Chapter 4

3

Surfaces in R

4.1 Manifolds

4.1 Definition A C® coordinate chart is a ¢ map « from an open subset of R? into R3 .

x:UeR? — R?
(u,v) N (z(u,v), y(u,v), z(u, v)) (4.1)

We will always assume that the Jacobian of the map has maximal rank. In local coordinates, a
coordinate chart is represented by three equations in two variables

2t = fi(uo‘), where 1 =1,2,3, a=1,2. (4.2)

The local coordinate representation allows us to use the tensor index formalism introduced in earlier
chapters. The assumption the Jacobian J = (9x'/0u®) be of maximal rank, allows one to evoke the
implicit function theorem. Thus, in principle, one can locally solve for one of the coordinates, say

23 in terms of the other two

3 = f(at 2?). (4.3)

The locus of points in R satisfying the equations z* = f*(u®), can also be locally represented by
an expression of the form

F(z', 2%, 2°) =0 (4.4)

4.2 Definition Let x(u!,u?): U — R? and y(v!,v?) : V — R3 be two coordinate charts with
a non empty intersection (x(U) Ny(V)) # #. The two charts are said to be C'°° equivalent if the
map ¢ = y~'x and its inverse ¢! (see fig 4.1 )are infinitely differentiable.

In more lucid terms, the definition just states that two equivalent charts x(u®) and y(v”) repre-
sent different reparametrizations for the same set of points in R? .

Figure 4.1: Chart Equivalence
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4.3 Definition A differentiably smooth surface in R? is a set of points M in R3 such that
1. If p € M then p belongs to some C* chart.
2. If p € M belongs to two different charts x and y, then the two charts are ('™ equivalent.

Intuitively, we may think of a surface as consisting locally of number of patches "sewn” to each other
so as to form a quilt from a global perspective.

The first condition in the definition states that cach local patch looks like a piece of R?, whereas
the second differentiabilty condition indicates that the patches are joined together smoothly. An-
other way to state this idea is to say that a surface a space that is locally Euclidean and it has a
differentiable structure so that the notion of differentiation makes sense. If the Euclidean space 1s
of dimension n, the ”surface” is called an n-dimensional manifold

4.4 Example Consider the local coordinate chart
x(u, v) = (sinucosv,sin usinv, cos v).
The vector equation is equivalent to three scalar functions in two variables

xr = sinucoswv,
= sinusinv,

= cosu. (4.5)

Clearly, the surface represented by this chart is part of the sphere 2 4+ y? + 22 = 1. The chart can
not possibly represent the whole sphere because, although a sphere is locally Euclidean, (the earth
is locally flat) there is certainly a topological difference between a sphere and a plane. Indeed, if
one analyzes the coordinate chart carefully you will note that at the North pole (v =0, z = 1, the
coordinates become singular. This happens because u = 0 implies that x = y = 0 regardless of the
value of v, so that the North pole has an infinite number of labels. The fact that it is required to
have two parameters to describe a patch on a surface in R? is a manifestation of the 2-dimensional
nature of of the surfaces. If one holds one of the parameters constant while varying the other, then
the resulting 1-parameter equations describe a curve on the surface. Thus, for example, letting
u = constant in equation (4.5) we get the equation of a meridian great circle.

4.5 Notation Given a parametrization of a surface in a local chart x(u,v) = x(ut,u?) = x(u®),
we will denote the partial derivatives by any of the following notations:

dx 9%x

Xu:Xlzﬁ_ua qu:Xllzw

dx 9%x

Xv:szﬁ_va XUUZXZZZW
_ Ox 9%

*o = Bua Xob = G pyP

4.2 The First Fundamental Form

Let z!(u®) be a local parametrization of a surface. Then, the Euclidean inner product in R? induces
an inner product in the space of tangent vectors at each point in the surface. This metric on the
surface is obtained as follows:

Ox’

drt = du®
v 3u°‘u
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ds® = 5ijdxidxj
dz' 9zI

— L P o g f

= 6”3110‘ 3u@du du” .
Thus,

ds? = ga@duo‘duﬁ, (4.6)
where . )

ox" Ox?

Jap = 5ijww~ (4.7)

We conclude that the surface, by virtue of being embedded in R? | inherits a natural metric (4.6)
which we will call the induced metric. A pair {M, g}, where M is a manifold and g = gngdu®@du’
is a metric is called a Riemannian manifold if considered as an entity in itself, and Riemannian
submanifold of R™ if viewed as an object embedded in Euclidean space. An equivalent version of
the metric (4.6) can be obtained by using a more traditional calculus notation

dx = x,du-+x,dv
ds? = dx-dx
= (xudu+ x,dv) - (xydu + x,dv)
= (Xu ~xu)du2—|—2(xu - Xy )dudv(x, ~xv)dv2.

We can rewrite the last result as

ds? = Edu® + 2F dudv + Gdv?, (4.8)
where
E = g11 =%y Xy
= gio=%Xy Xy
= g21 =Xy - Xy
G = 922 = Xy - Xy
That 1s

Jap = Xo - Xg =< Xq, X3 > .

4.6 bdf The element of arclength
ds? = gopdu® @ du (4.9)

is also called the first fundamental form. We must caution the reader that this quantity is not
a form in the sense of differential geometry since ds? involves the symmetric tensor product rather
than the wedge product.

The first fundamental form plays such a crucial role in the theory of surfaces, that will find it
convenient to introduce yet a third more modern version. Following the same development as in the
theory of curves, consider a surface M defined locally by a function (u!,u?) — a(ul, u?). We say
that a quantity X, is a tangent vector at a point p € M, if X, is a linear derivation on the space of
C' real-valued functions {f|f : M — R} on the surface. The set of all tangent vectors at a point
p € M is called the tangent space T, M. As before, a vector field X on the surface is a smooth
choice of a tangent vector at each point on the surface and the union of all tangent spaces 1s called
the tangent bundle T'M.

The coordinate chart map

a:R? — MeR?
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induces a push-forward map
a. : TR? — TM

defined by
s (V)(f) laey= V(ao f) |y=

Just as in the case of curves, when we revert back to classical notation to describe a surface as
z'(u®), what we really mean is (2% o a)(u®), where 2! are the coordinate functions in R3 . Particular
examples of tangent vectors on M are given by the push-forward of the standard basis of TR?Z.
These tangent vectors which earlier we called x,, are defined by

0 0
O‘*(ﬁua)(f) |oc(u"): Juc (aof) |ua

In this formalism, the first fundamental form I is just the symmetric bilinear tensor defined by
induced metric

I(X,)Y)=¢(X,Y) =< XY >, (4.10)
where X and Y are any pair of vector fields in T'M.

Orthogonal Parametric Curves

Let V and W be vectors tangent to a surface M defined locally by a chart x(u®). Since the vectors
Xalpha Span the tangent space of M at each point, the vectors V and W can be written as linear
combinations

V = V%,
W = W%,.

The functions V< and W are called the curvilinear coordinates of the vectors. We can calculate
the length and the inner product of the vectors using the induced Riemannian metric,

IVIZ = <V,V>=< V%, Vixs >= VoVP <x0 x5 >
IVIP = gagVV”?
WP = gapWoW?,
and
<V,IW> = < V%, Wixs >= VWP < x,,%5 >
= gapVO WP,

The angle 8 subtended by the the vectors v and W is the given by the equation

<V,W >
VALl
I(V, W)
\/[(V, V)\/[(W, W)
ga@VQW*@
ga@VO‘Vﬁ ~ga@W°‘Wﬁ'

cos =

(4.11)

Let u® = ¢*(t) and u® = ¢*(¢) be two curves on the surface. Then the total differentials

_Wdt’ and du® = o ot

du®
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represent infinitesimal tangent vectors (1.12) to the curves. Thus, the angle between two infinitesimal
vectors tangent to two intersecting curves on the surface satisfies

Japdu®dul

4.12
VGapdu®dul \/gaa6u®du’ (4.12)

cosf =

In particular, if the two curves happen to be the parametric curves, u' = constant and u? =

constant then along one curve we have du' = 0, du? arbitrary, and along the second we have du'
arbitrary and du? = 0. In this case, the cosine of the angle subtended by the infinitesimal tangent
vectors reduces to

g1adutdu? _ g _ r w.13)
V11 (0ul)2\/gaa(du)? 911922 VEG :

As a result, we have the following

cos =

4.7 Proposition The parametric lines are orthogonal if F' = 0.

4.8 Examples

a) Sphere

x = (asinfcos¢,asinfsing,acosf)
x9 = (acosfcos¢,acoslsing, —asinb)
Xy = (—asinfsing,asinfcose,)

E = x4 -x9=a°

F = Xy - Xy = 0

G = x¢~x¢:azsin29
ds? = a’df® + a®sin? 0d¢?

b) Surface of Revolution

x = (rcosf,rsind, f(r))
x, = (cosf,sinf, f'(r))

x9 = (—rsinf, rcosf,0)

E = x -%x =1+ %)

F = x -x4=0

G = xp-xp=17°
ds* = [1+ f?(r)]dr® + r*d6*

c) Pseudosphere

x = (asmucosv,asmusmv,a(cosulntan§))
E = da?cot’u
F = =0
G = a’sin®u
ds? = a®cot? udu® + a?sin? udv?

d) Torus
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x = ((b+acosu)cosv,(b+ acosu)sinv,asinu)
E = d°
F =0
G = (b+acosu)?
ds* = a’du® 4 (b+ acosu)’dv?
e) Helicoid
x = (ucosv,usinv,av)
E =1
F =0
G = u'+d®
ds* = du®+ (u? 4 a?)dv?
f) Catenoid
x = (ucosv,usinv,ccosh_1 E)
c
2
u
E = u? — c?
F =0
G = u?
>
ds? = ﬁduz—l—uzdv2
u?—c

4.3 The Second Fundamental Form

Let x = x(u®) be a coordinate patch on a surface M. Since x,, and xv are tangential to the surface,
we can construct a unit normal n to the surface by taking
Xy X Xy

(4.14)

IR

Now, consider a curve on the surface given by u* = u®(s). Without loss of generality, we assume
that the curve i1s parametrized by arclength s so that the curve has unit speed. Using the chain rule,
we se that the unit tangent vector 7' to the curve is given by

dx dx du® du®

=T de ds o (4.15)

Since the curve lives on the surface and the the vector T is tangent to the curve, it is clear that
T is also tangent to the surface. On the other hand, the vector T = dT'/ds does not in general have
this property, so what we will do is to decompose T” into its normal and tangential components (see

fig (4.2))
T = Kp+K,
Kpn 4+ Ky, (4.16)

where kp = ||Kp|| =< T",n >
The scalar quantity #, is called the normal curvature of the curve and K, is called the
geodesic curvature vector. The normal curvature measures the the curvature of x(u®(s)) resulting
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Figure 4.2: Normal Curvature

by the constraint of the curve to lie on a surface. The geodesic curvature vector ;, measures the
“sideward” component of the curvature in the tangent plane to the surface. Thus, if one draws a
straight line on a flat piece of paper and then smoothly bend the paper into a surface, then the
straight line would now acquire some curvature. Since the line was originally straight, there is no
sideward component of curvature so K, = 0 in this case. This means that the entire contribution
to the curvature comes from the normal component, reflecting the fact that the only reason there is
curvature here is due to the bend in the surface itself.

Similarly, if one specifies a point p € M and a direction vector X, € T, M, one can geometrically
envision the normal curvature by considering the equivalence class of all unit speed curves in M
which contain the point p and whose tangent vectors line up with the direction of X. Of course,
there are infinitely many such curves, but at an infinitesimal level, all these curves can be obtained
by intersecting the surface with a ”vertical” plane containing the vector X and the normal to M.
All curves in this equivalence class have the same normal curvature and their geodesic curvatures
vanish. In this sense, the normal curvature is more of a property pertaining to a direction on the
surface at a point, whereas, the geodesic curvature really depends on the curve itself. It might be
impossible for a hiker walking on the ondulating hills of the Ozarks to find a straight line trail, since
the rolling hills of the terrain extend in all directions. However, it might be possible to walk on a
path with zero geodesic curvature as long as the hiker can maintain the same compass direction.

To find an explicit formula for the normal curvature we first differentiate equation (4.15)

dT
7 = —
ds

d du®

o E(Xa ds)

d( )duo‘ n d?u®
T ds Xo ds Xo ds?

(dxa duP ) du® n d?u®

= _— ) — Xo———

duP ds ' ds ds?
du® duP d?u®

Xef 05 ds 0 Tds?

Taking the inner product of the last equation with the normal and noticing that < x,,n >= 0, we
get

T mSe< N du® du”
Rp = N >=< Xy3,11 _
p ds ds
ba@duo‘duﬁ
= = 4.17
ga@duo‘du@’ ( )
where
ba@ =< Xqp,n > (418)
4.9 Definition The expression
IT = bopdu® @ du (4.19)

1s called the second fundamental form .
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4.10 Proposition The second fundamental form is symmetric.

Proof: In the classical formulation of the second fundamental form the proof is trivial. We have

bap = bga since for a C™ patch x(u®), we have X453 = X because the partial derivatives commute.
We will denote the coefficients of the second fundamental form by

e = b =< Xyy,n >
J = bz =<xXyy,n>

= bo =< Xyu,n >
g = baz=<xyy,n>

, so that equation (4.19) can be written as
IT = edu® + 2fdudv + gdv® (4.20)

and equation (4.17) as
I Edu? + 2F dudv + Gdv?

T edu® + 2fdudv + gdv?

We would also like to point out that just as the first fundamental form can be represented as

(4.21)

Kp =

I =< dx,dx >,
so can we represent the second fundamental form as
I = — <dx,dn >
To see this it suffices to note that differentiation of the identity < x,,n >= 0 implies that
< Xgp, D >= — < Xq,Ng > .
Therefore,

<dx,dn> = < xaduo‘,n@duﬁ >

= < xaduo‘,n@duﬁ >
< Xo,ng > du®du’
= — < Xqup,n> du®du’
= I

From a computational point a view, a more useful formula for the coefficients of the second
fundamental formula can be derived by first applying the classical vector identity

A-C A-D
(AxB).((JxD)_‘BC B.D‘ (4.22)
to compute
||xu % XUHZ = (Xu X Xy) - (Xy X Xy)
— det[xu'xu Xu'xv:|
Xy "Xy Xy Xy
= EG-F? (4.23)

Consequently, the normal vector can be written as

Xy X Xy Xy X Xy

xu x xol|  VEG — FZ2
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Thus, we can write the coefficients b, directly as triple products involving derivatives of (x). The
expressions for these coefficients are

(XuXuXuu)
VEG — F?
(XuXyXuo)
VEG — F?
(X0 XoXvo)
¢ = VEo-r 424
The first fundamental form on a surface measures the (square) of the distance between two
infinitesimally separated points. There is a similar interpretation of the second fundamental form
as we show below. The second fundamental form measures the distance from a point on the surface
to the tangent plane at a second infinitesimally separated point. To see this simple geometrical
interpretation, consider a point xo = x(u§) € M and a nearby point x(u§ + du®). Expanding on a
Taylor series, we get

1
X(US + dua) = Xg + (Xo)adua + §(xo)a@du°‘duﬁ 4+ ...
We recall that the distance formula from a point x to a plane which contains xg 1s just the scalar

projection of (x — xg) onto the normal. Since the normal to the plane at xq is the same as the unit
normal to the surface and < x,,n >= 0, we find that the distance D is

D = <x—xg,n>
1
= §<(x0)a@,n>du°‘duﬁ
1
= 1]
510

The first fundamental form (or rather, its determinant) also appears in calculus in the context
of calculating the area of a parametrized surface. the reason is that if one considers an infinitesimal
parallelogram subtended by the vectors x, du and x,dv, then the differential of surface area is given
by the length of the cross product of these two infinitesimal tangent vectors. That is

dS = ||xu X xy|| dudv

//mdudv

The second fundamental form contains information about the shape of the surface at a point.
For example, the discussion above indicates that if b = [bys| = eg — f* > 0 then all the neighboring
points lie on the same side of the tangent plane, and hence, the surface is concave in one direction.
If at a point on a surface b > 0, the point is called an elliptic point, if b < 0, the point is called
hyperbolic or a saddle point, and if b6 = 0, the point is called parabolic.

S

4.4 Curvature

Curvature and all related questions which surround curvature, constitute the central object of study
in differential geometry. One would like to be able to answer questions such as, what quantities
remain invariant as one surface is smoothly changed into another? There is certainly something
intrinsically different from a cone, which we can construct from a flat piece of paper and a sphere
which we can not. What is it that makes these two surfaces so different? How does one calculate
the shortest path between two objects when the path is constrained to be on a surface?
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These and many other questions of similar type can be quantitatively answered through the
study curvature. We cannot overstate the great importance of this subject; perhaps it suffices to say
that without a clear understanding of curvature, there would not be a general theory of relativity,
no concept of black holes, and even more disastrous, no Star Trek.

The study of curvature of a hypersurface in R” (a surface of dimension n— 1) begins by trying to
understand the covariant derivative of the normal to the surface. The reason is simple. If the normal
to a surface is constant, then the surface is a flat hyperplane. Thus, it is variations in the normal
that indicate the presence of curvature. For simplicity, we constrain our discussion to surfaces in
R3 | but the formalism we use is applicable to any dimension. We will also introduce in this section
the modern version of the second fundamental form

4.11 Definition Let X be a vector field on a surface M in R? | and let N be the normal vector.
The map L given by -
LX =—-VxN (4.25)

is called the Gauss map.

In this definition we will be careful to differentiate between operators which live on the surface
and operators which live in the ambient space. We will adopt the convention of overlining objects
which live in the ambient space, the operator V above being an example of one such object. The
Gauss map is clearly a good place to start, since it is the rate of change of the normal in an arbitrary
direction which we wish to quantify.

4.12 Definition The Lie bracket [X,Y] of two vector fields X and YV on a surface M is defined
as the commutator

[X,Y]= XY = VX, (4.26)
meaning that if f is a function on M then [X,Y]f = X(Y(f)) — Y(X(f)).
4.13 Proposition The Lie bracket of two vectors X,V € T'(cal M) is another vector in T'(M).

Proof: If suffices to prove that the bracket is a linear derivation on the space of C'*™ functions.
Consider vectors X,Y, 7 € T'(cal M) and smooth functions f, g in M. Then

(XY +Z](f) = X(Y+2)()) - +2)X()
= XY () +2(f) =Y (X)) — 2(X(]))
= X(Y() = YIX() + X(Z() - Z(X (D)
= [ Y+ X 2100,

and

[X+Y.Z(f) = (X+Y)(Z() - 2Z2((X+Y)())
= X(Z(N))+Y(Z()) - 2(X(f) - Z(Y(]))
= X(Z() - Z(X (D) + Y(Z()) - Z(Y (£)

= [X, 21N+ [Y, Z]()),
so the bracket is linear on each slot. Furthermore
(X Y](f+9) = XV ([+9)-YX(+9))
= X(Y¥(
= X(¥(
= [ YN+ X Y](g),
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(X, Y](f9) = X(Y(f9)) - Y (X(f9))
= X[Y(9) +9Y (N =Y[[X(9) +9X (/)]
= X(NY(9)+ XY (9)+X (@Y (f) +9X¥ ()
—Y()X(9) - [(Y(X(9)) = Y (9)X(f) = gV (X(]))
= [IX(Y(9)) — (Y (X(9)] + g[X (Y (/) = Y(X(/))]
= JIX. Y1) +9[X, Y](S),

so that the bracket acts as linear derivation of functions.

4.14 Proposition The Gauss map is a linear transformation on T'(M).

Proof: Linearity follows from the linearity of V, so it suffices to show that L : X — LX maps
X € T(M) to a vector LX € T(M). Since N is the unit normal to the surface, < NN >=1, so
that any derivative of < N, N > is 0. Assuming that the connection 1s compatible with the metric,

Vx <N, N> = <VxN,>+<NVxN >
= 2<VxN,N >
= 2<LX,N>=0.
Therefore, LX is orthogonal to N, and hence it lies in 7'(M).
We recall at this point that the in the previous section we gave two equivalent definitions <

dx,dx >, and < X,Y >) of the first fundamental form. We will now do the same for the second
fundamental form.

4.15 Definition The second fundamental form is the bilinear map

[I(X,Y) =< LX,Y > (4.27)

4.16 Remark It should be noted that the two definitions of the second fundamental form are
consistent. This is easy to see if one chooses X to have components x, and Y to have components
x3. With these choices, LX has components —n, and I7(X,Y) becomes bop = — < xo, 13 > We
also note that there is third fundamental form defined by

II(X,Y)=< LX,LY >=< L’X,Y > (4.28)

In classical notation, the third fundamental form would be denoted by < dn,dn >. As one would
expect, the third fundamental form contains third order Taylor series information about the surface.
We will not treat I77(X,Y) in much detail in this work.

4.17 Definition The torsion of a connection V is the operator 7" such that VX, Y
T(X,Y)=VxY -VyX — [X,Y] (4.29)
A connection is called torsion free if 7(X,Y) = 0. In this case,
VxY —VyX =[X,Y].

We will say much more later about the torsion and the importance of torsion free connections.
For the time being, it suffices to assume that for the rest of this section, all connections are torsion
free. Using this assumption, it is possible to prove the following very important theorem.
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4.18 Theorem The Gauss map is a self adjoint operator on T'M.

Proof: We have already shown that L : TM — TM is a linear map. Recall that an operator
L on a linear space is self adjoint if < LX )Y >=< X, LY >, so that the theorem is equivalent to
proving that that the second fundamental for is symmetric (77[X,Y] = II[Y, X]). Computing the
difference of these two quantities, we get

HX,) Y=Y, X] = <LX,Y>—-<LY, X >
= <VxN,Y>—-<VyN X >.

Since < X, N >=< Y, N >= 0, and the connection is compatible with the metric, we know that

<va,Y> = _<N,WXY>
<vyN,X> = —<N,va>,
hence,
X, Y]-II[Y,X] = <N, VyX >—< N VxY >,
= <N[X)Y]>
= 0 (iff [X,Y]eT(M))

One of the most important topics in an introductory course linear algebra deals with the spectrum
of self adjoint operators. The main result in this area states that if one considers the eigenvalue
equation

LX = kX (4.30)

then the eigenvalues are always real and eigenvectors corresponding to different eigenvalues are or-
thogonal. In the current situation, the vector spaces in question are the tangent spaces at each point
of a surface in R? | so the dimension is 2. Hence, we expect two eigenvalues and two eigenvectors

LX1 = Kile (431)
LX2 = Iﬁ?le. (432)

4.19 Definition The eigenvalues k1 and ko of the Gauss map L are called the principal cur-
vatures and the eigenvectors X; and X, are called the principal directions.

Several possible situations may occur depending on the classification of the eigenvalues at each
point p on the surface:

1. If k1 # &2 and both eigenvalues are positive, then p is called an elliptic point
2. If k1Ko < 0, then p is called a hyperbolic point.

3. If k1 = ko £ 0, then p is called an umbilic point.

4. if kK1k9 = 0, then p is called a parabolic point

It is also well known from linear algebra, that the the determinant and the trace of a self adjoint
operator are the only invariants under a adjoint (similarity) transformation. Clearly these invariants
are important in the case of the operator L, and they deserve to be given special names.

4.20 Definition The determinant K = det(L) is called the Gaussian curvature of M and
H = (1/2)Tr(L) is called the mean curvature.
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Since any self-adjoint operator is diagonalizable and in a diagonal basis, the matrix representing
L is diag(x1, k2), if follows immediately that

K = Ki1K2
1
H = 5(/4?1 + K?z) (433)

4.21 Proposition Let X and Y be any linearly independent vectors in T'(M). Then

LXxLY = K(XxY)
(LX xY)+ (X xLY) = 2H(X xY) (4.34)

Proof: Since LX,LY € T(M), they can be expresses as linear combinations of the basis vectors
X and Y.

LX = CllX + bly
LYy = ClzX + sz
computing the cross product, we get
IXx1y = |4 hx,y
as bz

Similarly
(LX xY)+ (X x LY) = (a1+b2)(X xY)
= Tr(L)(X xY)
= (2H)(X xY).
4.22 Proposition
N e i
K = Ba-r
1 Eg— 2F f + ¢G
= 5= %G (4.35)

Proof: Starting with equations (4.34) take the dot product of both sides with X x Y and use the
vector identity (4.22). We immediately get

<LX,X> <LX)Y>
<LY,X > <LX,X>

K =
* <X.X> <X Y>
<Y, X> <Y,V >

<LX, X> <LX)Y > <X, X> <X V>
<Y X > <Y Y> <LV, X> <LY)Y >

QHZ‘
‘<XX> <xy>‘

<Y, X> <Y,Y>
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The result follows by taking X = x, and Y = x,

4.23 Theorem (Euler) Let X; and X3 be unit eigenvectors of L and let X = (cos 8) X1 +(sin 0) X5.
Then
IN(X, X) =k cos? 0 + kosin? 0 (4.36)

Proof: Easy. Just compute I7(X, X) =< LX, X >, using the fact the LX; = £1 X1 , LXs = k2X3,
and noting that the eigenvectors are orthogonal. We get,
<LX, X > = < (cosf)k1 X1+ (sinf)kaXsa, (cos) Xy + (sin 0) X2 >
= kicos? < X1, X| > +rosin?f < Xy, Xo >

= kycos’f+ kosin’é.



