

Fast and Efficient Context-Aware Services

WILEY SERIES IN COMMUNICATIONS NETWORKING & DISTRIBUTED SYSTEMS

Series Editor: David Hutchison, Lancaster University

Series Advisers: Harmen van As, TU Vienna

Serge Fdida, University of Paris

Joe Sventek, Agilent Laboratories, Edinburgh

The ‘Wiley Series in Communications Networking & Distributed Systems’ is a series of expert-level, technically

detailed books covering cutting-edge research and brand new developments in networking, middleware and

software technologies for communications and distributed systems. The books will provide timely, accurate and

reliable information about the state-of-the-art to researchers and development engineers in the Telecommunications

and Computing sectors.

Other titles in the series:

Wright: Voice over Packet Networks 0-471-49516-6 (February 2001)

Jepsen: Java for Telecommunications 0-471-49826-2 (July 2001)

Sutton: Secure Communications 0-471-49904-8 (December 2001)

Stajano: Security for Ubiquitous Computing 0-470-84493-0 (February 2002)

Martin-Flatin: Web-Based Management of IP Networks and Systems, 0-471-48702-3 (September 2002)

Berman, Fox, Hey: Grid Computing. Making the Global Infrastructure a Reality,

0-470-85319-0 (March 2003)

Turner, Magill, Marples: Service Provision. Technologies for Next Generation

Communications 0-470-85066-3 (April 2004)

Welzl: Network Congestion Control: Managing Internet Traffic 0-470-02528-X (July 2005)

Heckmann: The Competitive Internet Service Provider: Network Architecture,

Interconnection, Traffic Engineering and Network Design 0-470-01293-5 (March 2005)

Fast and Efficient Context-Aware
Services

Danny Raz, Technion, Israel

Arto Juhola, VTT Information Technology, Finland

Joan Serrat-Fernandez, Universitat Politecnica de Catalunya, Spain

Alex Galis, University College London, United Kingdom

Copyright # 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate,

Chichester, West Sussex, PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under

the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright

Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the

Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or

faxed to (þ44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be

sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data

Fast and efficient context-aware services/Danny Raz . . . [et al.].
p. cm. - - (Wiley series in communications networking & distributed systems)

Includes bibliographical references and index.

ISBN-13: 978-0-470-01668-8 (cloth : alk. paper)

ISBN-10: 0-470-01668-X (cloth : alk. paper)

1. Computer interfaces. 2. Computer network architectures. I. Raz, Danny. II. Series.

TK7887.5.F37 2006

006.3- -dc22 2006007166

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01668-8

ISBN-10 0-470-01668-X

Typeset in 11/13 pt Times by Thomson Press (India) Limited, New Delhi, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry

in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Foreword ix

Abbreviations xi

1. Introduction 1
1.1. Context-Aware Services 1

1.2. The Context Project 2

1.3. Structure of the Book 3

1.4. Acknowledgements 4

2. Context Awareness and Modeling: Background 5
2.1. Some Context Definitions 5

2.2. Context-Aware Service 9

2.3. Context-Awareness System Research 10

2.3.1. Context-Aware Ubiquitous Computing Applications 10

2.3.2. Context-Aware Frameworks 14

2.3.3. Context-Aware Application Life Cycle 17

2.3.4. Context in GRID Computing 19

2.3.5. Context-Aware Sensors’ Computing 19

2.3.6. Context-Aware Ontologies 20

2.3.7. Context in Mobile Systems and Devices 21

2.3.8. Context Aware Communications 23

2.3.9. Context-Aware Flows 25

References 25

3. The Service Life Cycle Functional Architecture 33
3.1. Introduction 33

3.2. Service Life Cycle Model for Context-Aware Services 34

3.3. Service Creation 41

3.3.1. CAS Authoring 41

3.3.2. Service Customization 44

3.3.3. Code and Policies Generation Engine 47

3.4. Service Management 49

3.4.1. Code Distributor 50

3.4.2. Code Execution Controller 52

3.4.3. Invocation Service Listener 55

3.4.4. Service Assurance 57

3.5. Conclusions 61

References 61

4. Context-Aware Services and the Network Layer 65
4.1. Network Layer Requirements for Context-Aware Services 65

4.2. Current State of Service-Aware Networks and Open Network Interfaces 67

4.3. Requirements for Network Context Information

Collection and Dissemination 68

4.3.1. Access to Local Network Level Information 69

4.3.2. Gathering and Disseminating Global Network Information 69

4.4. Requirements for Network Level Control 71

4.5. Security Considerations 72

4.5.1. Implementation Aspects 73

4.6. Conclusions 74

References 74

5. Baseline Technology Review 77
5.1. Introduction 77

5.2. Open Signaling Approach 79

5.3. IFTF ForCES Approach 80

5.4. DARPA Active Networks Approach 80

5.5. Programmable Networks Components 83

5.5.1. Node OS: Node Operating Systems 83

5.5.2. EE: Execution Environments 84

5.5.3. Programmable Management Services 86

References 89

6. CAS Creation and Management – System Architecture and Design
Considerations 95
6.1. Introduction 95

6.2. Service Layer Overview 96

6.2.1. Policy Management Components 96

6.2.2. Service Execution Components 98

6.2.3. Interfaces Between Service Layer Components 99

6.3. Service Layer Implementation Considerations 103

6.3.1. Why Policies? 103

6.3.2. Objectives of the Policy-Based Service Management System 104

6.4. Context Policy-Based Service Management System 105

6.4.1. On System Components 108

6.4.2. Domain-Specific Policies 116

6.4.3. Service Assurance 122

References 130

7. The Service Execution Environment and Context Delivery 133
7.1. A Bird’s-Eye View 133

7.2. The Active Platform 135

7.2.1. The Session Broker 138

7.2.2. Execution Environment 140

7.2.3. Management of Active Nodes 141

vi Contents

7.2.4. DINA Active Packets 141

7.2.5. Security 144

7.2.6. The IP-Related Brokers 151

7.2.7. VoIP Support: the SIP Broker 157

7.2.8. Wireless Support: The WLAN Broker 157

7.3. Context Delivery System 160

7.3.1. Functional Overview 161

7.3.2. Functional Decomposition 163

7.3.3. Context Broker Interfaces 166

7.4. Conclusions 167

References 167

8. System Evaluation 169
8.1. The Scenarios 169

8.1.1. Work From Anywhere (WFA) 169

8.1.2. Crisis-Aware Telecommunications Services 177

8.1.3. Moving Campus Services 182

8.1.4. Testbed and Service Layer Set Up 186

8.2. Performance Evaluation 194

8.2.1. CPU Load 194

8.2.2. Info-Broker Load 195

8.3. Conclusions 197

9. Conclusions 199
9.1. Context-Aware Services 199

9.2. Autonomic Communications Vision 202

References 204

Index 205

Contents vii

Foreword

Computer networks are the essential infrastructure for very many enterprises and their

customers. Their principal purpose is to serve the communication needs of their users, whose

expectations of the offered level of service are tending to increase as networks become more

established. Performance, security and, more recently, high availability are threads of

research being explored with the aim of assuring Quality of Service.

Complementary to these important threads is the notion that contextual information can

provide another means to improving service quality. A simple example is user-location

information which can cause document printing to be routed to the nearest printer without the

user having to discover and specify a device (if, of course, this is what the user wants. . .).
Many more examples have become evident with the growth of wireless networks, mobile users

and ubiquitous or pervasive computing than with wired networks and tethered users.

The advantages of context-aware services have yet to be realised in two senses; first,

people and enterprises are generally not aware of any need; and second, few such systems

have been deployed and experienced by users. Awareness will certainly follow once more

systems have been built and tried, and experiences reported.

This book reports on advances in the areas of creation, delivery and also the management

of services that are context-aware. It derives from a European Union funded research project

called CONTEXT in which active and programmable network technologies play an

important part. It is a book which, above all, offers a vision of the future rather than an

account of deployed solutions, although it does describe one approach to a solution which

was built and evaluated as part of the CONEXT project.

It is a book that makes the reader think about possibilities and technical challenges, and

comprehensively covers context in its various shapes and forms as it applies to humans and

their environment, to communication and network devices and their characteristics, and to

information paths and flows and their properties.

The implications of this book for network services are of enormous potential interest, and

it is with considerable pleasure that I welcome it as an addition to the Wiley Series in

Communications Networking & Distributed Systems.

David Hutchison

Lancaster University

April 2006

Abbreviations

Abbreviation Description

AAA Authentication Authorization And Access
AAL Active Applications Layer

AC Action Consumer

ACAN Ad Hoc Context Aware Network

ADC Analog To Digital Converter

ADSL Asymmetric Digital Subscriber Line

ALAN Application Layer Active Networking

ANEP Active Networking Encapsulation Protocol

API Applications Programming Interface

AN Active Network

ASCE Assurance Condition Evaluator

CA Certificate Authority

CAS Context-Aware Service

CASP Context-Aware Active Service Provider

CANP Context-Aware Active Network Provider

CA-WDS Context-Aware Wireless Data Service

CC/PP Composite Capability / Preference Profiles

CCM Connection Control and Management

CCO Context Computation Object

CCP Context Collection Point

CC Context Client

CDAC Code Distribution Action Consumer

CECAC Code Execution Controller Action Consumer

CIS Contextual Information Service

CIDS Context Information Distribution System

CIB Context Information Base

CIDS Context Information Dissemination System

CIS Context Information Source

CM Context Mediator

CPU Central Processing Unit

CSA Context Service Adapter

CRL Certificate Revocation List

DARPA Defence Advance Research Projects Agency

DDRD Dynamic Decentralized Resource Discovery

DiffServ Differentiated Service

DMC Decision Making Component

DMTF Distributed Management Task Force

DSCP Differentiated Services Code Point

EE Execution Environment

ForCES Forwarding And Control Element Separation

FE Forwarding Element

FTP File Transport Protocol

GUI Graphical User Interface

GPRS General Packet Radio Service

HTTP Hyper Text Transfer Protocol

HCI Human Computer Interface

ID Identity

IETF Internet Engineering Task Force

I/O Input/Output

IP Internet Protocol

IPv6 Internet Protocol version 6

IS Inference System

JVM Java Virtual Machine

JPEG Joint Photographic Experts Group

LAN Local Area Network

MSISDN Mobile Station Integrated Services Digital Network

MAC Media Access Control

MIB Management Information Base

NodeOS Node Operating System

NE Network Element

NPN New Public Network

OGSA Open Grid Service Architecture For Distributed Systems Integration

PACL Permitted Access Control List

PAD Personal Digital Assistant

PBMS Policy-Based Management System

PCCS Perceptual Context Classifier System

PCE Perceptual Context Engine

PKI Public Key Infrastructure

PM Policy Manager

P2P Peer-To-Peer

SDD Service Definition Document

SDF Service Deployment Framework

SICE Service Invocation Condition Evaluator

SIP Session Initiation Protocol

SLO Service Logic Object

SL Service Layer

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

QoS Quality of Service

QoC Quality of Context

UDDI Universal Description, Discovery And Integration

UDP User Datagram Protocol

xii Abbreviations

URL Uniform Resource Locator

UCL URL Class Loader

VLAN Virtual Local Area Network

VoIP Voice Over Internet Protocol

VPN Virtual Private Network

VoD Video On Demand

TINA Telecommunication Information Networking Architecture

TCP Transport Protocol

WFA Work From Anywhere

WiFi Wireless Fidelity

WIMAX IEEE 802.16 Standard

WLAN Wireless Local Area Network

WWW World Wide Web

XSP Extensible Service Protocol

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Abbreviations xiii

1
Introduction

1.1. Context-Aware Services

In personal communications, people often condense their speech by omitting

information that can be directly deduced from the circumstances: such an

awareness of surroundings, or context, assists the efficient exchange of ideas.

Further, one of the parties to a discussion may notice or introduce a change in

context, and react to this change as the situation demands. As for the nature of this

information, in classical rhetorical theory the constituents of circumstantiae

usually include time, place, events, manner, causes, persons and instruments

related to an incident.

In the same way, computer applications could be made responsive to users’ wishes

if they were context aware, that is capable of inferring the users’ true intentions by

taking into account any relevant auxiliary information supplied for the purpose.

Thus changes in different types of context information could cause a variety of

actions to be initiated by the applications, just as a person might respond to the same

signals.

This book describes and discusses the underlying principles of a contextware

system that can handle the authoring, creation, management and operation of on-the-

fly context-aware services, or indeed, any advanced network services, although

context-aware ones present the most intriguing challenge. The reader of this book

should be well versed in the ways of the Internet, since familiarity with its basic

technologies is a prerequisite for embracing the presented ideas. However, although

the book is not intended to be a tutorial on the key topics, it will contain reviews of

technologies such as Active networks and Management Systems and as such it will

gradually introduce the reader to the main subjects of the book. Thus, the book can

also be used as a general introduction to the area of advanced telecommunications

services for management and support personnel within network and service provider

organisations, as well as a detailed reference book for professional technical staff

and graduate-level students.

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

The following paragraphs present the authors’ view of context-aware services and

the role of selected technologies in the overall solution. This is followed by a

preview of the individual chapters of the book.

The notion of networked applications receiving and making use of information

about objects and circumstances around them, and thus presenting a context-aware

service to users, has received a lot of attention, exemplified by services like

location-aware tourist guides available in mobile terminals. Still, although there

have been many context-aware systems and applications tested over the last

decade, most of them are still prototypes only available in research labs and in

academia. One of the main drawbacks lies in the complexity of capturing,

representing and processing the contextual data. The implementations have also

lacked generality and flexibility in the sense that only a predefined set of context

information has been utilised, with no allowance for customisation or augmenting

the scope of the information as the need arises. Yet the range of potentially

useful context information is limitless and unforeseeable. One notable source of

useful pieces of ‘raw’ context information has been recognised, though: the

network.

Until recently, the sole purpose of the Internet infrastructure, that is intercon-

nected routers, was thought to be to move traffic around as efficiently as possible.

This was also the state of the affairs when the notion of active, and subsequently

programmable networks arrived. The main idea with these new technologies is to

allow a network’s behaviour to be modified instantaneously and without service

interruption.

1.2. The Context Project

On the context-aware service side of things, what the existing systems are missing is

malleable and extensible context information processing, in a word, programmabi-

lity. As it happens, this is the hallmark of active and programmable networks,

specifically these networks are able to modify their behaviour on-the-fly. Recalling

that the required information in many cases depends on data extracted from the

networks, the inescapable conclusion is that context information can only be

generated in a flexible manner by active or programmable networks. This founda-

tional idea, presented by Prof. Alex Galis, was the basis for a European Community-

funded research project, CONTEXT.

This project implemented and demonstrated an efficient solution for the auto-

mated creation, delivery and management of context-aware services using a very

practical form of programmable network technology. The degrees of freedom made

possible by this approach are notable: The collection and distribution of necessary

context information for a service can be arranged by the service designer in parallel

with the creation of other service logic.

2 Fast and Efficient Context-Aware Services

At the time of writing this book, project CONTEXT has delivered its final reports,

which include the conclusion that active/programmable network nodes can and

should be augmented with the means to provide network configuration, status and

other useful information, to be refined into context information according to an

information model specified at the same time as the service needing the information

(or later). This has a noteworthy consequence: No standardisation needs to precede

the deployment of such models.

Such network context awareness is a potent and unifying ingredient to be added

to the arsenal of service developers. Combined with prediction, information

passing, proactiveness and other forms of intelligence, context-aware services can

offer tangible benefits.

For the further benefit of service developers, a trial service management system

was developed, encompassing authoring of the required information models and

policies, service creation and deployment subsystems and policy-based management

functionality. These project results are applicable to any advanced service making

use of programmable network technology, not just the context-aware ones.

1.3. Structure of the Book

A brief summary of the remaining chapters of this book is provided below:

Chapter 2, ‘Context-Awareness and Modelling: Background’, sets the scene by

laying out the principles involved with the expansive modelling of the context

information. The chapter also is a short analysis of the current state of the art in

Context-Aware Services.

Chapter 3, ‘The Service Lifecycle Functional Architecture’, shows what steps

needs to be taken during the life of a service, and outlines the required functional

abstractions to cater for them.

Chapter 4, ‘CAS and the Network Layer’, describes what is expected from a

network to support context-aware services. The chapter also presents the design

approach chosen by the authors.

Chapter 5, ‘Baseline Technology’, presents the starting point that was available

for the creators of CONTEXT system. The major technological inputs are

highlighted, including programmable network implementations.

Chapter 6, ‘CAS Creation and Management – System Architecture and Design

Considerations’, lays out the fruits of the work carried out to outline and design a

concrete system to handle the functional and nonfunctional demands presented.

Chapter 7, ‘Active Application Layer – System Architecture and Design

Considerations’ brings us to the arena of real action, the network proper. The

chapter reveals the main characteristics of the Active Application Layer, design

approaches of special interest and the fine points of select aspects of active

technology.

Introduction 3

Chapter 8, ‘System Evaluation’, describes the methods of evaluation, evaluation

criteria, execution of the tests and the results.

Chapter 9, ‘Conclusions’, pulls together the themes presented in the previous

chapters and discusses the possible ways to improve the present system for wider

applicability.

1.4. Acknowledgements

This book is a joint effort of the people who were active in project CONTEXT, and

the contained ideas and texts are largely drawn from the material created in this

project. The editors wish to specially thank the following for their contribution to the

CONTEXT project: Dr Panos Georgatsos; Mr Takis Damilatis; Dr Dimitrios

Giannakopoulos from ALGONET S.A., Greece; Mr Juan Manuel Sánchez;

Mr José Fabian Roa Buendı́a from Telefónica Investigación y Desarrollo S.A.

Unipersonal Spain; Mr Ricardo Marı́n-Vinuesa; Mr Javier Justo-Castaño; Mr Mart́n

Serrano-Orozco from Universitat Politècnica de Catalunya, Spain; Mr Rami Cohen

from TECHNION Israel Institute of Technology; Mr Kimmo Ahola; Ms Titta Ahola

from VTT Technical Research Centre of Finland, Information Technology, Finland;

Mr Kerry Jean; Mr Nikolaos Vardalachos; Dr Kun Yang1; Prof. Chris Todd from

University College London, United Kingdom; Ms Irene Sygkouna; Ms Maria

Chantzara from Institute of Communication and Computer Systems, National

Technical University of Athens, Greece; Mr Takis Papadakis from VODAFONE-

PANAFON Hellenic Telecommunications Company S.A., Greece.

We thank Mr Richard Lewis for his helpful comments on improving the read-

ability of the book.

Finally, we would like to thank Mr Jose Fernandez-Villacanas, European

Union project Officer, Dr Anxo Cereijo Roibas and Mr Toon Norp, project

reviewers, for their support, wisdom and encouragement for the work of the

CONTEXT project. They modulated the evolution of the project and therefore

favourably affected the content of this book.

The information and the source codes for many system components produced

during the project are available at http://context.upc.es/, under a special ‘CON-

TEXT’ breed of an open source licence.

12th February 2006

Danny Raz

Arto Tapani Juhola

Joan Serrat Fernandes

Alex Galis

1Currently at the University of Essex.

4 Fast and Efficient Context-Aware Services

�
������� ��	
����� 	��
��������
�	���
����

��� ��
���� �� ���� ��	���
 �� �� ���
����� ��� �������� �� ������� 	�� ��������

	�	
� ��
������ 	�� �� �
����� �� ���
�	��
 ��� ��

��� ��	�� �� ��� 	
� 	�� ��� �	��

������
����	�� �� ��� ������� ���������� 	�� �� ��������	�	
�
���	
���

���� ���� ��	
��
 ��
	�
��	�

�� ���� �� 	������ � ��������� ��� ��������	���� !������ ���	��� �� ��

������

	�� ��"������ ! �������� #� ��� �	�� �	 ��	� 	 �	�� �����
� �
 	 ��
� �	�

�����
��� ��	����� ��������� �� ��� ����	���� �� ����� ��� 	
� ���
������ ��� ���
�

�� 	� #� � ���� 	
� 	��� ��

������ ! ����
 ������� ���� ��� ����
	�� ����

	�����	����� �
 ��
������ �� ����� ������� �	� !� 	
�"������ ��
�	� �
 �� ���	�

��	
	���
������� 	� ���� 	� ��	
	���
������ �� ��� ��
��	� ��
�� ��	� ����
���� ���

��
��
�	��� �� ��� 	�����	���� 	��$�
 ��
�����

������� 	�	
������ 	� 	 �
������ � ����� 	�� �������� �� !	��� �� 	 �
��� ��

����

��	��� 	
�	� ��
���	
��� ��!��� ���������� �!�%������ 	�� ��
�	���� �������

���� 	�!���� ���������� ��
�����	
� �����
����� �
��
	��	!�� �����
��� 	����

����� ��������	����� 	�� 	�!���� ���������� 	�� 	 �
�� ��������� 	��

�����
����� #� �	�� �� �����
���	
�� 	
�	� ������� �	� !��� ���� �� ���	���

���	�&�������
 	�� �������
&�������
 ����
	������ ���
�! �
������� ��	�����

��������� 	�� �����
���� 	� ���
�� 	� �����

���
�

�	��'�!���
 �������	
 ������ �������� 	� (��� ����

��	��� ���������� ��

����� ��������� ������ �
 ����
��) #� ��
 �	�� ��� (���������) �� 	 ��
����� !�� ���

�	�� �� 	 ������� ��
�	� ��������� �� ������� ����
������ �� ��
����� ����� ��� ���

��
 �����	���� 	�� ��	���	���� 	�� ��� ��
� �� ���� �� �	
���� ��	����� �� �����
���

����� �� ��������� 	�� �����
�����

���� ��� ��	
����
������������ �����
�� *	�� +	,� �
�� �	�	�� -����	�

-�	� .�

	��/�
�	���,� ���� 0	��� � 1223 -��� '��� 4 .���� 5��

*�)�
����� 678�129 �
������ ��� ��������� �� ���������� (������� �� 	�

����
�	���� ��	� �	� !� ���� �� ��	
	���
�,� ��� ����	���� �� 	� ����� � �� ����� ��

	� �!:���� ��	�� �
 ��
��� ��	� �� �������
��
����	�� �� ��� ����
	����� !������ 	

���
 	�� 	� 	�����	����� ��������� ��� ���
 	�� 	�����	����� �����������) ����

��������� ���� ��� ����
 	�� 	������ �� ������� 	� �� ��� �
������ 	� ����
�	�

!��	���
 ����������
���	��� �� (��	
	���
�,��� ��� ����	���� �� 	� ����� �) ��

����
�	� ��	�� ��������� ����� ���� �� !� 	���� �� ���� ���������� ������� ��� ���

��
����
� �� �������� ��� ���	���
	���� %�	������� ��������	��� � 	�� ����
���

������� �	� 	��� !� ���� 	� ���
 ����� 	
���� ;	�� �����!� ������< 	� ����� �

��������� ��� ����� 	�� ��� ����
	������ 6=39� #� �	��� �� 	 ����� �� ����
�	���� �

��������� �	� !� ���� �� ��	
	���
�,� ��� ����	���� �� 	� ����� �� 	� ����
	�����

���� �� �	� !� ��������� 	� 	 ������� ��	
	���
������ #� �	� �	����
���	
���
� ��� 	

��������� �� ������� ��	� �� 	��
��
�	�� �
�� ����
 ����� �� ���� 	�� ����
����

.�������� ��� ��������� �� ��
 ����
	��

.������ 	�� ������
 6>79
���
 �� ������� 	� ���	����� ���������� �� ��	
! ������

	�� �!:����� 	�� ��	���� �� ����� �!:�����

�
��� �� ��� 6?9 ��������� ������� 	� ��� �������� �� ��� ���
)� ����
������

��	� ��� ���
)� �������
 ����� 	!���� �� ���� ������� �� ������ 	� ���	����

6@A�3>�=@�=?9� ���������� �� ��� ������ 	
���� ��� ���
� ��� ���� �� �	 � ��	����

�����
	��
�� ����

.������ �� 	�� 6>1�>@9 ��������� ������� 	� ��� ��������� 	!��� ��� ���
)� 	��

������)� ��	��� ��������� ��

�������� 	�� ����	�����

����� ����
	� ���������� 	
� �������� �� 	��� �
 ��� �� 	 �	
��
 ��	�� � �����

B���
 ���������� �� ������� 	
�� �� ��� ����
 �	��� ��� �������� *� 678�129

���������� ������� 	� ��� ���
)� �������	� ��	��� ����� �� 	��������� ���	���� 	��

�
����	����� �	�� 	�� ����� �!:����� 	�� ������ �� ��� ���
)� ����
������� �����

C	���� 638�=29 ������ ������� 	� ��� ��!��� �� �� ���	� 	�� ��������	� ��	��� ��

����
��� �� 	 �	
�����	
 ����� �

#���
�	�� 	������ �� ������� 	
� ��������� ! .������ �� ��� �� +���
���� 6=A9� ���

	
�� ���
� �� 	
�� ��� �� 	
� ����� 	�� ��	�
����
��� 	
� ��	
! � D�	����� ��

� ��� �� ������� 	
� ����	
�,�� �� +���
���� 6789 	� ���	����� ������� � 	������ � 	��

�����

#� ���� !���� �� �	�� �� �	���
� ��� ���� ��	���� �� ������� ����
������ ��

������������	���� 	�� �	�	 ��
����� 	�� �� ��	���� ���
����	�� ������� ����
�	�

����� ����� 	� ����	���� 	!���� �� ��� 	� �	� �	�� ��� �� ��� ���
��� ����
������� ��

������� 	�� ��� ����
��� �� ��
������ .��� ��	����� �� ��	
	���
������ �� �������

����
�	���� 	
��

�
������ ������

& E��	� F��
 ������� ��	
	���
������ ������� ����
�	����
��
�������� ��� ���
)�

��

�������� ;���
 ���	����� ������� � ���
 ��!���� � 	�	��	!�� �������� ����< 	�

���� 	� ���$��
 �� ���	� !���� ;����� ������� � �
���
������ �����
 � ����<�

� /	�� 	�� D������� ����������	
� .�
�����

& *����� ������� ��	
	���
������ ������� 679� #C 	��
��� ��
 �	������ #C �	��� ��

��!�����
� �
 	��
��� ��
 ���	�� & �	
	����
� ��	� �	
 	���
���� �� ��

�
���

�� ����� �� 	!��
	����� 6@29� ��� ��������� ���	�	��� ���� �� ���� 	�

��� �
�����
	���� �� ��!��� ������� 6?79� ��
 ��	���� ��!��� ������ 	�� C*��

��	� ��� �	�� 	����� �� ��� #���
���� #� ��
�� �� ���	���� 6AA9 	� ������� �	�	�

��� ��!��� ��������
���	
�� �������� �	� ���� ��������� 	
���	!�� � ����

��
 �	������
 !������ !	�� ��	����� 	�� ����
�	����	�
�	�����

& G����
� ������� ��	
	���
������� �����
� ������� H �����
�
����
���� !	��������

	�	��	!�� ����	 ��
��H ����
 �	
	����
�� 	�	��	!�� %�	��� �� ��
���� ;I�.<�

����
�� ������ 	������� ���� ����
	��� ��� �����
� ������� #���
�	���� �	��

;�#�< �� 	 �����	� �����
���
��
�������� 	 ����
�!����
�������
 ��
 �����
�

������� �	�	 	�� ���
	���� 	�� �� �	� !� ���� ! 	�� �����
���� ��������� 	��

��
������ ��� �#�)� ��������	��� ��������� ;�< ������� 	�� ��������� ��
 �������

�
	�� �� ������� ���
���� ��������� �������
�����
	���� 	�� �	����� ������� �	�	

��
����
 � ��������� ������� �	�	 ������
��� 	�� �	�	������� ����H ;��< ����������

	�� ����
�!����� �� ������� �	�	 �� ������� ��
���� ������� 	�����	������ ���������

������� �	�	 ���	�� 	�� ������� �
�������� ���� 	� 	��
��	����� ����
����� ���� ��

�����
� �����
 ����� ������� ��
������

& /��� ������� ��	
	���
������� "��� 	
� ��� �� ���	� 	�� �����
���� ��!�������

�� ��� ����
	����� !������ ��� ���
 	�� �����
��� ������� ����
�	���� ��	�

��	
	���
�,�� ����� "��� �	 !� ���� �� ������,� �
 ���	��� ���� ����
	�����

���������� ��� ��	�� �� ��� ����� 	�� ����� ��	� �
	����
��� ��� "��� ���� 	�

���������� ������ �	���� $:����
$����$�

�

	��� ����	 ��	
	���
�������
���	!���� �

����
�� H ��� �	�	!������� �� ��� �����������H ��� 	���������� ����������� �
���
�

����� �
 ���������� �� ��� ���
�H �
 ��� �	��
� 	�� ��	�� �� ��� ����	�����	�����

��	� �
����� �
 ������� ��� "��� ���	��� �� ��� ������
	� �	��
� �� "����

"�� ������� �	� �� !� �	����� �����
���� ��	� ���
 �
 �����
� ��������

� ���������
��

& C�
�	���� ;�� ���	���� ������<� �������� ����� ���� ��� ������ �� �����

��	����� �����	�� ��
 ��� ������ �� ��� ��������� ;����� �	��� #* �	
�<�

& �����
	
 ;����� ���	����<� �	
� �� ��� ������� ����
�	���� ��	� ��	���� ;�����

��������� ��	����
����
 ����
�	�� ��	�<�

� ���������� ;�� �����
	
 �������<

& .�	���� �� ���� �	����
 �� �	� ��� ��� ������� ��	� ���� ��� ��	��� ��
 %����� �

/�
 ��	����� ��� �����
	��
� ��
������� ��� �	 �

& * �	���� �� ���� �	����
 �� �	� ��� ��� ������� ��	� ��	���� %����� � /�

��	���� ��� �������� �� 	 ��
��� ��� �� �
����� 	 �	
�

� �������

& C� ���	� ;��	��
	!��<�
���
� �� ������� ����
�	���� ��	� �� �	���!��� ��

��	���� ����
	����	� ��������� �����
�
����
���� �����
	��
�� ������� ;��

������� ��	
����� 	��
�������� �	���
���� �

�� ����� ��	� ���� ���� �� ����
�	���� ���� !� ��	��
�� ! �����
� ��
�	� 	��

���
 ��� �����
�<�

& #��	���!�� ;�����	��
	!�� ! ��	�� �� �� ���	� �	��������<� ���
��	�����

������� ����
�	����� ��
 ��	���� �	��� ��!!��� ;�� �� ����� ��	� ���� ���� ��

����
�	���� ���� !� ���
������ ! ��� ���
 �
 �������
 ����������<�

� �������
� �� � �����
� �� �����
������

& G�����	
 � �	
� �� ��� ������� ����
�	���� ��	� ���� !�
��
����� ��
 	 �������

��
���� ��
�� �
���
� �

& �������
 � 	�������	� ������� ����
�	���� ������ 	������� ��� ������	
 � �����

!� ������ ��
 ��� ��
���� �� �
������� 	 !����
 �
 ��
� �������� ��
�����

� �������� ���������

& C	��� ���� �	����
 ����
���� ������� ����
�	���� �
�� ��� �	��� /�
 ��	����

	� 	���������� ��
 ����
�	 � ���� �	����
 ����� !� �������
�� �� !� ���

������� �����
 � ����� ����	��� 	�� �
������ ���
 ��������� � ������� �
	�� �� 	

��!��� �� ��� ������� �����
 � � ������� �
	�� ���� ��� ����	�� ��� �������� ��	�

	
�
����	�� �� ��� ����	���� ����
 �������
	�����

& C
������ ���� �	����
 �� ��
 ��� ��

��� �������� ���
� 	� # 	� ���� ������� ����

& /���
�� �� ���� �	����
 �� ��� ������� ���	����� ��������� �
 �
������� ����
�

������� /�
 ��	����� ��� ����� �� ����

��)� �������� ��� ����
� ������� �	�

������� ���
 �������� ��	� �����
 ��� � ����� �
 ��� ���
� �	� �
����� 	��

����
�!�� ��
 ��	���� 	��������� �� ��
 ��	���
� C
�������� �� ����
� ���

������� ����� !� ������ ���� ��� ���
 ��	���� ���	���� �
 ���� ��!��
�!���

�� 	 ��� ��
�����

� !�����
���� ��������� ����
	����� !������ ������� .��
��� 	�� ������� .���� �	�

!� ��	
	���
�,�� 	� ��������

& ������� C���� ��� ������� ���
��� ��
�����	�� ���� ���	��� ������� ����
�	�

���� �� ��� ������� ������ ��� ������� ����� �	���	�� ��� ����
�	���� �� 	

������� ���
�� �
�� ����� ��� ��
���� ������ ��%��
����

& ������� C���� ��� ������� ����� ���� ���������
�%���� ������� ����
�	�����

��� �	� �	�� �����
�%����� �����
 �� 	 ��
����� !	��� ;�������< �
 ���� 	�

	�����	���� ���	�� 	
����� D	�� ����	���� �	� 	��	��	��� 	�� ���	��	��	����

� ������� � ���� �������� �	�	 	��	� �� ���� 	�� ���� �	 ����
 !����

��
��
�	���� E�����
� �� �	 ������� ��!��	���	�
����
��� �
	����

���

6A19 	�� ���
��� ����
�	���� ��	� �� ����

�%��
��� 	������� ���� �	 !�

��
������� �� ����
�	���� �
������� �� ����
�	��� #� ���� ��
�����	����� �� �	

!� �����!�� �� ��� �
������ 	��$�
 �	����� ����	����� �� 	�����	�� �����

�
�!����� !�� ���� �	 ���
�	��
����
�� �����,	�����

��� ��	����� 	!��� ����
�!� ��� ������� ����
�	���� �� �	���
�� 	�� ��� ��

������� ���
 ����� E�����
� ���� ���������� �����
��� �� ���� %�������� 	!��� ���

� /	�� 	�� D������� ����������	
� .�
�����

������� ����
�	���� ������ !� �	�	���� ���
��� 	��
��	���� ��������	���� 	�� �����

�������
��� ��� ��	����� �	��
�� /�
 ��	����� �� ����� �������
 �� ������� ��

	�����	�� 	 ������	��� 	 ��
��� �� �	����� � 	�� 	 I�	��� �� ������� 6729 ���� �	��

����� �� ������� ����
�	�����

���� ��	
��
������ �������

��������	�	
� ��������� �� 	 ��������� �	
	���� �� ����� 	�����	����� 	��

��
����� �	� �	�� 	��	��	�� �� ��������	� ����
�	���� ���� 	� ���
 	�� ������

���	����� ��	��� ���� �� �	 � ��	
! ��	���� ������ 	�� �������� 	�� � ���� 	�� ���

����
	������ 	�� 	����������
	�
���	
���
� �	�� �����
�� ��������	�	
� �������

��� 	�� ��������� 	 ���!�
 �� ��������	�	
� ��
����� �� �������
	�� 	�� �	���	��

��� ����������� ��� "���!���� � 	�� ��� ��
���� ��
���	��,	���� �� ���� ��� ��������� �

��������	�	
� � ���� ���
	��
����
�� 6@@�@?9 �� �����
� �������� 	�����	����� 	��

��
����� 	
� ���
���� �������� �� �	���	�� ���
 ����� ���� �� ��� �� ��� �	�� ��

��	��	
� ������� ��
��
����� �������� ��� �������� 	�� !���� ��������	�	
� ��
�����

	�� 	�����	������ #� �� 	��� ��� �� ��� ����
�� �	��
� �� ������� 	�� ��� � ����� ��	�

�	���
�� ���
�� 	�� ��������	�� ��������

� ��������� �� ������� 	�	
����� �� ����� 6?9 	�� 	 � ���� �� ������� 	�	
� �� ��

���� ������� �� �
�����
����	�� ����
�	���� 	��$�
 ��
����� �� ��� ���
� ���
�

����	�� ������� �� ��� ���
)� �	���

����	
� 6>A9 �
������ ��� �	����
��� �� ������� 	�	
������ ���������	���� ����

���� 	�	
����� 	�� ���
	��
����
��!	��� ������� 	�	
������ ��� ��
��
 �������

������� 	�	
����� 	������� ������� 	� ������� �����
�� 	�� ��� �	���
 �������

������� 	�	
����� 	������� ���� ������� �����
��

���� 	�� J��, 6?9 �������� ����	
�)� �������� ���� ���
 ������� �	����
��� ��

�
��
 �� 	������ 	 !����
 ����
��	����� �� ��� �������� ;�< ��������� �������

�������� �����
� ����������� � !	�������� ��������	���� ������ 	�� ��	
!

����
��� ���� 	� �
����
�� �����	 �� 	�� ��
���	�����H ;��< ���
 ������� ��������

���
 �
������ ���
 ���	����� ���
 ��!���� 	�� ��	
! ���
� 	�� ������H ;���<

�� ���	� ������� �������� ��������� �����
	��
�� 	�� ������� H 	�� ;��< ����

������� �������� ���� �� ��� �	 � ����� �	
� 	�� 	��� ��� ��	��� �� ��� �	
�

��
�� ��	��
�� ��
 ��������	�	
� 	�����	����� 	
� ������ �� +���
���� 6789 	�

�������� �
�����	���� �� ����
�	���� 	�� ��
����� �� 	 ���
 6?19� 	����	��� ���������

�� 	 ��
����� 	�� �	����� �� ������� �� ����
�	���� ��
 �	��

��
���	�� ���

�������	���� �� ���	�
����
��� 	��
����
�� �������
 	
� ��� ��������� ���������

	� !���� ��������	�	
� ��	��
�� �� +���
���� 6789 !��	��� ��� 	
� �������
�� �� !�

�������� �� ��� ��
�� ��	��
�� ��������� �� ��� �
������ ���������

���
� 	
� ��� � ��� �� ��������	�	
� ����������

� "���#
������� *� 678�129 ������ ������� 	�	
����� �� !� 	 ��
� ��	���� �� ���

	����	���� �� 	 �����	
� � ���� !	��� �� ��������� �� ��� ���
)� �������� C	����

������� ��	
����� 	��
�������� �	���
���� �

�� ��� 638�=29 ����� ��������	�	
� ��������� 	� ��� 	!���� �� ��������� �������

�� ������ 	�� ������ ����
�
��� 	��
������ �� 	������ �� 	 ���
)� ���	� ����
������

	�� ��� ��������� ������� ����������� .	�!�
 �� ��� 6@7�=>9 ����� �������

	�	
����� 	� ��� 	!���� �� �
����� �	����� "���!���� �� 	 ������	����	�

��
���� !	��� ��
�	������ ������� �� ��������

� �������# ��
������� 6?�77�71�7?�7A�7=�@1�A8�3=�=A�87&8A9 ����� ��������	�	
�

	�����	����� �� !� 	�����	����� ��	� � �	���	�� ��	��� �
 	�	�� ����
 !��	���

!	��� �� ��� ������� �� ��� 	�����	���� 	�� ��� ���
 63&89� �
��� �� ��� 6?9 �����

��������	�	
� 	�����	����� 	� 	�����	����� ��	� 	����	���	�� �
����� ����
�	����

	��$�
 �	�� 	������ 	���
���� �� ��� ���
)� �
����� ������� 	� �������� ! �����
��

D���
���������
����� 	�����	����� 	
� 	�����	����� ��	� ������
 ��	���� �� ���

����
������ 	�� 	�	�� ����
 ���
	���� 6A=9 	���
���� �� �
������� �
 ���
�

������ �����������

���� ��	
��
������	��� ���
�� ��������

��� ��������� ������� �
������ 	 !
���
����� �� ���� �� �	��
������ �� ��������

	�	
����� � ����
���	
���

$�%�&�
������������ "'�(������
�������# �����
������

���
� �� 	� ���
�	���� ����
��� �� �������
 	�����	����� ��	� 	
� 	�	
� �� ��� ���
)�

�������� ��

���� ����� 	�����	����� 	
� ��
�	�� �	���
	���� 6A@�A3�A>�829�
	�

�� ���� �
����� ����
�	���� �� ���
� 	� ��� ����
 	 ����� ������� 6A?9� ��
 ��	���� 	

���
��� ��	
��� 	 ���� ������ 	 ��� �
 	 ������
 ������
���� 	 !��������

B

 	�� �!��� 6319 ����
�!� 	 � ���� ��
 ������� ��� ������ !	��� �� ����

�������� �
����
�	����� ��
�� ;0+/< �
����� 	�� ��� ��� 	���
	� �	� ������ 	�	����

	 �	
�� ���� �� �������� �	�	� ���� "��
 � ���� �	 !� ���� �� ������� ���
�

�
	���	
���� �� ����
 ���
 �	 ������ 	�� ��
���� ����
�������� ��� �
�	��� ���

�������� ������ !	��� �� �������� �
���� ��	��
�� 	�� 	������� 	
����������
	�� ��

8@K� ��� ������� ��	� ��� ��	���� �� �����
	�� ��� � ���� ���� ��� ������� �������

��
 ���� ���� ��� ������� ������� 	��� �� �	�� ��� ����������� �� ��������	�	
�

	�����	����� ! �
������� 	 ��!
	
 �� (������� �������) ��	� �
�� ��� 	�����	���� �
���

�
�� ��� ���	��� �� ������� ������� ;����� ����
�	���� ���� �����
�<� #� ��� �	�� �	

��	� 0F# ������� �����	�� 	�����	����� �
�� ��
�	�� ����
�	�� �
�����	���� �����
���

������� ������� �����	�� 	�����	����� �
�� ������� 	�%�������� �����
��� ��� � ����

�������� �� ����� ������� ������� 	�� 	 ����
�!���� ���
	��
����
� ��	� ����� 	��

���
���	��� ��� �������� #� �
��
 �� �����
	�� ��� .�	
� /���
 ���� ��� �������

�������� 	 �����	
� �	 �
 ����� �	�� �� ������ ��� �	����	��� ������� �� ��� ���
 ;�

��
�	�� ��� ��� ��
�� �������� 	���� ���� 	 ��
�	��� ���
�<� �
������� 	
�	� �������

�� /	�� 	�� D������� ����������	
� .�
�����

������� ������� �����	
 �� 	 ������ ��	� ���� 	�����
 ��������	���� ��������� ���� 	�

�	��
���������� �
 +/#* �	��� ������	���� �
���
� ����� ���� �	��� ��� ���� ������

	� ����
 ����
�	�� �� ��� .�	
� /���
 � ����� ������� �����
���� ���������� ���� ���

���	��� �� ����
�	���� �� ��� "��
 � ���� �
 ���� ��	���� �� ��� � ���� 	� �� ��������

B���
�	�� 	�� .����� 6379 ����
�!� ��� ��	� 	�� �
	����� �� 	� ����!����� �����

�	���� E������ ����� �	��� ���� 	������ ��� ������� �� ���	��� ���
�� /�
 ��� �������

�� ��� ��
�� �����
��� ������ 	
� ���������� ��� ���	�� ����� ��	� ����
�!�� 	��

��	������ ��� �!:���� �� ��� ���	�� ����
�	���� ��	� 	
� �� !� �
������� 	�� �
�������H

��� ��	�� ����� ��	� ����
�!�� ��� �� ���	� ��	�� ���
� ��� ���	��� � ���� �� ����

	�� ��� ���	���� �� ��� ���	�� �!:���� �� ��� ��	��H 	�� ��� ���
 ����� ��	� ����
�!��

��� ���������� ��� ����
����� ��� ��������� 	�� ��� ��
���	� �
���
����� �� ��� ���
�

��� �	�� !������	� ��	��
�� �� ��� � ���� ��
 ��� ���
� 	
��

;�< C�
�	���� � ���� 	������!���� � 	� ���� ��� ���
 �	� 	����� ��� � ���� ����� 	

������� �������
 ���� 	 �����
��������� ��
��� �� �
��
 �� ���� ��� ���� ��

����
���� ����� �� 	 ����� �� ��� ����!����� ��� ���
 �	��� 	 �	������ �������

;C*�< ���� ��
����� 5�G �����������

;��< 5��	���� 	�	
����� 	����� ��� � ���� �� �
����� ����
�	���� ��	� ��
����	�� ��

��� ������
)� ��

��� ��������� ��������� �� ��� �	 �� '�����
 ��� ���
 �� 	�

���� �
 	� ��� ����!����� �� ��������� ! ��� � �� �� ��� ������ !���� ����� ��

��� ����!����� ��� ������
)� ���	���� �� ��������� ! ��� ���
	
�� ���
	��
����
�

������� ��� ��������� 	�� ��� ��
������ �� �� �	���� ! 	� �����
���� ����	���

����� �	���� 	
� �
	�������� �
�� ��� �	������ �������
 �� ��� ��
��
 �� ��	� ��

�	� 	����	���	�� ���� 	��
��
�	�� ����
�	���� �� ��� ������
 	!��� ��� ��	
���

����!��� ��� ���
	
�� ���
	��
����
� �������� �� ������
� ����	���� �� ��� �	���

����
��	�� �	�� ����!���

;���<
�������	� ����
�	���� �
�����	����� ����� �������� ���
	��� �� ���	�

��
�������� ��� ����
�	���� �
������� ��
��� ��� ����� �� ��������	�� ����	���

��� �
����� ���� �� ��� ��
��� 	�� ������ �	���	�� ��	 ��	�������� '���� 	�

��� ����!������ ��� ������
� ����	� 	�������� �� �
�� �� ����
����� ��� �� ���	�

����
������� ������	�� ��
 ��� ����!���� �� ����� 	���
 ��� ����� �� ���

����!������ 	�������	� ��������	� ����
�	���� 	!��� ��� ����!����� �� 	�	��	!��

��������� ����� �
	������ 	�� 	���	������

;��< ��	��	���� �� ��� ���
)� ��������� 	�� ����
����� ��� 	����� �� ���������

	�� ����� �� ����
��� ��� �	
���� ���
� �	�� �� ��� ��!:��� �� %������� �	� �	

�������	��� � ��� 	�	����� ���������
��� 	 ���
 ����� ����
�!��� ��� ���
�)

��������� 	�� ��� ����
����� ���� ����� 	����	���	�� ��	��	��� �	�� ���
)�

����
	����� ���� ��� ����!����� ����
�	���� � ���� 	�� ��� �	���	���� ��
����

��� ����!���� ��	� �� �� ��� �� ���	� ��	��� #���
�	��� � ��� ����!����� � ����

�	���� 	�%��
� ��������� �
�� ����
�	� ���
���� !�� ��
���
����� �� !	���� ���

�������� �� ��� ���
)� ����
	������ ���� ��� � ����� ����
�	����� ��� � ����

�	� 	���� ��� ���
 �� ������ �
������� ����
���� �� 	 ���
 �
���� ��	������

������� ��	
����� 	��
�������� �	���
���� ��

0
	 	�� .	�!�
 6@79 �
������ 	 ������ ��
 	�	� ,��� 	�� ��
���	���� ������

������� ����
�	���� ��	� 	������ ��� ����
	����� ��������	����� 	�� 	��������� ��

��������	�	
� 	�����	���� �������� � ����� �� ������ ������� �� 	�	� ,��� .�����

������� �� ������ ��� ������� ��	� ����� �
�� ��� �� ���	� ����
������� ��	� �� ��	�

�	
� �� ������� ��	� �� 	������!�� ��	 �����
�� ��� ������ ������� �������� ��

����
�	���� ������� 	�� ���	�����
�	���� �������� #���
�	���� ������� ��������

��� ������ �
���
���� �� ��� ��������	 ;����� ���	����� ����� ������� < 	�� ���

��!:���� �� ��� ������� ;���� ���	���� �� ��� ��
��� ��	� ����� ��� 0C.
������
<� ���

���	�����
�	���� �������� ����
�	���� %�	��� 	��
�!���� 	�� ����
�	���� 	!��� ���

���
�� �� ��� �������� ��� ���	�����
�	����)� 	��
�!���� �������� ��
�� ��
��
��

����	���� ;���� ����
	����	� ���
���	��� �
 	 !������� �	�� ��
 ���	���� ����
�	�

����<� ����
�	���� %�	��� ;����
	���
���������� 	���
	� � �	����
	�� ����<� �����

���
��� �	�	 �
	����
�	����� 	�� 	���	���� ;���� �������� 	 �	��� �����
<� ���

	
����� ����� 	� ��	���� �� 	 ��������	�	
� ������ ���
 ����� ����� ��	� �� ��

������
 ����
�	���� 	!��� ����!��� �� ��� �	���	�� �� �	�� ������
� ��� �	��

	�	� ,�� ��� ����
�	���� 	�� ���	�����
�	���� ������� �� ���� ��	����� ���

�%��
�� ����
�	���� �� ��� ������
)� �	���	��� ��� ����!�� ��� ������
 �� ��	�������

	�� ��� ����!��)� ����
������� ��� �
�� ��� 	
� ������ �������� ��� �	��
 �
������ ���

%�	��� �
���
�	 �� ����� ������� ��	������

.������ �� ��� 6=A9 ����
�!� � ����� ��	� ��	���� 	��
�	�� �� 	� ��������	�)�

��	����� �������� ��� ��������	���� ��	
�� ���� ��� ��������� �� (��!��� ����
�!����

��������� � ����) 	�� (��������	�	
� � ������) /��
 �	����
��� �� ��������	�	
�

	�����	����� 	
� ����
�!��� �
����	�� ���������� 	����	��� ��������	�
�������
	�

����� ��������	� ����
�	���� 	�� ����	���� 	�� ���������
����
�� 	�������

#���	���� �� ����� 	�����	���� � ��� �	�� !��� �
���� ��� �� ��� C�+����� 	

��
����� �	�����,�� �������
� ��� 	��
���������� �	����
��� 	
� ��� �
����� ��

��� ������ 	���� ��� �
������	� ����������� ������
 ��� �	�� 	� �	�� �� �������

����
�	���� �
 �	

 ��� ��� 	 ����	��� 	�� ������
 �� �� �������� �	��	�� �

	����	���	�� � C
����	�� ��������� ;��� ����
�	����� �������� �	��	�� < �������� 	

���
 ����
�	�� ������%�� ���
� �������
�� �!:���� ��	� 	
� ��	
! 	
� ����	��,�� �

����
���� �	�� �	���
 �� ������� ��� �������
�� �!:���� ����� !� ����� 	�� ������

������� ��	�
�%��
� �� ���	� ����
	������ ��
 ��	���� �
����
� �
 �����	 �� ����

�� ���	� �!:���� 	�� ��
����� ��	� 	
�
������� 	������� �
�� �	
�����	
 ���	������

��
 ��	���� !	�� 	������� �
 ������ �
 ��	��� 	!��� ����� ��� �	��� ����
�	�����

��
 ��	����
���	�
	��� �
 ���
��� #� ��� 	!��� �	���� ���	���� ����
�	���� �	� !�

���� �� ������ ��� 	�	��	!�� �������� �����	��� ��������	� +�������
	���� ;���

����
�	����� �������� 	����	���	�� <� +�������
	���� �� ��� �
����� �� 	����� ���

�����������
������� �������� ����� �
 	���
��� ��� ����������� !������ ������

������ #� ��� �	�� �� ��������	�	
� � ������ ��� ����
������ 	����� �� ��� ������� ��

��� ����� !
��� 	!��� �����
��� � ���� ������
	����� 	�� ��	� ����� 	�	��	�����

	
�� #� ��� �	�� ��	� ��� ������� �� ��� �� ���	���� ��
 ��	����� ��� �����!��

	�����	���� ��
��	��� �� ��� ��� �� ��� C�+���� �����!�	
�� 	 ���������
 �
	����

�� /	�� 	�� D������� ����������	
� .�
�����

�
��
	�� D���
��� 	
��� �	���� 	� 	����	��� !������ !������ ��� ��!��� ���� 	��

���
���)� ��
��	� �����!�	
�� ����� ������ �� 	 �����
���
��� !
���� �� 	

�����
��� �
	���� ��
�	��� +�������
	���� ����� !� !	��� �� ����
 ����
�	����� ��

	������� �� ���	����� ���� 	� ��� ������ �
����� �� 	
���� /�
 ��	����� �� 	 �
�:���

�
��� �� ������� ���� ��� �
�:��� �����!�	
� �� 	������ /��	�� � ��������	�

�������
	���� ����� 	��� ������� ���
	���� � ���� ���������� ��
 ��	���� 	�

���
	���� � ���� �	� ��� ��� ����
 �� ��	
! ���� �������
� ��
 !	����� ���
��

	���
 ��	� ��	����� �� 	 ���	� �

����� ����� #� ���� �	�� �	��� ��� ������� �� ���

���
� �� ��� ����� �� ��� ������� �

'	�� �� ��� 6>39 �
����� ��� ������ �	��� ���	���� � ����� 	� �	
� �������� �� ���

�
�!��� �� ����
������ ���	���� ����
�	����� ���� ������ �	� ���� 	
�����������

���	�� ����� ��� ������� 	 ��!����	��
��� � ���� �
 ������� ����������� 	�� ���

�����!�� ���	����� 	� ����� ��� ����� !� ������ ����� ����� �� �������� �	� ����

	���� 	 �
�	� ��	� �� �

��	���� 	�� ���
������ �� ������� /�
���
 	��	��	�� �	� !�

�	���� �
�� ���	���� ����
�	���� ! 	������� C�L ���
� �� �����
���� ����
����

���� 	 �	�� �
	����
 �� 	������� '��
� �� 	
� 	�� ��� �� 	
� ���� �	� !� ���� ��

	����� ���������� ��
 ����	��� ���� ������ ����� �
���
 ��� �� �	�� ����������

��������� �	��� ���� ��� �	�� :��� !��� �	���� ���� ����
 !���)� ������ D��� ������

���� �� 	
��	����� ��� �	��
� ��� ������ �	��� �	� 	 �����
��	� ����
���� 	� �� �	� ����

	� ��� �� ��� �
�� (�!�����) ������� 	� L�
�� C�+��

'	�� 	�� .������� 6>=&>89 ��	� ���� ���	�����	�	
� �������
 	�����	����� ��	�

����� ����
 ���	���� 	�� ����� ����
 ��������� ���
 ����
�	��� 	�� ���������

	���
����� � ��� 	����
� ��
��
� 	 !
���
��
��������� ���
 ��� �	�� ��� �	
� ��

��
�� ��� ������ �� ���
�	���� �������
 ��!���� 	�� �!�%������ ����������

��
���� ��
����� �����
��� '��� ��!���� 	�� ���	���� �� ����� ��� �����	���

���
���	
�� �
�:����� ��� ������ �	��� �
�:��� 	� B������� +���	
�� 	��� �	��
� ���

C�+��	! �
�:��� 	� L�
�� C	�� ���� +���	
�� �����
� #� ��� �	�� �� ������ �	����

��� ��
��� �	

��� 	� �����
���� !	����
	���
 ��	� 	 �������
� ��	� ����
��� ���

�������
 ���
	��
����
� ���
� �� �	�� ��� ���
	��
����
� �� ��
� ���� ��� ���	����

�	�	 �� ����� ��� !��	���
 �� �
��
	��
������ �� ��	
! ��
���	������ ���

�����	� ��������� �	� ��	� ��� ������ �	��� �����
����� ��������� �	��� 	

����� 	�

��� ����� C�L �� ��� ��������� ��������� ��	
��� ��� ��������
��������� ����
�

�	
�� �� �	� ����� ��	� ��� � ���� ����� �����
����	�� !������ 	 !����� �
��� 	��

��� ��
�	� ���
	���� �� ��� !	���� ����� ��	�� ��	� 	 ���� !����� ����� 	��� !� ����

�� ���� ����	��� �� ��� � ����� ����� ����	��� ����� �	�� 	 ��
���	��,��

��	���� ��
 �	�� ���
 	�� ����� !� ����
�
���� �����
���� �� �	�� ���	����� ���

C�+��	! ���� 	 �
�� �	�����,�� �	!��� �������
 ���� 	 ��� ����
�	�� ������ �� 	

������� ���
�������	
 ���
	
�� �����
�� 5������ ! ��� ��������� �� ��� ����� ���

�	! ����	���� ��� 	�����	������ !�� ��� ��
� �������� �� ��� �������
 ���
	�

��
����
� ����� ���
������ ��
� �����	 �� �� ��� ��
��� �� 	 �	!� �
	�������� ���

��� ������� #C �����
�� ��� ���
�������	
 �
���
� �
������ ���	���� ����
�	����

�� 	
����! �
��� !	����

������� ��	
����� 	��
�������� �	���
���� ��

$�%�$�
������������ ��������)�

D��	
	 67>�=A9� DJ��+� ������ 	 ���� �
	����
� ��
 ����������	
� '�	
	!�� 	��

F!�%������ ��������� ������	������ ��� DJ��+� �
	����
� �������� �� ���

��������� �����������

� ����������	
� #����
	����
	�	��
 ;��#
<� ���� �
������ 	 �����
� �
	����
�

��
 ����
	����� !������ 	�����	����� 	�� ��� ���
� ��� �
��	
 ��	� �� ��� ��#

�� �� ������,� ��� ���	��� �� ��� ���
)� ���� 	�� 	�������� ����� �	����,��� ���

����	��� �� ��� ����
�	���� �
������� ��� ��#
 	��� �� 	������ ���� ��	� !

�	���� ���� 	������ ��� E�#
����
��� ��

���� 	�	��	!�� �� ��� ���
� ����
�	��

��������	� �	���
� �	���� ��� ���
)� 	!���� �� �	 	�������� �� ��� F'� � �����

	�� ��� 	������ �� ��� ���
)� 	�����	������ /�
���
� ��� �
���
�	 ! ����� ��� ��#

�	��� ����� ��������� ���� !� ����
��	��	!�� 	�� ����
���	!�� ! ��� ���
�

#��	�� ��� ��#
 ������ ��������� ��	
� ��� ���
)� �
���
����� ���
 ���� �� �����

!� 	!�� �� �
����� ��� ���
 ���� 	� �������� ����
������ �� ��� �������� ������

����� !������ �	
� �� ��� ���
)� ��
���	� �
����� ����� �� 	��	 � 	������!��

���
���
 ��� ���� ;����� ! !���� ���
�� �� ��
 ��
��� �� 	 ��	
	!�� �������
<�

� ��������	� #���
�	���� .�
���� ;�#.<� ���� �� 	 ����
�!���� �	�	!	�� ��
�����

����� �
������ F'� 	�����	����� 	�� ��
����� 	 �����
� ��	�� �� ���
��� 	��

��
������ ��������	� ����
�	����� ������� �	 %��
 	 ��
��
 ��
 	��
���
��

�	������ 	 ������� �����	�� �
 ��!��
�!� ��
������
���
�� ���� �	������

����
�	���� �� ������ �
 ����
��� �#. .�
��
� �	
������
 �������� �������� ��

����
 ��
��
�� 	������� ������� �� �������
 ����
 ���!�
� �� ��� �#. ����
	�����

��� �#. ���� �����
� 	
	��� �� ������� ��	�����	������ ��������� ���	�����

	����
����� ��������
�������� �� ����
�	����� ���� �� �������� ���� ��
����	����

���� �� ����
 � ������
	!���� ;������
 	
���
� �� �
���	
�� �������� �� !�

������
�� ���� �
 �������� �����<�
#
D �������� � ��� 	�� 	� �������!��

����	���� �� 	���� ��� �����
� �	������ �� ���������� �
 ����� ��
	��� ���������

� C�
�����	� ������� D����� ;C�D<� ���� �� 	 ��	�� �� ��
����
	� �����
 �	�	 	��

����
�	���� �
�� ����
 ���
���� ���� 	� 	
�	����
�� ����
������ ���� 	� (
������

�� D�����) ���� � �!���� ������� ����
�������� ��� C�D �	� 	 �����	 �
 ��
����
��

���� 	� ����
���� � ����
������ ���
 	 ��
�����	� ������� ��	�����
 � �����

� ��� C�
�����	� ������� ��	�����
 . ���� ;C��.< �� 	 ����	���
�������� � �����

����� �����
�� ���
	� �����
 �	�	 ���� 	 ���������� �� �
�!	!������� �����	����

��������	�� � ��� ��	�����
 � ���� 	����� ��� ���
 �� �
	�� �����
����������

���������� �
 ��	�����
�� ��
������,� �	���
�� �� ��� �����
 �	�	 	�� �	� ���� 	�

������� ������� ��� ����	���� ! ����� ���� �������
���
���������� ����
� �� 	

����������� E

 �
	��	
 ��	� �� �	�	!�� ��
������,��� �	���
�� ���
 	
	��� ��

������	��� �
�� ������� �� �	 ��

� #���
���� . ���� ;#.<� ��� :�! �� ��� #���
���� . ���� �� �� �	�� ��� ������ �� ���

��	�����	���� � ���� ;	�� ����
 ���
��� �� ������� ���� 	� 	 � ���� ����� �
 0C.

� /	�� 	�� D������� ����������	
� .�
�����

������
< 	�� �����
� ���� ����
�	���� ���� � �!���� ������� ����
�������� ���

����
���� � ���� 	��� 	����� ��
 �������� ����
�
��	����� �� ��� ����
� ��� �	�	�

���� 	� ���������� ;����� �	������ 	�� ���������< 	� ���� 	� �����	� �
 ����
��� ;��

��� '�
����
��� 0	
�!	��� .%�	
�<
��
�����	����� �� ���	�����

� * �	��� *�����
	��,�� +����
�� *������
 ;**+*<� ��� � �	��� ������
	��,��

����
�� �������
 �
	����
� 	����� F'� 	�����	����� 	�� ��
����� �� ��� 	��

���
����
��� ��	� �	��� ���	���� ����
������� �� ��������	��� 	�� �������� ���

�����	���� �� ���� � ���� �� 	 �
������ ! ����� 	 F'� ��������� �!�	���

�����
���� ��
����� 	�� ����	��� 	 ��
����

�����
	���� ��
����� ��� F'�

��������� �
������ ���
�����
	���� ��
���� 	 ���	���� ����
������ �� ������ 	��

��� �	�	!�������� 	�� 	� 	�������	� ��������	� ����
�	���� �� ������� �� �
������ ���

�����
	���� ��
���� ���� �	��� ��
���
 ����
���	����� 	!��� ���
����
��)� ����

�����	� ����
�	���� ��
��
 ;�#.<� #� ����
����
�� !������ ��	�	��	!��� ���
�����
	�

���� ��
���� ����
�� ��� �#. 	�� ���
�����
	���� ����
�	���� ��
�������

*� 61@�1?9 ����
�!� � !�
���� 	� 	� 	
��������
� ��	� �	� !���� �� 	����	���	��

�����
	�� ��!�!	��� ��
����� !	��� �� ��
��	� �������� �
 ������� ��
���� �
�� ���

�����
���� ��
��� ��� ��
��	� ������� �	� ��� ��
���	� ����
�	���� ��� ���
 �	�

����
	����� ���� �����
��� ��������� ��	�� 	��
������ �	����� 	��
������ �	����

�	���� F+5�� ���� �� ��	���� 	�����	���� �� ���� 	 ���
 ��
�	���� ��
 ���	��

	�� ���� ��	� ���
� �� 	� ����
������ ����	�� 	!��� ����
����	��
���	
��� .��

���������� ���
���	
���
)� �	��� ���

��� ��� � !�
*��� 	
��������
� ���� 	������

��� 	
��������
� 	������� �� �����
� ��� �������� ���� ���� ������ ������ �� ����
�	�

����� #� �� 	!�� �� ��� ��� ���� 	� ������ ����� 	 ��
���)� �	��� 	�� 	� ��	�� 	��
���� #�

�!�	��� ��� �	�� ����� �� ����
�	���� ! 	����	���	��
������ 	 ��!�!	��� ��
����

��	� �����
� �	��� �� ��	�� 	��
������ '��� ���� ����
�	����� �� ����
� ��� ���
 	

���!�
 �� ��
����� ��������� ��	
����� ��
 ��� ���� ����� 	 ��!�!	��� ��	
�� �������

������� �� ��� �	�� �� ��
 ����	�� �	�	��
� 	�� ������� �� 	
����	�� ����� ���!�

����� ��� ��!� ��� 	
��������
� �� � !�
���� �� !	��� �� 	� �������
���� ������

���
� ���������� 	�� 	� ����� ���
��� 	��$�
 ����� ������ ��� � ���� �������� ��

��� ��
� ����������� ��� 5��	��
� ��� #������������� ��� ���B� ������ �	
� ���

������� 	�� �����
� ��
������ 	�� ��� � �� �����
��
�� ��� 5��	��
 ��������� ��

� !�
*��� ����� 	 ��
����
 �� 	�� ��� ����
 ���������� �� ��� � ����� ��	� ������

��� �	� ����
	��� 	��$�
 ��	� ������ ��� �	� �������� ��� #������������ ������

���� �� ��� ��
� �� ��� � !�
*��� � ����� 	� �� �
������ ��� 	����	��� �����
	����

!��	���
� #� ���� ��� 5��	��
 �� ���� �
	�� �� 	�� ��� ������� 	�� �����
� ��
����� 	��

��� � �� �����
��
�� 	�� 	�� ��� ����� ���
��� 	�� ����� ��� �
������ '��� ���

���������� 	
� 	���� �� ��� � ����� ��� #������������ ������� ���� ��	� �� ��

����
����� �� 	�� ��� ������ ��	� ��� �	� ����
	��� ��� ���B� ������ �	
 �� ���

���
 ����
�	�� ��
 ��� �����
	���� #������������� ��� ���
�� � �� �� ����������

������� 	�� �����
� ��
����� 	
� ��� 	���	� ��
����� ��� ���
 �	��� �� 	������

*������ ��
����� ������� ��	�� !
����
�� ����	�� �	�	��
�� 	�� ��������
�� G����
�

������� ��	
����� 	��
�������� �	���
���� �!

��
����� ������� ��! ��	
�� �������� ��������� ��
����
���� 	�� �	�
��
���	� ������

*	�	 � ���� �� ���� ���������� �� ��� ����
�	�� ����	
	����� �� ��� ����� ���
��� 	��

����� ��	� 	�����	����� �
������ ��� �
���
� ���� ��	� ��

������� �� �	�� ����
�	��

����	
�� ��� �	�	� ��$����� ��	� 	 ��������� �� ����
����� �� �
 �	� �
������ ���

� !�
*��� � ���� �	��� 	��	��	�� �� ��� -	�	�� �� � ���� �� �� ��� �	�	 � �����

'���� � !�
���� �	� ������� �� ��� � ��� �� ������� �� ����� �	����� �� ����	����

�	� �� ��� ����	����� ��	� 	
� ������	
 ��
 	 ����
	� ��������	�	
� 	
��������
��

������	����� ����� �������� ��	� ������� � ��� ��� ��
� ����
����� ��� 	�� ��
�

������� ���� ����� ������� � ��� ��
� 	�	��	!��� ��� �����	
 	
��������
�

�����
��� 	����	��� ����
�
��	����� ��	� ��� 	����	���	�� ����
�
����� ��������	�

	�� �������� ������ �� ������� �� �
����� 	� ����
�� ��� ��� �� ��
���� ��������

.	�!�
 	�� *� 6=>9 ���
����� ��� ������� �� ������� ������� ��	� ����	��

!������ ��� ����
������ 	�� ��� 	�����	����� ��� �
������ ������� �����	��� ���

	�����	���� �
�� ��������������� ����	����� ��
���� �������� � ������� ������ ��

	 �����	
� ��������� ��	� �
������ 	�����	����� ���� 	����� �� ������� ����
�	����

�
�� ����
 ���
	���� ����
������� ��� ������� ������� �	�� 	 ��	�� ;��� �� 	��
�!����

��	� �	� !� %��
��� ! 	�����	�����< 	�� 	 !��	���
 ;�	��!	��� �� ��� 	�����	����

���� ��	���� �� ��� ����
������ 	
� ��������<� ��� 	
� !	��� !������� !����� ��	�

�	�	�� ������� �� ��� �	
�����	
 ����� �� �������� � ������ �	 ��
��
� ��� �

��
� �� ��� ���������
����� ����
	��
 ;	�%��
�
	� �	�	 �
�� �����
�<� ����
�
���

;	!��
	��
	� ������� ���� �����
 ����� ����
�	����<� 	�� ��
��
� ;�������� ���
�� 	��

����
�
�� ����
�	���� �
�� ����
 �������<� ��� ��	���
 ����
�!�� ��
�� 	�����	�����

��	� ��� ��� �
 ��
� �� ����� ������� ��������

� #�$B�� ��	
�� ���� �� ��� �����
���� �%���	���� �� 	 ������ ��$��� !�	
� ��	� ��

����� �� ������� #� �� ���� �� �����	�� ����� ���!�
� �� ��� ����� 	
� ��

���� ��

��� !��������

� #���
�	���� *����	 � ���� �����	 � ����
�	����
����	�� �� ��� ���
)� ���	���� 	��

������� � 	����	��� ! ��� ���
)� �
������ � ��� ����
�	���� �����	 �� ��	���� ��

�	��� ��� ���
� ��

���	
�� �
���� 	�� ���	�����

� *F

�B ;* �	��� F!�%������
�!���
������ ��	
�<� ���� �� 	� ����
�����

��� ������,��� �����!�	
� ��	� �����
��
���
���� 	��
���	 ��� �� ����
�	� 	��

�����	����� ���������
������
���
����� ������� �����!�	
� ��	��� 	� ���� 	�

	���� ����������� ��� ��	���
)� 	����
� �
����� 	
������ ��
���� �� *F

�B ��

�
��
 �� �	��
���
���� �
����
�� ���� ��� �
 ��
� ������ 	
� �	���
�� 	
����

��� �����!�	
��

.������ 	�� .�
��!	�� 6>?9� ��� ��� �� ��	� ������� �� ���
 �	 ����
������� ��

�������
�� 	� 	� 	��
�	�� �� 	�%�������� �� ��������	� ����
�	���� �� �!�%������

��������� 	�����	������ '���� �� �� �!����� ��	� ������ ����
�	���� �� 	 ������

������� ��
 ��� ��������	���� �� �!:����� �� �� ����� ��	� ��	� ������� �	� 	��� !�

���� �� �!�	�� ��������	� ����
�	���� 	�� ����
	����� ������ �� 	 ����� ��
�	���

�� /	�� 	�� D������� ����������	
� .�
�����

'����� �� ��� ���� �!����� ��������	� �
������� ��	� �	� !� ���� ��
 ��� ��������	�

���� �� �!:����� ��� �������� �� 	� �!:��� �	� 	� ���� !� �������� �� 	 ��
�	�� �����

��	� �������� #� ���� �	��� ��	� ����� 	
� ��	��� 	� ��� ���
 ��
��
� �� 	 �	!��� D	��

��	� ���� �� ��������� �� 	 �����
��	� ����	�������������� ����� ����� �� ��
� �����

	 ��	��	
� 73�!�� ��	��� �� *����	� �����
��
 ;�*�< ��������� �� 	 C� ��
�	� ��
��

� �
��
	� �� M���	� �	��� ��
�����	��
�	�� ��� ��	��
�� ��	� �
�� ��� �*� 	��

�	����	��� ��� �����
 �� �
����
� !	��� �� 	 ������ 	���
����� ���� �!�	����� ���

�������� �� ��� �!:���� �� 	�����	���� ��	� ���� ������� ����
�	���� �
�� ��	�

������� �	���� (���)� ��	�� ��
 ������ !�����)
������ ��� ���
 �� �	�� ����
 �!:����

���� ���� ���� ��� ��	�� ���
���� '������
 ��� ��	������ �� 	� �!:��� �� ���

�	
�� �	!�� ��
������,��� ��� ������ 	���� �� ��� �	!�� �� ���
�� �������
 ���� ���

������ 	���� �� ��� "��
 ;����� ���	�� ��� ��
���)� ������<� '��� ��� ��
��� ��	���

��� "��
 ;��� ���
	�� ������ ��
������ ! 	 ��
�	�� 	�����< & ��� ���	���� ��	��� ��

������ �� ���� �� ����� ��
 	� ���
 �� ��� ���
�� �	�	 ���� #� ���
� �� 	� ���
 & ���

��
��� �	� ��� ��������� ���� �� ��� ��
�	�� ����� ����
��� & ��� �����	
�
������

�� ��� C� �
������ 	� 	���� ��� ��
����� ��� ���
 �� �	�� ��� ����� ���� ����

������
 	�����	���� �
	��� ��� �������� �� 	 ��
��� �� ��� ��	�� !	��� �� ���	���

������� ��������� 	!��� ��� ���	����� �������	���� ��� �
	����� �	�	 ���
 ����

����
� 	 �	 �� �����	���� ��� ���
	�� 	������ �� ��� ��	���

$�%�%�
������������ �����
����� *���
�
��

�
��� 6A9 �
������ 	 ��� ��
� �� ��������� 	�� ��� �����
���� �����	
�� �����

	����� ���� 	�����	����� �� !� �
�	��� ����� ! !������� 	 ��� ��������� ���

�����	���� �� �� �	�� ��� �
�	���� 	�� ��� �� ����� 	�����	����� 	� �	� 	� �
�	����

	�� ����� ��! �	���� ��� ������� ��������� 	 ��� ��
� �� ��������� ����� ��

�
������� �� ���� ��	���
� �� 	���� 	� ��������	�	
� 	�����	������ #� ������	���� 	

���	���
 ����� ��
���� �� �� �	�� ���� 	�����	����� �	���
 �� �
�	�� 	�� ����
�

��	��� #� ����
� 	 ����
	��� �� ��������	�	
� 	�����	������ !�� ��
�	��� ��� 	��� 	��

������ ���
�%��
����� ��
 ��� �
�	��
 �� ���� 	�����	����� ����� �� �	��

��������� ������H �����	� 	����
���� :��� �������� �
�	���� 	 ������� ���������

�������� �����
��� �� ��
����� ������� ��������� ��	
� 	 ���!�
 �� �����	
����� ����

''' ���������� 	�� ���� � ��
���������� �� ����
	�� � ������� �������� ��

!���� �
�� ��	���
 ����������� ����� 	
� �	���� ������� ������ D	�� ������� ����

�������� �� ��� �	
��� ��� �������� 	� �� ��
�	� ��
 	� ��������� 	�� ��� ��������

*� 	�� .	�!�
 6179 ����
�!� 	� 	
��������
� ��
 �����
���� ��� �����	
� ������

	�� ��������� �� ��������	�	
� 	�����	������ ���� 	
��������
� ���
������ ��� ���	 ��

������� ������� ��
 �
�	���� ������� 	� ���
 ������ �� �!:�����
������ 	��
�	�� �	�

!��� ���� ��
 ��� ������ �� ��� 	
��������
�� ��� 	
��������
� �������� �� ��
�� �	��

� ��� �� �!:���� �������� ��
��
�� 	�� ����
�
���
�� � ������� ������ �
������ 	�

����
�	�� 	!��
	����� �� ��	!�� �������
� �� ��� ������� ������� ��

 ��� 	!��� ���

������� ��	
����� 	��
�������� �	���
���� ��

��� ������� �	� ���������� #� �����
�� !��� ��� ������� 	�� ������	���� ����	�����

�� 	���� ���������� ��
��
���� ��

��� ������� ����
�	����� � ������� ��
��
 �� ����

�� ������� ��� ����
� ������� 	!��� 	 �	
�����	
 ����� � ��
 ��	���� 	 ��
���� �� �
��

�� �	�� ��� :�! �� 	� 	�����	���� �
��
	���
� � ������� ����
�
���
 ��
�������!�� ��

������������ ��� ����
�
��	���� 	!��
	������ � ���	
	���� ��� ����
�
��	���� 	!��
	��

���� �
�� 	�����	������
���� �� ����
�
���
� ! �������� 	�����	����� �� �����!��� ��

����
�
���
 ���� ��� �	���	�� 	� ��	�� ����
�	���� 	�
��� ��������	� ����
�
��	������

!�� ���� �
������ ���� ��	�� ����
�	����� �	� ����
�
�� ��� ����
�	���� ���� 	�����

��
�	� �
 ��	����� ��� ��� �� ��� 	
��������
� �� �������
	��� ��
���� 	 �������

	�����	����� ��� (�����
���� ������	��) ��	� 	������ 	 �����
���� 	�������� ��
���� 	

%��
 ����
�	��� �� 	 ���!�
 �� �	 �� �
�� 	������� ����� �
�����	����� �� 	�����

!	��� �� ��� ����
����� ��
��
������ ����
�	���� 	!��� ��� �����
���� ���� �� �� ���
�

*� 6119 ������� �� 	 �
	����
� ��	� �	��� �� �	���
 �� ������� !����� 	�� ������

��������	�	
� 	�����	������ #� ���� ��
�������� ��� ����������� (������� �������) ��

�
������� 	� ���� 	� 	 ���!�
 �� 	�����	����� !���� ����� ��� ������� ��������

/���������� 	�� .	����� 61=9 �
����� 	 ������
�"�������!	��� �
	����
� ��

�%��
������ �������
��� ��
 ���� ��	�� �� ��������	�	
� 	�����	������ ��� ��	���

������ (������� 	�	
�����) 	� ��� 	!���� �� 	 �	
�����	
 ��
���� �� 	�	�� ������ �� 	

��	����� �������� ��� �
	����
� 	��
����� ��� ����������� �� ���� ����� ���� 	�

��	����� ������� 	�� ��	�����
�%��
������� ��� �
	����
�
����� �� ���
�"������

	��
�	��� �
�"������ � ���� �	���	���� 	�
�� ����� �	�	 ��
����
�� ��	� �	��
�	��,�

���� 	������ �� ��� � ���� ������� /�
 ��� 	
�����)� ��
������
�"������ ��	�� ��	� 	�

���������
�������
��
�����	���� �� � ���� !��	���
 �� �	���	����� �����
����� ���

	���	� � ���� !��	���
�

��� �
������ �
	����
� ����
���� ��� 0�	�� ��� D���
������� ��� �������� ���

+�%��
������ ��� .�
���� *���
������� 	�� ��� .�
���� ����������� ��� �
	����
�

���
������ �	�� �� ����� ����������� ����
�!�� ����
 ��������	��� �� ��� ��������

	�	
� 	�����	������ 	�� ��	�� ����
�!�� ��� �	�� ��������� 	������ ��� ����
�� #�

	��� ����� ��� ��������� �����������

� 0�	� �� ��� �!:������ ��� � ���� ������ 	������ ��
���� �����
	���� !������

	����� �� ��� �����	
�����!� 	�� �� ��� ����
�������

� D���
������ �� �����
�	����
�� �������� ���� ����� ��� �	����� ����
	��� 	�� ���

���������� ����
 ����� ��� �	����� ���
	����

� ������� �� ���
����	���� �� ��� ����
�������

� ��� +�%��
�����
��
������ ��� �� ��� �����!�� �	 � �� 	�������� ��� 0�	��

� .�
���� *���
������ �� ��� ���	������
��
�����	���� �� ��� 	���	�
�	����
�� ��
�����

� .�
���� �� ��� 	���	� !��	���
 	� ��
������ ! ��� ���
�

J����� 	�� J	���
 6?3�?=9 ����
�!�� ��� .	�
����� �
�:���� #� ���� �������

����������� ���
 ���������� �� ������� 	
� �������
��� ��� ���	���� �� ��� ���
 ��

�����
 �����
���� ;����� F+5< �
 �� ���	� ��	��� ��� ������� �� ��� ���
 ���� ��� 	

�� /	�� 	�� D������� ����������	
� .�
�����

���
 ����� ���� ����
�	���� 	!��� ��� ���
 ����
����� �
���
����� 	�� ����������

��� ���� ;�	 $����� ���� ��
���� ���
�� �������� ����<� 	�� ��� ����
������ ;���

�	�� �
 	������ �� 	 ��

��� ����	����H ����
 ���
�<� ��� �
����� �� ����
�	����

��������	��,	����
�%��
�� ����
���� 	����	����� 	�� 	��
��	���� �� ����
�	����

��������� ��� ��������	���� �� ���
����	�� �	
	����
� ��	� �	��� ��� �
�������

������
�� ������� �	���� ����� �� ��
��
� ���� �	��� '��� ��� ���� �� ���
� ����	�����

	�� �	�� ������
��� �� �� �����!�� ��
����� ��� �	
�� 	������ �� ����
�	���� �� 	

�	�	��	!�� ����� ��	� �	����� ��� ���
)� ������ E�����
� ��� �
�!��� �� �
��	�

���� !� �	��� ���� 	������ ����� ���
� 	
� ��� 	��	 � ������� �� �������� ����

����	���� �
 �	
�� �� ����
 ����	���� ;����� ����
 ���	����< �� ��� .��
������� ���� �

�� ����
 ���
��

J
	��� 6A29 ������� 	�� ����	��,� ��� �������� ��
 %�	��� �� ������� ;I��< ��

��	!�� 	�� ���
��� ��� 	����	���
	���� 	�� �
�������� �� ������� ����
�	�����

$�%�+�
������ �� ,�!-
�������#

	� �� ��� ��

��� 0+#* ����� ����� �	�� ������� �
��	
�� �� ������
��� �����

��
��
�	��� ���������� ����� ����
� 0+#* 	�����	����� 	
� �������� �� ��	!��

������� 	�����	���� �
�!��� ������� 6@A9 ��
 ��
� ����
�� ����
������� ����
���

�	� ��
� 	������ �� ������ ���� 	� ��	���� ��������� ��� ����	� �
	����
��

���
� � �
 ��!��� ����
�	���� � ������ *�� �� ��� �	��
� �� ��� ������	����	� �	���

0+#* �� �������� �� �	����� �����
���	� (%�	������ �� ��
����) ���� �	�� �� !�

������
��� B�� 	��
�	�� �� �
������� ���� ��������	������ �� ! 	���������

	�����	�����
������ �� ����� ! 	� 	��
��
�	�� �������	
�� ����
�	����� � ���
�	 �

�	� !� ���� �� �
����� 	�������� ��������	������� ����� ����������� �� �
���
����

�� ����
� ��� ���
	��
����
��� �� 	 ���� ���
������ �	����� ��	� ����	���� �����
	���

	��
�	����� 0+#* ���������
���	
�� �� ��� �
���� ! ��� 0+#* /�
��� �����

���
	��� �� 	 �����	
 �	���
 �� ��� #D�/� B��� 0
�� .�
���� �
��������
� ��

*���
�!���� . ����� #����
	���� ;B0.�< �� ����
 ������������ B��� ���
�� B0.�

�������	
� ���������	����� ;0��!�� �������< 	
� 	��� ����������� ��������� ;���

�������!����
�$���	<�

$�%�.�
������������ �������/
�������#

E	
��
 �� ��� E����
 6@?9 ����
�!� 	 �����
��
���� ��������� ��	���
� ��	� ��������

����
������	� �	�	 	�� �
������ �� �� 	 ��
� ����	!�� ��
 ��������	�	
� 	�����	������

��� �	�� ���������� �� ��� ��	���
� 	
� ��� ����������

7� � �����
	���� ���	���� � ����� ����� ���� ���
	����� ������%��� �� ���	�� 	��

������� �!:����� D	�� �!:��� �� ��� ����
������ ��	� �� �� !� ���	��� �	� 	 ��	��

�����
 �	� 	��	���� �� �� ��	� ����� ���
	����� ����	� ������
�� ! ���
	�����

������� ��	
����� 	��
�������� �	���
���� ��

������
� ��	��� 	� ����� ������ �� ��� �������� F���� ��� ����� �� ����� �� 	�
�

��� �������� �� ��� �!:��� �� ����� ��� �����
 �	� �� 	��	���� �	� ���� !� ��������

1� �
��� �	�	 ����� ��	� ����
�!�� ��� �������	�
�	����
�� �������� �������� ��

��!��� 	�����	������

@� � ��
������� ����
�!���� �!:��� � ����� ����� �
������ ��� �	�	 ����� �� 	 ��
�

	������!�� �� 	�����	������ ��� �����	
� ������
�	
�� ��
�	����
�� �������� 	
�

����������� 	� ��
������� ����
�!���� �!:���� ����� �B+�� 	�� 	� B
	���

�	�	!	���

$�%�0�
������������ 1�����#���

��� �	�	!������� �� �����
��� ������� 	
� !��� ���
����� ����� 	� ������� � 	�	����

����� ��� �
����� �� ����� ������� 	
� �	���	���� '@� �	� 	 *����� #�����������

	������ � ����� ��
�� ���� ��$CC ;��������� �	�	!���� $C
���
���� C
�����< !	���

�� +*/ 6@9� � ��$CC �
���� ����	��� ��$CC 	��
�!��� �	��� 	�� 	�����	��� �	�����

��� �
���� �� ��
����
�� �� 	���� 	� ����� �� ����
�!� ��� �	�	!������� !
���
���� ��

	 ��	��	
� �
����� 	������!�� �� 	 ���
 ����� � 	�� 	 ��	���
 ��� �� ��	��
�� ��	� 	
� ��

	������� �� �
 �����
��� ��	� ��� ��	��	
� �
����� � ��$CC ���	!��	
 �������� �� 	

��� �� ��$CC 	��
�!��� �	���� ��
�����!�� �	����� 	�� 	�����	��� ��	������ ��$CC ��

����	��!�� ���� #D�/ ����	 ��	��
� ���� ;�BGGD0< 6@89 �� ��� ����� ��	� 	�� ����	

��	��
� �	�� 	�� �	���� �	� !� ���
����� �� ��$CC�

*�
5 6@39 �� 	� ������� ��
 ���
������ �����
	� 	������ �� ��� �������� �� ��!

����
��� 	�� �����
��	��� �
���
���� �� ��! ��
������
������� ���� �� ��

����
�	�� �� ��������	�	
� 	
��������
�� 	�� 	�����	������ 	�� ���
���
� �����������

���� 	� ��� *�
5����� ������� � 	
� 	� �������	� ��������� �� ���� � �����

#� 6@>9� ��� 	����
� ���
����� 	�����
 	��
�	�� �� ��� ���������� �� ��� ������� ��

�������� �� ������� �!	��� ����
������ �� ��������	� ������ ��������� �� �������
�

��� ������� �� �
�������� #� ��� �
������ ������ ����
�� �������� ��

��
��������

��� ��������	��� �� 	 ������ �� ��� ��������	� ��������� �	�	!	�� 	
� �
������ !

��� ��������	� ������� ������� � ����� �	��� ��� ��������	� ��������� ����������

	�� 	�����	!�� �� ����
 ���	����

� ��
����� ��
���
��	��� ������� �� �
������� �� 619� ��� 	����
� ���
����� 	�

������� �� ����
�!� 	�� �������
 ��
����� �� 	� 	� ��� �����
���� ����
������

���� 	� ���������� ���� ������� ��	!��� �	
 !����
 ��
���� �������
 ��	� ������

FF#*�!	��� ����
������� ���� �� ��������� .*C � �����

6?29 �� 	 �����
�!	��� ������� ������� ���
� �	�� ������� �� ����
�!�� �����

����� �
���
����� ;�< ������� � �� ������ ��� �	����
 �� ��� �������H ;��< ��� �������

�� ��� � �!���� �	��� �� ������� � ��H ;���< ��� �	��� �
���
� �� ��� ����
��	� �	���

�
 ��	��
� ����
�!��� �������H ;��< 	� ������	� ��������� �
���
� ����
�!�� ���

����
�	��� �� �������H ;�< ���
�� �
���
� �	� !� ���� �� ����
�!� ��� ���	����

���
�� �� �������H ;��< ������	�� �
���
� ������ ��� �	���� ���� ���� 	 �������

�� /	�� 	�� D������� ����������	
� .�
�����

����

��H 	�� ;���< �	�� ������� �	 �	�� 	�������	� �
�� 	��
�!����� +*/ �� ���� 	�

��� ��
�	� � ��	� ��
 ����
�!��� !��� ��
����
� 	�� ���	!��	
 �� ����
 ������� �

1�2��13� 6739 �� 	 ���������� �� ���������� �� ��� ���
� 	
��������
� ��

��	
� ��	��� ;����� ����������� �������
����� ��	
� ������ 	�� ��	
� ��������<�

����
	� �� ���� 	
��������
� �� 	� ����������� 	���� �	���� ������� !
���
 ��	�

�	���	��� 	 ��	
�� ����� �� ������� �� !��	�� �� 	 �������� �� 	������ ��
������

	�� ������� �� ��� ��	�� 	�� �
������ �
��	� �
��������� ��
 ��� ���
� �� ��� ��	��

! ����
���� ��� �����
���� ��	� ��� ������ B��������� �� �B+���BG� 	
�

���
����� �� B'5� J� �������� �� �B+���BG� ������� ���������� 	!��� ��	���

;�����
���� �	���	 <� ���������� 	!��� 	����� ;����� 	����� ��
����
���<� ����������

	!��� 	� 	����)� ���	���� �������� 	�� ���������� 	!��� 	� 	����)� 	������ ��������

$�%�4�
������ �� ��'��� ������� ��� -���
��

#� 6??�32�=89 ��� ��
� ������� �� �������
�� �� !� 	�����	���� ��������� �

	�����	���� ������������ ������� �� ��
���
 ������� ���� �����
�� ���
� 	�� ������

�������� G����
� 	�� ������ ������� 	
� ������� ���� ��	���� ��	��� �� 	 ����� 	��

� �	��� �������� ��� 	����
� ���� ��	�����
��	
���� ����� ��������� ���������

������� ����
�	���� ��	� �� 	!��� �� !� ����� ��� ��	������
��	
���� �������

	�	
����� �� ��
���	��� 	�� �� �������� �
������ ����
�!���� 	�� �
����� 6==9 ���

������� �	�	$����
�	���� ;���� �� 	� 	�����	����< �� 	 ��	�	!�� �	���
� #� �
��
 ��

��
� ���� ������� ����
�	���� ��� ��������� �	�� ������ 	
� ��
����� 	�
�%��
��

������ ������� �	�	������� ������� ����������� ������� �
��������� 	�� * �	���

.�
���� *���� ����� � ��
���
 �������
	���� �� ��	� �
�����	 �
 ����
�	��� 	
�

����
�	�� !��	��� �� ��� �	�� ��	�� ������� 	 �
�����	 �
 ����
�	�� �� �	 �
 ���� ��

�� ��� �����!�� �� ������� ����
�	���� 	!��� ��� ����
�	�� ��	��� 613�=7&=19� ��� ��
�

!������� !����� �� ��� 	
��������
� �
������� �� 6329 	
�� ;�< ������� ������� ;��< ;��

�� 	� 	�����	����
������ �� 	� �������
 ������<H ;��< ������� ���������� C�����

;��C<�
������ �� !��� ���
 ������� 	�� �� ��� 	����� �����
� �� �
�����
�H ;���<

������� .�
���� ��	���
� ;�.�<� 	����� 	� 	� ����
�	�� !������ ��C 	�� ��� ���H

	�� ;��< .�
���� *���� ���� /
	����
� ;.*/<� ��
 ����
������ ��� �
������� ��

	�����	������������ ��
����� �� ��� �����
��

J	
����� �� ��� 6?@9 ������ 	 ���� ��������	�	
� 	
��������
� 	�� � ���� ��

	�!���� �����
��� ����� �� 	 ��� ��	�� �� �����
�� ��	� ������� ��� ����
���

����
������� ���� �� ���)� ��
����� �����
�� �� �
��
 �� ��	
� ����
��
����
���

	�� ��
����� 	�
��� �����
��� !�� �����
	���� �����
��� ��� �������'	
� �� 	�

�����
	��� ���
	��
����
� ��
 �������� �
��������� �	�	����� 	�� ��������	����

�����
� ������� ����
�	���� �� �����
� �������� 	�� ���
��	���� 	�����	������ #�

��������� ��� �����
��
��	��� ������� ����
�	���� ������ !� �����,�� �� 	�!����

�����
�� ��
 ��� ��� ���
 �� ���� ����
����� ��� ��
�	�������� �� 	 �����
� 	�� ���

���	
�� ��	������� 	
����� �
�� ���� �����,	����� ��� ��	���
 	��� ��	��	��� ���

������� ��	
����� 	��
�������� �	���
���� ��

!������ �� ����� ��� ������� ����
�	���� 	�� �������'	
� �������� �� 	�!����

�����
���

0����
��� 61>&189 �
����� ��� 	������	���� �� ��!��� ������� ���� 	�	
�����

�� ����
 ����
������ 	� �������� .��� ���������� 	
� ����� 	!��� ������� 	��

������� 	�	
������ ������� �� ��	� ��

������ 	�� �� ��!��� 	�� �!�%������

��������� ��� ��
� ��
���

�� �� 	� �� ���	� �������� .���	����	� ������� �� ��	� ��

����

�� �
�� ���
�	� ��
�� �������� ����
�	���� 	�%��
�� ��
���� �����
� 	��

�
������� �� ������� ��
�	�� 	������ �� ��� ��

������� ��
�� ;(�� 	 ��������)

(�
����� �� 	 �	
�) (���
 �� ��������)<� /�
 ��	����� �� ��� �����
� �
����� ���

����
�	���� ��	� ��� ���	���� �� �	
��
��� �����
	��
�� ������� �����
�� ��	� ���

���� �� (����� �����) 	�� ��� ���
 �� ��
�,���	� ���� 	 ������� ������ �	���
� 	��

��� 	!������ �������� �� ��	!��� ���� ��� ����	���� ;�������< �� (��� ���
 �������)

*������ �	 �	�� ��
��� �
 ����
��� 	�	
����� �� �������� #� ��� �	�� �� ����
���

	�	
������ ��� ����
� ������� 	�� �
�������� ����
� �� ��� ���
	��
����
� �����

��� ��!��� ������ �!�	��� ��� ������� ! ��	�� �� ��������	����� #� ����
	��� 	

������ �	� ��
��� 	�	
����� �� �� �� 	!�� �� �!�	�� ������� 	���������� � ;��
�

�
 ����< ������������ �� 	� ���
	��
����
�� #� ���� ��	���
� ��� ������� �	��

��
��� 	�	
����� �� �������� ��� ��	���
 	��� ������ 	 �
	����
� ��
 ��� ������

�
���	����

� ���������� 	�	
������ ������ �
���	��� �	�� �����
� 	�� ��
������� �������

��!����� �� 	����� ����
 ��� ��	�� 	�� ����	���� ������������ �� 	� ���
	��
����
��

� ������� ��	
���� ������ �
���	��� 	
� 	�������� ���� ��� 	!���� �� ��������	��

�� �
��
 �� �	�� ����
 ������� 	�	��	!�� ������ 	 ���	�
����� �� ���	���

� ������� ���� 	� 	�����	���� �� ��� ���	� ����
������ �	� ��� ��� ������� ��

������ �
���	��� 	� 	
����
�� �� ��	!�� ���	���� ��������	��� �

J���
 6?8�A79 �
����� 	 ������%�� ��
 ���!����� ������� ����
�	���� 	�� 	����

��������� �� �����
� �����	����� 	�����	����� �� 	� �� 5�
 �����
� ����
�������

��� ������	���� � ���� ���� ��� �� ��� ����������	
� G����
� ;���G<

���
	��
����
� ��
 ������� �	���
���� �����
� ������ 	�� 	�����	���� �	�	�������

�
� �������	�� � ��� ���G 	
��������
� �������� �� ��
�� �	 �
�� ��� ��!����

�	 �
� ��� 	����� 	� ��� �����
� �	 �
� 	�� ��� �� 5�
 	�����	����� �	 �
� ���

��!���� �	 �
 �� �����
� ������������ C� ���	� �����
� �� ���� �	 �
 �	���

����
�	���� 	!��� ��� ��

��� ����
������ 	�� ���
� �� ��� � ����� ��� 	�����

�� 5�
 �����
� �	 �
 ��
�������!�� ��
 ��� 	����������
	���� 	�� �	�	������ ��

��� �����
� 	���
���� �� ��� ������� �
������ ! ��� �
�� �	 �
� ��� �� 5�

	�����	����� �	 �
 ���� ��� ������� �	���
�� �
�� ��� �
�� �	 �
 	�� ��� ����

�������� ���	!������ ! ��� ������ ��� �� ����� 	�����	����� �����	������ �

�������
 ��
����� 	�� ���
�� 	�� 	�	�� ���
�%��
������ 	���
���� �� ��� ��

���

����	����� ��� ������	���� � ���� �� �������� �� ���
 �	�� ����������� �����

	������ ������� 	������ �������
 	������ 	�� ���
 	������ D	�� �����
 �� ���

�� /	�� 	�� D������� ����������	
� .�
�����

���G 	
��������
� 	�%��
�� ����
�	���� 	!��� ��

������� ������� 	�� ��
�����

	�� �����	���
�������!���� �� 	 �����
 	���� ��	� ��
��
�� ��� �	��� �� �	�	

��������� �	�	 	��
��	����� ��������	���� ���� ����
 �����
 	������ 	�� ����

�����	���� ���� ��� 	�����	��� ������� 	����� ���� �	�� 	���� ����
�
��� ���

�������� ����
�	���� �� �
��
 �� ���
	�� �������	����� ���� 	� ���	����� �����

���
�� 	�� �	����� *�
����
 	����� ��� ��� ����
�
���� ������� �� !���� 	 ��
����

�� 	�	��	!�� ��
����� 	�� ����
 	��
�!���� �������
 ���� ��� ��
���� 	���� ��	�

��
������ �	�� ��
����� .�
���� 	����� ��
� 	� �	�	��
� ��
 ��� ��
����� ��� 	
�

�� ��	
�� ��� ��� �	��
 	��� ����
�!�� ��� B������ ��	
� .�
���� . ���� ;B�..<

	� ��� ��	
� ���	���� ����� ��
 �����
���� ���
��
�����	���� �� ��
������ ���

����
	����� !������ ��� 	������ 	�� 	 ������ 	����� �� ��
����� ��	� �	� 	�	��

	���
���� �� ���
 �
����� 	�� ��
���� ��������

$�%�6�
������ �����
������
������

7������#� ������ *�+C� ��	
��� 	 �
�:���� �	���� J�������� C�	�� 67@9� �����

	��� �� 	�� ������������ 	�� �������	
���� �� ��� �����
� �	�	������� #� 	��� ��

������	�� ��� ��������	
 ����������� ������
	����� #� ��� �������� ��� ����������

������ ��	�� 	�� �����
	����� ��� �����
� ������ �	�� ��� ��������� ��������� �� ���

���� ��� � ���� ������
�������
� ������ 	���
���� �� ��� ��	���� �� ��� ����������

�%��
������� � ����
�!���� ��������� � ����� ����� ��
��	��� ��� �����
�� ��

�
������ ��	� �� �	����� ��������� ��	�� ;JC<� D	�� �����
���� ������� ;���������

����
< �	� 	 JC� ��� JC� 	� 	 ���!�
 �� ����� ����
	�� ���� �	�� ����
 �� �
��
 ��

���� ���������� ����
��� 	!��� ���!	� ;�����
������< ��	��� 	�� ������� ����

����
	����� �� 	��� ���� ��
�������� ����
	�����
 ��
���� ������ 	��
�%��
�������

��� JC ���� �������� �� ��� �
������ �� �	
��	�� ������������� 	�� �����!�

�����	���� �
 �	������� ����
�	����� #� ���� ���
	�� 	��
��
�	��� ���� �� �����
���

��	�������
� �� ��� #���
��� ����� ���"������ �����
 ����� ��	��� #� �
��
 �� ����

����� ��	�������� ��� 	����
� ������� ��	� ��������� ������%��� ���� !� ������

!��	��� 	�	� ���	� ������� ����
	��
�%��
� �
����� 	�� �������� ����
�	�����

G��	�	 �� ��� �����
� �� ���	�� ������� ���� ��� 	
��������
	� ��	���� 	 �	�	 ��	��

	�� 	 ����
�� ;�
 �	�	������< ��	��� ��� 	����
� 67@9 !������ ��	� 	 ��� �����
���

�� ������ �����	� �� ������ ��������� ���� 	� �������� ��	��� ��� JC ����� ���

���� �	�	 ��
���� � �� �� �� ��� ��� �	�	 ��	��� E�����
� ������ ��� ����
�� ��	�� ��

�
��� �� �
����� 	 ������ ���� �� ��� �����
�
	���
 ��	� �	
������ ��� ��
�� ����

�	�	��� ��������� ��� JC �����
	��� !��	���
	� ������ 	��
�	������ �
�������

���� 	 ����
�!���� �����
��� ����
������� #� �����
�� ��� �
�	����� ���
	��� �
��	�	�

����� 	�� �������
 �� ����
�	����� �!��
�	����� ;��

��� ����������<� 	���
�����

;���������� ��	��� �����
	����<� 	�� ����	�	����� ;�����������<� �	��� �� ����

����
�	����� ��� JC �	�	��� ��� 	���	��
� ��	� ��	��� ��� !��	���
 �� ��� �����
�

�����������

������� ��	
����� 	��
�������� �	���
���� ��

J	���
 6?=�?>9 ���
������ 	 ������ ����� 	�� ��	�	!�� ��
���� 	
��������
� ��

��������	�	
� ��
���	� ��������	����� ��� �
������ 	
��������
� ��	�� ����

��
����� ��
 ��!��� ���
� ! �����
���� ���
�������
 ��
���� ������	�����
�!���

	����� 61A9
��
����� ��� ���
� 	�� ����
 ��������� '����� ��� 	
��������
�� ��������

�	

 	 ������� ���������
��
�����	����
�"������ ��� �	�	!�������� 	�����	���

�!:����� 	��
��	��������� !������ ����� D������� �	� ����	��� ������� ����������

��
�� �� ���� �������� ���������� 	�� ����
�
�� ������� ��������� �� ��� ���

�������� .��� �������	
� ������ 	
�
��
������� ;-#G#� F��C� -L��<� �����

������ 	���� ������� ��
������
 ��
����� ���� 	 ��
��
� ���	�� ����� 	�� ��� �����

E�����
� ����� �
�������
�� �� ����
�	� ��!���	���� 	�� ��������� �� 	�	��	!��

�!:���� 	�� ��
������ J	���
 �
������ ��� ����
�� D������!�� .�
���� C
������

;L.C<� 	������� �������� �� ������ ����
 ��������� 	!��� ������� 	�� 	�	��	!��

��
����� �� �
��
 �� !� 	!�� �� ��� ����� L.C �� 	� ��������� �� ��� .#C ;.������

#����	���� C
������<� L.C 	����� �� �� ���� � ������ ��	
�� ��������� �� ��
����

�	�	!������� �� 	 !	
� ������� 	�� �
����� �����
� �� ���
� �� �
��
 �� �������
�

����	���� 	��
�	��� 	!��� ��
���� ���������� #� ���� �	 � ���
� ����� ���	!����

����������� �� ������	
 ��
����� ���� 	 ������� �� � ������ ���������� ����

��	���
 �
������ ��� E������ �
���� ��� ����� �	� ����������� �� �
��
 ��

�������
	�� ��� ��	��!���� �� ��� 	
��������
��

������
5 67=9 �� 	� ����
������
���� 	
��������
� ��	� �	��� ����
������� � �� ���

����� �� �����
� ��������� � �������� �� ��	� �� �	 !� ���������� � �����
�

�������� �� �������� �����
� ������������ �� ������� ���� ��������� D	�� �������

����
���� 	 ��� �� ������
����
�� ��������� 	�� �����
� ������ '����� 	 �������

���������� �� 	��
������ �	���� ��
�	��� �
	����
� �
�������� 	�� �	���� ��
�����

�� 	������� ��������	���� !������ �����
��� �������� �� ��	!��� ! ����	����

����
�����	� ���������� �� ����
�����	� �������� �
������ 	 �	����� !������ ���������

	������ ���� 	� 	��
������� �	�����
������� 	�� �
	����
� !������ �����
��� ���������

��� ��	� �� C���	
�� �� �� �
����� 	 ��� �� �����������	� !������� !����� ��	� 	����

��� ����������� �� ����
�������� �����
�� �� �
����� 	� ���������� ��
����� '�����

��� C���	
�� � ����� ��������	���� �	��� ��	�� !������ ��������� ������ ���������

C���	
�� 	��� ������ ;�< 	 ������� ����
�	�� �� !� ���� ! ��� � ������ ��������� 	�

����
� ��������� �� 	�� �	��� �� 	� ����	��� �� 	 �������H ;��< 	� ����
�����	� ����
�	�� ��

	���� ��� � ����� �� ����
	�� ���� ��� �����	� ����
�����	� ��������� ���� 	� �
��	����

G�� !����� ����H ;���< 	 C���	
�� �	�	������ ��
���� ����
�	�� ��	� ����� 	����� �� 	

����
�!���� ��
���� �������� �� �������� �����
	���� ����	�����

.������ 	�� E��!�
� 6>29 ������� �� 	 ��!��� �� ��������	�	
� ��������� �	���

��������	�	
� ��������	����� ��������	�	
� ��������	���� �� ������ 	� ��� ��	��

�� 	�����	����� ��	� 	��� ��������� �� �������) ������� ��
����� ��������	����

!	

��
�� � �������������	� ��	�� ��
 ���� 	�����	����� �� ��������� !������

(������� 	�%��������) 	�� (��������	���� 	�������) ����� ��� (�%��������) ������

����� 	� 	�����	���� ����� 	�� ������ �� �	��	�� ����
 ����
 �������� ���� 	�

������
 ��� 	
� �� 	 ������� �
 	� ������ �
 �� �	 ����� 	�� ����
 	 ��
���)�

� /	�� 	�� D������� ����������	
� .�
�����

������� ���� �	
 ��� ������ �� 	������ 	�� ���������	����� ����� ��� (�����)

���������� ��������	���� ����� !� �	��	�� ����
������ � ��� �� ��������	�	
�

��������	���� 	�����	����� �� �
������� ������� ���� ��� 	�����	���� � ����
�������

	��
������� ����	����� �
������� �	���
 	�	
������ 	�� ��
�������

$�%�8�
������������ �����

B�	��� �� ��� 63@&339 ����� "�� ������� 	� 	� ����
�	���� ��	� �	� !� ���� ��

��	
	���
�,� ��� ����	���� �� 	 �����������	!�� ��
�	� �� �
������ �	�	 ������

��������� ����
�	���� ��
�	����� �� ��� �������� 	�� ��
�����	���� ��	� ����
��� ��

�
 	�����	� ��� ����
	���� 	� ��� ���
��� 	����� ��� �
	��������� ��
���� ���

�����
�� 	�� ��"����� ��� ��� 	� ��� ������	����� /���� 	
� ��� �� ���	� ;�

�����
����< ��!������� �� ��� ����
	����� !������ ��� ���
 	�� �����
��� �������

����
�	���� ��	� ��	
	���
�,�� ����� "��� �	 !� ���� �� ������,� �
 ���	��� ����

����
	������ B�� 	��
�	�� !���� �����
�� �� �� ���� "�� ������� ����
�	����� �	����

"�� ������� �	��� 	���� ���� ��� "��� ����
 ��� 	��������� ��	� ��� ���� ����
�����

�������
� �� ���� ������� ;	������� ��� ������	
�� ���������� < ����� !� ���

����� 	���� ��� "��)� �	��� /��� ������� �	� !� ���� ��
	���� �
����
 ��
����� �

	�	��	���� ������ ���� ���
�	 � �� ���
������� "���� ������	�� �� ��� �	�� �� �����

��!��� ����� 	�� �� 	� ��� �����
��H �
 �� ��������� ����	� I�.
�%��
������ ��

����	 "��� �
	����
��� ��
���� ����	 ���
�	 ��

��"���	���

7� �!��
	��� 	�� .����� �� ��� ('�
����� �� #��
	��
����
� ��
 .�	
� *������ & E�� ��

	�� F!�%��� 	� ����	���)� '�! �	��� �����$$�����������,���$��$������$EFJ1�'$�

1� ��	���	 .� -���� �� /���� �� (D��	���� .�
���� *������
 �� ���������)� !���

������� 1221H �!;3<�83&88�
@� �
����� *� 0��	 +M ;���<� (+*/ M��	!��	
 *���
������ 5	���	�� 7�2� +*/ .����)�

'@� '�
���� *
	��� 122@� '�
� �� �
��
����

?� �
��� C-� ���� -*� ���� L� (��������	�	
� 	�����	������ �
�� ��� �	!�
	��
 �� ���

�	
�����	��)� !��� ��������
������
������ 788=H ;A<� A>&3?�
A� �
��� C-� (��� ������� ��������� 	 �
	����
� ��
 �
�	���� ��������	�	
� 	�����	�����)�

D����
���� C�!������� 7888H �� 1A8&1=1�
3� �
��� C-� (�
����
��� ����
�	���� ! �������)� �������� ��
5����#��� 788>H �;7<� 7&8�
=� �
��� C-� (��� �����
���� C������ ����� 	 ����� ��
 ��!��� ��������� 	�����	�����)�

���
�����
 ��'���5��# 7883H �;7<� 7&7?
>� �
��� C� ��
����� '� 5	�����
� +	���� B�'� +��	�� 0� .�����, -� .������ *�

(��������	�	
������ ���� ���������� 	�����	�����)� ���
�����#� �5�
9&$:::

;��)�5�� �� �5� ;5��< ;5�< ;5���< ;5��< ;5� ��� 9�� ��
�����������������

��
�� 1222�

������� ��	
����� 	��
�������� �	���
���� �!

8� �
����� ��
� �
� �� J
��� -� J�
� �� .�	��
 .� D	� 5������ ������������ ��

����������� ����
�������)� E	������ 	�� F!�%������ ���������� .�����!�
 1222�

72� �������, �� J����
 �� .������
� .� (I�	��� �� ������� #���
�	����� '�	� �� �� �� 	��

�� �� ���� ��)� #� ���
�����#� �� �5� &:�5 9��1="� ;��)�5��� M��� 122@� 0����	�

-�� 122@�

77� .��
�� �� CBN �
� ��
� F� (� ������ �
��������
� ��
 *�����
��� ������� #���
�	���� ��

�!��� F��
�� C������� C	��
 	� 6#/.*229� 1222�

71� (����������	
� ������	����� .�
��) ���������$����
��		$���$��������	�	
�������

7@� ��	
� **� C	
�
���� �� +	����� -�� '
���	���� -�� (� J�������� C�	�� ��
 ���

#���
���) .#0�B

122@� J	
��
���� 0�
�	� � 122@�

7?� ���� 0� J��, *� (� ��
�� �� ��������	�	
� ��!��� ���������
���	
��� �������	�

+���
�)� �+1222�@>7� *��	
����� �� �������
 .������� *	
������ �������� G����!�

1222�

7A� ���� E� /���� �� -���� �� (�� #���������� �
���
 ��
 ����������	
� . ������ #� ��>��
�

���
�����#� �� "'�
��� $::%� .�	����� '	��������� F.�� B���!�
 71�7A� 122@�

73� ���� E� /���� �� -���� �� (�� B������ ��
 ����������	
� C�
�	���� ���������

D���
�������)� #� !?
�! ;��)�5�� �� 1�����#��� ��� -�����'���� �������� #-��#)2@�

������� 122@�

7=� �
���
��� -� E	�� .�
�
���
 +� +����� �� '	
���� �� (C���	
��� �� 	
������ ��

�����
� ���
	����� �
� �!,
1�� $::% ;��)�5���� ������ 122@�

7>� *�M	�� +'� C����	�� �.� (��� D��	
	 �
��������
�� ��� +���� /
	����
� ��
 ��������

��	
� '�	
	!�� 	�� F!�%������ ��������� ������	�����)� ���
���	 5	!�
	��
 �
#��

122@�

78� *� �J� (F���
��	����� 	�� ����� ��������) ?������ �� �������� ��� "'�(������

�������# 1227H !;7<� ?&=�
12� *� �J� �!��� 0*� (���	
�� 	 !����
 ����
��	����� �� ������� 	�� �������

	�	
�����)� �� ;��)�5�� �� �5� ;5��< ;5�< ;5���< ;5�� ��� 9�� ��
�������

���������� 	����	��� ���� ��� 1222 ��
 �����
���� �� E��	� /	���
� �� �������

. ����� ;�E# 1222<� ��
�� 1222�

17� *� �J� .	�!�
 � �!��� 0� /��	�	�	
� (�� 	
��������
� �� �����
� ��������	�	
�

	�����	�����)� 0MF �������	� +���
�� 0#��0MF�88�1@� 7888�

11� *� �J� (C
������� �
��������
	� .����
� ��
 �������� ����������	
� ������	�����)�

������� 0��
��	 #�������� �� ��������� � 1222�

1@� *� �� �� ��� (� !�
*���� � /
	����
� ��
 C
������� .����#����
	���� F!�%������

.����	
� .�
�����)� �������	� +���
�� 0MF �����
� 0��
��	 #�������� �� ��������� �

0#��0MF�8=�72�
	 � 788=�

1?� *� �J� (����������	
� ���������� ��� � !�
*��� C
�:���)� ���# 788> .�
���

. ������� �� #���������� D���
�������� �������	� +���
� ..�8>�21 ;788><� A7&A?�

1A� /����	���� ��
 #���������� C� ���	� ������� /#C�I�	��� �� .�
���� B������ .������	�

����� 0����	� .���,�
�	��� 1221� .������	���� ���!�
 .�2228?�

13� /	�� O�
�*��	�� ��� (�
�����	 �
 ��
��
�	��� ������� �� �	�� �������� �� ��
����� 	�

��� �����
��� C���
 	�� ��
������� ������	����� �� #DDD >21�77
��)� #� C
���������

17�� #DDD #���
�	����	� C�
��
�	���� ���������� 	�� ��������	����� �����
�����

��
�� 1221� ��� 1>7&182�

�� /	�� 	�� D������� ����������	
� .�
�����

1=� /���������� �� .	����� �� (� /
	����
� ��
 +�%��
������ D������
��� ��
 ��������

��	
� .�
�����)� #� ���
�����#� �� ����; :& �5� ����� !������������ ;��)�5�� ����

�������� ��(��������� �� ��
5���
������ 1@
� #���
�	����	� �����
���� �� .����	
�

D������
��� ;1227<�

1>� 0����
��� E�'� .������ �� �����
� (������ .��� .�	
����� �� *������ 	�� D��
 �	

������)� #� ��� ���
�����#� �� �5� �5��� !��� ;��)�5�� �� ��'���
�������# �������

��� �����
������ ;
����
� � ��� *����!�
 1222<� ��
� @&72�

18� 0����
��� E�'� .������ �� �����
� (
�����.����
 ����������	
����� ��
�!���

*������ 	�� .�	
� �
���	���)� ���
�����#� �� "2!
1�� $::&� ���	��	� 0�� F.��

.�����!�
 1227�

@2� �	�	��� 0� -����� �� E�	�� I� (G����
� �!��
	������ ��
 ����������	
�
�!���

���������)� �����$$�������
��:��������$
��	�27�����
������

@7� 0
	 C*� .	�!�
 *�
�������� 	�� F���� .����� ������� #���
�	���� �� ��� *����� ��

#���
	����� ������	������ #� C
��������� >�� #/#C '�
���� �����
���� �� D������
��� ��

E��	���������
 #���
	����� ;DE�#)27<�
	 1227�

@1� E��� /� J�!	�� F� 5����	
�� �� +����
��� J� .������
� (G��� �����
 ��	��������

G����P�� B��� 0��!	� #��
	��
����
� ��
 .�	��	�P��	
� ������	�����)� ���
�����#�

�� �5� ����5 ������ �
�@!��� !������������
�������
� �� ��'���
�������# ���

3�����)��# A��'�
��/88B� .�	����� '	��������� F.�� ������ 7A&12� 7888 #����������

� .������
���
 ;D���<� ��
 C
���� 7888� ��� 1?8&1AA�

@@� E��� -#� 5	��	 -�� (�� #��
	��
����
� ���
�	�� �� ����������	
� ���������)� #�

E��	���������
 #���
	������ 1227� M��� 73� 1227�

@?� E	
��
 E����
 �� .������� C� '	
� �� '�!���
 C� (��� 	�	��� �� 	 ��������	�	
�

	�����	����)� #� ���
�����#� �� �12!
1� &888� ��� A8&3>�

@A� E�������
 -� ��

����� 0� (5��	���� � ����� ��
 �!�%������ ���������)� !���
�������

1227H A=&33�

@3� E���� E�(.����
���� G��	��� ������!	��� ������	����� �� ��� /#C� ����� �
�������

��
�)� C�*� ������� F����
��� �� E�������� *��	
����� �� �������
 .������� .�
��� ��

C�!���	����� �� G�� ��122@�1� E�������� /���	��� -	��	
 122@� E� E���� 	��
�

5	���	���� '�
����� G����
� B������ � #� ���
�����#� �� �5� ;������� ;���� ������
5

����� 8�5 ������#� Q#R
���� .���,�
�	��� -�� 122@�

@=� -�	� J� 0	��� �� �	� �� (����������	
� 0+#* .�
������ #����� 	�� ���
�	����)� #DDD

#���
�	����	� �����
���� �� ������	����	� .������ ;#��.< 122?� �C0��)2?� (/�
��

#���
�	����	� '�
����� �� ������ 	�� C
��
	��	!�� 0
��� �
��������
�� 	�� ������

�����)� J
	�S�� C��	��� -��� =&8� 122?H ��������	���������$	��	�122?$H � ����

� �
������
	������$����122?$����������

@>� J��	��
	 O� J	�	� ��
�,������ +� B������ �!	��� *���
������ �� /�������	� *�����

J�������� 	�� ��� F�� �� 	 /�������	� '	 .�
��
� C
��������� �� ��� C	����

�����
���� �� #���������� . ����� 1227�

@8� J� �� 0�� (. ��	� ��
 *���
�!���
���	 /�	��
� .���)� +/� 1A@@� 7888�

?2� J�
���#T#T C�
#T�� :#T
�� -� (�� B������ ��

�!��� *����� .����
��	��� �������

��	
�����)� #� /��
�� #���
�	����	� 	�� #���
���������	
 �����
���� ��
������� 	��

F���� ������� ;�BG�DL� 122@<� ?A7&?A>� .�	���
�� �	����
��	 ;F.�<� -��� 1@&1A�

122@�

������� ��	
����� 	��
�������� �	���
���� ��

?7� J�
���#T#T C�
#T�� :#T
�� -� J��	 -� J�
#T��� E�
	��� D�-� (
	�	���� ������� #���
�	����

��
�!��� *������)� !��� ���������
�������# 122@H �;@<�?1&A7�
?1� J����
��� 5� G��	����� � (�� ����� 	� ���
� �� 	 ������������ ��
��)� ��'���

3�����)� ��� �����
������ 7883H �� @A7&@A=�
?@� J	
����� �� 0	��� �� 0�	��
��	 +� J	���
 �� -������ �� J	
����� �
� 0����� +�

.��
���
� J����
� +�����
� �� �	� �� J���

� .	�		� G� E���� 5� �	
	���
D�

*	�� -� (��������	
� +���	
�� ��	������� �� ��!���� G����
��) & #.�G @�A?2�1@?1@�

@� .�
����
� M�
�	� 5����
� G���� �� �������
 .������� #DDD
��� 122?�12�11

B���!�
 122?� /��
�	�������� �
	,�� � �����������	���!
$�	�	2?$

??� J	���
 �� 5�����
� C� B�
�� ��
	���
� 0I� (.�	
� ������
 �� ���������	 �������

��
 ��
����� 	�����	�����)� ��'��� ��� ;�������
������
����� 3�����)� 1222H

=2&>7�

?A� J����� +� G��� �� (�	�� .������ �� *��������� ��������	������ #���
�	���� . �����)�

��� �BG�DL��27P���
� #���
�	����	� 	�� #���
���������	
 �����
���� ��
�������

	�� F���� �������� *����� ;.����	��<� -�� 1=&@2� 1227�

?3� J����� +� (������� /
	����
�P�� B��� ���
�	�� �� D��	��� B
�	���	����	�

���
 . ����� ���� �������
�������� ������%���)� #� C�J
�22� C
	����	� �������

�� J��������
	�	������� C
��������� @
� #���
�	����	� �����
����� �	���� .���,�
�

�	��� 1222�

?=� J	���
 �0� (E������� ��	!���� ����������	
� 	�� �������!�� ��!��� ����
	����� ��	���)�

.����	� #���� �� #DDD'�
����� ��������	����� 	�� #DDD C�
�	���� �� (����������	
�

C�
�	���� ���������)� B���!�
 1221� ��� 7>&1=�

?>� J	���
 �0� 0�
	�� I
� -
�� .����
�� +��������� '�
����� #���
��� ���� .�	
�
���	�

�����$$������
���	�����$C	��
�$�����
�����$ �
�27$�
�27������C*/�

?8� J���

� J	
����� �� (D��������� .#C 	�� 	����� ��
 ��	
� ������� ����� 	�
�������)�

122@ #DDD C	���� +�� �����
���� �� ��������	������ �������
� 	�� .���	�

C
��������� M����
�	� ��� �	�	�	� ������ 122@�

A2� J
	���
�E�����	���
 #� (��	������� ��
������� 	�� F����I�	��� �� �������) & #.�G72

@�A?2�18?72�?� .�
����
� M�
�	� 5����
� G���� �� �������
 .������� #DDD
��� 122A &

7=�78 B���!�
 122A�
���
�	�� �	�	�	�

A7� J���

� J	
����� �� 5���	�� +� 0
	 �� (������!	��� ������� 	�	
� 	� ���

��������	����)� #� C
��������� �� ��� ?�� #���
�	����	� '�
����� ��
�!��� ������ ��

������������	���� ������	����� ;
��� 1221<� �	
�����	� .�	��� B���!�
 1@�1?� 1221�

��� 181&@27�

A1� J���� -� (C
�!��� *���
������� +�	���� /�
 C�
��
���� ������� �
	����
� �������

G���� �� 	� #C ������ G����
��+/� @@=?H 1221�

A@� J�
��	�	���
� (����������	
� ������	����� .�
��)� #���
�����
���� .����	
 ;����

772�AA7<� .�
��� 1222� E������� F����
��� �� ��������� �

A?� E���
��� E0� J����
 �� C����� �5� +����
 E� (����������	
� .�
����� �� F!�%������

D���
�������)� #� #/#C$#DD '�
����� �� *���
�!���� . ������ B��
	����� 	��
	�	���

����� *.B
 122@� E�����!�
�� B���!�
 122@� #.�G @�A?2�12@7?�7 5����
� G���� ��

�������
 .������� .�
����
�M�
�	��

AA� 5����	
�� �� J�!	�� F� (�� �
��������
� ��
 	 F����
�	�� *���
�!���� 5��	����

.�
����)� ���
�����#� �� �5� �������� ;������� /88
�������
��
������ 0�
�	� �

#�0 /	��!�
����� M*D M�
�	�� 7888� ��� @A7&@AA�

�� /	�� 	�� D������� ����������	
� .�
�����

A3� 5��� .� J����
 +� �!��� 0*� �������� �0� (+	��� C
���� ���� ��
�!��� ��������

��	
� ������	������ ��� � !�
����� �	�� .���)� ���
�����#� �� �5� ��
��� ������

!������������
�������
� �� ��'���
�������# ��� 3�����)��#� G����!�
 7883� + ��

G�� O�
�� F����� .�	���� ��� 8=&72=�

A=�
	��	�� *� J��	�� D� E��� /� ���
������	�� E� (��
C� (� ��������	�	
� ��!���

��
�	�)� !���
������
������ ��#�C��� 1221H �;7<� 82&8=�
A>� G	�	��
	 ��
	���� G� #�	� �� (������� E	������ �
��������
� ��
 ��	����� G����
��

��� .�
�����)� ���
�����#� �� �5� !�� ��'��� ������ 1222�

A8� D�����	��

� J����� +� (��������	���	���� �� G��	��� ���������)� D
��� G����

.����	� #���� �� ��!���� #������������ B���!�
 1227�

32�
����� C� C
�����
 �� '�� I� (������� �	�	������ ���� �
��
	��	!�� ��!���

�����
��)� !���
�������
������
����� ;��)�5��� 122@�

37� B���
�	�� +� .�����
� (� ����������������� G��	��� #���
�	���� . ���� 	� 	�

D���!�����0����)�E	������	��F!�%���������������.�����#���
�	����	�. ��������

31� B

 +-� �!��� 0*� (��� .�	
� /���
� �
���	���� ��
 G	��
	� F��
 #�������	����

	�� �
	�����)� ���
�����#� �� �5� $:::
�������
� �� 9���� ��
���� ��
�������#

�������� ��� E	���� G����
�	���� ��
�� 7&3� 1222�

3@� B�	��� +� 0	��� �� ���� �� (�
����
��� G����
� .�
����� ��
���� ���������	����

/����)� ���
�����#� �� �5� .�5 !������������
�������
� ��
������������ �
���
�

A!

�/:.B� ���	��	� 0��
��	� F.��
	 122A�

3?� B�	��� +� 0	��� �� *�
��
 E� ���� �� (/��� ������� �	��� �������� 	��

������	�����)� #/#C ��3 �����
���� �� G����
� ����
�� 	�� D������
��� ��
 I�.�

.���
�� 	��
�!���� ;G�����)2A<� 5	������ /
	���� G����!�
 122A�

3A� B�	��� +� 0	��� �� *�
��
 E� ���� �� (.����
����
�!���� ��	��	���� ��
����

/��� �������)� $�� !������������ ;��)�5�� �� ��'����� ����� ��
5����#��� ���

�����
������ A���� $::.B�
���
�	�� �	�	�	� B���!�
 122A�

33� B�	��� +� 0	��� �� *�
��
 E� ���� �� (#������� /��� I�. .���	���� F���� .��	�����

+��� ������� �	��)� ���
�����#� �� �5� &%�5 !������������ ;��)�5�� �� D������ ��

�����
� A!;D�� $::.B� C	��	�� 0�
�	� � -��� 122A�

3=� B�	��� +� ����� 5� 0	��� �� (�������'	
� .����
� ��
 G����
� 	�� .�
����

����������� 	�� .������	��	����)H #DDD
��� 122A�
�!���� ��	
� ������������

	�� ������	������ � .�
���� *�����
 C�	���
�� ��
 G��� 0���
	���� G����
��H .�
����

#.�G�1 AA@�27?27�AH 7=&78 B���!�
 122A�
���
�	�� �	�	�	H ��������
��!������$

�	�	122A$�

3>� C
� 	���	 G� ��	�
	!�
� �� �	�	�
����	� E� (��� �
����� 5��	�����.����
� . ����)�

#� ���
�����#� �� �5� ����5 ������ !������������
�������
� �� ��'���
�������# ���

3�����)��# ;�������
�� ������ 1222<� ��
� @1&?@�

38� C	���� -� + 	� G�
�
�� *� (#����� �� ���������� ��������	�	
� ���������)� #�

C
��������� /�
�� #���
�	����	� . ������� �� E	������ 	�� F!�%������ ���������

;EF�)88<� 7888�

=2� C	���� -� ��� .������ G��� �
��������
�� D�������� ��� ����
�	�� !� ��� ��� ���
� #�

C
��������� 1�� #���
�	����	� �����
���� �� #���������� F��
 #���
�	���� -	��	
 788=�

=7� +	�	� �� ��	��	� C� .���	� .� (�
������� ��
 �
�����	 �
 ������,	����� �� !��������

��	���
����)� #� C
��������� �� . ������� �� ������	����� 	�� ��� #���
��� ;.�#G�<�

-	��	
 1227�

������� ��	
����� 	��
�������� �	���
���� ��

=1� +	�	� �� J	�, C� -����� �� (F����
�	� #�!��� C
������� D������!�� C�
���	�
�!����

	�� .�
����
�!���� �� 	� #����
	��� ��������	���� G����
�)� #� ���
�����#� �� �5�

!��� ;��)�5�� �� ��'���
�������# ������� ��� �����
������ ;
����
� � ���

*����!�
 1222<� #DDD� 8A&723�

=@� .�	
��
 �� J�
�� *� �����	 .� (��� ������ ��	
�� �� ����
������	�� �����
���

�����
����� ���	���� 	�� ����	���� � ����)� #� *����� �� C	��
�� 7�� #���
�	����	�

. ������� �� '�	
	!�� �������
�� ;788=<� 738&7=2�

=?� .�	
��
 �� J�
�� *� C����	�� �� (M���	� ������� 	�	
����� �� ��	
	!�� ���������)� #�

*����� �� C	��
�� 1�� #���
�	����	� . ������� �� '�	
	!�� �������
� ;788><� A2&A=�

=A� .������ �� ��	�� G� '	�� +� (����������	
� ��������� ������	�����)� ���
�����#� ��

�5� &�� !������������ ;��)�5�� �� ��'���
�������# ������� ��� �����
������� 788?�

��� >A&82�

=3� .������ �� �� 	�� (���	���� ����
	����� �� �������)� /�
�� #���
�	����	� . ������� ��

E	������ 	�� F!�%������ ��������� ;EF�88<� J	
��
���� 0�
�	� � .�����!�
 7888�

5G�. 7=2=� .�
����
�M�
�	��

==� .	�	�� G� J	
����� �� (�� ���������!	��� ��!���� �
�������� 	���� 	
��������
�)� ��

�
��������� �� ��� A�� #���
�	����	� '�
����� ��
�!��� ������ ��
 ������������	����

������	����� ;
���122@<�
	

	������ B���!�
 122@� #.�G @�A?2�1218>�3 � 5����
�

G���� �� �������
 .������� .�
����
�M�
�	��

=>� .	�!�
 *� *� �J� �!��� 0*� (��� ������� �������� ������ ��� ����������� �� ��������

��	!��� 	�����	�����)� #� ���
�����#� ��
9!/88< ��� &888�

=8� .������ 'G� (� � ���� 	
��������
� ��
 ��������	�	
� ��!��� ���������)� C��*� �������

�����!�	 F����
��� � 788A�

>2� .������ �G� E��!�
� *
� �
���
 -� (��������	�	
� ��������	����)� !��� ;�������

������
������ 1221H �;A<� ?3&A?�
>7� .������ �G� ������

� (*�������	���� 	����� �	� ����
�	���� �� ��!��� �����)� !���

3�����) 788?H �;A<� 11&@1�
>1� .������ �� �����
� 0����
��� E'� (���
� �� ��
� �� ������� ��	� ���	����)�
��������

E ,���5�
� ?������< �������� 7888H ��;3<� >8@&821�
>@� .������ �� �	� 5	�
����� J� (E�� �� !���� ��	
� 	����	����U)� !��� ��������

������
������ 1227H �;?<� 33&=7�
>?� .������ �� .�
��!	��
� M	� 5	�
����� J� /
��	 �� 0����
��� E�'� (�������

��%�������� !	��� �� 5�	� .������)� #� ���
�����#� �� "'�
��� $::$ ��
����� 0�

E���%���� 5D ;D��<� 5����
� G���� �� �������
 .������� M��� 1?8>� #.�G @�A?2�??13=�

=H 0#N��!�
�� .������ .�
����
�M�
�	�� .�����!�
 1221� ��� @@@&@A7�

>A� ����	
�� D�	� (������� 	�	
� �	������� �������) D����� M�� D����
������ 1222� M��

C�!���	������

>3� '	�� +� E����
 �� /	��	� M� 0�!!��� -� (��� 	����� !	��� ���	���� � ����)� �
�

������
����� �� !���������� ������� 7881H ��;7<� 87&721�
>=� '	�� +� .������ �G� ��	�� G#� 0��� +� C���
��� J� 0���!�
� *� D���� -+� '����

�

(��� C	
��	! �!�%������ ��������� ����
�����)� L�
�� C�+� �������
 .������

5	!�
	��
 ���� +���
� �.5�8A�7�
	
�� 788A�

>>� '	�� +� .������ �G� ��	�� G#� 0��� +� C���
��� J� 0���!�
� *� D���� -+� '����

� (��

���
���� �� ��� C	
��	! �!�%������ ��������� ����
�����)� !��� ��������
�����

��
������ 788AH �;3<� 1>&?@�

�� /	�� 	�� D������� ����������	
� .�
�����

>8� '	�� +� .������ �G� (D��	����� ��� ��
�,��� �� ���	�����	�	
� ���������)� 0����

D����
)� #��
���������
������� 1227H � ;><� @7&@?�
82� '����
	� �� (�
��������
� ��
 �������)� 9����
������� !�����
���� ?������� 1227�

M��� 73� ��� ?27&?78�

87� O	�� J� 0	��� �� (G����
������
�� ��������	�	
� ��
���� ���
 �����
	��� '5�G 	��

0C+. �����
��) 7?�� #DD #���
�	����	� . ������� B� C�
���	�� #����
 ���
�!���

+	��� ��������	������ .�����!�
 122@�

81� O	�� J� 0	��� �� (C���� ��
���� ��!��� 	����� ��
 ��������	�	
� ��
���� �� ����

����
	���� �����
��)� !�!� .�5 !������������
�������
� �� ��'��� �#���� ��� �����

������
�������
	

	������ B���!�
 122@� #.�G @�A?2�1218>�3 � 5����
� G���� ��

�������
 .������� .�
����
�M�
�	��

8@� O	� ..� J	
�� /� (�� ��	�����
������	
� ��
 ��������.�������� ��������	����� ��

+�	������ ������	����� �� F!�%������ ��������� D���
�������)� +�	������ . ������

��� #���
�	����	� -��
�	� �� ������
����	� ��������� . ������ J����
 ��	�����

C�!�����
�� *�
�
����� ��� G����
�	���� M��� 13� ��� 7� ��� 18&37� -	� 122?�

8?� O	� ..� J	
�� /� (��������.�������� B!:��� +�%���� �
���
 ��
 F!�%������ ���������

D���
�������)� ���
� 6�5 !��� ;��)�5�� �� ������ ������ �� -�����'����
�������#

������� A��-
� $::&B� ������	� #�	� � B�� @7�G�� 1� 1227�

8A� O	� ..� J	
�� /� (� 5����������
������	
� C
������ ��
 �� E�� *���
�!���� B!:���

��������� �� F!�%������ ��������� D���
�������)� ���
� 0�5 !��� !���� ��������� ��

1'>�
��1������� ��������� -�����'����
�������# A!�1�
 $::%B� ��� 7=1&7=8�
	

122@�

������� ��	
����� 	��
�������� �	���
���� ��

3
The Service Life Cycle Functional
Architecture

This chapter reviews the main research results relevant to the service life cycle

of Context-Aware Services. The major phases of the life cycle, the ‘epochs,’

derived from the order of execution of different aspects of the service life cycle,

are introduced. Each epoch is described and its functional components are

identified. The functional components, which constitute the functional architecture

of the system that must ensure the whole service life cycle, are then described in

detail.

3.1. Introduction

According to ETSI [1,2], the service life cycle is the description of phases and

activities involved during the complete life of any service, in a service-independent

manner. It is considered the basis for defining the possible behavior of a service at all

times, the phases identified covering all aspects of a service life, including its

‘death.’ The service life cycle is composed of several phases, with specific activities

that can be carried out by one or more actors in each phase. Although the above

concepts were grown around the Intelligent Networks (IN), it is intended that this

framework applies to all possible services. Another view is given by W3C in respect

to the service life cycle of Web Services [3]. In this case, the service is characterized

at a given point of its life by a state. Changes between states are characterized by

specific transitions. In addition, the states can be subdivided into substates where, in

turn, there are the appropriate transitions. The service life cycle as a whole is the

scope of the discipline called Service Engineering [4–9].

The service life cycle includes the procedures and steps intended for the design,

implementation, activation, operation, and withdrawal of a service [10–12]. This set

of procedures, which can be understood as arranged in sequence, are often divided

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

into two functional areas, namely the service creation and the service management.

The boundary between these two areas is established when the service is ready to be

deployed. Up to that moment, the processes taking place belong to the category of

service creation whilst from that moment they belong to the category of service

management. All the above steps may be decomposed in other substeps. In

particular, the operational phase includes activities like deactivation, reactivation,

removal, migration, replication, and updates. Some of these activities may be

supported by others that fall outside the actual one. For instance, service migration

may entail the deactivation followed by installation of code in other hosts or

execution environments, although service installation is not normally considered to

be an operational step.

Once created, services may be installed in different distribution points ready to be

downloaded into the execution environments as soon as they are required. The

criteria to select these distribution points are diverse, and therefore this activity must

be under the scope of the service management system. This is a fundamental

difference from previous notions of software installation linked to the software

installation in specific hosts. Management applications must be able to install and

remove services [13–15]. Furthermore, a list of currently installed services must be

accessible. Required information includes data identifying the code, such as the

service’s name and its vendor, version information, and the service interfaces

provided by the code.

The first step in the service operational phase is its activation. Activating a service

means that the service’s code is executed in an execution environment. Here again

the management system should decide in which execution environment the code will

be service activated. It is worth mentioning that the service itself may decide on

when to carry out a deactivation, suspension, and resumption. Most services need a

certain set of configuration data. A service must be able to store and (on restart)

retrieve its settings. This is not a trivial issue as services can be started on arbitrary

and varying execution hosts. As hosts may have different setups, the traditional

solution of a configuration file in a well-known location is not viable. The

infrastructure, therefore, has to provide some other means of handling configuration

data in a location-independent way.

3.2. Service Life Cycle Model for Context-Aware Services

Context-Aware Services (CAS) are not much distinct from other types of services

as far as the service life cycle is concerned. Therefore, we adopt the same basic

concepts exposed in the previous section, adapt the terminology, and focus on the

phase and activities that have a major impact and highlight the most particular

aspects in our context. Consequently, the entire life cycle of a CAS is divided into

the four distinct epochs depicted in Figure 3.1.

34 Fast and Efficient Context-Aware Services

The service is given birth during the definition epoch, before which it has only

existed as an idea based on a set of requirements derived from market analysis and

business considerations. The service idea is translated into a technical description

of the new service, called the Service Definition, encompassing all the functionality

necessary to fulfill the requirements together with a specification of the system

configurations deemed to be necessary to provision the service. The definition

epoch finishes with the dispatch of the service definition and the configuration

specifications for the new service to the appropriate components of the provisioning

system.

The customization epoch of the new service takes place at the granularity of

incoming subscription requests from potential consumers of this service. Each new

subscription request initiates a consumer-specific customization epoch leading to the

establishment of an agreement between the consumer and the service provider. This

agreement details the terms of service use, including any service customizations.

Based on the agreement, a service subscription is established and the customized

service code is produced and subsequently installed in the infrastructure that will

support its activation and operation. In addition, any new infrastructure configura-

tions required to support the newly established subscription are effected. In the case

of services offered to a single consumer (e.g., the network itself), or to a group of

DefinitionDefinitionService RequirementsService Requirements

Service DefinitionService Definition

Configuration of necessary
system components

Configuration of necessary
system components

CustomizatiCustomizaIncoming SubscriptionIncoming Subscription

Customized Service CodeCustomized Service Code

Code InstallationConfiguration of necessary
system components

Configuration of necessary
system components

Invocation EpocInvocation EInvocation requestInvocation request

Service Code ExecutionService Code Execution

poch

Definition EpochDefinition EpochService RequirementsService RequirementsService RequirementsService Requirements

Service DefinitionService DefinitionService DefinitionService Definition

Configuration of necessary
system components

Configuration of necessary
system components

Configuration of necessary
system components

Configuration of necessary
system components

Customization EpochCustomization EpochIncoming SubscriptionIncoming Subscription

Customized Service CodeCustomized Service Code

Code InstallationCode InstallationConfiguration of necessary
system components

Configuration of necessary
system components

Configuration of necessary
system components

Configuration of necessary
system components

Invocation EpochInvocation EpochInvocation requestInvocation requestInvocation requestInvocation request

Service Code ExecutionService Code ExecutionService Code ExecutionService Code Execution

pochOperation EpochOperation Epoch

Service Code
Operation

Service Code
Operation

Service
Assurance

Service
Assurance

Figure 3.1 Proposed Context-Aware Services Life Cycle Model.

The Service Life Cycle Functional Architecture 35

consumers not needing an explicit subscription, the customization epoch is not

activated and the invocation epoch immediately follows the definition epoch.

After successful completion of the customization epoch, the subscribed service is

ready for use and may be instantiated and triggered in two ways. The first way is in

response to an incoming invocation request, originating either from the user (using a

signaling protocol) or from the infrastructure (specific alarms). An invocation

request triggers a series of actions leading ultimately to execution of the code of

one or more services at proper network locations. Service code execution will take

into account all relevant information encapsulated within the invocation request.

Alternatively services may be designed such that no invocation request is required

for their use. In such cases the service code is either positioned and executed

immediately after the customization epoch (or the definition epoch in the case of

customization epoch absence) or positioning and execution is based on a service

schedule detailed within the service definition.

A successful invocation epoch is followed by the operation epoch, during which

the service delivers the required functionality. Operation of the service is supported

by infrastructure mechanisms that implement the APIs used by the service (e.g., for

retrieving context information). Throughout the operation epoch, efficient service

delivery is ensured by assurance mechanisms that monitor performance and change

the configuration of the infrastructure, and of the service itself, as required.

An important part of the operation epoch is the cessation of the execution of code

at certain locations at certain points in time and restarting of code at other locations.

This is necessary to support mobility without flooding the whole network with

pieces of personalized code, a strategy that aside from the sheer volume of the

associated traffic would amount to a SW-maintenance nightmare.

The service layer functional architecture must support all epochs of the service

life cycle and all aspects of the functionality these epochs encompass. In addition, it

must be sufficiently flexible and generic to allow automated definition and

provisioning of context-aware services, taking into account the complexity and

variability of context information, and sufficiently dynamic to manage these services

efficiently. Figure 3.2 presents the major functional areas of the service layer that are

required to fulfill the above-mentioned requirements.

The Service Creation functional block is responsible for handling service defini-

tion and customization, and is therefore active during the definition and customiza-

tion epochs. It delivers to the Policy-Based Service Management functional block

the customized service code and the policies pertinent to the service’s provisioning.

The Policy-Based Service Management functional block is responsible for

configuration and performance management of the created services. The policies

that influence the management operations are set during the Service Definition epoch.

Configuration management is active during the service operation epoch and decides

the terms of service execution. Performance management is active also during the

service operation epoch and ensures correct operation of executing services.

36 Fast and Efficient Context-Aware Services

The Service Execution functional block is responsible for executing and support-

ing service operation, and therefore is active during the service operation epoch. It

executes services after receiving invocation requests, with specific terms, from the

Service Management block. It supports service operation by providing several APIs,

which make the infrastructure capabilities available to the services.

Finally, the Service Execution communicates monitoring data to the Performance

Management block. By further analyzing the major functional blocks presented

above we have defined with the complete Service Layer high-level functional

architecture. This architecture is presented by Figure 3.3. Service creation function-

ality is realized by the CAS Authoring, the Service Customization, and the Code and

Policies Generation Engine functional components.

The CAS Authoring component, active during the definition epoch of the service

life cycle, is responsible for producing a coherent and complete ‘technology

independent’ service definition. The logic of the component is human driven,

assuming a CAS administrator who creates the service definition using the CAS

Authoring tools. These tools elevate the abstraction level of the service definition

process, thus rendering it human friendly, and guide the definition process,

preventing errors and inconsistencies.

The result of the CAS Authoring component is fed to the Code and Policies

Generation Engine that translates the service definition into service code and

configuration policies. This process takes as input the service definition and

produces (a) the technology-specific service code, fitting the execution environment

of the service and (b) sets of policies for the components of the management

system. These results are disseminated to the appropriate components, in order to

obtain the necessary configurations pertinent to the service to be performed. The

service definition epoch completes with the successful production of these

Service Creation

Configuration

Performance

Policy-Based Service
Management

Service Execution

Figure 3.2 Service Life Cycle Decomposition into Major Functional Areas.

The Service Life Cycle Functional Architecture 37

configurations. The Service Customization component, active during the customi-

zation epoch, is responsible for establishing subscription agreements with new

consumers of existing subscription-based services. Following successful subscrip-

tion establishment the derived customizations are forwarded to the Code and

Policies Generation Engine.

The Code and Policies Generation Engine is active during both the customization

epoch and the definition epoch. During the customization epoch it produces and

disseminates the customized service code, that is, the ‘standard’ service code plus

the customizations derived from the consumer’s subscription. Additionally, it

produces and disseminates the policies required to realize the system component

configurations necessary to deploy this subscription.

Policy-Based Service Management functionality is performed by the Code

Distributor, the Code Execution Controller, the Invocation Service Listener, and

the Service Assurance components.

After its creation, the customized service code is installed at specific points of the

infrastructure by the Code Distributor component. Selection of these points takes

into account the service management policies. Following code installation, Code

Distributor is responsible for informing the Code Execution Controller of the URLs

CAS
Authoring

Code and Policies
Generation

Engine

Service Management Functions

Service
Customization

Service
Execution

Service
Assurance

Invocation
Service Listener

Code Execution
Controller

Code
Distributor

Service Creation Functions

Figure 3.3 Service Layer Functional Architecture.

38 Fast and Efficient Context-Aware Services

of the installed code. Maintenance of the installed code is also a part of this

component’s functionality.

It is to be noted that initially the code is not necessarily installed into the nodes they

will actually execute, but in one or more intermediate storage points. With many

services the target nodes for the code can be determined during the service operation

epoch only, being dependent, for example, on the location of (mobile) hosts.

To solve the problem of assigning code to the correct locations just-in-time, a

generic mechanism was devised, to be described later in this section.

The Invocation Service Listener component, activated during the service invoca-

tion epoch, is responsible for receiving triggers in the form of various protocol

signals or infrastructure alarms. It is a distributed component that spans the whole

network, positioning listeners that are specialized for a specific type of trigger at the

points where this trigger can be captured. After capturing a trigger, the listeners

encapsulate the trigger information into a message of specific form and forward it to

the Code Execution Controller. When more than one Code Execution Controllers is

employed by the system, the selection amongst them is made based on management

policies.

The Code Execution Controller receives trigger messages from the Invocation

Service Listener components. Every message is decomposed into a set of parameters

representing the trigger information. The Code Execution Controller is configured

with a set of policies, which are set during the creation of the service and the

establishment of each service’s subscription. These policies, when evaluated with

the parameters deduced from the trigger, will result in activation requests for specific

customized services (one or more) and on specific terms applicable to these

activations. The Service Execution is then passed the resulting customized service

activation requests, along with their terms, and undertakes execution of these

services. Because the execution environment is distributed, the exact node(s)

where the services will be executed need to be selected, again based on predefined

management policies, in order to forward the activation requests to the correct

nodes. For scalability, management, and resilience reasons, more than one Code

Execution Controller may exist. Each one may serve only a subset of the Invocation

Service Listeners or a subset of services.

The execution environment active during the operation epoch, provides a platform

for service code execution and fulfillment of the operational needs of this code. The

execution environment implements APIs that offer services access to the capabilities

of the infrastructure. During the customization epoch, all new services are designed

to access these capabilities using the APIs provided. In addition, the execution

environment communicates with the Service Assurance component to dynamically

exchange monitoring and configuration data in order to maintain correct service

operation.

The Service Assurance component, active during service operation epoch, is

responsible for monitoring the performance of operating services and, in the case of

The Service Life Cycle Functional Architecture 39

performance degradation, taking appropriate corrective measures. Monitoring is

done at the granularity of the system, of individual service code, and of the

infrastructure mechanisms supporting the operation of the services. The results of

monitoring are fed to the Performance Asserter part of the Service Assurance

component that, based on the management policies that influence its behavior, will

decide the enforcement of proactive and reactive measures. Proactive measures aim

to achieve the best system configuration to meet future requirements. One example

of proactive measures is the production of policies that alter the behavior of the

Code Execution Controller to direct future service activation requests to less utilized

nodes of the execution environment, or alternatively to deny specific service

activations. Reactive measures aim to rectify current system operation in order to

improve the performance of currently executing service code. One example of a

reactive measure is the real-time termination or reconfiguration of individual

operating service code in order to free system resources for other services.

Figure 3.4 presents the reference points for information exchange between the

functional components of the Service Layer as presented earlier in Figure 3.3.

CAS AuthoringCAS Authoring

Code and Policies
Generation Engine
Code and Policies
Generation Engine

Code DistributorCode Distributor

Invocation Service
Listener

Invocation Service
Listener

Invocation Service
Listener

Available
Modules

Service Definition
Document

Agreed
Service

Subscription

Customized service code

Activation trigger

Signaling, Alarms

Code Execution
Controller

Code Execution
Controller

Code Execution
Controller

Code Installation /
Maintenance

Service
Activation
Request

Execution
Environment

Execution
Environment

Execution
Environment

Service
Assurance

Service
Assurance

Consumer
Request

Service
Customization

Monitoring Data

Reactive Configurations

Proactive policies

Management Policies

All pertinent Service
management components

Service code
URL

Figure 3.4 Service Layer Reference Points.

40 Fast and Efficient Context-Aware Services

3.3. Service Creation

Of all the stages of the service life cycle, service creation is one of the most abstract

and general, since there are not many detailed guidelines (advisory statements)

available on how to structure each of its phases. Furthermore, it is also one of the

most important since it determines the efficiency with which the services will be

developed and thus the success of service providers in a highly competitive market

[22]. As pointed out by the same authors, the service creation process does not need

to follow a waterfall model in which each activity is done once for the entire set of

service requirements, because the traditional waterfall model for software develop-

ment with its sequential phases is inadequate to support the development of

telecommunications services.

Service creation is widely studied in the telecommunication community (e.g.,

ITU-T, ETSI, TINA-C, RACE, ACTS, or EURESCOM). All these studies adopt a

common approach that is the definition of an architecture and a methodological

framework with its support. Thus, the IN and TINA architectures have been defined

[2,23], and the literature describes plenty of different implementations [24–27]. The

methodological aspect is described by the service creation environment (SCE)

concept. This enables one to unify the process of service creation by defining a role

model, a service life cycle model, and a set of methods and tools that support the

activities of all the roles.

In line with the efforts of the above-mentioned initiatives, we can mention

different solutions to the problem of service creation. A methodology to simplify

the process of service creation is proposed in Reference [28]. A set of broadband

service-independent building blocks are designed and used to create and customize

broadband services. During service execution time, a service agent interprets a

building block graph and executes its procedures, which are all downloaded from the

service provider. The work presented in Reference [29] is a specialization of the

service life cycle to web services particularly putting the emphasis on the service

creation part, showing the need to use design patterns and Web requirements

analysis techniques and methodologies. A structured generic approach to the service

creation problem and solution is presented in Reference [22] whilst the Cadenus

approach [30] provides service creation and configuration in a dynamic way through

its own framework. Other relevant work related to issues in service creation can be

found in references [4,17,21,28,31].

3.3.1. CAS Authoring

The objective of this function is twofold: first of all, to produce a coherent and

complete service definition that will be the basis for creation and provisioning of the

service; secondly, to provide a tool to assist the CAS creation administrator to

compile the service definition.

The Service Life Cycle Functional Architecture 41

Concerning the above-mentioned specification tool, it is worth stating that it

should elevate the abstraction level of the service definition process, thus rendering

it human friendly and technology independent. In addition, it must present all the

available infrastructure capabilities from the service creation perspective. Finally, it

must guide the definition process so as to prevent potential errors and inconsisten-

cies in the service definition.

As shown in Figure 3.4, the CAS Authoring component accepts as input the

available modules representing the system capabilities for constructing CAS. These

modules must be based on a preestablished CAS modeling approach. The output of

this component is the Service Definition Document, containing an implementation

technology-independent service definition describing all aspects of a service’s

creation, provisioning, operation, and management.

The detailed functionality of the CAS Authoring component is put in place when a

CAS administrator logs in, and ends with the production of a service definition

document as presented by Figure 3.5.

Login to the CAS authoring tools will be permitted after successful authentication

and authorization of the administrator’s credentials, and completion of a list of

permitted actions for this administrator. The list of actions consists of options such

Authentication
and Authorization

Selection of Action

Selection of Service
/ Service Type

Modules Selection

Complex Attributes
Definition

Attribute Value
Association

Service Definition
Document
Production

Authentication
and Authorization

Selection of Action

Selection of Service
/ Service Type

Modules Selection

Complex Attributes
Definition

Attribute Value
Association

Service Definition
Document
Production

Service Definition
Document
Validation

Figure 3.5 CAS Authoring Component Functionality.

42 Fast and Efficient Context-Aware Services

as CAS Creation, CAS Deletion, and CAS Modification. Selecting an option from

the above list leads to the compilation of a new list of options applicable to this

selection. For example, if CAS Creation is selected, a list of potential service types

is presented. After all initial options have been selected, the modules to be included

in the service definition must be selected. If any of the attributes of the selected

modules are complex, they must be defined according to their corresponding

complex attribute schema. The attribute-value association process then must follow.

The input attributes of the selected modules must be associated with values of

matching types. The values can be fixed either by the administrator or by other

selected modules. Caution must be taken to avoid loops. This can be achieved by

only allowing a module’s output attribute to be associated with a value after all the

module’s input attributes have been associated with values. After completion of the

attribute-value association process, during which the results of all the previously

employed processes are taken into account, the Service Definition Document is

produced as an XML document, which is then validated against the rules pertinent to

its service type. If inconsistencies are detected then the administrator is informed

and prompted to modify the service definition. The end of the definition process is

reached when a valid Service Definition Document has been produced and

forwarded to the Code and Policies Generation Engine component.

The functionality of the CAS creation component can be realized by the

components presented in Figure 3.6.

Service
Definition GUI

Service
Definition
Document

AA
Policies

Module
DocumentsSkeleton

configurations

Complex Attrs
Templates

Complex Attributes
Definition GUI

Login and
Navigation

GUI

Modules
Catalogue

GUI

Validity Guardian Validation
Rules

Service
Definition GUI

Service
Definition GUI

Service
Definition
Document

Service
Definition
Document

AA
Policies

AA
Policies

Module
Documents

Module
DocumentsSkeleton

configurations
Skeleton

configurations

Complex Attrs
Templates

Complex Attrs
Templates

Complex Attributes
Definition GUI

Complex Attributes
Definition GUI

Login and
Navigation

GUI

Login and
Navigation

GUI

Modules
Catalogue

GUI

Modules
Catalogue

GUI

Validity GuardianValidity Guardian Validation
Rules

Validation
Rules

Figure 3.6 CAS Authoring Component Architecture.

The Service Life Cycle Functional Architecture 43

The Login and Navigation GUI is responsible for handling the administrator’s

login, and the presentation and selection of the available CAS authoring options. It is

dynamically configured by authentication and authorization policies and by skele-

tons that define the available CAS authoring options and their inter-relationships.

Based on the options selected by the administrator, a list of modules that make up

the service is deduced from the pool of available modules. The Modules Catalog

GUI presents these modules to the administrator and facilitates their discovery and

selection by providing a comprehensive search engine. The selected modules are

transferred as graphical objects to the Service Definition GUI. If the selected

modules exhibit complex attributes, these can be defined using the Complex

Attribute Definition GUI. This GUI is configured with a schema that dictates the

valid structure for each complex attribute and is used to guide the administrator

through the attribute’s definition. The attribute-value association process is per-

formed utilizing the graphical environment provided by the Service Definition GUI.

At the end of this process, the resulting complete graphical representation of the

service definition is translated into the XML code that constitutes the Service

Definition Document. This document is validated by the Validity Guardian, using

the validation rules for the type of service selected, and any detected inconsistency is

reported back to the administrator through the Service Definition GUI. The final

valid Service Definition Document is forwarded to the Code and Policies Generation

Engine component.

The CAS Authoring component can be implemented as a stand-alone application,

integrating all necessary tools that facilitate the creation of services and offer the

administrator an easy-to-use graphical interactive interface. The modeling of CAS is

based on XML and on the XML schema specifications. The GUIs can be implemented

using Java technology, including swing libraries 2nd XML parsers. The repositories

containing the required configuration information (policies, module documents, etc)

can be implemented using database technology. The interface with the Code and

Policies Generation Engine can be implemented using SOAP.

3.3.2. Service Customization

The objectives of the Service Customization component are to establish subscription

agreements with service consumers for existing services and to forward the

customizations derived for the established subscription to the Code and Policies

Generation Engine.

The Service Customization component accepts as input the consumer’s service

request, containing all the service customizations necessary to meet the consumer’s

individual needs. After appropriate processing it delivers a document containing the

terms of service use agreed between the provider and the consumer, including the

consumer’s service customizations (see Figure 3.4).

44 Fast and Efficient Context-Aware Services

The detailed functionality of the Service Customization component, starting from

a consumer contacting the service provider and finishing with the forwarding of the

agreed service customizations for this consumer, is presented in Figure 3.7.

A connection is established between the consumer and the provider. Through

this connection a negotiation concerning the provider’s offered services will take

place. A list of available actions will be presented to the consumer (e.g., subscribe

to new service, alter customizations, terminate subscription). The consumer must

then make a selection using this list. Based on the selection, if deemed necessary,

the consumer must provide customizations for the service reflecting his particular

needs. The provider processes the consumer’s request and either accepts it or

rejects it (e.g., because of inability to meet certain requirements) or proposes an

alternative set of customizations, close to the requested ones, that can be fulfilled.

When agreement is reached, a subscription is established and the required service

customizations are forwarded to the Code and Policies Generation Engine in order

to be deployed.

The functionality of the Service Customization component is realized by the

computational components presented in Figure 3.8.

The Consumer Service Customization GUI is the graphical interface that the

consumer uses to communicate with the provider. This interface is responsible for

presenting to the consumer all the choices offered by the provider, forwarding the

consumer’s selections and receiving and displaying the provider’s messages. The

Connection
establishment

Selection of Action

Selection of new Service /
existing customization

Service Customization
Definition

Connection
establishment

Selection of Action

Selection of new Service /
existing customization

Service Customization
Definition

Negotiations
Between consumer

provider

Establishment of
Agreement

Figure 3.7 Service Customization Component Functionality.

The Service Life Cycle Functional Architecture 45

Consumer Service Customization GUI must be dynamic and flexible enough to be

able to automatically depict the changes of the provider’s offerings (e.g., new

services, enhancements on existing services). The Provider’s Negotiation Engine

is responsible for servicing the consumer’s requests coming from the Consumer

Service Customization GUI. To service these requests several underlying computa-

tional components must be activated, each one performing its designated task and

reporting back the results to the Provider’s Negotiation Engine, which in turn

notifies the consumer. The first of the backend components is the Authentication,

Authorization, Accounting (AAA) component responsible for checking and verify-

ing the consumer’s credentials, authority, and accounting data, based on dynamically

set AAA policies. The Request Validation component validates the consumer’s

request based on general and service-specific rules defined as Validation Policies.

The Resource-Based Admission logic component decides whether the system is able

to provide the service with the requested customization, based on monitoring data

gathered by the Service Assurance component. If the service cannot be provided,

then either the request is dropped or a feasible alternative service customization is

computed and proposed to the consumer. The Subscription Maintenance component

stores, retrieves, updates, and deletes the established subscriptions that activate the

agreements with the consumers. The Agreement Deployment component is respon-

sible for forwarding the agreed service customizations to the Code and Policies

Generation Engine that will in turn ensure their deployment.

Multiple instances of the Consumer Service Customization GUI may exist, each

one offering a different interface for service customization (e.g., web interface,

IVR). All these instances are connected to a single Provider’s Negotiation Engine,

which in turn relies on a series of backend computational components. The

Provider’s
Negotiation

Engine

Agreed Service
Customizations

AAA
Policies

Consumer Service
Customization GUI

Authentication
Authorization
Accounting

Request Validation

Resource Based
Admission logic

Subscription
Maintenance

Agreement
Deployment

Monitoring
data

Subscription
Repository

Validation
PoliciesProvider’s

Negotiation
Engine

Provider’s
Negotiation

Engine

Agreed Service
Customizations
Agreed Service
Customizations

AAA
Policies

AAA
Policies

Consumer Service
Customization GUI
Consumer Service
Customization GUI

Authentication
Authorization
Accounting

Authentication
Authorization
Accounting

Request ValidationRequest Validation

Resource Based
Admission logic
Resource Based
Admission logic

Subscription
Maintenance
Subscription
Maintenance

Agreement
Deployment
Agreement
Deployment

Monitoring
data

Monitoring
data

Subscription
Repository

Subscription
Repository

Validation
Policies

Validation
Policies

Figure 3.8 Service Customization Component Architecture.

46 Fast and Efficient Context-Aware Services

Provider’s Negotiation Engine should be multithreaded in order to be able to support

multiple simultaneous consumers requests. The backend computational components

are configured by accessing data from specialized repositories (policies, monitoring

data, etc). Candidate implementation technology for the computational components

is the J2EE platform that enables the creation of multitier, dynamically configured

applications. For the repositories, database technology such as Oracle can be

used.

3.3.3. Code and Policies Generation Engine

The Code and Policies Generation Engine produces and disseminates the general

and customized service code, as well as the management policies necessary for the

service provisioning.

As shown in Figure 3.9, this component accepts the Service Definition Document

from the CAS Authoring component and the Service Customizations from the

Service Customization component. Based on these inputs it delivers the Customized

Service code, that is the actual code that implements the logic of the service

fulfilling the demands of a service subscription. The customized service code is

implemented using an appropriate technology that is supported by the execution

environment. In addition, the Code and Policies Generation Engine delivers the

management policies resulting from the definition epoch, pertinent to the service,

and also policies resulting from the customization epoch, pertinent to specific

subscriptions of the service. The management system components provision the

services based on these policies.

The component dispatches the resulting code and management policies to the

corresponding system components, as shown in Figure 3.9.

Receive Service
Customizations

Dispatch Code/policies

Receive Service
Definition Document

Parse SDD to produce
Service logic

Generate service
Policies

Parse SDD to produce
management policies

Generate Service
logic Code

Generate
customization

Policies

Generate
customized

Code

Receive Service
Customizations

Dispatch Code/policies

Receive Service
Definition Document

Parse SDD to produce
Service logic

Generate service
Policies

Parse SDD to produce
management policies

Generate Service
logic Code

Generate
customization

Policies

Generate
customized

Code

Figure 3.9 Code and Policies Generation Engine Component Functionality.

The Service Life Cycle Functional Architecture 47

Once received, the Service Definition Document is parsed to produce the data

structures that represent the defined service logic and the derived management

policies. These two data structures are utilized for the automatic generation of the

service logic code and the service policies, respectively. The data structures, like the

Service Definition Document itself, are implementation technology independent,

while the code and the policies produced by this component are technologically

compatible with the components that implement the CAS provisioning system.

When complete, the service logic code is forwarded to the Code Distributor

component that will ensure its optimal installation and maintenance, while

the service policies are dispatched to the appropriate system components for

realizing their necessary configurations that will ensure the provisioning of the

new service.

The service customizations, pertinent to the newly established agreement with the

consumer, are translated into customized service code and customization policies

related to the particular service. The customized service code augments the general

service code in order to fulfill the requirements imposed by the agreement with the

consumer, while the customization policies configure the system’s components in

accordance with the new agreement. As before, the customized service code is

forwarded to the Code Distributor and the customization policies are dispatched to

the appropriate system components (Figure 3.10). The functionality of the Code and

Policies Generation Engine component is realized by the computational components

presented in the above mentioned figure.

The Service Logic Parser decomposes the Service Definition Document and

analyzes all the existing modules pertinent to the construction of the service logic. It

produces the Service Logic data structure that is a coherent roadmap for the

construction of code that can implement the service logic. The Code Generator

component in turn compiles this data structure into technology-specific code. If the

code is destined to operate in different execution environments, then a Code

Generator must be constructed for each distinct technology, although the Service

Service Logic
data structure

Service Logic
Parser

Code
Generator

Management
Policies Parser

Code
Dispatcher

Policies
Generator

Policies
Dispatcher

Management
Policies data

structure

Service
Customizations

Service
Definition
Document

Service Logic
data structure
Service Logic
data structure

Service Logic
Parser

Service Logic
Parser

Code
Generator

Code
Generator

Management
Policies Parser
Management

Policies Parser

Code
Dispatcher

Code
Dispatcher

Policies
Generator
Policies

Generator
Policies

Dispatcher
Policies

Dispatcher

Management
Policies data

structure

Management
Policies data

structure

Service
Customizations

Service
Customizations

Figure 3.10 Code and Policies Generation Engine Component Architecture.

48 Fast and Efficient Context-Aware Services

Logic data structure remains unchanged. The Management Policies Parser is

responsible for parsing modules pertinent to specific components or specific aspects

of service management and producing the Management Policies data structure with

the derived policies. This structure follows the Policy Core Information Model and

is technology independent. The Policies Generator component materializes the

Management Policies data structure into implemented policies specific for each

component of the provisioning system. Finally, the produced code is forwarded to

the appropriate installation mechanisms by the Code Dispatcher component, and the

produced policies are forwarded to the corresponding management components by

the Policies Dispatcher. The Code Generator and the Policies Generator are also

responsible for compiling the service customizations into the corresponding custo-

mized service code and the customization policies.

The service logic and management policies parsers could be based on available

XML parsing libraries and would be sufficiently generic to process any service

definition document that conforms to the modeling of CAS, as defined in previous

sections. The Management Policy Parser needs to be sufficiently flexible to support

the production of new management policies that enhance the system’s functionality.

Therefore, it must be constructed by multiple classes, each one of them responsible

for deriving policies from a set of Realization modules.

3.4. Service Management

As previously mentioned, service management starts when the service code is ready

to be deployed in a distributed execution environment. Service management has to

play an important role in materializing QoS in Internet [38,39]. Service assurance,

one of the phases of service management, has the goal to keep the SLA between

users and providers [36] even when the service is supported through different

administrative domains [37]. However the set of functions to be considered is

heterogeneous and, in general, it is not easy to have closed solutions applicable to

any environment. Therefore, some authors structure this functionality as a service

itself [16]. In that respect, it is interesting to consider the methodologies to analyze

the interactions taking place in the environment of services and in particular

the relations between customer and provider of a service in the operation phase

[17,18].

One of today’s major requirements for service management is the attribute of

autonomy. In order to accomplish that goal, it is necessary to have a clear view of the

dependencies between the high-level application and its constituent parts and

resources [19]. Abstract service models, tools, and languages [42,43,49] are used

to address this issue. The problem of system monitoring and the corresponding

approaches to make it feasible does not have to be underestimated [40]. In summary,

service management needs the use of the most advanced technologies to cope with

The Service Life Cycle Functional Architecture 49

its different challenges. In this sense, the use of conventional modeling tools like

UML [21] or XML [20], Web-based technologies [19] and also policy-based

management solutions have been proposed [45–47].

Service management frameworks have evolved from their counterpart at the

network level to more and more distributed solutions [35,48]. Today, in many

cases, service management solutions requires the existence of distributed service

platforms [41]. Nevertheless, it is interesting to have in mind as a reference the

most prominent initiatives that have influenced the development of the current

discipline. Among these we can mention the efforts of the TINA consortium, the

Telemanagement Forum (TMF), and the Distributed Management Task Force

(DMTF). The TINA service architecture [23] introduces a set of concepts,

principles, rules, and guidelines for constructing, deploying, operating, and with-

drawing TINA services. The TINA definition of service management is mainly

based on the concepts introduced by network and systems management of TMN/

OSI. The Telecom Operations Map (TOM) [32] introduced by TMF focuses on the

end-to-end automation of communications operations processes. The core of TOM

is a process framework that postulates a set of business processes that are typically

necessary for service providers to plan, deploy, and operate their services. The

Common Information Model (CIM) [33] of the DMTF introduces a management

information model to integrate the information models of existing management

architectures. The Core Model [34] gives a formal definition of a service and

allows hierarchical and modular composition of services consisting of other

services.

3.4.1. Code Distributor

The Code Distributor is intended to distribute the general service code and the

customized service code at selected points in the infrastructure, often for

intermediate storage, as well as to carry out the required software maintenance

processes. In addition, this component must notify the Code Execution Controller

with the optimum URL of the distributed code that implements a given customized

service.

As shown in Figure 3.4, the input to the Code Distributor is the Customized Service

code that is received from the Code and Policies Generation Engine while the output

is twofold. First, it carries out a set of actions that perform the optimal distribution of

the customized service code within the network and actions that ensure the reliable

maintenance of the distributed code. We call these actions Code Installation

and Maintenance. Second, the Service Code URL answers requests from the

Code Execution Controller with the location of the customized service. The

returned URL is the most convenient in terms of accessibility by the execution

environment.

50 Fast and Efficient Context-Aware Services

The installation function of the Code Distributor component starts when the newly

created code is available and finishes with the installation of this code into the

selected storage points of the underlying infrastructure. The criteria for this selection

are provided by management policies acquired during the service definition epoch,

with the goal of achieving the optimum code distribution. General policies,

established by overall system administration decisions, may also be employed.

The maintenance function is always active and ensures that the installed code is

stored consistently within the infrastructure that is, keeping a record of code

versions, adding new code, removing obsolete code, relocating code for optimizing

its distribution, and at all times keeping an updated list of the URLs of the available

code. The URL selection mechanism is activated by code URL requests from the

Code Execution Controller. These requests ask for the most convenient URL of a

specific customized service given a list of the intended execution points for this

service. The Code Distributor is responsible for determining the optimum URL,

based on the installed code, the URL list, and the management policies defined to

affect this selection. These policies and the policies influencing the code installation

are acquired during the service definition epoch or determined by global system

administration decisions.

The functionality of the Code Distributor component can be realized by the

computational components presented in Figure 3.11. The Code Installer component

employs a listener for code installation requests, which receives the target code. It

maintains a catalog of all the available Code Storage points within the infrastructure.

Based on this catalog, and on the management policies, it generates a list of target

storage points for the code in question. This list is forwarded to a mechanism that

Management
Policies

Code
Maintenance

Code Installer

Code
Storage

URL Selector Optimum
URL

Service Code and
Customizations

Code

Management
Policies

Management
Policies

Code
Maintenance

Code
Maintenance

Code InstallerCode Installer

Code
Storage

Code
Storage

URL SelectorURL Selector Optimum
URL

Optimum
URL

Service Code and
Customizations

Code

Service Code and
Customizations

Code

Figure 3.11 Code Distributor Component Architecture.

The Service Life Cycle Functional Architecture 51

connects with the code storage points and installs the code. The Code Maintenance

component is notified by the Code Installer component for every new installation

and keeps an updated list of the code distribution. Removal, update, and

redistribution requests are also served by this component. The URL Selector

offers an interface for receiving service code URL requests from the Code

Execution Controller and answering with the optimum URLs. It also implements

the logic that computes the optimum URLs utilizing the pertinent management

policies and the code distribution list provided by the Code Maintenance

module.

From the implementation point of view the Code Distributor is a centralized

component. It is kept up to date with the available code storage points within the

infrastructure by the system administrator. A GUI must be provided for this update,

this GUI could provide monitoring and human-driven management facilities for the

installed code. The Code Storage mechanism could be implemented as a file

structure, while the code installation could be achieved using FTP commands. An

LDAP-based storage and retrieval system could be considered as an alternative

solution.

3.4.2. Code Execution Controller

The Code Execution Controller is intended to derive the appropriate customized

services (one or more) to be activated and the terms of their activation. Also, it must

deduce the nodes (one or more) hosting the Execution Environments where the code

of these services could execute and, finally, it must compose and forward the

activation request messages to the corresponding Execution Environments.

As shown in Figure 3.4, the Code Execution Controller interacts with several

functional components. Specifically, it receives the activation trigger from the

Invocation Service Listeners, the service code URL from the Code Distributor,

and the policies from the Service Assurance component. These inputs are processed

by the Code Execution Controller, which then issues a service activation request

consisting of a message dictating the execution of specific customized service code,

at specific node(s) of the Execution Environment and according to specific terms or

arguments.

Figure 3.12 depicts the functional processes to be executed by the Code Execution

Controller, starting with the processing of an incoming invocation message originat-

ing from an Invocation Service Listener and finishing with the forwarding of an

activation request message to the Execution Environment.

The invocation trigger message is received and parsed, and the information it

conveys is extracted in the form of parameters. These parameters, combined with a

set of management policies, will result in the compilation of a list (one or none is

also an option) containing the trigger and run time arguments of the services. The

52 Fast and Efficient Context-Aware Services

next step is the authentication and authorization for the use of the resulted services.

Again the deduced parameters with the list of the resulted services are combined

with a set of policies pertinent to the AA functionality, automatically created. The

resource-based authorization that follows the administrative authorization will rely

on policies set by the Service Assurance component, as a result of its proactive

assurance enforcement functionality. Following successful authorization, the

execution point (one or more) for each service must be determined. Again this is

the result of policies pertinent to execution distribution and policies imposed by

proactive assurance enforcement. Once the service execution points are determined,

the URLs of the service code are requested to the Code Distributor component. The

request includes the execution points of each service, which are necessary for

the Code Distributor to reply with the optimum URL for each case. The final step is

the composition of activation request messages, targeted at selected points of the

Execution Environment, for each service. Each message must include the URL and

the runtime arguments of the service code to be executed.

The functional decomposition of the Code Execution Controller is presented in

Figure 3.13. The Invocation Triggers Listener receives invocation triggers from

Receive
Invocation trigger

Deduce Service

Select Execution Node

Request Execution

Authentication

Retrieve
Optimum URL

Deduce Subscription

Deduce run time
Arguments

Admin Authorization

Resource Based
Authorization

Receive
Invocation trigger

Deduce Service

Select Execution Node

Request Execution

Authentication

Retrieve
Optimum URL

Deduce Subscription

Deduce run time
Arguments

Admin Authorization

Resource Based
Authorization

Figure 3.12 Code Execution Controller Component Functionality.

The Service Life Cycle Functional Architecture 53

various Invocation Listeners, executes a parsing process, and produces a list of the

conveyed invocation parameters. The invocation trigger messages are uniform

because the Invocation Listeners undertake the task of hiding the diversity of the

various triggering mechanisms (signaling, infrastructure alarms). The Invocation

Resolver component receives the extracted invocation parameters and composes a

list of customized services (corresponding to established subscriptions with the

consumers) by utilizing the relevant policies. These customized services are

designed to be activated by this trigger. The list of customized services and the

invocation parameters are forwarded to the AA Engine, which authenticates and

authorizes the use of these services based on relevant policies. The Execution Point

Selector is responsible for selecting the execution points of the services approved for

use by the AA Engine, for each specific invocation. The URL Retrieval component

implements the connection with the Code Distributor and the retrieval of the

services’ URLs for each of their selected execution points. The Activation Request

Composer/Dispatcher component composes the activation request messages to be

dispatched to the execution environment. For each distinct customized service a

Activation
Request message

Service, Subscription,
Arguments Deduction

Policies

Invocation Triggers
Listener

Invocation resolver

Proactive Assurance
Enforcement

Policies

AA
Policies

AA Engine

Execution
Point

Selector

URL
retrieval

Activation Request
Composer /
Dispatcher

Distributed
execution
Policies

Activation
Request message

Activation
Request message

Service, Subscription,
Arguments Deduction

Policies

Service, Subscription,
Arguments Deduction

Policies

Invocation Triggers
Listener

Invocation Triggers
Listener

Invocation resolverInvocation resolver

Proactive Assurance
Enforcement

Policies

Proactive Assurance
Enforcement

Policies

AA
Policies

AA
Policies

AA EngineAA Engine

Execution
Point

Selector

Execution
Point

Selector

URL
retrieval

URL
retrieval

Activation Request
Composer /
Dispatcher

Activation Request
Composer /
Dispatcher

Distributed
execution
Policies

Distributed
execution
Policies

Figure 3.13 Code Execution Controller Component Architecture.

54 Fast and Efficient Context-Aware Services

separate message is composed. This message, shipped to the selected nodes of the

execution environment, causes service execution.

The Code Execution Controller could be implemented as a centralized compo-

nent serving all Invocation Service Listeners and all services. Multiple instances

may be configured in order to optimize performance, increase scalability, and

improve resilience of the system. Each of these instances would be responsible for

serving a number of Invocation Listener components and/or a number of services.

The Invocation Listeners must be configured in this case with the necessary policies

for selecting the appropriate Code Execution Controller.

3.4.3. Invocation Service Listener

The purpose of the Invocation Service Listener is to capture triggers arriving in the

form of various protocol signals or infrastructure alarms, and to encapsulate the

contained information in activation trigger messages, which are then forwarded to

the Code Execution Controller (see Figure 3.4).

Figure 3.14 presents the functionality of the Invocation Service Listener

component in sequence. The process starts with an incoming trigger in the

form of a protocol signal or an infrastructure alarm, and finishes with the

forwarding of an activation trigger message to the appropriate Code Execution

Controller.

Triggers
Captivation

Composition of
Trigger Message

Selection of appropriate
Code Execution Controller

 Trigger
Message Forwarding

Triggers
Translation

Triggers
Captivation

Composition of Activation

Activation

Trigger Message

Selection of appropriate
Code Execution Controller

 Trigger
Message Forwarding

Triggers
Translation

Activation

Figure 3.14 Invocation Service Listener Component Functionality.

The Service Life Cycle Functional Architecture 55

Each Invocation Service Listener is programmed to recognize only a specific type

of trigger (e.g., SIP messages). The captured triggers are translated and the relevant

invocation information they convey is deduced with the help of translation policies.

These policies are set by the system administrator and are intended to configure the

Invocation Listeners in a flexible and dynamic manner, thus making their function-

ality more generic. The extracted invocation information is encapsulated as para-

meters in an activation trigger message, which is forwarded to a Code Execution

Controller, selected according to policies set during the configuration of this

component. The functionality of the Invocation Service Listener component is

realized by the computational components presented in Figure 3.15.

The Triggers Listener is responsible for capturing relevant triggers. It is either

connected to a signaling termination server or to an infrastructure capability. The

Trigger Translator translates the captured messages with the help of a set of

translation policies and assembles the conveyed invocation information that is

subsequently compiled into an activation trigger message. The invocation informa-

tion is formalized within the message as a set of parameters, each one having a

name and a value. The Invocation Trigger Message Forwarder is responsible for

selecting the appropriate Code Execution Controller, based on the relevant policies,

and transmitting the message to it. If only one Code Execution Controller is

configured, then the Invocation Trigger Message Forwarder does not

make a selection, but simply forwards the message directly to the Code Execution

Controller.

From an implementation point of view, an Invocation Service Listener must be

instantiated for each of the supported trigger types. For performance and scalability

reasons a trigger type may be served by several Invocation Service Listeners, each

located with a view to reducing trigger transmission delays, reducing network traffic,

and balancing server loads. The triggers may take the form of specific protocol

 Trigger
Message

Translation
Policies

Triggers Listener

Trigger translator

Invocation Trigger
Message Forwarder

Code Execution
Controller Selection

Policies

 Trigger
Message

Activation Trigger
Message

Translation
Policies

Translation
Policies

Triggers Listener Triggers Listener

Trigger translatorTrigger Translator

Invocation Trigger
Message Forwarder
Invocation Trigger

Message Forwarder
Code Execution

Controller Selection
Policies

Code Execution
Controller Selection

Policies

Figure 3.15 Invocation Service Listener Component Architecture.

56 Fast and Efficient Context-Aware Services

signals, or infrastructure alarms produced by context computational objects

especially constructed to aggregate required context info into an alarm notification.

The signals can be captured by connecting to signaling termination servers, while

the infrastructure alarms can be captured by connecting to appropriate context

brokers.

3.4.4. Service Assurance

Traditionally, network service providers have offered their subscribers a variety of

service quality guarantees, most of which are contractual. Nowadays, new and more

demanding applications coexist in today’s networks. Each of these applications (e.g.,

real-time audio or FTP transfers) has different traffic requirements such as

bandwidth, maximum delay, and jitter, which must be satisfied in order to ensure

adequate service performance. Furthermore, QoS is perceived by the end-user in

other ways such as service accessibility, service retainability, or service integrity,1

which can be defined as:

� Service accessibility performance: perception or measurement of the time taken

to access the service, for instance, how fast the user connects to the network.

� Service retainability performance: perception or measurement of how well a

service is maintained throughout the usage period without any abnormal inter-

ruption or operational outages.

� Service integrity performance: perception or measurement of how well a service

is maintained from an end-to-end point of view throughout the usage period, for

instance, if a user is receiving the expected network Quality of Service.

Service providers require management systems that can retrieve, calculate, and

present quality of service guarantees such that both the provider and the consumer

can be assured that service quality meets agreed levels. In this respect, the

management system’s purpose is to monitor Service Level Agreements (SLA) as

defined between the provider and the consumer, and to react to service quality

violations. Service assurance automatically detects and corrects network and service

problems during service life time, in order to comply with SLA, using policies to

achieve this in an efficient manner.

As deficted in Figure 3.4 the Service Assurance component interacts with other

functional modules, for example accepting monitoring data from the network

Execution Environment. It also sends configuration parameters and individual

code to the Execution Environment in order to optimize the performance of the

executing customized service code. Finally, the Service Assurance also interacts

1Other performance areas would be service support, operability, or security, but these will not be dealt with here.

The Service Life Cycle Functional Architecture 57

with the Code Execution Controller sending policies that will best configure the

Code Execution Controller to optimize processing of invocation triggers. These

policies will affect invocation admission and execution node selection processes.

The management system must identify problems affecting network or service

provision performance and undertake any actions required in order to achieve QoS

levels agreed with end users. The policy-based features of the system contribute to

make CAS assurance a fully automated process, allowing high levels of flexibility

and dynamic configuration of service monitoring and problem-solving actions.

Two main aspects can be identified in service assurance: service monitoring and

service control actions. These are described below.

3.4.4.1. Service Monitoring

We can identify three main functions in service monitoring, as follows:

Performance monitoring: This function is intended to supervise network and service

performance. It takes into account four basic service performance parameters for all

services:

� Utilization

� Performance

� Reliability

� Congestion

Those four parameters are general but are managed in a different way for each

service. In particular, the system considers the use of specific performance para-

meters for each service.

Threshold data monitoring: The main goal of this function is to provide the

mechanisms to configure thresholds applied to service-effecting measurements,

and to report the threshold violations to the interested parties via alarm mechanisms.

Fault data monitoring: This function provides the means to report the occurrence

and clearance of network or service failures. Failures at the network or service levels

are reported using notifications and alarms.

3.4.4.2. Service Control Actions

The management system must take actions in order to maintain the QoS agreed in

the SLAs between the provider and the client. We can differentiate two main

categories of actions at this point: reactive actions, which are executed once an SLA

is violated and preventive actions, which are performed to prevent SLA violations

from occurring.

As a trivial example, consider a link between two nodes, and assume that at a

certain point in time, the traffic over the link starts to increase in a specific manner. A

58 Fast and Efficient Context-Aware Services

reactive action would be to set up an auxiliary link between both nodes, as soon as

the offered traffic exceeds the link capacity. Clearly, during setup time of this new

link, part of the traffic might be lost. On the other hand, a proactive measure would

anticipate the situation by studying the evolution of traffic increase and activate the

additional link before traffic is lost. Although more efficient, proactive actions

require a more complex behavior algorithm.

Another important issue to be considered is the definition of different levels of

priority in the actions to be taken and therefore different alarm levels. As an

example, the failure of a VPN connection used to provide a service will require

immediate action, but if a quality parameter descends slightly without violating the

SLA, there is no need to react immediately.

We can categorize the possible management actions as monitoring state actions

and monitoring entity actions, as follows.

Monitoring state actions do not explicitly resolve SLA violations, but help to

identify and avoid them. Actions such as changing threshold levels, activating/

deactivating alarms, or adding new monitoring jobs, all fit into this category. For

example, when an alarm is triggered, the monitoring system may automatically change

the testing period or the alarm threshold for the same or other observed attributes, or

perform additional processing to complement existing monitoring actions.

Monitoring entity actions are taken before or after (proactive vs. reactive) the

SLAs are violated, in the first case to avoid the SLAs violation, and in the second

case to restore a normal service performance. Examples of these actions are

activating auxiliary links when bandwidth problems arise or rejecting new connec-

tions if a degradation of service performance is detected.

A detailed functional architecture of a Service Assurance component is presented

in Figure 3.16, which shows the two main components, namely the Service

Performance Asserter and the Monitoring Component, which are in turn decom-

posed into other modules as described hereafter.

The Fault Monitor performs functions and provides capabilities to maintain,

manage, and report fault data to other management systems. It enables a manage-

ment application such as the Service Quality Manager or the Assurance Manager to

receive, correlate, and manage faults produced by/for different managed objects.

The Performance Monitor performs functions and provides capabilities to acquire,

monitor, and report performance data for a set of managed objects. It also provides

capabilities to set performance thresholds, monitor, and report threshold crossings.

The Service Quality Manager is responsible for monitoring and reporting aggre-

gated service quality and performance data obtained from different raw data sources. It

is responsible for configuring the different monitoring jobs (change thresholds, etc.), if

necessary.

The Assurance Manager consists of a set of functions that manage the life cycle of

network and service problems. It decides whether changes to network components

must be undertaken, based on the information that the Fault Monitor and the SLA

The Service Life Cycle Functional Architecture 59

Manager submit. It can also send a request to the Service Quality Manager to adjust

parameters of the monitoring jobs.

The SLA Manager is responsible for the correlation of service quality and

performance data with specific customer service instances to identify any SLA

violations. If any violation occurs, he can inform the Assurance Manager and let him

decide whether actions to reallocate network resources are necessary (through the

Network Action Component), if configuration of monitoring jobs is needed (through

the Service Quality Manager), or both.

The Network Action Component makes corrective or preemptive adjustments of

network or service resources.

The Network Inventory Repository maintains the configuration of the network

objects and their association with each service instance. The Service Policy

Repository maintains the configuration of the policies and their association with

each service instance.

The Network Action Component is responsible for taking actions to reallocate

network or service resources. Actions previously referred to as Monitoring State

Actions are controlled and caused by interactions between the Service Quality

MONITORING
COMPONENT

 SERVICE PERFORMANCE
 ASSERTER

Performance
Monitor

Fault
 Monitor

Service Quality
Manager

SLA Manager
Assurance
Manager

Network Action
Component

Network
Inventory
Repository

Service
Policy

Repository

SERVICE ASSURANCE FUNCTIONAL ARCHITECTURE

Figure 3.16 Service Assurance Component Architecture.

60 Fast and Efficient Context-Aware Services

Manager component and the various monitoring components (Performance Monitor

and Fault Monitor).

From an implementation point of view, the Service Assurance component can be

conceived as partially distributed. Therefore, we distinguish between its distributed

components and its centralized ones:

� Distributed components: each node has its own instance of each of these

components. Service Quality Manager, Performance Monitor, and Network

Action Component are envisioned as distributed components.

� Centralized components: these components have a centralized nature, although

there might be multiple instances of them over a large network. Assurance

Manager, SLA Manager, and Fault Monitoring are thought of as centralized

components, as they need information from different nodes and that causes a

considerable complexity in decision making. For example, the SLA Manager will

probably need performance measures from different nodes to decide whether a

SLA has been violated or not.

In order to communicate with different nodes for assurance purposes, the Service

Quality Manager has external APIs in addition to the APIs offered to the internal

assurance components on the same node. The external APIs allow remote nodes to

access and process the monitoring information available at the local node. For

example, assume that node A has two possible routes to reach node D. These routes

are through node B and C. At any given point in time, node A may check the status

of the interfaces of node B and C (congestion, failure, etc.) in order to decide which

is the best route to reach node D and, on this basis, perhaps alter its routing table.

3.5. Conclusions

This chapter describes the service life cycle of Context-Aware Services. The

definition, customization, invocation, and operation epochs are described and their

functional components identified. Finally, the functional components, which are

constituted into a full functional architecture of the system that enable the whole

service life cycle system, are described in detail.

References

1. ETSI Technical Report ETR 323: ‘Service life cycle reference model for services

supported by an IN,’ December 1996.

2. ETSI Technical Report ETR 137: ‘Intelligent Network (IN); Service and feature

interaction: Service creation aspects, service management aspects and service execution

aspects.’ 1995.

The Service Life Cycle Functional Architecture 61

3. W3C: Web Service Management: Service Life cycle. http://www.w3.org/TR/2004/

NOTE-wslc-20040211/.

4. Gervais MP, Diagne A. Enhancing telecommunications service engineering with mobile

agent technology and formal methods. IEEE Communications Magazine 36(7): 1998;

38–43.

5. Reynolds PL, Sanders PW. Integrated services engineering, Fifth IEE Conference on

Telecommunications, 26–29 March 1995, 297–301.

6. Hayes MJ. Telecommunications service engineering. Intelligent Networks: IEE Tutorial

Seminar on Advanced Services and their Management, 11 May 1994 pp 311–313.

7. Niemela E, Kalaoja J, Lago P. Toward an architectural knowledge base for wireless

service engineering. IEEE Transactions on Software Engineering 31(5): 2005; 361–379.

8. Kirda E, Kerer C, Kruegel C, Kurmanowytsch R. Web service engineering with DIWE.

In Proceedings of 29th Euromicro Conference, 1–6 September 2003, p 283–290.

9. Dobson J. Issues for service engineering. In Proceedings of First International Workshop

on Distributed and Networked Environments, Services in 27–28 June 1994, pp 4–10.

10. Eastman J, Fuller I, Hirschfeld R. Service life cycle in a distributed computing

environment. Telecommunications Information Networking Architecture Conference

Proceedings, TINA ’99 12–15 April 1999, pp 183–184.

11. Chen YP, Li ZZ, Jin QX. Awhole life cycle model to dynamic composed web services. In

Proceedings of 2005 International Conference on Machine Learning and Cybernetics,

2005; Volume 2, 18–21 August 2005, pp 1047–1052.

12. Hasselmeyer P. An infrastructure for the management of dynamic service networks.

IEEE Communications Magazine. 2003; 41(4) 120–126.

13. Huang Y, Kumaran S, Chung J-Y. A service management framework for service-oriented

enterprises. In Proceedings of IEEE International Conference on e-Commerce Techno-

logy, CEC 2004, 6–9 July 2004, pp 181–186.

14. Kar G, Keller A, Calo S. Managing application services over service provider networks:

architecture and dependency analysis. NOMS 2000. IEEE/IFIP Network Operations and

Management Symposium, 10–14 April 2000, p 61–74.

15. Luling R. Managing large scale broadband multimedia services on distributed media

servers. IEEE International Conference on Multimedia Computing and Systems 1999; 1:

320–325.

16. Strick L, Wittig M, Paschke S, Meinkohn J. Development of IBC service manage-

ment services. IEEE Network Operations and Management Symposium 1996; 2:

424–433.

17. Garschhammer M, Hauck R, Hegering H-G, Kempter B, Radisic L, Roelle H, Schmidt

H. A case-driven methodology for applying the MNM service model. NOMS 2002,

IEEE/IFIP Network Operations and Management Symposium, 15–19 April 2002,

pp 697–710.

18. Garschhammer M, Hauck R, Hegering H-G, Kempter B, Radisic I, Rolle H, Schmidt H,

Langer M, Nerb M. Towards generic service management concepts a service model

based approach. IEEE/IFIP International Symposium on Integrated Network Manage-

ment Proceedings, 14–18 May 2001, pp 719–732.

19. Boutaba R, El Guemioui K, Dini P. An outlook on intranet management. IEEE

Communications Magazine 1997; 35(10): 92–99.

62 Fast and Efficient Context-Aware Services

20. Alipio P, Lima S, Carvalho P. XML service level specification and validation. ISCC

2005, 10th IEEE Symposium on Computers and Communications, 27–30 June 2005,

pp 975–980.

21. Adamopoulos DX, Pavlou G, Papandreou CA. A UML based methodology for the

creation of TINA compatible telecommunications services. ISCC 2000. Fifth IEEE

Symposium on Computers and Communications, 3–6 July 2000, pp 653–658.

22. Adamopoulos DX, Pavlou G, Papandreou CA. Advanced service creation using

distributed object technology. IEEE Communications Magazine 2002; 40(3): 146–154.

23. TINA-c: Service Architecture Version 5.0. TINA Baseline, TINA Consortium, June 1997.

24. Rana S, Fisher MA, Egelhaaf C. Implementation and interoperability experiences with

TINA service management specifications. Telecommunications Information Networking

Architecture Conference Proceedings, 1999, TINA ’99.

25. Manione R, Renditore P. A ‘TINA light’ service architecture for the Internet-telecom

scenario. Telecommunications Information Networking Architecture Conference Pro-

ceedings TINA ’99, 12–15 April 1999, pp 24–32.

26. Pavon J, Tomas J, Bardout Y, Hauw L-H. CORBA for network and service management

in the TINA framework. IEEE Communications Magazine 1998; 36(3): 72–79.

27. Park HS, Choi O-H, Baik D-K. CORBA based approach to the development of

an advanced architecture in TINA service management system. 12th International

Workshop on Database and Expert Systems Applications, 2001, 3–7 September 2001,

pp 175–179.

28. Lin Y-D, Lin Y-T, Chen P-N, Choy MM. Broadband service creation and operations.

IEEE Communications Magazine 1997; 35(12): 116–124.

29. Kirda E, Jazayeri M, Kerer C, Schranz M. Experiences in engineering flexible Web

services. IEEE Multimedia 2001; 8(1) 58–65.

30. Cortese G, Fiutem R, Cremonese P, D’antonio S, Esposito M, Romano SP, Diaconescu

A. Cadenus: creation and deployment of end-user services in premium IP networks.

IEEE Communications Magazine 2003; 41(1): 54–60.

31. Prodan R, Fahringer T. From Web services to OGSA: Experiences in implementing an

OGSA-based grid application. Fourth International Workshop on Grid Computing,

17 November. 2003, pp 2–9.

32. Telecom Operations Map. Approved Version 2.1 GB910, TeleManagement Forum,

March 2000.

33. Common Information Model (CIM) Core Model. White paper, Desktop Management

Task Force, August 1998.

34. Common Information Model (CIM) Specification Version 2.2. Specification, June 1999.

35. Dias B, Santos A, Boavida F.Internet network services management framework.

ICON 2002. 10th IEEE International Conference on Networks, 27–30 August 2002,

pp 361–368.

36. Chakravorty R, Pratt I, Crowcroft J, D’Arienzo M. Dynamic SLA-based QoS control for

third generation wireless networks: the CADENUS extension. ICC ’03. IEEE Interna-

tional Conference on Communications 2003; 2: 938–943.

37. Baek J-W, Park J-T, Seo D-i. End-to-end Internet/intranet service management in multi-

domain environment using SLA concept. NOMS 2000. IEEE/IFIP Network Operations

and Management Symposium, 10–14 April 2000, pp 989–990.

The Service Life Cycle Functional Architecture 63

38. Mykoniati E, Charalampous C, Georgatsos P, Damilatis T, Goderis D, Trimintzios P,

Pavlou G, Griffin D. Admission control for providing QoS in DiffServ IP networks: The

TEQUILA approach. IEEE Communications Magazine 2003; 41(1): 38–44.

39. Giammarco C, Malick K, Morreale P. Wireless quality of service assurance for network

survivability. MILCOM 1999. IEEE Military Communications 1999; 2: 893–896.

40. Asgari A, Egan R, Trimintzios P, Pavlou G. Scalable monitoring support for resource

management and service assurance. IEEE Network 2004; 18(6): 6–18.

41. Adamopoulos DX, Pavlou G, Papandreou CA. Development of new telecommunications

services in distributed platforms: A structured approach. ICC 2000. IEEE International

Conference on Communications, 2000, Vol. 1, 18–22 June 2000, pp 222–226.

42. Gopal R. Unifying network configuration and service assurance with a service modeling

language. NOMS 2002, IEEE/IFIP Network Operations and Management Symposium,

15–19 April 2002, pp 711–725.

43. Choi S-H, Ha J-H, Song J-G. Building a service assurance system in KT. NOMS 2004.

IEEE/IFIP Network Operations and Management Symposium, Vol. 2, 19–23 April 2004,

pp 73–86.

44. Panagiotakis S, Alonistioti A. Intelligent service mediation for supporting advanced

location and mobility-aware service provisioning in reconfigurable mobile networks.

IEEE Wireless Communications 2002; 9(5): 28–38.

45. Flegkas P, Trimintzios P, Pavlou G. A policy-based quality of service management

system for IP DiffServ networks. IEEE Network 2002; 16(2): 50–56.

46. Hong L, Dong B, Wei D. A policy-based solution for management of enhanced network

services. TENCON ’02. 2002 IEEE Region 10 Conference on Computers, Commu-

nications, Control and Power Engineering, Vol. 3, 28–31 October 2002, pp 1684–1687.

47. Badr N, Taleb-Bendiab A, Reilly D. Policy-based autonomic control service. POLICY

2004. Fifth IEEE International Workshop on Policies for Distributed Systems and

Networks, 7–9 June 2004, pp 99–102.

48. Rayes A, Sage K. Integrated management architecture for IP-based networks. IEEE

Communications Magazine 2000; 38(4): 48–53.

49. Adamopoulos DX, Papandreou CA. Object-oriented development of telematic services.

ISCC ’98Third IEEE Symposium on Computers and Communications, 30 June–2 July

1998, pp 276–280.

64 Fast and Efficient Context-Aware Services

�
���������	
�� ���
����

�� ��� ���	��� �
���

���� ��
���� ��
�
�
����� �� ��� ������������ ����� �� ��������
	
�� ���
���� ��

��� ���	��� �
���� � ��
��� 	��� ��� ����

���� ���
 �����
� ������� �� ��� ���	���

�
��� �����	�� ��
 ����� ��
��	 �� ��� ������� ��
����������
��
�� ���
����
	
��

���	����� ���	��� ������� ��� ���
���� �� ��
��!��
�
 �������� �����"� ������
����

#��"�
����" �����
��� $�# �%� &� �������� ��� ������������ ��� ���������" ����

	��� ������
���� 	���� ��
 �����
� �
�� �� ��� �
��
�� ������� ������
���� ���������

�� ��
���� ' 	���� 	� ����()���	��� ������� �����
�����* &�
��� �������� ���

������������ ��� ��� �
�
������ �� ��� ���
��� �� �����
�� 	��� ��� ���	��� �
��� ��

��
�"��" ���	��� ���+"��
���� ��� ��
�����

���� �����	
 ��
�	 �����	������ ��	 �����������	� ��	�����

 � ��� # 	����, ��� ���	��� �
��� ���
���� ���������� ��������
���� �
��� ��

���

������ ���	
����" ����
����
�� ���� ������� ����������� ������" ���������� ����

������ ������
��� �
��� �
���� ���	
����" ���
��� ��������" 	��� ���
��� �������

��
������ �������� $��#%, 	���� �� �������� ����
� ��� ���������� ���������,

���
����
 ����
���
�
���
� ���������� ��
������ 	���� �� ��� �
��� �������" ����� ��

�����
�� ����
��� �
�
 ���
����� -�	�
��, ���� �
�
��"� �� ������ ���	���
��

���������
��� ������"
�� ��������� �
���� ������� ������ ���
���� ��
� �������

.�� ������� ��
 ��
�
��� �������+����� 	
��

/����� ���� ��
� �����
���� �
�� # ���	���� ���� ���
��� ��� ������ .�� $��

"� ������� ���������� ���
�%� ���
���� ��
� ���
��� ����
���" �
�
�������� ��

���������
 ��
������ ����
��� ��������

����� ���	��� �
�
������ ����
�

��
��� �
��	����, ���"������,
�� ���
�� � "����
�, ��� ������
���� ��
�

�� ������ �� ���
���� �� ������
���� ��
� ��������� ��� ��
�� �� ��� ���	���

���� ��
��
�
������ ���� ��
�,

��
������, ���� ������", ���� ���� ������
����,

���� ��� ��	
����
������������ �����
�� 0
��� 1
!, ���� �
�
�� 2����
,

2�
� ����
��3���
���!, ���� 4
��� � '556 2��� &���� 7 ����, ���

	���� 	� ���� ���	��� ������� �����
����, �� ���� �� ���
���� ��
���	 ���� ��

����
�� ��� �������� ���
��� ���

��� �� �����
�� �� �����
� ����� �������
����

��� �
���� �� ��� ���	��� ������� �����
���� �� ��
� �� �� �������� ��

��������� ������ �� ������
����, �������" �� ��������� ���	��� ���
������ 3��

��
����, ��� ����� ��
 �
�� ��
� # ���	��� �� �������� �� ��� ������� �� ���

���	
����" �
���� �� ��� �������
���" ��� �
��,
�� �� �� ���

��
��� ��
��

�����
��!�� ������� ��� �
�� ����� ���
 ���� �� ���"����� �����, �
��������!��

���������, ����

�����
�� ����� ������
�
������ �� ���
������ �� ���
��� ��� ������ ���	���

������� ������
���� �� ��� ���	����� ���
����� ��� +��� ��� �� ���
������ �� ����
��

������ �� ��� ������ ���
� ������
����, ��
� ��, ���
������ �� "�� ������
���� ����

���	��� �������� ��"
����" ����� ���
� ��
��
�� ��� ��
�� �� ��� ���	���� ��� ������

���� �� �� ���
��
 "����
� ���	��� �
���
��	 ���� ��� ���
� ������ �� ������
�����

��� ����� ������
� ���� �� ��� ����
��� �� ��� ������ ������
���� �� ��� ���������

���
����
��, �� �
������
�, �� ��� ��������� �
��� �� ��� ���
��� ��"��, 	���� ��"�� ��

�������� ��
 ����������� 	
�
� ��������� �� ��� ���
���� ��
�����

�
���" ����
������ ��� ���������� ��
�� ������������ ���������" ��� ���
������

��" �� ���	��� ������� �����
����, ��� �� ��� �
�� ����
���� �� ��� ��+�����

���������� �� ���� ������
���� ���� ��� ���	���
�� ���
������ �� �������
�� ����
��

�� �� ��� ���������" �
���
� ���	���
� ���������

���� ��
 �������
��� �
��8 �� ����� �� �� ����)�� �������* �
���, ����� 	� ����

���� �� �������
�� ������� ������
���� ��
� �� ��������� ��
� ������
���� ������ $

��������
	
�� ���
���%� ���� ��
�� ��
� 	� ���� ��
���	 ��� ��� �����	��" ����� ��

�
���� $
% �� ��+�� ��� ������
���� ��
� ������� ���� $�%
���� �������" ��
�

������
���� �
� ������ �� "�
��
�������" �� ��� ������� ��������
��
�������� ��

��� ���	���, 	� ������ ��
��� �� ������ ����
����� �� ������� ��� ������

������
����,
�� $�% �� ���� �� �
�� �� ���
�������
�� ������� 9� ������, �����
��

���������" ������
���� �� ����
���� �
�� ��� ���	���, 	� ���� �� ������ �
����
�

��
�+�
� ����
� ��������
� �� �������� ��� ��� �
�� �
��	���� 	��� ��������

��
�+��

��������" ��� ������ ���	��� ������
���� �� ��� ����"�� � �
�� �
��� ���

���
��� ����� �� �
��
�����
� �� ��
�"� ���	��� ���+"��
���� �� ����� �� ��
��� ��

����
�� ��� ���
���, �� �� ����� �� �
�� �� ���� ��+������ �� ��
� ���, ����� ��
 ����

���
 ����
���� ��
�
���	� ��� ���
��� �� �
��
���
�
������ 	��� ������� �� ���

���	���� ����
�
����� ����� ��
 �����+"��
���� �� �
�
������ �� ��� �� ����

���	��� ��������, �� ������" �� +����� �������" ����
�� �
����� �� ��������� ���	���

���
�����, ����

���
������ �� �������, �������,
�� ��������
�� ���	��� ������� ������
����,

��"����� 	��� ���
������ ��
���
��� ��
�"� ��� ���	��� ���

��� �� �
���"
������,

��
 ��� ��"������� �� ���
������ �� ����"�
�� ��������� ������� ��������
	
��

���
���� ��
 ��
�
���
�� ��+����� 	
��

�� 3
��
�� :�+����� ���������	
�� ���
����

���� ��		��� ����� �� ��	��������	� �����	
�
��� !�� �����	
 "���	�����

 ������� �
� ���� ������� ��
 �
���
����������
� �������;
 ������ ���	��� ���
���

�� ����
�
 ���
���
� ��
�� �� ������������ �������"��� ��� �������� ��� ����������

�"����� �
� ���
�� �� �
���
�� ���� ���������� �� ������" ����������, 	����

������, ���� ��� ���������,
���	��" ��� ������� �� ��
��
� ��������
� ��
�� ��

����� �� ��������������� ��
����� -�	�
��, 	���� ��� ��
�� �
� ��� ��� ��
���� ���

������, ��� "��	�� �� ��������
����(���
������ �� ��� "���
� ������ ��
�
�� �� ��	

��������
� ������������
�� ��	 ���
����
��
�����
�����(�
� ���	�� 	��� �����

 �
�������, ��� �
��������
���" ���
��� ��
�����
�����
�� ���	��� ���
����,
��

��� ��
��
"�� ������ "����
����� �� �������
�� ��	 �
��� 	��� ��� ���
��
�

��<��������� �� ������� ������������
���� ����
�����������

 ���������" �������� �����"� �# � ���� ���	���� �� ��� 	
� �� �����
�� ���

������ <���������
�� ������� ��� ���
����� ���� ���	����
�� �
���� ���
����
	
��

���	����� ���
����
	
�� ���	����
�� ������ ���������" ���
���� �� ����� ��

�������� �
�
"�����, <���������, ���"�
��
������, ��������
�
��
����, ����
������,

��
�
������, ����
������,
�� �������� =>,?5,??@� � ���
����
	
�� ���	��� ��������

�
��
���� ���
��
�����
�����
�� ���
���� �������" �� ���� ���
�
��
���� �������

�
��� ��
�� �� ��� ������	
�� =A,?A@� ���
����
��
�����
�����
��
��� �� �������

�
���� �� ��� ���������" ���	���
��
�
�� ����� ������
� ���

��� �� ������

��
�"��" �����+� ����������* ���

��� �� ���
���
��� �����+"����" ��� ���	���

='6@�

��� ���� 	��� ���	� ��
��	��� ��
��!��" ���
� ��� ������� �� ���� ���	���

������
��� �� ��� #
��
�B9�� �����
��
� =?C@� D���� �� �������� ���
������

���
������� �� ��� � ��
����������� ='E@, �� �������� ��
 ��� �� �# � ��
� ��
���

����� �
�����
�� ���	��� ����
���� �� ���
�� ��	
�����
�����
�� ���
����, 	����

�

� ��
������ ������� �� ���	��� ���������� ��� #
��
� ��
��	��� ���
���� ���

�������� ���
����,
��������
����,
��
������!
���� ��������� �������� ��� ������
�

�����
����� �� "
��
����� �� ���	�����
��� #
��
� ���
����� #
��
� ���
����,

����
� ��� "������ �
�� ������� ���
��� $4���%, ����� ���	��� �
�
��������

��
�����
�����, ��
����" ����, ��� ��
����, �� ���
���
��� �����
�� �������

����
 ����
���

3���
 ���� "����
� ����� ��
��	, ��� ��"��+�
��
����
�� ��	
��� ���
����

	
�� ���	���� �� �
��� �� ���	��� �
���
�� =?,',6,?FG'?@� 9
���
� ���	���

�������
 ���
� ������ =E,C,F,?',?H@ ����	 	����
� �
���
�
����
����� �� ��
����

��
��
� 	����
�����
����� ������ ��� �

� �� ��
� 	��� ��� ���������")��
�*

���	��� ����
���������� � �
���
� ���	����
 ��� �� ����� $���
���, ��������

���������, ����%
��
����
� �����, ��� �������� ���
��� �� ��� ���������" ���	���

������"�,
�� ��
��
�� �� �����+�
�����
������ ��� �
���
� ��
�+� ��

����� �����"�

��� �
���
� �����
��
����
� ������ ���������,
� �
���
� ���	���
���
�

���������	
�� ���
����
�� ��� ���	��� �
��� �#

�����
��!�� ������	
��� �	� �������� �

� �� �� ����������; $
% ���������� ��

��+������� �
� ��� �
���
�
����
����� �� ��� ���������" ���������,
�� $�% ���

�
�
"����� �� ��� �
���
�, ��
� ��, ��� �
����" ������, ���+"��
����
��

�����+"��
����, �������
��� ���������", ���� 9�� �� ��� ����+�� �� �
���
�� ��

��
� ���� �
� �� �������!�� �� ������!�� ���
 ���"�� ���
��� ��
 ���
��� �
����,

���� ���
���"

����� �� �
���
�� =>@�

� �
�"� ������ �� ������������ �
���
� ���	��� ����"�� =?5,??,''G'A@ �

� ����

�������� ��������, ����
� ��� =?@, ����� ='H@, 3������ =F@, 4������
 =H,?>@, #
����

='?@, �
�
�, �
������, I������, �������� 9�� �� ��� �
�� ����+�� �� ������������

���	���� �� ��
� ���� ��
��� ���
��� ���������� ���������� $��"�, ������� ���
����

�� ������� ������������ ���	����% ��
 <������, ��
�
���,
�� �������
��!�� 	
�� �

��� �������� ��
� ����� ���	���� ��
��� ��
 ����������� �
�� �
���, 	����
���	� �
�

�� �� ��������� �������� �
��
�� ��� �
������
��� �� ��� ������������ ������� ���

�
���
����
�� �� ������� ���� #
����
�� ����� �� �� ������� ������� �
������

�����"����
� �
���
� �� ����� �� ���
�� �������, ��
���
�
����, ������������

���

���� � #
����, �����,
�� �
������ ��� �������� ������ �� ���� ���	���

�� �	� ��������
���" ����� ��
��� 	��� ��"�� � ������� �
�
 �� ���������

�����������
�����
 	������+��� ������ �� ��� ����� ��
 ������, ����
�
�� ����� ��

 ���"�� �������"� 9
���
�� �

�
���
���
��� �
�� "���� =',?E@� � ���
��� �
���
�

��
���
� ���	��� ������� ��
��������� ��
�
��� ���� �
�
"����� ��
 "���

��
�������� �� ��������� �� 1�������� =?6@, 	���� 1�������� ='@ ��
�� 	��� ������"�

	
�������

��� ���
�
���� ���	��� ���
����
�� ���	��� ����
��������� ������� �� ���� ���� ��

�����	�����" ���	��� ��� �	� �
����8 ��� ���"�
��
��� ���	��� ��������"� ������

���� ������ �� ���� ����+������� ����
�
�� ���"�
��
��� ���	��� ��������"� ��

��������� �� "��
� ���
��� �� ��� ���� ��
�����

��$� �����	������ ��	 �����	
 ������� "���	������
��%%������ ��� &������������

��������
	
�� ���
���� ����
 �����
�� <�	 �� ������
����
���� ����� ��
��������,

�� ����� �� ��
��� ��
�
�� ��� �� ����
����
��
�,
� ������
�� �
�� �� ����

������
���� �� ���	��� ������� �����
����� ���� ������
���� �� ����
�� ���� �
��

��������� ������� ����
�
����� ��� ���	���� � ����
����
� ����������� �� ��

������� �
	 �
�
 ���� ����� �������, ������� ��,
��
� ������ ��������
�� ���

������
���� ��
�����
����� $���
����%
� ��������� ������ �� ��� ���	���� &� ����

���"���� ���	��� �	� ������
��
������ �� ���� �������� ��� +��� ���� �� ���
������ ��

����� ���
� ���	��� ��
�� ������
����� 9��� ����
������ ��

��
���, 	� ���� ��

������� ��� ���������" �� ��� ������
���� �� ��� ���	��� ��
��
�� ��� ��������
����

�� ��� ������
���� �� ��� ���������
� ���������(��
� ��, ��� ���
���� 	�� ���� ����

������
�����

�' 3
��
�� :�+����� ���������	
�� ���
����

������ �

��� �� ��
�� ������� ����� �����������

�� ����
����
��
�, ���
����� �� ���
� ���	��� ������
����
� ��������� ���	���

���
����� ��
 �
��� �
�
������ ��
� �� ������� ��� ���� �� ������
���� ��
� ����� ��

�� ���������

���� ��������" �� ��� �����+� ���
���
�� ��� �����+� ���	��� ��
���

� �
��� 3��
 "������ ���	��� ��
���, ����

�� ������+��� ���
� ������
����
�

���	��� ��
�� �
� �� ���
�����
��� ��
�� �� ��� ������
���, �� ��
� �� 	��� �� ��������

�� ����"��!� �
�� ���
�� ������
�, �� �
�� �� �� ������
��, ���
�����
��� #

��������, ��� ������� ��
�, �� ����� �
�
������ ��
� # ������
��� 3��
 ������"

��
���, ������" ������
���� ���� ��� ���� ���
�����
��� �� ��� ������" �
��� ��

"�
�� # ������
����
������ �
� ��
��� �� ��������� � ��� ���
� ��
��� �
� ���

��������
���� ��
 &���
����� �����, ���
� ������
���� 	��� �� ������
����

���	��" ��� �
�
"����� �� ���
��� ���� $���
����, ����

�, ����+�
����%, �
�
"��

���� �� I����, ��"�
� �����"��,
�� .�� ��������� � �
�� ��
 4#1� ���
��, ���

����

�� ���
� ������
���� �
� �� ��� ���������� ��
��� �� �����, ����� "��"�
����
�

�������
���, �� ����� ��������
� #
���������

���� ���� �� ������
���� �� ���
���
��������� ������
�

 ��
��
�� ��/#
"��� ��

����"
 ��������
�� �� � -�	�
��, �� ��� �
�� 	� ����
� ��+����� ��
���� ��
� 	���

���	
����� �� ���� ������
���� �� ��� ���
��� ��"��8 ����, ���
� ���	��� ��
��

������
���� ����� �� ��
����
���� �� ��
� ����� ��
��
�����
����� �� �������� 	���

��� �

� �� 	����
���� ��
���" 	��� �
�� ���
� ��
����� ����
����
����� �
� �� ��

��� ���� ��
� ������
���� �����
��
 ��� �� �# � �
��� �� ����
� ������
����

������ ����
� �# �������� ���+�� ������� ��"
����" ���	��� ��
�� �
�
�

:�+������ ����� �� ���
���� ��
 ����
��� ��
 ��� �� ����
���� ��
� �

� ���

������
�� �������"���� �� ������� ������
���� �
���" ����
������ ��
�
���������� ����

��� ���
���� �� ���� ������
����, ���
��
������, ��� �������� ��
� �������
��� �� ��

���� ������ �� ��� �����+� ��
���,
�� ��� "������" �� ��
��
�
����� �������� ����

�������� ��� �� ������ ��� ���	��� �
����
���

���� � !��"����# ��� $�����������# !��%�� ������� �����������

4
����"
����� �� ���
� ���	��� ���
��� �� ��� ����"�� � �
�� �
��� ��� ����

���	��� ������� ��
 �������� �� ��������� ���
� �
�
������, �
��
�����
��� 	���

��������� ���	��� �������
�
 ��������� ���	��� ���
����� 3�� ��
����, ��� ���
� ��

���� �
�� # ������� �� ��� ��� �� ��� ���
� ���
�
���" ��� �
�� �� ��� �����������

&� ���� ���� �� ���
��
 ���	������
�� ������� �� ��� ����

�� ���	��� ������
����

�� �� �
�� ��

��
��� �� ��� ���
���� ��
� ���� ���� ������
�����

 � ����� �� �������� ��� �������� 	�
���� ��� ���
���� $���� ����� �
����

��������% ��������
����
��; �
�� ��
��� �� ��� ������ �� ������
 �������� ��

���	��� ������� ������
���� G �����
�� ��� ���� G ��
 ���
���� �� �������

������
����� � ������� �����
���� 0����������� ������ $� 0�% �� ��� ������ ��
�

���������	
�� ���
����
�� ��� ���	��� �
��� �(

��������, ���������,
�� ����������� ���� ������
����� ���� ��
� 	���� �� ���� ��
����

	� ��
� 	��� ���	��� ������� ������
���� ��� ���������� ��"
����" ��� � 0� ��

"����
�
�� 	� ��� ��� �
�� ����� �� ��
���� >� � ����
�����������, ��� � 0�

�� ����������� �� ���� ��� ���������
�� ��� ���������,
�� �� ���������� ���

�������� ����" 	������+��� �# �� ��� ���
����
����� �� ����� �# � �� ��
� �
�

��������� "����
�� �
�
 �� ���������" ��, �
�
 ��������� ��������� �� �
�
,
�� �� ��

��� �������� �� ��� � 0� �� ������ ��
� ������� ������
���� ��

��� ��+������� ����

��������� �� ��������� ����, 	� �������� ��� � 0�
�
 ������ ��
� �
� ���������

$�
���� ���������%
� �
�� ����

�� ���
����� ����� ��������� �
� ��������
��

���" �������
��
�� ������� ��� ������
���� ������ $��� 3�"��� A�?%�

��� � 0� �
��� ����
������
�� �����
� ������������, ����
� ������ ������������

�� ������� ��
 �
�"� ��� �� ���������, ������ ������� ����� �� ���������,

�������� ��� �� ������������� ���	��� ��� ������ �� ���������
�� ���������,

�� ��������
���� �� ������� ���
��� ��� �� ���
��
���� �
���� �� ������� ������
�

����� D� ��������"

����� �
�
 ����
��� ����������, ��� ��
�
������
�� �������

�
��� �� ��� ��������
���� ����
���� �
� �� "��
��� ���
����� ��� ����"�
���

� 0� ������� �� ������� ���������, ���������,
�� ����
����� ��� ����
����
��
�

���������
���� ���	��� ���������
�� ���������, ���
����" ��� ��
�� ��� ��+�����

������
���� ����
�"�� ��� ����� �� ��� � 0� �
� ��������
�� ����"

����� ��

����
��� ��������

��� ��������� �� ������� ������
���� �������
�� ��� ������� �����
���� �������

$� ��% ��
�
��
��
���� �� �����+� ���	��� �����
�� ���
��� �
	 �������

SLO SLO

SLO

Context

Dissemination

Scheme

Context Broker Context Broker

Context Broker

DINADINA

DINADINA

DINADINA

Consumer API

Producer API

Consumer API

Producer API

Consumer API

Producer API

SLOSLO SLOSLO

SLOSLO

Context

Dissemination

Scheme

Context Broker Context Broker

Context Broker

DINANetwork Node

DINANetwork Node

DINANetwork Node

Consumer API

Producer API

Consumer API

Producer API

Consumer API

Producer API

SLOSLO SLOSLO

SLOSLO

Context

Dissemination

Scheme

Context

Dissemination

Scheme

Context Broker Context Broker

Context Broker

DINADINA

DINADINA

DINADINA

Consumer API

Producer API

Consumer API

Producer API

Consumer API

Producer API

SLOSLO SLOSLO

SLOSLO

Context

Dissemination

Scheme

Consumer API

Producer API

Consumer API

Producer API

Consumer API

Producer API

SLOSLO

Context

Dissemination

Scheme

Context

Dissemination

Scheme

Context Mediator Context Mediator

Context Mediator

Network Node

Network Node

Network Node

Consumer API

Producer API

Consumer API

Producer API

Consumer API

Producer API

)�*�	� ��� ������� �����
���� 0�������
���� ������ $� 0�%�

#+ 3
��
�� :�+����� ���������	
�� ���
����

������
����, ����
� ������
���� ���� ���	��� ����� $��"�, ���
� / D

��
����%,

������
���� ���� ��������� ������
����� ��������"�
�
����� $&���,

4#1�%, ������
���� ���� ����� 	�
����� $��"�, 	�
���� �������%,
��

�����

����� ������
���� ���
���� �� ������� #��
����" ������
����� $��"�, ����
"���
%�

 �
������� �� ������� ��������� ��
� ���
��� �
	 ������� ������
����, �����
�

���
���� �
���� ������� ������
���� 9�J���� $��9�% �
� ���
��� �������

������
���� ��
""��"
���" �������
�� ��������

��� ������� ���������
�� ��� ��9�, ��
� ��, ��� ����
���� �� ��� ���
��� ��"���

0����" ��� ����
���� �����, �
�� ��9 ������ �������� ��� ���
���������� �� �������

������
���� �� ����� ��
�
�� �� ������ ������� ��
�"��
�� �� �������
�������
��

�������

��� � 0� ����
����, �
���� ��� ������� /���
���� $�/�%,
��
� �������
���

��
���� ���	��� ���������
�� ���������� ����� ����
����
����� �������� ����

��9�, ������� ������� ������
���� ���� ���������,
�� ��+������� ��������
�� ���

������
���� ���� ��������� �� ���������, �� ����� �/�,
� ����
��� ��
 ����

�����
���� ������� � ���� �����, �/� ��
��!� ��� ����
"� ���	��� ���������
��

���������� :
�� �/� ���
���� �	� ��������� ����� �� �# ; ��� #������� �# �
��

��� �������� �# �� ��� #������� �# � ������� ��� ������
��� ��
� ��
��� �������

��������� �� ������� ��� ������
���� ���� ���
���, ������ �
	 �� �������, �� ��
� ���

�/� 	��� ���� ��
��� ��
����� ��� � ���� �����, ��� ������"������ �� ��� ���������

������� ������� �� ������
�� �
�� ����
 ����+�
���� �� ��� ������� ������� ������8

���� ��� ���
� ������� /���
��� ����� �� �� ���
��� 	��� ��� ��	 ������
���, ��

����� �� �����
�� 	��� ����� ���� ������� �� ��
���
���� �� ��� ��9� ��� ��������

�# � ��
���
� ��9 ��
����� ������� ������
���� �����"� ������)����* �������� ��

����+�
���� �
����� � ��� �
�� �� ������� ������� ������
����, ��� ��9� �������

�
	 ������� ������
���� ���� ��� ���
� �� ������ ������� �������,
""��"
�� ��,
��

������� ������� ������� ������
����8 ����, ��9� ��������� � �� �� �������

�������� ��� ��9�
�� �������� $����
������ �� �� ���
��% �� ��� :: �� ���

���	��� �����
��
�� ��"������� 	��� ��� �/� �����"� ��� #������� �# ��

���� �����	������ ��	 �����	
 ����% ����	�%

��� ���
���� �������� �������� ��	 ��� ����

�� ���	��� ������
���� �� �
��

��
��� �� ��� ���
��� ��"��� ��� ���
��� ���� ���� ��� ��"�� $�� ����� �� ������% ��

�
��
������ �
��� �� ��� ���	��� �������� ���� �� ��� ������
����� �
� �� ���
���

�� �����+"����" �� ��� ���	��� �� ����� ��
����
� ��� ���
��� "�
��� � ����� �� ��

��, ��� ���
��� �����
� �# ��
� 	���
���	 �� �� �������
������ 	��� ������� �� ���

���	��� �
����

�� �� ��� �
�� �� ������
���� ������

�,
�
����� �
� �� ���
�, ��
� ��, ������

���������
�
 ���"�� ���	��� �������, �� "���
� ��
� ��,
�
����� ��
� ������ �� ��

��������� �� ���� ��
� ��� ���	��� ���
����� :�
����� ��� ���
�
������ ����� ��

���������	
�� ���
����
�� ��� ���	��� �
��� #�

��
�"��"
 ���+"��
���� �
�
����� �� ��� ���
� ���	��� ��
���, ������" ��
 +���� ��

����� ����
�� ��
�+�, ��
�"��" .�� ����������, ���� :�
����� ��� "���
�
������ �
�

������� ������" ��
� # ������ �� ��
�"��"
� 9�#3 ��
�
��������� ��
� ������

��"����

&���� ������ ��� ��� ��+����� ����
��� �� ����,
���	��" ���� �� ������� ����

����� �� ��� ���	��� �
��� ��������
 ������� �������� ���� ��
� ���� ��
���������

��
�� ���� ��� ����������� �� �
������� ���� �
���" �
�� ��� ���	���, ����� ��
���

��� ���� �� ��"� ��
� �
� �
��� ��� ���	��� �� �
���������� ��� ������� �� ����

��
��� 	��� 	� �������� ���	������
�� ����
����� 	���� ���
����� ����� �� ��

��������� ������
������� �� ���� ��
� ��� ���
����
�� �� ������ �� ��
�����, ��
�

��, �� �� �
��� �� ��� ���
���� �� ������ ��� �� ��������� ��
�� �� ��� ����� ���
������

�"
��,

��� "��� 	
� �� ��
��!� ����
������ ��
�

 ����
���� ����
 ����
���

�
�
����
�� ���
����� ���� ��� ���
��� ��"��,
�� �
�
��� ��
� 	��� ��� ��������

�� �
���� ������ ��
 ���+�� 	
�� /����
��, �� �
�
��� �
���� ���	������
��

������
�� �����
�������� �� ���������" ��� ��
���
�� ������" �
�� ��� ����
����

	��� �������

��� ������ /���
��� ��
��!��
�� ���
��
� �� ���
����"
�
�����
��� �# �� ���

��9�� ����� �# � ���
���
 ������� 	
� �� �������
�
�����
� ��� ���
� ���	���

��
��
��
� ��� ���	��� ��
��� � �� ������
�� �� ���� ��
�
� ��+����� ���������
�

���� �� ���	������
��
����� ����
��� �� �� ����" ���"�
��
��� ���	���

���������� $
� ��������� �� ��� ���� ��
����%� � ���� 	
�
 ����
��� ������

�� �
�� ����

�� ���	��� ����
�� ���������" "���
�
����� �� ���� ��

��������
����
���" ����� ����
����, 	���� �
�� ��� �� �� ��
�"� �� ���
������

�� ��� ���
� ��
���� ����
� ���������
���� �� ��������� �� ��
���� >, 	���� ���

������ /���
��� �� ��� �� ��� ������� �� ��� 0 �� ������ �
���� ��� ������

D������

��,� ����	��
 �������	������

��� �� ��������
 ����� �� ������� ������
����, �������� ��
�
 ������� ��� $� %�

��� � �� ������� ��
 � �,
������� �� ��
��
� ���������	
�� ���
���� $���%� ��

��� �������
��� �� ����� ���
���� �
� �� ��"��� ��������� �� ���

��� �� ��� �

$��������" �� ��� �������, ���
��� ��������
���� �� ���������%, �� �� ������
�� ��

������ ��� ��������� �������� ����
�����
�� �������� ��� ������� ������
����

����
�"� �� ����� ��

��� ������
���� �
������"
�� �� ������� ���

�� ������
����

���� ��
������!��
�����, �����	��� ��� ��� ��������
���� �
� �� ���������

������������ 0�������" �� ��� �������
��� �� ��� ������� ������
���� �� ���

�������
� ���
�� �� ��� ���������" ���*� ���

���, ��������� ��
��� �� �������� �
�

�� ���������� $��"�, ��������� �������� ��������
���� ��
 � ����
����"

������
���� ��
���� ��
 ������ ��
�� ��
� ��
 � ���������" ��� �
���
���� ��
��

�� ����"���� �
��� �� ??'%�

#� 3
��
�� :�+����� ���������	
�� ���
����

����� ��������� �������� ����
����� ��� �������" ������� ������
���� ����
�"��

�� ����������;

?� �������!
����; ��� ��� ���������" ��� � ���� �

� ���������� ��
����� ��� �

��� �
� �� ������
������!�� �� ��
������!���

'� ���������
����; ����� ���� ��
 ����
���� �� ������� � �*� ��������, �������"

��
� ��� ������
���� ������ �� �����	�����,
��
��� �������" ��� ����������� ��

������
���� �
������"� ���������
���� �
� ��
����
�� �����"� ��� ��� �� ��"��
�

��"�
������

H� :���������; ��� ������� ������
���� �� ��������� �� ������� ���

�� ������
����

����
����� �� ����+�
���� �����" ��
������

����� �
� �� ��������� ��
��� �� �������� ��������" �� 	���� �� ����� ����
�����

�� ������
�� ��
 �����+� � � ��� ������
���� �� ����
����� �
� ��
������� 3��

��
����;

� ? � ' � H $�������!
����, ���������
����,
�� :���������%; ������ ��
 � �

����
����" ���

�� ������
���� ��
� �
� �� �������� �� ��
��� ����

�� �� ���

���������" ���*� ��������
���� $��"�, 	���
�������" ������
� �
��
������

������
����8 	� ����� ��������
 ��� ��
� ��
��� �� ��� 	
� ��
������

��������" �� ���

��
��� �
�� ��
 ����*�
������%�

� ' $���������
���� ����%; ������ ��
 � � ��
� �� �������� �������� �� ���
���

���� ������ � ��
 �������
�� ������� �
����8
� ��
� � �
� �����"�� ��<�����

���������" ���� ���

���,
��������
����
���	� ����� ��� 	�� ����� �� ��� � �

�� ���
�� ����
��� ������
�����

#��
����" ���
��
����������� �������� ����
����� ���� �� �������������� ��

�/�,
� � ��
�� ���
������ �� �

�
�� ���	���"� ������� ��� � ��
� ���� ���
����

��&��� ��'����������� ��'�
��

��� �/*� � � 1�"����
���� 1��������� �
� ����
�� ��� �������� ��
�� �������� ��

�����
 �����+� �
�
 � �, �������� �����" ��� � � ��"����
���� �������, ��
���	

�/ �� ���
��� ��� ������� ��
�� �� ���������

3�� ����������,
 ������B���

�� ��� ������, ����" ��������"� ����
� #4#, �
�

�� ����� 3����	��" ���� ������, �
�� ��� �� � � 	���� �

�
 ������ ���
��

���

�� ���� ��� ������ ���� 	���� �� ��+��
��� ��"������� ��
 �/ ����	����� ���

���

�� ���� 	���� ��
��������� �� �
�� ���� 	��� �������

&���
 � � ����� �� ��"�����
 � ��
 �/ ��� �� ��� �������� �
�
������ 	����

��
 �����������
�� ������+�� $
������!
����
��B��
��������
����
��B�� ����������%�

0�������" �� ��� ������� �������� ��
��, ���� �
�
������ 	���� �� ������� 3��

���������	
�� ���
����
�� ��� ���	��� �
��� #$

��
����, ��
������!
���� 	��� ��������, �� 	���� �� ������
�� �� �������
�� ���

������ ���� �� ��� ��9� ��
� 	���
������!�� ��
����� ��
� � �

��� �����	��" ����
���� �������
�� ��� ��� �� �������� ����
�����;

� �� ��9
��� ���
 � ; ��� �/ +��� �� ��� � � 1�"����
���� 1��������� ��
�

��������
���� ����
�����
�� ������� �� ��� � � ��� ��
� ������� ���
��

��������
��� ��� � �, �
���" ��� �� ��� � �*� �����

� �� ��9
��� ���
 � ; ��� �/ +��� �� ��� � � 1�"����
���� 1��������� ��
� ���

� �������� ����������� ��� �/ ���
�������
 ������ ���������� ���	��� ������

����
�� �/�,
� 	���
� ���	��� ��� ��9
�� ��� ������
���� �/ ����" ���

�������
�� ���� �� �
�� �
���

� �� ��9
��� ���
 � ; ��� �/ +��� �� ��� � � 1�"����
���� 1��������� ��
�

������!
���� �� �������� ��
����� ��� � � /
���" ��� �� ���
�������
��

����
�����, ��� �/ ���������� �� ��� ��9 ��
������!�� ��
����� ��� � �

 � ����� �� ��������� ����� �������� ����
����� �� �� ����
����
� ��
� ���

����������� �
���� �� ������� ������
���� �� �����������

���� ����%������

���� ��
���� ��������� ��� �����
� �����
����� ���	��� ��� ���
����
�� ��� ���	���

�
���� ��
�
�� ������ �� ����� �� ���
��� ��
�
��� ��+����� ��������
	
�� ���
���� ��

������ ���
��"�� ���	����� &� ��������� ��� ��
�� �� ���
��
�� ����
���� ���

������ ����
����� ��
� �
� "�
�
����
����� �� ��� ���
���� $����, ��� ���
��� ��"��

��9% �� ��� ����

�� ���	��� ������� ������
����� 3����������, 	� ���������

����
���� $� 0�% ��
�
���	� ���������" ���������"
�� ��������
���" ���� ������

�
���� �� ���
�������
�� ���
����� �� ������� ���� ����
���� �
� �� ���� ��

�
���� "����
� ����� �� ������� ������
����,
��
 ���� ���
���� ����������� �� �� ��

���
���� �� ��
���� >�

����	�����

?� ���
�
� , �	������ D, �!
� K, D
��
� K, /
���� 0, #

��
 :�)� "������ ������ ���

�������" �
���
� ���	���� ��
�
���
��
� ����
����*� (��
�����#� �� �"� �)�" ��������

������ �*�'���+� �� (������� ��� $�����%+��� (��
�����#, ����� '55H, ����, 3�
���,

�� ''G'6�

'� �������� 04, D
�
������
� -, L

����� /3, /����� 1�)1�������� �
���
� ���	����*�

(��
�����#� �� ,�" �
- �.�(, D
���, �
�
�
, 9������ '55?�

H� ����������)4���; ������� 4������
 ������ ��� �����
�� &����	�*� ����;BB			�

"��������������B�����M����B"���B, '55?�

#� 3
��
�� :�+����� ���������	
�� ���
����

A� ��
�� K, L��!
��� 4� D
�� �� ��� 3�����; � 1����
���
� ����� �� ������ :
������� ��

9���
���" ������ ����� � (��
�����#� �� ��'�
� .������� �*����� $�����'���� �9�0

'55H, �� ?HCG?A6�

E� D
��� �, D��� /, /���� �, #�
�� 2��)��� ��"�����
� �
������; ��
�
��� ����
���������

��� "���
� �
�
 "����*� � (��
�����#� �� �����
��'+���# �
���
�
�������
�, -
���,

I����
�, ������� ����� �� �������� �������, I��� 'EE5B'55', �����"��, 0������� AG6,

�� ?G?'�

6� D�
��
�� 1, L����� 0, 1����"��! �, ��
�� 2, I
��
� ��)9���; �� �
���
� ���� �������

���
���*� � (��
�����#� �� �"� &�" �������������
�������
� �� .'�� ��
"���
�+��� ���

������� (��#������# $9#:��1�-%, 2��� '55'�

>� �
������ ��, 0� /��� -4, L���

�� /:, /��� L, I������ 2, I�����
 0�,)��� 4������

L�����; �
����
� ���	��� ����
���" ������ ��� ��
	���" ���	���
������������*� �

(��
�����#�� ���� .(���/
0*FF, ��	 K���, /
��� ?FFF�

C� �
����, /, �� ���)9�� ���" �� ���� ����
��; ���
��� �����
���
�� ������" �� ����������

������������ �
���
� ���	����*� � 49#�, 3�
���, ��������� '55'�

F� ��
��� , �
�����" 9, &���� D, -��" �&�)3������; � �����������
��������

������
���� ����
"�
�� ������

� ������*� &������� �� 0���"� ����� �� ���������

�� N������

������, 2��� '555, �� H??GH'5�

?5� 0� /��� -, �������� L�)0��
��� ����
���� �� ������������ �
���
��*� #�����

#������
���� ���������� �� ��� (��
�����#� �� ��+��" ���+�� ������������� 1�����#

�������
� �� �
���� ��������, O�����, �	��!���
��, 0������� AG6, '55'�

??� 0� /��� -, �������� L, ��
��4�
 #�)0��
��� 9���
���� �� ������������ �
���
�

���	����*, #�
��� ��� �����
�����
��
�������" ��� L�������
����, $# L 2����
�%,

�����
� ���� �� #�������#��� �������, 2��� '55H�

?'� 4���� �, 3�� /, ���	����� 2�)�� ������������ ���
�����
���� �
��� ������"*� �1��

'5558 �� >?GC6�

?H� &
�" 2�4, �� OO, L�� K ��)1���
���
�� ���������
���� ��
 ��
�
��� ������
���
�

���	��� ����*� � (��
�����#�� �� ���� ��������������
�������
� �� -�
"��� �������#

���
*%������
�, I��� ?, ��
����� '55', �� ???G??E�

?A� L��!
��� 4, �
����" 2, I�����
 ����� �, /������
� �, /����� 4� 9��� ���������
�

���� ����"� "���������� � (��
�����#� �� �������������
�������
� �� ��������

��#�������#, D�����, /, /
�, ?FF> �� C>GF6�

?E� L�
��� L, �� ���)������
����
� "���� ��
�����; ��� �
����
� ������ ����
���
����*�

�+�+�� !���������
��'+��� �*����� '55'8 �';$C%; ?55EG?5?E�

?6� L�����
, :, �� ���)�:� P����; /
���
��� ����������� ��������" ��� �:� *�
��'+���#

�� �
���
� ��� ��#�������# '55?8 $$?%; >CGCH�

?>� L���"���" �, /
������ 1� ��� 4������
 #������� I������ 5�6 0�
��, 4������
 0�
������

3����, '55', ����;BB"�������
�������B"����B���M"��B+���B0�
��������B�

?C� /�����J� �2, L�������
�� ��)9�����" ��� ���	���� 	��� #
��
�B9��; ��
��
���
��

������ ������ ��� �# �*� ���� ������� '55H8 �#$H%; ECG6A�

?F� 1
��
�
�� ��)� ��
�
��� ��������
������
��� ���	���*� #��0� ������, N��� D�������,

9������ '55'�

'5� 1
��
�
�� �, 3�
���� #, -
����� /, L
�� 1, ������� ��)� ��
�
��� ��������
������
���

���	���*� � (��
�����#� �� �
- ��!
.--, ��"��� '55?�

���������	
�� ���
����
�� ��� ���	��� �
��� #,

'?� 1�	����� �, 0������� #�)#
����; ��
�
���, ����������� ��J��� ���
����
�� ������" ���

�
�"����
�� ������������ �������*� �����
����
� ���������� �� 0���������� �������

#�
������ $/�����	
��%, -��������", 4���
��, ��
������ '55?, �� H'FGHE5�

''� ����������� 1�)� ��+������ �� ������������ ���	�����" ��� ��� ��
���+�
���� �� #�������

#���
������������
��
�����
�����*, 3���� �����
����
� ����������� �� #�������#���

��������" $#'#'55?%, ���� Q���", �	����, '55?�

'H� �����
 , �� ���)�����; � ��
�
��� ������������ ������ ���
��� ��� ��������
�����
�����*�

��/ � 4�9// *5?, �
� 0��"�, ��, ��������� '55?�

'A� �����
 , /����� 1, L
�"�� 0, L

����� /3, D
�
������
� -�)�����; � ��
�
��� ��������

���� ������ ���
��� ��� ��������
�����
�����*� � (��
�����#� �� �
- ��!
.--,

��"��� '55?�

'E� � ���� ����;BB			����
������

'6� ������ :, 1����� D, L����� #, /
����J� 3, /������� �, 2����� &, I���
���� #� 9���

���������
���� ��
 ������ ��������
���� ������, 0��
������ �� �������� �������,

L�N� ���
�� �������
� 1����� 			���������
���
����B�����B��B���
�������

#� 3
��
�� :�+����� ���������	
�� ���
����

�
�������� ��	
�����
 ������

�
�� 	
����� ������� �
� ���� ������	
 ������� �������� �� �
� ������������

�������� ��� �
��� �����������

���� �����	
�����

������������ ��������
��� ���� �������� �� � �������� ��� �
� ����� ��������

��� �
����	 �����
����� 	������������ ��� ���������� �� ��� �������

�����	��� ������������ �������� ��� �������� �
�� ����� �
� ���	��������
 ��

���� �� �
��� ������� �������� �� �� ���������� �
����	���
� �
��� ��������

��� �� ������ �
� ���
 �������	���� �� ��� ������� �����	�� �
 ������ �
����	

��������������
 �� ������� ����	�� ��	
 �� �������� ����	
��� ��� �����	�����

��������
����	 ����������� ������ �� ���	������ 	��� �
�� �� ��!�	��� ���� �
�

������� ������� �� ����� �� 	����� �
� ��� ���	��������
 �� ��� ����� �
� ����	

���� �� �� ������ �
��� ������� "��� ������ ���������� ��� �����	� ���������# ��

��!�	� �����	�����$���	�%	 �����	�� "�� �
� ���� �� 	���# ���� �
� ��������

&����	������ ��
 ������� �
�� ������� ������� �� ����� �� ��������� �������

������	�� ���� �� ��	
� �
�
 ��	��� ������� ������ ������������ ��������

����� �
����	 ��!�	���� �� 	��� �� � ��������� ��
 �� ��������� �����	�����$

���	�%	 �����	� ����	� �� ���������� �
����	 �����	� ��������� �� ������� &�

��	
� ������� ����������� �������� �����	������� ���������
 �� ����	������$

	������� '������� ������ ��	
���	����� ��� ������������ �������� ���� ��

	�������
 ���������� �� �	
���� �������� �����$���� ������� ���������
� ������$

���	�� ��	����
� ��� ������������
�

(��
 	��	���� ��� ������������ ��������
��� ���� �������� ��	����
� �����$

��� �� �
� ����������� �
� ��%������ �� �
� ������������ ������� �������)��

�������� *������� �� ��� +,-. ��%�� ��� �	
���� �� �
���
� �
��
��� ������� ��

���� �������� ������������� �
� %��� ��� �� �����
����� �
 �
� /������

	�������
 �
�� ��� ��������
�� �
����
 � ������ �� ������������� �����
��� +01.�

���� ��	
��
���� ������������� �����
�� ���
 ���� &��� ������ 2�
����

2��� 3�����$)��������� &��� 4���� � ,556 2�
� 7���
 8 3���� 9��

��� �
� ��
��� ��������
�� �
 &��& +,6.� 	���������� � ����� ������ �� �������

&	���� :������ ���!�	��� 3������ ��%������� 	�� �� ����� �� �
� ����	��� �
 ;��������

���������� ��� (����� *������ +<<.� �
��� ������� ��������������

�� ����

������� ���� �
� �
��� 	���������= �
� /������ ����������� &	���� :������� "&:#� ���

(����� &������ &� ������ ������������� 	�������	� > ?7&: +@,. > �� ����	���� ��

�
� ������	
 ��� ����������� �� �
� &	���� ��� ������������ �������� ��	
���$

������ �
������ ��� �����	���

?� �
� ��������� ��	������ �
� &: 	��	��� �� ���	����� �� ���� �������

&:� ��� ��	���$����	
�� �������� �
��� ��	���� 	�� 	���
 ��� ���
 ���� ���

���� 	���� �� �������	�� �� 	���� �
�� ���� �� ���	���� �� ������������ ����� �� �
�

��	���� ��������� �
����
 �
� �������� ?� �
� ����������� �������� ��	
 ����

�������� ���
 �
� ���	������ ��	�����
 �� ������� ��	���� ������� �
��� �������$

����� ?� 	�������� �� &: �� ����� �� �
� 	������ �� �
� ��	���� �
�� ��� ������

�
����
 ��� ��� �� 	������ �� ������ 	��������� ����%	������ �� �
� ���� ���
��

�
� ��	����� ?� ��
�� ������ �
��� ������������ A�������B ������� ���	���� �� �����$

���$�������� �
� &: �� �����$	������$���$�������� �
� &:B� ������
 �� �����

����%	 �� ����� �� �	���� ������� ��� ����	
�� �
�� ��� ���� �� ������� 	���������

	���������� �� �
� �������� ��������� �
����
 �
��� ?� 	�������� �
� ������� ��

	����� ��� ������
� ��� ���
 ���� �� �����
 �
� ��	���
������� ��� �
�

��
����� &	���� ������� 	��������� ��� ��� ������	��� �� ��������� �� ��������

������ �����
 ���� �	���� 	���������� ��� 	�� ���� 	������ ��� ������������ ���

����	
 �������� �
�	
 ������������
 ������� ��������� �� �
� �	���� ����� �� �
�

������� +06�CD.�

��� ���� ������	
�� ����� ��� �
� ����������� �� �	���� ��������= ������������

:��� ��� E�	����������� ?� �
� %��� ������	
� �������� ��� ��!�	��� ���� �
� �	����

���� ����� � ��	
����� �
�� �� �������� ���� ������ ���� ��	��� ���	������� 7��

�
�� ������	
� �
�	
 ���� �������� ������� ��	��� �������� �
� ���������
 ���������

������� �� ���	���� �
�� ���� ��	���� ����	����� ���
 �� ������ �� �
� ���� +06�CD.�

?� 	�������� ����� �
� E�	���������� ������	
 � ������ ������� �� ���������� ����

����
 ��	���� �
�� ������������ �������� ���� ��	���� ���� 	������� ���
�� �
�

������������ ������� 7
�� � 	������ ������� �� �� �	���� ����� �� E��	�����

E���������� �����	��� ����������� ��� ���	���� �
� �������� ?� �
�� ������	
� �
�

�	���� ����
�� �����$�� ��	
������ �� ���� �
� ��	��������� 	���� �� ���	�����

����������� �� ���	��� �
� 	���� ��� ��������� ������� �
��� �������� 	�� ����

��� �������� �����

���������� �� �
� ������	
 	
����� �
� ���� ���� �� �
� ����� �
� &: 	���������

�
� 	������ �� ���� ��	����� ��� �
� ��
����� �� �
� ������� 	�� �� ������� �
����	���

�
 ��!�	���� ��� �������� ���� �
� ������� ������ �
� ������
 �� ��!�	� �������� ����

�
� ����� ������� ��	
 ����%�� �� ����� �����	����� ��� �����	�� �����
����� ���

����� �������� �������� ��� 	������������� �
��� ����%�� ��� �	
����� �
 ����$

������� ����$���	�%	 �������� ��� ���	����� �
�� �
�� �
�
 ��� �������

�)��� ��� E�%	���� *������$&���� 3����	��

& ������ �� ������������� �����
���
��� ��������
�� �
� /������ ���������

�
��� &��& +,6�,C.
�� ��������
�� � ������ �� �	���� �������� ���!�	��� �
�

��� ������	
��
��� ���
 	����� �������� ��� ��������
��� ���� ���� ��

	������ �
�� +06�11. �� �
� ���� �� ������������ ��������� �
��� ��������

��� ��	��� �
� ���� ��	�� �� ��������������� �	�������� "����� ?E�))��*E3

�����	�� ������� ����� +@<.#�

���� ���� ��������� ��������

�
� ���� A������������ ��������B �� ���� �����
 �
 �
� /������ +6@. 	�������

�� 	
���	������ �������� ����� �� �
� ����	����� �� ������������ �������	�� ��

������%�� �
 �
� ?EEE ���!�	� -@,5 ��������� ����������� �
� ?EEE �-@,5 �����

��������� � �������	� ����� "�(# +-C�<C.� �
�	
 �������� � ������� ��������� ���

������� ����������� �������	�� ��� ���������� �� ��������� ���� ��
 �����

���������� ��	
�����
� �
� ?EEE �-@,5 �������	� ����� ��%��� �
� ���������

���� �
��� �� �������	��=

� **($�������	� "�� :E �������	�#� �
�� 	����	���� 	������ ��� ����������

�������	� �� � 	����	���� �� �����	��� �
�� ������ �
� ��	
���� �� ����� ��� 	������

����������� �� � ���
 ��� ����� ������� �
� ������� ������� ��� �� ��������

������

� 9$�������	� "�� :E �������	�#� �
�� ��%��� �� �����	����� ������� �������	� "&�?#
�
�� 	������� �� ���
��� ��� ������������ ��	�� ������� ������	�� ������	��� ��

��!�	��� �
� ������	���� �������� ����� ��
��� ����
������� ��������	��� ��

��
�� ����������
 �������	���

� F$�������	� "� �������$���� �������	�#� �
�� �������� �� &�? �
�� �����
 �����
���
 	����	���� ����� ������� �
� F$�������	� �������� �
� ��������
 �� 	����	����

����� ��G����� ���� �
� �	���� �������
�� �
�� ��������� �
���

� H$�������	� "� �������$���� �������	�#� �
�� �������� � ��	
 ��� �� &�?� �� �����

��
�
 	��������� ��������� ����� �� �
� ���� �� �����$����� �����	���

�
�� �������	� �����
��
���
�� ������� ��������������
 ���� ��� ����$

������= �����	� ��� ������	� ���	�%	� 	������������ �� �
� ��
��� �� �
� 9

������	���� ������ �
�� ������ �����$����� �������	�� �� ������� ��� �������

�����	�� ����� �������� ������	� ������	����� �� �� �����
 �������� �����	�� �����

�����	�$���	�%	 ������	������ �
� �����	�$���	�%	 ������	����� ��� ����� �� ������	

������	� ������	����� & �
��� ��
�� �� �������	�� �� ������ ������� ���������$

�����
� �
 ����� �� 	����������� ��� � ����	 ��� �� �������� ��������$���	�

������	����� +-C�1-.� �� �
�	
 ���
 �
� �����	�$���	�%	 ��� ������	� ��
��� ���

������

�������� ��	
�����
 ������
�

���� ���� ������ ��������

� ?E�))��������� ��� *������ E������ 3��������� ")��*E3# ������� ����� ���
������ ��	����
 ���
 �� ��!�	���� ������� �� �
�� �� �-@,5� �����
� A�� ��%�� � ���

�� �������� ��	
������ ��� 	������ ��� ���������� ����������� �
� 	������ ���

���������� ������ ������������ ���������� ��	
������ ������ ���
 ������ �� ��

��������� ��� ��������� �� �������� �
��� ����������� ���������������
B +@-�@0.�

�
� :E �� � 	����	���� �� 	��������� �� ��� �
���= 	������ �������� "*E# ���

���������� �������� ")E# ��������� �� �
� 	������ ��� ���������� "���������#

������ �����	�����
� *E�
��� 	������ ���	��������
 ��	
 �� ��������� ��� �������

�����	���� �
�����)E� ������� ���������� �� ������� ��	����� ��	
 �� ���������

����� ���	������� ��� �	
�������� *E� ���)E� ��
 �� �����	����	��� �� ����

�������� 	���������� "*E$*E� *E$)E� ���)E$)E#� �
�� ������� ��������
 �
���

�� ����	�� �������
�

� *E� ���� ���	���� �
� 	����������� �� �
�)E� ������ �
�
 	�� �	�����
 	������
�
��� �
�� �� �	
����� �
����
 ��)E ����� +16.� /�� ��G�������� �� ��	
 �

����� �������� �
�� �
�)E ����� �
���� ������� �
� ����� �� ���	���� ���������

��� �� ������$���	�%	 ����	�� ���	����� ����� �� �
�)E�� & ��	��� ��

��G�������� ��� ��	
 � ����� �� �� ���	���� �
� ����� �� �
�	
 �
��� ����	��

���	����� ��� ������� �� �
�)E +@5.�

� �
�)��*E3)E ����� ���� � ��������$���	� ������	
� �
�	
 �� ���
 �������
�� �
� �-@,5 ������� ������ ?� ��	��������� ����	�� ���	����� �
 ����� ��

�� �����
 	����� �
� A)E ���	��B 7
�� �
��)E ���	� �� ���� ������� �
�

	������ �� � ����	�� ���	����� �� �� ������ �� �G�������� �� �
� ���� ��������

���	��� 7
�� � ���� ����� ������ ��)E ���	�� �
�� �� �� ������ �� � ������	�

�������� ���	��)E ���	�� ��� ����	��� �� ���� �� ����������)E ���	� ������
�

�
�	
 ���� �� ��	����� �� �
�)��*E3 �������� ��� �
�	
 ����� 	����� �
�

����� ��� ��������� ��� �������� 	������ :E ��
������� 3�	
 ��)E �����

������� �
��� ������ �� ���������� ��� 	������ ���)E�= �����)E� �
����	

)E� ��� �
����	 ����������)E 	������ ��� 	��%��������� �
� %��� �����

������� �
�� �
� ����	���� �� �
�)E �� ������
 ����� ��� %���� �
� ��	���

����� ������ �
� *E �� ���	���� ��� 	��%���� �
� ����	���� �� �
�)E ���
���

����	���� ���� � %���)E ���	� ������
� �
��� �
� �
��� ����� ������

*E� �� �������� ���������� ���	��������
 �� ��� ����� �����
)E ���	��

����)E��

���� �!"� ����#� $��%��&' ��������

&	���� �������� ��������� �
� �����$���$������� ������� ���� �
� �����$	������$

���$������� ������� +,-�,0�C,�D5.� ?� � ������	 ��
 �
� &	���� :������ ����� 	��

�� ���������� �� �������=

�()��� ��� E�%	���� *������$&���� 3����	��

� �� 	����� �� ��	
���	���� �
�� ������� ��������� ��� ��������� ��� ������ ����� ��
�� 	��	����� ��� ����������� �����
�

� �� ������� � G�����%���� ����������� �� �
� ������ ��� �����	������
 �� �����	��
�
�� 	�� �� �������� �� �
� ��������

� �� ������ �����	�����$���	�%�� 	������ �� ������� ������	���

�
� ��	���� ��� �	���� �� �
� ����� �
�� �
�
 	���
 ���	������ 	��� �����
�� ���

�
��� ���� ��
����� �
�� 	��� �� ������	
�� ��� ���	���� �� ���������� "�	����# �����

�
�� ������� ���������� �� �
� ��	��� ����� �� ���� �� 	
������ �
� 	������ ����� ��

�
� ���� �� �� ����� �
 �
� ��	���� �
�� �������

��� ������	
�� 	�� �� ��������������� ����� �� �
��
�� �������� ��� ���� ���

	������ ���	�����
� �����
 ���
�� �������� ��	���� "���$��$����# �� �� �� ����������

������ "��$����#�

?� �
� ���	���� 	���� �
� ���� �� ��!�	���� 	��� ���� �
� ���� ��� �
� ����

�� ���	������ ��	���� ��� ���������� �
� ���� �� ������� �������� %��� ��!�	��

�� ��
�� 	��������� 	��� ���� �
� ������� ����� � ���
� 7
�� �
� ���� ��	���

�������� ���
����� �� �������� ��� �
� ����������� ������������ 	��� �� ������

��� ���	���� �� ���	��� �
� ��	��� 	������� +0-�10.� 3������� 	��� ������� ���

���	����� ��	
������ ��
 �� ��G����� ��� �
� 	������ �� 	��� ���	������ �
��

���������� ������ ������� ��������� �� �
����	���
 �������� 	���� �
�	

������� � ����B� 	����������� ��� ��	���� ��������� ��� ���	����� �
 	���������

&� �
� ��
�� ������� ���� �
� ���������� ������	
� �
��� 	��� ��� ���� ���

	������ �
 �
� ���� ��	��� +@5.� ?� �
�� 	������� �
�� � ��	��� ������� �� �

����� 	��� ��� ���� ��� ���������� ��� �
� 	��� �� ������ �� ���	��� �
�

��	���B� ���� �� 	
���� �
� ����� �� �
� ����� &

���� ������	

�� ���� ����

�������� +@.�

&	���� ��������
��� �
��� ��� �������� �������	� ��	
���	���� ����� +,,.

����	��� ��)����� @�-�

��
�����
����������= �
� E��	����� E���������� �� � ������� ��	
��� �� �
�	

� ���� ���	��� �� ���	����� EE� ��� �
� A�������B ������������ �������� �
 �
� ����

�� ���	��� ��	
 ����$��%��� �����	� �� ���	����� & �������� EE ��
 �� �������� ��

��	
 �����	� ������� �
 � ����� �
� EE� ������	� ���
 �
� :���/3 �
����
 �
� :���

?������	��

��	� ��������� �������= :���/3 �� ������ �� ������� �������� EE� �����$

��������
 ��� �� ������� � ���� ����� �� 	����� ���	��������
 �
�� 	�� �� ����

�
 �
� ��������� EE�� �
� :���/3 �� ����������� ��� �������� �
� ������	�� ��

�
� ���� ��� ��������� �� ������	���� ������� �
� ���� ���	����� ��� �
�

������
��� �
���� ������	��� �
� �
���� ������	�� ��	���� *�F$	
	���� ���$

��
� ������������ ��������
 �� �
� ������ �

��	�� ������ ��	� �
� :���/3 ��

����������� ��� ������	� ����	����� ���
�� 	������ ��	
������ �
�� �������� �
�

��������� �� �
� EE� ���� ��	
 ��
�� �� �
��� ��)����� @�-� ?� �� ����

����������� ��� ��������� �� �
� ��������� ���� ���	����� ������� �� �
� �����

�������� ��	
�����
 ������ ��

:� ���� ���	��� 	�� �		��� ������	�� ��� ��������� ��������� �� ��
�� ���	������

�
� :���/3 ���� ������� �
�� �� ������ ���	���B� ��� �� ������	��
������

�
� ���������	� �� ��
�� ���� ���	����� �� �
� ������ ���	������� �� �
� ����

�������

��� � �� �!������= �
��� ��� �
� ���
� �� 	������	����� ������� �
� :���/3

��� �
� EE�� ������� �
� ��������� EE� �� ������� ��� ������� ������ ��	���� ��

	������� �������� �
��� ����� �� 	
�������

�
� &	���� :������ ����� ���	����� �� &	���� :������ �� � ������� �� �	����

��� ����	
 ����	���� ������ �
� �	���� ����� ��� �
� ���� ��������� �
����

":���/3# > ��� ��	�������
 �
� ���� �� ��	
 ���� > �
��� � ������ �� ���	�����

������������ ��
 	������ �� �
� ���� �����)�����
� � ������ �� &	���� &����	�$

����� "&&# ���� ��� �� �����	�� ������� �
 �
� EE�� �
� &: �������	� ��	
���	����

+,0. �� �������� �� �������������
 ������� � ��������	��
 �� EE� �� � ���� ����� �
�

	������ �� �
� :���/3� ?�� ��!�� :���/3 ���	����� ��� �� ������� EE� ���� ��	

��
�� �
����
 ������	� ����	����� ��� 	������ ��	
������� ��� �� ������� ��	����

��	
������ �� �����	� EE ��� ���� �����)���
������� ���
 EE� �� �
� ���� �
�� ���

������� �� 	������	��� ���
 ��	
 ��
��� �
��� EE� �� ��������� �
��� ��� ����

	��������
 �������� ���� ��	
 ��
��� ?� ��������� �
� :���/3 �������� ��
�� ����	

��	�������� ��	
 �� 	�	
��� �� 	��� ������������� �
�� EE� ��
 ��� �� �����
��
��

������	����� �� �� ��������� �� �
��� &&�� &�� �
��� 	����������� ��� ��	��������� �

�
� ���� �������	� �
����
 �
�	
 EE� ������	� ���
 �
� :���/3� �
�� �� �
� �������

%��� ����� �� �
�	
 ���������������
 �� �	
����� +66.� ?� 	�������� EE� ��������� �

���
 ����� ��%������ �� � ������� &�? ������� ���� ����������� ��������� ��

������� ��	
���� ��	
 �� �
� 3������ H(�� ����� ��	���� ��� �
�� 	����� �� �����	

&�?� �� �
� ���� �� � ������ ���� �� %���$���� ���������� +,0.� �� �
�� ���� �� EE

����� �
� ���� �� � ���������� ������� ��� 	�������� 	��������� ��� �����
���

�����	���

���
�� ��� &��& &	���� :��� &�	
���	�����

��)��� ��� E�%	���� *������$&���� 3����	��

���� "�����))�*�� $��%��&' ��)������'

�
� ��������� ��	����� ���	���� �� ���� ������ �
� ���� ��	
������	�� 	���������

�� ������������ ��������= :��� /�������� 3
������ E��	����� E������������ ���

(��������� 3
������

"�"�#� ��	� ��$ ��	� ��������� �������

�
� ��� ������	� ������	
�� ��� �	���� �������� ��� �
� ���� 	������ +<D.� �
�	

	�� �� ���� �� �� ������� �� ����� ��
�� ������� 	��� �� ��!�	��� ���� �
�

������� ��� �
� ������ ����$�� +,D. ������	
� �
�	
 ��������� � ���������� ����

����������� ������ ��	
���	����� ������ �������������
��
$���������	� �	����

������� ������

?� �
� 	������� ������	
� ����
 ��	��� 	������ 	��� �
�� �� ���	���� �� ��	
 �����

E������� �� 	������ ���	��������
 ���
������� ��	���$������� ��G����� �� ��
����

����%	������ �� �� 	������ ��� �� � ����� *������� ���� ��� �� � ������� ��	
���

�
�� ���������� �
� 	������B� 	��� �� �����
 ���	��� �� �� � ����� �
� ������� ��	
����

������	� �
� ������� ���	�� � �����	���� 	������ ���
� �		��� �
�� �������� �
�

�����	����� �� 	��������
������ �
�� �� ���� �� ����� �� ������ ��	����
�

& ������ �� ���� ��������� �
����� ":���/3#
��� ���� �������� ���
 �
� ���

�� 	���������� ������	��� �� �������=

� %�&'�� +6-. ���������� �
� �	���� ������� �������	� ���	�%	����� �� ����

���	� �� 9���� +@6.�

� ���() +6,. �� ����� �� ������� �, ��� ���������� �
� ���
 ������	����� ?� ��

� ������ ������� ���	� ������	
 ��������� �
���� ���
��� ������	� 	������

��	
�������

� �*���%�& +0-. ������� �
� ����� �� 3	��� ��� �
� ���
 ������	������)����

	�� �� ����� �� ����$�� 	
����� :� ������	� 	������ ��	
������ ��� ���������

*������� �� �������
 ����� �� � ���	�%	 ������� �� :���3 +6<.�

�
+�,
*�
� +,C. ����������� �

��	�� ������	�� �
 ��������� � ��$	����� ������

��������� �
���� �
�� ������� �������	�� �
�� ��� �� 	���� �� �
�
������� ��

��������� &� ��	
 �� �������	�� �� ������ �� �������� ����
���� & 	���� ������������ ��

	��� ��������	
 ��� �
� ��G�������� �� ��������� ����	 ���	��������
 ����� ��

����	
 ��������� �
������

� ��*� +C6. �������� �� �	���� ���� ��������� �
���� �
�� �� ����������� ��

7������� ?� �������� �� ���	����� ������������ 	����� � ���	������ ������������

���� �
�	
 �	���� 	��������� ��� ������� �
��� 	��������� ��� �����	����	��� ��

���� � ����
 ������� �� �
� 	��	���� �� 3	����

�������� ��	
�����
 ������ ��

� '��% +1D. �� � ������	
 ��������� �
���� ����� �� �
� /3;��� ?� ������� ��

�������	� �� ��G����� ��� �
� 2���� +<@. ��������� �
����� 2���� 	������ � 2���

������� ��	
��� ���
 ������	� 	������ �� �����

� �
'
�-� +@@. �� � ������	
 ��������� �
���� ��� ����������� ���$�����	

	������	������ ?� �������	�� �
� ���� ����	���� �� ����� �����$���	��� 	����$

��	����� ���
 ����$	��
 ��	
�������

� .*��)� +<-. �������� � ��������� ��� ���� ��������������
� ?� �� ����� ��

9���� ��� ���� �� ������ ���	�� ?� ������� �
� ����$�� ������	
 �
 ��������� ���

��� ���	����� ������������

� �-�, +1. �� ��������� �
� ���
 ������	���� �� �
� ������ ���	� �
 ��������� �
�

9���� ������� ?�� ��	
���	���� �� ������� �� �
� 9���� ���%���� ��	
���	���� ���

��	��� ���������

)���
�� ���� �� ������ �� ����� �� �		�������� ��
 	
���	�������	� �
�� ���

������� ���� �������� :��� /�������� 3
������ ��	
 ��=

� (��������� ��� 	������ ���	��������
 �
�� �� ��� ���� 	����	�� ��� 	��

�� 	������ ��� �� ������� ��	
���� ���
��� ��������� �� ������� ����

���������	��

� 3�����%	����� �� �
� �����
���� ��� 	��%�������� �� ��	������ �����	� 	����$
����� �� ��������� �������� ����$	�������� ������

� ������	� 	������ ��� �����
 ������������ �

��	�� ������	�� �� � �����
� '��
 ���������	� ������������ ������� ���� ��	
���	����� �� ������� ��	������
���������
 �� �����	�����$���	�%	 	��� ��� �� ������ 	��� ���	������ �� ������ ����

������

� 3����	� 	���������� ��� 	������� &� �������	� �� ������� �����	� 	���������� ��
���� �� ��� 	��%�������� �
���� �� ��������� ��	
 �
�� ���������� ��� 	������

	��������� ��	��� �������� ��� ��������� :���/3��

� ?������	�� �� ���	��
 ������	�� �� � ���
 %�� �������� �������
� ?������	�� ��� �����	�������� ��� �����$EE 	������	����� �� ���� �
� 	������� ��
��	������� �����	���

"�"�/�

$
��
�����
�����������

�
� ��	
���	����� ��������� ��� &	���� :������� +,,. ��%��� � �
���$��
�� ���	� ��

��	
 �	���� ����= :���/3� E��	����� E����������� "EE#� ��� &	���� &����	������

"&&#� �
� E��	����� E����������� ������ � ����������� ����� ��� ���������

&	���� &����	������� �
�
 ���� ���� ���� ��� �����	�����$����� ����������

+@1�@D�11.� ?� ��������� � ���������� EE +@<. ��� ���������� &	���� &����	�$

����� ��� ������
 ��������� �� ���������� �� ����� �� ����� ���������� �����	�� �� EE

�� && ������ �����	�����
�

��)��� ��� E�%	���� *������$&���� 3����	��

�
� ��������� ���!�	�� ������� ���	����� ������������=

� ��)� +C. �� � 2���$����� ������� ��� 	������	���� �� &	���� :������ ��� ���

�����	������� ?� �� ����� �� � 	������ ������	
� �� �
�	
 	��� �� ����	����� ���

��	���� ��� ��� �� ����	��� ?� ������� �
�� ��� �����������

� ��. +-D. �� ������������ �
� A������ EE �����B �
 �������� � ����$�����

��������� �
���� �� �
� &&� ��� � 2���$����� ����������� ������������ �
�

������
��� 	����������� �� :���/3 ��� 2��� ��� ��
��	�� ��� �� 	������

	������ ����� ���	��������
 ��	
 �� ��������� ��� ������� ���������� 	�� ��

���������

� ���
� +,<. ��������
��
 ���������	� �
��� ���� ���������� �
����	 ����%	�$

���� �� ������� ��
����� �� ������� ���	�%	 �����	������ ���I�� ������� ���

�����	��� ?�� E��	����� E����������� ��� ����� ��� 	�������� �����	�� ���
�� �
�

������� +1C. ��� ��� �� �
� ������ :���/3 +6-.�

� ��-� +06. �������	�� �
� ������� ����������� "HE# �� � ����� �� EE�� &� EE �
��

�� 	
���	������� �
 �
� ����������� ���
������
 ��� �
� ����������� �����$

������ �
�� �� 	������ �� � ������ �� �
� ���
������
 ����� �
� EE �
�� �� ���� ��

��
 �������������� �������� ?� 	�������� �� EE ������	� ���������� �
� �����������

�� �
� EE �
�� �� �
� ���� �� � ���$���� ����������� �
 ����� ���	�%	

�������������� ��	
�����
� ��� ������� ����������� ��������� ��� �������

��	
������ �� �������� ��� ���������� �
�)&?: ��	
���	���� ���� ������ EE� ��

������ �� ��
 �� �
� �
��� ����������� ������� �����
 ���������� 	������� ���

����������� �
��� �
�
 ��
 ������	� ��� 	������	��� ���
 ��	
 ��
�� ���
��

�	���� �
� ������ �� ���
�� � ������ ������ 7��
�� � HE� ���
 �
��� �� EE ���

�
��� ������	�� ��
 �� 	������� �� ��������� ���I�� ����������� � �����	�

+--�-1.� & HE ��
 	���	��� ���
 �� �������������� "EE ������	�# �
�� ��

����� ���
 �� ��� ��	
�����
� ��	
 �� 2���� E�	
 ���� ����
��� ��� ����������

HE �
�� �� ������������ ��������	���
 �
�� �
� ���� �� ������ �� ��� ������ �� �

	��������� ��	
����� �
����
 �
�	
 �����G���� HE� ��
 �� 	������� �
��

���������� HE �
���� �� ����� �
 �
� ������� ��������� �
�
�� �		��� ���
��

�� ����������� �
� ��G������ HE �� ��
��� �� � 	�������� �
�� �� �	
����� �� �
�

���������� ����� �
 � HE ������� "HE(#�)��� �
�� ���������� �
� 	������� ��

HE� ��	���� � ���� �� ���� �����	��

� 9&:E +,@. > 9��
���� &	���� :��� E����� �� �� �	���� ������� ���������

	��������� ��� ���� �	���� 	���������= &	���� 3����� "&3# ��� &	���� ������

"&�#J �
��� �
� E��	����� E���������� ��� �
� �	�����
 �� �
� ������� ���

���������� &	���� ������ 	������	���� ���
 &	���� 3����� �
����
 �
� &	����

������ &�?�

� .��� +0D. �� � ���	������ �	������� �������� ���
 ������� 	������������ �������� ��

���	��� �� �������� �
� ����������� 	������	� �� �
� �������� �� ��� �� ������

���������� �� ����
�� ���	������ �����	������ +<5.� ?�
�� ������� ����� ��

��������� �
�� ��� �������� ���� ���������� ?� 	�� ���� �� ���� �� � A����B ��
��

�������� ��	
�����
 ������ ��

�
�� ������ �		��� ��
��
�� ����� �����	��� &� ��	
 �9&: ������ �
� ���������
 ��

�	���� ����������� ���
��� ��	��%	��� ��	����
�

� ���. +C0. �� �� �	���� ���������� �
���� �
��� ����������� ��	���
������ ���

�����	�� ���
 �������� ������� �� � ���	���$������� ����������� ��������� �
�

3:&� ��������
�� ���� �������� �� �� ���	��	�� ��� ���
 � ��	�� �� ��%	���	
�

���������
� ��� �����
� ?� ������ �����%	��� ������	� ����� �����
� ��� �	
�����
��

������ �� ���������	� �� �
� 	��� �� ���������
 ��� ��������
� & �9&:$��$3:&�

	�������
�� ���� ���� ��������� +<5.�

�)�'���-* +0C�01. �� ����� �� 2��� ��������� �������� �	���� ����� �������

���������� �	���� ����� �
�� ��� ���� ��
����� ��������� �����	������ ��� �������

���� ������� �� �
� ���� ����� ��� ���� ��������� �����	���= ������������ 	������

�����	�� "�*�# ��� ���� �������� �����	�� "F �# ��� ���������� �
� �	����

������� ��	��������� �����	�� "&:E�# ������ �� ���� �� ���� ���� ���� �	����

���������

"�"�0� .��������1�� '��������� �����
��

�
�� ��	���� �������� �� �������� �� �
� ������������ �������� ��� �
� ����������

�� ������������ ���������

� ��� +,1. > &	���� :������ :��� ��	
���	���� ����� ��� �� �	���� ��	���� ��

�����
 �����	��� �
��� ��	���� ������� � �������	� �� � ������ ����$��� �
�	

	������� �
� �����	� ����	� ?� ��� 	�	
�� ��	���
 �� � ����� ������ ����$��� ���

���	
�� ���� � 	��� ������ ��� ��������� �� �
� �����

� ��)� +1<. > &	���� :������ ��������� 3
���� ���� �	���� ��	����� �
�	
 	������

�������	�� �� 	��� ������� �
�� ��� �
� �����	� ����	� &� �
� ���� ����� &:�3

��%	�����
 ����	� �� ��$���� �����
���� ��	
������ &� �� �
� 	��� �� &::� �
�

	
��	� ������� � 	���������� ��� � ����������� ������	
 �� ���� �� �
� �����	�

���������

� ��2*�-2 +<. > &	���� :������ ���������� /��� ?��������	���� ����������

������%�� �� �����$ ��� ����	
$������ ��	
���	���� ��� �
� ���������� ��

&����	����� 9�
�� &	���� :��������� "&9&:# +6�00. ��������� ?� ��	���� ��

�
� ���������� �� �	���� �������� �
��� ��������������
 �� �� �
� �����	�����

����� �� ��������

� �%��
 '���3
'
�) +-�,. �� � &��&$��������� ������� ��� �
� �	����

�������� ������	
 �������� ?� �� 	��%����� �� � ������ �� ������� �	����

��������� &�� ������ �
�	
 ��� ������������ ��	���
� 	�� �� ���� �
 ������

����� �� ����� �� E��	����� E����������� ��� &	���� &����	������� E�	
 ���� 	��

��� �� ������	� �� �
� �	���� ������� ���������� ������ > &���� �
�� ������

������ ������ EE ��� && ���������� �� �������� 	��%����� ��� 	������ EE

������	�� �� �
� �������� &���� �������� ��� ��
 ���������� ���	�����=

�+)��� ��� E�%	���� *������$&���� 3����	��

"�# �������������� �� �	���� ������� ��	���� ��	��������� ����� �
� &	����

:������ E�	���������� �����	�� �� �������� EE� ��	���� �� �
� ���� �������

����J "��# �����
����� 	��%��������� ��� 	������ �� ������� �������� ��� EE

������
����

� �%�
 +0�<1. > &	���� ���� 9��� E����� ��������� �
� ���������� 	
��������

�� ������ 	������ ��������� ?� �������� �� �	���� ������ �
�� �� ����	
�� ��

��
 ?� ������ �� ���� �� �	���� ����� �
�	
 ���	���� �������� �
�� ��� ��������

�� �
� ���������� ��� 	������ �� �
� ����	
�� ������� �
� �	���� 	��� ��

����������� �� 2���� ��� �	���� ��	���� ��� ��	��������� �� � �������� &:E�

����� ���� F ��

� �4�'. +-5�0<. > &	���� H������ :������ (��������� �����	���� �� � ����	����

���������� �
���� �	
����� �
 �������� ������� ����	�� ���
�� �
� �������

������� ��� ������� �
�� ����� �
��� �� ���� ����� �
��� �����	����� 	�� 	��	���

���
�� �
� ������� �� �� ������� �����	�� 3����
� �
� �������
�� 	������ �
�

�	���� ����� �� �
� ������� ���
 �������� �����	������ ?� � �������� �����	���� ���

��	����	�� �
� 	��%�������� �	����� 	����� �
 �
�� �����	���� ��� ������� ����

�
� �������� �
�� 	����	���� �� ���� �
����
 ���	��� ����� �� �������� 	�����

�������������

� %������ +-0>-@. �������� � ���������� �
���� ��� �����$����
 �	���� ���������

� ��-� +6@. >)����� &	���� ?� :������� �� ����� �� ��������� �� ����	
$�����

���������� ��� ������������ ��������� ?� ���� �������� 	��������$�����

�����
���� ��� ���������� �� �����	�� �� &	���� :������� +6D.�

� 3���� +0@. �������� � ������������ ���������� �
���� ��� 4�? �����	���

� �����
� +0,. ��%��� � ��������� �� ����� 	������ ���������� �� �
� ����	
$

����� ���������� ��������� �������� �
 �
� ?E�)� *������� ��������� ����

��G��������� ��� ��� ���� ��� �����	� ����������� ��� ������� ������� 	��$

%��������� �
��� �
��� �� 	������ ��� ���������= 	������� �
�� ��G���� ��	������

���� �
� ����	
 ���	����� ����� "�E�# �� �
� ����	
 ��	����� ����� "� �#� 	�������

�
�� �����
 ��	������ ���� �
� � � �� �
� �E�� ��� 	������� �
�� ��������� �������

?3���

� ,��� +<@. �������� � ���������� ��������� �������� �� ����	� ����������

����%	 �
 �������� ������� �������� �� ���� ��	������� �
�� �� ���� �
 ��%����

�	���� ��	����� �
�	
 ���
� ���� 	������ ����	
 ���������� ��� 	��� �
�� ���

���	���� ������ ������� ��������� �
�� ������ ������� �������� �� ����

����������� ����������� ��	�������

� 5��� +<,. �������� � ��� ����������� �����	� �����
���� ���� ������������

���������

� 5�
 � +<5. ���� � ������������ ���$��$���� ������	
 �� �����	� �����
���� �� �
�

������� ������ ?� �� �������� ������ ������������ ��������� ���� �� � 	����$

G���	�� ���� ��� ���� ���
 	��� �����
�����

� ,���	� +<0. �������� � ���
�� ��� �
� �
����	 ��������� �� � ����	
$�����

���������� �
���� �
 ����� �� ����	��� �� �	���� ��������� �
� ���
�� ��%���

�������� ��	
�����
 ������ �

��� �
��� �� ����	
 ��� ��������� �
�� ���������= ����	
 ��%������ "� # ��� ����	

��������� "�E#� & ���� 	�� ��� � ��� �
�� �� ����	
 ���� �
� ����	
 ������ ��� 	��

���	��
 �
� 	������������ ���
��� ��� ����������� �
� ��� ����	
 �
��� ����

	������� �� ��������� �
��� �� ������� ������

� �
�)�* +60�1@. �� �� ��	
���	���� ��� :E����� 3���$���������� ��� /�����$

������� �
� :E3�/� �
���� ����� �� �����	� �����$��������� 	��%��������

���������� ���
 �
� ��� �
�� �� ��������� ��� �������� ���������� ?�
�� ����

����������� �� ��� 	�����������
 ��������� ��� �� ��� ����� ������� ��

�������� ������� 	��%�������� ���������� �	������� �� ��	������� 	��������
�

���
 ��	�������� ��������

� �'�*) .��,
)� +CC. ��	���� �� ����
��� �	���� �������� ��	
�����
 ��

������� ���������� ��� ����������� �
� ���������� �����	������ ���������

��� �������� �� ���������	 ��������� ��� ����� ����	����� 3���� ��	���� ���

��������� �
 ���������� �� ���������� �����	������ ��� ��� ��	��������� ��

&:E�� �
� &:E� ������ �� ����������� ��� ��	������ ��� ���������� �����

��	���� 	����	��
�

� �
*�.5-' +C<. ������� �
� �	���� 	��� �� �
����	���
 ������� ��� ��� �����	�$

����$���	�%	 ��	����
 ���	������ �
��� 	��� ���������� �
�	
 ��� ��	���������

������ �	���� ��	�����
��� ���� ����� �	���� 	����������� "&*#� &� &* �� ���� ��

	���
 ��� ���
 �
� �	���� 	��� ��� ���� �
� ��	����
 ����	��� 	��������� ��� �

�����	���� �����	������ ��� ���� �
� 	��� ������ �� ���� � ����	
 ��	������

� �
���'' +C5�C@. > 3���� E���������� ��� :������ *������� (��������� ���

(��������� ��������� �� �� �������������� �� � ������� 	������� �����������

������������� ����������� �����&	����:�������� �
�	
 ��������	
 �� �
� �����

��	���� �
���� �� +CC.�

� .�����6����
!&��� +@. �� �� ��	
���	���� �
�� 	������� �	���� ��	���� ���

�	���� ���������� �� ��%�� ��������� �����	��� &	���� ��	���� 	������ 	��� �
��

��
 	��� ���	����� �������� �
 �	���� ����������� &	���� ���������� ��
 ��

�
����	���
 ������ ���� �
� �	���� ����� &� �
� ������� ������ �����	� �����
����

�� ����������� �� � ������������ ��$���� ��
� ����� �	���� ��	���� ������� ��

&:�3 ��� &::� &	���� ��	���� 	������ 	��� "��$����# �
�� 	�� �� ���� ���� �

���� �� 	������ �����	�� ������� �
 �
����	���
 �����
�� �	���� ���������� "���$

��$����#� 3������ �� &:: ��� &:�3� �
� 	������ �� �	���� ��	���� ��
 ��

����%�� �
 �	���� ����������� �
�������� �
� 	
��	� ������� � 	���������� ���

����������� ���
�� �� �����
���� �� ���� �� �
� �����	� ���������

� .%�' > ����	
$����� ������� ���������� �� �� �������� ��	
�����
 +61. ���

�
� ���������� �� ����	������	������ ��������� ��:(�� �� ������� ��

������ &	���� :�������� ���
 �
� ?������� E���������� ����)��	� +<D�6C. ���

�
� ���������� (��������� ����)��	� " (�)# +05�@C. ��� ������� ��

��������� ��� ����	
$����� ������� �����������

� 4�� +,5. > H������ �	���� ������� ���������� �� � ���������� �
�	
 ������

	�������� �� �		��� ��� ������ � �����	� �� � ��������B� ������� ��� ��

��)��� ��� E�%	���� *������$&���� 3����	��

�������	� � �����	� ��� ��� ���������� �� � �����	� ��������� ��� �
��� �� EE

����� �� �
� ���������� ��	
���	����= �
� ���������� EE �
�� �������� �� �
�

���������� ������ ��� �
� �����	� �������� EE �
�� �������� �� �
� ����

�������� ��� 	������ ������� �
� ����� �� �
� ���������� EE ��� ������� �� ����

	��%�������� ��� �
� ���������� �� ������� �	���� �������� �� �
� �	����

������� ��������B� ������� ?� �
� H&: ��	
���	����� � �����	� ��� �
�

	������������ �����	� ���������� ��� �� �
� ���� ������������� �� � �����	�

�������� EE�

!�,������'

-� &�����
���=II�����������I�����I�

,� &���� > ?������	�����
���=II�����������I�����I������
����

0� &�9E= �
� &	���� ���� 9��� E������
���=II����	������$�����	��I�
�I&�9EI�

<� &	���� :������ ���������� /��� ?��������	���� ���������� "&: �/? #�
���=II

����	���	�� �	���I������	
I�������I�

@� &�������� 3� �� ��� A�
� 3���	
7��� &	���� :������ &�	
���	�����B -

 ������

���
��� -���� �� �
���� ��	 ���������1�� ������ � -DD1J ��"0#= ,D>06�
���=II����	���
���������I�����	
����I������I����	
��������

6� &����	�����$9���� &	���� :��������
���=II������������������I���!�	��I����I�

C� &?: ������� - 3����	� 9���	 �������)�������� 4�����	 ��G���������� ����

*������	������ ������	
 ?�	��)&$:7�$55--0,�

1� ������ &� �� ��� 3?9;= 3	��� ���
� �� �
� 9���� ;������ ��	
��	�� ������ ,55,$55D�

F������ F��������
�)������
 ,55,�

D� ������ 3� ������ �� 4������ E� �
� :������ ?I/ �����>:������ /	����� --� ,55-�

 ���� ��������
���=II�����������I�����I /*F(E:�3I����������

-5� ���
 3)� ;������� &� &	���� :������� ��� &	���� :������ (���������= & ����	����

(���������)��������� ;����� &	�����	I������ ������
���� :������� (&= ,55-�

--� �
����	
��!�� 3� A&	���� :�������= &�	
���	������ *����������� ��� &����	�������B �
�

 � �
����� 4������ ��	
� 2��
 -DDD�

-,� ������ 2� �� ��� �������� ��� ?� 9$�������	� &�	
���	����� ?EEE �-@,5�0� �-@,5I�3I

?�5-0� ,555�
���=II��������$�������I��	I�����K��	�I?�I�-@,5����5-0�����

-0� ������� (� �� ��� A(��������� �� ����	�� E����������� �
�� &�� ����� �� &	����

:��������B 7������ �� 5��! ����	 ������ �� (��	
I&���� ,55-�

-<� ������� (� A�������� �� �	���� �������� ��� ��� �����������B 7������ ������ ��

)���
������
������� ,55,�

-@� ������� (� �� ��� A3����	� ���������� �� �����$����
 �	���� ���������B -

�������
������ '���8���� (��	
 ,555�

-6� ������ 2� �� ��� A�
� ?EEE �-@,5 3�������� ?��������� ��� ������������ :������

?������	���B -

 �������
������� 3��	��� ?���� �� ������������ :�������� -DD1J �+
"-5#=
���=II��������$�������I�

-C� �!������ :� �� ��� A�
� �������� ���� �������
� �� 	�������� ����� �������

���������B 3��	��� ?���� �� ����	������	������ :��������� �� �
� 3���� �� �
�

�������� ��	
�����
 ������ ��

,-�� *�����
� -

 �������
������ ,55-J ��"-#=
���=II���������������I��	
����I
?EEE	��(��,55-5-K�������
������

-1� ������ �� �� ��� ?������	���� �� �
� &3� E��	����� E���������� "������� -�@#�

:������� 05� ,55-�
���=II�����������I�	����$������I&��I /*F(E:�3I&3�KEE����

-D� ������ ��)���� �� '�����
 (� A)��� �����	�� 3��	� �� �����	�� '���>���� �����

&�	
���	�����B '��:��� ?� ����	���� F��������
� /	����� ,55,�
���=II����	�����
�������

���I
������I������I�����������

,5� ������� (� �������� �� 3������ �� A3����	� 	������� ��� ���������� �� �	���� ����	��

�������������B �������
������ �� �!� ��'� ,55-�

,-� *������� &�� � (��� '4� ;������� (E� (��� ;� H�	���� 2�� H?����� � A& �����
 ��

������������ ��������B� ��' �-3��'' �������� �������
����� *������ -DDD�

,,� *������� ;9 "���#� &�	
���	�����)�������� ��� &	���� :�������� ���� ������� -�5� 2��

,C� -DDD�
���=II�����	�������������
����IL	������I��	
$����������

,0� *������ ;� �� ��� A ���	����� �� &	���� :��������B -

 �������
������ '���8����

-DD1�
���=II����		�����	
����I���!�	��I*&:E�I������I*���$(��$D1�����

,<� *��������� &	���� :������ E������� ���!�	� "*&:E3#�
���=II����		�����	
����I

���!�	��I 	����I�

,@� *&3�?&: ���!�	�
���=II���������	�����I�����	I���!�	��I�D55$������I�D,6I��������

����

,6� &��& &	���� :������ ��������
���=II�������������I���I��������I�	������������I

�	�����
���

,C� A &��& &	���� :������� *�������	� ��� E����������B &:*E ���	������� > ?EEE

*������� 3�	���
 :����� ��5-@6<� (�
 ,55,�

,1� �	����� � �� ��� A& �	�������
��
 ���������	� �	���� ������� �����B -

 ������ �

-DDD�

,D� �	����� � �� ��� A������ ����$���= & 3������� &�	
���	���� ��� :��� 4���������

��������B .��
��	���� �� ��' �-3��'' 9:;� H��	������ *������ 3�������� -DD1�

05� ���������� (��������� ����)��	��
���=II�������������

0-� �	����� � �� ��� A& 3	������� '��
$���������	� �	���� :������ :����B -

 ������ �

-DDD�

0,�)����	� (� &�������� :� *
������� /� &	���� :������� �� �)������� &�����	
 ��

 ����
 M�3 ����	
$����� (����������
���=II	���������!���	�	��I<10-01�
����

00�)�
 (� 4
��
 &� A&����	�����$����� �	���� �����������B �������� ������ � -DDDJ ��"C#=
6@@>66C�

0<� 4������ H� �� ��� A�����	���� ��� *���������� ������	� F���� �� � '������������ &	����

:�������B (?9*/(,55-� /	����� ,55-�

0@� 4���� &� �� ��� A������������ :������ &�����	
 �� 4��� (��������� ��� 3����	���B

?������������ *�������	� �� *������������ 3	���	� ,550� 9:*3 ,6@1� 2��� ,><� ,550�

��� --50>---0� �����	���	��������I������I?**3,550I�

06� 4���� &� ������ 3� ���� *� ;���� *� "���# A������������ :������� ��� ?� 3����	�

 ����
����A� &���	
 '���� �����J ��������	

�����	��J ?3�: -$@15@0$C<@$6J

��� <@5� 2��� 5<�

0C� 4���� 2� 9������ 9� A�&(&:/?�= & '��
$���������	� &	���� :������)���������B

&	���� (��������� 3����	��� ;����� &	�����	 ������
���� &����� ,555�

�()��� ��� E�%	���� *������$&���� 3����	��

01� 4���� 2$�� 9��EN ��� 9� A������ �
� ����� �� �� &	���� 4����B 9�	���� :���� �� *�������

3	���	�� *������������ 3	���	� $?**3 ,55,� H��� ,,05� &���� ,55,� ��� @C1>@1C�

0D� '�	�� (� �� ��� A�9&:= & ��	��� 9������� ��� &	���� :��������B .��
��	���� �� �!�

)!��	 ��' �-3.��� -������������ ��������
� �� ���
������ .���������� ����

������< ��� ;=>:0< ��'< ������1�� #::;< !���$66����
����������	�6�����
!����6

������6��������

<5� '�	�� (� (���� 2�� :������ 3� A*�������� �9&: �� 3:&��B ?7&:B5-� 3��������I

/	����� ,55-�
���=II����	������������I�!���I������I����,��������
<-� '!����
���� 4� A�
� ������ �������� > &)������� ������� ��� ����������� :�������

F���� � *�������
 /�������� 3
�����B /���&�*' ,555�

<,� '��� �� ��� �� 3������ �� A ���������� 3����	� ����
���� ���� ������������

:��������B 3/(,55-�)���	�� ,55-�

<0� ;����� O� A
����	���
 E��������� ����	
 3����� ��� &�����B .��
��	���� .���
��� ���

2�����1���	 ������� ��	 ������ �� ,55,� ��� ,06>,0D�

<<�
���������� ;� *������ (� A:������= & :�� &	���� :������ &�	
���	�����B)���� 2����

?E?I?EE 3
������� �� ����	������	�������

<@� ;��� ;� 3
��� 3� A �������� ����	
 :��������� 3
���� F���� &	���� :��������B 3�	���

?������������ 7������ *�������	� �� &	���� :������� "?7&:B,555#� ���
�� 2�����

/	����� ,555�

<6� �
� 2����� ���!�	��
���=II��������	����$�����I���!�	��I!�����I����	
�
����

<C� 3������� ��� &����	����� ����������� ?������	�� ��� &�(:�������� ?EEE �-@,5�,�

 ���� ,�,�
���=II��������$�������I���$���I������
����

<1� ;������� 2� ��� � 3
����� O� A�
� &	���� ���	��� ?�����	���� ���
 ?�� E�����������B

?7&: ,555� /	����� ,555�

<D� ?������� E���������� ����)��	��
���=II�������������

@5� ;
������ '� &������� �� ��G��������� ��� 3��������� �� ?� *������ ���)����������

2�����
 ,550�
���=II������������I?�������$������I�����$����$���	��$��G���������$51�����

@-� ?E�))��*E3� �����$����$���	��$���������$5<����� �	����� ,55,�
���=II������������I

?�������$������I�����$����$���	��$���������$5<�����

@,� ?7&: "?������������ 7������ *�������	� �� &	���� ��� ������������ :�������# >

��������,55@�����

@0� ?E�))��*E3�
���=II������������I
����	
������I���	��$	
������
����

@<� 2�	���� &7� �� ��� �
� 3E:*/((&�	
���	����� ��	
��	�� ������� ��: ��	
���������

&���� ,6� ,555�
���=II�����������	��I���!�	��I���	���I��	I��	
���	��������

@@� 9����� ?� �� ��� �
� ����� ��� ?������������� �� �� /�������� 3
���� �� 3������

 ���������� (��������� &����	�������
���=II����	��	����	���I������	
I3�4I�����I

���$���!�	��I�������I��	�����������
����

@6� 9�����
���=II���������������

@C� (���� �� A����	
 ��� ?���������� (���� "�?(# E����������B �*)0<65� 2�����

,550�

@1� (���
��� ?7� ��������
�� *(� A��������� �� G�����
 �� �����	� ��� �	���� �����	���B

�������� ������ � ,55-J �+"-#= C@>1C�
@D� (���
��� ?� �� ��� A&����	�����$����� ������������ �������� ���� ������������B %)

)�
!������ 7������ -DDDJ �
",#= 1,>D@�

�������� ��	
�����
 ������ ��

65� (��
��� �� �� ��� A ����
���� �� 3����	�� ���� &	���� :��������B .��
��	���� �� &)��

-�� ,55,� ������)���	�� 3�������� ,55,�

6-� (����� 3� �� ��� A������= & :��� /3 ��� &	���� :��������B .����	���� �� -

-���
�� ,555� ��� &���� ?������ (��	
 ,555�
���=II����		�����	
����I���!�	��I*&:E�I

������I�����������

6,� (���� &� �� ��� A3	���= & *������	������$/������� /�������� 3
�����B ?EEE '��/3

7����
��� (�
 -DD@�

60� :����� ���!�	�=
���=II���-�	��	�����������I�		I�������

6<� :���3 �
���=II���������������

6@� /��� 3�������� 7������ 4�����
���=II����	�����	�����������I�������I�

66� �������� 9 "���#� :��� /3 ?������	� 3��	�%	������ &: :��� /3 7������ 4�����

:������� 05� ,55-�
���=II����	������	��������I���I������I������$5,����

6C� ������	� &���	����� �����	�� ?E�)B� 74�
���=II������������I
����	
������I���$	
������

����

61� 3����� (� 9��� E� A����	
 3��	�%	����� ��� ������������ :��������B ?������������

7������ *�������	� �� &	���� :������� "?7&:BDD#� ������� 4�����
� 2���$2��
 -DDD�

6D� 3������� (� �������� (� ��	��� �� A*�������� ����� ����
���� ��� (��������� ��

3����	�� �� &	���� :��������B ���	������� ��)����
 &����� ?������������ 7������

*�������	� �� &	���� :������� "?7&: ,55,#� P?Q��	
� 3����������� ���� �� 9�	����

:���� �� *������� 3	���	� ,@<6� 3������� H������ �	����� ,55,�

C5� 3���� E���������� ��� :������ *������� (��������� ��� (����������
���=II�������

����	��I���!�	��I���	���I���	���$������
����

C-� 3�������� 7� A:������ (���������= 7
�� ?� ?� ��� 7
�� ?� ?��B��B �
��� ������ &����

-DD@�

C,� 3���
 2(� �� ��� A&	�������� ��������= & �������� �������B -

 �������� -DDDJ ��"<#=
0,><-�
���=II����	������	��������I���I������I������

C0� 3:&�= 3��� ��� :����� &	���� ��	�����
���=II����	������������IL���I3:&�I�

C<� 3����
�� ���!�	�
�������� 3����
��= ��������
����	 ?������������ 3�	����

&�	
���	���� ��� &	���� :��������
���=II	
��	���	�����	����I3�	����
I�����
��I�

C@� 3��	��� ���!�	�=
���=II�����������	��I���!�	��I���	���I���	���$������
����

C6� 3	
��� 3� �� ��� A)��������
����	� ��� 3	������ 3����	� *���������� ��� &	����

��������B ���	�������)����
 &����� ?������������ 7������ *�������	� �� &	����

:������� "?7&: ,55,#� P?Q��	
� 3����������� 9�	���� :���� �� *������� 3	���	� ,@<6�

3������� H������ �	����� ,55,�

CC� 3	
����� �� �� ��� A3���� ��	���� ��� &	���� :��������B /���&�	
 BDD� (��	
 -DDD�

C1� �������� �� '����� (� 9������ 2� A2����= & 2���$�������� /3 ��� �	���� ����������B -

7������ �� ����
��	 ����� �� �������
����� ,55-J ��"0#= @5->@-5�
CD� ������
���� � 2����
�� 3� A& �����
 �� &	���� :������ ������	
B� -

 ������

��
������ '���8���� -DDC�

15� H�� ��� (���� 2E� �� ��� A�
� ������� > & ���	��	��)�������� ��� :������

��������������
�B -

 ������ � H��� -,� :�� 0� (�
I2��� -DD1� ��� ,5$,1�
���=II

����������	
�����	��I������I��	�I�������K���������
1-� H�	���� 2� �� ��� 9$�������	� �������� ���	� &�?�� ?EEE �-@,5�0� �-@,5�0�3?�5-6�

,55-�
���=II��������$�������I��	I�����K��	�I?�I�-@,5K0K�3?�$5-6���	�

��)��� ��� E�%	���� *������$&���� 3����	��

1,� H�	���� 2� �� ��� A����������� ?������� M�����
 �� 3����	��B 0�� ?)?�I4? ?������������

*�������	� �� ������ ������ � F�������� 3����	� (������ (���	
� 4�����
� 3��������

-,>-<� ,555�
���=II	�����	���	�����������I�	�������I������I���55�����
10� 7��
����� � �� ��� A&:�3= &������� ��� �������� ���
����	���
 ����
��� :������

�����	����B ���	������� �� ?EEE /�E:&�*' BD1� &���� -DD1�

1<� 7��
����� � �� ��� A&:�3= &������� ��� �������� ���
����	���
 ����
��� :������

�����	����B ���	������� �� ?EEE /�E:&�*' BD1� &���� -DD1�

1@� O����� O� ;����������� &�)������� � A:E3�/�= &� ��	
���	���� ��� :E����� 3���$

���������� ��� /������������B -

 7������ �� ����
��	 ����� �� �������
������

,555J ��"@#= C@1>C66�
16� O��� 9� �� ���)��*E3)��������� E������)��	������ (����� (��	
 ,550�

1C� P����� E "���#� *��������� 3����	�� ��� &	���� :�������� &: *��������� 3����	��

7������ 4����� 3�������� -DD1�
���=II����		�����	
����I���!�	��I*&:E�I������I	�$

�����5$0�������

11� ;��������� 3� 4�� '� ��	��� �� A�����$/�� �� ?��������= E����������� ?���������� ��

&	���� :��������� ��� ������������ :��������B 3��	��� ?���� �� ������������

3���	
�� ��� �������� -

 7������ �� �������
������ ��	 ������ � ,55-J �"-#=
-D>,C�

1D� (����
���=II����	�����
����I���I!����I�����
����

D5� 7��
����� � ������
���� � A�
� &*�?HE ?� /�������B ���	������� �� �
� C�
 &*(

3?4/�3 E������� 7����
��� 3�������� -DD6�

�������� ��	
�����
 ������ ��

6
CAS Creation and Management –
System Architecture and Design
Considerations

In the preceding chapters the various aspects of context-aware services were

considered, including their nature, operation, necessary functional architecture,

and technological prerequisites. This chapter outlines the system components

supporting the required functionality, discusses their design, and presents the

relations between them. The resultant system architecture covers the aspects of

flexible definition, dynamic customization, automated provisioning, and mainte-

nance of services making use of context information.

6.1. Introduction

From the technical point of view the CONTEXT solution spans into three domains,

namely the Service Layer (SL) domain, the Active Applications Layer (AAL)

domain, and the IP domain.

The service layer domain deals with the modeling of the information expressing

the context of services, the modeling of the services themselves, and the required

framework for the service creation and management. The AAL-based solution,

with appropriate APIs to control the IP domain, allows the actual delivery and

management of the context-aware services. The control of the IP domain typically

includes configuring routers to intercept-specific packet types, or to alter routing,

traffic shaping, and QoS settings. The division of functionality into AAL and IP

domains is important; because the lion’s share of network-related services beyond

packet delivery can be deployed without affecting the behavior, that is code, of

IP-packet processing in routers. Being separated from the IP layer promotes

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

robustness—any mistakes at the IP-layer are likely to cause serious damage—and

efficiency since the IP-layer remains simpler and faster. This approach is also

known as ‘Application Layer Active Networking,’ ALAN [1], and, although

having different starting points, the notion of ALAN is fairly close to the idea

of Mobile Agents [5,6].

Figure 6.1 shows the domains of CONTEXT system and involved entities:

Users above and network technologies below. Under AAL we find medium-

specific APIs and network element abstractions. The issue here is to unify the

differences between media and network elements, so that the AAL code can be

isolated from the IP layer implementation details.

The CONTEXT solution has been coined as ‘ContextWare’ Programmable

Middleware [3] due to its position between service customers, service providers,

and the underlying transport network.

6.2. Service Layer Overview

The Service Layer (SL) domain is about the modeling of context-aware services

and the context information involved, and the creation and management of such

Low-Level Medium Specific APIs -

Policy-based
Service
Management

High-Level Service APIs

Service 1

Active Application Network Platform

Context aware
Service Creation

 Server

Consumer
Scripts/Users

Provider
Scripts/Users

Layers considered in CONTEXT

Network Element Abstraction

Service N
Service
Subscription/
Customisation
Server

Service Layer

Active Application
Layer

IP Layer

GPRS LAN WLAN

Figure 6.1 Overall CONTEXT System Architecture.

96 Fast and Efficient Context-Aware Services

context-aware services. Figure 6.2 presents the functional division of the service

layer domain, demarcated with polygons, and superimposed on them is depicted

the associated system architecture. Note that many functional components showed

in this figure were already presented in Figure 3.3 in order to introduce the service

life cycle of CASs. In addition to the previously described components, we have

now others dictated by the technology that has been used for the service layer

implementation architecture, namely the Policy-based Management approach for

Service Management and the DINA active platform for the Service Execution.

Therefore, we are going only to introduce the functionality of these new

components and we refer the reader to Chapter 3 for the description of all the

other components.

6.2.1. Policy Management Components

The Policy Framework is of generic nature and its purpose is to cater for Policy-

Based Service Management functionality. The framework involves the following

components:

Service
Customization CAS Authoring

Code and Policies
Generation Engine

Code Distributor

Service
Consumer

Service
Author

Service
Assurance

Code Execution
Controller

Policy Manager

Policy Decision
Making

Condition
Evaluators

Code
Storage

DINA
Nodes

SLO

SLO

Service Creation

Service
Execution

Policy based
Service
Management

CCO

Figure 6.2 Service Layer Architecture (SLO¼ Service Level Object, CCO¼Context

Computational Object).

CAS Creation and Management – System Architecture 97

� Policy Manager (PM), for receiving and managing policies, that is seeing that the

prerequisites of the enforcement of the policies are fulfilled, that the policies

are followed in all locations where they should, and that only up-to-date policies

are present in the system.

� Policy Decision-Making component (DMC), responsible for evaluating policies,

in other words assessing the system state changes against the policy rules and

initiating suitable reactions if required.

Various Action Consumer components (AC), responsible for undertaking specific

actions under the instructions of the Policy Manager—which in turn bases its

instructions on the decisions of the Policy decision-making component. For the

CONTEXT system the following functions were realized by the respective action

consumers:

� The Code Distributor AC, intended to implement the Code Distributor function-

ality.

� The Code Execution Controller AC, intended to implement the Code Execution

Controller functionality.

� The Service Assurance AC, intended to implement the Service Assurance

functionality.

These actions may be proactive or reactive. Proactive measures aim to configure

the system in order to better serve future requirements. One example of proactive

measures is the production of policies altering code execution tactics, so as to direct

future service activation requests to less utilized nodes of the execution environment

or to deny specific service activations. Reactive measures aim to rectify the current

operation of the system in order to improve the performance of currently executing

service code. One example of reactive measures is the real-time configuration of

individual operating service code or even terminating specific service code in order

for the rest to achieve the required performance.

6.2.2. Service Execution Components

The Execution Environment of the CAS code is distributed and based on the DINA

platform, in essence the active nodes of an IP network.

As noted earlier, the code will not be installed straight away into all active nodes.

Very likely it will be stored into Code Storage components to wait to be fetched as

need arises. This is required for the maintenance of the code base and for the sake of

user and code mobility. The storage point may be a dedicated server or a DINA

node. Decision on the storage location belongs to the policies defined for each

service.

98 Fast and Efficient Context-Aware Services

The Condition Evaluator components (CE) are responsible for providing the

Policy decision-making component with the necessary information for evaluating

policies. Each time a new policy is received by the Policy manager the relevant

Condition Evaluators that provide info for evaluating this policy must be configured/

activated.

The Condition Evaluators employed by the policy framework exist in the form of

active code executed in DINA nodes, receiving information from node interfaces

made available to them. Specifically, the interfaces are offered by the nodes’ internal

DINA Brokers, gathering, mediating, and standardizing the exchanges of informa-

tion for the benefit of active code. The pieces of active code, in this case Condition

Evaluators, also report events back to the Policy decision-making component via

these brokers, as configured per service policy.

6.2.3. Interfaces Between Service Layer Components

Taking into consideration the necessary functional components as presented in

Figure 6.2, we adopted the decision to make a physical architecture consisting in a

one-to-one relationship between functional and physical components; that is, each

function is implemented by means of one component. What follows here is an

account of the relations of the service layer domain components so far introduced,

including the relevant information they exchange, that is interface descriptions. The

interface descriptions are ordered to mirror the service life cycle and therefore they

consist of the implementation of the reference points considered in the Service

Layer Reference Points of Figure 3.4. An overview of the listed interfaces is shown

in Figure 6.3.

6.2.3.1. CAS Authoring

(Input) System Capabilities: The available system capabilities for constructing

Context-aware Services, based on the CAS modeling approach.

(Input) CAS Author: The input from the person responsible for defining services.

(Output) Service Definition Document: An implementation technology-independent

document describing all details required for a service’s creation and provisioning.

6.2.3.2. Service Customization

(Input) Consumer request: A consumer’s request for a service, containing all the

necessary service customizations representing the consumer’s individual needs.

(Input) Customizations Interface Configurations: A document specifying the

customizations interface exposed to the consumers for the specific service—this

document is based on the capabilities of the front-end technology implementing the

CAS Creation and Management – System Architecture 99

interface, for example, dynamic web pages and a set of policies realizing the back-

end logic of the Customization server.

(Output) CAS Customizations: A document containing the consumer’s specific

customizations for the service.

6.2.3.3. Code and Policies Generation Engine

(Input) Service Definition Document: Received from the CAS Authoring component.

(Input) CAS Customizations: Received from the Service Customization component.

(Output) Customized Service code: The actual code that implements the logic of the

service fulfilling the demands of a service subscription. The implementation technol-

ogy of the service code is compatible with the technologies supported by the execution

environment.

CAS Authoring

Code and Policies
Generation Engine

Code Distributor

CE

System
Capabilities

Service Definition
Document

CAS
Customizations

Customized service code

Notification

Broker I/F

Code Execution
Controller

Code Installation /
Maintenance

Code execution
message

DINA Node

Service
Assurance

Consumer
Request

Service
Customization

Reactive/Proactive
Configurations

Proactive
policies

Management
Policies

Customization I/F
configurations

Code Storage

Policy Manager

Policy Decision
Making

SLO

Configuration

CAS Author

Trigger
Action

Assurance
Monitor

Code

PoliciesActions
Decision

CAS AuthoringCAS Authoring

Code and Policies
Generation Engine
Code and Policies
Generation Engine

Code DistributorCode Distributor

CECECE

System
Capabilities

Service Definition
Document

CAS
Customizations

Customized service code

Notification

Broker I/F

Code Execution
Controller

Code Execution
Controller

Code Installation /
Maintenance

Code execution
message

DINA NodeDINA NodeDINA Node

Service
Assurance

Service
Assurance

Consumer
Request

Service
Customization

Service
Customization

Reactive/Proactive
Configurations

Proactive
policies

Management
Policies

Customization I/F
configurations

Code StorageCode StorageCode Storage

Policy ManagerPolicy Manager

Policy Decision
Making

Policy Decision
Making

SLOSLOSLO

Configuration

CAS Author

Trigger
Action

Assurance
Monitor

Code

PoliciesActions
Decision

Figure 6.3 Service Layer Components’ Interfaces.

100 Fast and Efficient Context-Aware Services

(Output) Management Policies: Management policies are policies resulted from

the definition epoch, pertinent to the service, and also policies resulted from the

customization epoch, pertinent to specific customizations of the service. These

policies will configure the policy-based management system for sufficiently mana-

ging the service.

6.2.3.4. Policy Manager

(Input) Management Policies: Received from Code and Policies Generation Engine.

(Input) Action Decisions: As decided by the Policy decision-making component.

(Input) Proactive Policies: Received from the Assurance component.

(Output) Policies: To be evaluated by the Policy decision-making component.

(Output) Action Triggers: Corresponding to Action decisions aimed at the relevant

action consumers.

6.2.3.5. Policy-Decision Making

(Input) Policies: Received from Policy manager.

(Input) Notifications: Received from the condition evaluator corresponding to the

necessary information for the policies under evaluation.

(Input) Assurance Monitor: Received from the SLO corresponding to the

necessary information for assurance policies under evaluation.

(Output) Action Decisions: Based on the information received by the relevant

condition evaluators and on the policies under evaluation, action may be decided.

These decisions are forwarded to the policy manager for their enforcement.

(Output) Configuration: Configuration info for the corresponding condition evalua-

tors, so as to support the information gathering for the policies under evaluation.

6.2.3.6. Code Distributor

(Input) Action Trigger: Received from Policy manager.

(Input) Customized Service code: Received from the Code and Policies Generation

Engine.

(Output) Code Installation and Maintenance: Is comprised by actions that perform

the optimal installation of the customized service within the storage points of the

execution environment and actions that ensure the reliable maintenance of the

installed code.

6.2.3.7. Code Storage

(Input) Code Installation/Maintenance: File managing instructions from the code

distributor.

(Output) Code: Code download capabilities using appropriate code URL.

CAS Creation and Management – System Architecture 101

6.2.3.8. Code Execution Controller

(Input) Action Trigger: Received from Policy manager.

(Output) Code Execution Message: Is a message dictating the execution of a

specific customized service code, at specific node(s) of the execution environment

with specific run time arguments.

6.2.3.9. Service Assurance

(Input) Action Trigger: Received from Policy manager.

(Output) Reactive/Proactive Configurations: Configurations of the operating code

aiming at optimizing its performance and/or the performance of the overall system.

(Output) Proactive Policies: Policies that will alter the configuration of service

management. These policies will affect code execution and code distribution

mechanisms.

6.2.3.10. Condition Evaluator

(Input) Configuration: Configuration instructions received from the Policy decision-

making component.

(Input) Broker I/F: Information retrieved from Broker interfaces as offered by

DINA.

(Output) Notifications: To the Policy decision-making component for evaluating

corresponding policies.

6.2.3.11. DINA node

(Input) Code: Service code downloaded from storage points given its URL.

(Input) Code Execution message: Message requesting the execution of code as an

active application, containing the URL of the code and its run-time arguments.

(Output) Broker I/F: Exports the capabilities of the underlying network infra-

structure through the Broker APIs.

6.2.3.12. SLO

(Input) Broker I/F: Is able to utilize the capabilities of the underlying network

infrastructure through the Broker APIs.

(Input) Reactive/Proactive Configurations: Received from the Service assurance

component.

(Output) Monitoring Data: Self-monitoring to the Policy decision-making

component.

102 Fast and Efficient Context-Aware Services

6.3. Service Layer Implementation Considerations

According to what was mentioned in Chapter 3 and in the above sections the CAS

Creation component, the Service Customization, and the Code and Policies Gen-

eration Engine are implemented as stand-alone applications, integrating all neces-

sary tools that facilitate the creation of services and offering to the administrator a

friendly graphical interactive interface.

As for the specific technologies, the modeling of CAS uses XML and the XML

schema specifications. For implementing the GUIs Java technology is used, includ-

ing swing libraries and XML parsers. The XML parsers employed by the GUI and

other components discussed below are based on available XML parsing libraries.

The repositories containing the CAS info (policies, module documents, etc.) are

implemented using database technology. For handling the flow of information

between the components associated with Authoring, Customization, Policy-based

management, and Code and Policy Generation Engine SOAP is used. The Code

Generator component is bound to Java technology in order to produce DINA-

compatible code, and the produced code is placed into an Apache server to make it

available to the code distributor component.

The policy-based management paradigm that is the foundation of the service

management implementation has been touched earlier. Now it is time to shed some

light on the rationale and impact of using this approach.

6.3.1. Why Policies?

A policy is an administrator-specified directive that manages and provides guide-

lines for how the different network and service elements should behave when certain

conditions are met. However, the answer to the question, ‘why policies should be

used?’ is a justification itself and explains why the IST-Context consortium decided

to use policies as the main engine to create, deploy, and manage context-aware

services.

The main benefits from using policies are improved scalability and flexibility for

the management system. Scalability is improved by uniformly applying the same

policy to large sets of devices and objects, while flexibility is achieved by separating

the policy from the implementation of the managed system. Policies can be changed

dynamically, thus changing the behavior and strategy of a system, without modify-

ing its implementation or interrupting its operation. Policy-based management is

largely supported by standards organizations as IETF and DMTF, and most network

equipment networks.

Another benefit from using policies for management is their simplicity. This is

achieved by means of two basic techniques: Centralized Configuration, you do not

have to configure each element individually; and Simplified Abstraction, which

CAS Creation and Management – System Architecture 103

means that you do not have to configure exactly each device, but only establish the

policy that you want the overall system to follow and the system will translate this

policy for you and will enforce it in the correct component.

As will be explained in this document, the policies are predefined in XML; we

have chosen XML because it is a common language, standardized, and versatile.

When a user subscribes to an available CAS, then policies are personalized taking

these predefined policies as a template and taking into account the user’s preferences

and context.

It is proposed the use of XML as the language to express policies and use the

proposed information model and architecture to manage the services based on these

policies. The main advantage of using XML as policy language is its flexibility to

define and exchange policies written in this format.

6.3.2. Objectives of the Policy-Based Service Management System

The main objective of using policies for service management is the same as for

managing networks with policies: We want to automate management and do it as

high level as possible. The philosophy for managing a resource, a network or a

service with a policy-based managed approach is that IF something happens THEN

the management system takes an action.

Policies can be tailored to different users. The main idea is to use generic policies

that can be customized, following user subscription; the parameters of the conditions

and actions in the policies are different for each user, reflecting its personal

characteristics and its desired context information.

Within the CONTEXT system, the application of policies encompasses the

expression and subsequent creation of portions of the logic of context-aware

services. This is undertaken by the activities of the CAS Creation subsystem.

In addition, policies are used in managing various aspects of the created context-

aware services. An important aspect of policy-based service management is the

deployment of services throughout the Active Network. For instance, when a

context-aware service is going to be deployed, the code storage points must be

decided, based on the policies customized according to the values introduced by the

user and network context or environment. Furthermore, context-aware service

invocation and execution is also controlled by policies, for determining in a flexible

way when, where, and how customized service code will be invoked and executed.

Finally, the maintenance of the code realizing the logic of context-aware services

and the assurance of context-aware service operation is also subject to related

management policies.

The above concepts guided our decision to use predefined policies expressed in

XML, which can later be personalized by user subscriptions to the context-aware

services. The solution for the Policy-Based Service Management of the IST-Context

104 Fast and Efficient Context-Aware Services

Project must rely on a robust and flexible architecture to accommodate the service

management systems and new types of services. The architecture should exhibit the

following logical attributes:

� Open: It is built on standard interfaces between architectural components.

� Flexible: It supports the incorporation of any new context services that complies

with the specified interfaces, and allows the modification of the system behavior

by means of user-defined policies.

� Modular: Its architecture is based on components, standardized, and oriented to

context services.

� Scalable: It separates in different building blocks of technology-specific and

technology-independent functionality, and minimizes data duplication.

� Distributed: It comprises a component-based architecture defined to run on top of

a standards-based object request broker guarantees the transparency of the system

to the location of components.

6.4. Context Policy-Based Service Management System

After introducing the framework that is going to be the basis of the design, we

can now propose the Service Management Layer Architecture. We will apply the

concepts of the generic policy-based management system (PBMS) in order to

specify and implement the required functionality for the Service Management Layer.

To do this we will adapt the mechanism described here to the CONTEXT problem,

proposing new specific components and matching the functionalities identified with

the philosophy of a generic policy-based management system.

When designing the Policy-Based Service Management Layer for CONTEXT

project, the different functional blocks identified earlier were taken as a reference.

As stated in this document, the result of the Service Creation phase is the Service

Code (Java) and the Management Policies (XML) that are going to manage the

provisioning and the maintenance of this service. As the work focuses on defining

the Policy-Based Service Management Layer, the Service Creation Phase is not

affected, as the Service Management layer only concerns the interaction between the

two layers or phases.

Regarding Service Management Layer, there are four main functional blocks

identified. They are:

� Code Distribution and maintenance

� Code Execution

� Service Invocation

� Service Assurance

CAS Creation and Management – System Architecture 105

As stated above, these functional blocks must be policy driven. So the next step is

to design a policy management system that handles, manages, and applies the

service management policies that will rule the behavior of the system, and

particularly the efficient delivery of the functionalities identified. This step

obviously includes the proposal of the classes or types of policies that will be

managed by the system and its components.

The components that are technology and policy specific are the Action

Consumers and the Condition Evaluators. These components are responsible for

interpreting the particular policy semantics, monitoring its conditions (CE), and

applying its actions (AC). Thus it is reasonable that in order to provide the

functionalities we should use specific Action Consumers and Condition Evaluators

proposed for this objective.

So, the idea is to propose the necessary Action Consumers and Condition

Evaluators in order to cater for every identified functionality. Also, the policies

proposed will be tightly coupled with these functionalities. Based on these premises,

our initial implementation architecture is shown in Figure 6.4.

POLICY
MANAGER

DECISION MAKING
COMPONENT

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Code Distributor Service Code Invocation
& Execution

Service Assurance

Service Creator
Consumer

Service
Authoring

Code & Policies
Generation
Engine

Service
Customisation

Service Creation System

Policy
Repository
&
Information
Model
Repository

Service
Management
Policies

Policy Based Service
Management System

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Action
Consumer

Condition
Evaluator

Code Distributor Service Code Invocation
& Execution

Service Assurance
Service Execution System

DECISION MAKING
COMPONENT

POLICY
MANAGER

Figure 6.4 First Approximation of the Generic Policy-Based Management System to the

CONTEXT Service Layer Functional Requirements.

106 Fast and Efficient Context-Aware Services

The AC and CE, which are grouped according to the functional components they

are related to, are assigned to system components as follows:

� Code Distributor system component: Code Distributor Action Consumer and

Code Distributor Condition Evaluator

� Service code Invocation & Execution system component: Code Execution

Controller Action Consumer and Service Invocation Condition Evaluator

� Service Assurance system component: Condition Evaluator and Service Assur-

ance Action Consumer.

The Condition Evaluators proposed may not be a unique component but a set of

different components specialized for particular tasks installed in different points of

network. For example, for service assurance there could be a number of different

Condition Evaluators instances, each specialized for monitoring different perfor-

mance or quality parameters, or installed in different nodes. Another example could

be that for service invocation there could be different Condition Evaluators, each

specialized for monitoring or listening to different kinds of invocation signals, or

events and installed in different points.

Finally, the proposed architecture for the Service Management layer can be seen

in Figure 6.5.

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Assurance

CE

CODE
DISTRIBUTOR

AC & CE

CODE
EXECUTION

CONTROLLER
AC

SERVICE
ASSURANCE

AC

MANAGER DECISION MAKING
COMPONENT

Policy
Repository

&
Information

Model
Repository

Storage
Point

Storage
Point

Code Storage Points
- Service code replica
- Components code replica

Policy Conflict
Resolution

Decision
Making
Component -
Condition
Evaluator
Component
INTERFACES

Policy
Consumer
Manager -
Action
Consumer
Components
INTERFACES

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Assurance

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Invocation

CE

EE Service
Assurance

CE

EE Service
Assurance

CE

CODE
DISTRIBUTOR

AC & CE

CODE
EXECUTION

CONTROLLER
AC

SERVICE
ASSURANCE

AC

POLICY CONSUMER
MANAGER DECISION MAKING

COMPONENT

Policy
Repository

&
Information

Model
Repository

Storage
Point

Storage
Point

Code Storage Points
- Service code replica
- Components code replica

Storage
Point

Storage
Point

Code Storage Points
- Service code replica
- Components code replica

Service
Management
Policies

Service
Code

Policy-Based Service
Management System

Service Creator
Consumer

Service
Authoring

Code &
Policies
Generation

Service
Customisation

Service Creation

Figure 6.5 IST-CONTEXT Policy-Based Service Management Layer Architecture.

CAS Creation and Management – System Architecture 107

This architecture is the result of the adaptation of the policy-based management

system described earlier to the necessities and functional requirements of the

CONTEXT platform.

6.4.1. On System Components

The specific CONTEXT components introduced in the architecture playing the role

of Action Consumers (AC) or Condition Evaluators (CE), or giving support to CAS

management functional blocks are briefly described in the following sections.

6.4.1.1. Code Distributor Action Consumer

The Code Distribution Action Consumer (CDAC) distributes the active code

ultimately destined for active nodes. Due to the dynamic nature of the system the

exact node or nodes might not be known until the need arises. In such cases

intermediate storage locations must be selected and used. Also, to simplify code life-

time management, the count of code instances in circulation must be kept at

minimum. CDAC enforces the actions related to the code distribution policies

that have been sent by PM. The result of the actions will be the distribution of the

service code following specific configuration parameters or Code Storage Point

selection criteria included in the policy action. CDAC must be aware of network

capabilities information in order to perform its actions, so it is able to communicate

with the Information Repository to obtain the required information.

The Code Distributor Action Consumer will run outside the active nodes. This

is because the wide scope of its actions; the count of the Storage Points might be

large. The Code Distributor is a Java class; the API offered by it is used by Policy

Manager to invoke the different code distribution-related actions contained in the

Code Distribution Policies.

Code Distributor Action Consumer API

The main methods are the following:

� ‘DistributeCode’ method provides the mechanism to distribute a piece of active

code, that is a (Service Layer Object)(SLO), (Context Computational Object)

(CCO) or (Service Invocation Condition Evaluator) (SICE) to a set of code

repositories or code execution points (DINA nodes) depending on the ‘level’

argument. The level refers to administrative domains, for example level 1 as close

to the DINA nodes as possible and level 3 not very close at all. This method also

adds the entry for the new code into the code_storage table.

� ‘GetOptimalURLOfCode’ method provides the mechanism to retrieve a specific

URL of where the code resides by looking it up in the code_storage table.

108 Fast and Efficient Context-Aware Services

� ‘RemoveCode’ method provides the mechanism to remove a piece of code from a

specific code repository or DINA node along with its corresponding entry in the

code_storage table.

public class CodeDistributorInterface {

public CodeDistributorInterface();

public boolean DistributeCode(String CodeId, URL[] URLList,

int NoCopies, int Level, String[] PotentialExecPoints);

public URL[] GetOptimalURLOfCode(String CodeId,

InetAddress DINANodeIPAddr);

public boolean RemoveCode(String CodeId);

}

6.4.1.2. Code Execution Controller Action Consumer

The Code Execution Controller Action Consumer (CECAC) is the specific component

for the control of the execution of the Service Code. It means that the actions that will be

enforced by these consumers are related to when and where to execute the service code.

For example, after receiving an invocation signal the actions that start the service

execution in the appropriate execution points are executed by this Action Consumer.

The actions of the Code Execution Action Consumer affects many nodes

(Execution Points), so it was deemed sensible not to locate it in them. The Code

Execution Controller is a Java class. The Code Execution Controller offers an API to

be used by the Policy Manager to invoke the different code execution-related actions

contained in the Code Execution Controller Policies.

Code Execution Controller API

‘executeCode’ triggers an execution of a service that is identified by the ‘codeId’

and passes the arguments ‘arg’ to this service. The code can be executed on a

specific node (‘node’) or on a set of nodes that are derived from a wildcard

(‘nodeWildcard’). The methods return ‘0’ on success or ‘�1’ in case of a failure.

‘sendMessageToService’ sends the message ‘msg’ to a running service that is

identified by ‘codeId’. The message can be sent to a service that runs on a specific

node (‘node’) or on a set of nodes that are derived from a wildcard (‘nodeWild-

card’). The methods return ‘0’ on success or ‘�1’ in case of a failure.

public class codeExecutionController

{

public codeExecutionController();

CAS Creation and Management – System Architecture 109

public int executeCode(String codeId, InetAddress

node, String [] arg);

public int executeCode(String codeId, String

nodeWildcard, String [] arg);

public int sendMessageToService(String codeId,

InetAddress node, String msg);

public int sendMessageToService(String codeId,

String nodeWildcard, String msg);

}

6.4.1.3. Service Assurance Action Consumer

Once the service code has started its execution, it is time to proceed to its Assurance.

The Service Assurance Action Consumer (SAAC) executes the actions related to the

Service Assurance, which is invoked when certain performance or assurance

conditions are met, as determined by Service Assurance Condition Evaluators.

The Service Assurance Action Consumer runs outside the active nodes; its actions

are not reduced to the scope of any particular active node. The service assurance

functionality is treated in more detail later on in this chapter.

6.4.1.4. AC Data API

The different AC must share diverse run-time information which must be stored

somewhere in the system. To provide a common interface, as well as information

integrity, the AC DATA API is provided.

Its goal is to store, maintain, and delete information based on explicit requests of

the different ACs. Actually, the AC DATA API comprises four APIs, to manage four

different data tables. The tables are described in the following paragraphs, followed

by the details of the APIs. The tables are:

CODE_PROCESS Table: To register information of the current execution processes

over the DINA network. It contains the following information:

� CodeID

� DINASessionID

� DINASeqNumber

� DINANodeID (multiple)

� DINANodeIPAddress (multiple)

The name of the accompanying API is codeProcessHandler.

110 Fast and Efficient Context-Aware Services

CODE_STORAGE Table: To keep track of the different locations where different

copies of code are stored. It contains the following information:

� CodeID

� Copy No

� URLList: list of URLs which contain the code

The name of the accompanying API is codeStorageHandler.

DINA_NODES Table: To store information relevant to the DINA nodes in the

network. It contains the following information:

� DinaNodeID

� DinaNodeIPAddress

� Location: Physical location of the DINA node

� HasList: Contains information of the components/devices the DINA node has

(i.e., SIPBroker, WLANBroker, WLANmodel=Cisco74, etc.)

The name of the accompanying API is dinaNodeHandler.

STORAGE_POINTS Table: To store information relevant to the DINA nodes in the

network. It contains the following information:

� storagePointID

� storagePointIPAddress

� Protocol

� Port

� BackupLevel

� ListofDinaNodes

The name of the accompanying API is storagePointHandler.

The APIs to create, alter, access, and delete information from the above tables are

specified as follows:

CodeProcessHandler API:

public interface codeProcessHandler {

// New process

public void addNewProcess(String codeId, int sessId,

int seqNumber, InetAddress dinaNodeIp);

// Recover Information

public InetAddress [] getDinaNodesIPs (String

codeId);

public int getSessionId(String codeId);

public int getSequenceN(String codeId);

CAS Creation and Management – System Architecture 111

// Delete

public void removeProcess (String codeId);

public void removeProcessFromNode (String codeId,

InetAddress dinaNodeIP);

}

Comments about codeProcessHandler API:

� removeProcess () removes the process specified by the codeID from all

DINA nodes

� removeProcessFromNode () removes the process only from the specified

node (given by the IP or the dinaNodeID)

CodeStorageHandler API:

public interface codeStorageHandler {

// New code

public void addCode(String CodeId, int copyNumber,

String[] URLList);

// Recover info

public String[] getStorageURLs(String CodeId);

public int[] getCopyNumbers(String CodeId);

// Delete

public void removeCode(String CodeId);

}

Comments about codeStorageHandler API:

� addCode() usage example: If CD AC wants to distribute a certain code of a

service named ‘‘SRV1’’ which has two classes "main.class" and "aux.class", CD

should use this method in a similar way as below:

addCode ("SRV1", 1, {"ftpA://code/srv1/main.class",

"ftpA://code/srv1/aux.class"});

addCode ("SRV1", 2, {"ftpB://opt/srv1/main.class",

"ftpB://opt/srv1/aux.class"});

addCode ("SRV1", 3,

"ftpC://context/srv1/main.class",

"ftpC://context/srv1/aux.class"});

112 Fast and Efficient Context-Aware Services

NOTE: copyNumber can be seen as a copy identifier, and it should be different for all

copies

dinaNodeHandler API:

public interface dinaNodeHandler {

// New node

public void addDinaNode(String nodeID, InetAddress nodeIP,

String location, String [] HasList);

// Recover info

public InetAddress[] getDinaNodes(String Location, String []

FilteringWildcard);

public InetAddress getDinaNodeIP(String dinaNodeID);

public String getDinaNodeID(InetAddress dinaNodeIP);

// Delete

public void removeDinaNode(String NodeID);

public void removeDinaNode(InetAddress NodeIP);

}

Comments about dinaNodeHandler API:

� HasList passed as parameter in the addDinaNode () method is similar to the

following:

HasList1¼{WLANbroker¼yes, WLANmodel¼Cisco62, SIPBroker¼yes}

� The FilteringWildCard parameter in the getDinaNodes() method is a

string array. Each element of the array has the following format:

element¼attribute

e.g.:

NodeID1 –> HasList1 ¼ {WLANbroker¼yes, WLANstd¼802.11b,

WLANmodel¼Cisco62}

NodeID2 –> HasList2 ¼ {WLANbroker¼yes, WLANstd¼802.11b,

WLANmodel¼Cisco71}

NodeID3 –> HasList3 ¼ {WLANbroker=yes, WLANstd¼802.11b,

WLANmodel¼Cisco74}

CAS Creation and Management – System Architecture 113

� A wild card shall be represented for example as:

WLANmodel=Cisco7* –> Cisco71, Cisco74

And the getDinaNodes () method would return:

[Node2_IP Node3_IP]

storagePointHandler API:

public interface storagePointHandler {

// New storage point

public void addStoragePoint(String storagePointID, InetAddress

stpIP, String protocol, int port, String backLevel,

String[] dinaNodeIdList);

// Recover info

public InetAddress getIP (String storagePointID);

public String getProtocol(String storagePointID);

public int getPort (String storagePointID);

public String getBackLevel (String storagePointID);

public String[] getDinaNodeIdList (String storagePointID);

// Delete

public void removeStoragePoint(String storagePointID);

}

6.4.1.5. Code Distributor Condition Evaluator

The Code Distributor Condition Evaluator is intended to monitor and evaluate

conditions regarding code distribution and maintenance purposes. The

conditions regarding code distribution can refer to monitoring events that must

trigger some code distribution actions, such as the reception of new service

code, etc.

The code maintenance policies are responsible for assuring the maintenance of the

service code that is stored at the Code Storage Points. The conditions regarding

maintenance can include monitoring code expiration events, reception of new code

version, etc.

The Code Distributor Condition Evaluator will run outside the active nodes.

114 Fast and Efficient Context-Aware Services

6.4.1.6. Service Invocation Condition Evaluator

This Condition Evaluator is responsible for intercepting service invocation events or

signals (e.g., all messages using a specific protocol) in order to trigger a chain of

actions that will lead to the execution of a specific Context-Aware Service.

The necessity for this kind of component was a direct consequence of the

scenarios considered for the CONTEXT project, involving user mobility and

reacting to the emergency traffic.

It was noted that services and users could have different expectations about the

events or signals to be captured, in addition to differing scope (geographical,

network topological, temporal) of the capturing activity. Therefore, these aspects

can be left to be specified during the service customization phase. The appropriate

SICEs will be downloaded to the correct nodes or places for their execution.

Afterwards, as a result of the conditions of the policies that manage the invocation of

a service, the SICEs will be configured specifying all the invocation events or

variables to attend and the filters to apply. The information derived from the

invocation events received and the application of the Condition Requirements

specified should be enough to decide without ambiguity the specific service code

to execute.

The Service Invocation Condition Evaluator will run inside the active nodes (EE).

The SICEs should be installed and executed in particular nodes where the invocation

events and variables must be monitored. It is more efficient to install these components

close to the nodes where it is likely that the invocation signals will be received.

The WLAN SICE: This is an example of a generic Service Invocation Listener. It

monitors WLAN access networks. The goal of this listener is to notify PBMS when

an authorized user enters or leaves the area of connectivity of a WLAN. This

information is sent to the PBMS, and in CONTEXT ‘Super Mother’ scenario,

described in Chapter 7, as well as in Reference [2] and [4], service instances are

invoked or terminated in edge nodes as required. The list of authorized users is

dynamically updated by the PBMS.

6.4.1.7. Service Assurance Condition Evaluator

The Service Assurance Condition Evaluator is the generic name for the possible

different Condition Evaluators that are intended to evaluate the different variables

that have been decided to determine the quality of the service. There could be

variables applicable to all services and others specific for each one.

Once the DMC has received the conditions of the policies related to Service

Assurance, it will configure the different Condition Evaluators in the appropriate

Active Nodes, where the different assurance parameters have to be monitored.

Afterwards, the SACE will obtain these parameters from the running service and

will apply the correspondent filters or thresholds. If any parameter falls outside

CAS Creation and Management – System Architecture 115

desirable margins, a notification will be sent by the SACE to the DMC in order to

communicate the event.

The Service Assurance Condition Evaluator will run inside the active nodes (EE). The

SACEs should be installed and executed in particular nodes where these events and

variables must be monitored. Service assurance functionality is treated in more detail

later in this chapter.

6.4.1.8. Policy and Information Model Repository

The Information Model Repository is the logical storage point for the information

about Policies loaded in the system, the network where the CAS is going to be

provided (Network Inventory), the services deployed, the components installed, and

other information entities (Management Information). Such information contains the

status and functionality of every service layer-related entity.

This information is of great importance, for example, when evaluating conditions in

order to know whether the appropriate Condition Evaluator is already installed. Another

important use of the information contained in this repository could be to decide where a

Service Code must be stored depending on the capabilities of the different Storage

Points available. In the same manner, it could also be important to decide where a

Service must be executed depending on the capabilities of the Active Nodes and the

conditions introduced by the user at the customization phase. The Service Creation

System will have to be aware of the different Action Consumer components and

Condition Evaluator components, and mainly of the different actions and Conditions

they are able to enforce and evaluate, in order to compose the Management Policies.

6.4.1.9. Code Storage Points

The Code Storage Points are the physical places where the service code is stored

after its distribution and before its execution on the Active Nodes. This means that

the requested code will be downloaded from these Storage Points.

The Code Storage Points could also store management system components such

as Condition Evaluators and Action Consumers.

6.4.2. Domain-Specific Policies

This section identifies the CONTEXT domain-specific policies that were used in the

implementation phase of the Policy-Based Service Management.

The policies are grouped into four functional domains, Service Code Distribution,

Service Code Maintenance, Service Code Invocation and Execution, and Service

Assurance. These are the main policy domains developed so far, although future

116 Fast and Efficient Context-Aware Services

implementations might delete these to add new policy types according to practical

needs.

The high-level description of the policies exposed in this section follows the

format

IF (condition 1) [AND | OR (condition n)]

THEN (action 1) [AND (action n)]

The Service Management Policies control just the service life cycle, never the logic of

the service. In this way, Service Management policies are used by the PBSM

components of the system to define the Code Distribution and Code Maintenance of

the service as well as the Service Invocation, Service Execution, and Service Assurance.

The policies defined in the different service management functional phases identify

the conditions and actions that these policies will contain. It is very important to agree

on the specification of the policies used in the PBSMS because all the actions and

conditions contained in policies must be implemented in the different components

playing the role of Action Consumers and Condition Evaluators.

6.4.2.1. Service Code Distribution Policies

These policies govern the distribution of code on the PBSM System Storage Points

components. This code refers to the CAS logic. The main points to notice are:

� They will be processed when new customized service code arrives to distribution

component.

� These policies drive the deployment process of needed service.

� They specify the specific configuration, required resources, and criteria for

optimum Storage Point selection for the service.

Service Deployment Policies Group example: In this section a high-level example of

this type of policy is presented.

Service Code Distribution Policy

(1) ‘If (customized service B code is received)

then (configure distribution of service B code and optimum Storage Point

selection parameters)’

Conditions: This policy condition should be based on an event and appears when

new service code arrives to the Code Distributor component. This event could

contain information needed to identify the code just received. The condition is met

for this policy if the code arrived is the one of the Service B. The requirements

CAS Creation and Management – System Architecture 117

express this fact applying the requirement type ‘Match_value’ to the event variables

in order to check if the code received is Service B code. The component carried out

to monitor the event and evaluate the requirements is the Code Distributor

(Condition Evaluator).

Actions: The action implies distributing the Service B code using the particular

configuration expressed through the action parameters specified in the policy. These

input parameters will specify how the code has to be distributed. This action is

enforced by the Code Distributor (Action Consumer).

6.4.2.2. Service Code Maintenance Policies

These policies allow the maintenance of the code installed along the infrastructure to

support services. The main points to notify are:

� They will be enforced when maintenance event arise. These events relate to new

service version, service expiration, storage points resources under desirable

margins, high load of invocation petitions, etc.

� The actions enforced will be service code removal, service code update, service code

redistribution (changing number of replicas, Storage Point selection criteria, etc.).

Service Maintenance Policy Group Example: In this section a high-level example

of this type of policies is presented.

The high-level policies included in this group could be the following ones:

(1) ‘If (new version of customized service B code)

then (remove old code version of service B from Storage Points)

& (distribute new service B code)’

(2) ‘If (customized service B code expiration date has been reached)

then (deactivate execution polices for service B)

& (remove code of service B from Storage Points)’

(3) ‘If (The number of invocations for service B is very high)

then (distribute more service B code replicas to new Storage Points)’

(4) ‘If (Resources in Storage Point X are under margins for service B)

then (remove service B code from Storage Point X)

& (distribute one replica of service B code to a new Storage Point)’

118 Fast and Efficient Context-Aware Services

6.4.2.3. Service Code Invocation and Execution Policies

These policies control the monitoring of variables or events that start the

execution of a context-aware service that has been subscribed and customized.

They will be enforced when a service is invoked. The invocation signal will

be used to deduce the service to execute and the execution parameters asso-

ciated.

Related to the Invocation and Execution policies and from an informational

viewpoint, there are three abstraction levels, related to the invocation of a service

and the execution of the respective customized code:

(a) I1: The ‘raw’ information coming from the system devices (e.g., servers,

routers, etc.). This information is input to the SICEs. Usually, this information is at

the lowest abstraction level (e.g., at the level of userId, password, raw data

measurement).

(b) I2: The information coming from the SICEs to the DM, that is the variables in

the notifications that the SICEs send to the DM. This SICE output information is

basically the filtered outcome of the information input to the SICEs. It could be at

the abstraction level of the input information (i.e., at the level of I1). However, it

could be at a higher abstraction level, if in addition to filters, SICEs would be

configured with appropriate *mappers*.

(c) I3: The information that identifies (a) which customized service(s) to execute,

(b) the initial conditions (run-time arguments), and (c) where to execute the

customized service code determined for execution. This information corresponds to

the input parameters required by the action undertakers (ACs), which will actually

download the code for execution.

This information is specific to the CAS creation system, depending on the

particular scheme/convention adopted to name the instances of customised code

(it should be stressed that this naming is specific to the CAS creation system and

not to the PBMS; ideally PBMS should not restrict the naming of code instances).

For instance, customized code could be named after the concatenation of subscri-

ptionId and serviceId (or just subscriptionId if we assume that a subscription

contains only one service). But, this naming may not be efficient or suitable at all

for a particular CAS, since a subscriber may change this customizations in the

context of a subscription or may have a number of customization options.

Therefore, a more efficient or suitable (for some CASs) naming would be to

name customized code after the concatenation of subscriptionId, serviceId, and

customizationId, where the latter indicates the appropriate customization to apply

at a given time.

The point is that the abstractions in levels I1 and I3 are different. We find it

unrealistic to assume otherwise.

CAS Creation and Management – System Architecture 119

The purpose of the service invocation and code execution control process in our

CONTEXT system is to go from abstraction level I1 to I3. That is, based on the

’raw’ information (at I1 abstraction level), to determine the triple hsubscriptionId,

serviceId, customizationIdi (or any other tuple that the CAS creation system would

adopt for naming CAS code instances), as well as to determine the run-time

arguments and the place of execution of the code to be executed.

Broadly speaking, the policy-based operation relying on dynamically defined

policies, provides flexibility in transitioning from I1 to I3, thus facilitating service

introduction (new CASs) and automated service provisioning (of new customiza-

tions). This is the beauty and the strength of our system.

The code invocation and execution domain are not only for deducing the

conditions necessitating the execution of a CAS code but also for identifying the

code instance to be sent for execution and the associated execution parameters.

Regarding the abstraction levels exposed above, we think that the transition from I1

to I3 is conveyed by the nature of the policy: the association of a specific condition to

a specific action.

A condition specifies that if some variables (Condition Objects) adopt some

specific values (Condition Requirements) then we assume that the condition is

fulfilled. We think that the Condition Objects are expressed at the level I1.

This condition will be associated to an action that will execute some specific piece

of code with specific initial conditions. The input parameters of the action relates to the

I3 level. Keep in mind that the input parameters values of the action can be ‘hard-

coded’ since policy edition/creation and other functions can adopt its values from

some monitored variable defined at policy condition. So, the association between the

I1 level and the I3 level is directly derived from the association between the condition

(I1) and the action of the policy (I3).

Service Execution Policy Group Example: In this section a high-level example of

this type of policies is presented.

Service Code Invocation and Execution Policy

(1) ‘If (invocation event X is received)

then (customized service B must be executed)’

Conditions: In the example, the policy condition is based on an event (simple or

aggregated variables can be also used). This event is called Invocation_Event_X and

appears when a particular invocation signal X is received. This event has associated

different variables that can represent different kinds of information that the invocation

signal can contain (for instance, a user_id and a password included in some invocation

signal). The condition is met for this policy if the event appears and the event variables

associated accomplish the requirements expressed in the condition. The component

carried out in the policy to listen to the event and evaluate the requirements is a suitable

type of Service Invocation Condition Evaluator (capable of monitor the event type X).

120 Fast and Efficient Context-Aware Services

Actions: The action implies executing the Service B using the particularized

execution parameters included in the specification of the action parameters. This

action is enforced by the Code Execution Controller Action Consumer.

6.4.2.4. Service Assurance Policies

These policies are intended to support and oversee the achievement of QoS levels

established for different services. Essentially, they are involved with the arrange-

ment and supervision of the service quality indexes computed from system data, and

with the decisions needed for corrective actions if the indexes are not within

acceptable limits. Three different types of policies have been recognized in the

Assurance Policy Group:

� Service Assurance Initialization Policies

– Processed when a service start its execution. These policies provide the actions

needed to configure the running service (SLO) to export assurance parameters.

� Service Assurance Execution Policies

– Processed after assurance initialization and during a service execution. Provide

the actions to be applied when assurance parameters are within unacceptable

margins. These policies can be based on different severity levels, applying

different corrective actions depending on them.

� Service Assurance Finalization Policies

– Processed when a service stops its execution. Provide the actions to be applied

in order to stop the assurance activity associated with the stopped service.

It is assumed that the Service Assurance Condition Evaluator and the Service

Assurance Action Consumer will be the main components responsible for monitor

the conditions and enforce the related actions.

Service Assurance Policy Group Example: In this section high-level examples of

these types of policies are presented.

Service Assurance Initialization Policies

(1) ‘If (customized service B is running)

then (configure assurance parameters for service B) & (configure local

assurance variables)’

Service Assurance Execution Policies

(2) ‘If (level¼2) & (parameterA>X) then (Action M)’

(3) ‘If (level¼2) & (parameterB>Y) then (Action N)’

(4) ‘If (level¼2) & (parameterC<Z) then (level¼1) & (Action K)’

(5) ‘If (level¼1) & (parameterA>X) then (Action P)’

(6) ‘If (level¼1) & (parameterD>J) then (Action O)’

CAS Creation and Management – System Architecture 121

Service Assurance Finalization Policies

(7) ‘If (customized service B is stopped)

then (stop assurance parameters evaluation) & (remove local assurance

parameters)’

6.4.3. Service Assurance

6.4.3.1. Functional Overview

Service Assurance allows diagnosis and correction of CAS’s problems during

execution time. We have already touched the subject, and here we take a closer

look at it.

There are two main principles behind the design of CONTEXT’s Service

Assurance:

(a) Service Assurance behavior for a certain CAS is controlled directly by

the CAS author through defining assurance policies. This allows a more

efficient assurance, as the service author has a deep knowledge about how

the service works and will probably accomplish this task in the most efficient

manner.

(b) The Service Assurance design avoids disturbing the Context-Aware Service with

assurance issues, making assurance as transparent to the CAS as possible (i.e.,

with minimum intervention in the SLO).

The utilization of policies allows the desired flexibility, allowing configuration at

both deployment time and run time.

Figure 6.6 shows the different components of the Service Assurance System.

The picture shows the following components: ASCE, ServiceMonit, Interface

ServiceMonitMeasure, and AS AC. Furthermore, the assurance system uses several

XSLT files per service customization whose goal will be explained further in the

text.

� ServiceMonit: Service Assurance component, in charge of collecting Service

Assurance Data and Alarms. There is one instance of ServiceMonit per assured

instance of CAS.

� Interface ServiceMonitMeasure: Interface that every CAS willing service assur-

ance must implement. It provides methods to export service assurance data.

� Assurance Condition Evaluator (ASCE): In charge of collecting service data and

alarms and information about the active node, as stated in the monitoring

messages it receives from the DMC, transforming it and sending processed

information to the policy engine and to the visualization system.

122 Fast and Efficient Context-Aware Services

� Assurance Action Consumer (AS AC): It is in charge of doing two tasks:

1. Configuring the ASCE for monitoring the CASs in the active node based on the

information received from the PBMS (CodeId of the monitoring XML containing

the monitoring parameters to be applied and XSLT’s CodeIds).

2. Querying the CD for the URL of those assurance monitoring XMLs and XSLTs. The

monitoring XML, updated including involved XSLT’s URLs, is passed to the ASCE as

active data.

The ASCE uses some XSLT files (service XSLTs and management XSLTs) to

transform collected data into a suitable XML to send as an event to the policy engine

and to establish thresholds, sending only relevant data. It also uses some other XSLTs

(supervision XSLTs) to transform the data into a suitable format for visualization.

Service Assurance Functionality can be split in two main parts, Service Monitor-

ing and Service Management Actions, described below.

6.4.3.2. Functional Decomposition

Service Monitoring: The Assurance Condition Evaluator (ASCE) collects CAS’s

execution time data and alarms. It also collects some performance parameters about

ASCE

SLO specific logic

SLO

srv xslt

sup xslt

SOAPto DMC

XML to console

XML monitored dataXML monitored data

DMC

mng xslt

local DINA info

AS AC

ServiceMonitMeasure

SLO specific logic

SLO

srv xslt

sup xslt

SOAPto DMC

XML to console

XML monitored dataXML monitored data

DMC

mng xslt

local DINA info

AS AC

ServiceMonit

Figure 6.6 CONTEXT Policy-Based Service Management Layer Architecture.

CAS Creation and Management – System Architecture 123

active sessions in the local DINA node. Assurance Policies define which data to

collect at a given moment and with which period.

There are two kinds of CAS assurance parameters:

(a) Service specific: (the way to calculate them is up to the service creator).

(b) Standard: (Utilization, Congestion, Reliability, Performance). Although these

parameters are common to all services, the way to calculate them must be

specified by the service creator, too.

The service must be capable of calculating all of those parameters in the specified

way.

Each CAS must run an instance of class ServiceMonit (see 1.2.3.b). This class

works as an intermediary between the CAS and the ASCE. When a monitoring

message asking for initializing service assurance for a CAS is received in the ASCE,

the ServiceMonit instance attached to that CAS uses the interface ServiceMonit-

Measure to let the service know that it must begin to calculate assurance parameters.

Periodically, and as indicated by further monitoring messages, ServiceMonit will

use interface ServiceMonitMeasure to ask the CAS for the values of that parameters.

The way to monitor a CAS (monitoring period, service parameters to be

monitored) is defined in monitoring XMLs, linked one to one to assurance policies.

These XMLs are defined in the authoring phase, when defining assurance policies,

and are used by the ASCE to configure CAS monitoring. The ASCE keeps on

monitoring each CAS as specified in the last monitoring message received for that

CAS, until a new message is received. Monitoring XMLs are linked one to one to a

service XSLT containing the conditions under which an assurance event must be

sent to the DMC. While the CAS is being monitored, the ASCE keeps on collecting

its assurance data and alarms if any, and if the conditions in the current service

XSLT are met, an event is sent to the PBMS.

Thus, the Condition Evaluation functionality is achieved by the utilization of a set

of XSLTs. XSLTs are used to transform assurance Data and Alarms, which are

initially in the XML format specified by the service creator, to another XML,

suitable for sending it as an event to the engine. A XSLT allows thresholds to be

established as indicated in monitoring policies so that only relevant pieces of

data will be sent. Service Assurance will use three different types of XSLTs.

These XSLTs are written by the service creator. This gives flexibility to the system,

as the XML format in which the assurance data are exported is not fixed. For a

given XML format, XSLTs can be defined in order to fulfill ASCE output

requirements.

(a) Service XSLTs: These XSLTs are associated to assurance monitoring policies

(there is one XSLT per monitoring policy). The service creator is responsible for

defining one service XSLT for each monitoring policy. If conditions in the XSLT

124 Fast and Efficient Context-Aware Services

are met, the result of applying this XSLT is that an event containing relevant

assurance data or alarms is sent to the decision-making component.

(b) Management XSLT: As said before, the ASCE periodically collects information

about active sessions running in the local node, in order to allow the service

creator to take this info into account in service behavior, using it in the

assurance policies defined. There is one Management XSLT per CAS instance,

to allow the system to set up thresholds and to send to the policy engine only

relevant data. The service creator is responsible for defining this XSLT.

(c) Supervision XSLT: These XSLT is used to transform the XMLs with CAS Assurance

Data and alarms. The output is passed to the visualization module (in.html format), to

allow human supervision of the executing CAS. The service creator is responsible for

defining this XSLT.

Example: The following paragraphs show a simple example to illustrate what has

been explained so far about monitoring XMLs and service XSLTs.

Imagine that a new CAS has been started in the active node. For example an

instance of Crisis Helper. The CAS author has defined the following policy, stating

that when a new instance of CH is executed, the ASCE must start monitoring it as

specified in CH_XML_001:

If (a new instance of CH is executed)

then (configureASCE(ReceivedEvent.Service_Id, CH_XML_001))

When the new instance is executed, the policy is evaluated and the ASAC sends

the following monitoring message XML to the ASCE:

MONITORING MESSAGE (CH_XML_001)

<?xml version="1.0" encoding="UTF-8"?>

<DMCtoCE_Message>

<ServiceId/>

<Control>Start</Control>

<Body>

<Condition_Object>

<Event>

<XMLId>CH_XML_001</XMLId>

<Event_Type>Assurance_Event</Event_Type>

<Event_Variable>

<Name>Parameter1</Name>

<Syntax>String</Syntax>

</Event_Variable>

<Event_Variable>

<Name>Parameter2</Name>

<Syntax>String</Syntax>

CAS Creation and Management – System Architecture 125

</Event_Variable>

<Event_Variable>

<Name>Parameter3</Name>

<Syntax>String</Syntax>

</Event_Variable>

<Service_XSLTId>CH_XSLT_001</Service_XSLTId>

<SequenceId/>

<SessionId/>

</Event>

</Condition_Object>

<Evaluation_Period>5000</Evaluation_Period>

<Evaluation_Delay>0</Evaluation_Delay>

</Body>

</DMCtoCE_Message>

The ASCE has been configured to start monitoring the CAS. It will evaluate CH’s

Parameter1, Parameter2, and Parameter3 every 5 seconds.

The service XSLT associated to this monitoring XML is CH_XSLT_001, which is

shown as follows.

In the XSLT we can see that the condition specified to send an event to the DMC is

that Parameter1> 600. If the threshold (Parameter1> 600) is crossed, an event

identified by CH_XML_001, and formed as stated in the XSLT, will be sent to the

Decision-Making Component in the policy engine.

Note: Some XML lines are too long to fit on the width of the page. To indicate that

the line continues to the next row we have used ‘\’ at the end of the row. We hope

that this arrangement does not cause any confusion.

SERVICE XSLT (CH_XSLT_001)

<?xml version¼"1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version¼"1.0"

xmlns:xsl¼"http://www.w3.org/1999/XSL/Transform">

<xsl:template match¼"/">

<xsl:if test¼"Assurance_Data/Specific/Parameter1/Value\

>600">

<CEtoDMC_Message xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation¼"C:\eclipse\workspace\\

policySquemas\CEtoDMC.xsd">

<Message_Id/>

<Body>

<Condition_Object>

<Event>

<Event_Id/>

126 Fast and Efficient Context-Aware Services

<Event_Type>Assurance_Event</Event_Type>

<Event_Variable>

<Name>XMLId</Name>

<Syntax>String</Syntax>

<Value>CH_XML_001</Value>

</Event_Variable>

<Event_Variable>

<Name>ServiceId</Name>

<Syntax>String</Syntax>

<Value>

<xsl:value-of \

select¼"Assurance_Data/\

Standard/ServiceId"/>

</Value>

</Event_Variable>

<Event_Variable>

<Name>Parameter1</Name>

<Syntax>

<xsl:value-of select¼\

"Assurance_Data/Specific/\

Parameter1/Type"/>

</Syntax>

<Value>

<xsl:value-of select¼\

"Assurance_Data/Specific/\

Parameter1/Value"/>

</Value>

</Event_Variable>

.

<Event_Variable>

<Name>Performance</Name>

<Syntax>

<xsl:value-of select¼\

"Assurance_Data/Standard/\

Performance/Type"/>

</Syntax>

<Value>

<xsl:value-of select¼\

"Assurance_Data/Standard/\

Performance/Value"/>

</Value>

</Event_Variable>

CAS Creation and Management – System Architecture 127

</Event>

</Condition_Object>

</Body>

</CEtoDMC_Message>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

If the mentioned event CH_XML_001 has been sent to the DMC, the following

policy will be fulfilled for the CH instance:

If (Event Received so that (ReceivedEvent.Event_Type="Assurance_Event’’ &&

ReceivedEvent.XMLId="CH_XML_001"))] then (configureASCE(ReceivedEvent.-

Service_Id, CH_XML_002))

And the ASCE is configured to monitor the CH instance as specified in

CH_XML_002.

Service Management Actions: Assurance Policies can fire actions over the Service

Assurance System, in order to configure monitoring, or either over the CAS, to take

specific service configurations.

(a) Actions over Service Assurance: The Assurance Action Consumer is the entity

responsible for configuring the ASCE with new monitoring XMLs containing

monitoring parameters and service XSLTs.

(b) Actions over the CAS: They are taken invoking other Action Consumers.

External Interfaces: As stated previously, service assurance has external interfaces

with the policy engine and the Context-Aware Service it is monitoring.

(a) Interfaces with the Policy Engine: The communication with the policy engine is

done via two different mechanisms, depending on the direction of the commu-

nication.

(DMC -> ASCE) communication

This communication is taken via the Assurance Action Consumer (AS AC). The

DMC must invoke the following assurance AC method:

configureASCE(String serviceId, String XMLId, InetAddress nodeIP);

serviceId is the CodeId of the CAS to be monitored. XMLId is the CodeId of the

monitoring XML to be applied to that CAS, and nodeIP is the IP of the active node

where the ASCE and the CAS to be monitored are running.

128 Fast and Efficient Context-Aware Services

(ASCE ->DMC) communication

The communication in the other direction is done via SOAP messaging process.

The ASCE is able to send SOAP messages by using the class CientSOAP. This class

implements the method send:

public static void send(String xmlstring, String URL);

By calling this method, the ASCE will be able to send an event to the DCM. The

content in String xmlstring is sent as a SOAP attachment to the servlet located in the

mentioned URL, which is in charge of receiving SOAP messages and passing them

to the DMC.

(b) Interfaces with Service Creation & Authoring: Every CAS which needs

service assurance must instantiate a service monitor (serviceMonit class),

which is part of the Service Assurance system, and is responsible for asking

the service for monitoring data at specific periods and for passing the

information to the ASCE.

(ASCE -> CAS) communication

CAS services must implement interface context.tid.assurance.service.ServiceMo-

nitMeasure, which grants the ASCE access to service assurance data and alarms.

This interface specifies the following methods:

– void setSpecific(String[] specificData): Method called by the

serviceMonitor (serviceMonit class) to change the current set of exported CAS

specific assurance data (standard data are always exported).

– void startMonitoring (): Method called by serviceMonit to

let the CAS know that assurance monitoring has begun. The CAS must

begin to calculate service parameters.

– String getAssuranceData(): Method called by serviceMonit

to fetch assurance data for the current period. Returns a String that

contains CAS assurance data in XML format.

– void stopMonitoring (): Method called by serviceMonit to let

the service know that assurance monitoring has stopped. The CAS stops

calculating assurance parameters.

(CAS -> ASCE) communication

On the other hand, the service uses the serviceMonit’s method throwAlarm:

– throwAlarm (String AlarmName): Method used by the service

when it detects a service alarm. The alarm is passed to the ASCE in an

XML formatted string.

CAS Creation and Management – System Architecture 129

The flow diagram is represented in the Figure 6.7

Internal Interfaces: Internal communication between Service Assurance Compo-

nents takes place basically via temporary files stored in the DINA node, except the

communication between the Assurance Action Consumer and the ASCE (The

Action Consumer is located outside the DINA node).

(ServiceMonit -> ASCE) communication: ServiceMonit makes available to the

ASCE the assurance Data and alarms produced by each CAS

(ASCE -> ServiceMonit) communication: The ASCE configures serviceMonit in

order to make the monitoring changes in accordance with the monitoring XML

received from the ASAC.

(Assurance AC -> ASCE) communication: The assurance AC sends in an active

data packet to the ASCE the required data for configuring it for monitoring. This

data contains a XML with monitoring parameters and the URLs of the related

XSLTs, if any.

References

1. Fry M, Ghosh A. Application layer active networking, HIPPARCH ’98 Workshop.

2. Jean K, Yang K, Galis A. A Policy Based Context-aware Service for Next Generation

Networks, 8th London Communication Symposium, 8–10.9.2003, London, http://

www.ee.ucl.ac.uk/lcs/index.html.

ServiceMonitMeasure

SLO specific logic

ServiceMonit

SLO

startMonitoring

stopMonitoring

setSpecific

getAssuranceData

throwAlarm

srv xslt

sup xslt

SOAP to DMC

XML to console

XMLmonitored data

new
monitor set-up

 new monitor set-up

mng xslt

local DINA info

DMC AS AC

newAssuranceMessage

ASCE

Figure 6.7 Flow Diagram.

130 Fast and Efficient Context-Aware Services

3. Galis A, Serrat J, Raz D, Juhola A, Georgatsos P, Serrano JM, Justo J, Marı́n R, Cohen R,

Ahola K, Damilantis T, Vardalachos N, Jean K. ContextWare Programmable Middleware,

2nd International Workshop on Managing Ubiquitous Communications and Services

(MUCS 2004), Dublin 13–14 December 2004; http://mucs2004.org/.

4. Yang Y, Galis A. Policy-driven Mobile Agents for Context-aware Service in Next

Generation Networks, MATA 2003- IFIP 5th International Conference on Mobile Agents

for Telecommunications, 8–10.10.2003; Marrakech, Morocco; www-rp.lip6.fr/MATA03/.

5. Sygkouna I, Vrontis S, Chantzara M, Anagnostou M, Sykas E. Context-Aware Services

Provisioning on Top of Active Technologies, IFIP 5th International Conference on Mobile

Agents for Telecommunication Applications (MATA 2003), 8–10.10, 2003, Marrakech,

Morocco.

6. Nwana HS, Ndumu DT. A brief introduction to software agent technology, Jennings N,

Wooldridge M (eds), Agent Technology Foundations: Applications and Markets,

Springer: Berlin, 1998.

7. Xynogalas S, Chantzara M, Sygkouna I, Vrontis S, Roussaki I, Anagnostou M. Context

management for the provision of adaptive services to roaming users. IEEE Wireless

Communications 2004; 11(2): 40–47.

CAS Creation and Management – System Architecture 131

7
The Service Execution
Environment and Context
Delivery

In the previous chapter, we started to outline the architecture of the CONTEXT

system. In this chapter, we continue this description and concentrate on the Active

Application Layer. We provide a detailed description of the active application

network platform DINA, which is the distributed execution environment of the CAS

system. We also provide a detailed description of the context delivery system,

explaining how context information is made available for the different components

of the service.

7.1. A Bird’s-Eye View

In the previous chapter, we saw that from the technical point of view the CONTEXT

solution comprises three domains, namely: The Service Layer (SL) domain, the

Active Applications Layer (AAL) domain, and the IP domain. A different way to

consider the various aspects of the same system is depicted in Figure 7.1, where the

system is composed of three functional layers, namely the Service Creation layer,

the Service Management layer, and the Service Execution layer. The Service

Creation layer and the Service Management layer were described in great detail

in the previous chapter, and in this chapter we concentrate on the Service Execution

layer.

The Service Execution layer is supported by a mixture of active network (AN)

nodes and dedicated servers. This layer supports a distributed execution environment

in which service code can be executed in a controlled, managed, and efficient way.

The motivation for selecting active technology as the main technology to support

this distributed service execution environment is, as explained in the first chapters of

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

this book, due to the advantages that it offers as far as context collection, processing,

and storage are concerned.

As described in Chapter 2, many active network platforms could have been chosen

as the base for the CONTEX active environment solution. Among all these

solutions, the CONTEXT project adopted the DINA programmable platform,

which is based on concepts used in the ABLE and ABLEþþ systems [1] to provide

the programmable context-network functionality. DINA is a programmable middle-

ware which can be attached to different types of network elements and makes them

active. In this way, we get a flexible, scalable, and efficient distributed execution

environment for the CAS logic, as described later in this chapter. The front end of

this executing environment is the APIs provided by DINA to the service code (and to

the code of other components of the system). Apart from a unified way to create

distributed applications (including support for communication and resource control),

these APIs allow the service logic an easy and unified access to local network data

and context information, as well as performing actions (such as network-level

configurations) as needed. As such, the CONTEXT platform can support context-

Figure 7.1 CONTEXT Functional Architecture.

134 Fast and Efficient Context-Aware Services

aware services with a variety of network technologies and applications, in a scalable,

safe, and reliable way.

7.2. The Active Platform

The DINA active platform was developed by the CONTEXT project based on

concepts and ideas used in the ABLE and ABLEþþ systems [1]. In developing

DINA, a strong emphasis was put on the missing components needed to create a

scalable platform allowing easy deployment of network related context-aware

services. This section presents DINA’s software architecture, its various software

modules, and explains the way in which these modules interact. It also presents the

data flow of active services from creation to termination, with emphasis on the

interaction with the IP and AN API.

DINA is a modular and scalable software architecture that enables deployment,

control, and management of active services (sometimes called sessions or active

sessions) over network entities such as routers, WLAN access points, media

gateways, and servers that support such services in IP-based networks. In addition

to the deployment, control, and management capabilities, DINA provides scalable,

platform-independent interfaces that can be used by the active services to manage,

control, retrieve information or perform other operations in the local node.

The DINA active platform consists of an Active Engine attached to a Forwarding

Element, which can be a router, a WLAN access-point, a media gateway, etc. (see

Figure 7.2). The modular design of DINA allows the various logically separated

components to be either physically separated or co-located at the same machine. In

particular, the Active Engine can reside inside a router on a special card, or at a

Forwarding Element

Active Engine

Execution Environment Interface

Filter MIB CLI

Figure 7.2 DINA Active Platform Environment.

The Service Execution Environment and Context Delivery 135

different physical box next to the router. This kind of architecture enables DINA to

support different platforms from different vendors using almost identical software

components.

In the DINA system, control messages (and possibly the code itself) are sent

inbound, that, is using the same infrastructure as the data traffic. In our case, control

messages are active packets containing either the code itself, reference to the code,

or information exchange between different components of a distributed active

application. This choice is very natural in the IP world where all messages are

eventually sent in IP packets over the same links. However, in order to implement

such an architecture one needs to deploy a mechanism that can filter out the control

messages and redirect them to the control plain, this is done in the Forwarding

Element.

The Forwarding Element must be able to filter control packets and to send them to

the Active Engine. In addition, it must either support standards such as SNMP and

MIB or a proprietary but open interface. These interfaces are used to access local

information, and to reconfigure the node as required. The information accessed

through this interface may concern local resource utilization, load on the different

interfaces (when the network element is a router), or information regarding the

different call setups (when the network element is a VoIP gateway). Access

capabilities may include reconfiguration of the element, changing of parameters

and policies, or modifying the QoS parameters or routing tables. Most off-the-shelf

IP elements indeed support both filtering and redirection, and can be accessed either

via SNMP or via proprietary CLIs. Some network elements even support more

complex access methods based on Java or WEB services technology. The commu-

nication between DINA’s modules is usually done by UDP transactions and TCP

connections, although other methods can be used. In the current implementation,

DINA active packets (that should be captured by the filter) are identified as UDP

packets with destination ports 3322, 3323 or 3324 (see Subsection 7.2.4). In order to

capture such packets, the Forwarding Element should employ a policy-based routing

mechanism that allows packets to be filtered and captured according to predefined

rules. Using this kind of mechanism, such active packets are captured and are

redirected to the Active Engine (actually, as described in the next paragraph, to

the Session Broker). The implementation of this filter depends on the platform and

the interface with the policy-based routing mechanism, in the specific Forwarding

Element.

The heart of the DINA system is the Active Engine. This is a modular software

element that offers a controlled, safe, and managed execution environment to the

code of the service logic, and other components that perform additional required

functions. It is based on a collection of brokers (see Figure 7.3). The Session Broker

is the main software component. It handles new control messages, creates and

executes the service code, and manages the Active Engine. In addition to the Session

Broker, other brokers provide different APIs that allow active services to utilize host

136 Fast and Efficient Context-Aware Services

information and resources, and to perform operations in the local environment. The

concept of using brokers has the following advantages:

� Improving the system security and protecting it against harmful services that

may cause (deliberately or accidentally) problems in the active node. The usage

of brokers, in addition to other security mechanisms (see Subsection 7.2.5),

prevents direct access to sensitive information or resources in the local

environment. If a service needs to access such resources, it must use the

appropriate broker that can decide, based on its policy, whether to allow the

required request or to deny it.

� Enabling advanced access control, based on the services and the required

resources or information. In addition to a basic binary access control that

determines which services and which users can run services on an active node,

each broker can determine its own policy for utilizing its resources.

� Providing atomic platform-independent interfaces that can be used as a building

block for Creating Services. Access to resources and information utilization is

different from one platform to another. The usage of brokers enables services to

access these resources regardless of the platform and the system that hosts the

service.

� Scalability and Stability. Each broker provides a set of operations that can be

performed by the services using the interface broker API. When new operations

need to be added according to the requirements of a new service, this may be done

by implementing new brokers that will meet these requirements. In addition,

when a broker fails, it impacts only services that use this broker while other

services that do not use this broker can continue their work unaffected.

 Active Engine

Session

 MIB

Forwarding Engine
Filter

session 1 session 2 session n

ControlFilter

CLI

Context QoS Info

security

Broker Broker Broker Broker Broker Broker

Figure 7.3 DINA Block Diagram Architecture.

The Service Execution Environment and Context Delivery 137

The service logic uses the functionality provided by the brokers via broker

interfaces. For each broker, the broker interface is a Java class that can be used by

the code implementing the service logic and contains the functionality needed. For

example, if the service logic needs to monitor the load on a local interface, it may

use the getLoadmethod in the InfBroker class. A detailed description of the different

brokers and their interfaces is provided later in this chapter.

7.2.1. The Session Broker

The Session Broker runs the Active Engine and is the core of the active node. It

receives and parses control messages (IP packets identified as active packets by the

Forwarding Element’s filter). If new code implementing part of a service needs to be

executed, the Session Broker retrieves the code (if not available already) and

executes it in one of the available JVMs. If the control message contains information

required by one of the sessions, then this is forwarded by the Session Broker. The

Session Broker is an event-driven application that receives events from different

communication channels and from an aging mechanism. It communicates with

the different services via the Session Broker Interface class instance in each service.

As explained above, unlike other brokers, the Session Broker is essential for the

execution of any service in the system.

The Session Broker has several fixed communication channels. The external

communication channel is used to receive and send active packets. An active node

can receive such packets from other active nodes or from the originator host. Active

packets are sent to other active nodes according to services requests. If a new code

implementing part or a service needs to be executed, the Session Broker retrieves the

code (if not available already) and executes it in one of the available JVM’s

dedicating for active packets. If the control message contains information that is sent

to one of the sessions, then the Session Broker sends it to the appropriate session.

The data channel and the admin channel are used to communicate with the local

services. The data channel is used to send active payload from the Session Broker

to the active session and vice versa. Using the admin channel, a service

can send control messages to the Session Broker. The following control messages

can be sent:

‘New’: When the Session Broker establishes a new active session, the session

enters a ‘Pending’ state. In this state the service is not yet ready to receive and

handle data, and therefore the Session Broker drops any active packet directed to

this service. When the Session Broker receives a ‘New’ control message from an

active session, it changes the session state to ‘Alive.’ Once the session is in this state,

it can receive active packets from the Session Broker.

‘Refresh’: The Session Broker employs an aging mechanism to terminate old and

unused active sessions (see detailed description lter in this section). In order to avoid

138 Fast and Efficient Context-Aware Services

termination due to aging, an active session should refresh itself by sending a

‘Refresh’ control message from time to time.

‘Kill’: An active session sends a ‘Kill’ control message to terminate itself.

The JVM channel is used to communicate with the JVM’s that are attached

to the Session Broker and used to execute Java-type active services (see Sub-

section 7.2.2). The Management Broker channel is used to communicate with

Management Broker interfaces that may be used by the active services to receive,

request, and retrieve information regarding the current status of the Session

Broker.

7.2.1.1. Session Database

The Session Broker maintains a database, which contains information about all active

services that are currently present at the system. For each service the following

information is kept:

� State. This field describes the state of a service and it can be in one of the

following states: ‘Pending’ or ‘Alive.’

� Aging. This field contains aging information of a service, namely the service time

to live. When this time is expired, the Session Broker should terminate the service.

A service can renew its time-to-live by sending a ‘Refresh’ control message to

the Session Broker.

� Sequence number and session ID. The combination of sequence number and the

session ID uniquely identifies the service in the active node. These fields are

extracted from the DINA header (see Subsection 7.2.4).

� IP address and UDP port. These fields are used in order to send data to a service

(via data channel).

� JVM. This field contains information regarding the JVM that runs the service

when the active code is written in Java (see Subsection 7.2.2). The Session Broker

uses this information to control the service (e.g., terminate it) when this is

necessary.

� Security and authorization information. This is information regarding the

authorization and access list of the service. More details are provided in

Subsection 7.2.5.

7.2.1.2. Aging Mechanism

In order to prevent old, unused services from utilizing the active node resources the

Session Broker employs an agingmechanism. The agingmechanism allows the Session

Broker to terminate services that are considered to be unused. A service can avoid

The Service Execution Environment and Context Delivery 139

termination as a result of aging by sending periodic ‘Refresh’ control messages to the

Session Broker (via the admin channel).

In order to fully understand the role of the Session Broker let us consider the life

cycle of a part of a service code in a specific DINA node. Such an execution begins

when the code of a service (or a reference to a URL containing this code) arrives to

the Active Engine. The Session Broker needs to create a local session, and to

execute the relevant code. If the active packet contains the actual code then the

Session Broker executes this code in one of the available JVM’s, and once the code

is running it sends a message via the control channel, causing the Session Broker to

update the session status to ‘Alive.’

Recall that one or more classes in an active packet may be referred by a URL. In

this case instead of sending the class in an active packet, one can send a URL for this

class. The URL can be an HTTP or an FTP server or a file in the local file system.

The URL Class Loader (UCL) communication channel is used by the Session

Broker to extract the set of classes that are referred by the URL in the active packet.

Once this is done, the code is executed in one of the available JVMs as described

above.

During the session life time, the code may receive data packets from other DINA

nodes, it may access information via the different brokers, perform local actions via

the different brokers, access context information via the Context Broker, or send

data to other active session related to the same service in other DINA nodes. All

these actions are done via the appropriate channels as described above.

7.2.2. Execution Environment

The Execution Environment (EE) is where the active applications are executed.

In order to support different types of active application, more than one EE can be

used.

The Java Execution Environment is a set of JVM’s (Java Virtual Machines) that

are attached to a single Session Broker and run Java-type active services. Each

JVM can handle more than one service using the Java thread mechanism, and there

may be more than one JVM attached to a single Session Broker. In addition, these

JVM’s may run on different machines (see Figure 7.4). For each service, the

Session Broker can determine which JVM to use according to its internal policy

(e.g., finding the JVM with minimum active services, finding the JVM with

minimum load).

The Session Broker communicates with the JVM’s using its JVM channel

(see Subsection 7.2.1). This channel enables the Session Broker to control and

maintain the JVM’s and allows dynamic addition and removal of JVMs. In this

way the system performance can be upgraded as needed, and scalability is

maintained.

140 Fast and Efficient Context-Aware Services

7.2.3. Management of Active Nodes

As described above, a collection of active platforms provides the distributed

environment in which the service logic is executed. Thus, in order to ensure that

the service is available, one needs to manage the active nodes. Managing active

networks is a very challenging field. One has to verify both that each node is

operating properly, and that the network-wide system of active components, such as

code invocation and communications, are operating within the designed scope.

In order to manage the active platform, a distributed management application is

implemented and run on every managed active node. Active code belonging to this

application is sent into each active node. In each node, the management code

retrieves local information and controls the active platform. The management

application and the active node platform interact using the Management Broker as

described below.

The Management Broker Interface provides a management active service that is

able to control the active environment. It presents an API to control and retrieve

information about the overall utilization of the system resources or about a specific

session.

7.2.4. DINA Active Packets

In this subsection, we provide detailed technical information about the structure of

the active packets. This information is needed in order to better understand several

aspects of the architecture, to explain the IPv6 support, and to be able to analyze the

scalability and performance of the system (see next chapter). As explained above,

control messages in the CONTEXT system are DINA active packets. These are UDP

packets whose payload consists of an ANEP [4] header followed by an active

payload.

Since ANEP is a general encapsulation protocol for active networks, a dedicated

DINA header extends the ANEP header using the ANEP option field.

Host IIIHost IHost II

Session Broker

JVM 1 JVM 2JVM 3 JVM 4

AS
Co

AS
Co

JVM 5 JVM 6

AS
Co

AS
Co

AS
Co

AS
Co

AS
Co

AS
Co

AS
Co

AS
Co

AS
Co

Figure 7.4 Java Execution Environment in DINA.

The Service Execution Environment and Context Delivery 141

DINA active packets are identified as UDP packets with destination port 3322,

3323 or 3324 (Figure 7.5). The different UDP port numbers indicate the type of

dissemination used. In the first case we want to sent the packet to the first active

node along a path to a given destination; in this case, the destination port of the

packet is 3322. In the second case, we want to send the packet to a specific UDP

destination. In this case the destination port of the packet is 3323 and only the

destination host receives the packet, while all other active (and nonactive) nodes in

the route forward the active packet like any IP packet. In the last case we want the

packet to arrive to all active nodes along the path to a specific destination. In this

case the destination UDP port of the packet is 3324; the packet is captured by every

active node in the route of the packet, that is the active packet is forwarded to its

destination and each active node on the path creates a local copy.

7.2.4.1. ANEP Header

ANEP is a mechanism for encapsulating active network frames for transmission

over different media [4]. The format of the ANEP packet header is shown in

Figure 7.6.

The ANEP header fields contents are as follows:

The current version of ANEP, which is described here, and should be set in the

‘Version’ field, is one. The ‘Type ID’ field indicates the environment of the message.

DINA environment ID is 62. The ‘Flags’ field indicates what the active node should

do if it receives a packet with unrecognized type ID. The node can forward the

packet to other nodes (using its standard routing mechanism) or it can discard the

packet. The ‘Header Len’ specifies the length of the ANEP header, including all the

options in 32-bit words. The ‘Packet Len’ specifies the length of the packet, starting

from the ANEP header (included), in bytes.

An ANEP header may contain one or more options in the format TLV (Type

Length Value). The Type and the Length fields describe the type of the option and its

ANEP
Header

UDP
Header

IP Header ANEP Option:
DINA Header

DINA Option:
Class Length

Active Payload

Figure 7.5 DINA Packet Format.

Version Flags

Header Len

Type ID

Packet Len

Options

Figure 7.6 The ANEP Packet Header Format.

142 Fast and Efficient Context-Aware Services

length respectively, and are both 16 bits. The length of the option value varies and

depends on the option type.

7.2.4.2. DINA Header

Every ANEP packet that has type ID of 62 (i.e., extended DINA environment)

must contain a DINA option. The value of this option follows the format shown in

Figure 7.7.

In the DINA packet header, the ‘Version’ field contains DINA version, which is

currently one. The ‘Language’ field determines the type of the payload and can be

zero for data payload or one for Java application payload.

As described in Subsection 7.2.1, in order to capture active packets, an active

node, which is not the destination of the packet, should filter these packets using a

policy-based routing mechanism. This filtering is done according to criteria that are

based on information from the UDP (and IP) header. This mode of operation can

lead to a problem when IP fragmentation is used. In this case only the first fragment

contains the UDP header and therefore intermediate active nodes will not be able to

capture the entire packet.

In order to overcome this problem a mechanism has been employed in the DINA

header that enables fragmentation of active packets in the application layer. Using

this mechanism every fragment contains IP, UDP, and ANEP (include DINA option)

headers (i.e., only the payload is fragmented).

The ‘Flags’ and the ‘Segment Number’ fields are used for the purpose of

fragmentation. The ‘Flags’ field indicates whether the current fragment is the last

one, while the ‘Segment Number’ field indicates the reference number of the

segment in the packet.

The ‘Session Sequence’ and the ‘Session ID’ fields are used to uniquely identify

the service in the active environment; thus, no two services may have the same

values in these fields. A DINA header may contain one or more options in the format

TLV. The length of the options varies and depends on the option type.

7.2.4.3. Class Length and Class URL Option

Active code comprises a set of classes to be executed by the active node. These

classes contain a main class that is the first class in the active packet followed by

accessory classes.

Version Language

Session Sequence

Session ID

Flags Segment Number

Figure 7.7 The DINA Packet Header Format.

The Service Execution Environment and Context Delivery 143

The Class Length Option and the Class URL Option contain the length of a class

or the length of the URL that is presented in the payload. If the payload contains

more than one class then the option fields may be concatenated.

7.2.4.4. Active Payload

As mentioned above, the ‘Language’ field in the DINA header determines the type

of payload, which can be one of the following two types:

A new active service. In this case the payload contains an application to be

executed by the receiver active node. This application may be followed by a set of

parameters for this application. Currently DINA supports Java applications. The

application consists of one or more classes in which the first class is the main class to

be executed by the active node, while all other classes are used by the main class.

Each class can appear explicitly (i.e., the payload contains the bytecode of the class)

or implicitly (i.e., the payload contain a reference to the class).

Data for an existing service. In this case the payload contains a set of parameters.

When an active node receives such a packet, it forwards the parameters to the related

active service, which is already running on the node.

7.2.4.5. IPv6

The system, as described so far, is implemented in IPv4 networks. However, future

networks are most likely to use (at least partly) the IPv6 [5] Protocol. Regular

applications are not affected by whether the OS works over IPv4 or IPv6 as long as the

system calls (i.e., the APIs with the OS) remain the same. However, in our case the

application uses IP addresses explicitly. For example, the Session Database contains

information regarding the IP address and the UDP port used to send the code

invocation command. This information is then used to exchange information between

different copies of the application. When the system is used in an IPv6 network, these

address fields are different and thus the system must be aware of the change.

Note that the required modifications are technical in nature, and that the detailed

implementation and headers definitions as described here are not suitable for IPv6

implementation. In fact, the system has been modified to support both IPv4 and

IPv6. This was done by adding a version field and an IP address field before the

ANEP header in the active packet, and modifying the Session Broker code and

database accordingly.

7.2.5. Security

The concept of active nodes that host active applications makes these nodes

vulnerable to malicious services that can use this fact to harm the node and use it

144 Fast and Efficient Context-Aware Services

for various attacks. To prevent such attacks, DINA uses several security mechanisms

that control and constrain active services.

Here, security refers to authenticity and integrity of messages, authenticity of

identity and controlling object’s access to resources. Secrecy, privacy, and non-

repudiation of messages are not considered. More specifically, this section describes

how a DINA node is able to verify the source and integrity of an active packet, verify

the identity of the encapsulated active code, and apply the correct access control

policy as the active code is in the execution environment. Cryptographic mechan-

isms are utilized to implement these objectives.

7.2.5.1 Relevant Entities

‘Context-aware Active Service Provider (CASP)’ is the source of active programs.

CASP is a logical entity that may encompass a number of nodes, all belonging to the

same administrative domain.

‘Context-aware Active Network Provider (CANP)’ manages the DINA nodes and

any supporting elements. The CANP administrator manages policy rules and access

control information that are stored in a repository.

‘DINA node’ is the active node where the active code is executed. DINA nodes

retrieve policy rules and access control information from the CANP repository.

‘Public Key Infrastructure (PKI)’ is a network of Certificate Authorities (CA) and

Certificate Repositories. Its function is to manage, store, and deliver X.509 [2,3]

certificates and Certificate Revocation Lists (CRL) that enable secure public key

based authentication and encryption.

7.2.5.2. Relevant Objects

‘Active Service’ is the program that is executed in the DINA node. An active service

is implemented by active code. Active code either consists of a number of Java

classes or may be a native binary application. The active code accesses different

brokers of the DINA node. It is created and compiled by CASP.

‘Active Code Parameters’ are arguments to the active code. Parameters may

originate from CASP, and they may be added, removed, or modified by another

DINA node.

‘X.509 Certificates’ encapsulate public keys and associated attributes.

‘Permitted Access Control List (PACL)’ contains all the access control related

attributes. It is managed by the CANP administrator, and is internal to the CANP.

‘Static Security Policy File’ determines the amount of active node resources that

can be used by the active service.

‘Java Virtual Machine Security Manager’ is a class that allows Java applications to

implement and enforce security policies. The class allows an application to identify

any requested operation, prior to execution, and determine whether its execution is

The Service Execution Environment and Context Delivery 145

permitted by the security policies. The application can then allow or disallow the

operation.

7.2.5.3. Objectives of Security Functions

The objective of the security functions is to control an active code’s access to

resources (both information and computation resources) of a DINA node. The

dynamic and static security mechanisms prevent the active code’s direct access to

active node resources (such as I/O, network, and file system resources). These

mechanisms force active services to use the different brokers in order to utilize these

resources. The static and the dynamic security mechanism complement each other

but they differ in their operation. The static system detects security violation before

the execution of the active session by parsing the active code. In contrast the

dynamic system detects security violations on-line, that is during the execution of

the active code. The policy of these security mechanisms is configurable and can be

changed using configuration files.

From the CANP point of view, the objectives of authentication and access control

mechanisms are to prevent unauthorized use of resources, to prevent the active code

from performing harmful functions, and to verify that the active code conforms to

rules and policies agreed between the CANP and the CASP. Possible threats to a

CANP include hackers and software bugs in active code.

From the CASP point of view, the objective of access control is to assure that the

active code does not perform functions that may harm the CANP or any third party.

A possible threat are software bugs in active code that could bring the DINA node

into unstable state, or flood the network, and thereby cause harm.

7.2.5.4 Architectural Specification

The overall architecture is shown in Figure 7.8.

The following functions are performed by the DINA node:

� Fetch Active Applications code from the Service Provider.

� Get X.509 certificate of the CASP from the PKI Infrastructure.

� Verify the packet and the code authentication and integrity.

� Check if the code is allowed to run in this node. Permissions are handled with

PACL (Permitted Access Control List).

� If the PACL is not found in the local repository, fetch it from the CASP’s

repository.

� Enforce the Access Control Policy instructed by PACL’s.

� Execute the Active Code/Application.

The following sections explain the security functions in detail.

146 Fast and Efficient Context-Aware Services

7.2.5.5. Access Rights Management

The access control policies within a CANP domain are managed by the CANP

administrator.

Before access rights are granted for a new active service, the CASP contacts the

CANP administrator and asks the CANP to grant a set of access rights for the

active code that implements the active service. The CANP administrator verifies

that the active code is safe and valid, and grants the necessary access rights for the

code. The access control policies are added to the PACL, and the CANP network is

ready for the execution of the active code.

The CANP administrator may also add default policies for unknown active

services. The policies may be per CASP, per DINA node, or even global policies

with no restrictions.

7.2.5.6. Authentication and Verification of Integrity

General Description: Authentication between the CASP and DINA nodes is based

on PKI, X.509 certificates, and digital signatures.

A digital signature provides authentication of the identity and protects the content

from unauthorized modifications. The data is signed at two levels:

Figure 7.8 Overall Architecture of DINA Security.

The Service Execution Environment and Context Delivery 147

� Code Signature: The CASP signs the code when it is created, and the DINA node

verifies the signature before retrieval of the access control policy for the active

code.

� Packet Signature: The sending node signs the whole packet (headers,

code, parameters). The sender is either the CASP or an intermediate DINA

node. The receiving DINA node verifies the signature upon receipt of the active

packet.

Code signing does not introduce significant computing overhead, since the

signature is computed only once by the CASP. The code and its signature remain

unchanged.

There are two modes to transfer the active code into the DINA node. The code

signature is handled somewhat differently in each mode:

1. The active code is sent in the active packet. In this case the code signature is

included with the active code in the active packet.

2. The active packet contains a URL-pointer to the active code, and the DINA node

uses this URL to fetch the active code. In this case the code signature is included

with the URL-pointer in the active packet. The DINA node uses the signature to

verify that the fetched code is authentic and unmodified.

Figure 7.9 shows the two authentication modes. Packet signing ensures that the

packet cannot be modified in flight without computation of a new signature. Packet

Figure 7.9 Code and Packet Signatures in the DINA Security Mechanism.

148 Fast and Efficient Context-Aware Services

signature must be recomputed only when the contents of the packet is changed.

Simple forwarding of an active packet does not require recomputation of the packet

signature. Both the code signature and the packet signature must be encapsulated

with the signer identifying data.

7.2.5.7. Description of Operation

CASP creates a key pair for digital signing purposes, and publishes the public key

as a X.509 certificate, which is signed by a certificate authority. There must be

chain of trust between the CASP and a root CA that the DINA node trusts. CASP

computes a signature for the active code during the creation of the code. CASP

builds an active packet with ANEP and DINA headers, the active code (or a URL

reference to it), the code signature, and active parameters. CASP computes a

packet signature for the active packet, fragments it (if necessary) and sends the

packet to the network. Every DINA node that modifies the active packet must

recompute the packet signature.

When receiving an active packet, the DINA node verifies the packet signature.

First, the source’s X.509 certificate is fetched from the PKI. Next, the validity and

authenticity of the certificate is verified by forming a chain of trust between the

source and the root CA, and by checking the certificate revocation lists (CRL) of the

root CA and each intermediate CA. At last, the DINA node uses the source’s public

key to verify the packet signature. The code signature is checked in a similar way,

except that the signer is the CASP (which may differ from the source of the active

packet).

Low-level functions such as fragmentation and reassembly of an active packet

must not require the recomputation of the packet signature. Thus, the packet

signature cannot cover all fields of the ANEP and DINA headers. Rather, a

pseudo-header must be used in the signature computation.

7.2.5.8. Replay Protection

An active packet contains a unique identifier that distinguishes two packets from

each other. The DINA node maintains state information about the identifiers of

received packets.

A packet sequence number provides sufficient protection. The source node stores

the sequence number of the last packet it has sent, and the destination node stores

the sequence number of the last received active packet that was valid. Upon receipt

of a new packet the sequence number of the packet is compared with the stored

sequence number. The packet sequence number is considered valid if it is larger

(taking rollover into account) than the stored sequence number.

The Service Execution Environment and Context Delivery 149

An alternative method is to use daytime as the packet sequence. In this way the

source node does not have to store the sequence number. However, this method is

sensitive to clock adjustment at the source node.

7.2.5.9. Identification of Active Code and Active Service

The active code that implements an active service is either a binary application or a

set of Java bytecode classes. Furthermore, the code may be customized in CASP,

that is the active service consists of a base code and customized code.

In the case of Java active services, the service consists of base classes and

customized classes. The active service can be identified by the code signatures of

the base classes.

7.2.5.10. Access Control

Permitted Access Control List (PACL): All access control-related information is

stored in the PACL (in the CANP repository).

The PACL contains mappings from a set of parameters to a set of access control

policy rules. The parameters needed to identify a set of policy rules are:

1. Active Code identity.

2. The source of the code (CASP): The CANP can define different access control

policies for different CASPs.

3. DINA node: The CANP can define policies based on the attributes of the

EE (e.g., location of DINA node in the network, amount of computing resources,

etc.)

Parameters may contain wildcards, thus allowing default policies (per CASP

for example). The PACL is accessed in the order of parameter accuracy, that

is policy rules for a specific (code, source, node)-triple override the default

policies.

The CASP may also maintain a PACL, which contains the CASP’s preferred

access control policies for each of the CASP’s active codes. The CANP may utilize

this PACL to retrieve access control policies for active code that is unknown but

originates from a trusted CASP. This form of PACL chaining allows the CASP to

ensure that the execution of the active code does not cause significant harm even if

the code does not behave as designed.

The access control policy rules define what functions the active code is allowed

to perform in the DINA EE. For example, an active service may be allowed to call

certain Java methods, connect to some remote servers, or send data via network at

a specified maximum rate.

150 Fast and Efficient Context-Aware Services

7.2.5.11. Static Access Control Enforcement

The static security mechanism parses the active code and finds security violations

before the code executes. In particular, it detects if the active code tries to access the

system resources directly (i.e., without using the different brokers). This security

system is employed in the session broker according to predefined security policy that

can be dynamically changed using a static security configuration file. This config-

uration file identifies the resources that can be used by the active service.

In the Java EE, where the active code is a set of Java classes, the static security

system checks each one of the classes in the active payload and extracts the

instances that are used by these classes. If an instance is not authorized by the static

security policy file then the static security system denies execution of the service and

drops the code.

Static access control must be extended such that the access control policy from the

PACL can be used as input when applying the static access control to the active

code.

7.2.5.12. Dynamic Access Control Enforcement

The dynamic security system detects potential security violations during execution

of the active code. In the Java EE, the implementation uses the Security Manager

mechanism. Each, time a system resource is requested, the security manager checks

if the caller is one of the brokers and, if so, it accepts the operation, otherwise the

operation is rejected.

Altogether, DINA Security mechanism allows the provision of programmable

services with a minimal risk in terms of security. One has to note that the

computational cost and the added complexity to the system due to these security

enforcement are not negligible and a further study is in place regarding the trade-off

between security and efficiency.

7.2.6. The IP-Related Brokers

We describe here the various brokers that allow the service logic to retrieve local

information and to perform control actions, as needed. Recall that each network

element can be supported by different brokers depending on the required function-

ality. We start with IP-related brokers.

7.2.6.1. Information Broker

The Information Broker Interface provides services to retrieve local IP-related

information such as the name and IP address of routers connected to the local LANs

and general MIB objects in the active host.

The Service Execution Environment and Context Delivery 151

public class infoBrokerInterface
{
public infoBrokerInterface();
public String snmpGet(String s);
public String [] snmpGet(String [] s);
public String snmpGetNext(String s);
public String [] snmpGetNext(String [] s);
public int getNumIf();
public String getRouterName();
public String [] getIpAddrs(int ifnum);
public String [] getIpMask(int ifnum);
public int getIfNumber(String ipaddr);
public String getNextHopAddr(String dest);
public int getNextHopIf(String dest);
public oat getLoad(int ifNum);
public int getStatus(int ifNum);
public String [] getActiveNeighborsAddrs();
public String [] getActiveNeighborsAddrs(int ifNum);
public boolean isLocalLoopback(String addr);
public boolean isLocalLoopback(int ifnum);
public String [] getDestAddrs(int ifnum);
}

The Information Broker retrieves information from the active platform using an SNMP

client. In addition, it maintains a cache in order to reduce the volume of queries.

7.2.6.2. Control Broker

The Control Broker Interface enables active services to control and configure the

routing tables and VPN connections. It is possible to install two kinds of routes

into the routing tables: temporary and permanent. Configuration of temporary routes

requires one extra parameter. VPN connections can be established also in same

manner. If timeToLive is defined as 0, the tunnel is permanent.

public class controlBrokerInterface
{
public static int ADD_ROUTE¼ 0;
public static int DEL_ROUTE¼ 1;

public static int VPN_IPIP¼ 0;
public static int VPN_GRE¼ 1;
public static int VPN_IPSEC¼ 2;

152 Fast and Efficient Context-Aware Services

public static int START_VPN¼ 0;
public static int STOP_VPN¼ 1;
public static int SHOW_VPN¼ 2;

public controlBrokerInterface();
public String setRoute(int cmd, inetAddr net, inetAddr netmask,
inetAddr gw, String if);
public String setRoute(int cmd, inetAddr net, inetAddr netmask,
String if);
public String setRoute(int cmd, inetAddr net, inetAddr netmask,
inetAddr gw);
public String addTempRoute(int timeTolive, inetAddr net, inetAddr
netmask, inetAddr gw, String if);
public String addTempRoute(int timeTolive, inetAddr net, inetAddr
netmask, String if);
public String addTempRoute(int timeTolive, inetAddr net, inetAddr
netmask, inetAddr gw);
public String getRoutingTable();
public String setVPN(int timeToLive, int tunnelType, int cmd,
inetAddr destIP, inetAddr destNet, inetAddr netmask);
public String setVPN(int tunnelType, int cmd, inetAddr destIP,
inetAddr destNet, inetAddr netmask);
public String setVPN(int cmd, inetAddr destIP, inetAddr destNet,
inetAddr netmask);
public void close();
public getLastError();
}

7.2.6.3. Network Broker

The Network Broker Interface provides active services with an interface to

basic communication services such as TCP connections, UDP transactions, and

connection with other active services.

public class networkBrokerInterface{
public static final byte SOCKET_UDP¼ 17;
public static final byte SOCKET_TCP¼ 6;
public networkBrokerInterface();
public int socket(byte type);
public int setSocketTimeout(int sd, int timeout);
public int connect(int sd, InetAddress dest, short port);
public int bind(int sd, short port);

The Service Execution Environment and Context Delivery 153

public int accept(int sd);
public int send(int sd, byte[] buf, int length);
public int sendto(int sd, byte[] buf, int length, InetAddress addr,
short port);
public int receive(int sd, byte[] buf, int len);
public int receivefrom(int sd, byte[] buf, int len, InetAddress
addr, short port);
public int sendUDPpacket(byte[] buf, int length, InetAddress
dest, short port);
public int close (int sd);
public String getLastError ();
}

7.2.6.4. Filter Broker

The Filter Broker Interface provides ways to control a router to filter traffic.

public class filter BrokerInterface{
public String getDataFlow()
public String addRawIPTableRule(String rule, int durationTime)
public String addRawIPTableRule(String rule)
public String getAllRules()
public String addIPTableGetFlowRule(String chain, String filter,
boolean withHeaderData, int durationTime)
public String addIPTableGetFlowRule(String chain, String filter,
boolean withHeaderData)
public String addIPTableGetPartialFlowRule(String chain, String
filter, boolean withHeaderData, int partSize, int durationTime)
public String addIPTableGetPartialFlowRule(String chain, String
filter, boolean withHeaderData, int partSize)
public String addIPTableGetProbabilisticFlowRule(String chain,
String filter, boolean withHeaderData, int rate, int durationTime)
public String
addIPTableGetProbabilisticPartialFlowRule(String chain, String
filter, boolean withHeaderData, int partSize, int rate, int
durationTime)
public String addIPTableAcceptRule(String chain, String filter,
int durationTime)
public String addIPTableAcceptRule(String chain, String filter)
public void removeIPTableRule(String handle)
public void refreshIPTableRule(String handle)
public void resetRuleCounter()
public int getStatistics(String handle)

154 Fast and Efficient Context-Aware Services

public String getRule(String handle)
public String getTypeofRouter()
}

While using the same API, the implementation of the API for different network

elements (for example a LINUX machine or a commercial CISCO router) is very

different. Thus while the front end (the API to the code) remains the same, different

code needs to be implemented to support different network elements. This part of

the broker code is sometimes referred to as a ‘wrapper.’

7.2.6.5. QoS Broker

The QoS Broker Interface provides active services with the ability to con-

figure and manage the routers’ network interfaces in order to support QoS

functionality. The QoS configurations refer to the Differentiated Services

(DiffServ) architecture.

The QoSBrokerInterface API provides to the service developer a set of methods

that can be classified into four main categories:

� Router identification: The methods of this category can be used to identify the

type of the current router (core, edge-1, edge-2 or out of source-destination

path).

� Interfaces identification: The methods of this category can be used to discover the

network interface that should be configured.

� Routing: These methods can be used to guide the active packets towards the

source or the destination host.

� Configuration: These methods can be used to install DiffServ queuing disciplines/

classes/filters in order to set up classifiers, policers, markers, etc.

public class QoSBrokerInterface{
public QoSBrokerInterface(InetAddress src, InetAddress dst, int
port);
public QoSBrokerInterface(int port);
public void setSource(InetAddress src);
public void setDestination(InetAddress dst);
public boolean resetInterfaceDiffServ(String iface);
public boolean resetAllDiffServ();
public boolean initINGRESS(String ingress);
public boolean resetINGRESS(String ingress);
public boolean installDSMARK(String egress);
public boolean resetEgress(String egress);
public boolean isLinuxController();
public boolean isEdge1();

The Service Execution Environment and Context Delivery 155

public boolean isEdge2();
public boolean isCore();
public String getIngress();
public String getEgress();
public String getNextHopFor(InetAddress target);
public boolean installCBQ(String egress, double bandwidth);
public boolean setAFxClass(int AF_x, String egress, double band-
width, double rate, int prio, boolean bounded, int DPs, int
default_DP);
public boolean setAFxyClass(int AF_x, int AF_y, byte DSCP_byte,
String egress, int limit, int min_limit, int max_limit, int burst,
double bandwidth, double probability, int prio);
public boolean setBEClass(String egress, double bandwidth, double
be_rate, int limit, int min_limit, int max_limit, int be_burst,
double probability);
public boolean setEFClass(String egress, double ef_rate, int
ef_burst, double ef_mtu, int ef_limit);
public boolean resetAccessLists();
public int createAccessList(int accesslist_id, String protocol,
String source_ip, String destination_ip, int source_port, int
destination_port);
public void removeAccessList(int access_list_id);
public int addMarker(int index, int accesslist_id, byte TOS,
String egress, String ingress, int prio);
public boolean removeMarker(int index);
public boolean removeMarker(int index, int accesslist_id, byte
TOS, String egress, String ingress, String prio);
public int addMarkerPolicer(int index, String egress, String pro-
tocol, String src, String dst, int sport, int dport, int rate, int
burst, int tos, int prio, String policy);
public int addMarkerPolicerCISCO(int index, int accesslist_id,
int rate, int min_burst, int max_burst, int conform_dscp, int
exceed_dscp, int violate_dscp, String egress);
public boolean removeMarkerPolicer(int index);
public boolean removeMarkerPolicerCISCO(int index);
public boolean removeMarkerPolicer(int index, String egress, int
prio);
public String monitorQdiscs(String iface);
public String monitorClasses(String iface);
public String monitorFilters(String iface);
public void finish();
}

156 Fast and Efficient Context-Aware Services

7.2.7. VoIP Support: the SIP Broker

The SIP Broker allows service logic access to a SIP software package. The broker

enables the active services to control and manage SIP entities such as proxy servers

and user agents. The SIP Broker provides the SLOs the ability to obtain information

from the SIP softswitch and to control aspects of call control during a crisis situation.

The SIP broker performs three primary functions. The first is to provide

information about the SIP softswitch and the SIP users. The SIP softswitch is the

software that controls call admission, control, and signaling using the Session

Initiation Protocol (SIP). The second function is to terminate calls. The third

function is to delegate call admission to the SLOs.

public class SipBrokerInterface {
//User status
public static int USER_ACTIVE¼ 0;
public static int USER_INACTIVE¼ 1;
public static int USER_DISCONNECTED¼ 2;
public SipBrokerInterface();
public int userStatus(SIPUrl sipUserAddr);
public InetAddress getUserIP(SIPUrl SIPUserAddr);
public int maxSessions();
public int totalSessions();
public String[] getProxyServers();
public String[] sessionStateInfo(String sessionID);
public Hashtable sessionStateInfo(String SIPProxyID);
public boolean terminateSession(String sessionID, SIPUrl Caller-
Addr, SIPUrl CalleeAddr);
public boolean terminateAllSessions(String SIPProxyID);
public void setCallAcceptanceDiverter (String SIPProxyID SIP-
CallDiverter diverter);
public void applyDiverter (String SIPProxyID boolean apply);
}

As previously explained, the implementation of the API is network element

specific. In this case it depends on the type of the SIP softswitch in use, and a

different ‘wrapper’ should be implemented for each different form of SIP software.

7.2.8. Wireless Support: The WLAN Broker

The WLAN Broker provides active services with the ability to control and

manage WLAN Access Points and the Wireless Network. Recall that a VLAN

The Service Execution Environment and Context Delivery 157

(Virtual LAN) can be regarded as a group of devices on different physical LAN

segments, which can communicate with each other as if they were all on the same

physical LAN segment. In other words, a VLAN can be thought of as a broadcast

domain that exists within a defined set of devices. AVLAN consists of a number of

end systems, either hosts or network equipment, connected by a single bridging

domain.

Let us now consider the configuration of a WLAN to constitute a VLAN. The

WLAN Access Points are Layer 2 devices. At this level, in order to provide VLAN,

we have to encapsulate the packets following the 802.1Q extension of the 802.1D

standard. The 802.1Q defines the architecture for Virtual LANs and services provided

therein.

According to the previous discussion, we can say that in order to allow a WLAN

be part of a VLAN we need to activate the 802.1Q tag awareness in the AP of this

WLAN. As depicted in Figure 7.10, the activation consists of a binding between an

existing VLAN and a particular Service Set. Service Sets are associated to VLANs

in a one-to-one basis. Simultaneously, a Service Set, which is a logical coverage

area, is bound to an Access List, which will contain the MAC Addresses of all the

users that are allowed to connect to this Service Set. Moreover, a given WLAN AP

can also have Service Sets that are not associated to any VLAN. Frames from the

wired network with destination to clients belonging to different VLANs are

transmitted by the AP to different Service Sets. Only clients associated with a

particular Service Set can receive those packets that belong to a particular VLAN.

Conversely, packets coming from clients accessing via the WLAN are 802.1Q

tagged before they are forwarded onto the wired network.

Figure 7.10 Association of VLANs, Service Sets, and Access Lists in a WLAN Access

Point.

158 Fast and Efficient Context-Aware Services

QoS in a WLAN AP can be assigned in two ways. First, it can be assigned

globally to the VLAN. This means that the flows of all users assigned to this VLAN

will have the same QoS. On the other hand, we can also assign QoS to individual

users whether or not they belong to any of the existing VLANs.

In order to provide a service with a given quality, it is necessary to keep a set of

performance values within given thresholds. In other words, there are some

parameters that must be configured and monitored in the network in order to assure

the QoS. In packet networks these parameters are mainly delay, bandwidth, jitter,

and packet loss. In this strict sense, an AP of the 802.11a,b standard has no means to

provide QoS. The AP can only establish different packet priorities based on one of

the following three mechanisms: DSCP value (Differentiated Services Code Point),

client identification, or the priority value on the 802.1Q / 802.1p tag.

All packets tagged with the same priority will be treated in the same way, but will

be given precedence over packets tagged with a lower priority. However, this priority

does not assure the total amount of bandwidth that they will share or even how much

bandwidth they will be able to use. The amount of bandwidth that a given class

shares is not guaranteed because it depends on the distribution of traffic among the

different traffic classes.

Finally, the interface adopts the following structure:

public class WLANBrokerInterface
{
public WLANBrokerInterface(InetAddr APAddr, String confPasswd);
public boolean isUserAssociated(String ClientIPAddr);
public String[] getAssociatedUserAddrs();
public String getUserMAC (String ClientIPAddr);
public String getUserIP (String ClientMACAddr);
public boolean createSS(String SSID, String AutType, String
AccessListID, String MaxAssoc);
public boolean removeSS(String SSID);
public String getClientSSID(String ClientMACAddr);
public boolean establishVLAN (String VLANId, String SSID);
public boolean removeVLAN (String VLANId, String SSID);
public boolean addAccessList (String AccessListID, String permi-
tion, String MACAddr);
public String[] getAccessList ();
public boolean removeAccessList (String AccessListID);
public String snmpGet (String community, String host, String oid);
public oat getLoad();
public oat getLoadPerConnectionfromAP(String ClientMACAddr)
public oat getLoadPerConnectionfromClient (String ClientMA-
CAddr);

The Service Execution Environment and Context Delivery 159

public int getSignalQuality (String MACAddress);
public int getInterfaceStatus (int ifNum);
public boolean setInterfaceStatus (int ifNum, boolean status);
public boolean setChannel(String ChannelNumber, int ifNum);
public boolean isChannelActive(int ChannelNumber, int ifNum);
public boolean setMACFilter (String FilterName, String[] MACAd-
dress, String AccessListID);
public boolean setVLANFilter (String FilterName, String VLANId);
public boolean removeFilter (String FilterName);
public boolean setQoSPolicy (String PolicyName, String Filter-
Name, String Priority);
public boolean removeQoSPolicy (String PolicyName);
public boolean bindQoS (int ifNum, String direction, String Pol-
icyName);
public boolean unbindQoS (int ifNum, String direction, String
PolicyName);
}

7.3. Context Delivery System

Context-aware services need a constant access to information about their environ-

ment to be able to adapt to it. To support such services there is a need to collect,

aggregate, and disseminate context information. This process is often termed context

management in the literature. Context information is derived from diverse informa-

tion sources spread over the network. A fundamental requirement then is to collect

raw data from thousands of diverse sources, process the data into meaningful context

information, either simple or complex, and disseminate the information to applica-

tions located at different network locations.

In order to describe the mechanism for the acquisition and distribution of

context information, we concentrate on the information providers (these are

entities that provide the context information to the system) and information

consumers (these are entities that use the information like the service logic).

This abstraction allows us to use publish/subscribe APIs relieving the producers

and consumers from the details of the underlying dissemination mechanism.

Data producers generate data and publish it, data consumers subscribe to data,

and it is the task of the dissemination mechanism to ensure that context informa-

tion travels efficiently from publisher to subscriber. Note that a very similar

description was used in Chapter 4 to describe Network Context Information.

In this section, we describe the actual system implemented as part of the

CONTEXT project, where the Context Mediators are implemented by DINA

Context Brokers.

160 Fast and Efficient Context-Aware Services

The Context Information Dissemination System (CIDS) is the system that handles

the actual acquisition and dissemination of the information. The CIDS takes into

account any special requirements such as: timely distribution of context to a large set

of consumers; dealing effectively with the asymmetry that arises from the dis-

proportion between the number of producers and consumers; dissemination of

frequent context updates due to the volatile nature of context information in highly

dynamic environments; and ensuring the system’s ability to evolve and scale

gracefully facilitating the seamless integration of new information services without

affecting the existing system. By combining known data delivery techniques such as

unicast and multicast, the performance and scalability of the dissemination mechan-

ism can be greatly enhanced. In the CIDS, in addition to context producers and

context consumers, we also have context brokers, which facilitate the communica-

tion between consumers and producers.

7.3.1. Functional Overview

The producers of context information include all the Context Information Sources

(CISs) that are attached to specific active nodes and provide raw context informa-

tion, such as: information from DINA Brokers (e.g., local MIB variables), informa-

tion from GPRS and WLAN Wrappers (e.g., on the corresponding coverage),

information from other wrappers (e.g., weather sensors), and various other informa-

tion provided by Context Providing Applications (e.g., user agenda). In addition to

these context sources that provide raw context information, producers also include

applications that produce complex context information after collecting and aggre-

gating elementary context.

The consumers are the SLOs, the instances of the service logic. During the

operation phase, each SLO issues requests for acquisition of context information in

order to adapt to the imminent context changes and proceed with the enforcement of

the appropriate actions.

The CIDS Brokers, namely the Context Brokers, act as third-party players

between producers and consumers. They accept requests from SLOs, collect context

information from producers, and efficiently disseminate the information from

producers to consumers or other Context Brokers, as dictated by a dissemination

scheme. In this sense, Context Brokers realize the linkage between producers and

consumers. Each Context Broker provides two different types of API: the Producer

APIs and the Consumer APIs. The Producer APIs include the interfaces that enable

context producers to publish the information they provide, either raw or complex, so

that the Context Brokers will then be able to access it. They also include the

interfaces that enable the context producers to deliver the information that they have

produced. In this sense, the heterogeneity of the different context sources is hidden

and each time a modification of the context sources takes place, only the local

The Service Execution Environment and Context Delivery 161

Context Broker needs to be updated with the new interfaces to interact with them.

This process is transparent to the SLO. The Consumer APIs, on the other hand,

enable an SLO to access context information either through pull requests or

notification events.

In the case of complex context information, special Active Applications called

Context Computation Objects (CCO) collect raw context information provided by

the available context sources, either local or remote, aggregate or filter it, and

produce complex context information; thus, CCOs represent CISs of complex

context. They are deployed (permanently or on demand) in the DINA EE.

The Context Dissemination Scheme (CDS) ensures the efficient and scalable

distribution of context information among the different players of the CIDS

(Figure 7.11). A variety of data delivery mechanisms exist. Their selection is guided

by performance criteria, such as the efficiency achieved in the use of communication

resources, scalability enhancements, or responsiveness in terms of access latency

experienced by the SLOs. In this sense, different delivery options are exploited. A

system based solely on querying – pull mechanism – would suffer from scalability

problems. The server Context Broker would have to be constantly interrupted to deal

with pull requests and could easily become a scalability bottleneck in systems with large

client Context Broker populations. This problem could be avoided by allowing the

information to selectively flow to interested clients – push mechanism – instead of

requiring the client to read information periodically. Furthermore, given the similar

nature of many context queries, 1-to-N communication can amortize much of the

overhead of sending context data to multiple clients. In this framework the consistency

of delivered context is also envisaged by enriching the delivery mechanisms with a

means to deal with the aging of the context data.

Context
Dissemination

Scheme

DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API

DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API
DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API

Context
Dissemination

Scheme

DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API
DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer APIConsumer APIConsumer API

DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API
DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer APIConsumer APIConsumer API
DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer API
DINA

Producer APIProducer API

DINA

Context Broker

SLO CCO

Consumer APIConsumer APIConsumer APIConsumer API

Figure 7.11 Context Information Dissemination System (CIDS).

162 Fast and Efficient Context-Aware Services

7.3.2. Functional Decomposition

The CIDS is implemented by the Context Brokers in the DINA system. Any code

that needs to access context information uses the Context Broker interface. Using

this API, CCOs can register and supply their context information, and SLOs can

request specific context information or to be notified when the value of such an

information item changes.

Thus, the requests that are addressed by the Context Broker could be either

context queries or context events (pull or push mechanism, respectively). Addition-

ally, there are two options that are offered to the CCOs for providing their

information: They could provide their context upon request or they could delegate

the Context Broker to serve the submitted requests, which in this case stores the

updated values.

Services’ SLOs and CCOs forward requests for context information to their

local Context Broker, although they may acquire context directly from other local

DINA Brokers, if the developer considers this to be the best option. The Context

Broker provides a uniform way to access context information, thus hiding the

complexity of the context information and its retrieval. Well-defined APIs for

retrieving context information facilitate the realization of an automated service

creation process.

Context Broker functionality is logically divided amongst the components

depicted in Figure 7.12. These components are described in the following

subsections.

A common description of context information is required so that both context

producers and context consumers can have unified access to the API. For that

Context BrokerContext BrokerContext Broker

Event
Handler

Query
Handler

SLOEE CCO CCO

Registration
Handler

DINA
Brokers,

Wrappers

DINA
Brokers,

Wrappers

…
External Context

Resolver
Storage
Handler

EE Interface

DINA EE

Figure 7.12 Context Broker Architecture.

The Service Execution Environment and Context Delivery 163

purpose we use the Context Modules that have been introduced in the previous

chapter. Context Modules are XML-based descriptions of context information.

A Context Module consists of three parts: the context name, the input parameters,

and the output parameters. The definition of a Context Module per context

information type ensures that context consumers and producers have a common

description of the input and output parameters and this facilitates the efficient

contextual information exchange. A context consumer, requesting specific context

information, provides the name of the context module, the input parameters (names

and values), and the output parameter names it wishes to acquire, and receives the

values corresponding to the requested output parameters. A context producer,

registering context information, provides the name of the context module and the

values of the identification parameters (these are a subset of the Context Module

input parameters; the values of the remainder are specified by the context

consumer). Context Module XML descriptions are stored in the Context Module

repository. Regarding the naming of the context modules, the following model is

introduced. Each name has two parts: hxxx.xxxx.xxxi@hppppi. The first part

(hxxx.xxxx.xxxi) characterizes the context information and can be in a dotted

form, in accordance with the logical containment hierarchy of the entity-based

modeling. The second part (hppppi) denotes the producer of this piece of context

information.

7.3.2.1. Query Handler

The Query Handler is responsible for resolving ‘pull’ context requests issued by

SLOs. ‘Pull’ context requests correspond to the retrieval of the output value of a

context module, based on the input parameters. The requested context information

may either be available locally or in a remote CIS. In this perspective, once the

Query Handler receives a context request, it contacts the local CISs. If the

requested context information is not available locally, the External Context

Resolver is triggered, in order to initiate the mechanism for contacting the remote

CISs.

7.3.2.2. Event Handler

The Event Handler is responsible for resolving ‘push’ requests for context

information. An SLO may register to be notified when a specific context information

data has a specific value or a specific delta change occurs in its value, or to receive

periodical updates on the value of a context item in specified time periods. These

requests require an asynchronous means of communication. The Event Handler

implements the APIs that allow SLOs to subscribe in order to receive a context

event. As with the Query Handler, the Event Handler contacts the responsible CISs

(local or remote) to acquire the relevant data.

164 Fast and Efficient Context-Aware Services

7.3.2.3. Registration Handler

The Registration Handler provides a mechanism that enables the registration of

context data items in the system. The Registration Handler offers the interface used

by context producers to publish the context information that they provide, hence

informing the appropriate Context Broker of its existence. In this sense, we foresee a

data-centric approach, where the context producers supply data matching certain

properties, rather than data from particular sources. Such an approach facilitates

evaluation of the available context producers in order to select the one that best

serves context consumer’s needs.

7.3.2.4. Storage Handler

Two options have been considered for storing and retrieving context information.

These options are differentiated based on whether a context producer retains the task

of providing the data that it generates itself or if it delegates the task of answering

the context request queries to third party. The Storage Handler accommodates the

latter case, by providing the corresponding interface for delegation. Thus, it is

responsible for retrieving the context information from these CISs, storing it,

updating it, and disseminating it as needed.

However, the aforementioned option presupposes that the context information is

stored before being requested from a context consumer. Such a solution could result

in wasteful resource consumption (such as network resources, storage resources,

time required) in case it is used as a standalone solution. Therefore, the context

producers that will delegate the storage of their data need to be carefully selected

based on various parameters.

7.3.2.5. External Context Resolver

If the Context Broker cannot find the requested context information locally then

the External Context Resolver is triggered. In a distributed context provisioning

system a mechanism is required to address the issue of retrieving context

from remote sources. Different delivery mechanisms that ensure the efficient

dissemination of context information among different Context Brokers could be

considered. In a distributed information system, the search phase is in many

cases the most time-consuming one. The approach adopted in CONTEXT that

exploits active networks is a flooding of the registration information to all the

Context Brokers; whenever a new CIS registers with the system through a specific

Context Broker, the information about the registered item is broadcast to

all Context brokers in the system. In this sense, the External Context Resolver

is responsible for disseminating the location of a new CCO registered with a

specific Context Broker to the rest of the Context Brokers. After having detected

The Service Execution Environment and Context Delivery 165

the location of a remote CIS that provides the requested context information, the

External Context Resolver establishes a UDP/TCP connection to the appropriate

Context Broker to retrieve the information. Moreover, the potential of a Context

Broker periodically to receive context information provided by other Context

Brokers without explicit requests, as in demand-driven access, could occasionally

prove cost-effective, and thus a prefetching mechanism is also supported. Finally,

different delivery options based on broadcast/multicast to save resources when

similar needs of consumers come from different points of the network are under

consideration.

7.3.3. Context Broker Interfaces

The Context Broker offers the following APIs to the SLOs and CCOs.

public class context BrokerInterface{
public String[] register_new_context_object (String context_-
name, String reg_Id, boolean isDelegated, String[] reg_parms,
String[] parms)
Public String register_external_new_context_object (String object_-
name, String reg_Id, boolean isDelegated, String[] reg_parms)
public void delete_reg_context_object (String reg_Id)
public String delete_external_context_object (String reg_Id)
public String[] get_current_value (String context_name, String[]
parms)
public String[] subscribe (String context_name, String notifica-
tion_Id, String[] parms)
public void delete_subscription (String notification_Id):
public void supply_context_value (String context_name, String[]
context_value, time timestamp)
public void deliver_notification (String notification_Id, String
requestor_ipaddress, String notification_value, time timestamp)
private Registration_Object get_registration_info (String con-
text_name, String parms)
private delegate_new_context_object (String context_name, String
deleg_Id, String del_parms)
private void delete_delegate_context_object (String deleg_Id)
private void send_packet_register (String object_name, String[]
reg_parms, String port)
private void send_packet_delete_register(String reg_Id)
}

166 Fast and Efficient Context-Aware Services

The design and implementation of the Context Information Dissemination

System, using the Context Broker in the DINA system, and the context item

definition, results in a modular scalable system that can efficiently support CASs

in a distributed execution environment.

7.4. Conclusions

In this chapter, we described the distributed service execution environment based on

the DINA active platform. We also described the context delivery system that is

integrated into the DINA nodes and provides the required context for the different

service components. In the next chapter, we demonstrate the advantages of the

CONTEXT system by describing different service scenarios, and indicating the

ways in which the CONTEXT infrastructure can be used to provide fast delivery of

various services in a modern heterogenous networking environment.

References

1. Kornblum J, Raz D, Shavitt Y. ‘The Active Process Interaction with Its Environment.’

IWAN 2000, October 2000.

2. Housley R, Ford W, Polk W, Solo D. Internet X.509 Public Key ‘Infrastructure Certificate

and CRL Profile,’ RFC 2459, 1999.

3. Adams C, Farrell S, Mononen T. ‘Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP),’ RFC 4210, 2005.

4. Alexander DS, Braden B, Gunter CA, JacksonWA, Keromytis AD, Milden GA, Wetherall

DA. ‘Active Network Encapsulation Protocol (ANEP).’ Active Networks Group Draft,

July 1997.

5. Deering S, Hinden R. ‘Internet Protocol, Version 6 (IPv6) Specification,’ RFC 2460, 1998.

The Service Execution Environment and Context Delivery 167

8
System Evaluation

This chapter contains an evaluation of the system described in the previous two

chapters. As explained in great detail in these chapters, the CONTEXT system

provides an infrastructure for the fast development and deployment of efficient

context-aware services. Thus, the first step in evaluating such a system is to show

that context-aware services can indeed be developed and deployed using the

provided infrastructure. In order to do so we introduce in this chapter several

scenarios, and in each scenario we describe context-aware services built using the

CONTEXT system. This demonstrates the ability of the proposed system to support

the new and different types of service needed in today’s telecommunications market.

In the second part of the chapter, which addresses the efficiency of the system, we

describe several benchmark measurements that test the scalability and efficiency of a

single DINA element to support concurrent applications.

8.1. The Scenarios

In this section we describe the three scenarios, each addressing a different area in

which context-aware services can be used. We describe example services that are

useful in these scenarios, and how the CONTEXT system infrastructure is used to

create, deliver, and control these services.

8.1.1. Work From Anywhere (WFA)

In the WFA service, a company subscribes to a Work Form Anywhere (WFA)

service for its employees to access data on the move. This service bundles GPRS and

a WLAN service, and promises a secure usable wireless data connection almost

anywhere in the country with a high-speed connection at its many WiFi hotspots.

These hotspots are located in many public areas including airports, railway stations,

and public buildings such as hospitals, coffee shops, and the central business

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

districts. While access through these networks is available without the need for the

CONTEXT system, the service described here allows subscribers transparent and

flexible handover between a GPRS and WLAN. In addition, the policy-based

management system coordinates the smooth creation, deployment, and execution

of the service.

A typical scenario in which such a service will be used by an end user is as

follows. Consider Katherine, a graphic designer with three children. Katherine

works from home a few days a week, using her home network to connect to the office

network. On the scheduled day for completion of the project, she has been working

on for the last few weeks, Peter, her 9-year-old son, complains that he does not feel

well. His condition quickly worsens to the point that she has to take him to the local

hospital. She calls a taxi to take them to the hospital and attempts to finish her

project on the way. Halfway to the hospital she finishes and decides to send her work

to the office using the GPRS network. However, the bandwidth of the mobile network

is insufficient and it would take about 50 hours for the transfer of the 1 Gbyte file. In

spite of this, she is not worried as her company had recently signed up to the Work

From Anywhere (WFA) Data Service. This service provides an always-on low-

bandwidth GPRS data transfer service and a very high-speed service at WiFi

hotspots. Katherine knows there are several of these hotspots in the town, in

particular at the St. Jude’s Children’s Hospital where she is taking Peter. When

she arrives at the hospital, a handover from GPRS occurs and now the file upload

will be complete in less than 2 hours. Katherine looks at the new transfer time

estimate, lets out a sigh of relief, and holds Peter closer.

In this subsection we describe the CONTEXT approach to the creation of the

WFA service, as described in the previous two chapters. We also describe the

building blocks from which the service is constructed.

8.1.1.1. Context Information

Four categories of context are relevant to this type of service: user context, network

context, application context and location context. The specification of the service

that is available to the user depends on all these aspects of context.

� User Context This relates to information about the user of the Context-Aware

Service, that is Katherine in our described scenario. This includes her name,

company, address, preferences, and profile. Other parameters such as her job title,

skills, responsibilities, agenda, and tasks may also be included. The type of

service that she has subscribed to, along with her user certificate, passwords, and

service usage summary are also relevant.

� Location Context This information relates to the location of the user. It may

specify whether the user is at home, in her office, in the hospital, or on the road

(coverage area). It may also contain information regarding the type of network

170 Fast and Efficient Context-Aware Services

access available at this location — a GPRS coverage area or a WiFi hotspot —

and specific information about the access point or operator base station that covers

the user’s location.

� Network Context This is the relevant information about the networks that are

available in the user’s location. This information is constructed from static

information about the underlying network topology and bandwidth, and from

dynamic information obtained by monitoring the network, for example config-

uration parameters, bandwidth availability, latency, current NPN endpoints, net-

work addresses, traffic levels, routing information, and network security. Network

context encompasses information about the available access networks, and also

network-related user information such as laptop MAC addresses, the access card

type, and the assigned IP address.

� Application Context This context relates to the applications that the end user is

using, whether she is using HTTP, FTP, or another protocol, whether she is using a

VPN, the amount of traffic produced, and bandwidth consumption of the

applications and the amount of time that the resources are being used. This

information can be obtained by an agent running on the user machine, or (in a

more complicated and less scalable way) by monitoring the user traffic and

analyzing it.

In our scenario Katherine’s context may be as follows. While within range of the

hospital WiFi hotspot, the service will allow Katherine to have a secure (via VPN),

high-bandwidth (the exact amount depending on network conditions) connection to

her office. The application context will indicate that she is uploading a file-using

FTP and so the service will be optimized for this type of traffic. Recall that in the

CONTEXT system the context information is made available to the service logic

through the context broker; thus, we need to describe how this information is

collected and used in order to provide the service.

8.1.1.2. A Simplified Network Set Up

In order to describe deployment of the WFA service, we consider a simplified

network topology and configuration in order to explain the network location of the

different components of the system. Figure 8.1 depicts the main components needed

to demonstrate this service: A GPRS domain, a WLAN domain, and a router with

VPN capabilities representing the company domain. These domains are linked via the

Internet with the Context-Aware Service Provider network monitoring the overall

system. In Figure 8.1, the active routers host the DINA platform. The routers closest

to the GPRS and WLAN also host a wrapper for the appropriate access network. The

laptop is the user’s mobile terminal, which should be connected to the company

server, and sends and receives data. It contains a card that enables both GPRS and

WiFi access. It is the CONTEXT view that one should not develop a heavy client,

System Evaluation 171

and so the laptop software and configuration should be changed as little as possible.

The management entity resides in the Context-Aware Service Provider domain and

contains the policy and context database, the AAA repository and the management

applications for the entire system. It is assumed that mobile IP is supported by this

network and any required redirection agents are located at the relevant routers.

This network will be used to demonstrate how the CONTEXT system works with

respect to the service life cycle and especially when a user is using the service while

changing location and entering a new WLAN domain.

8.1.1.3. Specification of a CAS and Management Policies

As described in the previous two chapters, when a new CAS is created, the CAS

code generator generates the subscriber’s service code and policies for that service.

The code and policies are customized for every user and distributed to code storage

points by the code distributor action consumer. Condition Evaluators (CEs) are

installed and when the context changes (e.g., in the WFA case, when the user enters

a new WLAN domain) they notify the policy decision-making component. As a

result, according to the service definition, the relevant portion of the code is

downloaded from the storage points into the code execution points by the code

execution controller action consumer (See Chapter 6), and the code starts to run in

Policy
Data
base

Management
Station

Context
Data
base

WLAN Domain

Active
Router

Laptop

WaveLAN

Router

Internet

CASP
Network

Company
Network

GPRS Domain

Active
Router

Laptop

GPRS

Router

VPN
Router

Active
Router

Figure 8.1 A Simplified Network Architecture for the WFA Service.

172 Fast and Efficient Context-Aware Services

the appropriate DINA node. At this point the service is invoked and the service

assurance for this service is activated.

We concentrate on the service invocation and the code execution with respect to

the WFA service. When a subscriber actually asks to use the WFA service, an event

is raised and the service code is downloaded and invoked on the appropriate

execution points, that is access points near the user (the user location is part of

the context here). When the user logs out of the service, the service is suspended by

stopping the code execution. During the time that the service is active, several events

may occur. In order to show how the CONTEXT system actually provides a smooth

transparent transaction between different access networks, a more detailed technical

description is required. The following list summarizes the major events, conditions,

and actions for this service. For each event, the parameters made available and the

components that generate this information are specified.

Events

1. Mobile_User_WiFi_Event: This event occurs when a new incoming mobile user

appears in a wireless coverage area.

� Event Variables

–User_Id: This is the identifier of the user.

–Password: This is the unique password to access the ASW service.

–User_MAC_Address: This parameter contains the MAC address of the wireless

card or device used by the user who is going to connect to the network. This

parameter is used mainly for identification purposes.

– Location: This variable states the location of the user (user’s laptop or

networked device). This variable refers to the node attached to the access

point, which the user is connected to.

� Monitoring Component: Service Invocation Condition Evaluator — this is the

CE that is executed when a user activates the service.

2. Mobile_User_Out_WiFi_Event: This event occurs when a mobile user sends a

logout request to stop using the service. The logout request contains information

identifying the service that the user wants to stop — other details are omitted in

this case.

Conditions

1. Invocation of the WFA Service: This condition establishes how and when the

management system decides that a user is demanding the execution of the WFA

service.

System Evaluation 173

2. Logout of the WFA Service: This condition establishes how and when the

management system decides that a user wants to stop the service execution.

Actions

1. Execute_Service_Code: This action installs and executes the WFA Service Code

(SLOs) on the appropriate Execution Points (i.e., DINA nodes)

� Inputs

– Service_Id: This is the identifier of the service (WFA), to be executed.

– Subscription_Id: This is a unique identifier of the particular subscription to

the service.

– Customization_Id: This parameter identifies the particular customized code

of the same service and subscription that needs to be executed.

– Execution_Point_Required_Resources: This parameter specifies the

resources that the execution point must possess in order to execute this

particular service code. These resources may include minimum required free

memory and CPU.

– Execution_Points_List: This is a list of the execution points at which the

service code must be started after its invocation.

– Storage_Point_Selection_Criteria: This parameter specifies the criteria to

select the storage point from where the service code will be downloaded into

the selected execution points.

– Customised_Runtime_Parameters: This parameter contains a list of runtime

parameters specific to the service code to be executed. These parameters will

be used to start the execution of the code.

� Output

– Action_Result: This variable contains a value indicating whether or not the

action has been successfully executed.

– Start Time: This variable states the time at which the user service code is

started.

� Enforcement Component: Code Execution Controller Action Consumer.

2. Stop_Service_Code: The service code is stopped when the user logs out. The

Code Execution Controller Action Consumer can obtain the execution points

where the code is running from the data tables. Details are omitted in this

case.

Condition – Action Association

1. Service_Invocation_Policy: When the Invocation for WFA service condition is

fulfilled, the Execute_Service_Code action is executed.

174 Fast and Efficient Context-Aware Services

2. Stop_Service _Policy: When the Logout of the WFA service condition is fulfilled,

the Stop_Service_Code action is executed.

8.1.1.4. Service Assurance

The PBSM is responsible for assuring that the service remains available. One key

indicator of service availability is the continued execution of the service code. This

is verified by receipt of a periodic ‘I am up’ signal from the service code. If an ‘I am

up’ signal is not received in a specific time period, the PBSM will assume that the

service is not running and it will attempt to restart the code.

Variables

1. Current_Timeout_Event: This variable states the current time and is given in 24-

hour time format.

� Monitoring Component: Service Assurance Condition Evaluator.

2. Time_Of_Last_Iamup_Signal: This variable states the time at which the last ‘I

am up’ signal, from the SLO in question, was generated. The SLO periodically

sends an ‘I am up’ signal. If it does, it means it is still alive.

� Monitoring Component: Service Assurance Condition Evaluator,

� Monitoring Parameter: Code_Id, the identification of the particular SLO to be

monitored.

3. Time_Since_Last_Iamup: This variable states the time (in seconds) since the last

‘I am up’ signal was sent by the SLO.

Condition

1. Service_Code_Timeout: An ‘I am up’ signal has not been received from a service

execution point within the defined Timeout_Interval. The condition is fulfilled

when Time_Since_Last_Iamup_Signal > Timeout_Interval.

When this condition is fulfilled, a Service_Timeout_Event is raised and a Service_

Code_Restart action is executed.

Action

1. Service_Code_Restart: The service code is restarted if the PBSM realizes that it

has stopped running but should be running.

� Inputs

– Service_Id: This is the identifier of the service whose code will be restarted.

System Evaluation 175

– Subscription_Id: Unique identifier of the subscription to the service whose

code will be restarted.

– Customisation_Id: This parameter identifies the particular customized code

of the same service and subscription to be executed.

– Execution_Point_Required_Resources: This parameter specifies the

resources that the execution point must possess in order to execute this

particular service code. These resources may include minimum required free

memory and CPU.

– Execution_Points_List: This is a list of the execution points at which the

service code must be started after its invocation.

– Execution_Point: This parameter identifies the execution point at which the

service code must be restarted to continue providing the service. This is the

execution point where a service code crash has been detected.

� Outputs

– Action_Result: This parameter contains a value indicating whether the

action has been successfully executed or not.

– Restart Time: This variable states the time at which the user service code is

restarted.

� Enforcement Component: Code Execution Action Consumer

As described in the previous chapters, in order to deliver any service in the

CONTEXT system one has to first use the authoring tools and define all the required

elements and policies, and then define the logic of the service. We concentrate on

three components of the code: the WFA SLO, which is the logic controlling the

establishment of a QoS enable secure IP tunnel between a WiFi access point and the

company network; the Service Invocation Condition Evaluator, responsible for

detecting the entrance of a user to the WiFI coverage area; and the Service

Assurance Condition Evaluator responsible for making sure the service is on and

running. All these components are created during the CAS customization and

personalization phases (see Chapter 6), and these components are attached to the

personalized information of the specific user (Katherine).

The customized code components enter the management system and will be

distributed according to the current policies. However, the code is not executed at

this time. The execution policies will be triggered by events as described below. Note

that, for scalability reasons, it may be better to have a general component that can be

used throughout the customer organization rather than having a specific component

for each user. However, in order to explain the sequence of events, we will consider an

end-user personalization. The user location is monitored and made available as a

context item. Based on information provided in the customization phase, all WiFi

access points within a given distance of the user location are set to a ‘Standby’ mode.

176 Fast and Efficient Context-Aware Services

In this case, a copy of the personalized Service Invocation Condition Evaluator is

executed in all DINA nodes controlling the ‘Standby’ WiFi access points. Once the

user is within range of an access point, a small application running in the user’s

machine (installed there as part of the service personalization) sends a message that is

interpreted as context information. Using this information the system (as defined by

the policy) decides to execute the SLO code in this DINA node. Once this is complete,

the SLO uses the action broker and the QoS broker (as described in the previous

chapter) to establish a secure IP tunnel providing the expected QoS to the end user.

When the user moves out of range, the same small application sends a ‘logoff’

message and the SLO execution is terminated.

Of course, the real use of this service in a real heterogonous environment is more

complex, and may involve many more components. However, it can be seen that

once the CONTEXT infrastructure is available, self-adjusting context-aware ser-

vices can easily be created and deployed in the network, providing a cost-effective

way to provide such services to end clients.

8.1.2. Crisis-Aware Telecommunications Services

This is an example of a completely different type of service. In this case the user of

the service is a telecommunications operator, not an end user as we saw in the

previous example. Our goal in presenting this example is to show that the

CONTEXT infrastructure can also be used in this case.

The purpose of this service is to allow an operator to change the behavior of its

network during extreme emergency situations, such as a terrorist attack or major

weather disaster. In such cases the available network resources should be managed

differently from the way they are managed during normal day-to-day operation. For

example, in order to ensure an increased number of users are able to access vital

information, one might suppress nonvital traffic such as noncritical data transfer, or

limit the duration of nonpriority calls in order to allow new emergency calls to be set

up. Using the CONTEXT infrastructure, the network, which is managed using a

policy-based approach, can self-detect emergency situations (e.g., by detecting a

large number of calls to the emergency services) and automatically reconfigure the

appropriate switches accordingly.

A typical scenario that demonstrates the use of such a service follows:

A plane crashes in suburb of a small town. Michelle, a frequent jogger, happened

to be in the wrong place at the wrong time. Unfortunately, Michelle is now seriously

injured by burning jet fuel. Mark, another jogger, who is fortunately carrying a cell

phone, happens to arrive at the accident scene and makes a call to the emergency

center. Since Mark is extremely upset, he cannot provide his location to the operator.

In the mean time Jake, an eye-witness of the crash, calls a local newspaper in order

to receive a reward for reporting the breaking news. There are hundreds of

System Evaluation 177

eye-witnesses who may be doing the same as Jake, or simply trying to contact their

families and friends in order to tell them what they have just seen.

As unfortunately demonstrated in several terrorist events in recent years, many

existing telecommunications networks are unable to cope with the very high call volume

during such an event. However, if the switches in the area could be reconfigured, the

network could be used to continue providing services to important callers during this

time. For example, more resources could be directed to voice services, emergency

workers could be given priority over ‘normal’ calls, and one could even consider

limiting call duration in order to allow more users to call their loved ones.

Note that it is not clear that modern networks, which combine voice and data,

should provide voice-only services in a crisis time. For example, maps of buildings

could be essential to fire fighters, video conferencing may help paramedics receive

medical help, and the distribution of suspect pictures may be very important to law

enforcement agents during a crisis.

In order to provide such a crisis-aware service, one needs first to identify the crisis

situation as it occurs, and then to enforce new resource utilization policies. In our

scenario, the operator policy is to allow only emergency calls during a crisis

situation, while other, lower priority calls are denied. In order to do this, one must

identify if a call is an emergency call or not. One way to do this is by classifying

phone numbers and comparing them to pre-defined lists.

Consider the arrival of ambulance with paramedic personnel Jane and Bob who

start to take care of victims. Michelle is very seriously burned and Jane videophones

the burns specialist for advice.

As the videophone consultation demands very high resolution, the network

(controlled by the pre-defined policies) must limit the bandwidth of the other

nonprivileged users. As described above, this is handled by special active services

that manage network resources. The required configuration changes are automati-

cally determined using context information such as the volume of the calls to

emergency numbers, geographic origin of calls, etc., as described below.

The telecommunications network we are dealing with could be cellular, wired

PTN, or VoIP. For simplicity of the technical explanation, we assume here that the

network provides voice over IP using the SIP protocol. The Crisis-Aware Service

can then identify a crisis situation by monitoring the call rate in each of the SIP

softswitches, and when this rate increases suddenly, and more calls are made to the

emergency service (112) it can declare an emergency and take appropriate action.

8.1.2.1. Realizing CATS in CONTEXT

Once the service is established, (there is no customization in this case) a monitoring

SIP-SICE (Service Invocation Condition Evaluator) is distributed and installed in all

DINA nodes responsible for SIP switches. The SICE uses the SIP broker in order to

consistently monitor the amount of traffic and the number of emergency calls

178 Fast and Efficient Context-Aware Services

through the switch. Once a crisis situation is detected, an appropriate event is reported

and a new configuration is uploaded to the switch. A new module containing the

service logic is distributed and executed. This logic may change the Authentication

Authorization and Access control (AAA) mechanisms of the switch. During regular

operation the AAA mechanism is mainly responsible for making sure that calls are

being made by authorized elements, and are charged according to the user plan.

However in an emergency situation, resources (call establishment for example) are

provided to emergency workers only.

We describe below the main parameters and sequence of events demonstrating the

advantages of the CONTEXT system to handle these types of services.

8.1.2.2. CONTEXT Information

The context information used by this service is of the following nature:

Person Entity: User-related context: privileges of caller and called.

Network-Related Context: Number of sessions ongoing in the SIP softswitch whose

destination is the 112 emergency telephone number at given time intervals.

8.1.2.3. SICEs, SLOs, and CCOs

The Crisis-Aware Telecommunications service scenario consists of two main

components: the CH-SICE which is responsible for detecting emergency situations

and triggering the change of the SIP softswitch control, and CH_Main which is the

service code that determines the new AAA behavior under emergency conditions.

CH_SICE polls a SIP broker (see Chapter 7) for sessions terminated at the 112

emergency number (or whatever the emergency number for that specific location is).

This information is compiled into statistics. It can also be published as a context

item using the Context Broker (as seen it Chapter 7). In this case CH_SICE becomes

a CCO and the information (context) can be used by other services. Every DINA

node that supports a SIP broker should have a copy of the CH_SICE so that the local

SIP softswitch can be monitored. Note that the SIP broker might control several SIP

softswitches, and that the CH_SICE monitors each one of them separately. Once the

rate of calls to the emergency numbers exceeds a certain pre-defined threshold, CH-

SICE determines that a crisis is occurring. The logic behind this is that usually each

switch covers a geographic area, and a high rate of emergency calls from this area

indicates an emergency event.

CH_Main is an active application that modifies the softswitch’s normal

behavior, and controls the SIP switch via the SIP broker. The service logic

ensures that only critical calls are allowed in a crisis situation, while noncritical

calls (or data services) are blocked or at least their allocated bandwidth is

reduced. CH_Main runs on the DINA node that runs the SIP broker controlling

the SIP softswitch located at the crisis area. Its execution is triggered by an event

System Evaluation 179

generated by the CH_SICE as explained above. This event is sent to the

management system that identifies the control logic to be executed and the

code repository to use, according to the pre-defined policies. CH_Main tempora-

rily replaces the admission control function that is usually used by the SIP

softswitch. It uses the SIP broker to install a redirection on the SIP node so that

the SIP broker is invoked every time a new session is requested. In turn, the SIP

broker redirects the request to CH_Main which decides whether the call should be

admitted or not, based on the call parameters and the context information that

details the roles of the different callers (defined by their telephone numbers).

8.1.2.4. Sequence of Interactions

A typical sequence of interactions per crisis is shown in Figure 8.2.

CH_Main SIP Broker SIP softswitchContext Broker

terminateSession(all, SIP_softswitch)

closeSessions()

newCall(caller, callee)

New incoming
call

newCall(caller, callee)

accept/reject

accept/reject

get_current_value(caller.privileges)

caller_privileges

get_current_value(callee.privileges)

callee_privileges

Figure 8.2 Sequence of Interactions of Crisis-Aware Service During Execution.

180 Fast and Efficient Context-Aware Services

As explained above, the service starts when the PBMS receives an execution event

raised by an SIP_SICE. Recall that this event is launched when the rate of 112 calls

on any monitored softswitch exceeds a given threshold.

Once execution of CH_Main starts, all current sessions in the softswitch should be

terminated, and all new sessions to be established will invoke CH_Main (the SIP

softswitch informs the SIP broker which in turn informs CH_Main). CH_Main then

uses the context broker to acquire information about the called and calling parties.

Based on this information, CH_Main determines whether the call should be

admitted. One can think of different ways to make the caller information available

to the service logic; in this example we assume that the information is provided via

the context system. In this way, this information can be used by this service and

possibly by many other services as well.

As described in the previous chapters, in order to deliver this service in the

CONTEXT system, one has to first use the authoring tools and define all the required

elements and policies, and then define the logic of the service (i.e., CH_Main and

the SICE). The code distribution policies (as described in Chapter 6) for each of the

code components are similar: they both need level 1 and their potential execution

point wildcard will refer to every DINA node that holds a SIP broker. Service

assurance policies are designed to take care of possible failure of the service, and to

make sure that the service is always available.

During the CAS customization phase (see Chapter 6) the subscriber is asked for

several parameters, such as the reporting period for statistics (e.g., 5 minutes, 1

hour), the critical value to detect crisis, the emergency number (112 for Europe, 911

for USA), the areas to be covered, the filters to be applied, etc. The result is

customized service logic – CH_Main and CH_SICE code, and the parameter values.

The customized CH_Main code is passed to the management system and will be

distributed according to the current policies. However, the code is not executed at this

time. The execution policies will be triggered by an event coming from CH_SICE.

SIP_SICEs will be configured by the PBMS (as indicated above) to specific policies,

and will use the SIP broker to monitor the wanted emergency call rate.

In an emergency situation (or actually when the emergency call rate exceeds the

pre-defined threshold) CH_SICE will be triggered by an alarm. It then creates a new

event containing the required information (SIP switch location) and sends the event

to the management system.

The management system receives this event and matches it with currently

installed policies. If CH_Main execution requirements are satisfied, its action part

will be enforced. The first action will be to stop sending more events for the same

area, so a message will be sent to CH_SICE. After receiving it, CH_SICE will stop

monitoring the SIP switch in order to avoid creating more than one CH_Main

instance for each switch in crisis.

The second action is to launch the CH_Main SLO to the switch in crisis. The code

execution controller action consumer (see Chapter 6) asks the Code Distribution

System Evaluation 181

Action Consumer for the URLs of the CH_Main SLO that are optimal for the new

execution at the target node. This list of URLs is then injected in the Active Layer

and causes the CH_Main code to be executed at the crisis DINA node.

As described earlier, CH_Main used the SIP broker to take over the switch access

control, and uses the service logic to determine which calls are allowed and which

should be blocked.

For example, all new calls to 112 will be blocked, because the first aid head-

quarters have been already informed. Calls from an emergency team member

(fireman, policeman, doctor) will be allowed. Calls to an emergency team member

but originated by a nonemergency person (newspapers, even his family) will be

blocked in order to avoid distracting them.

CH_Main will be stopped by a manual event raised by the operator when the crisis

is over. This event will fire a reconfiguration action on CH_SICE to restart

monitoring the SIP softswitch. At any time, assurance policies will ensure that

CH_Main is not terminated unexpectedly and will restart the service if necessary.

The above description show how the CONTEXT infrastructure can be used by

telecommunications operators in order to introduce, self-adaptive services, in an

efficient, cost-effective way.

8.1.3. Moving Campus Services

In this scenario we consider the various modern multimedia services needed in a

campus environment, and the way they can be realized using the CONTEXT

system. In the university campus, the need for organizing videoconference

meetings for exchanging information quite often arises. The CA-Conference Set

Up Service is a context-aware service that establishes connections with QoS

guarantees supporting streaming applications for conferences (videoconference,

VoIP, etc), while taking into account the mobility of the participants, the

capabilities of the access networks, as well as user-related information.

Consider the following scenario: Professor John wishes to arrange a videocon-

ference with professor Bob and the Research Associates, Alice and Nina at 18:00 in

order to discus an ongoing project. In order to organize the videoconference, John

utilizes the CA-Conference Setup Service. He accesses the relevant Web page and

specifies the date, the start time, the duration, and the participants of the conference.

The participants are accordingly notified and agree to participate. At 17:59, the CA-

Conference service detects that the specified time for the conference is approaching.

It then confirms that each participant can attend the conference and it searches the

access network for each of the participants (John is connected to the network

via Ethernet, Alice is connected to WLAN-AP1, John and Nina to WLAN-AP2,

Bob is away from campus, but has a GPRS connection), and detects their

terminal types and the type of application to be used for the conference.

182 Fast and Efficient Context-Aware Services

Considering this information, as well as the specified rules for network bandwidth

allocation, CA-Conference service decides the bandwidth to be provided for each

participant and sets up the relevant connections with QoS guarantees, and the

conference finally takes place. During the conference, Nina moves to the upper floor

of the building and as a result she automatically connects to the network via the

WLAN-AP3. Consequently, the connection with QoS of Nina via WLAN Access Point

B is removed and the rules for the new connection via WLAN-AP3 are set. However,

it is also detected that the traffic to WLAN-AP1 is quite high and as a result Alice

cannot properly attend the conference. So, Alice is advised to connect to the network

through the WLAN-AP2. Furthermore, in case the signal of the proposed WLAN-AP

is too low, the user is advised to move to another room, in order to achieve a better

signal quality.

Even while participating in the conference, the involved parties are able to receive

asynchronous announcements of other events of interest. The CA-Announcement

Service provides this functionality. Provided that the participants have registered for

this service and a relevant event is announced, the announcement will be delivered

to the mobile phone or other terminal device carried by the participant, if it is

inferred that the event fits his/her interests and preferences.

While participating in the conference, Alice who is a Research Associate

interested in Wireless Communications, receives a notification that informs her

about a lecture, on the subject of Wireless Sensor Networks, that will be given by a

visiting Professor in 1 hour. The notification will reach her promptly as the service

has inferred that Alice is not ‘busy’ and thus can be interrupted in order to be

notified. On the other hand, Nina, who is a Research Associate interested in

Pervasive Computing Issues, will receive the notification after the end of the

conference, since the system has inferred that she is currently ‘busy’ and will be

upset if it interrupted. Nina can still attend the lecture since the conference has

finished just 10 minutes before the starting time of the lecture. If the lecture had

finished before the end of the conference Nina would not be notified, because she

should not be bothered with outdated notifications.

8.1.3.1. Mapping of Components to Scenario

The following figure depicts the actors involved in the scenario. Anyone can be an

end user, provided he/she has access to at least one appropriate terminal and has

subscribed to at least one service. Usually, end users own or have access to various

types of terminals, such as mobile phones, PDAs, or PCs, and depend on one or

more network providers for network connectivity. In this scenario we assume, for

simplicity, a WLAN and fixed infrastructure provided as part of the campus network

and a GPRS service provided by one of the major country providers. Stores and

other facilities, such as the campus library, may want to offer context-aware services

to end users, and for that purpose they will become service providers. When service

System Evaluation 183

providers have interesting ideas for services, they need application developers to

write the source code and, when an application is ready, the service provider also

needs a network provider, for the deployment of the final service (Figure 8.3).

In accordance with the service life cycle, the involvement of the Service Layer

and Active Application Layer components described in the previous chapters is

analyzed. During the creation phase, the Application Developer utilizes the

functionality of CAS Authoring Component to produce the complete technical

definition of each CAS involved in the Moving Campus Economy Scenario, namely

CA-Conference Set Up Service and CA-Announcement Service. By selecting and

combining the appropriate building blocks that represent the existing capabilities of

the system, the application developer dictates the creation of the service definition

documents. The selected capabilities depict the context information (e.g., the user’s

access network) and the existing services (e.g., the service that sets QoS) to be used

by the each CAS.

In the following phase, the End User, through interaction with the Service

Customization component, defines his personal details, such as profile and the

provider of his agenda, and service customization details related to each CAS usage,

such as the other participants, the starting time of the conference, the alternative

devices/applications he wishes to use etc.

The service technical definition of each CAS, along with the produced customiza-

tion, are fed to the Code and Policies Generation Engine component that is

responsible for producing the working code for each customized service logic

(SLO-Service Logic Class) and configuration policies. Subsequently, the SLO is

stored and maintained at a selected point of the active network infrastructure. The

operation of the SLO implementing the CA-Announcement Service is invoked

End-use
(anyone who has a

subscription and
owns a terminal)

Network Provide
(for example,

Vodafone, NTUA)

Service Provide

Connectivity forService Provision

Service Development

Connectivity fo

End-user
(anyone who has a

subscription and
owns a terminal)

Network Provider

Application Developer

Service Provider
(including stores

and facilities)

Terminal(s)

Service Deployment

Connectivity for Server(s)

Figure 8.3 Interaction Between Actors.

184 Fast and Efficient Context-Aware Services

as soon as the end user is detected in the Campus. However, the operation of the

CA-Conference Set up is invoked as soon as the starting time of the specified

conference is near (the functionality of the detection is provided by relevant

Listeners). The relevant deployment and execution policies have been specified by

the application developer during the creation phase and are utilized by the Policy-

based Service Management components to deploy and execute each CAS.

During the Operation Phase, synchronous queries and asynchronous event

notifications for context information are addressed to the local Context Broker

(CB). The communication between different CBs that are deployed on the dis-

tributed nodes of the network ensures that a requested context item, which is

provided by a remote CB or a notification for a context event that occurs remotely,

will reach the source CB. Moreover, each CB communicates with its registered

CCOs for resolving complex context information. These CCOs are pre-defined and

are deployed on the appropriate network nodes during the deployment of the SLO or

in advance if they are shared by other operating CASs. Additionally, the existing

services that implement the logic of the decisions taken by the SLO, such as setting

QoS parameters in the access routers, are triggered through the interaction of the

SLO with the Action Broker.

TheWLAN Broker and the GPRS Broker provide information related to the mobile

users connected to the current-access network. This information could be exploited

in order to resolve queries about a user’s type of network connection or IP address,

and the presence or location of a user in the campus. Furthermore, information

related to the characteristics of WLAN access points and GPRS network, such as the

total network load of the WLAN access point, is also provided by WLAN Broker

and GPRS Broker, respectively.

The action services in this scenario exploit the functionality of the QoS Broker for

the DiffServ configuration of the domain’s routers. The configuration of the core

network can be done offline using the QoSBroker for each router. Once the required

context is gathered, the QoS Broker sets up the relevant rules to the DiffServ

domain’s access routers. These rules refer to the installation of policer (traffic

shaper/dropper) and marker modules for each user. The service’s policy determines

the parameters for these modules (e.g., the permitted transmission rate, the QoS

level, etc). In this case, the implementation of a CCO is envisaged in order to

calculate the bandwidth that should be allocated to each participant, taking into

account several parameters. According to the logic of the SLO, a notification that is

generated as a result of a user’s movement will force the reconfiguration of the new

access router.

The described scenario also requires the implementation of CCOs that control

the generation of announcements and perform a match with the user’s interests.

Consequently, the user’s profile should be accessed whenever a new announce-

ment arises in order to send the relevant announcement notifications to a

participant.

System Evaluation 185

8.1.3.2. Identification of Context Information

The context-aware services that are part of the Moving Campus Economy scenario

take into account a wide range of context data. This data, which affects the services’

behavior, comprises of static as well as dynamic data and is acquired by various

heterogeneous context sources. Additionally, the services require the acquisition of

high-level context information that is produced by functions of interpretation,

aggregation, or filtering implemented by CCOs. The types of context information

to be considered are the following:

� Person Entity: User-related context: identity, details, interests/skills, preferences,

and agenda.

� Place Entity: Location-related context: location information, user mobility infor-

mation.

� Object Entity: Network-related context: type of access network, network cap-

abilities/characteristics, available access networks, and capabilities/char-

acteristics of them.

� Task Entity: Application-related context: type of applications installed on user’s

terminal and terminal-related context: type of user’s terminal and capabilities.

8.1.3.3. CA-Conference Set Up

The CA-Conference Set up Service is responsible for providing QoS guarantees for

a specific-time period, in order to hold a conference session between the members of

a group. The organizer of the conference specifies the participants of the conference

and its duration. The customized CA-Conference Set up SLO is executed as soon as

the conference start time is reached. During the operation phase, the mobility of the

participants is tracked and the appropriate QoS configurations are issued.

8.1.3.4. CA-Announcement Service

The CA-Announcement Service is responsible for delivering to the user asynchro-

nous notifications/announcements about events of his/her interest. Once the user has

registered for this service and an announcement for an event comes up, the

notification is delivered to the mobile phone or the WLAN device a participant

carries, as long as the event matches his/her interests.

8.1.4. Testbed and Service Layer Set Up

In order to describe the services and their implementation in the CONTEXT system,

we use the simplified network depicted in Figure 8.4.

186 Fast and Efficient Context-Aware Services

The network consists of Linux and Cisco routers. The Linux routers are

active, while each Cisco router is controlled by an active engine, which runs in a

Linux PC. The DINA platform is installed on all Linux nodes. DINA active

engines hosting WLAN Broker and GPRS Broker control the access routers of

WLAN and GPRS network, respectively. The active engine that controls each

router hosts a Context Broker, an Action Broker, and a QoS Broker. Moreover, the

Mobility Broker is installed into all access routers.

Concerning the QoS issues, the network supports the Differentiated Services

(DiffServ) architecture. Service classes (Expedited Forwarding, Assured Forward-

ing, and Best Effort) are installed into all the core routers of this simplified network.

End-users can access the campus network via the following devices: personal

computers, laptops, PDAs, and mobile phones. These devices may include Ethernet,

WLAN, and GPRS cards for network access.

8.1.4.1. Description of the Sequence of Interactions

CA-Conference Set Up: The Conference Set up Service provides the QoS guaran-

tees for a specific time period, in order to hold a conference session between the

members of a group.

All the conference participants should be pre-registered to the service utilizing the

Conference Set up Service web interface. When users register for this service, they

must provide the following information. (a) Personal information (name, address,

etc.) and (b) information about the network cards they own and its utilization

Figure 8.4 Simplified Network for the Moving Campus Economy Scenario.

System Evaluation 187

abilities. MAC addresses for WLAN/LAN network cards and MSISDN numbers for

GPRS cards, and (c) service level (users may choose among several service levels,

which correspond to different accounting policies).

The conference session is scheduled by a registered user (service consumer) who

utilizes the Conference Set up Service web interface in order to input the necessary

information for the conference session. Specifically, he/she enters the conference

start time, the conference duration, and the participants’ names.

One way to realize this service in the CONTEXT system is by relating the

definition of a conference to the customization phase as described in Chapter 6.

When taking this approach, once the service consumer schedules a conference

session, a customized SLO is created. Then, the SLO’s source code is distributed

and stored in the specified storage points. Moreover, an SICE is launched. The SICE

produces a ‘Start Time’ event when the specified service execution time arrives. This

event causes the SLO to be invoked.

The SLO logic asks to be notified when each of the participants is detected in the

campus and has network access. Additionally, the access network and the end-user

IP address are acquired. Then, the SLO triggers the relevant QoS configurations. If

one of the connected users decides to change the access network, the SLO is

accordingly notified and issues the new QoS setting to be configured. Moreover, if

one of the connected users is accessing the network through a WLAN, the SLO asks

to be notified in case it is possible to suggest a better network connection than the

current one. In such a case, the SLO delivers the relevant information to the user.

Finally, when the conference ends, the SLO triggers the removal of the performed

QoS configurations.

The SLO interacts with the ContextBroker through the ContextBrokerInterface, in

order to acquire the context information it requires, and with the Action Broker

through the ActionBrokerInterface in order to trigger an action as described in

Figure 8.5.

CA-Announcement Service: While participating in the conference, the involved

parties are able to receive asynchronous notifications/announcements about events

of interest. The CA-Announcement Service provides this functionality. Once users

have registered for this service and an announcement for an event arises, the

notification will be delivered to the participant’s mobile phone or WLAN device,

according to the relevant context information.

A user may register for this service utilizing the Announcement Service web

interface. The information required is as follows: (a) personal information (name,

address); (b) profile information identifying interesting activities; (c) details about

the installed network card and its characteristics, (MAC addresses for WLAN

network cards, MSISDN numbers for GPRS cards); and (d) the desired service

duration (e.g., 6 months), which determines the user’s accounting details.

Once a user registers for the service, a customized per-user SLO is created. Then, the

corresponding source code is distributed and stored in the specified storage points.

188 Fast and Efficient Context-Aware Services

Moreover, an SICE is launched and produces a ‘User at campus’ event when the

registered user is detected in the Campus network. This event causes the SLO to be

invoked.

As soon as a user is detected in the campus network, the SLO subscribes to be

notified when an event matching the user’s interests and preferences is announced. In

this sense, it is required that once an announcement is produced, it is checked for a fit

with the user’s interests. In case of a match, the system consults the user’s profile and

Conference_Setup_SLO Action Broker
Customized with:
participants list,
start_time,
duration_time

For each
conference
participant
username

Receive Notification:
particant connected, access net,ip_address

trigger_action(QoS_setup)

Receive Notification:
particant changed connection, new access net,new ip_address

Context Broker

notify(participant is connected)

notify(participant_change net_access)

notify(WLAN_loaded)

trigger_action(QoS_reconfigure)

For each
connected
participant

For each
WLAN that
users are
connected

Receive Notification:
WLAN1 loaded, particants connected, alternative access net

trigger_action(deliver_message)

Conference
ended

trigger_action(QoS_remove)

Figure 8.5 CA-conference Set Up Service.

System Evaluation 189

agenda, while at the same time retrieving his/her location, in order to verify potentially

pre-scheduled activities and proceed with the forwarding of the announcement to the

current device, if his/her profile permits it. When the user leaves the campus, the SLO

should be notified in order to stop checking for relevant announcements.

8.1.4.2. SICEs, CCOs and Actions

Along with the SLOs that implement the service logic, one has to identify a set of

applications that comprise the SICEs, CCOs, and Action Applications.

The SICEs that should be implemented in order to realize the Moving Campus

Scenario are the following:

� Start_Conference_SICE: This SICE is utilized for the Conference Set up Service.

As soon as the SLO is created and stored by the Code Distribution component, the

relevant policy triggers the configuration of the Start_Conference_SICE with the

Start_Time of the scheduled conference and the conference id. The SICE

accordingly produces the Start_Conference_event that invokes the execution of

the customized Conference_Setup SLO through Code Execution Controller.

� User_Location_Monitoring_SICE: This SICE is utilized for the Announcement

Service. As soon as the SLO is created and stored by the Code Distribution

component, the relevant policy triggers the configuration of the User_Location_-

Monitoring_SICE with the user’s name and the monitoring location, which in our

case is ‘the campus.’ The SICE is responsible for producing an event to signal the

presence of the specified user in the campus grounds by detecting his/her local

connection to the campus network. This invokes, through the PB-Service manage-

ment system, the execution of the customized Announcement SLO. In order to

produce the specified event, the SICE utilizes the ContextBrokerInterface for

subscribing to receive through the Context Broker the required information from

the network access points. Specifically, the SICE retrieves the required informa-

tion through the Detect_WLAN_Users and Detect_GPRS_Users CCOs.

The CCOs are applications that produce complex context information used in the

form of on-demand queries or events. They utilize the ContextBrokerInterface (as

described in the previous chapter) to register the type of information that they

provide (‘register_new_context_object’ method). After registering, they wait for

context requests. The CCOs that are involved in our scenario are identified below:

– User_Info_CCO: This CCO is responsible for providing, upon request, the user

subscription details such as the MAC addresses for WLAN/LAN network cards

and MSISDN numbers for GPRS cards, or the service level of the user. Based on a

given username, the CCO interacts with the storage place of this data and retrieves

the relevant information.

190 Fast and Efficient Context-Aware Services

– Detect_WLAN_Users CCO: This type of CCO is executed in each DINA active

engine that hosts a WLAN Broker (one per WLAN access point). The CCO is

responsible for verifying that a user is connected to the WLAN access point hosted

in the same node. Given a list of usernames (e.g. the conference participants

usernames), it interacts through the ContextBrokerInterface with the User_In-

fo_CCO and retrieves the MAC addresses of the WLAN network cards of the

users. Having these addresses, it can detect the users connected to the WLAN it is

attached to. The CCO queries the WLAN Broker utilizing the WLANBrokerInter-

face API (see Chapter 7), to find out if the participants are connected to the WLAN

network. Specifically, the CCO queries the WLAN Broker utilizing the ‘getU-

serIP’ function of the WLANBrokerInterface API. Moreover, a table containing

the (username-IP_ADDRESS) pairs for the connected users is created. Periodi-

cally, the CCO repeats the queries in order to detect possible changes (e.g., a user

disconnected from the WLAN access point or a new user has been detected). A

new table is created and it is compared to the old one, in order to detect users’

movement events. The relevant notification is delivered to the Context Broker,

which accordingly notifies the SLO that issued the request. An additional

parameter to be given to this CCO is the duration period of monitoring the user’s

movement. This can be utilized for the case of the Conference_Setup Service, to

stop delivering notifications for the conference participants when the conference

session has ended.

– Detect_GPRS_Users CCO: This type of CCO is executed in the DINA active

engine that hosts the GPRS Wrapper. This CCO is responsible for providing

the information that a user is connected to GPRS. Given a list of usernames (the

participants usernames), it interacts through the ContextBrokerInterface with

the User_Info_CCO and retrieves the MSISDN addresses of the GPRS cards of

the users. The CCO queries the GPRS provider’s MNO server utilizing the

GPRSWrapperInterface API to find out if the participants are connected to

the GPRS network. Specifically, the CCO queries the MNO server utilizing the

GPRSWrapperInterface API methods ‘isUserConnected,’ ‘getUserIPAddress.’

Moreover, the CCO can retrieve the user’s location in geographical coordinates

utilizing the GPRSWrapperInterface API method ‘getUserLocation.’ This

option is enabled in case the CCO is queried by the Context Broker on

behalf of the User_Location_Monitoring_SICE regarding the user’s presence

in campus. When the user is connected, the relevant notification is delivered to

the Context Broker that accordingly forwards the notification to the SLO that

issued the request. Moreover, a table is created which contains the above

(username-IP_ADDRESS) pairs. Periodically, the CCO repeats the queries

in order to detect possible changes (e.g., a user disconnected from the GPRS

network or a new user has been detected), in which case a new table is created.

Regarding the monitoring time, the same as for the Detect_WLAN_Users

holds.

System Evaluation 191

– WLAN_Monitoring CCO: In case one of the connected users is accessing the

network through a WLAN, the SLO may ask to be notified when the system infers

that the corresponding user would experience improved network quality by chan-

ging his (her) access point. Consequently, this CCO is used for the traffic monitoring

of the WLAN access points. Specifically, it periodically retrieves the network load

of the access points (for example, every 30 seconds) and compares them with pre-

defined thresholds. If the network load of an access point exceeds the threshold, the

application retrieves the IP addresses of the participants that are connected to this

WLAN access point and calculates the users signal quality percentage. If an

interested user has a relatively low signal quality, the WLAN_Monitoring CCO

sends a message to him/her, suggesting a move to another WLAN access point. The

message also details how to find the proposed access point (e.g., ‘Go to the second

floor’). The WLAN_Monitoring CCO utilizes the following WLANBrokerInter-

face API methods: ‘getLoad,’ ‘getSignalQuality’.

– Announcement_Monitoring CCO: This is a general CCO that is permanently

active and monitors the sources of announcements. Its objective is to generate a

notification when a new event is announced.

– User_Matching_Announcement CCO: This is a customized per user CCO that

checks if an incoming announcement matches the user’s profile. It takes the

identifier of the announcement and the username as input, and decides whether the

announcement could interest the user and should thus be delivered to him/her,

based on the retrieved user’s profile. The result is the generation of a message that

indicates the result of the matching process.

The action applications to be triggered are the following:

� QoS_Setup: This action application is responsible for performing the necessary

QoS configurations as specified by the Conference_Setup_SLO. When triggering

this application the parameters conference_duration and RULES are also given.

Conference_duration stands for the time period for the configurations, while

RULES represents the configuration properties (participants’ IP addresses, their

gateways’ IP addresses and participants’ service level). An example of the

RULES parameter is given below:

hRULESi
hSOURCESi
hSOURCEi

hIP_ADDRESSi147.102.7.45h/IP_ADDRESSi
hPORTi2345h/PORTi
hSERVICE_TYPEiEFh/SERVICE_TYPEi
hRATEi100h/RATEi
hBURSTi200h/BURSTi

hSERVICE_TYPEiAF11h/SERVICE_TYPEi

192 Fast and Efficient Context-Aware Services

hRATEi50h/RATEi
hBURSTi200h/BURSTi
hSERVICE_TYPEiBEh/SERVICE_TYPEi

hRATEi50h/RATEi
hBURSTi200h/BURSTi

h/SOURCEi
hSOURCEi

hIP_ADDRESSi147.102.7.52h/IP_ADDRESSi
hSERVICE_TYPEiEFh/SERVICE_TYPEi

hPROTOCOLiUDPh/PROTOCOLi
hRATEi200h/RATEi

h/SOURCEi
h/SOURCESi

hDESTINATIONSi
hDESTINATIONi

hIP_ADDRESSi147.102.7.45h/IP_ADDRESSi
hPORTi2455h/PORTi

h/DESTINATIONi
hDESTINATIONi

hIP_ADDRESSi147.102.7.45h/IP_ADDRESSi
hPORTi2455h/PORTi

h/DESTINATIONi
h/DESTINATIONSi

h/RULESi

The application parses the RULES parameter to retrieve the necessary configura-

tion actions. The QoS_Setup application communicates with the QoS Broker

utilizing the QoSBrokerInterface API. It considers all the (source, destination)

combinations in order to install the necessary rules. One TCP session with the QoS

Broker is required for each (source, destination) pair. Finally, during the lifetime of

the specified conference_duration the QoS_Setup application may be used for

reconfiguring the QoS settings as due by the users’ movement.

� send message: This action provides the functionality required to send a message

to the appropriate user. Based on the access network, the IP address of the user

and the message itself, it will construct and deliver the appropriate message to the

user. This functionality is required for delivery of the message advising the user to

move to an alternative access point if the current one is overloaded, as well for the

delivery of all the announcements in the case of the CA-Announcement Service.

This very detailed description of a possible realization of the Moving Campus

Services in the CONTEXT system indeed shows that how the design of the system

can be used to generate scalable efficient CASs in this environment. Overall, the

System Evaluation 193

three scenarios described in this section indicate that the proposed system can be

used in different ways to allow fast creation and deployment of efficient context-

aware services in heterogeneous networks.

8.2. Performance Evaluation

In the first part of this chapter we evaluated the CONTEXT system by showing how

various context-aware services can be deployed in the network using the CONTEXT

infrastructure. A second part of this evaluation consists of assessing the scalability of

such a system and the expected performance. As explained in the previous two chapters,

the distributed heart of the system lies in the collection of DINA machines deployed

in the network. These machines can be viewed a distributed execution environment

where the service logic (and other components) are executed. Thus, a first step in

evaluating the performance and scalability of the CONTEXT system is to examine the

performance of a single DINA node when executing the logic of many services.

8.2.1. CPU Load

In order to check the performance in terms of CPU utilization, we designed a

benchmark application that represents service logic that is bounded by computation

resources. This application is sent and executed in a DINA node. Without any load

the application requires about 2 seconds to complete. Then, we added further load

by executing a number of load application representing the logic of other (different)

services running on the same DINA node.

As one can see from Figure 8.6, when the load increases the time it takes the

application to complete increases as well. The Total time in this figure is the time

taken to load and execute the application, while the Execution time is the amount of

ONE_JVM

0

100000

200000

300000

400000

500000

600000

41 37 33 29 25 21 17 13 9 5 1

CPU_LOAD

T
im

e
(m

ill
is

 e
co

nd
s)

Execution time
Total time

Figure 8.6 Load One JVM.

194 Fast and Efficient Context-Aware Services

CPU time in the destination DINA node. Clearly, as we add more CPU intensive

applications (i.e., increasing the load), the amount of resources available to the

benchmark application reduces, and hence the amount of time required to finish the

task increases. The almost linear increase indicates that the overhead of managing

many applications at the same node is relatively small. However, at some point,

around 30 CPU intensive applications, the system becomes unstable and the required

time for termination increases sharply. This point indicates that the load had reached

its critical point, and increasing the load above this point may cause undesired

behavior such as timeouts and the inability to perform all services. Recall from

Chapter 7 that in order to address scalability and load issues, the design of the DINA

system allows several JVMs to be deployed on the same DINA node.

Figure 8.7 shows the completion time of our benchmark application when five

JVMs where present in the DINA node. In such a case the CPU intensive load

applications are shared among all JVMs almost equally; thus, the JVM in which the

benchmark application is executed has only one fifth of the load it would have if

only one JVM was used. However, the overall CPU usage is almost the same since

we have five JVMs each having about one fifth of the load and one can see that the

critical point appears at about the same load. Note that the system becomes much

more stable when the number of JVMs increases and the variant of the execution

time becomes much smaller when we move from one JVM to five JVMs and then to

Ten JVMs in Figure 8.8. Clearly, if each JVM would have its own physical machine

within close proximity of the DINA node, we could expect a dramatic improvement

in performance, since in such a case we would have five (or ten) times more CPU

resource available.

8.2.2. Info-Broker Load

In many applications, and in particular in the logic of services, CPU is not the main

bottleneck, and most of the time the service is waiting for data. In order to test the

JVM_5

0

100000

200000

300000

400000

500000

600000

16111621263136414651

CPU_LOAD

T
im

e
(m

ill
is

ec
on

ds
)Execution

Total time

Figure 8.7 Load Five JVMs.

System Evaluation 195

performance of such services, we created a different benchmark application. This

application uses the InfoBroker in the DINA node, representing a service logic

application that needs access to local information. The load creating applications

were also changed in a way that they generate load on the InfoBroker as well. As

one can see in Figure 8.9, the time taken to complete the task increases as the

number of load applications increases. Again at some point (around 50 load

applications in our case) the system becomes less stable, but up to this point the

execution time increases linearly with the number of load applications, and the

InfoBroker seems to handle the load efficiently. It is predicted that other brokers will

perform similarly, depending of course on the specific implementation of the broker.

The actual performance of the CONTEXT system in real scenarios depends on

many parameters and can be tested only when the system is deployed in large-scale

configurations (i.e., many representative applications executing in a realistic CON-

TEXT infrastructure). However, the preliminary results of the performance testing

Load 10 JVMs

0

100000

200000

300000

400000

500000

600000

55 49 43 37 31 25 19 13 7 1

Ld

T
im

e
(m

ill
is

ec
on

ds
)

Execution Time

Total Time

Figure 8.8 Load Ten JVMs.

Info Broker Load

0

100000

200000

300000

400000

500000

600000

Load

T
im

e
(m

ill
is

ec
on

ds
)

Execution time
Total time

61 55 49 43 37 31 25 19 13 7 1

Figure 8.9 InfoBroker Load.

196 Fast and Efficient Context-Aware Services

presented in this chapter indicates that it has a potential to be a very scalable system,

providing the required infrastructure for the fast and easy deployment of efficient

context-aware services in heterogonous networks.

8.3. Conclusions

The CONTEXT system provides an infrastructure for the fast development and

deployment of efficient context-aware services. An evaluation of the CONTEXT

system is presented in this chapter. The first step in evaluating such a system is to

show that context-aware services can indeed be developed and deployed using the

provided infrastructure. In order to do so we introduce several scenarios, and in each

scenario we describe context-aware services built using the CONTEXT system. This

demonstrates the ability of the proposed system to support the new and different

types of service needed in today’s telecommunications market. In the second part of

the chapter, which addresses the efficiency of the system, we describe several

benchmark measurements that test the scalability and efficiency of a single DINA

element to support concurrent applications.

System Evaluation 197

9
Conclusions

Next-generation networks are driven by the convergence of voice and data into fully

integrated networks. Such converged networks will be characterized by the increas-

ing number of wireless and cellular users that are always connected via WiFi

(802.11), WIMAX (802.16), or various 3G and legacy cellular technologies, the

move towards overlay networks and Peer to Peer (P2P) applications, and the

deployment of both traditional telecommunications services and new data services

that require QoS support.

Considering the small margins in the market and the increasing competi-

tion, many providers seek to offer new services that can both attract new costumers

and become the source of substantial future revenue. A successful service,

therefore, is one that in addition to offering new experiences to end-users is also

profitable for the provider. From this perspective, two very important aspects of

such sophisticated new services are the time to market and the operational cost.

This market drive for new advanced services in the converged world of wireless

voice and data brings us faster than ever to the time when Context-Aware Services

(CASs) are a mainstream service and a major source of income for service

providers.

9.1. Context-Aware Services

By their name (and definition see Reference [1]) CASs are services in which the

actual result of using them depends on the context. The interest in such services

started in the early 90s in the field of Pervasive Computing, where context was

usually associated with the user location and information provided by various

sensors (gadgets). In the wireless communication world, services that react accord-

ing to the location of the user (and other users) answer questions such as ‘where is

the nearest Italian restaurant?’ or ‘who is next to me?’ and are already being offered

to cellular customers. The convergence of voice and data networks, and the rapid

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

growth of the wireless world create the need for more sophisticated CASs, in which

the context is more than just the user location.

Although the concept (and name) of CASs has only been developed in the last

decade (starting with the fundamental paper of Bill N. Schilit et al. [2]), Context-

Aware Services have existed in the telecommunication world for a long time.

Perhaps the most basic example is the emergency call mechanism. Emergency calls

can be viewed as a service in which the user dials a fixed number (911 in the US and

112 in Europe) but the effect is different, depending on the location of the caller, and

sometimes the status of the emergency call centers or the local police station. Based

on these ‘contexts’ the call is redirected to the appropriate location. Other advanced

voice services, such as follow me, can also be viewed in the same way where the

result of dialling a number depends on the context, which is the current location of

the recipient of the call (according to the information available to the network). In an

enhancement of these services, in the spirit of Pervasive Computing, sensors detect

the current location of a person in the building and forward his (her) calls to the

phone located in the same room, as described in Reference [4]. The basic emergency

call service can also be extended in various ways as described in Reference [3].

As for traditional data services, consider a very common service like web browsing,

in which we would like pages to be loaded quickly, which might entail connecting to

the closest replica of the pages we are looking for, or to the server with the lowest load

or fastest response time. If we envision this as normal web browsing that redirects the

page request according to the parameters (server load, traffic load) above, then this is

also a Context-Aware Service, where the context consists of the client’s network

location, the location of the replicas in the network, the load on each replica server, the

network traffic, and the current routing paths. Such a service is much more network

oriented, but the main concepts of CAS are still valid.

A more complex example is the ‘smart follow me email’ system [5]. In such a

system, the way e-mail is forwarded to the user depends on several parameters, for

example, the type of device the user is using (PDA, cell phone, laptop, etc.), the type

of connectivity and available bandwidth (GPRS, WIFI, modem, ADSL, etc.), and

the importance of the information to the person at this particular time. For example,

JPEG pictures are not forwarded to the user when using her PDA and a GPRS

cellular data connection (due to the cost and large amount of bandwidth required),

unless the e-mail contains the map with the driving instructions for the location of

the next meeting. In this case the service reacts according to the context, which is

composed of: user location, user private information (meeting schedule), e-mail

content, connection type, and available bandwidth.

This last example demonstrates the difficulty of developing complex CASs in the

converged world of voice and data. The context information needed by the service is

complex; it comes from different sources and (at least some of it) is not managed by

the service provider. Moreover, some of the information is network-context

information, which should be collected from a distributed environment, and several

200 Fast and Efficient Context-Aware Services

of the technical aspects of providing such a service in a scalable efficient fashion

require access to, and ability to configure, elements in the networks.

In this book we describe the state of the art in this field and a new framework

aimed at addressing the need for rapid deployment of efficient Context-Aware

Services, which is becoming a requirement in many providers’ networks. This

solution is based on a distributed service execution environment utilizing the

programmable network paradigm.

A study of the field of Context-Aware Services followed development of new

ways to create and deploy such services must start with a clear view of the different

elements participating in the envisaged scenarios. A key ingredient is the context

itself – one must define what context is, and how it relates to services in the new

networking paradigm. This is described in Chapter 2 of this book. Another important

building block is the service. Here, it is important to define the scope of a service in

this new era where telecommunication and data networks converge. It is also

important to study the service life cycle, from creation through deployment to the

actual offering of well-managed services to end users. We do this in Chapter 3.

A special emphasis is put on the interaction of the service with the networking

layer. In this new converged world where the network is very heterogeneous and

complex, and where low operational cost is crucial to the attainment of profitability,

it is very important to be able to offer the required QoS to the customer in the most

efficient way. For this reason, it is no longer possible to offer all services from a

single location and to view the network as a black box. Thus, there is a clear need for

a well-defined control and management API between the services and the network

elements. We discuss this important aspect in Chapter 4.

A good way to maximize the advantage of such an API, and to allow distributed

applications to cooperate in offering the service, is to use programmability. Network

programming techniques allow the creation of a distributed service execution

environment that can host the service logic and utilize the service network API.

This approach is followed in the development of the CONTEXT system that is

described in this book. Programmable technology and its applicability to services

are described in the Chapter 5.

The CONTEXT system is a middleware solution for efficient development and

deployment of context-aware services making use of programmable system technology.

This system consists of a distributed service execution environment (EE) composed of

DINA nodes, and a service support layer (SSL) that is dedicated to the creation,

customization, deployment, and management of services on top of the distributed EE.

The details of the different layers are described in chapters 6 and 7 of the book.

In order to make sure that the proposed system can indeed be used by the different

players in the service domain, it very important to examine the different ways the

system could be used to create and deploy different types of service. In Chapter 8,

we provide such an evaluation for describing different scenarios and discussing the

ways the CONTEXT system is used in order to create, deploy, and manage these

Conclusions 201

services. We also present evidence of the system’s scalability by presenting key

performance measurements taken on the system prototype.

It is important to note that the CONTEXT system (or similar common service

infrastructure) is more than just an implementation technique that enables scalability

and efficiency. In fact, once the common infrastructure is deployed by the service

provider, creating a service will be generic in the sense that the same service can be

developed once and deployed many times by many providers in different networks,

possibly in different countries. This enables the creation of a new type of business –

service developer. Such businesses can concentrate on market and client needs and

develop corresponding novel services. The beauty of such a paradigm is that using

the common infrastructure, these services can become off-the-shelf products, ready

to be used by different ISPs all over the world.

9.2. Autonomic Communications Vision

Context awareness in networks and services is one of the key pre-requisites for

realization of the Autonomic Communications vision. Autonomic communications

systems are self-aware and they possess self-knowledge, continuously optimise and

dynamically restructure themselves, adapt to (un)predictable conditions and changes

to their environments, prevent and recover from failures, and provide a safe

environment.

The key feature of autonomous communication systems is that they exhibit self-

awareness capabilities, in particular self-contextualization and self-management.

Self-Contextualization – Contextualization is a communication service property.

A context-aware system is able to use context information to improve the

performance of its expected role, and also to maximize the perceived benefits of

its use. Self-contextualization is the ability of a system to describe, use, and adapt its

behavior to its own context. Once a service component becomes context aware, it

can make use of context information for other self-management tasks that depend on

context information. In this way context becomes a decisive factor in the success of

future autonomous systems adaptive to changing conditions.

Self-Programmability – Programmable service networks take advantage of network

processing resources by dynamically injecting new code into systems elements in order

to create new functionality at run time. Applications and services are thus able to utilize

required network support in terms of optimized network resources and as such they can

be said to be network aware, that is a service-driven network. Self-programmability

means that programmable service networks follow autonomous flows of control

triggered and moderated by network events and changes in network context. The

network is self-organized in the sense that it autonomically monitors available context in

the network, and provides the required context (and any other necessary network service

support to the requested services) and self-adapt when context changes.

202 Fast and Efficient Context-Aware Services

Self-management – Currently, network management faces many challenges:

complexity, data volume, data comprehension, changing rules, reactive monitoring,

resource availability, and others. Self-management aims to automatically address

these challenges through self-optimization, self-organization, self-configuration, and

self-adaptation.

Self-optimisation – As network context information and resources, and their

availability are changing rapidly, there is a need for an autonomous tool for

consistent monitoring and control of network-context information and resources,

so that service components may be executed or deployed in the most optimized

fashion. Autonomic systems aim to improve their operational goals on a continuous

basis. They must identify opportunities to make themselves more efficient from the

point of view of strategic policies (performance, quality of operation, cost, quality of

service, quality of context, etc.).

Self-organisation – This enables autonomous structuring of network-context infor-

mation and resources, making them available to services. The autonomous structuring of

network context information and resources is an essential self-organisation task. In order

for services to make use of distributed context information and resources, networking

elements will be (re)structured and referenced in an easy-to-access-and-retrieve struc-

ture in an automatic fashion. All network-context information and resources will be

autonomously organized and reserved through a service layer.

Self-adaptation – Autonomic systems must configure and adapt themselves in

accordance with high-level policies representing service agreements or business

objectives, rules, events, and environments. When a component or a service is

introduced, the system will incorporate it seamlessly and the rest of the system will

adapt to its presence. In the case of components, they will register themselves and

other components will be able to use them or modify their behavior to fit the new

situation. Autonomic Systems satisfy the need for an open programmable self-

configuring infrastructure.

Self-healing – Autonomic systems will detect, diagnose, and repair problems

caused by network or system failures. Using knowledge about the system config-

uration, a problem-diagnosis embedded intelligence will analyze the monitored

information. Then, the network will use its diagnostic functions to identify and

enforce solutions, or alert a human in cases where no solutions can be found.

Self-protection – Autonomic systems will defend themselves as a whole or as

components by reacting to, or actively anticipating, large-scale correlated problems

arising from attacks or cascading failures that remain uncorrected by self-healing

measures.

Undoubtedly, sophisticated context-aware services are going to take an important

part in future converged telecommunication and data networks. This book describes

the CONTEXT project view of a common infrastructure that supports scalable,

efficient, and cost-effective services, a step on the path toward service-centric

networks, built from full autonomic services.

Conclusions 203

References

1. Chen G, Kotz D. A survey of context-aware mobile computing research. Technical

Report TR2000-381, Department of Computer Science, Dartmouth College, November

2000.

2. Schilit BN, Adams N, Want R. Context-aware computing applications. In IEEE

Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

3. Hegering HG, Kupper A. Management challenges of context-aware services in

ubiquitous environments. Technical report, 2003.

4. Want R, Hopper A. Veronica Falc̃ao, andJonathan Gibbons. The active badge location

system. ACM Transactions on Information Systems 1992, 10: 91–102.
5. Cohen R, Raz D. An open and modular approach for a context distribution system,

IEEE/IFIP Network Operations and Management Symposium, NOMS 2004, April 2004,

pp 365–379.

6. Kornblum J, Raz D, Shavitt Y. ‘The active process interaction with its environment,’

IWAN 2000, October 2000.

204 Fast and Efficient Context-Aware Services

Index

Access, 69

Access Control, 150, 151, 179

Action, 174, 175, 190

Action Broker, 185

Action Consumer, 98, 108, 109, 110, 123

Active Network, 78, 80, 133

Active Packets, 141

Adapting to Context, 10

Address, 110, 111, 173, 191

Ambient Computing, 5

ANEP, 86, 142

API, 65, 79, 110

Application, 10, 17

Application Context, 171

Architecture, 33, 95

Assurance, 57, 101, 102, 105, 110, 115,

121, 122, 175

Autentification, 46, 73

Authoring, 41, 99, 184

Authorization and Access, 179

Authorization, 46, 73, 179

Autonomic Communication, 202

Autonomic, 202

Awareness, 5, 10

Benchmark, 169, 194–197

Best Effort, 187

Broker, 138, 151–155, 157, 162, 166,

185, 195

CANP, 145

CAS, 3, 34, 41, 72, 95, 99, 172, 184, 199

CASP, 145

CCM, 79

CCO, 71, 162, 179, 190

Channel, 82

CIB, 7

CIDS, 69, 74, 161, 163

Circumstantiae, 1, 2, 8, 25

CIS, 14, 15, 70

Code Distribution, 105, 108, 117

Code Distributor, 50, 101, 108, 114, 117

Code Execution Controller, 52, 102, 109, 121

Code Execution Message, 102

Code Installation, 50

Code Invocation, 119

Code Storage, 101

Component, 98

Condition Evaluator, 99, 102, 114, 115, 120,

172

Consumer, 98, 108, 109, 110, 121

Context, 1, 2, 5, 7–10, 14, 17, 19, 20, 21, 23,

25, 34, 65, 68, 105, 133, 160, 165, 166,

170, 171, 186, 199

Context Aware Application, 17

Context-Awareness, 10

Context-Aware Services, 1, 9, 34, 65, 199

Context Client, 21

Context Collection, 21

Context Collection Point, 21

Context Dissemination, 162

Context Information, 68, 170, 186

Context Mediator, 71

Context Project, 2

Context Service Adapter, 21

Context Sharing, 22

Context Toolkit, 10

Contextual Information Service, 14

ContextWare, 96

CORBA, 20

Fast and Efficient Context-Aware Services Danny Raz, Arto Tapani Juhola,

Joan Serrat-Fernandez, Alex Galis # 2006 John Wiley & Sons, Ltd

Database, 139

Deployment Framework, 21

DiffServ, 155, 187

DINA, 72, 102, 141, 143

Header, 142, 143

Human User, 6

Distributed, 105

Distributor, 50, 101, 108, 114, 118

EE, 84, 140, 201

Encapsulation, 78

Encryption, 73

Engine, 14, 47, 100, 128, 184

Environment, 81, 84, 133, 140

Epoch, 33

Execution Environment, 81, 84, 140

Extensible Service Protocol, 24

Forwarding Element, 136

Forwarding Engine, 137

Function, 33, 122, 123, 146, 161, 163

GRID, 19

Handler, 164, 165

IETF, 79, 80

Infrastructure, 86, 145

Interface, 65, 67, 99, 166

Internet, 1, 49, 67

IP, 144, 151

JVM, 138, 139, 140

Link, 82

Listener, 55

Location, 11, 111, 170, 173

Location Context, 170

Management, 49, 86, 95, 97, 104, 105,

141, 147, 172, 185

Management Information Base, 116

Management Policy, 172

Mediator, 71

MIB, 71, 161

Middleware 96

Mobile Agent, 78, 96

Mobile Computing, 5

Modular, 105

Module, 44, 164

Network, 3, 22, 33, 65, 67–69, 71, 80,

83, 153, 171

Network Context, 68, 171

Network Provider, 145

Node, 81–83, 141

Node Operating System, 81, 83

NodeOS, 81–85

Object, 71, 108, 120, 145, 162, 186

Ontology, 23

Open, 67, 79, 105

Opensig, 77–79

Overlay, 67, 68

Overlay Network, 67

P2P, 199

Peer-to-peer, 24, 68, 199

Performance, 58, 194

Pervasive, 183, 199, 200

Platform, 135

Policy, 97, 98, 101, 104, 105,116

Policy Decision, 98, 101

Policy Decision Making, 98, 101

Policy-Based Management System, 3, 97,

101, 103, 105, 108

Policy-Based Networking, 88

Policy-Based Service Management, 104,

105

Programmable, 77, 83, 86

Public Key Infrastructure 145

Repository, 116

Resource Control, 84, 134

Scalable, 105

Scenario, 169, 183

SDF, 21

Security, 72, 139, 144, 146

Security Function, 146

Self Adaptation, 203

Self Contextualization, 202

206 Index

Self Management, 88, 203

Self Optimisation, 203

Self Organization, 203

Self Programmability, 202

Self Protection, 203

Service, 9, 33, 34

Service Assurance, 57, 102, 107, 110,

115, 121, 122, 175

Service Consumer

Service Creation, 41

Service Customization, 44, 99

Service Execution, 98, 133

Service Level Agreement, 57

Service Logic, 74, 184

Service Management, 49, 104, 105,

185

Service Monitoring, 58

Service Provider, 145

Session, 24, 135, 138, 139, 143

SICE, 108, 178, 179, 190

SIP, 24, 157

SLA, 57

SLO, 71, 74, 102, 121, 179, 184

Stability, 137

System, 10, 14, 21, 83, 95, 104, 105, 108,

160, 169

Peer-To-Peer, 24, 68, 199

Programmable Network, 83

Programming, 65

Protection, 149

QoS, 7, 155

Quality, 9, 57

Ubiquitous, 10

UDP, 86

User, 170, 189

User Context, 170

Using Context, 9

Variable, 175

Web, 182

WiFi, 169–171, 173, 176, 199

WiMAX, 199

Wireless, 157

XML, 43, 44, 49, 50, 105

Index 207

	cover.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf

