

Jeff Levinson and David Nelson

Pro Visual Studio 2005
Team System

4606FM.qxd 4/20/06 3:51 PM Page i

Pro Visual Studio 2005 Team System

Copyright © 2006 by Jeff Levinson and David Nelson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-460-5

ISBN-10 (pbk): 1-59059-460-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewers: Gautam Goenka, Bata Chadraa, Anutthara Bharadwaj, Munjal Doshi, Winnie Ng,

Joe Rhode, Siddharth Bhatia, Amy Hagstrom, Yogita Manghnani, Tom Patton, Alan Hebert, Bill Essary,
Sam Jarawan, John Lawrence, Jimmy Li, Bryan MacFarlane, Erik Gunvaldson, Adam Singer,
Chuck Russell, Kathryn Edens, Patrick Tseng, Ramesh Rajagopal, John Stallo, Jochen Seemann,
Michael Fanning, Ed Glas, Eric Lee, Bindia Hallauer, Michael Leworthy, Jason Anderson,
Michael Koltachev, Boris Vidolov, James Su, Thomas Lewis, Steven Houglum, Bill Gibson,
Ali Pasha, Dmitriy Nikonov, Prashant Sridharan

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editors: Marilyn Smith, Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Dina Quan
Proofreader: Nancy Riddiough
Indexer: Brenda Miller
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

4606FM.qxd 4/20/06 3:51 PM Page ii

For Tami, my wonderful new wife, who kept me going through everything. I love you.
and

My cousin, Dr. Alicia Lindheim, who inspired me to go beyond myself with her courage,
conviction, and strength. When the phrase, “where there’s a will, there’s a way”

was written, they were talking about her.

— Jeff Levinson

For Sammi, my love, my inspiration, and my beautiful bride of twenty years, and for our
tribe Jake, Josiah, Peter, Grace, and Lydia, my hope. I love you all with all my heart.

and
To my Mom and Dad, who gave me faith and belief in the Lord Jesus Christ, a marriage

extending half a century, and a commitment to hard work, integrity, and family.

— David Nelson

4606FM.qxd 4/20/06 3:51 PM Page iii

4606FM.qxd 4/20/06 3:51 PM Page iv

Contents at a Glance

Foreword . xvii

About the Authors . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introduction to Visual Studio Team System . 1

PART 1 ■ ■ ■ Team Foundation
■CHAPTER 2 Team Projects . 17

■CHAPTER 3 Team Foundation Version Control . 59

■CHAPTER 4 Project Management . 103

■CHAPTER 5 Team Work Item Tracking . 121

■CHAPTER 6 Team Reporting . 159

■CHAPTER 7 Team Foundation Build . 197

PART 2 ■ ■ ■ Team Edition for Software Architects
■CHAPTER 8 Application Designer . 219

■CHAPTER 9 System and Logical Datacenter Designers . 255

■CHAPTER 10 Deployment Designer . 285

PART 3 ■ ■ ■ Team Edition for Software Developers
■CHAPTER 11 Class Designer . 311

■CHAPTER 12 Unit Testing and Code Coverage . 339

■CHAPTER 13 Static Code Analysis . 377

■CHAPTER 14 Performance Analysis . 403

PART 4 ■ ■ ■ Team Edition for Software Testers
■CHAPTER 15 Web Testing . 433

■CHAPTER 16 Load Testing . 471

■APPENDIX Command-Line Tools Reference . 497

■INDEX . 501
v

4606FM.qxd 4/20/06 3:51 PM Page v

4606FM.qxd 4/20/06 3:51 PM Page vi

Contents

Foreword . xvii

About the Authors . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Introduction to Visual Studio Team System 1

What Is Visual Studio Team System? . 2

What Are the Benefits of Using Visual Studio Team System? 2

Visual Studio Team System Editions . 3

Team Foundation . 4

Team Edition for Software Architects . 5

Team Edition for Software Developers . 7

Team Edition for Software Testers . 8

Visual Studio Integration Partners Program . 10

The Effort Tracking Application . 10

Summary . 13

PART 1 ■ ■ ■ Team Foundation

■CHAPTER 2 Team Projects . 17

Starting Your Team Project . 17

Planning a New Team Project . 17

Connecting to the Team Foundation Server . 19

Creating a New Team Project . 20

Viewing Process Guidance . 23

Working with the Team Explorer . 24

Introducing VSTS Components . 25

Process Templates . 25

Project Portal . 26

Work Item Tracking . 29

Documents . 29

Reports . 30
vii

4606FM.qxd 4/20/06 3:51 PM Page vii

Team Builds . 30

Version Control . 31

Areas and Iterations . 32

Project Alerts . 32

Customizing the Project Portal . 32

Adding an Image . 34

Adding Reports . 35

Working with Lists . 36

Customizing a Process Template . 36

Understanding the Process Template Architecture 37

Modifying a Process Template . 41

Customizing the Process Guidance . 43

Managing Team Foundation Security . 45

Managing Windows AD Security . 46

Managing Global Team Foundation Security 47

Managing Project Security . 52

Managing WSS Security . 55

Managing SSRS Security . 56

Summary . 57

■CHAPTER 3 Team Foundation Version Control . 59

Starting with Version Control . 59

Source Control Explorer . 61

File/Folder Properties . 62

Workspaces . 66

Creating Solutions . 68

Pending Changes Window . 70

Source Files . 70

Work Items . 71

Check-in Notes . 71

Policy Warnings . 71

Changesets . 72

History . 73

Comparing Versions . 74

Labeling Versions . 76

Retrieving Versions . 78

Branching . 80

■CONTENTSviii

4606FM.qxd 4/20/06 3:51 PM Page viii

Shelvesets . 82

Merging Files . 83

Configuring Version Control . 89

Configuring Project Settings . 90

Check-in Notes . 93

IDE Version Control Configuration . 93

Plugin Selection . 94

Environment . 94

Visual Studio Team Foundation . 94

Creating Custom Check-in Policies . 95

Creating the Policy . 95

Registering the Policy . 99

Converting from Visual SourceSafe to Team Foundation
Version Control . 100

Command-Line Access . 101

Summary . 102

■CHAPTER 4 Project Management . 103

A Week in the Life of a Project Manager (without VSTS) 104

Day 1, Monday . 104

Day 2, Tuesday . 104

Day 3, Wednesday . 104

Day 4, Thursday . 104

Day 5, Friday . 104

Two Days in the Life of a Project Manager (with VSTS) 105

Day 1, Monday . 105

Day 2, Tuesday . 105

Using Microsoft Project . 105

Retrieving, Adding, and Updating Work Items 107

Adding Attachments and Links . 109

Areas and Iterations . 112

Column Mapping . 112

Using Microsoft Excel . 115

Creating Lists in Excel . 116

Configuring Lists in Excel . 117

Using Visual Studio . 119

Summary . 120

■CONTENTS ix

4606FM.qxd 4/20/06 3:51 PM Page ix

■CHAPTER 5 Team Work Item Tracking . 121

Working with Work Items . 121

Using the Form View . 123

Using the Query View . 125

Using the Results (Triage) View . 129

Understanding Work Item Types . 130

Task Work Items . 131

Bug Work Items . 133

Risk Work Items . 134

Change Request Work Items . 136

Review Work Items . 137

Requirement Work Items . 138

Issue Work Items . 140

Configuring Project Alerts for Work Item Tracking 141

Looking Under the Hood . 142

Customizing Work Item Types . 144

Modifying the Assign To List . 145

Creating a New Field That References a Global List 149

Creating a New Work Item Type . 152

Assigning Field Reference Names . 156

Summary . 157

■CHAPTER 6 Team Reporting . 159

Introducing the Business Intelligence Platform . 159

Understanding the Reporting Life Cycle . 161

Using Predefined Team Reports . 162

Customizing Team Reports . 166

Extracting the Report Definition . 168

Adding the Report Definition to a Project . 168

Modifying the Report . 169

Saving the Modified Report Definition . 170

Deploying and Viewing Your Report . 171

Introducing the Team Foundation Data Warehouse 172

Understanding the Data Warehouse Architecture 173

Exploring the Data Warehouse Schema . 174

Managing the Data Warehouse . 181

Adding Elements to the Data Warehouse . 182

■CONTENTSx

4606FM.qxd 4/20/06 3:51 PM Page x

Data Mining with Microsoft Excel . 182

Bringing Team Foundation Data into Excel . 183

Creating a Report . 187

Creating a New Report . 189

Summary . 196

■CHAPTER 7 Team Foundation Build . 197

Benefits of Automated Builds . 197

Using Team Foundation Build . 198

Creating a Build Type . 198

Running the Build and Viewing Build Results 203

Viewing Build History . 208

Customizing the Build Process . 211

Reviewing the Build Type Configuration File 211

Retrieving the Build Type . 212

Editing the Build File . 212

Using the Build Command-Line Tool . 213

Setting Up Continuous Integration Testing . 214

Summary . 215

PART 2 ■ ■ ■ Team Edition for Software
Architects

■CHAPTER 8 Application Designer . 219

Overview of the Distributed System Designers . 220

System Definition Model . 220

Benefits of the Distributed Designers . 221

Using the Application Designer . 223

Getting Started with the Application Designer 224

Defining the Database Component . 226

Adding a Web Service Component . 227

Connecting the Application Types . 228

Defining Operations for ASP.NET Web Service Prototypes 232

Implementing the Application . 233

Adding a Web Application Component . 240

Adding Comments to Application Diagrams 244

Understanding Connections and Endpoints 245

Adding a Web Service Endpoint from a WSDL File 247

■CONTENTS xi

4606FM.qxd 4/20/06 3:51 PM Page xi

Understanding Constraints and Settings . 249

Setting Constraints . 249

Searching Settings and Constraints . 250

Reverse-Engineering Existing Solutions . 251

Troubleshooting Application Diagrams . 253

Summary . 253

■CHAPTER 9 System and Logical Datacenter Designers 255

Using the System Designer . 255

Creating a New System Diagram . 256

Building a System Diagram from an Application Diagram 261

Nesting Systems . 262

Viewing Web Service Details, Settings, and Constraints 264

Overriding Settings and Constraints . 265

Using the Logical Datacenter Designer . 266

Creating a Logical Datacenter Diagram . 267

Importing Settings from IIS . 277

Building a Logical Datacenter Diagram for the
Sample Application . 281

Summary . 283

■CHAPTER 10 Deployment Designer . 285

Using the Explicit Deployment Method . 285

Creating a Deployment Diagram . 287

Validating a Deployment Implementation . 291

Generating the Deployment Report . 295

Using the Implicit Deployment Method . 296

Building the Deployment Diagram . 297

Validating the Diagram . 301

Setting Deployment Properties . 303

Generating the Deployment Report . 305

Summary . 307

■CONTENTSxii

4606FM.qxd 4/20/06 3:51 PM Page xii

PART 3 ■ ■ ■ Team Edition for Software
Developers

■CHAPTER 11 Class Designer . 311

Design Goals . 311

Understanding Existing Code . 311

Initial Class Design . 312

Reviewing and Refactoring . 312

Relevant Diagrams and Documentation . 312

Microsoft, UML, and Visio . 313

Using the Class Designer . 314

Exploring a Class . 316

Viewing Properties . 317

Working with Class Designer Tools and Options 319

Adding Items to the Class Diagram . 320

Working with Interfaces . 327

Showing Object Relationships . 330

Adding Fields and Properties . 333

Adding Comments . 335

Looking Under the Hood . 336

Summary . 337

■CHAPTER 12 Unit Testing and Code Coverage . 339

Planning Unit Tests . 339

Creating Unit Tests . 342

Understanding Unit Tests . 346

Exploring a Test Method . 346

Exploring a Test Class . 348

Managing Unit Tests . 349

Using the Test View Window . 349

Using the Test Manager Window . 351

Creating Ordered Tests . 353

■CONTENTS xiii

4606FM.qxd 4/20/06 3:51 PM Page xiii

Setting Up Tests . 355

Configuring Test Runs . 355

Completing the Test Methods . 358

Setting Other Configuration Options . 359

Running Tests . 359

Viewing the Test Run Information . 360

Viewing Code Coverage Results . 362

Testing for Exceptions . 364

Data-Driven Testing . 367

Building a Test Database . 367

Preparing the Production Database . 368

Setting Up the Test . 370

Manual Testing . 373

Creating a Manual Test . 374

Running a Manual Test . 375

Testing Using MSTest . 375

Summary . 376

■CHAPTER 13 Static Code Analysis . 377

Static Code Analysis vs. Code Reviews . 377

Using PREfast . 378

Enabling PREfast Checking . 378

Reviewing PREfast Results . 379

Enabling, Disabling, and Suppressing PREfast Warnings 383

Annotating Code for PREfast Checks . 385

Using FxCop . 387

Enabling FxCop . 388

Examining FxCop Results . 388

Suppressing Messages . 390

Configuring FxCop Rules . 391

Running FxCop from the Command Line . 392

Creating Custom FxCop Rules . 392

Summary . 401

■CHAPTER 14 Performance Analysis . 403

Performance Profiling Terms . 404

Instrumentation . 405

Sampling . 407

Running a Performance Test . 407

■CONTENTSxiv

4606FM.qxd 4/20/06 3:51 PM Page xiv

Understanding the Performance Report . 409

Summary Tab . 409

Functions Tab . 411

Caller/Callee Tab . 414

Calltree Tab . 415

Allocation . 416

Objects Lifetime . 417

Performance Session Options . 418

Target Options . 420

Profiling Unit Tests . 421

Profiling Web/Load Tests . 421

Profiling Production Applications . 422

Command-Line Performance Tools . 422

Profiling Windows Applications and Windows Services 423

Profiling ASP.NET Applications . 425

Summary . 430

PART 4 ■ ■ ■ Team Edition for Software Testers

■CHAPTER 15 Web Testing . 433

Recording Web Tests . 434

Test Steps Explained . 437

Test Detail Properties . 437

Test Options . 439

Running Recorded Web Tests . 440

Passing or Failing Tests . 443

Data-Driven Web Testing . 443

Coded Web Tests . 447

Coded Data-Driven Tests . 449

Extraction Rules . 453

Creating Custom Extraction Rules . 454

Extract Method . 456

Implementing Custom Extraction Rules . 456

Validation Rules . 457

Creating Custom Validation Rules . 459

Web Test Request Plugins . 459

Web Test Plugins . 459

Testing Web Services . 462

■CONTENTS xv

4606FM.qxd 4/20/06 3:51 PM Page xv

Test Results . 465

Test Results Schema . 466

Publishing Test Results . 468

Summary . 469

■CHAPTER 16 Load Testing . 471

Controllers and Agents . 472

Administering a Controller . 473

Configuring the Test Run . 476

Load Test Wizard . 477

Scenario . 477

Load Pattern . 479

Test Mix . 480

Browser Mix . 481

Network Mix . 482

Counter Sets . 483

Run Settings . 484

Extending Load Test Settings . 484

Load Test Window . 488

Analyzing Load Test Results . 491

Counters Pane . 492

Graphs/Tables Pane . 493

Points Pane . 495

Summary Pane . 495

Publishing Test Results . 495

Summary . 495

■APPENDIX Command-Line Tools Reference . 497

Server Command-Line Tools . 497

Client Command-Line Tools . 498

■INDEX . 501

■CONTENTSxvi

4606FM.qxd 4/20/06 3:51 PM Page xvi

Foreword

Microsoft has always provided world-class development tools for developers. From the
release of Visual Basic 1 to Visual Studio 2005, Microsoft has provided groundbreaking tools to
make developers’ lives easier. With the release of Visual Studio 2005, we’ve done a consider-
able amount of work to help the individual developer be even more productive—refactoring,
the My Namespace, edit-and-continue, and improvements in the .NET Framework are just a
few examples.

But with Visual Studio 2005, we’ve expanded our focus beyond the developer to the entire
development process itself. Visual Studio Team System takes a larger view of the developer’s
world. It acknowledges the project management aspects of development, the architecture,
and the testing phase of the development life cycle; in other words, Visual Studio Team System
takes into account the entire software development life cycle. This shift away from purely an
individual’s perspective is designed to ease the burden on development organizations by help-
ing every member of the team gain more insight, and oversight, of the software development
life cycle.

This larger view of the development process promotes communication and collaboration
among groups that in the past almost never spoke with each other. It helps project managers
to communicate with architects, architects with developers, and developers with testers. And
it helps everyone to communicate with stakeholders and to collaborate with other interested
observers. By providing timely reporting of events, project status, development statistics, and
other information, organizations can leverage Visual Studio Team System to streamline the
development process.

Software development has shifted from groups of developers working in the same building
to groups of developers working around the world. This shift crosses geographical boundaries
and allows teams to collaborate with each other in real time. Team System enables the organi-
zation that owns the code to actually own the code! Nightly builds can be performed in the
target environment instead of being built and tested in an environment that usually doesn’t
match the eventual deployment environment. It also helps organizations to keep better track
of how their outsourced teams are progressing with the project.

There is an overwhelming industry trend toward a more agile approach to software devel-
opment. At the same time, corporations are pushing for improved quality and reduced cost
through repeatable processes. Out of the box, Visual Studio Team System provides two process
templates aimed at meeting the vast majority of team project needs. The MSF for Agile tem-
plate is great for teams that may not have used any “formal” methods in the past, while the
MSF for CMMI process template complements the Capability Maturity Model Integration
(CMMI) process improvement approach developed at Carnegie Mellon. These processes help
developers not only to be productive, but also to create a framework for repeatable develop-
ment processes. These process improvements ultimately lead to higher quality, lower cost
software development.

xvii

4606FM.qxd 4/20/06 3:51 PM Page xvii

With all of this, Microsoft has absolutely not forgotten that it is developers who write the
code and run the tests. One of the Visual Studio Team System development team’s primary
goals is to help developers to write high-quality code. We call this helping teams drive better
quality, early and often. With the new testing tools for developers and testers, code can be writ-
ten with a higher quality (it follows standards, passes unit tests, and performs optimally) and
that quality can be tested for at every step of the way. Team System makes continuous integra-
tion testing, build verification tests, and development standards easy to implement and follow.
These processes, instead of being complicated and difficult to follow, are made exceptionally
easy with Team System and will help developers write and release more stable code.

What’s in store for the future then? At our core, the things we do at Microsoft are all about
empowering people to drive business success. With Team System, we’ve taken the first steps
toward helping individuals and teams be more productive in the development process. Our
vision is to further expand our Team System offering to help all members of an IT team com-
municate and collaborate more effectively. Some of the areas that we’re focusing on in the
immediate future are better tools for working with databases, more advanced and complete
testing tools, better integration with Microsoft Office, and better support for managing your
organization-wide portfolio of projects. Though some of these new tools may not even be
released under the “Visual Studio” brand, you can be assured that we will work diligently
across all our product groups to deliver solutions that will help you and your organization be
more successful.

We believe that Visual Studio 2005 Team System is a hallmark product for the software
industry. To be sure, we’re all extraordinarily proud of what we’ve released. But, even more
than that, we’re excited to see the overwhelming positive reaction to these first few steps in
making our customers’ lives easier. On behalf of the entire team in Redmond, North Carolina,
India, Copenhagen, and elsewhere, thank you for your support, feedback, and encouragement.

Prashant Sridharan
prashant@microsoft.com

Director, Visual Studio
March 2006

■FOREWORDxviii

4606FM.qxd 4/20/06 3:51 PM Page xviii

About the Authors

■JEFF LEVINSON is a Solution Design and Integration Architect for The
Boeing Company. He is the author of Building Client/Server Applications
with VB .NET: An Example-Driven Approach (Apress 2003) and has written
several articles for Visual Studio Magazine. He speaks at various Microsoft
user groups and was a speaker at Microsoft’s DevDays 2004. Jeff holds the
following certifications: MCSD, MCAD, MCSD.NET, MCDBA, SCJP, and
Security+. He is currently finishing his Masters in Software Engineering at

Carnegie Mellon University. He and his wife Tami live in Redmond, Washington. He enjoys
golfing, reading, running, and spending time with his wife.

■DAVID NELSON is an Enterprise Solutions Architect and Associate Technical
Fellow for The Boeing Company, where he has been employed for 20 years.
His tenure at Boeing has allowed him to become expert at various tech-
nologies, including database solutions, grid computing, service orientation,
and most recently, Visual Studio Team System. David is currently responsi-
ble for architecture and design of computing solutions across Boeing, with
primary focus on the application of emergent technologies. He has taught

Windows Server System (SQL Server, SharePoint Server, and Windows Server) classes, and is
regularly invited to present at national industry conferences.

David resides in the state of Washington with his wife and five children, where he enjoys
riding horses and motorcycles. He is building a tree fort with his sons, planting a garden with
his daughters, and restoring a horse trailer for his wife.

xix

4606FM.qxd 4/20/06 3:51 PM Page xix

4606FM.qxd 4/20/06 3:51 PM Page xx

Acknowledgments

Writing a book—any book—is difficult at best. For a new product on which there really is no
material to use to research on your own, it is even more difficult. The members of the Visual
Studio Team System development team have been incredibly gracious and giving of their
time to answer questions, go over features, and provide support in general while they were
going through their development and release cycles. All of the information in this book comes
from the authors fooling around with the product, trying to implement it in an enterprise
environment, and from the developers and program managers at Microsoft. Having said that,
the authors would like to thank the following people from Microsoft (in no particular order),
keeping in mind that many, many more helped us bring this book to you: Gautam Goenka,
Bata Chadraa, Anutthara Bharadwaj, Munjal Doshi, Winnie Ng, Joe Rhode, Siddharth Bhatia,
Amy Hagstrom, Yogita Manghnani, Tom Patton, Alan Hebert, Bill Essary, Sam Jarawan, John
Lawrence, Jimmy Li, Bryan MacFarlane, Erik Gunvaldson, Adam Singer, Chuck Russell,
Kathryn Edens, Patrick Tseng, Ramesh Rajagopal, John Stallo, Jochen Seemann, Michael
Fanning, Ed Glas, Eric Lee, Bindia Hallauer, Michael Leworthy, Jason Anderson, Michael
Koltachev, Boris Vidolov, James Su, Thomas Lewis, Steven Houglum, Bill Gibson, Ali Pasha,
Dmitriy Nikonov, and Prashant Sridharan.

We owe a special thanks to Gordon Hogenson. Neither of the authors is a C/C++ expert.
Because of this, we turned to someone who is an expert for help with a section in Chapter 13
of this book. He wrote an excellent discussion of PREfast, clearly explaining what you can do
with it to write better code. Thanks Gordon!

The authors would like to also thank our editor, Ewan Buckingham, who stuck with us
through this whole process, which took considerably longer than usual. Sofia Marchant, as the
Project Manager for this book, kept us on track. She took care of getting the materials to the
right people at the right time for reviews and pushing people to get information back to us.
Thanks Sofia! Without our Copy Editors, Marilyn Smith and Jennifer Whipple, this book would
not flow nearly as well or be so readable. Thank you for all of your advice and rewording! Katie
Stence kept everything on track for our production edits.

Without the hard work of everyone at Apress, this book would not be in your hands now.
Jeff Levinson and David Nelson

In addition to all of the great people at Microsoft and Apress, this book has had an effect on
everyone around both David and myself. It has taken a lot of time and effort, more so because
of the constantly shifting nature of working with a new product. Along that line, I would like to
thank the following people from my team at Carnegie Mellon University: Angela He, Kiran
Hedge, Ed Shepley, Drew Gattis, and Michael Rosett. They put up with me while I was trying to
get my school work done, write a book, work, and do a couple of other things. It was a great
year working with a supportive team. As usual, I would like to thank my family for their sup-
port and shoulders to lean on. I would like to thank all of the great people I work with at
Boeing, from developers to managers and my coworkers, for their support of this endeavor
over the last two years. xxi

4606FM.qxd 4/20/06 3:51 PM Page xxi

Finally, I would like to thank my coauthor, David. When I first envisioned the idea for this
book, I knew there were two issues: 1) There was just too much to write about on my own, and
2) I knew this was going to be a very long road. So I convinced David that we should write the
book together. He hung in there with me, even when it seemed like we were getting new builds
every month (which we were most of the time), Microsoft kept changing the name of portions
of the product, and they kept changing the feature set. His wife was ready to cause me serious
harm for monopolizing David’s time, and he got to see his kids for only an hour a day or so.
Sammi, I’m sorry! But we’re done, and in the end, it was a great experience. Thanks David!

Jeff Levinson

I would like to thank everyone who has been excited and encouraging regarding this project. It
has been a long road, and we have learned much. Thanks to those who have listened, guided,
and supported this effort: The Guys (Brad Carpenter, Tim Pearson, John Rivard, Sam Jarawan,
Jeff Whitmore, Gerd Strom, and Johnny Couture) are my rock. Thanks also to Dr. Karl Payne,
my mentor, teacher, and friend. The Cassandra Team (Roger Parker, Richard Lonsdale, Gary
Westcott, Fred Ervin, and John Zhang) are early adopters of ideas and technology. The ValSim
Team (Mike Maple, Kaaren Cramer, Jacques Rousseau, Phil Trautman, and others) push the
edge of technology and thought. Team Canada (Steven Guo, Rob Hickling, Stig Westerlund,
and others) who take beta tools and make products that work. The Architects (Todd Mickelson,
Mick Pegg, Dick Navarro, Brad Belmondo, David Rice, Marty Kitna, and others) have vision,
trust, and work to “get’r” done.

And lastly, thanks to Jeff Levinson, my partner in this endeavor. I have learned a great deal
over the past 22 months (yeah, it really has been that long; I found the first e-mail). I would
never have taken on a project like this book without Jeff’s encouragement, expertise, and
drive. Since this was his second book, he patiently guided me through some of the finer points
of authorship. He would often say, “This isn’t a blog; you need to write it like a book.” Jeff did
the greater portion of work, and I appreciate him letting me join him on this journey. I also
want to thank his new bride Tami for letting us work at the house and take time away from the
more important wedding plans. He’s all yours now! Thanks Jeff, it was a great adventure.

David Nelson

■ACKNOWLEDGMENTSxxii

4606FM.qxd 4/20/06 3:51 PM Page xxii

Introduction

Software development is undergoing a huge revolution right now. That is not to say that this
is different from any other time in the history of software development—it is always under-
going a revolution of one type or another. This “new” revolution is a shift in development
methodologies from teams working in tightly knit groups in geographical proximity to a global
development strategy. Software development teams are now faced with communicating with
each other from half a world away.

This book talks about how to perform this work effectively using the new Microsoft Visual
Studio Team System (VSTS) product. This book covers all areas of VSTS, from the basics to
tips and tricks to make it easier to use. Because of our work with the development team at
Microsoft, we have been able to include several undocumented features and describe some of
the thought processes involved in developing various portions of VSTS. In addition, as archi-
tects in a Fortune 500 company, we have a unique experience in starting to implement VSTS in
an enterprise environment.

This book begins with a chapter that introduces VSTS. Chapter 1 provides a general
overview of VSTS, its various components and editions, and who should use it and why. This
chapter also introduces the sample application that we use throughout the book. Following
the first chapter, the book is organized into four parts.

Part 1, Team Foundation: The Team Foundation Server is the mechanism (set of inte-
grated services and stores) that enables the communication and collaboration aspect of
VSTS. The web services provide a loosely coupled interface between the various artifacts
(work item tracking, version control, build, and test). The operational stores provide a
real-time repository of team activity that feeds the aggregated data warehouse for team
reporting and analysis. Part 1 of the book covers this crucial component of VSTS.

• Chapter 2, Team Projects: This is your first hands-on introduction to VSTS.
Chapter 2 walks you through creating a new team project, introduces you to the
Project Portal, and explains how VSTS leverages various software development life
cycles and provides integrated process guidance. Chapter 2 also discusses Team
Foundation Server security, from both the user’s and administrator’s perspective.

• Chapter 3, Team Foundation Version Control: One of the much anticipated new
features of VSTS is Team Foundation Version Control, a new, enterprise-class
source code control system. This chapter covers all of the aspects of the
VSTS source code control system. It also gives an in-depth look at the new
check-in policies and touches on how these policies integrate with the work
item tracking system.

xxiii

4606FM.qxd 4/20/06 3:51 PM Page xxiii

• Chapter 4, Project Management: Microsoft has expended considerable effort to
bring project managers into the software development life cycle. VSTS provides
integration between Microsoft Project, Excel, and the work item tracking store.
Project managers can extend the default mappings to any field available in
Microsoft Project. Team Explorer provides rapid triage of work items. The Project
Portal and reporting site provide a wealth of information about the status of the
team project. This chapter describes all of these features.

• Chapter 5, Team Work Item Tracking: Work item tracking is one of the hottest new
features in VSTS. This feature allows a project manager to create a work item (a
task, a bug, an issue, and so on), assign it to a team member, and track the status
of it from beginning to end. Stakeholders can see how a certain item is progressing
as well. Work item tracking is a fully extensible system, so project teams can create
their own work item types. Work item attachments can include documents, links to
other work items, code, or URLs. This chapter covers work item tracking in detail.

• Chapter 6, Team Reporting: SQL Server Reporting Services (SSRS) was introduced
as an add-on to SQL Server 2000 several years ago. With the new SQL Server 2005
and the new SSRS, Microsoft has made this tool the core of the VSTS reporting
infrastructure. This chapter covers the details—from the out-of-the-box reports
(associated with each process template) to the specific features on which the VSTS
data warehouse allows you to report.

• Chapter 7, Team Foundation Build: In the past, performing automated builds
required a great deal of extra work using Microsoft tools. This chapter covers the
new Team Foundation Build functionality and shows how you can use it to
increase the quality of the final software product.

Part 2, Team Edition for Software Architects: This part of the book is dedicated to the
new distributed designers in VSTS. These designers allow you to architect an entire appli-
cation and then implement portions of the application: projects, configurations, and
settings.

• Chapter 8, Application Designer: In this chapter, an overview of model-driven
development, Software Factories, and Domain-Specific Languages leads into a dis-
cussion of the Application Designer. The Application Designer allows you to take
the first step in a “contract-first” development process, in which you design the
interface before writing the application. Having defined the operations for your
services, you can implement real code that stays in sync with the models.

• Chapter 9, System and Logical Datacenter Designers: Systems are defined as deploy-
able units of the overall application. The level of abstraction provided by the
System Designer allows multiple designs to facilitate deployment onto varying dat-
acenters, customer sites, or geographic locations. The Logical Datacenter Designer
allows the creation of models depicting interconnected hosts and provides invalu-
able implementation details to both the application architect and the developer at
design time. Chapter 9 describes how to use both of these designers.

■INTRODUCTIONxxiv

4606FM.qxd 4/20/06 3:51 PM Page xxiv

• Chapter 10, Deployment Designer: As you will learn in this chapter, the Deployment
Designer allows architects and developers to deploy systems into the target logical
datacenters. The result is instant validation on configuration, setting, or hosting
constraint conflicts.

Part 3, Team Edition for Software Developers: Software developers now get the benefits
of a concrete modeling language and strong unit testing tools to help them visualize and
implement code with higher quality. To augment this capability, developers can analyze
their code for common errors and ensure their code meets organizational coding stan-
dards. They can also analyze their code for performance impacts and ways to improve the
application’s performance. This part of the book describes the VSTS tools for modeling
code, unit testing, and code analyses.

• Chapter 11, Class Designer: UML can be confusing and complicated. It can take a
long time to write and even longer to implement. The implementation is often
poorly done because UML is an abstract modeling language. As you’ll learn in this
chapter, the Class Designer is a concrete modeling language for .NET. The Class
Designer can both forward- and reverse-engineer code in a way that makes sense
with .NET.

• Chapter 12, Unit Testing and Code Coverage: Developers now have the ability to test
their own code directly from within Visual Studio. You can perform detailed tests
and gather code coverage statistics to ensure your code is of high quality and is
thoroughly tested. This chapter explains how these VSTS features work.

• Chapter 13, Static Code Analysis: Static code analysis deals with examining code in
order to ensure that standards were followed and that any known defects are
caught ahead of time. This includes managed and unmanaged code (C/C++). In
this chapter, you will learn about how the FxCop and PREfast utilities can reduce
coding errors and increase maintainability.

• Chapter 14, Performance Analysis: Is your application not performing as you
expected? Does it need more speed? Analyze your application and improve your
users’ experience with the new VSTS performance analysis tools. You can either
instrument your application for detailed analysis or sample it for long-term per-
formance monitoring. Use these techniques for code under development or
production code. Chapter 14 describes how.

Part 4, Team Edition for Software Testers: Testing is becoming an increasing critical area
of software development. Customers expect fewer bugs out of the box, and that means
development teams need to provide more testing resources. This part of the book dis-
cusses the new VSTS testing tools and how to use them to create more reliable
applications.

• Chapter 15, Web Testing: Many companies are switching to web applications as a
way to decrease maintenance costs and allow users to access applications from
anywhere. Testing can often be difficult and time-consuming. With the new web
testing tools, you can now easily create scripts to test your web application or web
services. This chapter covers web testing in detail.

■INTRODUCTION xxv

4606FM.qxd 4/20/06 3:51 PM Page xxv

• Chapter 16, Load Testing: Do you want to know how your application will stand up
under high load? Are you wondering when it will fail and what you need to do to
prevent it from failing? As you will learn in this final chapter, using the new load
testing tools, you can identify points of failure and determine strategies for dealing
with high-load situations.

At the end of the book, you will find an appendix that contains a list of all of the command-
line tools available for use with VSTS (client and server).

So, now that you know what this book contains, let’s get started.

■INTRODUCTIONxxvi

4606FM.qxd 4/20/06 3:51 PM Page xxvi

Introduction to Visual Studio
Team System

In the modern world of development, developers no longer work alone or in groups of three
or four people in a set of side-by-side cubicles. Today’s developers typically work in larger
teams scattered across the globe. Developers have become a global commodity. Many compa-
nies in the United States perform some type of outsourcing in which they hire developers who
work in India, China, Canada, Russia, or other parts of the United States. This presents a
unique challenge to software project teams.

Development teams may include project managers, developers, architects, testers, sup-
port staff, and others. How do the team members communicate? What information should be
shared, and whom should it be shared with? Should some people have access to some code
but not other code? These questions apply not only to developers located in different parts of
the world, but also to teams that work in the same building or the same city.

The number of issues that face development teams today is huge. The preceding ques-
tions cover only the communication of information. This list can be expanded to include
(but not limited to) the following:

• What is the application architecture?

• What is our methodology and what are the deliverables?

• How is the application going to be deployed?

• How will the various components communicate with each other?

• What am I responsible for and when do I have to have this work done by?

• Has anyone tested this code yet? Did it pass the tests?

• What are the object dependencies?

• How are we doing change management?

The list of relevant questions grows very quickly. Up until now, there was no easy way to
answer these questions except with regular status meetings, a large amount of e-mail, or a lot
of expensive phone calls. The information is not always up-to-the-minute accurate, and it
takes a lot of time to sift through all of it. These are some of the issues that Microsoft set out
to solve with the introduction of Visual Studio Team System (VSTS).

1

C H A P T E R 1

4606CH01.qxd 4/20/06 4:10 PM Page 1

What Is Visual Studio Team System?
VSTS is a suite of tools designed to allow members of a development team to communicate
not only with one another, but also with stakeholders, in real time. It also contains a set of
tools for developing architectural views of a system, generating code from certain views,
testing code at all stages (during and after development), and integrating the development
experience with project management.

At a high-level view, VSTS is divided into four areas: integration, architecture, development,
and testing. Each of these areas contains tools that cater to a different facet of the develop-
ment team. Some of the tools are available to all groups of users, and some are targeted at a
specific group because they pertain to a responsibility associated with only one role.

But this is a superficial view of VSTS. It is also designed, from the ground up, to help an
organization implement an effective development methodology, whether it is the Microsoft
Solutions Framework (MSF), the Rational Unified Process (RUP), Extreme Programming (XP),
or any of a dozen other types of methodologies. The purpose in implementing a structured
methodology is the same as the goals of the rest of the VSTS suite of tools: to build better
applications for a lower cost, both in the short term and the long term. This concept of inte-
grating methodology into the development process is ingrained in all aspects of VSTS.

What Are the Benefits of Using Visual Studio
Team System?
Who would benefit from using VSTS for their projects? In short, the answer is everyone.
Specifically, it benefits project managers, architects, developers, testers, infrastructure archi-
tects, users, and stakeholders. Here’s how:

• Project managers can get up-to-date information on which items on the project
schedule are being worked and when they are completed through familiar tools like
Microsoft Project and Excel.

• System architects can design an application as it applies to the network infrastructure
and communicate that to the deployment and development team.

• Infrastructure support gets a solid understanding of the deployment needs of the
application.

• Technical architects can design classes, relationships, and hierarchies that automati-
cally generate skeleton code.

• Developers can look at the class diagrams to understand what is occurring. Any changes
they make to the code will be reflected in the diagrams—no reverse-engineering of the
model is necessary. Code can be effectively unit tested.

• Testers can use integrated testing tools, which allow for more thorough testing. Tests
can also be run automatically via automated build tools.

• Application stakeholders can view reports on the progress of the application through
Microsoft SharePoint Services.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM2

4606CH01.qxd 4/20/06 4:10 PM Page 2

As you can see, many individuals can benefit from the use of VSTS. These benefits trans-
late directly in a higher return on investment because everything becomes easier and faster
for everyone.

Aside from individuals who benefit from using VSTS, organizations and departments will
also find tremendous advantages in using this tool. The first and most obvious benefit is that it
promotes communication between team members, which is crucial to the success of a proj-
ect. It allows for problems to be caught early and solved quickly before they become serious
issues that affect the schedule. These problems can range from developers not completing
work on time to bugs in the code.

VSTS also allows for the analysis of work across multiple projects. It becomes simple for
organizations to track their project history and use that information to predict future project
schedules. Projects can be reported on by category, developer, deliverable, milestone, and so
on. You literally have the power of an online analytical processing (OLAP) database at your
fingertips, filled with all of your project information down to the code level and bug-tracking
level. To achieve this type of reporting, you’ve needed to use several different, costly systems.
With VSTS, it is all rolled into one integrated system.

All of these benefits come down to one thing: a higher return on investment with one
tool than you would get with combinations of tools. When you use one tool for each area of
development—such as Borland JBuilder for development, CVS for source control, Rational
ClearQuest for issue tracking, Cognos ReportNet for reporting, Ant for building, and JUnit for
testing—it becomes exceedingly difficult to keep things simple. On the other hand, you have
the following benefits with VSTS:

• VSTS allows all developers to use one tool with which they are familiar. It does not
require a developer to learn how to use six different tools to perform the task.

• VSTS integrates all of the needed functionality, including a project management tool
and reporting tool, directly into one interface—something that no other integrated
development environment (IDE) can do in its out-of-the-box version.

But let’s say that you have an in-house testing tool that you would rather use than the tool
that comes with VSTS. Because VSTS is an extensible environment, integrating other tools into
it requires a minimal amount of work (depending on what you want to integrate). Many tool
vendors have been working with Microsoft to create integration points with their tools so that
you can swap them with ones that come with VSTS. You are not locked into a wholly Microsoft
solution.

All of these points lead to only one conclusion: there is no downside to using VSTS.

Visual Studio Team System Editions
VSTS comes in three different editions and a core component called Team Foundation. This
section describes each of these (which correspond to the sections in this book), their tools,
and their goals. While this is the out-of-the box functionality available with VSTS, as noted in
the previous section, is also highly extensible. Figure 1-1 shows an overview of the VSTS suite.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 3

4606CH01.qxd 4/20/06 4:10 PM Page 3

7e4af1220c26e223bcee6d3ae13e0471

Figure 1-1. Visual Studio Team System editions and main components

Team Foundation
Team Foundation is the server-based component of VSTS. It is the Team in Team System.
Without Team Foundation, all of the other components of VSTS are essentially stand-alone
components that run on the client. Once Team Foundation becomes part of the picture, the
various client pieces work together as a cohesive unit. Chapters 2 through 7 cover Team
Foundation.

As we mentioned previously, VSTS is designed to provide a framework in which applica-
tions can be built. Many companies are working to improve their processes by using the
Capability Maturity Model Integrated (CMMI) from Carnegie Mellon’s Software Engineering
Institute (SEI). With VSTS, Microsoft is releasing the only methodology recognized by SEI as
being CMMI level 3 compliant. This methodology is the MSF for CMMI Process Improvement,
Version 4.0. The template and instructions on how to use the methodology are all included
with VTST. So, what is so significant about this? The U.S. Government uses CMMI levels in
determining source selections for contract awards.

Team Foundation Version Control
Team Foundation contains a brand-new version control tool, which is designed for large-scale
teams and is backed by SQL Server 2005. For developers, it will be a welcome addition to their
toolbox and offer an easy alternative to Visual SourceSafe. Also, unlike Visual SourceSafe, Team

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM4

4606CH01.qxd 4/20/06 4:10 PM Page 4

Foundation version control supports document (or code module) security. In addition to sup-
porting developers, it also supports project managers and overall application reporting to the
stakeholders.

The final touch for the new version control tool is that it allows you to implement policies
to make sure that code meets certain requirements before it is checked in. This helps to
ensure that the code goes through a consistent, repeatable process check before check-in.

Project Portal
Another key piece of Team Foundation is the Project Portal. This is a Windows SharePoint
Services (WSS) site that serves as a central communication tool for the entire team. Stake-
holders can go to this website to review the current status of various tasks on the project,
view nightly build and test reports, and communicate with team members.

SharePoint also serves as a project documentation repository (with versioning). This is in
contrast to how teams typically set up repositories today—in the file system.

Team Foundation Build
Team Foundation Build is a component that allows a server or workstation to become a build
machine. Team Foundation Build automatically gets the latest version from the version con-
trol tool, compiles it, deploys it, and runs any automated tests (unit or web tests) against the
build. The results of the compilation and testing are stored in the VSTS data warehouse.

Work Item Tracking
Work item tracking is another feature of Team Foundation. Work items can be created in
Microsoft Project (directly from the work breakdown structure) or Excel and loaded into Team
Foundation as a work item. These work items can be assigned to developers. When team
members check their items into the version control, they can associate changes with specific
work items. The status of these work items is then reflected on the Project Portal. Work item
association can be enforced via policies as well.

Reporting
The final feature of Team Foundation is the reporting component, backed by the new version
of SQL Server Reporting Services (SSRS). Out of the box, the reports cover areas such as the
number of open bugs, closed bugs, and in-work bugs; work item status; build results; and
other information.

As an added bonus, the SSRS features an end-user ad-hoc report builder, so users can
create their own reports or customize existing reports. This, combined with the VSTS data
warehouse, allows an organization to mine the data for trends in the overall software develop-
ment life cycle.

Team Edition for Software Architects
Various types of architects may be assigned to a project, and each has different responsibili-
ties. The one thing that all architects have in common is that they must communicate
aspects of the architecture to stakeholders in various ways. To facilitate building and then

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 5

4606CH01.qxd 4/20/06 4:10 PM Page 5

communicating an architecture, Team Edition for Software Architects provides a set of design-
ers, as well as other tools to ease the job of the architect. Chapters 8 through 10 cover the Team
Edition for Software Architects.

Designers
The four VSTS designers are Application Designer, System Designer, Logical Datacenter
Designer, and Deployment Designer. These designers are a core tenant of Microsoft’s focus
on Model Driven Architecture (MDA). However, VSTS moves models out of the cumbersome,
documentation-only realm and into the practical realm.

The problem with modeling with other tools is that the models are abstract representa-
tions of the architecture. They do not mean anything from a tangible perspective. The
designers in VSTS have a concrete implementation. When you create a model with VSTS, you
also generate the configuration for that model, which is based on physical properties of the
object to which you are deploying your application. This allows VSTS to check for inconsisten-
cies in your architecture against the actual physical machines with which you will be working.

Domain-Specific Language
On top of this approach, VSTS leverages the concept of Domain-Specific Languages (DSL).
DSL is the language in which the concrete implementation of hardware or software is written.
This allows the end users of VSTS to build model objects against which specific implementa-
tions can be validated.

■Tip Microsoft has released a set of tools specifically for creating domain-specific frameworks. These tools
can be found at http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx.

The language is a set of metadata that describes the physical implementation of a given
configuration. Microsoft has introduced the System Definition Model (SDM) to provide a
schema definition for distributed systems. Because these designers are built in concrete
terms, they are easily understandable by their intended audience—data architects, infrastruc-
ture architects, or other application architects.

Visio
Team Edition for Software Architects also includes everyone’s favorite modeling tool: Visio.
This tool is available in all editions of VSTS, but will probably be most used by architects.

Visio for Visual Studio allows for the creation of Unified Modeling Language (UML)
diagrams and provides the ability to model different views for different audiences of the
application. Visio allows you to create those abstract, notional views, which are helpful in
trying to figure out and pinpoint what the architecture will be and then communicate it to
everyone else.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM6

4606CH01.qxd 4/20/06 4:10 PM Page 6

Team Edition for Software Developers
Team Edition for Software Developers provides tools that allow developers to quickly under-
stand code structure, generate code from models, write unit tests, and analyze code for errors.
The goal of these tools is to reduce the amount of time developers need to actually write code
and to ensure that the code that is produced is of a higher quality. Chapters 11 through 14
cover the Team Edition for Software Developers.

Class Designer
To understand and generate code, VSTS provides the Class Designer. This is one of the tools
available in all editions of VSTS because it is useful to a wide range of people. Architects can
use the tool to create high-level class designs. Developers can generate skeleton classes, for
which they can then fill in the details. Testers can use the Class Designer to understand the
relationship between classes in order to help them analyze errors. We have included the Class
Designer in the Team Edition for Software Developers section of the book because, for the
most part, the primary audience is the developer.

The Class Designer also dynamically generates code based on the model, reads changes
in code, and incorporates those changes into the model. The key point here is that the model
and the code are never out of sync. This solves the problem of documentation becoming stale.

Unit Testing
Once the general outline of code is produced, tests can be written for the code. They can also
be written after the code is finished. It is entirely up to you, but one thing is certain—with the
VSTS unit testing tools, testing will be a lot easier, faster, and more streamlined.

Creating a unit test is as easy as right-clicking a class or a method, selecting Create Unit
Tests, and filling in a couple of variables. It could also be more complicated, since unit testing
supports data-driven testing, which allows for more complex scenarios without having to
continually rewrite the unit tests or write many tests for one method. The unit testing func-
tionality is also part of the Team Edition for Software Testers.

As part of the unit testing functionality, VSTS provides a very cool code coverage tool. This
tool not only tells you what percentage of your code was covered versus not covered, but it can
also highlight code to show you fully covered lines of code, partially covered lines of code, and
code that was not covered at all. We’ll elaborate on this in Chapter 12, but to give you an idea
of how important this tool is, let’s consider an example. Suppose you write a method 100 lines
long and you run the unit tests against the code. The results all come back as passing, which is
good, but the code covered comes back as 60%, which is bad, because 40 lines of code were
never touched. This indicates that while all your tests passed, either you did not test some-
thing you should have or there is no way to test that code, and so it is dead code that should
be removed.

Code Analysis
Since the inception of .NET 1.0, Microsoft has offered a relatively unsupported tool called
FxCop (available for free from http://www.gotdotnet.com). VSTS incorporates this tool into the
IDE so that static code analysis on managed code can be performed as part of a compilation,

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 7

4606CH01.qxd 4/20/06 4:10 PM Page 7

and policies can be written against the results of the analysis. This tool was originally created
to ensure that Microsoft developers were following the correct standards when writing the
.NET Framework. So, if you follow the coding recommendations of this tool, you will be writ-
ing to the same standards as Microsoft (in terms of format, completeness, and the standards
of the .NET Framework).

VSTS also incorporates a tool to help developers of unmanaged code. This tool, called
PREfast, has been in use within Microsoft for several years as a means for developers to check
their C/C++ code for common errors such as buffer overruns. This analysis tool is run simply
by checking a box in the project properties. It is customizable to an extent that allows you to
implement checks not included in the out-of-the-box product.

Performance Analysis
VSTS also incorporates performance analysis tools, which allow developers to test their code
for bottlenecks. In the past, performance testing around a .NET application typically involved
monitoring a lot of Windows Performance Monitor logs, which provided less-than-helpful
information.

The new performance analysis tools allow you to either instrument or sample your code,
depending on the situation, so you can gather details at the individual method level or at the
application level. Best of all, you can institute performance monitoring on a production appli-
cation to pinpoint specific problems that may not have been apparent during development.

Team Edition for Software Testers
Team Edition for Software Testers is devoted to testing all aspects of your code. It includes the
unit testing functionality (described in the preceding section about the Team Edition for Soft-
ware Developers), load testing, manual testing, and web testing, as well as the Test Manager
tool. Chapters 15 and 16 cover the Team Edition for Software Testers.

■Note While VSTS does not include a Windows Forms testing capability, forms can be tested via the
manual tests. In addition, the test facilities are highly extensible, and many third-party tools will probably
be available to fill this niche!

Test Manager
Test management is a key component of the testing infrastructure because it allows you to
organize your tests. You can run these tests in a noninteractive fashion from the command
line or from the Team Foundation Build process. You can organize your tests into lists in order
to run tests on like processes. Dependencies can be created between tests via an ordered test
list and individual tests, or lists of tests can be slated to run at any given time. The Team
Edition for Software Developers includes a subset of the Test Manager tool.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM8

4606CH01.qxd 4/20/06 4:10 PM Page 8

Web Testing
More and more applications are moving to the Web in today’s Internet- and intranet-based
world. Because of this, Microsoft rewrote the Application Center Test (ACT) web testing tool
and included it with VSTS. And when we say they rewrote it, we mean it. It is a completely dif-
ferent tool and far, far more powerful than ACT was. You can interactively record tests and
play back tests (which are displayed visually for you as the test is running). The tests can be
changed in the IDE, and they can be converted to coded tests, which allow you the freedom to
do virtually anything in a test you want via managed code instead of scripting, which had to
be done with ACT.

All of the information about a test is recorded. If there is something additional you want
to record, a custom extraction rule can be coded to do it. If you want to validate a result in the
page and take an action based on the result, you can. The tests can also be run with values
supplied from a database. That means that the testing can include dynamic navigation of a
website. Think times can be added to each step of the test to simulate real-world browsing of
a website.

Manual Testing
Another Team Edition for Software Testers feature is manual testing. This allows you to run
tests that are based on a list of steps. The pass/fail status of these tests is recorded, just as any
additional test is. Code coverage (if enabled) is captured for these tests as well. The steps for
these tests can be written in Microsoft Word or in a plain text file in any format your organiza-
tion may use.

Load Testing
Finally, the Team Edition for Software Testers provides for load testing. Load testing is
designed to see how your application (hardware and software) performs under a real-world
load. The options available allow for the testing of almost any situation imaginable. You can
set the type of browser that is accessing the site, the type of network connection the browser is
using to access the site, the way in which the think times are simulated (set times or a normal
distribution, if at all), which tests are actually run as load tests, and their distribution. Ramp
up times can also be set, or the tests can be run at a constant user load.

You can run the load tests from the local machine, which will simulate all of the connec-
tions. Alternatively, you can test via agents and a controller from many different machines.
The controller directs the agents to run the test(s) and records the result in one location. A
typical setup for this is a lab where you may have 20 test machines hitting one box with a web-
site. This saves you the time and effort of starting the tests on all of the machines individually.
The data that is collected is detailed and useful, and there is a lot of it. Every aspect of the test
is recorded from both the software and the hardware perspective, and errors are stored for
later analysis. The entire test result is saved to the VSTS data warehouse (if you are working
with the Team Foundation piece).

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 9

4606CH01.qxd 4/20/06 4:10 PM Page 9

Visual Studio Integration Partners Program
Visual Studio Integration Partners (VSIP) is a Microsoft program that gives developers and
companies access to the application program interface (API) documentation, extensibility
toolkit, and samples for Visual Studio and VSTS. With the toolkit, VSTS supports extensibility
in all areas. This extensibility ranges from customizing the designers to incorporating new
types of tests (such as Windows Forms tests). Many of these aspects of VSTS are touched upon
briefly in upcoming chapters, and some examples are shown. However, Microsoft prefers that
developers and companies who wish to provide extensibility for VSTS join the VSIP program.
It is free, so there is no reason not to join it.

■Note There are various “levels” of the VSIP program. Free access to the extensibility toolkit is the basic
level. Additional levels provide partnerships with Microsoft and access to various groups within Microsoft.
It is well worth joining for commercial software development companies.

You can access the VSIP website (and join the program) at http://msdn.microsoft.com/
vstudio/partners/default.aspx. There is a wealth of extensibility information located here.

The Effort Tracking Application
Throughout this book, we’ll use a simple application as an example. This is a web-based appli-
cation that records work engagements and stores them in a SQL Server database. The web
application connects to a web service, which connects to the database. The deployment of
this application is shown in Figure 1-2.

Figure 1-2. Effort Tracking application logical deployment

■Note The actual physical deployment is such that the website and web service are on the same machine
but completely separated so they can be deployed in either configuration. The database itself can be located
on the same machine or another machine.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM10

4606CH01.qxd 4/20/06 4:10 PM Page 10

The security is controlled via standard Forms security, where the username and password
are stored in the database (obviously not a best practice, but for demonstration purposes
only). The database contains four tables, as shown in Figure 1-3.

Figure 1-3. Effort Tracking data model

The application works as follows:

• User logs on to the system (or registers).

• User is redirected to the Effort Tracking page.

• User selects the week he wants to view.

• User adds a new engagement by clicking Add and entering the title, description, divi-
sion, and the week ending date, and then clicks OK.

• User can edit or delete a record by clicking the appropriate link. The detail window is
displayed, and the user can either confirm the deletion or change and save the record.

The various screens of the application are shown in Figures 1-4, 1-5, and 1-6.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 11

4606CH01.qxd 4/20/06 4:10 PM Page 11

Figure 1-4. Effort Tracking login/add new user screen

Figure 1-5. Effort Tracking homepage

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM12

4606CH01.qxd 4/20/06 4:10 PM Page 12

Figure 1-6. Effort Tracking add/edit/delete page

The web service comprises the bulk of the code for this application. There are eight
methods in the web service, which handle all of the functions of the user interface.

■Caution The sample application is designed to be used with the examples included in the various
chapters. In many cases, it does not conform to proper development guidelines, especially with regard to
security. While we do point out some best practices in this regard, this application should not be used as a
model for building any type of secure applications.

Summary
Various problems face development teams today, and these can cause a project to fail. You
have seen how VSTS can help organizations and individual projects solve these problems and
provide a positive return on investment for everyone.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM 13

4606CH01.qxd 4/20/06 4:10 PM Page 13

This chapter has provided a high-level view of VSTS. It described each of the editions of
VSTS and an overview of the benefits they offer. Here’s a quick summary:

• Team Foundation provides a new version control tool, work item tracking, Team
Foundation Build, and core integration and communication features available to all
stakeholders in a project.

• Team Edition for Software Architects provides architects the ability to design a system
and communicate that design effectively to the stakeholders. It also provides the ability
to deploy the design into logical data centers and autogenerate real code.

• Team Edition for Software Developers provides developers with the ability to under-
stand code, generate code, and unit test code quickly and easily. It also provides the
ability to analyze code for defects and to ensure conformance to coding standards.

• Team Edition for Software Testers provides testers with the ability to test all aspects of
the code. Testing covers web, manual, and load testing. Test management is provided to
help organize and describe the testing process.

Chapter 2 introduces the process of creating a team project. You’ll explore the methodol-
ogy templates and process guidance, along with how to customize them. You will also learn
how to configure the security for Team Foundation, the Project Portal, and SQL Server.

CHAPTER 1 ■ INTRODUCTION TO VISUAL STUDIO TEAM SYSTEM14

4606CH01.qxd 4/20/06 4:10 PM Page 14

Team Foundation

P A R T 1

4606CH02.qxd 4/20/06 3:08 PM Page 15

4606CH02.qxd 4/20/06 3:08 PM Page 16

Team Projects

In our current positions (our “day jobs,” when we’re not authoring books), Jeff and I spend a
great deal of time performing independent reviews of projects in some form of peril. We are
brought in for technical expertise and insight, but the vast majority of time, the key finding is a
lack of communication. The classic line from Cool Hand Luke (1967) is fitting: “What we have
here is a failure to communicate.”

The team project is all about communication. The resounding message throughout VSTS
is that of the team, and this concept comes to life by the instantiation of a team project.

The notion of a team project appears at several levels. The conceptual level is that of the
business view or customer view. It is the reason the project exists. What problem are you try-
ing to solve, how is the project being funded, how large is the team, and most important, what
will the code name and logo be for the project? The logical level includes the technical view
of the team project. What is the underlying architecture, which set of technologies are being
used, what process is being followed, and will it fit with our existing infrastructure? Finally,
there is the VSTS view of a team project. A VSTS team project is a physical thing.

This chapter will explore all of the features of the team project, how it integrates with
VSTS, and how it makes the exchange of information easier for everyone on the team.

Starting Your Team Project
Before you dive into creating a team project, you should take the time to plan what template it
will use, its roles and security, and other aspects. We’ll begin with some guidance on planning
your project, and then get started with a new team project.

Planning a New Team Project
You might have heard of the carpenter’s expression “measure twice, cut once.” It is meant to
remind the novice that acting without planning can be very expensive. Consider also the
account of a groundskeeper who lays intricate pathways through his meticulous lawns. After a
few months of use, dirt pathways are etched in the grass, because the planned pathways were
inconvenient. This second tale is intended to highlight that if your plan is impractical, it will
be bypassed for convenience at the expense of elegance. Therefore, the realistic conclusion is
that planning is both necessary and dangerous. That statement will send most project man-
agers running for their Gantt charts. But we have seen far too many overplanned projects that
never see the light of day. Fortunately, the Team Foundation Server bridges the gap between
acting without planning and overplanning the unknown.

17

C H A P T E R 2

4606CH02.qxd 4/20/06 3:08 PM Page 17

Both the Agile and Formal methodologies provide prescriptive guidance with the goal of
delivering quality solutions, not just pretty documents. Best of all, you can tailor your process
at any stage of the project to provide the ultimate in flexibility. In planning a team project, you
need to address seven high-level areas:

Determine the process template to be used: If you are part of a large enterprise, you may
already have a process methodology that is prescribed for you. If you are supporting spe-
cific industry or government contracts, you may be required to support the Capability
Maturity Model Integration (CMMI) process improvement approach. If you use a third-
party process that is supported by a template such as Scrum, Rational Unified Process
(RUP), or Fujitsu, you should use the third party’s provided template. If you have a rela-
tively small project with a short life cycle, the Agile process would be a good place to start.
Even after you have chosen your process template, you have a lot of freedom to add or
change components, such as work item types, reporting, areas, and iterations.

Define roles and security: Roles and security for a project can be either fine- or coarse-
grained, depending on your needs. You may find that only a few security groups cover all
the roles on your project, or you may need to build a multilayered structure to meet all
your needs. This chapter covers server-level security. Source code security will be dis-
cussed in Chapter 3.

Gather team work products: If you have existing artifacts that you want to reuse in other
projects, such as best practices, coding standards, or templates, you can include these in
the document libraries of the Windows SharePoint Services (WSS) portal. You can also
design a standard structure for your work products, leveraging the portal document
libraries that can be reused by subsequent projects.

Plan for version control: When you create a new team project, you are prompted either to
create an empty source code control repository or to branch off an existing one. If you
have unique check-in policies, you will want to create a new source code control reposi-
tory. You will need to determine which fields you want to capture at check-in time and
what type of check-in policies you want to enforce. If your organization already has
mandatory policies, you can extend the predefined policies by creating a custom policy
plugin. Version control will be covered in detail in Chapter 3.

Determine project work item types: Your team will need to agree on the set of work items
to include in the project template. It is best to review the work item types that ship with
the existing templates and choose the ones that work best for your project. It is easy to
export, modify, and import work item types for a project or to create your own from
scratch. Work item customization is covered in Chapter 5.

Determine the project structure: To properly categorize and report on your project, you
will need to determine the organizational areas and the project iterations you want to
include. This classification structure is made up of parent and child nodes. The project
areas may be organizational, feature areas, or technical tiers (such as database, applica-
tion layer, and client layer). The iterations have to do with the repeating cycles your
project will go through. You can also apply security to areas of your project.

CHAPTER 2 ■ TEAM PROJECTS18

4606CH02.qxd 4/20/06 3:08 PM Page 18

Determine project reporting needs: Your organization may already have a discrete set of
metrics that each project is measured against. If not, there are a number of predefined
reports provided in each of the default process templates. Project reporting is built off of
SQL Server Reporting Services (SSRS) and an integrated data warehouse. SSRS provides
complete report customization for your project to leverage. Team reporting is discussed
in Chapter 6.

Connecting to the Team Foundation Server
Before you can create a new team project, you need to connect to the Team Foundation
Server.

■Note You must install the Team Explorer add-in to Visual Studio in order to connect to a Team Foundation
Server and launch the New Team Project Wizard. There is no command-line tool for creating a new team
project.

Follow these steps to connect to the Team Foundation Server:

1. Select View ➤ Team Explorer from the main menu bar, if the Team Explorer is not
already visible.

2. Select Tools ➤ Connect to Team Foundation Server from the main menu bar.

3. Click the Servers button, and then click the Add button.

4. Enter the name of the server where the Team Foundation application tier is located, as
shown in Figure 2-1, and then click OK.

Figure 2-1. The Add Team Foundation Server dialog box

CHAPTER 2 ■ TEAM PROJECTS 19

4606CH02.qxd 4/20/06 3:08 PM Page 19

5. Select the Server you just added, and then click OK.

6. Click OK in the Connect to Team Foundation Server dialog box.

Any team projects that have previously been created on the Team Foundation Server
are listed here. The Team Explorer will now list your server, along with a My Favorites node
(discussed in the “Working with the Team Explorer” section later in this chapter).

Creating a New Team Project
If you are a project lead or administrator, you can create a team project using the New Team
Project Wizard and an existing process template.

To create a team project, follow these steps:

1. Right-click the Team Foundation Server node in the Team Explorer and select New
Team Project, as shown in Figure 2-2. This will launch the New Team Project Wizard.
Optionally, you can select File ➤ New ➤ Team Project.

Figure 2-2. Selecting to create a team project

■Note We named our application server Kiona and our data server Januik. These names refer to wineries
in Washington State. (We name our lab servers after wineries and scotch houses.)

2. In the New Team Project dialog box, enter the team project name as EffortTracking, as
shown in Figure 2-3, and then click Next.

3. Select a process template. Selecting the process template when you create your team
project is the key decision point in the entire procedure. Everything that follows is
based on this one decision, as described in this chapter. For this example, choose MSF
for CMMI Process Improvement – v4.0, as shown in Figure 2-4. Click Next to continue.

CHAPTER 2 ■ TEAM PROJECTS20

4606CH02.qxd 4/20/06 3:08 PM Page 20

Figure 2-3. Naming your team project

Figure 2-4. Selecting a process template

CHAPTER 2 ■ TEAM PROJECTS 21

4606CH02.qxd 4/20/06 3:08 PM Page 21

4. On the next wizard page, provide a title for the team project portal site and an optional
description.

5. Specify your source control settings. For this example, select to create an empty source
control folder, as shown in Figure 2-5.

Figure 2-5. Specifying source control settings

6. The next wizard page will show your selections. Click Finish.

■Note It can take a long time to create a new team project. Behind the scenes, a lot is taking place. You
can follow along by watching the status messages.

7. After the process is complete, the final wizard page will inform you that your team
project was created, as shown in Figure 2-6. You can either view the team project cre-
ation log or select Close to finish the wizard. We recommend that you view the creation
log, if for no other reason than to appreciate the amount of work performed in the
creation of the team project.

CHAPTER 2 ■ TEAM PROJECTS22

4606CH02.qxd 4/20/06 3:08 PM Page 22

Figure 2-6. Team project completion message

If you left the “Launch the process guidance . . .” check box selected at the end of the New
Team Project Wizard, the process guidance page will automatically be displayed, as described
next.

Viewing Process Guidance
The process guidance documents the roles, activities, work products, and reports tailored to
a specific software engineering method. The process guidance provided in Team Foundation
is a collection of XML, XSL, and HTML files. Essentially, you get an out-of-the-box website
describing the work streams, roles, activities, and work products for your chosen process
template, as shown in Figure 2-7.

The process guidance is distinctive for each process template and is intended to remain
intricately tied to the template. Therefore, if a new component is added to the process tem-
plate, then the corresponding process guidance will need to be created, as described in the
“Customizing the Process Guidance” section later in this chapter.

Spend some time reviewing the seven overview topics provided down the left side of
the site. This will give you a good foundation for the Microsoft Solution Framework (MSF)
approach, principles, and paradigms. You should then move though the top-level navigation
into roles, work items, views, and the Capability Maturity Model Integration (CMMI) in
general.

CHAPTER 2 ■ TEAM PROJECTS 23

4606CH02.qxd 4/20/06 3:08 PM Page 23

Figure 2-7. Process guidance for the MSF CMMI Process Improvement – v4 process template

Working with the Team Explorer
Now that you have created your first team project, EffortTracking is the only project listed in
the Team Explorer, with no other information, as shown in Figure 2-8.

Figure 2-8. Team Explorer components

The Team Explorer has a My Favorites node located just under the Team Foundation
Server name and above the Team Project name. It functions similarly to the Internet Explorer
Favorites and has the familiar star symbol. Most of the items contained in the nodes below the

CHAPTER 2 ■ TEAM PROJECTS24

4606CH02.qxd 4/20/06 3:08 PM Page 24

Team Project are eligible to be favorites. To add an item to the My Favorites node, just right-
click an item (a report, for example) and select Add to My Favorites, as shown in Figure 2-9.

Figure 2-9. Adding to the Team Explorer My Favorites node

Introducing VSTS Components
All of the capabilities of the Team Foundation Server are instantiated by the creation of a new
team project. The project instantiation is determined by the process template you select. The
preconfigured work items, reports, classifications, version control, portal structure, groups,
and permissions available to the project are all determined from the process template. Let’s
begin with the process template choices.

Process Templates
The two collections being offered in this first release of the Team Foundation Server are MSF
for Agile Software Development – v4.0 and MSF for CMMI Process Improvement – v4.0. Third
parties are working to incorporate various other methodologies into VSTS process templates.
The templates being developed at the time of this writing are RUP (www.osellus.com/
solutions/microsoft/rup-vsts_solutions.html), Macroscope (www.fujitsu.com/us/
services/consulting/method/macroscope/index_p2.html), and Scrum (www.scrum-master.com/
ScrumVSTS).

Both the Agile and CMMI methods are based on the MSF. MSF 4.0 is a full-grown process
framework recognized as being compliant with CMMI level 3.

■Note The Capability Maturity Model Integration (CMMI) is a method for evaluating and measuring
the maturity of the software development process of organizations on a scale of 1 to 5. The CMMI was
developed by the Software Engineering Institute (SEI) at Carnegie Mellon University in Pittsburgh
(www.sei.cmu.edu) in the mid-1980s as CMM and revised in 2000 as CMMI.

CHAPTER 2 ■ TEAM PROJECTS 25

4606CH02.qxd 4/20/06 3:08 PM Page 25

SOFTWARE ENGINEERING METHODOLOGIES

Software engineering methodologies are the frameworks that tell us how we should go about developing our
software systems. Also known as the Software Development Life Cycle (SDLC), the most common frame-
works or paradigms include the following:

• Waterfall: The classic method, which breaks the project into phases for comprehending and construct-
ing information systems. Some of the more popular phases include opportunity, analysis, design, code,
test, and implementation. The key understanding is that each prior phase must be completed before
moving to the next phase. The Waterfall method has been criticized for being heavy, bureaucratic,
and slow.

• Evolutionary Prototyping: This method’s goal is to build a very robust prototype of the target system
and then constantly refine it. The mantra of this process is to refine and rebuild. Evolutionary Proto-
typing led to Evolutionary Rapid Development.

• Spiral: This method includes the phases of the Waterfall approach with the agility of the prototyping
model. The larger “big bang” of a complex project is broken into iterations that can be rapidly moved
through the phases of the traditional Waterfall type approach and built one upon the other. Boehm’s
Spiral Model was first postulated in 1986.

• Agile: This method had its four values solidified in the spring of 2001. These four values include the
value of individuals and interactions over processes and tools, the value of working software over doc-
umentation, the value of customer collaboration over contract negotiation, and the value of responding
to change over following a plan.

Project Portal
You can access the Project Portal by right-clicking the team project and then choosing Show
Project Portal, as shown in Figure 2-10, or by selecting Team ➤ Show Project Portal from the
Team menu.

Figure 2-10. Choosing to show the Project Portal

CHAPTER 2 ■ TEAM PROJECTS26

4606CH02.qxd 4/20/06 3:08 PM Page 26

The out-of-the-box Project Portal contains a single column of content showing
announcements, links, and a single report named Remaining Work, as shown in Figure 2-11.
The quick launch bar on the left is arranged by documents, process guidance, and reports.
This default layout is highly customizable, as described in the “Customizing the Project Portal”
section later in this chapter.

Figure 2-11. The Project Portal default site

The Project Portal is a Windows SharePoint Services (WSS) team site based on a custom
site definition. Out-of-the-box, VSTS provides two SharePoint custom template files:
MSFAgile.stp and MSFFormal.stp. Custom site definitions provide a complete layout for all
the items to be housed inside a team Project Portal.

■Note Many companies already have an enterprise SharePoint installation. It is possible to use a remote
WSS server (the enterprise service), though it isn’t a currently supported configuration. A whitepaper is being
written to describe the steps that need to be taken for this to function properly with the Team Foundation
Server. Once the Team Foundation Server is pointed at the enterprise WSS server, it is recommended that all
future team project portal sites are located on the enterprise server.

CHAPTER 2 ■ TEAM PROJECTS 27

4606CH02.qxd 4/20/06 3:08 PM Page 27

The Project Portal includes the following:

Web parts: These are predefined web components designed to address a specific task.
Basically, they are nothing more than ASP.NET custom server controls. Visually, they are
composed of a frame, title bar, and content. Common web parts on the default Project
Portal site include Announcements, Links, Members, and Page Viewer for rendering
reports. You can customize your own web parts or download many from third-party sites.

■Note Other files associated with web parts are .dwp files, which are XML files containing details of the
web part (title, description, link to assembly); . dll, which are web part assemblies; .htm and .gif, which
are class resource files; and manifest.xml, which is a configuration file that describes the structure and
contents.

Zones: These are containers on the page in which web parts reside. Zones allow you to
create the framework for a common layout within your site. The default Project Portal site
is created from a template with only a single zone titled loc:Left. You can easily add,
delete, and modify zones using a web page design tool such as Microsoft Office FrontPage
2003.

Document libraries: These are the most-used feature of the Project Portal. It is here that
documents are stored, managed, and shared. These libraries support versioning—or
creating a backup copy of a file whenever you save a file to the library—as well as check-in
and check-out, subfolders, and alerts. The Project Portal includes viewers for files that
enable you to view documents from programs such as Microsoft Office 2003, even if you
don’t have the program installed. By default, document libraries include an “explorer
view,” in which files can be copied, moved, or deleted from the desktop.

Lists: Issue lists, calendar views, group-by views, personal views, and rich text expand the
possibilities of the Project Portal lists. You can use formulas and functions in lists to create
calculated columns and views. Creating a list is even easier from the one-stop Create
page. Lists can be set up to require the list owner’s approval before new items appear.

■Note For managed lists such as Requirements, Bugs, and Tasks that require state and transition behavior,
you will want to use the work item tracking feature of VSTS. This feature is covered in Chapter 5.

Picture libraries: You can store photos and graphics in the picture libraries. View pictures
as thumbnails, filmstrips, or in standard file lists. You may want to create a site image
library (SIL) to store site-related logos, images, and graphics.

Notification (alerts): the Project Portal uses alerts to notify you through e-mail about addi-
tions, deletions, and changes to lists, list items, libraries, and other parts of sites. You can
receive alert results immediately, or request daily or weekly alert results summaries.

CHAPTER 2 ■ TEAM PROJECTS28

4606CH02.qxd 4/20/06 3:08 PM Page 28

Work Item Tracking
Work items are the currency of Team Foundation. A work item is a database record used to
track the assignment and state of work. Work item types are definitions of specific work items
including fields, forms, states, and transitions. Work item queries are predefined views into the
work item database.

By default, the MSF for Agile Software Development - v4.0 process template comes with
five predefined work item types: Bug, Task, Risk, Scenario, and Quality of Service Require-
ment. The MSF for CMMI Process Improvement - v4.0 process template includes Scenario
and Quality of Service as types of the Requirement work item and an additional three: Review,
Change Request, and Issue, as shown in Figure 2-12. Chapter 5 covers work item tracking in
detail.

Figure 2-12. Work item types

Documents
Documents in the Project Portal are simply links to the underlying document libraries and the
items they contain. These are predetermined by the process template selected. However, you
can easily add or remove document libraries.

Click Documents and Lists on the Project Portal menu bar to see a list of all your docu-
ment libraries. From the Team Explorer, you can right-click the Documents node and choose
to add a document library. This will display the dialog box shown in Figure 2-13.

Figure 2-13. The Add New Document Library dialog box

CHAPTER 2 ■ TEAM PROJECTS 29

4606CH02.qxd 4/20/06 3:08 PM Page 29

Reports
Each process template includes a predefined set of SSRS-based reports. For the MSF for CMMI
Process Improvement - v4.0 process template, there are more than 20. The MSF for Agile Soft-
ware Development - v4.0 process template focuses on around 10 core reports in the process
guidance. These reports are a mix of tabular, graphical, and subreport types.

SSRS reports query data from a centralized data warehouse based on SQL Server Analysis
Services (SSAS) cubes. You can view these reports directly in the Project Portal or by browsing
the Report Manager window, as shown in Figure 2-14. Reports are discussed in detail in
Chapter 6.

Figure 2-14. The Report Manager window

Team Builds
The goal of Team Foundation Build was to provide a “build lab out of the box.” Team Founda-
tion Build provides a very simple way to kick-start this build process. You go through a simple
wizard that generates a build script for you. The wizard, shown in Figure 2-15, prompts you to
select a solution to build from source control, configurations, locations, and options to run
tests. Team Foundation Build is discussed in detail in Chapter 7.

CHAPTER 2 ■ TEAM PROJECTS30

4606CH02.qxd 4/20/06 3:08 PM Page 30

Figure 2-15. Using the New Team Build Type Creation Wizard

Version Control
Version Control is the enterprise source code control tool in the Team Foundation Server. Key
features include changesets, branching and merging, shelving, and integrated check-in and
check-out. Check-in policy provides a mechanism for validating source changes on the client,
including things like a Bad Word check-in policy, which won’t allow a developer to check in
code containing bad words without a warning.

The Source Control Explorer, shown in Figure 2-16, is activated when you double-click the
Source Control node in the team project. Chapter 3 covers the Version Control tool in detail.

Figure 2-16. The Source Control Explorer

CHAPTER 2 ■ TEAM PROJECTS 31

4606CH02.qxd 4/20/06 3:08 PM Page 31

Areas and Iterations
Areas and iterations are hierarchical collection structures to help organize and classify work.
Areas are simply organizational groupings to help partition the work to be done within a
project. Often, the areas are reflective of the major feature set for the project.

Iterations are the spirals that the project has predetermined. MSF for Agile recommends
moving from project setup, through a number of feature iterations, to a final build and release.

Project Alerts
You can create project alerts against defined events in the subcomponents of the Team Foun-
dation Server. The four predefined alerts are shown in Table 2-1.

■Tip You can add alerts by writing against the notification service directly. For more information, see the
guidance provided in the Visual Studio 2005 Software Developers Kit (SDK), available at the Visual Studio
Industry Partner (VSIP) Affiliate homepage (http://affiliate.vsipmembers.com/affiliate/
default.aspx).

Table 2-1. Project Alerts

Alert Description

My work items are changed by others Alert sent when your work items are changed by others

Anything is checked in Alert sent when anything is checked in to the project
source control

A build status is changed Alert sent when the status of a project build is changed

A build completes Alert sent when any build is completed for the project

■Note You will probably want the alert on your work items to send e-mail directly to you when your work
items are changed. The other three alerts are project-level alerts and are usually sent to an alias made up of
the entire team membership.

Customizing the Project Portal
If you are so inclined, you can edit the Project Portal using a website editor. Figure 2-17 shows
an example of a customized Project Portal we created for one of our labs using FrontPage.

CHAPTER 2 ■ TEAM PROJECTS32

4606CH02.qxd 4/20/06 3:08 PM Page 32

Figure 2-17. A Project Portal customized in FrontPage

■Note For a high level of customization, you can create your own site template to be used in the creation
of the team project site.

The easiest way to customize the Project Portal is to modify its web parts. You can add
web parts to the Project Portal by clicking the Modify Shared Page link at the top-left side of
the Project Portal. Table 2-2 lists the built-in web parts that are available in WSS. Additionally,
there is one web part for viewing each document library in the team project.

CHAPTER 2 ■ TEAM PROJECTS 33

4606CH02.qxd 4/20/06 3:08 PM Page 33

Table 2-2. Default Project Portal Web Parts

Web Part Description

Announcements Typically contains news of interest; allows attachments; can be set to
expire

Contacts Contact list important to the project; can be imported from Outlook

Content Editor Web Part For adding more complex HTML, images, links, and code within a
zone

Events Complete with start and stop times, descriptions, locations, and
recurrence

Form Web Part Used to connect simple form controls to other web parts

General Discussion Used to allow newsgroup type discussions of interest

Image Web Part Container for an image; link to the image by URL or path

Links List of links to web pages of interest to the team

Members List of team project site members and their online status

Page Viewer Web Part Used to display a specified page within a zone; used to render
reports from SSRS

Task General task list that can be assigned and prioritized, with start and
stop dates and percentage complete

XML Web Part Used for XML and XSL transformation of the XML

Adding an Image
To add a new image to your Project Portal, follow these steps:

1. Click Modify Shared Page at the top-left side of the Project Portal, select Add Web Parts,
and then click Browse.

2. Select the Image Web Part from the EffortTracking Gallery list, as shown in Figure 2-18,
and then click Add.

3. Click the down arrow on the title bar of the new web part and select Modify Shared
Web Part.

4. In the Image Web Part Editor, enter the URL of the image you would like rendered,
adjust the alignment, and set the border style. Click OK when you are finished.

CHAPTER 2 ■ TEAM PROJECTS34

4606CH02.qxd 4/20/06 3:08 PM Page 34

Figure 2-18. Adding a web part

Adding Reports
Reports on the Project Portal are accessed using the Page Viewer web part. The easiest way to
add a new report is to copy the link in the existing Remaining Work report, as shown in
Figure 2-19.

Figure 2-19. The Page Viewer web part

CHAPTER 2 ■ TEAM PROJECTS 35

4606CH02.qxd 4/20/06 3:08 PM Page 35

To get to the web part, click the arrow on the Remaining Work title bar in the Project
Portal and select Modify Shared Web Part. Copy the path in the Link text box. Add a new Page
Viewer web part to the page and modify the report name to match one of the existing reports
listed in the Report Manager window. Paste the previously copied path into the Link text box
and modify the report name. Use the Test Link link to verify that the report name is correct
before clicking Apply.

Working with Lists
Each list on the Project Portal has a corresponding web part for displaying and managing con-
tent. You can view the available lists by clicking the Documents and Lists link at the top of the
Project Portal.

You can edit lists in a datasheet, which provides an easier mechanism for adding multiple
items to the list at one time. For example, to work with the Links list, click the Links title at the
top of the Links web part. When the empty Links list appears, select Edit in Datasheet to allow
multiple-line entry, as shown in Figure 2-20.

Figure 2-20. Editing lists in a datasheet

Customizing a Process Template
The process template is the blueprint for a team project. When you create your own team
project, you may find that you need to add or change items, such as security groups, policies,
and work item types. Here, we will describe how to modify the process template.

CHAPTER 2 ■ TEAM PROJECTS36

4606CH02.qxd 4/20/06 3:08 PM Page 36

Understanding the Process Template Architecture
A process template includes descriptions of the following components:

• Portal: The portal is based on WSS. The portal site is just a predefined SharePoint Team
Site. The portal definition includes a custom site template, document libraries, files,
and folders.

• Process Guidance: Process Guidance is a subsite on the Project Portal. This section
describes the website pages, images, and script to support the integration of the
process guidance with the rest of VSTS.

• Work Items: This section includes work item type definitions (WITD), work item queries
(WIQ), and the initial set of prepopulated tasks.

• Areas and Iterations: This section describes the hierarchical structures enumerating the
phases (iterations), organizational units (areas), and the mappings to Microsoft Project.

• Reporting: This section includes the predefined reports for the template against the
underlying VSTS data warehouse.

• Security Groups and Permissions: This section defines a team project’s initial security
groups and their permissions. Security is covered in detail in the “Managing Team
Foundation Security” section later in this chapter.

• Source Control: This section includes Checkin Notes, Checkout Settings, and Security.

The best way to understand the process template architecture is to download one of the
two existing templates shipped with the product. To accomplish this, right-click the Team
Foundation Server in the Team Explorer and select Team Foundation Server Settings ➤
Process Template Manager. This opens the Process Template Manager window, as shown in
Figure 2-21.

Figure 2-21. Process Template Manager window

CHAPTER 2 ■ TEAM PROJECTS 37

4606CH02.qxd 4/20/06 3:08 PM Page 37

Select one of the process templates (MSF for CMMI Process Improvement - v4.0 for this
example) and click Download. Select an appropriate location on your local machine and click
Save. After several minutes, you will receive a confirmation that the process template has been
downloaded, as shown in Figure 2-22.

Figure 2-22. Process template download verification

Navigate to the folder in which you just saved the process template, and you will see the
structure shown in Figure 2-23.

Figure 2-23. Process template download folder structure

The ProcessTemplate.xml file is the root XML file that describes the entire assemblage for
the prescribed template, including the subtasks for each of the process plugins. This file has
four main segments:

• <name>: This is the name that is displayed in the drop-down list in the New Team Project
Wizard.

• <description>: This is the description that is displayed in the New Team Project
Wizard’s Select a Process Template page.

• <plugins>: This section lists all the plugins used by the New Team Project Wizard to
create the team project. The first release offers the following plugin options:

• Classification

• Reporting

• Portal (wizard page)

CHAPTER 2 ■ TEAM PROJECTS38

• Groups

• WorkItemTracking

• VersionControl (wizard page)

4606CH02.qxd 4/20/06 3:08 PM Page 38

• <groups>: This section describes the actions to be performed within the plugin. It has
the following nodes:

• <group id> contains the name of the plugin group.

• <description> provides a meaningful narrative.

• <completionMessage> provides a message that is displayed at task completion.

• <dependencies> includes a list of dependent group IDs (names) to identify any
other plugin’s tasks that must complete prior to launching this plugin’s tasks.

• <taskList> points to an XML file of tasks for plugin actions to be performed for the
plugin.

Listing 2-1 shows a snippet of the ProcessTemplate.xml file containing three of the four
key sections.

Listing 2-1. Portion of ProcessTemplate.xml

<?xml version="1.0" encoding="utf-8" ?>
<ProcessTemplate>
<metadata>
<name>MSF for CMMI Process Improvement - v4.0</name>

<description>Choose the MSF for CMMI Process Improvement process for
projects with longer life cycles and that require a record of
decisions made. Choose MSF for CMMI Process Improvement over MSF
for Agile Software Development, if your organization is undertaking
a broad quality assurance and process improvement initiative or
your team needs the assistance of explicit process guidance rather
than relying on tacit knowledge and experience.</description>

<plugins>
<plugin name="Microsoft.ProjectCreationWizard.Classification"

wizardPage="false"/>
<plugin name="Microsoft.ProjectCreationWizard.Reporting"
wizardPage="false"/>
<plugin name="Microsoft.ProjectCreationWizard.Portal"
wizardPage="true"/>
<plugin name="Microsoft.ProjectCreationWizard.Groups"
wizardPage="false"/>

<plugin name="Microsoft.ProjectCreationWizard.WorkItemTracking"
wizardPage="false"/>
<plugin name="Microsoft.ProjectCreationWizard.VersionControl"
wizardPage="true"/>

</plugins>
</metadata>

CHAPTER 2 ■ TEAM PROJECTS 39

4606CH02.qxd 4/20/06 3:08 PM Page 39

Listing 2-2 shows the <groups> section. Notice that each of the six plugins has its own
<group> section.

Listing 2-2. ProcessTemplate.xml Groups Section

<groups>
<group id="Classification"
description="Structure definition for the project."
completionMessage="Project Structure uploaded.">
<dependencies>
</dependencies>
<taskList filename="Classification\classification.xml"/>
</group>
<group id="Groups"
description="Create Groups and assign Permissions."
completionMessage="Groups created and Permissions assigned.">
<dependencies>
<dependency groupId="Classification" />
</dependencies>
<taskList filename="Groups and
Permissions\GroupsandPermissions.xml" />

</group>
<group id="Portal"
description="Creating project Site"
completionMessage="Project site created.">
<dependencies>
<dependency groupId="Classification"/>
<dependency groupId="WorkItemTracking"/>
<dependency groupId="VersionControl" />
</dependencies>
<taskList filename="Windows SharePoint Services\WssTasks.xml"/>
</group>
<group id="Reporting"
description="Project reports uploading."
completionMessage="Project reports uploaded.">
<dependencies>
<dependency groupId="Classification"/>
<dependency groupId="Portal"/>
</dependencies>
<taskList filename="Reports\ReportsTasks.xml"/>
</group>
<group id="WorkItemTracking"
description="Workitem definitions uploading."
completionMessage="Workitem definitions uploaded.">
<dependencies>

CHAPTER 2 ■ TEAM PROJECTS40

4606CH02.qxd 4/20/06 3:08 PM Page 40

<dependency groupId="Classification"/>
<dependency groupId="Groups"/>
</dependencies>
<taskList filename="WorkItem Tracking\WorkItems.xml"/>
</group>
<group id="VersionControl"
description="Creating Version control."
completionMessage="Version control task completed.">
<dependencies>
<dependency groupId="Classification"/>
<dependency groupId="Groups"/>
<dependency groupId="WorkItemTracking" />
<!-- This is just to serialize execution with WIT -->

</dependencies>
<taskList filename="Version Control\VersionControl.xml"/>
</group>
</groups>
</ProcessTemplate>

Modifying a Process Template
Customizing the process template is an incremental, iterative, and often irritating endeavor.
To help you, we have composed a ten-step guide, as illustrated in Figure 2-24.

Figure 2-24. Process template customization steps

CHAPTER 2 ■ TEAM PROJECTS 41

4606CH02.qxd 4/20/06 3:08 PM Page 41

■Caution We strongly recommend that you do not attempt to modify the process template against a
production Team Foundation Server. Since the process is both incremental and iterative, you will find the
procedure a lot smoother if you practice on a test system. A virtual build of the Team Foundation Server
using a differencing disk is preferred for manipulating and testing a process template.

Here are the steps:

1. Select one of the two predefined process templates (MSF for Agile Software Develop-
ment - v4.0 or MSF for CMMI Process Improvement - v4.0). Choose the one that best
resembles your target process. Create a dummy project based on the selected tem-
plate. This will give you an environment in which to validate your changes as they are
being applied.

2. Customize the work items to reflect your process. You most likely will need to create
custom work items to support your unique development process. Two utilities exist
to enable you to manipulate work item structure: the witimport and witexport
command-line utilities (discussed in Chapter 5). Other tools, such as the Process
Template Editor and Work Item Type Designer, allow you to modify work items in a
graphical user interface and are available from the GotDotNet community.

3. Create and save custom work item queries. The simplest way to create work item
queries is in the Team Explorer. In the dummy project, add queries in the work item
section. Test the queries against the dummy project until you are satisfied with them.
Save the queries to your local file system as .wiq files. You will add these to the Work
Item Tracking\Queries folder of your process template in step 8.

■Note Saved queries are associated with the Team Foundation Server and project from which they are
captured. You will need to remove the references prior to uploading files to the Queries folder within the
target process template.

4. Map fields in the work items to Microsoft Project fields. The predefined work items
have been mapped for you, but if you create a custom work item that will be edited in
Microsoft Project, you will need to map to a custom column. You can use the TFS-
FieldMapping command-line utility to do the mapping changes. Column mappings
are discussed in detail in Chapter 4.

5. Define security groups. You can define and manipulate your security groups on the
dummy project to verify they will support your project needs. There is no tool available
to synchronize changes, so you will have to note them separately and manually update
them in step 8. Similarly, you can map out your areas and iterations within the dummy
project to verify the correct organizational groupings and project cycles are captured.
Last, define security groups and check-in notes for version control.

CHAPTER 2 ■ TEAM PROJECTS42

4606CH02.qxd 4/20/06 3:08 PM Page 42

6. Customize the WSS portal. You can use the dummy project to test the structure for
your WSS portal sites. Create document libraries and compose process template arti-
facts within the libraries. However, the final modification to the WSS XML template will
need to be manual.

7. Download the process template. Now that you are comfortable with the changes to be
made to the base process template, you can set the baseline for the modifications. This
downloaded template is unchanged from when the dummy project was created; how-
ever, you now know explicitly the changes to make. Furthermore, many of the changes
have been tested against an instantiated project.

8. This is where all your prior work gets implemented. Change the name and description
of your process template in the root ProcessTemplate.xml file. Move your custom
work item definitions from step 2 into the TypeDefinitions folder and modify the
workitemtypes section of workitems.xml to recognize them. Move your custom work
item queries from step 3 into the Queries folder under the WorkItem Tracking folder
and modify the queries section of workitems.xml to recognize them. If needed, dupli-
cate any custom Microsoft Project mappings from step 4 in the Classification folder
to the FileMapping.xml. Reapply any custom security groups defined in step 5 to the
GroupsandPermissions.xml file in the folder of the same name. Manually describe the
document libraries, folders, and individual files from step 6 in the WssTasks.xml file
under WSS. Make any changes to the version control security or check-in policies in
the VersionControl.xml file in the Version Control folder.

9. Test the work from step 8. Upload the new template (refer to Figure 2-21) within the
development environment. If the upload fails, you will need to review the log file and
fix the XML. Once the template is successfully uploaded, you will want to start the
process again and create a new dummy project to verify your template changes.

10. Once you have tested your new process template and fully exercised the modified
components within the new dummy project, you are ready to move the template into
the production environment.

Customizing the Process Guidance
The MSF process guidance consists of XML, XSL, and HTML files. You will need the following
tools to customize the process guidance files:

• Microsoft Office InfoPath 2003 with Service Pack 1

• An XML or XSL editor

• The MSFWinBuild tool (available from www.gotdotnet.com/workspaces/
workspace.aspx?id=c0ce8992-2955-4371-904b-1f93a9efffe6)

Customizing the process guidance consists of four general steps, as illustrated in
Figure 2-25.

CHAPTER 2 ■ TEAM PROJECTS 43

4606CH02.qxd 4/20/06 3:08 PM Page 43

Figure 2-25. Process guidance customization steps

1. Update the process guidance source XML files. The easiest way to start updating the
process guidance files is by using Microsoft InfoPath and the supplied template. When
you bring up a source XML file in InfoPath, you are presented with a standard frame-
work for the page content, as shown in Figure 2-26. Click the buttons across the top of
the form to access the different views: Content, Bullet Menu, Glossary, Help Map,
Image, Index, and Menu. Each view allows you to work with various types of content.

■Note There are two modes for the process guidance files: edit and run. The editable files are XML and
stored in the Process Guidance\Source\XML folder. The run files are prerendered HTML and stored in the
Process Guidance\Supporting folder.

2. Verify your changes in the browser. Working within the Source folder, you can open
ProcessGuidance.htm, and your changes within the XML documents will be rendered.

3. Build pregenerated HTML content. To build the prerendered HTML files, you will need
to run the MSFWinBuild tool.

4. Update the XML manifest. Any files that were added or deleted in the modification
process need to be noted in the WssTasks.xml manifest file. Note that the MSFWinBuild
tool will automatically update the WssTasks.xml file.

CHAPTER 2 ■ TEAM PROJECTS44

4606CH02.qxd 4/20/06 3:08 PM Page 44

Figure 2-26. InfoPath view of process guidance overview.xml

Managing Team Foundation Security
In this section, we’ll cover security from the Team Foundation Server perspective; that is, how
it relates to server operations. (See Chapter 3 for a discussion of item-level permissions from
within the source code system.)

Security for the Team Foundation Server is not fully integrated in this release. You will
need to manage at least four areas, as shown in Figure 2-27.

Figure 2-27. Team Foundation security areas

CHAPTER 2 ■ TEAM PROJECTS 45

4606CH02.qxd 4/20/06 3:08 PM Page 45

These four areas control security as follows:

• Windows Active Directory (AD) and computer management: Entire books are written
about AD and Windows security. For this brief discussion, we will limit the discussion
to AD security groups and Windows machine local groups.

• Team Foundation Server group settings: Security is based on users and groups. Users
will most likely be Windows users from an AD domain or, for testing purposes, local
accounts within Windows Server 2003. The Team Foundation Server supports two levels
of groups: one at the global level and one at the project level.

• WSS user management: WSS uses a series of built-in site groups to control access to
SharePoint sites, lists, and document libraries. The permissions set in SharePoint use
existing AD accounts.

• SSRS role assignment: SSRS implements a role-based security model to protect reports
and reporting resources. Several predefined roles exist, and you can create your own.

The following sections describe how to manage security in each of these areas.

■Caution Typically, developers make the mistake of developing while logged on as an Administrator user
on their machine. You never want to do this with the Team Foundation Server though. If you use this server
as intended and store all of your code and documentation here, then this is the last place you want an
intruder to be able to access or unauthorized users to be allowed to make changes. Because of this, it is
important that you take some time to think about who gets access to what when you create a new team
project.

Managing Windows AD Security
Windows Server 2003 provides a client-based set of remote administration tools in
the Windows Server 2003 Administration Tools Pack (adminpak.msi). Included in this set
is the Active Directory Users and Computers Microsoft Management Console (MMC)
snap-in. From here, you can create, modify, or delete security groups within the AD, as
shown in Figure 2-28.

You manage local groups on your Team Foundation Server using the Computer Manage-
ment MMC snap-in. Within Local Computer Management, select Local Users and Groups to
add users or groups to your local server.

CHAPTER 2 ■ TEAM PROJECTS46

4606CH02.qxd 4/20/06 3:08 PM Page 46

Figure 2-28. Active Directory Security Groups

Managing Global Team Foundation Security
All security for the Team Foundation Server (not a specific project) is accessed by right-
clicking the name of the server in the Team Explorer. Only one server can be displayed in
Team Explorer at a time, so this will always be the root node of the Team Explorer.

By default, the Team Foundation Server comes with three preinstalled global groups,
which are described in Table 2-3.

Table 2-3. Team Foundation Server Default Global Groups

Group Description

Service Accounts Any service accounts that are used to run various portions
of the Team Foundation Server. If you set up the Team
Foundation Server by following the installation instructions,
the Windows account TFS Service is the only account in this
group.

Team Foundation Administrators Users in this group can perform any operation on the server.

Team Foundation Valid Users Users in this group can access the server. All users are a part
of this group; they do not need to be assigned specifically.
When a new project is created, each group in that project is
added to this group during project creation.

CHAPTER 2 ■ TEAM PROJECTS 47

4606CH02.qxd 4/20/06 3:08 PM Page 47

■Note Team Foundation Server Workgroup Edition includes a fourth security group, named Team
Foundation Licensed Users. In order to use the Team Foundation Server Workgroup Edition, a user must be
added to this group.

Group Permissions
To set group permissions, right-click the server name (Kiona in this example) and select Team
Foundation Server Settings, as shown in Figure 2-29. From the submenu, choose Security.

Figure 2-29. Team Foundation Server security options

The Global Security dialog box appears, as shown in Figure 2-30. Note that you cannot
create new global Team Foundation Server groups through this dialog box. You create new
groups via the Global Groups dialog box, as described in the next section.

You can add Windows users and groups to the Global Security dialog box list by selecting
the Windows User or Group option and clicking the Add button. You will be taken to the stan-
dard Windows Select User or Group dialog box to add users or groups.

You can allow or deny permissions by checking the corresponding check box. The avail-
able permissions—all the permissions available at the server level—are described in Table 2-4.
Item permissions work the same from Team Foundation Server as they do for Windows. If a
user belongs to multiple groups, and one group gives a user permission to perform an action,
and the group does not give the permission but does not specifically deny it, then the user has
permission to perform the action. If one group gives a permission but another group explicitly
denies a permission, the user cannot perform that action. By default, none of the permissions
are set to Deny.

CHAPTER 2 ■ TEAM PROJECTS48

4606CH02.qxd 4/20/06 3:08 PM Page 48

Figure 2-30. The Global Security dialog box

Table 2-4. Team Foundation Server Permissions

Permission Description

Administer shelved changes Can delete shelvesets created by other users

Administer warehouse Can change warehouse settings (see Chapter 6 for
more information)

Administer workspaces Can create/delete workspaces for other users

Alter trace settings Can change trace settings for detailed diagnostic
information regarding Team Foundation Server
Web Services

Create a workspace Can create a version control workspace

Create new projects Can create new projects in the Team Foundation
Server (must be an Administrator user for
SharePoint and SQL reporting)

Edit server-level information Can edit server-level groups and permissions
(create, delete, and rename)

Continued

CHAPTER 2 ■ TEAM PROJECTS 49

4606CH02.qxd 4/20/06 3:08 PM Page 49

Table 2-4. Continued

Permission Description

Manage process template Can modify or add a process template

Trigger events Can trigger project events (alerts) within the Team
Foundation Server (service account)

View server-level information Can view server-level group membership and user
permissions

View system synchronization information Can trigger synchronization events for the Team
Foundation Server (service account)

At the bottom of the Global Security dialog box is a message explaining that permissions
for SSRS and WSS must be set separately.

■Note Obviously, having to manage Team Foundation Server, SSRS, and WSS security separately is not
ideal. The Developer Division Customer Product Lifecycle Experience Team (DDCPX) has released an admin-
istration tool to help manage permissions across Team Foundation Server project groups, WSS site groups,
and SSRS role assignments. This tool is available from the GotDotNet community.

Group Management
You can manage group membership from the Global Groups dialog box, shown in Figure 2-31.
To access this dialog box, right-click the server name in the Team Explorer and select Team
Foundation Server Settings ➤ Group Membership. From here, you can add new groups, view
group properties, and edit some group properties.

Figure 2-31. The Global Groups dialog box

CHAPTER 2 ■ TEAM PROJECTS50

4606CH02.qxd 4/20/06 3:08 PM Page 50

Click the New button to add a new global group. You’ll be prompted for the group name
and a description, as shown in Figure 2-32.

Figure 2-32. The Create New Team Foundation Server Group dialog box

■Note You cannot remove the three default security groups. The Remove option is available only for
groups that you added.

To view and, in certain cases, edit group properties, select the group in the Global Groups
dialog box and click the Properties button. Figure 2-33 shows the Properties box for the Team
Foundation Valid Users group.

Figure 2-33. The Team Foundation Server Group Properties dialog box

CHAPTER 2 ■ TEAM PROJECTS 51

4606CH02.qxd 4/20/06 3:08 PM Page 51

You can see in Figure 2-33 that all of the default groups for the EffortTracking project and
subsequent projects have been added to the Team Foundation Valid Users group (this occurs
during project creation). Selecting Properties for any selected member will display the Team
Foundation Server Group Properties dialog box for that member. The Member Of tab lists all
of the groups to which the current group or user belongs.

There are several items to note with regard to the Team Foundation Valid Users group:

• The Team Foundation Valid Users group and Service Accounts group cannot be edited
through the Global Groups dialog box.

• Team Foundation Valid Users group members are added when new projects are created
or new groups are created within those projects.

• Team Foundation Valid Users is the base group for all users and has the lowest level of
permissions. This group is not a member of any other group.

• Users are never directly added to the Team Foundation Valid Users group. Only groups
are added.

For custom groups, any Team Foundation Server group, Windows group, or Windows user
can be added or removed.

Managing Project Security
The security settings for a team project are identical in structure to the security settings for the
server. Along with setting group permissions and managing groups, you can also set security
for Area Nodes within Areas and Iterations.

Project Group Permissions and Management
To access the group settings for a project, right-click the project name in the Team Explorer
and select Team Project Settings ➤ Security or Team Project Settings ➤ Group Membership.
The dialog boxes are identical to those you saw for the Team Foundation Server in the previous
section. However, the project security settings have different default groups and permissions.
At a project level, the groups and permissions are more granular in order to control access to
certain functions/items within the project. When a new project is created, four new groups are
created by default, as described in Table 2-5.

Table 2-5. Default Project Groups

Group Description

Build Services Can perform actions related to building and publishing
build results. A build manager or developer in charge of
running nightly builds would be in this group.

Contributors Can add, modify, and delete items. All developers need to
be members of this group.

Project Administrators Can perform any action within a specific project. A project
manager would most likely be in this group.

CHAPTER 2 ■ TEAM PROJECTS52

4606CH02.qxd 4/20/06 3:08 PM Page 52

Group Description

Readers Can view all information about a project, but cannot add,
modify, or delete items. Stakeholders would typically
belong to this group.

Team Foundation Administrators Can perform all tasks for the project. This group is added
by default to all new projects.

Team Foundation Valid Users Can view information in a project (by default, members are
assigned the same permissions as the Readers group). This
group is added by default to all new projects.

■Tip In order to deny access to users of other projects who should not be able to view project information,
just uncheck the View Project Level Information permission for the Team Foundation Valid Users account.
The change is specific to the project only.

The project permissions are at a fairly high level, even for a project, as shown in Table 2-6.
The reason for this is that the majority of security for project items is controlled at the source
code control level and is not needed at this higher level of permissions. The project permis-
sions cover project security as it relates to performing operations on the server and publishing
information to the server. The documentation control (requirements, scope, and so on) is
handled through the WSS security, and access to reports is managed through the SSRS secu-
rity. Both of these types of security are covered in upcoming sections of this chapter.

Table 2-6. Project Permissions

Permission Description

Administer a build Can delete a completed build or stop a build in progress

Delete this project Can delete the project for which the user has this
permission

Edit build quality Can change the quality of a build from one value to
another (see Chapter 7 for more information about builds)

Edit project-level information Can edit project-level permissions for users and groups;
this includes work item queries and source control write
access

Publish test results Can publish test results to the server and associate the test
results with a particular build

Start a build Can start a new build

View project-level information Can view project-level permissions for users and groups

Write to build operational store Can write to the build store (build service account
permission)

CHAPTER 2 ■ TEAM PROJECTS 53

4606CH02.qxd 4/20/06 3:08 PM Page 53

Areas
Areas are used to categorize items within a project—to segregate items for clarity and security.
Because areas allow you to categorize information, you can also control the security of work
items in specific areas. (Work items are covered in Chapter 5.) This functionality allows you to
set permissions for work items, which is different from setting permissions for accessing doc-
uments in WSS or accessing code (or a changeset) associated with a specific work item.

To access the security for areas, right-click the project name in Team Explorer and select
Team Project Settings ➤ Areas and Iterations. This will display the Areas and Iterations dialog
box, as shown in Figure 2-34. On the Area tab, click the Security button in the lower-right
corner. This displays the Area Node Security dialog box (which looks like the Global Security
dialog box, shown earlier in Figure 2-30), which lists the permissions described in Table 2-7.

Figure 2-34. The Areas and Iterations dialog box

Table 2-7. Area Permissions

Permission Description

Create and order child nodes Can add new areas and order the areas

Delete this node Can delete the selected node

Edit this node Can edit the name of the selected node

Edit work items in this node Can modify work items that are characterized as a member of
the selected node

View this node Can see the selected node

View work items in this node Can see the work items associated with the selected node

CHAPTER 2 ■ TEAM PROJECTS54

4606CH02.qxd 4/20/06 3:08 PM Page 54

Managing WSS Security
One of the key tenets of the Project Portal is that it should be a “lightweight access point
for casual stakeholders.” This means that it should have the ability to communicate project
information to anyone with a browser. Your organization may choose to allow access to any
authenticated user within your corporation. In order to do that, you will need to be able
to manage user access to your project site. If you have the Administrator privileges, you can
manage WSS users.

To add a member to the WSS site, open the Project Portal and select the Site Settings link
at the top of the page. Within the Administration section, select Manage Users to bring up the
Manage Users form. Click Add Users to start the Add Users process, as shown in Figure 2-35.

Figure 2-35. The Add Users page for WSS

Table 2-8 shows the default groups for WSS.

CHAPTER 2 ■ TEAM PROJECTS 55

4606CH02.qxd 4/20/06 3:08 PM Page 55

Table 2-8. WSS Default Groups

Site Group Description

Administrator Has full authority over the website

Web Designer Can create document libraries and lists, and customize website pages

Contributor Can add content to document libraries and lists

Readers Has read-only access to the website

Managing SSRS Security
As noted earlier, you can manage SSRS security by assigning roles. Table 2-9 shows the prede-
fined roles.

Table 2-9. SSRS Default Groups

Site Group Description

Content Manager Has full authority over the report server (can take ownership of an item)

Publisher Can add content to the server

Report Builder Can view report definitions

My Reports Can manage reports separately from the main folder hierarchy

Browser Has read-only access to navigate folders and view reports

To add a member to the report site, open the Report Manager window by right-clicking
Reports in the Team Explorer and selecting Show Report Site. Within the Report Manager win-
dow for the project, select the Properties tab, and then select Security. The existing security for
the site is displayed, and you can click New Role Assignment to add members to predefined
roles, as shown in Figure 2-36.

Add the group or username, and then select the role to be assigned. You can also create a
new role for the report site by clicking New Role. Click OK to finish the process. The new role
assignments will be displayed. You can then edit or delete the new roles, or create additional
new roles.

CHAPTER 2 ■ TEAM PROJECTS56

4606CH02.qxd 4/20/06 3:08 PM Page 56

Figure 2-36. The Report Manager’s New Role Assignment window

Summary
In VSTS, a team project is an instantiation of a development project. Within VSTS, there are
templates, guidance, best practices, source control, work items, build machines, a portal for
the project, reporting, and more. This chapter has introduced you to the various components
of VTST by way of the team project. Many of these components will be covered in more detail
in later chapters.

First, we talked about creating a new team project, including the prerequisites. Then we
presented an overview of the various components that come with your chosen project process
template, which is the blueprint for a team project.

Then we described how to customize your Project Portal, project template, and process
guidance. Finally, we took a look at security across three major platforms: Team Foundation
Server, WSS, and SRSS.

CHAPTER 2 ■ TEAM PROJECTS 57

4606CH02.qxd 4/20/06 3:08 PM Page 57

4606CH02.qxd 4/20/06 3:08 PM Page 58

Team Foundation Version
Control

Raise your hand if you worked on a large-scale project and were absolutely frustrated by the
limitations in Visual SourceSafe (VSS). Okay, you can put your hand down now. Welcome to
the new wave of source code control from Microsoft. The Team Foundation Version Control
(TFVC) system takes the best features of various enterprise-class source code control systems,
incorporates them, and makes them better and easier to use in the classic Microsoft style. This
chapter explores all the facets of the TFVC and how it integrates with Visual Studio and makes
developing on large-scale teams easier for you.

■Note TFVC is definitely an enterprise-class repository. It is much more powerful than needed for small-
scale development teams (three to five people). For small teams, it is still perfectly acceptable to use Visual
SourceSafe. The new features add some ease and a little more flexibility for teams, making VSS a perfectly
acceptable source code control system.

TFVC is an extensible source code control system that underpins the project manage-
ment aspects of Visual Studio Team System (VSTS). You will see how it fits in with work-item
tracking and policies and makes VSTS a truly integrated solution. Finally, VSTS includes a
utility to migrate your code stored in Visual SourceSafe to TFVC.

Starting with Version Control
When you created your first team project (in the example in the previous chapter), you had
the option to create a new source control folder, branch from an existing source control folder,
or not create a folder at all.

If you elected to create a new source control folder, then a brand new root-level folder was
added to the version control repository as shown in Figure 3-1 (the Source Control Explorer is
covered in the next section).

59

C H A P T E R 3

4606CH03.qxd 4/20/06 3:12 PM Page 59

Figure 3-1. Source Control Explorer

If you elected to branch from an existing source control folder (at least one folder in
version control must exist for you to do then) then the existing data in the branch you selected
was copied into a new folder in version control (Figure 3-2). You will note that everything in
the new project (Demo Project in Figure 3-2) is grayed out. This is because there is no default
workspace (discussed later in the “Workspaces” section) for the files, and the latest version has
not been retrieved.

Figure 3-2. A new project starting with branched source code

If you did not create a new source control folder, you can do so at a later date.
These three options are your first introduction to Team Foundation Version Control.

Welcome.

■Note As of this writing, Microsoft has released tools that allow previous versions of Visual Studio .NET
and Visual Studio 6 to integrate with Team Foundation Version Control. In addition, various tools are being
released to incorporate TFVC and work item tracking with Eclipse.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL60

4606CH03.qxd 4/20/06 3:12 PM Page 60

Source Control Explorer
The Source Control Explorer (SCE) is your view into the TFVC. From it you can control all
aspects of files under version control. You can add files, delete files, check files out, check files
in, branch files, compare files, examine file history, and the list goes on. Figures 3-1 and 3-2
show the SCE. To get to it, you have two options: expand the Team Project node in Team
Explorer and double-click the Source Control node or, from the main menu, select View ➤
Other Windows ➤ Source Control Explorer.

As with the Windows Explorer, the folder structure is contained on the left and the files
within those folders are shown on the right. Additionally, any information about pending
changes is noted along with the files.

The root node in the SCE is the server. The nodes below the server level are the team
project nodes. All of the solutions for a team project are located below the Team Project node.
Right-clicking any item within the SCE (either in the tree view or the details view) will bring up
the options menu described in Table 3-1.

■Note Some of the terminology at this point may not be familiar to you. Each of these terms is discussed
in detail later in the chapter.

Table 3-1. Source Control Explorer Options

Option Description

View Opens TFVC’s version of the file for viewing. This will use the
application registered for use with the file extension to view
the file.

Get Latest Version Retrieves the latest version of the file to your workspace.

Get Specific Version Allows you to retrieve any particular version of the file.

Check Out For Edit Allows you to check out a file. Gives you the option to perform a
shared check-out, lock the file so only you can edit it, or allow
other users to check out the file but not check it in.

Lock Either locks the file so no one can check it out, or allows people
to check it out, but not check it in.

Delete Deletes a file. When you select a file for deleting directly from the
SCE you must also commit that change in order for the file to be
deleted.

Rename Renames a file.

Undo Pending Changes Cancels any pending changes to the item and any subitems.

Check In Pending Changes Checks in the pending changes to the item and any subitems.

Shelve Pending Changes Shelves pending changes.

View History Displays the history window.

Continued

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 61

4606CH03.qxd 4/20/06 3:12 PM Page 61

Table 3-1. Continued

Option Description

Compare Allows you to compare the TFVC version to the local version of
a file, the version in a particular changeset, the version on a
specific date, or a labeled version.

Branch Allows you to create a separate tree of changes to a file
independent of the original code base.

Merge Allows you to merge two files from separate branches.

Move Allows you to move the file from the current location in the TFVC
to another location in the TFVC.

Apply Label Allows you to label an entire project, a selected folder, or a single
file within a project or folder with a specific label.

New Folder* Creates a new folder in the TFVC project.

Properties Views the TFVC properties of the file or folder.

Refresh Refreshes the contents of a folder or the status of a single file.

* New Folder only appears in the menu when you click on a blank area in the details pane (right window),
although you can add a new folder from the SCE’s toolbar while you are in the tree view pane.

File/Folder Properties
To view the File or Folder properties, right-click the item and select Properties. This displays
the Properties dialog box shown in Figure 3-3. This dialog box is the same for all items under
version control.

Figure 3-3. The Item Properties dialog box

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL62

4606CH03.qxd 4/20/06 3:12 PM Page 62

General
The Server Name is the name of the file under version control. The Local Name is the name
of the file currently on your hard drive. The same is true for the version numbers. The Latest
Version is the version on the server, and the Workspace Version is the version on your hard
drive. The Encoding is the file system encoding. VSTS automatically detects this so you should
never have to change it. If you do have to change it, there are about 100 different encodings to
choose from.

Status
The Status tab shows any pending changes to the item as shown in Figure 3-4.

Figure 3-4. Status tab

Figure 3-4 shows that users jxl0575 and alicew are both making changes to the file. It also
shows which workspace the items are checked out to. Because both are checked out to the
same workspace it indicates that both users are using the same machine (which is true!).

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 63

4606CH03.qxd 4/20/06 3:12 PM Page 63

Security
Let us talk about security for a moment. Do you remember how security works (or does not
work as the case may be) in Visual SourceSafe? You can set security for the file share and you
can allow or not allow a user access to a repository. You can even set whether they had read-
only or read-write privileges—but you cannot do anything else.

The VSTS team took this into account when designing TFVC. You can now control security
at all levels and to a very granular degree (Figure 3-5).

Figure 3-5. Security tab

The users and groups list contains all the users (or groups) that have access to the given
folder or file in the folder. By default, all project members have some type of access to the
items in version control. The server accounts shown in Figure 3-5 (Service Accounts and Team
Foundation Administrators) have administrator rights to the items in version control which
cannot be removed. You can add additional users or groups to this list.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL64

4606CH03.qxd 4/20/06 3:12 PM Page 64

■Note If you add a user or a group that is not at least already a part of the Readers account for the project,
they will be unable to access the file (or folder). Aside from this one restriction, adding users and groups and
setting permissions is done as normal.

The available permissions for a given file or folder are listed in Table 3-2.

Table 3-2. Item Permissions

Permission Description

Read Can read an item.

Check out Can check out an item.

Check in Can check in an item.

Label Can label the item

Lock Can lock an item.

Revise other users’ changes Allows user to change the comments, work item associations,
or check-in notes associated with a changeset they did not
create.

Unlock other users’ changes Allows a user to unlock another user’s locked item.

Undo other users’ changes Lets pending changes be cancelled on an item that another
user has checked out.

Administer labels Allows users to label changes and alter labels.

Manipulate security settings Indicates the user has permissions to change the security of
the item.

Check in other users’ changes Causes items checked out by another user to be checked in.

The four default groups associated with every project have certain permissions by default
which cannot be removed, only revoked (in other words, the group either has the right or it is
specifically denied). These permissions are listed below:

• Build Services: Read, Check out, Check in, Label, Lock

• Contributors: Read, Check out, Check in, Label, Lock

• Project Administrators: All permissions

• Readers: Read

Additional permissions may be assigned to these groups. All in all, security has been
greatly improved over VSS and this is a welcome change.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 65

4606CH03.qxd 4/20/06 3:12 PM Page 65

Branches
The Branches tab shows the branches that exist for the selected item as shown in Figure 3-6.

Figure 3-6. Branches tab

This dialog box shows that a branch exists for DropAllTables.sql at version 3. It also shows
that the branched file is part of the Demo Project. This allows you to trace back to where a
branch came from. This dialog box does not show shelved items, as they are not part of any
code base (see the “Shelvesets” section later in this chapter for more information).

Workspaces
One of the key things to note is the Workspace setting. A workspace (similar to a collection of
working folders as in Visual SourceSafe) is a local “sandbox” where the project code is stored
and where you work with it. Any changes you make to the code are made in the local work-
space, and when you sync your code with the repository, the changes you made are uploaded
to the repository.

■Tip You can maintain multiple workspaces on a single system for a single project. One reason to do this is
to handle working on multiple branches at once, where you want to avoid shelving items (discussed later in
this chapter).

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL66

4606CH03.qxd 4/20/06 3:12 PM Page 66

To create additional workspaces (or to set up a new workspace on a system that does not
have one) select the Workspace drop-down in the SCE and click Workspaces (or select File ➤
Source Control ➤ Workspaces). This will bring up the Manage Workspaces dialog box shown
in Figure 3-7.

Figure 3-7. Manage Workspaces dialog box

This dialog box will list all of the workspace names and the systems on which those work-
spaces are located. Selecting the Edit or Add button will bring up the Add/Edit Workspace
dialog box shown in Figure 3-8.

Figure 3-8. Add/Edit Workspace dialog box

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 67

4606CH03.qxd 4/20/06 3:12 PM Page 67

Here you can add a comment or create additional working folders and map them to
repository folders.

■Tip As a best practice, the workspace layout should match the repository layout upon which it is based.
This makes it easier to navigate both of them.

To set up the working folders, you have a couple of options. The first option is to do a Get
Latest on a folder. SCE will prompt you for the local folder, and a working folder entry is auto-
matically made for the workspace. The second option is to do the task manually in the Edit
Workspace dialog box.

■Tip Another best practice is to map the root team project folder (in this example the $/Effort Tracking
folder) to a folder on your hard drive and keep all of the other folders for the project under this directory.

One other thing you can do in the Edit Workspace dialog box is to cloak a folder. Cloaking
a folder sets the folder to be “invisible” to the local workspace. For example, if you were to
cloak the $/Effort Tracking/EffortTrackingSolutionVB folder, when you did a Get Latest on the
root folder, the cloaked folder would not be retrieved. To cloak a folder, select the Status col-
umn and select Cloaked.

Creating Solutions
Now that you have a basic overview of the Source Control Explorer and an understanding of
workspaces, we will use a simple solution to demonstrate the rest of the features of Team
Foundation Version Control. The walkthrough and explanations assume you have created a
team project called Effort Tracking and have set up a source control folder (the default setting
when creating a new team project). In order to start using TFVC, you are going to create a
new database project to hold the Effort Tracking database called, conveniently enough,
EffortTrackingDatabase. The database project is a new project type that allows you to store
queries, table definitions, change scripts, and data load scripts (and will also generate these
scripts for you).

■Note One of the key benefits of this change is that it becomes more natural to put these scripts under
source code control. In previous versions of Visual Studio, all of this work would have had to be done manu-
ally, and grouping the database information with the project was rarely done.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL68

4606CH03.qxd 4/20/06 3:12 PM Page 68

To create the new solution (remember that at this point you have only created a team
project not an actual solution) and project, do the following:

1. Select File ➤ New ➤ Project.

2. Select Other Project Types ➤ Visual Studio Solutions ➤ Blank Solution.

3. Call the solution “Effort Tracking Solution,” select Add to Source Code Control and
click OK. This will display the Add Solution dialog box shown in Figure 3-9.

4. Leave the default settings as they are and select OK.

5. Right-click the created solution and select Add ➤ New Project.

6. Select Other Project Types ➤ Database Project.

7. Enter the name as “EffortTrackingDatabase” and select OK.

Figure 3-9. Add Solution dialog box

■Tip The Advanced button allows you to override the default workspace mappings.

At this point you will have a Solution Explorer structure that looks like the one in
Figure 3-10.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 69

4606CH03.qxd 4/20/06 3:12 PM Page 69

Figure 3-10. Solution Explorer

The pluses next to the solution and the project indicate that these items have pending
adds but have not yet been stored in the source code repository.

Pending Changes Window
Right-click either node and select View Pending Changes. This will display the Pending
Changes dialog box shown in Figure 3-11 where you have a number of options for handling
items in your workspace.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL70

Figure 3-11. Pending Changes dialog box

The Pending Changes window is where you see the work you have done in preparation for
your next check-in. Here you can associate work items with code, check that your changes
comply with the check-in policy, add comments, and have reviewers sign off on your code.

The tab buttons down the left side of the window change the view displayed in the Pend-
ing Changes window. The selected tab in Figure 3-11 is the Source Files tab which displays this
window.

Source Files
The Source Files section allows you to work with the files from your project and provide status
on those files. Every file with a check next to it is a change that will be committed. The type of
change is noted here and can be one of the following: Add, Edit, Rename, Merge, Branch,
Delete, or Undelete (if a file is locked for editing, “locked” will appear in this column in addi-
tion to the type of change). In this example, all of the changes are additions. The folder list

4606CH03.qxd 4/20/06 3:12 PM Page 70

displays where that item is in the workspace on your local drive. Holding your cursor over the
item will show the version number of the item to be added. The Comments field at the top of
the pane allows you to add a comment that will be applied to all changes that are committed
at the same time.

■Tip It is a good practice to work on only one change at a time or one piece of functionality at a time. That
way it is easy to add comments to the files you are committing. However, if you work on multiple changes
at once, it is worthwhile to do your changes in batches so that you apply a uniform comment to groups of
related work.

To check in the files, you simply click the Check In button on the toolbar. For right now,
check in the pending changes. Once the changes are successfully checked in, the files will no
longer be displayed in the Pending Changes dialog box, and the plus icon next to each file will
become a lock (in the Solution Explorer).

■Note Before checking the changes in, review the information on the other tabs, because some of the
information will not be displayed after all pending changes are checked in.

Later in this chapter the section “Shelvesets” explains the shelving and unshelving
options available via the Source Files tab.

You can work with individual files by right-clicking the file in the Solution Explorer and
selecting the appropriate option.

Work Items
Work items are essentially assignments tracked by the system. Chapter 4 deals entirely with
work items and work item tracking. The work items that show up in the Pending Changes dia-
log box allow you to associate a given task with the given changeset. Changesets are discussed
later in this chapter in the “Changesets” section.

Check-in Notes
For now you will notice that the check-in notes consist of three fields: Code Reviewer, Security
Reviewer, and Performance Reviewer. These are configurable fields that can be made manda-
tory prior to a check-in or left as optional. Right now they are optional but you will see how to
change this later in this chapter in the “Configuring Version Control” section.

Policy Warnings
The policy warnings page, at this point, contains no policies. Any policies that have been vio-
lated are listed here. You will see how to create and enforce policies later in this chapter in the
“Configuring Version Control” and “Creating Custom Check-in Policies” sections.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 71

4606CH03.qxd 4/20/06 3:12 PM Page 71

Changesets
A changeset is a grouping of all metadata related to changes checked in at the same time from
the same workspace. The metadata includes files, work items, comments, check-in notes,
policy violation overrides, the user, and the date. Changesets are persisted for the life of the
source control repository.

■Note Visual SourceSafe has no equivalent to a changeset. In VSS, every check-in you make is an inde-
pendent check-in and there is no way to track which other files are checked in at the same time (although
you can run a report on the date and time checked in but this is difficult at best).

Changeset numbers start at one and are incremented by one for each new changeset. The
Get Latest Version option (available from various places such as right-clicking on a node in the
Solution Explorer) will retrieve the latest version from the latest changeset. To retrieve a spe-
cific changeset version the Get option can be used and the appropriate version chosen. The
Get option will be described in more detail in the section “Retrieving Versions” later in this
chapter.

To see how changesets work, create a new table in the EffortTrackingDatabase project by
right-clicking the Create Scripts folder and selecting Add New Item. Then select the Table
Script and call it dbo.Categories.sql.

■Note While this is certainly not a book on database projects, it should be noted that all objects in a data-
base can be reverse-engineered into a database project. This is one of the great new features of Visual
Studio 2005.

Add the SQL statements in Listing 3-1 to the categories script (replacing what is autogen-
erated in the file).

Listing 3-1. Create Categories Script v1

CREATE TABLE [dbo].[categories]
(

[cat_id] [int] IDENTITY(1,1) NOT NULL,
[cat_title] [varchar](100) NOT NULL,
CONSTRAINT [PK_categories] PRIMARY KEY CLUSTERED
(

[cat_id] ASC
) ON [PRIMARY]

) ON [PRIMARY]

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL72

4606CH03.qxd 4/20/06 3:12 PM Page 72

In the Pending Changes window, add the comment “Added the categories table create
script” and check in the pending changes. Now you discover that you have a problem—you
did not check to see if the table existed before you tried to create it. A common component of
a create script is a check to see if the table is there, so you want to add the check for the table.
Add the SQL statement in Listing 3-2 above the create table statement.

Listing 3-2. Create Categories Script v2

IF EXISTS (SELECT * FROM dbo.sysobjects
WHERE id = OBJECT_ID(N'[dbo].[categories]')
AND OBJECTPROPERTY(id, N'IsUserTable') = 1)
DROP TABLE [dbo].[categories]
GO

Notice that when you make the additions, the file is automatically checked out for you,
but not the database project, because the project structure did not change, only a single file
within the project. Again, check in the changes but make a comment to the effect that you
added a drop existing categories table section.

History
To view the history of changes for a given file, right-click the file in the Solution Explorer and
select View History. Alternatively, you can select the file in the Solution Explorer and select
File ➤ Source Control ➤ View History from the main menu (you can also view the history from
with the SCE). This will show the History window seen in Figure 3-12.

■Note There is a 99% chance that the changeset numbers you see on your system will be different than
those shown here. Not to worry, though; just remember that the lower the number, the earlier the version.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 73

Figure 3-12. History window

4606CH03.qxd 4/20/06 3:12 PM Page 73

The initial version is version 19, and the change is noted as an add. Version 20 contains
the addition of the drop categories section. To view the changeset information for a given
entry, double-click the version in the list. This will bring up the Changeset Details dialog box
shown in Figure 3-13.

Figure 3-13. Changeset Details dialog box

This shows the changes that were made when each of the files was checked in. Here it
notes that the categories script was added (along with the Change Scripts folder) and the data-
base project itself was edited. The view of the files shown in Figure 3-13 is the folder view as
opposed to the flat view that is displayed by default (this can be changed by selecting the
appropriate icon above the Comment field).

Comparing Versions
From this view you can actually examine the contents of the files or run a compare against
different versions. Right-clicking the dbo.categories.sql file from the Changeset Details
dialog box and selecting View will display the contents of the file in Notepad. Right-click the
dbo.categories.sql file and select Compare ➤ With Workspace Version (workspace name
here). This will bring up the Differences dialog box shown in Figure 3-14.

The legend at the bottom explains the colored text. In this case you inserted a block of
text in the latest version. But you will notice that the text appears as deleted. The comparison
is always done from the point of view of the document selected in the changeset. In this case,
you selected the original version and asked to see what the difference was with the workspace
version (which happens to be the latest version). Since the latest version had the exists state-
ment and the earlier version does not, it appears to the differencing engine that the text was
deleted. All other comparisons work from the latest version to the previous version (which is
the best way to do comparisons).

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL74

4606CH03.qxd 4/20/06 3:12 PM Page 74

Figure 3-14. Differences dialog box

■Tip To see how this works, close this window and close the changeset window. In the History window,
select both changesets, right-click, and select Compare. You will see the exists clause as green text in the
latest version.

The various options going across the top are Copy, Find, Find Next, Find Previous, Toggle
Bookmark, Next Bookmark, Previous Bookmark, Clear All Bookmarks, Next Change, and
Previous Change.

■Note Bookmarks are not persisted between comparisons. Once you close the Differences dialog box, all
of your bookmarks are cleared.

You may also compare different versions by selecting both of the versions to compare in
the History window, or you can compare any version to the latest version by right-clicking the
file in the History window and selecting Compare.

In the “Configuring Version Control” section you will see how to change the tools used to
do comparisons and merges in case you want to use your own tools.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 75

4606CH03.qxd 4/20/06 3:12 PM Page 75

Labeling Versions
Applying a label to a set of files or folders gives you a more granular way to mark a specific ver-
sion. You have seen how a changeset marks everything in the repository as being a part of a
particular changeset when you check things in. The label allows you to target specific files
and specific versions of files—even files that are not part of the project, such as help files—as
being part of a specific version. The labeled files can cross changesets as well. Labels are typi-
cally applied for beta release code, release candidates, or tested versions.

■Note In Visual SourceSafe you could label a build but you could not easily get the labeled version
afterward.

Labels are attached to specific versions of a file and each version can have as many labels
as you want. Labeling can be done at the file or folder level since you manually select which
files and folders, from which changesets, you would like to add. To label a version, do the
following:

1. Right-click the Effort Tracking Solution in the Source Control Explorer and select Apply
Label. The Choose Item Version dialog box is displayed (Figure 3-15).

Figure 3-15. The Choose Item Version dialog box

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL76

4606CH03.qxd 4/20/06 3:12 PM Page 76

2. Click OK and the Apply Label dialog is displayed (Figure 3-16).

Figure 3-16. Apply Label dialog box

3. Enter the label “First Label” in the Name box.

4. Click OK and the label is applied.

A label can also be applied via the File ➤ Source Control ➤ Label ➤ Apply Label menu
item (Source Control Explorer must be open and a node or item selected).

Now that the version is labeled you can retrieve it at a later date, delete the label, or add
additional files to the label. The easiest way to work with labels is via the File ➤ Source Control
➤ Label ➤ Find Label menu item (SCE must be open and active in the IDE). Selecting this
brings up the Find Label dialog box (Figure 3-17).

From this dialog box you can search for a specific label by name, project, or owner.
Clicking Find displays all of the labels that match your criteria. Once you select a label you
can either edit it (which allows you to add or remove items from the label) or delete it. You
may also create new labels from this dialog box.

■Note When you delete a label, only the label is deleted, not the versions attached to it.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 77

4606CH03.qxd 4/20/06 3:12 PM Page 77

Figure 3-17. Find Label dialog box

Retrieving Versions
There are many ways to retrieve versions in TFVC. The Get Latest Version option (available in
several locations—SCE, Solution Explorer, File ➤ Source Control, the History window, or the
Changeset dialog box) always retrieves the latest checked-in version from the server. The Get
Specific version displays the dialog box shown in Figure 3-18.

Figure 3-18. Get dialog box

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL78

4606CH03.qxd 4/20/06 3:12 PM Page 78

The item(s) selected when you click Get Latest Version are displayed in this dialog box. If
a folder is selected, the Get operation is a recursive operation—all files within the folder that
match the specified version will be retrieved. The Version Type drop-down lets you choose the
version based on the following items:

• Changeset: Specifies a specific changeset (see Figure 3-19).

• Date: Specifies a date/time.

• Label: Specifies a specific label.

• Latest Version: Nothing to specify.

• Workspace Version: Specifies files that match a user’s workspace. This is useful if you
need to duplicate another user’s workspace.

To locate a specific changeset (or the files in a specific changeset) you can use the Find
Changesets dialog box (Figure 3-19).

Figure 3-19. Find Changesets dialog box

For this dialog box you can specify two options: the file contained in the changeset, and
who created the changeset. You can search all of the changesets or just a specific range—
either by number or by the date they were created.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 79

4606CH03.qxd 4/20/06 3:12 PM Page 79

Branching
Now that you have seen the basics of working with the version control tool, it is time to move
on to cover more complex scenarios.

Branching is the act of splitting files into separate development paths—it is also known as
forking. Typically code is branched for one of two reasons: there has been a software release
(usually on a commercial product) and it needs to be supported while updated versions are
developed; or a developer needs to experiment with a different way of writing code or with
new techniques but does not want to contaminate the base code, which may cause produc-
tion problems. In the latter case, assuming the experimentation works out, the branched code
is almost always merged back in with the main code and with any changes made up to that
point by the maintenance team. See Figure 3-20.

■Note Shelving can be used to accomplish the same thing. Shelving is covered later in this chapter.

Figure 3-20. Branched code flow

To branch code using TFVC, use the Source Control Explorer to find the file you want to
branch. Right-click the files or folders you want to branch and select Branch. This brings up
the Branch dialog box shown in Figure 3-21 (for this example, continue to use the categories
sql file).

Figure 3-21. Branch dialog box

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL80

4606CH03.qxd 4/20/06 3:12 PM Page 80

This dialog box indicates that a single file was selected to be branched. The branched file,
by default, has a target name of the filename + "-branch." This will become the name of the file
in your local workspace so it does not conflict with the original file. The branch-from version
can be based on the changeset, the date, the latest version, the workspace version, or a spe-
cific label. The result of a branch is shown in Figure 3-22.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 81

Figure 3-22. Branch results

A new file (the branched file) is created and added to the source code control. At this
point you can add the branched file to another project and work on it as normal (or add it to
the same project if you want).

■Tip If you are branching a file or a project but not editing it, you can uncheck the “Create local working
copies for the new branch” option (see Figure 3-21). This creates a new branch on the server but does not
retrieve the branched version, which can save a lot of time, depending on the number of files involved.

To see how this works, right-click the Change Scripts folder in the Solution Explorer and
select Add Existing Item. Select the dbo.categories-branch.sql file and click OK. Add a com-
ment to the top of the branched file (any comment will do—a double dash (--) followed by any
text). Check in the change. When you have reached the point that the branched file (or folder)
and main file (or folder) are ready to be merged back into each other, right-click the main or
the branched file (or folder) in TFVC and select Merge.

VSTS knows the original file that you branched from (this can be seen by right-clicking
either file and selecting Properties and then selecting the Branches tab) and displays the
Source Control Merge Wizard dialog box (shown in Figure 3-23).

4606CH03.qxd 4/20/06 3:12 PM Page 81

Figure 3-23. Source Control Merge Wizard

The source branch is the code that has been changed that you want to merge with the
original code. Selecting “All changes up to a specific version” gives you the option of selecting
a version in the main version control path to merge with. Selecting “Selected changesets”
allows you to select a specific changeset. By default, the merge process tries to perform an
automated merge that merges the two versions if the areas of change do not cause any con-
flict. If a conflict is detected (this scenario is covered in the “Merging Files” section later in
this chapter), you will have to resolve the conflicts manually.

At this point you can delete the branched file (note that it will still be a part of that partic-
ular changeset so you can always get back to it).

Shelvesets
Frequently, when developers are working on changes, another change will be required that
has a higher priority. Usually a developer stops work on the changes he or she is working on
and begins working on the new change. The problem with this is that it leaves the code in an
unstable state. The shelveset solves that problem for you. The process of shelving a change, or
a set of changes, allows you to store pending changes under source control without creating a
branch and to revert your workspace to a known, stable version of the code base. The high-
priority change can then be performed, and after it is checked in, the editing on the shelved
changes can continue. Figure 3-24 shows a typical process flow for how this might work.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL82

4606CH03.qxd 4/20/06 3:12 PM Page 82

Figure 3-24. The shelveset process

Shelvesets exist in TFVC but are unversioned. They can also be deleted, whereas a
changeset cannot be deleted. Another common scenario is that you can share your code with
other developers without contaminating the code base (for example, if you are experimenting
and want to get help with code from another developer).

Merging Files
Merging is the process of taking multiple changes in a file and combining them into the origi-
nal file. You saw a small example of this in the “Branching” section of this chapter. This
situation can arise in branching, shelveset, or multiple check-out scenarios. Figure 3-25
depicts a multiple check-out scenario.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 83

4606CH03.qxd 4/20/06 3:12 PM Page 83

Figure 3-25. Merging files scenario

This behavior can typically be avoided on small development teams by just not allowing
multiple check-outs (see the “Configuring Version Control” section). It also does not usually
occur when code is structured very tightly (i.e., it is highly object-oriented and only one per-
son is working on one particular piece of functionality).

In the scenario in Figure 3-25, the first thing User B would see during check-in is the dia-
log box shown in Figure 3-26.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL84

4606CH03.qxd 4/20/06 3:12 PM Page 84

■Note If User B looks in the Source Control Explorer, he or she would notice that the latest version (the
root-level folder would be grayed out and No would be listed under Latest next to the file) is no longer there.

Figure 3-26. Resolve Conflicts dialog box

■Note To see this dialog box, so you can see how it works for you, you can do the following: Have two
users set up for a project. Log on as one user and make a change to the file. Log off and then log on as the
other user, make a change, and check in the file. Then log off and log on as the original user. Try to check in
the changes.

This dialog box describes any conflicts that exist with a given file. It can be shown for sev-
eral reasons, which include problems with invalid mappings between the repository and the
working folder of the workspace. In that case, the dialog box is telling User B that a newer ver-
sion of the file exists on the server.

■Tip The Auto Merge All option attempts to figure out what to keep from each file without user interven-
tion. In general, it works very well if edits have not been made to the same section of code. If such edits
have been made, using the Resolve option to perform a manual merge is the only way to merge files.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 85

4606CH03.qxd 4/20/06 3:12 PM Page 85

Selecting the Resolve option brings up the Resolve Conflict dialog box shown in
Figure 3-27.

Figure 3-27. Resolve Conflict dialog box

Path shows the location of the local file, which is different from that on the server.
Changes indicates how many changes are different in each file and how many are conflicting.
Resolution options are described in Table 3-3.

Table 3-3. Resolution Options

Option Description

Merge changes for me Attempts to merge the files automatically. Same as the Auto
Merge option.

Merge changes in merge tool Allows the developer to manually work through the files to
choose the correct lines to merge.

Undo my local changes Discards the local changes, does not check in the file, retrieves
the server version to the local workspace.

Discard server changes Overwrites the changes on the server with the changes from
the local file.

The Compare option allows you to view the differences between the local version and the
server version or the original version of the file that was checked out. When you select OK,
the Merge Tool shown in Figure 3-28 is displayed.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL86

4606CH03.qxd 4/20/06 3:12 PM Page 86

Figure 3-28. Merge Tool window

There are a number of important pieces of information available to you in this window.
The first piece of information is in the title bar. Theirs (dbo.categories.sql;C24) indicates the
file on the server that the local file is attempting to be merged with and the changeset that
the file exists in. The two windows at the top of the dialog box are the two different versions
of the file. The server version of the file is located on the left and the local version on the right.
Changes are noted by the lines in colors (the legend is in the lower right of the window). In
Figure 3-28, three lines were changed in the server version, two lines were changed on the
local version, and one line was deleted from the local version. The lower window shows you
what the final merged file will look like.

So, what is the merge tool telling you? First, looking at the bottom left of the window you
can see that there are three changes in total, and one conflict. The blue arrow in the lower
window is pointing at the first change in the file.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 87

4606CH03.qxd 4/20/06 3:12 PM Page 87

■Tip You can click in any window and the blue arrow will jump to that window. Then you can navigate the
changes in each window (using the Next Change and the Previous Change buttons in the lower right).

The exclamation mark tells you there is an unresolved conflict. Checking the “Navigate
conflicts only” check box in the lower left corner of the dialog allows you to move between
items that VSTS cannot figure out on its own.

The only actual conflict that exists in the file is the boxed area (in the lower window) on
line 10. The changes made in one file or another, but not both, are resolved automatically.

■Note If Auto Merge was selected, this dialog box would still have been displayed because VSTS cannot
figure out how to merge a conflict like this on its own.

To select the actual changes to merge, just click the correct row from either or both files
(in the upper windows). Figure 3-29 shows the result of selecting each line from each file.

Figure 3-29. Merge Tool with code lines selected

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL88

4606CH03.qxd 4/20/06 3:12 PM Page 88

The lines of code are added bottom to top. So if the conflict on line 11 from the server
file is selected (as shown in Figure 3-29) and then the conflict on line 11 from the local file is
selected, the resulting merge file would be as shown, at the bottom of the merge dialog box.
Obviously, this is not the desired solution. You can unselect a change from one of the files and
click OK. After OK is selected the files are merged and saved in the repository.

Configuring Version Control
Now that you have seen how to use Team Foundation Version Control, you will see how to
configure it and what your options are. TFVC is configured on a per-team-project basis
(although there are some options that are specific to the IDE and not a team project).

There is one option that is specific to the server and spans all team projects—file types. To
see the file types supported by the server, right-click the server name in the Team Explorer and
select Team Foundation Server Settings ➤ Source Control File Types. This displays the dialog
box in Figure 3-30.

Figure 3-30. File Types dialog box

This dialog box allows you to specify a couple of options related to how specific types are
supported on a global basis. You can edit any of the values or add new file types. The purpose
of this dialog box is to configure file merging and check-out options. If File Merging is enabled,
then the file type is supported by multiple check-outs as well. The other information is just
classification information and has no effect on the file.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 89

4606CH03.qxd 4/20/06 3:12 PM Page 89

Configuring Project Settings
To configure a team project, right-click the project in Team Explorer and select Team Project
Settings ➤ Source Control. There are three different categories of options you can set: Check-
out Settings, Checkin Policy, and Checkin Notes (Figure 3-31).

Figure 3-31. Source Control Settings dialog box

Checkout Settings
There is only one option for Checkout: enable (or disable) multiple checkout. Multiple check-
out is designed for projects where multiple people will be working on the same files at the
same time (but hopefully not the same section of a file). Typically, in an object-oriented
design, objects are encapsulated and have a small set of tasks to perform so only one devel-
oper is working on a given class (with each class in its own file). However, in situations where
there are very large classes with specialized functions, more than one developer may need to
work on the code at the same time. To facilitate this you can enable multiple checkout. When
multiple checkout is disabled, only one person at a time can check the file out. Other develop-
ers can perform a Get on the file, but they cannot check it out for editing.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL90

4606CH03.qxd 4/20/06 3:12 PM Page 90

Checkin Policy
Policies allow you to control when a file can get checked in by ensuring that the file, or the
build in the developers’ workspace, meets certain criteria.

■Tip Policies are good if everyone follows them. But there are always ways to get around checks like this,
so a rigorous process on top of this is a good idea.

To create a new policy, switch to the Checkin Policy tab and select Add. This brings up the
Add Check-in Policy dialog box shown in Figure 3-32.

Figure 3-32. Add Check-in Policy dialog box

There are three basic policies which you can customize based on the needs of the project.
You can also create custom policies.

■Caution It is critical to note that any policy can be overridden, but it is a bad practice and should not be
done. However, if you do override a policy to check in code, everyone will know about it and you will have to
provide an explanation.

Creating custom check-in policies is covered toward the end of the chapter.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 91

4606CH03.qxd 4/20/06 3:12 PM Page 91

Code Analysis

Selecting the code analysis policy brings up the Code Analysis Policy Editor shown in
Figure 3-33.

Figure 3-33. Code Analysis Policy Editor

Code analysis is discussed in detail in Chapter 13. For now, you should understand that
you can enforce conformance to a set of design standards. The standards that come with VSTS
out of the box are the standards Microsoft uses in .NET Framework and Visual Studio. You can
select all or just a subset of code analysis warnings to enforce.

■Note C/C++ code analysis engages a separate code analysis tool for unmanaged code. This is covered in
Chapter 13.

Testing Policy

This policy ensures that the code to be checked in has passed a given set of tests. These tests
are not tests created on the local machine. They are loaded from a test meta data file (.vsmdi)
located in TFVC. This prevents a developer from writing any test that will work in order to get
the code checked in. It also ensures that the checked-in code will work as advertised before it
is checked in.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL92

4606CH03.qxd 4/20/06 3:12 PM Page 92

When you select this option, you will be able to browse to a specific .vsmdi file and will be
given a list of tests that exist for the current project. You can then select the specific lists you
want to ensure are run before code is checked in.

■Tip You cannot specify individual tests, only specific lists of tests. This is a best practice because it allows
a project to ensure that certain basic standards are met (for example, can whatever code you write integrate
with the security system, or something along those lines?).

You can also add additional tests to the list(s) without having to change the policy. Keeping a base set of
mandatory test lists is a good idea.

Work Items Policy

The work items policy says you must associate a work item with the code you are checking in.
Work items are discussed in detail in Chapter 4. For the moment it is enough to understand
that you can associate specific pieces of work with specific tasks. For example, if a project
manager assigns you a bug to work on, you will check out the code necessary to fix the bug.
When the bug is fixed you will check the code back in. By requiring that you associate
checked-in items with a work item, the status of bugs and other assignments can be reported
and tracked at the project-management level.

Check-in Notes
This setting allows you to specify who must review the changes before they are checked in.
The default values are Code Reviewer, Security Reviewer, and Performance Reviewer. These
are user-defined values and you can enter your own titles, such as Developer Lead or some
other value. None of these reviews are required by default but checking the Required check
box will make them required.

■Caution As mentioned earlier, there are ways around the check-in settings. In the case of the reviewers,
all a developer has to do is type anything into the entry field when they go to check in a file and it will be
accepted. This is one of those areas to watch out for.

IDE Version Control Configuration
Certain settings are available in the IDE and support a specific developer’s needs when work-
ing with version control. To access the IDE configuration, select Tools ➤ Options, and select
Source Control from the tree view (Figure 3-34).

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 93

4606CH03.qxd 4/20/06 3:12 PM Page 93

Figure 3-34. Environment Options

Plugin Selection
This displays the list of available source control providers. For example, a typical installation
of VSTS might have Visual Studio Team Foundation Server, Microsoft Visual SourceSafe, and
Microsoft Visual SourceSafe (Internet). There are also other plugins available from other ven-
dors. If you have any problems with TFVC (for example, everything is grayed out and you have
no menu options for dealing with version control), then it is a good bet that the wrong source
control provider has been selected.

Environment
This allows you to specify how the IDE will react to given situations. Figure 3-34 shows the
various options you can set.

For dealing with checked-in items, you have the following options when performing a
save: check out the file automatically; prompt for check-out; or perform a Save As. For files
you are editing: check out automatically (when you start editing); prompt for check-out;
prompt for exclusive check-out; or do nothing. If you choose the last option you will not be
able to edit the file at all unless you check “Allow checked-in items to be edited.”

Visual Studio Team Foundation
These options deal with how your local system will interact with the Team Foundation Server.
The first option is whether to use the Team Foundation Proxy Server (TFPS). TFPS was built
to facilitate remote access to the Team Foundation Version Control. Often the Internet is less
than reliable—there are outages or there are a large number of files involved. TFPS is installed
on a server in a remote location. When you use TFPS, the first check for a file is made on the
proxy server. If the file is found, it is downloaded from the cache. If it is not found it is down-
loaded from the central repository. The proxy server ensures that files are kept in a consistent

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL94

4606CH03.qxd 4/20/06 3:12 PM Page 94

state (i.e., you cannot do a Get Latest, and it retrieves the latest version of the proxy server,
which is actually two versions behind the central server). This can help ease the burden of
slow connections on remote teams.

■Tip For more information on setting up a Team Foundation Proxy Server, see the Team Foundation
Installation Guide.

You also have the option to show deleted items in SCE. This will show the item grayed out
and noted as deleted. By default this is off.

Finally, there is a Configure User Tools section. This allows you to specify your own tools
(as opposed to the default tools provided for you by VSTS). It allows you to specify your own
Merge or Compare tools. For example, Diff Doc is a popular (and free) tool for comparing
Microsoft Word documents. Figure 3-35 shows the settings for DiffDoc.exe.

Figure 3-35. Diff Doc tool settings

The arguments for various tools can be somewhat confusing and difficult to configure.
James Manning at Microsoft has an excellent blog describing how to configure different tools
at http://blogs.msdn.com/jmanning/articles/535573.aspx.

Creating Custom Check-in Policies
Custom check-in policies allow you to specify your own constraints, which must be met
before items can be checked in. Creating a check-in policy is fairly straightforward. The exam-
ple presented here was originally written by Jeff Atwood of Vertigo Software (you can check out
his blog at http://blogs.vertigosoftware.com/jatwood/default.aspx) and was helped along
by James Manning.

Creating the Policy
This example requires that a user enter a comment before checking code in. All in all this is
probably the most useful check-in policy ever, as we are notorious for not entering comments!
Listing 3-3 shows the code for the empty comment check-in policy.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 95

4606CH03.qxd 4/20/06 3:12 PM Page 95

Listing 3-3. Required Comment Check-in Policy

[C#]
using System;
using System.Windows.Forms;
using Microsoft.TeamFoundation.VersionControl.Client;
[Serializable]
public class CheckForCommentsPolicy : PolicyBase
{

public override string Description
{

get { return "Remind users to add meaningful comments "
+ "to their checkins"; }

}

public override string InstallationInstructions
{

get { return "To install this policy, follow the "
+ "instructions in CheckForCommentsPolicy.cs."; }

}

public override string Type
{

get { return "Check for Comments Policy"; }
}

public override string TypeDescription
{

get { return "This policy will prompt the user to decide whether or not "
+ "they should be allowed to check in."; }

}

public override bool Edit(IPolicyEditArgs args)
{

// no configuration to save
return true;

}

public override PolicyFailure[] Evaluate()
{

string proposedComment = PendingCheckin.PendingChanges.Comment;
if (String.IsNullOrEmpty(proposedComment))
{

return new PolicyFailure[] {
new PolicyFailure("Please provide some comments "

+ "about your checkin", this) };

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL96

4606CH03.qxd 4/20/06 3:12 PM Page 96

}
else
{

return new PolicyFailure[0];
}

}

public override void Activate(PolicyFailure failure)
{

MessageBox.Show("Please provide comments for your checkin.",
"How to fix your policy failure");

}

public override void DisplayHelp(PolicyFailure failure)
{

MessageBox.Show("This policy helps you to remember to "
+ "add comments to your checkins.", "Prompt Policy Help");

}
}
[VB]
Imports System
Imports System.Windows.Forms
Imports Microsoft.TeamFoundation.VersionControl.Client

<Serializable()> _
Public Class CheckForCommentsPolicy

Inherits PolicyBase

Public Overrides ReadOnly Property Description() As String
Get

Return "Remind users to add meaningful comments " _
& "to their checkins"

End Get
End Property

Public Overrides Property InstallationInstructions() As String
Get

Return "To install this policy, follow the " _
& "instructions in CheckForCommentsPolicyVB.vb."

End Get
Set(ByVal value As String)

MyBase.InstallationInstructions = value
End Set

End Property

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 97

4606CH03.qxd 4/20/06 3:12 PM Page 97

Public Overrides ReadOnly Property Type() As String
Get

Return "Check for Comments Policy"
End Get

End Property

Public Overrides ReadOnly Property TypeDescription() As String
Get

Return "This policy will prompt the user to " _
& "decide whether or not they should be " _
& "allowed to check in."

End Get
End Property

Public Overrides Function Edit(ByVal args As IPolicyEditArgs) As Boolean
' no configuration to save
Return True

End Function

Public Overrides Function Evaluate() As _
Microsoft.TeamFoundation.VersionControl.Client.PolicyFailure()

Dim proposedComment As String = PendingCheckin.PendingChanges.Comment
If String.IsNullOrEmpty(proposedComment) Then

Dim msg As String = "Please provide some comments " _
& "about your checkin"

Dim p As PolicyFailure() = New PolicyFailure(1) {}
p(0) = New PolicyFailure(msg, Me)
Return p

Else
Return New PolicyFailure(0) {}

End If
End Function

Public Overrides Sub Activate(ByVal failure As PolicyFailure)
MessageBox.Show("Please provide comments for your checkin.", _

"How to fix your policy failure")
End Sub

Public Overrides Sub DisplayHelp(ByVal failure As PolicyFailure)
MessageBox.Show("This policy helps you to remember to " _
& "add comments to your checkins.", "Prompt Policy Help")

End Sub

End Class

Now, what does all of this mean? Table 3-4 describes each custom policy method.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL98

4606CH03.qxd 4/20/06 3:12 PM Page 98

Table 3-4. Custom Policy Methods Described

Method Description

Description This provides a description of the policy.
InstallationInstruction The return value of this method is stored on the Team Foundation

Server and is displayed when a user does not have the policy
installed. As a best practice, a policy should be installed on the local
machine that needs the policy. In version 1 of VSTS, partially trusted
code is not allowed to be executed. That means that to install the
policy in a remote location requires that full trust is enabled for code
running on a remote system, which is not recommended.

Type This describes the type of policy.

TypeDescription This gives a more detailed identification of the type.

Edit This method displays a UI and saves the configuration of your type if
your custom check-in policy contains configuration options (such as
the Testing Policy).

Evaluate This validates that what you are checking in passes the policy check.

Activate This method displays information to the user when they double-click
an item on the Policy Failure page to explain why a policy failed (or
whatever other information you want to present to the user).

DisplayHelp This can be used to display a custom help file or link to a web page or
to just display a simple message. It is invoked when the user presses
the F1 key and the policy is selected on the Policy Failure page.

Registering the Policy
Creating the policy is the first part of the process. Once you create it, you have to install it.

■Caution Microsoft recommends that policies be installed on the local machine. If this is not done, you
will have to allow full trust of assemblies residing on remote machines, which, in general, is not a secure
practice.

To install the policy, copy the assembly to your local machine (preferably, all assemblies
that need to be downloaded to a developer’s machine should be stored on a secure network
share). Make the following entries in the registry:

Key: HKLM\Software\Microsoft\VisualStudio\8.0\TeamFoundation\SourceControl\
Checkin Policies or HKCU\Software\Microsoft\VisualStudio\8.0\TeamFoundation\
SourceControl\Checkin Policies

Type: Reg_sz

Name: Policy Class (in this example, Check for Comments Policy)

Data: Absolute path to the assembly

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 99

4606CH03.qxd 4/20/06 3:12 PM Page 99

Alternatively, you can (and probably should) configure a .reg file, the contents of which
are shown in Listing 3-4.

Listing 3-4. Registration File

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\
TeamFoundation\SourceControl\Checkin Policies]

"CheckForCommentsPolicy"="[Full Path to File]\\CheckForCommentsPolicy.dll"

After you run this file (simply double-click on it and you will be prompted to make the
change to the registry), the Check for Comments Policy will be displayed in the list of available
policies (Figure 3-36).

Figure 3-36. Custom check-in policy

With this example in hand, you should be able to create any type of policies you or your
organization feel are necessary.

Converting from Visual SourceSafe to Team
Foundation Version Control
Needless to say, this is a welcome conversion tool. In addition to this, you can migrate from
Rational ClearQuest. The process of migration is an extensive process that needs to be care-
fully planned. We have not included this process here, since Microsoft has done a very
thorough job of explaining it in the MSDN documentation. We just wanted to let you know
that you could do it!

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL100

4606CH03.qxd 4/20/06 3:12 PM Page 100

Command-Line Access
Team Foundation Version Control allows you to perform all of the operations you normally
would through Visual Studio via the command line. This powerful feature means you can
easily incorporate version control actions within batch files.

■Tip Microsoft provides excellent documentation on the version control command-line tool (tf.exe) in
its MSDN documentation. The broad overview of topics covered will give you a solid introduction to using
the tool.

The command-line application is tf.exe. It resides in the C:\Program Files\Microsoft
Visual Studio 8\Common 7\IDE folder. You can use this tool to perform individual commands
at the command prompt or to process scripted files that contain version control commands.
The best use of the command-line tool is with scripted files. When used with a scripted file,
the command-line tool can accept any number of arguments that can be referenced in the
scripted file by using %1, %2, …, %n where the number refers to the argument number on the
command line. To invoke a script file, use the following syntax:

tf.exe @filename.tfc arguments

You can also change directories and include comments in the script files. The available
commands are grouped into two categories: informational and action. Each of these com-
mands has various options that allow you to control which objects they are applied to. They
are fairly self-explanatory and are described in detail in the MSDN documentation.

Informational commands allow data concerning various items under version control to
be retrieved.

• Branches: Lists the branch history of a file or a folder.

• Changeset: Lists information regarding changesets.

• Difference: Compares and displays (depending on the mode used) differences between
two files or folders.

• Dir: Lists files and folders in a given directory.

• Labels: Lists all labels in the repository.

• Permission: Lists users and groups along with their permissions.

• Properties: Lists information about a given file or folder.

• Shelvesets: Lists information about shelved changes.

• Status: Lists information concerning pending changes.

• WorkFold: Creates, modifies, or lists mappings between repository folders and the cor-
responding work folders.

• Workspaces: Lists information about workspaces in the repository.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL 101

4606CH03.qxd 4/20/06 3:12 PM Page 101

Action commands, listed below, allow you to perform various actions on those items
under source code control.

CHAPTER 3 ■ TEAM FOUNDATION VERSION CONTROL102

• Add

• Branch

• Branches

• Checkin

• Checkout

• Configure

• Delete

• Dir

• Get

• History

• Label

• Lock

• Merge

• Merges

• Permission

• Properties

• Rename

• Resolve

• Shelve

• Status

• Undelete

• Undo

• Unlabel

• Unshelve

• View

• Workspace

Summary
At this point you now have extensive knowledge about using the new Team Foundation Version
Control. You know how to create repositories, check items in, check them out, alter them,
resolve conflicts, and merge them. You have been introduced to the concepts of shelving and
branching, which ensure that you never have to worry about a hard-drive crash causing you to
lose work (but it is not our fault if you forget to actually add the code to the repository!).

You can also configure check-in policies, which in our opinion is one of the best features
of TFVC. And you have the ability to create your own check-in policies that fit your organiza-
tion’s specific needs. The ability to supply your own merge and compare tools to replace the
out-of-the-box versions that come with Team Foundation will no doubt be a welcome option
to many developers. And you have seen how the Team Foundation Proxy Server helps support
distributed teams by caching versions of files on a local network; this should ease the burden
when projects are outsourced around the globe.

Chapter 4 gives you the ins and outs of project management and VSTS integration. You
will learn how to use Microsoft Project and Excel to create schedules, assign work, and track
issues without using Visual Studio or Team Explorer.

4606CH03.qxd 4/20/06 3:12 PM Page 102

Project Management

Neither of the authors has ever been a project manager. We have had the luxury of leading
teams from a technical perspective and have left the high-profile leadership to others. Project
management is, to say the least, a thankless job at times. We have worked with numerous
project managers and have seen the problems they face. These problems range from getting
developers to track their time against work items, to explaining to the customer why the
project is not going as smoothly as the customer imagines it will go. There are many more
problems in between that the project manager has to deal with.

At the base of the project manager’s job is creating schedules, recording data, and report-
ing data. This is where Visual Studio Team System plays a role in simplifying the project
manager’s role. The tools in VSTS that relate to project management help bring together tasks
performed by Microsoft Project (or Excel), work item tracking, and the Project Portal. VSTS
allows the project manager to create schedules in Microsoft Project (these schedules include
the work items for the team members), add work items from Microsoft Excel (or Project), track
changes to work items via the project schedule, and publish updates to the Project Portal. No
longer do team members have to report status to the project manager—the project manager
can just pull the data.

■Note Okay, let us face facts. Team members (and you know who you are) do not report anything to the
project manager. It’s like pulling teeth. So, in this case, project managers no longer have to pester team
members to report what they are working on.

The heart of this system is the work item tracking system and the version control system.
They work together to supply the information the project manager needs to provide accurate
information in a timely fashion to the appropriate people—the people who ultimately con-
tinue to fund the development of a project.

In this chapter you will see how the integration with MS Project works, and how to add
work items, update work items, and refresh work items using both Microsoft Project and
Microsoft Excel. We discuss work items in great detail in Chapter 5.

103

C H A P T E R 4

4606CH04.qxd 4/20/06 3:13 PM Page 103

A Week in the Life of a Project Manager
(without VSTS)
Before showing you how to use VSTS to manage projects, let’s take a look at what project
managers actually do by looking at the starting week of a new project.

Day 1, Monday
The project manager, whom we’ll call John, sets up Microsoft Project with all of the resources
available at the time (typically, the system architect and/or the application architect, and
possibly a lead developer and tester). John creates the basic outline of the project (system
development life cycle phases and high-level deliverables) and assigns some deliverables to
the available resources. In real life this usually takes more than a day but in this case John is
very fast.

Day 2, Tuesday
John creates Excel spreadsheets for each member of the project team. He transfers the tasks
they are responsible for from Microsoft Project to each of the spreadsheets (if John is really
technical, he has written or has used a previously created macro to do this automatically).
John has to do this at the beginning or end of every week for the following week for each
member of the team. This becomes more tedious as more resources are added.

Day 3, Wednesday
Now the project manager has to set up a communication plan with the stakeholders. John has
to find out what the stakeholders want to know and when they want to know it. He needs to
figure out how to configure a change management system (i.e., create the process for the
system and integrate it with the tools—usually Excel spreadsheets and e-mails). This is some-
times exceedingly difficult because different classes of stakeholders want to know different
things.

Day 4, Thursday
On the fourth day of the week, the project manager has to set up shares, folders, etc., for the
project team to store their files (user requirements, owner specifications, architecture docu-
ments, etc.). He then has to publicize and document the structure so the location of all of the
deliverables and related documents is known.

Day 5, Friday
The end of the first week. Whew. John is almost done. Now he just needs to find out what
everyone did for the week so he can report their status to the stakeholders and find out what
is left to do for each deliverable assigned to the various project team members. The only prob-
lem is that no one filled in the Excel time sheets and mailed them to John. Now he has to send

CHAPTER 4 ■ PROJECT MANAGEMENT104

4606CH04.qxd 4/20/06 3:13 PM Page 104

e-mails and hound team members for their status. Once they send him the Excel spreadsheets
(because everyone on the team is really good at doing that) he has to extract all of the num-
bers and update Microsoft Project with the number of hours left to complete a deliverable, or
mark the deliverable as complete.

Two Days in the Life of a Project Manager
(with VSTS)
Now, let’s see that scenario with Visual Studio Team System’s project management integration
capabilities.

Day 1, Monday
The project manager creates a new team project using Visual Studio Team System (selecting
the appropriate methodology template). He adds all of the resources that he knows about
to the new team project. John opens Microsoft Project and adds all of the project resources to
the new project file. John creates the basic outline of the project (SDLC phases and high-level
deliverables) and assigns some deliverables to the available resources. In real life this usually
takes more than a day, but in this case John is very fast. John updates the changes he made in
Microsoft Project with the Team Foundation Server.

Day 2, Tuesday
John sends out an e-mail to the stakeholders detailing where the team project portal is and
how to access the available reports. John sets the policy that changesets must be associated
with work items, and then John spends the rest of the week fishing.

Okay, it is not quite that cushy for a project manager, but you get the idea. Much of the
tedious work simply does not need to be done. In the rest of this chapter, you will see how this
is actually accomplished.

■Note There is a lot more that goes into creating a project schedule than is described here. For the
purposes of this chapter, only those items that are directly related to Visual Studio Team System will be
discussed. The “schedule” will only consist of the items assigned when the project was created.

Using Microsoft Project
The first thing a project manager will do (after the team project is created) is create a project
schedule. The project schedule consists of a series of tasks, which may also include other
tasks—in other words, a hierarchical structure of tasks. They consist of start times, due dates,
descriptions, and to whom the tasks are assigned.

CHAPTER 4 ■ PROJECT MANAGEMENT 105

4606CH04.qxd 4/20/06 3:13 PM Page 105

■Note Tasks are a type of work item. These terms are used interchangeably in this chapter.

To begin with, launch Microsoft Project from the Start menu (Start ➤ Programs ➤
Microsoft Office ➤ Microsoft Project). If everything is installed correctly, you will see an addi-
tional toolbar in Project (shown in Figure 4-1).

CHAPTER 4 ■ PROJECT MANAGEMENT106

Figure 4-1. VSTS toolbar in Microsoft Project

As you can see, before you can create a schedule, you need to select the team project this
schedule will be associated with. To do this, select Choose Team Project (also available from
the Team menu on the main menu). This brings up the Connect to Team Foundation Server
dialog box shown in Figure 4-2.

Figure 4-2. Connect to Team Foundation Server dialog box

Select the server where your project resides, then select the Effort Tracking project and
click OK.

4606CH04.qxd 4/20/06 3:13 PM Page 106

■TIP You can also open a project from Team Explorer by selecting Server ➤ [Project Name] ➤ Project
Management ➤ Development Project Plan.mpp which is associated with the project by default.

Once you have done this, the Get Work Items, Publish, and Refresh options become avail-
able to you. At this point though you still do not have any work items visible.

Retrieving, Adding, and Updating Work Items
To get the work items from the server, select Get Work Items from the toolbar. This will display
the Get Work Items dialog box shown in Figure 4-3.

Figure 4-3. Get Work Items dialog box

For this exercise, select the All Tasks saved query and click Find. Note though that you can
search on various items depending on what your needs are. At the beginning of a project, the
All Tasks query is a good place to start, as these are the only tasks that are currently part of the
project. By default, everything returned by the lookup is selected for inclusion in the project
schedule. Click OK to import the items into Microsoft Project (Figure 4-4).

CHAPTER 4 ■ PROJECT MANAGEMENT 107

4606CH04.qxd 4/20/06 3:13 PM Page 107

There are a couple of small items to note here:

• The start and end times for all tasks are for the day the project is created and have a
duration of zero days.

• No predecessors are set.

• The resource for all items is the individual who created the team project.

• There are no project areas at this point, so no changes can be made there.

• All iterations are iteration 0, even though there are three iterations, since it is assumed
these tasks occur at the start of the project.

At this point you can change whatever you want to change as needed. To begin with,
you would probably remove any items that were not needed on your project. To delete an
item, select it (item 15 is a good choice here) and press the Delete key (or right-click the item
and select Delete. After you have completed making changes, you must publish the changes
to the server. To publish the changes, just select the Publish button from the toolbar.

■Tip You can elect not to publish an item by selecting either No or Refresh Only from the Publish and
Refresh column. Selecting No indicates that the item will never be published, and selecting Refresh Only
indicates that the item will be refreshed, but no changes you make to the item will ever be published.

CHAPTER 4 ■ PROJECT MANAGEMENT108

Figure 4-4. Initial project schedule

4606CH04.qxd 4/20/06 3:14 PM Page 108

This updates Team Foundation Server and if you added any items will return the Work
Item ID to populate the project schedule.

■Caution In version 1 of VSTS you cannot assign multiple resources to a single task. You have to dupli-
cate the task and set one resource per task. The VSTS development team is actively looking at this issue. If
you try to assign multiple resources to a single task, an error message will be displayed when you publish
the changes.

The ability to publish only certain items is important. A project manager would probably
not want to publish the roll-up tasks because those are not tasks that can be “worked,” per se.

■Tip To assign work items to multiple resources, you must create the work item several times and assign
only one resource to each work item.

Adding Attachments and Links
In addition to adding, retrieving, and updating items, you can also attach files and links to
specific work items. To attach files and links, an item must already be published. Select a pub-
lished item in the list and then select Links & Attachments. This will bring up the View/Edit
Work Item Links and Attachments dialog box (Figure 4-5).

Figure 4-5. View/Edit Work Item Links and Attachments dialog box

CHAPTER 4 ■ PROJECT MANAGEMENT 109

4606CH04.qxd 4/20/06 3:14 PM Page 109

A link can be one of the following: Changeset, Work Item, Versioned Item, Test Result, or a
regular hyperlink. Depending on the type of link you are adding, the options are different. The
Add Link dialog box is shown in Figure 4-6.

Figure 4-6. Add Link dialog box

The dialog in Figure 4-6 shows the options for a Work Item link type. Clicking the Browse
button will display the Get Work Items dialog box shown in Figure 4-3. The Find Changesets
dialog box will be displayed if you elect to link to a changeset (Figure 4-7).

Figure 4-7. Find Changesets dialog box

CHAPTER 4 ■ PROJECT MANAGEMENT110

4606CH04.qxd 4/20/06 3:14 PM Page 110

■Note While project managers can associate work items with changesets, it is generally not something a
project manager would often do. Consider it as a tip for what you can do within Microsoft Project.

For the Find Changesets dialog, you browse to a specific file (contained in the source code
control system) or enter a specific user’s name and click Find. This will return all of the change-
sets for either that file or that user. The Range options let you filter the result set more granularly.
From there you may either view the details of the changeset or select a result to link to.

The Versioned Item option provides the same dialog, only it lets you link to the item in a
specific changeset (which you can browse for) or to the latest version of the item.

Selecting the Test Result option lets you browse for a specific test result (Figure 4-8).

Figure 4-8. Choose Test Result dialog box

In this dialog box you can select the build number, the type, and a specific test run. From
there you can select the specific test to link an item to. In this case, select any test that appears
in the list and click OK.

■Tip For the project manager, many of these options are a way of tracking developers’ time and ensuring
that a given task is completed. Using the Test Result link as an example, if a bug in the system needs to be
fixed, a bug work item would be created (work items are discussed in depth in Chapter 5). When fixed, the
developer could mark it as completed, and a project manager (or a developer, or a tester) could associate
the results that validate the fix with the bug.

CHAPTER 4 ■ PROJECT MANAGEMENT 111

4606CH04.qxd 4/20/06 3:14 PM Page 111

All link types allow you to enter a comment against the link.
Once you have selected your links, they will be displayed in the list view in Figure 4-5.

Selecting an item in the list and then clicking Open will cause various windows to open,
depending on the type of link you select. With the previous example, using a test result link,
clicking the Open button displays the result shown in Figure 4-9.

Figure 4-9. Test Result Details link

Adding an attachment is fairly straightforward. Click the Attachment tab, click Add,
browse to the file you want to attach, and select OK. You can also enter a comment against
the file. The one difference here is that links are automatically saved to the server as they are
entered; files are not. When you have finished attaching all of the files you want, click the
Save button. This will upload the files to the server.

Areas and Iterations
Areas and iterations can be added, deleted, and configured from within Microsoft Project,
which displays the same dialogs as described in detail in Chapter 2.

Column Mapping
Finally, a project manager can view column mappings in Microsoft Project. Figure 4-10 shows
a column displayed in Microsoft Project and the equivalent column in the VSTS database. You
cannot actually make changes to the mapping through this dialog box. In order to make
changes you will need to use the TFSFieldMapping command-line tool described next.

CHAPTER 4 ■ PROJECT MANAGEMENT112

4606CH04.qxd 4/20/06 3:14 PM Page 112

Figure 4-10. Column Mapping dialog box

■Note The work item tracking command-line tools provide the ability to add and remove columns from the
TFS database in order to support custom fields. These tools are discussed in Chapter 5.

To use the TFSFieldMapping tool, open the Visual Studio Command Prompt. Before
changing mappings, you need to have a copy of the mapping file. To download the mapping
file, run the following at the command prompt (or replace the items with appropriate values):

Tfsfieldmapping download kiona "Effort Tracking" "c:\mapping.xml"

This will download the mapping file for your project. The file is in, as with almost every
other file in VSTS, an XML format. This file is shown in Listing 4-1.

Listing 4-1. TFS Field Mapping File

<?xml version="1.0" encoding="utf-8"?>
<MSProject>
<Mappings>
<Mapping WorkItemTrackingFieldReferenceName="System.Id"
ProjectField="pjTaskText10" ProjectName="Work Item ID"/>
<Mapping WorkItemTrackingFieldReferenceName="System.Title"
ProjectField="pjTaskName" />

<Mapping WorkItemTrackingFieldReferenceName="System.WorkItemType"
ProjectField="pjTaskText24" />

CHAPTER 4 ■ PROJECT MANAGEMENT 113

4606CH04.qxd 4/20/06 3:14 PM Page 113

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Common.Discipline"
ProjectField="pjTaskText17" />

<Mapping WorkItemTrackingFieldReferenceName="System.AssignedTo"
ProjectField="pjTaskResourceNames" />

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.CompletedWork" ProjectField="pjTaskActualWork"
ProjectUnits="pjHour"/>

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.RemainingWork"
ProjectField="pjTaskRemainingWork"
ProjectUnits="pjHour"/>

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.BaselineWork" ProjectField="pjTaskBaselineWork"
ProjectUnits="pjHour"/>

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.StartDate" ProjectField="pjTaskStart"
PublishOnly="true"/>

<Mapping WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.FinishDate" ProjectField="pjTaskFinish"
PublishOnly="true"/>

<Mapping WorkItemTrackingFieldReferenceName="System.State"
ProjectField="pjTaskText13" />

<Mapping WorkItemTrackingFieldReferenceName="System.Reason"
ProjectField="pjTaskText14" />

<Mapping WorkItemTrackingFieldReferenceName="Microsoft.VSTS.Common.Priority"
ProjectField="pjTaskText19" ProjectName="Work Item Priority" />

<Mapping WorkItemTrackingFieldReferenceName="System.AreaPath"
ProjectField="pjTaskOutlineCode9" />

<Mapping WorkItemTrackingFieldReferenceName="System.IterationPath"
ProjectField="pjTaskOutlineCode10" />

<Mapping WorkItemTrackingFieldReferenceName="System.Rev"
ProjectField="pjTaskText23" />

<ContextField WorkItemTrackingFieldReferenceName=
"Microsoft.VSTS.Scheduling.TaskHierarchy"/>

<LinksField ProjectField="pjTaskText26" />
<SyncField ProjectField="pjTaskText25" />

</Mappings>
</MSProject>

In order to change the mappings, simply update the WorkItemTrackingFieldReference-
Name values or the ProjectField values. When you have finished making changes, upload this
file back to TFS to complete the mapping update. To do that, use the same command as you
did to download the file—just use the word “upload” instead of “download” and you are done.

CHAPTER 4 ■ PROJECT MANAGEMENT114

4606CH04.qxd 4/20/06 3:14 PM Page 114

■Tip The PublishOnly setting is an incredibly useful field. As a project manager, you may not want people
to be able to change start and end dates of work items via Microsoft Project or Excel. You may not want
them to change other items that you consider important. Adding this attribute allows people to retrieve the
value, but not update it.

Using Microsoft Excel
Microsoft Excel is everyone’s favorite friend. If some major problem caused Excel to go down
all over the world, virtually every business on the planet would grind to a halt rather suddenly.
Knowing how useful Excel is to everyone, the VSTS team used the capabilities of Excel to allow
team members to enter items into TFS through the Excel interface.

■Note Excel is a part of Microsoft Office; Microsoft Project requires a separate license. In general, only the
project manager needs to be using Project, and everyone else can use Excel to make entries if they need to
(all entries by the development team can be made from within Visual Studio though).

If you are a project manager reading this, how often have you had to create macros to pull
data from MS Project into Excel so developers can log their hours against specific items? If you
are a developer reading this, how many times have you gone from project to project, where
everyone has a different way of recording hours? The beauty of this solution is that it is all
automatic. You can get your work items (if you need to fill this sheet in); you can get everyone’s
work items (if you are a project manager); you can customize the query to see if work was
completed (or just filter this list); or you can perform a hundred other operations to slice and
dice the data any way you see fit to gather useful information.

■Tip Another key benefit of Excel, and one of the reasons Microsoft chose to use it as the interface, is
its easy ability to create charts from any type of data in VSTS. Even though you have the benefits of SQL
Server Reporting Services, using Excel is often much faster—especially if the reports are for the project
manager only.

The Excel interface is slightly different from the Project interface. When you first launch a
new Excel file, the toolbar shown in Figure 4-11 is displayed.

CHAPTER 4 ■ PROJECT MANAGEMENT 115

4606CH04.qxd 4/20/06 3:14 PM Page 115

Figure 4-11. The Excel Team System toolbar

Creating Lists in Excel
Before you can do anything with Excel and VSTS, you need to create a new list by selecting
New List from the toolbar. This displays the Connect to a Team Foundation Server dialog box
(Figure 4-2). Once you connect to a Team Foundation Server you have the option of retrieving
the results of a query or inputting new items (Figure 4-12).

Figure 4-12. The Excel New List dialog box

For this first example, assume that you select the All Tasks query and click OK. This
creates the list in Excel as shown in Figure 4-13.

This list should immediately validate why this is a popular tool for both project managers
and other team members alike.

■Note Some fields in this list are read-only. For instance, you cannot change the work item type once it
has been created.

Publishing items from Excel works the same way as it does in Project—you just click the
Publish button. However, you can also configure a list in Excel and choose which columns you
want to view as part of the list.

Selecting the Input List option (Figure 4-12) creates a blank list with several default
columns. This allows you to enter items without having to first retrieve items from the server.

CHAPTER 4 ■ PROJECT MANAGEMENT116

4606CH04.qxd 4/20/06 3:14 PM Page 116

Configuring Lists in Excel
To configure the list, select Configure List from the toolbar. This will display the Configure List
Properties dialog box shown in Figure 4-14.

Figure 4-14. Configure List Properties

This dialog box in itself does not do anything; however, it affects how the list is updated
from the server. The default is to Refresh from query. This means that whenever you click
Refresh on the toolbar, the same query will be run over again and any new or updated items
will be shown in the list. Selecting the “Refresh current work items only” option means that
when you click Refresh, only items that are currently in the list will be updated.

CHAPTER 4 ■ PROJECT MANAGEMENT 117

Figure 4-13. Query results in Microsoft Excel

4606CH04.qxd 4/20/06 3:14 PM Page 117

■Note Clicking Refresh also enables the Get Work Items button, which allows you to add other items not in
the current list (see Figure 4-3 and the associated explanation).

The other option to configure lists in Excel is to select the columns you want to display in
the list. To do this, select the Choose Columns button. This will display the Choose Columns
dialog box shown in Figure 4-15.

Figure 4-15. Choose Columns dialog box

This dialog box lets you choose columns associated with any work item type (via the
drop-down list at the top of the form) because the list in Excel can display mixed item types.
This means that the possible configurations in Excel are virtually endless depending on your
need. The available columns are too extensive to list here, but any column you have seen so
far, and in the next chapter, is available through this dialog box. To add a column, just select
the column on the right and click the right arrow button. Click the left arrow button to remove
an item from the selected columns list.

Clicking reset will reset the columns to the default for the given list. Selecting Add
Required will add all required items from the Available Columns list (those identified with a
“Required” after the column name) to the Selected Columns column.

Links and attachments work the same way as described in the “Adding Attachments and
Links” section.

CHAPTER 4 ■ PROJECT MANAGEMENT118

4606CH04.qxd 4/20/06 3:14 PM Page 118

Using Visual Studio
You can of course use Visual Studio to perform project management duties. You can add tasks,
assign tasks, and set start and end dates all from within Visual Studio (see Figure 4-16).

Figure 4-16. Task list in Visual Studio

The details tab contains the schedule information. Virtually everything else on this work
item form (bottom portion of Figure 4-16) maps to a field in Excel or Microsoft Project. In gen-
eral, this is not a very friendly view for project managers, which Microsoft realizes. This is the
reason for the Excel and Microsoft Project integration. However, when a project manager finds
himself or herself looking at a task list in Visual Studio (come to think of it, this applies to any-
one who works with VSTS), the team member can view everything in the task list in Excel or
Microsoft Project. To do this, simply select all of the items you want to export, and select the
appropriate icon on the task list toolbar. Enough said about project management from within
Visual Studio.

CHAPTER 4 ■ PROJECT MANAGEMENT 119

4606CH04.qxd 4/20/06 3:14 PM Page 119

Summary
In this chapter you saw how the integration between Visual Studio Team System and Microsoft
Project and Excel will save you countless hours of work and allow you to manage a project’s
data more easily. A project manager typically manages multiple software projects at once,
because no one software project should take up all of their time. At least, that is the theory.
The reality is that project managers often spend way too much time figuring out how they are
going to record the team’s time, and against which items, track the status of items, and report
status to the stakeholders.

With the simple but powerful and well thought out integration described in this chapter,
much of the grunt work is simply removed. Teams will now have a repeatable, simple way to
track their activities and the hours logged against items, the amount of work left, whether esti-
mates are accurate, and so on. It all leads to one thing: through continued use of the tool,
teams will become more efficient and spend more time engineering software rather than per-
forming administrative tasks (which no one likes anyway). The next chapter introduces you to
the details of the work items.

CHAPTER 4 ■ PROJECT MANAGEMENT120

4606CH04.qxd 4/20/06 3:14 PM Page 120

Team Work Item Tracking

When you’re working on a project of any size, you need to manage a number of lists. Even
building a tree fort for your kids may involve several lists: the list of local building projects
where you could acquire spare lumber, the list of priority features (like trapdoors, escape
ropes, and an electronic drawbridge), and the list of friends who actually know how to build
things.

At the startup of a software project, there are the customer requirements, startup tasks,
and many other lists to manage. As the project evolves, the team begins to compile lists of
bugs, issues, and change requests. Team Foundation addresses the concept of list manage-
ment in a feature area called work item tracking (WIT). WIT originated from the Microsoft
internal bug-tracking systems. Per Kevin Kelly’s weblog on MSDN (http://blogs.msdn.com/
kkellyatms/archive/2004/05/28/144108.aspx):

We knew we had to settle on something . . . ideally somewhat unique, and something

folks would just get. The essence of our system helps teams manage discrete units of

work, assigned to individuals and, when taken as a whole, it represents all activities

(another famous term! and taken) managed in a software development project. They’re

all the work items of a project . . . work item tracking. Teams define the types of work

items they want to track . . . and I’ll leave details of this for later posts.

This chapter introduces WIT, which is arguably the core component of Team Foundation.
In a sense, work items are the glue that holds Team Foundation together. If we were discussing
a banking scenario, the work items would be analogous to account entries. The common defi-
nition for VSTS work items is that they are assigned to an individual for someone to act upon.

Working with Work Items
Work Items is the first node in the Team Explorer window under the project name. Right-click
the Work Items node to see the options for working with work items, as shown in Figure 5-1.
Table 5-1 describes each of these options.

121

C H A P T E R 5

4606CH05.qxd 4/20/06 3:15 PM Page 121

Figure 5-1. The Work Items context menu

■Note The Work Items context menu will show the four most recent selections made. For example, if you
selected Add Work Item ➤ Bug, then Add Bug would appear above Add Work Item the next time you right-
clicked the Work Items node.

Table 5-1. Work Items Explorer Options

Option Description

Add Work Item Opens a form for the work item type selected

Go to Work Item Opens a form for the work item based on the ID entered

Add Query Opens the New Query window

Add Work Items with Microsoft Excel Allows you to populate a Microsoft Excel spreadsheet
with work items and publish them to the Team
Foundation Server (as described in Chapter 4)

Add Work Items with Microsoft Project Allows you to populate a Microsoft Project task list with
work items and publish them to the Team Foundation
Server (as described in Chapter 4)

Team Project Process Guidance Opens the Process Guidance Work Items section within
the Project Portal (as described in Chapter 2)

Optionally, you can create and manage work items from the Team menu, as shown in
Figure 5-2.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING122

4606CH05.qxd 4/20/06 3:15 PM Page 122

Figure 5-2. Team menu options

Team Foundation provides three views for creating and managing work items:

• The form view, as its name suggests, presents each field of the work items in a standard-
ized form layout.

• The query view allows you to query the work item database based on selection criteria
and provides a list of results.

• The results (or triage) view displays the results of saved queries in a combination of
form and list view, which makes it easy to route and assign work items.

The following sections describe these views in more detail.

Using the Form View
The first view most people encounter is the form view of the work item. When you select Add
Work Item from the Work Items context menu, you will be presented with this view. Figure 5-3
shows the first task work item in the EffortTracking project.

The standard layout for the work item form is to have the summary information at the top
of the form and detail items presented at the bottom on separate tabs. The middle section
contains status fields, including State and Reason, which represent basic elements of workflow
in this first release of Team Foundation Server.

Two of the key features for work items are the ability to link to other items and to include
attachments.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 123

4606CH05.qxd 4/20/06 3:15 PM Page 123

Figure 5-3. Form view of a work item

Adding Links
Click the Links tab at the bottom of the form to view the Links pane, which shows the link
type, description, and comments. Click the Add button on the right side of the pane to open
the Add Link dialog box, shown in Figure 5-4.

Figure 5-4. The Add Link dialog box

CHAPTER 5 ■ TEAM WORK ITEM TRACKING124

4606CH05.qxd 4/20/06 3:15 PM Page 124

Here, you can select from four Team Foundation Server elements (Changeset, Work Item,
Versioned Item, or Test Result) and the hyperlink to any URL (Web) or UNC (server) location.
After you’ve added the link, you can open the linked item by double-clicking the item in the
Links pane or by selecting the Open button for a highlighted link.

Adding Attachments
Click the Attachments tab at the bottom of the form to view the Attachments pane, which
shows the name, size, and comments for any attached items. Click the Add button on the right
to open the Add Attachment dialog box, as shown in Figure 5-5.

Figure 5-5. The Add Attachment dialog box

In this example, we added a picture of the security groups from Active Directory for the
Set Permissions task.

Using the Query View
The query view is very similar to the query builder for SQL Server. In fact, the project team
refers to the query builder as “sick SQL” and the query language as Work Item Query
Language (WIQL).

Using Predefined Queries
A number of predefined project queries are provided, depending on the selected process
template. In the MSF for CMMI Process Improvement - v4.0 process template,
16 predefined project queries are available, as shown in Table 5-2. The MSF for Agile
Software Development - v4.0 process template has 11 predefined project queries.

Table 5-2. Predefined Project Queries (MSF for CMMI Process Improvement - v4.0 Template)

Query Name Query Parameters

Active Bugs Team Project=@Project, WorkItemType=Bug, State=Active

All My Team Project Work Items Assigned To=@Me

All Tasks Team Project=@Project, WorkItemType=Task

All Work Items Team Project=@Project

Continued

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 125

4606CH05.qxd 4/20/06 3:15 PM Page 125

Table 5-2. Continued

Query Name Query Parameters

Blocked Work Items Team Project=@Project, Blocked=Yes

Change Requests Team Project=@Project, WorkItemType=Change Request

Corrective Actions Team Project=@Project, WorkItemType=Task,
Task Type=Corrective Action

Customer Requirements Team Project=@Project, WorkItemType=Task, Requirement
Type=Scenario (or) Requirement Type=Quality of Service

Development Tasks Team Project=@Project, WorkItemType=Task,
Discipline=Development

Issues Team Project=@Project, WorkItemType=Issue

Mitigation Action Status Team Project=@Project, WorkItemType=Task,
Task Type=Mitigation Action

My Work Items Team Project=@Project, Assigned To=@Me

Product Requirements Team Project=@Project, WorkItemType=Task, Requirement
Type=Functional (or) Requirement Type=Interface, (or)
Requirement Type=Operational, (or) Requirement
Type=Security, (or) Requirement Type=Safety

Resolved Bugs Team Project=@Project, WorkItemType=Bug, State=Resolved

Reviews Team Project=@Project, WorkItemType=Review

Risks Team Project=@Project, WorkItemType=Risk

Creating Queries
You can create your own queries and save them in the My Queries folder under Work Items.
To create a new query, right-click Work Items and select Add Query, as shown in Figure 5-6.

Figure 5-6. Choosing to add a query

CHAPTER 5 ■ TEAM WORK ITEM TRACKING126

4606CH05.qxd 4/20/06 3:15 PM Page 126

■Note If you have the appropriate permissions, you can edit and modify the project queries themselves.

You’ll see the New Query window, as shown in Figure 5-7. Create your query, and then
right-click in the New Query window and select Run Query to see the query results.

Figure 5-7. The New Query window

Saving Queries
Another nice feature is the ability to save a private or team query to a file. This allows you to
send queries via e-mail and port them between installations of Team Server. To save your new
query, select File ➤ Save New Query1 [Query] As to open the Save Query As dialog box, as
shown in Figure 5-8.

Figure 5-8. The Save Query As dialog box

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 127

4606CH05.qxd 4/20/06 3:15 PM Page 127

Here, you can give your query a unique name and then choose from three options:

• Allow your query to be used as a team query by everyone.

• Save it as a private query visible only to you.

• Save it to a local file for e-mail distribution as a .wiq.

You can also select the team project in this dialog box, which makes it easy to save a query
from one project to another project.

Sending Queries in E-Mail
Occasionally, you will want to exchange work item queries with other projects or other team
members via e-mail. To do this, simply save the query as a .wiq file on you local machine, as
described in the previous section, and send it as a file attachment to your target recipients.
The recipients can then save the attachment to their local machine and open it with Visual
Studio to run it.

■Tip If you have e-mail access on the same computer as Team Foundation, you can right-click the query
you want to send and select Send to Mail Recipient.

Using Query Macros
WIQL provides some convenient macros to make the query process more convenient and
portable. In the example in Figure 5-7, we used three of the most popular: @Me, @Project, and
@Today. The prebuilt query macros are described in Table 5-3.

Table 5-3. Prebuilt Query Macros

Query Description

@Project Inserts the current project context into the query

@Me Inserts the Windows integrated account name into the query

@Today Inserts midnight of the current date of the local machine running the query

@Today-1 Inserts the date of yesterday (@Today minus 24 hours)

@Today-7 Inserts the date of last week (@Today minus 7 days)

@Today-30 Insert the date of the last month (@Today minus 30 days)

You can execute the query and view the results in a list by pressing F5. To adjust the result
display, right-click the Results pane and select Column Options, as shown in Figure 5-9. These
options allow you to add columns, sort, and adjust the column width.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING128

4606CH05.qxd 4/20/06 3:15 PM Page 128

Figure 5-9. Choosing to set column options

Finally, you can click the View Results icon in the task pane of the query window as shown
in Figure 5-10, to display the third type of view.

Figure 5-10. Choosing to view results

Using the Results (Triage) View
The other view for working with work items is the results view. You can display this view by
either running a previously saved query or clicking the View Results icon in the query window
(see Figure 5-10). The results view shows the list in the upper half of the window and the full
form for the selected work item in the bottom section, as shown in Figure 5-11.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 129

4606CH05.qxd 4/20/06 3:15 PM Page 129

Figure 5-11. Results (triage) view

The project manager can use the results view to quickly review the work items that come
in over a period of time, assign them to the appropriate resources, and manage the state and
transition for each. The developers can use this view to review items assigned to them and
rapidly prioritize, transition, or transfer items to other team members.

Understanding Work Item Types
Each work item type consists of fields, forms, rules, and states (work item life cycle), which are
defined in Table 5-4.

Table 5-4. Work Item Type Information

Item Description

Fields Global across an installation of Team Foundation Server. Fields include a name, ref-
erence name, type, help text, and applicable constraints.

Forms Controls the layout of the form that is displayed. The goal is to provide a single
form definition (fields, groups, and tabs) that can be used in VSTS and with Share-
Point web parts.

Workflow Describe the valid states, transitions, and reasons for the transitions.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING130

4606CH05.qxd 4/20/06 3:15 PM Page 130

The specific work item types differ depending on the process template used for the team
project. The MSF for CMMI Process Improvement - v4.0 process template defines seven work
items to assign and track work. The MSF for Agile Software Development - v4.0 process tem-
plate defines five work items. (We’ll refer to these as the CMMI template and the Agile
template.) The specific work item types and associated process templates are shown in
Table 5-5.

Table 5-5. Work Items by Process Template

Work Item Agile CMMI

Task X X

Bug X X

Risk X X

Requirement* -- X

Quality of Service X --

Scenario X --

Change Request -- X

Issue* -- X

Review -- X

*Both Quality of Service and Scenario are subtypes of Requirement in the CMMI template. Additional
requirement subtypes include Function, Interface, Operation, Safety, and Security. Issue is a unique work
item type for the CMMI template and an attribute of work items under the Agile template.

The following sections describe each of the work item types.

Task Work Items
A Task work item type is the most generic type and communicates the need to do some work.
All of the predefined work items in the provided process templates are of type Task.

Within the team of peers on a project, each member has his own share of tasks. For
instance, a project manager uses the Task work item to assign defining personas to the busi-
ness analyst, assign defining a test approach to the test manager, and assign fixing a bug to a
developer. A Task can also be used generally to assign work within the project.

The required Task work item type fields are described in Table 5-6.

Table 5-6. Required Task Work Item Fields

Field Name Description Default

Title Brief explanation of task None; must be supplied

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Priority Subjective importance of task (1–3) 3

Triage Info Recv, More Info, Pending, Triaged Pending

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 131

4606CH05.qxd 4/20/06 3:15 PM Page 131

■Note For the Agile template, the default state is Active and the initial priority (rank) is blank.

Figure 5-12 shows the states, transitions, and reasons for the Task work item type. In the
normal path for a Task work item, the Task is initiated when there is work to be done. A Task
starts in the Proposed state pending agreement, with a reason of New. It is then triaged and
placed into the Active state as Accepted (if it is to be implemented in the current iteration)
or as Investigate (if analysis of impact is needed). An investigated Task should go back to the
Proposed state at the conclusion of the impact analysis. The Task can move to the Resolved
state with the Complete or Requires Review/Tests transition reason. Once the Task passes the
review or testing, it can be moved from the Resolved state to the Closed state.

Figure 5-12. States, transitions, and reasons for the Task work item type

Alternate paths exists for moving Tasks directly to the Closed state if they are Rejected,
Deferred, Cut, Cancelled, Overtaken by Events, or simply have no review or test criteria. A task
may also revert from the Resolved state to the Active state with a reason of Review/Test Failed.

■Note It is important to understand that when a work item is Closed, the Assigned To field is cleared. This
is the default transition for a work item, so that you don’t see all your completed work items in queries for
items assigned to you. This is described in the work item definition XML file. Some teams assign the Closed
work item to a fictitious user named Closed, which gets it off the developers’ radar but allows for some
optional reporting capabilities.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING132

4606CH05.qxd 4/20/06 3:15 PM Page 132

Bug Work Items
The original bug-tracking system, Product Studio, used within Microsoft was the code base for
the WIT feature. Therefore, the tracking of bugs is at the core of the WIT system.

The motivation of opening a Bug work item should be to clearly describe the problem in
a way that allows the developer to fully understand the weight of the problem. The teams at
Microsoft are very familiar with the bug rates and the concept of zero bug bounce (ZBB). ZBB
is the point in the project where you have eliminated your bug backlog, and the development
team is handling bugs that are coming in real time. This is a major milestone for any project
on the way to beta or final release.

Table 5-7 shows the required Bug work item type fields.

Table 5-7. Required Bug Work Item Fields

Field Name Description Default

Title Brief explanation of bug None; must be supplied

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Priority Subjective importance of bug (1–3) 3

Severity Critical, High, Medium, Low Low

Triage Info Recv, More Info, Pending, Triaged Pending

Symptom Description of the problem None; must be supplied

Steps to Reproduce Detail on how to reproduce the bug None; must be supplied

■Note For the Agile template, the default state for a Bug work item is Active and the initial priority is 2.

Figure 5-13 shows the states, transitions, and reasons for the Bug work item. In the nor-
mal path, the Bug work item is initiated when someone identifies a potential problem in the
product or a build error exists. This Proposed state can require Investigate, or as the bug is
triaged, the work item is assigned directly to a developer (as Approved). Both reasons move
the Bug into the Active state. The Bug work item is moved to the Resolved state once the prob-
lem is Fixed and the bug is linked to the changeset at check-in. Once the Fixed bug is part of
the build, it is moved to the Closed state.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 133

4606CH05.qxd 4/20/06 3:15 PM Page 133

Figure 5-13. States, transitions, and reasons for the Bug work item type

Alternate paths exist for moving Bug work items to the Closed state if they are Rejected,
Deferred, Not a Bug, Determined a Duplicate, or Cannot Reproduce. A Bug work item may
also revert from the Resolved to Active state if testing finds the problem was Not Fixed.

Risk Work Items
Risk is defined as the expectation of loss. It is a function of the probability and the conse-
quences of harm. A Risk work item is used to track potential risk impacts to the project. A
successful risk management practice is one in which risks are continuously identified and
analyzed for relative importance. Risks are mitigated, tracked, and controlled to effectively
use program resources.

Risk work items differ from Issue work items in that a risk is a look into the future and
requires a continuous review of the probability of its occurrence. An issue has a more immedi-
ate, in-the-trenches team dynamic that is addressed in the daily standup meeting or late-night
Xbox lounge.

Table 5-8 shows the required Risk work item type fields.

■Note For the Agile template, the default state for a Risk work item is Active, the initial Severity is blank,
and the initial priority (rank) is blank. It does not include Probability and Blocked fields.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING134

4606CH05.qxd 4/20/06 3:15 PM Page 134

Table 5-8. Required Risk Work Item Fields

Field Name Description Default

Title Brief explanation of risk None; must be supplied

Probability Chance the risk will occur (1–99) None; must be supplied

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Priority Subjective importance of risk (1–3) 3

Severity Critical, High, Medium, Low Low

Blocked Indicates progress in mitigating the risk is blocked No

Figure 5-14 shows the states, transitions, and reasons for the Risk work item. In the nor-
mal path, risks are potential events or conditions in the future that may have negative impact
on the project. A Risk work item is initiated when this potential is identified. In the Proposed
state, a risk is analyzed for likelihood and cost of occurrence, mitigation options, triggers, and
proposed contingency plan. A Risk work item is moved to the Active state when the conditions
warrant, for the Mitigation Triggered reason. Active Risk work items require tasks to perform
the mitigation options. Once these tasks have been executed (the Mitigate Action Complete
reason), a Risk work item is moved to the Resolved state. Once the mitigation tasks are verified
as sufficiently Mitigated, the Risk work item is moved to the Closed state.

Figure 5-14. States, transitions, and reasons for the Risk work item type

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 135

4606CH05.qxd 4/20/06 3:15 PM Page 135

Alternate paths exists for moving Risk work items to the Closed state if they are Accepted
(assume the risk), Rejected (not a risk), Eliminated, or Overtaken by Events (the risk no longer
exists). A Risk work item may revert from the Resolved state to the Active state due to the
Mitigation Action Unsatisfactory (Rework) reason.

Change Request Work Items
A change request (CR) is a formal request for modifying the behavior of a system due to nor-
mal business changes or because there is a bug in the system. A change request expresses a
change in the project baseline, including a previously approved project component. A change
request can be introduced during any iteration of the project.

Change requests are governed by a thorough control process intended to reduce the
impacts of changes on the work of the delivery team, while still allowing modifications after
user specifications have been approved. Once a Change Request work item has been
approved, it will initiate other work items to carry out the change.

Table 5-9 describes the required fields for a Change Request work item type.

Table 5-9. Change Request Work Item Required Fields

Field Name Description Default

Title Brief explanation of CR None; must be supplied

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Priority Subjective importance of CR (1–3) 3

Triage Info Recv, More Info, Pending, Triaged Pending

■Note The Agile template does not include a Change Request work item type.

Figure 5-15 shows the states, transitions, and reasons for the Change Request work item.
In the normal path, a Change Request work item is in the Proposed state when a change is
needed to a work product under configuration management. Change requests are reviewed by
a change board for disposition (formal triage). The change board places the request into the
Active state as Accepted (if it is to be made in the current iteration) or as Investigate (if impact
analysis is needed). After investigation, the Change Request work item should go back to the
Proposed state at the conclusion of the analysis. The Change Request work item can move to
the Resolved state only as it reaches Code Complete and System Tested and is placed into the
daily build process. Once the customer has validated that the proposed changes have success-
fully been implemented with Validation Test Passed, the Change Request work item can be
moved from the Resolved state to the Closed state.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING136

4606CH05.qxd 4/20/06 3:15 PM Page 136

Figure 5-15. States, transitions, and reasons for the Change Request work item type

Alternate paths exist for moving Change Request work items to the Closed state if they are
Rejected, Abandoned, or determined Out of Scope. A Change Request work item may also
revert from the Resolved state to the Active state due to the customer Validation Test Failed
reason.

Review Work Items
A program management best practice is to perform periodic reviews during the software
development life cycle. The Review work item type provides a mechanism to initiate and track
these sessions. Many types of reviews are performed during the life of a project, including
code, critical-design, architecture, best practice, security, and deployment reviews.

Table 5-10 shows the required fields for the Review work item type.

Table 5-10. Review Work Item Required Fields

Field Name Description Default

Title Brief explanation of review None; must be supplied

State Active, Resolved, Closed Active

Reason Basis for existing state New

Purpose Focus area of the review None; must be supplied

■Note The Agile template does not include a Review work item type.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 137

4606CH05.qxd 4/20/06 3:15 PM Page 137

Figure 5-16 shows the states, transitions, and reasons for the Review work item. In the
normal path, Review work items record the outcome of a design or code reviews. A Review
work item is in the Active state in order to document the results of the review. The review team
will accept the review with either minor or major changes at the end of the session. These
changes are assigned to the developer. If a minor change was needed, the developer can move
the Review work item to the Resolved state directly. However, if a major change was requested,
the developer must move the Review work item back to the Active state (awaiting a second
review). Once the changes are verified as Minor Changes Complete, the Review work item is
moved from the Resolved state to Closed state. If the design or code review is Accepted (As
Is)—without change—it can be moved directly to the Closed state.

Figure 5-16. States, transitions, and reasons for the Review work item type

Requirement Work Items
A requirement is a stated or implied expression of a business need. Requirements orient and
constrain the products or services to be delivered.

The Requirement work item type captures and tracks what the solution needs to provide
to meet the customer’s desires. Requirement work items within the CMMI template are
divided into Customer and Product requirements. Customer types of requirements include
scenario and quality of service (QoS). Product requirements include safety, security, func-
tional, operational, and interface.

Table 5-11 shows the required fields for the Requirement work item type.

■Note For the Agile template, the customer-focused requirements of Scenario and Quality of Service (QoS)
are separate work item types.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING138

4606CH05.qxd 4/20/06 3:15 PM Page 138

Table 5-11. Requirement Work Item Required Fields

Field Name Description Default

Title Brief explanation of requirement None; must be supplied

Type Functional, Interface, Operational, QoS, None; must be supplied
Safety, Scenario, Security

Blocked Progress blocked (Yes, No) No

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Priority Subjective importance of requirement (1–3) 3

Triage Info Recv, More Info, Pending, Triaged Pending

Committed Committed project requirement No

Figure 5-17 shows the states, transitions, and reasons for the Requirement work item. In
the normal path, the Requirement work item tracks “what” the product needs to perform to
solve the customer’s problem. A Requirement work item starts in the Proposed state at the
time it is identified. It is then triaged and placed into the Active state as Accepted (if it is to be
implemented in the current iteration) or as Investigate (if impact analysis is needed). After
investigation, a Requirement work item should go back to the Proposed state at the conclu-
sion of the study. The requirement can move to the Resolved state only as it reaches Code
Complete and System Tests Passed. Once the customer has validated that the requirement has
successfully met expectations, it can be moved from the Resolved state to the Closed state.

Figure 5-17. States, transitions, and reasons for the Requirement work item type

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 139

4606CH05.qxd 4/20/06 3:15 PM Page 139

Alternate paths exist for moving Requirement work items to the Closed state if they are
Rejected, Abandoned, Split, or determined Out of Scope. A Requirement work item may also
revert from the Resolved to Active state if the customer Validation Test Failed.

Issue Work Items
An issue is an actual event, condition, point of discussion, debate, or dispute that needs to be
proactively managed. Unlike a risk, which will not harm the project unless it materializes, an
issue is currently harming it or will definitely harm it unless the project is changed.

The Issue work item provides the user with a way to report an issue, track progress toward
its resolution, and know who is responsible for resolving the issue.

Table 5-12 shows the required fields for the Issue work item type.

Table 5-12. Issue Work Item Required Fields

Field Name Description Default

Title Brief explanation of issue None; must be supplied

State Proposed, Active, Resolved, Closed Proposed

Reason Basis for existing state New

Escalate Raise the criticality of the issue No

Priority Subjective importance of the issue (1–3) 3

Triage Info Recv, More Info, Pending, Triaged Pending

■Note Issues are an attribute of work items under the Agile template.

Figure 5-18 shows the states, transitions, and reasons for the Issue work item. In the
normal path, the Issue work item is initiated when someone (normally at the team level) iden-
tifies a situation or event that may block work on product. This Proposed state undergoes
review and is either moved to the Active state as Accepted (if approved) or as Investigate (if
more detail is needed). Active issues require the creation of tasks to perform corrective action.
Once these tasks have been executed to remove the blockage (Resolved), an Issue work item
is moved to the Resolved state. Once the Issue work item has been Verified and Accepted, it is
moved to the Closed state.

Alternate paths exist for moving Issue work items to the Closed state if they are Rejected
or Overtaken by Events (and the issue no longer exists). An Issue work item may revert from
the Resolved to Active state if it needs more work (Rework), or from the Closed state to the
Active state if it was Closed in Error, Reopened, or Reoccurred.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING140

4606CH05.qxd 4/20/06 3:15 PM Page 140

Figure 5-18. States, transitions, and reasons for the Issue work item type

Configuring Project Alerts for Work Item Tracking
In VSTS, you can configure project alerts to send e-mail messages based on specific events.
This feature leverages the underlying notification service and is customizable and expandable
for more granular event notification. For work item tracking, only one project alert is prede-
fined. This alert is to receive notification when your work items are changed by someone else.

To set up this alert, right-click the EffortTracking project and select Project Alerts. A dia-
log box with several alert options appears. Check the “My work items are changed by others”
alert and enter your e-mail address in the Send To column, as shown in Figure 5-19. Option-
ally, you can have the message sent in either HTML or plain text.

Figure 5-19. The Project Alerts dialog box

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 141

4606CH05.qxd 4/20/06 3:15 PM Page 141

Once configured, each time a work item assigned to you is changed by another project
member, a detailed e-mail message is sent, showing the core work item fields and the changed
fields’ history.

Looking Under the Hood
Work items must conform to a XML schema referred to as the Work Item Type Definition
(WITD) language using a few basic elements. A portion of the WorkItemTypeDefinition.xsd
is shown in Figure 5-20.

Figure 5-20. WorkItemTypeDefinition.xsd fragment

As an example, we’ll look at the Bug work item type definition from the Agile process
template. The first element is the WORKITEMTYPE, which differentiates this work item from all
others. It includes the unique name and a description.

<WORKITEMTYPE name='Bug'>
<DESCRIPTION>Includes information to track the work to resolve the
Bug and to verify its resolution.</DESCRIPTION>

Next, it identifies the fields associated with the work item to further describe any addi-
tional information about the work item. This snippet shows the Id and Title field definitions.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING142

4606CH05.qxd 4/20/06 3:15 PM Page 142

<FIELDS>
<FIELD name="Id" refname="System.Id" type="Integer" />
<FIELD name="Title" refname="System.Title" type="String" >

<REQUIRED/>
</Field>

In addition, field rules define the constraints on fields and field values as they move
through the transition states defined for the work item. Here is an example of the Issue field:

<FIELD name="Issue" refname="Microsoft.VSTS.Common.Issue"
type="String" reportable="dimension">

<REQUIRED/>
<ALLOWEDVALUES>

<LISTITEM value="Yes"/>
<LISTITEM value="No"/>

</ALLOWEDVALUES>
<DEFAULT from="value" value="No"/>

</FIELD>

■Note The reportable attribute dictates how the field is used in the data warehouse and reporting
cubes. Valid values are measure, dimension, and detail. Reporting is discussed in Chapter 6.

Next is the definition of the workflow and state transitions for the Bug work item type.
First is the STATES section, which defines the state valid values and the associated fields for the
state with the values they are to receive. The workflow is found in the TRANSITION section, as in
this example for the Active to Resolved state of a Bug work item:

<TRANSITION from="Active" to="Resolved">
<ACTIONS>

<ACTION value="Microsoft.VSTS.Actions.Checkin"/>
</ACTIONS>
<REASONS>

<DEFAULTREASON value="Fixed"/>
<REASON value="Deferred"/>
<REASON value="Duplicate"/>
<REASON value="As Designed"/>
<REASON value="Unable to Reproduce"/>
<REASON value="Obsolete"/>

</REASONS>
<FIELDS>

<FIELD refname="System.AssignedTo">
<COPY from="field"

field="System.CreatedBy"/>
</FIELD>
<FIELD refname="Microsoft.VSTS.Common.ActivatedDate">
<READONLY/></FIELD>

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 143

4606CH05.qxd 4/20/06 3:15 PM Page 143

<FIELD refname="Microsoft.VSTS.Common.ActivatedBy">
<READONLY/></FIELD>
<FIELD refname="Microsoft.VSTS.Common.ResolvedBy">

<COPY from="currentuser"/>
<VALIDUSER/>
<REQUIRED/>

</FIELD>
<FIELD refname="Microsoft.VSTS.Common.ResolvedDate">
<SERVERDEFAULT from="clock"/></FIELD>

</FIELDS>
</TRANSITION> >

The final element defines the display of the Bug work item in a form.

<FORM>
<LAYOUT>
<GROUP>

And that is about it. Business rules and behavior for a work item type are also defined in
the WITD language as rules associated with fields and scoped by state and transition.

■Note For work item tracking, two database tables and two views are of particular interest. The
WorkItemsAre table contains the current version of the work item, and the WorkItemsWere table contains
all the old versions, one entry per client update. The WorkItemsAreUsed view brings in the namespace col-
umn names used in queries, and the WorkItemsWereUsed view brings in the namespace column names
used in queries. The VSTS team highly recommends that you do not modify any of the underlying tables.
The database is discussed in more detail in Chapter 6.

Customizing Work Item Types
You can customize work item types in a variety of ways. Here, we will look at examples of mod-
ifying the list displayed by a field, adding a new field that references a global list, and creating
a brand-new work item type.

In these examples, you’ll use several of the following command-line tools:

• witimport: Imports an XML work item type definition to a team project or validates a
definition before import.

• witexport: Exports an existing work item type from a team project as XML.

• witfields: Allows you to view, rename, report, or delete a work item field or reset the
Rebuildcache flag for all clients.

• glimport: Imports an XML global list definition to a team project or validates a defini-
tion before import.

• glexport: Exports an existing work global list from a team project as XML.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING144

4606CH05.qxd 4/20/06 3:15 PM Page 144

■Note In the current version of Team Foundation Server, there is no official way to delete individual work
items from a project. You can use the DeleteTeamProject, but that will obliterate all work items and the
project itself. The reason is that Team Foundation provides a robust auditing function and preserves links
between items. There are several discussions in the newsgroups on how to delete from the underlying data-
base tables, but they are all with the caveat “use at own risk” because there are invariably links you will
have missed. We hope that the product team will provide a tool or power toy to delete individual work items
cleanly.

Modifying the Assign To List
One of the first modifications you may want to make in the work item type definitions is the
list of team members who are represented in the Assigned To field. By default, the Assigned To
field uses <VALIDUSER> as the source of the display names. <VALIDUSER> corresponds to the
Everyone group for Team Foundation Server. In a large enterprise, this list includes Team
Foundation Server service accounts, system administrator accounts, and a host of others that
may never be assigned to work items.

To customize the list of allowed values in the Assigned To field list, you perform the fol-
lowing steps:

1. Create the global groups for AssignTo using Team Explorer.

2. Export the Task work item type using witexport.exe.

3. Rename the work item type name field using the XML editor.

4. Modify the XML file for the new type using the XML editor.

5. Import the new Task work item type using wiimport.exe.

6. Test the form in Visual Studio using Team Explorer.

The following sections describe each of these steps in detail.

Creating Groups
As mentioned in Chapter 2, you have several options for creating groups with Team Founda-
tion Server. If you maintain your own security groups in Active Directory, you can add those
groups to predefined or custom groups in the Team Foundation Server. Optionally, you can
add members directly to Team Foundation Server groups at both the server and project level.
For this example, you will create a new project group called AssignTo and add members
directly to that group.

1. Open Visual Studio. Right-click your team project and select Team Project Settings ➤
Group Membership to open the Project Groups dialog box.

2. Select New to open the Create New Team Foundation Server Group dialog box. Enter
AssignTo in the Group Name field and a short description, as shown in Figure 5-21.
Then click OK.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 145

4606CH05.qxd 4/20/06 3:15 PM Page 145

Figure 5-21. The Create New Team Foundation Server Group dialog box

3. Double-click the new AssignTo group to add members. You can select members from
Team Foundation Server groups or Windows Users or Groups. Select one of more
groups containing a few different members to make this exercise useful.

Exporting a Work Item Type
To export the Task work item type, open a Visual Studio command prompt and enter
witexport /? to see the list of parameter definitions. To export the Task work item definition
from your server, enter the following:

witexport /f mytask.xml /t [Team Foundation Server Name] /p [Team Project Name]
/n Task

After a few seconds, you will receive the message “work item type export complete.” This
will verify that a file called mytask.xml has been placed into the current directory.

Renaming the Work Item Type
It is a good idea to rename the work item type so you don’t destroy the original copy of the
work item while you are making your changes. In a sense, you are doing development on the
production server, so you need to be careful. A best practice is to have a separate sandbox
server to test your modifications.

To rename the work item type, open the newly created file in Visual Studio (or your
favorite XML editor) and change the name field from this:

<WORKITEMTYPE name="Task">

to this:

<WORKITEMTYPE name="MyTask">

The change is shown in Figure 5-22. Then save the file.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING146

4606CH05.qxd 4/20/06 3:15 PM Page 146

Figure 5-22. Renaming the work item type

Modifying the Assigned To Field
Next, you need to find the Assigned To field in the mytask.xml file. Do a quick search on
Assigned To and you will be taken to the field description section.

<FIELD name="Assigned To"
refname="System.AssignedTo" type="String"
<VALIDUSER />

</FIELD>

Remove the <VALIDUSER /> tag, which, as noted earlier, corresponds to the Everyone
group, and add field list items. Field lists define permissible values for a field and provide list
items for users to choose. Field lists can be used for String field types only. There are three
types of field lists:

• ALLOWEDVALUES provide an exclusive list from which the users must select.

• SUGGESTEDVALUES provide an optional list from which the users may select or they may
provide their own value.

• PROHIBITEDVALUES provide a restricted list from which the users may not provide a
matching value.

Two optional attributes related to field lists are expanditems and filteritems. These are
used to manage items that represent a group of discrete values such as a security group. The
expanditems attribute, if set to true, will recursively unpack the individual values from a group.
Setting the filteritems attribute to excludegroups will remove the group names from the
expanded list.

In this example, you want to set the field list type to ALLOWEDVALUES and provide a list of
the project’s AssignTo group, and expand the items, as follows:

<FIELD name="Assigned To"
refname="System.AssignedTo" type="String"
<HELPTEXT>The person assigned to do the work</HELPTEXT>
<ALLOWEDVALUES expanditems="true" filteritems="excludegroups">

<LISTITEM value="[project]\AssignTo" />
<LISTITEM value="PartnerTeam" />

</ALLOWEDVALUES>
</FIELD>

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 147

4606CH05.qxd 4/20/06 3:15 PM Page 147

■Note The [global] and [project] references are used to allow the XML to be portable across proj-
ects. [global] is used to reference a server-scoped Team Foundation Server group. [project] is used to
reference a project-scoped group. The system automatically picks up the right server or project when the
work item type is uploaded (when a project is created or when the witimport utility is used). Also, you can
add placeholder groups, such as Partner Team, for work item assignments.

Finally, to exclude a value from the list, add the following XML for the prohibited values
list item:

<PROHIBITEDVALUES expanditems="false">
<LISTITEM value="Bob" />

</PROHIBITEDVALUES>

Save the file.

Importing a Work Item Type
Reopen the Visual Studio command prompt (if it’s not still open from the export operation).
Enter witimport /? to see the list of parameter definitions. To import the new MyTask work
item definition to your server, enter the following:

witimport /f mytask.xml /t [Team Foundation Server Name] /p [Team Project Name]

After a few seconds, you should receive the message “work item type import complete.”
This will signify the MyTask work item has been uploaded to your server within the specified
team project.

Validating a New Work Item Type
For this example, the validation consists of verifying that the expected values show up in the
Assigned To list in the form and that the prohibited values are not allowed. To test the form,
follow these steps:

1. Open Visual Studio, and the Team Explorer will connect to your Team Foundation
Server.

2. Expand your team project, right-click the Work Items node, and Select Add Work Item.

3. Select the new work item type: MyTask. You should see the form view of the MyTask
work item with the modified Assigned To field, as shown in Figure 5-23.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING148

4606CH05.qxd 4/20/06 3:15 PM Page 148

Figure 5-23. Modified MyTask work item type

4. Enter Bob in the Assigned To field and attempted to save the form. You should see the
error message shown in Figure 5-24.

Figure 5-24. The error message when you enter an invalid value for the modified
work item type

That’s it. You have successfully modified your first work item type definition. Now let’s see
how to customize a work item type by adding a field.

Creating a New Field That References a Global List
Global lists are used to store common lists that will be used throughout the Team Foundation
Server. They are server-scoped lists that can be referenced by any team project. Global lists
can be used for many purposes.

■Tip You can see an example of populating your global lists from an external source on the Team Founda-
tion weblog at Populating Lists on Work Items from an External Source.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 149

4606CH05.qxd 4/20/06 3:15 PM Page 149

Architects frequently participate in various reviews, which may focus on a specific cus-
tomer concern. These reviews may be common throughout all divisions and projects within
the company. To address this, you can modify the Review work item under the CMMI template
to include a Focus Area field that references a common global list. Here are the steps:

1. Create the global list for review focus areas using the XML editor.

2. Import the global list to the Team Foundation Server using glimport.exe.

3. Verify the global list now exists using glexport.exe.

4. Export the review work item type using witexport.exe.

5. Rename the work item type name field using the XML editor.

6. Modify the XML file for the new type using the XML editor.

7. Import the new work item type using witmport.exe.

8. Test the form in Visual Studio using Team Explorer.

Now we’ll go through the process.

Setting Up the Global List
The global list is just an XML file. Open Visual Studio, select File ➤ New File, and then select
the XML file template. Insert the following XML, which defines a new global list called Focus
Area with six distinct list items.

<?xml version="1.0" encoding="utf-8"?>
<gl:GLOBALLISTS

xmlns:gl=
"http://schemas.microsoft.com/VisualStudio/2005/workitemtracking/globallists">
<GLOBALLIST name="Focus Area">

<LISTITEM value="Architecture" />
<LISTITEM value="Critical Design" />
<LISTITEM value="Best Practice" />
<LISTITEM value="Code" />
<LISTITEM value="Security" />
<LISTITEM value="Deployment" />

</GLOBALLIST>
</gl:GLOBALLISTS>

Select File menu ➤ Save As and save your global list under the name MyGL.xml to your
local directory C:\Temp.

To import the global list, open a Visual Studio command prompt and type the following:

glimport /f c:\temp\mygl.xml /t [Team Foundation Server Name]

After a few seconds, the prompt will return.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING150

4606CH05.qxd 4/20/06 3:15 PM Page 150

Since there is no confirmation that the global list has been loaded, run the glexport com-
mand with the display set to the screen to verify that it exists. Type the following:

glexport /t [Team Foundation Server Name]

After a few seconds, you will see the XML representing the global list displayed in the
command window.

Adding a Field to the Work Item Type
First, follow the same process as in the previous example to export the work item type. This
time, export the Review work item type from the CMMI process template by entering the fol-
lowing at the command prompt:

witexport /f myreview.xml /t [Team Foundation Server Name] /p [Team Project Name]
/n Review

Next, open the newly created file in Visual Studio and change the name field from
WORKITEMTYPE name="Review"> to <WORKITEMTYPE name="MyReview">.

Now you need to define the Focus Area field and specify where to place the item on the
form. The easiest way to create a new field is to copy and paste an existing one. Scroll down
until you find the name Meeting Type. Copy the field definition, insert a line, and paste the
definition back into the XML file. Make the following changes to the field definition:

<FIELD name="Focus Area" refname="MyCompany.VSTS.Common.FocusArea" type="String">
<HELPTEXT>The Focus Area of the review meeting</HELPTEXT>

<ALLOWEDVALUES>
<GLOBALLIST name="Focus Area" />

</ALLOWEDVALUES>
</FIELD>

The field reference name, refname, refers to a namespace constructed according to the
recommended guidelines, as explained in the “Assigning Field Reference Names” section later
in this chapter.

You will place the new field item below the Reason field on the form. Scroll down farther
in the XML file and find the Reason field in the Form Layout section. It is the last field in the
Status section. Copy the following Control line for the Reason field definition:

<Control Type="FieldControl" FieldName="System.Reason"
Label="&Reason:" LabelPosition="Left" />

Paste it as a new field below the Reason field. Make the following changes for the Focus
Area definition:

<Control Type="FieldControl" FieldName="MyCompany.VSTS.Common.FocusArea"
Label="Focus &Area:" LabelPosition="Left" />

Then save the file.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 151

4606CH05.qxd 4/20/06 3:15 PM Page 151

With the command prompt still open, enter the following:

witimport /f myreview.xml /t [Team Foundation Server Name] /p [Team Project Name]

After a few seconds, you will receive the message “work item type import complete.” This
indicates that the MyReview work item has been uploaded to your server within the specified
team project.

Open Visual Studio, and Team Explorer will connect to your Team Foundation Server.
Expand your team project, right-click the Work Items node, and select Add Work Item. Select
the new MyReview work item type.

Select the new Focus Area field, and in the drop-down list, you should see the six review
areas listed, as shown in Figure 5-25.

Figure 5-25. MyReview modified work item type

Creating a New Work Item Type
You may find that you need a completely custom work item type for your organization, such
as one to track engagements—short duration activities in support of a variety of projects,
teams, and initiatives. Here is the process for adding a new work item type:

1. Determine a base template type.

2. Design the states and transitions.

3. Export the base template type.

4. Rename the work item type.

5. Modify the work item type definition to add the fields and set the workflow.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING152

4606CH05.qxd 4/20/06 3:15 PM Page 152

6. Import the new work item type.

7. Test the form.

Let’s go through the steps to add an Engagement Request type.

Setting Up the Base Template Type
The simplest way to create a brand-new work item type definition is to find an existing one
close to what you want to track and modify the definition. For this example, you can use the
Issue work item type and a few fields from the Requirement type. The Requirement type is
designed for tracking a business need, and the Issue type is designed to investigate and
resolve intermittent problems. That fairly completely describes the engagement process.

After you’ve determined the base work item type, it is best to diagram your states and
transitions. You can capture the states and transitions in a specific tool like Visio or just graph-
ically in a tool like Photoshop. Figure 5-26 shows the transition chart for the Engagement
Request work item.

Figure 5-26. State and transition chart for the custom Engagement Request work item type

Adding the New Work Item Type
Follow the same process as in the previous examples to export the base work item type. If you
have a combination, you need to pick just one for the base. You can export both, and then cut
and paste items into the base type. For the Engagement Request, export the Issue work item
type from the CMMI process template by entering the following from the command prompt:

witexport /f engagement.xml /t [Team Foundation Server Name] /p [Team Project Name]
/n Issue

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 153

4606CH05.qxd 4/20/06 3:15 PM Page 153

Also use witexport to export the Requirement work item type for reference.
Open the newly created file in Visual Studio and change <WORKITEMTYPE name="Issue"> to

<WORKITEMTYPE name="Engagement Request">.
When you are creating a new work item type, several items need to be addressed. As

stated previously, the basic components of the work item type definition are the field, form,
and workflow. Each of these must be addressed for the new Engagement Request type.

You need a new field to capture the type of engagement requested. Copy the XML for the
Engagement Type field and paste it into your Engagement Request work item type between
two existing fields. Bring over the Blocked field and the Committed field from the Require-
ment type. Also, do a quick search and replace to change the help text from issue to
engagement request. (Be careful not change the field named Issue.)

<FIELD name="Engagement Type" refname="MyCompany.VSTS.Common.EngagementType"
type="String" reportable="dimension">
<HELPTEXT>Indicates the type of engagement request</HELPTEXT>
<REQUIRED />
<ALLOWEDVALUES expanditems="true">

<LISTITEM value="Project" />
<LISTITEM value="Direction" />
<LISTITEM value="Standards" />
<LISTITEM value="Review" />
<LISTITEM value="QuickFix" />
<LISTITEM value="Analysis" />
<LISTITEM value="Consultation" />

</ALLOWEDVALUES>
</FIELD>
<FIELD name="Blocked" refname="Microsoft.VSTS.CMMI.Blocked" type="String">
<HELPTEXT>Indicates that the engagement request is blocked</HELPTEXT>
<ALLOWEDVALUES>

<LISTITEM value="Yes" />
<LISTITEM value="No" />

</ALLOWEDVALUES>
<DEFAULT from="value" value="No" />
</FIELD>
<FIELD name="Committed" refname="Microsoft.VSTS.CMMI.Committed" type="String">
<HELPTEXT>Has the engagement been committed?</HELPTEXT>
<REQUIRED />
<ALLOWEDVALUES expanditems="true">

<LISTITEM value="Yes" />
<LISTITEM value="No" />

</ALLOWEDVALUES>
<DEFAULT from="value" value="No" />
</FIELD>

Next, you need to include the new fields on the form in the desired locations. Scroll down
to the Form section and below the Title field on the top line, add the Type field. Change the
Column PercentWidth for Title from 100 to 70 and add a Column PercentWidth tag above your
Type field with a value of 30. The label should read Type:, and the FieldName must match the

CHAPTER 5 ■ TEAM WORK ITEM TRACKING154

4606CH05.qxd 4/20/06 3:15 PM Page 154

reference name above "MyCompany.VSTS.Common.EngagementType". Add the Committed and
Blocked fields to the end of each column in the Status section. Place Committed under the
Triage FieldName and Blocked under the Escalate FieldName.

Finally, set the DEFAULTREASON and additional reasons on each TRANSITION from one state
to another. The following example is the default transition from Proposed to Active for the
base Issue work item type. You can modify the workflow to be whatever fits your needs.

<TRANSITION from="Proposed" to="Active">
<REASONS>

<DEFAULTREASON value="Accepted" />
<REASON value="Investigate" />

</REASONS>

Save the file.
Now return to the command prompt and enter the following to import the new work item

type:

witimport /f engagement.xml /t [Team Foundation Server Name] /p [Team Project Name]

After a few seconds, you will receive the message “work item type import complete.”
You’re ready to check that the new work item type works. Open Visual Studio and wait for

the Team Explorer to connect to your Team Foundation Server. Expand your team project,
right-click the Work Items node, and select Add Work Item. Select the new Engagement
Request work item type to view the form, as shown in Figure 5-27.

Figure 5-27. Engagement Request work item type

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 155

4606CH05.qxd 4/20/06 3:15 PM Page 155

Check that the expected values show up in the Type, Committed, and Blocked fields. Also
test any new transitions for your Engagement Request type. Fill out the required fields, and
then save the work item in the proposed state. You can now move the work item from state to
state and verify that the correct reason codes appear, as shown in Figure 5-28.

Figure 5-28. Engagement Request state transitions

Congratulations, you have modified and created work item types. Now that you have
mastered long division, we feel it necessary to inform you of a little thing called the calculator.
Graphic tools are now available to make work item type modifications a little easier. These are
available on the GotDotNet Visual Studio workspace.

Assigning Field Reference Names
A key design goal for Team Foundation Server was to have work item type definitions portable
between instantiations. Field reference names satisfy this by using a namespace syntax that is
globally unique. Team Foundation Server provides two predefined namespaces: System and
Microsoft. Customers are encouraged to create their own namespaces using the following
guidelines:

CHAPTER 5 ■ TEAM WORK ITEM TRACKING156

4606CH05.qxd 4/20/06 3:15 PM Page 156

• The reference name may be up to 70 characters long.

• The reference name must consist of two or more words separated by period. Each word
may include English alphanumeric characters, digits, and underscores. The first word
can begin only with an English letter (a–z) or an underscore.

• The custom reference name must not belong to System namespace (cannot begin with
System).

■Note The System namespace includes all system fields that are mandatory for Team Foundation system
functions. These mandatory system fields are also referred to as core fields. Core fields like System.ID,
System.AssignedTo, System.State, and System.Reason have their own rules that are hard-coded and
cannot be changed. These fields are critical to the workflow, and it is extremely important that they behave
in the same manner across the Team Foundation Server.

A common naming convention is to follow the Microsoft namespace and replace
Microsoft with your company name, as in the following examples:

• MyCompany.VSTS.Agile.FieldName

• MyCompany.VSTS.Common.FieldName

• MyCompany.VSTS.MyProcess.FieldName

Summary
This chapter covered VSTS’s work item tracking feature. We discussed the three different views
for managing and creating work items: form, query, and result views. Then we looked at each
default work item type provided with the MSF for CMMI Process Improvement - v4.0 process
template.

We then took a quick peek under the hood and began to customize a default work item
type. You learned how to create your own global lists, and also how to author a unique work
item type using several base types. You should now have a good feel for the structure of the
work item type. Feel free to explore your own modifications and creations.

CHAPTER 5 ■ TEAM WORK ITEM TRACKING 157

4606CH05.qxd 4/20/06 3:15 PM Page 157

4606CH05.qxd 4/20/06 3:15 PM Page 158

Team Reporting

The Team Foundation Server includes a data warehouse based on SQL Server 2005 Relational
Database and Analysis Services. In this data warehouse, operational data from work item
tracking, version control, team builds, and test results is gathered and rendered into multidi-
mensional cubes. This data warehouse is used by Team Foundation and SQL Server 2005
Reporting Services (SSRS) for out-of-the-box reporting functionality. The schema for these
databases is tailored to the methodologies used on the Team Foundation Server. SSRS is inte-
grated with Team Foundation to provide easy access to reports and to offer a convenient
mechanism for custom extensions.

In this chapter, you will learn how to produce project reports, including predefined
reports, customized reports, and entirely new reports. But first, we’ll start with an introduction
to the SQL Server 2005 Business Intelligence platform.

Introducing the Business Intelligence Platform
Business Intelligence (BI) is a broad term for the services and process that turn a repository of
obscure data into valuable business information. Business Intelligence is predicated on the
notion of a central data warehouse that pulls disparate data from a wide variety of sources.
Customarily, these extract, transform, and loads (ETL) of data are scheduled to occur on a
regular basis and process the data into the online analytical processing (OLAP) cubes for
reporting.

SQL Server 2005 has been termed “The BI Release.” Included in this latest release are
vastly upgraded versions of SQL Server Integration Services, SQL Server Analysis Services,
and SQL Server Reporting Services, as illustrated in Figure 6-1.

159

C H A P T E R 6

4606CH06.qxd 4/20/06 3:17 PM Page 159

Figure 6-1. SQL Server Business Intelligence platform

These services perform the following functions:

SQL Server Integration Services (SSIS): This is the ETL tool provided with SQL Server 2005.
SSIS is a rewrite of the Data Transformation Service (DTS) that shipped with SQL Server
2000. SSIS is a very powerful tool that provides many discrete events exposed at all levels
of the transforms, as well as a complete workflow engine.

■Note The Team Foundation Server does not use SSIS to migrate data between data stores. The Team
Foundation Server uses custom adapters on the application tier to facilitate the data movement. SSIS will
most likely be used by administrators to perform backup and maintenance functions.

SQL Server Analysis Services (SSAS): This is all about providing real-time business intelli-
gence to the knowledge worker. The ability to combine the most recent information with
historical information has been a difficult problem. Customarily, the most current data
resides in the OLTP systems, while the historical data is normally stored in the enterprise
data warehouse. This release of SSAS introduces the Unified Dimensional Model (UDM),
which brings a balance in strength between the relational and OLAP constructs.

SQL Server Reporting Services (SSRS): This is positioned as an enterprise reporting plat-
form and is provided as a core service of the SQL Server 2005 Business Intelligence suite.
SSRS has a web services infrastructure and is easy to embed into other applications. SSRS
is integrated with existing Microsoft Office applications, from SharePoint to Excel.

As we’ve mentioned earlier VSTS reporting is based on SSRS. Before we dive into the
specifics of generating reports, let’s take a look at the reporting life cycle.

CHAPTER 6 ■ TEAM REPORTING160

4606CH06.qxd 4/20/06 3:17 PM Page 160

Understanding the Reporting Life Cycle
The SSRS reporting life cycle includes authoring, management, and delivery, as illustrated in
Figure 6-2.

Figure 6-2. The reporting life cycle

Reports can be authored in Visual Studio 2005 or by end users with the Report Builder
graphical user interface. Table 6-1 shows a comparison of the features of these authoring tools.
Creating reports is discussed in detail in the “Customizing Team Reports” and “Creating New
Reports” sections later in this chapter. The report is an XML file based on the Report Defini-
tion Language, which has an .rdl filename extension.

Table 6-1. Report Authoring Tools Feature Comparison

Report Designer Report Builder

Targeted at developers Targeted at business users

Integrated into Visual Studio Click-once application

Managed reports Ad hoc reports

Native queries Autogenerates queries

Free-form reports Reports built on templates

Works with reports built in Report Builder Cannot import Report Designer reports

■Note All of the reports shipped with the Team Foundation Server are built with Report Designer. Since
Report Builder cannot import Report Designer reports, modifications must be done using Report Designer.
Additionally, there are some difficulties using Report Builder against the Team Foundation Server cube
structure.

CHAPTER 6 ■ TEAM REPORTING 161

4606CH06.qxd 4/20/06 3:17 PM Page 161

Managing reports involves administering the reports, data sources, and permissions on
the report server. Authored reports can be published to the report server from within Visual
Studio, Report Builder, or by using the rs command-line utility (you must have appropriate
permission granted on the server). You can also upload reports from within Report Manager
on the server itself. Report Manager also provides the ability to organize content, define per-
missions, and manage properties for reports and data sources.

Delivering reports consists of publishing and managing them on the report server. The
publication model can be either a pull or push to the consumer. To pull a report, you can
browse to the Report Manager website and navigate to the desired report. If the My Reports
feature is enabled, the server users can manage a My Reports page and create custom linked
reports tailored for them. SSRS supports rendering of reports into various formats, including
HTML, XML, PDF, TIFF, CSV, and Microsoft Excel. Finally, SSRS supports a subscription model
in which consumers can subscribe to reports and receive e-mail notification on a scheduled
basis.

Using Predefined Team Reports
The predefined reports supplied with your selected process template are listed on the SQL
Server Reporting Services site. To access this site, open the Team Explorer window within
Visual Studio 2005, right-click the Reports node and select Show Report Site, as shown in
Figure 6-3.

Figure 6-3. Choosing to go to the report site

Figure 6-4 shows the SQL Server Reporting Services site for the EffortTracking project,
which uses the MSF for CMMI Process Improvement - v4.0 process template. The predefined
reports available with this process template are listed in Table 6-2.

CHAPTER 6 ■ TEAM REPORTING162

4606CH06.qxd 4/20/06 3:17 PM Page 162

Figure 6-4. EffortTracking Report Manager

■Note In the current version of Team Foundation Server, the number of default reports provided is a bit
confusing. Currently, the MSF for CMMI Process Improvement - v4.0 process template contains 19 reports
in the default list view on the report server, 23 reports in the detail view, and 25 reports in total as .rdl
files included with the process template. The MSF for Agile Software Development - v4.0 process template
includes 16 reports in the default list view on the report server, 20 reports in the detail view, and 22
.rdl files.

Table 6-2. MSF for CMMI Process Improvement

Report Description Type

Actual Quality vs. Planned Velocity1 Bugs found per requirements resolved Graph

Bug Rates1 Progress in finding, fixing, and Graph
closing bugs

Bugs by Priority1 Number of bugs active, found, and Graph
fixed by priority

Bugs Found Without Corresponding Tests List of bugs found that have no Tabular
associated tests

Builds1 Build summary with test result details Tabular

Continued

CHAPTER 6 ■ TEAM REPORTING 163

4606CH06.qxd 4/20/06 3:17 PM Page 163

Table 6-2. Continued

Report Description Type

Issues and Blocked Work Items1 Issues by type with blocked work items Graph

Load Test Detail Subreport for Load Test Summary Tabular

Load Test Summary Load tests run by Build with Detail Tabular

Project Velocity1 Direct comparison of resolve and Graph
close rates

Quality Indicators1 Number of tests by result vs. active Graph
bugs, code churn, and coverage

Reactivations1 Number of reactivated work items Graph
related to total work items

Regressions1 List of tests currently failing that had Tabular
previously passed

Related Work Items1 List of work items by iteration with Tabular
linked work items

Remaining Work1 Active, Resolved, and Closed work Graph
items by day

Requirements Detail2 Requirements with work item Tabular
task/test result detail

Requirements Test History and Overview1 Progress of testing against Graph
requirements over the duration
of the project iteration

Tests Failing Without Active Bugs1 List of failing tests without active Tabular
bugs to fix

Tests Passing with Active Bugs1 List of passing tests with active bugs Tabular
still against them

Triage1 Proposed work items by type over time Graph

Unplanned Work1 Amount of work added since start of Graph
iteration vs. planned

Work Items with Tasks Subreport for Requirements Detail Tabular

Work Items with Test Results Subreport for Requirements Detail Tabular

Work Items3 List of work items by iteration Tabular

1 The report is detailed in the CMMI process guidance.
2 The report is detailed in the process guidance, where it is called Scenario Detail.
3 Work Items by Owner and Work Item by State are listed in the process guidance, but there is but no .rdl

for them in the template.

Table 6-3 lists the predefined reports that are available with MSF for Agile Software Devel-
opment - v4.0 process template.

CHAPTER 6 ■ TEAM REPORTING164

4606CH06.qxd 4/20/06 3:17 PM Page 164

Table 6-3. MSF for Agile Software Development - v4.0 Process Template Default Reports

Report Description Type

Actual Quality vs. Planned Velocity1 Average number bugs per scenario for Graph
each iteration

Bug Rates1 Progress on finding, fixing, and Graph
closing bugs

Bugs by Priority1 Number of bugs active, found, and Graph
fixed by priority

Bugs Found without Corresponding Tests List of bugs found that have no tests Tabular
associated

Builds Build summary with test result details Tabular

Load Test Detail Subreport for Load Test Summary Tabular

Load Test Summary Load tests run by Build with Detail Tabular

Project Velocity1 Direct comparison of resolve and Graph
close rates

Quality Indicators1 Number of tests by result vs. active Graph
bugs, code churn, and coverage

Reactivations1 Number of reactivated work items Graph
related to total work items

Regressions List of tests currently failing that had Tabular
previously passed

Related Work Items List of work items by iteration with Tabular
linked work items

Remaining Work1 Progress on scenario, including work Graph
item subreports

Scenario Detail Scenario with work item task/test Tabular
result detail

Tests Failing Without Active Bugs List of failing tests without active Tabular
bugs to fix

Tests Failing with Active Bugs List of failing tests with active bugs Tabular
still against them

Unplanned Work1 Amount of work added since start Graph
of iteration vs. planned

Work Items with Tasks Subreport list of work items for the Tabular
Scenario Detail report

Work Items with Test Results Subreport test cases showing Tabular
outcome, category, and machine
for Scenario Detail report

Work Items List of work items by iteration Tabular

1 The report is detailed in the Agile process guidance.

CHAPTER 6 ■ TEAM REPORTING 165

4606CH06.qxd 4/20/06 3:17 PM Page 165

Customizing Team Reports
Reports contained within the Team Foundation default process templates are simply SSRS
custom reports. You can modify these reports to suit your needs using the Report Designer.

To use the Report Designer, you need to install Business Intelligence Development Studio
(BIDS), which ships as a client component with SQL Server 2005, as shown in Figure 6-5.

Figure 6-5. Business Intelligence Development Studio is a SQL Server Setup option.

BIDS is simply the Visual Studio shell with additional packages for SSAS, SSIS, and SSRS.
If you already have VSTS, installing BIDS adds those project types to your suite in the same
manner as adding the Team Explorer, as shown in Figure 6-6.

Once you have BIDS installed, you are ready to customize a report. Figure 6-7 illustrates
the basic process for customizing a project report.

CHAPTER 6 ■ TEAM REPORTING166

4606CH06.qxd 4/20/06 3:17 PM Page 166

Figure 6-6. Visual Studio installed products

Figure 6-7. Team report customization steps

Here, we will work through a simple example of customizing the Work Items report. We
will change the layout of the fields and modify the display elements on the report.

CHAPTER 6 ■ TEAM REPORTING 167

4606CH06.qxd 4/20/06 3:17 PM Page 167

Extracting the Report Definition
To get started, you need access to the .rdl file for the existing report you want to customize. If
you downloaded the MSF for CMMI Process Improvement - v4.0 process template through the
Process Template Manager, as described in Chapter 2 (right-click the Team Foundation Server
in the Team Explorer, select Team Foundation Server Settings ➤ Process Template Manager,
select the process template, and click Download), you will have the entire report definition set
resident on your local machine.

Alternatively, you can extract each one individually. Here’s how to extract the .rdl file for
the Work Items report:

1. Browse to your reporting services site (http://[server]/reports), select the
EffortTracking project, select Show Details, and then select Work Items.

2. The Work Item report will be rendered in view mode. Select the Properties tab and click
Edit under the Report Definition section.

3. In the File Download dialog box, select Save.

4. In the Save As dialog box, select a location on your local machine and click Save.
An XML version of the report (.rdl) has now been saved.

Adding the Report Definition to a Project
Next, you need to add the .rdl file to a Project solution. Follow these steps:

1. Start Visual Studio 2005 (or BIDS) and select File ➤ New ➤ Project.

2. Select Business Intelligence Projects in the Project Types list, and then select Report
Server Project from the Visual Studio installed templates list.

3. Give the project the name My Report and click OK.

4. With the new My Report solution showing in the Solution Explorer, right-click the
Reports folder and select Add Existing Item.

5. Browse to the location of your local file Work Items.rdl and click Add. The Work Items
report is now listed in your solution.

6. Double-click Work Items.rdl, and you will be brought into the Report Designer, as
shown in Figure 6-8.

CHAPTER 6 ■ TEAM REPORTING168

4606CH06.qxd 4/20/06 3:17 PM Page 168

The Report Designer includes three tabbed surfaces for working with reports:

• The Data tab is where you generate the queries for the report.

• The Layout tab is where you lay out and format the report.

• The Preview tab shows a rendered view of the report.

■Note Reports in the Team Foundation Server use two predefined data sources stored on the report server
at the root level: TfsOlapReportDs for the OLAP database and TfsReportDS for the relational database.
You will want to create both of these data source references in your project to allow the process template-
based reports to function properly.

Modifying the Report
For this example, we will make three changes to the report: move a field to another position,
remove some information that is displayed, and add an image.

Moving a Field
Currently, the Title field is in the last column in the row. We will move it to appear next to the
ID field.

1. Click inside the table near the word Title. This will expose the underlying table.

2. Click the blank header bar directly above the word Title to select the entire column.

3. Select Edit Cut to remove the Title field from the end of the row.

4. Press the left arrow key to move the cursor until the Assigned To field is highlighted,
and then select Edit Paste. The Title field is now in the second position of the
report row.

CHAPTER 6 ■ TEAM REPORTING 169

Figure 6-8. Report Designer Layout tab

4606CH06.qxd 4/20/06 3:17 PM Page 169

Removing Information
The default report includes the ID of the user who generated the report in the status text box.
We will now remove that bit of information.

1. Select the text box that starts with =“Report Generated:”, right-click and select fx
Expression.

2. Edit the expression and remove the following text:

" by " + User!UserID +

3. Click OK to save.

Adding an Image
Finally, we will add an image to give the report some color.

1. Click the open space above the Priority column and then drag the Image object from
the Report Items list.

2. The Image Wizard will start. Select Next.

3. Keep the default embedded for the image source and click Next.

4. Choose New Image and navigate to a small image you have stored locally. Click Next,
and then click Finish. Your image is now embedded in the report definition.

Your layout should look something like that shown in Figure 6-9.

CHAPTER 6 ■ TEAM REPORTING170

Figure 6-9. Report Designer custom layout

Saving the Modified Report Definition
After you’ve made your changes, you need to save your modified .rdl file.

1. Select File ➤ Save Work Items.rdl As. Click the Create New Folder icon.

2. Type Version One for the folder name, and then click OK.

3. In the Save File As dialog box, change the filename to My Work Items.rdl, and then
click Save.

4606CH06.qxd 4/20/06 3:17 PM Page 170

■Tip Sometimes it takes several iterations before your report functions as intended. By saving the modified
file in a separate folder each time, you can always go back to the previous versions.

Deploying and Viewing Your Report
You can deploy your new report to the Team Foundation report server directly from within
Visual Studio. First, you must set the deployment properties for your My Report project.

1. Right-click My Report in the Solution Explorer and select Properties. The My Report
Property Pages dialog box will be displayed, as shown in Figure 6-10.

Figure 6-10. My Report Property Page

2. Verify that OverwriteDataSources is set to False. Enter / for the Target DataSourceFolder.
Enter /EffortTracking for the TargetReportFolder. For TargetServerURL, enter your
report server’s URL. Click Apply to save the changes, and then click OK to close the
dialog box.

3. On the main menu, select Build ➤ Deploy My Report.

4. Watch the output window for messages. You should see the message “Deploy: 1 suc-
ceeded.”

5. Save and close the My Report project.

CHAPTER 6 ■ TEAM REPORTING 171

4606CH06.qxd 4/20/06 3:17 PM Page 171

■Note Alternatively, you can browse to your reporting services site (http://[server]/reports), select
the EffortTracking project, and then select Upload File from the Contents menu bar. Click the Browse
button next to the File to Upload text box, locate your saved My Work Items.rdl file, and then click OK.

6. Open your browser and navigate to your report server site (http://[server]/reports).

7. Select the EffortTracking project, and then choose My Work Items from the Contents
list. Your custom report will be rendered, as shown in Figure 6-11.

Figure 6-11. Rendered customized report

■Note If you get an error binding the data sources to the report, select Properties ➤ Data Sources and
manually reconnect them. This is sometimes due to the case or spelling used for the data source; the data
source names need to be exact.

Introducing the Team Foundation Data Warehouse
The Team Foundation Server contains a relational data warehouse and an OLAP database,
both named TFSWarehouse in their respective environments. Relational databases are by defi-
nition two-dimensional, based on rows and columns, and rooted in mathematical set theory.
OLAP databases introduce the concept of dimensions, which provide multidimensional views
of the data.

CHAPTER 6 ■ TEAM REPORTING172

4606CH06.qxd 4/20/06 3:17 PM Page 172

Understanding the Data Warehouse Architecture
The relational data warehouse is populated from the main operational data stores within
Team Foundation. This architecture is shown in Figure 6-12.

Figure 6-12. Data warehouse architecture

Operational Data Stores
Four operational data stores are provided with the Team Foundation Server:

• Work Item Tracking includes both the work item tracking store (TfsWorkItemTracking)
and the work item tracking attachments store (TfsWorkItemTrackingAttachments).

• Version Control holds a single data store (TfsVersionControl) containing all the tables
to operate the versioning subsystem.

• Team Build contains one data store (TfsBuild), which combines the build and test data
stores.

• Integration services include both the activity logging data store (TfsActivityLogging)
and the integration store (TfsIntegration).

CHAPTER 6 ■ TEAM REPORTING 173

4606CH06.qxd 4/20/06 3:17 PM Page 173

Warehouse Adapters
Each operational data store has its own version of the warehouse adapter. Because each data
store is customizable, it must be able to convey underlying changes to be incorporated into
the data warehouse.

The warehouse adapter is a managed assembly that extracts data from the operational
data store, transforms the data to a common warehouse format, and then writes that data
into the relational warehouse. Each managed assembly implements the IWarehouseAdapter
interface to allow the Team Foundation Warehouse Service to activate it, along with the
IDataStore interface for writing to the warehouse. The adapters can be found in C:\Program
Files\Microsoft Visual Studio 2005 Team Foundation Server\Web Services\Warehouse\
bin\Plugins on the Team Foundation Data Tier server.

Star Schema
The most common construct for describing a data warehouse is the star schema. This schema
portrays the multidimensional arrangements for relational tables used in data analysis and
reporting.

When designing a star schema, all data items are divided into one of two groups: numeric
items used in aggregations (measures) and nonnumeric items used as context (descriptors).
Fact tables contain the grouping of measures, and dimension tables contain groupings of
descriptors. Each star schema contains only one fact table, which represents the subject area
to be analyzed and reported on. Descriptors are then grouped around logical entity areas,
such as person, date, and builds, and these become dimensions in the star schema.

Only one type of relationship exists in a star schema: a one-to-many relationship from the
dimension to the fact. The star schema gets its name by the common arrangement of the fact
table in the middle and the dimension tables surrounding the fact table like points on a star.

The Team Foundation reporting warehouse is a traditional data warehouse consisting of a
relational database roughly organized around a star schema and an OLAP database built over
the top. Figure 6-13 shows one of the subject areas, Code Churn, from TFSWarehouse.

Exploring the Data Warehouse Schema
The data warehouse schema is the template for the layout of the tables in TFSWarehouse.
The initial schema can be found at \Program Files\Microsoft Visual Studio 2005 Team
Foundation Server\Tools\warehouseschema.xml on the Team Foundation Data Tier Server. An
updated copy is stored in the ConfigXML setting in the _WarehouseConfig table of TFSWarehouse.
The three main areas in the template are Facts, Dimensions, and FactLinks. Each represents a
significant component in the data warehouse and OLAP cube, as described in the previous
section.

■Note Setupwarehouse.exe uses the version of warehouseschema.xml under the Tools folder during
setup to build the warehouse. It is copied to the _WarehouseConfig table during the setup process.
Ongoing schema changes update the version in the _WarehouseConfig table.

CHAPTER 6 ■ TEAM REPORTING174

4606CH06.qxd 4/20/06 3:17 PM Page 174

Figure 6-13. Code Churn star schema

Data Warehouse Facts
The fact table holds the primary (measurable) data for analysis. Facts are represented by Fact,
Fields, and DimensionUses, as shown in Listing 6-1.

Listing 6-1. Warehouse Template Facts Section

<Facts>
<Fact>
<Name>Code Churn</Name>
<FriendlyName>Code Churn</FriendlyName>
<PerspectiveName>Code Churn</PerspectiveName>
<IncludeCountMeasure>true</IncludeCountMeasure>
<Fields>
<Field>
<Name>Lines Added</Name>
<FriendlyName>Lines Added</FriendlyName>
<Type>int</Type>

CHAPTER 6 ■ TEAM REPORTING 175

4606CH06.qxd 4/20/06 3:17 PM Page 175

<Length>0</Length>
<Visible>true</Visible>
<AggregationFunction>Sum</AggregationFunction>
<RelationalOnly>false</RelationalOnly>
<CalculatedMembers />

</Field>
<Measures />
<DimensionUses>
<DimensionUse>
<UseName>Changeset</UseName>
<FriendlyUseName>Changeset</FriendlyUseName>
<DimensionName>Changeset</DimensionName>
<RelationalOnly>false</RelationalOnly>

</DimensionUse>
</Fact>

</Facts>

The first few lines of the template define the fact name, perspective name, and whether or
not to include a count. The perspective name refers to predefined subsets of cube metadata,
similar to SQL Server views. Each field of the fact table is then enumerated. If RelationalOnly
has a value of true, then the field will appear in the relational data warehouse but not in the
analysis services cube. DimensionUses defines the dimension tables used by the Fact. If
IncludeCountMeasure contains a value of true, then a measure will be created containing an
integer value for count. If Visible has a value of true, then it is available to cube browsing
tools.

Table 6-4 lists the fact tables that ship with the Team Foundation Server.

Table 6-4. Fact Tables for the Team Foundation Server

Number Fact Table Fields

1 Code Churn Lines Added, Lines Modified, Lines Deleted,
Net Lines Added

2 Work Item Changeset Work Item, Changeset

3 Work Item History Logical Tracking ID, Record Count, Revision Count,
State Change Count

4 Current Work Item Logical Tracking ID

5 Build Changeset No fields are specified

6 Build Project Compile Errors, Compile Warnings, Static Analysis
Errors, Static Analysis Warnings

7 Build Details Logical Tracking ID, Build Duration

8 Load Test Counter Value

9 Build Coverage Lines Covered, Lines Not Covered, Lines Partially
Covered, Blocks Covered, Blocks Not Covered

CHAPTER 6 ■ TEAM REPORTING176

4606CH06.qxd 4/20/06 3:17 PM Page 176

Number Fact Table Fields

10 Run Coverage Lines Covered, Lines Not Covered, Lines Partially
Covered, Blocks Covered, Blocks Not Covered

11 Load Test Page Summary Sequence, Test, Response Time, Page Count

12 Test Result Result Record Count, Result Count, Result
Transition Count

13 Load Test summary Start Time, Actual Duration, Load Test Duration,
Load Test Warmup Time

14 Load Test Details Sequence, Test, Total Tests, Failed Tests,
Average Duration

15 Load Test Transaction Sequence, Test, Transactions, Response Time,
Elapsed Time

Data Warehouse Dimensions
Dimensions are the descriptive data or categorical variables. The primary key of the dimen-
sion will be stored with the associated fact table. Dimensions are represented by Dimension,
Fields, KeyFieldName, and OrderByField, as shown in Listing 6-2.

Listing 6-2. Warehouse Template Dimensions Section

<Dimensions>
<Dimension>
<Name>Changeset</Name>
<FriendlyName>Changeset</FriendlyName>
<Fields>
<Field>
<Name>Changeset ID</Name>
<FriendlyName>Changeset ID</FriendlyName>
<Type>int</Type>
<Length>0</Length>
<Visible>true</Visible>
<RelationalOnly>false</RelationalOnly>
<CalculatedMembers />

</Field>
<KeyFieldName>Changeset ID</KeyFieldName>
<OrderByField>Changeset ID</OrderByField>
<Levels />

</Dimension>

Table 6-5 lists the dimension tables that ship with the Team Foundation Server.

CHAPTER 6 ■ TEAM REPORTING 177

4606CH06.qxd 4/20/06 3:17 PM Page 177

Table 6-5. Dimension Tables for the Team Foundation Server

Number Dimension Table Fields

1 Area Area, Area Uri, Parent Area Uri, Area Path,
Forwarding ID, Project Uri

2 Assembly Assembly

3 Build Build Artifact Moniker, Build, Build Type, Drop
Location, Build Start Time

4 Build Flavor Build Flavor

5 Build Quality Build Quality

6 Build Status Build Status

7 Changeset Changeset ID, Changeset

8 Date UTCDateTime, Year, YearString, Month,
MonthString, Month of Year, Week,
WeekString, Week of Year, Date, Day of Year,
Day of Month, Day of Week

9 File File, Parent Path, File Path, File Extension

10 Iteration Iteration, Iteration Uri, Parent Iteration Uri,
Iteration Path, Forwarding ID, Project Uri

11 Load Test Counter Dimension Counter ID, Counter Object, Counter, Counter
Instance, Counter Result, Higher Is Better

12 Load Test Page Summary URL
Dimension

13 Load Test Scenario Load Test Scenario

14 Load Test Transaction Transaction
Dimension

15 Machine Machine

16 Outcome Outcome, Outcome Passing

17 Person Person, SID, Domain, Alias, Email

18 Platform Platform

19 Result Result ID, Result, Test, Test Type, Test
Description, Parent Result, Result Root, Error
Message, Load Test Agent List, End Time

20 Run Run ID, Run, Run Description, Remote Run

21 Run Result Run Result, Run Result Message

22 Team Project Project Uri, Team Project

23 Test Category Category ID, Test Category, Category Full
Name, Parent Category

24 Today Index, UTCDateTime, Year, YearString, Month,
MonthString, Month of Year, Week,
WeekString, Week of Year, Date, Day of Year,
Day of Month, Day of Week

25 Tool Artifact Display URL Tool Type, Tool Artifact, Display URL

26 WorkItem Work Item, Previous State

CHAPTER 6 ■ TEAM REPORTING178

4606CH06.qxd 4/20/06 3:17 PM Page 178

Figure 6-14 shows the dimension tables used by facts for the Team Foundation Server
data warehouse.

Figure 6-14. Dimension tables used by facts

■Note Every fact in the data warehouse contains a dimensional relationship with the team project dimen-
sion. This ensures that all fact data in the warehouse can be sliced by project.

Data Warehouse FactLinks
FactLinks are a view joining two related fact tables in the data warehouse. The result is that
all fields from both fact tables are available for reporting. FactLinks are represented by the
LinkName, SourceFactName, and LinkedFactName, as shown in Listing 6-3.

CHAPTER 6 ■ TEAM REPORTING 179

4606CH06.qxd 4/20/06 3:17 PM Page 179

Listing 6-3. Warehouse Template FactLinks Section

<FactLinks>
<FactLink>
<LinkName>Work Item with Result</LinkName>
<FriendlyLinkName>Work Item with Result</FriendlyLinkName>
<SourceFactName>Work Item History</SourceFactName>
<LinkedFactName>Test Result</LinkedFactName>

</FactLink>
</FactLinks>

Table 6-6 lists the dimension tables for FactLinks that ship with the Team Foundation
Server.

Table 6-6. Dimension Tables for FactLinks

Number Dimension Table Fact Tables

1 vWork Items with Result Work Item History, Test Result

2 vRelated Current Work Items Current Work Item, Current Work Item

3 vRelated Work Items Work Item History, Work Item History

The Tool Artifact Display Url Table
A special table named Tool Artifact Display Url in the data warehouse holds the URL paths
for each of the tool artifacts, as shown in Figure 6-15. The tools correspond to the operational
stores: Build (including Test), Version Control, and Work Item Tracking. The artifacts include
entries like work items, test results, and versioned items. VSTS uses these display URLs to
allow active hyperlinks on various artifacts.

CHAPTER 6 ■ TEAM REPORTING180

Figure 6-15. The Tool Artifact Display Url table

4606CH06.qxd 4/20/06 3:17 PM Page 180

Managing the Data Warehouse
The Controller web service exposes eight operations to help manage the TFSWarehouse, as
shown in Figure 6-16. To access this service, log on to the application tier and browse to
http://localhost:8080/Warehouse/v1.0/warehousecontroller.asmx.

Figure 6-16. Team Foundation Warehouse Controller web service

These operations work as follows:

• Block: Turns off warehouse processing until Unblock is called.

• ChangeSetting: Allows you to change settings stored in the warehouse database table
_WarehouseConfig via the web service (settings include RunIntervalSeconds and
DailyFullProcessingHour).

• GetNextInterval: Returns RunIntervalSeconds from the _WarehouseConfig table.

• GetWarehouseStatus: Gets the current status from the warehouse. The service will
respond with ProcessingAdapters (schema modifications), ProcessingOlap (schema
modifications), ProcessingAdapters (pulling data), ProcessingOlap (processing the
cube), or Idle (waiting).

• Notify: Makes a Run call. Used by the Project Creation Wizard to bring the warehouse
online quicker after project creation.

CHAPTER 6 ■ TEAM REPORTING 181

4606CH06.qxd 4/20/06 3:17 PM Page 181

• Reinitialize: Reinitializes the warehouse by reloading the adapters and initializing state.
The warehouse must be in a blocked and idle state.

• Run: Sets two distinct activities in motion. Each of the operational store plugins will
gather data from its associated data store and write to the data warehouse. Next, it will
process the cube in transactional mode so it is still available.

• Unblock: Turns warehouse processing back on after a Block call.

Adding Elements to the Data Warehouse
The Work Item Type Definition (WITD) language (described in Chapter 5) field definition con-
tains an option named reportable, which can be set to dimension, measure, or detail. You can
use these as follows:

• Use reportable="dimension" for attributes that you want to slice the data (type, area,
and so on). A column is added to the fact table and a measure added to measure group.

• Use reportable="measure" for numeric values that you want to aggregate (hours,
counts, and so on). A column is added to the dimension table and the dimension
ATTRIBUTE is added to the Work Item dimension.

• Use reportable="detail" to add a column to the fact table without adding anything to
the cube.

■Note After the process template is updated using witimport or the Process Template Manager, the new
reportable fields will be put in the data warehouse the next time the adapters are executed.

Data Mining with Microsoft Excel
Microsoft Excel is an excellent client to manipulate data stored in the Team Foundation Server
data warehouse. As an example, we’ll go through the steps for bringing some data into Excel
and then creating a simple report.

■Note This functionally is fully support in Microsoft Excel 2003 and enhanced in Microsoft Excel 2007
(currently in beta).

CHAPTER 6 ■ TEAM REPORTING182

4606CH06.qxd 4/20/06 3:17 PM Page 182

Bringing Team Foundation Data into Excel
Follow these steps to bring Team Foundation data into an Excel pivot table:

1. Open Microsoft Office Excel 2003.

2. From the main menu, select Data ➤ Pivot Table and Pivot Chart Report.

3. On the first page of the wizard, select External Data Source, as shown in Figure 6-17,
and click Next

Figure 6-17. Excel PivotTable and PivotChart Wizard Step 1

4. On the second page of the wizard, shown in Figure 6-18, click Get Data.

Figure 6-18. Excel PivotTable and PivotChart Wizard Step 2

■Note If Microsoft Query is not installed, you will be prompted to install it.

CHAPTER 6 ■ TEAM REPORTING 183

4606CH06.qxd 4/20/06 3:17 PM Page 183

5. In the Choose Data Source dialog box, select the OLAP Cubes tab, and then select
<New Data Source>, as shown in Figure 6-19. Click OK.

Figure 6-19. The Choose Data Source dialog box

6. In the Create New Data Source dialog box, give your data source a name and select
Microsoft OLE DB Provider for Analysis Services 9.0 (you can get this by installing
the SQL Server 2005 workstation components), as shown in Figure 6-20. Then click
Connect.

Figure 6-20. The Create New Data Source dialog box

7. In the Multidimensional Connection 9.0 dialog box, make sure Analysis Server is
selected. Provide the name of your data tier server and your login credentials, as
shown in Figure 6-21. Then click Next.

CHAPTER 6 ■ TEAM REPORTING184

4606CH06.qxd 4/20/06 3:17 PM Page 184

Figure 6-21. The Multidimensional Connection dialog box

8. Select the OLAP database (TfsWarehouse), as shown in Figure 6-22, and then click
Finish.

Figure 6-22. Selecting the TFSWarehouse database

CHAPTER 6 ■ TEAM REPORTING 185

4606CH06.qxd 4/20/06 3:17 PM Page 185

9. Select the Current Work Item cube, as shown in Figure 6-23, and then click OK.

Figure 6-23. The Create New Data Source dialog box with the Current Work Item cube
selected

■Note With SQL Standard Edition, only one perspective (cube), called Team System, is used.

10. Make sure your new data source is selected in the Choose Data Source dialog box, and
then click OK.

11. The data fields will now have been retrieved, as shown in Figure 6-24. Click Next.

■Note If you get an error messages stating “Initialization of the data source failed,” you will need to
register the msolap90 dll.

Figure 6-24. Excel PivotTable and PivotChart Wizard Step 2 after retrieving data

CHAPTER 6 ■ TEAM REPORTING186

4606CH06.qxd 4/20/06 3:17 PM Page 186

12. Select the default location on the existing worksheet, as shown in Figure 6-25, and then
click Finish.

Figure 6-25. Excel PivotTable and PivotChart Wizard Step 3

At this point, you have an empty pivot table bound to the Current Work Item Fact cube, as
shown in Figure 6-26.

Figure 6-26. Empty pivot table in Excel

Creating a Report
There are four measures at the end of the Pivot Table Field List: Current Work Item Count,
Remaining Work, Completed Work, and Baseline Work. You’ll use Current Work Item Count,
which gives you the total counts for any slice, for most queries.

For example, if you want to create a list of your Work Items by Type report, use the
Current Work Item Count measure, filter to Team.Project=EffortTracking, and slice by Type.
TransitionCount is used to show the state transition activity.

CHAPTER 6 ■ TEAM REPORTING 187

4606CH06.qxd 4/20/06 3:17 PM Page 187

To see how this works, follow these steps:

1. Select the Current Work Item Count measure and add it to the data area. This will now
show a count of the total number of work items without any classification.

2. Select Assigned To.Person and add it to the Row Area. If there are multiple people, you
can use the drop-down arrow, deselect (Show All), and select only yourself.

3. Select TeamProject.TeamProject, select the Page Area, and click Add To.

4. Select Work Item.Work Item Type and add it to the Row Area. The Work Items are now
sliced by Type.

5. Add Work Item.State to the Row Area.

The simple Excel report from the Team Foundation data warehouse is shown in Figure 6-27.

Figure 6-27. Custom pivot table in Excel

To view the same information in a chart format, right-click within your pivot table and
select PivotChart. You can change the chart types, title, and labels. Figure 6-28 shows an
example of a modified chart.

CHAPTER 6 ■ TEAM REPORTING188

4606CH06.qxd 4/20/06 3:17 PM Page 188

Figure 6-28. Custom pivot table chart in Excel

Creating a New Report
Creating a new report from scratch is not difficult using a Visual Studio Business Intelligence
Project template, which was introduced earlier in the section about customizing reports.
Although you do not have a base report to use as a starting point, you do have the help of the
Report Server Project Wizard. An overview of the process is shown in Figure 6-29.

Figure 6-29. Creating a new report

CHAPTER 6 ■ TEAM REPORTING 189

4606CH06.qxd 4/20/06 3:17 PM Page 189

As an example, we’ll create a simple report. It will be based on a query that shows the dis-
tinction between the cumulative count and transition (State Change) count. The cumulative
count (sliced by state and date) will show totals for the period (week). The transition count
(sliced by state and date) will reveal activations, resolutions, and closures within the period
(week).

Follow these steps:

1. Start Visual Studio 2005 (or BIDS) and select File ➤ New ➤ Project. Select Business
Intelligence Projects in the Project Types list, and then select Report Server Project
Wizard from the Visual Studio installed templates list. Give the project the name
MyNewTFSReport, as shown in Figure 6-30, and then click OK.

Figure 6-30. Starting a new Report Server Project Wizard project

2. This will launch the Report Wizard and display the splash screen. Click Next to
continue.

3. On the Select the Data Source page of the wizard, select the “New data source” radio
button and give the source a name (myTFSsource). Click the down arrow for the Type
and select Microsoft SQL Server Analysis Services. Click the Edit button to define the
data source connection. In the Server Name text box, type the name of your database
tier server for Team Foundation. Click the down arrow next to the “Select or enter a
database name” combo box and select the TFSWarehouse, as shown in Figure 6-31.
Click Test Connection to check the connection, and then click OK. Click OK in the
Connection Properties dialog box.

CHAPTER 6 ■ TEAM REPORTING190

4606CH06.qxd 4/20/06 3:17 PM Page 190

Figure 6-31. The Connection Properties dialog box

4. You will now see the connection string populated in the Select the Data Source page.
Click Next.

5. On the Design the Query page, click Query Builder to launch the Multidimensional
Expressions (MDX) query builder. (MDX allows you to query multidimensional sources
such as TFSWarehouse cubes and return cell sets of the cube’s data.)

6. Now you need to select the cube for the query. Click the ellipsis button in the top-left
pane to open the Cube Selection window. For this example, select Work Item History,
as shown in Figure 6-32, and then click OK.

Figure 6-32. The Cube Selection window

CHAPTER 6 ■ TEAM REPORTING 191

4606CH06.qxd 4/20/06 3:17 PM Page 191

7. Within the Work Item History cube, expand the Assigned To dimension. Right-click
Person and select Add to Query. Click to expand Person, then expand Member, then
expand All. Scroll down to find your name, right-click it, and select Add to Filter.

8. Repeat this process to expand the Work Item dimension, and add System_State
and System_Reason to the query. Add Team Project as a filter item, and filter on
EffortTracking if you have more than one team project. Expand the Date dimension,
expand Year Week Date, and add Week to the query.

9. To add the measures to your query, expand Measures, and then expand Work Item
History. Right-click Cumulative Count and select Add to Query. Do the same for State
Change Count. Your query design should now look like the one shown in Figure 6-33.

■Note If you prefer, you can drag-and-drop items onto the design surface instead of using the right-click
and add method.

CHAPTER 6 ■ TEAM REPORTING192

Figure 6-33. The query in the Query Builder

4606CH06.qxd 4/20/06 3:17 PM Page 192

10. Click OK in the Query Builder, and you will see your MDX query displayed in the
Design the Query page of the wizard, as shown in Figure 6-34. Click Next to continue.

■Tip If you would like to see the MDX query while using the designer, you can click the design mode icon
in the Query Builder to toggle back and forth between the design and the MDX query.

Figure 6-34. The query built with the Query Builder

11. You will be prompted for the report type. Select the default Tabular report type and
click Next.

12. The Design the Table page shows the six available fields. Select Person in the Available
fields and click the Page button to move it to the Page level fields. Select Week and click
the Group button to move it to the Group level. Move the remaining four fields to the
Details level. Your page should look like the one shown in Figure 6-35. Click Next.

Select the Stepped layout and check both Include Subtotals and Enable Drilldown, as
shown in Figure 6-36. This will allow you to expand the rows for more detail and pro-
vide subtotals on the rows when the detail is collapsed. Click Next.

CHAPTER 6 ■ TEAM REPORTING 193

4606CH06.qxd 4/20/06 3:17 PM Page 193

Figure 6-35. Designing the tabular report

Figure 6-36. Designing the tabular layout

CHAPTER 6 ■ TEAM REPORTING194

4606CH06.qxd 4/20/06 3:17 PM Page 194

14. Select the Forest style sheet on the Choose the Table Style page, and then click Next.

15. Select the deployment location for your report: the Team Foundation report server and
the team project name for the Deployment folder.

16. Name the report MyTFSReport. Then review the summary information, select Preview
report, and click Finish.

17. Once the report is rendered in a preview, you can toggle to the layout view and change
the title or other layout features. Your final report is shown in Figure 6-37.

Figure 6-37. Preview of a custom report

18. To deploy your custom report, right-click MyTFSReport.rdl in the Solution Explorer and
select Deploy.

CHAPTER 6 ■ TEAM REPORTING 195

4606CH06.qxd 4/20/06 3:17 PM Page 195

Summary
This chapter opened with a brief introduction to the SQL Server 2005 Business Intelligence
platform and an overview of SSRS and the reporting life cycle. Then we covered the predefined
reports shipped with both the MSF for Agile Software Development - v4.0 and MSF for CMMI
Process Improvement - v4.0 process templates. We walked through the process of customizing
a report from the CMMI template using the Report Designer integrated within Visual Studio.

We then took a look at the Team Foundation data warehouse and how it works. Next, we
worked through an example of data mining with Microsoft Excel against the data warehouse.
Finally, we created a report from scratch.

CHAPTER 6 ■ TEAM REPORTING196

4606CH06.qxd 4/20/06 3:17 PM Page 196

Team Foundation Build

This chapter describes how to perform automated builds using VSTS. Automated builds are
a key part of ensuring a high-quality, low-cost system. That is not to say that using nightly,
automated builds will result in a low-cost system, but that it will result in a lower cost when
compared to an equivalent system that does not perform these builds. That statement in itself
should be highly suspect to you right now, because performing builds in and of itself does
nothing to reduce cost. With that in mind, it might be a good idea to understand what occurs
with these types of builds. So, first we’ll explain the automated build process and its benefits,
and then we’ll look at using Team Foundation Build.

Benefits of Automated Builds
The process of nightly builds typically follows this path:

• Get the latest version of code from the source code repository.

• Perform a build.

• Deploy the build (this may or may not be necessary depending on the type of
application).

• Run all of the unit tests associated with the code.

• Publish the test results to the Team Foundation Server.

This type of test is called a build verification test (BVT). Believe it or not, this is a concept
that has been adopted very slowly. Tools such as Ant, NAnt, JUnit, and NUnit have made this
process much easier to implement. There were always barriers for developers though. These
revolved around the source code repository itself. Have you ever tried to write code that would
automatically pull the latest version of code or a specific version of code from Visual Source-
Safe (or CVS for that matter)? If you have, you know that that is a software development
project in and of itself.

So how does this help reduce cost and increase quality? First, by performing nightly
builds, you know exactly when the code breaks. Compare this to running builds once a week.
When did the code break? Who broke it? Where is it broken? By doing this nightly, you avoid
these issues.

197

C H A P T E R 7

4606CH07.qxd 4/20/06 3:19 PM Page 197

Second, running the unit testing provides a measure of the quality of the build. It allows
for regression testing to be performed every night. Breaks are discovered immediately and
corrected immediately. This means that as you work closer toward release, you can be confi-
dent that your code works. The other advantage of this approach is that the software can
always be demonstrated to the stakeholders because it always works.

This is not to say that you should not worry about the testing using this process, because
you still need to perform function and system testing. However, performing BVTs adds a
level of confidence in working with your code. It also increases the confidence that your stake-
holders have in you and your team because they can see that things are working. And finally, it
decreases the number of bugs and the amount of work to fix those bugs that are found as you
approach the release date.

■Tip If you are using a test-driven development methodology, or even just good coding change manage-
ment practices, developers should be performing builds and running tests before checking their code in
anyway. If this process is followed, it is unlikely that the BVTs will report errors, but they may help find errors
that were overlooked because of a break in the processes. And any errors found before functional or system
testing are that much easier and cheaper to correct.

Using Team Foundation Build
You can use Team Foundation Build simply to perform regular builds to make sure that the
project can be built. However, to truly take advantage of Team Foundation Build’s capabilities,
you should establish procedures that promote using it. This means that there should be rules
that say that developers will not check in code that a) does not build, b) does not have unit
tests, and c) does not pass its unit tests. Following these three, sometimes not-so-simple rules,
will increase the quality of your code greatly and allow you to gain more benefit from perform-
ing these nightly tests.

■Note Chapter 3 discusses setting up check-in policies. One of the available policies is the Testing Policy,
which ensures that code passes certain tests before it is checked in. There are no policies to enforce code
passing a BVT.

Creating a Build Type
To set up Team Foundation Build, you configure a Team Foundation build type. A build type is
a set of instructions, or steps, that guide the process of creating and testing an application.
These instructions are stored as a build type on the Team Foundation Server.

CHAPTER 7 ■ TEAM FOUNDATION BUILD198

4606CH07.qxd 4/20/06 3:19 PM Page 198

■Caution Even though you can create build types without having Team Foundation Build installed, you do
need Team Foundation Build (a separate installation) in order to be able to run the builds. For this demon-
stration, Team Foundation Build is installed on the same machine as the development machine (mcsd-dev).

To create a build type, follow these steps:

1. Select the Team Explorer pane and expand the Team Foundation Builds node.

2. Right-click the Team Foundation Builds node and select New Team Foundation Build
Type. This starts the New Team Build Type Creation Wizard.

3. On the wizard’s Welcome page, enter a title and optionally a description, as shown in
Figure 7-1. The description should describe in detail what this particular build does,
as there may be many different build types for various parts of the system, especially
when you’re working on a large system with many different projects or solutions. After
you’ve entered the information, click Next to continue.

Figure 7-1. Starting the New Team Build Type Creation Wizard

4. On the Selections page, select which solutions you want to build. The workspace
options allow you to select workspaces defined in version control. Once you have
made this selection, the solutions listed are those located within the selected work-
space. For this example, select the EffortTrackingSolution, as shown in Figure 7-2,
and then click Next.

CHAPTER 7 ■ TEAM FOUNDATION BUILD 199

4606CH07.qxd 4/20/06 3:19 PM Page 199

Figure 7-2. Selections page of the New Team Build Type Creation Wizard

5. On the Configurations page, you can choose to test your release against various config-
urations, which must also be defined in the solution’s Configuration Manager. As you
can see in Figure 7-3, you can elect to build a release or debug version of the solution,
and you can target any of the available platforms. This is a great feature if you are
building a solution that is targeted for a 32-bit and 64-bit release using the same code
base, for example. Select Mixed Platforms if your solution contains more than one type
of platform (such as Web, Windows, and so on). This will build each project according
to that projects’ specific settings. You can also enter your own configuration name in
the Configuration combo box, if your solution supports a custom configuration. In
addition, you can enter your own platform in the Platform combo box to target in the
build. For this demonstration, leave the default configuration of Release/Any CPU and
click Next.

■Caution If you enter (or select) a Configuration/Platform combination that is not already defined in the
solution, that particular build will be skipped.

6. On the Location page, select where the build and tests will be performed and where
the completed build will be placed after everything has been done, as shown in
Figure 7-4. For this example, select the local machine on which you are running VSTS,
which must have Team Foundation Build installed on it, and specify a local directory
(if it does not exist, it will be created). The drop location can be anywhere.

CHAPTER 7 ■ TEAM FOUNDATION BUILD200

4606CH07.qxd 4/20/06 3:19 PM Page 200

Figure 7-3. Configurations page of the New Team Build Type Creation Wizard

Figure 7-4. Location page of the New Team Build Type Creation Wizard

CHAPTER 7 ■ TEAM FOUNDATION BUILD 201

4606CH07.qxd 4/20/06 3:19 PM Page 201

■Caution For this release, if you intend to run any of the unit tests, you must specify a build machine that
has the Team Edition for Software Developers or Testers installed. For web tests to run, the build machine
must have the Team Edition for Software Testers installed. Additionally, the location that you specify for the
build must have enough available space to hold all of the source files for the solution and the compiled solu-
tion. This is because Team Foundation Build does a “Get Latest” from the version control, and then builds the
solution in the specified location.

7. On the Options page, specify the tests and analysis that you want to run as part of the
build. Notice that you can select only test lists; you cannot select individual tests
(including ordered tests). The list of tests is controlled by which testing metadata file
you select from the drop-down list. Each solution can have more than one metadata
file and therefore more than one list of tests. For this example, select the Run Test
check box and the Read Tests check box, as shown in Figure 7-5. Also select the Per-
form Code Analysis According to Project Settings check box at the bottom of the page.
This will cause FxCop (or PREfast for a C/C++ application) to run as part of the build
process, if you selected this option to be run as part of the preferences for the specific
projects involved in the solution. Click Next to continue.

Figure 7-5. Options page of the New Team Build Type Creation Wizard

CHAPTER 7 ■ TEAM FOUNDATION BUILD202

4606CH07.qxd 4/20/06 3:19 PM Page 202

8. The Summary page provides a list of all of the choices you have made in the wizard, as
shown in Figure 7-6. Click Finish to complete the wizard.

Figure 7-6. Summary page of the New Team Build Type Creation Wizard

Team Foundation Build will then display the XML configuration file used to store the set-
tings, which can be edited by hand at any time, as described in the “Customizing the Build
Process” section later in this chapter. In addition, the build type that you just created will
appear under the Team Foundation Builds node in the Team Explorer.

If you need to delete a build type, open the Source Control Explorer and drill down to the
build type folder ((Server)\(Solution)\TeamBuildTypes\(BuildType)). Right-click the build
type that you want to delete (the folder) and select Get Latest. Then right-click the build type
folder and select Delete. Finally, commit the deletion in the Pending Changes dialog box.

Running the Build and Viewing Build Results
Once you’ve set up the build type, running the build is simple. Right-click the build type under
the Team Foundation Builds node and select Build Team Project Effort Tracking. This displays
the Build dialog box, which allows you to make any last-minute changes to the build machine
or directory, as shown in Figure 7-7. Click the Build button to run the build.

CHAPTER 7 ■ TEAM FOUNDATION BUILD 203

4606CH07.qxd 4/20/06 3:19 PM Page 203

Figure 7-7. Build dialog box

At this point, the solution will start building, and a Build Detail Report will be displayed to
let you know the status of the build and where in the process it is, as shown in Figure 7-8.

CHAPTER 7 ■ TEAM FOUNDATION BUILD204

Figure 7-8. Summary section of the Build Detail Report

4606CH07.qxd 4/20/06 3:19 PM Page 204

■Tip You can be alerted when a build is performed. To set this up, refer to discussion of project alerts in
Chapter 2.

The same report that shows the status of the build progress also shows the results when
the build is completed. The results are broken into five areas:

• Summary

• Build steps

• Result details (for each configuration type)

• Associated changesets

• Associated work items

Build Summary
The summary lists basic information about the build (see Figure 7-7). Clicking the build name
link will open the folder where the build was output to (specified in the build configuration
location section). Opening the build log will provide you with detailed information of every-
thing that occurred as part of the build.

Build Steps
The build steps section shows all the steps that Team Foundation Build took as it was perform-
ing the build test and copying the file to the drop location, as shown in Figure 7-9. The details
for each of these steps can be found in the build log.

Figure 7-9. Build steps section of the Build Detail Report

CHAPTER 7 ■ TEAM FOUNDATION BUILD 205

4606CH07.qxd 4/20/06 3:19 PM Page 205

Result Details
If there were any errors or warnings, they will be summarized in the result details section, as
shown in Figure 7-10.

Figure 7-10. Result details section of the Build Detail Report

Clicking the Release.txt link will open the release.txt file and display the details of the
errors and warnings. In the case of this particular test, the database projects caused the warn-
ings, because the .dbp file could not be built by the build engine, as it is not a supported type.
So these warnings are perfectly acceptable.

■Note Because database projects cannot be built, you may want to store them in another solution. Of
course, then you will need to have multiple instances of Visual Studio open in order to work with your data-
base information and project information at the same time. Alternatively, you could just keep in mind that
you will always have as many warnings as you have database projects in your solution. If you see more
warnings, it is time to investigate.

The next line details the test results. In this case, all of the tests passed. Under Test Run,
the test results link is displayed. Clicking this link allows you to download the test results to
your workstation in order to examine the details. These details are presented in the same way
that a test run on your local machine is presented.

Finally, the code coverage results are listed here in total and by each assembly. In this
case, only the web service assembly was tested. The blocks that were not covered are those
that deal with altering data that you did not include in the tests run during the build.

CHAPTER 7 ■ TEAM FOUNDATION BUILD206

4606CH07.qxd 4/20/06 3:19 PM Page 206

Associated Changesets
All changesets which contribute to a build are showcased in the form of associated change-
sets. Hence, it becomes easy to figure out which changesets were checked in for each build.

Figure 7-11 shows the associated changesets for the first build that was run against the
Effort Tracking solution.

Figure 7-11. Associated changesets section of the Build Detail Report

Clicking the changeset ID will display a dialog box indicating what changes were made in
the changeset (files that were changed). This is the same dialog box displayed when viewing a
changeset from the Source Control Explorer.

■Tip Obviously, based on Figure 7-11, you want to make sure that you provide comments describing each
changeset (when you check in code), so that you know what changes the changeset covered. (It is also obvi-
ous that the authors do not do follow that advice regularly enough.)

CHAPTER 7 ■ TEAM FOUNDATION BUILD 207

4606CH07.qxd 4/20/06 3:19 PM Page 207

Associated Work Items
The associated work items section contains a list of all work items that are associated with
the build. For instance, developers fixing work items will associate that work item with the
changeset in which the issue is fixed. All of the work items that were associated with the
changesets that were included in the build are displayed here, as shown in Figure 7-12.

Figure 7-12. Associated work items section of the Build Detail Report

In this particular case, only one work item was associated with the build. In this way,
stakeholders can determine when work items were fixed, or even worked on, and what their
status is simply by looking at a build output. You can view the details of the work item by
clicking the work item ID link.

Viewing Build History
To view build history, right-click the build type in the Team Explorer and select Open to dis-
play the Team Build Browser, as shown in Figure 7-13. This window lists all of the builds that
have been done (or are in progress) for the selected build type. By default, the builds are listed
from newest on the top to oldest on the bottom, with each build’s name, status, quality, and
when it was completed.

Figure 7-13. Team Build Browser

CHAPTER 7 ■ TEAM FOUNDATION BUILD208

4606CH07.qxd 4/20/06 3:19 PM Page 208

To see the details of a specific build, right-click it and select Open or double-click the
build. This also gives you the option to edit its build quality.

Build Quality
The build quality is a value that describes the general condition of the build and what stage of
quality checks it has passed. Build quality is determined by whoever is reviewing the build and
is not set automatically.

■Note A person must have Edit Build Quality permissions in order to change the build quality. See
Chapter 2 for details about permissions.

As you can see in Figure 7-13, the options for the build quality are as follows:

• Initial Test Passed

• Lab Test Passed

• Ready for Deployment

• Ready for Initial Test

• Ready for Release

• Rejected

• Released

• UAT Passed (Unit Acceptance Test)

• Under Investigation

• Unexamined (default)

You can edit this list by selecting the final option in the drop-down list, <Edit>. This allows
you to add your own statuses to the build quality, which can help you to keep track of the pur-
pose of that build.

Build Details
Every completed build has its results published to the Team Foundation Server. The results on
the server provide slightly different information than the results reported on the client. A build
report is shown in Figure 7-14.

CHAPTER 7 ■ TEAM FOUNDATION BUILD 209

4606CH07.qxd 4/20/06 3:19 PM Page 209

Figure 7-14. Published build results

All of the builds are listed on the report, and you can drill down into the results. The
results shown in Figure 7-14 map to the results shown earlier in Figures 7-8 through 7-12. Note
that in addition to the information shown on the client, the published results show the code
churn as well. These results are generated by an analysis performed by the Team Foundation
Server. The information here can provide your team with a good idea of how much work the
team is doing and if that is translating into more passed tests, more failed tests, and so on.

■Note Team Foundation Build outputs all of the resulting binaries, the test results, and the build type
information. This information is stored in the location on the machine on which Team Foundation Build ran
(specified in the build configuration). On the build machine, the binaries are in (configured location)\
teamprojectname\(buildTypeName)\Binaries, the source code is in BuildTypeName\Sources, and
the test results are in BuildTypeName\TestResults. In the drop location, the folder structure is (build
name)\Release(GeneralConfigurationName)\TestResults. Included in the root of this structure are
the BuildLog.txt, ErrorsWarningLog.txt, and Release.txt files. All of this information is available by
clicking various links in the build results report.

CHAPTER 7 ■ TEAM FOUNDATION BUILD210

4606CH07.qxd 4/20/06 3:19 PM Page 210

Customizing the Build Process
Team Foundation Build is fully customizable using a number of different features. To change
the build process, you can either create your own TFSBuild project (.proj) file or edit the gen-
erated project file. As with all of the tools in Visual Studio 2005, when you edit the XML in the
file, you’ll have the benefit of almost full IntelliSense (although Team Foundation Build prop-
erties are not listed in the IntelliSense drop-down list).

Reviewing the Build Type Configuration File
Because there are so many options, it is almost always easier to start off with a generated build
type template. Listing 7-1 shows the build configuration file generated by the New Team Build
Type Creation Wizard (minus the XML comments and with line numbers for reference only).

Listing 7-1. Build Type Configuration File

1 <?xml version="1.0" encoding="utf-8"?>
2 <Project DefaultTargets=

"DesktopBuild" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3 <!-- Do not edit this -->
4 <Import Project=

"$(MSBuildExtensionsPath)\Microsoft\VisualStudio\v8.0\
TeamBuild\Microsoft.TeamFoundation.Build.targets" />

5 <ProjectExtensions>
6 <Description>Builds the Effort Tracking Web Service and Effort Tracking

Web front end and then runs all of the unit tests and web tests against the
built solution.</Description>

7 <BuildMachine>mcsd-dev</BuildMachine>
8 </ProjectExtensions>
9 <PropertyGroup>
10 <TeamProject>Effort Tracking</TeamProject>
11 <BuildDirectoryPath>c:\EffortTrackingBuilds</BuildDirectoryPath>
12 <DropLocation>\\mcsd-server\data</DropLocation>
13 <RunTest>true</RunTest>
14 <WorkItemFieldValues>Priority=1;Severity=1</WorkItemFieldValues>
15 <RunCodeAnalysis>Default</RunCodeAnalysis>
16 <UpdateAssociatedWorkItems>true</UpdateAssociatedWorkItems>
17 </PropertyGroup>
18 <ItemGroup>
19 <SolutionToBuild Include=

"$(SolutionRoot)\EffortTrackingSolution\EffortTrackingSolution.sln" />
20 </ItemGroup>
21 <ItemGroup>
22 <ConfigurationToBuild Include="Release|Any CPU">
23 <FlavorToBuild>Release</FlavorToBuild>
24 <PlatformToBuild>Any CPU</PlatformToBuild>
25 </ConfigurationToBuild>
26 </ItemGroup>

CHAPTER 7 ■ TEAM FOUNDATION BUILD 211

4606CH07.qxd 4/20/06 3:19 PM Page 211

27 <ItemGroup>
28 <MetaDataFile Include=

"$(SolutionRoot)\EffortTrackingSolution\EffortTrackingSolution.vsmdi">
29 <TestList>Read Tests</TestList>
30 </MetaDataFile>
31 </ItemGroup>
32 </Project>

As you can see, the format is very straightforward. Updating it may seem a little compli-
cated at first, but as soon as you understand the procedure, you’ll be able to do almost
anything you want to (in terms of a build) with this tool. Here are the basics:

• You can reference any node as a variable that you create (or that already exists) in the
PropertyGroup node by using the $(variableName) convention.

• A Target is the node that runs when TFSBuild builds the project.

• You can incorporate custom code that performs some operation in a custom task.
This compiled assembly can then be used during the build process by including the
assembly in a UsingTask node.

Keeping these three concepts in mind will allow you to customize a lot of tasks for use
with TFSBuild.

Retrieving the Build Type
In order to actually edit this file manually, you need to do the following:

1. Open Source Control Explorer, expand your team project (in this case, the Effort
Tracking solution), and then expand the TeamBuildTypes node.

2. Select TFSBuild.proj, right-click the file, and select Get Latest.

3. Choose the location to download the file to, and then click OK.

4. Right-click the TFSBuild.proj file and select Check Out for Edit.

At this point, you can edit the build file.

Editing the Build File
The build file will be located in the output folder (selected in step 3 in the previous section):
(Location)\TeamBuildTypes\(BuildType Name)\TFSBuild.proj. It is best to edit this in Visual
Studio, as you will get the benefit of IntelliSense support.

You can do a lot of customization by editing the project file or creating custom tasks.
Microsoft is releasing several labs that describe all of the steps you can take during a project
build. Look for this information on the MSDN site or search for Team Foundation Build in the
Visual Studio Help.

CHAPTER 7 ■ TEAM FOUNDATION BUILD212

4606CH07.qxd 4/20/06 3:19 PM Page 212

■Tip Implementing your own custom task is fairly straightforward. To do that, create a project and refer-
ence Microsoft.Build.Utilities.dll and Microsoft.Build.Framework.dll. Create a class that
inherits from the Task class (located in the Microsoft.Build.Utilities namespace) and override the
Execute method.

Using the Build Command-Line Tool
Team Foundation Build comes with a command-line tool, which can be used in conjunction
with the Windows Scheduler to schedule nightly builds and publish the results. The command-
line tool is called tfsbuild.exe and is located in the C:\Program Files\Microsoft Visual
Studio 8\Common7\IDE folder. With tfsbuild.exe you can start a build, delete a build, or stop
a build that is in progress. The abilities to delete and stop builds are available only from the
command line.

To start a build, use the following syntax:

tfsbuild.exe start <Team Foundation Server> <Team Project Name> <Build Type Name>
[/m:<Build Machine>] [/d:<Build Directory>]

If no build machine is specified, the build machine in the build type will be used. Similarly,
if no build directory is specified, the build directory in the build type will be used. Here is an
example of starting a build from the command line:

tfsbuild.exe start kiona "Effort Tracking" "Effort Tracking Full Build"

Notice that all entries with a space in them must be enclosed in quotation marks.
tfsbuild.exe will supply you with the current build number when it begins the build

process. The output from a tfsbuild.exe operation is shown in Figure 7-15.

Figure 7-15. Using the tfsbuild.exe command-line tool

CHAPTER 7 ■ TEAM FOUNDATION BUILD 213

4606CH07.qxd 4/20/06 3:19 PM Page 213

■Caution The server name must be a name from the list of servers known by the local machine. In this
case, kiona was the specified server name. However, there are numerous occasions when you may not be
working on your local network and instead need to enter an IP address to reach the server. If you do this,
you must supply the IP address as the server name.

To stop a build, use this syntax:

tfsbuild.exe stop <Team Foundation Server> <Team Project Name> <Build Number>
[/noprompt]

As just mentioned, tfsbuild.exe indicates the build number when it starts a build. You
can specify multiple build numbers by separating each number with a comma (but no spaces)
between the build numbers. The /noprompt option suppresses the confirmation question for
the stop and delete options. You must specify noprompt when doing any type of automated
process using either the stop or delete command. Here is an example of stopping a build:

tfsbuild.exe stop kiona "Effort Tracking" "Effort Tracking Full Build_20051228.3"
/noprompt

To delete a build, use this syntax:

tfsbuild.exe delete <Team Foundation Server> <Team Project Name> <Build Number(s)>
[/noprompt]

Here’s an example of deleting a build:

tfsbuild.exe delete kiona "Effort Tracking" "Effort Tracking Full Build_20051228.1"
/noprompt

Setting Up Continuous Integration Testing
Continuous integration testing is a process by which every single change that is made is com-
piled against a project before the change gets checked in. This is similar to running BVTs,
except it catches problems sooner.

Continuous integration testing requires that developers compile their code and run the
unit tests against the compiled code before checking anything in. In order to do this, Team
Foundation Build includes the ability to run build types with the MSBuild command-line tool.
MSBuild is a desktop command line build tool. It can be used without Team Foundation
Server and is designed to provide you flexibility in building your code and running tests
against it. If you do not have Team Explorer installed, then you will not have access to
tfsbuild.exe, but you will have access to MSBuild.

CHAPTER 7 ■ TEAM FOUNDATION BUILD214

4606CH07.qxd 4/20/06 3:19 PM Page 214

MSBuild also has the ability to process a build type in order to perform a build. Before
you can run MSBuild against a build type, you need to retrieve the build type from the server.
To do this, follow the steps outlined in the “Retrieving the Build Type” section earlier in this
chapter. Once you have the file loaded to the local machine, you can run MSBuild simply by
passing in the name of the type and setting the solution root. Open a Visual Studio command
prompt, navigate to the folder containing the TFSBuild.proj file ((Location)\TeamBuildTypes\
(BuildType Name)), and enter the following:

msbuild /p:SolutionRoot="(path to solution root)" tfsbuild.proj

Summary
In this chapter, you have learned how to create build types, which can be used to build a proj-
ect, run specified tests against a project, and publish those results to a project SharePoint site.
You have also seen how to view the results of the build and learned what the results indicate
in terms of code churn, what was tested, code coverage, and whether any errors occurred.
Finally, you learned how the build process can be customized and how to run nightly builds
using the command-line tools to build a project and schedule a project.

The bottom line is that using the built-in build tools provides a project team immediate
feedback as to whether anything is broken and how much code has been tested from one
build to another. This provides customers with good feedback as to the progress of the devel-
opment team and will give them confidence in the development team.

CHAPTER 7 ■ TEAM FOUNDATION BUILD 215

4606CH07.qxd 4/20/06 3:19 PM Page 215

4606CH07.qxd 4/20/06 3:19 PM Page 216

Team Edition for
Software Architects

P A R T 2

4606CH08.qxd 4/20/06 3:21 PM Page 217

4606CH08.qxd 4/20/06 3:21 PM Page 218

Application Designer

The Application Designer is one of four distributed system designers supplied with Team
Edition for Software Architects. In this chapter, we will look at how to use the Application
Designer to model the services of your system and the applications that consume these serv-
ices. We are focusing on services here because they are fundamental in the current application
model Microsoft promotes as connected systems.

The connected systems approach moves to interface-based service contracts, or contract-
first, as opposed to the traditional code-first approach. Contract-first focuses first on the
interface leveraging the Web Service Definition Language (WSDL). This first release of the
Application Designer focuses on the contracts from a remote procedure call (RPC) perspec-
tive, supporting methods (operations) and parameters, as opposed to a message-centric
approach of schema types and elements. Furthermore, you will be defining .NET Framework
types, not XML Schema Definition (XSD) types. This full contract-first experience will be pro-
vided in a following release of the product.

In this chapter, we will approach service design from two different perspectives. First, we
will build a sample application design from scratch. The Application Designer provides a clean
design surface for “whiteboarding” your application. The Visual Studio Toolbox comes precon-
figured with application building blocks, including Windows applications, web services, web
applications, and Office applications. Once you’ve described your web service endpoints and
modeled the application, the Application Designer allows you to generate the skeleton projects
for all or part of the system. This includes all of the code needed to implement and consume
the defined service contracts. Second, we will generate an application design from our sample
book application. When an application diagram is added to an existing solution, it is reverse-
engineered, and the application diagram is created for you.

But before we get started using the Application Designer, let’s take a broad look at the
distributed system designers.

219

C H A P T E R 8

4606CH08.qxd 4/20/06 3:21 PM Page 219

Overview of the Distributed System Designers
Team Edition for Software Architects ships with four distributed system designers:

• Application Designer (AD): Represents applications that expose services and communi-
cate through endpoints.

• Logical Datacenter Designer (LDD): Represents the logical structure of some portion of
the datacenter.

• System Designer (SD): Represents the composition of applications defined in the Appli-
cation Designer for the purpose of composing connected systems.

• Deployment Designer (DD): Used to create a deployment configuration for a system.

The design goal for the distributed system design suite is that third parties will document
and model aspects of their distributed system for a more complete definition of an applica-
tion. These extended application or logical server prototypes could then be incorporated in
defining connected systems. Figure 8-1 illustrates the artifacts associated with each designer.

Figure 8-1. Visual Studio 2005 designers

System Definition Model
The System Definition Model (SDM) is simply a schema definition for describing distributed
systems. SDM views the world as being composed of systems. It is important to distinguish
between the notion of atomic and composite systems. Atomic systems are made up of

CHAPTER 8 ■ APPLICATION DESIGNER220

4606CH08.qxd 4/20/06 3:21 PM Page 220

resources such as configuration files, assemblies, and dynamic link libraries (DLLs), and are
referred to as applications. Composite systems are made up of other systems or applications
and referred to as application systems. The schema being shipped with VSTS is located at
http://schemas.microsoft.com/SystemDefinitionModel/2005/1/DesignData/VisualStudio.

Table 8-1 shows the file extension within the solution and the type of SDM information
stored.

Table 8-1. SDM File Types and Data

Extension File Description

.ad Application Designer Presentation and preimplementation endpoint
information

.sdm Project Information about the project implemented

.sdm External Components Information about external entities (databases)

.ldd Logical Datacenter Designer Presentation, endpoint, zone, and host
information

.sd System Designer Presentation and system information

.dd Deployment Designer Presentation and system deployment
information

As you build your sample designs and deployments in the next few chapters, make sure
you take the time to open the generated files in the XML editor and review the structure and
information contained in each.

Benefits of the Distributed Designers
The distributed designers were conceived to support both the infrastructure architect (in
charge of the network and datacenter designs) and the solution architect (in charge of design-
ing and deploying connected systems). In a small shop, one person may perform both roles,
but in more complex enterprise scenarios, many architects may need to communicate their
designs and deployments to a host of project constituents.

The distributed system designers provide benefits in three ways:

• They are a rich set of domain-specific designers that target the service-orientation
space. If you are building connected systems, the distributed designers are a first step
at making Model Driven Architecture (MDA) a reality.

• They are an example of what can be done by targeting the Domain-Specific Language
(DSL) framework toward a specific domain (service-oriented architecture in this spe-
cific instance). If you want to dive deeper, you can build your own DSL using the same
modeling framework on which the distributed system designers are built.

• They begin to address the life cycle issues plaguing software development. Providing a
common framework for distinct viewpoints (the application and datacenter) and the
ability to deploy one viewpoint onto another is a positive step in reducing ambiguity
and reducing cost.

CHAPTER 8 ■ APPLICATION DESIGNER 221

4606CH08.qxd 4/20/06 3:21 PM Page 221

MODEL-DRIVEN DEVELOPMENT

Rick LaPlante, General Manager for VSTS, explains that the design goals of VSTS are two-fold: integration and
ease of use. The value proposition for the tools suite is predictable collaboration. Rick stated, “The distributed
system designers allow you to enable validation of system configurations against models of target environ-
ments to increase the predictability of deployment.” It really is a shift of focus from the developer to the
entire breadth of development. Modeling will no longer be relegated to the “ivory tower,” but will be a normal
part of the development life cycle. To facilitate this, VSTS has adopted four main ideas:

• Models are to be “first-class” citizens. They should be thought of not as documentation, but as source
code with their own set of implementers (compilers).

• Models are to represent a set of abstractions in a well-defined domain.

• Models are to abstract and aggregate information from a number of artifacts, thereby providing analy-
ses such as consistency and validation checks.

• Models are to be implemented by a process similar to compilation. The generated output is not
intended to be edited by hand.

During Jochen Seemann’s “Future Directions in Modeling Tools” presentation at the 2005 Professional
Developer Conference (PDC), he remarked that for the model-driven development approach, “Don’t think
about round-trips; think trip-less,” and said that it was “bringing modeling to the masses.”

Visual languages are a common tool we use in our everyday lives. Maps may be the most common
visual language to help get us from point A to point B. Blueprints are useful for putting together a piece of fur-
niture or your million-dollar dream home. A common saying goes, “A picture is worth a thousand words.”
Unfortunately, one of the biggest problems in the software industry is that we cannot agree on what the thou-
sand words are saying. This is where model-driven development takes center stage.

Back in the 1980s, computer-aided software engineering (CASE) offered the promise of modeling appli-
cations at an abstract level, and then “automagically” generating the code to be used to operate the system.
While this code generation was the promise of CASE tools, it was also the greatest drawback. These early
modeling tools could not be easily kept in sync with the development tools. New revisions to the underlying
tools were late to be integrated into the CASE engine. This lag caused the development to get out of sync
with the models, and there was no going back. VSTS takes on this challenge by making models first-class
development artifacts and an intricate part of the development process. By “making modeling mainstream,”
Microsoft hopes to change the economics of software development and ensure software systems meet the
needs of the business. This approach to model-driven development is part of an initiative called Software
Factories.

Software Factories

The 1990s ushered in the world of object-oriented programming to the mainstream and the first work on the
Unified Modeling Language (UML). UML comes out of the effort to unify the object modeling world headed by
Grady Booch, Ivar Jacobson, and James Rumbaugh. This work was taken industry-wide through the Object
Management Group (OMG), and in 1997, the first proposal, UML 1.0, was published. Somewhere in
the trudge from UML 1.0 to UML 2.0, a division arose around the appropriateness of applying UML to “all”
domains. This led to a spirited debate between Grady Booch (IBM) and the Software Factories team at

CHAPTER 8 ■ APPLICATION DESIGNER222

4606CH08.qxd 4/20/06 3:21 PM Page 222

Microsoft. The debate centers around the goal of UML. It was developed to provide a common notation for the
practice of object-oriented analysis and design. Should it then be the de facto standard beyond its original
scope into the realm of model-driven development and Software Factories?

Some of the same people who were driving CASE tools and early UML a decade ago are leading the
work being done on Software Factories and Domain-Specific Languages (DSLs) at Microsoft and other
corporations.

The concept of Software Factories lives at two levels today. First it is a vision for the future. So a few
years out, the Software Factories concept is an ideal for bringing significant automation to the software
development process. Today, building software is still very much a craft. We tend to design applications as if
they were the first of their kind. We need to automate the parts that are the same every time and concentrate
on the key differentials. Steve Cook, an architect for Microsoft’s DSL Toolkit team and coauthor of Software
Factories, made some interesting observations in one of his talks related to Software Factories: “There is no
generic software factory (think about this!),” and “A generic factory that produces bicycles one day and lap-
top computers the next?”

Second, Software Factories are an initiative grounded in VSTS to provide the framework (tools, SDKs,
APIs, and so on) to enable Visual Studio to be purposed into a tool for a specific type of development. One of
the key components in this initiative is the concept of DSLs.

Domain-Specific Languages

DSLs are small, highly focused languages for solving some discrete problem space within a specific domain.
The DSL framework is Microsoft’s modeling platform.

DSLs enable the mapping of the business processes (capabilities) to the technology services (interfaces
and implementation). Models are the preferred way of communicating complex ideas and constructs
between groups holding diverse viewpoints. An example is a blueprint (architecture model) to map the home-
owner’s needs and the builder’s implementation. Consider how it would affect the construction of your new
home if you did away with the blueprint and handed the builder a 1,000-page document describing the home
of your dreams.

The distributed designers provided with Team Edition for Software Architects are simply an implementa-
tion of a DSL language targeted at visual design and validation of connected systems.

Using the Application Designer
As an example of using the Application Designer, you will create a simple application design
consisting of a web application, a web service, and a sample SQL database. The final imple-
mented design is shown in Figure 8-2.

■Note The application diagram shows the applications defined within a single Visual Studio solution;
therefore, you can have only one .ad file per solution. If you attempt to add a second .ad file to your solu-
tion, you will get an error.

CHAPTER 8 ■ APPLICATION DESIGNER 223

4606CH08.qxd 4/20/06 3:21 PM Page 223

Figure 8-2. Sample application design

Getting Started with the Application Designer
To start the diagram, follow these steps:

1. Start a new project. A separate project type has been added to the New Project dialog
box to make it easier to find the distributed system designers. They are now located
under Distributed System Solutions. There, you will find the Distributed System and
Logical Datacenter templates. For this example, select Distributed System, as shown
in Figure 8-3.

2. Enter the name MyDesign.

3. Click OK. You will be brought into the Application Designer.

You now have a blank work surface, a default application diagram (.ad), and the Applica-
tion Designer Toolbox. You are reminded from the blank design surface to “Drag from the
Toolbox to define applications.” This message is like the sign at the end of the ski lift warning,
“Keep your tips up.” Although such signs may be safely ignored by experts, more than a few
novice skiers have learned the hard way.

The Application Designer Toolbox contains eleven predefined prototypes (.adprototype)
to be used while designing your application model. These include eight application proto-
types and three endpoint prototypes. We will look at each in detail in the following sections.
Table 8-2 describes the Toolbox objects.

CHAPTER 8 ■ APPLICATION DESIGNER224

4606CH08.qxd 4/20/06 3:21 PM Page 224

Figure 8-3. The New Project dialog box with Distributed System Solutions templates

Table 8-2. The Application Designer Toolbox Objects

Item Description

Pointer Pointer tool used for selection (one available in each category)

Connection Connection tool to link two application prototype endpoints

Comment A comment text box

WebServiceEndpoint Represents a connection point for a web service (provider)

WebContentEndpoint Represents a connection point to web content (provider)

GenericEndpoint Represents a connection point to services of an unspecified type
(provider)

WindowsApplication A Windows application

ASP.NETWebService An ASP.NET web service application that includes a web service
endpoint

ASP.NETWebApplication An ASP.NET web application that includes a web content endpoint

OfficeApplication Represents a Microsoft Office application supporting Excel, Word,
and Outlook templates

ExternalWebService A reference to a single web service defined by a single Web Services
Description Language (.wsdl) file

Continued

CHAPTER 8 ■ APPLICATION DESIGNER 225

4606CH08.qxd 4/20/06 3:21 PM Page 225

Table 8-2. Continued

Item Description

ExternalDatabase A reference to a database

BizTalkWebService A reference to a BizTalk web service

GenericApplication A user-defined application that supports user-defined settings and
constraints; exists for documentation purposes and supports generic
endpoints

Defining the Database Component
Using the drag-and-drop method, you will now design and implement a simple sample solu-
tion. To start with, you will define the back-end database component. (You can begin on any
part of the application design you like, but for this example, we’ll start with the database.)

■Note To follow this example, you will need to create a database named MyDatabase on your local system.

1. Click the ExternalDatabase component in the Application Designer Toolbox and drag
it onto the design surface (near the bottom of the page). It should look like Figure 8-4.
By default, the ExternalDatabase application prototype consists of a single provider
endpoint. Notice that the database prototype has a shadow effect on the border, which
designates an implementation has occurred. Also notice that the solution now has a
new file named Database1.sdm.

Figure 8-4. ExternalDatabase component on the diagram

2. To examine the generated XML for your new database, right-click the Database1.sdm
file and choose to open it with the XML editor. You cannot have the XML editor and the
Application Designer open at the same time. You will be prompted to close and save
the diagram prior to opening the .sdm file. Listing 8-1 shows a snippet of the .sdm file
verifying that Database1 has a state of "Implemented" but still "NeedsGeneration".

Listing 8-1. Generated Database1.sdm File Portion

<Endpoint Name="Database1" Definition="Database1.DatabaseProviderEndpoint1"
MinOccurs="1" MaxOccurs="1" Reference="false">

<DesignData>
<VisualStudio xmlns=

CHAPTER 8 ■ APPLICATION DESIGNER226

4606CH08.qxd 4/20/06 3:21 PM Page 226

"http://schemas.microsoft.com/SystemDefinitionModel/2005/1/
DesignData/VisualStudio">

<ModelElement Type=
"Microsoft.VisualStudio.EnterpriseTools.Application.
Modeling.PlugIns.DeployedDBProviderPort">

<Property Name="State" Value="Implemented" />
<Property Name="NeedsGeneration" Value="true" />

</ModelElement>
</VisualStudio>

</DesignData>
</Endpoint>

3. Close the XML editor and reopen MyDesign.ad. On your diagram, click the Database1
provider endpoint, which is represented by the plug abstract type icon:

4. Press F4 to open the Properties window. Change the name element from Database1 to
MyDatabase. Notice that the name for the external database changes as well, as shown
in Figure 8-5.

Figure 8-5. External database renamed to MyDatabase

Adding a Web Service Component
Now that the back-end database has been defined, it is time to add a web service to perform
the data access function for the application.

1. Click the ASP.NETWebService application prototype in the Application Designer Tool-
box and drag it onto the design surface (just above the database component).

2. Double-click the default name (WebApplication1) to open the name property box.
Change the name to MyWebService. Optionally, you can select the web service, press F4
to open the Properties window, and change the name under the Design section.

3. On the MyWebService application type, click the web service provider endpoint, repre-
sented by this icon:

CHAPTER 8 ■ APPLICATION DESIGNER 227

4606CH08.qxd 4/20/06 3:21 PM Page 227

4. Change the name to MyService. Your diagram now has two application types, as shown
in Figure 8-6.

Figure 8-6. Web service added to the application diagram

Notice that MyWebService is not implemented by default. It does not have a shadow effect
on its border, and no MyWebService.sdm file has been created. If you right-click the MyWebService
application type, you will see an option to implement the application. You will do this after
you complete the initial design.

Connecting the Application Types
You now need to connect the web service to the database. When you begin a connection
directly from an application, the application that starts the connection must be the consumer
application. To begin from the provider application, just start the connection from the
provider endpoint instead of the application itself. If you begin a connection from the wrong
component, you’ll see the universal “No” sign, as shown in Figure 8-7.

Figure 8-7. Incompatible endpoints

CHAPTER 8 ■ APPLICATION DESIGNER228

4606CH08.qxd 4/20/06 3:21 PM Page 228

1. Right-click MyWebService on the design surface and select Connect.

2. In the Create Connection dialog box, click the down arrow of the Application box in
the Connect To section and select the name of your back-end database component,
MyDatabase, as shown in Figure 8-8. Click the down arrow in the Endpoint selection box
and select the name of the endpoint associated with the database you selected. This
will be the same name as the database, by default. Click OK.

Figure 8-8. The Create Connection dialog box

■Note When using the Create Connection dialog box, by default, you are presented with only endpoints
that are compatible with the component with which you are working. In this simple example, we have only
two components so far. In a complex solution with many components, this feature helps aid in maintaining
the overall integrity of the design.

3. In the Choose Data Source dialog box, enter the data source and data provider. For
this example, select Microsoft SQL Server and the .NET Data Provider for SQL Server,
respectively.

CHAPTER 8 ■ APPLICATION DESIGNER 229

4606CH08.qxd 4/20/06 3:21 PM Page 229

4. In the Connection Properties dialog box, enter the database server name, the security
context, and the database name. (You can simply enter a period for the server name to
indicate your local SQL Server installation, or enter .\sqlexpress for default installa-
tions of SQL Express edition.) Click Test Connection to verify that the configuration
information for the data source is correct, as shown in Figure 8-9.

Figure 8-9. Testing your connection from the Connection Properties dialog box

■Note Optionally, if you are just whiteboarding an application design, you can cancel out of the Connection
Properties dialog box, and then complete the details for the connection later.

CHAPTER 8 ■ APPLICATION DESIGNER230

4606CH08.qxd 4/20/06 3:21 PM Page 230

5. Click OK. Your diagram should now look similar to Figure 8-10.

Figure 8-10. Adding the connection

6. To verify the connection properties, right-click the database consumer endpoint of
MyWebService and select Properties. You will see that the connection information has
been captured, as shown in Figure 8-11. This Connection String property will be gener-
ated in the Web.config file of the MyDatabase application when it is implemented.

Figure 8-11. MyDatabase properties with connection information

CHAPTER 8 ■ APPLICATION DESIGNER 231

4606CH08.qxd 4/20/06 3:21 PM Page 231

Defining Operations for ASP.NET Web Service Prototypes
One of the key features of the Application Designer is the ability to define the operations and
parameters for web services that are exposed on the diagram. This is part of the contract-first
design, where you first design the service contracts for communicating between different
application types. If you have an existing .wsdl file, you can consume the operations from the
existing exposed service, as explained in the “Adding a Web Service Endpoint from a WSDL
File” section later in this chapter.

Using the Web Service Details window, you can add the operations, parameters, types,
and details. For this sample application, you will be notionally creating a local weather-
reporting web service.

1. Right-click MyService and select Define Operations to open the Web Service Details
window, as shown in Figure 8-12.

Figure 8-12. The Web Service Details window

2. Click <add operation> and type the name GetLocalWeather. Give it a type of string and
add some comments in the Summary field.

3. Click the plus sign next to your new GetLocalWeather service to reveal the <add
parameter> section.

4. Click <add parameter> and type the name ZipCode. Give it a type of integer and accept
the default modifier. Place your cursor in the Summary field and click the ellipsis (. . .)
on the right. This will bring up detail metadata for your service. Enter some comments
in the Summary field and click OK.

5. Follow the same process to add a second service that gets the city name from the data-
base based on the zip code provided. The MyService details are shown in Figure 8-13.

CHAPTER 8 ■ APPLICATION DESIGNER232

4606CH08.qxd 4/20/06 3:21 PM Page 232

Figure 8-13. The Web Service Details window with two services

Implementing the Application
At this point in the design process, you can generate actual framework code for the applica-
tion. First-time generation of code is referred to as implementation. Application definitions
can be implemented incrementally or all at once. When an application is implemented, the
Application Designer automatically generates the corresponding project, code files, and
configuration files. Because the application diagram is synchronized with the code and con-
figuration files, the diagram is immediately updated if the files are modified. Similarly,
changes to the diagram are reflected in the code and configuration files. Upon implementa-
tion, the application prototypes will be identified by the presence of the shadow effect around
the object shape.

■Tip Deferred implementation allows you to create what-if designs of your application without the over-
head of actual implementation. The Application Designer supports a deferred implementation approach,
allowing an architect to create and validate a design before committing the design to code. This whiteboard-
ing approach allows the architect to brainstorm on the design surface and choose the point of generation.

Selecting the Language
First, you will want to select the implementation language to generate. Visual Basic is the
default, but you can choose from multiple languages.

A common feature request of the VSTS team early on was the ability to have a global set-
ting where you could change the language choice and have it stick for all prototypes. While
this feature does not exist in version 1, if you do not want select a different default language,
you can create a custom prototype. To demonstrate this, you will use MyWebService as an
example.

CHAPTER 8 ■ APPLICATION DESIGNER 233

4606CH08.qxd 4/20/06 3:21 PM Page 233

1. Click MyWebService in the application diagram and press F4 to display the Properties
window. In the Implementation section, select the language to generate—Visual C# in
this example, as shown in Figure 8-14.

Figure 8-14. Choosing a language for implementation

2. In the Application Designer, right-click MyWebService and select Add to Toolbox. In the
Name field, type in a descriptive name, such as MyWebServiceC#, as shown in Figure 8-15.
Then click OK.

Figure 8-15. The Add to Toolbox dialog box

3. The Save File dialog box shows the existing designer prototypes on your system and
allows you to save your custom C# version of the AspNetWebService. Click Save, and
MyWebServiceC# is added to your Toolbox.

CHAPTER 8 ■ APPLICATION DESIGNER234

4606CH08.qxd 4/20/06 3:21 PM Page 234

4. Add a new tab to the Toolbox called My Prototypes and drag all custom prototypes in
there, as shown in Figure 8-16. This allows you to keep custom items separate from
Visual Studio’s built-in items.

Figure 8-16. Adding a new tab to the Toolbox for your custom items

Generating Framework Code
Now that your language of choice has been selected, you can implement the application.

1. Right-click the MyWebService application and choose Implement Application. Alterna-
tively, you can select Diagram ➤ Implement Application from the main menu. This will
launch the Confirm Application Implementation dialog box, where you will be notified
of the projects about to be generated, as shown in Figure 8-17.

Figure 8-17. The Confirm Application Implementation dialog box

CHAPTER 8 ■ APPLICATION DESIGNER 235

4606CH08.qxd 4/20/06 3:21 PM Page 235

2. Select OK and wait for your application framework code to be propagated inside the
solution. You may receive a warning that the connection string is being written into the
configuration files unencrypted, as shown in Figure 8-18.

Figure 8-18. The Security Warning dialog box

The result of implementing your design is that a new web service project has been added
to the solution. This new project includes language-specific source and configuration files, as
shown in Figure 8-19.

Figure 8-19. The Solution Explorer window for MyDesign

Again, notice that an implemented component is represented in the Application Designer
by a shadow border outlining the component on the diagram surface. Your MyWebService has
now been implemented.

Adding to the Implemented Code
As an example, say you want to add another method to bring back the state name from the
database. (We realize this would be done in a single operation, but bear with us for this exam-
ple.) You’ll also add some code to the GetLocalWeather method.

1. Double-click MyService.cs in the Solution Explorer to display the generated code.
Notice that the operations and parameters you defined in the designer have been
implemented in code. You should see two methods for the MyWebService in code:
GetLocalWeather and GetCityName. Also notice how the code and design are kept in
sync. Remember that models in Visual Studio are “first-class” citizens and not just
documentation.

CHAPTER 8 ■ APPLICATION DESIGNER236

4606CH08.qxd 4/20/06 3:21 PM Page 236

2. Copy the code for the GetCityName method and paste it below as GetStateName. Change
the method name and descriptive metadata, as shown in Listing 8-2.

Listing 8-2. Added GetStateName Method

/// <summary>
/// Get State Name Service
/// </summary>
/// <param name="ZipCode">Zip Code for State Name</param>
[System.Web.Services.WebMethod(Description = ""),
System.Web.Services.Protocols.SoapDocumentMethod(Binding = "MyService")]
public string GetStateName(int ZipCode)
{
throw new System.NotImplementedException();

}

3. Save the code file.

4. Switch back to the Application Designer by selecting MyDesign.ad from the Window
menu.

5. Right-click the MyService endpoint and select Define Operations. The Web Service
Details window now reflects the additional GetStateName method, as shown in
Figure 8-20.

Figure 8-20. The Web Service Details window with updates

6. Switch back to MyService.cs. Since it is still winter in the greater Seattle metropolitan
area, replace the throw new System.NotImplementedException() template code for the
GetLocalWeather operation so that it looks like Listing 8-3.

Listing 8-3. Additional Code for the GetLocalWeather Method

[System.Web.Services.WebMethod(Description = ""),
System.Web.Services.Protocols.SoapDocumentMethod(Binding = "MyService")]
public string GetLocalWeather(int ZipCode)
{

return "Rain Today, Rain Tomorrow - always damp and dreary";
}

CHAPTER 8 ■ APPLICATION DESIGNER 237

4606CH08.qxd 4/20/06 3:21 PM Page 237

Testing the Web Service
Now you’re ready to test the web service.

1. Press Ctrl+F5 and start the application without debugging. The directory listing will
display for MyWebService.

2. Click MyService.asmx to open the web service .asmx page, as shown in Figure 8-21.

Figure 8-21. The MyService web service page

3. Click GetLocalWeather to bring up the test parameter page. You can enter any valid
integer here for the zip code parameter, since our sample ignores the zip code. Click
Invoke, and the dismal yet accurate local weather forecast will be returned, as shown
in Figure 8-22.

Figure 8-22. MyWebService response for GetLocalWeather

CHAPTER 8 ■ APPLICATION DESIGNER238

4606CH08.qxd 4/20/06 3:21 PM Page 238

Hooking Up the Database
For a more realistic example, we will hook up the database portion to return the city name
when you pass in the zip code.

1. Create a table in your MyDatabase database named CityZip. The CREATE TABLE state-
ment is shown in Listing 8-4.

Listing 8-4. CityZip CREATE TABLE Statement
USE [MyDatabase]
GO
/****** Object: Table [dbo].[CityZip] ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[CityZip](

[zipcode] [int] NULL,
[city] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

2. With this simple two-column table, you need to insert only one row to get things
started. You can add any others for your local town.

Insert into CityZip (zipcode, city) Values (98024, 'Seattle')

3. Replace the throw new System.NotImplementedException() template code for the
GetCityName service with the code for accessing the database from the web service, as
shown in Listing 8-5.

Listing 8-5. Get City Database Lookup

{
SqlConnection cn = new SqlConnection(

ConfigurationManager.ConnectionStrings["MyDatabase"].ToString());
SqlCommand cmd = new SqlCommand("SELECT city FROM cityzip "

+ "WHERE zipcode = @zipcode", cn);
SqlDataReader dr;
string mystring = "";

cmd.CommandType = CommandType.Text;
cmd.Parameters.AddWithValue("@zipcode", ZipCode);

cn.Open();
dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
while (dr.Read())
{
mystring = dr["city"].ToString();

}
return mystring;

}

CHAPTER 8 ■ APPLICATION DESIGNER 239

4606CH08.qxd 4/20/06 3:21 PM Page 239

■Note You must add using System.Data, using System.Data.SqlClient, and using
System.Configuration in the using section. Also, you need to make sure the connection string
name matches the one in your Web.config file.

4. Press F5 and start the application (you may need to do some debugging). The directory
listing will display for MyWebService.

5. Click MyService.asmx. This time, select GetCityName for the test parameter page. Enter a
valid database value for the zip code parameter and click Invoke. The simple database
result is returned, as shown in Figure 8-23.

Figure 8-23. MyService response for GetCityName

Adding a Web Application Component
Now that your web service is working with the database, you still need to add a front-end to
the application. For simplicity, let’s add a web application to the application diagram.

Adding and Implementing the Web Application
You’ll add the web application, and then follow the same pattern for the web application
implementation as you did for the web service implementation.

1. Return to your MyDesign application diagram.

■Note If your application diagram is grayed out, you may still be running in debug mode. Select Debug ➤
Stop Debugging.

CHAPTER 8 ■ APPLICATION DESIGNER240

4606CH08.qxd 4/20/06 3:21 PM Page 240

2. Click the ASP.NETWebApplication prototype in the Toolbox and drag it just above
MyWebService.

3. Rename WebApplication1 to MyWebApp and the provider WebContent1 endpoint to
MyContent.

4. To connect the web application to the web service, right-click MyWebApp and select
Connect. In the Connect To section, select MyWebService for the application and
MyService for the endpoint and click OK. The completed diagram is shown in
Figure 8-24.

Figure 8-24. Completed MyDesign application diagram

5. Select Visual C# as the language for implementation by using the Properties window
for MyWebApp.

6. Implement the application (by right-clicking MyWebApp and selecting Implement Appli-
cation or choosing that option from the Diagram menu). The result of implementing
your design is that a new web application project has been added to the solution, as
shown in Figure 8-25.

CHAPTER 8 ■ APPLICATION DESIGNER 241

4606CH08.qxd 4/20/06 3:21 PM Page 241

Figure 8-25. The Solution Explorer with MyWebApp included

Creating a User Interface
To create a simple user interface (UI) for the mock local weather application, you will need to
edit Default.aspx. To facilitate creating the mock web page, you will start with a table layout.
You will drop various UI elements within the table to create an operational web page. You will
need a text box to enter the zip code, a button to invoke the code, two labels to display the city
name and weather, respectively, and perhaps an image to dress things up. Figure 8-26 shows
the mock UI.

Figure 8-26. Table layout for mock UI

CHAPTER 8 ■ APPLICATION DESIGNER242

4606CH08.qxd 4/20/06 3:21 PM Page 242

1. Double-click Default.aspx to view the source code.

2. Click the Design tab to create the UI.

3. Click Layout ➤ Insert Table. Enter 5 in the Rows field and 2 in the Columns field. Click
OK to view your table.

4. Drag a standard button to row 1, column 1 and change the text from Button to Get
Weather (this will call the service).

5. Drag a standard text box to row 2, column 2 and add the text Enter Zip Code to row 2,
column 1 (this will accept the user-supplied zip code).

6. Drag a standard label to row 3, column 2 and add the text Current Weather for Greater
to row 3, column 1 (this will hold the lookup city name).

7. Drag a second standard label to row 5, column 2 (this will hold the local weather
forecast).

8. You need to add a few lines of code to finish a working UI. Double-click the Get
Weather button to open the Default.aspx.cs code-behind. Copy the code in
Listing 8-6 and paste it as the Button1_Click event.

Listing 8-6. Sample Button Code-Behind

{
//Get the zip code requested

int myzip = Convert.ToInt32(TextBox1.Text);
//Get the Local Data
MyWebApp.WebServiceProxies.MyService s = new

MyWebApp.WebServiceProxies.MyService();
Label1.Text= s.GetCityName(myzip);
Label2.Text = s.GetLocalWeather(myzip);

}

9. You can tweak the layout and add an image or two.

10. Press F5 to build the application.

11. Enter a valid zip code and click the button. Your solution should look something like
the web page shown in Figure 8-27.

CHAPTER 8 ■ APPLICATION DESIGNER 243

4606CH08.qxd 4/20/06 3:21 PM Page 243

Figure 8-27. Sample Default.aspx web page invoked

Adding Comments to Application Diagrams
In addition to creating items with semantic meaning, you can also add comments to your
design by dragging the comment shape onto the design surface and adding text. Figure 8-28
shows an example of a comment added to an application diagram.

■Tip As a good practice, comment your diagrams heavily where the design purpose is not obvious.

Figure 8-28. A comment added to a diagram

CHAPTER 8 ■ APPLICATION DESIGNER244

4606CH08.qxd 4/20/06 3:21 PM Page 244

Understanding Connections and Endpoints
In the Application Designer, endpoints on applications define services they provide or specify
the requirement to use services.

Endpoint Notation
Figure 8-29 shows some examples of endpoints. A provider endpoint (shaded circle attached
to the CommonService in Figure 8-29) is used to represent services provided by the application.
A consumer endpoint (open circle attached to SampleApp1 and SampleApp2 in Figure 8-29) is
used to represent the use of services offered by other applications. Put simply, a provider end-
point is represented by a shaded object, and a consumer endpoint is represented by an
unshaded object.

Figure 8-29. Connection endpoints

Figure 8-29 illustrates a simple connection between two separate web applications (the
consumer of the data services) and the common service (the provider of data services). The
connection shown is an ASP.NETWebService provider endpoint connecting to two distinct
ASP.NETWebService consumer endpoints.

As a rule, you can connect a provider endpoint to multiple consumer endpoints, but you
can connect a consumer endpoint to only a single provider endpoint. (Additional rules and
guidelines are covered in the next section).

Table 8-3 shows the notations and the abstract types they represent.

CHAPTER 8 ■ APPLICATION DESIGNER 245

4606CH08.qxd 4/20/06 3:21 PM Page 245

Table 8-3. Abstract Types and Graphical Representations

Representation Abstract Type

Web service endpoint

Web content endpoint

Database endpoint

Generic endpoint

Rules and Guidelines for Connections
The following are some rules and guidelines for diagramming connections:

• Provider endpoints can connect only to consumer endpoints and vice versa.

• In general, you can connect a provider endpoint to multiple consumer endpoints.

• You can connect a consumer endpoint to only a single provider endpoint.

• You can connect only endpoints that have the same abstract type.

• You cannot directly draw connections between applications using the Connection tool.

• Choosing the Connect command opens a Connection dialog box.

• You can begin a connection from a provider endpoint using the Connection tool or the
Connect command.

• If compatible provider and consumer endpoints exist, you can begin connections from
either endpoint using the Connection tool or Connect command.

CHAPTER 8 ■ APPLICATION DESIGNER246

4606CH08.qxd 4/20/06 3:21 PM Page 246

Adding a Web Service Endpoint from a WSDL File
You can add a web service endpoint to your web service from an existing WSDL. To demon-
strate, you’ll add one to your MyDesign.ad application diagram.

1. Right-click the MyWebService and select Create Web Service Endpoints from WSDL.

2. In the Add Web Reference dialog box, select Web Services on the local machine. You
should find the book’s sample application Service, as shown in Figure 8-30.

CHAPTER 8 ■ APPLICATION DESIGNER 247

Figure 8-30. The Add Web Reference dialog box

3. Select the Service link in the Add Web Reference dialog box. You will see “1 Service
Found” in the right side display area, as shown in Figure 8-31.

4. Click Add Reference to add this Service endpoint to your application diagram.

5. Select the new Service endpoint, and then open the Web Service Detail window by
selecting Diagram ➤ Define Operations. Here, you can review the operations associ-
ated with your imported service, as shown in Figure 8-32.

4606CH08.qxd 4/20/06 3:21 PM Page 247

Figure 8-31. Finding a web service

Figure 8-32. The Web Service Details window showing the added service from the WSDL file

CHAPTER 8 ■ APPLICATION DESIGNER248

4606CH08.qxd 4/20/06 3:21 PM Page 248

Understanding Constraints and Settings
The distributed system designers allow you to set constraints and settings for your designs. To
view the Settings and Constraints window, shown in Figure 8-33, right-click any application
type in the Application Designer and select Settings and Constraints.

Figure 8-33. The Settings and Constraints window

A constraint is a requirement that a configuration value be set in a certain way. Con-
straints can be created in one layer against settings in another layer. For example, constraints
can be set from the application layer against settings on the application hosting layer and vice
versa. The application layer is modeled in the Application Designer. The application hosting
layer is modeled in the Logical Datacenter Designer. However, constraints can also be created
in the same layer. For example, in the Logical Datacenter Designer, zone constraints can be
authored against the logical servers the zones contain, as well as the applications hosted on
the logical servers within the zones. Zones and zone constraints are discussed in detail in
Chapter 9.

Settings are configurable elements of your application environment that control the way
your application behaves. For example, for an IIS web server under the SmtpSection, you can
set the specific delivery methods allowable for inbound SMTP messages.

Setting Constraints
Constraints are requirements targeted at configuration values. For example, several of the
application prototypes allow you to set the constraint on the operating system type, service
pack, and build number on which to run. Constraints fall into three categories:

CHAPTER 8 ■ APPLICATION DESIGNER 249

4606CH08.qxd 4/20/06 3:21 PM Page 249

• Implicit constraints: Constraints that are nonnegotiable and well defined, authored by
the application prototype providers themselves. For example, a Windows Forms appli-
cation cannot be hosted on a client operating system without the .NET Framework
installed.

• Predefined constraints: Constraints that are provided by the designer to group common
settings to make it more efficient for you to locate groups of settings. The operating sys-
tem predefined constraint is a good example of a group of settings providing a group of
settings to the designers.

• User-defined constraints: Constraints that you can author to provide any required con-
straints that fall outside those provided in the predefined groups.

Searching Settings and Constraints
You can search settings and constraints for a specific item by right-clicking anywhere in the
Settings and Constraints window’s left pane and selecting Search. For example, if you required
IIS 6.0 for the hosting of your web service or web application, you could search for the
MajorVersionNumber setting and select Find All, as shown in Figure 8-34.

Figure 8-34. The Search Settings and Constraints dialog box

Selecting the highlighted constraint in the Find Results list takes you to the constraint.
For this example, you would go to the MajorVersionNumber constraint for the
InternetInformationService, as shown in Figure 8-35. Here, you could change the Value
setting to 6, to require IIS 6.0.

CHAPTER 8 ■ APPLICATION DESIGNER250

4606CH08.qxd 4/20/06 3:21 PM Page 250

You will explore more details of settings and constraints in the following two chapters.

Reverse-Engineering Existing Solutions
You can also reverse-engineer your Application Designer diagram from an existing solution. In
this section, you will reverse-engineer an application diagram from the book’s sample Effort
Tracking application.

1. Open Visual Studio 2005. Select File ➤ Open Project/Solution, and open the sample
solution, EffortTrackingSolution.sln.

2. Right-click the EffortTracking solution and select Add ➤ New Distributed System
Diagram.

3. The Add New Item window displays the solution items available for the distributed
system diagrams. Highlight Application Diagram, change the name to EffortTracking,
and click Add. The result is the implemented application design, as shown in
Figure 8-36. You need to make only a few modifications to the default diagram to
make it useful.

4. Move EffortTrackingWeb directly above EffortTrackingService. Right-Click
EffortTrackingWeb and select Add ➤ New WebContentEndpoint and rename to
ETWebContent. Now drag an ExternalDatabase application prototype just under
EffortTrackingService. Rename Database1 to EffortTracking.

5. You now need to connect the database to the web service. Starting with the
EffortTrackingService database consumer endpoint, use the Connection tool to drag
the consumer endpoint of the service to the provider endpoint of the EffortTracking
database, as shown in Figure 8-37. The final version of the EffortTracking application
diagram is now complete.

CHAPTER 8 ■ APPLICATION DESIGNER 251

Figure 8-35. Settings and Constraints detail

4606CH08.qxd 4/20/06 3:21 PM Page 251

Figure 8-36. Default application diagram from the EffortTracking solution

Figure 8-37. Revised EffortTracking application diagram

CHAPTER 8 ■ APPLICATION DESIGNER252

4606CH08.qxd 4/20/06 3:21 PM Page 252

With the sample application for the book now reverse-engineered in the Application
Designer, take some time to explore the properties, settings, and constraints.

Troubleshooting Application Diagrams
When working in distributed system designers, performing certain actions often affect the
current diagram as well as other distributed system diagrams. The following are three types
of errors related to diagrams:

• Alert states: A red dashed outline, red error (X), or yellow warning (!) on the diagram
indicates an anomaly.

• Locking: A shaded diagram (read-only) indicates a check-out, compile, parse, or
missing file issue.

• Synchronization: Once implemented, a diagram must be kept in sync with the .sdm
document. Out-of-sync diagrams will trigger an alert state.

For more information about troubleshooting application diagrams, see the MSDN
online help.

Summary
In this chapter, you learned how to design and implement a simple connected system from
scratch using the Application Designer. This included defining the application prototypes,
connecting them via exposed endpoints, and defining the operations on the web service. You
then implemented your design, creating both a web application and web service connected
to your local database. Finally, you imported an existing WSDL endpoint. This chapter also
introduced constraints and settings. Finally, you learned how to reverse-engineer an entire
application in the Application Designer.

In the following chapter, you will use the Logical Datacenter Designer to create an envi-
ronment in which to deploy your sample application.

CHAPTER 8 ■ APPLICATION DESIGNER 253

4606CH08.qxd 4/20/06 3:21 PM Page 253

4606CH08.qxd 4/20/06 3:21 PM Page 254

System and Logical Datacenter
Designers

The System Designer is used to arrange and configure systems from the applications defined
in the Application Designer. In the context of the System Designer, a system is defined as a
single unit of deployment. Since systems can be composed of other systems, very large and
complex designs can be accommodated. This should satisfy the “wall-chart” architects (those
who spend their time creating application diagrams that fill an entire wall or more). The level
of abstraction provided by the System Designer allows multiple designs to facilitate deploy-
ment onto varying datacenters, customer sites, or geographic locations.

The Logical Datacenter Designer allows you to “create” a logical structure of interrelated
servers describing your physical environment. These designs are used in the Deployment
Designer to validate the deployment of systems into the logical infrastructure. A future goal of
this designer is to allow the physical instantiation of the logical design into physical and/or
virtual datacenters.

In this chapter, you will learn how to use both of these designers.

Using the System Designer
The system diagram depends on the application diagram to provide the basis for a deployable
system. (See Figure 8-1 in the previous chapter for an overview of the distributed system
designers and how they are related.) So, before you get started with the System Designer, it is
best to have a repository of applications (at least one existing application diagram created
with the Application Designer) from which to work. One advantage of selecting your applica-
tions from the Application Designer as the basis for your system design is that your
connections between applications are carried forward. However, as you will discover in the
first example in this chapter, you can start from scratch.

255

C H A P T E R 9

4606CH09.qxd 4/20/06 3:22 PM Page 255

SYSTEMS, APPLICATIONS, AND THE SYSTEM DEFINITION MODEL

From a System Designer perspective, the terms system and application can be a bit confusing. In the indus-
try, these words are often interchangeable. We talk about a sales application or a marketing system. Often,
the deciding factor in choosing the term system or application is how it sounds with the three-letter acronym
(TLA). However, there are some differences in how these terms are actually defined.

WhatIs.com defines application as “A shorter form of application program. An application program is a
program designed to perform a specific function directly for the user or, in some cases, for another applica-
tion program. Applications use the services of the computer’s operating system and other supporting
applications.”

WhatIs.com defines system as “A collection of elements or components that are organized for a
common purpose. The word sometimes describes the organization or plan itself (and is similar in meaning
to method, as in ‘I have my own little system’) and sometimes describes the parts in the system (as in
‘computer system’).”

From these definitions, we get a general idea that the application is the specific thing and the system is
the collection of those specific things.

At the heart of the System Definition Model (SDM) is the notion of a system. Fundamentally, the system
is an independently deployable configuration of resources. Two types of systems are supported within the
SDM: atomic and composite. Atomic systems are composed of the specific things, such as assemblies, con-
figuration files, and SQL scripts. Composite systems are composed of applications and/or other systems.

With this fundamental understanding, we see that the Application Designer supports application
prototypes (encapsulations of the underlying resources for the base type). These specific types can be
implemented and synchronized with the actual code. The System Designer provides for the collection of
applications and other systems for the purpose of deployment validation. This supports repurposing for
different environments and nesting for complex scenarios.

Creating a New System Diagram
Most likely, you will create the system diagram directly from the application diagram, which is
covered in the “Building a System Diagram from an Application Diagram” section later in the
chapter. In this example, you will start with a new project and use copy and paste to get the
application information into the new design. You might do this when you want to copy in a
section of a larger application to start your system diagram. This example will demonstrate the
issues involved with adding an implemented application directly from another diagram. For
this example, you will copy the MyDesign application diagram you created in Chapter 8.

1. Start a new project. In the New Project dialog box, select Distributed System Solutions,
and then select Distributed System. Enter the name MySystem, as shown in Figure 9-1,
and click OK. At this point, you have an empty solution, as shown in Figure 9-2.

■Note If you create a new Distributed System Solutions project type, there is no option to start with a sys-
tem design. The default selection is Distributed System, which provides you with a blank application diagram
from which to construct your system diagram.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS256

4606CH09.qxd 4/20/06 3:22 PM Page 256

Figure 9-1. Creating a new Distributed System project

Figure 9-2. The empty MySystem solution

2. Open the MyDesign solution you created in the previous chapter and double-click
MyDesign.ad to display the application diagram. Right-click the design surface and
choose Select All. From the main menu, select Edit ➤ Copy (or press Ctrl+C).

3. Close the MyDesign solution and reopen the MySystem solution. Double-click
MySystem.ad, and then paste the copied application diagram using Edit ➤ Paste
(or press Ctrl+V). Your resulting diagram should look like Figure 9-3.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 257

4606CH09.qxd 4/20/06 3:22 PM Page 257

Figure 9-3. MySystem application diagram copied from MyDesign

Notice that even though MyDesign was an implemented application in the MyDesign
solution, an unimplemented version of the application diagram is provided. This is a great
advantage of using the copy-and-paste method. If you had added MyDesign.ad to this solution
instead of using copy and paste, the application design operation signatures would be incor-
rect, and you would see red boxes around each of the applications, as shown in Figure 9-4.
This indicates a .synchronization alert, as discussed at the end of Chapter 8.

Figure 9-4. Application Designer synchronization error alert

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS258

4606CH09.qxd 4/20/06 3:22 PM Page 258

■Note An application diagram always needs to exist for a system diagram to be present. If you delete the
default application diagram, and then try to add a new system diagram, another application diagram will be
created for you. Also, if you delete the application diagram from which a system is built, when you reopen
the system diagram, Visual Studio will try to re-create the application diagram.

Starting a System Design Diagram
Now that you have a copy of an application design, you can start to create your system dia-
gram. There are several methods for creating a system diagram:

• From within the Solution Explorer, right-click Solution Items and select Add ➤ New
Distributed System Diagram. In the Add New Item dialog box, select System Diagram.

• Select Diagram ➤ Design Application System from the main menu.

• Select any or all of the applications on the design surface, right-click, and select Design
Application System.

For this example, you will start with a blank system diagram and create a deployable
system, exposing the web service with the associated database.

1. In the Solution Explorer, right-click Solution Items and select Add ➤ New Distributed
System Diagram. In the Add New Item dialog box, select System Diagram. Provide
the name MySystem, and then click Add. The System View window now contains the
applications that were copied into the MySystem application designer, as shown in
Figure 9-5.

Figure 9-5. The System View window

2. You can now just drag-and-drop applications from the System View window onto the
designer to create your deployable systems. For this example, drag MyWebService and
MyDatabase into the system diagram.

3. Using the Connection tool in the System Designer Toolbox, connect the database
endpoints and add a comment that says MySystem for the Northwest Region. Your
diagram should look like Figure 9-6.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 259

4606CH09.qxd 4/20/06 3:22 PM Page 259

Figure 9-6. MySystem system diagram

The System Designer Toolbox contains only three predefined objects to be used while
designing your system model. The reason that there are so few tools is that the system dia-
gram is really a container for deployment scenarios of an application diagram. The Toolbox
objects are described in Table 9-1.

Table 9-1. The System Designer Toolbox Objects

Item Description

Pointer Pointer tool used for selection (drag-and-drop)

Connection Connection tool to link two system endpoints

Comment A comment text box

Creating a Proxy Endpoint for Applications
Your new system will ultimately need to be connected with other systems or might be nested
within a larger system context. To keep the database endpoints properly encapsulated, you
need to expose only the web service endpoint. This exposure of an application endpoint to a
system boundary is termed delegation. Once the endpoint has been delegated, a proxy end-
point is created within the system diagram.

1. Right-click the MyService provider endpoint and select Add Proxy Endpoint.

2. Rename the proxy endpoint to distinguish it from the application endpoint. Name it
MyServiceProxy, as shown in Figure 9-7.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS260

4606CH09.qxd 4/20/06 3:22 PM Page 260

Figure 9-7. MySystem diagram proxy endpoint

■Tip The Application Designer is always sitting right behind the System Designer. To quickly view the detail
in the Application Designer, right-click the application you are interested in and select Go to Definition.

Building a System Diagram from an Application Diagram
In this section, you will create a second system directly from an application diagram, and then
connect the two systems via the proxy endpoints.

1. In the MySystem solution, double-click MySystem.ad. Click the Pointer in the Toolbox
and drag a selection box around the MyWebApp application.

2. Right-click the MyWebApp application and select Design Application System. This will
bring up the Design Application System dialog box, where you can enter a name for
your new system diagram. For this diagram, enter MyExposed, as shown in Figure 9-8,
and then click OK.

Figure 9-8. The Design Application System dialog box

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 261

4606CH09.qxd 4/20/06 3:22 PM Page 261

3. The MyExposed system diagram consists of one application, MyWebApp. Right-click the
MyContent endpoint and select Add Proxy Endpoint. This will expose the system to
HTTP requests of the website.

4. Right-click the consumer endpoint (MyService) and select Add Proxy Endpoint to
expose the service request. The resulting diagram is shown in Figure 9-9.

Figure 9-9. MyExposed system diagram

Nesting Systems
For a large or complex enterprise scenario, you may need to combine or nest systems. With
several systems identified and proxy endpoints exposed, you can create a more complex sys-
tem diagram. As a simple example, you will create a new complex system that is composed of
both the MySystem and the MyExposed systems.

1. In the Solution Explorer, right-click Solution Items and select Add ➤ New Distributed
System Diagram. In the Add New Item dialog box, select System Diagram, name it
MyComplex, and click Add. The System View window now includes the systems you have
defined in the previous exercises, as well as the application you defined in Chapter 8,
as shown in Figure 9-10.

2. With a blank system design template open, you can drag-and-drop any combination
of applications and systems on the design surface. For this example, drag MySystem and
MyExposed onto the design surface.

3. Connect the systems by right-clicking the MyServiceProxy endpoint of MySystem and
selecting Connect. In the Create Connection dialog box, select MyExposed as the system
and MyService as the endpoint in the Connect To section.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS262

4606CH09.qxd 4/20/06 3:22 PM Page 262

Figure 9-10. The MyComplex system

4. Extend the MyContent endpoint (by adding a proxy endpoint) to expose the endpoint to
other systems. Your complex system design should look like Figure 9-11.

Figure 9-11. Sample nested systems diagram

■Tip With a multilevel system diagram, you can easily traverse the hierarchy by right-clicking a subsystem
and selecting Open in System Designer. You can continue to open subsystems until you get down to the
actual application. Once at the application level, you can still select Go to Definition to view the actual appli-
cation diagram.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 263

4606CH09.qxd 4/20/06 3:22 PM Page 263

Viewing Web Service Details, Settings, and Constraints
The System Designer allows you to view the operation, settings, and constraints of the end-
points and applications exposed on the system design surface. A key item to note is that you
can only view these elements. Unlike with the Application Designer, where you can define
operations and configure settings and constraints, this is primarily a view into the underlying
metadata. We say “primarily” because you do have the option to override certain settings, as
described in the next section.

For example, right-click the MyServiceProxy endpoint within the MyComplex system dia-
gram and select View Operations. You will see a list of operations defined in the Application
Designer, as shown in Figure 9-12.

Figure 9-12. The Web Service Details window for MyServiceProxy

Close the Web Service Details window. Right-click the MyServiceProxy endpoint again and
select Settings and Constraints. You will see the Settings and Constraints window, as shown in
Figure 9-13.

Figure 9-13. The Setting and Constraints window for MyServiceProxy

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS264

4606CH09.qxd 4/20/06 3:22 PM Page 264

Overriding Settings and Constraints
A key feature of the distributed designers is the ability to override the settings in a system
design that have been provided by an underlying application design. This provides for
reusable configurations and tailored deployments of systems. However, before you can
override settings in the System Designer, they must first be specified as overridable within
the Application Designer. Let’s try this out.

1. In the MySystem solution, double-click MySystem.ad. Within the Application Designer,
right-click the MyService endpoint and select Settings and Constraints.

2. Choose Application Endpoint Settings and verify that they are set to overridable, as
shown in Figure 9-14.

Figure 9-14. Setting and constraints can be set as Overridable.

3. Open MySystem.sd and view the settings and constraints for the MyService web service
provider endpoint. Notice that the Binding Namespace is set to the template-coded
http://tempuri.org. As a best practice, you should change the binding namespace
from this default value on web service endpoints.

4. To comply with the best practice suggestion, change the Value field for the Binding
Namespace to http://mysystem.org, as shown in Figure 9-15.

5. Close the Settings and Constraints window and save your MySystem solution. You will
use it when you work with the Deployment Designer in the next chapter.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 265

4606CH09.qxd 4/20/06 3:22 PM Page 265

Figure 9-15. Overriding the Binding Namespace setting

If you ever want to go back to the original value provided by the application design, you
can check the Use Default box in the Settings and Constraints window, and the value will be
reset to the original value.

Using the Logical Datacenter Designer
Unless your job description includes infrastructure architecture, you are probably wondering
why you would need the Logical Datacenter Designer. In a large organization, the design of
the datacenter will most likely be done by lonely individuals, in locked rooms, with high levels
of security clearance. For the smaller organizations, this might be you. Regardless, the design of
the application and the design of the supporting infrastructure need to be worked in tandem.

A disconnection between the development teams and infrastructure support has been all
too apparent in our experience of designing and deploying enterprise systems. For many years
now, customer organizations have been forced to build and maintain separate lab environ-
ments of production-quality hardware to test applications prior to deploying them in the
enterprise datacenter.

Five years ago, we presented the diagram shown in Figure 9-16 to the vice president of
information systems of a large corporation to graphically depict the need for architects, devel-
opers, and infrastructure groups to work together to provide integrated solutions.

During the presentation, we stressed, “Our key motivation is getting the solution to the
customers before the opportunity for benefit has slipped away.” Today, as then, we work to
engage the architecture, infrastructure, and development communities to advance this frame-
work. Fortunately, a key design goal for VSTS addressed what we already knew needed to be
accomplished: “Facilitate collaboration among all members of a software team (including
architects, developers, testers, and operations managers).” This focus on bringing the full
team together was the key reason we jumped in so early in the release cycle of VSTS.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS266

4606CH09.qxd 4/20/06 3:22 PM Page 266

Figure 9-16. Collaborative team environment

In this section, you will look at how to use the Logical Datacenter Designer to define and
configure logical servers that will be part of the logical datacenter structure. From the overuse
of “logical” in the previous sentence, you can see one of the shortcomings of the Logical Data-
center Designer. There is no physical implementation in this release. This fact gave rise to a
blogging stream titled “Why the VSTS Logical Datacenter Designer (er, Deployment Designer)
Sucks.” A reply is posted at http://blogs.msdn.com/a_pasha/articles/409396.aspx.

Creating a Logical Datacenter Diagram
Your logical datacenter design can be created from scratch or may be provided to you by an
infrastructure architect in your organization. For this example, you will use Visual Studio 2005
to add a new logical datacenter diagram to the solution you created in Chapter 8.

1. Right-click your MyDesign solution and select Add ➤ New Distributed System Diagram.

2. Select Logical Datacenter Diagram and provide the name MyDesign.ldd, as shown in
Figure 9-17, and then click Add. You will be brought in to the Logical Datacenter
Designer with a blank work surface and a default logical datacenter diagram (.ldd).

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 267

4606CH09.qxd 4/20/06 3:22 PM Page 267

Figure 9-17. Creating a new logical datacenter diagram

The Logical Datacenter Designer Toolbox comes preconfigured with eleven predefined
prototypes (.lddprototype): five logical server prototypes and six endpoint prototypes to be
used while designing your logical datacenter. These generic logical server types include a
Windows client, Internet Information Server (IIS) web server, database server, generic server,
and zone. The Toolbox objects are described in Table 9-2.

Table 9-2. The Logical Datacenter Designer Toolbox Objects

Item Description

Pointer Pointer tool used for selection

WebSiteEndpoint Manages server-side communication with a logical IIS web server

HTTPClientEndpoint Manages client-side communication with a logical IIS web server

DatabaseClientEndpoint Manages client-side communication with a logical database server

GenericServerEndpoint Describes server-side communication with a logical generic server

GenericClientEndpoint Describes client-side communication with a logical generic server

ZoneEndpoint Manages communication on the edge of a zone

WindowsClient Corresponds to a Windows client or server that hosts a Windows
application

IISWebServer Corresponds to an IIS server that hosts web services or ASP.NET web
applications

DatabaseServer Corresponds to a database server

GenericServer Corresponds to a user-defined server or component

Zone Logical boundary, such as a firewall, that is separated from other
portions of the datacenter; zones can be nested

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS268

4606CH09.qxd 4/20/06 3:22 PM Page 268

Item Description

Pointer Pointer tool used for selection (again!)

Connection Connection tool to link two endpoints

Comment A comment text box

You can extend the Logical Datacenter Designer prototypes, just as you can extend the
Application Designer prototypes (as explained in Chapter 8). For example, if you have a hard-
ening policy on your IIS servers, you might want to configure those settings on an IIS server
prototype and then save it as Corporate Hardened IIS Server. Similarly, if you have created a
certain zone definition that you plan to reuse or share, it would be a good idea to create a pro-
totype of that zone.

To extend a prototype, select the design element (logical server or endpoint) and choose
Diagram ➤ Add to Toolbox. To share your prototype with others, you can provide them with a
copy of your .lddprototype file, which they can add to their default prototype folder. In the
future, Microsoft will be providing additional datacenter prototypes (such as SQL Server),
which you can add to your designer.

Adding Zones
To create a logical datacenter diagram, you should begin by adding zones. Zones are an
important concept within the Logical Datacenter Designer. They are used to define communi-
cation boundaries, physical boundaries (different sites), or security boundaries (internal
servers or perimeter servers).

To understand zones, you just need to think about games you played as kid. Games such
as capture the flag and dodge ball have the notion of zones. Most of them involve lines that
cannot be crossed or policies such as “safety zones,” where you cannot be hit or tagged. This
is the most secure area during the game and is similar to a datacenter zone. The wide-open
spaces are the risky areas, where you might be taken out at any time. In our analogy, this is like
the public Internet. In the network world, these zone boundaries are defined by firewalls,
routers, ports, and virtual local area networks.

Let’s get started by adding some zones to the new diagram.

1. Click the Zone prototype in the Logical Datacenter Designer Toolbox and drag it onto
the design surface. Optionally, you can right-click the design surface and select Add
New ➤ Zone.

2. By default, the zone is named zone 1. Double-click the name and change it to DMZ (for
demilitarized zone). Change ZoneEndpoint1 to something a bit shorter, like DMZ_ZEP.

■Note The term demilitarized zone (DMZ) is taken from the military meaning: “An area from which military
forces, operations, and installations are prohibited.” Corporations have adopted the DMZ concept of “the
area between two enemies” and applied it to networking to mean “A middle ground between an organiza-
tion's trusted internal network and an untrusted, external network such as the Internet. This is also referred
to as a perimeter network.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 269

4606CH09.qxd 4/20/06 3:22 PM Page 269

3. Add a second zone and rename it to CIZ (for corporate intranet zone), as shown in
Figure 9-18. You can simply copy your DMZ zone and paste it back onto the design
surface. Change the zone and endpoint names to CIZ and CIZ_ZEP, respectively.

Figure 9-18. Zone definitions in the Logical Datacenter Designer

Setting Zone Constraints
As you’ve learned, constraints are used to enforce requirements in one layer of the distributed
systems model (such as the Application Designer) against those in another layer (such as the
Logical Datacenter Designer). You can think of these constraints as house rules. Some house-
holds have a rule that requires you to take your shoes off at the door, and there is even a little
sign posted in the entryway:

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS270

4606CH09.qxd 4/20/06 3:22 PM Page 270

If you forget or ignore the sign, “agents” of the house will remind you of your error. In a
similar way, the constraints defined in the distributed designers are enforced across the plat-
form to ensure that corporate policy is integrated into the design tools.

Settings are configuration elements in the environment that control the behavior of the
application or server. If you think of constraints as the allow or disallow rules, settings would
be the conditions. If we allow you go to the high school dance (constraint), you must be home
by 11:00 p.m. (setting).

For example, a common networking practice is to restrict the type of servers allowed
within the DMZ. Let’s set a zone constraint to do this.

1. Right-click within the DMZ zone and select Settings and Constraints.

2. Under Zone Containment Constraints, deselect the WindowsClient and Zone check
boxes, as shown in Figure 9-19. This will restrict Windows clients to within the pro-
tected CIZ zone, as well as other zones hosted within this zone (nested zones).

Figure 9-19. Settings and Constraints for zones

■Note The settings and constraints information that is entered via the Settings and Constraints window
maps to data that is generated in the corresponding .sdm file. Editing a setting or a constraint directly
affects the generated SDM.

3. Verify the constraint by trying to drag a WindowsClient or Zone object from the Tool-
box into the DMZ zone on the design surface. Notice also that you can still drag both of
these within the CIZ zone.

4. Verify the changes were written into the SDM (.ldd file) for the logical datacenter
design. You need to save and close any open designers. Then right-click MyDesign.ldd
and select Open With. In the Open With dialog box, select the XML editor. This will
open the .ldd file in the XML editor within Visual Studio.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 271

4606CH09.qxd 4/20/06 3:22 PM Page 271

5. Press Ctrl+F to bring up the Find and Replace dialog box. Type logical servers and
zones in the Find What text box, as shown in Figure 9-20. Click the Find Next button,
and you should see the XML fragment shown in Listing 9-1, which is part of the SDM
for the DMZ.

Figure 9-20. Finding the server constraint

Listing 9-1. Server Constraint Section of the .ldd File

<ConstraintGroup Name="AllowedTypes" RaiseError="true">
<Description>

<Entry Name="Description" Substitute="InstanceName">Zone {0} can only
contain the following types of logical servers and zones:
DatabaseServer, GenericServer, IISWebServer.

</Entry>
</Description>

Notice that the two logical server prototypes (WindowsClient and Zone) are missing from
the list of allowed types for zone (0) in the MyDesign.ldd XML file. Close the XML editor.

Placing Servers Inside Zones
Now that the zones have been defined on your design surface, you can start adding servers
within the zones. The first server you will add is an IIS server in the DMZ to provide an access
point to external clients. Next, you will add another IIS server and database server to host the
web service and back-end database, respectively, in the CIZ.

1. Double-click MyDesign.ldd to open. Right-click within the DMZ zone and select Add ➤
IISWebServer. Rename the web server by double-clicking the name and changing it to
Exposed_IIS.

2. Add a second IISWebServer to the CIZ zone and name it Safe_IIS.

3. Add a DatabaseServer to the CIZ zone and name it Safe_DB.

■Tip If you place a server in the wrong zone or outside a zone on the design surface, you can easily relo-
cate it by right-clicking the lost server and selecting Move to Zone.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS272

4606CH09.qxd 4/20/06 3:22 PM Page 272

4. The incoming zone endpoint within the DMZ zone should already be labeled DMZ_ZEP,
and the CIZ zone’s endpoint should labeled CIZ_ZEP. If the endpoint label is not
showing on the diagram, right-click the endpoint and select Show Label. Rename the
endpoints on the logical servers themselves to give them meaningful names. In this
case, the chosen convention is to use the server name with the suffix of _EP, as shown
in Figure 9-21.

Figure 9-21. Logical Datacenter Designer with zones and servers identified

Setting Specific Zone Constraints
You can define a policy for a zone that applies to all the items within that zone. Let’s say that
you want to make sure that all IIS servers in the CIZ are running the current production ver-
sion of the Common Language Runtime (CLR), and no beta versions of the CLR are allowed to
be present in that zone.

1. Select the CIZ zone. Right-click and select Settings and Constraints to open the Settings
and Constraints window.

2. Select User Defined and CommonLanguageRuntime from the list on the left.

3. On the right, select Version and enter the correct version number in the Value field. You
can also enter descriptive error text in the Error Message field, as shown in Figure 9-22.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 273

4606CH09.qxd 4/20/06 3:22 PM Page 273

Since this constraint on the CLR version is set at the zone level, any IIS server added to
the zone will be required to meet the version-level restriction. If you take the time to open the
.ldd file in the XML editor, you will notice a version constraint added to the CIZ zone regard-
ing the CommonLanguageRuntime.

Connecting Servers to Zones
Communication across zones is managed by the zone endpoints. The communication
through the zone can be inbound, outbound, or bidirectional. The arrow displayed within
the zone endpoint represents the communication flow. You can then define communication
pathways between logical servers and zones by connecting and controlling these pathways
via their endpoints. You also can control the type of communication using constraints on
endpoints.

1. Beginning in the DMZ, connect the inbound DMZ zone endpoint to the IIS server
provider endpoint. To do this, right-click Exposed_IIS_EP and select Delegate. Select
DMZ as the zone and DMZ_ZEP for the endpoint, as shown in Figure 9-23.

2. Connect the exposed IIS server client endpoint to the outbound DMZ zone endpoint.
This time, try using the Connection tool from the Toolbox. Select the Connection tool,
click the Exposed_IIS client endpoint, and drag the connection to the outbound DMZ
zone endpoint.

3. Continue with the Connection tool and connect that same outbound DMZ zone end-
point to the inbound zone endpoint on the CIZ zone.

4. Connect that inbound zone endpoint on the CIZ zone to the provider endpoint on the
Safe_IIS. Your diagram now shows a compete flow from the outside to your safe IIS
server.

5. To finish the diagram, right-click Safe_IIS and select Connect. Choose the Safe_DB as
the zone and Safe_DB_EP as the endpoint, and then click OK. Your diagram should look
like Figure 9-24.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS274

Figure 9-22. Setting constraints on a zone

4606CH09.qxd 4/20/06 3:22 PM Page 274

Figure 9-23. The Delegate to Endpoint dialog box

Figure 9-24. Completed connections in MyDesign.ldd

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 275

4606CH09.qxd 4/20/06 3:22 PM Page 275

You can set the flow behavior on a zone endpoint through its Properties window, as
shown in Figure 9-25. Select the zone endpoint you want to configure and press F4 to display
the Properties window. In the Behavior section, set the Communication Flow property to
Inbound, Outbound, or Bidirectional, based on your scenario.

Figure 9-25. Setting the communication flow behavior

Specifying Settings and Constraints for Servers
The Settings and Constraints window is not only useful for working within zones, but also for
specifying settings and constraints on individual servers. The settings can include configura-
tion information such as the .NET runtime version, operating system, and service packs. They
can also include constraints such as ASP.NET security, membership, or session state.

For this example, we will assume that storing session state on the IIS server in the DMZ is
not allowed.

1. Select the Exposed_IIS server in the DMZ zone. Right-click and select Settings and
Constraints.

2. In the Settings and Constraints window, select the check box next to ASP.NET Session
State to reveal the configurable constraints. In the Session State Mode list, select Off, as
shown in Figure 9-26. This disables session state for an entire site. This selection will be
propagated to the associated setting in the Web.config file. Also set the Http Cookie
Mode to AutoDetect. (You will encounter these settings again in the Deployment
Designer, covered in Chapter 10.)

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS276

4606CH09.qxd 4/20/06 3:22 PM Page 276

Figure 9-26. Disabling session state on the IIS web server

As explained in Chapter 8, three types of constraints are supported in the distributed
designers. Here is how each type might be used with your logical datacenter design:

• Implicit constraints are “baked” into the SDM. An example of an implicit constraint is
the available endpoints for a database server prototype. These constraints cannot be
edited by users, but they can be authored using the SDM SDK.

• Predefined constraints logically group together settings of a particular type, such as
ASP.NET membership or website configuration. These dialog boxes have editing rules
built into them to allow specific combinations of settings to define the constraint.

• User-defined constraints allow a user to have full control over desired values and ranges
for any setting available on the logical server. These constraints are created by manually
defining one or more settings.

Constraints placed on endpoints restrict the type of communication allowed to be carried
through the endpoint. For example, a zone endpoint can be constrained to permit only HTTP
traffic over a specific port. Establishing such a constraint will affect connections within the
Logical Datacenter Designer, as well as restrictions on implementations in the Deployment
Designer.

Importing Settings from IIS
You can manage many settings and constraints within the Logical Datacenter Designer, but it
can be a daunting task to manually configure all of these for each logical server. Fortunately,
there is a wizard that allows you to import your settings from an existing IIS web server.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 277

4606CH09.qxd 4/20/06 3:22 PM Page 277

To demonstrate how this works, you will import the settings and constraints from an IIS
server. You can use your local machine if you have IIS installed.

1. Right-click the Safe_IIS server prototype on the diagram and select Settings and Con-
straints.

2. In the Settings and Constraints window, explore the InternetInformationServices node.
Notice that most of the values contain no value ([null]) by default, as shown in Figure
9-27. If you browse the ApplicationPools and WebSites nodes, you will see similar
results. Some default values may exist, but they may not accurately represent the web
servers in your environment. Close the Settings and Constraints window.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS278

Figure 9-27. The Setting and Constraints window for the default IIS web server

3. Right-click the Safe_IIS server prototype on the diagram and select Import Settings to
start the Import IIS Settings Wizard. Click Next.

4. As shown in Figure 9-28, the Import IIS Settings Wizard presents three check boxes on
the next page:

• The first option imports all of the websites that reside on the server and creates a
new endpoint representing each site on the IIS web server prototype. If you don’t
select this option, the proceeding page will provide the option to import individual
sites to either new or existing endpoints.

• If the second box is checked, the global configuration settings for the web server
will be imported. These settings map to the InternetInformationServices node in
the Settings and Configuration window.

• The third check box determines if application pools will be imported.

For this example, enter your server name and administrator credentials (administrator
credentials are required in order to access certain metabase keys and values), accept
the defaults for the check boxes, and click Next.

4606CH09.qxd 4/20/06 3:22 PM Page 278

Figure 9-28. Import IIS Settings Wizard set to import from the local machine

5. The wizard prompts you to select the websites and endpoint bindings. Click the down
arrow in the Endpoint section and select Safe_ISS_EP, as shown in Figure 9-29. Then
click Next.

Figure 9-29. Import IIS Settings Wizard websites and bindings

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 279

4606CH09.qxd 4/20/06 3:22 PM Page 279

6. The confirmation page lists what will be imported, as shown in Figure 9-30. Click Next
one more time to perform the import, and then click Finish to exit the wizard.

Figure 9-30. Import IIS Settings Wizard confirmation

7. Open the Settings and Constraints window again for the Safe_IIS server prototype.
Notice that the InternetInformationServices node has been renamed to the server
name from which the settings were imported. Select this node, and you will see that
the global configuration settings for the web server have been populated with the IIS
metabase settings. You can also see that the Connection properties now reflect the
imported settings, as shown in Figure 9-31.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS280

Figure 9-31. Settings and constraints imported from the local IIS server

4606CH09.qxd 4/20/06 3:22 PM Page 280

Building a Logical Datacenter Diagram for the Sample
Application
In this section, you will build a simple logical datacenter diagram to support the sample appli-
cation you reverse-engineered using the Application Designer in Chapter 8.

1. Open Visual Studio 2005. Select File ➤ Open Project ➤ Solution and open the sample
solution, EffortTrackingSolution.sln.

2. Right-click the EffortTracking solution and select Add ➤ New Distributed System
Diagram. Select Logical Datacenter Diagram and change the default name from
LogicalDatacenter1.ldd to EffortTracking.ldd. Click the Add button to open the
Logical Datacenter Designer.

3. You need a web server to host the web application and the web service. Drag an
IISWebServer logical server from the Toolbox onto the design surface, as shown in
Figure 9-32. Rename the default provider WebSiteEndpoint1 to ET_Site_EP.

■Note With Visual Studio 2005, you can run a virtual web server, which means that you do not need to
have IIS. However, throughout the book, IIS is used to host the sample application in order to illustrate
certain points and eliminate some of the confusion.

Figure 9-32. IIS web server added to the logical datacenter diagram

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 281

4606CH09.qxd 4/20/06 3:22 PM Page 281

4. Add a second website endpoint by right-clicking IISWebServer1 and selecting
Add New ➤ WebSiteEndpoint. Rename it ET_Service_EP.

5. Rename the server itself to EffortTrackingWebServer.

6. You need a back-end database server to host EffortTracking. Drag the DatabaseServer
logical server from the Toolbox onto the design surface below the IISWebServer server.
Rename the database provider endpoint from DatabaseServerEndpoint1 to ET_DB_EP.
Rename DatabaseServer1 to EffortTrackingDatabase.

7. Since the web service connects to the database using ADO.NET, you need to provide
the connection. Right-click inside EffortTrackingWebServer and select Connect. In the
Connect To section, select EffortTrackingDatabase for the logical server and ET_DB_EP
for the endpoint, as shown in Figure 9-33. Click OK. Notice that the connection
appears between the IIS server and the database.

Figure 9-33. Creating the connection to the database

8. To represent the connection between the website (client) and web service (provider),
connect the existing HTTPClientEndpoint with the ET_Service_EP. Using the Connec-
tion tool, start with either endpoint and drag to connect. This finishes the logical
datacenter design, as shown in Figure 9-34.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS282

4606CH09.qxd 4/20/06 3:22 PM Page 282

Figure 9-34. Logical datacenter design for the Effort Tracking application infrastructure

Summary
In this chapter, you looked at the System Designer and Logical Datacenter Designer. The
System Designer is the critical link between your application design and the logical datacen-
ter. You learned how to design and build system diagrams and how to nest systems. You also
learned how to view and override settings provided by the Application Designer.

Next, you explored the Logical Datacenter Designer. You saw how to separate your logical
datacenter into zones and how to interconnect servers, zones, and endpoints. You worked
with settings and constraints on both zones and servers to provide configuration information
or constrain the scope within the zone or server. You then learned how to import settings from
existing servers. Finally, you built a logical datacenter diagram to support the sample applica-
tion. In a future version of Visual Studio, you will be able to deploy your logical datacenter
onto physical devices or into virtual datacenters.

The final step in the process is to “bind” the applications you created in the Application
Designer and grouped in the System Designer to the Logical Datacenter Designer diagram you
just completed. This binding process is performed by the Deployment Designer, as explained
in the following chapter.

CHAPTER 9 ■ SYSTEM AND LOGICAL DATACENTER DESIGNERS 283

4606CH09.qxd 4/20/06 3:22 PM Page 283

4606CH09.qxd 4/20/06 3:22 PM Page 284

Deployment Designer

The final member of the distributed designer suite is the Deployment Designer. Once you
have your applications defined and grouped into deployable systems, and have defined one or
more logical datacenters, you are ready to validate the deployment into a target datacenter.

The Deployment Designer allows the architect/developer to evaluate the appropriateness
of a particular system for a specified logical datacenter. This evaluation occurs between the
system diagram (.sd) and the logical datacenter diagram (.ldd), which were discussed in
Chapter 9.

VSTS provides two methods for arriving at your deployment diagram: explicit and
implicit. The explicit, or formal, method is to first define a system diagram from which to
invoke the deployment. The implicit, or quick-and-dirty, method is to invoke the deployment
directly from the application diagram and force a default system diagram to be generated.

In this chapter, we will cover the formal method first with our sample design from Chap-
ters 8 and 9. Then we will use the implicit method to start the deployment design from the
application diagram of the book’s sample Effort Tracking application.

Using the Explicit Deployment Method
Using the explicit deployment method, you start from an existing system diagram that you
have defined. Let’s begin by reviewing the MyComplex system diagram that you created in
Chapter 9.

Open the MySystem solution within Visual Studio 2005 and double-click MyComplex.sd. This
complex system is composed of two subsystems and one application diagram, and they are all
opened in the System Designer, as shown in Figure 10-1. Notice that the application diagram
is sitting in the background and cannot be closed separately from the System Designer.

285

C H A P T E R 1 0

4606CH10.qxd 4/20/06 3:24 PM Page 285

Figure 10-1. MyComplex in the System Designer

All the information (metadata) in this diagram is expressed in the underlying System Defi-
nition Model (SDM) file. Take some time to review the XML in the MyComplex.sd file, as shown
in Figure 10-2. You will need to close the open diagrams and open the MyComplex.sd file using
the XML editor. Within the file, you will recognize the association with your other diagrams,
the detailed properties for each model element, and the incorporation of versioning.

CHAPTER 10 ■ DEPLOYMENT DESIGNER286

Figure 10-2. MyComplex.sd in the XML editor

■Note SDM files are identified based on five key attributes: the name, version, culture, platform, and public
key token. Only the name attribute is required.

4606CH10.qxd 4/20/06 3:24 PM Page 286

Creating a Deployment Diagram
In this example, you will create a deployment diagram using MyComplex.sd. When you choose
to define your deployment, you also need to supply a logical datacenter design for deploy-
ment validation. You will use the MyDesign.ldd file from the MyDesign solution you created in
Chapter 8.

Starting a Deployment Diagram
Follow these steps to begin your deployment diagram:

1. Open the MyComplex system diagram by double-clicking the MyComplex.sd file in the
Solution Explorer.

2. In the System Designer, right-click the design surface and select Define Deployment,
as shown in Figure 10-3.

Figure 10-3. Choosing to start a deployment diagram

3. In the Define Deployment dialog box, choose MyDesign.ldd, as shown in Figure 10-4.
(Since you do not have the logical datacenter diagram already attached to your solu-
tion, browse to the MyDesign solution and select MyDesign.ldd from there.) Then
click OK.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 287

4606CH10.qxd 4/20/06 3:24 PM Page 287

Figure 10-4. The Define Deployment dialog box

A new deployment definition named MyComplex1.dd is created in the MySystem solution
and opened in the Deployment Designer, as shown in Figure 10-5.

Figure 10-5. The default deployment design

CHAPTER 10 ■ DEPLOYMENT DESIGNER288

4606CH10.qxd 4/20/06 3:24 PM Page 288

Also, the logical datacenter diagram, MyDesign.ldd, has been added to your solution, as
shown in Figure 10-6.

Figure 10-6. The Solution Explorer window showing the new MyComplex1.dd and
MyDesign.ldd files

The Toolbox for the Deployment Designer contains only two items: a Pointer tool for
making selections and Comment tool for adding comments.

A more interesting aspect of the Deployment Designer is the System View window. It con-
tains the application artifacts from the Application Designer inside your MyComplex system, as
shown in Figure 10-7.

Figure 10-7. The System View window

Binding the Applications to Logical Servers
Using the System View window, you can drag the applications onto the reproduced logical
datacenter diagram. Alternatively, you can right-click an application in the System View win-
dow and select Bind Application. This will bring up a dialog box that shows the suitable hosts
in your target datacenter. Using either method, the Deployment Designer will not allow you
to bind applications to unsuitable hosts. However, you can choose to override this default
behavior.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 289

4606CH10.qxd 4/20/06 3:24 PM Page 289

1. In the System View window, right-click the MyDatabase application and select Bind
Application. (If the System View window isn’t visible, select View ➤ Other Windows ➤
System View). In the Bind MyDatabase to Logical Server dialog box, your only choice
will be Safe_DB, as shown in Figure 10-8. Select it and click OK.

Figure 10-8. The Bind MyDatabase to Logical Server dialog box

2. Drag MyWebApp onto the Exposed_IIS server.

3. Drag MyWebService over to the design surface. Notice that the only acceptable location
is the Safe_IIS server.

The System View window will indicate the binding of the application to the host by plac-
ing an arrow to the left of the application and showing <Bound> after the application name, as
shown in Figure 10-9.

Figure 10-9. The System View window with bound application prototypes

At this point, all your applications are bound to the target datacenter hosts, as shown in
Figure 10-10.

CHAPTER 10 ■ DEPLOYMENT DESIGNER290

4606CH10.qxd 4/20/06 3:24 PM Page 290

Figure 10-10. The deployment diagram with applications bound to logical servers

Validating a Deployment Implementation
After you’ve created your deployment diagram, it’s time to validate the proposed deployment
definition. When you choose to validate the diagram, the Deployment Designer validates the
settings and constraints specified in the .sd file for the system against those specified in the
.ldd file for the target datacenter. The Error List window will display any errors, warnings, or
messages associated with the validation of the system against the logical datacenter, along
with a little white x in a red circle (error mark) inside each offending application, server, or
zone. Let’s see this in action.

1. Right-click the deployment diagram and select Validate Diagram, as shown in
Figure 10-11. Alternatively, you can select Diagram ➤ Validate Diagram from the
main menu or click the Validate Diagram icon in the toolbar.

2. The Error List window, shown in Figure 10-12, indicates that four validation warnings
occurred. You should see error marks next to the MyWebService application, the
MyWebApp application, and the Exposed_IIS logical server. Look over the descriptions
of each warning. You will address each one of these in order. Your Errors List may differ
depending on settings imported from your IIS Server.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 291

4606CH10.qxd 4/20/06 3:24 PM Page 291

Figure 10-11. Choosing to validate a diagram

CHAPTER 10 ■ DEPLOYMENT DESIGNER292

Figure 10-12. The Error List window displaying validation warnings

3. Double-click the first warning in the Error List window. The Settings and Constraints
window will open to the configuration setting causing the conflict, as shown in
Figure 10-13. Also, the underlying application, system, or logical datacenter diagram
will be brought into focus. Here, the MyExposed system diagram is brought forward.

Figure 10-13. Settings and Constraints window for the MyService endpoint

4606CH10.qxd 4/20/06 3:24 PM Page 292

4. You overrode the default Binding Namespace setting on the MyService endpoint in
the creation of the MySystem system diagram (in Chapter 9); however, the client
(consuming endpoint) within the MyExposed system still expects the default. Select the
MyComplex.sd system diagram, and you’ll see that the mismatch is clearly depicted, as
shown in Figure 10-14. Right-click the MyServiceProxy endpoint and select Settings
and Constraints. Notice the Binding Namespace setting of http://MySystem.org. With
the Settings and Constraints window still open, click the MyService endpoint. You’ll see
that the Binding Namespace setting is http://tempuri.org. Now you can override the
client (MyService) setting within the MyExposed system to match.

Figure 10-14. MyComplex system diagram showing error marks

5. Click the first validation error in the Error List window again to bring up the Settings
and Constraints window within the MyExposed system context. Change tempuri to
MySystem for the Binding Namespace setting, and then close the Settings and Con-
straints window.

6. Select the MyComplex1.dd deployment diagram and revalidate it. Notice that the first
error has now been resolved, and three warnings remain.

7. Select the next warning in the Error List window to bring up the Settings and Con-
straints window within the MySystem system design. In this case, the authentication
setting for the MyWebService application does not match the configuration settings
for the IIS web server. (Your particular IIS setting may not cause this error.) In this
simple example, address this issue by setting the mode from Windows to Forms, as
shown in Figure 10-15. Then close the Settings and Constraints window.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 293

4606CH10.qxd 4/20/06 3:24 PM Page 293

Figure 10-15. Setting the web service authentication mode

8. Select the MyComplex1.dd deployment diagram and revalidate it. The second error has
now been resolved.

9. The final two warnings regard the constraints you set within the demilitarized zone
(DMZ) for the Exposed_IIS server regarding session state (in Chapter 9). You turned off
session state for the logical server, but the MyWebApp application has the session state
set to InProc. To fix the problem, double-click either of the last two warnings in the
Error List window to open the Settings and Constraints window for the MyExposed sys-
tem. Set the Cookieless value to AutoDetect and the Mode value to Off, as shown in
Figure 10-16. Then close the Settings and Constraints window.

CHAPTER 10 ■ DEPLOYMENT DESIGNER294

Figure 10-16. Session state settings for MyWebApp

10. Select the MyComplex1.dd deployment diagram and revalidate. You’ll see that all of the
warnings have been resolved, as shown in Figure 10-17.

4606CH10.qxd 4/20/06 3:24 PM Page 294

Figure 10-17. All errors and warnings resolved

Generating the Deployment Report
After you’ve created and validated your deployment design, you will want to generate a
Deployment Report, which can help you to create installation scripts. Before you generate the
report, you should set the deployment properties in the Deployment Designer. We’ll discuss
this in more detail in the “Setting Deployment Properties” section later in this chapter. For this
example, you will leave the default properties and simply generate the Deployment Report.

1. Right-click the design surface for the MyComplex1 deployment diagram and select
Generate Deployment Report, as shown in Figure 10-18.

Figure 10-18. Choosing to generate a Deployment Report

2. The MyComplex1.html report appears within your solution. Right-click the report and
select View in Browser.

3. Notice the wealth of information provided for you in the Deployment Report. Take
some time to browse the content and search on some of the areas we have just
resolved. For example, search for MySystem.org, and you will see details on the settings
for the MyService endpoint, as shown in Figure 10-19. You can also click the “back to
parent” link to navigate up to the application to which that endpoint belongs
(MyWebApp).

CHAPTER 10 ■ DEPLOYMENT DESIGNER 295

4606CH10.qxd 4/20/06 3:24 PM Page 295

We will explore the Deployment Report in more detail after we define the deployment for
the book’s sample application in the next section.

Using the Implicit Deployment Method
Another way to start a deployment definition is directly from the application diagram, rather
than from a system diagram, as in the previous example. This is referred to as the implicit
method of deployment. In this section, we’ll demonstrate this method and also take a closer
look at the Deployment Report.

■Note The early builds of the distributed designers called the implicit method a “trial deployment.” This
early terminology has been dropped, but there are still cautionary notes about running your final deploy-
ments from the generated default system. The main issue is that a default system is a direct image of the
application diagram, and as such, the configuration cannot be modified independently. For additional infor-
mation about using the default system, see the TechNote at http://msdn.microsoft.com/vstudio/
teamsystem/reference/technotes/apps_designer/default_sys.aspx.

CHAPTER 10 ■ DEPLOYMENT DESIGNER296

Figure 10-19. Deployment Report sample section

4606CH10.qxd 4/20/06 3:24 PM Page 296

Building the Deployment Diagram
In this section, you will build a deployment diagram for our book’s sample Effort Tracking
application. You will begin from the EffortTracking.ad application diagram you created in
Chapter 8.

Starting the Deployment Diagram
Follow these steps to start the deployment diagram from the Application Designer:

1. Open Visual Studio 2005. Select File ➤ Open Project/Solution and open the sample
solution, EffortTrackingSolution.sln.

2. Double-click the application diagram (EffortTracking.ad) to open it in the Applica-
tion Designer, as shown in Figure 10-20.

Figure 10-20. The application diagram for the Effort Tracking application

3. Select Diagram ➤ Define Deployment from the main menu. In the Define Deployment
dialog box, select to use EffortTracking as the logical datacenter diagram (created in
Chapter 9), as shown in Figure 10-21. Then click OK.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 297

4606CH10.qxd 4/20/06 3:24 PM Page 297

Figure 10-21. Choosing EffortTracking as the logical datacenter diagram

Since there was no system definition for the Effort Tracking application created prior to
deployment, a default system is created for you. A new Default System folder is added to
you solution, and the DefaultSystem1.dd has been placed in this new location, as shown in
Figure 10-22.

Figure 10-22. The Solution Explorer for the EffortTracking sample

On the design surface, you have a fresh deployment design, which employs the selected
logical datacenter diagram, as shown in Figure 10-23.

CHAPTER 10 ■ DEPLOYMENT DESIGNER298

4606CH10.qxd 4/20/06 3:24 PM Page 298

Figure 10-23. Default EffortTracking deployment diagram

The System View window contains the Default System and three components of your
application design, as shown in Figure 10-24.

Figure 10-24. The System View window for the EffortTracking sample

Binding the Applications to Logical Servers
For our sample book application, both the web service and web application will be hosted on
a single logical IIS server (EffortTrackingWebServer), and the database will be hosted on the
database server (EffortTrackingDatabase).

1. Drag EffortTrackingService from the System View window onto EffortTrackingWeb➥

Server, and the Bindings Detail dialog box will open. The database endpoint should
have been resolved to DatabaseClientEndpoint1. However, since you have exposed two
provider endpoints on the IIS server, you need to select ET_Service_EP to bind to the
Service endpoint of the EffortTrackingService, as shown in Figure 10-25. Select OK,
and you will see the EffortTrackingService bound in the System View window.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 299

4606CH10.qxd 4/20/06 3:24 PM Page 299

Figure 10-25. The Binding Details dialog box for EffortTrackingService

2. Drag EffortTrackingWeb onto the same IIS server (EffortTrackingWebServer). Set the
binding for the Service to the HTTPClientEndpoint1 and the ETWebContent endpoint to
ET_Site_EP, as shown in Figure 10-26.

Figure 10-26. The Binding Details dialog box for EffortTrackingWeb

3. Drag EffortTracking onto EffortTrackingDatabase. Since there is only one exposed
endpoint, no binding details are requested. You can right-click EffortTracking and
select Binding Details to verify that the mapping is correct. You should see the
EffortTrackingDatabase endpoint from the application design bound to the ET_DB_EP
of the logical datacenter design.

CHAPTER 10 ■ DEPLOYMENT DESIGNER300

4606CH10.qxd 4/20/06 3:24 PM Page 300

Your sample application is now bound to your target datacenter, as shown in Figure 10-27.

Figure 10-27. Deployment diagram with application bindings

Validating the Diagram
Now that you’ve completed all the bindings between the application components and the log-
ical datacenter, it is time to validate the diagram.

1. Select Diagram ➤ Validate Diagram. The Error List window shows two warnings,
indicating that there is a mismatch between the EffortTrackingService,
EffortTrackingWeb, and the IIS server in which they are being deployed, as shown
in Figure 10-28.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 301

Figure 10-28. The Error List window for the EffortTracking validation

4606CH10.qxd 4/20/06 3:24 PM Page 301

2. Double-click the first warning in the Error List window to go to the Application
Designer for EffortTrackingWeb. The Settings and Constraints window is opened to the
AuthenticationSection, where the mode is set to Forms (which is inconsistent with the
IIS server), as shown in Figure 10-29. If you click the EffortTrackingService applica-
tion profile in the application diagram, you will notice that the web application has the
Mode value set to Forms as well, which corresponds to the second warning message.

Figure 10-29. The Settings and Constraints window for EffortTrackingWeb

3. Switch to EffortTracking.ldd and open the Settings and Constraints window for
EffortTrackingWebServer. Within the Logical Server Settings ➤ WebSites ➤ Authentica-
tion, notice that AuthFlags is set to Ntlm. Therefore, the Forms authentication in the
application needs to support Anonymous, and the IIS server is configured to support
only Integrated Windows via Ntlm. You can solve this conflict in two ways: you could
change both the web and service applications to use Windows authentication, or you
could add Anonymous to the Authentication AuthFlags on the IIS server to allow the
support for Forms authentication. Since we want to use our own login in the sample
application, you should take the second approach, and change the settings on the IIS
server as shown in Figure 10-30.

4. Close the Settings and Constraints window. Select DefaultSystem1.dd from the Window
menu, and then select Diagram ➤ Validate Diagram. You will see that the warnings
have been resolved, as shown in Figure 10-31.

CHAPTER 10 ■ DEPLOYMENT DESIGNER302

4606CH10.qxd 4/20/06 3:24 PM Page 302

Figure 10-30. The Settings and Constraints window for EffortTrackingWebServer

Figure 10-31. The Error List window with prior warnings resolved

Setting Deployment Properties
As noted earlier in the chapter, the goal of the Deployment Report is to assist you in creating
installation scripts from the XML-based information in the report. A key prerequisite is to set
the deployment properties in the Deployment Designer, which you’ll do now.

1. Right-click the design surface and select Properties, or press F4, to open the Properties
window.

2. Set the Destination Path property to C:\MyDeployments, as shown in Figure 10-32. Set
all the Include properties to True. Leave the remaining properties set to their defaults.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 303

4606CH10.qxd 4/20/06 3:24 PM Page 303

Figure 10-32. The Deployment Designer Properties window

Table 10-1 describes the key properties for the Deployment Designer.

CHAPTER 10 ■ DEPLOYMENT DESIGNER304

4606CH10.qxd 4/20/06 3:24 PM Page 304

Table 10-1. Key Properties for the Deployment Designer

Property Description

Destination Path This property specifies a path (on disk or a UNC path) to copy
source, content, or binary files associated with your applications. By
default, this property is blank. If you do not set this property, no
files will be copied.

Include Binary Files, By default, only diagrams will be included in the Deployment
Include Content Files, Report. To copy source, content, and binary files to the destination
Include Diagrams, path location, set the corresponding properties to True.
Include Owners, and
Include Source Files

Overwrite Files Action By default, this property will display a prompt when overwriting
files. This can be set to Yes to automatically overwrite files.

Error Resolution By default, this property will display a prompt when an error
occurs. It can be set to Ignore to facilitate automation, or you can
also choose to abort Deployment Report creation if an error occurs.

Errors Only By default, this property is set to False. If set to True, the Deploy-
ment Report will contain only the list of validation errors and
warnings.

Generating the Deployment Report
Now you’re ready to generate the Effort Tracking application Deployment Report. Just right-
click the design surface and select Generate Deployment Report. Alternatively, you can select
Diagram ➤ Generate Deployment Report. In the status bar at the bottom of the Visual Studio
IDE, you will see the Deployment Report generation in progress:

Publishing EffortTrackingService: Copying Files…(EffortTrackingService.sdm)
Publishing compiled SDM files: Copying Files…EffortTracking.sdmDocument)
Publishing deployment report: Copying Files…(DefaultSystem1.html)
Deployment report generated.

The final report contains detailed information about the bindings, deployment diagram,
logical servers, logical datacenter diagram, systems, system diagram, resource settings by type,
and endpoints. The Deployment Report for your simple application will be well over 1,000
lines of source HTML. Sample output is shown in Figure 10-33.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 305

4606CH10.qxd 4/20/06 3:24 PM Page 305

Figure 10-33. Sample Deployment Report output

Browse the Deployment Report and search for some of the items we worked on through-
out the chapter. Search the document for your favorite endpoint, application, or that elusive
AuthFlags setting. Open the File Explorer and see what was deposited in the destination path
at C:\MyDeployments, as shown in Figure 10-34.

CHAPTER 10 ■ DEPLOYMENT DESIGNER306

4606CH10.qxd 4/20/06 3:24 PM Page 306

Figure 10-34. Sample deployment project files

Summary
In this chapter, you learned how to take your application diagrams or, preferably, your prede-
fined systems and deploy them into target logical datacenters. You’ve had a wonderful time
dropping applications onto the Deployment Designer surface, validating the deployment as
you go. Finally, you created a Deployment Report (HTML), including deployable files copied
to your selected deployment path.

CHAPTER 10 ■ DEPLOYMENT DESIGNER 307

4606CH10.qxd 4/20/06 3:24 PM Page 307

4606CH10.qxd 4/20/06 3:24 PM Page 308

Team Edition for
Software Developers

P A R T 3

4606CH11.qxd 4/20/06 3:25 PM Page 309

4606CH11.qxd 4/20/06 3:25 PM Page 310

Class Designer

The Class Designer is both an architect’s tool and a developer’s tool. Architects can use it to
communicate ideas about an application’s structure to the development team. Developers
can use it to build a skeleton of the classes before they dive in to the coding of those types.

In this chapter, you will learn how to use the Class Designer, and then see what happens
under the hood. We’ll begin by looking at what the Class Designer was designed to do.

Design Goals
The VSTS team set out to accomplish four specific goals when they created the Class Designer:

• Help the developer understand existing code.

• Provide a jump-start on creating the initial class design.

• Review and refactor application structure and code easily.

• Provide diagrams and documentation that are relevant throughout the life of the appli-
cation and aid in its maintenance.

The VSTS team wanted the class diagrams to be relevant when looking at the code.
The code generation and synchronization is first-class and seamless in the IDE.

Let’s take a look at each of these goals and see how they benefit you.

Understanding Existing Code
Oftentimes you, as a developer, architect, or tester, are called on to review the code of applica-
tions that you have not worked on directly. But where do you start when you perform a code
review of another application? Typically, this might involve reviewing the UML diagrams, user
requirements, and functional specifications, and then diving into the code. But frequently, the
UML diagram turns out to be out-of-date, and the requirements have changed, so these are
not very helpful.

Being able to generate an entire class diagram directly from the code means that it is
accurate and up-to-date. This functionality will save you hours and hours of headaches. On
top of this, you have the ability to reverse-engineer any class from any assembly, including
.NET Framework classes.

311

C H A P T E R 1 1

4606CH11.qxd 4/20/06 3:25 PM Page 311

Initial Class Design
Designing classes and their relationships is the first thing that architects or development leads
do once the overall requirements and high-level architecture are understood. Many times dur-
ing this process, the views on how objects relate to each other, what objects should be created,
and what properties and methods they should have change. The Class Designer is meant to
be a simple tool to quickly and easily generate and change class and application structure. On
this front, it succeeds admirably. Creating classes is as simple as drag-and-drop, and relating
classes is as simple as three clicks of a mouse button. This will most likely become your pri-
mary class design tool because of its simplicity and power.

Reviewing and Refactoring
One of the key things that architects and developers do is to create an object model and
examine it. During that examination, they are likely to discover changes that need to be imple-
mented. In some cases, these changes are discovered after the code is implemented. Typically,
this is a problem, since you need to rework the diagram, and then rework the code. Many dia-
gramming tools do not give you the ability to refactor models directly from the user interface.

The VSTS team went the extra length to allow you review and change your application
structure directly from the design surface of the Class Designer. These steps can range from
creating interfaces based on already existing methods to encapsulating a private field as a
public property without having to write any additional code.

■Note VB and C# support many of the same operations on the Class Designer, but some of the operations
are available only when using a particular language. These will be pointed out throughout the chapter.

Relevant Diagrams and Documentation
How many projects have you been involved with that started out by creating a class diagram,
only to discover about two weeks into the actual coding that the classes no longer looked like
the diagram? Even tools like Rational, which let you forward-engineer your diagrams and syn-
chronize the diagram and code later, have some problems. They require you to manually start
a sync process and fix any issues that come up. The VSTS team devised the Class Designer so
that there is an instant update between a change in the class diagram and the code and vice
versa. Yes, you read that right. If you change the code, the diagram is immediately updated to
reflect the change.

■Caution If you have a method with code in it, and you delete the method from the class diagram, your
code is lost. Anything contained within the method body is deleted along with the method. However, you also
have the option to hide a class member, which will cause that member to not be displayed in the Class
Designer but to remain in the code.

CHAPTER 11 ■ CLASS DESIGNER312

4606CH11.qxd 4/20/06 3:25 PM Page 312

The advantage to this is that your code and diagrams are always synchronized. The devel-
opers and architects can really see the class structure. Additionally, it makes maintenance far
easier because the documentation will always be accurate.

■Note Almost all code generators/reverse-engineering tools put GUIDs and other identifiers in the code.
Microsoft’s implementation does not do that, so you get the added benefit of clean code.

Microsoft, UML, and Visio
Microsoft has begun shifting from a purely UML view of the world. The introduction of the
domain-specific designers and Class Designer are a first step in that direction. The Class
Designer departs from a standard UML model in numerous small ways, but overall, it main-
tains the type of structure you would find in a typical UML static model. Microsoft has taken
this step away from UML for several reasons.

The first is that UML is outdated, especially in terms of .NET. Have you seen how
UML represents a read-write property in .NET? It creates two methods: getMethodName and
setMethodName. But if you ever try to forward-engineer a .NET class from this UML notation, it
literally creates two different methods to match the diagram. UML also does not understand
events. This is a critical point because application development is now (for the most part)
event-driven.

Another reason for the move away from UML is that it makes diagramming too difficult
when dealing with certain types of relationships. A perfect example is object aggregation.
What is the difference between an open diamond, closed diamond, and an arrow in a UML
diagram? An open diamond is a loose aggregation, a closed diamond is a strong aggregation,
and an arrow indicates a dependency. But what is the difference between these three options?
What’s the point of fooling around with these subtleties? They are so close in actual practice
that spending time on the theory is wasteful, and in many cases, their use is incorrect anyway.

Finally, Microsoft wanted to bring the power of structured application development to
people who are not experts in UML. The Object Technology Series of books published by
Addison-Wesley is the gold standard in explaining UML. The core set of books were written by
Ivar Jacobson, Grady Booch, and James Rumbaugh—the fathers of UML. These books cover
several thousand pages in total! To use UML effectively, you need a trained team of experts.
To read the UML diagrams in such a way that they are of effective use to you as a developer
requires a lot of training (and how the UML diagrams are implemented in code is always
language-specific). Most people cannot afford the time or effort it takes to go into this type
of detail.

The Class Designer addresses these issues. Microsoft has strived to make this tool simple
yet powerful. Rather than an abstract diagram that has general relevancy across all languages,
it produces a concrete diagram that has specific relevancy for the language you are using.
It ignores the nuances of certain types of relationships because the implementation cannot
really be determined by the diagram. And the Class Designer allows anyone to provide a
simple and straightforward view of object relationships.

Microsoft will continue to ship Visio with the UML stencils, so that developers and archi-
tects can leverage their existing skill set in their current environment.

CHAPTER 11 ■ CLASS DESIGNER 313

4606CH11.qxd 4/20/06 3:25 PM Page 313

UNIFIED MODELING LANGUAGE TODAY

Of course, UML still has its place in modern development. We are not advocating that you do not learn UML.
However, we are questioning the need for such a rigorous standard that provides only abstract definitions of
objects and applications. In addition, UML has nine different types of diagrams. Most applications typically
use only a few of these types of diagrams: the use case, class (static), sequence, activity, and deployment
diagrams. You have already seen in the previous chapters how Microsoft has created concrete instances of
the deployment diagram with the logical designers and that these logical designers do a much better job in
terms of documenting the correct deployment of an application (as well as allowing you to configure the
deployment nodes).

At many of the meetings we attended at Microsoft, the Microsoft developers said that they were going
to include some more of the UML model types in later version of VSTS, but that they could not specify which
types (we would argue that the only other model types that are very important are the use case and
sequence diagrams). However, they also pointed out that Microsoft will continue to distribute Visio and the
UML modeling tools included with Visio. This will allow developers and architects to continue to choose how
they model their applications.

You will have to make your own choice in terms of the benefit of an investment in learning UML to the
degree needed to create robust diagrams. To learn more about UML, read UML Distilled (Third Edition) by
Martin Fowler (Addison-Wesley, 2003). This is an excellent introduction to the main diagrams in UML and the
correct usage of those diagrams.

Using the Class Designer
As an example of using the Class Designer, we will go through the steps of building the
EffortTracking web service diagram. Your completed diagram will look like the one shown
in Figure 11-1.

■Note The VB version will not have the ITaskService interface since it does not support interface
refactoring.

CHAPTER 11 ■ CLASS DESIGNER314

4606CH11.qxd 4/20/06 3:25 PM Page 314

Figure 11-1. The completed EffortTracking web service

■Note You can create this as a file-based solution or an HTTP-based solution. The sample code distributed
with this book is HTTP-based.

To start the diagram, follow these steps:

1. Create a blank solution called EffortTracking.

2. Right-click the EffortTracking solution and select Add ➤ New Website.

3. Select ASP.NET Web Service. Select HTTP (or File) for the location and either C#
or VB (whichever you are comfortable with) for the language. Enter the name as
http://localhost/EffortTrackingService (or the file location if you selected File).
Then click OK. This creates a new web service with a single class called Service.

4. Delete the HelloWorld example from the Service class.

5. Right-click the project, select Add New Item, and then select the Class Designer from
the New Item dialog box. Click OK.

CHAPTER 11 ■ CLASS DESIGNER 315

4606CH11.qxd 4/20/06 3:25 PM Page 315

■Tip Alternatively, you can click the View Class Diagram button from the top of the Solution Explorer, which
will also add a class diagram to the project and generate the diagram based on the current code in the
application. This makes it easy to see the entire project laid out at once.

6. Drag the Service.cs file from the Solution Explorer to the Class Designer surface. This
creates the Service class, as shown in Figure 11-2.

Figure 11-2. The Service class in the Class Designer

■Tip You can add existing classes to the diagram by dragging and dropping classes from the Class View
window (or right-clicking a class and selecting View Class Diagram) and from the Object Browser, in addition
to adding them from the Solution Explorer.

Now, let’s look at this single class and some of the options you have for manipulating it.

Exploring a Class
The class name (Service) is shown in bold at the top of the class representation. You can edit
the name simply by clicking it in the class and changing it. The chevron button in the upper-
right corner expands or collapses the class.

■Caution Changing the name of the class once you have created it will not change the name of the file in
which the class is contained. Microsoft is aware of this and hopefully will have this functionality in the next
release of VSTS.

CHAPTER 11 ■ CLASS DESIGNER316

4606CH11.qxd 4/20/06 3:25 PM Page 316

Below the object name is the type of object. In this case, Service is a class (as opposed to a
struct, enum, interface or delegate). This is not editable. Below the object type is the base class
from which the current class derives—in this case, the WebService class. (If the base class type
is Object, then no base class type will be displayed.)

When building an object model, you often want to know what the properties of the base
classes are or what classes derive from a given class. To see this, right-click the Service class
and select Show Base Class. This will result in the WebService class being added to the dia-
gram, as shown in Figure 11-3.

Figure 11-3. The Service class and WebService class relationship

If you remove the Service class from the diagram (right-click the Service class and select
Remove from Diagram), and then select Show Derived Classes from the WebService class, the
Service class would be readded to the diagram. This makes it easy to adjust the depth of infor-
mation you want to display on the class diagram.

Viewing Properties
The Properties window shows specific property information for the object (or method) that is
selected in the Class Designer window, as shown in Figure 11-4.

CHAPTER 11 ■ CLASS DESIGNER 317

4606CH11.qxd 4/20/06 3:25 PM Page 317

Figure 11-4. The Class Designer portion of the IDE

Table 11-1 describes the class and structure properties that are available. We’ll introduce
the properties for the other objects in the upcoming sections about those object types.

Table 11-1. Class/Structure Properties

Property Description

Access Access modifier (public, private, etc.)

Custom Attributes Any custom attributes that are applied to the class

File Name Read-only property containing the name of the file in which the class
is located

Full Name Read-only property that gives the full, namespace-qualified name of
the class

Generic Read-only property that indicates if the class is a generic class (for
more information, see Generics in the MSDN documentation)

Implements Read-only property that lists all of the interfaces implemented by
this class

CHAPTER 11 ■ CLASS DESIGNER318

4606CH11.qxd 4/20/06 3:25 PM Page 318

Property Description

Inheritance Modifier Indicates how (if) this class can be inherited: None, Abstract
(MustInherit in VB), Sealed (NotInheritable in VB), or Static (no
equivalent in VB) (does not apply to structures)

Inherits Read-only property indicating the base class of this class (does not
apply to structures)

Name The name of this class

New Member Location The name of the class file in which new members are added, for use
with partial classes (for more information, see Partial Classes in the
MSDN documentation)

Remarks General comments about the class

Summary A summary of the class’s purpose/functionality

■Note All of the read-only attributes can be modified by choices made in code. They are just not modifi-
able via the Properties window.

Working with Class Designer Tools and Options
The Class Designer Toolbox (on the left side of Figure 11-4) shows a list of all of the items that
can be added to your applications. Table 11-2 describes the available tools.

Table 11-2. Class Diagram Toolbox Options

Shape Description

Class Represents a concrete class (i.e., a class that can be instantiated
directly)

Enum Represents an enumeration

Interface Represents an interface

Abstract Class Represents a class that cannot be instantiated

Struct (Structure in VB) Represents a structure

Delegate Represents a delegate

Inheritance Represents an inheritance relationship between two classes

Association Represents an association relationship (aggregation or dependency
between two classes)

Comment A comment regarding the class diagram

Module A VB code module (not available in C#)

Table 11-3 lists other Class Designer options. These options are accessed either by right-
clicking the designer surface or via the Class Diagram menu.

CHAPTER 11 ■ CLASS DESIGNER 319

4606CH11.qxd 4/20/06 3:25 PM Page 319

Table 11-3. Class Designer Menu Options

Option Description

Zoom Allows you to zoom in and out on the diagram

Layout Diagram Arranges the shapes in a “logical” way (fortunately, this
can be undone)

Display Member Types Displays the field types and the method return types

Adjust Shape Widths Resizes all shapes on the drawing surface to be as wide
as the widest entry in each shape

Group Members ➤ By Kind Groups each shape by fields, properties, methods,
events, etc.

Group Members ➤ By Access Groups members by access type (public, private,
protected, etc.)

Group Members ➤ Sort Alphabetically Groups all members together alphabetically

Add Allows you to create types from the design surface
without dragging and dropping type shapes from the
Toolbox

Export Diagram As Image Allows you to export any or all of the diagrams in a
project to a graphics file (.gif, .jpg, .tif, .png, .emf,
and .bmp)

Adding Items to the Class Diagram
When you add items to your diagram, you use the Class Details window, shown in Figure 11-5,
to set its attributes. To see this window, right-click an object and select Class Details. It appears
at the bottom of the IDE (as shown earlier in Figure 11-4).

Figure 11-5. The Class Details window

The title of this window indicates which class you’re viewing. All of the methods, proper-
ties, fields, and events of a class are listed in this window. The top icon on the left side of this
window gives you the option of entering any new item for the class. The four icons below that
are used to navigate to different sections of the Class Details window.

CHAPTER 11 ■ CLASS DESIGNER320

4606CH11.qxd 4/20/06 3:25 PM Page 320

The layout will vary depending on the type of object selected on the design surface. The
Class Details window for a class includes the Type column, which provides IntelliSense func-
tionality as you enter the member types; the Modifier column, which is a drop-down list of
scope options; and the Summary column. To add a summary, click the ellipsis in the Summary
column to open the Description dialog box, as shown in Figure 11-6.

■Tip By placing a using statement (or an Imports statement in VB) at the top of the code module, you
can avoid having to enter the complete namespace of the type you are trying to add.

Figure 11-6. The Description dialog box

Adding Enumerations
You will start the class diagramming process by creating the basic building blocks of the serv-
ice. The first task is to add a simple enumeration, which will allow the consumer of the service
to specify whether the password that is being passed in the ValidateUser method (which you
will create shortly) is encrypted or in plain text.

■Caution Obviously, you would never send a password in clear text in a real application, but this provides
a simple example for adding enumerations in the Class Designer.

CHAPTER 11 ■ CLASS DESIGNER 321

4606CH11.qxd 4/20/06 3:25 PM Page 321

1. Drag an Enum from the Toolbox onto the design surface. This will bring up the New
Enum dialog box.

2. For this enumeration, set the name to PasswordType. Notice that a code file named
PasswordType.cs (or PasswordType.vb, depending on the language) is also added to the
solution, as shown in Figure 11-7. Click OK to add the enumeration.

Figure 11-7. The New Enum dialog box

3. The Class Details window switches to have only four columns: Name, Value, Summary,
and Hide. Enter the information in Table 11-4 into the Class Details window.

Table 11-4. PasswordType Enumeration Details

Name Value Summary

ClearText 0 Indicates the password is unencrypted

Encrypted 1 Indicates the password is encrypted

■Tip It is not necessary to enter a value for an enumeration, because the default is to have them sequen-
tially numbered. In many cases, however, it is desirable to be able to perform bitwise operations on an
enumeration, so you will want to add specific values.

Now that the information has been entered, you can look at the Properties window for
both the enumeration and each class. (The properties are different for almost every item that
you can select in the Class Designer.) Table 11-5 describes all of the enumeration properties.

CHAPTER 11 ■ CLASS DESIGNER322

4606CH11.qxd 4/20/06 3:25 PM Page 322

Table 11-5. Enumeration Properties

Property Description

Access The scope of the enumeration

Base Type The type of values used for the enumeration (a valid numeric type)

Custom Attributes Any custom attributes that apply to the enumeration

File Name Read-only attribute containing the name of the file in which the class is
located

Full Name Read-only attribute that gives the full, namespace-qualified name of the
class

Name The name of this enumeration

Remarks General comments about the enumeration

Summary A summary of the enumeration’s purpose

Adding Structures
Next, you need to add a Task structure to the class diagram. This structure holds a single task
item that is used to pass the task from the web service to the web application for use in edit-
ing, viewing, and adding information.

1. Drag a Struct (Structure in VB) from the Toolbox to the designer surface.

2. In the New Struct dialog box, enter the name as Task and click OK.

3. In the Class Details window, enter each of the items shown in Table 11-6 for the Task
structure under the Fields node.

Table 11-6. Task Structure Details

Name Type Modifier Summary

Id int (Integer in VB) public ID of the task

Title string public Brief description of the task

Description string public Complete description of the task

DateModified DateTime (Date in VB) public Date the task was last updated

WeekEndingId int (Integer in VB) public ID of the week in which the task was
performed

CategoryId int (Integer in VB) public ID of the category under which the
task falls

UserId int (Integer in VB) public ID of the user who created and owns
the task

CHAPTER 11 ■ CLASS DESIGNER 323

4606CH11.qxd 4/20/06 3:25 PM Page 323

Note that because a structure is almost identical to a class, all of the options available to
you for a regular class are available to you for a structure, except for base classes and derived
classes, since structures don’t have these. Table 11-1 earlier in the chapter describes the struc-
ture properties.

Adding Methods
Now that you have the underlying enumeration and structure, you can start creating methods
in the Service class. Since the Service class is already on the class diagram, you can just start
adding methods to it.

1. Select the Service class on the design surface. If the Class Details window is not
already open, right-click the Service class and select Class Details.

2. Click the <add method> entry under the Methods node in the Class Details window
and enter ValidateUser.

3. Enter int (Integer in VB) for the Type.

4. Click the ellipsis in the Summary column.

5. Enter Validates that the user is in the system for the Summary.

6. Enter 0 if the user is not found, otherwise the ID of the user for the Returns value.

7. Expand the ValidateUser node to expose the method’s parameters.

8. Click the <add parameter> entry under the ValidateUser method (or press the (key on
the keyboard) and enter userName. The type defaults to string.

9. Enter The user’s name for the Summary.

10. Click the <add parameter> entry under the userName parameter and enter password.

11. Enter The user’s password.

12. Enter a last parameter called PassType with a type of PasswordType.

13. Enter Indicates if the user’s password is in clear text or plain text for the Summary.

14. Repeat steps 2–13 for each of the other six methods listed in Table 11-7.

Table 11-7. Service Class Methods

Method Return Type Parameters Description

GetLookupInfo DataSet N/A Returns a dataset containing week
and category information for use as
lookups

ValidateUser int string userName, Validates that the user is in the
string password, system
PasswordType type

CHAPTER 11 ■ CLASS DESIGNER324

4606CH11.qxd 4/20/06 3:25 PM Page 324

Method Return Type Parameters Description

AddUser int string userName, Adds a new user to the system
string password

DeleteTask void* int taskID Deletes a single task item

GetTask Task int taskID Returns a single task

GetTasks DataSet int weekID, Returns an array of Task objects for
int userID the given week and user

SaveTask void* Task taskToSave Saves or updates a task in the
database

*Void indicates a Sub rather than a Function in VB. When entering these methods in VB, leave the return
type blank.

Now that you have all of the methods and descriptions added, switch to the code view for
the Service class by double-clicking the class in the diagram (or by right-clicking the class and
selecting View Code). Listing 11-1 shows the ValidateUser method.

■Note To switch back to the class diagram from the code view, double-click the diagram in the Solution
Explorer or select the Class Diagram tab in the main window.

Listing 11-1. The ValidateUser Method

C#
/// <summary>
/// Validates that the user is in the system.
/// </summary>
/// <param name="userName">The user's name</param>
/// <param name="password">The user's password</param>
/// <param name="passType">Indicates if the user's password is in
/// clear text or plain text.</param>
/// <returns>0 if the user is not found, otherwise the ID of the user</returns>
public int ValidateUser(string userName, string password, PasswordType passType)

{
throw new System.NotImplementedException();

}

VB
''' <summary>
''' Validates that the user is in the system.
''' </summary>
''' <param name="userName">The user's name.</param>
''' <param name="password">The user's password</param>

CHAPTER 11 ■ CLASS DESIGNER 325

4606CH11.qxd 4/20/06 3:25 PM Page 325

''' <param name="passType">Indicates if the user's password is in clear text or
''' plain text.</param>
''' <returns>0 if the user is not found, otherwise the ID of the user</returns>
Public Function ValidateUser(ByVal userName As String, ByVal password As String, _
ByVal passType As PasswordType) As Integer

End Function

All of the information you entered via the Class Details window shows up here in XML
comments or in the method signature. All methods created via the Class Details window are
created with NotImplementedException thrown as the single line of code in the method. Any
changes made to either the XML comments or the method signature are automatically
updated in the Class Designer. Similarly, if you delete a method from the class in code, it is
removed from the designer.

■Caution It is critical that you understand that deleting a method in the Class Designer causes the
method and all of the code in that method to be deleted—nothing will be saved. It is a good idea to ensure
that everything is under source code control before you start deleting items from the Class Designer if you
have already started writing code. The good news is that you can undo a change to the class diagram.

You also have the option to reorder the parameters of a method. This is available only
in C# (in VB you need to do it manually). To do this, right-click the GetTasks method in the
Service class in the diagram and select Refactor ➤ Reorder Parameters. This will bring up
the Reorder Parameters dialog box, as shown in Figure 11-8.

Figure 11-8. The Reorder Parameters dialog box

CHAPTER 11 ■ CLASS DESIGNER326

4606CH11.qxd 4/20/06 3:25 PM Page 326

Using this dialog box, you can shift the parameters and view the signature of the method
while you are shifting them. This is also the same dialog box that is displayed if you choose to
delete a parameter, except that a large warning is displayed at the bottom.

Table 11-8 lists all the method properties, as well as the property, field, and event
properties.

Table 11-8. Method/Property/Event/Field Properties

Property Description

Access The scope of the item (does not apply to destructors)

Accessors Indicates if the property is read, write, or read-write (applies only to
properties)

Constant Kind Allows you to specify that a field is a constant or read-only field (applies
only to fields)

Custom Attributes Any custom attributes that apply to the item

File Name Read-only attribute containing the name of the file in which the item is
located

Inheritance Modifier Indicates how (if) this class can be inherited: None, Abstract
(MustInherit in VB), Sealed (NotInheritable in VB), and Static
(no equivalent in VB) (does not apply to constructors)

Name The name of this item

New Indicates if this item overrides or shadows an item with the same name
or signature in the base class (applies only to C#) (applies only to
properties or methods)

Property Signature Read-only attribute showing the signature of the property (applies only
to properties)

Remarks General comments about the item

Returns Description of the value returned (applies only to methods)

Static (Shared in VB) Indicates if the item is static

Summary A summary of the item’s purpose/functionality

Type The type the item deals with—the type of the value or the returned
value type

Value The definition of the value supplied to the property (applies only to
properties)

Working with Interfaces
While an interface supports essentially all of the same things that a class supports, there are a
couple of differences. First, interface methods can only be public—otherwise, why have an
interface? And second, there is no implementation in an interface—it is just a set of method
signatures. Aside from these two differences, interfaces behave the same as classes in the
Class Designer.

CHAPTER 11 ■ CLASS DESIGNER 327

4606CH11.qxd 4/20/06 3:25 PM Page 327

Refactoring Interfaces
Refactoring is a fancy term for reorganizing code to make improvements in the architecture of
an application. In some cases, it refers to going back and altering code to make it more effi-
cient, but for the purposes of the Class Designer, the first definition applies. (Refactoring is
available from a variety of locations, not just the Class Designer.)

■Note Refactoring is available only in C#. However, a VB Powertoy is available from www.gotdotnet.com,
which provides roughly the same functionality.

To demonstrate how this works, you will extract all of the methods in the Service class
in order to create an interface (the interface will not affect the application in any way; it is for
demonstration purposes only). To refactor the Service class and create an interface, switch to
the designer view (double-click the diagram in the Solution Explorer) and follow these steps:

1. Right-click the Service class, and select Refactor ➤ Extract Interface. This will bring up
the Extract Interface dialog box, shown in Figure 11-9.

Figure 11-9. The Extract Interface dialog box

2. Name the interface ITaskService and click Select All to include all of the methods as
part of the interface. Then click OK.

Extracting the interface does several things:

• Copies the methods to a new interface called ITaskService

• Adds a new code file to the project with the same name as the interface

• Implements the interface on the Service class (represented as a lollipop attached to the
Service class)

CHAPTER 11 ■ CLASS DESIGNER328

4606CH11.qxd 4/20/06 3:25 PM Page 328

It will not do the following:

• Copy over the XML comments.

• Enclose the ITaskService methods in the Service class in a region.

• Add the ITaskService interface to the Class Designer.

Displaying Interfaces
On the designer, an interface can be represented in a couple of different ways. As you saw
when you refactored the ITaskService methods, an interface can be represented as a lollipop
attached to the class that implements the interface. When the interface is displayed as a lol-
lipop, you can drag it around the outside the class that implements it to any position you
want.

You can display an interface on the design surface just as you would any other type of
object. To see the refactored ITaskService interface, right-click the ITaskService lollipop
attached to the Service class and select Show Interface, or double-click the ITaskService text.
You can then expand the interface implemented by the class by right-clicking the interface
icon and selecting Expand. Figure 11-10 shows the expanded ITaskService interface. To
collapse the interface display to just the lollipop, right-click and select Collapse.

Figure 11-10. The ITaskService interface

CHAPTER 11 ■ CLASS DESIGNER 329

4606CH11.qxd 4/20/06 3:25 PM Page 329

Deleting Interfaces
You can delete an interface from a class by selecting the interface name and pressing Delete.
While the class will no longer implement the interface, the methods are not deleted; they are
just no longer accessible via the interface definition. To demonstrate how this works, delete
the ITaskService interface from the Service class. You’ll see that nothing else is deleted. To
reimplement an interface, undo the deletion.

Implementing the Interface
Right-clicking the ITaskService lollipop attached to the Service class gives you two different
options: implement the ITaskService interface implicitly or explicitly. Selecting Implicitly (the
default) will not make any change to the methods of the implemented interface. Electing to
implement the interface explicitly will cause the fully qualified name of the method to be used
(while this is an option, it is not recommended).

Showing Object Relationships
With the Class Designer, you can show inheritance and association relationships. Typically,
you would do this to identify relationships between classes so that they are explicitly
understood.

Displaying Inheritance
Object inheritance is the “classic” relationship shown in diagrams, and the Class Designer will
show this automatically between a base class and a derived class. You can see this relationship
between the WebService class and the Service class you created. You can create an inheritance
structure manually by clicking the Inheritance tool in the toolbox, selecting the class that you
want to subclass, and then selecting the superclass.

You can delete the relationship by deleting the connecting line, or you can hide the inher-
itance line to help improve the readability of a complicated diagram. Both operations are
available by right-clicking the inheritance line.

If you have a generic base class and a superclass of this class, the inheritance Properties
window allows you to edit the type arguments that are then displayed in the subclass. To see
an example of this, you can create a generic class with the method signature of public class
Class1<T> (in VB, Public Class Class1(of T)), and then have another class inherit from it.
Right-clicking the inheritance line will allow you to manipulate the generic type arguments.

Displaying Associations
You can show fields and properties as associations. Associations can simply be connections
between a field or property and a class or a collection association for an array.

CHAPTER 11 ■ CLASS DESIGNER330

4606CH11.qxd 4/20/06 3:25 PM Page 330

For this section, you will add a field to the Service class for demonstration purposes only.
You can delete it at the end of the chapter (again, it does not affect the application in any way).

1. In the Service class, add a field with the name _task of type Task with a private
modifier.

2. Right-click the _task field in the Service class (in the class diagram) and select Show As
Association. The results are shown in Figure 11-11. This is an alternate way to represent
the _task field on the class diagram; it does not alter your class in any way.

Figure 11-11. The _task field shown as an association

■Note Typically, you will have many connections between items in your diagram and it is impractical to
show all of them with an association line. It is best to limit how many of the fields and properties you show
like this.

3. To convert _task back to the standard type of design, right-click the connection line
and select Show As Field.

4. In either the Class Details window or the code, change the _task field to an array of
tasks:

private Task[] _tasks;

5. In the diagram, right-click the _task field again. This time, select the Show As Collec-
tion Association option. The results are shown in Figure 11-12. The _task field is now
shown as an array with a double arrow. This is yet another way of representing a rela-
tionship between two types.

CHAPTER 11 ■ CLASS DESIGNER 331

4606CH11.qxd 4/20/06 3:25 PM Page 331

Figure 11-12. The _task field shown as a collection association

Using the Association Tool
The Association tool in the Toolbox facilitates the creation of properties that are properties of
a given type. For example, if you clicked the Association tool, then the Service class, and then
the Task class, the results would be as shown in Figure 11-13. Behind the scenes, a read-write
property called Task of type Task was created, with no implementation in either the get or set
method (in the next section, you will see how to automate this by refactoring the _task field).
This relationship can be converted into a property of the Service class (on the diagram) by
right-clicking the association and selecting Show As Property. (Delete the Task property if you
added it to experiment.)

Figure 11-13. The Task property

■Note Unfortunately, in the first release of VSTS, you cannot draw association lines from one type to
another that do not have a semantic meaning. Microsoft knows that this is a feature developers and archi-
tects want, and realizes that the purpose of the designer is to visualize object relationships, so it is a good
bet that you can look forward to this feature in the next release.

CHAPTER 11 ■ CLASS DESIGNER332

4606CH11.qxd 4/20/06 3:25 PM Page 332

Adding Fields and Properties
Properties and fields share similar functionality in the Class Designer. The main difference is
that properties have a read-write property. One other difference is the refactoring options.
Take a common example: You add a bunch of private fields for which you need to create prop-
erties. It is something that we all have to do and we all hate. Microsoft has reduced this effort
to zero by allowing you to refactor fields into properties (this is available only in C#).

■Tip Many free add-ons duplicate the refactoring options in VB. The VSTS team has noted that this is one
of the single most requested features for VB, so it will probably show up in the next version. Until then, any
of the add-ons that are available will provide good refactoring support. A web search will return a list of
available products (both free and commercial).

Let’s see how this works.

1. Select the _task field in the Service class, right-click it, and select Refactor ➤ Encapsu-
late Field. This will display the Encapsulate Field dialog box, shown in Figure 11-14.
Table 11-9 describes all of the fields in the Encapsulate Field dialog box.

Figure 11-14. The Encapsulate Field dialog box

2. Select the Preview Reference Changes check box and click OK. This displays the dialog
box shown in Figure 11-15.

CHAPTER 11 ■ CLASS DESIGNER 333

4606CH11.qxd 4/20/06 3:25 PM Page 333

Figure 11-15. The Preview Reference Changes dialog box

3. Select Apply. This generates the following code.

C# (Only)
public Task TaskItem
{

get { return _task; }
set { _task = value; }

}

As you can see, this will be a tremendous time-saver for developers in that they need to
code only the fields that persist the data.

■Note The preview screen displays the signature of the new item as it will be seen by other objects and
does not necessarily represent the actual format of the final generated code.

CHAPTER 11 ■ CLASS DESIGNER334

4606CH11.qxd 4/20/06 3:25 PM Page 334

Table 11-9. Encapsulate Field Dialog Box Options

Option Definition

Field name The name of the field to be encapsulated as a property

Property name The name of the property that will encapsulate the field

Update references Updates code external to the class that references the field and
switches it to use the property

Preview reference changes Shows a dialog box that previews the code changes (see
Figure 11-15)

Search in comments Performs a search and replace for the field name in comments as
well (useful for fixing comments in external classes where the
references will be updated)

Search in strings Performs a search and replace in strings used in code for the
field name

Adding Comments
The Class Designer also allows you to add comments. To insert a comment, simply drag-and-
drop it from the Toolbox to the designer and enter a note, as shown in Figure 11-16.

Figure 11-16. A Class Designer comment

You can add comments anywhere on the diagram, but unfortunately, you cannot link a
note to a particular object.

CHAPTER 11 ■ CLASS DESIGNER 335

4606CH11.qxd 4/20/06 3:25 PM Page 335

Looking Under the Hood
This section explains how the Class Designer works behind the scenes. To see how the
Class Designer generated your diagram, close the Class Designer window, right-click
ClassDiagram1.cd, select Open With, and then select the XML Editor. Figure 11-17 shows
the XML for the class diagram you created in this chapter. The header information is the
standard XML header. Each node of the XML schema is described in Table 11-10.

Figure 11-17. XML view of the Class Designer

■Note All of the XML generated by Microsoft for use throughout Visual Studio conforms to the XML
standard.

Table 11-10. Class Designer Schema Description

Node Description

Font The font family and size used on the Class Designer

Class The fully qualified name of the class (this node will be the object type—note
Struct for the Task object)

Position The X and Y position and the width of the class

TypeIdentifier Contains the specification for the class type

FileName The name of the file in which the type is contained

HashCode A hash of all of the properties, methods, fields, and events of the type

CHAPTER 11 ■ CLASS DESIGNER336

4606CH11.qxd 4/20/06 3:25 PM Page 336

■Caution Microsoft is not, at this time, publishing an “official” XML schema for the Class Designer. Any
code that you create to work directly against the schema (there is no good reason for doing this) is created
at your own risk because it may not be compatible with the next version.

When we first looked at this, we had only two questions: How does the designer know
what is contained within the class if it is not held in the XML, and what the heck is the
HashCode for? It turns out that both are excellent questions, although the answer to the first
question was obvious after it was explained to us.

All of the information displayed on the design surface is gathered from the class itself. It is
not stored as metadata specifically for the Class Designer. This is how Microsoft ensures that
the data displayed on the designer is identical to the information in the code.

The HashCode’s purpose turns out to be a lot more complicated. As noted in Table 11-10,
the HashCode is a hash of everything found in the type. But what is it used for? It is used to
match the object on the designer to the type in the code. It allows the Class Designer to know
what object to find and interrogate in order to populate the class details. The explanation
makes sense, but then you may have yet another question: What if you change the name of the
file that your type is stored in, change the name of the type, change the method names, add or
a delete a few methods or properties, and so on? Another good question. The Class Designer
uses a fuzzy logic search algorithm to try to match up the type of the Class Designer with the
type in your solution. If it cannot do this, the type shape will still appear in the designer,
though it will be red. You will need to manually attach it to the correct type in the solution or
delete it and readd it. To readd the type, just drag-and-drop it from the Solution Explorer or
Class View window.

■Note It is unfortunate to note that for this release of VSTS, the Class Designer is not designed to be
extensible. We hope this will be a feature added in the next version.

Summary
This chapter has presented an in-depth view of the Class Designer. Throughout the chapter,
you have seen how each of the features of the Class Designer supports the four user scenarios
that were the guiding factors in the design of the Class Designer. The Class Designer gives you
the opportunity to reverse-engineer existing code and visualize existing code in order to better
understand it. It allows you to refactor code through the designer without diving into the code
itself. The key feature of the Class Designer is that it ensures that your object model and docu-
mentation remain accurate and helpful from the first day of the application to the last day of
an application, and into the maintenance cycle.

CHAPTER 11 ■ CLASS DESIGNER 337

4606CH11.qxd 4/20/06 3:25 PM Page 337

4606CH11.qxd 4/20/06 3:25 PM Page 338

Unit Testing and Code
Coverage

Unit testing is a repeatable, automated process of testing specific methods in code to make
sure that they do what they are supposed to do. By testing the smallest unit of code for defects,
you can be sure that when you are finished, you have a stable base on which to build. The
automated nature of unit tests also allows for regression testing, which is the process of retest-
ing previously tested units of code after a modification is made.

Unit testing is an area of testing that for many years was performed in a nonrepeatable
and haphazard way. Typically, developers would, in addition to having to write the applica-
tion, also need to write a test harness to run tests. With the introduction of tools such as JUnit
for Java and NUnit for .NET, unit testing has become much easier.

This chapter explains how to perform unit tests with VSTS, ranging from simple one-
method tests to data-driven tests based on data stored in a testing database. In addition, we
will look at code coverage results from the unit tests. Code coverage describes the amount of
code covered by the unit tests (including manual unit tests).

We’ve included this chapter in the Developers section of this book because developers are
responsible for their code. While testers also may create unit tests, they generally test larger
pieces of functionality. However, some items covered in this chapter relate to all types of test-
ing, so it is worthwhile for testers to read through this chapter as well.

Planning Unit Tests
Before you can start performing unit tests, you need a plan. It is not enough to just sit down
and write some unit tests without having thought through all of the possible scenarios (or at
least all of the common scenarios). You need to start by drawing up a set of unit testing rules
that can be used by everyone on your team.

Take a look at this sample method:

C#
//Method returns true if the person is over age 18, otherwise false
public bool AgeCheck(DateTime dayOfBirth)
{
//Some processing code here…
}
VB

339

C H A P T E R 1 2

4606CH12.qxd 4/20/06 3:27 PM Page 339

'Method returns true if the person is over age 18, otherwise false
Public Function AgeCheck(dob as Date) as Boolean

'Some processing code here…
End Function

The premise of this code is fairly straightforward. It accepts a date of birth and validates
the age. At first glance, you may think that you simply need to run a test that provides a date of
birth prior to 18 years ago and a date of birth later than 18 years ago. And that works great for
80% of the dates that someone is likely to provide, but that only scratches the surface of what
needs to be tested here. The following are some of the tests you may need to run for the
AgeCheck method:

• Check a date from exactly 18 years ago to the day.

• Check a date from further back in time than 18 years.

• Check a date from fewer than 18 years ago.

• Check for a null value.

• Check for the results based on the very minimum date that can be entered.

• Check for the results based on the very maximum date that can be entered.

• Check for an invalid date format being passed to the method.

• Check two year dates (such as 05/05/49) to determine what century the two-year
format is being treated as.

• Check the time (if that matters) of the date.

• Check for graceful failure.

• If the age to check against is provided via a configuration file, check that the correct age
to check against is being set/read.

As you can see, based on just a simple method declaration, you can determine at least 5
and maybe as many as 11 valid unit tests (not all tests may be required). Dates are, in general,
one of the most difficult things to handle in development (right behind strings). Therefore,
you will almost always have more rules for date testing than any other type of tests.

Here are the basic unit testing areas:

Boundary values: Test the minimum and maximum values allowed for a given parameter.
An example here is when dealing with strings. What happens if you are passed an empty
string? Is it valid? On the other hand, what if someone passes a string value of 100,000
characters and you try to convert the length of the string to a short?

Equality: Test a value that you are looking for. In the case of the age check example used
here, what if the date passed also includes the time? An equality check will always fail in
that case, but in every other case, the results would come out correctly.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE340

4606CH12.qxd 4/20/06 3:27 PM Page 340

Format: Never trust data passed to your application. This is particularly applicable to any
boundary methods, where you can get malicious hackers looking to crack your system.
But poorly formatted data from any source can cause problems if you do not check it.

Culture: Various tests need to be performed to ensure that cultural information is taken
into account. In general, you can skip these tests if the application is written for a single
culture only (although, even this is not a good indicator, because you can write a test for a
U.S. English system but have it installed by someone in the U.K.). Otherwise, string, date,
currency, and other types of values that can be localized should always be checked (for
example, if you are expecting a date in the U.S. format but get it in the European format,
then some values will work, but some will not). An example is the date 02/01/2000. In the
U.S. format, this is February 1, 2000; in the European format, it is January 2, 2000. While
this test would pass (most of the time), changing the U.S. format to 01/23/2000 would fail
in the European format.

Exception paths: Make sure that the application handles exceptions—both expected and
unexpected—in the correct manner and in a secure fashion. Frequently, developers test
the normal path and forget to test the exception path. VSTS includes a special process for
testing the exception paths. Additionally, this will test how data is logged during a failure.

■Tip Not everything needs to be tested. In most cases, you want to test the most used paths of the appli-
cation for the most common scenarios. An example of wasted time would be writing tests for simple
property assignments. While this may be needed in specific situations, you cannot possibly write every
test for every scenario—it takes too long even with VSTS!

These five areas cover the majority of the situations you will run into when performing
unit tests. Any plan should take into account tests that cover these areas of potential failure. Of
course, this is by no means a comprehensive set of rules for unit testing. You will undoubtedly
discover others related to your specific applications.

■Note The unit testing areas listed here apply to the .NET platform. We have not included basic testing
rules regarding languages such as C and unmanaged C++. Tools like PREfast are designed to catch those
areas of potential failure that are outside the realm of unit testing. PREfast (discussed in Chapter 13) catches
typical unmanaged code errors, such as buffer overflow errors.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 341

4606CH12.qxd 4/20/06 3:27 PM Page 341

TEST-DRIVEN DEVELOPMENT

In the past several years, Agile Development methodologies have risen in popularity. Extreme Programming
(XP) is probably the best known Agile Development methodology, and a core tenet of XP is that unit tests are
written before the code is written. One of the key benefits of writing unit tests first is that you know, without a
doubt, when a piece of functionality has been completed, because that’s when the test succeeds. Because XP
is a short-release cycle methodology, coding must often be done as quickly and as accurately as possible.
The practice of writing unit tests first supports this goal.

The process of creating tests first (at the construction stage) to validate your application is called test-
driven development. The methodology of test-driven development follows this path: Write the unit test, write
enough code for the test to succeed, and then refactor the code to make it more efficient. Another way of
saying this in the test-driven development terminology is “red/green/refactor.” Red is the test fail stage,
green is the test pass stage, and refactoring is altering the code to make it more efficient. While VSTS does
not, per se, support this specific process, since it is a process and not a technology, you can use VSTS to
support the test-driven development methodology.

The problem with test-driven development is that it still relies on developers to plan the unit tests, write
them, and execute them. While tools like JUnit, NUnit, and VSTS make this process a lot easier, it is still a
process that needs to be followed by all. Most developers (and we are speaking from experience here) can-
not stand to do testing. VSTS helps eliminate that problem by providing policies, which you can enable to say
that unit tests must have been performed before code can be checked in (refer to Chapter 3).

Then there is the problem of how to come up with a comprehensive set of criteria on which the individ-
ual unit tests should be based. The list of tests must be developed by the developer in conjunction with a
functional or business analyst. The analyst alone will not supply you with all of the possible combinations of
issues that could arise, simply because analysts do not think like developers. Likewise, a developer cannot
necessarily come up with all of the valid tests because some of those tests may be predicated on business
situations. In the list of unit tests shown earlier for the sample AgeCheck method, an analyst might supply
you with the first three items in the list. All of the other tests in the list are generally language-specific tests
and input validation tests, so they are not tests that a business user would consider.

You can find a lot more information about test-driven development on the Web. An excellent book on
unit testing is Test Driven Development: By Example by Kent Beck (Addison-Wesley, 2002).

Creating Unit Tests
Now that you have seen some of the thought that goes into planning for unit testing, it is time
to look at how to create unit tests. In this section, you will learn how to generate unit tests.

■Note For the examples in this chapter, use the downloadable code available from the Source Code
section of the Apress website (www.apress.com).

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE342

4606CH12.qxd 4/20/06 3:27 PM Page 342

To create your first test, follow these steps:

1. Open the Service class.

2. Right-click within the Service class (but not within a specific method) and select Cre-
ate Tests.

3. In the Generate Unit Tests dialog box, ensure that the AddUser method is checked and
that the output project is set as Create a New Visual [Language Choice] Test Project, as
shown in Figure 12-1.

Figure 12-1. The Generate Unit Tests dialog box

4. Optionally, click the Settings button to configure how the tests are generated. This dis-
plays the dialog box shown in Figure 12-2. Table 12-1 describes the settings available in
this dialog box. For this example, we will use the defaults, so you don’t need to change
any of these settings. Click Cancel to close the dialog box.

5. Click OK in the Generate Unit Tests dialog box.

6. Enter the project name as EffortTrackingServiceTests, and then click OK. A new proj-
ect called EffortTrackingServiceTests will be added to the EffortTracking solution.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 343

4606CH12.qxd 4/20/06 3:27 PM Page 343

Figure 12-2. The Test Generation Settings dialog box

■Tip While you do not have to add tests to specific testing projects, it is a good idea. This way, you can
keep your tests separate from the code that you are testing, and more important, separate from those you
are releasing.

Table 12-1. Test Code Generation Configuration Options

Item Description

File Name The name of the file in which the tests will be created. The
[File] in front of the name indicates that the generated test
file will be prefixed with the name of the file in which the
class you are testing resides.

Class Name The name of the class given to the test class. The [Class] in
front of the name indicates that the generated class will be
prefixed with the name of the class being tested.

Method Name The name of the generated test method. The [Method] in
front of the name indicates that the generated method will
be prefixed with the name of the method that you are
testing.

Mark all test results Inconclusive The Assert statement will identify this method as being
by default inconclusive. Checking this adds the following line to the

end of each test method: Assert.Inconclusive("Verify the
correctness of this test method.").

Enable generation warnings Reports any warnings during the test code generation
process.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE344

4606CH12.qxd 4/20/06 3:27 PM Page 344

Item Description

Globally qualify all types Adds the root namespace to all type declarations. This is
important if you have classes with the same names in
multiple namespaces. If you do not select this, the compiler
makes a best guess, which frequently can be wrong.

Generate tests for items Creates additional tests for the same method by appending
that already have tests an incremented number to the end of the test method name.

If you don’t select it, a test method will not be generated.

Enable doc comments Generates XML comments with each test. Turning this off
simply removes the comments.

You can also start the Unit Test Wizard from the main menu. Just select Test ➤ New Test to
open the dialog box shown in Figure 12-3. Select Unit Test Wizard and click OK. This will take
you to the dialog box shown in Figure 12-1.

Figure 12-3. The Add New Test dialog box

As you can see, the Add New Text dialog box offers several other test types. Selecting
the Unit Test icon from the Add New Test dialog box will create a blank testing class in the test
project of your choice. The Manual Test and Ordered Test types are covered later in this chap-
ter. The other test types are covered in Chapters 15 and 16.

■Note Generic Tests are not covered in this book. The reason for this is that the Generic test is a wrapper
for use with simple, existing test tools. More information on this “test type” can be found in the MSDN
documentation.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 345

4606CH12.qxd 4/20/06 3:27 PM Page 345

Understanding Unit Tests
VSTS creates several files in your testing solution. In reality, VSTS can only do so much work
for you. It generates the skeleton, which you will need to complete. Here, we’ll look at the key
parts of the unit test. In the “Completing the Test Methods” section later in this chapter, you’ll
see how to add the other necessary pieces.

The primary file in the testing solution is the ServiceTest file. (The naming convention
for this file is customizable, but in general it is best to leave it in the ClassNameTest form.) First,
we’ll look at a method in this file, and then we’ll look at the test class.

Exploring a Test Method
Open the ServiceTest file and scroll down to the AddUserTest method, which is shown in
Listing 12-1.

Listing 12-1. The AddUserTest Method

C#
[TestMethod()]
public void AddUserTest()
{

Service target = new Service();
string userName = null; // TODO: Initialize to an appropriate value
string password = null; // TODO: Initialize to an appropriate value
int expected = 0;
int actual;
actual = target.AddUser(userName, password);
Assert.AreEqual(expected, actual,
"EffortTrackingServiceTests.localhost.Service.AddUser did "
+ "not return the expected value.");
Assert.Inconclusive("Verify the correctness of this test method.");

}
VB
<TestMethod()>
Public Sub AddUserTest()

Dim target As Service = new Service()
Dim userName As String = nothing ' TODO: Initialize to an appropriate value
Dim password As String = nothing ' TODO: Initialize to an appropriate value
Dim expected As Integer
Dim actual as Integer
Actual = target.AddUser(userName, password)
Assert.AreEqual(expected, actual, _
"EffortTrackingServiceTests.localhost.Service.AddUser did " _
& "not return the expected value.")
Assert.Inconclusive("Verify the correctness of this test method.")

End Sub

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE346

4606CH12.qxd 4/20/06 3:27 PM Page 346

The first line is the TestMethod attribute, which denotes that this is a test method. This
allows this method to be displayed in the various test management dialog boxes. The
TestMethod attribute takes no arguments; it is simply an identifier.

Each test method is created based on the settings in the Test Generation Settings dialog
box (Figure 12-2). The default setting creates the test method in the format of the name of the
method being tested followed by Test.

■Tip Because you can have more than one test method that targets a given application method, you want
to make sure you develop a standard naming convention. A good naming convention is the method being
tested, plus the type of test, followed by Test. For example, if you were testing a null username value in the
AddUser tests, you might name the test AddUserNullUsernameTest.

Each test method that is set up for you will provide a variable for each of the parameters
requested by the method being tested and an instantiated reference to the object being
tested—in this case, a web service. The call to the method being tested is created for you. All
you need to do is initialize the variables for the call to work (unless you are testing null values).

Notice the last two lines of the method, which contain the Assert statements. These are
the most important statements in the method because they report the status to the testing
infrastructure to enable the infrastructure to mark the test as a success or failure. If the Assert
statement is true, then no exceptions are thrown and the method is marked as “passed.” If the
Assert statement is false, an exception is thrown and the test is marked as “failed.”

In the case of a generated test where the method being tested returns a value, two calls
to Assert are made. The first one is the standard comparison statement, which will throw an
exception if the values are not equal. The second statement is placed in all generated tests
to indicate that no one has yet looked at the method and initialized the values used in the
method call or the expected value.

■Caution Never catch an AssertFailedException, as this exception is used by the testing infrastruc-
ture to mark a test as failed.

When generating a unit test for a method that does not return a value, the Assert state-
ment reads, “A method that does not return a value cannot be verified.” For these types of
methods, a different process must be followed in order to verify the outcome of a test,
depending on the purpose of the method being tested. For methods that write to a database,
for example, you could write a statement that reads from the database to verify that the
method succeeded.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 347

4606CH12.qxd 4/20/06 3:27 PM Page 347

Exploring a Test Class
The ServiceTest class is a test class because it is tagged with the TestClass attribute, which
makes the ServiceTest class visible in the various test management windows. The TestClass
attribute takes no arguments. Several attributes are provided for you automatically upon the
creation of a test class.

The method tagged with the TestInitialize attribute will be called before each and every
run of a test in the given test class. This is important to note because it limits when and how
you should use this method. The TestCleanup attribute is used to denote the method that will
be called after each and every test is run in a given class. For example, suppose you are run-
ning a test that changes or adds data, but you need to run the test several times to test various
aspects of a change. You could use a method tagged with the TestInitialize attribute to start
a transaction that can be rolled back in the TestCleanup method, or you might perform some
other action to reset test conditions for the next run.

■Caution If more than one method is tagged with the TestInitialize attribute, an exception will be
thrown.

The TestContext class is used in data-driven tests and to gather information for a specific
test that is currently running. You will see how this works in the “Data-Driven Testing” section
later in this chapter.

Other attributes are listed in Table 12-2. Several of these attributes will be demonstrated
later in this chapter.

Table 12-2. Additional Testing Attributes

Attribute Description

AssemblyInitialize Runs before any other classes in an assembly are
run.

AssemblyCleanup Runs after all other classes in an assembly are run.

ClassInitialize Runs before any tests in a class are run. See the
“Preparing the Production Database” section later in
this chapter.

ClassCleanup Runs after all tests in a class are run. See the
“Preparing the Production Database” section later in
this chapter.

DataSourceAttribute Specifies the data source for a data-driven test. See
the “Data-Driven Testing” section later in the
chapter.

DeploymentItemAttribute Specifies specific items (typically files), which must
be deployed to the test directory (which is different
from the debug folder) before a test is run.

DescriptionAttribute Describes the test in the test management screens.

PriorityAttribute Sets the priority of the test. This is more of a
notational attribute as it has no actual effect on the
order in which tests are run.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE348

4606CH12.qxd 4/20/06 3:27 PM Page 348

Attribute Description

OwnerAttribute Indicates who owns the test.

TestPropertyAttribute Allows you to specify custom properties for a test.
See the “Adding Test Properties” section later in this
chapter.

AspNetDevelopmentServerAttribute Specifies that the given test is hosted by either the
ASP.NET Development Server or IIS if this is an
ASP.NET test.

UrlToTestAttribute The URL that contains the website that will be
tested.

AspNetDevelopmentServerHostAttribute Provides various settings to point the test to the
correct web server host.

Managing Unit Tests
VSTS gives developers and testers the ability to manage tests in many different ways. It pro-
vides ways to view both high-level and detailed information. You can view test results or code
coverage results from within the IDE, and test management is intuitive, so you do not need to
learn how to use a new and complex tool.

The two main starting places for test management are the Test View window and the Test
Manager window.

Using the Test View Window
To open the Test View window, select Test ➤ View and Author Tests from the main menu.

Figure 12-4. The Test View window

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 349

4606CH12.qxd 4/20/06 3:27 PM Page 349

As shown in Figure 12-4, the Test View window displays the list of tests and the type of
test. The options at the top of the window allow you to run the tests, edit the test configura-
tion, and apply a filter in order to be able to find specific tests. You can start a test run in debug
mode. This allows you to run the test and debug the unit test code and the code in the method
being tested.

Double-clicking the test will open the code module where the test is contained. Right-
clicking a test will allow you to perform various actions such as running a specific test,
creating a new test, and viewing the properties of a test. The properties of the tests are
described in Table 12-3.

■Note Manual tests, such as manualtest1 in Figure 12-4, are treated somewhat differently in the IDE.
When you double-click a manual test, VSTS will open the manual test in a Word or another text editor, so it
can be edited. Manual tests are covered in the “Manual Testing” section later in this chapter.

Table 12-3. Test Properties

Property Description

Associated Work Items Work items associated with the specific test in the Team Foundation
work item database (applicable only if Team Explorer is installed)

Class Name The name of the class in which the test method resides

Data Access Method For use by data-driven testing; specifies sequential or random access

Data Connection String The connection string to the database providing the data to drive tests

Data Provider The database connection provider

Data Table Name The table from which the data to drive the test is pulled

Deployment Items List of all items to be deployed (see the DeploymentItemAttribute in
Table 12-2)

Description A description of the purpose of the test

Full Class Name The fully qualified name of the class

ID Unique test name

Iteration The iteration in the life cycle with which this test is associated

Namespace The namespace in which the test resides

Non-runnable Error

Owner The name of the individual who owns the test

Priority Indicates the importance of the test but has no effect on the order in
which the test is run

Project The project in which the test resides

Project Area The area (in the Team System methodology being used) where the test
resides (active only when using Team Explorer and when the test is
associated with a team project)

Project Relative Path The path to the file in which the test class resides relative to the project

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE350

4606CH12.qxd 4/20/06 3:27 PM Page 350

Property Description

Solution The solution in which the test resides

Test Enabled Indicates if the test will be executed during a test run

Test Name The name of the test

Test Storage The assembly that contains the compiled test

Test Type Unit or manual test

With the Test View window, you can look at, categorize, and view test properties. The Test
Manager window offers other options for managing your tests.

Using the Test Manager Window
The main window for managing tests is the Test Manager window, shown in Figure 12-5.

Figure 12-5. The Test Manager window

■Note The Test Manager window is available only in the Team Edition for Software Testers edition, not the
Developers edition. To manage tests in the Developers edition, you must use the Test View window.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 351

4606CH12.qxd 4/20/06 3:27 PM Page 351

As you can see, there are a few more options for managing and categorizing your tests in
this window than in the Test View window. You can view lists of tests, tests that are not in a list,
and all loaded tests. In addition, you can load additional tests that are not part of the current
solution by selecting the Load Tests into Test Manager option from the list of available tasks in
the lower-left side of the Test Manager window.

■Note To view the different tests in each grouping, just select the text in the tree view. Do not check the
box next to the test. Checking the box will mark the test as enabled for the next test run.

Creating Test Lists
Test lists allow you to organize tests into distinct groupings to make them easier to manage.
In the example you have been using so far, a logical breakdown might be to group the tests in
Tasks, Users, Build Verification, and Miscellaneous lists.

To create a new test list, click Organize Tests in the lower-left corner of the Test Manager
window. This will display the dialog box shown in Figure 12-6.

Figure 12-6. The Create New Test List dialog box

Enter the name and description for your new test list and select where you want it to show
up in the list of existing test lists (note that there is no existing hierarchy when you create your
first list).

■Note You can nest the lists as deep as you like, but in general, they should not be listed too deep. As a
best practice, do not nest tests any more than two deep to keep the test order and dependencies under-
standable and maintainable.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE352

4606CH12.qxd 4/20/06 3:27 PM Page 352

To organize the tests into the test lists, simply drag tests from the Tests Not in a List view
to the appropriate lists. A test can also be associated with more than one list. To do this, hold
down the Ctrl key and drag the test to the additional list. This will cause the test to be dis-
played twice in the full list of tests—once for each list it is in.

As you add items to the lists, they will disappear from the Tests Not in a List view. You can
select to view all the loaded tests to see all of your tests at once, or you can view a specific list
to see only the tests associated with that list.

■Tip In the Test Manager window, you can select the Add/Remove columns option and add the Test List
column, which will allow you to see which list each test is associated with when you have all of the loaded
tests displayed.

Adding Test Properties
The TestProperty attribute is a special attribute that allows you to define one or more addi-
tional properties for any specific test. The TestProperty attribute accepts a property name
and a description. This is useful as a way to further describe tests with information that is
displayed in the Properties window.

To see how this works, switch to the code view for the ServiceTest class and select the
ValidateUserTest method. Add the following attribute to the method:

C#
[TestProperty("My Property", "A new attribute")]
VB
<TestProperty("My Property", "A new attribute")>

Next, switch to the Test Manager window and select the ValidateUserTest. Right-click it
and select Properties. In the Properties window, you will see a new property called My Prop-
erty with the accompanying description. These properties are accessible from within the
tests through the use of reflection. See the MSDN TestPropertyAttribute topic for more
information.

Creating Ordered Tests
Another step you can take to manage your tests is to specify the order in which they run. For
example, you might be testing that a user can be added to the system, and then that this new
user can log on to the system successfully. This means that you need to execute the AddUser
method and then the ValidateUser method. If you execute the second test first, then both
methods will fail. To make sure the methods are executed in the correct order, you can create
an ordered test.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 353

4606CH12.qxd 4/20/06 3:27 PM Page 353

■Note It is considered a best practice to write tests that are independent of one another (again, the goal
of a unit test is to test the smallest unit of code available and not a whole chain of events if possible). To do
this, you can run scripts that set the database up before each test run. However, in real-world practice, cir-
cumstances may prevent this. In those cases, an ordered test run is the best solution to the problem.

To create an ordered test, follow these steps:

1. Select Test ➤ New Test from the main menu.

2. Select Ordered Test. Name it NewUserLogonTest, and make sure it is set to be added to
the EffortTrackingServiceTest project. Then click OK

3. In the Ordered Test window, shown in Figure 12-7, select AddUserTest and then
ValidateUserTest.

Figure 12-7. The Ordered Test window

4. Save your changes.

In the Test Manager window, you will now see an additional test called NewUserLogonTest.
Double-clicking this test will reopen the Ordered Test window. When you run this test, both
the AddUserTest and the ValidateUserTest will run in the correct order.

■Note While you can nest ordered tests inside each other (that is, create one ordered test and then a sec-
ond ordered test that contains one or more other ordered tests), a best practice is not to nest them any more
than two tests deep. This will help make it easier to determine which tests you are going to run and will keep
the interdependencies to a minimum.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE354

4606CH12.qxd 4/20/06 3:27 PM Page 354

Setting Up Tests
Up to now, you have seen how to create and manage tests. But you’re still not ready to run
your tests. Before you run a test, you should configure it so that it runs the way you want it to
run. You also need to complete the test methods so the tests run correctly. You need to go
through the setup process for each group of tests only once.

Configuring Test Runs
Under the Solution Items folder in your solution is a file called localtestrun.testrunconfig.
This file contains all of the test configuration information for your solution. Double-click this
file to open the dialog box shown in Figure 12-8.

■Tip Your solution can have multiple test run configuration files associated with it and you can specify, for
each test run, which configuration file will be used.

Figure 12-8. The Test Run Configuration dialog box

The Test Run Configuration dialog box allows you to configure properties that apply to
any tests associated with this test configuration. To associate a configuration file with a test
run, select Test ➤ Select Active Test Run Configuration from the main menu and choose the
appropriate configuration file.

The Test Run Configuration dialog box includes eight sections, which are described in the
following sections.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 355

4606CH12.qxd 4/20/06 3:27 PM Page 355

General
The General section allows you to specify a configuration name and optionally a configuration
description. The naming scheme section is used for the report of results for the given test run.
The default naming scheme uses the currently logged-on user logon name and the name of
the machine on which the tests are run, followed by the date and time of the test run. You can
also create a user-defined naming scheme and choose whether to append the date and time.

Controller and Agent
In the Controller and Agent section, you can specify whether to run the tests locally or on a
remote machine. Change this setting with care, however, because you cannot debug the test
code or the code being tested if you choose to run the test on a remote machine. Controllers
and agents are discussed in more detail in Chapter 16.

Code Coverage
Code coverage is an important companion to unit testing. For example, suppose you have an
application that is 1,000 lines long scattered in several classes, and it seems to work fine. Now
say that you run unit tests (which all pass) and look at the coverage results, and find that only
790 lines of code were actually run (also described as exercised) by your tests. This would
indicate that even though all of your unit tests passed, you are not testing everything! It may
indicate that you have 210 lines of code that cannot be reached by the current application
structure or that the unit tests are not complete. In some cases (especially in reference to
regression tests), the code may be “dead,” which is a situation that occurs when code is no
longer needed. In these cases, the code should be removed. Issues like these cannot be
discovered simply by unit testing alone.

In the Code Coverage section of the Test Run Configuration dialog box, you can specify
that you want to enable or disable code coverage statistics during a test run by selecting the
assemblies or web pages for which you want to enable the coverage. By default, all of the web
pages and assemblies that your current solution knows about are displayed. You can add other
assemblies to this list by clicking the Add Artifacts button and selecting the assemblies to
instrument.

■Caution When you select the Add Artifacts option, the resulting assemblies are copied and altered by
Visual Studio in order to insert the correct code to instrument them for this procedure.

When you select the option to use code coverage, you have two additional options:

• Instrument the Assembly in Place, which specifies that the assemblies are altered and
placed in the same deployment area as your project would normally place them. If the
assemblies are not instrumented in place, they are placed in a separate test directory,
which contains all of the binaries for the given test.

• Re-sign the Assembly, which allows Visual Studio to re-sign the assemblies after they
have been altered.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE356

4606CH12.qxd 4/20/06 3:27 PM Page 356

■Caution Code coverage and performance testing do not play well together. In general, if you have code
coverage enabled, your performance sessions will not run correctly.

Deployment
In order to isolate tests from any other environment, Visual Studio runs the test in a location
different from the one where the code is compiled. The Deployment section of the Test Run
Configuration dialog box allows you to specify where that code is copied (a local folder or a
remote folder). In addition, you can specify other files (such as database files, configuration
files, or graphics files that are not directly part of your project) or folders to be deployed to the
temporary testing folder.

Hosts
The Hosts section allows you to specify the host for your code. There are two options: Default
and ASP.NET. The Default setting is used for non-ASP.NET unit tests. There are no configura-
tion options for the Default setting.

Selecting ASP.NET allows you to specify some additional settings. You will need to supply
the URL to test, and then specify if the tests will be run in a virtual web server or an IIS web
server. If you specify a virtual web server (ASP.NET Development Server), you will need to pro-
vide the path to the website (the physical location of the files, not a URL) and the application
root name. For ASP.NET applications, if you select Default, everything will be configured
according to the project settings.

■Note The Hosts section properties correspond directly with the attributes listed in Table 12-2 earlier in
this chapter. Entering these properties causes the information to be added in the form of attributes to the
test class.

Setup and Cleanup Scripts
The Setup and Cleanup Scripts section allows you to specify a script that will run at the begin-
ning of an entire test run and another script that runs at the end. This is different from the
initialize and cleanup methods in an actual test class, because those are run at the beginning
and end of tests that reside in the given test class. The scripts themselves can be batch files,
executables, or virtually any other type of script that can be executed. Additionally, these
scripts are independent of the test itself so they will run before and after any test associated
with the configuration file.

Test Timeouts
The Test Timeouts section allows you to specify that a test will be either aborted after a given
period of time or marked as failed after a given period of time.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 357

4606CH12.qxd 4/20/06 3:27 PM Page 357

Web Test
The Web Test section allows you to specify properties specific to web applications, including
the following:

• The number of times a test is run

• Whether that run count is specified by you or by the data available in a database

• The type of web browser that the test requests will come from

• The connection speed of those requests

• Specify think times (delays between actions) for the requests to provide a more realistic
simulation of how your website will be used

■Caution The Web Test settings do not take the place of true load tests. See Chapter 16 for details about
performing load tests.

Completing the Test Methods
For your test to run correctly, you need to complete the test methods. Listing 12-2 shows the
changes necessary for the ValidateUserTest method. The database included with the code for
this chapter has two entries in the Owners table, TestUser1 and TestUser2, both with a pass-
word of password.

Listing 12-2. The Finished ValidateUserTest Method

C#
[TestMethod()]
public void ValidateUserTest()
{

Service target = new Service();
target.Credentials = System.Net.CredentialCache.DefaultCredentials;
string userName = "TestUser";
string password = "password";
PasswordType type = PasswordType.ClearText;

int expected = 1;
int actual;

actual = target.ValidateUser(userName, password, type);

Assert.AreEqual(expected, actual,
EffortTrackingServiceTests.localhost.Service.ValidateUser did not " +

"return the expected value.");
}

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE358

4606CH12.qxd 4/20/06 3:27 PM Page 358

VB
<TestMethod()>
Public Sub ValidateUserTest()

Dim target As Service = New Service()
target.Credentials = System.Net.CredentialCache.DefaultCredentials
Dim userName As String = "TestUser"
Dim password As String = "password"
Dim type As PasswordType = PasswordType.ClearText

Dim expected As Integer = 1
Dim actual As Integer

actual = target.ValidateUser(userName, password, type)

Assert.AreEqual(expected, actual, _
EffortTrackingServiceTests.localhost.Service.ValidateUser did not " _

& "return the expected value.")
End Sub

These changes must be made for each of the tests in your solution.

Setting Other Configuration Options
Visual Studio provides some default options for testing that you can change via the IDE. To
edit these values, select Tools ➤ Options from the main menu and expand the Test Tools node.
You’ll see three sections of options:

• The Default Dialog Box Action section allows you to specify the prompt settings that
Visual Studio will display to you based on certain actions.

• The Test Execution section allows you to specify the defaults for code coverage coloring,
in-place instrumentation, and the web root for all web-based tests.

• The Test Project section allows you to specify the default type of test project created
(the language that it is created will appear as the default in the Add New Test dialog box,
shown earlier in Figure 12-3) and the files that are automatically added to the new test
project.

Running Tests
You are finally ready to run a test. Go to the Test Manager window and check the
ValidateUserTest method and the DeleteTaskTest (without making any changes to the
DeleteTaskTest code). Make sure that you have selected the Code Coverage option in your
configuration file.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 359

4606CH12.qxd 4/20/06 3:27 PM Page 359

■Caution Because selecting the Code Coverage option modifies your assemblies, make sure that if the
class files are under configuration control, they are checked out. Otherwise, the debugging and instrumenta-
tion will not work!

From the Test Manager window, click the Run icon and select the Run Checked Tests
option. Alternatively, you can select the Debug Checked Tests option, which allows you to add
breakpoints in the test class. With breakpoints, you can trace through setup and teardown and
into the actual code being tested.

After you select to run a test, you will see the Test Results window, as shown in Figure 12-9.
While the test is running, you can pause or cancel the test run as a whole by clicking the Pause
or Stop button in the Test Results window.

Figure 12-9. The Test Results window

During the test run, the status of the test is shown on the yellow status bar of the Test
Results window, and each test is shown in the list below with its status (Pending, Running,
Passed, Aborted or Failed). If a test fails, the error message for the failure is also shown, as you
can see for the DeleteTaskTest in Figure 12-9. Also notice the Rerun link in the Test Results
window, which allows you to rerun tests that failed (note that the one failed test was left
checked).

■Note To delete a specific run (or all of the runs), right-click in the Test Results window and selecting
Delete Test Run.

Viewing the Test Run Information
Through the Test Results window, you can get more information about specific tests as well as
the test run as a whole. Let’s begin with the Test Run Failed link in the yellow bar of the Test
Results window. Clicking this link displays the window shown in Figure 12-10.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE360

4606CH12.qxd 4/20/06 3:27 PM Page 360

Figure 12-10. The test run details window

The test run details window contains general information about the test run, such as
the name of the test run, who submitted it, when it was completed (notice that the run took
28 seconds, which is derived by subtracting the timestamp at the end of the test run name by
the timestamp on the Completed On line), and which configuration was used for it. The run
summary contains either details of the test run (as shown in Figure 12-10) or exception infor-
mation (a complete stack trace) if there was a catastrophic failure with the tests and none of
the tests were able to run. Clicking the View Test Results link returns you to the Test Results
window.

Double-clicking any of the tests in the Test Results window displays the detailed test
results window, as shown in Figure 12-11.

Figure 12-11. Detailed test results window

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 361

4606CH12.qxd 4/20/06 3:27 PM Page 361

As you can see, the reason for this test failure is obvious and easily fixed. Because you did
not modify the DeleteTaskTest method to pass the credential cache to the web service, your
access was denied.

If you have a large number of tests that you need to examine, you can view the list based
on your task list entries, as shown in Figure 12-12. This makes the list of tests easier to manage.
To do this, select the second icon from the left at the top of the Test Results window.

Figure 12-12. Test Results displayed by result list

From the Test Results window, you can also export the test results to a test results file
(with a .trx extension) for later review. Another option is to import previously saved test
results for a nicely formatted view in the Test Results window.

Viewing Code Coverage Results
To view your code coverage results, click the Code Coverage Results icon on the far right of the
Test Results window toolbar or select Test ➤ Measure Test Effectiveness from the main menu.
The Code Coverage Results window is shown in Figure 12-13.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE362

Figure 12-13. The Code Coverage Results window

Earlier in the chapter, we mentioned that having test results without knowing how much
code was exercised (that is, how much code actually ran) is useless. For example, with the
ValidateUser method, you might assume, based on the test results, that this method works

4606CH12.qxd 4/20/06 3:27 PM Page 362

fine and that there is nothing more to test. But looking at the code coverage, you can see that
this is not true at all. Table 12-4 contains a complete list of the code coverage statistics for the
ValidateUser method.

Table 12-4. Code Coverage Statistics for the ValidateUser Method

Item Value

Not Covered (Blocks) 3

Not Covered (% Blocks) 14.29%

Covered (Blocks) 18

Covered (% Blocks) 85.71%

Not Covered (Lines) 2

Not Covered (% Lines) 11.76%

Covered (Lines) 14

Covered (% Lines) 82.35%

Partially Covered (Lines) 1

Partially Covered (% Lines) 5.88%

The numbers themselves may be somewhat confusing, because they indicate how many
lines of code were covered but not which lines of code were covered. But the VSTS testing
tools allow you to put it in perspective by graphically showing the code coverage directly over
the code, as shown in Figure 12-14. To see this display, in the Code Coverage Results window,
double-click the ValidateUser method line or right-click the ValidateUser result and select
Go to Source Code.

Figure 12-14. The ValidateUser method code coverage display

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 363

4606CH12.qxd 4/20/06 3:27 PM Page 363

In the graphic display, the green lines were executed, the blue lines were partially exe-
cuted, and the red lines were not executed at all. The method signature is not covered because
it is not an executable line of code and so is not included in the code coverage statistics.

■Note For VB developers, the partially executed line is a conditional if statement, which is almost identi-
cal to the iif statement. In this case, the result was not null, so only the first part of the conditional
statement ran. The last part (0) did not run.

Now the numbers in Table 12-4 should make more sense. The lines indicated by the Not
Covered (Blocks) number refer to the closing brace of the if block, the else line, and the clos-
ing brace of the else block. You might think that because the first part of the if block executed
that the closing bracket was executed, but you will notice that the return statement occurs
above this brace. Also note that the method’s closing brace was executed because the return
statement caused a jump to the end of the method (in VB, the End Function would be high-
lighted).

■Note Another item you might notice is that in VB there are no braces in an if block. Therefore, the per-
centage of code coverage, and indeed even the number of lines executed, would be different.

Because the password type was Clear, the else statement was never evaluated. You
might be wondering why it was not marked as a line not tested. The reason is that, as with the
method signature, this line of code is not executable. One big issue here is that the closing
brace can never be evaluated because it is unreachable in code, since there is a throw state-
ment immediately above it.

■Tip You can configure the colors in which the code coverage is rendered. To change the colors, select
Tools ➤ Options from the main menu, expand the Environment node, and select Fonts and Colors. The
values for code coverage are Coverage Not Touched Area, Coverage Partially Touched Area, and Coverage
Touched Area.

Testing for Exceptions
One of the tests that you still need to perform is the test that passes the password type as
encrypted. This should trigger an application exception. If the exception is triggered, you
know the test passed. However, if you use the standard test method with no modifications,
any time your method throws an exception, the test will immediately fail. Any method that
throws an exception that you need to test for must be tested with a separate method.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE364

4606CH12.qxd 4/20/06 3:27 PM Page 364

■Tip While testing for the success path is always a good idea, because you want to know if your code
actually works, an exception path is just as valid a path. Too often, the issues that cause exceptions are not
tested for at all and when they do occur, the code cannot handle them.

To demonstrate how this works, add the method shown in Listing 12-3 to the ServiceTest
class.

Listing 12-3. The Exception Test for ValidateUser

C#
/// <summary>
///An exception test case for ValidateUser (string, string, PasswordType)
///</summary>
[TestMethod()]
[ExpectedException(typeof(System.Web.Services.Protocols.SoapException),

+ "An encrypted password type was allowed which is not supported.")]
public void ValidateUserExceptionTest()
{

Service target = new Service();
target.Credentials = System.Net.CredentialCache.DefaultCredentials;
string userName = "TestUser";
string password = "password";
PasswordType type = PasswordType.Encrypted;
int actual;

actual = target.ValidateUser(userName, password, type);
}

VB
''' <summary>
'''An exception test case for ValidateUser (string, string, PasswordType)
'''</summary>
<TestMethod()> _
<ExpectedException(GetType(System.Web.Services.Protocols.SoapException), _

"An encrypted password type was allowed which is not supported.")> _
Public Sub ValidateUserExceptionTest()

Dim target As Service = new Service()
target.Credentials = System.Net.CredentialCache.DefaultCredentials
Dim userName As string = "TestUser"
Dim password As string = "password"
Dim type As PasswordType = PasswordType.Encrypted
Dim actual As integer

actual = target.ValidateUser(userName, password, type)
End Sub

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 365

4606CH12.qxd 4/20/06 3:27 PM Page 365

The key to this type of test is the ExpectedException attribute. Notice that the Assert
method is not even called here because it is not needed. The ExpectedException attribute
ensures that .NET will wait for a SoapException to be thrown, and if it is, the test will be
marked as successful. If it is not thrown, the message included with the ExpectedException
attribute will be displayed as the failure message.

■Caution You will notice that something appears to be wrong with what you are testing here. Your appli-
cation throws an ApplicationException, yet you are testing for a SoapException. The reason is that
when an exception is thrown during the invocation of a web service, the service throws its own exception
and includes the message from any other exceptions as part of its message.

Once you have made this change, run this test plus the original ValidateUser test. Your
test results will show that both tests pass. Your code coverage results will be 100% because the
two lines in the else statement have been reached.

Now, the problem with this is that you still do not know if the right exception was thrown,
but there is a way to solve this. Modify the code in the ValidateUserExceptionTest method to
match that shown in Listing 12-4 (note that this is a partial listing only) and remove the
ExpectedException attribute.

Listing 12-4. Modified ValidateUserTestException Method
C#

int actual;

try
{

actual = target.ValidateUser(userName, password, type);
}
catch (Exception ex)
{

if (ex.Message.IndexOf("ApplicationException") > 0)
Assert.Equals(1, 1);

else
Assert.Fail();

}
VB

Dim actual As integer

Try
actual = target.ValidateUser(userName, password, type)

Catch (Exception ex)
If (ex.Message.IndexOf("ApplicationException") > 0)

Assert.Equals(1, 1)
Else

Assert.Fail()
End Try

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE366

4606CH12.qxd 4/20/06 3:27 PM Page 366

This simple modification allows you to check to see if a specific exception was thrown
when throwing an exception from a web service.

Data-Driven Testing
As you’ve seen in this chapter, you might need to create an enormous number of tests in order
to test your entire application. As you saw earlier, if a parameter is a date or there is an inten-
sive amount of processing occurring in a method, you might have to create in the vicinity of
20 tests for just one method, just to test different method arguments. This not only does not
make a lot of sense, but it is extremely time-consuming. This is where data-driven testing
comes in.

Data-driven testing is not only helpful in keeping down the number of tests that you need
to write, but it also makes it easier to change tests later on without having to change the test
code itself. Data-driven testing is the process of feeding data to test your methods from a data-
base instead of coding values directly into the test code. The TestContext object, which you
looked at briefly earlier in the chapter, makes this task extremely easy. The basic principle is
that you create a separate test database with one table per test method, which will supply the
values for that test to use.

■Note The SQL Express components make data-driven testing incredibly easy, as they can handle a fairly
high volume of data and the test data can remain with the testing solution. However, if you are performing
load testing or other very high-volume tests, you will probably want to create a separate SQL Server 2005
database to store the test data.

Building a Test Database
Before you start constructing the test table, you need to determine what it should contain.
Each test will have a different number of columns because the columns will always relate to
the number and type of parameters that need to be passed to the method. However, you
should always have a primary key, which is an identifier column, and you will always need a
column that holds the expected value.

For this demonstration, you will build the table shown in Table 12-5 to hold the informa-
tion to test the ValidateUser method.

Table 12-5. ValidateUser Test Table

Column Type Nullable Purpose

vu_id int (Identity) No Primary Key

vu_username varchar(50) No Holds the username

vu_password varchar(50) No Holds the password

vu_pw_type int No Indicates clear text or encrypted

vu_expected int No Indicates the value that should be returned

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 367

4606CH12.qxd 4/20/06 3:27 PM Page 367

Now that you know what the test table is going to contain, you need to build the database
and create the table, as follows:

1. In the Solution Explorer, right-click the EffortTrackingServiceTests project and select
Add New Item.

2. Select the SQL Database and name it ServiceTestDB.mdf.

3. In the Server Explorer, select Add a New Data Connection, and then browse to the
ServiceTestDB.mdf file and select it.

4. Expand the ServiceTestDB.mdf file, right-click the Tables node, and select Add New
Table.

5. Enter the information shown in Table 12-5.

6. Name the table ValidateUserTest.

7. In the ValidateUserTest table, enter the information shown in Table 12-6. These values
will be used by the test method to pass values to the ValidateUser method in the service.

Table 12-6. The ValidateUserTest Table Values

vu_id vu_username vu_password vu_pw_type* vu_expected

1 TestUser1 password 1 1

2 TestUser1 pass 1 0

3 TestUser5 password 1 0

* The vu_pw_type value corresponds with the PasswordType enumeration.

This is everything you will need to perform the tests for this method. Note that we are not
testing for the exception condition by passing a password type of 2. Exception tests must be
carried out as separate tests. Theoretically, you could create exception handling as you did in
the previous section on testing for exceptions and handle it appropriately, but it is usually
easier to keep those tests separate.

Preparing the Production Database
The tests that we have come up with so far are perfectly acceptable (although you could quite
easily come up with some tests that are not listed in Table 12-6), but they will not work every
time. This is because the Owners table in the EffortTracking database uses an Identity column
and you are looking for very explicit values to be returned (listed in the vu_expected column).
In order for these tests to work correctly every time, the data you are testing against must be
the same every time. To do this, you need to load the production database with the correct
information before a test run. This is where the Initialize method is very helpful.

Table 12-2 earlier in the chapter includes the ClassInitialize and ClassCleanup attrib-
utes. Whereas the TestInitialize and TestCleanup methods are executed at the beginning
and end of each and every test, the ClassInitialize and ClassCleanup methods are executed
before any test in a class is run and after all of the tests in a class are run. This means that each
method is guaranteed to execute only once during the course of a test run, regardless of how

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE368

4606CH12.qxd 4/20/06 3:27 PM Page 368

many tests are in the class. In this example, you will use the ClassInitialize attribute to tag a
method, which will set up the production database for testing. No cleanup will be necessary
for this set of tests.

Based on the information in Table 12-6, only one row of data needs to be created in the
Owners table of the production database. The information is listed in Table 12-7.

Table 12-7. The Owers Table Entry

Column Value

own_id 1

own_login TestUser1

own_password password

Before doing anything else, add a reference to the System.Configuration assembly in the
EffortTrackingTests project and import the System.Data.SqlClient and System.Configuration
namespaces. In order to set up the database, add the code shown in Listing 12-5 to the
ServiceTests class.

Listing 12-5. The TestClassInitialize Method

C#
[ClassInitialize()]
public static void TestClassInitialize(TestContext context)
{

SqlConnection cn = new SqlConnection(
ConfigurationManager.AppSettings["db"].ToString);

SqlCommand cmd1 = new SqlCommand("SET IDENTITY_INSERT owners ON", cn);
SqlCommand cmd2 = new SqlCommand("DELETE FROM work_items", cn);
SqlCommand cmd3 = new SqlCommand("DELETE FROM owners", cn);
SqlCommand cmd4 = new SqlCommand("INSERT INTO owners (own_id, "

+ "own_login, own_password) VALUES (1, 'TestUser1', 'password')",
cn);

SqlCommand cmd5 = new SqlCommand("SET IDENTITY_INSERT owners OFF",
cn);

cmd1.CommandType = CommandType.Text;
cmd2.CommandType = CommandType.Text;
cmd3.CommandType = CommandType.Text;
cmd4.CommandType = CommandType.Text;
cmd5.CommandType = CommandType.Text;

cn.Open();
cmd1.ExecuteNonQuery();
cmd2.ExecuteNonQuery();
cmd3.ExecuteNonQuery();
cmd4.ExecuteNonQuery();
cmd5.ExecuteNonQuery();

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 369

4606CH12.qxd 4/20/06 3:27 PM Page 369

cn.Close();
}

VB
<ClassInitialize()>
Public Shard Sub TestClassInitialize(TestContext context)

Dim cn As SqlConnection = new SqlConnection(_
ConfigurationManager.AppSettings("db").ToString)

Dim cmd1 As SqlCommand = new SqlCommand(_
"SET IDENTITY_INSERT owners ON", cn)

Dim cmd2 As SqlCommand = new SqlCommand("DELETE FROM work_items", cn)
Dim cmd3 As SqlCommand = new SqlCommand("DELETE FROM owners", cn)
Dim cmd4 As SqlCommand = new SqlCommand("INSERT INTO owners (own_id, " _

& "own_login, own_password) VALUES (1, 'TestUser1', 'password')", cn)
Dim cmd5 As SqlCommand = new SqlCommand(_

"SET IDENTITY_INSERT owners OFF", cn)

cmd1.CommandType = CommandType.Text
cmd2.CommandType = CommandType.Text
cmd3.CommandType = CommandType.Text
cmd4.CommandType = CommandType.Text
cmd5.CommandType = CommandType.Text

cn.Open()
cmd1.ExecuteNonQuery()
cmd2.ExecuteNonQuery()
cmd3.ExecuteNonQuery()
cmd4.ExecuteNonQuery()
cmd5.ExecuteNonQuery()
cn.Close()

End Sub

Now that the ClassInitialize method is set up to re-create the database for each of the
tests necessary for the data-driven tests, you can move on to actually setting up the test to use
data from the database.

Setting Up the Test
In the Test Manager window, select the ValidateUserTest and view its properties. Select the
ellipsis for the Data Connection String property, and then browse to the ServiceTestDB.mdf file
and select it. Leave the Data Access property as Sequential. Next, select the ValidateUserTest
table from the Data Table Name property. This will add the DataSource attribute to the
ValidateUserTest method in the ServiceTests class (it is much easier to do it this way than
typing the attribute in manually).

Now that everything is hooked up, you need to be able to read the information from the
ValidateUserTest table. To access the information in the row, you use the TestContext.DataRow
property and access the data as you normally would from a database, as shown in Listing 12-6.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE370

4606CH12.qxd 4/20/06 3:27 PM Page 370

Listing 12-6. Data-Driven Test Method

C#
/// <summary>
///A test case for AddUser (string, string)
///</summary>
[TestMethod()]
[DataSource("System.Data.SqlClient", "Data Source=.\\SQLEXPRESS;
AttachDbFilename=\"C:\\ServiceTestDB.mdf\";Integrated Security=True;
User Instance=True",
"AddUserTest", DataAccessMethod.Sequential)]
public void AddUserTest()
{

Service target = new Service();
string userName = testContextInstance.DataRow["au_username"].ToString();
string password = testContextInstance.DataRow["au_password"].ToString();
PasswordType type =
(PasswordType)testContextInstance.DataRow["au_password_type"];

int expected = Convert.ToInt32(testContextInstance.DataRow["au_expected"]);
int actual;

actual = target.AddUser(userName, password);

if (userName == "Test User 2")
_newUserId = actual;

Assert.AreEqual(expected, actual,
"EffortTrackingServiceTests.localhost.Service.AddUser did "

+ "not return the expected value.");
}

VB
''' <summary>
'''A test case for AddUser (string, string)
'''</summary>
<TestMethod()> _
<DataSource("System.Data.SqlClient", "Data Source=.\\SQLEXPRESS; " & _
"AttachDbFilename=\"C:\\ServiceTestDB.mdf\";Integrated Security=True; _

User Instance=True", _
"AddUserTest", DataAccessMethod.Sequential)>
Public Sub AddUserTest()

Dim target As Service = New Service()
Dim userName As String = testContextInstance.DataRow("au_username").ToString()
Dim password As String = testContextInstance.DataRow("au_password").ToString()
Dim type As PasswordType = _

CType(PasswordType, testContextInstance.DataRow("au_password_type"))

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 371

4606CH12.qxd 4/20/06 3:27 PM Page 371

Dim expected As Integer = _
Convert.ToInt32(testContextInstance.DataRow("au_expected"))
Dim actual As Integer

actual = target.AddUser(userName, password)

If userName = "Test User 2" Then
_newUserId = actual

End If

Assert.AreEqual(expected, actual, _
"EffortTrackingServiceTests.localhost.Service.AddUser did " _

& "not return the expected value.")
End Sub

The DataSource attribute indicates to VSTS that an external data source is being used to
drive this particular test method. The syntax for the DataSource constructor is Connection
String, Table, Access Method. The connection string is a standard database connection
string. The table is the table in the database that contains your test data, and the access
method is how the test should access the data.

■Note The access method has no effect on a unit test. The test will always be run using the sequential
access method. This setting has an effect for load testing, which is covered in Chapter 16.

The test will be run once for every row of data in the table. The DataRow property of the
testContextInstance changes for every method according to the DataSource attribute for the
method.

■Note You cannot artificially change the row that is currently being used in the test.

The test results from a data-driven test look slightly different than those you’ve seen so
far, as shown in Figure 12-15.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE372

4606CH12.qxd 4/20/06 3:27 PM Page 372

Figure 12-15. Data-driven test results

For each row in the test, the result and the amount of time the test took are displayed.
If there were any errors, those messages will be displayed here as well.

■Tip As a best practice, and to make the results of this test more valuable, the error message should also
come from the test database. This allows you to more easily tie a failure to a specific entry, since it is diffi-
cult to do that with the data displayed. You could also provide the supplied values in the error message. To
do this, simply add a description column to each test table and use it to supply the exception message. Now
your tests will be self-documenting.

Manual Testing
Some tests just cannot be run in an automated fashion. These tests may require some external
actions to prepare certain aspects of a server. An example of this may be testing an IIS failure
in which the manual step of stopping the World Wide Web service may be required. Or if you
are using VSTS, which does not currently support Windows Forms testing, and you want to
test the user interface, then manual testing would be the way to go.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 373

4606CH12.qxd 4/20/06 3:27 PM Page 373

Creating a Manual Test
Manual tests consist of a series of written instructions that the user follows to complete the
test. At the end of the manual test, the tester marks whether the test passed or failed.

To set the test steps, double-click the ManualTest1.mht file in the testing solution. This will
open the test in Microsoft Word for editing.

■Note You can add a text version of the ManualTest file by selecting it from the Add Test Wizard, which
allows you to edit the test in Notepad or another text editor.

Here, you enter the test title, details, steps, and revision history of the test. An example is
shown in Figure 12-16.

Figure 12-16. Manual test run

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE374

4606CH12.qxd 4/20/06 3:27 PM Page 374

■Note Figure 12-16 shows the file during an actual manual test run so it is not displayed in the Word envi-
ronment here. This test is not a test you will be running, but is for example purposes only.

The test steps are the key to this test. The tester simply walks through the steps of the test
performing the actions noted in the step description. The result of each step should be docu-
mented in the far-right column. If the expected result is not the actual result at any point in
the set of steps, the test should be marked as failed and a comment explaining which step
failed and the actual result that was displayed. The version history should also be maintained
so you know who made changes, if any, to the test script.

Running a Manual Test
When a test run reaches a manual test, it will pause and wait for you to complete the manual
test. When you have finished with the manual test, you mark it as Pass or Fail using the
options at the top of the manual test window, and then click Apply. Once the test is marked
as Pass or Fail, the rest of the tests in the test run will continue.

■Caution Do not include manual tests in automated test runs as a rule. If, for example, you set up a series
of tests for the nightly build and you include a manual test, the nightly set of tests will not run. The test will
be paused at the first manual test in the list of tests.

Manual testing gives you the ability to perform virtually any test in Visual Studio and have
those tests recorded just as it would with any automated tests.

■Tip One added benefit of running manual tests this way is that code coverage results are recorded for
these tests.

Testing Using MSTest
VSTS includes a command-line tool called MSTest. The executable is located in the
C:\Program Files\Microsoft Visual Studio 8\Common7\IDE folder. This tool provides a simple
way to automate the tests. Team Foundation Build invokes this tool when performing auto-
mated builds, but you can include it in batch files or invoke it manually for whatever purposes
you may need.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE 375

4606CH12.qxd 4/20/06 3:27 PM Page 375

For example, to invoke MSTest in order to run the tests included with the sample Effort
Tracking application, open a Visual Studio command-line prompt and navigate to the folder
that contains the EffortTrackingServiceTests.dll. Then enter the following at the command
prompt:

Mstest /testcontainer:efforttrackingservicetests.dll /test:orderedTest1

The results will be displayed in the command window. There are numerous options for
customizing the output, choosing the configuration file, columns to display, and so on. You
can also publish tests to Team Foundation Server using this tool. See the MSDN documenta-
tion for more information.

Summary
As you’ve seen in this chapter, unit testing is an integral part of any development process.
Without unit tests, you cannot be assured that the code works as planned at the method level.

In this chapter, you learned how to plan the unit tests and create them. This includes
being able to prepare the development database so that tests are repeatable using the various
methods of the test class. You learned how to manage and group test runs, as well as how to
order test runs so that dependent tests run in the correct order. You have seen how to configure
a test run to accomplish specific goals and the benefits of using code coverage and under-
standing what that coverage means. Then you learned how to run data-driven tests, which
allow you to create a test database to supply values to your tests without having to create a
myriad of different test methods for each method to be tested. Next, you learned about man-
ual testing. Finally, we briefly covered the MSTest command-line tool.

In short, this chapter has provided you with a new set of tools that you can use to make
your code more stable than it has ever been before. This leads to fewer bugs, a shorter time to
fix discovered bugs, and fewer regression bugs.

CHAPTER 12 ■ UNIT TESTING AND CODE COVERAGE376

4606CH12.qxd 4/20/06 3:27 PM Page 376

Static Code Analysis

Static code analysis is the process of examining your code, while it is not in a running state,
for defects. These defects can range from naming conventions not being followed to potential
security holes, which can lead to buffer overrun attacks and many other problems. (Perfor-
mance analysis, which occurs while the code is running, is covered in the next chapter.)

VSTS provides two tools for static code analysis: PREfast and FxCop. PREfast is a tool for
checking for potential issues when dealing with C/C++ code bases. It was originally developed
as an internal tool for use by Microsoft developers to check their own code. FxCop is a tool
developed for .NET in order to check code for proper formatting, correct usage of the language,
potential security holes, and other issues.

In this chapter, you will examine both of these tools. You will see how to use them and
where they fit into an automated build process (particularly the FxCop tool). You will also
learn how to extend and customize the FxCop tool so that you can check that the code meets
your organization’s standards as well as the predefined rules.

Note that pointer issues are only a problem in C++; they do not occur in C# or VB .NET
code. If you do not program in C or C++, you may want to skip the section on PREfast. If you
are a development manager, you will probably want to at least be aware of what PREfast does.

Static Code Analysis vs. Code Reviews
You may have never performed a static code analysis before except via code reviews. Code
reviews are great tools, and you should in no way discount them because VSTS has provided
tools to help with the analysis. But what’s the first thing to go when you hit crunch time on a
project? It’s the meetings—all of the meetings, including code reviews.

The static code analysis tools are another example of VSTS working to help ensure that
you produce the highest quality code base with the fewest number of defects. The static code
analysis tools provide a way to automate some of the process of code reviews. The tools can be
run manually or via an automated build process using Team Foundation Build. At the very
least, they provide a backup in case your code review process gets cut because of project
deadlines (which, of course, causes more problems than it solves). At best, they provide a
more robust set of checks for you and your development team.

377

C H A P T E R 1 3

4606CH13.qxd 4/20/06 3:28 PM Page 377

THE VALUE OF CODE REVIEWS

Code reviews are often the first things to get the axe when push comes to shove and deadlines start looming
over a development team. When this happens, bugs are not spotted during development time when they are
easier to fix. Typically, the product is just about ready for shipping when a tester discovers a bug while per-
forming functional tests, or worse yet, during user tests. The code goes back for review, where it takes a
team of people some work to find and fix it, and then the product goes through the testing process all over
again. At this point, the release date has slipped, and the entire development team is in trouble. Instead, a
fraction of the time could have been spent on code reviews, and the problem could have been captured and
fixed in about five minutes.

Have you had this experience? We have seen many projects start off with lofty goals regarding code
reviews, only to have those plans sacrificed because of budget and time constraints. VSTS, by integrating
these analysis tools, has given developers a huge hand in exposing potential problems. But the results of
these tools should always be checked by others in code reviews.

There is a common misconception that a developer with his head down coding is more effective than
one who takes the time to review his code with others. This has given rise to many of the Agile Development
methodologies, which have the advantage of code reviews during coding.

Steve McConnell, in his book Code Complete, Second Edition (Microsoft Press, 2004) takes a great deal
of time to examine the cost of fixing bugs at various points in the development process. It has been proven
that the costs of fixing bugs found during testing or after release are orders of magnitude higher than catch-
ing and fixing them during development. We recommend that developers read this book.

Using PREfast
PREfast was originally developed by Microsoft Research and has been employed for several
years within the company to check for coding defects in Microsoft products. At this time, run-
ning these checks is seen as an essential part of getting a product ready for shipping. If you are
shipping a product written in C or C++, you will certainly want to make sure that these checks
are run on your code. PREfast is designed to detect some of the most serious coding errors
that a normal compilation alone will not detect, including buffer overruns, dereferencing null
pointers, using uninitialized variables, and so on.

Enabling PREfast Checking
PREfast was integrated into the VSTS version of the Visual C++ 2005 compiler, so it is available
to you when using any release of the Visual C++ 2005 C/C++ compiler, cl.exe. Unlike FxCop,
PREfast does all its checking at compile time, so it makes sense as an add-on to the compiler.
In fact, all you need to do to enable the PREfast code analysis is to set the /analyze compiler
option, which you can also do from a Visual Studio project. In the Project Properties dialog
box, under C/C++, look under Advanced and set the Enable Code Analysis for C/C++ option
to Yes.

CHAPTER 13 ■ STATIC CODE ANALYSIS378

4606CH13.qxd 4/20/06 3:28 PM Page 378

You can enable the PREfast checking when compiling C or C++ code. Regardless of
whether C or C++ code is being checked, the effect of setting the option is to enable specific
diagnostics (compiler warnings) that are not generated in a compilation without the /analyze
option.

The PREfast diagnostics are normally issued as warnings. Often, code projects have the
/WX compiler option set, which changes warnings to errors. However, you probably won’t
want all the PREfast warnings to be issued as errors, since you may not be able to fix these
immediately. To tell the compiler to report PREfast diagnostics as warnings even when the
/WX option is set, use the /analyze:WX- version of the /analyze option.

Reviewing PREfast Results
The PREfast diagnostics can be distinguished from other compiler warnings by the range of
the codes. PREfast warnings have codes between 6000 and 6999. Table 13-1 lists the PREfast
checks and their associated warning codes.

Table 13-1. PREfast Checks

Category Warning Codes Items Checked

Bad memory use C6001, C6011, C6200, C6278, Use of uninitialized
C6279, C6280, C6283 memory, dereferencing a

null pointer, using out-of-
range array indices, new
and delete mismatches

Buffer overruns C6029, C6057, C6201, C6202, Code that could allow
C6203, C6204, C6327, C6383, writing past the end of a
C6385, C6386 buffer, which is a serious

security vulnerability

Unchecked return values C6031 Failure to check for error
codes returned from
functions

Null termination C6053, C6054 Strings that are not null-
terminated passed to
functions that expect it

Incorrect arguments C6059, C6066, C6067, C6270, Various invalid or incorrect
C6271, C6272, C6273, C6274, arguments
C6284, C6298, C6306, C6309,
C6328, C6331, C6332, C6333,
C6381, C6387, C6388

Format string errors C6063, C6064 Using the incorrect or
wrong number of
conversion characters in a
formatting string

Wide/narrow character and C6209, C6260, C6303 Using sizeof with a wide
character vs. byte count issues character string as the

length, passing a wide
character string to a
function that requires a
narrow character string,
using sizeof * sizeof

Continued

CHAPTER 13 ■ STATIC CODE ANALYSIS 379

4606CH13.qxd 4/20/06 3:28 PM Page 379

Table 13-1. Continued

Category Warning Codes Items Checked

Memory leaks C6211, C6308 Leaking memory due to an
exception

Questionable casts C6214, C6215, C6216, C6217, Various dangerous casts
C6218, C6219, C6220, C6221, and conversions
C6225, C6226, C6230, C6276

Questionable expressions C6235, C6236, C6237, C6239, Operator precedence
C6240, C6268, C6269, C6281, errors, Boolean expressions
C6282, C6285, C6286, C6287, that are always true or
C6288, C6289, C6290, C6291, always false, confusion
C6299, C6302, C6313, C6314, between bitwise operators
C6315, C6316, C6317, C6323, and relational operators,
C6326, C6336 incorrect use of bit fields,

confusion between
equality and assignment
operators, and so on

Questionable Case statements C6259 Case statements that have
values that are not
reachable

Questionable looping constructs C6292, C6293, C6294, C6295, Loops that count down
C6296 from the minimum or

up from the maximum,
loops that never execute,
loops that execute only
once

Variable hiding C6244, C6246 Hiding a variable at a larger
scope with one at a smaller
scope

Incorrect use of sizeof or countof C6305, C6334, C6384 Potential mismatch
between sizeof and
countof quantities, sizeof
applied to an expression
with an operator, dividing
sizeof a pointer by another
value

Exception handling problems C6242, C6310, C6312, C6318, Actions that trigger a local
C6319, C6320, C6322 unwind, improper use of

__try/__except blocks and
exception filters, and so on

Stack corruption C6255, C6262, C6263 Using _alloca instead of
_alloca_s, calling _alloca
in a loop, using a stack
greater than specified stack
size set with
/analyze:stacksizennnn
(where nnnn is the stack
size above which the
warning will be issued)

Security risks C6248, C6277 Improper use of access
control lists (ACLs)

Resource leaks C6250, C6335 Failing to release various
Windows resources

CHAPTER 13 ■ STATIC CODE ANALYSIS380

4606CH13.qxd 4/20/06 3:28 PM Page 380

Category Warning Codes Items Checked

Thread termination C6258 Terminating a thread
without proper cleanup

Case-insensitive comparisons C6400, C6401 Comparison functions
used in a way that doesn’t
work on non-English
locales

Integer overflow error C6297 32-bit value shifted and
cast to a 64-bit value

Possible wrong function call C6324 Using a string copy func-
tion (such as strcpy) where
a string comparison func-
tion (such as strcmp)
should have been used

To see PREfast in action, try compiling the code in Listing 13-1 with the /analyze option.
Also specify _CRT_SECURE_NO_DEPRECATE so that you can use strcpy without getting a warning
that it is deprecated in favor of the more secure strcpy_s version, new with Visual C++ 2005. If
you used the strcpy_s version, you won’t get the warning we are demonstrating in this exam-
ple: a potential buffer overrun.

Listing 13-1. Buffer Overrun Example

// buffer_overrun.cpp
// compile with /D_CRT_SECURE_NO_DEPRECATE /analyze
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void f(char* str)
{

char* x = (char*) malloc(10 * sizeof(char));

if (x != NULL)
{

strcpy(x, str);
}

}

int main()
{
f("A random string of arbitrary length");

}

CHAPTER 13 ■ STATIC CODE ANALYSIS 381

4606CH13.qxd 4/20/06 3:28 PM Page 381

The output is as follows:

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

buffer_overrun.cpp
c:\nutshell\PREfast_code\buffer_overrun.cpp(12) : warning C6204:
Possible buffer overrun in call to 'strcpy': use of unchecked parameter 'str'

As you can see, warning 6204 is generated, letting you know of a potentially serious error.
To address this, you might modify the code as shown in Listing 13-2.

Listing 13-2. Buffer Overrun Correction

// buffer_overrun.cpp
// compile with /D_CRT_SECURE_NO_DEPRECATE /analyze
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void f(char* str)
{

char* x = (char*) malloc(10 * sizeof(char));

if (x != NULL)
{

if (strlen(str) < sizeof x)
{

strcpy(x, str);
}
else
{

printf("The string passed in was too long.");
}

}
}

int main()
{
f("A random string of arbitrary length");

}

You, the developer, may already be certain that there cannot be any input that would
actually cause an overrun. PREfast does not look beyond the individual function scope to try
to analyze what input might be passed to a function. However, you can extend PREfast’s reach

CHAPTER 13 ■ STATIC CODE ANALYSIS382

4606CH13.qxd 4/20/06 3:28 PM Page 382

by using attributes to annotate your code. This lets you specify in metadata which constraints
PREfast should check. You’ll learn how to use such annotations shortly, after we explain how
to turn off the undesired warnings, since there are often quite a few of them.

Enabling, Disabling, and Suppressing PREfast Warnings
Some PREfast warnings are more serious than others, and you will probably want to enable
some of them and disable others, depending on the goals for a particular project and the risks
associated with the particular type of error. For example, if you are shipping consumer soft-
ware, you may have more stringent requirements than if you are working on a research
project.

For a large body of existing code that has not been checked with PREfast or a similar
source analysis tool before, the number of warnings generated may be quite large. You will
need to make a business decision that balances the risks of not detecting certain types of
errors versus the risks of changing code that has been stable and tested, as well as taking into
account the time it will take to make the code changes to eliminate the warnings.

Another factor to consider is who will be addressing the errors with the code. Are these
developers familiar with that code? If you have a stable code base, you certainly don’t want to
allow code changes that eliminate the warnings but introduce semantic errors that might be
hard to detect.

Another issue you are likely to encounter is PREfast warnings in header files from third
parties or from libraries that you have no direct control over. You may want to disable some of
these warnings.

Development teams may want to agree on the set of warnings that will be enforced and
those that will be disabled, with an understanding of the risks and costs associated with each
warning. Once these are agreed upon, it is a simple matter to set up an include file with the
appropriate pragma directives to disable or enable the desired warnings.

The easiest way to add a consistent level of checking to your existing build process is
to add an include file to the compilation using the /FI (Force Include) compiler option.
Listing 13-3 shows an example of an include file with pragma directives.

Listing 13-3. PREfast pragma File

// PREfast.h -- add /FIPREfast.h to your compilation command line
#pragma once

#pragma warning(disable: \
6001 6002 6003 6004 6005 6006 6007 6008 6009 \

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 \
6020 6021 6022 6023 6024 6025 6026 6027 6028 6030 \
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 \
// etc...
)

CHAPTER 13 ■ STATIC CODE ANALYSIS 383

4606CH13.qxd 4/20/06 3:28 PM Page 383

/* It's a good idea to explicitly list those PREfast warnings
* you do enable. This is a list of PREfast
* warnings that are considered a minimum bar for a shipping
* product.
*
* 6029;6053;6056;6057;6059;6063;6067;6200;6201;6202;6203;6204;
* 6205;6207;6241;6243;6248;6252;6259;6260;6268;6276;6277;6281;
* 6282;6287;6288;6289;6290;6291;6296;6298;6299;6305;6306;6308;
* 6334;6383
*/

You may also want to disable specific occurrences of a given warning on a case-by-case
basis. To do this, surround the code with #pragma warning (suppress: C6xxx) with the spe-
cific warning number. You could also use #pragma warning (disable: Cxxxx), as with any
other warning, but this has the effect of suppressing the warning throughout the remainder of
that file. The suppress version of this pragma affects only the line of code immediately follow-
ing the pragma, so it is preferable since it avoids the risk of missing other errors in the file. An
example of suppressing a warning is shown in Listing 13-4.

Listing 13-4. PREfast Warning Suppression Example

// suppress_warning.cpp
// compile with /D_CRT_SECURE_NO_DEPRECATE /analyze
#include <string.h>
#include <stdio.h>

int p;

void f()
{

// char * p hides the global p, but we know this is safe and simply
// want to suppress the warning.
#pragma warning (suppress: 6244)
char* p = new char[10];

strcpy(p, "xyz");
printf("%s\n", p);

}

void g()
{

// the same error here triggers the warning
char* p = new char[10];

strcpy(p, "xyz");
printf("%s\n", p);

}

CHAPTER 13 ■ STATIC CODE ANALYSIS384

4606CH13.qxd 4/20/06 3:28 PM Page 384

int main()
{

f();
g();

}

Annotating Code for PREfast Checks
In addition to the warnings that are generated simply by turning on the /analyze compiler
option, you can achieve further testing with PREfast by annotating your code with specific
attributes. For example, you can annotate a function call with an attribute that tells PREfast
that the return value of this function must be checked. Then when that function is used,
PREfast will report a warning whenever that function is used without checking the return
value.

To enable the use of the attributes from C code, simply include the following include
directive:

#include <CodeAnalysis/SourceAnnotations.h>

When compiling C++ code, add the preceding include directive, but also add the follow-
ing using namespace statement:

using namespace vc_attributes;

To annotate your code, you add PREfast attributes to parameters and return values.
Attributes appear in square brackets and have various properties you can set to signal PREfast
to perform a check.

You use two attributes with PREfast:

• The Pre attribute is used with function parameters only and is designed to tell PREfast
to check for various conditions whenever parameters are passed to the function whose
parameter is attributed.

• The Post attribute is used on the function’s return values and on out parameters, such
as pointers that are intended to be set or filled in during the function call.

For example, you might use the Pre attribute to enforce that a pointer parameter is a valid
non-null pointer. If this attribute is set, then PREfast will check any pointers used when calling
this function to ensure that they can be verified to be valid, as demonstrated by the code in
Listing 13-5.

Listing 13-5. Using the Pre Attribute

#include <CodeAnalysis\SourceAnnotations.h>
using namespace vc_attributes;

void f ([Pre(NullTerminated=Yes)] char* str);

CHAPTER 13 ■ STATIC CODE ANALYSIS 385

4606CH13.qxd 4/20/06 3:28 PM Page 385

int main ()
{

char x[100];
f(x); // error C6054 - x is not null-terminated

}

Listing 13-6 shows an example of using the Post attribute to specify conditions on how
the function handles the return value. The attribute contains a tag that specifies that this
attribute applies to the return value, not the function as a whole.

Listing 13-6. Using the Post Attribute

// checkreturn.cpp
#include <stdio.h>
#include <codeanalysis\sourceannotations.h>
using namespace vc_attributes;
[returnvalue:Post(MustCheck=Yes)]
int f()
{

FILE* fp;
fopen_s(&fp, "file1.txt", "rw+");
if (fp == NULL)

return -1;
fprintf_s(fp, "add some text");
fclose(fp);
return 0;

}

int main()
{

f(); // triggers an error, C6031 since the return value is not checked
}

In this case, the output is as follows:

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

checkreturn.cpp
c:\PREfast_code\checkreturn.cpp(19) : warning C6031:
Return value ignored: 'f'
Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

/out:checkreturn.exe
checkreturn.obj

CHAPTER 13 ■ STATIC CODE ANALYSIS386

4606CH13.qxd 4/20/06 3:28 PM Page 386

Remember that using the /analyze option is not a guarantee that there are no potential
problems with the code. It is actually rather easy to fool PREfast, as the example in Listing 13-7
demonstrates.

Listing 13-7. Missed PREfast Check

// annotated_function.cpp

#include <iostream>
#include <CodeAnalysis/SourceAnnotations.h>
using namespace std;
using namespace vc_attributes;

void f([Pre(NullTerminated = Yes)] char* str)
{

cout << str << endl;
}

int main()
{

// create a string that is not null-terminated
char test[5] = { 'a', 'b', 'c', 'd' };
f(test); // error not flagged

char* s = (char*) malloc(10 * sizeof (char));
f(s); // error not flagged

char s1[10] = "abcdefgh";
char* s2 = (char*) malloc(5 * sizeof (char));
if (s2 != NULL)

s2 = strncpy(s2, s1, 5);
f(s2); // error not flagged

}

If you run this example with the Visual C++ 2005 compiler with the /analyze option, the
use of non-null terminated strings is not detected. The bottom line is that you should run
PREfast to catch errors, but you cannot use it as a substitute for any other testing or validation.

Using FxCop
FxCop has been offered as a stand-alone tool since the release of Visual Studio 2002 and .NET
Framework version 1.0. It was originally written as a tool to check the work of the Microsoft
.NET development teams because it was the only way to ensure consistency in naming con-
ventions, implementation, and overall structure. You will want to use it to perform these
checks on your own code.

CHAPTER 13 ■ STATIC CODE ANALYSIS 387

4606CH13.qxd 4/20/06 3:28 PM Page 387

■Tip FxCop is still offered in a stand-alone format. It is available for download from www.gotdotnet.com.

Enabling FxCop
Up until now, whenever you have done a build, the compiler has gone through and compiled
the code, checking for compile errors and nothing else. FxCop is not enabled by default.

To enable FxCop, right-click the project in the Solution Explorer, select Properties, select
the Code Analysis node, and check Enable Code Analysis. Alternatively, for a web application,
you can select Website ➤ Code Analysis Configuration from the main menu, and then check
Enable Code Analysis. After you have enabled code analysis, build the solution. No other steps
are necessary to run the code analysis.

■Note Depending on the size of your code base, it can take considerably longer to build a project with
FxCop enabled. Rather than enabling FxCop on every build, you should consider running the code analyzer
only after you have added a lot of working code that you do not intend to change.

You can also analyze code without performing a build by selecting Build ➤ Run Code
Analysis on [project name] from the main menu.

Examining FxCop Results
To demonstrate how FxCop works, enable it for the project you created in Chapter 12 (right-
click the EffortTrackingServiceTests project in the Solution Explorer, select Properties, select
the Code Analysis node, and check Enable Code Analysis), and then build the solution. The
results of the build should look those in Figure 13-1.

■Note For the examples in this chapter, you can also use the downloadable code available from the Source
Code section of the Apress website (www.apress.com). The code for this chapter contains only methods
with no implementation of those methods.

Realize that all of the information reported by the code analysis is reported as a warning;
the results are not errors. (Although you can configure them to be errors, as described in the
upcoming “Configuring FxCop Rules” section.) Nothing shown here will stop your code from
running. Everything is a suggestion based on the code analyzer rules. When running auto-
mated builds using Team Foundation Build, these warnings can be logged to the Team
Foundation Server, and they can show up in a report later.

CHAPTER 13 ■ STATIC CODE ANALYSIS388

4606CH13.qxd 4/20/06 3:28 PM Page 388

■Tip You can sort the results of an FxCop run, just as can sort any other pieces of information that are
displayed in the Error List window. Sorting the list by description will sort the warnings by category.

Let’s take a look at the warning highlighted in Figure 13-1:

CA1008: Microsoft.Design: Add a member to 'PasswordType' that has a value of zero
with a suggested name of 'None'.

The first part of the line, CA1008, is the rule number (also called CheckID). Microsoft.Design
is the category under which the warning is classified. The last part of the line is the rule that
was broken and a suggested way of fixing it. To get further information about the rule, right-
click the rule and select Show Error Help. This opens a web page (for built-in rules, this page is
displayed in the online help window) with detailed information about the warning, including
why it is a warning and how to fix it. Now, in this case, do you want follow this suggestion? Yes
and no. The first value in an enum should always be zero, but the name should not be None.
(This particular issue is fixed in the downloadable code for other chapters.)

You’ll find that many of the FxCop rules are not applicable to a given circumstance. One
of the advantages of FxCop is that it is fully customizable. You can suppress rules and config-
ure rules, as described in the following sections.

Scan through the rest of the list to determine if there are any items that really should be
fixed (also, this is a good overview of the types of issues that FxCop can help you catch). The
four items that should jump out at you are the naming conventions regarding the term ID.
FxCop correctly notifies you that ID is an abbreviation and not an acronym, and therefore it
should be correctly cased as Id. Fix each of these four items in the Task structure. Rebuilding
the solution will remove each of these warning from the list. In addition, each object in C#
should be declared in a namespace, so this is also a valid warning you would want to fix.

CHAPTER 13 ■ STATIC CODE ANALYSIS 389

Figure 13-1. FxCop code analysis warnings

4606CH13.qxd 4/20/06 3:28 PM Page 389

■Tip If you recognize that a warning is an issue that needs to be fixed, you can also create a work item by
right-clicking the warning and selecting Create Work Item. Then choose to log the issue as a Bug, Task, or
Quality of Service item. Work items are discussed in Chapter 5.

How you handle other warnings will be governed by the standards for your particular
project. Issues such as CategoryID being made a private member with a public accessor rather
than just a public field are project-specific. In this case, you are just using the Task structure to
serialize your data, so these rules do not apply here. The key benefit is that FxCop provides
guidelines, and you can apply them as appropriate.

Suppressing Messages
If you do not want a rule that you see in the results applied in a particular case, say to the
PasswordType enum in our example, you can remove it from the list of checked rules by
right-clicking it and selecting Suppress Message(s). At this point, the rule is not removed,
but is changed to a strike-through font to indicate it is no longer checked. In addition, the
SuppressMessage attribute is added to the type, as shown here:

[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Design", "CA1008:
EnumsShouldHaveZeroValue")]

This is called an In Source Suppression (ISS). The SuppressMessage attribute has a number
of options; this is just the default. The constructor parameters for the SuppressMessage attrib-
ute are shown in Table 13-2.

Table 13-2. SuppressMessage Attribute Constructor Parameters

Parameter Description

Category Category under which the rule is classified

CheckId The identifier for the rule

Justification Should be used to indicate why a rule has not been followed (it is often
important to note why a developer is not following a particular coding
convention)

MessageId The name of the method to which the suppression applies

Scope Identifies where the scope of the suppression; valid values are Module,
Namespace, Resource, Type, Member, and Parameter

Target Indicates the full namespace of the target method or namespace.

Messages can be suppressed at various levels of the application. To insert a suppression
line at the module level, use the SuppressMessage attribute in the following way:

[module: SuppressMessage(. . .)]

To unsuppress a message, just delete the attribute from the code file.

CHAPTER 13 ■ STATIC CODE ANALYSIS390

4606CH13.qxd 4/20/06 3:28 PM Page 390

Configuring FxCop Rules
To view the list of rules that are available in FxCop (and any custom rules) select Website (or
Project if you are creating a Windows Forms application) ➤ Code Analysis Configuration. This
will bring up the dialog box shown in Figure 13-2. Notice that this dialog box also contains an
Enable Code Analysis check box, which you can check to enable FxCop scanning during the
build process.

Figure 13-2. The Code Analysis Configuration dialog box

The predefined rules are divided into nine categories, as described in Table 13-3.

Table 13-3. FxCop Rule Categories

Category No. of Rules Description

Design 63 Rules related to the application architecture, such as when
to use certain pieces of functionality and rules regarding
generics

Globalization 6 Rules regarding the globalization of an application

Interoperability 15 COM and platform invoke rules to help ensure
compatibility across systems

Maintainability 3 Rules designed to make application maintenance easier

Naming 25 Rules relating to the naming of methods, parameters,
variables, and classes

Performance 20 Rules that can help improve performance such as when
boxing becomes an issue

Reliability 7 Rules that help prevent memory leaks

Security 26 Rules to help prevent potential security issues such as SQL
injection attacks

Usage 41 Rules to help in proper usage of classes, attributes,
parameters, and various other pieces of code

CHAPTER 13 ■ STATIC CODE ANALYSIS 391

4606CH13.qxd 4/20/06 3:28 PM Page 391

Notice that, by default, all of the rules have a status of Warning. You can change the status
to Error simply by double-clicking the status for the rule (and double-click Error to change it
back to Warning). This allows you to mark rules as errors, which will prevent your code from
running after a build if certain rules are violated. Again, this will depend on the specific
requirements of your project or organization.

You can disable rule checking on certain rules or on all rules by unchecking the box next
to the specific rules or categories.

■Note If you have used the FxCop tool in beta versions of VSTS, you probably noticed that there were
checks for correct spelling. This functionality was removed from the release because of the lack of time for
building in the management of additional words, acronyms, and so on. This functionality is expected to be
included in an upcoming release.

Running FxCop from the Command Line
You can run FxCop from the command line to validate compiled assemblies outside
Visual Studio. The executable is FxCopCmd.exe, located by default in C:\Program Files\
Microsoft Visual Studio 8\Team Tools\Static Analysis Tools\FxCop.

You can use various command-line options to customize how FxCop is run. For informa-
tion about these rules, run the following command:

FxCopCmd /?

Creating Custom FxCop Rules
You can extend the capabilities of FxCop by creating your own rules. These rules can be placed
in any category or a custom category you create.

■Note In VSTS version 1, rules cannot be pulled from a central area. You need to deploy the custom FxCop
rules on each machine that has the VSTS client on it in order for everyone to be able to use those rules.

Before you create custom rules, it helps to know where FxCop lives and where you
will eventually need to deploy your custom rules. FxCop is located in C:\Program Files\
Microsoft Visual Studio 8\Team Tools\Static Analysis Tools\FxCop. The Engines folder
contains any rules processing engines (in this case, only IntrospectionAnalysisEngine.dll).
The Rules folder contains all of the default rules that ship with VSTS. The XML folder contains
XSL transformations for use in displaying the output from the FxCop tool.

CHAPTER 13 ■ STATIC CODE ANALYSIS392

4606CH13.qxd 4/20/06 3:28 PM Page 392

■Note FxCop used to have two different engines to process rules: the Reflection engine and the Introspec-
tion engine. The Reflection engine was phased out starting with version 1.30 of FxCop. The version of FxCop
that comes with VSTS processes rules exclusively through the Introspection engine. Any rules that you
have from the Reflection engine will need to be migrated. See the MSDN documentation for guidelines for
migrating rules.

As an example, you will create a rule to check to see that any privately declared fields that
have a class scope are prefixed with an underscore (_). While this is not an official naming
convention, it has become very common and is an easy way to help differentiate class-scoped
private fields.

■Note In VB, the common naming convention is to use an m_ or just an m to prefix a module- or class-
scoped variable. You are certainly welcome to change the example here to check for that, but the underscore
is becoming the standard prefix for these types of fields.

A rule is composed of the rule class that validates a rule and a rule file (XML) that contains
details and guidance concerning the rule (displayed to the user if the rule is broken). First,
you’ll create the project for the custom rule, and then you’ll create the rule class and the
rule file.

Creating the Custom Rule Project
You can have more than one rule in an assembly, so a good naming practice (and the practice
that Microsoft uses) is to create one assembly per category of rule and include all of the
rules for that category in the assembly. The naming convention should be something like
[Company][Category]Rules.dll, where Company is the company the rules are being created
for and Category is the category to which the rules in the assembly belong.

Follow these steps to start a new project for the rule and add a reference to FxCopSdk.dll
and Microsoft.Cci.dll.

1. Create a new project called OrgNamingRules.

2. Right-click the References node and select Add Reference.

3. Select the Browse tab and browse to C:\Program Files\Microsoft Visual Studio 8\
Team Tools\Static Analysis Tools\FxCop. Select FxCopSdk.dll and
Microsoft.Cci.dll, and then click OK.

CHAPTER 13 ■ STATIC CODE ANALYSIS 393

4606CH13.qxd 4/20/06 3:28 PM Page 393

■Caution The Introspection SDK has not been released. The information contained in this chapter
comes largely from the FxCop team and a reverse-engineering of the FxCop SDK and
IntrospectionAnalysisEngine assembly. Visit the GotDotNet website (www.gotdotnet.com) to check
for a release of the Introspection SDK. Microsoft has said that this will likely be released after VSTS ships. At
this point, it is an entirely unsupported feature and is not guaranteed to remain the same for VSTS version 2.

Creating the Rule Class
Microsoft’s convention is to create one base rule per rule category, which is what you will do
here. This way, the constructor is a little simpler and the type of each rule is clear.

All of your custom rules should inherit from the BaseIntrospectionRule class.
Delete the Class1 class, which is created by default, and create a new class called

BaseOrgNamingRule. Import the Microsoft.Tools.FxCop.Sdk.Introspection namespace into
this new class file. As shown in Listing 13-8, set the class as abstract and so it inherits from the
BaseIntrospectionRule, and then create the two constructors for the class. The default con-
structor will call the second constructor. The second constructor (the one that takes the name
argument) will be used by all of the classes that inherit from the BaseOrgNamingRule class.

Listing 13-8. OrgNamingRule Base Rule

C#
public abstract class OrgNamingRule:BaseIntrospectionRule
{

protected BaseOrgNamingRule() : this("BaseOrgNamingRule") { }
protected BaseOrgNamingRule (string name) :

base(name, "OrgNamingRules.Rules", typeof(BaseOrgNamingRule).Assembly) { }
}
VB
Public MustInherit Class BaseOrgNamingRule : Inherits BaseIntrospectionRule

Protected Sub New()
Me.New("BaseOrgNamingRule")

End Sub
Protected Sub New(ByVal name As String)

MyBase.New(name, "OrgNamingRules.Rules",_
GetType(BaseOrgNamingRule).Assembly)

End Sub
End Class

You now have a custom, base FxCop rule from which all of your other rules can inherit.
To create the actual rule, add a new class to your project called UnderscorePrefixRule.

Add the following lines (replace using with Imports in VB):

using Microsoft.FxCop.Sdk.Introspection;
using Microsoft.FxCop.Sdk;

CHAPTER 13 ■ STATIC CODE ANALYSIS394

4606CH13.qxd 4/20/06 3:28 PM Page 394

Set the class to inherit from the BaseOrgNamingRule class and add a constructor and the
Check method, as shown in Listing 13-9.

Listing 13-9. UnderscorePrefixRule FxCop Custom Rule

C#
public class UnderscorePrefixRule:BaseOrgNamingRule
{

public UnderscorePrefixRule() : base("UnderscorePrefixRule") { }

public override ProblemCollection Check(Microsoft.Cci.Member member)
{

if (member == null || member.IsPublic)
{

return null;
}

if (member.NodeType == Microsoft.Cci.NodeType.Field)
{

if (!member.Name.Name.StartsWith("_"))
{

string[] textArray1 =
new string[1] { RuleUtilities.Format(member) };

Resolution resolution1 =
this.GetNamedResolution("Member", textArray1);

Problem problem1 = new Problem(resolution1, "Member");
base.Problems.Add(problem1);
return base.Problems;

}
else
{

return null;
}

}
else
{

return null;
}

}
}

VB
Public Class UnderscorePrefixRule : Inherits BaseOrgNamingRule

Public Sub New()
MyBase.New("UnderscorePrefixRule")

End Sub

Public Overrides Function Check(ByVal member As Microsoft.Cci.Member) As _
ProblemCollection

CHAPTER 13 ■ STATIC CODE ANALYSIS 395

4606CH13.qxd 4/20/06 3:28 PM Page 395

If member is Nothing OrElse member.IsPublic Then
Return Nothing

End If

If member.NodeType = Microsoft.Cci.NodeType.Field Then
If Not member.Name.Name.StartsWith("_") Then

Dim textArray1 As String() = _
New String(0) {RuleUtilities.Format(member)}

Dim resolution1 As Resolution = _
Me.GetNamedResolution("Member", textArray1)

Dim problem1 As Problem = New Problem(resolution1)
Me.Problems.Add(problem1)
Return Me.Problems

Else
Return Nothing

End If
Else

Return Nothing
End If

End Function
End Class

In order to create your own rule, you must override the Check method. This method is
overloaded to accept various types as arguments. The member type passes any members of a
class—that is, fields, events, delegates, properties, methods, and so on. There are five over-
loaded methods of Check that can be used to gather information from your project or
assembly. The member overload will probably be the most used method.

In the UnderscorePrefixRule, the Check method does the following:

• Check to see if the member being examined is a public member. If it is, the rule is
skipped because we want to check only private fields.

• If the type of the member is a field, continue with the check; otherwise, skip the rule.

• If the member name does not start with an underscore, continue with the check;
otherwise, skip the rule.

• If the rule was broken, format the member name for display (RuleUtilities is a
method in the FxCop SDK for formatting output) and set any values that are needed
by the resolution string.

• Get the resolution text from the rule information file and pass it any parameters (in this
case, the name of the rule). (Resolutions are discussed in the next section.)

• Create a new Problem object and pass it the resolution of the problem.

• Add the Problem to the Problem collection and exit the method.

This is a fairly straightforward example, but these rules can become extremely compli-
cated and detailed.

CHAPTER 13 ■ STATIC CODE ANALYSIS396

4606CH13.qxd 4/20/06 3:28 PM Page 396

Creating the XML Rule File
The rule file contains all of the details regarding the rule that was broken. By default, the rule
file is named Rules.xml and is an embedded resource file within the project. Typically, there is
one rule file per assembly, and all of the rule information goes in this file. The schema for this
file is shown in Listing 13-10.

■Note The schema in Listing 13-10 is not complete. Microsoft has yet to release documentation for the
Introspection engine. Here, we show the result of research using the Reflection tool from Lutz Roeder
(www.aisto.com/roeder/dotnet/). The FxCop team will be releasing detailed documentation of the
Introspection engine as soon as possible.

Listing 13-10. Rule File XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Rules">
<xs:complexType>
<xs:sequence>
<xs:element name="Rule">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="Description" type="xs:string" />
<xs:element name="LongDescription" type="xs:string" />
<xs:element name="GroupOwner" type="xs:string" />
<xs:element name="DevOwner" type="xs:string" />
<xs:element name="Owner" type="xs:string" />
<xs:element name="Url" type="xs:string" />
<xs:element maxOccurs="unbounded" name="Resolution">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Name" type="xs:string" use="required" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Email" type="xs:string" />
<xs:element name="MessageLevel">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Certainty" type="xs:unsignedByte"

CHAPTER 13 ■ STATIC CODE ANALYSIS 397

4606CH13.qxd 4/20/06 3:28 PM Page 397

use="required" />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="FixCategories" type="xs:string" />

</xs:sequence>
<xs:attribute name="TypeName" type="xs:string" use="required" />
<xs:attribute name="Category" type="xs:string" use="required" />
<xs:attribute name="CheckId" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="FriendlyName" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

For this example, add an XML file named Rules.xml to your project. The complete text of
this file is shown in Listing 13-11.

■Caution The rule filename must match the fully qualified name of the rule as specified in the base rule
constructor (in this case, it is OrgNamingRules.Rules, without the xml). While the filename is Rules, the
root namespace for the project is OrgNamingRules, so this must prefix the filename in the constructor.

Listing 13-11. The Rules.xml File for the UnderscorePrefixRule

<Rules FriendlyName="Organization Naming Rules">
<Rule TypeName="UnderscorePrefixRule" Category="Organization.Naming"
CheckId="OR5555">

<Name>
UnderscorePrefixRule: Prefix private class scoped variables (fields)

with an underscore "_").
</Name>
<Description>
The [organization name]'s naming standards require an underscore

to be prefixed to private fields in all cases.
</Description>
<LongDescription>
The underscore is a visual indication that a variable is a private,

class scoped field and is used for ease of reading and to
differentiate between class fields and local variables within methods.

</LongDescription>
<GroupOwner>
[organization] Developer Standards Group

CHAPTER 13 ■ STATIC CODE ANALYSIS398

4606CH13.qxd 4/20/06 3:28 PM Page 398

</GroupOwner>
<DevOwner>
John Smith

</DevOwner>
<Owner>
[organization] Developer Standards Group

</Owner>
<Url>
http://localhost/organizationrules/default.aspx

</Url>
<Resolution Name="Member">Add an underscore in front of the field {0}.

</Resolution>
<Email>
OrganizationStandards@organization.com

</Email>
<MessageLevel Certainty="80">
Error

</MessageLevel>
<FixCategories>
NonBreaking

</FixCategories>
</Rule>

</Rules>

Table 13-4 describes each of the nodes in Listing 13-11.

Table 13-4. Rules.xsd Nodes

Node Name/Attribute Description

Rules Root node. It contains a collection of Rule elements.

FriendlyName The name displayed in the Code Analysis Configuration dialog box.

Rule Describes an individual rule.

TypeName The name of the .NET type that contains the rule.

Category Displayed when the rule is broken to help categorize the broken rule.

CheckId Unique identifier for the rule. The ID is two characters followed by four
digits.

Name The name of the rule followed by a very brief description.

Description A short description of the rule.

LongDescription A detailed description of the rule.

GroupOwner The group that developed the rule. In an organization, this would
typically be the group in charge of development standards.

DevOwner The developer who wrote the rule.

Owner The person or group who owns the rule.

Url The URL of the web page that contains detailed information about the
rule, including code examples and where to go for more information.

Continued

CHAPTER 13 ■ STATIC CODE ANALYSIS 399

4606CH13.qxd 4/20/06 3:28 PM Page 399

Table 13-4. Continued

Node Name/Attribute Description

Resolution A series of named resolutions. The resolution names should correspond
with the types with which a problem can be associated. For example,
a certain type of resolution may exist for members in general, or one
resolution may refer to a field problem or another with a property
problem for the same rule. There can be multiple named resolutions.

Name The name of the resolution. This is used to specify which resolution to
take to solve a given problem.

Email The e-mail address where queries regarding the rule can be sent.

MessageLevel Describes the type of level. This can be Error, Warning, or Information
and corresponds with the ability to filter messages in the Error List
window.

Certainty The level of certainty that the rule really has been broken or really is a
problem.

FixCategories This is either Breaking or NonBreaking. A breaking rule indicates that
the functionality will not be consistent from one version to the next if
this rule is not fixed.

When you have added the Rules.xml file shown in Listing 13-11, you can then compile
the project. Copy the resulting assembly to the FxCop Rules folder (C:\Program Files\
Microsoft Visual Studio 8\Team Tools\Static Analysis Tools\FxCop\Rules).

■Note If you examine the list of rules, you will note that the new rule you created is listed there, but there
is no CheckId. This is a known issue but does not affect how FxCop runs or checks rules.

Close all instances of Visual Studio and then reopen Visual Studio. Create any type of proj-
ect and add a class field without the underscore in front of the name. Run the code analysis on
the project. Your Error List window should show the rule violation, as in Figure 13-3.

CHAPTER 13 ■ STATIC CODE ANALYSIS400

Figure 13-3. The UnderscorePrefixRule custom FxCop rule implemented

4606CH13.qxd 4/20/06 3:28 PM Page 400

Pressing F1 on a violated rule will take you to the web page (or the part of the help file)
specified by the Url value. Microsoft includes the following on the help pages to aid in fixing
the problem:

• Cause: Why the rule was broken.

• Rule Description: What the rule means.

• How to Fix Violations: The changes to make.

• When to Exclude Warnings: If it is permissible to exclude this type of warning, this
explains when you can exclude it.

• Example Code: An example of the incorrect and correct versions of code.

If you open the Code Analysis Configuration dialog box, you’ll see your custom rule listed
under the Organization Naming Rules node.

Summary
In this chapter, you learned how to perform static code analysis to identify potential problem
areas and known defects. Using the PREfast tool, you can eliminate a majority of the problems
that may cause your code to have potential security holes and other instabilities. You can sup-
press messages and ensure that some messages are treated as warnings and others are treated
as errors. On the whole, this makes working with C/C++ code much safer.

With the FxCop tool, you can ensure that your code is compliant with the latest Microsoft
specifications for writing .NET code. This provides a well-structured, robust code base, which
you can expand easily. In addition, as an organization using this tool to enforce coding stan-
dards specific to your needs, you can provide custom rules or more advanced rule checking
than the defaults provided by FxCop. Combined with the check-in policy feature of VSTS
(discussed in Chapter 3), FxCop can ensure that code created with VSTS conforms to your
organization’s standards.

CHAPTER 13 ■ STATIC CODE ANALYSIS 401

4606CH13.qxd 4/20/06 3:28 PM Page 401

4606CH13.qxd 4/20/06 3:28 PM Page 402

Performance Analysis

Testing application performance has always been one of the most difficult things to do. The
reasons for this are varied, but mostly it is because performance is just plain difficult to effec-
tively test. For example, how do you know from one test to another which one is accurate?
What are you actually performing the test on? Is it the method level or the application level?
How do you modify the application to test for performance? Once you are done with the test,
how do you interpret the results? How do you know, when you think you are measuring some-
thing, that it is all you are measuring (in other words, that you are measuring the subject of the
test and not collateral processes)? These and many other questions have, in the past, been
very difficult to answer.

Visual Studio Team System aims to help solve these problems and make sense of applica-
tion performance so you can do the following:

• Assess your application performance before deployment.

• Fix those areas that are performing poorly.

• Verify that the performance quality attributes have been met.

• Monitor production application performance as needed.

In addition, VSTS allows you to understand the results of a performance test. The results
of the test are very clearly displayed and easily understood and traced. By traced, we mean
that the call stack can be followed to determine the performance of each call made in a chain
of calls.

■Note The performance tool in VSTS can be used to monitor your applications’ performance without
logging items to the performance monitor built into Windows. Though this was easier with previous versions
of .NET, it was still not “easy” if you wanted to get information that matters to you.

With previous versions of Visual Studio, running performance tests (without the use of
very expensive tools) consisted of outputting data to log files or to the Windows Performance
Monitor and trying to make sense of these values. In the case of the Performance Monitor,
sometimes it is difficult to figure out if you are logging valid information. Performance moni-
toring in VSTS does away with all of those issues.

403

C H A P T E R 1 4

4606CH14.qxd 4/20/06 3:29 PM Page 403

This chapter focuses on how to profile an application using the VSTS performance tools,
understanding the results of a profile, and identifying performance bottlenecks in an applica-
tion. In addition, this chapter covers how to profile a production application, which is useful
if end users are having performance issues but cannot articulate them well to the develop-
ment team.

■Note Users, when they experience performance problems, are typically unable to provide details on
where and when the problems occur in an application. In addition, how do you determine if the problem is
your application or another process running on the same system? Because of this, monitoring the perform-
ance of a production application is invaluable.

Performance Profiling Terms
Before you get into actually using the performance tools, a few terms need to be explained.
This section is intended for those who have not worked with performance profiling and
analysis tools before.

■Note There is a great deal more to performance profiling and analysis, in an overall sense, than is indi-
cated in this chapter. This chapter focuses on how VSTS performance tools work, rather than on an overall
review of how performance analysis is done.

Table 14-1 defines the terms that will help you understand what is presented in this
chapter.

Table 14-1. Performance Terms

Term Definition

Sampling The process of taking periodic “samples” of application processes.
This includes incrementing a counter for the currently executing
function and recording the call stack leading to this function.

Instrumentation The process of taking detailed measurements of all aspects of code
execution. The code, during compilation, is altered to allow the
performance tool to monitor entry and exit times of each and every
function in the application.

Application time A measure of the time the application code is executing. This does
not include OS calls or any time spent waiting for threads to
execute.

Elapsed time A total measure of system time spent during a functions time. In
other words, the elapsed time is the “clock” time (absolute time)
and includes all system and other events.

Exclusive Information gathered from the executing function, and does not
include any subfunctions.

CHAPTER 14 ■ PERFORMANCE ANALYSIS404

4606CH14.qxd 4/20/06 3:29 PM Page 404

Term Definition

Inclusive Information gathered from the executing function and all of the
subfunctions.

Exclusive allocations The allocation of type instances (or memory) that occur only within
the given function.

Inclusive allocations The allocation of type instances (or memory) that occur within the
function and in all subfunctions called by the given function.

Instrumenting The process of inserting probes into the code to record data.

Probes Code placed within the source code to monitor function start/stop
times and other relevant information.

Transition events Events that occur outside of the application time. The application
time + transition events time = elapsed time.

Trace Another way of saying the application was profiled using
instrumentation.

Exclusive bytes allocated The number of bytes allocated during the execution of a given
function, excluding any subfunctions.

Inclusive bytes allocated The number of bytes allocated during the execution of a given
function and any subfunctions.

Instrumentation
As defined previously, instrumentation is a process that results in the gathering of compre-
hensive data relating to the performance of an application. To show you how this works,
Listing 14-1 shows a simple console application in C# that writes a line to the console and
waits for the user to press a key to end the application.

Listing 14-1. C# Console Application

static void Main(string[] args)
{

Console.WriteLine("This is a test.");
Console.ReadLine();

}

Listing 14-2 shows the exact same application after it has been instrumented by the per-
formance tool.

Listing 14-2. C# Instrumented Console Application

private static void Main(string[] args)
{

1 _CAP_Enter_Function_Managed((int) Microsoft.VisualStudio.Instrumentation.
g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005);

2 _CAP_StartProfiling_Managed((int) Microsoft.VisualStudio.Instrumentation.
g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005, 0xa000010);

3 Console.WriteLine("This is a test.");

CHAPTER 14 ■ PERFORMANCE ANALYSIS 405

4606CH14.qxd 4/20/06 3:29 PM Page 405

4 _CAP_StopProfiling_Managed((int) Microsoft.VisualStudio.Instrumentation.
g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005);

5 _CAP_StartProfiling_Managed((int) Microsoft.VisualStudio.Instrumentation.
g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005, 0xa000011);

6 _CAP_StopProfiling_Managed((int) Microsoft.VisualStudio.Instrumentation.
g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005);

7 Console.ReadLine();
8 _CAP_Exit_Function_Managed((int) Microsoft.VisualStudio.Instrumentation.

g_fldMMID_2D71B909-C28E-4fd9-A0E7-ED05264B707A, 0x6000005);
}

■Note The line breaks are for formatting purposes. There are really only eight lines of code here as
denoted by the line numbers for clarity.

This illustrates how instrumentation alters the code to gather data. The key thing to note
in this example is that instrumentation does add overhead to an application. Is it such a large
amount of overhead that you could not do this in production? No. It is not recommended that
you instrument a production application—but you can do it. The real issue is that, compared
to a noninstrumented application, the performance is slower.

■Caution Instrumenting production applications as a matter of course should not be done. It is best done
when you know there is a problem with the application and you need to pinpoint it using the performance
tools. For day-to-day monitoring of applications, sampling provides better performance and over the longer
term will help you narrow down the area of performance problems.

With this implementation, the performance tool can tell how long a function takes to exe-
cute, how long subfunctions take to execute, how many times a function is called, and other
detailed information. This is the real power of instrumentation: the ability to know everything
about an application while it is running. However, there is a drawback to this. Instrumentation
uses averages and totals. It does not display information about single calls.

■Tip To get information about specific calls, you can instrument an application and run it through one set
test at a time; however it can be somewhat tedious.

CHAPTER 14 ■ PERFORMANCE ANALYSIS406

4606CH14.qxd 4/20/06 3:29 PM Page 406

Sampling
Sampling, as defined in Table 14-1, takes periodic “snapshots” of your application as it is
running. It gathers the current function information and the call stack and stores it for later
analysis. It does not alter the code output from a build. Instead, the performance tool “inter-
rupts” a running application to gather data at a user-defined interval.

The information provided by sampling is not a complete picture of the application. It
does not include information such as the amount of time spent in a function, or the time
spent in anything, for that matter. It simply provides information on the number of times a
method is invoked, and how many other types are allocated during the invocation. This pro-
vides indirect evidence of how an application is performing. A method being called too many
times may indicate a problem with how the code is structured.

On the other hand, sampling does not provide information on all the functions in your
application. Since it takes only periodic readings, you may not see the allocation information
for a method you are curious about. This is one of the drawbacks of using sampling.

Running a Performance Test
Now that you understand the differences between instrumentation and sampling it is time to
actually run a performance test and examine the results.

■Note For comparison purposes later on, this exact test was run twice: once with instrumentation selected
and once with sampling selected.

1. Open the sample application.

2. Select Tools ➤ Performance Tools ➤ Performance Wizard.

3. Select the default profile by clicking Next (see Figure 14-1).

4. Select the Instrumentation test and click Next.

5. Click the Finish button.

6. Next, the Performance Explorer will open (see Figure 14-2).

7. Right-click the root node in the Performance Explorer (EffortTrackingWeb.psess) and
select Properties.

8. On the General tab of the properties dialog check the “Collect .NET object allocation
information” and the “Also collection .NET object lifetime information” options and
click OK (this dialog will be covered in detail in the section “Performance Session
Options” later in this chapter).

CHAPTER 14 ■ PERFORMANCE ANALYSIS 407

4606CH14.qxd 4/20/06 3:29 PM Page 407

Figure 14-1. Performance Wizard page 1

The Performance Explorer window opens with one test that is set to be run on the
EffortTrackingWeb and there are no reports. Before running the test, build the application
using the Release configuration. To launch the application, click the Launch button on the
Performance Tools toolbar and not the regular Run button.

For this first test, keep things simple and perform the following steps:

1. Enter new user login information (username = PerformanceUser, password =
password, Verify Password= password) and click New User.

2. Click the Add button.

3. Enter Chapter 1 for the title, Read it for the description.

4. Leave all of the other drop-downs as they are and click Save.

5. After the default screen reloads, select the entry you just added by clicking the
Edit link.

6. Change the title to “Test” and click Save.

7. Exit the application.

As you can see, running a performance test is straightforward and simple. There are no
additional steps. You just need to remember to launch the test from the Performance Explorer.

CHAPTER 14 ■ PERFORMANCE ANALYSIS408

4606CH14.qxd 4/20/06 3:29 PM Page 408

■Tip When running an instrumented performance test, the probes are inserted during compile, but after
the test is run, binaries are reverted. This means that the probes are removed! The code used for a perform-
ance test cannot be instrumented for deployment using this process. This is discussed later in the section
“Profiling Production Applications.”

Understanding the Performance Report
Figure 14-2 shows the results of your first test of the performance analysis tool, and the
Performance Explorer (if the report does not show up, double-click the report in the Perfor-
mance Explorer). In this section you will examine each of the parts of the performance report
and learn how to understand the information presented. Each page of the report provides
information about your application with a different view into the data. Later you will see how
to use the information to improve your application performance.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 409

Figure 14-2. Performance Report Summary (Instrumentation) and Explorer

Summary Tab
The summary page contains general statistics about your application. Some of the properties
(such as the number of most called functions) can be changed via the options dialog, which
you will see later in this chapter. Also, each of the tabs displays different information, depend-
ing on whether you ran a sampled or instrumented performance test. The differences for each
will be discussed in the following sections.

The summary for a performance test using sampling displays other information. The
information presented is summarized and described in Table 14-2.

4606CH14.qxd 4/20/06 3:29 PM Page 409

Table 14-2. Summary Tab Description

Type Measurement Description

Instrumentation Most Called Functions List of functions that were
called the most.

Instrumentation Functions With Most Individual Work List of functions that,
exclusively, took the longest
time to execute.

Instrumentation Functions Taking Longest List of functions that,
exclusively, but including
application time, took the
longest to execute.

Sampling Functions Allocating Most Memory List of functions that allocated
the most bytes.

Sampling Types With Most Allocated Memory List of types and how many
bytes were allocated to
instances of that type.

Sampling Types With Most Instances List of types that were instan-
tiated the most.

For comparison purposes, the summary page of the sampled performance session is
shown in Figure 14-3.

Figure 14-3. Performance Report Summary (Sampling)

Double-clicking any item on this page will take you to that item on the Functions view.
Optionally you can right-click the item and select one of the following three choices: View
Source Code (for non-Framework functions), the Function View for that method, and the
Caller/Callee graph for that function (either the functions called by the function or the func-
tion that called the functions.

CHAPTER 14 ■ PERFORMANCE ANALYSIS410

4606CH14.qxd 4/20/06 3:29 PM Page 410

If you look through both reports (included with the downloaded code) you will note that
some functions are just not listed in the sampled performance data. Those functions that are
listed in both have a lower instance count in the sampled data vs. the instrumented data.

Functions Tab
The function page reports on each individual function (or just the sampled functions) called
during the course of the testing run. Figure 14-4 shows one view of the Function tab of the
performance report.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 411

Figure 14-4. Function tab of the Performance Report (Instrumentation)

The columns on each of the tabs (with the exception of the Summary tab) are customiz-
able. You can add or remove or change the order the columns are displayed in. To do this,
right-click anywhere in the report window and select Add/Remove Columns. The list of
columns for both types of performance tests is extensive and allows you to see every bit of
data collected about each function. The following two lists show the complete data available
for the Functions tab. Other windows contain other columns of data specific to those windows.

This list shows the column names for the instrumentation data:

4606CH14.qxd 4/20/06 3:29 PM Page 411

• Function Name

• Number of Calls

• Elapsed Exclusive Time

• Function Address

• Line Number

• Percentage of Calls

• Source File Name

• Process Name

• Module Name

• Module Path

• Module Identifier

• Application Exclusive Time

• Elapsed Inclusive Time

• Application Inclusive Time

• MAX Elapsed Exclusive Time

• MAX Application Exclusive Time

• MAX Elapsed Inclusive Time

• MAX Application Inclusive Time

• MIN Elapsed Exclusive Time

• MIN Application Exclusive Time

• MIN Elapsed Inclusive Time

• MIN Application Inclusive Time

• AVG Elapsed Exclusive Time

• AVG Application Exclusive Time

• AVG Elapsed Inclusive Time

• AVG Application Inclusive Time

• % Elapsed Exclusive Time

• % Application Exclusive Time

• % Elapsed Inclusive Time

• % Application Inclusive Time

CHAPTER 14 ■ PERFORMANCE ANALYSIS412

4606CH14.qxd 4/20/06 3:29 PM Page 412

• Exclusive Transitions

• Inclusive Transitions

• Process ID

• Unique Process ID

• Unique ID

• Exclusive Transitions Percentage

• Inclusive Transitions Percentage

• Root Node Recursion

• Time Exclusive Probe Overhead

• Time Inclusive Probe Overhead

The following is a list of column names available in the sampling data:

• Function Name

• Exclusive Allocations

• Inclusive Allocations

• Exclusive Bytes Allocated

• Inclusive Bytes Allocated

• Line Number

• Source File Name

• Module Name

• Module Path

• Process Name

• Exclusive Allocations Percent

• Inclusive Allocations Percent

• Exclusive Bytes Percent

• Inclusive Bytes Percent

• Process ID

• Unique Process ID

• Unique ID

• Module Identifier

• Function Address

CHAPTER 14 ■ PERFORMANCE ANALYSIS 413

4606CH14.qxd 4/20/06 3:29 PM Page 413

■Note The MSDN documentation on this subject is very complete. Refer to the Functions View in the
MSDN documentation to see the definition of each column available for the report.

One thing you may have noticed while looking at the performance results is that it is not
at all obvious where the application code is located. This is because with web applications,
which use the shadow copy mechanism, the actual website is not instrumented or sampled,
the shadow copy is. The way .NET 2.0 works (at least as far as it relates to being able to find
code for a website in the performance report) is that the shadow-copied code is prefixed with
the folder it resides in for the website. Looking at the report results in Figure 14-4 you can see
that App_Web contains code in the root website folder. Code contained in lower branches are
prefixed with the folder name. So the edit.aspx page is noted in the App_Web\secure folder
and indicated by ASP.secure_edit_aspx. Anything that refers to the actual web page ends with
_aspx and any code residing in those pages is noted by the page name, a period, and the
method name (for example the Login_aspx.ctor()).

Caller/Callee Tab
This tab displays information about specific calls and the (partially sorted) order in which
they are made (explained later on). The function that is being examined is displayed on the
Current function line (see Figure 14-5). The function that called that function (the caller) is
listed above it and the functions called by it (the callees) are listed below it. The reason the
list is only partially ordered is because many different functions can call one function and
one function can call many different functions (for example, if you are using many else state-
ments). Therefore, this list of calls is not always accurate.

Figure 14-5. Caller/Callee tab of the Performance Report (Login.btnNew_Click)

CHAPTER 14 ■ PERFORMANCE ANALYSIS414

4606CH14.qxd 4/20/06 3:29 PM Page 414

To understand this information, examine the data in Figure 14-5. This information tells us
that the call to the btnNew_Click function triggered a call to the AddUser function of the web
service and that the constructor was called next. You might be telling yourself right now that
something looks wrong with this. You would be right. This is out of order, as you will see in the
next section, “Calltree Tab.”

■Caution Because in many cases only a partially sorted order of function invocations is listed, it is not
always practical or advisable to use this list to determine the order of the call stack at any given time except
in a very general sense. Keep this in mind when looking at the following set of points. Being able to view this
list and easily understand it only works because the application was run once through a very specific set of
steps so it would be easily understandable by the reader.

To help you understand, line by line, this display is telling you

• The New User button was clicked.

• The Service object (web service) was instantiated.

• The AddUser method was called.

• The authorization cookie was set.

• The user was redirected to another page (the default page).

These types of low-level details concerning your applications call stack can be invaluable
in solving performance-related issues. One additional piece of very-nice-to-have functionality
is that you can double-click any function in the Caller/Callee view and that function will
become the Current function.

■Caution It is extremely important to note, when looking at the Caller/Callee view, that it is an aggrega-
tion of all the calls leading up to and called by a function. This detail is broken down into specific information
on the Calltree tab, discussed next.

Calltree Tab
The Calltree tab is used to display all levels of a given call tree, whereas the Caller/Callee tab
displays aggregate information and only three levels of the call tree. The Calltree tab gets into
the details whereas the Caller/Callee tab really contains the overview information. The call
tree helps you trace a call from the beginning to the end of the call sequence and allows you
to determine if there are calls that you did not intend to make that may be wasting time
unnecessarily.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 415

4606CH14.qxd 4/20/06 3:29 PM Page 415

As was pointed out in the previous section, the call order is incorrect for the invocation of
the AddUser function. To see the actual call tree, switch to the Calltree tab. Then expand the
Login.btnNew_Click node and all of the other children nodes underneath that node. Your view
should look like that in Figure 14-6.

Figure 14-6. The Calltree tab

The call tree for the AddUser service call involves invoking the service constructor (the
service then runs through its startup processes) and then invoking the AddUser function. This
is the actual order of calls made for a given set of calls. You can switch to several other views by
right-clicking the function in the list and selecting the appropriate view.

Allocation
When you set up the test at the beginning of this chapter, you elected to collect the .NET
object allocation information. If you had not selected this option, this tab would be empty.
By default, the allocation and lifetime information is not collected as part of a performance
session.

This information is extremely useful for determining how much memory objects con-
sumed and how many times they were instantiated (allocated) during the course of an
application. This provides a detailed breakdown. Note also that this information can be seen
on the Functions tab by selecting the appropriate columns. Figure 14-7 shows the object
allocation information (partially) for the performance session.

Expanding the instantiated object type will show you the method that instantiated the
object. As you can see in Figure 14-7 the localhost.Service class was instantiated by several
different methods, including the LoadCategory method, the LoadRecord method, and the
btnNew_Click method.

CHAPTER 14 ■ PERFORMANCE ANALYSIS416

4606CH14.qxd 4/20/06 3:29 PM Page 416

Figure 14-7. Application allocation information

Objects Lifetime
Object lifetime information is displayed in the last tab of the performance report. This tab
gives you details on the garbage collection patterns related to a given object. Figure 14-8
shows the Objects Lifetime tab. However, as a preview of improving performance, this view
shows how many objects were collected in Gen2. Objects collected in Gen2 cause perform-
ance problems because they require a complete stack walk to collect them. This essentially
pauses the application.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 417

Figure 14-8. Objects Lifetime tab

4606CH14.qxd 4/20/06 3:30 PM Page 417

The columns on this tab are described in Table 14-3.

Table 14-3. Objects Lifetime Tab Columns

Column Description

Class Name The name of the class being described.

Instances The number of instances of the class created during
the session.

Total Bytes Allocated The number of bytes allocated for all instances of
the object that were created.

% of Total Bytes Percentage of the number of bytes allocated during
the performance session.

Gen 0 Instances Collected Number of instances collected in generation 0.

Gen 1 Instances Collected Number of instances collected in generation 1.

Gen 2 Instances Collected Number of instances collected in generation 2.

Large Object Heap Instances Collected Number of instances collected from the heap.

■Note Garbage collection is beyond the scope of this book. For a detailed discussion of garbage collection
in .NET, see Jeffrey Richter’s excellent MSDN article from December 2000 available on MSDN: http://
msdn.microsoft.com/msdnmag/issues/1200/GCI2/default.aspx.

Performance Session Options
Now that you have run a performance session and reviewed a performance session report it is
time to dive into the options available to you and learn when to use them. To get to a perform-
ance session’s options, open the Performance Explorer window (if it is not already open, you
can access it by selecting View ➤ Performance Explorer from the main menu). The perform-
ance session nodes are bold and contain the Targets and Reports folders. Right-click the root
node (from the previous examples this would be EffortTrackingWeb.psess) and select Proper-
ties. Table 14-4 covers the available options.

■Tip There are two sets of property pages for the performance tools: the one that you just opened and a
node in the Options for Visual Studio. Those options are covered later in this section.

CHAPTER 14 ■ PERFORMANCE ANALYSIS418

4606CH14.qxd 4/20/06 3:30 PM Page 418

Table 14-4. Performance Session Options

Tab Option Description

General Profiling collection Allows you to choose between
instrumentation and sampling types of
performance monitoring.

.NET memory profiling Indicates whether the performance
collection session should include statistics about

the .NET Framework and its memory
usage.

Report Allows you to specify the location for
the reports, the name, the naming
convention, and whether the reports
are added to the project.

Launch Binary selection Allows you to select the order in which
the binaries are launched. The binaries
that are identified here are those in the
Target folder of the performance
session. See the “Target Options”
section of this chapter.

Sampling Sample Event Allows you to specify what type of event
you are sampling. The options are Clock
Cycles, Page Faults, System Calls, and
Performance Counter.

Interval Sets the length of time or number of
operations before the data is sampled.
This is Sample Event–specific.

Available performance Shows the performance counters you
counters can choose to sample. This only applies

to the Performance Counter sampling
event.

Binary Relocate instrumented Allows the binaries to be profiled and
binaries to be compiled and run from a different

location.

Instrumentation Pre/post instrumentation Allows you to specify commands to
events run either before or after the

instrumentation session occurs. These
activities can be instrumented or not,
depending on your needs.

Advanced Additional instrumentation Allows you to supply command-line
options arguments to the performance

application (discussed in the section
“Profiling Production Applications”
later in this chapter).

Counters Collect on-chip counter Allows you to collect performance
performance data information as it relates to the actual

CPU. This information is more useful
for understanding the processes
occurring on the system while your
application is being profiled.

Continued

CHAPTER 14 ■ PERFORMANCE ANALYSIS 419

4606CH14.qxd 4/20/06 3:30 PM Page 419

Table 14-4. Continued

Tab Option Description

Events Event trace providers Allows you to specify that you will
collect performance trace data from
a number of providers. This is
information that typically goes directly
to the Performance Monitor in
Windows.

General* General settings Allows you to choose to display the
performance information by number of
clock cycles or in milliseconds. You can
also change the number of functions
displayed in the summary view on the
first page of the performance report.

*The General settings are in the Tools ➤ Options ➤ Performance Tools dialog; they are not part of the Other
performance options dialog.

Target Options
Right-clicking the Target folder in the Performance Explorer will allow you to specify the
binary, project, or existing website you want to profile. In general, you will be targeting proj-
ects you are currently working on, but there will be many instances where you will want to
profile an existing application. How many times has a customer come to you and said that the
website was acting slow or that certain pages were taking a long time? In such a case, there is
no way to go in and diagnose specific problems on the pages except by looking at general
server logs and hoping it is the server causing the problems. By using the profiler, you will
gain a great deal more information about the application and its performance issues.

■Note In order to be able to profile production applications, Visual Studio can be installed on the system
where the binaries you want to profile are located. Since the overhead of having Visual Studio installed can
have its own effect on the performance of a production application, you can profile applications using the
command-line tools, which do not require Visual Studio to be on the target system. This is described in the
section “Profiling Production Applications” later in this chapter.

Once you have added a target to the Target folder you can set certain options for just that
target (right-clicking the target brings up target-specific options). You may choose to launch a
different assembly or website and thereby override the settings of the target you are currently
pointing to. Additionally, because multiple targets may be run during a performance session,
you can elect to specify code (or command-line applications) to run pre- and post-target acti-
vation during the performance session.

CHAPTER 14 ■ PERFORMANCE ANALYSIS420

4606CH14.qxd 4/20/06 3:30 PM Page 420

Profiling Unit Tests
Yes, exactly what the title says; you can profile a unit test! This allows you to create perform-
ance sessions that do not require you to walk through your application each time, and allows
you to pinpoint specific functionality for testing. This is an invaluable ability but a little lim-
ited in this release.

To profile a unit test (note that this is singular because you can only profile one unit test
at a time) you need to run the test first (without profiling it). When the test results are dis-
played, right-click the test you want to profile and select Create Performance Session.

■Note This will not work for Ordered Tests, only for individual tests.

This will bring up the Performance Wizard in which you can select Sampling or Instru-
mentation for the test. Once you have finished with the wizard, a new Performance Session in
the Performance Explorer is displayed. Simply select the correct session and launch the per-
formance test.

■Tip Because you can profile only one test, it is a good idea to create a data-driven test to profile—one
that will be run many times—in order to get the most valuable results.

When the test is complete, the performance results for the code tested will be displayed.
Viewing a performance result in this format is extremely helpful because it does not contain
an overwhelming amount of information and you can comfortably digest the information.
This will allow you to discover issues in individual methods (or processes, depending on how
complicated your unit test is) and fix them easily (well, hopefully).

Profiling Web/Load Tests
After all of this, you have to be asking yourself if it is possible to run performance profiles for
existing tests. The answer is yes, you can, but it is not quite an automated process. It is not
built into VSTS, per se, but there is a simple workaround for it. To profile a web or load test,
do the following:

1. Create a performance test.

2. Create a Web or Load test.

3. Launch the performance session from the Performance Explorer.

4. Minimize the browser (this is the key part here).

5. Run the Web or Load test.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 421

4606CH14.qxd 4/20/06 3:30 PM Page 421

6. Click OK when the message saying the process is already being profiled appears. The
test will begin after this.

7. Close the minimized browser window.

■Caution You must disable code coverage by unselecting all assemblies marked for code coverage in the
configuration file used by the Web or Load test.

This will provide you with a set of performance data you can use to consistently compare
performance for the same test run again and again. You can either sample or instrument these
tests, but we would recommend you instrument them to be able to perform more accurate
comparisons between one run and another.

Profiling Production Applications
Now that you have seen how to profile applications in the development environment, it is
time to understand how to do it in a production environment. Before you begin profiling a
production application you should have a good reason for doing so. Any of the standard
answers will work: the application runs slowly; the application is using a huge amount of CPU
time or memory; the system the application is running on is starting to slow down; etc. So now
that you have your good reason for profiling a production application, you need to know how
to profile it.

■Tip For non-ASP.NET applications, the best practice is to run a sampled performance profile first in order
to help pin down possible problem areas. For ASP.NET applications, however, an instrumented performance
profile should be run first. The reason for this is that an instrumented profile will target only the application
code. A sampled profile will target not only the application, but the entire ASP.NET/IIS system.

Before you begin profiling a production application you must install the performance
tools redistributable on the machine that houses the application you want to profile. You can
install Visual Studio on the production box, but it is not recommended because it may cause
other problems. When you install the performance tools, you are installing the assemblies you
need to run performance tests, and the command-line tools, which allow you to run the tests.
These tools are detailed in the next section.

Command-Line Performance Tools
VSTS includes five command-line tools that are available to run performance profiles and
report the results. These tools and their purpose are listed in Table 14-5.

CHAPTER 14 ■ PERFORMANCE ANALYSIS422

4606CH14.qxd 4/20/06 3:30 PM Page 422

Table 14-5. Command-Line Performance Tools

Application Description

VSInstr Performs the instrumentation of the binaries, which can then be deployed to
a production machine.

VSPerfCmd Starts and stops the performance profiling.

VSPerfMon Can also be used to start and stop performance profiling, but contains
different options than the VSPerfCmd application (discussed briefly below).

VSPerfClrEnv Sets CLR environment options so the performance tools can be properly
loaded.

VSPerfReport Creates the performance reports (or a subset of those reports that you see in
the IDE).

Because the MSDN documentation contains detailed information about each of these
applications the information will not be re-presented here.

■Tip To find information about these applications in the MSDN documentation, go to its table of contents,
navigate to Visual Studio Team System ➤ Team Edition for Developers ➤ Analyzing Application Performance
➤ Command-Line Tools.

The next sections focus on how to profile applications using these tools.

Profiling Windows Applications and Windows Services
By Windows applications, we mean any application deployed to a machine. This can be one
part of an application (i.e., the front end of a distributed application, a console application,
or a custom server) or the complete application. It does not include Windows services or
ASP.NET applications. Windows services are discussed at the end of this section because the
steps are only slightly different for a Windows service than for a Windows application. For this
example, the application being instrumented is the console application presented in Listing
14-1. It was compiled using the Release configuration. The application name is Performance-
InstrumentationExample and it is located in the root of drive C (C:\). To profile this
application using instrumentation, take the following steps (sampling is described afterward):

1. Open the Visual Studio Command Prompt.

2. Navigate to the Performance Tools location (the default installation is C:\Program
Files\Microsoft Visual Studio 8\Team Tools\Performance Tools).

3. Run the following (use /globalsampleon to run sampling performance tests):

vsperfclrenv /globaltraceon

This sets up the CLR to enable the loading and running of performance tools.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 423

4606CH14.qxd 4/20/06 3:30 PM Page 423

4. Reboot the machine.

5. Restart the Visual Studio Command Prompt and navigate back to the Performance
Tools folder (you can avoid this step by adding the location to your path environment
variable—see Windows help for how to do this).

6. Run the following:

vsinstr C:\PerformanceInstrumentationExample.exe

This instruments the binary and renames the original file to
PerformanceInstrumentationExample.exe.orig and creates a symbol file called
PerformanceInstrumentationExample.exe.pdb.

7. Run the following (use /sample instead of /trace for a sampled performance test)
which starts the profiling:

vsperfmon /trace /output:c:\PerformanceInstrumentationResults.vsp

8. Launch the application and once the message is displayed press any key to end the
PerformanceInstrumentationExample application.

9. Start a new Visual Studio Command Prompt and navigate to the Performance Tools
folder. (This is necessary because the first command prompt contains the running
VSPerfmon application and nothing else can be entered in that window.)

10. Run the following:

vsperfcmd –shutdown

11. Run the following:

vsperfreport C:\PerformanceInstrumentationResults.vsp /packsymbols

This compiles the report with whatever options you choose. Packsymbols stores the
symbols so the report can be viewed on another machine.

12. Run the following:

vsperfclrenv /globaloff

This removes the ability to load profile information and can be a performance issue if
not done.

13. Reboot the machine.

The test report can now be viewed in Visual Studio.

■Tip If you are running multiple performance tests (i.e., one after another), then do not re-run the
vsperfclrenv /globaloff command until after you are done with all of the tests. However, Microsoft notes that
not running this once you are done profiling an application can have an adverse effect on the application.

CHAPTER 14 ■ PERFORMANCE ANALYSIS424

4606CH14.qxd 4/20/06 3:30 PM Page 424

This is the basic process for using the command-line tools to instrument and run per-
formance tests on production applications. This process is essentially the same for ASP.NET
applications and for Windows Services applications although there are some differences.
These differences are described in the following sections.

■Tip Remember that when you are sampling an application you never have to instrument the assemblies;
so that step is always skipped. In addition, remember that the options for the CLR environment are
/globaltrace (on or off) for instrumentation performance tests, and /globalsample (on or off) for sampling
performance tests.

To profile an application using sampling, you would start the application (which in the
case of the sample application is not particularly useful since everything occurs on startup)
and attach to the process using the vsperfmon /attach [PID]. Then you would use the applica-
tion; when it is complete you would use the vsperfmon /detach command.

To profile a service, using either sampling or instrumentation, the only changes you
would make would be to start the monitor (include the /user parameter option of the
vsperfcmd application with the username the service is running under); start the service;
attach to the executable the service is running; run the tests; and detach afterward. The setup
and shutdown steps are the same as listed above.

Profiling ASP.NET Applications
ASP.NET applications contain their own bit of complexity in that they run under a separate
process and can be precompiled or dynamically compiled. On top of this, the process for
sampling an ASP.NET application is slightly different than that of instrumenting the same
application. ASP.NET applications come in a couple of different flavors with version 2 in .NET.
Assemblies in a web application can be precompiled or contain dynamically built assemblies
(built at runtime). Precompiled assemblies are those assemblies that are copied to the bin
folder of the virtual directory. Everything else is dynamically compiled (this consists of web
pages, code behind pages, and code located in the App_Code folder). Either of these can be
instrumented.

Instrumenting Precompiled ASP.NET Applications
To instrument precompiled assemblies in ASP.NET, do the following:

1. Open the Visual Studio Command Prompt.

2. Navigate to the Performance Tools location.

3. Run the following:

vsperfclrenv /globaltraceon

4. Reboot the machine.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 425

4606CH14.qxd 4/20/06 3:30 PM Page 425

5. Restart the Visual Studio Command Prompt and navigate back to the performance
tools folder.

6. Run the following:

vsinstr [path to assembly]

7. Run the following:

vsperfmon /trace /output:[File Name].vsp /user:"[ASP.NET worker process user]"

8. Run the tests against the web application.

9. Start a new Visual Studio Command Prompt.

10. Run the following (the iisreset.exe program is located in the %windir%\sytem32
folder):

iisreset /stop

Note that this will stop IIS, so be aware of everything running under IIS at the time,
or just stop the IIS process by using the Services window or the IIS Administrator
Console.

11. Run the following:

vsperfcmd –shutdown

12. Run the following:

vsperfreport [File Name].vsp /packsymbols

13. If you are going to perform more testing, run the following (or restart it from the
Services window or the IIS Administration Console):

iisrestart /start

14. Run the following:

vsperfclrenv /globaloff

15. Reboot the machine.

Instrumenting Dynamically Built ASP.NET Applications
To instrument dynamically built assemblies in ASP.NET, do the following:

1. Open the Visual Studio Command Prompt.

2. Navigate to the Performance Tools location.

3. Run the following:

vsperfclrenv /globaltraceon

4. Reboot the machine.

CHAPTER 14 ■ PERFORMANCE ANALYSIS426

4606CH14.qxd 4/20/06 3:30 PM Page 426

5. Back up the application’s web.config file.

6. Update (or alter) the web.config file for the website with the information presented in
Listing 14-3.

Listing 14-3. Web.Config Changes for Dynamic Code Instrumentation

<!-- Add or modify the compilation tag -->
<system.web>
<compilation assemblyPostProcessorType=
"Microsoft.VisualStudio.Enterprise.Common.AspPerformanceInstrumenter,
Microsoft.VisualStudio.Enterprise.ASPNetHelper, Version=8.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</system.web>

<!—Add or modify the runtime tag
Note there are no spaces in the href – this is a formatting
consideration for the book. -->
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="Microsoft.VisualStudio.Enterprise.ASPNetHelper"

publicKeyToken="b03f5f7f11d50a3a" culture="neutral" />
<codeBase version="8.0.0.0"

href="file:///C:/Program%20Files/Microsoft%20Visual%20Studio%208
/Common7/IDE/PrivateAssemblies
/Microsoft.VisualStudio.Enterprise.ASPNetHelper.DLL" />

</dependentAssembly>
</assemblyBinding>

</runtime>

<!-- Add or modify the appSettings tag to include the following two tags
Note, there are no spaces in the value – this is a formatting
consideration for the book -->
<appSettings>

<add key="Microsoft.VisualStudio.Enterprise.AspNetHelper.VsInstrLocation"
value="C:\Program Files\Microsoft Visual Studio 8\Team Tools\Performance
Tools\vsinstr.exe" />

<add key="Microsoft.VisualStudio.Enterprise.AspNetHelper.VsInstrTools"
value="C:\Program Files\Microsoft Visual Studio 8\Team Tools\Performance Tools\" />
</appSettings>

7. Run the following:

vsinstr [path to assembly]

8. Run the following:

vsperfmon /trace /output:[File Name].vsp /user:"[ASP.NET worker process user]"

CHAPTER 14 ■ PERFORMANCE ANALYSIS 427

4606CH14.qxd 4/20/06 3:30 PM Page 427

9. Run the tests against the web application.

10. Start a new Visual Studio Command Prompt.

11. Run the following:

iisreset /stop

The iisreset.exe program is located in the %windir%\sytem32 folder. (Note that this
will stop IIS, so be aware of everything running under IIS at the time, or just stop the
IIS process by using the Services window or the IIS Administrator Console.)

12. Run the following:

vsperfcmd –shutdown

13. Run the following:

vsperfreport [File Name].vsp /packsymbols

14. Restore the web.config file (unless you are going to do more testing).

15. Run the following (or restart it from the Services window or the IIS Administration
Console):

iisrestart /start

16. Run the following:

vsperfclrenv /globaloff

17. Reboot the machine.

Here are a couple of notes related to what shows up in the changes to the web.config file:

• The public key token for the ASPNetHelper assembly must match the entry here.

• The HREF for the code base must be a file URL and not a path name.

• To determine the username of the ASP.NET worker process, open the Process Manager,
display the username and PID columns, and look for either aspnet_wp.exe (usually on
Win2k or WinXP machines) or w3wp.exe (on Win2k3).

Sampling an ASP.NET Application
The process for sampling an ASP.NET application is slightly different because the generated
code (whether it is the dynamic or precompiled assemblies) is not altered. To sample an
ASP.NET application, take the following steps:

CHAPTER 14 ■ PERFORMANCE ANALYSIS428

4606CH14.qxd 4/20/06 3:30 PM Page 428

1. Open the Visual Studio Command Prompt.

2. Navigate to the Performance Tools location.

3. Run the following:

vsperfclrenv /globaltraceon

4. Reboot the machine.

5. Run the following:

vsinstr [path to assembly]

6. Run the following:

vsperfmon /sample /output:[File Name].vsp /user:"[ASP.NET worker process user]"

7. Run the following:

vsperfcmd /attach:[ASP.NET Worker Process PID (Process ID)]

8. Run the tests against the web application.

9. Start a new Visual Studio Command Prompt.

10. Run the following:

vsperfcmd /detach

11. Run the following:

vsperfcmd /shutdown

12. Run the following:

vsperfreport [File Name].vsp /packsymbols

13. Run the following:

vsperfclrenv /globaloff

14. Reboot the machine.

As you can see, this process is much simpler, since the profiler is only attaching to an
existing process.

■Tip The VSTS profiling team recommends that you get the CPU running 100% for several minutes during
the test to get usable results.

CHAPTER 14 ■ PERFORMANCE ANALYSIS 429

4606CH14.qxd 4/20/06 3:30 PM Page 429

Summary
This chapter has introduced to you what may be a whole set of new concepts regarding
performance profiling of an application. You have learned why you need a performance test-
ing/profiling tool and how it can be used by a development team to improve application
performance. In addition, you can now read the performance report and understand what the
various terms and results mean, and you can put these in perspective to solve a performance
problem. This ability will only help developers and development teams write better, more effi-
cient code in the short and long term.

With these tools you can now profile unit tests, web tests, and load tests in order to find
problems with an application at various stages in the development life cycle. This allows you
to catch problems at an earlier (and less costly) stage. In addition, once you move out of the
development phase and into production you also have ways to monitor applications.

Because VSTS allows you to monitor production applications, you can discover why they
may not be running correctly. Too often production systems have performance problems that
don’t occur during testing and become large problems in production. With the ability to moni-
tor production applications, you can quickly and easily diagnose a problem—whether it is in
the application itself or in the machine it is running on. This leads to lower maintenance costs,
because less time is needed to fix any given problem.

CHAPTER 14 ■ PERFORMANCE ANALYSIS430

4606CH14.qxd 4/20/06 3:30 PM Page 430

Team Edition for
Software Testers

P A R T 4

4606CH15.qxd 4/20/06 3:31 PM Page 431

4606CH15.qxd 4/20/06 3:31 PM Page 432

Web Testing

Up to this point you have seen various testing tools within Visual Studio Team System. This
chapter brings you the one tool that will probably get the most amount of use in today’s envi-
ronment—the web testing tool. Web testing tools allow you to test an application in the same
way that a user would actually use your application—that is, by filling in entries on a web
page, submitting those entries, navigating web pages, and so forth. This chapter will introduce
you to the new (and improved) tools in Visual Studio Team System to help you get the most
out of your web applications. You will also learn how to use the web testing tool to test web
services by creating SOAP calls.

■Note Microsoft has yet to incorporate functional test tools for Windows forms-based applications.

While the next chapter covers load testing, every load test must start with a web test. For
this reason, it is almost guaranteed that you will have different versions of various web tests—
some that test for specific conditions, to ensure the application responds appropriately, and
some that perform a task or a series of tasks correctly every time. The latter tests will be used
to test “happy” path functionality, and the former will be used to test happy, alternate, and
exception-path functionality. The happy-path functional tests will serve as the basis for run-
ning your load tests.

Web testing in previous versions of Visual Studio is accomplished with Application Center
Test (ACT). ACT is a decent tool that allows you to script actions and play those scripted
actions in order to test functionality. In general, though, ACT is designed as a load-testing
tool and does not perform much in the way of functional testing. This lack of functionality
is one of the key reasons why the web test tools were created.

Another reason for this flexible and powerful testing tool is the continuing shift toward
web-based applications. While web-based applications are not suitable for all applications,
there are a large number that can be used in a web environment with little extra work. Web
applications also provide the advantage of a simple deployment and maintenance process,
since no desktop installations are required. Because many new applications today are web-
based, this tool will prove of use to almost anyone writing new applications for the web.

Web tests come in two different flavors—recorded tests and coded tests. Recorded tests,
which you launch in a browser, record the session while you run through the functionality in
your application. Coded tests are those where you code each step, one at a time. The playback

433

C H A P T E R 1 5

4606CH15.qxd 4/20/06 3:31 PM Page 433

is the same for both except that there is no user interface for a coded test. In general, you will
always record a test first and then convert it into code so that you have a good starting point
and do not have to do some of the mundane work.

Recording Web Tests
To begin, select Test ➤ New Test from the main menu and then select Web Test. Change the
test name to CreateNewUser.webtest and create a new C# or Visual Basic (VB) project to con-
tain the test.

■Tip Typically, developers will create unit test projects, and the quality assurance testers will create func-
tional test projects (those projects containing web and load tests).

Call the new project “EffortTrackingWebTests.” The first thing that occurs after you create
your new test project is that the test recording pane will be displayed in your browser as
shown in Figure 15-1.

Figure 15-1. The web test recording pane

CHAPTER 15 ■ WEB TESTING434

4606CH15.qxd 4/20/06 3:31 PM Page 434

Navigate to the EffortTrackingWeb website (if you used IIS, your website will be at http://
localhost/EffortTrackingWeb/secure/Default.aspx) to begin recording the web test. This will
bring up the Login page. Do the following:

1. In the User Name textbox enter WebTestUser1.

2. In the Password textbox enter password.

3. In the Verify Password textbox enter password.

4. Click Add User.

Once you have done this, the browser window should look like the one in Figure 15-2.

Figure 15-2. Recorded web test

Click the Stop button in the Web Test Recorder Pane.

■Tip At any point during the test you can pause it in order to take other actions with the browser. An exam-
ple of this might be when you come to a page that should not have a record on it and you want to delete it
before continuing the test. You may pause the test, delete the record, and then continue recording the test.

CHAPTER 15 ■ WEB TESTING 435

4606CH15.qxd 4/20/06 3:31 PM Page 435

When you are finished you will see the WebTest1.webtest window in the IDE as shown in
Figure 15-3.

Figure 15-3. The Web Test window

You have now recorded your first web test—and it was simple. The first and most obvious
thing you will note by looking at this window is that it contains almost the same information
as the recording window, in that it records the pages you visit and the order you visit them. It
also captures query string content, hidden field content, and form field content. All of this is
configurable. There is no more to recording a web test than this.

■Note This test as a stand-alone test is not very useful because it can only be run once. The second time
it is run an exception will be thrown since the username cannot be duplicated. Therefore, a test preparation
script must be run in order to allow this test to be used over and over again with the same results.

To make these demonstrations easier, record a second test that uses the WebTestUser1
user that you just created by doing the following:

1. Select Test ➤ New Test from the main menu.

2. Select Web Test and call it AddItem and click OK.

3. When the recording window opens, navigate to http://localhost/EffortTrackingWeb/
secure/Default.aspx.

CHAPTER 15 ■ WEB TESTING436

4606CH15.qxd 4/20/06 3:31 PM Page 436

4. On the login page enter the username as WebTestUser1 and the password as password
and click Login.

5. Click the Add button.

6. For the Title enter Test Entry.

7. For the Description enter Description of Test Entry.

8. Click Save.

9. Stop the test.

Now you have a test that can be easily worked with and requires no setup script to run.
There are no constraints on the names of the items entered into the effort tracking system, so
they can all be identical if you choose (although you will see how to programmatically change
this as you progress through the chapter).

Test Steps Explained
The test steps are fairly straightforward, in that they comprise an ordered list of URLs visited
during the recording of the test. For each URL, a number of pieces of information are recorded
(as explained in the next section “Test Detail Properties”) and stored. Since you will be using
the AddItem test for the majority of this chapter, it is worthwhile to examine the steps shown.
There are four steps listed for this test:

• Step 1: This is the initial request for the default page in the secure folder.

• Step 2: The user is redirected to the login page where the ReturnUrl parameter notes
the page the user is trying to go to so it can redirect the user there after the user has
been authenticated. The user enters the username and password and then clicks the
btnLogin button.

• Step 3: The user is successfully redirected to the default page where they select the week
ending with an ID of 1 and click the Add button.

• Step 4: The user is directed to the edit page, which received three parameters (id, mode,
and we_id). The user then enters various values in the different fields on this page and
clicks the btnOK button.

Note that the last page the user is directed to, the default page, is not displayed because
the user did not do anything on this page when recording the test (i.e., nothing was tested on
this page). All of the information presented in the previous list was taken directly from the
request tree, which contains all of the information for a given test.

Test Detail Properties
For a recorded web test, not only does the test itself have properties, but every step in the list
of tests also has properties. The list of steps is referred to as the request tree. To begin with,
examine the properties for the test itself by right-clicking the AddItem node in the request
tree and selecting Properties. The properties for the test are described in Table 15-1.

CHAPTER 15 ■ WEB TESTING 437

4606CH15.qxd 4/20/06 3:31 PM Page 437

Table 15-1. Recorded Web Test Properties

Property Description

Description This describes the test that appears in the Test Manager window.

Name This is the name of the test.

Password This is the password required when logging onto a website with Integrated
Authentication.

PreAuthenticate This ensures that the username and password are automatically supplied
to websites protected with Integrated Authentication.

Proxy This notes the server name for connection purposes in case the test has to
run through a proxy server. This field can also be bound to a data source.

Request Plug-in This contains the location of the assembly, which contains the custom
request (if you are using one).

User Name This is the username required when logging onto a website with
Integrated Authentication.

Web Test Plug-in This is the name of the plugin for the entire web test.

■Note The Request Plugin and the Web Test Plugin are discussed later in this chapter.

The Password and User Name properties can be bound to a data source. In this case, the
web test will use the usernames and passwords from this data source when authenticating
against a website protected by Integrated or Basic Authentication. Note that these credentials
are used to authenticate you against the web server, not the application you’re testing (unless
they use the same mechanism).

Next, select the node that reads http://localhost/EffortTrackingWeb/login.aspx. The
properties for a request node are shown in Table 15-2.

Table 15-2. Request Node Properties

Property Description

Cache Control Indicates True/False if the request is cached or not.

Follow Redirects Indicates True/False if a page redirect will be followed when that
line of code is run.

Method Post/Get: Determines how information will be passed to the
website.

Parse Dependent Requests Indicates with True/False whether other URLs within the
requested web page are processed (such as images that are
loaded from another URL).

CHAPTER 15 ■ WEB TESTING438

4606CH15.qxd 4/20/06 3:31 PM Page 438

Property Description

Record Results Indicates True/False if performance data is gathered for use
when this test is run as part of a Load Test.

Response Time Goal Indicates the response time you want to get from a page. It is
used as a threshold to mark how many times the page meets or
exceeds the set goal.

Think Time (seconds) Indicates the amount of time that should be used to simulate a
think time before moving on to the next step in the request tree.
A think time is the amount of time an average user might spend
reading a page rather than clicking something on the page.

Timeout (seconds) Indicates the maximum amount of time to wait before a timeout
is declared. This is great for testing what happens when a user
session times out, for example, as on an e-commerce site.

URL Indicates the URL of the requested page. This can be bound to a
data source, which allows for dynamic site navigation during
a test.

Version Indicates the HTTP version to use for this request—1.1 is the
default, although you can select 1.0.

Each folder beneath the request node contains a different set of properties. Select the first
node under the QueryString Parameters node. These properties are shown in Table 15-3.

Table 15-3. QueryString Parameter Properties

Property Description

Name Indicates the name of the query string parameter

Show Separate Request Indicates True/False if the specific value should be shown separately
in reports, or grouped with the rest of the information about the
request

Value Indicates the value passed for the given query string parameter

The Form Post Parameters have only two properties—name and value of the parameter
posted to the form.

Test Options
Once you have recorded a test, you have various options for configuring, altering, or making
comments on specific tests or requests. The options range from altering requests and insert-
ing requests to specifying data sources. To access these options, right-click the root test node
(AddItem in this example) or any of the request nodes in the request tree. The options are
described in Table 15-4.

CHAPTER 15 ■ WEB TESTING 439

4606CH15.qxd 4/20/06 3:31 PM Page 439

Table 15-4. Test/Test Step Options

Option Description

Add/Insert Request Adds a request that was not included in the recorded test.

Add/Insert Web Service Request Adds a web service request that was not included in the
recorded test.

Add/Insert Transaction Groups a set of web requests into a single transaction. All
requests must pass or they all fail.

Add/Insert Comment Allows the addition of one or more comments associated
with the entire test or with single steps.

Add/Insert Recording Allows additional web test recordings to be made and
inserted into the current web test.

Add Data Source Allows the addition of a data source that is used to bind
various parameters to an external set of data.

Add Context Parameter Holds any value—this can be the result of an extraction, for
instance, that can be used as an argument to another call
further in the test script.

Add Dependent Request Is run in parallel (with the other dependent requests) after
the current page is finished processing.

Add Header Allows the addition of custom headers in order to test
various scenarios.

Add URL QueryString Parameter Allows additional parameters.

Add Form Post Parameter Allows additional parameters.

Add File Upload Parameter Indicates the path to a file and the context the value should
be stored in. This will cause the specified file to be uploaded
during the test.

Add Validation Rule Validates that certain conditions are true on a response
page.

Add Extraction Rule Extracts data from the response page.

Some of these options are available at the root test level and others are only available from a request node.

Running Recorded Web Tests
Now that you have recorded a test, you need to be able to play it back for actual use in a test.
There are various ways to replay a test depending on the type of test you are setting up (for
example a load test does not work via a user interface so what follows does not apply to this
type of playback).

■Tip It is a best practice that once you record your test you play it back to ensure that it will work correctly
and that nothing unwanted was recorded.

CHAPTER 15 ■ WEB TESTING440

4606CH15.qxd 4/20/06 3:31 PM Page 440

To run a recorded test you can either open the recorded test (the file with the .webtest
extension) and click the Run button from the top of the window or select the test from the
Test Manager window and click the Run Checked Tests button. Open the recorded test file and
click Run to begin this test. This will bring up the Web Test window shown in Figure 15-4.

Figure 15-4. The Web Test window (test completed)

You have the option of running the test in an automated or interactive fashion in which
you can step through each part of the test.

■Tip Turn off your firewall for these tests because unless you have previously recognized the program,
it will prompt you to allow the application to interact with the web application (if you are using HTTP as
opposed to Cassini, the built-in web server).

Clicking the Run button will run through all steps without stopping. You must click the
Step button after each step has been completed in order to move to the next step. As you move
through the test, the website is displayed in the lower window. Either during the test run (if
you are using the Step method) or after the test run you can examine the Request details
(header and body), the Response details (header and body), and the test Details (rules, con-
text, and exceptions).

CHAPTER 15 ■ WEB TESTING 441

4606CH15.qxd 4/20/06 3:31 PM Page 441

■Tip After the test has been run, you will see the test details in the same window as shown in Figure 15-4.
You can then click each individual node, which will show the web page as it looked during a particular step
of the test.

To change the settings for a specific run, you can select the Edit Run Settings button from
the top of the window. This will display the dialog box shown in Figure 15-5.

Figure 15-5. Web Test Run Settings dialog box

The number of iterations allows you either to set a fixed number of runs or to bind the
count of runs against a data source (you will see this later in this chapter in the section “Data-
Driven Web Testing”). The browser type allows you to choose the type of browser that will be
“making” and “consuming” the requests and responses. Currently you can choose from five
types of browsers but you could also add your own browser types if the one you want to test
against is not listed here (for example, Netscape 6.0 is listed, but not Mozilla or Opera). The
network type allows you to configure your connection speed. The values range from a 56.6K
connection to a T1 line.

■Note Customizing these values is discussed in Chapter 16.

The simulated think times allow the automated tests (this doesn’t apply to the Step test)
to take into account the think times you set for the individual test steps (if any). For a single
test run these think times are not very useful, though, so you will most likely find yourself only
using these during a load test. You can also turn the think times on and off by selecting the
Think Times button on the toolbar in the test window.

CHAPTER 15 ■ WEB TESTING442

4606CH15.qxd 4/20/06 3:31 PM Page 442

Passing or Failing Tests
A test passing or failing is entirely up to whether an error occurs or a specific validation fails.
When a web test is first recorded and played back, it is assumed to have passed if no errors
occur during the run on the test. However, you can add specific validations to occur at various
points of the test, which will throw exceptions if they fail (and fail the test).

To demonstrate how this works, you are going to record a test that validates the Login
form via the user interface (this is similar to the initial test recorded previously, but this is
explicitly to test a login failure). Start recording a new web test called “LoginFailure” and in the
recording window navigate to the EffortTrackingWeb website (if you used IIS your website will
be at http://localhost/EffortTrackingWeb/secure/Default.aspx) to begin recording the web
test. This will bring up the Login page. Do the following:

1. In the User Name textbox enter Test User 1 (note that this user does not exist).

2. In the Password textbox enter password.

3. Click Login.

4. Stop recording the web test.

What should occur is that the login does not succeed and an error message is shown.
Now, if this test is run as it is, the test will succeed because no “exceptions” occurred. However,
that does not really help you. In many cases you need to ensure that when an expected failure
occurs (which is not triggered by throwing an exception), the correct actions are taken. In
order to do this you can add a Validation Rule.

To change this test to something more meaningful, the test will check to see if the words
“Invalid username or password” (part of the error message if a login fails) are displayed in the
resulting web page. Open the LoginFailure.webtest file and right-click the Login.aspx node
(the last node in the node list) and select Add Validation Rule (validation rules are discussed in
more detail later in this chapter in the section “Validation Rules”). Click the Find Test valida-
tion rule and enter Invalid username or password for the Find Text property and click OK.
When it is run, the test will search for this text within the resulting HTML body. If it finds the
text, the test will pass; if it does not, it will fail. This ensures that you are checking for a specific
type of failure.

Data-Driven Web Testing
Data binding allows a database to provide parameters to the test at various steps instead of
having to change multiple tests of the same type by hand. Data binding can be used for indi-
vidual data-driven web tests or for load testing (discussed in Chapter 16). For data-driven web
tests (as with unit tests) the test will cycle through a table in the database and run the test
once for each row in the table. Each column can supply a value to various parts of the web
test. Because of this, there is no set structure to a table used for data-driven testing.

CHAPTER 15 ■ WEB TESTING 443

4606CH15.qxd 4/20/06 3:31 PM Page 443

■Tip It is a best practice to add a comment field in the table supplying data to the test so the exact pur-
pose of the provided data can be noted. In other words, let everyone know what is being tested by the data
provided—do not make the tests cryptic. This makes it easy for all developers and testers to understand the
purpose for a set of test data.

For this example, you will use the previously created AddItem test with data from a SQL
Server database to drive the test. To add a data source to the web test you first need to create a
table to hold the information to be used for the test. The included testing database (effort-
trackingtests) contains a table called save_task_test with the structure shown in Table 15-5.

Table 15-5. The save_task_test Table Structure

Column Description

st_id Unique identifier

st_wi_title Title of the item being added

st_wi_description Description of the item being added

st_cat_id ID of the category

st_own_id ID of the owner

st_we_id ID of the week ending

Once the data source has been created in the database, click the Add Data Source button
in the Web Test window (shown in Figure 15-6).

Figure 15-6. Web Test window

CHAPTER 15 ■ WEB TESTING444

4606CH15.qxd 4/20/06 3:31 PM Page 444

The data source and the selected table(s) are listed under the Data Sources node in the
Web Test window. Now that a data source has been selected, the individual parameters of the
form fields can be hooked up to specific columns in the data source. To do this, right-click
a form parameter field (the highlighted line in Figure 15-7 is a form parameter field) and select
Properties. Select the Value Property and click the drop-down button. Select the data source,
table, and column to bind to the parameter field value. In Figure 15-7, the txtTitle field is
bound to the efforttrackingtests1.save_task_test.st_wi_title column. Do the same for
the txtDescription, cboCategory, and cboWeekEnding fields.

■Tip Another great feature is the ability to bind to a validation rule or an extraction rule. While not part of
this test, in order to do the binding, just select a rule, view the properties for the rule and where you need to
bind to a data field, enter the name of the data field in double braces. As an example, if you were to bind a
Find Text validation rule to a data source, you would enter {{efforttrackingtests1.save_task_test.
st_wi_title}} in the Find Text parameter. There is currently no drop-down available for this.

Once the data source has been chosen, the method of access to the database should be
chosen (it does not matter what order you take these steps in). To select an access method,
right-click a table in the Web Test window (under the Tables node) and select Properties. The
Access Method property allows you to choose from three options: Sequential, Random, or
Unique. The descriptions are noted in Table 15-6.

Table 15-6. Data-Driven Access Options

Option Description

Sequential For a load test, this method reads through every row in the table from top to
bottom and continues to loop for the duration of the load test.

Random For a load test, this method reads through every row in the table in a random
order and continues to loop for the duration of the load test.

Unique For a load test, this method reads through every row in the table from top to
bottom and runs the test once for each row.

Note that these options only apply to load tests. They have no effect on non–load tests.

The final step before the data-driven test can be run is to change the test configuration
settings. As noted in Chapter 12, the localtestrun file contains the Web Test configuration
settings (shown in Figure 15-7).

CHAPTER 15 ■ WEB TESTING 445

4606CH15.qxd 4/20/06 3:31 PM Page 445

Figure 15-7. Web Test configuration settings

The number of run iterations must be switched from “Fixed run count” to “One run per
data source row.”

■Caution If you decide to use the fixed run count instead, it will use the data from the rows in the data
source sequentially, looping through them until the test has reached the number of iterations specified.

Apply the changes, switch back to the Web Test window, and run the test. To see the
details of the test, double-click the test in the Test Results pane (shown in Figure 15-8).

The most obvious difference between this and the test results in Figure 15-4 is that there
is one run for every row in the data source table. You will examine the web test results in more
detail in the “Test Results” section of this chapter.

■Note The reason the test failed is because there were no checks for invalid values. The test table con-
tained several tests that were designed to fail, but the web test did not reflect that. In the real world, the test
should be updated to validate that an error did in fact occur.

CHAPTER 15 ■ WEB TESTING446

4606CH15.qxd 4/20/06 3:31 PM Page 446

Figure 15-8. AddItem test results

Using the web testing tool in a data-driven fashion allows you to create one test and then
change the values being tested simply by altering the database. In the past, this would have
required a change in the test itself or manually changing parameters. The savings in time from
using simple methods like these will be enormous.

Coded Web Tests
Coded web tests are written entirely in code. For the most part, coded web tests are required
only when you have to create a loop in the test or dynamically navigate the list of URLs called
during the test. Whatever your purpose in creating a coded web test, you will almost always
begin from a recorded web test, which will provide the basic outline for your code.

Since the AddItem test has already been created, convert the test into a coded test by
following these steps:

CHAPTER 15 ■ WEB TESTING 447

4606CH15.qxd 4/20/06 3:31 PM Page 447

1. Open the AddItem request tree by double-clicking the AddItem test in the Solution
Explorer.

2. Select the AddItem root node.

3. Click the Generate Code button from the toolbar.

4. Leave the default name of AddItemCoded in the Generate Coded Web Test dialog box
that is displayed, and click OK.

5. The AddItemCoded.cs file (or .vb file if you are using VB.NET) is added to the
EffortTrackingWebTests project.

These are all the steps required to create a coded web test. The class file contains a single
class called AddItemCoded, which inherits from the WebTest class. Within this class there are
only two methods (you are free to add as many methods as you like, but you are required to
have at least these two methods): the constructor, and the GetRequestEnumerator method,
which is part of the IEnumerator interface. The constructor contains information (if there is
any) needed to initialize the web test. The IEnumerator implementation, while fairly straight-
forward, is helpful to walk through.

The generic implementation of the IEnumerator interface returns a WebTestRequest type.
Looking at the method body (partially shown in Listing 15-1) you can see a straightforward list
of requests is being returned by the test.

Listing 15-1. The GetRequestEnumerator/Run Method (partial)

C#
// (GetRequestEnumerator Method)

WebTestRequest request1 = new WebTestRequest(
"http://localhost/EffortTrackingWeb/secure/Default.aspx");
request1.ThinkTime = 5;
ExtractHiddenFields rule1 = new ExtractHiddenFields();
rule1.ContextParameterName = "1";
request1.ExtractValues += new EventHandler<ExtractionEventArgs>(rule1.Extract);
yield return request1;

WebTestRequest request2 = new
. . .
yield return request2;

VB
' (Run Method)

Dim request1 As WebTestRequest = New WebTestRequest(_
"http://localhost/EffortTrackingWeb/secure/Default.aspx")
request1.ThinkTime = 10
Dim rule1 As ExtractHiddenFields = New ExtractHiddenFields
rule1.ContextParameterName = "1"
AddHandler request1.ExtractValues, AddressOf rule1.Extract
MyBase.Send(request1)

CHAPTER 15 ■ WEB TESTING448

4606CH15.qxd 4/20/06 3:31 PM Page 448

Dim request2 As WebTestRequest = New
WebTestRequest("http://localhost/EffortTrackingWeb/login.aspx")

. . .
MyBase.Send(request2)

Looking at the generated code, you can see that it is pretty simple in terms of what is
going on. Each request in the request tree is generated with all of the properties for the previ-
ously set request. The extraction rules and any other rules (validation rules, etc.) are also
generated. One of the key advantages of coding your own test is that you can respond to spe-
cific events. As you can see here, there is an event handler for the ExtractValues event and
there are other events (PostRequest, PreRequest, ValidateResponse) you can respond to as
well. You can read more about these events in the MSDN documentation.

■Note The yield statement (MyBase.Send in VB calls the GetRequestEnumerator in the base class)
essentially puts a break in the code and allows the enumerator to iterate over the collection of requests.
This is a new statement in C# and VB in the .NET 2.0 Framework. There are differences in how these work
which is reflected in the base class that the coded web tests inherit from. C# inherits from WebTest and VB
inherits from ThreadedWebTest. For more information, see the MSDN documentation.

Coded web tests can only be run via the Test Manager window, as there is no interface to
this type of test.

Coded Data-Driven Tests
The coded data-driven test has a different structure to it. To create this type of test, do the
following:

• Record a web test.

• Add a data source.

• Hook up the data source columns to form parameters.

• Select the Generate Coded Test button from the Web Test window for the specific test.

The AddItem test is a good starting point to demonstrate this type of test. Simply generate
the coded test from the AddItem test window. A partial view of the coded, data-driven test is
shown in Listing 15-2 (please note that the line breaks are due to formatting and do not exist
in the generated code). This listing shows the class header and the fourth step of the test so
you can see how data binding works in a coded web test.

Listing 15-2. Coded Data-Driven Web Test

C#
[DataSource("efforttrackingtests1", "Provider=SQLNCLI.1;
Data Source=localhost;Integrated Security=SSPI;
Initial Catalog=efforttrackingtests",

CHAPTER 15 ■ WEB TESTING 449

4606CH15.qxd 4/20/06 3:31 PM Page 449

Microsoft.VisualStudio.TestTools.WebTesting.DataBindingAccessMethod.Sequential,
"save_task_test")]
[DataBinding("efforttrackingtests1", "save_task_test", "st_wi_title",
"efforttrackingtests1.save_task_test.st_wi_title")]
[DataBinding("efforttrackingtests1", "save_task_test", "st_wi_description",
"efforttrackingtests1.save_task_test.st_wi_description")]
[DataBinding("efforttrackingtests1", "save_task_test", "st_cat_id",
"efforttrackingtests1.save_task_test.st_cat_id")]
[DataBinding("efforttrackingtests1", "save_task_test", "st_we_id",
"efforttrackingtests1.save_task_test.st_we_id")]
public class AddItemCoded : WebTest
{

public AddItemCoded()
{

this.PreAuthenticate = true;
}

public override IEnumerator<WebTestRequest> GetRequestEnumerator()
{

WebTestRequest request1 = new WebTestRequest(
"http://localhost/EffortTrackingWeb/secure/Default.aspx");

. . .

. . .
WebTestRequest request4 = new

WebTestRequest("http://localhost/EffortTrackingWeb/secure/Edit.aspx");
request4.Method = "POST";
request4.QueryStringParameters.Add("id", "0", false, false);
request4.QueryStringParameters.Add("mode", "add", false, false);
request4.QueryStringParameters.Add("we_id", "1", false, false);
FormPostHttpBody request4Body = new FormPostHttpBody();
request4Body.FormPostParameters.Add("__VIEWSTATE",
this.Context["$HIDDEN1.__VIEWSTATE"].ToString());
request4Body.FormPostParameters.Add

("ctl00$ContentPlaceHolder1$Details1$txtTitle",
this.Context["efforttrackingtests1.save_task_test.st_wi_title"]

.ToString());
request4Body.FormPostParameters.Add(

"ctl00$ContentPlaceHolder1$Details1$fldID",
this.Context["$HIDDEN1.ctl00$ContentPlaceHolder1$Details1$fldID"]

.ToString());
request4Body.FormPostParameters.Add(

"ctl00$ContentPlaceHolder1$Details1$fldWE",
this.Context["$HIDDEN1.ctl00$ContentPlaceHolder1$Details1$fldWE"]

.ToString());
request4Body.FormPostParameters.Add(

"ctl00$ContentPlaceHolder1$Details1$txtDescription",
this.Context["efforttrackingtests1.save_task_test.st_wi_description"]

CHAPTER 15 ■ WEB TESTING450

4606CH15.qxd 4/20/06 3:31 PM Page 450

.ToString());
request4Body.FormPostParameters.Add(

"ctl00$ContentPlaceHolder1$Details1$cboCategory",
this.Context["efforttrackingtests1.save_task_test.st_cat_id"]

.ToString());
request4Body.FormPostParameters.Add(
"ctl00$ContentPlaceHolder1$Details1$cboWeekEnding",
this.Context["efforttrackingtests1.save_task_test.st_we_id"].ToString());

request4Body.FormPostParameters.Add(
"ctl00$ContentPlaceHolder1$Details1$btnOK", "Save");

request4Body.FormPostParameters.Add("__EVENTVALIDATION",
this.Context["$HIDDEN1.__EVENTVALIDATION"].ToString());

request4.Body = request4Body;
yield return request4;

}
VB
<DataSource("efforttrackingtests1", "Provider=SQLNCLI.1;Data Source=localhost;
Integrated Security=SSPI;Initial Catalog=efforttrackingtests",
Microsoft.VisualStudio.TestTools.WebTesting.DataBindingAccessMethod.Sequential,
"save_task_test"), _
DataBinding("efforttrackingtests1", "save_task_test", "st_wi_title",
"efforttrackingtests1.save_task_test.st_wi_title"), _
DataBinding("efforttrackingtests1", "save_task_test", "st_wi_description",
"efforttrackingtests1.save_task_test.st_wi_description"), _
DataBinding("efforttrackingtests1", "save_task_test", "st_cat_id", _
"efforttrackingtests1.save_task_test.st_cat_id"), _
DataBinding("efforttrackingtests1", "save_task_test", "st_we_id", _
"efforttrackingtests1.save_task_test.st_we_id")> _
Public Class AddItemCoded

Inherits ThreadedWebTest

Public Sub New()
MyBase.New()
Me.PreAuthenticate = True

End Sub

Public Overrides Sub Run()
Dim request1 As WebTestRequest = New

WebTestRequest("http://localhost/EffortTrackingWeb/secure/Default.aspx")
. . .
. . .
Dim request4 As WebTestRequest = New _

WebTestRequest("http://localhost/EffortTrackingWeb/secure/Edit.aspx")
request4.Method = "POST"
request4.QueryStringParameters.Add("id", "0", False, False)
request4.QueryStringParameters.Add("mode", "add", False, False)
request4.QueryStringParameters.Add("we_id", "1", False, False)

CHAPTER 15 ■ WEB TESTING 451

4606CH15.qxd 4/20/06 3:31 PM Page 451

Dim request4Body As FormPostHttpBody = New FormPostHttpBody
request4Body.FormPostParameters.Add("__VIEWSTATE", _

Me.Context("$HIDDEN1.__VIEWSTATE").ToString)
request4Body.FormPostParameters.Add(_

"ctl00$ContentPlaceHolder1$Details1$txtTitle", _
Me.Context("efforttrackingtests1.save_task_test.st_wi_title").ToString)

request4Body.FormPostParameters.Add(_
"ctl00$ContentPlaceHolder1$Details1$fldID", _
Me.Context(_

"$HIDDEN1.ctl00$ContentPlaceHolder1$Details1$fldID").ToString)
request4Body.FormPostParameters.Add(_

"ctl00$ContentPlaceHolder1$Details1$fldWE", _
Me.Context("$HIDDEN1.ctl00$ContentPlaceHolder1$Details1$fldWE").ToString)

request4Body.FormPostParameters.Add(_
"ctl00$ContentPlaceHolder1$Details1$txtDescription", _
Me.Context(_

"efforttrackingtests1.save_task_test.st_wi_description").ToString)
request4Body.FormPostParameters.Add(_

"ctl00$ContentPlaceHolder1$Details1$cboCategory", _
Me.Context("efforttrackingtests1.save_task_test.st_cat_id").ToString)

request4Body.FormPostParameters.Add(_
"ctl00$ContentPlaceHolder1$Details1$cboWeekEnding", _
Me.Context("efforttrackingtests1.save_task_test.st_we_id").ToString)

request4Body.FormPostParameters.Add(_
"ctl00$ContentPlaceHolder1$Details1$btnOK", "Save")

request4Body.FormPostParameters.Add("__EVENTVALIDATION", _
Me.Context("$HIDDEN1.__EVENTVALIDATION").ToString)

request4.Body = request4Body
MyBase.Send(request4)

End Sub

The key to this scenario is the Attributes added to the class (at the top of the code listing).
The DataSource attribute specifies the database in which the table to be used for testing is
located. There can be as many data sources as necessary to complete a test. The last part of
the data source contains the table (or tables) the test is specifically bound to. This controls
how many iterations of the test will be performed. The DataBinding attribute maps table
columns to form fields and is a simple and straight mapping. To assign the bound fields to the
form parameters, use the same syntax as is shown in the Web Test window:

request4Body.FormPostParameters.Add("ctl00$ContentPlaceHolder1$Details1$fldID",
this.Context["$HIDDEN1.ctl00$ContentPlaceHolder1$Details1$fldID"].ToString());

Aside from these differences, a data-driven coded web test and a non-data-driven web
test are identical.

Now that you have seen how to record, run, and convert a web test into code you can
examine how to create plugins and custom extraction and validation rules.

CHAPTER 15 ■ WEB TESTING452

4606CH15.qxd 4/20/06 3:31 PM Page 452

Extraction Rules
Extraction rules are used to extract parts of either the header or the body of a request for what-
ever purpose you need the extracted information. There are several prebuilt extraction rules
that should cover many, it not all, the situations you will run in to. These extraction rules are
described in Table 15-7.

Table 15-7. Built-in Extraction Rules

Rule Description

Extract Attribute Value Extracts the value of a given HTML attribute.

Extract Form Field Extracts the value of a given form field.

Extract HTTP Header Extracts the value of a given header.

Extract Regular Expression Extracts any text that matches the given regular expression.

Extract Text Extracts any text based on a beginning and ending set of criteria.
Regular expressions can be used for this extraction rule also.

Extract Hidden Fields Extracts all hidden fields from a response.

Based on these rules, there are very few reasons you would want to code a custom extrac-
tion rule. One reason is that you have a very complex regular expression and want to code it
into an extraction rule or for some other reason such as to encourage reuse when dealing with
web tests.

To add an existing extraction rule to a test, right-click a request node and select Add
Extraction Rule. This will display the dialog box shown in Figure 15-9.

Figure 15-9. Add Extraction Rule dialog box

CHAPTER 15 ■ WEB TESTING 453

4606CH15.qxd 4/20/06 3:31 PM Page 453

As with the validation rule demonstrated in the “Data-Driven Web Testing” section of this
chapter, any field available here can be bound to a data source.

Each extraction rule has various different properties. One of the properties that you will
find most useful is the Required property (if the rule has this property). Setting it to True indi-
cates that the information the rule is trying to extract must exist or else the test will fail.

The Context Parameter Name value is a value available to all extraction rule tests. Provid-
ing a value here requires that you have previously created a context parameter.

■Tip To create a Context Parameter field, right-click the name of the test in the Web Test window (the root
node) or the Context Parameters folder, if it exists, and select Add Context Parameter. This creates a variable
you can pass values to and read values from during the test.

Creating Custom Extraction Rules
Custom extraction rules allow you to encapsulate logic and complex extraction processes.
Take an example where a regular expression contains recursive groups. This can be a very
complex regular expression to write. Or maybe your organization routinely performs a certain
type of security test and you want to encapsulate the rules so they do not have to be rewritten
for every application. These are good reasons to create a custom extraction rule.

For this example, you will create a simple Extraction Rule that finds all of the telephone
numbers, in the North American format (with variations) on a web page. Follow these steps to
create the custom extraction rule:

1. Create a new code library called CustomExtractionRules (with either VB or CS
appended to it for the example).

2. Add a reference to the Microsoft.VisualStudio.QualityTools.WebTestFramework.dll
assembly. This assembly is located in the C:\Program Files\Microsoft Visual Studio 8\
Common 7\IDE\Public Assemblies folder.

3. Change the generated class (Class1) to TelephoneExtractionRule (rename the code file
as well).

4. Add the following using or Imports statement to the top of the code file:
using Microsoft.VisualStudio.TestTools.WebTesting.Rules; or, in VB, Imports
Microsoft.VisualStudio.TestTools.WebTesting.Rules.

5. Change the class to inherit from the ExtractRegularExpression Rule class.

6. Implement (override) the RuleName and Extract methods (if needed) (see the code in
Listing 15-3).

7. Build the solution.

CHAPTER 15 ■ WEB TESTING454

4606CH15.qxd 4/20/06 3:31 PM Page 454

Listing 15-3. The Telephone Extraction Rule

C#
using System;
using Microsoft.VisualStudio.TestTools.WebTesting.Rules;

namespace CustomExtractionRulesCS
{

public class ExtractTelephoneRule : ExtractRegularExpression
{

public ExtractTelephoneRule():base()
{

this.RegularExpression = @"\(?[0-9]{3}\)?[-.]?[0-9]{3}[-.]?[0-9]{4}";
}

public override string RuleName
{

get { return "Extract Telephone Numbers"; }
}

public override string RuleDescription
{

get { return "Extracts all telephone numbers which match "
+ "the North American convention."; }

}
}

}
VB
Option Explicit On
Option Strict On

Imports Microsoft.VisualStudio.TestTools.WebTesting.Rules

Public Class ExtractTelephoneRule : Inherits ExtractRegularExpression

Public Sub New()
MyBase.New()

Me.RegularExpression = "\(?[0-9]{3}\)?[-.]?[0-9]{3}[-.]?[0-9]{4}"
End Sub

Public Overrides ReadOnly Property RuleName() As String
Get

Return "Extract Telephone Numbers"
End Get

End Property

CHAPTER 15 ■ WEB TESTING 455

4606CH15.qxd 4/20/06 3:31 PM Page 455

Public Overrides ReadOnly Property RuleDescription() As String
Get

Return "Extracts all telephone numbers which match " _
& "the North American convention."

End Get
End Property

End Class

As you can see, creating your own custom rule is extremely simple. The regular expression
here will return all phone numbers that match the following formats: 1234567890,
123.456.7890, 123-456-7890, 123 456 7890, (123) 456 7890. The rule is also clearly documented
by the description. Also note that because the rule simply uses a specific regular expression,
the Extract method does not have to be overridden. In other circumstances you may want to
override this method (and if you inherit from the base ExtractionRule you have to override this
method).

Extract Method
If you were to inherit from the base ExtractionRule you would override the Extract method.
This method’s signature provides you with the access to both the Request and the Response
objects to allow you to not only extract information but to compare the objects to each other.
More information on the ExtractEventArgs can be found in the MSDN. It is important to note
one particular class exposed by the ExtractEventArgs—the WebTest object. This object pro-
vides yet another object—the Context object. The Context object contains information about
the running test. With these two objects you can dynamically change a number of values
relating to the currently running tests and examine various pieces of information to put the
extracted values into a proper context.

As you can see, overriding the Extract method provides a lot of options that are available
to you. These same options are available when you create a custom validation rule (see the
section below on “Creating Custom Validation Rules”).

Implementing Custom Extraction Rules
Once the rule has been created, you need to actually incorporate it into the testing project. In
the EffortTrackingWebTests project add a reference to the CustomExtractionRules assembly
you just created. Right-click a request node in the Web Test window and select Add Extraction
Rule. You should see the same dialog box as shown in Figure 15-10.

There cannot be a whole lot that is simpler than this. What you can do with this, in terms
of extracting values, is limited only by what you can dream up. Since this is a standard prop-
erty dialog you can create enumerations that fill the value lists, connect to databases to grab
extraction rules (although this is certainly not recommended), or even provide configuration
files that are user changeable to make configurable rules.

CHAPTER 15 ■ WEB TESTING456

4606CH15.qxd 4/20/06 3:31 PM Page 456

Figure 15-10. The Extract Telephone Numbers extraction rule implemented

■Tip One possible solution to this problem is to have a variety of regular expressions (a library, as it were)
that could be added to a configuration file and read by the rule so they would be easily extensible by the
end user.

Validation Rules
Validation rules, as you have previously seen, can be used to test whether certain conditions
on a web page are true once a response to a request has been made. In the previous example
in the “Data-Driven Web Testing” section, the test validated that the system did return an error
notification when a login failed. Likewise, it also validated that no error message was returned
when a valid login occurred.

To add a validation rule to a request, right-click the request in the Web Test window and
select Insert Validation Rule. This brings up the dialog box shown in Figure 15-11.

CHAPTER 15 ■ WEB TESTING 457

4606CH15.qxd 4/20/06 3:31 PM Page 457

Figure 15-11. Add Validation Rule dialog box

The predefined validation rules are described in Table 15-8.

Table 15-8. Predefined Validation Rules

Rule Description

Form Field Verifies that a field exists on the form and what the value in that
field is

Find Text Verifies that certain text appears somewhere in the response page

Maximum Request Time Verifies that a request finishes in a given amount of time

Required Attribute Value Verifies that a specified HTML tag exists in the response and
contains an attribute with a given value

Required Tag Verifies that a specified HTML tag exists in the response

■Caution The validation rules operate on the response, not the request, even though they are associated
with the request in the Web Test window. They are processed after the response has been returned.

The level option indicates the threshold the validation rule will be tested at during a load
test. For example, if the validation rule level is set to Low and the load test validation level is
set to Medium or High, then the validation rule will not be checked (this is discussed in a little
more detail in Chapter 16).

CHAPTER 15 ■ WEB TESTING458

4606CH15.qxd 4/20/06 3:31 PM Page 458

Creating Custom Validation Rules
Creating a custom validation rule is almost identical to creating a custom extraction rule.
To do this, you follow the same steps outlined previously in the “Creating Custom Extraction
Rules” section except that instead of inheriting from the base ExtractionRule or one of its
derivatives, you inherit from the base ValidationRule class or one of its derivatives. In this
case, you would override, in addition to the RuleName property, the Validate method.

Web Test Request Plugins
Request plugins are plugins that allow you to perform external code execution when each
request in the web test is executed. This can be used for a variety of reasons, but you will see in
the next section that the Web Test Plugin is a more valuable alternative. The problem with the
Web Test Request Plugin is that you cannot determine the start and stop of the test.

Web Test Plugins
A web test plugin is an application that can be executed in response to any event that occurs
during a web test run. While the Web Test Request Plugin could only respond to individual
requests, the Web Test Plugin encompasses all of the functionality of the request plugin plus
more. There are various reasons why you might want to create your own test plugin. You may
need to log specific details, or log those details in such a way that you can easily compare
them from one test to another. Other reasons may include the fact that you need to change
aspects of the tests during the test run. This could be something like having to change the
URL the test is navigating to based on variables that can’t be anticipated in a data-bound test.
Whatever the reasons, the ability to dynamically change a test shows just how flexible the web
testing tool is in VSTS.

In the example presented in Listing 15-4 you will see how to write a web test plugin that
lets you perform custom logging of the test steps. To create a web test plugin, do the following:

1. Create a new project called “WebTestLogger.”

2. Add a reference to the Microsoft.VisualStudio.QualityTools.WebTestFramework.dll.

3. Change the generated Class1 file to Logger (.cs or .vb depending on the language) and
add the code shown in Listing 15-4.

Listing 15-4. Logger Web Test Plugin

C#
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.TestTools.WebTesting;
using System.IO;

CHAPTER 15 ■ WEB TESTING 459

4606CH15.qxd 4/20/06 3:31 PM Page 459

namespace LoggingRequest
{

public class Logger: WebTestPlugin
{

private FileStream _logStream = null;
private StreamWriter _logWriter = null;

public Logger() { }

public override void PreWebTest(object sender, PreWebTestEventArgs e)
{

_logStream = new FileStream("c:\\logfile.txt", FileMode.Append);
_logWriter = new StreamWriter(_logStream);
_logWriter.AutoFlush = true;
_logWriter.WriteLine("Beginning Test (" +
DateTime.Now.ToString() + ")");

e.WebTest.PostRequest += new
EventHandler<PostRequestEventArgs>(WebTest_PostRequest);

}

void WebTest_PostRequest(object sender, PostRequestEventArgs e)
{

_logWriter.WriteLine(e.Request.Url.ToString());
}

public override void PostWebTest(object sender, PostWebTestEventArgs e)
{

_logWriter.WriteLine("Ending Test (" + DateTime.Now.ToString() + ")");
_logWriter.Close();
e.WebTest.PostRequest -= new

EventHandler<PostRequestEventArgs>(WebTest_PostRequest);
}

}
}

VB
Option Explicit On
Option Strict On

Imports Microsoft.VisualStudio.TestTools.WebTesting
Imports System.IO

CHAPTER 15 ■ WEB TESTING460

4606CH15.qxd 4/20/06 3:31 PM Page 460

Public Class Logger : Inherits WebTestPlugin
Private _logStream As FileStream = Nothing
Private _logWriter As StreamWriter = Nothing
Private WithEvents _test As WebTest = Nothing

Public Overrides Sub PreWebTest(ByVal sender As Object, ByVal e As _
Microsoft.VisualStudio.TestTools.WebTesting.PreWebTestEventArgs)
_logStream = New FileStream("c:\logfile.txt", FileMode.Append)
_logWriter = New StreamWriter(_logStream)
_logWriter.AutoFlush = True
_logWriter.WriteLine("Beginning Test (" + Now.ToString() + ")")
_test = e.WebTest

End Sub

Public Sub Webtest_PostRequest(ByVal sender As Object, ByVal e As _
Microsoft.VisualStudio.TestTools.WebTesting.PostRequestEventArgs) Handles _
_test.PostRequest
_logWriter.WriteLine(e.Request.Url.ToString())

End Sub

Public Overrides Sub PostWebTest(ByVal sender As Object, ByVal e As _
Microsoft.VisualStudio.TestTools.WebTesting.PostWebTestEventArgs)
_logWriter.WriteLine("Ending Test (" + Now.ToString() + ")")
_logWriter.Close()

End Sub
End Class

The Logger class is pretty straightforward. It inherits from the WebTestPlugin class and
overrides the PreWebTest and PostWebTest methods. These methods are called at the begin-
ning and end of the test respectively. The additional step taken here is that the PostRequest
event of the WebTest is being handled so the URL for each event can be logged to the log file.
Aside from that, there are no especially difficult steps for creating your own plugin.

One key thing to note is that the PreWebTest and PostWebTest are called once for each
data row in a data-driven test. Because of this, the test explicitly closes and opens the file
stream for each row in the test. So the constructor should be used for global test initialization
and the PreWebTest should be used for individual run initialization.

To implement the plugin, open the EffortTracking Solution. Add a reference to the assem-
bly, which contains the Logger class. Double-click the AddItem web test so it is displayed in
the Web Test window. Click the Set Web Test Plugin button at the top of the window. Select the
Logger class and click OK.

■Note Only one Web Test Plugin and Web Test Request Plugin can be used for each test.

CHAPTER 15 ■ WEB TESTING 461

4606CH15.qxd 4/20/06 3:31 PM Page 461

Run the web test as normal. The results will be a log file in the root C drive, which is
partially shown in Listing 15-5.

Listing 15-5. Log File Results

Beginning Test (1/22/2006 2:07:12 PM)
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/login.aspx?

ReturnUrl=/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/login.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/secure/Edit.aspx?id=0&mode=add&we_id=1
http://localhost/EffortTrackingWeb/secure/Edit.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx?we_id=3&last=29
Ending Test (Sunday, January 22, 2006)
Beginning Test (1/22/2006 2:09:52 PM)
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/login.aspx?

ReturnUrl=/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/login.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx
http://localhost/EffortTrackingWeb/secure/Edit.aspx?id=0&mode=add&we_id=1
http://localhost/EffortTrackingWeb/secure/Edit.aspx
http://localhost/EffortTrackingWeb/secure/Default.aspx?we_id=3&last=32
Ending Test (Sunday, January 22, 2006)
Beginning Test (1/22/2006 2:10:01 PM)
. . .

As you can see from the file, each individual run is recorded separately.

Testing Web Services
Web services are the new “cool” way to implement a service-oriented architecture (SOA).
While there are pluses and minuses to this approach, it is fast catching on as the new way to
integrate systems. With that in mind, Microsoft built the Web Test tool so that it could also
test web services.

■Note The main purpose of the Web Test tool is to test websites, not web services. Therefore, while it can
be used to test web services, it is not necessarily the best tool, depending on the situation. If you are testing
web services that are not very complicated, the Web Test tool is a simple solution. For more complex situa-
tions, software from AmberPoint (www.amberpoint.com) may be better suited to your needs.

CHAPTER 15 ■ WEB TESTING462

4606CH15.qxd 4/20/06 3:31 PM Page 462

Since there are some web services in the solution, you will use the EffortTrackingService.
To set up the basic test, do the following:

1. Right-click the EffortTrackingWebTests solution in the Solution Explorer and select
New Web Test.

2. When the recording window is displayed, click Stop (you do not want to record
anything).

3. Rename the webtest1.webtest file to ServiceTest.webtest.

Now you have a blank test you can use to write the web service test. The best way to
write these tests is to use the built-in help that ASP.NET provides you when browsing a
web service. To begin with, open Internet Explorer and browse to http://localhost/
EffortTrackingService/Service.asmx. Select the GetLookupInfo link from the list of
available services. This will bring up the page shown in Figure 15-12.

Figure 15-12. GetLookupInfo service implementation details

CHAPTER 15 ■ WEB TESTING 463

4606CH15.qxd 4/20/06 3:31 PM Page 463

The beauty of this page is that it provides you the text necessary to make the SOAP or
HTTP calls. Leaving this alone for the moment, switch back to the IDE browser and right-click
the ServiceTest node (the root and only node) in the Web Test window. Select Add Web Service
Request. This will add a blank node with a stub URL. Enter the following URL in the URL
property of the request node: http://localhost/EffortTrackingService/Service.asmx/
GetLookupInfo.

■Note The Transport Method at this time is only available as a Post call. The body of the request may be in
the format of either a SOAP request or an HTTP request.

Next, click the String Body node beneath the request node. Set the Context Type to
text/xml (the only option available at this time) and paste the entire SOAP 1.1 request (shown
in Figure 15-12) from the browser into the String Body property.

■Tip Remember that when calling a service that requires values you need to put those values into the body
of the request.

Run the test. The results should look like those in Figure 15-13.

CHAPTER 15 ■ WEB TESTING464

Figure 15-13. Web service test result

4606CH15.qxd 4/20/06 3:31 PM Page 464

As you can see, it is virtually identical to the result of a regular web test except there is no
graphical interface, just the service result.

■Note In general, the only way to validate the results is to use a regular expression validation rule or a
custom validation rule that parses XML looking for specific values.

You can also run data-driven web service tests. To do this, hook up a data source (as
described in the “Data-Driven Web Testing” section in this chapter) as usual. However, to
place values in the actual SOAP body, use the data field syntax: {{database.table.field}}.
Replace any text in the body with this syntax (specific to your data source of course) and
the value will be replaced during the test.

Test Results
When viewing the Test Results window (shown in Figure 15-14) you have several options, one
of which is exporting the results file to a Test Results XML file (.trx file).

CHAPTER 15 ■ WEB TESTING 465

Figure 15-14. Test Results window

To export the results, select the Export button from the Test Results window. All of the test
results can be exported or just selected test results. The .trx file can be reloaded into the Visual
Studio environment at a later date by selecting the Import Test Results button and selecting
the .trx file from the browser (this can be from a local computer or a remote computer).

The .trx file is a well-formed XML document you can use in any way you see fit. Trans-
forms can be applied against the XML for either viewing or extracting data.

■Note The full description of the XML Schema (XSD) for this file is beyond the scope of this book (it is
more than 2,000 lines long). Microsoft is set to release the XML Schemas for most of the documents con-
tained in Visual Studio 2005.

4606CH15.qxd 4/20/06 3:31 PM Page 465

Test Results Schema
The XML Schema, which backs this file, is fairly large so this section only touches on some of
the highlights. This schema is very hierarchical in nature with almost every node allowing for
an unbounded number of sub-elements. This is because of the nature of the tests it is record-
ing. Take for example the data-driven test run results, which contain four separate tests that
went through three or four URL navigations. Representing this data is a fairly complex task,
which is why the resulting XSD file is so complex.

Figure 15-15 represents the high-level structure of the XSD file. Figures 15-16 and 15-17
represent the TestRun and the WebTestResults nodes.

■Note The following graphics were taken from the XML development tool Altova XMLSpy 2005. If you
work with XML a lot, this is the single best tool available. In addition, if you want to create your own style
sheets to view the results in a custom format, use Altova’s StyleVision 2005. This is an incredible tool for
creating style sheets and transformations with drag-and-drop simplicity.

Figure 15-15. Root node of the test results schema

Figure 15-16. TestRun node of the test results schema

CHAPTER 15 ■ WEB TESTING466

4606CH15.qxd 4/20/06 3:31 PM Page 466

The TestRun node contains information about each run of the test. It contains informa-
tion such as who ran a test, what computer a test was run for, when a test started, when it
stopped, etc. Specific nodes in the TestRun type are listed in Table 15-9.

Table 15-9. Notable TestRun Nodes

Node Description

Tests Contains the test name, test file (.webtest) location, associated work item IDs,
the project the test is contained in, and various other pieces of information

categories Contains information related to how the test (or tests) is categorized in the Test
Manager

runConfig Contains all the configuration information from the run configuration
associated with the test(s) in general

result Contains the test result—summed if there was more than one test

Figure 15-17. WebTestResult node of the test results schema

CHAPTER 15 ■ WEB TESTING 467

4606CH15.qxd 4/20/06 3:31 PM Page 467

The WebTestResult node contains information specific to each test run. This information
includes the request page, the response page, and all the information about each of them and
their state for every step of the test (they include the headers but not the body). This is the
largest portion of the XSD because of the detailed information contained about each test.

Specific nodes in the WebTestResult type are listed in Table 15-10.

Table 15-10. WebTestResult Nodes

Node Description

m_requestResults Contains all of the information about specific steps in a test. A
simple XSLT applied to a portion of this node can be seen in
Figure 15-16.

m_testRunConfiguration Contains information specific to the configuration as it relates to
the specific test run.

errorInfo Contains any error messages generated by the test step.

computerInfo Identifies the computer on which each was run.

Microsoft also provides one XML transformation file with VSTS which is used to format
the results of the .trx file for display in a web page. This display is used in conjunction with the
Builds report.

■Tip This file is only available if you have access to a Team Foundation Server.

On the Team Foundation Server, navigate to the C:\Program Files\Microsoft Visual
Studio 2005 Team Foundation Server\Web Services\Build\Test Tools\v1.0\Transforms\
testresult.xsl file. This file can be used to transform the .trx file for display or it can be used
as a starting point for creating your own transform.

Publishing Test Results
The option to publish a test result is only available if you have Team Explorer (the client por-
tion of the Team Foundation Server) installed. Load the test result you want to publish (or use
the existing one if you just ran a test) and click the Publish button (located in the middle of the
Test Results pane). This will display the Publish Test Results dialog box shown in Figure 15-18.

Select the test run(s) you want to publish, then select the associated build and the build
flavor and click OK.

CHAPTER 15 ■ WEB TESTING468

4606CH15.qxd 4/20/06 3:31 PM Page 468

Figure 15-18. Publish Test Results dialog box

■Note You must do a build with TFSBuild for there to be a build number to associate this test result to.
If there are no existing build numbers, then the test result cannot be published. For more information, see
Chapter 7.

Multiple test results can be associated with a build/build-flavor combination.

Summary
This chapter has been a whirlwind tour of web testing using Microsoft’s new web testing tools.
You have seen how to record a web test and dissect all of the steps in order to determine what
the test is doing. The various options available to you for the web test have also been covered
as well as, more importantly, how to customize the functionality for particular problems you
are trying to solve.

You can now convert recorded web tests to coded web tests and implement data binding
in either scenario. This gives you a more powerful and controlled way to test different condi-
tions without writing hundreds of individual tests. And, finally, you have seen how to view the
test results, publish them, and examine the resulting XML file, so you can create your own
transformations to extract the data you feel is the most important.

You have also seen how web services can be tested in a way that exercises the service
interface rather than using a unit test. This is especially useful if you are using custom han-
dlers that might inject custom SOAP into the response.

All of this shows the flexibility of the web testing tool. The tool lends itself to being used in
almost any situation—from the mundane to the complex. While it is better suited to some
tasks than others, as a base testing tool it should cover about 95% of your web testing needs.

CHAPTER 15 ■ WEB TESTING 469

4606CH15.qxd 4/20/06 3:31 PM Page 469

4606CH15.qxd 4/20/06 3:31 PM Page 470

Load Testing

Up to this point you have seen how to run web tests from a single machine and run perform-
ance testing on discrete pieces of code or on the application as a whole. The last step in testing
a system is load testing. Load testing can be defined as “the act of determining whether an
application will continue to perform at a defined level, given a set number of connections
and requests.” While this is our definition (and there are many different definitions for load
testing), it does give you one important piece of information: It is measurable.

Often the terms scalability testing, stress testing, and performance testing are used inter-
changeably. And while they are all definitely linked—and in some cases use the exact same
type of tests—the goal is different. You have seen that in performance testing the goal is to
discover bottlenecks. To do this, the performance tests can use the exact same testing method-
ology as load tests. In other words, you can instrument your assemblies and run a load test on
them. However, you would not look at the load test results when trying to determine if there
are bottlenecks in the application—you would examine the performance results at the
method or system level. See? Same test but the information you are looking at is completely
different. The question now is what would you look at if you were running a load test?

A load test looks at the performance of the application in relationship to the environment
that the application is running in. It looks for external causes for application failure. To illus-
trate, if you navigate to a website and get an internal server error or a “site unavailable”
message, does this mean the website (the application) itself failed? Or does it mean that it is
taking so many requests (as in a denial of service attack) that it cannot respond to more
requests? This is probably not a result of the application failing (although it could be) but of
how the environment is handling the requests. Load testing can also be used to determine
database connectivity issues under high load as well. It is quite possible that the application
can handle 10,000 requests up front but the act of creating 10,000 connections to the database
causes it to fail. Why did it fail? It could be the number of allowed users was exceeded or the
back-end network failed to meet the demand placed on it. These are all questions that load
testing seeks to answer.

Stress testing, which can be a component of load testing, is designed to cause an applica-
tion to fail. It does this by placing the system under such a high load that it has no choice but
to fail. This high load may be because of the number of connections to the application as in a
regular stress test or it may be because other variables were introduced into the environment.
These variables range from simulating a hard drive failure to a network card failure or a power
supply failure. It tells the tester exactly how many things can go wrong with an environment
before the application itself no longer performs. Fortunately this chapter does not cover those
issues.

471

C H A P T E R 1 6

4606CH16.qxd 4/20/06 3:33 PM Page 471

■Note No application is infinitely scalable or can handle an infinite amount of demand. For one thing, there
just is not enough money or need to make that type of system a reality. The types of tests explained here
are all determined to help ensure that the application performs as it has been specified to and if it fails the
reasons for the failure are known. Then, intelligent decisions can be made concerning how to handle the
projected number of users or limitations in the environment.

With the gain in popularity of web services as a sort of “universal” medium through which
various applications can communicate, and the increase of web applications, the use of web
servers (be it IIS, Apache, or any of a dozen others) is on the rise. This increased usage has
ancillary effects on a network environment. If the application is hosted on a machine with
other applications, will it negatively affect those applications? Will other applications that
happen to use the same network segments as your application be affected? The answers to
these questions can help you tune the configuration of both specific machines and the net-
work environment as a whole. And as you will see, Visual Studio Team System provides
enough information to allow an organization to make the right decisions.

This chapter will round out your understanding of running tests using VSTS. Many of the
previous chapters deferred some of the testing information until this chapter. Load testing is
really built on top of web testing. That is, you need to have a web test before you can have a
load test. Load testing works by either running the same tests from different machines (using
agents) or simulating different machines (through the use of Virtual Machines) even though
there may in reality be only one machine.

Controllers and Agents
Before working on actually running a load test, you need to understand how the tests are run
(and should be run) and how to deploy the various components of a test. A controller is a
service that, conveniently enough, controls a set of agents when performing a specific test.
An agent performs the actual work of sending instructions to an application. This set of com-
puters (the controller and all agent computers) is called a rig. For a given load test there can be
only one controller, and each agent can belong to only one controller. The physical topogra-
phy of this setup is shown in Figure 16-1.

Figure 16-1 shows the optimal configuration for a controller/agent deployment, but it is
not the only configuration. Essentially any configuration will work provided that a controller
and at least one agent are deployed to a machine (this can be the same machine Visual Studio
is installed on or the same machine the application is installed on).

■Note For the load tests performed in this chapter, the deployment consisted of a laptop with Visual Studio
on it and a Win2k3 server with the application, the controller, and one agent installed.

CHAPTER 16 ■ LOAD TESTING472

4606CH16.qxd 4/20/06 3:33 PM Page 472

Figure 16-1. Controller/agent load testing deployment

Only one agent can be deployed to a given computer, and the controller must be installed
first (the controller location information is necessary for the agent installation). Aside from
this, there are no limitations on the topography of the test setup.

■Tip For this application, a separate controller and agent were installed to perform the load tests. Team
Test Load Agent contains the load test agent and controller and needs to be purchased separately. Visual
Studio Team System can be used as both the controller and the agent for small load tests (up to about 500
simulated users per processor), but it is best to use a separate controller and agents.

Whenever possible, load testing should be done in an environment that is as close to the real-world
environment as possible. This will provide you the most accurate results on which to base decisions.

Once you have the controller and agents set up, you can create and run a load test.

Administering a Controller
Assuming at this point that you have actually set up a controller (or more than one), you can
configure it through the Administer Test Controller dialog box shown in Figure 16-2.

CHAPTER 16 ■ LOAD TESTING 473

4606CH16.qxd 4/20/06 3:33 PM Page 473

Figure 16-2. Administer Test Controller dialog box

■Tip SQL Express is installed during the install of the controller.

To add a new controller, you can just type the name of the computer into the controller
drop-down. The load test result store holds a copy of the load tests. By default, it is automati-
cally set up on the controller computer.

■Caution You can select <local>, which is the machine on which VSTS is installed, as the controller.
Agents cannot be assigned to the <local> controller (there is a default local agent, but only one when using
<local> as the controller).

The agents assigned to each controller are shown in the Agents list. In this case, the con-
troller and the agent are installed on the same machine. Various options are available for each
agent and for the controller. An agent can be removed from a particular controller by selecting
the Remove button. To re-add the agent, simply select the Add button and enter the name
of the agent in the Agent Properties dialog box when it is displayed (shown in Figure 16-3).
Specific agents can also be taken offline, in which case it will not be a part of a test run (the
status will change to Offline). Restart can be used to bring an offline agent back online, and
Refresh will refresh the statuses of the agents.

CHAPTER 16 ■ LOAD TESTING474

4606CH16.qxd 4/20/06 3:33 PM Page 474

■Note The status can also be shown as running (if it is currently running a test) or disconnected if VSTS
cannot find the agent on the network.

Figure 16-3. Agent Properties dialog box

The Delete Temp Files option deletes all files deployed to the agents and controllers. The
Restart Rig option restarts the controller and all agents.

■Note Several of these options are available even if a test is in progress. If there is a test currently
running, you will be notified and given the option to cancel the operation.

In the Agent Properties dialog box you can change the weight of the tests run by that
agent. This weight number determines the amount of tests sent from the agent to the test sys-
tem. This number is independent of the other agents (i.e., you can have three agents with a
weight of 50%).

CHAPTER 16 ■ LOAD TESTING 475

4606CH16.qxd 4/20/06 3:33 PM Page 475

Enable IP Switching allows an agent to send requests over a range of IP addresses to the
application to be tested, instead of just a single static IP address. You can also specify the net-
work interface card (NIC) that the requests should be sent from, if there is more than one
network card installed on the agent machine.

The Attributes section allows you to add a series of name/value pairs that allow you to
constrain which agents are used in a given test. This filter is set in the Test Run Configuration
dialog box shown in Figure 16-4.

Figure 16-4. The Controller and Agent configuration tab

Configuring the Test Run
The solution configuration file has been covered in various chapters (an overview of the entire
configuration file was presented in Chapter 12). There is one tab in the configuration file that
applies to load testing: the Controller and Agent tab shown in Figure 16-4.

This tab allows you to configure where the tests are run from and allows you to filter the
agents used in the run. The tests can be run either from the local machine (if no controller is
installed) or from a remote machine (if you have previously installed a controller). When
selecting Remote, you have the option of constraining which agents are used as part of the test
by specifying the Attribute name you assigned to the agents and the value of that attribute. An
example of this may be the network configuration between the agent and the test machine.
The situation may be such that several computers are set up as internal to the enterprise and
several are external and go through a proxy and a firewall. For this scenario you may add an
attribute name to each agent with a value of Location and a value of either Internal or Exter-
nal. Then, when running the test, you can elect to only use some of the agents by entering
Location in the name and External in the value if you want to simulate connections coming
in from outside of the firewall.

CHAPTER 16 ■ LOAD TESTING476

4606CH16.qxd 4/20/06 3:33 PM Page 476

■Tip A best practice is to add the same attribute name to each of the agents. By doing this you are explic-
itly including an agent with a given value. If you do not add an attribute name and value to a given agent but
specify it in the test configuration dialog, the agent without that attribute will not run. By adding the same
name to each agent you will not accidentally exclude an agent.

Load Test Wizard
Now that you have seen how to configure the controller and agents, you can create a load
test. The easiest way to create a load test is to use the Load Test Wizard. To do this, select
Test ➤ New Test from the main menu. Select the Load Test icon and click OK (select the
EffortTrackingWebTests as the project in which the test should be located). The first page of
the load test is an introduction to the wizard. Click Next on the Introduction screen to move
to the Scenario screen (shown in Figure 16-5).

Figure 16-5. Scenario settings wizard dialog box

Scenario
This dialog box allows you to set the name for the test and specify think times. The think times
control how real the scenario is. The think time is the amount of time a user spends looking at
a web page or reading a web page without actually doing anything. A perfect example is a
news site. You might browse to a site and read an article. It may take you up to five minutes
to read that page, during which time you are not actually hitting the web server at all.

CHAPTER 16 ■ LOAD TESTING 477

4606CH16.qxd 4/20/06 3:33 PM Page 477

The three think time options are described in Table 16-1. Think times are discussed in
more detail in the sidebar.

Table 16-1. Think Time Options

Profile Description

Recorded think times The test will use the think times you entered for each page of the web
test (one of the properties of the Request Node of a web test).

Normal distribution The test uses a statistical distribution of think times based on the time
entered for each page. For example, if you set the think time property of
a page to 8 seconds, the test may use times between 5 and 11 seconds
as the think time.

No think times The test executes as fast as it possibly can for the specified number of
iterations.

THINK TIMES

Think times allow you to more accurately profile your website under a realistic load. Part of the problem with
the testing tool, Application Center Test, is that you cannot simulate think times. Often the think times will
give you a much different view of the load that your website can accurately handle. Selecting the normal dis-
tribution, which is the default, provides the most realistic load test.

A perfect example of why think times make a difference occurs with a news website. When you visit
www.msnbc.com or www.cnn.com you do not click through all the pages as quickly as you can; you read
the stories. Often these stories are broken up into multiple pages. Consider how you might design your
website to handle this situation. Maybe when a user selects a news story that is three pages long, you auto-
matically cache (or check the cache) on a separate thread to ensure that pages two and three of the story are
loaded. You do this because you have a good idea based on logical reasoning that the user will want to read
the whole story.

Now if you do not use think times when testing the website, you might discover that the site has a high
rate of database access, or a high cache miss rate (the rate at which the cache is accessed but the page is
not found in the cache). In reality, the site may be perfectly capable of handling the load, but you would not
be aware of that based on the test results.

Similarly, a static set of think times allows the testing of a website under a constant load; but this load
is not very realistic. The chance that ten users will access the site at the same time, spend eight seconds on
each page, and move through the site in parallel is not realistic either. But by using a normal distribution you
can be guaranteed that the page access times will become varied, and it will simulate people accessing the
website at various times on each page.

This is not to say that static think times and no think times do not have a place—they do. They allow
the testing of a website under a constant but reasonable load and with the worst case scenario. A perfect
example of why you would want to test with no think times is a denial of service attack, in which packets
requesting pages are constantly sent against one page or many. This provides a great test to see how your
website will respond in such a circumstance.

CHAPTER 16 ■ LOAD TESTING478

4606CH16.qxd 4/20/06 3:33 PM Page 478

The think time between test iterations allows you to specify how quickly the test will
repeat after it has completed.

Load Pattern
The load pattern allows for the specification of how many simulated users will access the
website and in what distribution. You can specify a constant load or a step load (shown in
Figure 16-6).

Figure 16-6. Load Pattern dialog box

A constant load means that the number of users specified will start accessing the website
immediately upon activation of the test. A step load test allows you to specify how the user
count will “ramp up” (see Table 16-2).

Table 16-2. Step Load Values

Values Description

Start user count Number of simulated users who will access the website as soon as
the test run is started.

Step duration Amount of time each step will last.

Step user count Number of simulated users who will be added to the user count at
each step.

Maximum user count Maximum number of simulated users who will access the website.

CHAPTER 16 ■ LOAD TESTING 479

4606CH16.qxd 4/20/06 3:33 PM Page 479

It is not necessary to run the step load in order to get an accurate assessment of your web-
site. In the run settings (see the “Run Settings” section later in this chapter) you can specify a
warm-up time for the test, which will allow the site time to compile and cache pages before
the “real” test starts.

Test Mix
The next part of the wizard is to add the tests you want to load test your site with. The dialog
box for this is shown in Figure 16-7.

Figure 16-7. Select Tests dialog box

To add a test, select the Add button and select each of the tests from the Add Tests dialog
box shown in Figure 16-8.

From here you can add any previously created tests.
The distribution value is an indicator of the likelihood of a user actually running through

the sequence of events described in the web test. For example, in the effort tracking applica-
tion there is a higher probability that a user will log on to the application and add a task rather
than logging on, selecting a different week, and deleting a task. The distribution must equal
100%.

■Caution Nothing prevents you from adding unit tests or manual tests to this list. Do not do this! The load
test will run but no usable information will be returned (and it will pause the load test if you specify a manual
test).

CHAPTER 16 ■ LOAD TESTING480

4606CH16.qxd 4/20/06 3:33 PM Page 480

The check box to the right of the distribution allows you to lock a particular test’s distribu-
tion so it does not change dynamically as you change the distributions on other tests.

Figure 16-8. Add Tests dialog box

Browser Mix
The load test allows you to specify the types of browsers that will be accessing the website and
allows you to specify the distribution of those requests (shown in Figure 16-9).

Figure 16-9. Browser Mix dialog box

CHAPTER 16 ■ LOAD TESTING 481

4606CH16.qxd 4/20/06 3:33 PM Page 481

Figure 16-9 shows the list of built-in browsers that are supported by load testing. This list
is extensible, although undocumented, so you can create additional browser types such as
Opera and Firefox (this is described in the section “Extending Load Test Settings” later in this
chapter). The distribution here is identical to that of the tests. It allows you to specify the por-
tion of browsers of a given type accessing your system. This allows you to exercise any code
you have that targets specific browsers (for example, if your website is accessible via Pocket
Internet Explorer or a Smartphone, you typically send a page that has been formatted
differently).

Network Mix
The Network Mix dialog box allows you to specify the types of connections that will access the
website (shown in Figure 16-10).

Figure 16-10. Network Mix dialog box

This is useful for accurately describing the types of connections and for allowing you to
monitor the time it takes to generate pages for different types of connections. An example of
this might be a brokerage website. The site may have quality requirements that specify that
results are returned to the user in less than three seconds regardless of the type of network
connection they are using. This selection allows for the verification of this type of quality
requirement.

CHAPTER 16 ■ LOAD TESTING482

4606CH16.qxd 4/20/06 3:33 PM Page 482

Counter Sets
Counter sets are literally the set of counters you want to use to monitor information about
various computers during the test (shown in Figure 16-11).

Figure 16-11. Counter Sets dialog box

By default, the controller computer and all agent computers are monitored. However, you
can elect to monitor additional computers on the network for performance during the testing.
A common example of this might be a proxy server. Since some of the requests are going to
go through this computer, knowing how it is performing during the test is crucial. Another
example would be a load balancing server, a database server, or a failover server. This will tell
you if the hardware and network connections on the external systems your application has a
dependency on are capable of handling the load.

■Note For this chapter, the controller, agent, and website are all located on the same computer, so there is
no separate test computer as shown in Figure 16-11. That is an example only.

CHAPTER 16 ■ LOAD TESTING 483

4606CH16.qxd 4/20/06 3:33 PM Page 483

Run Settings
Run settings allow you to specify the warm-up time (the amount of time the website is “exer-
cised” before the real test begins), the run duration, the frequency of sample collection, a test
description, the number of details that should be captured for each error, and the validation
level (Figure 16-12).

Figure 16-12. Run Settings dialog box

The only item that really needs to be described on this dialog box is the validation level;
everything else is self-explanatory. The validation level describes what validation rules the
load test will ignore or process (see the section “Validation Rules” in Chapter 15 for more
details). During a regular web test you most likely want to know when a value violates a rule.
During a load test this information is not necessarily important unless you need to know how
the site reacts to these violations under load.

Extending Load Test Settings
For a load test you can extend or alter three of the settings for a load test—browser types,
network types, and counter sets—using a ridiculously simple feature that is currently
undocumented.

CHAPTER 16 ■ LOAD TESTING484

4606CH16.qxd 4/20/06 3:33 PM Page 484

Extending the Browsers
The list of browsers included with the out-of-the-box package is pretty small. It does not
include such popular browsers as Firefox or Opera and there are numerous other browsers
that, while not all that common, are definitely in use by a large number of users (for example,
the browsers that work on non-Windows phones). So adding to this list is a fairly logical step.
To add a new browser you will create a browser file. The default browser files are located in
C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\Templates\LoadTest\Browsers.
If you open the IE6.browser file you will see the XML shown in Listing 16-1.

Listing 16-1. The IE6 Browser File

<Browser Name="Internet Explorer 6.0">
<Headers>
<Header Name="User-Agent" Value="Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.1)" />
<Header Name="Accept" Value="*/*" />
<Header Name="Accept-Language" Value="{{$IEAcceptLanguage}}" />
<Header Name="Accept-Encoding" Value="GZIP" />

</Headers>
</Browser>

If you are not familiar with how browsers work, here’s a one-sentence introduction
(although, hopefully, if you are reading this chapter you know how a browser header works):
when the client browser sends a request to the server it includes various pieces of information
about itself so the server can take appropriate action. To see this in action, try visiting
www.ranks.nl/tools/envtest.html to see what is sent to a server. With this information,
understanding what is included here is pretty simple.

■Tip More information on header field values can be found at www.w3.org/Protocols/rfc2616/
rfc2616-sec14.html (W3C specification).

In Listing 16-1 the User-Agent value indicates the capabilities of the agent (the browser in
this case) accessing the server. As you can see, IE is Mozilla 4.0 compliant and compatible with
Microsoft Internet Explorer 6 and is running on the Windows NT 5.1 platform (Windows XP).

The Accept header indicates what extensions will be honored in the response. */* indi-
cates that all extensions are acceptable to the client. If, for example, you only want to accept
images, you would see image/*, which indicates the type and what subtypes to accept (* indi-
cates all).

CHAPTER 16 ■ LOAD TESTING 485

4606CH16.qxd 4/20/06 3:33 PM Page 485

The Accept-Language value is the language the browser can understand. The $IEAccept-
Language is replaced with the culture in use on the local machine. Some of the actual values
(i.e., the values that are actually transmitted) are “en” or “en-us” for English or U.S. English,
“hu” for Hungarian, “zh” for Chinese, etc.

■Tip More information about the language codes can be found in any book on application globalization or
localization. A shorter list can be found here: www.hashemian.com/tools/browser-simulator.htm.

The Accept-Encoding header indicates the type of encoding of the data that can be
understood by the browser. In this case, GZIP indicates that IE6 can understand the data
transmitted to the client if it is compressed in a gzip format (a compression format that is in
standard use by web servers to minimize the size of the data stream sent to the client).

Now that you understand the contents of this file, add a new Opera browser by creating a
new browser file called Opera.browser and enter the information contained in Listing 16-2.

Listing 16-2. The Opera Browser File

<Browser Name="Opera 8.0">
<Headers>
<Header Name="User-Agent" Value="Opera/8.00+(Windows+NT+5.1;+U;+en)" />
<Header Name="Accept" Value="text/html, image/jpeg, image/gif,
image/x-xbitmap, */*" />

<Header Name="Accept-Language" Value="en" />
<Header Name="Accept-Encoding" Value="GZIP" />

</Headers>
</Browser>

Once you save the file, if you edit the Browser Mix you will see Opera 8.0 as an option.

Extending the Network Types
Creating a new network type or altering an existing network type is even easier than adding
or changing a browser type. The network types are located in the folder C:\Program Files\
Microsoft Visual Studio 8\Common7\IDE\Templates\LoadTest\Networks and have the exten-
sion .network. The 56.6 dial-up type is shown in Listing 16-3.

Listing 16-3. Dial-up 56.6K Network Type

<Network Name="Dial-up 56k" BandwidthInKbps="53.3">
</Network>

CHAPTER 16 ■ LOAD TESTING486

4606CH16.qxd 4/20/06 3:33 PM Page 486

The bandwidth controller is the BandwidthInKbps attribute. 53.3 represents the number
of kilobytes/second. The T1 network is represented by 1544 Kbps. The LAN network is repre-
sented by a value of 0, which indicates maximum throughput. To create a new network type
just add the code from Listing 16-3 to a file with the extension .network and customize it as
you need. This is handy for when more advanced connections are developed or special net-
work needs require nonstandard throughput.

Extending the Counter Sets
The counter sets allow you to preconfigure frequently used counters for performance moni-
toring. A good use of this might be to create a standard counter configuration file to be used
by all of your applications, or a configuration file for any other standards-based testing where
you have to ensure that the same counters are captured for different tests. The counter sets are
located in C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\Templates\LoadTest\
CounterSets and have the extension .CounterSets. The ADO.NET counter set is shown in
Listing 16-4.

Listing 16-4. The ADO.NET Counter Set

<CounterSet Name="ADO.Net" CounterSetType="ADO.Net">
<CounterCategories>

<CounterCategory Name=".NET CLR Data">
<Counters>

<Counter Name="SqlClient: Current # connection pools" />
<Counter Name="SqlClient: Current # pooled and

nonpooled connections" />
<Counter Name="SqlClient: Current # pooled connections" />
<Counter Name="SqlClient: Peak # pooled connections" />
<Counter Name="SqlClient: Total # failed commands" />
<Counter Name="SqlClient: Total # failed connects" />

</Counters>
<Instances>

<Instance Name="*" />
</Instances>

</CounterCategory>
</CounterCategories>

</CounterSet>

The category name is what shows up in the list, and in the list of counters are the names
of the specific counters (you can get these values from the Windows Performance Monitor
(perfmon). The Instance name specifies the machine from which the counters are to be col-
lected. The star (*) indicates that these counters will be collected from all of the machines
involved in the test.

CHAPTER 16 ■ LOAD TESTING 487

4606CH16.qxd 4/20/06 3:33 PM Page 487

Load Test Window
After the Load Test Wizard has completed, the settings can be viewed in the Load Test window
shown in Figure 16-13.

Figure 16-13. Load Test window

From the Load Test window you can configure several additional options (shown in Table 16-3)
and add additional run settings.

■Note While only one run setting can be active at a given time, by being able to configure multiple set-
tings, the same load test can be reused in order to focus given tests on various aspects of the systems
under load.

CHAPTER 16 ■ LOAD TESTING488

4606CH16.qxd 4/20/06 3:33 PM Page 488

Table 16-3. Additional Load Test Options

Option How To Description

Add Custom Counters Right-click the Counter Sets node. Allows you to add any
counters available in the
system at a very fine-grained
level (Figure 16-14).

Add Threshold Rule Expand the Counter Sets until you Allows you to add a warning
find the counter you want to set a that informs you of when a
threshold rule for, right-click, and counter has exceeded a given
select Add Threshold Rule. threshold (Figure 16-15).

Add Run Settings Right-click the Run Settings node. Allows you to add additional
run settings.

■Note When additional run settings are added, make sure you have selected the correct run setting for a
test either by right-clicking the settings and selecting Set as Active, or by selecting the load test root node
and setting it in the properties dialog box.

Figure 16-14. Pick Performance Counters dialog box

CHAPTER 16 ■ LOAD TESTING 489

4606CH16.qxd 4/20/06 3:33 PM Page 489

In Figure 16-14 the computer Januik (which contains the SQL Server 2005 database) is
selected and the SQL Server Statistics counters are displayed. You can select either specific
counters or all of the counters from a category.

Figure 16-15. Add Threshold Rule dialog box

A threshold rule can be set for any counter. It generates either a warning or a critical
warning message during the load test run if the counter exceeds a given value. There are two
ways of setting a threshold rule: either it can be a constant value or it can be based on the
value of another counter. For a constant value you simply enter the values for the warning and
critical levels and indicate when an alert should be generated. Do not be fooled by the title
“Alert If Over.” If this value is set to False, an alert is generated if it is under the stated value.
Otherwise it generates an alert if it is over the stated value.

When electing to set threshold rules based on another counter, you select the Compare
Counters rule. This rule throws an exception if one counter performs faster than another
counter or vice versa. This allows you some degree of dynamic performance monitoring based
on the environment.

■Tip To see what threshold rules have been set for a test, you need to drill down into the Load Test tree
view. Select Counter Sets ➤ [Computer Name] ➤ Counter Categories ➤ [Category] ➤ Counters ➤ [Counter
Name] and you will get to the threshold rules. If there is no plus (+) next to the counter name then there is
no threshold rule set for that counter.

CHAPTER 16 ■ LOAD TESTING490

4606CH16.qxd 4/20/06 3:33 PM Page 490

Once you have set the test run settings and configured the load test you can either run or
debug the load test. The reason there is no section called “Running a Load Test” is because it is
entirely automatic. You can view various results from the load test while the test is running but
once you start the test you can grab a cup of coffee.

Analyzing Load Test Results
There is so much information collected from a load test that you need to be able to under-
stand it effectively in order to be able to use it to improve the performance of your website.
Because of this, the various test results are discussed in general terms. There are several hun-
dred counters available to you, which all indicate various things and this book is not about
performance counters. Instead, this section discusses what results are found where and the
various ways of diving into the data to get answers concerning the load test results.

Figure 16-16 shows the load test results from the FullTest load test.

Figure 16-16. Load test results

The four panes represented in the load test results window are (clockwise from upper left)
Counters, Graphs/Tables, Points, and Summary. Each of the panes is described in the follow-
ing sections.

CHAPTER 16 ■ LOAD TESTING 491

4606CH16.qxd 4/20/06 3:33 PM Page 491

■Tip You can switch to full-screen mode by selecting View ➤ Full Screen from the main menu or pressing
Shift + Alt + Enter (this will also revert the screen to normal mode).

Counters Pane
The Counters pane contains a list of all the counters on all the computers recorded during the
test. During the actual test run, only a subset of these counters is shown; but once the test is
completed the full set of counters can be found. Figure 16-17 shows a more detailed view of
the Counters pane.

Figure 16-17. Counters pane

The first node in the list, Overall, displays (as its name suggests) a list of counters that
covers the overall set of counters. These are counters that have been summed and placed into
this node.

CHAPTER 16 ■ LOAD TESTING492

4606CH16.qxd 4/20/06 3:33 PM Page 492

As you can see in Figure 16-17, the details related to the Scenario (the second node) are
shown. One node for each test is displayed here. Drilling into the FullTest (the name of the
web test) shows all of the collected data relating to a specific test. Double-clicking on any of
the counters in this pane (or dragging and dropping the counter on the graph) will add that
item to the graph (and it will be displayed in the legend beneath the graph).

The Computers node shows all of the counters recorded for each computer that you
elected to record data from. In this example, data was recorded only from the KIONA
computer.

The last node, Errors, records the total number of errors grouped by type.

Graphs/Tables Pane
The pane containing the graphs in Figure 16-16 can be switched to a table view by selecting
the Table button from the top of the window. Figure 16-18 shows the table view.

Figure 16-18. Table view of data

This view provides access to various tables of data and detail about that data. For exam-
ple, if there were errors, the Errors table could be selected and you would see details about the
types of errors and be able to drill down into the stack trace, depending on the errors.

■Note If the web test runs without problems there should not be any errors in the load test caused by the
test itself. However, because this is a load test and the system or application may not be able to handle it,
you will very likely see errors such as “500 – Internal Server Error.”

■Caution When you first create a load test, one of the default counters that is set is the Threshold
counter. This sets a specified period of time for the page to respond, and if it does not respond in time an
exception is thrown. When the exception is thrown, it is recorded, but part of the test ends up being skipped.
Because of this, all sorts of weird errors start appearing (though this is partially based on how your test is
set up). Our suggestion would be to disable this threshold check if you are running the test on your local
machine and manually determine how many pages did not respond in a set period of time (using Excel or
some other tool to sort and analyze the data). This will stop the problem of the application throwing unre-
lated and hard-to-trace exceptions that are not actually occurring.

CHAPTER 16 ■ LOAD TESTING 493

4606CH16.qxd 4/20/06 3:33 PM Page 493

The graph itself has various options for displaying data. The data displayed on the graph
is located below the graph in the legend. To highlight a specific metric, select it from the
legend and it will become bolded in the graph.

At the top of the graph there is a drop-down menu containing a list of computers for
which counter information was collected, and a Default option. The Default option displays
data for all computers. In addition, you can create additional graphs. The purpose of this is to
be able to create graphs that display various counters. For example, one graph may show the
processor time of all the computers involved in the load test so a comparison can be made
(this type of comparison is useful, for example, when your application is deployed to a web
farm) and another may show entirely different, unrelated information.

Options for the graph can be set by right-clicking the graph and selecting Graph Options
or by selecting the Graph Options button from the top of the graph. The options you can set
are the following:

• Select Graph

• Show Legend

• Show Plot Points

• Show Horizontal Grid Lines

• Show Min/Max Lines

• Show Threshold Violations

• Display data for the entire run or recent data only (available while the run is in
progress)

Just below the graph but above the legend is a bar (shown in Figure 16-16) which allows
you to zoom in on a portion of the graph. You can also zoom in by clicking in the graph and
dragging your mouse until the portion you want to zoom in on is highlighted.

Below the graph is the legend. Selecting a counter in the legend will bold it on the graph.
A counter can be deleted from the graph by right-clicking it and selecting Delete, or selecting
the counter and pressing the Delete key. To temporarily remove the counter from the graph,
simply uncheck the box next to the counter. For each counter you can set three options in the
Plot Options dialog box shown in Figure 16-19.

Figure 16-19. Plot Options dialog box

CHAPTER 16 ■ LOAD TESTING494

4606CH16.qxd 4/20/06 3:33 PM Page 494

As you can see from Figure 16-19, you can change the color of the counter line, the style of
the line, and the range of display for the counter. The default is to allow VSTS to automatically
control the range, which takes into account other values on the graph.

The columns in the legend give you detailed information on the counter itself: which
computer it was recording information from, what counter category it is part of, and the min,
max, average, and last values it recorded.

Points Pane
The graph points are actually part of the Graph pane and can be hidden by selecting the
Show/Hide Graph Points option of the graph. This pane always displays data in the form of
time (in the left column) and the value (in the right column). The time displayed is based on
the polling interval selected during the Load Test setup. The value is dependent on the counter
selected.

Summary Pane
The Summary pane simply provides a summary of all of the data collected during the test run.

Publishing Test Results
As with web tests, load test results can be published to a Team Foundation Server. For the
steps to publish a load test, see the “Publishing Test Results” section in Chapter 15.

Summary
In this chapter you have seen how and why you run a load test and what information you
expect to get out of it. Running a load test based on an existing web test (or a set of web tests)
in order to validate system performance under high demand is the key focus of this chapter.
The setup of the controller and associated agent(s) was covered, which gives you a solid start-
ing place for creating your own load test lab. Setting options for the load test and, finally, being
able to view and analyze the load test results was presented.

This chapter used steps from previous chapters, combined with the abilities of the VSTS
load testing tool to provide you detailed information about an application’s environment. This
information will help you build better, more reliable applications by allowing you to configure
the environment in which the application runs, with the foreknowledge of how it will perform.
While this tool may not solve all of the problems with an environment, it will help you prepare
by giving you information about any weaknesses in the environment and allowing you to plan
for the future.

CHAPTER 16 ■ LOAD TESTING 495

4606CH16.qxd 4/20/06 3:33 PM Page 495

4606CH16.qxd 4/20/06 3:33 PM Page 496

Command-Line Tools
Reference

Various command-line tools are available for performing Visual Studio Team System opera-
tions. In many cases, the functionality provided by these tools is also available from the IDE.
When possible, it is best to use the functionality presented by the IDE because of the complex-
ity of the command-line tools. For example, the TFSSecurity server command-line tool allows
you to control security, but the command-line options can be overwhelming and difficult to
use. It’s much more straightforward to use the IDE tools for controlling security, as described
in Chapter 2 of this book.

Also be aware that the use of the command-line tools is not recommended by Microsoft
in most cases. This is especially true of the server tools. Certain tools can cause a lot of prob-
lems when used incorrectly (for example, accidentally deleting items, erasing all permissions,
ruining existing assemblies, and so on). These tools should be used with caution, and you
should test their usage in a nonproduction environment first, so you understand all of their
nuances. While many of these tools are well documented, some are not.

That said, this appendix presents brief lists of the server and client command-line tools.
More information about each tool can be found in the MSDN documentation, and some are
discussed in more detail in this book.

Server Command-Line Tools
Table A-1 describes each of the server command-line tools. All of the server tools are located
in C:\Program Files\Microsoft Visual Studio 2005 Team Foundation Server\Tools.

Table A-1. Server Command-Line Tools

Tool Description

CreateDS Used to create a data source for reporting services.

InstanceInfo Used to return a GUID for the specified Team Foundation Server
(TFS) database(s). It works for most TFS databases, but not the
data warehouse.

ProcessTemplateManager Used to upload a new process template.

Continued

497

A P P E N D I X

4606AppA.qxd 4/20/06 3:34 PM Page 497

Table A-1. Continued

Tool Description

SetupWarehouse TFS Server Warehouse Setup tool, used to set up a new instance
of the TFS data warehouse. It can also be used to repopulate an
existing data warehouse.

TFRSConfig TFS Reporting Server Configuration tool.

TFSAdminUtil TFS Administration Utility, used to change passwords, accounts,
machine locations, and connections between the application tier
and the data tier.

TFSReg TFS Registration tool.

TFSSecurity TFS Server Security tool, used to control security of projects,
users, and groups (Windows and TFS groups). It can also be
used to report on that information.

Client Command-Line Tools
The client command-line tools that you have available depend on the version of Visual Studio
Team System that is installed. The majority of these tools are available from within the IDE.
Table A-2 describes these tools and notes their location.

Table A-2. Client Command-Line Tools

Tool Description Location

VSInstr Used to perform the instrumentation C:\Program Files\
of binaries, which can then be Microsoft Visual Studio 8\
deployed to a production machine. Team Tools\

Performance Tools

VSPerfCmd Used to start and stop performance C:\Program Files\
profiling. Microsoft Visual Studio 8\

Team Tools\Performance
Tools

VSPerfMon Used to start and stop performance C:\Program Files\
profiling, but contains different Microsoft Visual Studio 8\
options than the VSPerfCmd Team Tools\
application. Performance Tools

VSPerfClrEnv Used to set Common Language C:\Program Files\
Runtime (CLR) environment options Microsoft Visual Studio 8\
so the performance tools can be Team Tools\
properly loaded. Performance Tools

VSPerfReport Used to create performance reports C:\Program Files\
(or a subset of those reports that Microsoft Visual Studio 8\
you see in the IDE). Team Tools\

Performance Tools

FxCopCmd Used to run managed static code C:\Program Files\
analysis. Microsoft Visual Studio 8\

Team Tools\Static Analysis
Tools\FxCop

APPENDIX ■ COMMAND-LINE TOOLS REFERENCE498

4606AppA.qxd 4/20/06 3:34 PM Page 498

Tool Description Location

WitExport Used to export work items from TFS. C:\Program Files\
Microsoft Visual Studio 8\
Common7\IDE

TFSBuild Used to perform command-line C:\Program Files\
builds, with the results published Microsoft Visual Studio 8\
to TFS. Common7\IDE

TFSDeleteProject Used to delete a project from TFS. C:\Program Files\
This can be done only via the Microsoft Visual Studio 8\
command line. Common7\IDE

TFSFieldMapping Used to change the mappings from C:\Program Files\
the server fields to local fields and Microsoft Visual Studio 8\
to add or remove mappings for Common7\IDE
Microsoft Project and Excel integration.

MSTest Used to run tests from the command C:\Program Files\
line. It can publish the test results Microsoft Visual Studio 8\
to TFS, if TFS is installed. Common7\IDE

MSBuild Used to build a solution and optionally C:\%winnt%\Microsoft.NET\
run tests associated with the solution. Framework\v2.0.50727

APPENDIX ■ COMMAND-LINE TOOLS REFERENCE 499

4606AppA.qxd 4/20/06 3:34 PM Page 499

4606AppA.qxd 4/20/06 3:34 PM Page 500

■A
Access property (classes), 318

Access property (items), 327

Accessors property, 327

ACT (Application Center Test), 9, 433

Activate policy, 99

Active Directory (AD), security and, 46

Actual Quality vs. Planned Velocity report,

163, 165

AD (Active Directory), security groups

and, 46

AD. See Application Designer

.ad (application diagrams), 221, 223

system diagrams and, 259, 261

add command, 102

AddItemCoded class, 448

AddUser method, 325

AddUserTest method, 346, 354

Administer labels permission, 65

adminpak.msi tool, 46

.adprototype files, 224

agents, 471–477

Agile Development methodologies, 342

Agile method, 26

Agile process template, 25

predefined queries and, 125

predefined reports and, 163

reports and, 30

work item types and, 29, 131

alert states, 253

alerts, 32, 141

allocation information, 416

Altova tools, 466

AmberPoint, 462

analyzing load test results, 491–495

Application Center Test (ACT), 9, 433

application definitions (.sdm), 271, 286

Application Designer (AD), 6, 219–253

Toolbox objects for, 224

application diagrams (.ad), 221, 223

system diagrams and, 259, 261

application endpoints, 260

application prototypes, 224, 256

application systems, 221

application time, 404

applications, 221

comments, adding to, 244

defined, 256

implementing, 233–240

reverse-engineering for, 251

servers bound to

explicit model, 289

implicit model, 299

troubleshooting, 253

vs. systems, 256

web applications, adding to, 240–244

architects, benefits of VSTS for, 2, 5

Class Designer and, 311

distributed designers and, 221

architecture, 2

process templates and, 37

areas, 32, 112

security for, 54

ASP.NET applications

operations for, defining, 232

performance profiles for, 425–429

Assert statements, 347

AssertFailedException, 347

Assigned To field, modifying, 145–149

Associated Work Items property, 350

association relationships, displaying, 330

Association tool, 332

atomic systems, 220

Index

501

4606Index.qxd 4/20/06 3:35 PM Page 501

attachments, adding to work items

in Microsoft Project, 109

in Team Explorer, 125

Atwood, Jeff, 95

authoring tools, 161

automated builds, 197–215

■B
base work item type, 153

BaseIntrospectionRule class, 394

BI (Business Intelligence), 159

BIDS (Business Intelligence Development

Studio), 166

Block operation, 181

Booch, Grady, 222

boundary values testing, 340

branch command, 102

branches command, 102

branching, 80

browser mix, load testing and, 481, 486

Bug Rates report, 163, 165

Bug work items, 133, 142–144

Bugs by Priority report, 163, 165

Bugs Found Without Corresponding Tests

report, 163, 165

Build Detail Report, 204–208

build details, 209

build history, viewing, 208

build quality, 209

build results, viewing, 203–208

Build Services group, 52

build steps (Build Detail Report), 205

build summary (Build Detail Report), 205

build type configuration file, 211

build types

creating, 198–203

deleting, 203

build verification tests (BVTs), 197

builds

automated, 197–215

customizing, 211

deleting, 214

history of, displaying, 208

running, 203–208

starting/stopping, 213

Builds report, 163, 165

Business Intelligence (BI), 159

Business Intelligence Development Studio

(BIDS), 166

Business Intelligence Platform, 159

BVTs (build verification tests), 197

■C
C#, Class Designer and, 312

call trees, 415

callers/callees, performance reports and, 414

Capability Maturity Model Integrated

(CMMI), 4

change requests (CRs), 136

changesets, 72–75

ChangeSetting operation, 181

check-in notes, 71, 93

Check in other users’ changes permission, 65

Check-in permission, 65

check-in policies, 91

creating, 95–100

installing, 99

Team Foundation Build and, 198

Check method, 396

Check-out permission, 65

check-out settings, 90

checkin command, 102

checkout command, 102

CIZs (corporate intranet zones), 270, 272

Class Designer, 7, 311–337

design goals of, 311–314

menu options for, 319

Toolbox options for, 319

XML view of, 336

class diagrams

creating, 315

fields/properties, adding to, 333–335

items, adding to, 320–327

XML view of, 336

Class Name property, 350

Class node, 336

■INDEX502

4606Index.qxd 4/20/06 3:35 PM Page 502

class properties, 318

ClassCleanup method, 368

ClassInitialize method, 368

classes

adding to diagrams, 316

exploring, 316

renaming, 316

cleanup scripts, 357

client command-line tools, 497

cloaking folders, 68

CMMI (Capability Maturity Model

Integrated), 4

CMMI process template, 25

predefined queries and, 125

predefined reports and, 163

reports and, 30

work item types and, 29, 131

code analysis policy, 92

code analysis tools, 7, 377–401

code coverage, 339, 356

performance testing and, 357

code coverage results, viewing, 206, 362–364

code reviews, 377

coded web tests, 447–452

colors, for code coverage information, 364

column mappings, viewing in Microsoft

Project, 112–115

command-line access, for TFVC, 101

command-line tools, 422, 497

comments

check-in policies and, 95–98

for class diagrams, 335

for applications, 244

for attachments/links, 112

communication tools, Project Portal and, 5,

26, 32–36

composite systems, 221

configuration files

localtestrun.testrunconfig, 355

manifest.xml, 28
build type, 211

web.config, 427–428

configure command, 102

configuring

application designs, 249

controllers, 473

deployment properties, 303

FxCop, 391–401

lists, in Excel, 117

load tests, 476–486

project alerts, for work item tracking, 141

projects, 90, 93

recorded tests, 439

servers, 276

test runs, 355–359

TFVC, 89–95

zones, 271

conflicts, resolving, 85

connected systems, 219

connections, rules/guidelines for, 246

Constant Kind property, 327

constant loads, 479

constraints

for application designs, 249

overriding, 265

for servers, 276

setting for zones, 270, 273

viewing in System Designer, 264

consumer endpoints, 245

Context class, 456

continuous integration testing, 214

contract-first approach, 219, 232

Contributors group, 52

controllers, 472–477

Cook, Steve, 223

corporate intranet zones (CIZs), 270, 272

cost considerations

automated builds and, 197

VSTS and, 2

count measures, 187

counter sets, 483, 487

counters, 492

deleting, 494

CRs (change requests), 136

■INDEX 503

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 503

creating

build types, 198–203

check-in policies, 91

class diagrams, 315

deployment diagrams, 287, 297

global lists, 150

groups, 145

interfaces, 328

lists, in Excel, 116

load tests, 477–487

logical datacenter diagrams, 267–283

manual tests, 374

namespaces, 157

ordered tests, 353

policies, 95–100

product schedules, in Microsoft Project,

106

projects, 20

queries, 126

reports, 166–170, 187, 195

solutions, 68

system diagrams, 256–262

test database, 367

tests lists, 352

unit tests, 342–345

user interfaces, 242

work item types, 152–156

work items, 122

workspaces, 67

culture testing, 341

Custom Attributes property (classes), 318

Custom Attributes property (items), 327

customizing

builds, 211

extraction rules, 454

process guidance, 43

process templates, 36–43

Project Portal, 32–36

reports, 166–172

Team Foundation Build, 211

validation rules, 459

■D
Data Access Method property, 350

data binding

coded web tests and, 449

data-driven web testing and, 443

Data Connection String property, 350

data-driven access options, 445

data-driven testing, 367–373

data-driven web testing, 443

coded, 449

data mining, 182–189

Data Provider property, 350

data sources, reporting and, 169

Data Table Name property, 350

Data Warehouse (Team Foundation),

172–189

adding elements to, 182

managing, 181

data warehouse schema, 174–180

database endpoints, 259

databases

connecting to web services, 228

database component, for sample

application, 226

production, 368

test, 367

DD (Deployment Designer), 220

.dd (deployment diagrams), 221, 287–307

validating implementation of, 291, 301

delegation, 260

delete command, 102

DeleteTask method, 325

DeleteTaskTest method, 359–362

deleting

build types, 203

builds, 214

counters, from graphs, 494

inheritance relationships, 330

interfaces, 330

work items from projects, 145

demilitarized zones (DMZs), 269, 272

Deployment Designer (DD), 6, 220, 285–307

■INDEX504

4606Index.qxd 4/20/06 3:35 PM Page 504

deployment diagrams (.dd), 221, 287–307

validating implementation of, 291, 301

Deployment Items property, 350

deployment methods, 285–307

Deployment Reports, 295, 303, 305

Description policy, 99

Description property, 350

designers, 6, 219–223

Destination Path property, 305

developers, benefits of VSTS for, 2, 7

Class Designer and, 311

development, 2

DiffDoc.exe tool, 95

dimensions (data warehouse schema), 177

dir command, 102

DisplayHelp policy, 99

distributed system designers, 219, 220–223

benefits of, 221

locating, 224

.dll files, 28

DMZs (demilitarized zones), 269, 272

document libraries, 28

documents, 29

DSL (Domain-Specific Language), 6, 221

.dwp files, 28

■E
e-mailing

project alert messages, 141

queries, 127

Edit policy, 99

Effort Tracking (sample application), 10, 20

deployment diagram for, 297

Deployment Report for, 305

Logical Datacenter diagram for, 281

reverse-engineering applications and, 251
web service diagram and, 314

elapsed time, 404

endpoint notation, 245

endpoint prototypes, 224, 268

endpoints, 259, 268

constraints on, 277

enumeration properties, 322

enumerations, adding to class diagrams, 321

equality testing, 340

Error Resolution property, 305

errors

application diagrams and, 253

data source binding and, 172

viewing in Build Detail Report, 206

Errors Only property, 305

Errors table, 493

Evaluate policy, 99

event properties, 327

Evolutionary Prototyping method, 26

Excel (Microsoft)

data mining and, 182–189

project management and, 115–118

exception path testing, 341

exception tests, 364–367

exclusive allocations, 405

exclusive bytes allocated, 405

exclusive information, 404

ExpectedException attribute, 366

explicit deployment method, 285–296

exporting work item types, 146

Extract method, 456

extraction rules, 445, 449, 453–458

Extreme Programming (XP), 342

■F
fact tables (data warehouse schema), 175

FactLinks (data warehouse schema), 179

failing tests, 443

field properties, 327

field reference names, 156

fields

Bug work items and, 133

Change request work items and, 136

class diagrams and, 333–335

Issue work items and, 140

in reports, moving, 169

Requirement work items and, 138

Review work items and, 137

Risk work items and, 134

Task work items and, 131

work item types and, 151

File Name property (classes), 318

■INDEX 505

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 505

File Name property (items), 327

File properties (Source Control Explorer),

62–66

FileName node, 336

files

labeling versions and, 76

merging, 83–89

Pending Changes window and, 70

version comparisons and, 74

Firefox browser, 485

flow behavior, setting, 276

Folder properties (Source Control Explorer),

62–66

folders

cloaking, 68

labeling versions and, 76

Font node, 336

forking, 80

form view, 123

format testing, 341

Full Class Name property, 350

Full Name property, 318

functions, performance reports and, 411–414

FxCop code analysis tool, 7, 377, 387–401

customizing, 391–401

running from command line, 392

warnings and, 388

FxCop rules, 391–401

■G
garbage collection, 417

Generic property, 318

get command, 102

GetLookupInfo method, 324

GetNextInterval operation, 181

GetRequestEnumerator method

(IEnumerator), 448

GetTask method, 325

GetTasks method, 325

GetWarehouseStatus operation, 181

.gif files, 28

glexport tool, 144

glimport tool, 144

global groups, Team Foundation Server

and, 47

global lists, 149–152

graph points, 495

graphs, 493

group permissions, 48

for projects, 52

groups

creating, 145

managing, 50

■H
HashCode node, 336

history command, 102

history of file changes, 73

.htm files, 28

■I
ID property, 350

IDE version control configuration, 93

IEnumerator interface, 448

IIS (Internet Information Services),

importing settings from, 277

images, adding to

Project Portal, 34

reports, 170

implementing applications, 233–240

Implements property, 318

implicit constraints, 250, 277

implicit deployment method, 296

importing work item types, 148

Include Binary Files property, 305

Include Content Files property, 305

Include Diagrams property, 305

Include Owners property, 305

Include Source Files property, 305

inclusive allocations, 405

inclusive bytes allocated, 405

inclusive information, 405

infrastructure support, benefits of VSTS for, 2

Inheritance Modifier property (classes), 319

Inheritance Modifier property (items), 327

inheritance relationships, displaying, 330

Inherits property, 319

■INDEX506

4606Index.qxd 4/20/06 3:35 PM Page 506

InstallationInstruction policy, 99

instrumentation, 404, 405, 410

for ASP.NET applications, 425–428

instrumenting code, 405

integration, 2

Integration services operational data store,

173

interfaces, 327–330

deleting, 330

Internet Information Services (IIS),

importing settings from, 277

Introspection SDK, 394

Issue work items, 140

Issues and Blocked Work Items report, 164

ITaskService interface, 328

items. See work items

Iteration property, 350

iterations, 32, 112

IWarehouseAdapter interface, 174

■K
Kelly, Kevinch, 121

■L
label command, 102

Label permission, 65

labeling versions, 76

language codes, 486

languages

Report Definition Language, 161

Work Item Query Language, 125, 128

Work Item Type Definition, 142

LaPlante, Rick, 222

LDD (Logical Datacenter Designer), 255,

266–283

.ldd (logical datacenter diagrams), 221, 285

creating, 267–283

.lddprototype files, 268

life cycle, distributed system designers and,

221

lifetime information, 417

links, adding to items, 109, 124

lists, 28

configuring, in Excel, 117

creating in Excel, 116

working with, 36

load pattern, 479

Load Test Detail report, 164

Load Test Summary report, 164

Load Test window, 488

Load Test wizard, 477–487

load tests, 9, 471–495

analyzing results, 491–495

creating/configuring, 477–487

naming, 477

performance profiles for, 421

localtestrun.testrunconfig file, 355

lock command, 102

Lock permission, 65

locking error, 253

Logical Datacenter Designer (LDD), 6, 220,

255, 266–283

Toolbox object for, 268

logical datacenter diagrams (.ldd), 285

creating, 267–283

logical server prototypes, 268

■M
Macroscope template, 25

manifes.xml file, 28

Manipulate security settings permission, 65

Manning, James, 95

manual testing, 9, 373

Test View window and, 350

McConnell, Steve, 378

MDA (Model Driven Architecture), 6, 221

@Me query macro, 128

merge command, 102

Merge Tool, 86

merges command, 102

merging files, 83–89

configuring, 89

message-centric approach, 219

method properties, 327

■INDEX 507

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 507

methods

adding to class diagrams, 324–327

deleted in Class Designer, 326

policies and, 99

reordering parameters of, 326

Microsoft

Class Designer and, 313

Excel, 115–118, 182–189

Microsoft namespace, 156

Microsoft Project, 105–115

Model Driven Architecture (MDA), 6, 221

MSBuild, 214

MSF for Agile Software Development.

See Agile process template

MSF for CMMI Process Improvement.

See CMMI process template

MSFAgile.stp, 27

MSFFormal.stp, 27

MSTest, 375

MyDatabase sample database, 226–231, 239

MyWebApp sample web application, 241

MyWebService sample web service, 227–241

■N
Name property (classes), 319

Name property (items), 327

Namespace property, 350

namespaces, predefined, 156

naming conventions

for field reference names, 157

FxCop and, 391, 393

for test files, 346

for test methods, 347

nesting systems, 262

network mix, load testing and, 482, 486

New Member Location property, 319

New property, 327

nightly builds, benefits of, 197

Non-runnable property, 350

notifications (alerts), 28

Notify operation, 181

NotImplementedException, 326

■O
object allocation information, 416

object lifetime information, 417

object relationships, displaying, 330

OLAP databases, 172

Opera browser, 485

operational data stores, 173, 180

operations, viewing in System Designer, 264

ordered tests, 353

Overwrite Files Action property, 305

Owner property, 350

■P
parameters, reordering, 326

passing tests, 443

passwords, enumerations and, 322

Pending Changes window, 70

performance analysis, 8, 403–430

Performance Explorer, 409, 418

Performance Monitor (Windows), 403

performance reports, 409–418

performance testing, code coverage and, 357

Performance Wizard, 407, 421

perimeter network, 269

permission command, 102

permissions

for areas, 54

for files/folders, 65

for groups, 48

for projects, 52

picture libraries, 28

plugins, 94, 459

policies

creating, 95–100

Pending Changes window and, 71

Position node, 336

Post attribute, 385

pragma directives, 383

Pre attribute, 385

predefined constraints, 250, 277

predefined queries, 125

PREfast checks, list of, 379

■INDEX508

4606Index.qxd 4/20/06 3:35 PM Page 508

PREfast code analysis tool, 8, 341 377,

378–387

annotating code and, 385

warnings and, 379–385

Priority property, 350

probes, 405

process guidance, 23

customizing, 43

process templates, 25, 125, 131. See also Agile

process template; CMMI process

template

architecture of, 37

customizing, 36–43

project planning and, 18

ProcessTemplate.xml, 38–41

production applications, performance

profiles for, 422–429

production database, 368

profiling, 421–429

Project Administrators group, 52

project alerts, 32, 141

Project Area property, 350

project management, 103–120

project managers, benefits of VSTS for, 2

Project Portal, 5, 26

customizing, 32–36

Project property, 350

@Project query macro, 128

Project Relative Path property, 350

project schedules, creating in Microsoft

Project, 106

Project Velocity report, 164

projects, 17–57

configuring, 90–93

creating, 20

managing security for, 52

planning, 17–19

project management for, 103–120

properties

adding to class diagrams, 333–335

QueryString parameter, 439

recorded web test, 438

request node, 438

viewing, 317

properties command, 102

property properties, 327

Property Signature property, 327

provider endpoints, 245

proxy endpoints, 260

publishing work items, 108, 115

PublishOnly setting, 115

■Q
Quality Indicators report, 164

queries, 125–129

creating, 126

predefined, 125

query macros, 128

query view, 123, 125–129

QueryString parameter properties, 439

■R
Reactivations report, 164

Read permission, 65

Readers group, 53

recorded web test properties, 438

recorded web tests, 434–447

.rdl filename extension, 161, 168

refactoring interfaces, 328

regression testing, 339

Regressions report, 164

Reinitialize operation, 182

Related Work Items report, 164

relational data warehouses, 172

release.txt file, 206

Remaining Work report, 164

Remarks property (classes), 319

Remarks property (items), 327

rename command, 102

renaming work item types, 146

Report Builder, 161

report definition

extracting/adding to projects, 168

modified, saving, 170

Report Definition Language, 161

Report Designer, 161, 166

reportable option, 182

■INDEX 509

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 509

reporting (Team Foundation), 5, 30, 159–196

adding reports to Project Portal, 35

customizing reports and, 166–172

deploying/viewing reports and, 171

life cycle of, 161

predefined reports and, 162, 165

project planning and, 19

reports, about deployments, 295, 303, 305

request node properties, 438

Required property, 454

Requirement work items, 138

Requirements Detail report, 164

Requirements Test History and Overview

report, 164

Rerun link, 360

resolve command, 102

resolving conflicts, 85

resources for further reading, 100

application diagram troubleshooting, 253

code, costs and, 378

configuring tools, 95

default system, 296

garbage collection, 418

header field values, 485

language codes, 486

MSTest, 376

project alerts, 32

test properties, 353

test-driven development, 342

tf.exe tool, 101

UML, 313

VSTS command-line tools, 423

yield statement, 449

results details (Build Detail Report), 206

results view, 123, 129

retrieving versions, 78

return on investment (ROI), VSTS and, 3

Returns property, 327

reverse-engineering, for applications, 251

Review work items, 137

Revise other users’ changes permission, 65

Richter, Jeffrey, 418

Risk work items, 134

ROI (return on investment), VSTS and, 3

roles, project planning and, 18

rule file, 397–401

Run icon, 360

Run operation, 182

run settings, 484

running unit tests, 359–367

RUP template, 25

■S
sample applications

Effort Tracking. See Effort Tracking

MyDatabase sample database and,

226–231, 239

MyWebApp, 241

MyWebService sample web service and,

227–241

weather-reporting web service, 232, 242

sampling, 404, 407, 410

for ASP.NET applications, 428

SaveTask method, 325

SCE (Source Control Explorer), 31, 61–66

displaying deleted items in, 95

Scenario Detail report, 165

scripts, setup/cleanup for, 357

Scrum template, 25

SD (System Designer), 220

.sd (system diagrams), 221, 255–263, 285

.sdm (application definitions), 221, 271, 286

SDLC (Software Development Lifecycle), 26

SDM (System Definition Model), 6, 220, 256,

286

security

managing for Team Foundation Server,

45–56

project planning and, 18

TFVC and, 64

Seemann, Jochen, 222

SEI (Software Engineering Institute), 4

servers

binding applications to

explicit model, 289

implicit model, 299

command-line tools for, 497

constraints/settings for, 276

■INDEX510

4606Index.qxd 4/20/06 3:35 PM Page 510

Logical Datacenter Designer for, 266–283

zones and, 272

Service Accounts global group, 47

Service class, 315

adding methods to, 324

service-oriented architecture (SOA), 462

ServiceTest class, 348

ServiceTest file, 346

settings

for application designs, 249

for deployments, 303

importing from IIS, 277

overriding, 265

for servers, 276

viewing in System Designer, 264

for zones, 271

setup/cleanup scripts, 357

SharePoint custom template files, 27

shelve command, 102

shelvesets/shelving changes, 82

branching and, 80

SOA (service-oriented architecture), 462

Software Development Lifecycle (SDLC), 26

Software Engineering Institute (SEI), 4

software engineering methodologies, 26

Software Factories, 222

Solution property, 351

solutions, creating, 68

Source Control Explorer (SCE), 31, 61–66

displaying deleted items in, 95

source control providers, list of available, 94

Spiral method, 26

SQL Server Analysis Services (SSAS), 160

SQL Server Business Intelligence platform,

159

SQL Server Integration Services (SSIS), 160

SQL Server Reporting Services. See SSRS

SSAS (SQL Server Analysis Services), 160

SSIS (SQL Server Integration Services), 160

SSRS (SQL Server Reporting Services), 5, 159

predefined reports and, 162–165

SSRS reports, 30

SSRS security, 46, 56

stakeholders, benefits of VSTS for, 2

star schemas, 174

static code analysis, 377–401

Static property, 327

status command, 102

step loads, 479

strcpy function, 381

strcpy_s function, 381

stress testing, 471

structure properties, 318

structures, adding to class diagrams, 323

StyleVision 2005 (Altova), 466

Summary property (classes), 319

Summary property (items), 327

SuppressMessage attribute, 390

synchronization alert, 253, 258

System Definition Model (SDM), 6, 220, 256,

286

System Designer (SD), 6, 220, 255–266

Toolbox objects for, 260

system diagrams (.sd), 255–263, 285

nesting systems and, 262

system endpoints, 260

System namespace, 156

systems, defined, 255, 256

■T
tables of data, 493

Target folder, 420

target options, 420

Task structure, 323

Task work items, 131

tasks. See work items

Team Build Browser, 208

Team Build operational data store, 173, 180

Team Edition for Software Architects, 5

Team Edition for Software Developers, 7

Team Edition for Software Testers, 8

Team Explorer, 24

Team Explorer window, work items and, 121

Team Foundation, 4

Team Foundation Administrators global

group, 47

Team Foundation Administrators group, 53

■INDEX 511

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 511

Team Foundation Build, 5, 30, 197–215

customizing, 211

Team Foundation Data Warehouse. See Data

Warehouse

Team Foundation Licensed Users global

group, 48

Team Foundation Proxy Server (TFPS),

version control configuration and, 94

Team Foundation Server

build details published to, 209

connecting to, 19

data warehouse schema and, 174, 180

deleting work items and, 145

global groups and, 47

managing security for, 45–56

version control configuration and, 94

Team Foundation Valid Users global

group, 47

Team Foundation Valid Users group, 53

Team Foundation version control. See TFVC

team members

adding to groups, 145

modifying Assign To field and, 145–149

team projects. See projects

team reporting. See reporting (Team

Foundation)

test classes, 348

test code generation configuration options,

344

test database, building, 367

Test Enabled property, 351

Test Manager, 8, 351–353

data-driven testing and, 370

test methods, 346, 358

test mix, load testing and, 478

Test Name property, 351

test options, 439

test properties, 350, 353

Test Results window, 360

test results, 465–469

Test Run Failed link, 360

test runs, 355–367

configuring, 355–359, 476

deleting, 360

viewing information about, 360

Test Storage property, 351

test timeouts, 357

Test Type property, 351

Test View window, 349

vs. Test Manager window, 351

test-driven development, 342

TestContext class, 348, 367

testers, benefits of VSTS for, 2, 8

testing, 2, 8

application performance, 403–430

options for, 418

running tests, 407

understanding reports, 409–418

continuous integration, 214

load, 471–495

unit. See unit testing

web. See web testing

testing attributes, 348, 357

testing policy, 92

TestProperty attribute, 353

TestRun node, 466

Tests Failing With Active Bugs report, 165

Tests Failing Without Active Bugs report, 164

tests lists, creating, 352

Tests Passing with Active Bugs report, 164

tests results, viewing in Build Detail Report,

206

tf.exe tool, 101

TFPS (Team Foundation Proxy Server),

version control configuration and, 94

tfsbuild.exe tool, 213

TFSFieldMapping tool, 112

TfsOlapReportDs data source, 169

TfsReportDS data source, 169

TFVC (Team Foundation Version Control), 4,

31, 59–102

command-line access for, 101

configuring, 89–95

■INDEX512

4606Index.qxd 4/20/06 3:35 PM Page 512

labeling versions and, 76

migrations from Visual SourceSafe and,

100

project management and, 103

project planning and, 18

retrieving versions and, 78

think times, 477

Threshold counter, 493

@Today query macro, 128

@Today-1 query macro, 128

@Today-30 query macro, 128

@Today-7 query macro, 128

Tool Artifact Display Url table (data

warehouse schema), 180

tools

adminpak.msi, 46

Association, 332

authoring, 161

code analysis, 377–401

command-line, 422, 497

integrating with VSTS, 3

MSBuild, 214

MSTest, 375

performance, 403–430

permissions management and, 50

Project Portal. See Project Portal

specifying your own, 95

tfsbuild.exe, 213

TFSFieldMapping, 112

Toolbox objects

for Application Designer, 224

for Logical Datacenter Designer, 268

for System Designer, 260

Web Test, 462

web testing, 433–469

for work item type customization, 144

XML development, 466

trace, 405

transition events, 405

Triage report, 164

triage view, 123, 129

trial deployment, 296

troubleshooting applications, 253

.trx files, 463

Type policy, 99

Type property, 327

TypeDescription policy, 99

TypeIdentifier node, 336

■U
UI (user interface), creating for weather-

reporting web service, 242

UML (Unified Modeling Language), 222, 313

Unblock operation, 182

undelete command, 102

undo command, 102

Undo other users’ changes permission, 65

Unified Modeling Language (UML), 222, 313

Unit Test Wizard, 345

unit testing, 7, 339–376

creating tests and, 342–345

manual, 373

planning, 339–342

performance profiles for, 421

running tests and, 359–367

unlabel command, 102

Unlock other users’ changes permission, 65

Unplanned Work report, 164

unshelve command, 102

user interface (UI), creating for weather-

reporting web service, 242

user-defined constraints, 250, 277

■V
Validate method, 459

ValidateUser method, 324

code coverage statistics for, 362

exception test for, 365

test table for, 367

ValidateUserExceptionTest method, 366

ValidateUserTest method, 353, 358

running unit tests and, 359

validating

deployment diagram implementations,

291, 301

new work item types, 148

validation rules, 443, 445, 449, 457

run settings and, 484

ValidationRule class, 459

■INDEX 513

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 513

Value property, 327

VB, Class Designer and, 312

VB Powertoy, 328

version comparisons, 74

Version Control operational data store, 173,

180

version control. See TFVC

view command, 102

View Results icon, 129

Visio, 6, 313

Visual SourceSafe. See VSS

Visual Studio Integration Partners (VSIP), 10

Visual Studio Team System. See VSTS

<VALIDUSER /> tag, 145

VSInstr tool, 423

VSIP (Visual Studio Integration Partners), 10

.vsmdi files, 92

VSPerfClrEnv tool, 423

VSPerfCmd tool, 423

VSPerfMon tool, 423

VSPerfReport tool, 423

VSS (Visual SourceSafe), 4, 59

changesets and, 72

migrations to TFVC and, 100

VSTS (Visual Studio Team System)

areas of, 2

benefits of, 2–9

components of, 25–36

■W
warehouse adapters, 174

warnings, viewing in Build Detail Report, 206

Waterfall method, 26

weather-reporting web service (sample

application), 232

UI for, 242

web applications, adding to applications,

240–244

web pages, UI and, 242

web parts, 28, 33

Web Service Definition Language (WSDL),

219, 225, 247

Web Service Details window, 264

web service diagrams, creating, 315

web service endpoints, 260

web services

connecting to database, 228

exceptions and, 366

operations for, defining, 232

testing, 238, 462–465

web service component, for sample

application, 227

web service endpoints, adding to, 247

web sites

domain-specific framework tools, 6

gotdotnet, 7

VSIP, 10

web test plugins, 459–462

web test request plugins, 459

Web Test settings, 358

Web Test tool, 462

web testing, 9, 433–469

data-driven, 443

data-driven access options for, 445

load testing and, 472

passing/failing tests and, 443

performance profiles for, 421

recording/running web tests and, 434–447

test options for, 439

web services testing and, 462–465

WebTest class, 456

WebTestResults node, 466

Windows applications, performance profiles

for, 423

Windows Forms, testing and, 8

Windows Performance Monitor, 403

Windows Server 2003 Administration Tools

Pack, 46

Windows services, performance profiles for,

423

Windows SharePoint custom template files,

27

.wiq files, 128

WIQL (Work Item Query Language), 125

query macros and, 128

WIT. See work item tracking

WITD (Work Item Type Definition), 142

witexport tool, 144

■INDEX514

4606Index.qxd 4/20/06 3:35 PM Page 514

witfields tool, 144

witimport tool, 144

Work Item Query Language (WIQL), 125

query macros and, 128

work item tracking (Team Foundation), 5, 29,

121–157

Work Item Tracking operational data store,

173, 180

Work Item Type Definition (WITD), 142

work item types, 29, 130–140

creating, 152–156

customizing, 144–157

project planning and, 18

work items, 29, 121–157

adding to class diagrams, 320–327

creating/managing, 122

deleting from projects, 145

options for working with, 122

Pending Changes window and, 71

project alerts for, configuring, 141

publishing, 108, 115

PublishOnly setting and, 115

retrieving versions and, 78

views of, 123–130

working with

in Microsoft Project, 107

in VSTS, 119

work items policy, 93

Work Items report, 164

Work Items with Tasks report, 164

Work Items with Test Results report, 164

WorkItemsAre table, 144

WorkItemsAreUsed view, 144

WorkItemsWere table, 144

WorkItemsWereUsed view, 144

WorkItemTypeDefinition.xsd, 142

workspace command, 102

workspaces, 66

WSDL (Web Service Definition Language),

219, 225, 247

.wsdl files, 225, 247

WSS security, 46, 55

■X
XML Schema (XSD), 466

XMLSpy 2005 (Altova), 466

XP (Extreme Programming), 342

XSD (XML Schema), 466

■Y
yield statement, 449

■Z
zone endpoints, 273

zones, 28, 269–277

connecting servers to, 274

placing servers within, 272

■INDEX 515

Find it faster at http://superindex.apress.com
/

4606Index.qxd 4/20/06 3:35 PM Page 515

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

Leading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

4606Index.qxd 4/20/06 3:35 PM Page 516

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

4606Index.qxd 4/20/06 3:35 PM Page 518

	Pro Visual Studio 2005 Team System
	Contents
	CHAPTER 1 Introduction to Visual Studio Team System
	PART 1 Team Foundation
	CHAPTER 2 Team Projects
	CHAPTER 3 Team Foundation Version Control
	CHAPTER 4 Project Management
	CHAPTER 5 Team Work Item Tracking
	CHAPTER 6 Team Reporting
	CHAPTER 7 Team Foundation Build

	PART 2 Team Edition for Software Architects
	CHAPTER 8 Application Designer
	CHAPTER 9 System and Logical Datacenter Designers
	CHAPTER 10 Deployment Designer

	PART 3 Team Edition for Software Developers
	CHAPTER 11 Class Designer
	CHAPTER 12 Unit Testing and Code Coverage
	CHAPTER 13 Static Code Analysis
	CHAPTER 14 Performance Analysis

	PART 4 Team Edition for Software Testers
	CHAPTER 15 Web Testing
	CHAPTER 16 Load Testing

	APPENDIX Command-Line Tools Reference
	INDEX

