sem semaphore of the inode.
2.

2. Determines whether the pipe size is 0 by reading the nrbufs field of the pipe_inode_info structure;
if the field is equal to zero, all pipe buffers are empty. In this case, it determines whether the
function must return or whether the process must be blocked while waiting until another process
writes some data in the pipe (see Table 19-3). The type of I/O operation (blocking or
nonblocking) is specified by the O_NONBLOCK flag in the f_flags field of the file object. If the
current process must be blocked, the function performs the following actions:
a.

a. Invokes prepare_to_wait() to add current to the wait queue of the pipe (the wait field of the
pipe_inode_info structure).

b.

b. Releases the inode semaphore.
c.

c. Invokes schedule().
d.

d. Once awake, invokes finish_wait() to remove current from the wait queue, acquires again
the i_sem inode semaphore, and then jumps back to step 2.

3.

3. Gets the index of the current pipe buffer from the curbuf field of the pipe_inode_info data
structure.

4.

4. Executes the map method of the pipe buffer.
5.

5. Copies the requested number of bytesor the number of available bytes in the pipe buffer, if it is
smallerfrom the pipe's buffer to the user address space.

6.

6. Executes the unmap method of the pipe buffer.
7.

7. Updates the offset and len fields of the corresponding pipe_buffer object.
8.

8. If the pipe buffer has been emptied (len fields of the pipe_buffer object now equal to zero), it
invokes the pipe buffer's release method to free the corresponding page frame, sets the ops field
in the pipe_buffer object to NULL, advances the index of the current pipe buffer stored in the
curbuf field of the pipe_inode_info data structure, and decreases the counter of nonempty pipe
buffers in the nrbufs field.

9.

9. If all requested bytes have been copied, it jumps to step 12.
10.

10.Here not all requested bytes have been copied to the User Mode address space. If the pipe size
is greater than zero (nrbufs field of the pipe_inode_info data structure not null), it goes back to
step 3.

11.

11.There are no more bytes left in the pipe buffers. If there is at least one writing process currently
sleeping (that is, the waiting_writers field of the pipe_inode_info data structure is greater than 0),
and the read operation is blocking, it invokes wake_up_interruptible_sync() to wake up all
processes sleeping on the pipe's wait queue, and jumps back to step 2.

12.

12.Releases the i_sem semaphore of the inode.
13.

13. Invokes wake_up_interruptible_sync() to wake up all writer processes sleeping on the pipe's
wait queue.

14.

14.Returns the number of bytes copied into the user address space.

19.1.5. Writing into a Pipe

 A process wishing to put data into a pipe issues a write() system call, specifying the file descriptor for
the writing end of the pipe. The kernel satisfies this request by invoking the write method of the proper
file object; the corresponding entry in the write_pipe_fops table points to the pipe_write() function.

 Table 19-4 summarizes the behavior, specified by the POSIX standard, of a write() system call that
requested to write n bytes into a pipe having u unused bytes in its buffer. In particular, the standard
requires that write operations involving a small number of bytes must be atomically executed. More
precisely, if two or more processes are concurrently writing into a pipe, each write operation involving
fewer than 4,096 bytes (the pipe buffer size) must finish without being interleaved with write operations of
other processes to the same pipe. However, write operations involving more than 4,096 bytes may be
nonatomic and may also force the calling process to sleep.

 Table 19-4. Writing n bytes to a pipe

At least one reading process

Available buffer space u Blocking write Nonblocking write No reading process

u<n 4,096
Wait until n-u bytes are
freed, copy n bytes, and
return n.

Return -EAGAIN. Send SIGPIPE signal
and return -EPIPE.

n>4,096
Copy n bytes (waiting
when necessary) and
return n.

If u>0, copy u bytes and
return u; return
-EAGAIN.

u n Copy n bytes and return
n.

 Moreover, each write operation to a pipe must fail if the pipe does not have a reading process (that is, if
the readers field of the pipe's inode object has the value 0). In this case, the kernel sends a SIGPIPE
signal to the writing process and terminates the write() system call with the -EPIPE error code, which
usually leads to the familiar "Broken pipe" message.

 The pipe_write() function performs the following operations:
1.

1. Acquires the i_sem semaphore of the inode.
2.

2. Checks whether the pipe has at least one reading process. If not, it sends a SIGPIPE signal to
the current process, releases the inode semaphore, and returns an -EPIPE value.

3.

3. Determines the index of the last written pipe buffers by adding the curbuf and nrbufs fields of the
pipe_inode_info data structure and subtracting 1. If this pipe buffer has enough free space to
store all the bytes to be written, then it copies the data into it:
a.

a. Executes the map method of the pipe buffer.
b.

b. Copies all the bytes in the pipe buffer.
c.

c. Executes the unmap method of the pipe buffer.
d.

d. Updates the len field of the corresponding pipe_buffer object.
e.

e. Jumps to step 11.
4.

4. If the nrbufs field of the pipe_inode_info data structure is equal to 16, there is no empty pipe
buffer to store the bytes (yet) to be written. In this case:
a.

a. If the write operation is nonblocking, it jumps to step 11 to terminate by returning the
-EAGAIN error code.

b.

b. If the write operation is blocking, it adds 1 to the waiting_writers field of the pipe_inode_info
structure, invokes prepare_to_wait() to add current to the wait queue of the pipe (the wait
field of the pipe_inode_info structure), releases the inode semaphore, and invokes schedule(
). Once awake, it invokes finish_wait() to remove current from the wait queue, again
acquires the inode semaphore, decreases the waiting_writers field, and then jumps back to
step 4.

5.

5. Now there is at least one empty pipe buffer. Determines the index of the first empty pipe buffer
by adding the curbuf and nrbufs fields of the pipe_inode_info data structure.

6.

6. Allocates a new page frame from the buddy system, unless the tmp_page field of the
pipe_inode_info data structure is not NULL.

7.

7. Copies up to 4,096 bytes from the User Mode address space into the page frame (temporarily
mapping it in the Kernel Mode linear address space, if necessary).

8.

8. Updates the fields of the pipe_buffer object associated with the pipe buffer by setting the page
field to the address of the page frame descriptor, the ops field to the address of the
anon_pipe_buf_ops table, the offset field to 0, and the len field to the number of written bytes.

9.

9. Increases the counter of nonempty pipe buffers stored in the nrbufs field of the pipe_inode_info
data structure.

10.

10. If not all requested bytes were written, it jumps back to step 4.
11.

11.Releases the inode semaphore.
12.

12.Wakes up all reader processes sleeping on the pipe's wait queue.
13.

13.Returns the number of bytes written into the pipe's buffer (or an error code if writing was not
possible).

Page 332

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 333

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 334

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

19.2. FIFOs
 Although pipes are a simple, flexible, and efficient communication mechanism, they have one main
drawbacknamely, that there is no way to open an already existing pipe. This makes it impossible for two
arbitrary processes to share the same pipe, unless the pipe was created by a common ancestor process.

 This drawback is substantial for many application programs. Consider, for instance, a database engine
server, which continuously polls client processes wishing to issue some queries and which sends the
results of the database lookups back to them. Each interaction between the server and a given client
might be handled by a pipe. However, client processes are usually created on demand by a command
shell when a user explicitly queries the database; server and client processes thus cannot easily share a
pipe.

 To address such limitations, Unix systems introduce a special file type called a named pipe or FIFO
(which stands for "first in, first out;" the first byte written into the special file is also the first byte that is
read). Each FIFO is much like a pipe: rather than owning disk blocks in the filesystems, an opened FIFO
is associated with a kernel buffer that temporarily stores the data exchanged by two or more processes.

 Thanks to the disk inode, however, a FIFO can be accessed by every process, because the FIFO
filename is included in the system's directory tree. Thus, in our example, the communication between
server and clients may be easily established by using FIFOs instead of pipes. The server creates, at
startup, a FIFO used by client programs to make their requests. Each client program creates, before
establishing the connection, another FIFO to which the server program can write the answer to the query
and includes the FIFO's name in the initial request to the server.

 In Linux 2.6, FIFOs and pipes are almost identical and use the same pipe_inode_info structures. As a
matter of fact, the read and write file operation methods of a FIFO are implemented by the same
pipe_read() and pipe_write() functions described in the earlier sections "Reading from a Pipe" and "
Writing into a Pipe." Actually, there are only two significant differences:



 FIFO inodes appear on the system directory tree rather than on the pipefs special filesystem.


 FIFOs are a bidirectional communication channel; that is, it is possible to open a FIFO in
read/write mode.

 To complete our description, therefore, we just have to explain how FIFOs are created and opened.

 19.2.1. Creating and Opening a FIFO

 A process creates a FIFO by issuing a mknod()[*] system call (see the section "Device Files" in
Chapter 13), passing to it as parameters the pathname of the new FIFO and the value S_IFIFO
(0x10000) logically ORed with the permission bit mask of the new file. POSIX introduces a function
named mkfifo() specifically to create a FIFO. This call is implemented in Linux, as in System V Release
4, as a C library function that invokes mknod().

[*] In fact, mknod() can be used to create nearly every kind of file, such as block and character device
files, FIFOs, and even regular files (it cannot create directories or sockets, though).

 Once created, a FIFO can be accessed through the usual open(), read(), write(), and close() system
calls, but the VFS handles it in a special way, because the FIFO inode and file operations are customized
and do not depend on the filesystems in which the FIFO is stored.

 The POSIX standard specifies the behavior of the open() system call on FIFOs; the behavior depends
essentially on the requested access type, the kind of I/O operation (blocking or nonblocking), and the
presence of other processes accessing the FIFO.

 A process may open a FIFO for reading, for writing, or for reading and writing. The file operations
associated with the corresponding file object are set to special methods for these three cases.

 When a process opens a FIFO, the VFS performs the same operations as it does for device files (see
the section "VFS Handling of Device Files" in Chapter 13). The inode object associated with the opened
FIFO is initialized by a filesystem-dependent read_inode superblock method; this method always checks
whether the inode on disk represents a special file, and invokes, if necessary, the init_special_inode()
function. It turn, this function sets the i_fop field of the inode object to the address of the def_fifo_fops
table. Later, the kernel sets the file operation table of the file object to def_fifo_fops, and executes its
open method, which is implemented by fifo_open().

 The fifo_open() function initializes the data structures specific to the FIFO; in particular, it performs the
following operations:

1.

1. Acquires the i_sem inode semaphore.
2.

2. Checks the i_pipe field of the inode object; if it is NULL, it allocates and it initializes a new
pipe_inode_info structure, as in steps 1b-1e in the earlier section "Creating and Destroying a
Pipe."

3.

3. Depending on the access mode specified as the parameter of the open() system call, it initializes
the f_op field of the file object with the address of the proper file operation table (see Table 19-5
).

Table 19-5. FIFO's file operations

Access type File operations Read method Write method

Read-only read_fifo_fops pipe_read() bad_pipe_w()

Write-only write_fifo_fops bad_pipe_r() pipe_write()

Read/write rdwr_fifo_fops pipe_read() pipe_write()

4.

4. If the access mode is either read-only or read/write, it adds one to the readers and r_counter
fields of the pipe_inode_info structure. Moreover, if the access mode is read-only and there is no
other reading process, it wakes up any writing process sleeping in the wait queue.

5.

5. If the access mode is either write-only or read/write, it adds one to the writers and w_counter
fields of the pipe_inode_info structure. Moreover, if the access mode is write-only and there is
no other writing process, it wakes up any reading process sleeping in the wait queue.

6.

6. If there are no readers or no writers, it decides whether the function should block or terminate
returning an error code (see Table 19-6).

Table 19-6. Behavior of the fifo_open() function

Access type Blocking Nonblocking

Read-only, with writers Successfully return Successfully return

Read-only, no writer Wait for a writer Successfully return

Write-only, with readers Successfully return Successfully return

Write-only, no reader Wait for a reader Return -ENXIO

Read/write Successfully return Successfully return

7.

7. Releases the inode semaphore, and terminates, returning 0 (success).

The FIFO's three specialized file operation tables differ mainly in the implementation of the read and write
methods. If the access type allows read operations, the read method is implemented by the pipe_read()
function. Otherwise, it is implemented by bad_pipe_r(), which only returns an error code. Similarly, if the
access type allows write operations, the write method is implemented by the pipe_write() function;
otherwise, it is implemented by bad_pipe_w(), which also returns an error code.

Page 335

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 336

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 337

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

19.3. System V IPC
 IPC is an abbreviation for Interprocess Communication and commonly refers to a set of mechanisms
that allow a User Mode process to do the following:



 Synchronize itself with other processes by means of semaphores


 Send messages to other processes or receive messages from them


 Share a memory area with other processes

 System V IPC first appeared in a development Unix variant called "Columbus Unix " and later was
adopted by AT&T's System III . It is now found in most Unix systems, including Linux.

 IPC data structures are created dynamically when a process requests an IPC resource (a semaphore, a
message queue, or a shared memory region). An IPC resource is persistent: unless explicitly removed by
a process, it is kept in memory and remains available until the system is shut down. An IPC resource may
be used by every process, including those that do not share the ancestor that created the resource.

 Because a process may require several IPC resources of the same type, each new resource is identified
by a 32-bit IPC key, which is similar to the file pathname in the system's directory tree. Each IPC
resource also has a 32-bit IPC identifier, which is somewhat similar to the file descriptor associated with
an open file. IPC identifiers are assigned to IPC resources by the kernel and are unique within the
system, while IPC keys can be freely chosen by programmers.

 When two or more processes wish to communicate through an IPC resource, they all refer to the IPC
identifier of the resource.

 19.3.1. Using an IPC Resource

 IPC resources are created by invoking the semget(), msgget(), or shmget() functions, depending on
whether the new resource is a semaphore, a message queue, or a shared memory region.

 The main objective of each of these three functions is to derive from the IPC key (passed as the first
parameter) the corresponding IPC identifier, which is then used by the process for accessing the
resource. If there is no IPC resource already associated with the IPC key, a new resource is created. If
everything goes right, the function returns a positive IPC identifier; otherwise, it returns one of the error
codes listed in Table 19-7.

 Table 19-7. Error codes returned while requesting an IPC identifier

Error code Description

EACCESS Process does not have proper access rights

EEXIST Process tried to create an IPC resource with the
same key as one that already exists

EINVAL Invalid argument in a parameter of semget(),
msgget(), or shmget()

ENOENT No IPC resource with the requested key exists and
the process did not ask to create it

ENOMEM No more storage is left for an additional IPC
resource

ENOSPC Maximum limit on the number of IPC resources
has been exceeded

Assume that two independent processes want to share a common IPC resource. This can be achieved in
two possible ways:



 The processes agree on some fixed, predefined IPC key. This is the simplest case, and it works
quite well for every complex application implemented by many processes. However, there's a
chance that the same IPC key is chosen by another unrelated program. In this case, the IPC
functions might be successfully invoked and still return the IPC identifier of the wrong resource.
[*]

 [*] The ftok() function attempts to create a new key from a file pathname and an 8-bit project
identifier passed as its parameters. It does not guarantee, however, a unique key number,
because there is a small chance that it will return the same IPC key to two different applications
using different pathnames and project identifiers.



 One process issues a semget(), msgget(), or shmget() function by specifying IPC_PRIVATE as
its IPC key. A new IPC resource is thus allocated, and the process can either communicate its
IPC identifier to the other process in the application[] or fork the other process itself. This
method ensures that the IPC resource cannot be used accidentally by other applications.

 [] This implies, of course, the existence of another communication channel between the
processes not based on IPC.

 The last parameter of the semget(), msgget(), and shmget() functions can include three flags.
IPC_CREAT specifies that the IPC resource must be created, if it does not already exist; IPC_EXCL
specifies that the function must fail if the resource already exists and the IPC_CREAT flag is set;
IPC_NOWAIT specifies that the process should never block when accessing the IPC resource
(typically, when fetching a message or when acquiring a semaphore).

 Even if the process uses the IPC_CREAT and IPC_EXCL flags, there is no way to ensure exclusive
access to an IPC resource, because other processes may always refer to the resource by using its IPC
identifier.

 To minimize the risk of incorrectly referencing the wrong resource, the kernel does not recycle IPC
identifiers as soon as they become free. Instead, the IPC identifier assigned to a resource is almost
always larger than the identifier assigned to the previously allocated resource of the same type. (The only
exception occurs when the 32-bit IPC identifier overflows.) Each IPC identifier is computed by
combining a slot usage sequence number relative to the resource type, an arbitrary slot index for the
allocated resource, and an arbitrary value chosen in the kernel that is greater than the maximum number
of allocatable resources. If we choose s to represent the slot usage sequence number, M to represent the
upper bound on the number of allocatable resources, and i to represent the slot index, where 0 i<M,
each IPC resource's ID is computed as follows:

 IPC identifier = s x M + i

 In Linux 2.6, the value of M is set to 32,768 (IPCMNI macro). The slot usage sequence number s is
initialized to 0 and is increased by 1 at every resource allocation. When s reaches a predefined threshold,
which depends on the type of IPC resource, it restarts from 0.

 Every type of IPC resource (semaphores, message queues, and shared memory areas) owns an ipc_ids
data structure, which includes the fields shown in Table 19-8.

 Table 19-8. The fields of the ipc_ids data structure

Type Field Description

int in_use Number of allocated IPC
resources

int max_id Maximum slot index in use

unsigned short seq Slot usage sequence number for
the next allocation

unsigned short seq_max Maximum slot usage sequence
number

struct semaphore sem Semaphore protecting the ipc_ids
data structure

struct ipc_id_ary nullentry

Fake data structure pointed to by
the entries field if this IPC
resource cannot be initialized
(normally not used)

struct ipc_id_ary * enTRies Pointer to the ipc_id_ary data
structure for this resource

The ipc_id_ary data structure consists of two fields: p and size. The p field is an array of pointers to
kern_ipc_perm data structures, one for every allocatable resource. The size field is the size of this array.
Initially, the array stores 1, 16, or 128 pointers, respectively for shared memory regions, message
queues, and semaphores. The kernel dynamically increases the size of the array when it becomes too
small. However, there is an upper bound on the number of resources for each given type. The system
administrator may change these bounds by writing into the /proc/sys/kernel/sem,
/proc/sys/kernel/msgmni, and /proc/sys/kernel/shmmni files, respectively.

 Each kern_ipc_perm data structure is associated with an IPC resource and contains the fields shown in
Table 19-9. The uid, gid, cuid, and cgid fields store the user and group identifiers of the resource's
creator and the user and group identifiers of the current resource's owner, respectively. The mode bit
mask includes six flags, which store the read and write access permissions for the resource's owner, the
resource's group, and all other users. IPC access permissions are similar to file access permissions
described in the section "Access Rights and File Mode" in Chapter 1, except that the Execute permission
flag is not used.

 Table 19-9. The fields in the kern_ipc_ perm structure

Type Field Description

spinlock_t lock Spin lock protecting the IPC
resource descriptor

int deleted Flag set if the resource has been
released

int key IPC key

unsigned int uid Owner user ID

unsigned int gid Owner group ID

unsigned int cuid Creator user ID

unsigned int cgid Creator group ID

unsigned short mode Permission bit mask

unsigned long seq Slot usage sequence number

void * security Pointer to a security structure
(used by SELinux)

The kern_ipc_perm data structure also includes a key field (which contains the IPC key of the
corresponding resource) and a seq field (which stores the slot usage sequence number s used to compute
the IPC identifier of the resource).

 The semctl(), msgctl(), and shmctl() functions may be used to handle IPC resources. The IPC_SET
subcommand allows a process to change the owner's user and group identifiers and the permission bit
mask in the ipc_perm data structure. The IPC_STAT and IPC_INFO subcommands retrieve some
information concerning a resource. Finally, the IPC_RMID subcommand releases an IPC resource.
Depending on the type of IPC resource, other specialized subcommands are also available.[*]

[*] An IPC design flaw is that a User Mode process cannot atomically create and initialize an IPC
semaphore, because these two operations are performed by two different IPC functions.

 Once an IPC resource is created, a process may act on the resource by means of a few specialized
functions. A process may acquire or release an IPC semaphore by issuing the semop() function. When a
process wants to send or receive an IPC message, it uses the msgsnd() and msgrcv() functions,
respectively. Finally, a process attaches and detaches an IPC shared memory region in its address space
by means of the shmat() and shmdt() functions, respectively.

 19.3.2. The ipc() System Call

 All IPC functions must be implemented through suitable Linux system calls. Actually, in the 80 x 86
architecture, there is just one IPC system call named ipc(). When a process invokes an IPC function,
let's say msgget(), it really invokes a wrapper function in the C library. This in turn invokes the ipc()
system call by passing to it all the parameters of msgget() plus a proper subcommand codein this case,
MSGGET. The sys_ipc() service routine examines the subcommand code and invokes the kernel
function that implements the requested service.

 The ipc() "multiplexer" system call is a legacy from older Linux versions, which included the IPC code in
a dynamic module (see Appendix B). It did not make much sense to reserve several system call entries in
the system_call table for a kernel component that could be missing, so the kernel designers adopted the
multiplexer approach.

 Nowadays, System V IPC can no longer be compiled as a dynamic module, and there is no justification
for using a single IPC system call. As a matter of fact, Linux provides one system call for each IPC
function on Hewlett-Packard's Alpha architecture and on Intel's IA-64.

 19.3.3. IPC Semaphores

 IPC semaphores are quite similar to the kernel semaphores introduced in Chapter 5; they are counters
used to provide controlled access to shared data structures for multiple processes.

 The semaphore value is positive if the protected resource is available, and 0 if the protected resource is
currently not available. A process that wants to access the resource tries to decrease the semaphore
value; the kernel, however, blocks the process until the operation on the semaphore yields a positive
value. When a process relinquishes a protected resource, it increases its semaphore value; in doing so,
any other process waiting for the semaphore is woken up.

 Actually, IPC semaphores are more complicated to handle than kernel semaphores for two main
reasons:



 Each IPC semaphore is a set of one or more semaphore values, not just a single value like a
kernel semaphore. This means that the same IPC resource can protect several independent
shared data structures. The number of semaphore values in each IPC semaphore must be
specified as a parameter of the semget() function when the resource is being allocated. From
now on, we'll refer to the counters inside an IPC semaphore as primitive semaphores . There are
bounds both on the number of IPC semaphore resources (by default, 128) and on the number of
primitive semaphores inside a single IPC semaphore resource (by default, 250); however, the
system administrator can easily modify these bounds by writing into the /proc /sys/kernel/sem
file.



 System V IPC semaphores provide a fail-safe mechanism for situations in which a process dies
without being able to undo the operations that it previously issued on a semaphore. When a
process chooses to use this mechanism, the resulting operations are called undoable semaphore
operations. When the process dies, all of its IPC semaphores can revert to the values they would
have had if the process had never started its operations. This can help prevent other processes
that use the same semaphores from remaining blocked indefinitely as a consequence of the
terminating process failing to manually undo its semaphore operations.

 First, we'll briefly sketch the typical steps performed by a process wishing to access one or more
resources protected by an IPC semaphore:

1.

1. Invokes the semget() wrapper function to get the IPC semaphore identifier, specifying as the
parameter the IPC key of the IPC semaphore that protects the shared resources. If the process
wants to create a new IPC semaphore, it also specifies the IPC_CREATE or IPC_PRIVATE
flag and the number of primitive semaphores required (see the section "Using an IPC Resource"
earlier in this chapter).

2.

2. Invokes the semop() wrapper function to test and decrease all primitive semaphore values
involved. If all the tests succeed, the decrements are performed, the function terminates, and the
process is allowed to access the protected resources. If some semaphores are in use, the
process is usually suspended until some other process releases the resources. The function
receives as its parameters the IPC semaphore identifier, an array of integers specifying the
operations to be atomically performed on the primitive semaphores, and the number of such
operations. Optionally, the process may specify the SEM_UNDO flag, which instructs the kernel
to reverse the operations, should the process exit without releasing the primitive semaphores.

3.

3. When relinquishing the protected resources, it invokes the semop() function again to atomically
increase all primitive semaphores involved.

4.

4. Optionally, it invokes the semctl() wrapper function, specifying the IPC_RMID command to
remove the IPC semaphore from the system.

Now we can discuss how the kernel implements IPC semaphores. The data structures involved are
shown in Figure 19-1. The sem_ids variable stores the ipc_ids data structure of the IPC semaphore
resource type; the corresponding ipc_id_ary data structure contains an array of pointers to sem_array
data structures, one item for every IPC semaphore resource.

 Figure 19-1. IPC semaphore data structures

 Formally, the array stores pointers to kern_ipc_perm data structures, but each structure is simply the
first field of the sem_array data structure. All fields of the sem_array data structure are shown in Table
19-10.

 Table 19-10. The fields in the sem_array data structure

Type Field Description

struct kern_ipc_perm sem_perm kern_ipc_perm data structure

long sem_otime Timestamp of last semop()

long sem_ctime Timestamp of last change

struct sem * sem_base Pointer to first sem structure

struct sem_queue * sem_pending Pending operations

struct sem_queue ** sem_pending_last Last pending operation

struct sem_undo * undo Undo requests

unsigned long sem_nsems Number of semaphores in array

The sem_base field points to an array of sem data structures, one for every IPC primitive semaphore.
The latter data structure includes only two fields:

 semval

 The value of the semaphore's counter.

sempid

 The PID of the last process that accessed the semaphore. This value can be queried by a process
through the semctl() wrapper function.

 19.3.3.1. Undoable semaphore operations

 If a process aborts suddenly, it cannot undo the operations that it started (for instance, release the
semaphores it reserved); so by declaring them undoable, the process lets the kernel return the
semaphores to a consistent state and allow other processes to proceed. Processes can request undoable
operations by specifying the SEM_UNDO flag in the semop() function.

 Information to help the kernel reverse the undoable operations performed by a given process on a given
IPC semaphore resource is stored in a sem_undo data structure. It essentially contains the IPC identifier
of the semaphore and an array of integers representing the changes to the primitive semaphore's values
caused by all undoable operations performed by the process.

 A simple example can illustrate how such sem_undo elements are used. Consider a process that uses an
IPC semaphore resource containing four primitive semaphores. Suppose that it invokes the semop()
function to increase the first counter by 1 and decrease the second by 2. If it specifies the SEM_UNDO
flag, the integer in the first array element in the sem_undo data structure is decreased by 1, the integer in
the second element is increased by 2, and the other two integers are left unchanged. Further undoable
operations on the IPC semaphore performed by the same process change the integers stored in the
sem_undo structure accordingly. When the process exits, any nonzero value in that array corresponds to
one or more unbalanced operations on the corresponding primitive semaphore; the kernel reverses these
operations, simply adding the nonzero value to the corresponding semaphore's counter. In other words,
the changes made by the aborted process are backed out while the changes made by other processes
are still reflected in the state of the semaphores.

 For each process, the kernel keeps track of all semaphore resources handled with undoable operations
so that it can roll them back if the process unexpectedly exits. Furthermore, for each semaphore, the
kernel has to keep track of all its sem_undo structures so it can quickly access them whenever a process
uses semctl() to force an explicit value into a primitive semaphore's counter or to destroy an IPC
semaphore resource.

 The kernel is able to handle these tasks efficiently, thanks to two lists, which we denote as the
per-process and the per-semaphore lists. The first list keeps track of all semaphores operated upon by a
given process with undoable operations. The second list keeps track of all processes that are acting on a
given semaphore with undoable operations. More precisely:



 The per-process list includes all sem_undo data structures corresponding to IPC semaphores on
which the process has performed undoable operations. The sysvsem.undo_list field of the
process descriptor points to a data structure, of type sem_undo_list, which in turn contains a
pointer to the first element of the list; the proc_next field of each sem_undo data structure points
to the next element in the list. (As mentioned in the section "The clone(), fork(), and vfork()
System Calls" in Chapter 3, clone processes created by passing the CLONE_SYSVSEM flag to
the clone() system call share the same list of undoable semaphore operations, because they
share the same sem_undo_list descriptor.)



 The per-semaphore list includes all sem_undo data structures corresponding to the processes
that performed undoable operations on the semaphore. The undo field of the sem_array data
structure points to the first element of the list, while the id_next field of each sem_undo data
structure points to the next element in the list.

 The per-process list is used when a process terminates. The exit_sem() function, which is invoked by
do_exit(), walks through the list and reverses the effect of any unbalanced operation for every IPC
semaphore touched by the process. By contrast, the per-semaphore list is mainly used when a process
invokes the semctl() function to force an explicit value into a primitive semaphore. The kernel sets the
corresponding element to 0 in the arrays of all sem_undo data structures referring to that IPC semaphore
resource, because it would no longer make any sense to reverse the effect of previous undoable
operations performed on that primitive semaphore. Moreover, the per-semaphore list is also used when
an IPC semaphore is destroyed; all related sem_undo data structures are invalidated by setting the semid
field to -1.[*]

[*] Notice that they are just invalidated and not freed, because it would be too costly to remove the data
structures from the per-process lists of all processes.

 19.3.3.2. The queue of pending requests

 The kernel associates a queue of pending requests with each IPC semaphore to identify processes that
are waiting on one (or more) of the semaphores in the array. The queue is a doubly linked list of
sem_queue data structures whose fields are shown in Table 19-11. The first and last pending requests in
the queue are referenced, respectively, by the sem_pending and sem_pending_last fields of the
sem_array structure. This last field allows the list to be handled as easily as a FIFO; new pending
requests are added to the end of the list so they will be serviced later. The most important fields of a
pending request are nsops (which stores the number of primitive semaphores involved in the pending
operation) and sops (which points to an array of integer values describing each semaphore operation).
The sleeper field stores the descriptor address of the sleeping process that requested the operation.

 Table 19-11. The fields in the sem_queue data structure

Type Field Description

struct sem_queue * next Pointer to next queue element

struct sem_queue ** prev Pointer to previous queue
element

struct task_struct * sleeper
Pointer to the sleeping process
that requested the semaphore
operation

struct sem_undo * undo Pointer to sem_undo structure

int pid Process identifier

int status Completion status of operation

struct sem_array * sma Pointer to IPC semaphore
descriptor

int id Slot index of the IPC semaphore
resource

struct sembuf * sops Pointer to array of pending
operations

int nsops Number of pending operations

int alter
Flag denoting whether the
operation modifies the semaphore
array

Figure 19-1 illustrates an IPC semaphore that has three pending requests. The second and third requests
refer to undoable operations, so the undo field of the sem_queue data structure points to the
corresponding sem_undo structure; the first pending request has a NULL undo field because the
corresponding operation is not undoable.

 19.3.4. IPC Messages

 Processes can communicate with one another by means of IPC messages . Each message generated by
a process is sent to an IPC message queue, where it stays until another process reads it.

 A message is composed of a fixed-size header and a variable-length text; it can be labeled with an
integer value (the message type), which allows a process to selectively retrieve messages from its
message queue.[*] Once a process has read a message from an IPC message queue, the kernel destroys
the message; therefore, only one process can receive a given message.

[*] As we'll see, the message queue is implemented by means of a linked list. Because messages can be
retrieved in an order different from "first in, first out," the name "message queue" is not appropriate.
However, new messages are always put at the end of the linked list.

 To send a message, a process invokes the msgsnd() function, passing the following as parameters:


 The IPC identifier of the destination message queue


 The size of the message text


 The address of a User Mode buffer that contains the message type immediately followed by the
message text

 To retrieve a message, a process invokes the msgrcv() function, passing to it:


 The IPC identifier of the IPC message queue resource


 The pointer to a User Mode buffer to which the message type and message text should be
copied



 The size of this buffer


 A value t that specifies what message should be retrieved

 If the value t is 0, the first message in the queue is returned. If t is positive, the first message in the queue
with its type equal to t is returned. Finally, if t is negative, the function returns the first message whose
message type is the lowest value less than or equal to the absolute value of t.

 To avoid resource exhaustion, there are some limits on the number of IPC message queue resources
allowed (by default, 16), on the size of each message (by default, 8,192 bytes), and on the maximum
total size of the messages in a queue (by default, 16,384 bytes). As usual, however, the system
administrator can tune these values by writing into the /proc /sys/kernel/msgmni,
/proc/sys/kernel/msgmnb, and /proc/sys/kernel/msgmax files, respectively.

 The data structures associated with IPC message queues are shown in Figure 19-2. The msg_ids
variable stores the ipc_ids data structure of the IPC message queue resource type; the corresponding
ipc_id_ary data structure contains an array of pointers to shmid_kernel data structuresone item for every
IPC message queue resource. Formally, the array stores pointers to kern_ipc_perm data structures, but
each such structure is simply the first field of the msg_queue data structure. All fields of the msg_queue
data structure are shown in Table 19-12.

 Figure 19-2. IPC message queue data structures

 Table 19-12. The msg_queue data structure

Type Field Description

struct kern_ipc_perm q_perm kern_ipc_perm data structure

long q_stime Time of last msgsnd()

long q_rtime Time of last msgrcv()

long q_ctime Last change time

unsigned long q_qcbytes Number of bytes in queue

unsigned long q_qnum Number of messages in queue

unsigned long q_qbytes Maximum number of bytes in
queue

int q_lspid PID of last msgsnd()

int q_lrpid PID of last msgrcv()

struct list_head q_messages List of messages in queue

struct list_head q_receivers List of processes receiving
messages

struct list_head q_senders List of processes sending
messages

The most important field is q_messages, which represents the head (i.e., the first dummy element) of a
doubly linked circular list containing all messages currently in the queue.

 Each message is broken into one or more pages, which are dynamically allocated. The beginning of the
first page stores the message header, which is a data structure of type msg_msg; its fields are listed in
Table 19-13. The m_list field stores the pointers to the previous and next messages in the queue. The
message text starts right after the msg_msg descriptor; if the message is longer than 4,072 bytes (the
page size minus the size of the msg_msg descriptor), it continues on another page, whose address is
stored in the next field of the msg_msg descriptor. The second page frame starts with a descriptor of type
msg_msgseg, which simply includes a next pointer storing the address of an optional third page, and so
on.

 Table 19-13. The msg_msg data structure

Type Field Description

struct list_head m_list Pointers for message list

long m_type Message type

int m_ts Message text size

struct msg_msgseg * next Next portion of the message

void * security Pointer to a security data
structure (used by SELinux)

When the message queue is full (either the maximum number of messages or the maximum total size has
been reached), processes that try to enqueue new messages may be blocked. The q_senders field of the
msg_queue data structure is the head of a list that includes the pointers to the descriptors of all blocked
sending processes.

 Even receiving processes may be blocked when the message queue is empty (or the process specified a
type of message not present in the queue). The q_receivers field of the msg_queue data structure is the
head of a list of msg_receiver data structures, one for every blocked receiving process. Each of these
structures essentially includes a pointer to the process descriptor, a pointer to the msg_msg structure of
the message, and the type of the requested message.

 19.3.5. IPC Shared Memory

 The most useful IPC mechanism is shared memory , which allows two or more processes to access
some common data structures by placing them in an IPC shared memory region. Each process that wants
to access the data structures included in an IPC shared memory region must add to its address space a
new memory region (see the section "Memory Regions" in Chapter 9), which maps the page frames
associated with the IPC shared memory region. Such page frames can then be easily handled by the
kernel through demand paging (see the section "Demand Paging" in Chapter 9).

 As with semaphores and message queues, the shmget() function is invoked to get the IPC identifier of a
shared memory region, optionally creating it if it does not already exist.

 The shmat() function is invoked to "attach" an IPC shared memory region to a process. It receives as its
parameter the identifier of the IPC shared memory resource and tries to add a shared memory region to
the address space of the calling process. The calling process can require a specific starting linear address
for the memory region, but the address is usually unimportant, and each process accessing the shared
memory region can use a different address in its own address space. The process's Page Tables are left
unchanged by shmat(). We describe later what the kernel does when the process tries to access a page
that belongs to the new memory region.

 The shmdt() function is invoked to "detach" an IPC shared memory region specified by its IPC
identifierthat is, to remove the corresponding memory region from the process's address space. Recall
that an IPC shared memory resource is persistent: even if no process is using it, the corresponding pages
cannot be discarded, although they can be swapped out.

 As for the other types of IPC resources, in order to avoid overuse of memory by User Mode processes,
there are some limits on the allowed number of IPC shared memory regions (by default, 4,096), on the
size of each segment (by default, 32 megabytes), and on the maximum total size of all segments (by
default, 8 gigabytes). As usual, however, the system administrator can tune these values by writing into
the /proc/sys/kernel/shmmni, /proc/sys/kernel/shmmax, and /proc/sys/kernel/shmall files,
respectively.

 Figure 19-3. IPC shared memory data structures

 The data structures associated with IPC shared memory regions are shown in Figure 19-3. The shm_ids
variable stores the ipc_ids data structure of the IPC shared memory resource type; the corresponding
ipc_id_ary data structure contains an array of pointers to shmid_kernel data structures, one item for
every IPC shared memory resource. Formally, the array stores pointers to kern_ipc_perm data
structures, but each such structure is simply the first field of the msg_queue data structure. All fields of the
shmid_kernel data structure are shown in Table 19-14.

 Table 19-14. The fields in the shmid_kernel data structure

Type Field Description

struct kern_ipc_perm shm_perm kern_ipc_perm data structure

struct file * shm_file Special file of the segment

int id Slot index of the segment

unsigned long shm_nattch Number of current attaches

unsigned long shm_segsz Segment size in bytes

long shm_atim Last access time

long shm_dtim Last detach time

long shm_ctim Last change time

int shm_cprid PID of creator

int shm_lprid PID of last accessing process

struct user_struct * mlock_user

Pointer to the user_struct
descriptor of the user that locked
in RAM the shared memory
resource (see the section "The
clone(), fork(), and vfork()
System Calls" in Chapter 3)

The most important field is shm_file, which stores the address of a file object. This reflects the tight
integration of IPC shared memory with the VFS layer in Linux 2.6. In particular, each IPC shared
memory region is associated with a file belonging to the shm special filesystem (see the section "Special
Filesystems" in Chapter 12).

 Because the shm filesystem has no mount point in the system directory tree, no user can open and
access its files by means of regular VFS system calls. However, when a process "attaches" a segment,
the kernel invokes do_mmap() and creates a new shared memory mapping of the file in the address
space of the process. Therefore, files that belong to the shm special filesystem have just one file object
method, mmap, which is implemented by the shm_mmap() function.

 As shown in Figure 19-3, a memory region that corresponds to an IPC shared memory region is
described by a vm_area_struct object (see the section "Memory Mapping" in Chapter 16); its vm_file
field points back to the file object of the file in the special filesystem, which in turn references a dentry
object and an inode object. The inode number, stored in the i_ino field of the inode, is actually the slot
index of the IPC shared memory region, so the inode object indirectly references the shmid_kernel
descriptor.

 As usual for every shared memory mapping, page frames are included in the page cache through an
address_space object, which is embedded in the inode and referenced by the i_mapping field of the
inode (you might also refer to Figure 16-2); in case of page frames belonging to an IPC shared memory
region, the methods of the address_space object are stored in the shmem_aops global variable.

 19.3.5.1. Swapping out pages of IPC shared memory regions

 The kernel has to be careful when swapping out pages included in shared memory regions, and the role
of the swap cache is crucial (this topic was already discussed in the section "The Swap Cache" in
Chapter 17).

 Pages of an IPC shared memory region are swappableand not syncable (see Table 17-1 in Chapter 17
)because they map a special inode that has no image on disk. Thus, in order to reclaim a page of an IPC
shared memory region, the kernel must write it into a swap area. Because an IPC shared memory region
is persistentthat is, its pages must be preserved even when the segment is not attached to any processthe
kernel cannot simply discard these pages even when they are no longer used by any process.

 Let us see how the PFRA performs the reclaiming of a page frame used by an IPC shared memory
region. Everything is done as described in the section "Low On Memory Reclaiming" in Chapter 17, until
the page is considered by shrink_list(). Because this function does not include any special check for
pages of IPC shared memory regions, it ends up invoking the try_to_unmap() function to remove every
reference to the page frame from the User Mode address spaces; as explained in the section "Reverse
Mapping" in Chapter 17, the corresponding page table entries are simply cleared.

 Next, the shrink_list() function checks the PG_dirty flag of the page and invokes pageout()page frames
of IPC shared memory regions are marked dirty when they are allocated, thus pageout() is always
invoked. In turn, the pageout() function invokes the writepage method of the address_space object of
the mapped file.

 The shmem_writepage() function, which implements the writepage method for IPC shared memory
regions' pages, essentially allocates a new page slot in a swap area, and moves the page from the page
cache to the swap cache (it's just a matter of changing the owner address_space object of the page). The
function also stores the swapped-out page identifier in a shmem_inode_info structure that embodies the
IPC memory region's inode object, and it sets again the PG_dirty flag of the page. As shown in Figure
17-5 in Chapter 17, the shrink_list() function checks the PG_dirty flag and breaks the reclaiming
procedure by leaving the page in the inactive list.

 Sooner or later, the page frame will be processed again by the PFRA. Once again, the shrink_list()
function will try to flush the page to disk by invoking pageout(). This time, however, the page is included
in the swap cache, thus it is "owned" by the address_space object of the swapping subsystem,
swapper_space. The corresponding writepage method, swap_writepage(), effectively starts the write
operation into the swap area (see the section "Swapping Out Pages" in Chapter 17). Once pageout()
terminates, shrink_list() verifies that the page is now clean, removes it from the swap cache, and releases
it to the buddy system.

 19.3.5.2. Demand paging for IPC shared memory regions

 The pages added to a process by shmat() are dummy pages; the function adds a new memory region
into a process's address space, but it doesn't modify the process's Page Tables. Moreover, as we have
seen, pages of an IPC shared memory region can be swapped out. Therefore, these pages are handled
through the demand paging mechanism.

 As we know, a Page Fault occurs when a process tries to access a location of an IPC shared memory
region whose underlying page frame has not been assigned. The corresponding exception handler
determines that the faulty address is inside the process address space and that the corresponding Page
Table entry is null; therefore, it invokes the do_no_page() function (see the section "Demand Paging" in
Chapter 9). In turn, this function checks whether the nopage method for the memory region is defined.
That method is invoked, and the Page Table entry is set to the address returned from it (see also the
section "Demand Paging for Memory Mapping" in Chapter 16).

 Memory regions used for IPC shared memory always define the nopage method. It is implemented by
the shmem_nopage() function, which performs the following operations:

1.

1. Walks the chain of pointers in the VFS objects and derives the address of the inode object of
the IPC shared memory resource (see Figure 19-3).

2.

2. Computes the logical page number inside the segment from the vm_start field of the memory
region descriptor and the requested address.

3.

3. Checks whether the page is already included in the page cache; if so, terminates by returning the
address of its descriptor.

4.

4. Checks whether the page is included in the swap cache and is up-to-date; if so, terminates by
returning the address of its descriptor.

5.

5. Checks whether the shmem_inode_info that embodies the inode object stores a swapped-out
page identifier for the logical page number. If so, it performs a swap-in operation by invoking
read_swap_cache_async() (see the section "Swapping in Pages" in Chapter 17), waits until the
data transfer completes, and terminates by returning the address of the page descriptor.

6.

6. Otherwise, the page is not stored in a swap area; therefore, the function allocates a new page
from the buddy system, inserts it into the page cache, and returns its address.

The do_no_page() function sets the entry that corresponds to the faulty address in the process's Page
Table so that it points to the page frame returned by the method.

Page 338

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 339

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 340

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

19.4. POSIX Message Queues
 The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on message queues,
which is usually known as POSIX message queues . They are much like the System V IPC's message
queues already examined in the section "IPC Messages" earlier in this chapter. However, POSIX
message queues sport a number of advantages over the older queues:



 A much simpler file-based interface to the applications


 Native support for message priorities (the priority ultimately determines the position of the
message in the queue)



 Native support for asynchronous notification of message arrivals, either by means of signals or
thread creation



 Timeouts for blocking send and receive operations

 POSIX message queues are handled by means of a set of library functions, which are shown in Table
19-15.

 Table 19-15. Library functions for POSIX message queues

Function names Description

mq_open() Open (optionally creating) a POSIX message
queue

mq_close() Close a POSIX message queue (without
destroying it)

mq_unlink() Destroy a POSIX message queue

mq_send() ,

mq_timedsend()

Send a message to a POSIX message queue; the
latter function defines a time limit for the operation

mq_receive() ,

mq_timedreceive()

Fetch a message from a POSIX message queue;
the latter function defines a time limit for the
operation

mq_notify()
Establish an asynchronous notification mechanism
for the arrival of messages in an empty POSIX
message queue

mq_getattr() ,

mq_setattr()

Respectively get and set attributes of a POSIX
message queue (essentially, whether the send and
receive operations should be blocking or
nonblocking)

Let's see how an application typically makes use of these functions. As a first step, the application
invokes the mq_open() library function to open a POSIX message queue. The first argument of the
function is a string specifying the name of the queue; it is similar to a filename, and indeed it must start
with a slash (/). The library function accepts a subset of the flags of the open() system call:
O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_EXCL, and O_NONBLOCK (for
nonblocking send and receive operations). Notice that the application may create a new POSIX message
queue by specifying the O_CREAT flag. The mq_open() function returns a descriptor for the
queuemuch like the file descriptor returned by the open() system call.

 Once a POSIX message queue has been opened, the application may send and receive messages by
using the library functions mq_send() and mq_receive(), passing to them the queue descriptor returned
by mq_open() . The application may also make use of mq_timedsend() and mq_timedreceive() to
specify the maximum time that the application will spend waiting for the send or receive operation to
complete.

 Rather than blocking in mq_receive()or continuously polling the message queue if the O_NONBLOCK
flag was specifiedthe application might also establish an asynchronous notification mechanism by
executing the mq_notify() library function. Essentially, the application may require that when a message is
inserted in an empty queue, either a signal is sent to a selected process, or a new thread is created.

 Finally, when the application has finished using the message queue, it invokes the mq_close() library
function; passing to it the queue descriptor. Notice that this function does not destroy the queue, exactly
as the close() system call does not remove a file. To destroy a queue, the application makes use of the
mq_unlink() function.

 The implementation of POSIX message queues in Linux 2.6 is simple and straightforward. A special
filesystem named mqueue (see the section "Special Filesystems" in Chapter 12) has been introduced,
which contains an inode for each existing queue. The kernel offers a few system calls, which roughly
correspond to the library functions listed in Table 19-15 earlier: mq_open(), mq_unlink(),
mq_timedsend(), mq_timedreceive(), mq_notify(), and mq_getsetattr() . These system calls act
transparently on the files of the mqueue filesystem, thus much of the job is done by the VFS layer. For
example, notice that the kernel does not offer a mq_close() function: in fact, the queue descriptor
returned to the application is effectively a file descriptor, therefore the mq_close() library function can
simply execute the close() system call to do its job.

 The mqueue special filesystem must not necessarily be mounted over the system directory tree.
However, if it is mounted, a user can create a POSIX message queue by touching a file in the root
directory of the filesystem; she can also get information about the queue by reading the corresponding
file. Finally, an application can use select() and poll() to be notified about changes in the queue state.

 Each queue is described by an mqueue_inode_info descriptor, which embodies the inode object
associated with the file in the mqueue special filesystem. When a POSIX message queue system call
receives a queue descriptor as parameter, it invokes the VFS's fget() function to derive the address of
the corresponding file object; next, the system call gets the inode object of the file in the mqueue
filesystem, and finally the address of the mqueue_inode_info descriptor that contains the inode object.

 The pending messages in a queue are collected in a singly linked list rooted at the mqueue_inode_info
descriptor; each message is represented by a descriptor of type msg_msgexactly the same descriptor
used for the System V IPC's messages described in the section "IPC Messages" earlier in this chapter.

Page 341

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 342

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 20. Program ExZecution
 The concept of a "process," described in Chapter 3, was used in Unix from the beginning to represent
the behavior of groups of running programs that compete for system resources. This final chapter focuses
on the relationship between program and process. We specifically describe how the kernel sets up the
execution context for a process according to the contents of the program file. While it may not seem like
a big problem to load a bunch of instructions into memory and point the CPU to them, the kernel has to
deal with flexibility in several areas:

 Different executable formats

 Linux is distinguished by its ability to run binaries that were compiled for other operating systems. In
particular, Linux is able to run an executable created for a 32-bit machine on the 64-bit version of the
same machine. For instance, an executable created on a Pentium can run on a 64-bit AMD Opteron .

Shared libraries

 Many executable files don't contain all the code required to run the program but expect the kernel to
load in functions from a library at runtime.

Other information in the execution context

 This includes the command-line arguments and environment variables familiar to programmers.

 A program is stored on disk as an executable file, which includes both the object code of the functions
to be executed and the data on which these functions will act. Many functions of the program are service
routines available to all programmers; their object code is included in special files called "libraries."
Actually, the code of a library function may either be statically copied into the executable file (static
libraries) or linked to the process at runtime (shared libraries, because their code can be shared by
several independent processes).

 When launching a program, the user may supply two kinds of information that affect the way it is
executed: command-line arguments and environment variables. Command-line arguments are typed in by
the user following the executable filename at the shell prompt. Environment variables, such as HOME and
PATH, are inherited from the shell, but the users may modify the values of such variables before they
launch the program.

 In the section "Executable Files," we explain what a program execution context is. In the section "
Executable Formats," we mention some of the executable formats supported by Linux and show how
Linux can change its "personality" to execute programs compiled for other operating systems. Finally, in
the section "The exec Functions," we describe the system call that allows a process to start executing a
new program.

Page 343

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 344

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 345

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

20.1. Executable Files
 Chapter 1 defined a process as an "execution context." By this we mean the collection of information
needed to carry on a specific computation; it includes the pages accessed, the open files, the hardware
register contents, and so on. An executable file is a regular file that describes how to initialize a new
execution context (i.e., how to start a new computation).

 Suppose a user wants to list the files in the current directory; he knows that this result can be simply
achieved by typing the filename of the /bin/ls[*] external command at the shell prompt. The command
shell forks a new process, which in turn invokes an execve() system call (see the section "The exec
Functions" later in this chapter), passing as one of its parameters a string that includes the full pathname
for the ls executable file/bin/ls, in this case. The sys_execve() service routine finds the corresponding file,
checks the executable format, and modifies the execution context of the current process according to the
information stored in it. As a result, when the system call terminates, the process starts executing the code
stored in the executable file, which performs the directory listing.

[*] The pathnames of executable files are not fixed in Linux; they depend on the distribution used.
Several standard naming schemes, such as Filesystem Hierarchy Standard (FHS), have been proposed
for all Unix systems.

 When a process starts running a new program, its execution context changes drastically because most of
the resources obtained during the process's previous computations are discarded. In the preceding
example, when the process starts executing /bin/ls, it replaces the shell's arguments with new ones
passed as parameters in the execve() system call and acquires a new shell environment (see the later
section "Command-Line Arguments and Shell Environment"). All pages inherited from the parent (and
shared with the Copy On Write mechanism) are released so that the new computation starts with a fresh
User Mode address space; even the privileges of the process could change (see the later section "
Process Credentials and Capabilities"). However, the process PID doesn't change, and the new
computation inherits from the previous one all open file descriptors that were not closed automatically
while executing the execve() system call.[*]

[*] By default, a file already opened by a process stays open after issuing an execve() system call.
However, the file is automatically closed if the process has set the corresponding bit in the close_on_exec
field of the files_struct structure (see Table 12-7 in Chapter 12); this is done by means of the fcntl()
system call.

 20.1.1. Process Credentials and Capabilities

 Traditionally, Unix systems associate with each process some credentials, which bind the process to a
specific user and a specific user group. Credentials are important on multiuser systems because they
determine what each process can or cannot do, thus preserving both the integrity of each user's personal
data and the stability of the system as a whole.

 The use of credentials requires support both in the process data structure and in the resources being
protected. One obvious resource is a file. Thus, in the Ext2 filesystem , each file is owned by a specific
user and is bound to a group of users. The owner of a file may decide what kind of operations are
allowed on that file, distinguishing among herself, the file's user group, and all other users. When a
process tries to access a file, the VFS always checks whether the access is legal, according to the
permissions established by the file owner and the process credentials .

 The process's credentials are stored in several fields of the process descriptor, listed in Table 20-1.
These fields contain identifiers of users and user groups in the system, which are usually compared with
the corresponding identifiers stored in the inodes of the files being accessed.

 Table 20-1. Traditional process credentials

Name Description

uid, gid User and group real identifiers

euid, egid User and group effective identifiers

fsuid, fsgid User and group effective identifiers for file access

groups Supplementary group identifiers

suid, sgid User and group saved identifiers

A UID of 0 specifies the superuser (root), while a user group ID of 0 specifies the root group. If a
process credential stores a value of 0, the kernel bypasses the permission checks and allows the
privileged process to perform various actions, such as those referring to system administration or
hardware manipulation, that are not possible to unprivileged processes.

 When a process is created, it always inherits the credentials of its parent. However, these credentials can
be modified later, either when the process starts executing a new program or when it issues suitable
system calls. Usually, the uid, euid, fsuid, and suid fields of a process contain the same value. When the
process executes a setuid programthat is, an executable file whose setuid flag is onthe euid and fsuid
fields are set to the identifier of the file's owner. Almost all checks involve one of these two fields: fsuid is
used for file-related operations, while euid is used for all other operations. Similar considerations apply to
the gid, egid, fsgid, and sgid fields that refer to group identifiers.

 As an illustration of how the fsuid field is used, consider the typical situation when a user wants to change
his password. All passwords are stored in a common file, but he cannot directly edit this file because it is
protected. Therefore, he invokes a system program named /usr/bin/passwd, which has the setuid flag set
and whose owner is the superuser. When the process forked by the shell executes such a program, its
euid and fsuid fields are set to 0to the PID of the superuser. Now the process can access the file,
because, when the kernel performs the access control, it finds a 0 value in fsuid. Of course, the
/usr/bin/passwd program does not allow the user to do anything but change his own password.

 Unix's long history teaches the lesson that setuid programs programs that have the setuid flag setare quite
dangerous: malicious users could trigger some programming errors (bugs) in the code to force setuid
programs to perform operations that were never planned by the program's original designers. In the
worst case, the entire system's security can be compromised. To minimize such risks, Linux, like all
modern Unix systems, allows processes to acquire setuid privileges only when necessary and drop them
when they are no longer needed. This feature may turn out to be useful when implementing user
applications with several protection levels. The process descriptor includes an suid field, which stores the
values of the effective identifiers (euid and fsuid) at the setuid program startup. The process can change
the effective identifiers by means of the setuid(), setresuid(), setfsuid(), and setreuid() system calls.[*]

[*] A group's effective credentials can be changed by issuing the corresponding setgid(), setresgid(),
setfsgid(), and setregid() system calls.

 Table 20-2 shows how these system calls affect the process's credentials. Be warned that if the calling
process does not already have superuser privilegesthat is, if its euid field is not nullthese system calls can
be used only to set values already included in the process's credential fields. For instance, an average
user process can store the value 500 into its fsuid field by invoking the setfsuid() system call, but only if
one of the other credential fields already holds the same value.

 Table 20-2. Semantics of the system calls that set process credentials

Field setuid (e) setresuid (u,e,s) setreuid (u,e) setfsuid (f)

euid=0 euid 0

uid Set to e Unchanged Set to u Set to u Unchanged

euid Set to e Set to e Set to e Set to e Unchanged

fsuid Set to e Set to e Set to e Set to e Set to f

suid Set to e Unchanged Set to s Set to e Unchanged

To understand the sometimes complex relationships among the four user ID fields, consider for a moment
the effects of the setuid() system call. The actions are different, depending on whether the calling
process's euid field is set to 0 (that is, the process has superuser privileges) or to a normal UID .

 If the euid field is 0, the system call sets all credential fields of the calling process (uid, euid, fsuid, and
suid) to the value of the parameter e. A superuser process can thus drop its privileges and become a
process owned by a normal user. This happens, for instance, when a user logs in: the system forks a new
process with superuser privileges, but the process drops its privileges by invoking the setuid() system call
and then starts executing the user's login shell program.

 If the euid field is not 0, the setuid() system call modifies only the value stored in euid and fsuid, leaving
the other two fields unchanged. This behavior of the system call is useful when implementing a setuid
program that scales up and down the effective process's privileges stored in the euid and fsuid fields.

 20.1.1.1. Process capabilities

 The POSIX.1e draftnow withdrawnintroduced another model of process credentials based on the
notion of "capabilities." The Linux kernel supports POSIX capabilities, although most Linux distributions
do not make use of them.

 A capability is simply a flag that asserts whether the process is allowed to perform a specific operation
or a specific class of operations. This model is different from the traditional "superuser versus normal
user" model in which a process can either do everything or do nothing, depending on its effective UID.
As illustrated in Table 20-3, several capabilities have been included in the Linux kernel.

 Table 20-3. Linux capabilities

Name Description

CAP_AUDIT_WRITE Allow to generate audit messages by writing in
netlink sockets

CAP_AUDIT_CONTROL Allow to control kernel auditing activities by means
of netlink sockets

CAP_CHOWN Ignore restrictions on file user and group ownership
changes

CAP_DAC_OVERRIDE Ignore file access permissions

CAP_DAC_READ_SEARCH Ignore file/directory read and search permissions

CAP_FOWNER Generally ignore permission checks on file
ownership

CAP_FSETID Ignore restrictions on setting the setuid and setgid
flags for files

CAP_KILL Bypass permission checks when generating signals

CAP_LINUX_IMMUTABLE Allow modification of append-only and immutable
Ext2/Ext3 files

CAP_IPC_LOCK Allow locking of pages and of shared memory
segments

CAP_IPC_OWNER Skip IPC ownership checks

CAP_LEASE Allow taking of leases on files (see "Linux File
Locking" in Chapter 12)

CAP_MKNOD Allow privileged mknod() operations

CAP_NET_ADMIN Allow general networking administration

CAP_NET_BIND_SERVICE Allow binding to TCP/UDP sockets below 1,024

CAP_NET_BROADCAST Allow broadcasting and multicasting

CAP_NET_RAW Allow use of RAW and PACKET sockets

CAP_SETGID Ignore restrictions on group's process credentials
manipulations

CAP_SETPCAP Allow capability manipulations on other processes

CAP_SETUID Ignore restrictions on user's process credentials
manipulations

CAP_SYS_ADMIN Allow general system administration

CAP_SYS_BOOT Allow use of reboot()

CAP_SYS_CHROOT Allow use of chroot()

CAP_SYS_MODULE Allow inserting and removing of kernel modules

CAP_SYS_NICE
Skip permission checks of the nice() and
setpriority() system calls, and allow creation of
real-time processes

CAP_SYS_PACCT Allow configuration of process accounting

CAP_SYS_PTRACE Allow use of ptrace() on every process

CAP_SYS_RAWIO Allow access to I/O ports through ioperm() and
iopl()

CAP_SYS_RESOURCE Allow resource limits to be increased

CAP_SYS_TIME Allow manipulation of system clock and real-time
clock

CAP_SYS_TTY_CONFIG Allow to configure the terminal and to execute the
vhangup() system call

The main advantage of capabilities is that, at any time, each program needs a limited number of them.
Consequently, even if a malicious user discovers a way to exploit a buggy program, she can illegally
perform only a limited set of operations.

 Assume, for instance, that a buggy program has only the CAP_SYS_TIME capability. In this case, the
malicious user who discovers an exploitation of the bug can succeed only in illegally changing the
real-time clock and the system clock. She won't be able to perform any other kind of privileged
operations.

 Neither the VFS nor the Ext2 filesystem currently supports the capability model, so there is no way to
associate an executable file with the set of capabilities that should be enforced when a process executes
that file. Nevertheless, a process can explicitly get and lower its capabilities by using, respectively, the
capget() and capset() system calls. For instance, it is possible to modify the login program to retain a
subset of the capabilities and drop the others.

 The Linux kernel already takes capabilities into account. Let's consider, for instance, the nice() system
call, which allows users to change the static priority of a process. In the traditional model, only the
superuser can raise a priority; the kernel should therefore check whether the euid field in the descriptor of
the calling process is set to 0. However, the Linux kernel defines a capability called CAP_SYS_NICE,
which corresponds exactly to this kind of operation. The kernel checks the value of this flag by invoking
the capable() function and passing the CAP_SYS_NICE value to it.

 This approach works, thanks to some "compatibility hacks" that have been added to the kernel code:
each time a process sets the euid and fsuid fields to 0 (either by invoking one of the system calls listed in
Table 20-2 or by executing a setuid program owned by the superuser), the kernel sets all process
capabilities so that all checks will succeed. When the process resets the euid and fsuid fields to the real
UID of the process owner, the kernel checks the keep_capabilities flag in the process descriptor and
drops all capabilities of the process if the flag is set. A process can set and reset the keep_capabilities
flag by means of the Linux-specific prctl() system call.

 20.1.1.2. The Linux Security Modules framework

 In Linux 2.6, capabilities are tightly integrated with the Linux Security Modules framework (LSM). In
short, the LSM framework allows developers to define several alternative models for kernel security.

 Each security model is implemented by a set of security hooks . A security hook is a function that is
invoked by the kernel when it is about to perform an important, security-related operation. The hook
function determines whether the operation should be carried on or rejected.

 The security hooks are stored in a table of type security_operations. The address of the hook table for
the security model currently in use is stored in the security_ops variable. By default, the kernel makes use
of a minimal security model implemented by the dummy_security_ops table; each hook in this table
essentially checks the corresponding capability, if any, or unconditionally returns 0 (operation allowed).

 For instance, the service routines of the stime() and settimeofday() functions invoke the settime security
hook before changing the system date and time. The corresponding function pointed to by the
dummy_security_ops table limits itself in checking whether the CAP_SYS_TIME capability of the
current process is set, and returns either 0 or -EPERM accordingly.

 Sophisticated security models for the Linux kernel have been devised. A widely known example is
Security-Enhanced Linux (SELinux), developed by the United State's National Security Agency.

 20.1.2. Command-Line Arguments and Shell Environment

 When a user types a command, the program that is loaded to satisfy the request may receive some
command-line arguments from the shell. For example, when a user types the command:

 $ ls -l /usr/bin

to get a full listing of the files in the /usr/bin directory, the shell process creates a new process to execute
the command. This new process loads the /bin/ls executable file. In doing so, most of the execution
context inherited from the shell is lost, but the three separate arguments ls, -l, and /usr/bin are kept.
Generally, the new process may receive any number of arguments.

 The conventions for passing the command-line arguments depend on the high-level language used. In the
C language, the main() function of a program may receive as its parameters an integer specifying how
many arguments have been passed to the program and the address of an array of pointers to strings. The
following prototype formalizes this standard:

 int main(int argc, char *argv[])

Going back to the previous example, when the /bin/ls program is invoked, argc has the value 3, argv[0]
points to the ls string, argv[1] points to the -l string, and argv[2] points to the /usr/bin string. The end of
the argv array is always marked by a null pointer, so argv[3] contains NULL.

 A third optional parameter that may be passed in the C language to the main() function is the parameter
containing environment variables . They are used to customize the execution context of a process, to
provide general information to a user or other processes, or to allow a process to keep some information
across an execve() system call.

 To use the environment variables, main() can be declared as follows:

 int main(int argc, char *argv[], char *envp[])

The envp parameter points to an array of pointers to environment strings of the form:

 VAR_NAME=something

where VAR_NAME represents the name of an environment variable, while the substring following the =
delimiter represents the actual value assigned to the variable. The end of the envp array is marked by a
null pointer, like the argv array. The address of the envp array is also stored in the environ global variable
of the C library.

 Command-line arguments and environment strings are placed on the User Mode stack, right before the
return address (see the section "Parameter Passing" in Chapter 10). The bottom locations of the User
Mode stack are illustrated in Figure 20-1. Notice that the environment variables are located near the
bottom of the stack, right after a 0 long integer.

 Figure 20-1. The bottom locations of the User Mode stack

 20.1.3. Libraries

 Each high-level source code file is transformed through several steps into an object file, which contains
the machine code of the assembly language instructions corresponding to the high-level instructions. An
object file cannot be executed, because it does not contain the linear address that corresponds to each
reference to a name of a global symbol external to the source code file, such as functions in libraries or
other source code files of the same program. The assigning, or resolution, of such addresses is performed
by the linker, which collects all the object files of the program and constructs the executable file. The
linker also analyzes the library's functions used by the program and glues them into the executable file in a
manner described later in this chapter.

 Most programs, even the most trivial ones, use libraries. Consider, for instance, the following one-line C
program:

 void main(void) { }

Although this program does not compute anything, a lot of work is needed to set up the execution
environment (see the section "The exec Functions" later in this chapter) and to kill the process when the
program terminates (see the section "Destroying Processes" in Chapter 3). In particular, when the main()
function terminates, the C compiler inserts an exit_group() function call in the object code.

 We know from Chapter 10 that programs usually invoke system calls through wrapper routines in the C
library. This holds for the C compiler, too. Besides including the code directly generated by compiling the
program's statements, each executable file also includes some "glue" code to handle the interactions of the
User Mode process with the kernel. Portions of such glue code are stored in the C library.

 Many other libraries of functions, besides the C library, are included in Unix systems. A generic Linux
system typically uses several hundreds of libraries. Just to mention a couple of them: the math library libm
includes advanced functions for floating point operations, while the X11 library libX11 collects together
the basic low-level functions for the X11 Window System graphics interface.

 All executable files in traditional Unix systems were based on static libraries . This means that the
executable file produced by the linker includes not only the code of the original program but also the
code of the library functions that the program refers to. One big disadvantage of statically linked
programs is that they eat lots of space on disk. Indeed, each statically linked executable file duplicates
some portion of library code.

 Modern Unix systems use shared libraries . The executable file does not contain the library object code,
but only a reference to the library name. When the program is loaded in memory for execution, a suitable
program called dynamic linker (also named ld.so) takes care of analyzing the library names in the
executable file, locating the library in the system's directory tree and making the requested code available
to the executing process. A process can also load additional shared libraries at runtime by using the
dlopen() library function.

 Shared libraries are especially convenient on systems that provide file memory mapping, because they
reduce the amount of main memory requested for executing a program. When the dynamic linker must
link a shared library to a process, it does not copy the object code, but performs only a memory
mapping of the relevant portion of the library file into the process's address space. This allows the page
frames containing the machine code of the library to be shared among all processes that are using the
same code. Clearly, sharing is not possible if the program has been linked statically.

 Shared libraries also have some disadvantages. The startup time of a dynamically linked program is
usually longer than that of a statically linked one. Moreover, dynamically linked programs are not as
portable as statically linked ones, because they may not execute properly in systems that include a
different version of the same library.

 A user may always require a program to be linked statically. For example, the GCC compiler offers the
-static option, which tells the linker to use the static libraries instead of the shared ones.

 20.1.4. Program Segments and Process Memory Regions

 The linear address space of a Unix program is traditionally partitioned, from a logical point of view, in
several linear address intervals called segments :[*]

[*] The word "segment" has historical roots, because the first Unix systems implemented each linear
address interval with a different segment register. Linux, however, does not rely on the segmentation
mechanism of the 80 x 86 microprocessors to implement program segments.

 Text segment

 Includes the program's executable code.

Initialized data segment

 Contains the initialized datathat is, the static variables and the global variables whose initial values are
stored in the executable file (because the program must know their values at startup).

Uninitialized data segment (bss)

 Contains the uninitialized datathat is, all global variables whose initial values are not stored in the
executable file (because the program sets the values before referencing them); it is historically called a bss
segment.

Stack segment

 Contains the program stack, which includes the return addresses, parameters, and local variables of the
functions being executed.

 Each mm_struct memory descriptor (see the section "The Memory Descriptor" in Chapter 9) includes
some fields that identify the role of a few crucial memory regions of the corresponding process:

 start_code, end_code

 Store the initial and final linear addresses of the memory region that includes the native code of the
programthe code in the executable file.

start_data, end_data

 Store the initial and final linear addresses of the memory region that includes the native initialized data of
the program, as specified in the executable file. The fields identify a memory region that roughly
corresponds to the data segment.

start_brk, brk

 Store the initial and final linear addresses of the memory region that includes the dynamically allocated
memory areas of the process (see the section "Managing the Heap" in Chapter 9). This memory region is
sometimes called the heap.

start_stack

 Stores the address right above that of main()'s return address; as illustrated in Figure 20-1, higher
addresses are reserved (recall that stacks grow toward lower addresses).

arg_start, arg_end

 Store the initial and final addresses of the stack portion containing the command-line arguments.

env_start, env_end

 Store the initial and final addresses of the stack portion containing the environment strings.

 Notice that shared libraries and file memory mapping have made the classification of the process's
address space based on program segments obsolete, because each of the shared libraries is mapped into
a different memory region from those discussed in the preceding list.

 20.1.4.1. Flexible memory region layout

 The flexible memory region layout has been introduced in the kernel version 2.6.9: essentially, each
process gets a memory layout that depends on how much the User Mode stack is expected to grow.
However, the old, classical layout can still be used (mainly when the kernel cannot put a limit on the size
of the User Mode stack of a process). Both layouts are described in Table 20-4, assuming the 80 x 86
architecture with the default User Mode address space spanning up to 3 GB.

 Table 20-4. The memory region layouts in the 80 x 86 architecture

Type of memory region Classical layout Flexible layout

Text segment (ELF) Starts from 0x08048000

Data and bss segments Starts right after the text segment

Heap Starts right after the data and bss segments

File memory mappings and
anonymous memory regions

Starts from 0x40000000 (this
address corresponds to 1/3 of
the whole User Mode address
space); libraries added at
successively higher addresses

Starts near the end (lowest
address) of the User Mode
stack; libraries added at
successively lower addresses

User Mode stack Starts at 0xc0000000 and grows towards lower addresses

As you can see, the layouts differ only on the position of the memory regions for file memory mappings
and anonymous mappings. In the classical layout, these regions are placed starting at one-third of the
whole User Mode address space, usually at 0x40000000; newer regions are added at higher linear
addresses, thus the regions expand towards the User Mode stack.

 Conversely, in the flexible layout the memory regions for file memory mapping and anonymous mappings
are placed near the end of the User Mode stack; newer regions are added at lower linear addresses, thus
the regions expand towards the heap. Remember that the stack grows towards lower addresses, too.

 The kernel typically uses the flexible layout when it can get a limit on the size of the User Mode stack by
means of the RLIMIT_STACK resource limit (see the section "Process Resource Limits" in Chapter 3).
This limit determines the size of the linear address space reserved for the stack; however, this size cannot
be smaller than 128 MB or larger than 2.5 GB.

 On the other hand, if either the RLIMIT_STACK resource limit is set to "infinity" or the system
administrator has set to 1 the sysctl_legacy_va_layout variable (by writing in the /proc
/sys/vm/legacy_va_layout file or by issuing the proper sysctl() system call), the kernel cannot determine
an upper bound on the size of the User Mode stack, thus it sticks to the classical memory region layout.

 Why has the flexible layout been introduced? Its main advantage is that it allows a process to make
better use of the User Mode linear address space. In the classical layout the heap is limited to less than 1
GB, while the other memory regions can fill up to about 2 GB (minus the stack size). In the flexible
layout, these constraints are gone: both the heap and the other memory regions can freely expand until all
the linear addresses left unused by the User Mode stack and the program's fixed-size segments are
taken.

 At this point, a small, practical experiment can be quite enlightening. Let's write and compile the
following C program:

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 int main()

 {

 char cmd[32];

 brk((void *)0x8051000);

 sprintf(cmd, "cat /proc/self/maps");

 system(cmd);

 return 0;

 }

Essentially, the program enlarges the heap of the process (see the section "Managing the Heap" in
Chapter 9), then it reads the maps file in the /proc special filesystem that produces the list of memory
regions of the process itself.

 Let's run the program without putting any limit on the stack size:

 # ulimit -s unlimited; /tmp/memorylayout

 08048000-08049000 r-xp 00000000 03:03 5042408 /tmp/memorylayout

 08049000-0804a000 rwxp 00000000 03:03 5042408 /tmp/memorylayout

 0804a000-08051000 rwxp 0804a000 00:00 0

 40000000-40014000 r-xp 00000000 03:03 620801 /lib/ld-2.3.2.so

 40014000-40015000 rwxp 00013000 03:03 620801 /lib/ld-2.3.2.so

 40015000-40016000 rwxp 40015000 00:00 0

 4002f000-40157000 r-xp 00000000 03:03 620804 /lib/libc-2.3.2.so

 40157000-4015b000 rwxp 00128000 03:03 620804 /lib/libc-2.3.2.so

 4015b000-4015e000 rwxp 4015b000 00:00 0

 bffeb000-c0000000 rwxp bffeb000 00:00 0

 ffffe000-fffff000 ---p 00000000 00:00 0

(You might see a slightly different table, depending on the version of the C compiler suite and on how the
program has been linked.) The first two hexadecimal numbers represent the extent of the memory region;
they are followed by the permission flags; finally, there is some information about the file mapped by the
memory region, if any: the starting offset inside the file, the block device number and the inode number,
and the filename.

 Notice that all regions listed are implemented by means of private memory mappings (the letter p in the
permission column). This is not surprising because these memory regions exist only to provide data to a
process. While executing instructions, a process may modify the contents of these memory regions;
however, the files on disk associated with them stay unchanged. This is precisely how private memory
mappings act.

 The memory region starting from 0x8048000 is a memory mapping associated with the portion of the
/tmp/memorylayout file ranging from byte 0 to byte 4,095. The permissions specify that the region is
executable (it contains object code), read-only (it's not writable because the instructions don't change
during a run), and private. That's correct, because the region maps the text segment of the program.

 The memory region starting from 0x8049000 is another memory mapping associated with the same
portion of /tmp/memorylayout ranging from byte 0 to byte 4,095. This program is so small that the text,
data, and bss segments of the program are included in the same file's page. Thus, the memory region
containing the data and bss segments overlaps with the previous memory region in the linear address
space.

 The third memory region contains the heap of the process. Notice that it terminates at the linear address
0x8051000 that was passed to the brk() system call.

 The next two memory regions starting from 0x40000000 and 0x40014000 correspond to the text
segment and to the data and bss segments, respectively, of the dynamic linker for the ELF shared
libraries/lib/ld-2.3.2.so on this system. The dynamic linker is never executed alone: it is always
memory-mapped inside the address space of a process executing another program. The anonymous
memory region starting from 0x40015000 has been allocated by the dynamic linker.

 On this system, the C library happens to be stored in the /lib/libc-2.3.2.so file. The text segment and the
data and bss segments of the C library are mapped into the next two memory regions, starting from
address 0x4002f000. Remember that page frames included in private regions can be shared among
several processes with the Copy On Write mechanism, as long as they are not modified. Thus, because
the text segment is read-only, the page frames containing the executable code of the C library are shared
among almost all currently executing processes (all except the statically linked ones). The anonymous
memory region starting from 0x4015b000 has been allocated by the C library.

 The anonymous memory region from 0xbffeb000 to 0xc0000000 is associated with the User Mode
stack. We already explained in the section "Page Fault Exception Handler" in Chapter 9 how the stack is
automatically expanded toward lower addresses whenever necessary.

 Finally, the one-page anonymous memory region from 0xffffe000 contains the vsyscall page of the
process, which is accessed when issuing a system call and returning from a signal handler (see the section
"Issuing a System Call via the sysenter Instruction" in Chapter 10 and the section "Catching the Signal" in
Chapter 11).

 Now let's run the same program by enforcing a limit on the size of the User Mode stack:

 # ulimit -s 100; /tmp/memorylayout

 08048000-08049000 r-xp 00000000 03:03 5042408 /tmp/memorylayout

 08049000-0804a000 rwxp 00000000 03:03 5042408 /tmp/memorylayout

 0804a000-08051000 rwxp 0804a000 00:00 0

 b7ea3000-b7fcb000 r-xp 00000000 03:03 620804 /lib/libc-2.3.2.so

 b7fcb000-b7fcf000 rwxp 00128000 03:03 620804 /lib/libc-2.3.2.so

 b7fcf000-b7fd2000 rwxp b7fcf000 00:00 0

 b7feb000-b7fec000 rwxp b7feb000 00:00 0

 b7fec000-b8000000 r-xp 00000000 03:03 620801 /lib/ld-2.3.2.so

 b8000000-b8001000 rwxp 00013000 03:03 620801 /lib/ld-2.3.2.so

 bffeb000-c0000000 rwxp bffeb000 00:00 0

 ffffe000-fffff000 ---p 00000000 00:00 0

Notice how the layout has changed: the dynamic linker has been mapped about 128 MB above the
highest stack address. Furthermore, because the memory regions of the C library have been created
later, they get lower linear addresses.

 20.1.5. Execution Tracing

 Execution tracing is a technique that allows a program to monitor the execution of another program. The
traced program can be executed step by step, until a signal is received, or until a system call is invoked.
Execution tracing is widely used by debuggers, together with other techniques such as the insertion of
breakpoints in the debugged program and runtime access to its variables. We focus on how the kernel
supports execution tracing rather than discussing how debuggers work.

 In Linux, execution tracing is performed through the ptrace() system call, which can handle the
commands listed in Table 20-5. Processes having the CAP_SYS_PTRACE capability flag set are
allowed to trace every process in the system except init. Conversely, a process P with no
CAP_SYS_PTRACE capability is allowed to trace only processes having the same owner as P.
Moreover, a process cannot be traced by two processes at the same time.

 Table 20-5. The ptrace commands in the 80 x 86 architecture

Command Description

PTRACE_ATTACH Start execution tracing for another process

PTRACE_CONT Resume execution

PTRACE_DETACH Terminate execution tracing

PTRACE_GET_THREAD_AREA Get the Thread Local Storage (TLS) area on
behalf of the traced process

PTRACE_GETEVENTMSG Get additional data from the traced process (e.g.,
the PID of a newly forked process)

PTRACE_GETFPREGS Read floating point registers

PTRACE_GETFPXREGS Read MMX and XMM registers

PTRACE_GETREGS Read privileged CPU's registers

PTRACE_GETSIGINFO Get information on the last signal delivered to the
traced process

PTRACE_KILL Kill the traced process

PTRACE_OLDSETOPTIONS Architecture-dependent command equivalent to
PTRACE_SETOPTIONS

PTRACE_PEEKDATA Read a 32-bit value from the data segment

PTRACE_PEEKTEXT Read a 32-bit value from the text segment

PTRACE_PEEKUSR Read the CPU's normal and debug registers

PTRACE_POKEDATA Write a 32-bit value into the data segment

PTRACE_POKETEXT Write a 32-bit value into the text segment

PTRACE_POKEUSR Write the CPU's normal and debug registers

PTRACE_SET_THREAD_AREA Set the Thread Local Storage (TLS) area on behalf
of the traced process

PTRACE_SETFPREGS Write floating point registers

PTRACE_SETFPXREGS Write MMX and XMM registers

PTRACE_SETOPTIONS Modify ptrace() behavior

PTRACE_SETREGS Write privileged CPU's registers

PTRACE_SETSIGINFO Forge the information on the last signal delivered to
the traced process

PTRACE_SINGLESTEP Resume execution for a single assembly language
instruction

PTRACE_SYSCALL Resume execution until the next system call
boundary

PTRACE_TRACEME Start execution tracing for the current process

The ptrace() system call modifies the parent field in the descriptor of the traced process so that it points
to the tracing process; therefore, the tracing process becomes the effective parent of the traced one.
When execution tracing terminatesi.e., when ptrace() is invoked with the PTRACE_DETACH
commandthe system call sets p_pptr to the value of real_parent, thus restoring the original parent of the
traced process (see the section "Relationships Among Processes" in Chapter 3).

 Several monitored events can be associated with a traced program:


 End of execution of a single assembly language instruction


 Entering a system call


 Exiting from a system call


 Receiving a signal

 When a monitored event occurs, the traced program is stopped and a SIGCHLD signal is sent to its
parent. When the parent wishes to resume the child's execution, it can use one of the PTRACE_CONT,
PTRACE_SINGLESTEP, and PTRACE_SYSCALL commands, depending on the kind of event it
wants to monitor.

 The PTRACE_CONT command simply resumes execution; the child executes until it receives another
signal. This kind of tracing is implemented by means of the PT_PTRACED flag in the ptrace field of the
process descriptor, which is checked by the do_signal() function (see the section "Delivering a Signal" in
Chapter 11).

 The PTRACE_SINGLESTEP command forces the child process to execute the next assembly language
instruction, and then stops it again. This kind of tracing is implemented on 80 x 86-based machines by
means of the TF trap flag in the eflags register: when it is on, a "Debug " exception is raised right after
every assembly language instruction. The corresponding exception handler just clears the flag, forces the
current process to stop, and sends a SIGCHLD signal to its parent. Notice that setting the TF flag is not
a privileged operation, so User Mode processes can force single-step execution even without the ptrace(
) system call. The kernel checks the PT_DTRACE flag in the process descriptor to keep track of
whether the child process is being single-stepped through ptrace().

 The PTRACE_SYSCALL command causes the traced process to resume execution until a system call
is invoked. The process is stopped twice: the first time when the system call starts and the second time
when the system call terminates. This kind of tracing is implemented by means of the
TIF_SYSCALL_TRACE flag included in the flags field of the thread_info structure of the process, which
is checked in the system_call() assembly language function (see the section "Issuing a System Call via the
int $0x80 Instruction" in Chapter 10).

 A process can also be traced using some debugging features of the Intel Pentium processors. For
example, the parent could set the values of the dr0,..., dr7 debug registers for the child by using the
PTRACE_POKEUSR command. When an event monitored by a debug register occurs, the CPU raises
the "Debug" exception; the exception handler can then suspend the traced process and send the
SIGCHLD signal to the parent.

Page 346

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 347

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 348

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

20.2. Executable Formats
 The standard Linux executable format is named Executable and Linking Format (ELF). It was
developed by Unix System Laboratories and is now the most widely used format in the Unix world.
Several well-known Unix operating systems, such as System V Release 4 and Sun's Solaris 2, have
adopted ELF as their main executable format.

 Older Linux versions supported another format named Assembler OUTput Format(a.out); actually,
there were several versions of that format floating around the Unix world. It is seldom used now, because
ELF is much more practical.

 Linux supports many other different formats for executable files; in this way, it can run programs
compiled for other operating systems, such as MS-DOS EXE programs or BSD Unix's COFF
executables. A few executable formats, such as Java or bash scripts, are platform-independent.

 An executable format is described by an object of type linux_binfmt, which essentially provides three
methods:

 load_binary

 Sets up a new execution environment for the current process by reading the information stored in an
executable file.

load_shlib

 Dynamically binds a shared library to an already running process; it is activated by the uselib() system
call.

core_dump

 Stores the execution context of the current process in a file named core. This file, whose format depends
on the type of executable of the program being executed, is usually created when a process receives a
signal whose default action is "dump" (see the section "Actions Performed upon Delivering a Signal" in
Chapter 11).

 All linux_binfmt objects are included in a singly linked list, and the address of the first element is stored in
the formats variable. Elements can be inserted and removed in the list by invoking the register_binfmt()
and unregister_binfmt() functions. The register_binfmt() function is executed during system startup for
each executable format compiled into the kernel. This function is also executed when a module
implementing a new executable format is being loaded, while the unregister_binfmt() function is invoked
when the module is unloaded.

 The last element in the formats list is always an object describing the executable format for interpreted
scripts . This format defines only the load_binary method. The corresponding load_script() function
checks whether the executable file starts with the #! pair of characters. If so, it interprets the rest of the
first line as the pathname of another executable file and tries to execute it by passing the name of the
script file as a parameter.[*]

[*] It is possible to execute a script file even if it doesn't start with the #! characters, as long as the file is
written in the language recognized by a command shell. In this case, however, the script is interpreted
either by the shell on which the user types the command or by the default Bourne shell sh; therefore, the
kernel is not directly involved.

 Linux allows users to register their own custom executable formats. Each such format may be recognized
either by means of a magic number stored in the first 128 bytes of the file, or by a filename extension that
identifies the file type. For example, MS-DOS extensions consist of three characters separated from the
filename by a dot: the .exe extension identifies executable programs, while the .bat extension identifies
shell scripts.

 When the kernel determines that the executable file has a custom format, it starts the proper interpreter
program . The interpreter program runs in User Mode, receives as its parameter the pathname of the
executable file, and carries on the computation. As an example, an executable file containing a Java
program is dealt by a java virtual machine such as /usr/lib/java/bin/java.

 The mechanism is similar to the script's format, but it's more powerful because it doesn't impose any
restrictions on the custom format. To register a new format, the user writes into the register file of the
binfmt_misc special filesystem (usually mounted on /proc/sys/fs/binfmt_misc) a string with the following
format:

 :name:type:offset:string:mask:interpreter:flags

where each field has the following meaning:

 name

 An identifier for the new format

type

 The type of recognition (M for magic number, E for extension)

offset

 The starting offset of the magic number inside the file

string

 The byte sequence to be matched either in the magic number or in the extension

mask

 The string to mask out some bits in string

interpreter

 The full pathname of the interpreter program

flags

 Some optional flags that control how the interpreter program has to be invoked

 For example, the following command performed by the superuser enables the kernel to recognize the
Microsoft Windows executable format:

 $ echo ':DOSWin:M:0:MZ:0xff:/usr/bin/wine:'

 > /proc/sys/fs/binfmt_misc/register

A Windows executable file has the MZ magic number in the first two bytes, and it is executed by the
/usr/bin/wine interpreter program.

Page 349

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 350

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 351

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

20.3. Execution Domains
 As mentioned in Chapter 1, a neat feature of Linux is its ability to execute files compiled for other
operating systems. Of course, this is possible only if the files include machine code for the same computer
architecture on which the kernel is running. Two kinds of support are offered for these "foreign"
programs:



 Emulated execution: necessary to execute programs that include system calls that are not
POSIX-compliant



 Native execution: valid for programs whose system calls are totally POSIX-compliant

 Microsoft MS-DOS and Windows programs are emulated: they cannot be natively executed, because
they include APIs that are not recognized by Linux. An emulator such as DOSemu or Wine (which
appeared in the example at the end of the previous section) is invoked to translate each API call into an
emulating wrapper function call, which in turn uses the existing Linux system calls. Because emulators are
mostly implemented as User Mode applications, we don't discuss them further.

 On the other hand, POSIX-compliant programs compiled on operating systems other than Linux can be
executed without too much trouble, because POSIX operating systems offer similar APIs. (Actually, the
APIs should be identical, although this is not always the case.) Minor differences that the kernel must iron
out usually refer to how system calls are invoked or how the various signals are numbered. This
information is stored in execution domain descriptors of type exec_domain.

 A process specifies its execution domain by setting the personality field of its descriptor and storing the
address of the corresponding exec_domain data structure in the exec_domain field of the tHRead_info
structure. A process can change its personality by issuing a suitable system call named personality() ;
typical values assumed by the system call's parameter are listed in Table 20-6. Programmers are not
expected to directly change the personality of their programs; instead, the personality() system call
should be issued by the glue code that sets up the execution context of the process (see the next section).

 Table 20-6. Personalities supported by the Linux kernel

Personality Operating system

PER_LINUX Standard execution domain

PER_LINUX_32BIT Linux with 32-bit physical addresses in 64-bit
architectures

PER_LINUX_FDPIC Linux program in ELF FDPIC format

PER_SVR4 System V Release 4

PER_SVR3 System V Release 3

PER_SCOSVR3 SCO Unix Version 3.2

PER_OSR5 SCO OpenServer Release 5

PER_WYSEV386 Unix System V/386 Release 3.2.1

PER_ISCR4 Interactive Unix

PER_BSD BSD Unix

PER_SUNOS SunOS

PER_XENIX Xenix

PER_LINUX32
Emulation of Linux 32-bit programs in 64-bit
architectures (using a 4 GB User Mode address
space)

PER_LINUX32_3GB
Emulation of Linux 32-bit programs in 64-bit
architectures (using a 3 GB User Mode address
space)

PER_IRIX32 SGI IRIX -5 32 bit

PER_IRIXN32 SGI IRIX-6 32 bit

PER_IRIX64 SGI IRIX-6 64 bit

PER_RISCOS RISC OS

PER_SOLARIS Sun's Solaris

PER_UW7 SCO's (formerly Caldera's) UnixWare 7

PER_OSF4 Digital UNIX (Compaq Tru64 UNIX)

PER_HPUX Hewlett-Packard's HP-UX

Page 352

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 353

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 354

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

20.4. The exec Functions
 Unix systems provide a family of functions that replace the execution context of a process with a new
context described by an executable file. The names of these functions start with the prefix exec, followed
by one or two letters; therefore, a generic function in the family is usually referred to as an exec function.

 The exec functions are listed in Table 20-7; they differ in how the parameters are interpreted.

 Table 20-7. The exec functions

Function name PATH search Command-line
arguments Environment array

execl() No List No

execlp() Yes List No

execle() No List Yes

execv() No Array No

execvp() Yes Array No

execve() No Array Yes

The first parameter of each function denotes the pathname of the file to be executed. The pathname can
be absolute or relative to the process's current directory. Moreover, if the name does not include any /
characters, the execlp() and execvp() functions search for the executable file in all directories specified
by the PATH environment variable.

 Besides the first parameter, the execl(), execlp(), and execle() functions include a variable number of
additional parameters. Each points to a string describing a command-line argument for the new program;
as the "l" character in the function names suggests, the parameters are organized in a list terminated by a
NULL value. Usually, the first command-line argument duplicates the executable filename. Conversely,
the execv(), execvp(), and execve() functions specify the command-line arguments with a single
parameter; as the v character in the function names suggests, the parameter is the address of a vector of
pointers to command-line argument strings. The last component of the array must be NULL.

 The execle() and execve() functions receive as their last parameter the address of an array of pointers
to environment strings; as usual, the last component of the array must be NULL. The other functions may
access the environment for the new program from the external environ global variable, which is defined in
the C library.

 All exec functions, with the exception of execve(), are wrapper routines defined in the C library and use
execve(), which is the only system call offered by Linux to deal with program execution.

 The sys_execve() service routine receives the following parameters:


 The address of the executable file pathname (in the User Mode address space).


 The address of a NULL-terminated array (in the User Mode address space) of pointers to
strings (again in the User Mode address space); each string represents a command-line
argument.



 The address of a NULL-terminated array (in the User Mode address space) of pointers to
strings (again in the User Mode address space); each string represents an environment variable in
the NAME=value format.

 The function copies the executable file pathname into a newly allocated page frame. It then invokes the
do_execve() function, passing to it the pointers to the page frame, to the pointer's arrays, and to the
location of the Kernel Mode stack where the User Mode register contents are saved. In turn,
do_execve() performs the following operations:

1.

1. Dynamically allocates a linux_binprm data structure, which will be filled with data concerning the
new executable file.

2.

2. Invokes path_lookup(), dentry_open(), and path_release() to get the dentry object, the file
object, and the inode object associated with the executable file. On failure, it returns the proper
error code.

3.

3. Verifies that the file is executable by the current process; also, checks that the file is not being
written by looking at the i_writecount field of the inode; stores -1 in that field to forbid further
write accesses.

4.

4. In multiprocessor systems, it invokes the sched_exec() function to determine the least loaded
CPU that can execute the new program and to migrate the current process to it (see Chapter 7).

5.

5. Invokes init_new_context() to check whether the current process was using a custom Local
Descriptor Table (see the section "The Linux LDTs" in Chapter 2); in this case, the function
allocates and fills a new LDT to be used by the new program.

6.

6. Invokes the prepare_binprm() function to fill the linux_binprm data structure. This function, in
turn, performs the following operations:
a.

a. Checks again whether the file is executable (at least one execute access right is set); if not,
returns an error code. (The previous check in step 3 is not sufficient because a process with
the CAP_DAC_OVERRIDE capability set always satisfies the check; see the section "
Process Credentials and Capabilities" earlier in this chapter).

b.

b. Initializes the e_uid and e_gid fields of the linux_binprm structure, taking into account the
values of the setuid and setgid flags of the executable file. These fields represent the effective
user and group IDs, respectively. Also checks process capabilities (a compatibility hack
explained in the earlier section "Process Credentials and Capabilities").

c.

c. Fills the buf field of the linux_binprm structure with the first 128 bytes of the executable file.
These bytes include the magic number of the executable format and other information suitable
for recognizing the executable file.

7.

7. Copies the file pathname, command-line arguments, and environment strings into one or more
newly allocated page frames. (Eventually, they are assigned to the User Mode address space.)

8.

8. Invokes the search_binary_handler() function, which scans the formats list and tries to apply the
load_binary method of each element, passing to it the linux_binprm data structure. The scan of
the formats list terminates as soon as a load_binary method succeeds in acknowledging the
executable format of the file.

9.

9. If the executable file format is not present in the formats list, it releases all allocated page frames
and returns the error code -ENOEXEC. Linux cannot recognize the executable file format.

10.

10.Otherwise, the function releases the linux_binprm data structure and returns the code obtained
from the load_binary method associated with the executable format of the file.

The load_binary method corresponding to an executable file format performs the following operations
(we assume that the executable file is stored on a filesystem that allows file memory mapping and that it
requires one or more shared libraries):

1.

1. Checks some magic numbers stored in the first 128 bytes of the file to identify the executable
format. If the magic numbers don't match, it returns the error code -ENOEXEC.

2.

2. Reads the header of the executable file. This header describes the program's segments and the
shared libraries requested.

3.

3. Gets from the executable file the pathname of the dynamic linker, which is used to locate the
shared libraries and map them into memory.

4.

4. Gets the dentry object (as well as the inode object and the file object) of the dynamic linker.
5.

5. Checks the execution permissions of the dynamic linker.
6.

6. Copies the first 128 bytes of the dynamic linker into a buffer.
7.

7. Performs some consistency checks on the dynamic linker type.
8.

8. Invokes the flush_old_exec() function to release almost all resources used by the previous
computation; in turn, this function performs the following operations:
a.

a. If the table of signal handlers is shared with other processes, it allocates a new table and
decrements the usage counter of the old one; moreover, it detaches the process from the old
thread group (see the section "Identifying a Process" in Chapter 3). All of this is done by
invoking the de_thread() function.

b.

b. Invokes unshare_files() to make a copy of the files_struct structure containing the open files
of the process, if it is shared with other processes (see the section "Files Associated with a
Process" in Chapter 12).

c.

c. Invokes the exec_mmap() function to release the memory descriptor, all memory regions ,
and all page frames assigned to the process and to clean up the process's Page Tables.

d.

d. Sets the comm field of the process descriptor with the executable file pathname.
e.

e. Invokes the flush_thread() function to clear the values of the floating point registers and
debug registers saved in the TSS segment.

f.

f. Updates the table of signal handlers by resetting each signal to its default action. This is done
by invoking the flush_signal_handlers() function.

g.

g. Invokes the flush_old_files() function to close all open files having the corresponding flag in
the files->close_on_exec field of the process descriptor set (see the section "Files Associated
with a Process" in Chapter 12).[*]

g. [*] These flags can be read and modified by means of the fcntl() system call.

7. Now we have reached the point of no return: the function cannot restore the previous
computation if something goes wrong.

9.

9. Clears the PF_FORKNOEXEC flag in the process descriptor. This flag, which is set when a
process is forked and cleared when it executes a new program, is required for process
accounting.

10.

10.Sets up the new personality of the processthat is, the personality field in the process descriptor.
11.

11. Invokes arch_pick_mmap_layout() to select the layout of the memory regions of the process
(see the section "Program Segments and Process Memory Regions" earlier in this chapter).

12.

12. Invokes the setup_arg_pages() function to allocate a new memory region descriptor for the
process's User Mode stack and to insert that memory region into the process's address space.
setup_arg_pages() also assigns the page frames containing the command-line arguments and the
environment variable strings to the new memory region.

13.

13. Invokes the do_mmap() function to create a new memory region that maps the text segment
(that is, the code) of the executable file. The initial linear address of the memory region depends
on the executable format, because the program's executable code is usually not relocatable.
Therefore, the function assumes that the text segment is loaded starting from some specific logical
address offset (and thus from some specified linear address). ELF programs are loaded starting
from linear address 0x08048000.

14.

14. Invokes the do_mmap() function to create a new memory region that maps the data segment of
the executable file. Again, the initial linear address of the memory region depends on the
executable format, because the executable code expects to find its variables at specified offsets
(that is, at specified linear addresses). In an ELF program, the data segment is loaded right after
the text segment.

15.

15.Allocates additional memory regions for every other specialized segments of the executable file.
Usually, there are none.

16.

16. Invokes a function that loads the dynamic linker. If the dynamic linker is an ELF executable, the
function is named load_elf_interp(). In general, the function performs the operations in steps 12
through 14, but for the dynamic linker instead of the file to be executed. The initial addresses of
the memory regions that will include the text and data of the dynamic linker are specified by the
dynamic linker itself; however, they are very high (usually above 0x40000000) to avoid collisions
with the memory regions that map the text and data of the file to be executed (see the earlier
section "Program Segments and Process Memory Regions").

17.

17.Stores in the binfmt field of the process descriptor the address of the linux_binfmt object of the
executable format.

18.

18.Determines the new capabilities of the process.
19.

19.Creates specific dynamic linker tables and stores them on the User Mode stack between the
command-line arguments and the array of pointers to environment strings (see Figure 20-1).

20.

20.Sets the values of the start_code, end_code, start_data, end_data, start_brk, brk, and
start_stack fields of the process's memory descriptor.

21.

21. Invokes the do_brk() function to create a new anonymous memory region mapping the bss
segment of the program. (When the process writes into a variable, it triggers demand paging ,
and thus the allocation of a page frame.) The size of this memory region was computed when the
executable program was linked. The initial linear address of the memory region must be specified,
because the program's executable code is usually not relocatable. In an ELF program, the bss
segment is loaded right after the data segment.

22.

22. Invokes the start_thread() macro to modify the values of the User Mode registers eip and esp
saved on the Kernel Mode stack, so that they point to the entry point of the dynamic linker and
to the top of the new User Mode stack, respectively.

23.

23. If the process is being traced, it notifies the debugger about the completion of the execve()
system call.

24.

24.Returns the value 0 (success).

When the execve() system call terminates and the calling process resumes its execution in User Mode,
the execution context is dramatically changed: the code that invoked the system call no longer exists. In
this sense, we could say that execve() never returns on success. Instead, a new program to be executed
is mapped in the address space of the process.

 However, the new program cannot yet be executed, because the dynamic linker must still take care of
loading the shared libraries.[*]

[*] Things are much simpler if the executable file is statically linkedthat is, if no shared library is
requested. The load_binary method simply maps the text, data, bss, and stack segments of the program
into the process memory regions, and then sets the User Mode eip register to the entry point of the new
program.

 Although the dynamic linker runs in User Mode, we briefly sketch out here how it operates. Its first job
is to set up a basic execution context for itself, starting from the information stored by the kernel in the
User Mode stack between the array of pointers to environment strings and arg_start. Then the dynamic
linker must examine the program to be executed to identify which shared libraries must be loaded and
which functions in each shared library are effectively requested. Next, the interpreter issues several
mmap() system calls to create memory regions mapping the pages that will hold the library functions (text
and data) actually used by the program. Then the interpreter updates all references to the symbols of the
shared library, according to the linear addresses of the library's memory regions. Finally, the dynamic
linker terminates its execution by jumping to the main entry point of the program to be executed. From
now on, the process will execute the code of the executable file and of the shared libraries.

 As you may have noticed, executing a program is a complex activity that involves many facets of kernel
design, such as process abstraction, memory management, system calls, and filesystems. It is the kind of
topic that makes you realize what a marvelous piece of work Linux is!

Page 355

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 356

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Appendix A. System Startup
 This appendix explains what happens right after users switch on their computersthat is, how a Linux
kernel image is copied into memory and executed. In short, we discuss how the kernel, and thus the
whole system, is "bootstrapped."

 Traditionally, the term bootstrap refers to a person who tries to stand up by pulling his own boots. In
operating systems, the term denotes bringing at least a portion of the operating system into main memory
and having the processor execute it. It also denotes the initialization of kernel data structures, the creation
of some user processes, and the transfer of control to one of them.

 Computer bootstrapping is a tedious, long task, because initially, nearly every hardware device, including
the RAM, is in a random, unpredictable state. Moreover, the bootstrap process is highly dependent on
the computer architecture; as usual in this book, we refer to the 80 x 86 architecture.

Page 357

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 358

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.1. Prehistoric Age: the BIOS
 The moment after a computer is powered on, it is practically useless because the RAM chips contain
random data and no operating system is running. To begin the boot, a special hardware circuit raises the
logical value of the RESET pin of the CPU. After RESET is asserted, some registers of the processor
(including cs and eip) are set to fixed values, and the code found at physical address 0xfffffff0 is
executed. This address is mapped by the hardware to a certain read-only, persistent memory chip that is
often called Read-Only Memory (ROM). The set of programs stored in ROM is traditionally called the
Basic Input/Output System (BIOS) in the 80 x 86 architecture, because it includes several
interrupt-driven low-level procedures used by all operating systems in the booting phase to handle the
hardware devices that make up the computer. Some operating systems, such as Microsoft's MS-DOS ,
rely on BIOS to implement most system calls.

 Once in protected mode (see the section "Segmentation in Hardware" in Chapter 2), Linux does not use
BIOS any longer, but it provides its own device driver for every hardware device on the computer. In
fact, the BIOS procedures must be executed in real mode, so they cannot share functions even if that
would be beneficial.

 The BIOS uses Real Mode addresses because they are the only ones available when the computer is
turned on. A Real Mode address is composed of a seg segment and an off offset; the corresponding
physical address is given by seg*16+off. As a result, no Global Descriptor Table, Local Descriptor
Table, or paging table is needed by the CPU addressing circuit to translate a logical address into a
physical one. Clearly, the code that initializes the GDT, LDT, and paging tables must run in Real Mode.

 Linux is forced to use BIOS in the bootstrapping phase, when it must retrieve the kernel image from disk
or from some other external device. The BIOS bootstrap procedure essentially performs the following
four operations:

1.

1. Executes a series of tests on the computer hardware to establish which devices are present and
whether they are working properly. This phase is often called Power-On Self-Test (POST).
During this phase, several messages, such as the BIOS version banner, are displayed.

1. Recent 80 x 86, AMD64, and Itanium computers make use of the Advanced Configuration and
Power Interface(ACPI) standard. The bootstrap code in an ACPI-compliant BIOS builds
several tables that describe the hardware devices present in the system. These tables have a
vendor-independent format and can be read by the operating system kernel to learn how to
handle the devices.

2.

2. Initializes the hardware devices. This phase is crucial in modern PCI-based architectures,
because it guarantees that all hardware devices operate without conflicts on the IRQ lines and
I/O ports. At the end of this phase, a table of installed PCI devices is displayed.

3.

3. Searches for an operating system to boot. Actually, depending on the BIOS setting, the
procedure may try to access (in a predefined, customizable order) the first sector (boot sector)
of every floppy disk, hard disk, and CD-ROM in the system.

4.

4. As soon as a valid device is found, it copies the contents of its first sector into RAM, starting
from physical address 0x00007c00, and then jumps into that address and executes the code just
loaded.

The rest of this appendix takes you from the most primitive starting state to the full glory of a running
Linux system.

Page 359

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 360

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 361

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.2. Ancient Age: the Boot Loader
 The boot loader is the program invoked by the BIOS to load the image of an operating system kernel
into RAM. Let's briefly sketch how boot loaders work in IBM's PC architecture.

 To boot from a floppy disk, the instructions stored in its first sector are loaded in RAM and executed;
these instructions copy all the remaining sectors containing the kernel image into RAM.

 Booting from a hard disk is done differently. The first sector of the hard disk, named the Master Boot
Record (MBR), includes the partition table[*] and a small program, which loads the first sector of the
partition containing the operating system to be started. Some operating systems, such as Microsoft
Windows 98, identify this partition by means of an active flag included in the partition table;[] following
this approach, only the operating system whose kernel image is stored in the active partition can be
booted. As we will see later, Linux is more flexible because it replaces the rudimentary program included
in the MBR with a sophisticated programthe "boot loader"that allows users to select the operating system
to be booted.

[*] Each partition table entry typically includes the starting and ending sectors of a partition and the kind
of operating system that handles it.

[] The active flag may be set through programs such as fdisk.

 Kernel images of earlier Linux versionsup to the 2.4 seriesincluded a minimal "boot loader" program in
the first 512 bytes; thus, copying a kernel image starting from the first sector made the floppy bootable.
On the other hand, kernel images of Linux 2.6 no longer include such boot loader; thus, in order to boot
from floppy disk, a suitable boot loader has to be stored in the first disk sector. Nowadays, booting from
a floppy is very similar to booting from a hard disk or from a CD-ROM.

 A.2.1. Booting Linux from a Disk

 A two-stage boot loader is required to boot a Linux kernel from disk. A well-known Linux boot loader
on 80 x 86 systems is named LInux LOader (LILO). Other boot loaders for 80 x 86 systems do exist;
for instance, the GRand Unified Bootloader (GRUB) is also widely used. GRUB is more advanced than
LILO, because it recognizes several disk-based filesystems and is thus capable of reading portions of the
boot program from files. Of course, specific boot loader programs exist for all architectures supported by
Linux.

 LILO may be installed either on the MBR (replacing the small program that loads the boot sector of the
active partition) or in the boot sector of every disk partition. In both cases, the final result is the same:
when the loader is executed at boot time, the user may choose which operating system to load.

 Actually, the LILO boot loader is too large to fit into a single sector, thus it is broken into two parts. The
MBR or the partition boot sector includes a small boot loader, which is loaded into RAM starting from
address 0x00007c00 by the BIOS. This small program moves itself to the address 0x00096a00, sets up
the Real Mode stack (ranging from 0x00098000 to 0x000969ff), loads the second part of the LILO
boot loader into RAM starting from address 0x00096c00, and jumps into it.

 In turn, this latter program reads a map of bootable operating systems from disk and offers the user a
prompt so she can choose one of them. Finally, after the user has chosen the kernel to be loaded (or let a
time-out elapse so that LILO chooses a default), the boot loader may either copy the boot sector of the
corresponding partition into RAM and execute it or directly copy the kernel image into RAM.

 Assuming that a Linux kernel image must be booted, the LILO boot loader, which relies on BIOS
routines, performs essentially the following operations:

1.

1. Invokes a BIOS procedure to display a "Loading" message.
2.

2. Invokes a BIOS procedure to load an initial portion of the kernel image from disk: the first 512
bytes of the kernel image are put in RAM at address 0x00090000, while the code of the setup()
function (see below) is put in RAM starting from address 0x00090200.

3.

3. Invokes a BIOS procedure to load the rest of the kernel image from disk and puts the image in
RAM starting from either low address 0x00010000 (for small kernel images compiled with make
zImage) or high address 0x00100000 (for big kernel images compiled with make bzImage). In
the following discussion, we say that the kernel image is "loaded low" or "loaded high" in RAM,
respectively. Support for big kernel images uses essentially the same booting scheme as the other
one, but it places data in different physical memory addresses to avoid problems with the ISA
hole mentioned in the section "Physical Memory Layout" in Chapter 2.

4.

4. Jumps to the setup() code.

Page 362

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 363

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 364

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.3. Middle Ages: the setup() Function
 The code of the setup() assembly language function has been placed by the linker at offset 0x200 of the
kernel image file. The boot loader can therefore easily locate the code and copy it into RAM, starting
from physical address 0x00090200.

 The setup() function must initialize the hardware devices in the computer and set up the environment for
the execution of the kernel program. Although the BIOS already initialized most hardware devices, Linux
does not rely on it, but reinitializes the devices in its own manner to enhance portability and robustness.
setup() performs essentially the following operations:

1.

1. In ACPI -compliant systems, it invokes a BIOS routine that builds a table in RAM describing
the layout of the system's physical memory (the table can be seen in the boot kernel messages by
looking for the "BIOS-e820" label). In older systems, it invokes a BIOS routine that just returns
the amount of RAM available in the system.

2.

2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past a certain
amount of time, the keyboard device sends the corresponding keycode over and over to the
CPU.)

3.

3. Initializes the video adapter card.
4.

4. Reinitializes the disk controller and determines the hard disk parameters.
5.

5. Checks for an IBM Micro Channel bus (MCA).
6.

6. Checks for a PS/2 pointing device (bus mouse).
7.

7. Checks for Advanced Power Management (APM) BIOS support.
8.

8. If the BIOS supports the Enhanced Disk Drive Services (EDD), it invokes the proper BIOS
procedure to build a table in RAM describing the hard disks available in the system. (The
information included in the table can be seen by reading the files in the firmware/edd directory of
the sysfs special filesystem.)

9.

9. If the kernel image was loaded low in RAM (at physical address 0x00010000), the function
moves it to physical address 0x00001000. Conversely, if the kernel image was loaded high in
RAM, the function does not move it. This step is necessary because to be able to store the
kernel image on a floppy disk and to reduce the booting time, the kernel image stored on disk is
compressed, and the decompression routine needs some free space to use as a temporary buffer
following the kernel image in RAM.

10.

10.Sets the A20 pin located on the 8042 keyboard controller. The A20 pin is a hack introduced in
the 80286 -based systems to make physical addresses compatible with those of the ancient 8088
microprocessors. Unfortunately, the A20 pin must be properly set before switching to Protected
Mode, otherwise the 21st bit of every physical address will always be regarded as zero by the
CPU. Setting the A20 pin is a messy operation.

11.

11.Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global Descriptor Table
(GDT).

12.

12.Resets the floating-point unit (FPU), if any.
13.

13.Reprograms the Programmable Interrupt Controllers (PIC) to mask all interrupts, except IRQ2
which is the cascading interrupt between the two PICs.

14.

14.Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the cr0 status
register. The PG bit in the cr0 register is cleared, so paging is still disabled.

15.

15. Jumps to the startup_32() assembly language function.

Page 365

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 366

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 367

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.4. Renaissance: the startup_32() Functions
 There are two different startup_32() functions; the one we refer to here is coded in the
arch/i386/boot/compressed/head.S file. After setup() terminates, the function has been moved either to
physical address 0x00100000 or to physical address 0x00001000, depending on whether the kernel
image was loaded high or low in RAM.

 This function performs the following operations:
1.

1. Initializes the segmentation registers and a provisional stack.
2.

2. Clears all bits in the eflags register.
3.

3. Fills the area of uninitialized data of the kernel identified by the _edata and _end symbols with
zeros (see the section "Physical Memory Layout" in Chapter 2).

4.

4. Invokes the decompress_kernel() function to decompress the kernel image. The
"Uncompressing Linux..." message is displayed first. After the kernel image is decompressed, the
"O K, booting the kernel." message is shown. If the kernel image was loaded low, the
decompressed kernel is placed at physical address 0x00100000. Otherwise, if the kernel image
was loaded high, the decompressed kernel is placed in a temporary buffer located after the
compressed image. The decompressed image is then moved into its final position, which starts at
physical address 0x00100000.

5.

5. Jumps to physical address 0x00100000.

The decompressed kernel image begins with another startup_32() function included in the
arch/i386/kernel/head.S file. Using the same name for both the functions does not create any problems
(besides confusing our readers), because both functions are executed by jumping to their initial physical
addresses.

 The second startup_32() function sets up the execution environment for the first Linux process (process
0). The function performs the following operations:

1.

1. Initializes the segmentation registers with their final values.
2.

2. Fills the bss segment of the kernel (see the section "Program Segments and Process Memory
Regions" in Chapter 20) with zeros.

3.

3. Initializes the provisional kernel Page Tables contained in swapper_pg_dir and pg0 to identically
map the linear addresses to the same physical addresses, as explained in the section "Kernel
Page Tables" in Chapter 2.

4.

4. Stores the address of the Page Global Directory in the cr3 register, and enables paging by setting
the PG bit in the cr0 register.

5.

5. Sets up the Kernel Mode stack for process 0 (see the section "Kernel Threads" in Chapter 3).
6.

6. Once again, the function clears all bits in the eflags register.
7.

7. Invokes setup_idt() to fill the IDT with null interrupt handlers (see the section "Preliminary
Initialization of the IDT" in Chapter 4).

8.

8. Puts the system parameters obtained from the BIOS and the parameters passed to the operating
system into the first page frame (see the section "Physical Memory Layout" in Chapter 2).

9.

9. Identifies the model of the processor.
10.

10.Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.
11.

11. Jumps to the start_kernel() function.

Page 368

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 369

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

A.5. Modern Age: the start_kernel() Function
 The start_kernel() function completes the initialization of the Linux kernel. Nearly every kernel
component is initialized by this function; we mention just a few of them:



 The scheduler is initialized by invoking the sched_init() function (see Chapter 7).


 The memory zones are initialized by invoking the build_all_zonelists() function (see the section "
Memory Zones" in Chapter 8).



 The Buddy system allocators are initialized by invoking the page_alloc_init() and mem_init()
functions (see the section "The Buddy System Algorithm" in Chapter 8).



 The final initialization of the IDT is performed by invoking trap_init() (see the section "Exception
Handling" in Chapter 4) and init_IRQ() (see the section "IRQ data structures" in Chapter 4).



 The TASKLET_SOFTIRQ and HI_SOFTIRQ are initialized by invoking the softirq_init()
function (see the section "Softirqs" in Chapter 4).



 The system date and time are initialized by the time_init() function (see the section "The Linux
Timekeeping Architecture" in Chapter 6).



 The slab allocator is initialized by the kmem_cache_init() function (see the section "General and
Specific Caches" in Chapter 8).



 The speed of the CPU clock is determined by invoking the calibrate_delay() function (see the
section "Delay Functions" in Chapter 6).



 The kernel thread for process 1 is created by invoking the kernel_thread() function. In turn, this
kernel thread creates the other kernel threads and executes the /sbin/init program, as described
in the section "Kernel Threads" in Chapter 3.

 Besides the "Linux version 2.6.11..." message, which is displayed right after the beginning of
start_kernel(), many other messages are displayed in this last phase, both by the init program and by the
kernel threads. At the end, the familiar login prompt appears on the console (or in the graphical screen, if
the X Window System is launched at startup), telling the user that the Linux kernel is up and running.

Page 370

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 371

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Appendix B. Modules
 As stated in Chapter 1, modules are Linux's recipe for effectively achieving many of the theoretical
advantages of microkernels without introducing performance penalties.

Page 372

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 373

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.1. To Be (a Module) or Not to Be?
 When system programmers want to add new functionality to the Linux kernel, they are faced with a
basic decision: should they write the new code so that it will be compiled as a module, or should they
statically link the new code to the kernel?

 As a general rule, system programmers tend to implement new code as a module. Because modules can
be linked on demand (as we see later), the kernel does not have to be bloated with hundreds of
seldom-used programs. Nearly every higher-level component of the Linux kernelfilesystems, device
drivers, executable formats, network layers, and so oncan be compiled as a module. Linux distributions
use modules extensively in order to support in a seamless way a wide range of hardware devices. For
instance, the distribution puts tens of sound card driver modules in a proper directory, although only one
of these modules will be effectively loaded on a specific machine.

 However, some Linux code must necessarily be linked statically, which means that either the
corresponding component is included in the kernel or it is not compiled at all. This happens typically
when the component requires a modification to some data structure or function statically linked in the
kernel.

 For example, suppose the component has to introduce new fields into the process descriptor. Linking a
module cannot change an already defined data structure such as task_struct because, even if the module
uses its modified version of the data structure, all statically linked code continues to see the old version.
Data corruption easily occurs. A partial solution to the problem consists of "statically" adding the new
fields to the process descriptor, thus making them available to the kernel component no matter how it has
been linked. However, if the kernel component is never used, such extra fields replicated in every
process descriptor are a waste of memory. If the new kernel component increases the size of the process
descriptor a lot, one would get better system performance by adding the required fields in the data
structure only if the component is statically linked to the kernel.

 As a second example, consider a kernel component that has to replace statically linked code. It's pretty
clear that no such component can be compiled as a module, because the kernel cannot change the
machine code already in RAM when linking the module. For instance, it is not possible to link a module
that changes the way page frames are allocated, because the Buddy system functions are always statically
linked to the kernel.[*]

[*] You might wonder why your favorite kernel component has not been modularized. In most cases,
there is no strong technical reason because it is essentially a software license issue. Kernel developers
want to make sure that core components will never be replaced by proprietary code released through
binary-only "black-box" modules.

 The kernel has two key tasks to perform in managing modules. The first task is making sure the rest of
the kernel can reach the module's global symbols, such as the entry point to its main function. A module
must also know the addresses of symbols in the kernel and in other modules. Thus, references are
resolved once and for all when a module is linked. The second task consists of keeping track of the use
of modules, so that no module is unloaded while another module or another part of the kernel is using it.
A simple reference count keeps track of each module's usage.

 B.1.1. Module Licenses

 The license of the Linux kernel (GPL, version 2) is liberal in what users and industries can do with the
source code; however, it strictly forbids the release of source code derived fromor heavily depending
onthe Linux code under a non-GPL license. Essentially, the kernel developers want to be sure that their
codeand all the code derived from itwill remain freely usable by all users.

 Modules, however, pose a threat to this model. Someone might release a module for the Linux kernel in
binary form only; for instance, a vendor might distribute the driver for its hardware device in a binary-only
module. Nowadays, there are quite a few examples of these practices. Theoretically, characteristics and
behavior of the Linux kernel might be significantly changed by binary-only modules, thus effectively
turning a Linux-derived kernel in a commercial product.

 Thus, binary-only modules are not well received by the Linux kernel developer community. The
implementation of Linux modules reflect this fact. Basically, each module developer should specify in the
module source code the type of license, by using the MODULE_LICENSE macro. If the license is not
GPL-compatible (or it is not specified at all), the module will not be able to make use of many core
functions and data structures of the kernel. Moreover, using a module with a non-GPL license will "taint"
the kernel, which means that any supposed bug in the kernel will not be taken in consideration by the
kernel developers.

Page 374

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 375

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 376

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.2. Module Implementation
 Modules are stored in the filesystem as ELF object files and are linked to the kernel by executing the
insmod program (see the later section, "Linking and Unlinking Modules"). For each module, the kernel
allocates a memory area containing the following data:



 A module object


 A null-terminated string that represents the name of the module (all modules must have unique
names)



 The code that implements the functions of the module

 The module object describes a module; its fields are shown in Table B-1. A doubly linked circular list
collects all module objects; the list head is stored in the modules variable, while the pointers to the
adjacent elements are stored in the list field of each module object.

 Table B-1. The module object

Type Name Description

enum module_state state The internal state of the module

struct list_head list Pointers for the list of modules

char [60] name The module name

struct

module_kobject
mkobj

Includes a kobject data structure
and a pointer to this module
object

struct

module_param_attrs *
param_attrs Pointer to an array of module

parameter descriptors

const struct

kernel_symbol *
syms Pointer to an array of exported

symbols

unsigned int num_syms Number of exported symbols

const unsigned long * crcs Pointer to an array of CRC
values for the exported symbols

const struct

kernel_symbol *
gpl_syms Pointer to an array of

GPL-exported symbols

unsigned int num_gpl_syms Number of GPL-exported
symbols

const unsigned long * gpl_crcs
Pointer to an array of CRC
values for the GPL-exported
symbols

unsigned int num_exenTRies Number of entries in the module's
exception table

const struct

exception_table_entry *
extable Pointer to the module's exception

table

int (*)(void) init The initialization method of the
module

void * module_init
Pointer to the dynamic memory
area allocated for module's
initialization

void * module_core
Pointer to the dynamic memory
area allocated for module's core
functions and data structures

unsigned long init_size Size of the dynamic memory area
required for module's initialization

unsigned long core_size
Size of the dynamic memory area
required for module's core
functions and data structures

unsigned long init_text_size
Size of the executable code used
for module's initialization; used
only when linking the module

unsigned long core_text_size
Size of the core executable code
of the module; used only when
linking the module

struct

mod_arch_specific
arch

Architecture-dependent fields
(none in the

80 x 86 architecture)

int unsafe Flag set if the module cannot be
safely unloaded

int license_gplok Flag set if the module license is
GPL-compatible

struct

module_ref [NR_CPUS]
ref Per-CPU usage counters

struct list_head modules_which_use_me List of modules that rely on this
module

struct task_struct * waiter The process that is trying to
unload the module

void (*)(void) exit Exit method of the module

Elf_Sym * symtab
Pointer to an array of module's
ELF symbols for the
/proc/kallsyms file

unsigned long num_symtab Number of module's ELF
symbols shown in /proc/kallsyms

char * strtab
The string table for the module's
ELF symbols shown in
/proc/kallsyms

struct

module_sect_attrs *
sect_attrs

Pointer to an array of module's
section attribute descriptors
(displayed in the sysfs filesystem)

void * percpu Pointer to CPU-specific memory
areas

char * args Command line arguments used
when linking the module

The state field encodes the internal state of the module: it can be MODULE_STATE_LIVE (the module
is active), MODULE_STATE_COMING (the module is being initialized), and
MODULE_STATE_GOING (the module is being removed).

 As already mentioned in the section "Dynamic Address Checking: The Fix-up Code" in Chapter 10,
each module has its own exception table. The table includes the addresses of the fixup code of the
module, if any. The table is copied into RAM when the module is linked, and its starting address is stored
in the extable field of the module object.

 B.2.1. Module Usage Counters

 Each module has a set of usage counters, one for each CPU, stored in the ref field of the corresponding
module object. The counter is increased when an operation involving the module's functions is started and
decreased when the operation terminates. A module can be unlinked only if the sum of all usage counters
is 0.

 For example, suppose that the MS-DOS filesystem layer is compiled as a module and the module is
linked at runtime. Initially, the module usage counters are set to 0. If the user mounts an MS-DOS floppy
disk, one of the module usage counters is increased by 1. Conversely, when the user unmounts the floppy
disk, one of the counterseven different from the one that was increasedis decreased by 1. The total usage
counter of the module is the sum of all CPU counters.

 B.2.2. Exporting Symbols

 When linking a module, all references to global kernel symbols (variables and functions) in the module's
object code must be replaced with suitable addresses. This operation, which is very similar to that
performed by the linker while compiling a User Mode program (see the section "Libraries" in Chapter 20
), is delegated to the insmod external program (described later in the section "Linking and Unlinking
Modules").

 Some special kernel symbol tables are used by the kernel to store the symbols that can be accessed by
modules together with their corresponding addresses. They are contained in three sections of the kernel
code segment: the _ _kstrtab section includes the names of the symbols, the _ _ksymtab section includes
the addresses of the symbols that can be used by all kind of modules, and the _ _ksymtab_gpl section
includes the addresses of the symbols that can be used by the modules released under a GPL-compatible
license. The EXPORT_SYMBOL macro and the EXPORT_SYMBOL_GPL macro, when used inside
the statically linked kernel code, force the C compiler to add a specified symbol to the _ _ksymtab and _
_ksymtab_gpl sections, respectively.

 Only the kernel symbols actually used by some existing module are included in the table. Should a
system programmer need, within some module, to access a kernel symbol that is not already exported,
he can simply add the corresponding EXPORT_SYMBOL_GPL macro into the Linux source code. Of
course, he cannot legally export a new symbol for a module whose license is not GPL-compatible.

 Linked modules can also export their own symbols so that other modules can access them. The module
symbol tables are contained in the _ _ksymtab, _ _ksymtab_gpl, and _ _kstrtab sections of the module
code segment. To export a subset of symbols from the module, the programmer can use the
EXPORT_SYMBOL and EXPORT_SYMBOL_GPL macros described above. The exported symbols
of the module are copied into two memory arrays when the module is linked, and their addresses are
stored in the syms and gpl_syms fields of the module object.

 B.2.3. Module Dependency

 A module (B) can refer to the symbols exported by another module (A); in this case, we say that B is
loaded on top of A, or equivalently that A is used by B. To link module B, module A must have already
been linked; otherwise, the references to the symbols exported by A cannot be properly linked in B. In
short, there is a dependency between modules.

 The modules_which_use_me field of the module object of A is the head of a dependency list containing
all modules that are used by A; each element of the list is a small module_use descriptor containing the
pointers to the adjacent elements in the list and a pointer to the corresponding module object; in our
example, a module_use descriptor pointing to the B's module object would appear in the
modules_which_use_me list of A. The modules_which_use_me list must be updated dynamically
whenever a module is loaded on top of A. The module A cannot be unloaded if its dependency list is not
empty.

 Beside A and B there could be, of course, another module (C) loaded on top of B, and so on. Stacking
modules is an effective way to modularize the kernel source code, thus speeding up its development.

Page 377

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 378

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 379

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.3. Linking and Unlinking Modules
 A user can link a module into the running kernel by executing the insmod external program. This
program performs the following operations:

1.

1. Reads from the command line the name of the module to be linked.
2.

2. Locates the file containing the module's object code in the system directory tree. The file is
usually placed in some subdirectory below /lib/modules.

3.

3. Reads from disk the file containing the module's object code.
4.

4. Invokes the init_module() system call, passing to it the address of the User Mode buffer
containing the module's object code, the length of the object code, and the User Mode memory
area containing the parameters of the insmod program.

5.

5. Terminates.

The sys_init_module() service routine does all the real work; it performs the following main operations:
1.

1. Checks whether the user is allowed to link the module (the current process must have the
CAP_SYS_MODULE capability). In every situation where one is adding functionality to a
kernel, which has access to all data and processes on the system, security is a paramount
concern.

2.

2. Allocates a temporary memory area for the module's object code; then, copies into this memory
area the data in the User Mode buffer passed as first parameter of the system call.

3.

3. Checks that the data in the memory area effectively represents a module's ELF object;
otherwise, returns an error code.

4.

4. Allocates a memory area for the parameters passed to the insmod program, and fills it with the
data in the User Mode buffer whose address was passed as third parameter of the system call.

5.

5. Walks the modules list to verify that the module is not already linked. The check is done by
comparing the names of the modules (name field in the module objects).

6.

6. Allocates a memory area for the core executable code of the module, and fills it with the contents
of the relevant sections of the module.

7.

7. Allocates a memory area for the initialization code of the module, and fills it with the contents of
the relevant sections of the module.

8.

8. Determines the address of the module object for the new module. An image of this object is
included in the gnu.linkonce.this_module section of the text segment of the module's ELF file. The
module object is thus included in the memory area filled in step 6.

9.

9. Stores in the module_code and module_init fields of the module object the addresses of the
memory areas allocated in steps 6 and 7.

10.

10. Initializes the modules_which_use_me list in the module object, and sets to zero all module's
reference counters except the counter of the executing CPU, which is set to one.

11.

11.Sets the license_gplok flag in the module object according to the type of license specified in the
module object.

12.

12.Using the kernel symbol tables and the module symbol tables, relocates the module's object
code. This means replacing all occurrences of external and global symbols with the
corresponding logical address offsets.

13.

13. Initializes the syms and gpl_syms fields of the module object so that they point to the in-memory
tables of symbols exported by the module.

14.

14.The exception table of the module (see the section "The Exception Tables" in Chapter 10) is
contained in the _ _ex_table section of the module's ELF file, thus it was copied into the memory
area allocated in step 6: stores its address in the extable field of the module object.

15.

15.Parses the arguments of the insmod program, and sets the value of the corresponding module
variables accordingly.

16.

16.Registers the kobject included in the mkobj field of the module object so that a new
sub-directory for the module appears in the module directory of the sysfs special filesystem (see
the section "Kobjects" in Chapter 13).

17.

17.Frees the temporary memory area allocated in step 2.
18.

18.Adds the module object in the modules list.
19.

19.Sets the state of the module to MODULE_STATE_COMING.
20.

20. If defined, executes the init method of the module object.
21.

21.Sets the state of the module to MODULE_STATE_LIVE.
22.

22.Terminates by returning zero (success).

To unlink a module, a user invokes the rmmod external program, which performs the following
operations:

1.

1. Reads from the command line the name of the module to be unlinked.
2.

2. Opens the /proc/modules file, which lists all modules linked into the kernel, and checks that the
module to be removed is effectively linked.

3.

3. Invokes the delete_module() system call passing to it the name of the module.
4.

4. Terminates.

In turn, the sys_delete_module() service routine performs the following main operations:
1.

1. Checks whether the user is allowed to unlink the module (the current process must have the
CAP_SYS_MODULE capability).

2.

2. Copies the module's name in a kernel buffer.
3.

3. Walks the modules list to find the module object of the module.
4.

4. Checks the modules_which_use_me dependency list of the module; if it is not empty, the function
returns an error code.

5.

5. Checks the state of the module; if it is not MODULE_STATE_LIVE, returns an error code.
6.

6. If the module has a custom init method, the function checks that it has also a custom exit method;
if no exit method is defined, the module should not be unloaded, thus returns an exit code.

7.

7. To avoid race conditions, stops the activities of all CPUs in the system, except the CPU
executing the sys_delete_module() service routine.

8.

8. Sets the state of the module to MODULE_STATE_GOING.
9.

9. If the sum of all reference counters of the module is greater than zero, returns an error code.
10.

10. If defined, executes the exit method of the module.
11.

11.Removes the module object from the modules list, and de-registers the module from the sysfs
special filesystem.

12.

12.Removes the module object from the dependency lists of the modules that it was using.
13.

13.Frees the memory areas that contain the module's executable code, the module object, and the
various symbol and exception tables.

14.

14.Returns zero (success).

Page 380

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 381

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 382

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.4. Linking Modules on Demand
 A module can be automatically linked when the functionality it provides is requested and automatically
removed afterward.

 For instance, suppose that the MS-DOS filesystem has not been linked, either statically or dynamically.
If a user tries to mount an MS-DOS filesystem, the mount() system call normally fails by returning an
error code, because MS-DOS is not included in the file_systems list of registered filesystems. However,
if support for automatic linking of modules has been specified when configuring the kernel, Linux makes
an attempt to link the MS-DOS module, and then scans the list of registered filesystems again. If the
module is successfully linked, the mount() system call can continue its execution as if the MS-DOS
filesystem were present from the beginning.

 B.4.1. The modprobe Program

 To automatically link a module, the kernel creates a kernel thread to execute the modprobe external
program,[*] which takes care of possible complications due to module dependencies. The dependencies
were discussed earlier: a module may require one or more other modules, and these in turn may require
still other modules. For instance, the MS-DOS module requires another module named fat containing
some code common to all filesystems based on a File Allocation Table (FAT). Thus, if it is not already
present, the fat module must also be automatically linked into the running kernel when the MS-DOS
module is requested. Resolving dependencies and finding modules is a type of activity that's best done in
User Mode, because it requires locating and accessing module object files in the filesystem.

[*] This is one of the few examples in which the kernel relies on an external program.

 The modprobe external program is similar to insmod, since it links in a module specified on the
command line. However, modprobe also recursively links in all modules used by the module specified on
the command line. For instance, if a user invokes modprobe to link the MS-DOS module, the program
links the fat module, if necessary, followed by the MS-DOS module. Actually, modprobe simply checks
for module dependencies; the actual linking of each module is done by forking a new process and
executing insmod.

 How does modprobe know about module dependencies? Another external program named depmod is
executed at system startup. It looks at all the modules compiled for the running kernel, which are usually
stored inside the /lib/modules directory. Then it writes all module dependencies to a file named
modules.dep. The modprobe program can thus simply compare the information stored in the file with the
list of linked modules yielded by the /proc /modules file.

 B.4.2. The request_module() Function

 In some cases, the kernel may invoke the request_module() function to attempt automatic linking for a
module.

 Consider again the case of a user trying to mount an MS-DOS filesystem. If the get_fs_type() function
discovers that the filesystem is not registered, it invokes the request_module() function in the hope that
MS-DOS has been compiled as a module.

 If the request_module() function succeeds in linking the requested module, get_fs_type() can continue
as if the module were always present. Of course, this does not always happen; in our example, the
MS-DOS module might not have been compiled at all. In this case, get_fs_type() returns an error code.

 The request_module() function receives the name of the module to be linked as its parameter. It
executes kernel_thread() to create a new kernel thread and waits until that kernel thread terminates.

 The kernel thread, in turn, receives the name of the module to be linked as its parameter and invokes the
execve() system call to execute the modprobe external program,[*] passing the module name to it. In
turn, the modprobe program actually links the requested module, along with any that it depends on.

[*] The name and path of the program executed by exec_modprobe() can be customized by writing into
the /proc/sys/kernel/modprobe file.

Page 383

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 384

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Bibliography
 This bibliography is broken down by subject area and lists some of the most common and, in our
opinion, useful books and online documentation on the topic of kernels.

Page 385

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Books on Unix Kernels
 Bach, M. J. The Design of the Unix Operating System. Prentice Hall International, Inc., 1986. A classic
book describing the SVR2 kernel.

 Goodheart, B. and J. Cox. The Magic Garden Explained: The Internals of the Unix System V Release 4.
Prentice Hall International, Inc., 1994. An excellent book on the SVR4 kernel.

 Mauro, J. and R. McDougall. Solaris Internals: Core Kernel Architecture. Prentice Hall, 2000. A good
introduction to the Solaris kernel.

 McKusick, M. K., M. J. Karels, and K. Bostic. The Design and Implementation of the 4.4 BSD
Operating System. Addison Wesley, 1986. Perhaps the most authoritative book on the 4.4 BSD kernel.

 Schimmel, Curt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for
Kernel Programmers. Addison-Wesley, 1994. An interesting book that deals mostly with the problem of
cache implementation in multiprocessor systems.

 Vahalia, U. Unix Internals: The New Frontiers. Prentice Hall, Inc., 1996. A valuable book that provides
plenty of insight on modern Unix kernel design issues. It includes a rich bibliography.

Page 386

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Books on the Linux Kernel
 Beck, M., H. Boehme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner, and C. Schroter. Linux
Kernel Programming (3rd ed.). Addison Wesley, 2002. A hardware-independent book covering the
Linux 2.4 kernel.

 Benvenuti, Christian. Understanding Linux Network Internals. O'Reilly Media, Inc., 2006. Covers
standard networking protocols and the details of Linux implementation, with a focus on layer 2 and 3
activities.

 Corbet, J., A. Rubini, and G. Kroah-Hartman. Linux Device Drivers (3rd ed.). O'Reilly & Associates,
Inc., 2005. A valuable book that is somewhat complementary to this one. It gives plenty of information
on how to develop drivers for Linux.

 Gorman, M. Understanding the Linux Virtual Memory Manager. Prentice Hall PTR, 2004. Focuses on
a subset of the chapters included in this book, namely those related to the Virtual Memory Manager.

 Herbert, T. F. The Linux TCP/IP Stack: Networking for Embedded Systems (Networking Series).
Charles River Media, 2004. Describes in great details the TCP/IP Linux implementation in the 2.6
kernel.

 Love, R. Linux Kernel Development (2nd ed.). Novell Press, 2005. A hardware-independent book
covering the Linux 2.6 kernel. Some readers suggest to read it before attacking this book.

 Mosberger, D., S. Eranian, and B. Perens. IA-64 Linux Kernel: Design and Implementation. Prentice
Hall, Inc., 2002. An excellent description of the hardware-dependent Linux kernel for the Itanium IA-64
microprocessor.

Page 387

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Books on PC Architecture and Technical Manuals on Intel
Microprocessors
 Intel. Intel Architecture Software Developer's Manual, vol. 3: System Programming Guide. 2005.
Describes the Intel Pentium microprocessor architecture. It can be downloaded from:
http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf.

 Intel. MultiProcessor Specification, Version 1.4. 1997. Describes the Intel multiprocessor architecture
specifications. It can be downloaded from http://www.intel.com/design/pentium/datashts/24201606.pdf.

 Messmer, H. P. The Indispensable PC Hardware Book (4th ed.). Addison Wesley Professional, 2001.
A valuable reference that exhaustively describes the many components of a PC.

Page 388

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://www.processtext.com/abcchm.html
http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://www.processtext.com/abcchm.html

Page 389

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Other Online Documentation Sources

 Linux source code

 The official site for getting kernel source can be found at http://www.kernel.org.Many mirror sites are
also available all over the world.

 A valuable search engine for the Linux 2.6 source code is available at http://lxr.linux.no.

 GCC manuals

 All distributions of the GNU C compiler should include full documentation for all its features, stored in
several info files that can be read with the Emacs program or an info reader. By the way, the information
on Extended Inline Assembly is quite hard to follow, because it does not refer to any specific
architecture. Some pertinent information about 80 x 86 GCC's Inline Assembly and gas, the GNU
assembler invoked by GCC, can be found at:
 http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.ibm.com/developerworks/linux/library/l-ia.htmlhttp://www.gnu.org/manual/gas-2.9.1/as.html

 The Linux Documentation Project

 The web site (http://www.tldp.org) contains the home page of the Linux Documentation Project, which,
in turn, includes several interesting references to guides, FAQs, and HOWTOs.

 Linux kernel development forum

 The newsgroup comp.os.linux.development.system is dedicated to discussions about development of the
Linux system.

 The linux-kernel mailing list

 This fascinating mailing list contains much noise as well as a few pertinent comments about the current
development version of Linux and about the rationale for including or not including in the kernel some
proposals for changes. It is a living laboratory of new ideas that are taking shape. The name of the mailing
list is linux-kernel@vger.kernel.org.

 The Linux Kernel online book

 Authored by David A. Rusling, this 200-page book can be viewed at
http://www.tldp.org/LDP/tlk/tlk.html, and describes some fundamental aspects of the Linux 2.0 kernel.

 Linux Virtual File System

 The page at http://www.safe-mbox.com/~rgooch/linux/docs/vfs.txt is an introduction to the Linux Virtual
File System. The author is Richard Gooch.

Page 390

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.kernel.org
http://lxr.linux.no
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.ibm.com/developerworks/linux/library/l-ia.html
http://www.gnu.org/manual/gas-2.9.1/as.html
http://www.tldp.org
http://comp.os.linux.development.system
mailto:linux-kernel@vger.kernel.org
http://www.tldp.org/LDP/tlk/tlk.html
http://www.safe-mbox.com/~rgooch/linux/docs/vfs.txt
http://www.kernel.org
http://lxr.linux.no
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.ibm.com/developerworks/linux/library/l-ia.html
http://www.gnu.org/manual/gas-2.9.1/as.html
http://www.tldp.org
http://www.tldp.org/LDP/tlk/tlk.html
http://www.safe-mbox.com/~rgooch/linux/docs/vfs.txt
http://www.processtext.com/abcchm.html

Page 391

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Research Papers Related to Linux Development
 We list here a few papers that we have mentioned in this book. Needless to say, there are many other
articles that have a great impact on the development of Linux.

 McCreight, E. "Priority Search Tree," SIAM J. Comput., Vol. 14, No 2, pp. 257276, May 1985

 Johnson, T. and D. Shasha. "2Q: A Low Overhead High Performance Buffer Management Replacement
Algorithm," Proceedings of the 20th IEEE VLDB Conf., Santiago, Chile, 1994, pp. 439450.

 Bonwick, J. "The Slab Allocator: An Object-Caching Kernel Memory Allocator," Proceedings of
Summer 1994 USENIX Conference, pp. 8798.

Page 392

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

About the Authors

Daniel P. Bovet received his Ph.D. in computer science at UCLA in 1968 and is a full professor at the
University of Rome, Tor Vergata, Italy. He had to wait over 25 years before being able to teach an
operating systems course in a proper manner, due to the lack of source code for modern, well-designed
systems. Now, thanks to cheap PCs and Linux, Dan and Marco are able to cover all the facets of an
operating system and can hand out tough, satisfying homework to their students. (These young students
working at home on their PCs are really spoiled; they never had to fight with punched cards.) In fact,
Dan was so fascinated by the accomplishments of Linus Torvalds and his followers that he spent the last
few years trying to unravel some of Linux's mysteries. It seemed natural, after all that work, to write a
book about what he found.

 Marco Cesati received a degree in mathematics in 1992 and a Ph.D. in computer science at the
University of Rome, La Sapienza, in 1995. He is now a research assistant in the computer science
department of the School of Engineering at the University of Rome, Tor Vergata. In the past, he has
served as a system administrator and Unix programmer for the university (as a Ph.D. student) and for
several institutions (as a consultant). During the last few years, he has been continuously involved in
teaching his students how to change the Linux kernel in strange and funny ways.

Page 393

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

 Darren Kelly was the production editor for Understanding the Linux Kernel, Third Edition. Sharon
Lundsford was the copyeditor and Julie Campbell was the proofreader. Mary Brady and Claire Cloutier
provided quality control. Jansen Fernald and Loranah Dimant provided production assistance. Amy
Parker provided production services.

 Edie Freedman designed the cover of this book, based on a series design by herself and Hanna Dyer.
The cover image of a man with a bubble is a 19th-century engraving from the Dover Pictorial Archive.
Karen Montgomery produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

 David Futato designed the interior layout. The chapter opening image is from the Dover Pictorial
Archive. This book was converted to FrameMaker 5.5.6 by Keith Fahlgren with a format conversion
tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand 9 and
Adobe Photoshop 6.

Page 394

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Page 395

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 396

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

a.out executable format
aborts
access control lists
access rights
access_ok
 include/asm-i386/uaccess.h
account_it_prof
 kernel/sched.c
account_it_virt
 kernel/sched.c
account_system_time
 kernel/sched.c
account_user_time
 kernel/sched.c
ACPI 2nd 3rd 4th
 Power Management Timer 2nd 3rd
activate_page
 mm/swap.c
add_disk
 drivers/block/genhd.c
add_page_to_active_list
 include/linux/mm_inline.h
add_page_to_inactive_list
 include/linux/mm_inline.h
add_timer
 include/linux/timer.h
add_to_page_cache
 mm/filemap.c
add_to_swap
 mm/swap_state.c
add_to_swap_cache
 mm/swap_state.c
__add_to_swap_cache
 mm/swap_state.c
add_wait_queue
 kernel/wait.c
add_wait_queue_exclusive
 kernel/wait.c
address spaces 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd 23rd
 creating
 deleting
 IPC shared memory regions
address_space
 include/linux/fs.h
address_space_operations
 include/linux/fs.h
AGPs
AIO rings
aio_complete
 fs/aio.c
aio_pread
 fs/aio.c
aio_pwrite
 fs/aio.c
aio_ring
 include/linux/aio.h
aio_run_iocb
 fs/aio.c
aio_wq
 fs/aio.c
alignment_check
 arch/i386/kernel/entry.S
alloc_bootmem_low_pages
 include/linux/bootmem.h
alloc_buffer_head
 fs/buffer.c
alloc_chrdev_region
 fs/char_dev.c
alloc_disk
 drivers/block/genhd.c
alloc_page
 include/linux/gfp.h
alloc_page_buffers
 fs/buffer.c
alloc_pages
 include/linux/gfp.h
__alloc_pages
 mm/page_alloc.c
alloc_percpu
 include/linux/percpu.h
alloc_slabmgmt
 mm/slab.c
alloc_task_struct()
 kernel/fork.c
alloc_thread_info
 include/asm-i386/thread_info.h
alloc_vfsmnt
 fs/namespace.c
allocate_resource
 kernel/resource.c
anon_pipe_buf_ops
 fs/pipe.c
anon_vma
 include/linux/rmap.h
anonymous mapping
apic_intr_init
 arch/i386/kernel/apic.c
apic_timer_interrupt
 include/asm-i386/mach-default/
APICs
 CPU local timer
 I/O APICs
 local APICs
 arbitration
 interrupts
 time interrupt handlers
 timers, synchronization of
APM 2nd
arch_get_unmapped_area
 mm/mmap.c
arch_get_unmapped_area_topdown
 mm/mmap.c
arch_pick_mmap_layout
 arch/i386/mm/mmap.c
array_cache
 mm/slab.c
assembly language fragments
 asm statements
 embedded in the C code
 extended inline assembly language
assembly language instructions
 bound 2nd 3rd
 bsfl
 call
 cld
 cli 2nd 3rd 4th 5th 6th
 clts
 ESCAPE instructions 2nd
 far jmp
 fnsave
 FPU instructions
 frstor
 fxrstor
 fxsave
 hlt
 in 2nd 3rd
 ins
 int 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 int3 2nd 3rd
 into 2nd 3rd
 invlpg
 iret 2nd 3rd 4th 5th 6th 7th
 lfence
 lidt 2nd
 lock byte 2nd 3rd
 mfence
 MMX instructions 2nd
 movsb
 movzwl
 out 2nd 3rd
 outb
 outs
 pause
 rdtsc
 rep bytes 2nd
 ret
 scasb
 sfence
 SSE/SSE2 instructions 2nd
 sti 2nd 3rd 4th
 string instructions 2nd
 sysenter 2nd 3rd 4th 5th 6th
 sysexit 2nd
 xchg
asynchronous DMA mappings
 see streaming DMA mappings
asynchronous I/O contexts
asynchronous interrupts
asynchronous notifications
atomic memory allocation requests
atomic operations 2nd
atomic_add
 include/asm-i386/atomic.h
atomic_add_negative
 include/asm-i386/atomic.h
atomic_add_return
 include/asm-i386/atomic.h
atomic_clear_mask
 include/asm-i386/atomic.h
atomic_dec
 include/asm-i386/atomic.h
atomic_dec_and_test
 include/asm-i386/atomic.h
atomic_dec_return
 include/asm-i386/atomic.h
atomic_inc
 include/asm-i386/atomic.h
atomic_inc_and_test
 include/asm-i386/atomic.h
atomic_inc_return
 include/asm-i386/atomic.h
atomic_read
 include/asm-i386/atomic.h
atomic_set
 include/asm-i386/atomic.h
atomic_set_mask
 include/asm-i386/atomic.h
atomic_sub
 include/asm-i386/atomic.h
atomic_sub_and_test
 include/asm-i386/atomic.h
atomic_sub_return
 include/asm-i386/atomic.h
atomic_t
 include/asm-i386/atomic.h
attach_pid
 kernel/pid.c
autoremove_wake_function
 kernel/wait.c

Page 397

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 398

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 399

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

__b_read
 fs/buffer.c
background_writeout
 mm/page-writeback.c
backing_dev_info
 include/linux/backing-dev.h
backside buses
bad_pipe_r
 fs/pipe.c
bad_pipe_w
 fs/pipe.c
balance_pgdat
 mm/vmscan.c
barrier()
 include/linux/compiler-gcc.h
base time quantum
bd_acquire
 fs/block_dev.c
bdev_map
 drivers/block/genhd.c
bdget
 fs/block_dev.c
BDI_pdflush
 include/linux/backing-dev.h
__be16
 include/linux/types.h
__be32
 include/linux/types.h
bforget
 fs/buffer.c
BH_Async_Read
 include/linux/buffer_head.h
BH_Async_Write
 include/linux/buffer_head.h
BH_Boundary
 include/linux/buffer_head.h
bh_cachep
 fs/buffer.c
BH_Delay
 include/linux/buffer_head.h
BH_Dirty
 include/linux/buffer_head.h
BH_Eopnotsupp
 include/linux/buffer_head.h
BH_JBD
 include/linux/jbd.h
BH_Lock
 include/linux/buffer_head.h
bh_lrus
 fs/buffer.c
BH_Mapped
 include/linux/buffer_head.h
BH_New
 include/linux/buffer_head.h
BH_Ordered
 include/linux/buffer_head.h
BH_Req
 include/linux/buffer_head.h
BH_Uptodate
 include/linux/buffer_head.h
BH_Write_EIO
 include/linux/buffer_head.h
big kernel lock 2nd 3rd 4th 5th 6th 7th 8th
big-endian ordering
bio
 include/linux/bio.h
bio_alloc
 fs/bio.c
bio_destructor
 fs/bio.c
bio_endio
 fs/bio.c
BIO_EOF
 include/linux/bio.h
bio_for_each_segment
 include/linux/bio.h
bio_put
 fs/bio.c
bio_vec
 include/linux/bio.h
BIOS 2nd
 bootstrap procedure
 Enhanced Disk Drive Services
 real mode addressing, usage of
bios
 bounce bios
blk_congestion_wait
 drivers/block/ll_rw_blk.c
blk_fs_request
 include/linux/blkdev.h
blk_get_request
 drivers/block/ll_rw_blk.c
blk_init_queue
 drivers/block/ll_rw_blk.c
blk_partition_remap
 drivers/block/ll_rw_blk.c
blk_plug_device
 drivers/block/ll_rw_blk.c
blk_put_request
 drivers/block/ll_rw_blk.c
blk_queue_bounce
 mm/highmem.c
blk_queue_hardsect_size
 drivers/block/ll_rw_blk.c
blk_queue_max_hw_segments
 drivers/block/ll_rw_blk.c
blk_queue_max_phys_segments
 drivers/block/ll_rw_blk.c
blk_queue_max_sectors
 drivers/block/ll_rw_blk.c
blk_remove_plug
 drivers/block/ll_rw_blk.c
blk_rq_map_sg
 drivers/block/ll_rw_blk.c
blk_unplug_timeout
 drivers/block/ll_rw_blk.c
blk_unplug_work
 drivers/block/ll_rw_blk.c
blkdev_close
 fs/block_dev.c
blkdev_commit_write
 fs/block_dev.c
blkdev_dequeue_request
 include/linux/blkdev.h
blkdev_file_aio_write
 fs/block_dev.c
blkdev_file_write
 fs/block_dev.c
blkdev_get_block
 fs/block_dev.c
blkdev_open
 fs/block_dev.c
blkdev_prepare_write
 fs/block_dev.c
blkdev_readpage
 fs/block_dev.c
blkdev_writepage
 fs/block_dev.c
block buffers
block device buffer pages
block device drivers
block device files
block device requests
block devices
 plugging and unplugging
__block_commit_write
 fs/buffer.c
block_device
 include/linux/fs.h
block_device_operations
 include/linux/fs.h
block_fsync
 fs/block_dev.c
block_ioctl
 fs/block_dev.c
block_llseek
 fs/block_dev.c
block_prepare_write
 fs/buffer.c
block_read_full_page
 fs/buffer.c
block_wait_queue_running
 drivers/block/ll_rw_blk.c
block_write_full_page
 fs/buffer.c
blockable_page_cache_readahead
 mm/readahead.c
__blockdev_direct_IO
 fs/direct-io.c
blocked_list
 fs/locks.c
blocks
boot loaders
boot sectors
bootstrapping
bounds
 arch/i386/kernel/entry.S
brelse
 fs/buffer.c
bridges
bss segments
buddy system 2nd
 allocating a block of page frames
 data structures
 freeing of a block of page frames
 slab allocator and
BUFCTL_END
 mm/slab.c
buffer bouncing
buffer cache
buffer heads 2nd
buffer pages
buffer_head
 include/linux/buffer_head.h
buffered_rmqueue
 mm/page_alloc.c
buffers
build_all_zonelists
 mm/page_alloc.c
BUILD_INTERRUPT
 arch/i386/kernel/entry.S
bus addresses
bus masters
bus mouse interfaces
bus_for_each_dev
 drivers/base/bus.c
bus_for_each_drv
 drivers/base/bus.c
bus_subsys
 drivers/base/bus.c
bus_type
 include/linux/device.h
buses
BYTES_PER_WORD
 mm/slab.c

Page 400

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 401

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 402

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

cache lines
cache_alloc_refill
 mm/slab.c
cache_cache
 mm/slab.c
cache_chain
 mm/slab.c
cache_chain_sem
 mm/slab.c
cache_flusharray
 mm/slab.c
cache_grow
 mm/slab.c
cache_init_objs
 mm/slab.c
cache_reap
 mm/slab.c
cache_sizes
 include/linux/slab.h
caches
 types of
calc_load
 kernel/timer.c
calc_vm_flag_bits
 include/linux/mman.h
calc_vm_prot_bits
 include/linux/mman.h
calibrate_APIC_clock
 arch/i386/kernel/apic.c
calibrate_delay
 init/calibrate.c
calibrate_tsc
 arch/i386/kernel/timers/common.c
call gates
call_data
 arch/i386/kernel/smp.c
call_function_interrupt
 include/asm-i386/mach-default/
CALL_FUNCTION_VECTOR
 include/asm-i386/mach-default/
call_rcu
 kernel/rcupdate.c
can_migrate_task
 kernel/sched.c
cancel_delayed_work
 include/linux/workqueue.h
CAP_AUDIT_CONTROL
 include/linux/capability.h
CAP_AUDIT_WRITE
 include/linux/capability.h
CAP_CHOWN
 include/linux/capability.h
CAP_DAC_OVERRIDE
 include/linux/capability.h
CAP_DAC_READ_SEARCH
 include/linux/capability.h
CAP_FOWNER
 include/linux/capability.h
CAP_FSETID
 include/linux/capability.h
CAP_IPC_LOCK
 include/linux/capability.h
CAP_IPC_OWNER
 include/linux/capability.h
CAP_KILL
 include/linux/capability.h
CAP_LEASE
 include/linux/capability.h
CAP_LINUX_IMMUTABLE
 include/linux/capability.h
CAP_MKNOD
 include/linux/capability.h
CAP_NET_ADMIN
 include/linux/capability.h
CAP_NET_BIND_SERVICE
 include/linux/capability.h
CAP_NET_BROADCAST
 include/linux/capability.h
CAP_NET_RAW
 include/linux/capability.h
CAP_SETGID
 include/linux/capability.h
CAP_SETPCAP
 include/linux/capability.h
CAP_SETUID
 include/linux/capability.h
CAP_SYS_ADMIN
 include/linux/capability.h
CAP_SYS_BOOT
 include/linux/capability.h
CAP_SYS_CHROOT
 include/linux/capability.h
CAP_SYS_MODULE
 include/linux/capability.h
CAP_SYS_NICE
 include/linux/capability.h
CAP_SYS_PACCT
 include/linux/capability.h
CAP_SYS_PTRACE
 include/linux/capability.h
CAP_SYS_RAWIO
 include/linux/capability.h
CAP_SYS_RESOURCE
 include/linux/capability.h
CAP_SYS_TIME
 include/linux/capability.h
CAP_SYS_TTY_CONFIG
 include/linux/capability.h
cap_vm_enough_memory
 security/commoncap.c
capable
 include/linux/sched.h
cascade
 kernel/timer.c
cdev
 include/linux/cdev.h
cdev_add
 fs/char_dev.c
cdev_alloc
 fs/char_dev.c
cdev_map
 fs/char_dev.c
CFLGS_OFF_SLAB
 mm/slab.c
chained lists
change_bit
 include/asm-i386/bitops.h
char_device_struct
 fs/char_dev.c
character device drivers
character device files
character devices
child filesystems
child processes
chrdev_open
 fs/char_dev.c
chrdevs
 fs/char_dev.c
class
 include/linux/device.h
class_device
 include/linux/device.h
clear_bit
 include/asm-i386/bitops.h
clear_fixmap
 include/asm-i386/fixmap.h
clear_inode
 fs/inode.c
clear_page_range
 mm/memory.c
clear_user
 arch/i386/lib/usercopy.c
__clear_user
 arch/i386/lib/usercopy.c
ClearPageActive
 include/linux/page-flags.h
ClearPageChecked
 include/linux/page-flags.h
ClearPageCompound
 include/linux/page-flags.h
ClearPageDirty
 include/linux/page-flags.h
ClearPageError
 include/linux/page-flags.h
ClearPageLocked
 include/linux/page-flags.h
ClearPageMappedToDisk
 include/linux/page-flags.h
ClearPageNosave
 include/linux/page-flags.h
ClearPageNosaveFree
 include/linux/page-flags.h
ClearPagePrivate
 include/linux/page-flags.h
ClearPageReclaim
 include/linux/page-flags.h
ClearPageReferenced
 include/linux/page-flags.h
ClearPageReserved
 include/linux/page-flags.h
ClearPageSlab
 include/linux/page-flags.h
ClearPageSwapCache
 include/linux/page-flags.h
ClearPageUptodate
 include/linux/page-flags.h
ClearPageWriteback
 include/linux/page-flags.h
CLOCK_MONOTONIC
 include/linux/time.h
CLOCK_REALTIME
 include/linux/time.h
CLOCK_TICK_RATE
 include/asm-i386/timex.h
clocks
CLONE_CHILD_CLEARTID
 include/linux/sched.h
CLONE_CHILD_SETTID
 include/linux/sched.h
CLONE_DETACHED
 include/linux/sched.h
CLONE_FILES
 include/linux/sched.h
CLONE_FS
 include/linux/sched.h
CLONE_NEWNS
 include/linux/sched.h
CLONE_PARENT
 include/linux/sched.h
CLONE_PARENT_SETTID
 include/linux/sched.h
CLONE_PTRACE
 include/linux/sched.h
CLONE_SETTLS
 include/linux/sched.h
CLONE_SIGHAND
 include/linux/sched.h
CLONE_STOPPED
 include/linux/sched.h
CLONE_SYSVSEM
 include/linux/sched.h
CLONE_THREAD
 include/linux/sched.h
CLONE_UNTRACED
 include/linux/sched.h
CLONE_VFORK
 include/linux/sched.h
CLONE_VM
 include/linux/sched.h
Code Segment Descriptors
code segment registers
COFF executable format
coherent DMA mappings
command-line arguments 2nd
common file model
compat_blkdev_ioctl
 drivers/block/ioctl.c
complete
 kernel/sched.c
completion
 include/linux/completion.h
completions
concurrency level
cond_resched
 kernel/sched.c
consistent DMA mappings
 see coherent DMA mappings
context_switch
 kernel/sched.c
contig_page_data
 mm/page_alloc.c
conventional processes
coprocessor_error
 arch/i386/kernel/entry.S
coprocessor_segment_overrun
 arch/i386/kernel/entry.S
copy_files
 kernel/fork.c
copy_from_user
 arch/i386/lib/usercopy.c
__copy_from_user
 include/asm-i386/uaccess.h
copy_fs
 kernel/fork.c
copy_mm
 kernel/fork.c
copy_namespace
 fs/namespace.c
copy_page
 include/asm-i386/page.h
copy_page_range
 mm/memory.c
copy_process
 kernel/fork.c
copy_semundo
 ipc/sem.c
copy_sighand
 kernel/fork.c
copy_siginfo
 include/asm-generic/siginfo.h
copy_signal
 kernel/fork.c
copy_thread
 arch/i386/kernel/process.c
copy_to_user
 arch/i386/lib/usercopy.c
__copy_to_user
 include/asm-i386/uaccess.h
core dumps
COW 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
cp program 2nd 3rd
CPL (Current Privilege Level) 2nd
CPU control registers (80x86)
 cr0 2nd 3rd 4th 5th 6th 7th 8th
 cr2 2nd
 cr3 2nd 3rd 4th 5th 6th 7th 8th 9th
 cr4
 debug registers 2nd 3rd 4th 5th
 eflags 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 gdtr 2nd 3rd 4th
 idtr 2nd 3rd
 ldtr 2nd
 MSR registers
 MTRR registers
 tr 2nd
CPU execution modes
CPU local timer
cpu_domains
 kernel/sched.c
cpu_gdt_descr
 arch/i386/kernel/head.S
cpu_gdt_table
 arch/i386/kernel/head.S
cpu_idle
 arch/i386/kernel/process.c
cpu_relax()
 include/asm-i386/processor.h
cpu_rq
 kernel/sched.c
cpu_tlbstate
 arch/i386/kernel/smp.c
cpu_workqueue_struct
 kernel/workqueue.c
create_empty_buffers
 fs/buffer.c
create_singlethread_workqueue
 include/linux/workqueue.h
create_workqueue
 include/linux/workqueue.h
critical regions 2nd
cur_timer
 arch/i386/kernel/time.c
current
 include/asm-i386/current.h
current working directory
CURRENT_BONUS
 kernel/sched.c
current_thread_info
 include/asm-i386/thread_info.h
custom I/O interfaces

Page 403

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 404

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 405

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

d_lookup
 fs/dcache.c
__d_lookup
 fs/dcache.c
Data Segment Descriptors
data segment registers
dcache_lock
 fs/dcache.c
de_thread
 fs/exec.c
deactivate_task
 kernel/sched.c
deadlocks
debug
 arch/i386/kernel/entry.S
debugfs program
DECLARE_MUTEX
 include/asm-i386/semaphore.h
DECLARE_MUTEX_LOCKED
 include/asm-i386/semaphore.h
DECLARE_WAIT_QUEUE_HEAD
 include/linux/wait.h
decompress_kernel
 arch/i386/boot/compressed/misc.c
def_blk_fops
 fs/block_dev.c
def_chr_fops
 fs/char_dev.c
def_fifo_fops
 fs/fifo.c
default_ldt
 arch/i386/kernel/traps.c
default_wake_function
 kernel/sched.c
deferrable functions
 activation of
 disabling
 execution of
 initialization of
 protecting data structures accessed by
 protecting data structures accessed by exceptions and
 protecting data structures accessed by interrupts and
 protecting data structures accessed by interrupts, exceptions, and
DEFINE_PER_CPU
 include/asm-generic/percpu.h
DEFINE_WAIT
 include/linux/wait.h
del_page_from_active_list
 include/linux/mm_inline.h
del_page_from_inactive_list
 include/linux/mm_inline.h
del_page_from_lru
 include/linux/mm_inline.h
del_singleshot_timer_sync
 kernel/timer.c
del_timer
 kernel/timer.c
del_timer_sync
 kernel/timer.c
delay functions
delete_from_swap_cache
 mm/swap_state.c
demand paging 2nd 3rd 4th 5th 6th 7th 8th
 for IPC shared memory
 for memory mapping
dentry
 include/linux/dcache.h
dentry cache 2nd 3rd 4th 5th 6th 7th
 reclaiming page frames from
dentry_cache
 fs/dcache.c
dentry_hashtable
 fs/dcache.c
dentry_open
 fs/open.c
dentry_operations
 include/linux/dcache.h
dentry_unused
 fs/dcache.c
dependent_sleeper
 kernel/sched.c
dequeue_signal
 kernel/signal.c
dequeue_task
 kernel/sched.c
destroy_workqueue
 kernel/workqueue.c
detach_pid
 kernel/pid.c
detach_vmas_to_be_unmapped
 mm/mmap.c
dev_t
 include/linux/types.h
device
 include/linux/device.h
device control registers
device controllers
device driver model
device drivers 2nd
 buffering strategies
 IRQ-configuration 2nd
 registering
 resources
device files
 examples
 VFS, handling by
device hotplugging
device input registers
device output registers
device status registers
device_driver
 include/linux/device.h
device_not_available
 arch/i386/kernel/entry.S
device_register
 drivers/base/core.c
device_unregister
 drivers/base/core.c
devices_subsys
 drivers/base/core.c
die
 arch/i386/kernel/traps.c
digital signal processors (DSP)
direct I/O transfers
dirty background threshold
dirty_writeback_centisecs
 mm/page-writeback.c
disable_8259A_irq
 arch/i386/kernel/i8259.c
disable_irq
 kernel/irq/manage.c
disable_irq_nosync
 kernel/irq/manage.c
disk block fragmentation
disk caches 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
disk controllers
disk geometry
disk interfaces
disk superblocks
disks
dispatch latency
distress value
divide_error
 arch/i386/kernel/entry.S
DMA
 circuits
 controllers
 hardware segment
 mapping types
 physical segments
 segments
dma_addr_t
 include/asm-i386/types.h
dma_alloc_coherent
 arch/i386/kernel/pci-dma.c
dma_free_coherent
 arch/i386/kernel/pci-dma.c
dma_map_page
 include/asm-i386/dma-mapping.h
dma_map_single
 include/asm-i386/dma-mapping.h
dma_set_mask
 include/asm-i386/dma-mapping.h
dma_sync_single_for_cpu
 include/asm-i386/dma-mapping.h
dma_sync_single_for_device
 include/asm-i386/dma-mapping.h
dma_unmap_page
 include/asm-i386/dma-mapping.h
dma_unmap_single
 include/asm-i386/dma-mapping.h
do_add_mount
 fs/namespace.c
do_anonymous_page
 mm/memory.c
do_brk
 mm/mmap.c
do_each_task_pid
 include/linux/pid.h
do_execve
 fs/exec.c
do_exit
 kernel/exit.c
do_file_page
 mm/memory.c
do_follow_link
 fs/namei.c
do_fork
 kernel/fork.c
do_general_protection
 arch/i386/kernel/traps.c
do_generic_file_read
 include/linux/fs.h
do_gettimeofday
 arch/i386/kernel/time.c
do_group_exit
 kernel/exit.c
do_IRQ
 arch/i386/kernel/irq.c
__do_IRQ
 kernel/irq/handle.c
do_irq_balance
 arch/i386/kernel/io_apic.c
do_kern_mount
 fs/super.c
do_lookup
 fs/namei.c
do_mmap
 include/linux/mm.h
do_mmap_pgoff
 mm/mmap.c
do_mount
 fs/namespace.c
do_move_mount
 fs/namespace.c
do_munmap
 mm/mmap.c
do_new_mount
 fs/namespace.c
do_nmi
 arch/i386/kernel/traps.c
do_no_page
 mm/memory.c
do_notify_parent_cldstop
 kernel/signal.c
do_notify_resume
 arch/i386/kernel/signal.c
do_page_fault
 arch/i386/mm/fault.c
do_pipe
 fs/pipe.c
do_remount
 fs/namespace.c
do_remount_sb
 fs/super.c
do_sched_setscheduler
 kernel/sched.c
do_settimeofday
 arch/i386/kernel/time.c
do_shmat
 ipc/shm.c
do_sigaction
 kernel/signal.c
do_signal
 arch/i386/kernel/signal.c
do_signal_stop
 kernel/signal.c
do_softirq
 kernel/softirq.c
__do_softirq
 kernel/softirq.c
do_swap_page
 mm/memory.c
do_syscall_trace
 arch/i386/kernel/ptrace.c
do_timer_interrupt
 arch/i386/kernel/time.c
do_trap
 arch/i386/kernel/traps.c
do_umount
 fs/namespace.c
do_wp_page
 mm/memory.c
doublefault_fn
 arch/i386/kernel/doublefault.c
__down
 arch/i386/kernel/semaphore.c
down
 include/asm-i386/semaphore.h
down_interruptible
 include/asm-i386/semaphore.h
down_read
 include/linux/rwsem.h
down_read_trylock
 include/linux/rwsem.h
down_trylock
 include/asm-i386/semaphore.h
down_write
 include/linux/rwsem.h
down_write_trylock
 include/linux/rwsem.h
downgrade_write
 include/asm-i386/rwsem.h
DPL 2nd
driver_register
 drivers/base/driver.c
driver_unregister
 drivers/base/driver.c
dummy_security_ops
 security/dummy.c
dumpe2fs program
dup_mmap
 kernel/fork.c
dup_task_struct
 kernel/fork.c
dynamic address checking
dynamic distribution of IRQs
dynamic linker
dynamic memory
dynamic timers
 example
 handling
 race conditions and

Page 406

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 407

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 408

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

e2fsck program 2nd 3rd 4th 5th
EDD
effective_prio
 kernel/sched.c
EINTR
 include/asm-i386/errno.h
ELEVATOR_BACK_MERGE
 include/linux/elevator.h
ELEVATOR_NO_MERGE
 include/linux/elevator.h
elevator_t
 include/linux/elevator.h
ELF executable format
elv_merge
 drivers/block/elevator.c
elv_next_request
 drivers/block/elevator.c
elv_queue_empty
 drivers/block/elevator.c
empty_zero_page
 arch/i386/kernel/head.S
enable_8259A_irq
 arch/i386/kernel/i8259.c
enable_irq
 kernel/irq/manage.c
enable_sep_cpu
 arch/i386/kernel/sysenter.c
end_8259A_irq
 arch/i386/kernel/i8259.c
end_bio_bh_io_sync
 fs/buffer.c
end_buffer_async_read
 fs/buffer.c
end_buffer_read_sync
 fs/buffer.c
end_buffer_write_sync
 fs/buffer.c
end_swap_bio_write
 mm/page_io.c
end_that_request_chunk
 drivers/block/ll_rw_blk.c
end_that_request_first
 drivers/block/ll_rw_blk.c
end_that_request_last
 drivers/block/ll_rw_blk.c
ENOSYS
 include/asm-generic/errno.h
enqueue_task
 kernel/sched.c
environment variables 2nd
ERESTART_RESTARTBLOCK
 include/linux/errno.h
ERESTARTNOHAND
 include/linux/errno.h
ERESTARTNOINTR
 include/linux/errno.h
ERESTARTSYS
 include/linux/errno.h
errno variable
exception stack 2nd 3rd
exception_table_entry
 include/asm-i386/uaccess.h
exceptions 2nd 3rd 4th 5th 6th 7th
 exception handlers 2nd 3rd 4th 5th 6th
 entering and leaving
 memory allocations performed by
 nested execution of
 termination phase 2nd
 exception handling
 exception tables 2nd
 fixup code
 generating
 exception types
 Alignment check
 Bounds check 2nd
 Breakpoint 2nd
 Coprocessor segment overrun
 Debug 2nd 3rd
 Device not available 2nd 3rd 4th
 Divide error 2nd
 Double fault 2nd 3rd 4th
 Floating-point error
 General protection 2nd 3rd 4th 5th
 Invalid opcode
 Invalid TSS
 Machine check
 Overflow 2nd
 Page Fault 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 Segment not present
 SIMD floating point exception
 Stack segment fault
 hardware error codes
 hardware handling of
 Kernel Mode, raised in 2nd 3rd 4th 5th
 processor-detected exceptions
 programmed exceptions
 protecting data structures accessed by
 protecting data structures accessed by deferrable functions and
 protecting data structures accessed by interrupts and
 protecting data structures accessed by interrupts, deferrable functions, and
 User Mode, raised in
exec_domain
 include/linux/personality.h
exec_mmap
 fs/exec.c
exec_permission_lite
 fs/namei.c
executable files
execution context
execution domain descriptors
execution tracing
EXIT_DEAD
 include/linux/sched.h
__exit_files
 kernel/exit.c
__exit_fs
 kernel/exit.c
exit_itimers
 kernel/posix-itimers.c
exit_mm
 kernel/exit.c
exit_namespace
 include/linux/namespace.h
exit_notify
 kernel/exit.c
exit_sem
 ipc/sem.c
__exit_sighand
 kernel/signal.c
__exit_signal
 kernel/signal.c
exit_thread
 kernel/process.c
EXIT_ZOMBIE
 include/linux/sched.h
expand_stack
 mm/mmap.c
EXPIRED_STARVING
 kernel/sched.c
EXPORT_SYMBOL
 include/linux/module.h
EXPORT_SYMBOL_GPL
 include/linux/module.h
Ext2 filesystem 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 allocating data blocks
 goal
 bitmap
 block groups
 creating
 data blocks
 addressing
 file holes
 data blocks, usage by file types
 disk data structures
 disk space management
 features
 group descriptors
 indirect blocks
 inode descriptors
 inode tables
 inodes
 creating
 deleting
 memory data structures
 metadata
 methods
 file operations
 inode operations
 superblock operations
 preallocation of blocks
 releasing data blocks
 superblocks 2nd
ext2_alloc_block
 fs/ext2/inode.c
ext2_alloc_inode
 fs/ext2/super.c
ext2_create
 fs/ext2/namei.c
ext2_dir_entry_2
 include/linux/ext2_fs.h
ext2_fast_symlink_inode_operations
 fs/ext2/symlink.c
ext2_file_operations
 fs/ext2/file.c
ext2_fill_super
 fs/ext2/super.c
ext2_follow_link
 fs/ext2/symlink.c
ext2_free_blocks
 fs/ext2/balloc.c
ext2_free_inode
 fs/ext2/ialloc.c
ext2_get_block
 fs/ext2/inode.c
ext2_get_sb
 fs/ext2/super.c
ext2_group_desc
 include/linux/ext2_fs.h
ext2_inode
 include/linux/ext2_fs.h
ext2_inode_cachep
 fs/ext2/super.c
ext2_inode_info
 fs/ext2/ext2.h
ext2_ioctl
 fs/ext2/ioctl.c
ext2_link
 fs/ext2/namei.c
ext2_listxattr
 fs/ext2/xattr.c
ext2_lookup
 fs/ext2/namei.c
ext2_mkdir
 fs/ext2/namei.c
ext2_mknod
 fs/ext2/namei.c
EXT2_N_BLOCKS
 include/linux/ext2_fs.h
EXT2_NAME_LEN
 include/linux/ext2_fs.h
ext2_new_block
 fs/ext2/balloc.c
ext2_new_inode
 fs/ext2/ialloc.c
ext2_permission
 fs/ext2/acl.c
ext2_prepare_write
 fs/ext2/inode.c
ext2_preread_inode
 fs/ext2/ialloc.c
ext2_release_file
 fs/ext2/file.c
ext2_rename
 fs/ext2/namei.c
ext2_rmdir
 fs/ext2/namei.c
ext2_sb_info
 include/linux/ext2_fs_sb.h
ext2_setattr
 fs/ext2/inode.c
ext2_sops
 fs/ext2/super.c
ext2_super_block
 include/linux/ext2_fs.h
ext2_symlink
 fs/ext2/namei.c
ext2_symlink_inode_operations
 fs/ext2/symlink.c
ext2_sync_file
 fs/ext2/fsync.c
ext2_truncate
 fs/ext2/inode.c
ext2_unlink
 fs/ext2/namei.c
EXT2_VALID_FS
 include/linux/ext2_fs.h
ext2_writepages
 fs/ext2/inode.c
ext2_xattr_entry
 fs/ext2/xattr.h
Ext3 filesystem 2nd 3rd 4th 5th
 as a journaling filesystem 2nd
 journaling modes
 journal mode 2nd
 ordered mode 2nd
 writeback mode 2nd 3rd
 metadata 2nd
ext3_get_block
 fs/ext3/inode.c
ext3_journalled_commit_write
 fs/ext3/inode.c
ext3_ordered_commit_write
 fs/ext3/inode.c
ext3_prepare_write
 fs/ext3/inode.c
ext3_writeback_commit_write
 fs/ext3/inode.c
extended attributes
extended frames
extended paging

Page 409

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 410

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 411

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

F_GETLEASE
 include/linux/fcntl.h
F_GETLK
 include/asm-i386/fcntl.h
F_GETLK64
 include/asm-i386/fcntl.h
F_SETLEASE
 include/linux/fcntl.h
F_SETLK
 include/asm-i386/fcntl.h
F_SETLK64
 include/asm-i386/fcntl.h
F_SETLKW
 include/asm-i386/fcntl.h
F_SETLKW64
 include/asm-i386/fcntl.h
F_SETSIG
 include/asm-i386/fcntl.h
FASYNC
 include/asm-i386/fcntl.h
faults
fcntl_getlk
 fs/locks.c
fcntl_setlk
 fs/locks.c
fd_set
 include/linux/types.h
fdformat program
fdisk program
fget
 fs/file_table.c
fget_light
 fs/file_table.c
fifo_open
 fs/fifo.c
FIFOs
 creating and opening
 file operations
 pipes, contrasted with
file
 include/linux/fs.h
file block numbers 2nd 3rd 4th
file descriptors 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
file holes 2nd 3rd 4th
file locks
 active locks
 advisory locks
 blocked locks
 mandatory locks
 read locks
 write locks
file modes
file pointers 2nd 3rd 4th 5th 6th 7th 8th
file read-ahead
 ahead window
 current window
 sequential accesses
file_lock
 include/linux/fs.h
file_lock_list
 fs/locks.c
file_operations
 include/linux/fs.h
file_ra_state
 include/linux/fs.h
file_read_actor
 mm/filemap.c
file_system_type
 include/linux/fs.h
file_systems
 fs/filesystems.c
file_systems_lock
 fs/filesystems.c
filemap_nopage
 mm/filemap.c
filemap_populate
 mm/filemap.c
filename length
filenames 2nd 3rd 4th 5th 6th
 comparing
 encoding in Ext2
 extensions of
 of device files
files
 access rights
 Execute
 Read
 Write
 accessing 2nd
 addressing of
 append-only files
 closing
 deleting
 fragmentation
 immutable files
 opening
 reading from
 renaming
 types of
 undeletion of
 writing to 2nd
files_init
 fs/file_table.c
files_lock
 fs/file_table.c
files_stat
 fs/file_table.c
files_struct
 include/linux/file.h
filesystem control blocks (see disk superblocks)
Filesystem Hierarchy Standard
filesystem type registration
filesystem's root directories 2nd
filesystems 2nd 3rd
 ADFS
 AFFS
 corrupted filesystems
 disk-based filesystems 2nd 3rd 4th 5th
 ExtFS
 HFS
 High Sierra
 HPFS
 ISO9660
 JFS 2nd 3rd
 MINIX
 mounting
 a generic filesystems
 the root filesystem
 MS-DOS 2nd
 NTFS 2nd
 ReiserFS 2nd
 sysv
 types of
 UDF
 UFS
 Unix filesystem
 unmounting
 VERITAS VxFS
 VFAT
 XFS 2nd 3rd
filp_cachep
 fs/dcache.c
filp_close
 fs/open.c
filp_open
 fs/open.c
find_busiest_group
 kernel/sched.c
find_busiest_queue
 kernel/sched.c
__find_get_block
 fs/buffer.c
find_get_page
 mm/filemap.c
__find_get_page
 mm/filemap.c
find_get_pages
 mm/filemap.c
find_get_pages_tag
 mm/filemap.c
find_group_dir
 fs/ext2/ialloc.c
find_group_orlov
 fs/ext2/ialloc.c
find_group_other
 fs/ext2/ialloc.c
find_lock_page
 mm/filemap.c
find_or_create_page
 mm/filemap.c
find_task_by_pid
 kernel/pid.c
find_task_by_pid_type
 kernel/pid.c
find_trylock_page
 mm/filemap.c
find_vma
 mm/mmap.c
find_vma_intersection
 include/linux/mm.h
find_vma_prepare
 mm/mmap.c
find_vma_prev
 mm/mmap.c
finish_task_switch
 kernel/sched.c
finish_wait
 kernel/wait.c
fix-mapped linear addresses 2nd 3rd 4th
fix_to_virt
 include/asm-i386/fixmap.h
FIX_VSYSCALL
 include/asm-i386/fixmap.h
fixed preemption points
fixed_addresses
 include/asm-i386/fixmap.h
FL_SLEEP
 include/linux/fs.h
flexible memory region layout
flock
 include/asm-i386/fcntl.h
flock64
 include/asm-i386/fcntl.h
flock_lock_file
 fs/locks.c
flock_lock_file_wait
 fs/locks.c
floppy disks 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
flush_all_zero_pkmaps
 mm/highmem.c
flush_old_exec
 fs/exec.c
flush_old_files
 fs/exec.c
flush_scheduled_work
 kernel/workqueue.c
flush_signal_handlers
 kernel/signal.c
flush_signals
 kernel/signal.c
flush_sigqueue
 kernel/signal.c
flush_thread
 arch/i386/kernel/process.c
flush_tlb
 include/asm-i386/tlbflush.h
__flush_tlb()
 include/asm-i386/tlbflush.h
flush_tlb_all
 include/asm-i386/tlbflush.h
__flush_tlb_global()
 include/asm-i386/tlbflush.h
flush_tlb_kernel_range
 include/asm-i386/tlbflush.h
flush_tlb_mm
 include/asm-i386/tlbflush.h
flush_tlb_page
 include/asm-i386/tlbflush.h
flush_tlb_pgtables
 include/asm-i386/tlbflush.h
flush_tlb_range
 include/asm-i386/tlbflush.h
__flush_tlb_single
 include/asm-i386/tlbflush.h
flush_workqueue
 kernel/workqueue.c
flushing dirty pages
focus processors
follow_mount
 fs/namei.c
follow_page
 mm/memory.c
for_each_process
 include/linux/sched.h
force_sig
 kernel/signal.c
force_sig_info
 kernel/signal.c
force_sig_specific
 kernel/signal.c
formats
 fs/exec.c
_fpstate
 include/asm-i386/sigcontext.h
FPU 2nd 3rd
 Kernel Mode, using in
fput
 fs/file_table.c
fput_light
 fs/file_table.c
frame buffers
free_area
 include/linux/mmzone.h
free_block
 mm/slab.c
free_buffer_head
 fs/buffer.c
free_cold_page
 mm/page_alloc.c
free_hot_cold_page
 mm/page_alloc.c
free_hot_page
 mm/page_alloc.c
free_irq
 kernel/irq/manage.c
free_more_memory
 fs/buffer.c
free_page
 include/linux/gfp.h
__free_page
 include/linux/gfp.h
free_page_and_swap_cache
 mm/swap_state.c
free_pages
 mm/page_alloc.c
__free_pages
 mm/page_alloc.c
free_pages_and_swap_cache
 mm/swap_state.c
__free_pages_bulk
 mm/page_alloc.c
free_pages_bulk
 mm/page_alloc.c
free_percpu
 include/linux/percpu.h
free_pgtables
 mm/mmap.c
free_swap_and_cache
 mm/swapfile.c
free_thread_info
 include/asm-i386/thread_info.h
free_vfsmnt
 fs/namespace.c
frontside buses
FS_BINARY_MOUNTDATA
 include/linux/fs.h
FS_ODD_RENAME
 include/linux/fs.h
FS_REQUIRES_DEV
 include/linux/fs.h
FS_REVAL_DOT
 include/linux/fs.h
fs_struct
 include/linux/fs_struct.h

Page 412

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 413

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 414

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GART
GDT
gendisk
 include/linux/genhd.h
general-purpose I/O interfaces
general_protection
 arch/i386/kernel/entry.S
generic block layer
generic_commit_write
 fs/buffer.c
__generic_file_aio_read
 mm/filemap.c
generic_file_aio_read
 mm/filemap.c
generic_file_aio_write
 mm/filemap.c
__generic_file_aio_write_nolock
 mm/filemap.c
generic_file_direct_IO
 mm/filemap.c
generic_file_llseek
 fs/read_write.c
generic_file_mmap
 mm/filemap.c
generic_file_open
 fs/open.c
generic_file_read
 mm/filemap.c
generic_file_readv
 mm/filemap.c
generic_file_sendfile
 mm/filemap.c
generic_file_vm_ops
 mm/filemap.c
generic_file_write
 mm/filemap.c
generic_file_write_nolock
 mm/filemap.c
generic_file_writev
 mm/filemap.c
generic_getxattr
 fs/xattr.c
generic_make_request
 drivers/block/ll_rw_blk.c
generic_osync_inode
 fs/fs-writeback.c
generic_readlink
 fs/ext2/symlink.c
generic_removexattr
 fs/xattr.c
generic_setxattr
 fs/xattr.c
generic_unplug_device
 drivers/block/ll_rw_blk.c
GENHD_FL_REMOVABLE
 include/linux/genhd.h
GENHD_FL_UP
 include/linux/genhd.h
get_cmos_time
 arch/i386/kernel/time.c
get_cpu()
 include/linux/smp.h
__get_cpu_var
 include/asm-generic/percpu.h
get_cpu_var
 include/linux/percpu.h
get_device
 drivers/base/core.c
__get_dma_pages
 include/linux/gfp.h
get_driver
 drivers/base/driver.c
get_empty_filp
 fs/file_table.c
__get_free_page
 include/linux/gfp.h
__get_free_pages
 mm/page_alloc.c
get_fs
 include/asm-i386/uaccess.h
get_fs_type
 fs/filesystems.c
get_gendisk
 drivers/block/genhd.c
get_jiffies_64
 kernel/time.c
get_page
 include/linux/mm.h
get_pipe_inode
 fs/pipe.c
get_sb_bdev
 fs/super.c
get_sb_nodev
 fs/super.c
get_sb_pseudo
 fs/libfs.c
get_sb_single
 fs/super.c
get_sigframe
 arch/i386/kernel/signal.c
get_swap_bio
 mm/page_io.c
get_swap_page
 mm/swapfile.c
get_unmapped_area
 mm/mmap.c
get_unused_fd
 fs/open.c
get_user
 include/asm-i386/uaccess.h
__get_user
 include/asm-i386/uaccess.h
__get_user_1
 arch/i386/lib/getuser.S
__get_user_2
 arch/i386/lib/getuser.S
__get_user_4
 arch/i386/lib/getuser.S
get_user_pages
 mm/memory.c
get_vm_area
 mm/vmalloc.c
get_zeroed_page
 mm/page_alloc.c
__getblk
 fs/buffer.c
getname
 fs/namei.c
GFP_ATOMIC
 include/linux/gfp.h
__GFP_COLD
 include/linux/gfp.h
GFP_DMA
 include/linux/gfp.h
__GFP_HIGH
 include/linux/gfp.h
__GFP_HIGHMEM
 include/linux/gfp.h
GFP_HIGHUSER
 include/linux/gfp.h
__GFP_IO
 include/linux/gfp.h
GFP_KERNEL
 include/linux/gfp.h
__GFP_NO_GROW
 include/linux/gfp.h
__GFP_NOFAIL
 include/linux/gfp.h
GFP_NOFS
 include/linux/gfp.h
GFP_NOIO
 include/linux/gfp.h
__GFP_NOWARN
 include/linux/gfp.h
GFP_USER
 include/linux/gfp.h
__GFP_WAIT
 include/linux/gfp.h
GNU General Public License 2nd 3rd
grab_swap_token
 mm/thrash.c
graft_tree
 fs/namespace.c
graphic interfaces
__group_complete_signal
 kernel/signal.c
group_send_sig_info
 kernel/signal.c
grow_buffers
 fs/buffer.c
grow_dev_page
 fs/buffer.c

Page 415

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 416

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 417

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

handle_io_bitmap
 arch/i386/kernel/process.c
handle_IRQ_event
 kernel/irq/handle.c
handle_mm_fault
 mm/memory.c
handle_pte_fault
 mm/memory.c
handle_ra_miss
 mm/readahead.c
handle_signal
 arch/i386/kernel/signal.c
handle_t
 include/linux/jbd.h
hard IRQ stack
hard links
hardirq_ctx
 arch/i386/kernel/irq.c
hardirq_stack
 arch/i386/kernel/irq.c
hardware caches 2nd 3rd
 controllers
 direct mapped
 entry tags
 fully associative
 function footprints
 handling
 hits
 L1-caches, L2-caches, L3-caches
 lines
 misses
 N-way set associative
 snooping
 write-back
 write-through
hardware clocks
hardware context
 switches
hash chaining
hash collision
hash_long
 include/linux/hash.h
hd_struct
 include/linux/genhd.h
heaps 2nd
 managing
HI_SOFTIRQ
 include/linux/interrupt.h
hibernation
hibernation reclaiming
High Precision Event Timer
 comparators
 counters
 match registers
high-memory
 kernel mapping of
HIGH_MEMORY
 include/asm-i386/e820.h
high_memory
 mm/memory.c
highend_pfn
 arch/i386/mm/init.c
highstart_pfn
 arch/i386/mm/init.c
hlist_add_head
 include/linux/list.h
hlist_del
 include/linux/list.h
hlist_empty
 include/linux/list.h
hlist_entry
 include/linux/list.h
hlist_for_each_entry
 include/linux/list.h
hlist_head
 include/linux/list.h
hlist_node
 include/linux/list.h
host bridges
hot spots, in the kernel, identified by a profiler
hotplug program
hpet_enable
 arch/i386/kernel/time_hpet.c
hpet_time_init
 arch/i386/kernel/time.c
hw_interrupt_type
 include/linux/irq.h
hw_irq_controller
 include/linux/irq.h
hw_resend_irq
 include/asm-i386/hw_irq.h
hyper-threaded microprocessors
HZ
 include/asm-i386/param.h

Page 418

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 419

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 420

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I/O address spaces
I/O APICs
 initialization at bootstrap
I/O buses
I/O devices
 I/O shared memory
 accessing
 address mapping
 levels of kernel support
I/O interfaces
I/O interrupt handling
I/O operations
 interrupt mode
 monitoring
 polling mode
I/O ports
I/O schedulers
 deadline queues
 dispatch queues
 elevator objects
 request deadlines
 request starvation
 sorted queues
I/O-bound processes
i387_fsave_struct
 include/asm-i386/processor.h
i387_fxsave_struct
 include/asm-i386/processor.h
i387_soft_struct
 include/asm-i386/processor.h
i387_union
 include/asm-i386/processor.h
i8259A_irq_type
 arch/i386/kernel/i8259.c
I_CLEAR
 include/linux/fs.h
I_DIRTY
 include/linux/fs.h
I_DIRTY_DATASYNC
 include/linux/fs.h
I_DIRTY_PAGES
 include/linux/fs.h
I_DIRTY_SYNC
 include/linux/fs.h
I_FREEING
 include/linux/fs.h
I_LOCK
 include/linux/fs.h
idle CPU
idle_balance
 kernel/sched.c
IDT
 initializing
 preliminary initialization
idt_descr
 arch/i386/kernel/head.S
idt_table
 arch/i386/kernel/traps.c
ignore_int
 arch/i386/kernel/head.S
in_atomic
 include/linux/hardirq.h
in_interrupt
 include/linux/hardirq.h
inb
 include/asm-i386/io.h
inb_p
 include/asm-i386/io.h
init
 init/main.c
init process 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
init program
INIT_FILES
 include/linux/init_task.h
init_files
 arch/i386/kernel/init_task.c
init_fpu
 arch/i386/kernel/i387.c
INIT_FS
 include/linux/fs_struct.h
init_fs
 arch/i386/kernel/init_task.c
init_IRQ
 arch/i386/kernel/i8259.c
INIT_MM
 include/linux/init_task.h
init_mm
 arch/i386/kernel/init_task.c
init_mount_tree
 fs/namespace.c
init_MUTEX
 include/asm-i386/semaphore.h
init_MUTEX_LOCKED
 include/asm-i386/semaphore.h
init_new_context
 arch/i386/kernel/ldt.c
init_page_buffers
 fs/buffer.c
init_pipe_fs
 fs/pipe.c
init_rootfs
 fs/ramfs/inode.c
init_rwsem
 include/asm-i386/rwsem.h
init_sighand
 arch/i386/kernel/init_task.c
INIT_SIGNALS
 include/linux/init_task.h
init_signals
 arch/i386/kernel/init_task.c
init_special_inode
 fs/inode.c
init_sync_kiocb
 include/linux/aio.h
INIT_TASK
 include/linux/init_task.h
init_task
 arch/i386/kernel/init_task.c
INIT_THREAD_INFO
 include/asm-i386/thread_info.h
init_thread_union
 arch/i386/kernel/init_task.c
init_timer
 include/linux/timer.h
init_tss
 arch/i386/kernel/init_task.c
init_waitqueue_entry
 include/linux/wait.h
init_waitqueue_func_entry
 include/linux/wait.h
init_waitqueue_head
 include/linux/wait.h
initialized data segments
inl
 include/asm-i386/io.h
inl_p
 include/asm-i386/io.h
inode
 include/linux/fs.h
inode cache 2nd 3rd 4th 5th 6th
inode numbers
inode_hashtable
 fs/inode.c
inode_in_use
 fs/inode.c
inode_operations
 include/linux/fs.h
inode_unused
 fs/inode.c
insb
 include/asm-i386/io.h
insert_vm_struct
 mm/mmap.c
insl
 include/asm-i386/io.h
insmod program
insw
 include/asm-i386/io.h
int3
 arch/i386/kernel/entry.S
interpreted scripts
interpreter program
interprocess communications 2nd
 Unix, mechanisms available in
interprocessor interrupts
interrupt
 arch/i386/kernel/entry.S
interrupt context
interrupt descriptors
interrupt gates 2nd 3rd
interrupt handlers 2nd
 exception handlers, contrasted with
 for local timers
 nested execution of
 registers, saving
Interrupt Redirection Tables
interrupt service routines 2nd 3rd 4th
interrupt signals
interrupt vectors
interruptible_sleep_on
 kernel/sched.c
interruptible_sleep_on_timeout
 kernel/sched.c
interrupts 2nd
 actions following
 disabling 2nd
 laptops and
 multiprocessor systems, handling on
 numerical identification
 protecting data structures accessed by
 protecting data structures accessed by deferrable functions and
 protecting data structures accessed by exceptions and
 protecting data structures accessed by exceptions, deferrable functions, and
 termination phase
 types of
 unexpected
 unhandled
 vectors
interval timers 2nd
invalid_op
 arch/i386/kernel/entry.S
invalid_TSS
 arch/i386/kernel/entry.S
invalidate_inode_pages2
 mm/truncate.c
invalidate_interrupt
 include/asm-i386/mach-default/
INVALIDATE_TLB_VECTOR
 include/asm-i386/mach-default/
inw
 include/asm-i386/io.h
inw_p
 include/asm-i386/io.h
IO-MMUs
io_event
 include/linux/aio_abi.h
iocb
 include/linux/aio_abi.h
ioport_resource
 kernel/resource.c
ioremap
 include/asm-i386/io.h
ioremap_nocache
 arch/i386/mm/ioremap.c
iounmap
 arch/i386/mm/ioremap.c
iovec
 include/linux/uio.h
IPC
 IPC identifiers
 IPC keys
 IPC resources
 message queues
 messages
 message headers
 message queues
 message texts
 message types
 multiplexer system call
 semaphores 2nd
 primitive semaphores
 queue of pending requests
 shared memory 2nd
 data structures
 page swapping
 process address spaces
 regions
 shm filesystem
 slot indexes
 slot usage sequence numbers
 undoable semaphore operations
IPC_CREAT
 include/linux/ipc.h
IPC_EXCL
 include/linux/ipc.h
ipc_id_ary
 ipc/util.h
ipc_ids
 ipc/util.h
IPC_INFO
 include/linux/ipc.h
IPC_NOWAIT
 include/linux/ipc.h
IPC_PRIVATE
 include/linux/ipc.h
IPC_RMID
 include/linux/ipc.h
IPC_SET
 include/linux/ipc.h
IPC_STAT
 include/linux/ipc.h
IPCMNI
 include/linux/ipc.h
iput
 fs/inode.c
irq _desc_t
 include/linux/irq.h
IRQ affinity
irq0
 arch/i386/mach-default/setup.c
IRQ_AUTODETECT
 include/linux/irq.h
irq_cpustat_t
 include/asm-i386/hardirq.h
irq_ctx
 arch/i386/kernel/irq.c
irq_desc
 kernel/irq/handle.c
IRQ_DISABLED
 include/linux/irq.h
irq_enter
 include/linux/hardirq.h
irq_exit
 include/asm-i386/hardirq.h
IRQ_INPROGRESS
 include/linux/irq.h
IRQ_LEVEL
 include/linux/irq.h
IRQ_MASKED
 include/linux/irq.h
IRQ_PENDING
 include/linux/irq.h
IRQ_PER_CPU
 include/linux/irq.h
IRQ_REPLAY
 include/linux/irq.h
irq_stat
 kernel/softirq.c
IRQ_WAITING
 include/linux/irq.h
irqaction
 include/linux/interrupt.h
IRQs
 allocation of IRQ lines
 data structures
 I/O APIC and
 line selection, IRQ configurable devices 2nd
irqs_disabled()
 include/asm-i386/system.h
it_real_fn
 kernel/itimer.c
ITIMER_PROF
 include/linux/time.h
ITIMER_REAL
 include/linux/time.h
ITIMER_VIRTUAL
 include/linux/time.h
itimerval
 include/linux/time.h

Page 421

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 422

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

jiffies
 arch/i386/kernel/vmlinux.lds.S
 timer implementation and
jiffies_64
 arch/i386/kernel/time.c
journal_block_tag_t
 include/linux/jbd.h
journal_commit_transaction
 fs/jbd/commit.c
journal_dirty_data
 fs/jbd/transaction.c
journal_dirty_metadata
 fs/jbd/transaction.c
journal_get_write_access
 fs/jbd/transaction.c
journal_head
 include/linux/journal-head.h
journal_start
 fs/jbd/transaction.c
journal_stop
 fs/jbd/transaction.c
Journaling Block Device layer
journaling filesystems 2nd 3rd 4th 5th 6th 7th
 data committed to the filesystem
 data committed to the journal
 JFS 2nd 3rd
 ReiserFS
 XFS 2nd 3rd
journals
 atomic operation handles
 log records
 transactions
 active transactions

Page 423

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 424

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 425

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

k_ref
 include/linux/kref.h
k_sigaction
 include/asm-i386/signal.h
kblockd_workqueue
 drivers/block/ll_rw_blk.c
kern_ipc_perm
 include/linux/ipc.h
kernel code segment
kernel control paths 2nd 3rd 4th 5th 6th 7th 8th
 interleaving of
 race conditions and
kernel data segment
Kernel Memory Allocator
Kernel Mode 2nd
 exceptions in
kernel oops 2nd
kernel page tables
kernel preemption 2nd 3rd 4th 5th
kernel profiling
kernel symbol tables
kernel threads 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd
 aio
 bdflush
 events
 kapmd
 kblockd 2nd
 keventd 2nd
 kirqd
 ksoftirqd 2nd
 kswapd 2nd 3rd 4th 5th 6th
 kupdate
 memory descriptors of
 migration 2nd 3rd
 pdflush 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 used for page frame reclaiming
 worker threads
kernel wrapper routines 2nd
__KERNEL_CS
 include/asm-i386/segment.h
__KERNEL_DS
 include/asm-i386/segment.h
kernel_flag
 kernel/sched.c
kernel_fpu_begin
 arch/i386/kernel/i387.c
kernel_fpu_end
 include/asm-i386/i387.h
__kernel_rt_sigreturn
 arch/i386/kernel/
kernel_sem
 lib/kernel_lock.c
__kernel_sigreturn
 arch/i386/kernel/
kernel_thread
 arch/i386/kernel/process.c
keventd_wq
 kernel/workqueue.c
keyboard interfaces
kfree
 mm/slab.c
kill_anon_super
 fs/super.c
kill_pg
 kernel/signal.c
kill_pg_info
 kernel/signal.c
kill_proc
 kernel/signal.c
kill_proc_info
 kernel/signal.c
kill_something_info
 kernel/signal.c
kiocb
 include/linux/aio.h
KIOCB_SYNC_KEY
 include/linux/aio.h
kioctx
 include/linux/aio.h
KM_BIO_SRC_IRQ
 include/asm-i386/kmap-types.h
KM_BOUNCE_READ
 include/asm-i386/kmap_types.h
KM_PTE0
 include/asm-i386/kmap_types.h
km_type
 include/asm-i386/kmap_types.h
KM_USER0
 include/asm-i386/kmap_types.h
kmalloc
 include/linux/slab.h
kmap
 arch/i386/mm/highmem.c
kmap_atomic
 arch/i386/mm/highmem.c
kmap_high
 mm/highmem.c
kmap_lock
 mm/highmem.c
kmap_pte
 arch/i386/mm/init.c
kmem_bufctl_t
 include/asm-i386/types.h
kmem_cache_alloc
 mm/slab.c
kmem_cache_create
 mm/slab.c
kmem_cache_destroy
 mm/slab.c
kmem_cache_free
 mm/slab.c
kmem_cache_init
 mm/slab.c
kmem_cache_s
 mm/slab.c
kmem_cache_shrink
 mm/slab.c
kmem_cache_t
 include/linux/slab.h
kmem_freepages
 mm/slab.c
kmem_getpages
 mm/slab.c
kmem_list3
 mm/slab.c
kobj_lookup
 drivers/base/map.c
kobj_map
 drivers/base/map.c
kobj_type
 include/linux/kobject.h
kobject
 include/linux/kobject.h
kobject_get
 lib/kobject.c
kobject_put
 lib/kobject.c
kobject_register
 lib/kobject.c
kobject_unregister
 lib/kobject.c
kobjects 2nd 3rd 4th
 attributes
 classes
 logical devices
 ksets
 devices
 drivers
 mapping domain 2nd 3rd
 registration
 subsystems
kset
 include/linux/kobject.h
kset_get
 include/linux/kobject.h
kset_put
 include/linux/kobject.h
kset_register
 lib/kobject.c
kset_unregister
 lib/kobject.c
ksoftirqd
 kernel/softirq.c
kstat
 include/linux/kernel_stat.h
kswapd
 mm/vmscan.c
ktype_cdev_dynamic
 fs/char_dev.c
kunmap
 arch/i386/mm/highmem.c
kunmap_atomic
 include/asm-i386/highmem.h
kunmap_high
 mm/highmem.c

Page 426

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 427

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 428

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

L1_CACHE_BYTES
 include/asm-i386/cache.h
LARGE_PAGE_MASK
 include/asm-i386/page.h
LARGE_PAGE_SIZE
 include/asm-i386/page.h
LAST_BIND
 include/linux/namei.h
LAST_DOT
 include/linux/namei.h
LAST_DOTDOT
 include/linux/namei.h
last_empty_jifs
 mm/pdflush.c
LAST_NORM
 include/linux/namei.h
LAST_PKMAP
 include/asm-i386/highmem.h
last_pkmap_nr
 mm/highmem.c
LAST_ROOT
 include/linux/namei.h
LATCH
 include/linux/jiffies.h
lazy TLB mode
ld.so
LDTs (Local Descriptor Tables)
__le16
 include/linux/types.h
__le32
 include/linux/types.h
lease locks
library functions
 aio_cancel()
 aio_error()
 aio_fsync()
 aio_read() 2nd
 aio_return()
 aio_suspend()
 aio_write() 2nd
 calloc() 2nd
 chacl()
 dlopen()
 exit()
 fprintf()
 free() 2nd
 fscanf()
 ftime()
 getfacl()
 kill()
 killpg()
 lockf()
 malloc() 2nd
 mkfifo()
 mq_close() 2nd
 mq_getattr()
 mq_notify() 2nd
 mq_open()
 mq_receive()
 mq_send()
 mq_setattr()
 mq_timedreceive() 2nd
 mq_timedsend() 2nd
 mq_unlink() 2nd
 msgget()
 pclose()
 popen()
 pthread_exit()
 raise() 2nd
 realloc()
 sbrk()
 setfacl()
 sigqueue() 2nd 3rd
 sigtimedwait()
 sigwaitinfo()
 sleep()
 wait() 2nd
 wait3()
lightweight processes 2nd
 creation in Linux
linear address intervals
 allocating
linear addresses
 and noncontiguous memory areas
link_path_walk
 fs/namei.c
Linux
 emulation of other operating systems
 filesystems
 platforms supported by
 POSIX compliance
Linux Security Modules
linux_binfmt
 include/linux/binfmts.h
linux_binprm
 include/linux/binfmts.h
LinuxThreads library
list_add
 include/linux/list.h
list_add_tail
 include/linux/list.h
list_del
 include/linux/list.h
list_empty
 include/linux/list.h
list_entry
 include/linux/list.h
list_for_each
 include/linux/list.h
LIST_HEAD
 include/linux/list.h
list_head
 include/linux/list.h
little-endian ordering
ll_rw_block
 fs/buffer.c
load_balance
 kernel/sched.c
load_elf_interp
 fs/binfmt_elf.c
load_script
 fs/binfmt_script.c
local CPU
Local Descriptor Table Descriptors (LDTDs)
Local Descriptor Tables (LDTs)
local_bh_disable
 include/linux/interrupt.h
local_bh_disable()
 include/linux/interrupt.h
local_bh_enable
 kernel/softirq.c
local_irq_disable
 include/asm-i386/system.h
local_irq_enable
 include/asm-i386/system.h
local_irq_restore
 include/asm-i386/system.h
local_irq_save
 include/asm-i386/system.h
local_softirq_pending()
 include/linux/irq_cpustat.h
locality principle 2nd 3rd
LOCK_EX
 include/asm-i386/fcntl.h
lock_kernel
 lib/kernel_lock.c
LOCK_MAND
 include/asm-i386/fcntl.h
LOCK_NB
 include/asm-i386/fcntl.h
lock_page
 include/linux/pagemap.h
LOCK_SH
 include/asm-i386/fcntl.h
LOCK_UN
 include/asm-i386/fcntl.h
logical addresses
 displacements
 offset
 segments
 Linux, used in
logical block numbers 2nd 3rd
login name
login sessions
LOOKUP_ACCESS
 include/linux/namei.h
LOOKUP_CONTINUE
 include/linux/namei.h
LOOKUP_CREATE
 include/linux/namei.h
LOOKUP_DIRECTORY
 include/linux/namei.h
LOOKUP_FOLLOW
 include/linux/namei.h
lookup_mnt
 fs/namespace.c
LOOKUP_NOALT
 include/linux/namei.h
LOOKUP_OPEN
 include/linux/namei.h
LOOKUP_PARENT
 include/linux/namei.h
lookup_swap_cache
 mm/swap_state.c
low on memory reclaiming
LOWMEMSIZE()
 arch/i386/kernel/setup.c
LRU block cache
LRU lists
 active list
 inactive list
 pages, moving across
LRU replacement algorithms
lru_add_drain
 mm/swap.c
lru_cache_add
 mm/swap.c
lru_cache_add_active
 mm/swap.c
ls program

Page 429

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 430

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 431

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

machine_check
 arch/i386/kernel/entry.S
machine_specific_memory_setup
 include/asm-i386/mach-default/
MADV_NORMAL
 include/asm-i386/mman.h
MADV_RANDOM
 include/asm-i386/mman.h
MADV_SEQUENTIAL
 include/asm-i386/mman.h
MADV_WILLNEED
 include/asm-i386/mman.h
MAJOR
 include/linux/kdev_t.h
major faults 2nd 3rd
major numbers
make_pages_present
 mm/memory.c
__make_request
 drivers/block/ll_rw_blk.c
malloc_sizes
 mm/slab.c
MAP_ANONYMOUS
 include/asm-i386/mman.h
map_area_pmd
 mm/vmalloc.c
map_area_pte
 mm/vmalloc.c
map_area_pud
 mm/vmalloc.c
MAP_DENYWRITE
 include/asm-i386/mman.h
MAP_EXECUTABLE
 include/asm-i386/mman.h
MAP_FIXED
 include/asm-i386/mman.h
MAP_GROWSDOWN
 include/asm-i386/mman.h
MAP_LOCKED
 include/asm-i386/mman.h
map_new_virtual
 mm/highmem.c
MAP_NONBLOCK
 include/asm-i386/mman.h
MAP_NORESERVE
 include/asm-i386/mman.h
MAP_POPULATE
 include/asm-i386/mman.h
MAP_PRIVATE
 include/asm-i386/mman.h
MAP_SHARED
 include/asm-i386/mman.h
map_vm_area
 mm/vmalloc.c
mapping layer
mark_inode_dirty
 include/linux/fs.h
mark_page_accessed
 mm/swap.c
mask_and_ack_8259A
 arch/i386/kernel/i8259.c
maskable interrupts
masked signals
masking of deferrable functions
Master Boot Records
master kernel Page Global Directory 2nd 3rd
master kernel page tables 2nd 3rd 4th 5th 6th 7th
master memory descriptor
math_state_restore
 arch/i386/kernel/traps.c
max_low_pfn
 mm/bootmem.c
max_pfn
 mm/bootmem.c
MAX_SWAPFILES
 include/linux/swap.h
max_threads
 kernel/fork.c
maybe_mkwrite
 mm/memory.c
mb()
 include/asm-i386/system.h
mem_init
 mm/init.c
mem_map
 mm/memory.c
memcpy_fromio
 include/asm-i386/io.h
memcpy_toio
 include/asm-i386/io.h
memory addresses
memory addressing
memory alignment
memory allocation and demand paging
memory arbiters 2nd 3rd
memory area descriptors
memory area management
 cache descriptors
 multiprocessor systems
memory areas
memory barriers
memory caches 2nd 3rd 4th 5th
memory descriptors 2nd 3rd 4th 5th 6th 7th 8th 9th
 fields
 mmap_cache
 of kernel threads
 read/write semaphores
 red-black trees
memory external fragmentation
memory fragmentation
memory internal fragmentation
Memory Management Unit
memory mappings 2nd
 creating
 data structures
 demand paging for
 destroying
 flushing dirty pages to disk
 non-linear
 private
 shared
memory nodes
memory pools
memory regions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 access rights
 flags
 handling
 finding a free interval
 finding a region that ovelaps an interval
 finding the closest region to an address
 inserting a region in the memory descriptor list
 merging
 system calls for creation, deletion 2nd
memory zones
 fallback zone
 modifiers
mempool_alloc
 mm/mempool.c
mempool_alloc_slab
 mm/mempool.c
mempool_create
 mm/mempool.c
mempool_destroy
 mm/mempool.c
mempool_free
 mm/mempool.c
mempool_free_slab
 mm/mempool.c
mempool_t
 include/linux/mempool.h
memset_io
 include/asm-i386/io.h
metadata
microkernels
microprocessors
 80x86 microprocessors, xii 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
18th 19th
 80286 2nd
 80386, xii 2nd 3rd 4th 5th 6th
 80486, xii 2nd
 8088
 ARM
 Athlon
 ia32e/EM64T
 Itanium
 MIPS
 Opteron 2nd 3rd
 Pentium 4, xii 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 Pentium II, xii
 Pentium III, xii 2nd 3rd 4th
 Pentium Pro, xii 2nd 3rd 4th
 Pentium, xii 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 PowerPC 2nd
min_free_kbytes
 mm/page_alloc.c
min_low_pfn
 mm/bootmem.c
MINOR
 include/linux/kdev_t.h
minor faults 2nd
minor numbers
mk_pte
 include/asm-i386/pgtable.h
mk_pte_huge
 include/asm-i386/pgtable.h
MKDEV
 include/linux/kdev_t.h
mke2fs program
mkswap command
mm_alloc
 kernel/fork.c
mm_release
 kernel/fork.c
mm_struct
 include/linux/sched.h
mmdrop
 include/linux/sched.h
mmlist_lock
 kernel/fork.c
mmput
 kernel/fork.c
mmu_gathers
 arch/i386/mm/init.c
MMX registers 2nd 3rd
MNT_NODEV
 include/linux/mount.h
MNT_NOEXEC
 include/linux/mount.h
MNT_NOSUID
 include/linux/mount.h
mod_timer
 kernel/timer.c
modprobe program
module
 include/linux/module.h
module symbol tables
MODULE_LICENSE
 include/linux/module.h
module_use
 kernel/module.c
modules 2nd 3rd
 data structures and
 dependency between
 exporting of symbols
 implementation
 kernel/module.c
 linking and unlinking
 linking on demand
 module objects
 module usage counters
mount points
mount program 2nd
mount_hashtable
 fs/namespace.c
mount_root
 init/do_mounts.c
mounted filesystem descriptors
move_tasks
 kernel/sched.c
mpage_bio_submit
 fs/mpage.c
mpage_end_io_read
 fs/mpage.c
mpage_end_io_write
 fs/mpage.c
mpage_readpage
 fs/mpage.c
mpage_writepage
 fs/mpage.c
mpage_writepages
 fs/mpage.c
mqueue_inode_info
 ipc/mqueue.c
MS_ASYNC
 include/asm-i386/mman.h
MS_BIND
 include/linux/fs.h
MS_DIRSYNC
 include/linux/fs.h
MS_MANDLOCK
 include/linux/fs.h
MS_MOVE
 include/linux/fs.h
MS_NOATIME
 include/linux/fs.h
MS_NODEV
 include/linux/fs.h
MS_NODIRATIME
 include/linux/fs.h
MS_NOEXEC
 include/linux/fs.h
MS_NOSUID
 include/linux/fs.h
MS_RDONLY
 include/linux/fs.h
MS_REC
 include/linux/fs.h
MS_REMOUNT
 include/linux/fs.h
MS_SYNC
 include/asm-i386/mman.h
MS_SYNCHRONOUS
 include/linux/fs.h
MS_VERBOSE
 include/linux/fs.h
msg_ids
 ipc/msg.c
msg_msg
 include/linux/msg.h
msg_msgseg
 ipc/msgutil.c
msg_queue
 include/linux/msg.h
msg_receiver
 ipc/msg.c
multiprocessing
multiprocessor systems
 caches and
 interrupt disabling and
 interrupt handling on
 memory area management
 nonpreemptive kernels and
 timekeeping architecture
multiprogramming
multithreaded applications 2nd
multiuser systems

Page 432

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 433

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 434

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

nameidata
 include/linux/namei.h
namespace
 include/linux/namespace.h
Native POSIX Thread Library (NPTL)
ndelay
 include/asm-i386/delay.h
NET_RX_SOFTIRQ
 include/linux/interrupt.h
NET_TX_SOFTIRQ
 include/linux/interrupt.h
network filesystems 2nd 3rd 4th 5th 6th
 AFS
 CIFS 2nd
 Coda
 NCP
 NFS 2nd
network interfaces
new_inode
 fs/inode.c
Next Generation Posix Threading Package (NGPT)
next_thread
 kernel/exit.c
nmi
 arch/i386/kernel/entry.S
NMI interrupts 2nd
noncontiguous memory area
 allocating noncontiguous area
 descriptors
 linear addresses
 Page Faults and 2nd
 releasing memory area
nonmaskable interrupts
nonpreemptable processes
nonpreemptive kernels
 multiprocessor systems and
NOT_IDLE
 include/linux/sched.h
NR_CPUS
 include/linux/threads.h
__NR_fork
 include/asm-i386/unistd.h
NR_IRQS
 include/asm-i386/mach-default/
NR_OPEN
 include/linux/fs.h
nr_pdflush_threads
 mm/pdflush.c
__NR_restart_syscall
 include/asm-i386/unistd.h
nr_swap_pages
 mm/page_alloc.c
nr_swapfiles
 mm/swapfile.c
NR_syscalls
 include/asm-i386/unistd.h
nr_threads
 kernel/fork.c
__NR_write
 include/asm-i386/unistd.h
_NSIG
 include/asm-i386/signal.h
num_physpages
 mm/memory.c
NUMA (Non-Uniform Memory Access)
 nodes
 nodes descriptors

Page 435

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 436

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 437

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

O_APPEND
 include/asm-i386/fcntl.h
O_CREAT
 include/asm-i386/fcntl.h
O_DIRECT
 include/asm-i386/fcntl.h
O_DIRECTORY
 include/asm-i386/fcntl.h
O_EXCL
 include/asm-i386/fcntl.h
O_LARGEFILE
 include/asm-i386/fcntl.h
O_NDELAY
 include/asm-i386/fcntl.h
O_NOATIME
 include/asm-i386/fcntl.h
O_NOCTTY
 include/asm-i386/fcntl.h
O_NOFOLLOW
 include/asm-i386/fcntl.h
O_NONBLOCK
 include/asm-i386/fcntl.h
O_RDONLY
 include/asm-i386/fcntl.h
O_RDWR
 include/asm-i386/fcntl.h
O_SYNC
 include/asm-i386/fcntl.h
O_TRUNC
 include/asm-i386/fcntl.h
O_WRONLY
 include/asm-i386/fcntl.h
object files
old_mmap
 arch/i386/kernel/sys_i386.c
old_sigaction
 include/asm-i386/signal.h
oom_kill_process
 mm/oom_kill.c
open_bdev_excl
 fs/block_dev.c
open_namei
 fs/namei.c
open_softirq
 kernel/softirq.c
operating systems
 GNU Hurd
 MS-DOS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 OS/2 2nd
 Windows 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
oprofile profiler
optimization barriers
out of memory killer
out_of_memory
 mm/oom_kill.c
outb
 include/asm-i386/io.h
outb_p
 include/asm-i386/io.h
outl
 include/asm-i386/io.h
outl_p
 include/asm-i386/io.h
outsb
 include/asm-i386/io.h
outsl
 include/asm-i386/io.h
outsw
 include/asm-i386/io.h
outw
 include/asm-i386/io.h
outw_p
 include/asm-i386/io.h
overflow
 arch/i386/kernel/entry.S

Page 438

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 439

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 440

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

__pa
 include/asm-i386/page.h
PAE 2nd 3rd
page
 include/linux/mm.h
page cache
 direct I/O transfers, bypassing with
 pages' owners
Page Directories
Page Fault exception handler 2nd 3rd
Page Faults, noncontiguous memory areas and
page frame reclaiming
page frames 2nd
 anonymous
 discardable
 free
 in-use
 memory zones
 non-free
 non-shared
 page descriptors
 request and release of
 reserved
 shared
 swappable
 syncable
 unreclaimable
 unused
page slots
 defective slots
 functions for allocation and release of
page tables
 handling
 kernel page tables
 of a process
 protection bits
PAGE_ACTIVATE
 mm/vmscan.c
page_add_anon_rmap
 mm/rmap.c
page_address
 mm/highmem.c
page_address_htable
 mm/highmem.c
page_address_map
 mm/highmem.c
page_alloc_init
 mm/page_alloc.c
page_cache_read
 mm/filemap.c
page_cache_readahead
 mm/readahead.c
PAGE_CLEAN
 mm/vmscan.c
page_cluster
 mm/swap.c
page_count
 include/linux/mm.h
page_fault
 arch/i386/kernel/entry.S
page_follow_link_light
 fs/namei.c
page_is_buddy
 mm/page_alloc.c
PAGE_KEEP
 mm/vmscan.c
page_mapcount
 include/linux/mm.h
PAGE_MASK
 include/asm-i386/page.h
PAGE_OFFSET
 include/asm-i386/page.h
page_put_link
 fs/namei.c
page_referenced
 mm/rmap.c
page_referenced_anon
 mm/rmap.c
page_referenced_file
 mm/rmap.c
page_referenced_one
 mm/rmap.c
PAGE_SHIFT
 include/asm-i386/page.h
PAGE_SIZE
 include/asm-i386/page.h
page_states
 mm/page_alloc.c
page_writeback_init
 mm/page-writeback.c
page_zone
 include/linux/mm.h
PageActive
 include/linux/page-flags.h
PageAnon
 include/linux/mm.h
PAGECACHE_TAG_DIRTY
 incude/linux/fs.h
PAGECACHE_TAG_WRITEBACK
 include/linux/fs.h
PageChecked
 include/linux/page-flags.h
PageCompound
 include/linux/page-flags.h
PageDirty
 include/linux/page-flags.h
PageError
 include/linux/page-flags.h
PageHighMem
 include/linux/page-flags.h
PageLocked
 include/linux/page-flags.h
PageLRU
 include/linux/page-flags.h
PageMappedToDisk
 include/linux/page-flags.h
PageNosave
 include/linux/page-flags.h
PageNosaveFree
 include/linux/page-flags.h
pageout
 mm/vmscan.c
PagePrivate
 include/linux/page-flags.h
PageReclaim
 include/linux/page-flags.h
PageReferenced
 include/linux/page-flags.h
PageReserved
 include/linux/page-flags.h
pages
PageSlab
 include/linux/page-flags.h
PageSwapCache
 include/linux/page-flags.h
pagetable_init
 arch/i386/mm/init.c
PageUptodate
 include/linux/page-flags.h
pagevec
 include/linux/pagevec.h
PageWriteback
 include/linux/page-flags.h
paging
 four-level
 in hardware
 in Linux
 three-level 2nd 3rd
 two-level 2nd 3rd
 vs. segmentation
paging unit
paging_init
 arch/i386/mm/init.c
parallel ports
parent filesystems
parent processes
partitions
 active partition
passwords
path_lookup
 fs/namei.c
path_release
 fs/namei.c
pathname lookup
pathnames
PCI buses
pci_alloc_consistent
 include/asm-generic/
pci_dev
 include/linux/pci.h
pci_dma_sync_single_for_cpu
 include/asm-generic/
pci_dma_sync_single_for_device
 include/asm-generic/
pci_driver
 include/linux/pci.h
pci_free_consistent
 include/asm-generic/
pci_map_page
 include/asm-generic/
pci_map_single
 include/asm-generic/
pci_read_config_byte
 include/linux/pci.h
pci_register_driver
 drivers/pci/pci-driver.c
pci_set_dma_mask
 drivers/pci/pci.c
pci_unmap_page
 include/asm-generic/
pci_unmap_single
 include/asm-generic/
PCMCIA interfaces
__pdflush
 mm/pdflush.c
pdflush_list
 mm/pdflush.c
pdflush_lock
 mm/pdflush.c
pdflush_operation
 mm/pdflush.c
pdflush_work
 mm/pdflush.c
pending signals
per-CPU variables
PER_BSD
 include/linux/personality.h
per_cpu
 include/asm-generic/percpu.h
per_cpu_pages
 include/linux/mmzone.h
per_cpu_pageset
 include/mm/mmzone.h
per_cpu_ptr
 include/linux/percpu.h
PER_HPUX
 include/linux/personality.h
PER_IRIX32
 include/linux/personality.h
PER_IRIX64
 include/linux/personality.h
PER_IRIXN32
 include/linux/personality.h
PER_ISCR4
 include/linux/personality.h
PER_LINUX
 include/linux/personality.h
PER_LINUX32
 include/linux/personality.h
PER_LINUX32_3GB
 include/linux/personality.h
PER_LINUX_32BIT
 include/linux/personality.h
PER_OSF4
 include/linux/personality.h
PER_OSR5
 include/linux/personality.h
PER_RISCOS
 include/linux/personality.h
PER_SCOSVR3
 include/linux/personality.h
PER_SOLARIS
 include/linux/personality.h
PER_SUNOS
 include/linux/personality.h
PER_SVR3
 include/linux/personality.h
PER_SVR4
 include/linux/personality.h
PER_UW7
 include/linux/personality.h
PER_WYSEV386
 include/linux/personality.h
PER_XENIX
 include/linux/personality.h
periodic reclaiming
periods in directory notation
permanent kernel mappings
 temporary kernel mappings, contrasted with
personalities
PF_EXITING
 include/linux/sched.h
PF_FORKNOEXEC
 include/linux/sched.h
PF_SWAPOFF
 include/linux/sched.h
PF_USED_MATH
 include/linux/sched.h
pfn_to_page
 include/asm-i386/page.h
PFRA
 mapped ratio
 periodic reclaiming
 swap tendency value
pg0
 arch/i386/kernel/vmlinux.lds.S
PG_active
 include/linux/page-flags.h
PG_arch_1
 include/linux/page-flags.h
PG_checked
 include/linux/page-flags.h
PG_compound
 include/linux/page-flags.h
pg_data_t
 include/linux/mmzone.h
PG_dirty
 include/linux/page-flags.h
PG_error
 include/linux/page-flags.h
PG_highmem
 include/linux/page-flags.h
PG_locked
 include/linux/page-flags.h
PG_lru
 include/linux/page-flags.h
PG_mappedtodisk
 include/linux/page-flags.h
PG_nosave
 include/linux/page-flags.h
PG_nosave_free
 include/linux/page-flags.h
PG_private
 include/linux/page-flags.h
PG_reclaim
 include/linux/page-flags.h
PG_referenced
 include/linux/page-flags.h
PG_reserved
 include/linux/page-flags.h
PG_slab
 include/linux/page-flags.h
PG_swapcache
 include/linux/page-flags.h
PG_uptodate
 include/linux/page-flags.h
PG_writeback
 include/linux/page-flags.h
__pgd
 include/asm-i386/page.h
pgd_alloc
 arch/i386/mm/pgtable.c
pgd_bad
 include/asm-generic/pgtable-nopud.h
pgd_clear
 include/asm-generic/pgtable-nopud.h
pgd_free
 arch/i386/mm/pgtable.c
pgd_index
 include/asm-i386/pgtable.h
pgd_none
 include/asm-generic/pgtable-nopud.h
pgd_offset
 include/asm-i386/pgtable.h
pgd_offset_k
 include/asm-i386/pgtable.h
pgd_page
 include/asm-generic/pgtable-nopud.h
pgd_present
 include/asm-generic/pgtable-nopud.h
pgd_t
 include/asm-i386/page.h
pgd_val
 include/asm-i386/page.h
pgdat_list
 mm/page_alloc.c
PGDIR_MASK
 include/asm-i386/pgtable.h
PGDIR_SHIFT
 include/asm-i386/pgtable-2level-defs.h
 include/asm-i386/pgtable-3level-defs.h
PGDIR_SIZE
 include/asm-i386/pgtable.h
pgoff_to_pte
 include/asm-i386/pgtable-2level.h
__pgprot
 include/asm-i386/page.h
pgprot_t
 include/asm-i386/page.h
pgprot_val
 include/asm-i386/page.h
phys_domains
 kernel/sched.c
physical addresses
physical addresses map
physical pages
PIC objects
pid
 include/linux/pid.h
PID (process ID)
pid_hash
 kernel/pid.c
pid_hashfn
 kernel/pid.c
PID_MAX_DEFAULT
 include/linux/threads.h
pidhash tables
pidhash_shift
 kernel/pid.c
pidmap_array
 kernel/pid.c
PIDTYPE_PGID
 include/linux/pid.h
PIDTYPE_PID
 include/linux/pid.h
PIDTYPE_SID
 include/linux/pid.h
PIDTYPE_TGID
 include/linux/pid.h
pipe_buf_operations
 include/linux/pipe_fs_i.h
pipe_buffer
 include/linux/pipe_fs_i.h
pipe_fs_type
 fs/pipe.c
pipe_inode_info
 include/linux/pipe_fs_i.h
pipe_mnt
 fs/pipe.c
pipe_read
 fs/pipe.c
pipe_read_release
 fs/pipe.c
pipe_release
 fs/pipe.c
pipe_write
 fs/pipe.c
pipe_write_release
 fs/pipe.c
pipefs_read_super
 fs/pipe.c
pipes
 creating and destroying
 data structures
 FIFOs, contrasted with
 full-duplex pipes
 half-duplex pipes
 limitations of
 pipe buffers
 pipe sizes
 read and write channels
 reading from
 writing into
PKMAP_BASE
 include/asm-i386/highmem.h
pkmap_count
 mm/highmem.c
pkmap_map_wait
 mm/highmem.c
pkmap_page_table
 mm/highmem.c
__pmd
 include/asm-i386/page.h
pmd_alloc
 include/linux/mm.h
pmd_bad
 include/asm-i386/pgtable.h
pmd_clear
 include/asm-i386/pgtable.h
pmd_free
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgalloc.h
pmd_index
 include/asm-i386/pgtable.h
pmd_large
 include/asm-i386/pgtable.h
PMD_MASK
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable.h
pmd_none
 include/asm-i386/pgtable.h
pmd_offset
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
pmd_page
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
pmd_present
 include/asm-i386/pgtable.h
PMD_SHIFT
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level-defs.h
PMD_SIZE
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable.h
pmd_t
 include/asm-i386/page.h
pmd_val
 include/asm-i386/page.h
PnP
POSIX (Portable Operating Systems based on Unix) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th
POSIX clocks
POSIX interval timers
POSIX message queues 2nd 3rd 4th
POSIX timers
POSIX_FADV_NOREUSE
 include/linux/fadvise.h
POSIX_FADV_NORMAL
 include/linux/fadvise.h
POSIX_FADV_RANDOM
 include/linux/fadvise.h
POSIX_FADV_SEQUENTIAL
 include/linux/fadvise.h
POSIX_FADV_WILLNEED
 include/linux/fadvise.h
_ _posix_lock_file
 fs/locks.c
posix_locks_conflict
 fs/locks.c
posix_locks_deadlock
 fs/locks.c
Power-On Self-Test (POST) 2nd
preempt_count
 include/linux/preempt.h
preempt_disable
 include/linux/preempt.h
preempt_enable
 include/linux/preempt.h
preempt_enable_no_resched
 include/linux/preempt.h
preempt_schedule
 kernel/sched.c
preempt_schedule_irq
 kernel/sched.c
preemptable processes 2nd
preemptive kernel
prefetch
 include/asm-i386/processor.h
prepare_binprm
 fs/exec.c
prepare_namespace
 init/do_mounts.c
prepare_to_wait
 kernel/wait.c
prepare_to_wait_exclusive
 kernel/wait.c
printk
 kernel/printk.c
prio_array
 kernel/sched.c
prio_array_t
 include/linux/sched.h
PRIO_PGRP
 include/linux/resource.h
PRIO_PROCESS
 include/linux/resource.h
prio_tree_node
 include/linux/prio_tree.h
PRIO_USER
 include/linux/resource.h
priority search trees
 heap indices
 overflow sup-trees
 radix indices
 size indices
probe
 drivers/base/map.c
process capabilities
process credentials
process descriptors 2nd
 hardware context, saving of
 hash tables of process identifiers
 Kernel Mode stacks, coupled with
 parenthood relationships, representing
 pointers to
 stored in dynamic memory
process group ID
process groups
 leaders
process ID (PID)
process list
process switches
 forced
 hardware context
 planned
process time-outs
process/kernel model
process_timeout
 kernel/timer.c
processes 2nd 3rd
 address spaces 2nd
 creating
 deleting
 functions and macros for accessing
 children
 creating
 destroying
 execution domains
 I/O-bound or CPU-bound
 lightweight processes
 creation in Linux
 management
 original parents
 parent, child, and sibling relationships
 personality
 preemption of
 removal
 resource limits
 sibling
 sleeping
 suspending
 termination
 types of
 zombies
profile_tick
 kernel/profile.c
program counters
program execution
 command-line arguments
 environment variables
 exec functions
 executable files
 executable formats
 execution domains
 libraries
 segments
program linking
 address resolution
Programmable Interrupt Controllers
Programmable Interval Timer
 multiprocessor systems and
PROT_EXEC
 include/asm-i386/mman.h
PROT_NONE
 include/asm-i386/mman.h
PROT_READ
 include/asm-i386/mman.h
PROT_WRITE
 include/asm-i386/mman.h
protected mode
protection_map
 mm/mmap.c
provisional Page Global Directory
prune_dcache
 fs/dcache.c
prune_icache
 fs/inode.c
PS/2 mouse
PT_DTRACE
 include/linux/ptrace.h
PT_PTRACED
 include/linux/ptrace.h
pt_regs
 include/asm-i386/ptrace.h
__pte
 include/asm-i386/page.h
pte_alloc_kernel
 mm/memory.c
pte_alloc_map
 mm/memory.c
pte_alloc_one
 arch/i386/mm/pgtable.c
pte_clear
 include/asm-i386/pgtable.h
pte_dirty
 include/asm-i386/pgtable.h
pte_exec
 include/asm-i386/pgtable.h
pte_exprotect
 include/asm-i386/pgtable.h
pte_file
 include/asm-i386/pgtable.h
pte_free
 include/asm-i386/pgalloc.h
pte_free_kernel
 include/asm-i386/pgalloc.h
pte_index
 include/asm-i386/pgtable.h
pte_mkclean
 include/asm-i386/pgtable.h
pte_mkdirty
 include/asm-i386/pgtable.h
pte_mkexec
 include/asm-i386/pgtable.h
pte_mkold
 include/asm-i386/pgtable.h
pte_mkread
 include/asm-i386/pgtable.h
pte_mkwrite
 include/asm-i386/pgtable.h
pte_mkyoung
 include/asm-i386/pgtable.h
pte_modify
 include/asm-i386/pgtable.h
pte_none
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
pte_offset_kernel
 include/asm-i386/pgtable.h
pte_offset_map
 include/asm-i386/pgtable.h
pte_offset_map_nested
 include/asm-i386/pgtable.h
pte_page
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
pte_present
 include/asm-i386/pgtable.h
pte_rdprotect
 include/asm-i386/pgtable.h
pte_read
 include/asm-i386/pgtable.h
pte_same
 include/asm-generic/pgtable.h
 include/asm-i386/pgtable-3level.h
pte_t
 include/asm-i386/page.h
pte_to_pgoff
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
pte_unmap
 include/asm-i386/pgtable.h
pte_unmap_nested
 include/asm-i386/pgtable.h
pte_user
 include/asm-i386/pgtable.h
pte_val
 include/asm-i386/page.h
pte_write
 include/asm-i386/pgtable.h
pte_wrprotect
 include/asm-i386/pgtable.h
pte_young
 include/asm-i386/pgtable.h
ptep_get_and_clear
 include/asm-generic/pgtable.h
 include/asm-i386/pgtable-3level.h
ptep_mkdirty
 include/asm-i386/pgtable.h
ptep_set_access_flags
 include/asm-i386/pgtable.h
ptep_set_wrprotect
 include/asm-i386/pgtable.h
ptep_test_and_clear_dirty
 include/asm-i386/pgtable.h
ptep_test_and_clear_young
 include/asm-i386/pgtable.h
pthread (POSIX thread) libraries 2nd
PTRACE_ATTACH
 include/linux/ptrace.h
PTRACE_CONT
 include/linux/ptrace.h
PTRACE_DETACH
 include/linux/ptrace.h
PTRACE_GET_THREAD_AREA
 include/asm-i386/ptrace.h
PTRACE_GETEVENTMSG
 include/linux/ptrace.h
PTRACE_GETFPREGS
 include/asm-i386/ptrace.h
PTRACE_GETFPXREGS
 include/asm-i386/ptrace.h
PTRACE_GETREGS
 include/asm-i386/ptrace.h
PTRACE_GETSIGINFO
 include/linux/ptrace.h
PTRACE_KILL
 include/linux/ptrace.h
ptrace_notify
 kernel/signal.c
PTRACE_OLDSETOPTIONS
 include/asm-i386/ptrace.h
PTRACE_PEEKDATA
 include/linux/ptrace.h
PTRACE_PEEKTEXT
 include/linux/ptrace.h
PTRACE_PEEKUSR
 include/linux/ptrace.h
PTRACE_POKEDATA
 include/linux/ptrace.h
PTRACE_POKETEXT
 include/linux/ptrace.h
PTRACE_POKEUSR
 include/linux/ptrace.h
PTRACE_SET_THREAD_AREA
 include/asm-i386/ptrace.h
PTRACE_SETFPREGS
 include/asm-i386/ptrace.h
PTRACE_SETFPXREGS
 include/asm-i386/ptrace.h
PTRACE_SETOPTIONS
 include/linux/ptrace.h
PTRACE_SETREGS
 include/asm-i386/ptrace.h
PTRACE_SETSIGINFO
 include/linux/ptrace.h
PTRACE_SINGLESTEP
 include/linux/ptrace.h
PTRACE_SYSCALL
 include/linux/ptrace.h
PTRACE_TRACEME
 include/linux/ptrace.h
PTRS_PER_PGD
 include/asm-i386/pgtable-2level-defs.h
 include/asm-i386/pgtable-3level-defs.h
PTRS_PER_PMD
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level-defs.h
PTRS_PER_PTE
 include/asm-i386/pgtable-2level-defs.h
 include/asm-i386/pgtable-3level-defs.h
PTRS_PER_PUD
 include/asm-generic/pgtable-nopud.h
__pud
 include/asm-generic/pgtable-nopud.h
pud_alloc
 include/linux/mm.h
pud_bad
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
pud_clear
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
pud_free
 include/asm-generic/pgtable-nopud.h
PUD_MASK
 include/asm-generic/pgtable-nopud.h
pud_none
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
pud_offset
 include/asm-generic/pgtable-nopud.h
pud_page
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
pud_present
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
PUD_SHIFT
 include/asm-generic/pgtable-nopud.h
PUD_SIZE
 include/asm-generic/pgtable-nopud.h
pud_t
 include/asm-generic/pgtable-nopud.h
pud_val
 include/asm-generic/pgtable-nopud.h
pull_task
 kernel/sched.c
put_cpu()
 include/linux/smp.h
put_cpu_no_resched
 include/linux/smp.h
put_cpu_var
 include/linux/percpu.h
put_device
 drivers/base/core.c
put_driver
 drivers/base/driver.c
put_task_struct
 include/linux/sched.h
put_user
 include/asm-i386/uaccess.h
__put_user
 include/asm-i386/uaccess.h
__put_user_64
 include/asm-i386/uaccess.h
__put_user_asm
 include/asm-i386/uaccess.h

Page 441

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 442

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

queue_delayed_work
 kernel/workqueue.c
QUEUE_FLAG_PLUGGED
 include/linux/blkdev.h
QUEUE_FLAG_READFULL
 include/linux/blkdev.h
QUEUE_FLAG_WRITEFULL
 include/linux/blkdev.h
queue_work
 kernel/workqueue.c
quota system

Page 443

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 444

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RA_FLAG_INCACHE
 include/linux/fs.h
RA_FLAG_MISS
 include/linux/fs.h
race conditions
 dynamic timers and
 prevention
radix trees
radix_tree_delete
 lib/radix-tree.c
radix_tree_extend
 lib/radix-tree.c
radix_tree_gang_lookup
 lib/radix-tree.c
radix_tree_insert
 lib/radix-tree.c
radix_tree_lookup
 lib/radix-tree.c
radix_tree_maxindex
 lib/radix-tree.c
radix_tree_node
 lib/radix-tree.c
radix_tree_node_alloc
 lib/radix-tree.c
radix_tree_node_cachep
 lib/radix-tree.c
radix_tree_path
 lib/radix-tree.c
radix_tree_preload
 lib/radix-tree.c
radix_tree_preload_end
 include/linux/radix-tree.h
radix_tree_preloads
 lib/radix-tree.c
radix_tree_root
 include/linux/radix-tree.h
radix_tree_tag_clear
 lib/radix-tree.c
radix_tree_tag_set
 lib/radix-tree.c
radix_tree_tagged
 lib/radix-tree.c
raise_softirq
 kernel/softirq.c
raise_softirq_irqoff
 kernel/softirq.c
RAM
 assigned to processes
 dynamic memory and
 kernel, loaded in
 partitioning into page frames
 usage by microkernels vs monolithic kernels
 using for disk caches
ramdisks
ramfs_fill_super
 fs/ramfs/inode.c
_raw_read_trylock
 include/asm-i386/spinlock.h
_raw_spin_trylock
 include/asm-i386/spinlock.h
_raw_write_trylock
 include/asm-i386/spinlock.h
rb_entry
 include/linux/rbtree.h
rb_node
 include/linux/rbtree.h
rcu_read_lock()
 include/linux/rcupdate.h
rcu_read_unlock()
 include/linux/rcupdate.h
rcu_tasklet
 kernel/rcupdate.c
rdwr_fifo_fops
 fs/pipe.c
__reacquire_kernel_lock
 lib/kernel_lock.c
READ
 include/linux/fs.h
read operation descriptors
read-ahead
read-ahead algorithm
read-copy update
 callback functions
 quiescent states
read/write semaphores
read/write spin locks
read_cache_page
 mm/filemap.c
read_descriptor_t
 include/linux/fs.h
read_fifo_fops
 fs/pipe.c
read_inode_bitmap
 fs/ext2/ialloc.c
read_lock
 include/linux/spinlock.h
read_lock_bh
 include/linux/spinlock.h
__read_lock_failed
 arch/i386/kernel/semaphore.c
read_lock_irq
 include/linux/spinlock.h
read_lock_irqsave
 include/linux/spinlock.h
read_pipe_fops
 fs/pipe.c
read_seqbegin
 include/linux/seqlock.h
read_seqbegin_irqsave
 include/linux/seqlock.h
read_seqlretry
 include/linux/seqlock.h
read_seqretry_irqrestore
 include/linux/seqlock.h
read_swap_cache_async
 mm/swap_state.c
read_unlock
 include/linux/spinlock.h
read_unlock_bh
 include/linux/spinlock.h
read_unlock_irq
 include/linux/spinlock.h
read_unlock_irqrestore
 include/linux/spinlock.h
READA
 include/linux/fs.h
readb
 include/asm-i386/io.h
readl
 include/asm-i386/io.h
readprofile profiler
readw
 include/asm-i386/io.h
real mode
real mode addresses
Real Time Clock
real-time processes 2nd 3rd
 FIFO
 round robin
 system calls related to
real-time signals 2nd
real_lookup
 fs/namei.c
reap_work
 mm/slab.c
rebalance_tick
 kernel/sched.c
recalc_sigpending
 kernel/signal.c
recalc_sigpending_tsk
 kernel/signal.c
recalc_task_prio
 kernel/sched.c
red-black trees
 left children
 nodes
 right children
reentrant functions
reentrant kernels
 synchronization
 interrupt disabling
reference counters
refill_inactive_zone
 mm/vmscan.c
register_binfmt
 fs/exec.c
register_blkdev
 drivers/block/genhd.c
register_chrdev
 fs/char_dev.c
register_chrdev_region
 fs/char_dev.c
__register_chrdev_region
 fs/char_dev.c
register_filesystem
 fs/filesystems.c
regparm attribute
regular signals
release_region
 include/linux/ioport.h
release_resource
 kernel/resource.c
release_task
 kernel/exit.c
remove_from_page_cache
 mm/filemap.c
REMOVE_LINKS
 include/linux/sched.h
remove_vm_area
 mm/vmalloc.c
remove_wait_queue
 kernel/wait.c
REQ_BAR_POSTFLUSH
 include/linux/blkdev.h
REQ_BAR_PREFLUSH
 include/linux/blkdev.h
REQ_BLOCK_PC
 include/linux/blkdev.h
REQ_CMD
 include/linux/blkdev.h
REQ_DONTPREP
 include/linux/blkdev.h
REQ_DRIVE_CMD
 include/linux/blkdev.h
REQ_DRIVE_TASK
 include/linux/blkdev.h
REQ_DRIVE_TASKFILE
 include/linux/blkdev.h
REQ_FAILED
 include/linux/blkdev.h
REQ_FAILFAST
 include/linux/blkdev.h
REQ_HARDBARRIER
 include/linux/blkdev.h
REQ_NOMERGE
 include/linux/blkdev.h
REQ_PC
 include/linux/blkdev.h
REQ_PM_RESUME
 include/linux/blkdev.h
REQ_PM_SHUTDOWN
 include/linux/blkdev.h
REQ_PM_SUSPEND
 include/linux/blkdev.h
REQ_PREEMPT
 include/linux/blkdev.h
REQ_QUEUED
 include/linux/blkdev.h
REQ_QUIET
 include/linux/blkdev.h
REQ_RW
 include/linux/blkdev.h
REQ_SENSE
 include/linux/blkdev.h
REQ_SOFTBARRIER
 include/linux/blkdev.h
REQ_SPECIAL
 include/linux/blkdev.h
REQ_STARTED
 include/linux/blkdev.h
request
 include/linux/blkdev.h
request descriptors
request queues
 congestion
 request starvation
request_irq
 kernel/irq/manage.c
request_list
 include/linux/blkdev.h
request_module
 kernel/kmod.c
request_queue
 include/linux/blkdev.h
request_region
 include/linux/ioport.h
request_resource
 kernel/resource.c
resched_task
 kernel/sched.c
reschedule_interrupt
 include/asm-i386/mach-default/
RESCHEDULE_VECTOR
 include/asm-i386/mach-default/
resource
 include/linux/ioport.h
restore_fpu
 arch/i386/kernel/i387.c
restore_sigcontext
 arch/i386/kernel/signal.c
ret_from_fork
 arch/i386/kernel/entry.S
reverse mapping
 anonymous pages, for
 mapped pages, for
 object-based
rlimit
 include/linux/resource.h
RLIMIT_AS
 include/asm-generic/resource.h
RLIMIT_CORE
 include/asm-generic/resource.h
RLIMIT_CPU
 include/asm-generic/resource.h
RLIMIT_DATA
 include/asm-generic/resource.h
RLIMIT_FSIZE
 include/asm-generic/resource.h
RLIMIT_INFINITY
 include/asm-generic/resource.h
RLIMIT_LOCKS
 include/asm-generic/resource.h
RLIMIT_MEMLOCK
 include/asm-generic/resource.h
RLIMIT_MSGQUEUE
 include/asm-generic/resource.h
RLIMIT_NOFILE
 include/asm-generic/resource.h
RLIMIT_NPROC
 include/asm-generic/resource.h
RLIMIT_RSS
 include/asm-generic/resource.h
RLIMIT_SIGPENDING
 include/asm-generic/resource.h
RLIMIT_STACK
 include/asm-generic/resource.h
rm_from_queue
 kernel/signal.c
rmb()
 include/asm-i386/system.h
__rmqueue
 mm/page_alloc.c
root filesystems 2nd 3rd 4th
ROOT_DEV
 init/do_mounts.c
root_device_name
 init/do_mounts.c
root_mountflags
 init/do_mounts.c
RQ_ACTIVE
 include/linux/blkdev.h
rq_for_each_bio
 include/linux/blkdev.h
RQ_INACTIVE
 include/linux/blkdev.h
rt_sigframe
 arch/i386/kernel/signal.c
run_timer_softirq
 kernel/timer.c
run_workqueue
 kernel/workqueue.c
runqueue
 kernel/sched.c
runqueues
 kernel/sched.c
rw_semaphore
 include/asm-i386/rwsem.h
rw_verify_area
 fs/read_write.c
rwlock_init
 include/asm-i386/spinlock.h
rwlock_t
 include/asm-i386/spinlock.h
rwsem_waiter
 lib/rwsem.c

Page 445

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 446

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 447

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

__s16
 include/asm-i386/types.h
__s32
 include/asm-i386/types.h
__s8
 include/asm-i386/types.h
S_IFIFO
 include/linux/stat.h
S_SWAPFILE
 include/linux/fs.h
S_SYNC
 include/linux/fs.h
SA_INTERRUPT
 include/asm-i386/signal.h
SA_NOCLDSTOP
 include/asm-i386/signal.h
SA_NOCLDWAIT
 include/asm-i386/signal.h
SA_NODEFER
 include/asm-i386/signal.h
SA_NOMASK
 include/asm-i386/signal.h
SA_ONESHOT
 include/asm-i386/signal.h
SA_ONSTACK
 include/asm-i386/signal.h
SA_RESETHAND
 include/asm-i386/signal.h
SA_RESTART
 include/asm-i386/signal.h
SA_SAMPLE_RANDOM
 include/asm-i386/signal.h
SA_SHIRQ
 include/asm-i386/signal.h
SA_SIGINFO
 include/asm-i386/signal.h
SAVE_ALL
 arch/i386/kernel/entry.S
save_init_fpu
 include/asm-i386/i387.h
save_v86_state
 arch/i386/kernel/vm86.c
sb_lock
 fs/super.c
scan_control
 mm/vmscan.c
scan_swap_map
 mm/swapfile.c
scatter-gather DMA transfers
sched_clock
 arch/i386/kernel/timers/timer_tsc.c
sched_domain
 include/linux/sched.h
sched_exec
 kernel/sched.c
sched_exit
 kernel/sched.c
SCHED_FIFO
 include/linux/sched.h
sched_find_first_bit
 include/asm-i386/bitops.h
sched_fork
 kernel/sched.c
sched_group
 include/linux/sched.h
SCHED_IDLE
 include/linux/sched.h
sched_init
 kernel/sched.c
SCHED_NORMAL
 include/linux/sched.h
SCHED_RR
 include/linux/sched.h
schedule
 kernel/sched.c
schedule function
 direct invocation
 lazy invocation
schedule_delayed_work
 kernel/workqueue.c
schedule_delayed_work_on
 kernel/workqueue.c
schedule_tail
 kernel/sched.c
schedule_timeout
 kernel/timer.c
schedule_work
 kernel/workqueue.c
scheduler_tick
 kernel/sched.c
scheduling 2nd
 active processes
 algorithm
 average sleep time
 base scheduling domains
 batch processes
 bonus 2nd
 classes
 CPU-bound processes
 data structures
 domains
 dynamic priorities
 expired processes
 groups in a domain
 I/O-bound processes
 interactive delta
 interactive processes
 policy
 priority, assignment of 2nd
 real-time priorities
 static priorities
 system calls related to 2nd
 time sharing
 time slice duration
 time slices 2nd
SCSI
SCSI_SOFTIRQ
 include/linux/interrupt.h
search_binary_handler
 fs/exec.c
search_exceptions_tables
 kernel/extable.c
sector_t
 include/asm-i386/types.h
sectors
 adjacent
security hooks
Security-Enhanced Linux
security_operations
 include/linux/security.h
security_ops
 security/security.c
security_task_alloc
 include/linux/security.h
security_task_create
 include/linux/security.h
security_vm_enough_memory
 include/linux/security.h
segment descriptors
 Descriptor Privilege Level (DPL)
 Segment-Present flag
segment selectors
 Requestor Privilege Level
 Table Indicator
segment_not_present
 arch/i386/kernel/entry.S
segmentation
 in Linux
 vs. paging
segmentation registers
segmentation unit
segmentation units
SEGV_ACCERR
 include/asm-i386/siginfo.h
SEGV_MAPERR
 include/asm-i386/siginfo.h
select_bad_process
 mm/oom_kill.c
select_timer
 arch/i386/kernel/timers/timer.c
self-caching applications
sem
 include/linux/sem.h
sem_array
 include/linux/sem.h
sem_ids
 ipc/sem.c
sem_queue
 include/linux/sem.h
SEM_UNDO
 include/linux/sem.h
sem_undo
 include/linux/sem.h
sem_undo_list
 include/linux/sem.h
semaphore
 include/asm-i386/semaphore.h
semaphores 2nd
 acquiring
 kernel semaphores
 race conditions, preventing with
 read/write semaphores
 releasing
send_group_sig_info
 kernel/signal.c
send_IPI_all
 include/asm-i386/mach-default/
send_IPI_allbutself
 include/asm-i386/mach-default/
send_IPI_mask
 include/asm-i386/mach-default/
send_IPI_self
 arch/i386/kernel/smp.c
send_sig
 kernel/signal.c
send_sig_info
 kernel/signal.c
send_signal
 kernel/signal.c
seqlock_init
 include/linux/seqlock.h
seqlock_t
 include/linux/seqlock.h
SEQLOCK_UNLOCKED
 include/linux/seqlock.h
seqlocks
serial ports
set_anon_super
 fs/super.c
set_bit
 include/asm-i386/bitops.h
set_capacity
 include/linux/genhd.h
set_current_state
 include/linux/sched.h
set_fixmap
 include/asm-i386/fixmap.h
set_fixmap_nocache
 include/asm-i386/fixmap.h
set_fs
 include/asm-i386/uaccess.h
set_intr_gate
 arch/i386/kernel/traps.c
set_ioapic_affinity_irq
 arch/i386/kernel/io_apic.c
SET_LINKS
 include/linux/sched.h
set_page_address
 mm/highmem.c
set_pgd
 include/asm-generic/pgtable-nopud.h
set_pmd
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
set_pte
 include/asm-i386/pgtable-2level.h
 include/asm-i386/pgtable-3level.h
set_pte_atomic
 include/asm-i386/pgtable.h
set_pud
 include/asm-generic/pgtable-nopmd.h
 include/asm-i386/pgtable-3level.h
set_rtc_mmss
 arch/i386/kernel/time.c
set_system_gate
 arch/i386/kernel/traps.c
set_system_intr_gate
 arch/i386/kernel/traps.c
set_task_gate
 arch/i386/kernel/traps.c
set_task_state
 include/linux/sched.h
set_trap_gate
 arch/i386/kernel/traps.c
set_tsk_need_resched
 include/linux/sched.h
set_user_nice
 kernel/sched.c
SetPageActive
 include/linux/page-flags.h
SetPageChecked
 include/linux/page-flags.h
SetPageCompound
 include/linux/page-flags.h
SetPageDirty
 include/linux/page-flags.h
SetPageError
 include/linux/page-flags.h
SetPageLocked
 include/linux/page-flags.h
SetPageLRU
 include/linux/page-flags.h
SetPageMappedToDisk
 include/linux/page-flags.h
SetPageNosave
 include/linux/page-flags.h
SetPageNosaveFree
 include/linux/page-flags.h
SetPagePrivate
 include/linux/page-flags.h
SetPageReclaim
 include/linux/page-flags.h
SetPageReferenced
 include/linux/page-flags.h
SetPageReserved
 include/linux/page-flags.h
SetPageSlab
 include/linux/page-flags.h
SetPageSwapCache
 include/linux/page-flags.h
SetPageUptodate
 include/linux/page-flags.h
SetPageWriteback
 include/linux/page-flags.h
setuid programs 2nd 3rd
setup
 arch/i386/boot/setup.S
setup_APIC_timer
 arch/i386/kernel/apic.c
setup_arg_pages
 fs/exec.c
setup_frame
 arch/i386/kernel/signal.c
setup_idt
 arch/i386/kernel/head.S
setup_IO_APIC_irqs
 arch/i386/kernel/io_apic.c
setup_irq
 kernel/irq/manage.c
setup_local_APIC
 arch/i386/kernel/apic.c
setup_memory
 arch/i386/kernel/setup.c
setup_pit_timer
 arch/i386/kernel/timer_pit.c
setup_rt_frame
 arch/i386/kernel/signal.c
sget
 fs/super.c
sgid flags
share-mode mandatory locks
shared libraries
shared linked lists, insertion of elements into
shm_ids
 ipc/shm.c
shm_mmap
 ipc/shm.c
shmem_aops
 mm/shmem.c
shmem_inode_info
 include/linux/shmem_fs.h
shmem_nopage
 mm/shmem.c
shmem_unuse
 mm/shmem.c
shmem_writepage
 mm/shmem.c
shmid_kernel
 include/linux/shm.h
shrink_cache
 mm/vmscan.c
shrink_caches
 mm/vmscan.c
shrink_dcache_memory
 fs/dcache.c
shrink_icache_memory
 fs/inode.c
shrink_list
 mm/vmscan.c
shrink_zone
 mm/vmscan.c
shrinker functions
shutdown_8259A_irq
 arch/i386/kernel/i8259.c
SI_ASYNCIO
 include/asm-generic/siginfo.h
SI_KERNEL
 include/asm-generic/siginfo.h
SI_QUEUE
 include/asm-generic/siginfo.h
SI_TIMER
 include/asm-generic/siginfo.h
SI_TKILL
 include/asm-generic/siginfo.h
SI_USER
 include/asm-generic/siginfo.h
SIG_BLOCK
 include/asm-i386/signal.h
SIG_DFL
 include/asm-i386/signal.h
SIG_IGN
 include/asm-i386/signal.h
SIG_SETMASK
 include/asm-i386/signal.h
SIG_UNBLOCK
 include/asm-i386/signal.h
SIGABRT
 include/asm-i386/signal.h
sigaction
 include/asm-i386/signal.h
sigaddset
 include/linux/signal.h
sigaddsetmask
 include/linux/signal.h
SIGALRM
 include/asm-i386/signal.h
sigandsets
 include/linux/signal.h
SIGBUS
 include/asm-i386/signal.h
SIGCHLD
 include/asm-i386/signal.h
SIGCONT
 include/asm-i386/signal.h
sigcontext
 include/asm-i386/sigcontext.h
sigdelset
 include/linux/signal.h
sigdelsetmask
 include/linux/signal.h
sigemptyset
 include/linux/signal.h
sigfillset
 include/linux/signal.h
SIGFPE
 include/asm-i386/signal.h
sigframe
 arch/i386/kernel/sigframe.h
sighand_struct
 include/linux/sched.h
SIGHUP
 include/asm-i386/signal.h
SIGILL
 include/asm-i386/signal.h
siginfo_t
 include/asm-generic/siginfo.h
siginitset
 include/linux/signal.h
siginitsetinv
 include/linux/signal.h
SIGINT
 include/asm-i386/signal.h
SIGIO
 include/asm-i386/signal.h
SIGIOT
 include/asm-i386/signal.h
sigismeber
 include/linux/signal.h
SIGKILL
 include/asm-i386/signal.h
sigmask
 include/linux/signal.h
SIGNAL_GROUP_EXIT
 include/linux/sched.h
signal_pending
 include/linux/sched.h
signal_struct
 include/linux/sched.h
signals 2nd 3rd 4th 5th 6th 7th
 blocking of 2nd
 catching
 changing the action of
 data structures
 operations on
 default actions 2nd
 executing
 delivering 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 exception handlers, used by
 fatal signals 2nd
 generating 2nd 3rd 4th 5th 6th 7th
 ignoring
 masking of
 pending signals 2nd 3rd 4th
 queues of
 process descriptor fields for handling
 real-time signals
 system calls for
 regular signals
 sender codes 2nd
 sent by interval timers
 SIG prefix
 signal descriptors 2nd
 signal handlers 2nd 3rd 4th
 descriptors of
 stack extended frames
 stack frames
 system calls
 for handling of
 reexecuting
signandsets
 include/linux/signal.h
sigorsets
 include/linux/signal.h
sigpending
 include/linux/signal.h
SIGPIPE
 include/asm-i386/signal.h
SIGPOLL
 include/asm-i386/signal.h
SIGPROF
 include/asm-i386/signal.h
SIGPWR
 include/asm-i386/signal.h
sigqueue
 include/linux/signal.h
SIGQUIT
 include/asm-i386/signal.h
SIGSEGV
 include/asm-i386/signal.h
sigset_t
 include/asm-i386/signal.h
SIGSTKFLT
 include/asm-i386/signal.h
SIGSTOP
 include/asm-i386/signal.h
SIGSYS
 include/asm-i386/signal.h
SIGTERM
 include/asm-i386/signal.h
sigtestsetmask
 include/linux/signal.h
SIGTRAP
 include/asm-i386/signal.h
SIGTSTP
 include/asm-i386/signal.h
SIGTTIN
 include/asm-i386/signal.h
SIGTTOU
 include/asm-i386/signal.h
SIGUNUSED
 include/asm-i386/signal.h
SIGURG
 include/asm-i386/signal.h
SIGUSR1
 include/asm-i386/signal.h
SIGUSR2
 include/asm-i386/signal.h
SIGVTALRM
 include/asm-i386/signal.h
SIGWINCH
 include/asm-i386/signal.h
SIGXCPU
 include/asm-i386/signal.h
SIGXFSZ
 include/asm-i386/signal.h
simd_coprocessor_error
 arch/i386/kernel/entry.S
single-step execution
slab
 mm/slab.c
slab allocator
 buddy system, interfacing with
 cache descriptors
 caches
 caches for general purpose memory areas
 coloring
 general caches
 kmem_cache cache
 shared local cache
 slab allocation
 slab cache descriptors
 slab descriptors
 external
 internal
 slab local cache
 slab objects
 aligning objects in memory
 alignment factors
 caches, allocating in
 caches, releasing from
 constructors
 descriptors
 destructors
 external descriptors
 general purpose
 internal descriptors
 slabs
 specific caches
slab_destroy
 mm/slab.c
SLAB_DESTROY_BY_RCU
 include/linux/slab.h
SLAB_HWCACHE_ALIGN
 include/linux/slab.h
SLAB_NO_REAP
 include/linux/slab.h
SLAB_RECLAIM_ACCOUNT
 include/linux/slab.h
slab_reclaim_pages
 mm/slab.c
sleep_on
 kernel/sched.c
sleep_on_timeout
 kernel/sched.c
sleeping processes
SMP 2nd 3rd 4th 5th 6th
smp_apic_timer_interrupt
 arch/i386/kernel/apic.c
smp_call_function
 arch/i386/kernel/smp.c
smp_call_function_interrupt
 arch/i386/kernel/smp.c
smp_invalidate_interrupt
 arch/i386/kernel/smp.c
smp_local_timer_interrupt
 arch/i386/kernel/apic.c
smp_mb()
 include/asm-i386/system.h
smp_processor_id
 include/asm-i386/smp.h
smp_reschedule_interrupt
 arch/i386/kernel/smp.c
smp_rmb()
 include/asm-i386/system.h
smp_wmb()
 include/asm-i386/system.h
soft IRQ stack
soft links 2nd
softirq_action
 include/linux/interrupt.h
softirq_ctx
 arch/i386/kernel/irq.c
softirq_init
 kernel/softirq.c
softirq_stack
 arch/i386/kernel/irq.c
softirq_vec
 kernel/softirq.c
softirqs 2nd
software interrupts 2nd
software timers
sound samples
special
special filesystems 2nd 3rd 4th
 bdev 2nd 3rd 4th 5th 6th 7th 8th 9th
 binfmt_misc 2nd
 devfs
 devpts
 eventpollfs
 futexfs
 mqueue 2nd
 pipefs 2nd 3rd 4th
 proc 2nd 3rd 4th 5th 6th 7th 8th 9th
 rootfs 2nd
 shm 2nd 3rd
 sockfs
 sysfs 2nd 3rd 4th 5th 6th 7th
 tmpfs 2nd 3rd 4th
 usbfs
specific_send_sig_info
 kernel/signal.c
spin locks 2nd
spin_is_locked
 include/asm-i386/spinlock.h
spin_lock
 include/linux/spinlock.h
spin_lock_bh
 include/linux/spinlock.h
spin_lock_init
 include/asm-i386/spinlock.h
spin_lock_irq
 include/linux/spinlock.h
spin_lock_irqsave
 include/linux/spinlock.h
spin_trylock
 include/linux/spinlock.h
spin_unlock
 include/linux/spinlock.h
spin_unlock_bh
 include/linux/spinlock.h
spin_unlock_irq
 include/linux/spinlock.h
spin_unlock_irqrestore
 include/linux/spinlock.h
spin_unlock_wait
 include/asm-i386/spinlock.h
spinlock_t
 include/asm-i386/spinlock.h
split_vma
 mm/mmap.c
SSE/SSE2 extensions (Streaming SIMD Extensions)
stack segment registers
stack segments
stack_segment
 arch/i386/kernel/entry.S
start_kernel
 init/main.c
start_thread
 include/asm-i386/processor.h
startup_32
 arch/i386/boot/compressed/head.S
 arch/i386/kernel/head.S
startup_8259A_irq
 arch/i386/kernel/i8259.c
static distribution of IRQs
static libraries
sticky flags
stopped processes
strategy routines
streaming DMA mappings
strlen_user
 include/asm-i386/uaccess.h
strncpy_from_user
 arch/i386/lib/usercopy.c
__strncpy_from_user
 arch/i386/lib/usercopy.c
strnlen_user
 arch/i386/lib/usercopy.c
stts()
 include/asm-i386/system.h
submit_bh
 fs/buffer.c
submit_bio
 drivers/block/ll_rw_blk.c
subsys_get
 include/linux/kobject.h
subsys_put
 include/linux/kobject.h
subsystem
 include/linux/kobject.h
subsystem_register
 lib/kobject.c
subsystem_unregister
 lib/kobject.c
suid flags
super_block
 include/linux/fs.h
super_blocks
 fs/super.c
super_operations
 include/linux/fs.h
superformat program
superuser
swap areas
 active
 descriptors
 multiple areas, advantages
 page slots
 allocating and releasing
 defective page slots
 swap extents
swap cache
 helper functions
swap tendency
swap thrashing
swap token
SWAP_AGAIN
 include/linux/rmap.h
swap_duplicate
 mm/swapfile.c
swap_extent
 include/linux/swap.h
SWAP_FAIL
 include/linux/rmap.h
SWAP_FLAG_PREFER
 include/linux/swap.h
swap_free
 mm/swapfile.c
swap_header
 include/linux/swap.h
swap_info
 mm/swapfile.c
swap_info_struct
 include/linux/swap.h
swap_list
 mm/swapfile.c
swap_list_t
 include/linux/swap.h
SWAP_MAP_BAD
 include/linux/swap.h
SWAP_MAP_MAX
 include/linux/swap.h
swap_readpage
 mm/page_io.c
SWAP_SUCCESS
 include/linux/rmap.h
swap_token_default_timeout
 mm/thrash.c
swap_token_mm
 mm/thrash.c
swap_writepage
 mm/page_io.c
SWAPFILE_CLUSTER
 mm/swapfile.c
swapin_readahead
 mm/memory.c
swaplock
 mm/swapfile.c
swapoff program
swapon program
swapped-out page identifiers
swapper processes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
swapper_pg_dir
 arch/i386/kernel/head.S
swapper_space
 mm/swap_state.c
swappiness
__switch_to
 arch/i386/kernel/process.c
switch_to
 include/asm-i386/system.h
SWP_ACTIVE
 include/linux/swap.h
swp_entry
 include/linux/swapops.h
swp_offset
 include/linux/swapops.h
swp_type
 include/linux/swapops.h
SWP_USED
 include/linux/swap.h
SWP_WRITEOK
 include/linux/swap.h
sync_blockdev
 fs/buffer.c
sync_dirty_buffer
 fs/buffer.c
sync_filesystems
 fs/super.c
sync_inodes
 fs/fs-writeback.c
sync_page_range
 mm/filemap.c
sync_sb_inodes
 fs/fs-writeback.c
sync_supers
 fs/super.c
synchronization primitives
 atomic operations
 choosing among
 completions
 kernel data structures, access using
 memory barriers
 read-copy update
 semaphores
 seqlocks
 spin locks
synchronous DMA mappings
 see coherent DMA mappings
synchronous interrupts
synchronous notifications
sys_brk
 mm/mmap.c
sys_call_table
 arch/i386/kernel/entry.S
sys_clone
 arch/i386/kernel/process.c
sys_close
 fs/open.c
sys_delete_module
 kernel/module.c
sys_execve
 arch/i386/kernel/process.c
sys_exit
 kernel/exit.c
sys_exit_group
 kernel/exit.c
sys_fcntl
 fs/fcntl.c
sys_fdatasync
 fs/buffer.c
sys_flock
 fs/locks.c
sys_fork
 arch/i386/kernel/process.c
sys_fsync
 fs/buffer.c
sys_getpriority
 kernel/sys.c
sys_gettimeofday
 kernel/time.c
sys_init_module
 kernel/module.c
sys_io_destroy
 fs/aio.c
sys_io_setup
 fs/aio.c
sys_io_submit
 fs/aio.c
sys_ipc
 arch/i386/kernel/sys_i386.c
sys_kill
 kernel/signal.c
sys_listxattr
 fs/xattr.c
sys_mmap2
 arch/i386/kernel/sys_i386.c
sys_mount
 fs/namespace.c
sys_msgctl
 ipc/msg.c
sys_msgget
 ipc/msg.c
sys_msgrcv
 ipc/msg.c
sys_msgsnd
 ipc/msg.c
sys_munmap
 mm/mmap.c
sys_nanosleep
 kernel/timer.c
sys_ni_syscall
 kernel/sys_ni.c
sys_nice
 kernel/sched.c
sys_open
 fs/open.c
sys_pipe
 arch/i386/kernel/sys_i386.c
sys_ptrace
 arch/i386/kernel/ptrace.c
sys_read
 fs/read_write.c
sys_remap_file_pages
 mm/fremap.c
sys_restart_syscall
 kernel/signal.c
sys_rt_sigaction
 arch/i386/kernel/signal.c
sys_rt_sigreturn
 arch/i386/kernel/signal.c
sys_sched_get_priority_max
 kernel/sched.c
sys_sched_get_priority_min
 kernel/sched.c
sys_sched_getaffinity
 kernel/sched.c
sys_sched_getparam
 kernel/sched.c
sys_sched_getscheduler
 kernel/sched.c
sys_sched_rr_get_interval
 kernel/sched.c
sys_sched_setaffinity
 kernel/sched.c
sys_sched_setparam
 kernel/sched.c
sys_sched_setscheduler
 kernel/sched.c
sys_sched_yield
 kernel/sched.c
sys_semctl
 ipc/sem.c
sys_semget
 ipc/sem.c
sys_semop
 ipc/sem.c
sys_setitimer
 kernel/itimer.c
sys_setpriority
 kernel/sys.c
sys_settimeofday
 kernel/time.c
sys_shmctl
 ipc/shm.c
sys_shmdt
 ipc/shm.c
sys_shmget
 ipc/shm.c
sys_sigaction
 arch/i386/kernel/signal.c
sys_signal
 kernel/signal.c
sys_sigpending
 kernel/signal.c
sys_sigprocmask
 kernel/signal.c
sys_sigreturn
 arch/i386/kernel/signal.c
sys_sigsuspend
 arch/i386/kernel/signal.c
sys_swapoff
 mm/swapfile.c
sys_swapon
 mm/swapfile.c
sys_sync
 fs/buffer.c
sys_tgkill
 kernel/signal.c
sys_tkill
 kernel/signal.c
sys_umount
 fs/namespace.c
sys_vfork
 arch/i386/kernel/process.c
sys_write
 fs/read_write.c
_syscall0
 include/asm-i386/unistd.h
sysctl_legacy_va_layout
 kernel/sysctl.c
sysctl_vfs_cache_pressure
 fs/dcache.c
SYSENTER_CS_MSR register
SYSENTER_EIP_MSR register
sysenter_entry
 arch/i386/kernel/entry.S
SYSENTER_ESP_MSR register
sysenter_setup
 arch/i386/kernel/sysenter.c
sysfs_create_file
 fs/sysfs/file.c
sysfs_create_link
 fs/sysfs/symlink.c
system administrators
system buses
system call dispatch tables
system call handlers
 similar to exception handlers
system call numbers
system call service routines 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
system calls 2nd 3rd 4th
 _exit() 2nd 3rd 4th 5th 6th
 _llseek()
 access()
 adjtimex() 2nd
 adtimex()
 alarm()
 bind()
 brk() 2nd 3rd 4th 5th
 capget()
 capset()
 chdir()
 chmod()
 chown()
 chown16()
 chroot() 2nd
 clock_getres()
 clock_gettime()
 clock_nanosleep()
 clock_settime()
 clone() 2nd 3rd 4th 5th 6th
 close() 2nd 3rd 4th 5th 6th 7th
 connect()
 creat()
 delete_module()
 dup() 2nd 3rd
 dup2() 2nd 3rd
 exec-like 2nd 3rd
 execve() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 exit_group()
 fchdir()
 fchmod()
 fchown()
 fchown16()
 fcntl() 2nd 3rd 4th 5th 6th 7th 8th 9th
 fcntl64()
 fdatasync() 2nd 3rd
 fgetxattr() 2nd
 flistxattr() 2nd
 flock() 2nd 3rd
 fork() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 fremovexattr() 2nd
 fsetxattr() 2nd
 fstat()
 fstat64()
 fstatfs64()
 fsync() 2nd 3rd
 ftatfs()
 ftruncate()
 ftruncate64()
 get_thread_area()
 getcwd()
 getdents()
 getdents64()
 getpid() 2nd
 getpriority() 2nd
 getrlimit()
 gettimeofday()
 getxattr() 2nd
 init_module()
 io_cancel() 2nd
 io_destroy() 2nd
 io_getevents() 2nd
 io_setup() 2nd
 io_submit() 2nd 3rd
 ioctl() 2nd 3rd 4th 5th 6th
 ioperm() 2nd 3rd
 iopl() 2nd
 ipc()
 kill() 2nd 3rd 4th 5th 6th 7th 8th 9th
 lchown()
 lchown16()
 lgetxattr() 2nd
 link()
 listxattr()
 llistxattr() 2nd
 lookup_dcookie()
 lremovexattr() 2nd
 lseek() 2nd 3rd 4th
 lsetxattr() 2nd
 lstat()
 lstat64()
 madvise() 2nd 3rd
 mincore()
 mkdir()
 mknod() 2nd 3rd 4th
 mlock()
 mlockall() 2nd
 mmap() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 mmap2() 2nd
 modify_ldt()
 mount() 2nd 3rd 4th
 mprotect()
 mq_getsetattr()
 mq_notify()
 mq_open()
 mq_timedreceive()
 mq_timedsend()
 mq_unlink()
 mremap() 2nd 3rd
 msgget()
 msgrcv()
 msgsnd()
 msync() 2nd
 munmap() 2nd 3rd 4th
 nanosleep() 2nd
 nice() 2nd 3rd 4th 5th 6th
 oldfstat()
 oldlstat()
 oldstat()
 open() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 personality()
 pipe() 2nd
 pivot_root() 2nd
 poll() 2nd
 posix_fadvise()
 prctl()
 pread64()
 ptrace() 2nd 3rd 4th 5th
 pwrite64()
 quotactl()
 read() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 readahead() 2nd
 readdir()
 readlink()
 readv() 2nd
 reexecuting
 remap_file_pages() 2nd 3rd
 removexattr() 2nd
 rename() 2nd 3rd 4th
 restart_syscall()
 rmdir()
 rt_sigaction() 2nd 3rd 4th
 rt_sigpending() 2nd
 rt_sigprocmask() 2nd
 rt_sigqueueinfo() 2nd 3rd 4th 5th 6th
 rt_sigreturn() 2nd
 rt_sigsuspend() 2nd
 rt_sigtimedwait() 2nd 3rd
 sched_get_priority_max() 2nd
 sched_get_priority_min() 2nd
 sched_getaffinity() 2nd
 sched_getparam() 2nd
 sched_getscheduler() 2nd
 sched_rr_get_interval() 2nd
 sched_setaffinity() 2nd
 sched_setparam() 2nd 3rd
 sched_setscheduler() 2nd 3rd 4th
 sched_yield() 2nd 3rd 4th
 select() 2nd
 semget()
 sendfile() 2nd
 sendfile64()
 set_thread_area()
 setfsgid()
 setfsuid()
 setgid()
 setitimer()
 setpriority() 2nd 3rd 4th 5th
 setregid()
 setresgid()
 setresuid()
 setreuid()
 setrlimit()
 settimeofday()
 setuid()
 setxattr() 2nd
 shmat() 2nd
 shmdt() 2nd
 shmget()
 sigaction() 2nd 3rd 4th
 sigaltstack()
 signal() 2nd 3rd
 sigpending() 2nd
 sigprocmask() 2nd 3rd
 sigreturn() 2nd 3rd 4th
 sigsuspend() 2nd
 socket()
 stat() 2nd
 stat64()
 statfs()
 statfs64()
 stime()
 swapoff()
 swapon()
 symlink()
 sync() 2nd 3rd 4th 5th
 sysctl() 2nd 3rd 4th 5th
 sysfs()
 tgkill() 2nd 3rd 4th 5th
 time()
 timer_create()
 timer_delete)
 timer_getoverrun()
 timer_gettime()
 timer_settime()
 tkill() 2nd 3rd 4th 5th
 truncate() 2nd
 truncate64()
 umask()
 umount() 2nd
 umount2()
 unlink() 2nd
 uselib()
 ustat()
 utime()
 vfork() 2nd 3rd
 vhangup()
 wait-like
 wait4() 2nd 3rd 4th 5th
 waitpid() 2nd 3rd
 write() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 writev() 2nd
system concurrency level
system gates
system interrupt gates
system segments
system startup
system statistics, updating by kernel
system's root filesystem
system_call
 arch/i386/kernel/entry.S

Page 448

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 449

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 450

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

T_FINISHED
 include/linux/jbd.h
T_LOCKED
 include/linux/jbd.h
T_RUNNING
 include/linux/jbd.h
task gates 2nd
task priority registers
task queues
 replaced by work queues
Task State Segment Descriptors (TSSDs) 2nd
Task State Segments (TSSs) 2nd
TASK_INTERACTIVE
 kernel/sched.c
TASK_INTERRUPTIBLE
 include/linux/sched.h
task_rq_lock
 kernel/sched.c
task_rq_unlock
 kernel/sched.c
TASK_RUNNING
 include/linux/sched.h
TASK_SIZE
 include/asm-i386/processor.h
TASK_STOPPED
 include/linux/sched.h
task_struct
 include/linux/sched.h
task_t
 include/linux/sched.h
task_timeslice
 kernel/sched.c
TASK_TRACED
 include/linux/sched.h
TASK_UNINTERRUPTIBLE
 include/linux/sched.h
tasklet_action
 kernel/softirq.c
tasklet_disable
 include/linux/interrupt.h
tasklet_disable_nosync
 include/linux/interrupt.h
tasklet_enable
 include/linux/interrupt.h
tasklet_head
 kernel/softirq.c
tasklet_hi_action
 kernel/softirq.c
tasklet_hi_schedule
 include/linux/interrupt.h
tasklet_hi_vec
 kernel/softirq.c
tasklet_init
 kernel/softirq.c
tasklet_schedule
 include/linux/interrupt.h
TASKLET_SOFTIRQ
 include/linux/interrupt.h
TASKLET_STATE_RUN
 include/linux/interrupt.h
TASKLET_STATE_SCHED
 include/linux/interrupt.h
tasklet_struct
 include/linux/interrupt.h
tasklet_vec
 kernel/softirq.c
tasklets 2nd
temporary kernel mappings
 permanent kernel mappings, contrasted with
test_and_change_bit
 include/asm-i386/bitops.h
test_and_clear_bit
 include/asm-i386/bitops.h
test_and_set_bit
 include/asm-i386/bitops.h
test_bit
 include/asm-i386/bitops.h
TestClearPageActive
 include/linux/page-flags.h
TestClearPageDirty
 include/linux/page-flags.h
TestClearPageLocked
 include/linux/page-flags.h
TestClearPageLRU
 include/linux/page-flags.h
TestClearPageNosave
 include/linux/page-flags.h
TestClearPageReclaim
 include/linux/page-flags.h
TestClearPageReferenced
 include/linux/page-flags.h
TestClearPageSlab
 include/linux/page-flags.h
TestClearPageWriteback
 include/linux/page-flags.h
TestSetPageActive
 include/linux/page-flags.h
TestSetPageDirty
 include/linux/page-flags.h
TestSetPageLocked
 include/linux/page-flags.h
TestSetPageLRU
 include/linux/page-flags.h
TestSetPageNosave
 include/linux/page-flags.h
TestSetPageSlab
 include/linux/page-flags.h
TestSetPageWriteback
 include/linux/page-flags.h
text segments
this_rq()
 kernel/sched.c
thread group ID 2nd
thread group leader
thread groups 2nd
Thread-Local Storage (TLS) segments
thread_info
 include/asm-i386/thread_info.h
thread_struct
 include/asm-i386/processor.h
thread_union
 include/linux/sched.h
tick_nsec
 kernel/timer.c
ticks
TIF_IRET
 include/asm-i386/thread_info.h
TIF_MEMDIE
 include/asm-i386/thread_info.h
TIF_NEED_RESCHED
 include/asm-i386/thread_info.h
TIF_NOTIFY_RESUME
 include/asm-i386/thread_info.h
TIF_POLLING_NRFLAG
 include/asm-i386/thread_info.h
TIF_SIGPENDING
 include/asm-i386/thread_info.h
TIF_SINGLESTEP
 include/asm-i386/thread_info.h
TIF_SYSCALL_AUDIT
 include/asm-i386/thread_info.h
TIF_SYSCALL_TRACE
 include/asm-i386/thread_info.h
time interpolation
Time Stamp Counter
time-outs
time_after
 include/linux/jiffies.h
time_after_eq
 include/linux/jiffies.h
time_before
 include/linux/jiffies.h
time_before_eq
 include/linux/jiffies.h
time_init
 arch/i386/kernel/time.c
timekeeping architecture
 multiprocessor systems
 system calls related to
 time and date updates
 uniprocessor systems
timer circuits
timer interrupts
timer_hpet
 arch/i386/kernel/timers/timer_hpet.c
timer_interrupt
 arch/i386/kernel/time.c
timer_list
 include/linux/timer.h
timer_none
 arch/i386/kernel/timers/timer_none.c
timer_notify
 drivers/oprofile/timer_int.c
timer_opts
 include/asm-i386/timer.h
timer_pit
 arch/i386/kernel/timers/timer_pit.c
timer_pmtmr
 arch/i386/kernel/timers/timer_pm.c
TIMER_SOFTIRQ
 include/linux/interrupt.h
timer_tsc
 arch/i386/kernel/timers/timer_tsc.c
timers
TIMESLICE_GRANULARITY
 kernel/sched.c
timespec
 include/linux/time.h
timespec_to_jiffies
 include/linux/jiffies.h
timeval
 include/linux/time.h
timex
 include/linux/timex.h
timing measurements
 types
 via hardware
tlb_finish_mmu
 include/asm-generic/tlb.h
tlb_gather_mmu
 include/asm-generic/tlb.h
TLBs
 handling
 local TLBs
TLBSTATE_LAZY
 include/asm-i386/tlbflush.h
TLBSTATE_OK
 include/asm-i386/tlbflush.h
total_forks
 kernel/fork.c
total_swap_pages
 mm/swapfile.c
totalhigh_pages
 mm/page_alloc.c
totalram_pages
 mm/page_alloc.c
transaction_t
 include/linux/journal-head.h
trap gates 2nd
trap_init
 arch/i386/kernel/traps.c
traps
try_to_free_buffers
 fs/buffer.c
try_to_free_pages
 mm/vmscan.c
try_to_release_page
 fs/buffers.c
try_to_unmap
 mm/rmap.c
try_to_unmap_anon
 mm/rmap.c
try_to_unmap_cluster
 mm/rmap.c
try_to_unmap_file
 mm/rmap.c
try_to_unmap_one
 mm/rmap.c
try_to_unuse
 mm/swapfile.c
try_to_wake_up
 kernel/sched.c
TS_USEDFPU
 include/asm-i386/thread_info.h
tss_struct
 include/asm-i386/processor.h
tvec_base_t
 kernel/timer.c
tvec_bases
 kernel/timer.c
tvec_root_t
 kernel/timer.c
tvec_t
 kernel/timer.c

Page 451

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 452

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 453

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

__u16
 include/asm-i386/types.h
__u32
 include/asm-i386/types.h
__u8
 include/asm-i386/types.h
udelay
 include/asm-i386/delay.h
udev toolset
UID 2nd 3rd 4th 5th 6th 7th
umask
umount_tree
 fs/namespace.c
__unhash_process
 kernel/exit.c
unitialized data segments
Unix-like operating systems
 AIX
 BSD 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Coherent 2nd
 Columbus Unix
 Digital UNIX 2nd
 FreeBSD
 HP-UX 2nd
 Interactive Unix
 IRIX 2nd
 Mac OS X 2nd 3rd
 Mach 3.0
 MINIX 2nd 3rd
 NetBSD
 NEXTSTEP 2nd
 OpenBSD
 RISC OS
 SCO OpenServer
 SCO Unix 2nd
 Solaris 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 SunOS 2nd 3rd
 System III
 System V 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 UnixWare 2nd
 Xenix 2nd 3rd 4th
__unlazy_fpu
 include/asm-i386/i387.h
unlock_kernel
 lib/kernel_lock.c
unlock_page
 mm/filemap.c
unmap_area_pmd
 mm/vmalloc.c
unmap_area_pte
 mm/vmalloc.c
unmap_area_pud
 mm/vmalloc.c
unmap_mapping_range
 mm/memory.c
unmap_region
 mm/mmap.c
unmap_underlying_metadata
 fs/buffer.c
unmap_vm_area
 mm/vmalloc.c
unmap_vma
 mm/mmap.c
unmap_vmas
 mm/memory.c
unnamed_dev_idr
 fs/super.c
unregister_binfmt
 fs/exec.c
unregister_filesystem
 fs/filesystems.c
unshare_files
 kernel/fork.c
unuse_process
 mm/swapfile.c
__up
 arch/i386/kernel/semaphore.c
up
 include/asm-i386/semaphore.h
up_read
 include/linux/rwsem.h
up_write
 include/linux/rwsem.h
update_atime
 fs/inode.c
update_process_times
 kernel/timer.c
update_times
 kernel/timer.c
update_wall_time
 kernel/timer.c
update_wall_time_one_tick
 kernel/timer.c
USB
USB flash drives
user code segment
user data segment
user group ID 2nd 3rd 4th 5th 6th 7th 8th
user groups
User Mode 2nd
 exceptions in
user threads
__USER_CS
 include/asm-i386/segment.h
__USER_DS
 include/asm-i386/segment.h
user_struct
 include/linux/sched.h

Page 454

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 455

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 456

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

__va
 include/asm-i386/page.h
vectors 2nd
verify_area
 include/asm-i386/uaccess.h
vfree
 mm/vmalloc.c
VFS
 common file model
 data structures
 dentry objects 2nd
 dentry operations
 file locking
 file objects 2nd
 file operations
 filesystem types
 registration
 inode objects 2nd 3rd
 inode operations
 inode semaphores
 objects
 superblock objects 2nd
 superblock operations
 supported filesystems
 system calls
 implementation
__vfs_follow_link
 fs/namei.c
vfsmount
 include/linux/mount.h
vfsmount_lock
 fs/namespace.c
vi editor
virt_to_page
 include/asm-i386/page.h
virtual address spaces
virtual block devices
virtual memory
VM_ACCOUNT
 include/linux/mm.h
VM_ALLOC
 include/linux/vmalloc.h
vm_area_struct
 include/linux/mm.h
VM_DENYWRITE
 include/linux/mm.h
VM_DONTCOPY
 include/linux/mm.h
VM_DONTEXPAND
 include/linux/mm.h
VM_EXEC
 include/linux/mm.h
VM_EXECUTABLE
 include/linux/mm.h
VM_FAULT_MAJOR
 include/linux/mm.h
VM_FAULT_MINOR
 include/linux/mm.h
VM_FAULT_OOM
 include/linux/mm.h
VM_FAULT_SIGBUS
 include/linux/mm.h
VM_GROWSDOWN
 include/linux/mm.h
VM_GROWSUP
 include/linux/mm.h
VM_HUGETLB
 include/linux/mm.h
VM_IO
 include/linux/mm.h
VM_IOREMAP
 include/linux/vmalloc.h
VM_LOCKED
 include/linux/mm.h
VM_MAP
 include/linux/vmalloc.h
VM_MAYEXEC
 include/linux/mm.h
VM_MAYREAD
 include/linux/mm.h
VM_MAYSHARE
 include/linux/mm.h
VM_MAYWRITE
 include/linux/mm.h
VM_NONLINEAR
 include/linux/mm.h
vm_operations_struct
 include/linux/mm.h
VM_RAND_READ
 include/linux/mm.h
VM_READ
 include/linux/mm.h
VM_RESERVED
 include/linux/mm.h
VM_SEQ_READ
 include/linux/mm.h
VM_SHARED
 include/linux/mm.h
VM_SHM
 include/linux/mm.h
vm_struct
 include/linux/vmalloc.h
VM_WRITE
 include/linux/mm.h
vma_link
 mm/mmap.c
vma_merge
 mm/mmap.c
vma_prio_tree_foreach
 include/linux/mm.h
vma_prio_tree_insert
 mm/prio_tree.c
vma_prio_tree_remove
 mm/prio_tree.c
__vma_unlink
 include/linux/mm.h
vmalloc
 mm/vmalloc.c
vmalloc_32
 mm/vmalloc.c
VMALLOC_END
 include/asm-i386/pgtable.h
VMALLOC_OFFSET
 include/asm-i386/pgtable.h
VMALLOC_START
 include/asm-i386/pgtable.h
vmap
 mm/vmalloc.c
vmlist
 mm/vmalloc.c
vmlist_lock
 mm/vmalloc.c
vsyscall page
vunmap
 mm/vmalloc.c
__vunmap
 mm/vmalloc.c

Page 457

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 458

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 459

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

wait queues
 exclusive processes
 heads
 nonexclusive processes
wait_event
 include/linux/wait.h
wait_event_interruptible
 include/linux/wait.h
wait_for_completion
 kernel/sched.c
__wait_on_bit_bit
 kernel/wait.c
wait_on_buffer
 include/linux/buffer_head.h
wait_queue_func_t
 include/linux/wait.h
wait_queue_head_t
 include/linux/wait.h
wait_queue_t
 include/linux/wait.h
waitqueue_active
 include/linux/wait.h
wake_up
 include/linux/wait.h
wake_up_all
 include/linux/wait.h
wake_up_interruptible
 include/linux/wait.h
wake_up_interruptible_all
 include/linux/wait.h
wake_up_interruptible_nr
 include/linux/wait.h
wake_up_interruptible_sync
 include/linux/wait.h
wake_up_locked
 include/linux/wait.h
wake_up_new_task
 kernel/sched.c
wake_up_nr
 include/linux/wait.h
wakeup_bdflush
 mm/page-writeback.c
wakeup_softirqd
 kernel/softirq.c
wall_jiffies
 kernel/timer.c
wall_to_monotonic
 kernel/timer.c
watchdog system
wb_kupdate
 mm/page-writeback.c
WB_SYNC_ALL
 include/linux/writeback.h
WB_SYNC_HOLD
 include/linux/writeback.h
WB_SYNC_NONE
 include/linux/writeback.h
wb_timer
 mm/page-writeback.c
wb_timer_fn
 mm/page-writeback.c
while_each_task_pid
 include/linux/pid.h
wmb()
 include/asm-i386/system.h
work queues 2nd 3rd
 aio work queue
 kblockd work queue 2nd
 keventd work queue 2nd
 replace old task queues
work_struct
 include/linux/workqueue.h
worker_thread
 kernel/workqueue.c
workqueue_struct
 kernel/workqueue.c
wrapper routines 2nd 3rd 4th
WRITE
 include/linux/fs.h
write_fifo_fops
 fs/pipe.c
write_lock
 include/linux/spinlock.h
write_lock_bh
 include/linux/spinlock.h
write_lock_irq
 include/linux/spinlock.h
write_lock_irqsave
 include/linux/spinlock.h
write_pipe_fops
 fs/pipe.c
write_seqlock
 include/linux/seqlock.h
write_seqlock_bh
 include/linux/seqlock.h
write_seqlock_irq
 include/linux/seqlock.h
write_seqlock_irqsave
 include/linux/seqlock.h
write_sequnlock_bh
 include/linux/seqlock.h
write_sequnlock_irq
 include/linux/seqlock.h
write_sequnlock_irqrestore
 include/linux/seqlock.h
write_unlock
 include/linux/spinlock.h
write_unlock_bh
 include/linux/spinlock.h
write_unlock_irq
 include/linux/spinlock.h
write_unlock_irqrestore
 include/linux/spinlock.h
writeb
 include/asm-i386/io.h
writeback_control
 include/linux/writeback.h
writeback_inodes
 fs/fs-writeback.c
__writeback_single_inode
 fs/fs-writeback.c
writel
 include/asm-i386/io.h
writew
 include/asm-i386/io.h

Page 460

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 461

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

X Window System 2nd 3rd 4th 5th
XMM registers 2nd 3rd
xtime
 kernel/timer.c
xtime_lock
 kernel/timer.c

Page 462

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zap_low_mappings
 arch/i386/mm/init.c
zap_other_threads
 kernel/signal.c
zero page
zombie processes
zone
 include/linux/mmzone.h
ZONE_DMA
 include/linux/mmzone.h
ZONE_HIGHMEM
 include/linux/mmzone.h
ZONE_NORMAL
 include/linux/mmzone.h
zone_table
 mm/page_alloc.c
zone_watermark_ok
 mm/page_alloc.c
zoned page frame allocator
 cold cache
 hot cache
 per-CPU page frame caches
 zone allocator 2nd
zonelist
 include/linux/mmzone.h

Page 463

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

	Understanding the Linux Kernel, 3rd Edition
	Table of Contents
	Copyright
	Preface
	The Audience for This Book
	Organization of the Material
	Level of Description
	Overview of the Book
	Background Information
	Conventions in This Book
	How to Contact Us
	Safari® Enabled
	Acknowledgments

	Chapter 1. Introduction
	Section 1.1. Linux Versus Other Unix-Like Kernels
	Section 1.2. Hardware Dependency
	Section 1.3. Linux Versions
	Section 1.4. Basic Operating System Concepts
	Section 1.5. An Overview of the Unix Filesystem
	Section 1.6. An Overview of Unix Kernels

	Chapter 2. Memory Addressing
	Section 2.1. Memory Addresses
	Section 2.2. Segmentation in Hardware
	Section 2.3. Segmentation in Linux
	Section 2.4. Paging in Hardware
	Section 2.5. Paging in Linux

	Chapter 3. Processes
	Section 3.1. Processes, Lightweight Processes, and Threads
	Section 3.2. Process Descriptor
	Section 3.3. Process Switch
	Section 3.4. Creating Processes
	Section 3.5. Destroying Processes

	Chapter 4. Interrupts and Exceptions
	Section 4.1. The Role of Interrupt Signals
	Section 4.2. Interrupts and Exceptions
	Section 4.3. Nested Execution of Exception and Interrupt Handlers
	Section 4.4. Initializing the Interrupt Descriptor Table
	Section 4.5. Exception Handling
	Section 4.6. Interrupt Handling
	Section 4.7. Softirqs and Tasklets
	Section 4.8. Work Queues
	Section 4.9. Returning from Interrupts and Exceptions

	Chapter 5. Kernel Synchronization
	Section 5.1. How the Kernel Services Requests
	Section 5.2. Synchronization Primitives
	Section 5.3. Synchronizing Accesses to Kernel Data Structures
	Section 5.4. Examples of Race Condition Prevention

	Chapter 6. Timing Measurements
	Section 6.1. Clock and Timer Circuits
	Section 6.2. The Linux Timekeeping Architecture
	Section 6.3. Updating the Time and Date
	Section 6.4. Updating System Statistics
	Section 6.5. Software Timers and Delay Functions
	Section 6.6. System Calls Related to Timing Measurements

	Chapter 7. Process Scheduling
	Section 7.1. Scheduling Policy
	Section 7.2. The Scheduling Algorithm
	Section 7.3. Data Structures Used by the Scheduler
	Section 7.4. Functions Used by the Scheduler
	Section 7.5. Runqueue Balancing in Multiprocessor Systems
	Section 7.6. System Calls Related to Scheduling

	Chapter 8. Memory Management
	Section 8.1. Page Frame Management
	Section 8.2. Memory Area Management
	Section 8.3. Noncontiguous Memory Area Management

	Chapter 9. Process Address Space
	Section 9.1. The Process's Address Space
	Section 9.2. The Memory Descriptor
	Section 9.3. Memory Regions
	Section 9.4. Page Fault Exception Handler
	Section 9.5. Creating and Deleting a Process Address Space
	Section 9.6. Managing the Heap

	Chapter 10. System Calls
	Section 10.1. POSIX APIs and System Calls
	Section 10.2. System Call Handler and Service Routines
	Section 10.3. Entering and Exiting a System Call
	Section 10.4. Parameter Passing
	Section 10.4. Parameter Passing
	Section 10.5. Kernel Wrapper Routines

	Chapter 11. Signals
	Section 11.1. The Role of Signals
	Section 11.2. Generating a Signal
	Section 11.3. Delivering a Signal
	Section 11.4. System Calls Related to Signal Handling

	Chapter 12. The Virtual Filesystem
	Section 12.1. The Role of the Virtual Filesystem (VFS)
	Section 12.2. VFS Data Structures
	Section 12.3. Filesystem Types
	Section 12.4. Filesystem Handling
	Section 12.5. Pathname Lookup
	Section 12.6. Implementations of VFS System Calls
	Section 12.7. File Locking

	Chapter 13. I/O Architecture and Device Drivers
	Section 13.1. I/O Architecture
	Section 13.2. The Device Driver Model
	Section 13.3. Device Files
	Section 13.4. Device Drivers
	Section 13.5. Character Device Drivers

	Chapter 14. Block Device Drivers
	Section 14.1. Block Devices Handling
	Section 14.2. The Generic Block Layer
	Section 14.3. The I/O Scheduler
	Section 14.4. Block Device Drivers
	Section 14.5. Opening a Block Device File

	Chapter 15. The Page Cache
	Section 15.1. The Page Cache
	Section 15.2. Storing Blocks in the Page Cache
	Section 15.3. Writing Dirty Pages to Disk
	Section 15.4. The sync(), fsync(), and fdatasync() System Calls

	Chapter 16. Accessing Files
	Section 16.1. Reading and Writing a File
	Section 16.2. Memory Mapping
	Section 16.3. Direct I/O Transfers
	Section 16.4. Asynchronous I/O

	Chapter 17. Page Frame Reclaiming
	Section 17.1. The Page Frame Reclaiming Algorithm
	Section 17.2. Reverse Mapping
	Section 17.3. Implementing the PFRA
	Section 17.4. Swapping

	Chapter 18. The Ext2 and Ext3 Filesystems
	Section 18.1. General Characteristics of Ext2
	Section 18.2. Ext2 Disk Data Structures
	Section 18.3. Ext2 Memory Data Structures
	Section 18.4. Creating the Ext2 Filesystem
	Section 18.5. Ext2 Methods
	Section 18.6. Managing Ext2 Disk Space
	Section 18.7. The Ext3 Filesystem

	Chapter 19. Process Communication
	Section 19.1. Pipes
	Section 19.2. FIFOs
	Section 19.3. System V IPC
	Section 19.4. POSIX Message Queues

	Chapter 20. Program ExZecution
	Section 20.1. Executable Files
	Section 20.2. Executable Formats
	Section 20.3. Execution Domains
	Section 20.4. The exec Functions

	Appendix A. System Startup
	Section A.1. Prehistoric Age: the BIOS
	Section A.2. Ancient Age: the Boot Loader
	Section A.3. Middle Ages: the setup() Function
	Section A.4. Renaissance: the startup_32() Functions
	Section A.5. Modern Age: the start_kernel() Function

	Appendix B. Modules
	Section B.1. To Be (a Module) or Not to Be?
	Section B.2. Module Implementation
	Section B.3. Linking and Unlinking Modules
	Section B.4. Linking Modules on Demand

	Bibliography
	Books on Unix Kernels
	Books on the Linux Kernel
	Books on PC Architecture and Technical Manuals on Intel Microprocessors
	Other Online Documentation Sources
	Research Papers Related to Linux Development

	About the Authors
	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

