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INTRODUCTION

There is more than mere coincidence in the fact that the
recent rapid growth in the theory and application of mathema-
tical statistics has been accompanied by a revival in interest in
the Calculus of Finite Differences. The reason for this pheno-
mena is clear: the student of mathematical statistics must now
regard the finite calculus as just as important a tool and pre-
requisite as the infinitesimal calculus.

To my mind, the progress that has been made to date in
the development of the finite calculus has been marked and
stimulated by the appearence of four outstanding texts.

The first of these was the treatise by George Boole that
appeared in 1860. I do not mean by this to underestimate the
valuable contributions of earlier writers on this subject or to
overlook the elaborate work of Lacroix.! I merely wish to state
that Boole was the first to present’ this subject in a form best
suited to the needs of student and teacher.

The second milestone was the remarkable work of Nérlund
that appeared in 1924. This book presented the first rigorous
treatment of the subject, and was written from the point of
view of the mathematician rather .than the statistician. It was
most oportune. '

Steffensen’s [Interpolation, the third of the four texts to
which T have referred, presents an excellent treatment of one
section of the Calculus of Finite Differences, namely interpola-
tion and summation formulae, and merits the commendation of
both mathematicians and statisticians.

I do not hesitate to predict that the fourth of the texts that

! Volume 3 of Traité du Calcul Diffdrentiel et du Calcul Intégral,
entitled Traité des différences et des séries. S. F, Lacroix, 1819.
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I have in mind, Professor Jordan’s Calculus of Finite Differen-
ces, is destined to remain the classic treatment of this subject
— especially for statisticians — for many years to come.
Although an inspection of the table of contents reveals a
coverage so extensive that the work of more than 600 pages
might lead one at first to regard this book as an encyclopedia
on the subject, yet a reading of any chapter of the text will
impress the reader as a friendly lecture revealing an ununsual
appreciation of both rigor and the computing technique so im-
portant to the statistician.

The author has made a most thorough study of the literature
that has appeared during the last two centuries on the calculus
of finite differences and has not hesitated in resurrecting for-
gotten journal contributions and giving them the emphasis that
his long experience indicates they deserve in this day of mathe-
matical statistics.

In a word, Professor Jordan’s work is a most readable and
detailed record of lectures on the Calculus of Finite Differences
which will certainly appeal tremendously to the statistician and
which could have been written only by one possessing a deep
appreciation of mathematical statistics.

Harry C. Carver.



THE AUTHOR'S PREFACE

This book, a result of nineteen years’ lectures on the Cal-
culus of Finite Differences, Probability, and Mathematical Sta-
tistics in the Budapest University of Technical and Economical
Sciences, and based on the venerable works of Stirling, Euler
and Boole, has been written especially for practical use, with
the object of shortening and facilitating the labours of the Com-
puter. With this aim in view, some of the old and neglected,
though useful, methods have been utilized and further developed:
as for instance Stirling’s methods of summation, Boole’s symbo-
lical methods, and Laplace’s method of Generating Functions,
which last is especially helpful for the resolution of equations of
partial differences,

The great practical value of Newton’s formula is shown;
this is in general little appreciated by the Computer and the
Statistician, who as a rule develop their functions in power
series, although they are primarily concerned with the differences
and sums of their functions, which in this case are hard to
compute, but easy with the use of Newfon’s formula. Even for
interpolation it is more advisable to employ Newfon’s expansion
than to expand the function into a power series.

The importance of Stirling’s numbers in Mathematical Cal-
culus has not yet been fully recognised, and they are seldom
used. This is especially due to the fact that different authors
have reintroduced them under different definitions and notations,
often not knowing, or not mentioning, that they deal with the
same numbers. Since S#irling’s numbers are as important as
Bernoulli’s, or even more so, they should occupy a central posi-
tion in the Calculus of Finite Differences, The demonstration of
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a great number of formulae is considerably shortened by using
these numbers, and many new formulae are obtained by their
aid; for instance, those which express differences by derivatives

. R . d
or vice versd; formulae for the operations ¥ — and xA, and many

dx

others; formulae for the inversion of certain sums, for changing
the length of the interval of the differences, for summation of
reciprocal powers, etc.

In this book the functions especially useful in the Calculus
of Finite Differences, such as the Factorial, the Binomial Coef-
ficient, the Digamma and Trigamma Functions, and the Bernoulli
and FEuler Polynomials are fully treated. Moreover two species
of polynomials, even more useful, analogous to those of Bernoulli
and Euler, have been introduced; these are the Bernoulli poly-
nomiali of the second kind (§ 89), and the Boole polynomials
(§ 113).

Some new methods which permit great simplifications, will
also be found, such as the method of interpolation without
printed differences (§ 133), which reduces the cost and size of
tables to a minimum. Though this formula has been especially
deduced for Computers working with a calculating machine, it
demands no more work of computation, even without this aid,
than Everett’s formula, which involves the use of the even dif-
ferences. Of course, if a table contains both the odd and the
even differences, then interpolation by Newton’s formula is the
shortest way, But there are very few tables which contain the
first three differences, and hardly any with more than three,
which would make the table too large and too expensive;
moreover, the advantage of having the differences is not very .
great, provided one works with a machine, as has been shown,
even in the case of linear interpolation (§ 1383). So the printing
of the differences may be considered as superfluous.

The construction of Tables has been thoroughly treated
(§§ 126 and 133). This was by no means superfluous, since nearly
all the existing tables are much too large in comparison with the
precision they afford. A table ought to be constructed from the
point of view of the interpolation formula which is to be
employed. Indeed, if the degree of the interpolation, and the
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number of the decimals in the table, are given, then this deter-
mines the range or the interval of the table. But generally, as
is shown, the range chosen is ten or twenty times too large, or
the interval as much too small; and the table is therefore
unnecessarily bulky. If the table were reduced to the proper
dimensions, it would be easy and very useful to add another
table for the inverse function.

A method of approximation by aid of orthogonal polyno-
mials, which greatly simplifies the operations, is given. Indeed,
the orthogonal polynomials are used only temporarily, and the
result obtained is expressed by Newton’s formula (§ 142), so
that no tables are necessary for giving the numerical values of
the orthogonal polynomials.

In § 143 an exceedingly simple method of graduation ac-
cording to the principle of least squares is given, in which it is
only necessary to compute certain “orthogonal” moments cor-
responding to the data.

In the Chapter dealing with the numerical resolution of
equations, stress has been laid on the rule of False Posifion,
which, with the slight modification given (§§ 127 and 149, and
Example 1, in § 134), enables us to attain the required precision
in a very few steps, so that it is preferable, for the Computer, to
every other method,

The Chapters on the Equations of Differences give only those
methods which really lead to practical results. The Equations of
Partial Differences have been especially considered. The method
shown for the determination of the necessary initial conditions
will be found very useful (§ 181). The very seldom used, but
advantageous, way of solving Equations of Partial Differences
by Laplace’s method of Generating -Functions has been dealt with
and somewhat further developed (§ 183), and examples given.
The neglected method of Fourier, Lagrange and Ellis (§ 184) has
been treated in the same way.

Some formulae of Mathematical Analysis are briefly men-
tioned, with the object of giving as far as possible everything
necessary for the Computer.

Unfamiliar notations, which make the reading of ma-
thematical texts difficult and disagreeable, have been as far as
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possible avoided. The principal notations used are given on pp.
xix-xxii. To obviate another difficulty of reading the works on
Finite Differences, in which nearly every author uses other defi-
nitions and notations, these are given, for all the principal authors,
in the respective paragraphs in the Bibliographical Notes.

Though this book has been written as has been said above,
especially for the use of the computer, nevertheless it may be
considered as an introductory volume to Mathematical Statistics
and to the Calculus of Probability.

I owe a debt of gratitude to my friend and colleague Mr.
A. Sziics, Professor of Mathematics in the University of Buda-
pest, who read the proofs and made many valuable suggestions;
moreover to Mr. Philip Redmond, who kindly revised the text
from the point of view of English.
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CHAPTER 1.
ON OPERATIONS.

§ 1. Historical and Bibliographical Notes. The most
important conception of Mathematical Analysis is that of the
function. If to a given value of x a certain value of y correspond,
we say that y is a function of the independent variable x.

Two sorts of functions are to be distinguished. First, func-
tions in which the variable x may take every possible value in a
given interval; that is, the variable is continuous. These func-
tions belong to the domain of Infinitesimal Calculus. Secondly,
functions in which the variable x takes only the given values
X, Xy, X3 ... X, then the variable is discontinuous. To such
functions the methods of Infinitesimal Calculus are not applicable.
The Calculus of Finite Differences deals especially with such
functions, but it may be applied to both categories.

The origin of this Calculus may be ascribed to Brook
Taylor’s Methodus Incrementorum (London , 1717), but the real
founder of the theory was Jacob Stirling, who in his Methodus
Differentialis (London , 1730) solved very advanced questions,
and gave useful methods, introducing the famous Stirling
numbers; these, though hitherto neglected, will form the back-
bone of the Calculus of Finite Differences.

The first treatise on this Calculus is contained in Leonhardo
Eulero, Institutiones Calculi Differentialis {Academiae Impe-
rialis Scientiarum Petropolitanae, 1755. See also Opera Omnia,
Series I. Vol. X. 1913) in which he was the first to introduce the
symbol A for the differences, which is universally used now.
From the early works on this subject the interesting article
“Difference” in the Encyclopédie Mtthodique (Paris, 1784),
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written by 1'Abbé Charles Bossut, should be mentioned,

also, F. S. Lacroix’s "Traité des differences et series”
Paris, 1800.

§ 2. Definition of the differences, A function f(x) is given
for x == x,,, X,y X, . . ., X,,. In the general case these values are

not equidistant. To deal with such functions, the “Divided Dif-
ferences” have been introduced, We shall see them later (§ 9).
Newton’s general interpolation formula is based on these dif-
ferences. The Calculus, when working with divided differences,
is always complicated, The real advantages of the theory of
Finite Differences are shown only if the values of the variable
X are equidistant; that is if

Xig,—Xi = h

where h is independent of 1.

In this case, the first difference of f(x) will be defined by
the increment of f(x) corresponding to a given increment A of
the variable x. Therefore, denoting the first difference by A we
shall have

AF(x) = f(x+h) -f(x).

The symbol A is not complete; in fact the independent va-
riable and its increment should also be indicated. For instance

thus:

A
z, h

This must be done every time if there is any danger of a
misunderstanding, and therefore A must be considered as an
abbreviation of the symbol above.

' The most important treatises on the Calculus of Finite Differences
are the following:

George Boole, A treatise on the Calculus of Finite Differences,
Cambridge, 1860.

A. A. Markoff, Differenzenrechnung, Leipzig, 18%.

D. Selivanoff, Lehrbuch der Differenzenrechnung, Leipzig, 1904.

E. T. Whittaker and G. Robinson, Calculus of Observations, London,

, 1924.

N. E. Nérlund, Diffcrenzenrechnung, Berlin, 1924.

J. F. Sfeffensen, Interpolation, London, 1927.

J. B. Scarborough, Numerical Mathematical Analysis, Baltimore, 1930.
G. Kowalewski, Interpolation und geniherte Quadratur, Leipzig. 1932.
L. M. Milne-Thomson. The Calculus of Finite Differences, London, 1933.
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Often the independent variable is obvious, but not the
increment; then we shall write A, omitting A only in the case
of h = I '

If the increment of x is equal to one, then the formulae of
the Calculus are much simplified. Since it is always possible to
introduce into the function f(x) a new variable whose increment
is equal to one, we shall generally do so. For instance if y—F(x)
and the increment of x is A, then we put x=a--h¢; from this it
follows that Aé=1; that is, & will increase by one if x increases
by h. Therefore, starting from f(x) we find

f(x) = fla+Eh) = F(i)

and operate on F(&); putting finally into the results obtained
(x—a)/h instead of &.

We shall call second difference of f(x) the difference of
its first difference. Denoting it by A:f (x) we have

Nix) = AN = Mlx+h) —Af(x) =
— f(x4+2h) — 2 (x+h) + f(x).

In the same manner the n-th difference of f(x) will be
defined by

Milx) = AATHE)] = A7Heth) —AHw)

Remark. In Infinitesimal Calculus the first derivative of a
df (%)

dx
Df ) (f there can be no misunderstanding), is given by

At (x)

function f(x) generally denoted by

, or more briefly by

Df(x) = lim fi’ﬂ——”—x—)— = lim
=0 h

h=0
Moreover it is shown that the n -th derivative of f(x) is

Art(x)
D (x) = l; mo——
If a function of continuous variable is given, we may

determine the derivatives and the integral of the function by
using the methods of Infinitesimal Calculus. From the point of

&




view of the Calculus of Finite Differences these functions are
treated exactly in the same manner as those of a discontinuous
variable; wc may determine the differences, and the sum of the
function; but the increment 7 and the beginning of the intervals
must be given, For instance, log x may be given by a table from
x=1000 to x=10000, where h—1.

Generally we write the values of the function in the first
column of a table, the first differences in the second column,

the second differences in the third, and so on.
If we begin the first column with f(a), then we shall write

the first difference Af (a) in the line between f() and f (a--h) ;
h
the second difference A*f(a) will be put into the row between

Af(a) and Af(a+h) and so on. We have.
h 5

f(a)
hAf(a)
fla-+h) zhsﬁf(a)
Af(a+h) Af(a)
fla-1-2h) é"'f (a+h) /h\‘f (a)
Af(a+2h) NeHath) A’ (a)
T(a+3h) /;\L'f (a+ 2n) A*Fla- h)
/hy(a+3h) /hw (a+2h]h\
f(a-+4h) A(a+-3h)
Af(a-+4h)
f(a+5h)

It should be noted that proceeding in this way, the
expressions with the same argument are put in a descending
line; and that the arguments in each horizontal line are decrea-
sing. The reason is that the notation ysed above for
the differences is nof symmetric with respect to the argument.




Differences of functions with negative arguments. If we e
have P
A f(x) = Fx-+h) -f(x) = ¢(x) v Lo
h Ny (e f ool
then according to our definition
" v,; " rM\-'ﬁﬁf»ﬁ-‘ A
Qf(-x) = f(-x-h) -f(-x). £
From this it follows that N *(.p\—a—nﬂ‘g'“; P ) 4;_-,

Af (-x) = —p(—x—h) - =™ E TP
h A _‘Jl"): (-A):“ ‘*P'(‘ o &\)
that is, the argument —x of the function is diminished by h.

In the same manner we should obtain
é"‘f (—x) = (—1)"g/l—x—mbh); ¢(x) = é’" f(x),

This formula will be very useful in the following.
Difference of a sum. It is easy to show that

Al ($) 4+ 5 () + o+ Fa(x)] = AR () + Ak (x) + ... + Afalx)
moreover if C is a constant that
ACH(x) = CAHx).
According to these rules the difference of a polynomial
is
Alag+-a,x+ax+. . . +ax"] = a,Ax + a,Ax? + .., + a,Ax".
§ 3, Operation of displacement.2 An important operation

2 Boole denoted this operation by D; but since D is now universally
used as a symbol for derivation, it had to be changed. De la Vallée Poussin
in his Cours d’Analyse Infinitésimale 1922, Tome II, p. 329 denoted this
operation by Pseudodelta \/, We have adopted here E since this is generally
used in England. So for instance in

W. F. Sheppard, Encyclopaedia Britannica, the 11-th edition, 1910, in voc,

. Differences (Calculus of., ,) Vol. VIII p. 223.

E. T. Whittaker and G. Robinson, loc. cit. 1, p. 4.

J. E. Steftensen, loc. cit. 1. p. 4.

L. M. Milne-Thomson. loc. cit. 1, p. 31.

This operation has already been considered by L. F. A. Arbogast [Du calqpl
des derivations, Strasbourg, 1800]; he called it an operation of “état varié".
F. Casorati proposed for this operation the symbol € which was also used
by Pincherle [loc. cit. 4].

C. Jordan, in his Cours d’Analyse [Second edition tom. I, p. 115) has
also introduced this operation and deduced several formulae by aid of
symbolical methods. His notation was

fﬂ = i(x + nh).
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was introduced into the Calculus of  Finite Differences by
Boole [loc. cit. 1. p, 16}, the operation of displacement. This
consists, f(x) being given, in increasing the variable x by h.
Denoting the operation by E we have
Ef(x) = f(x+h).
This symbol must also be considered as an abbreviation of E .
The operation E? will be defined by .
E¥(x) = E[ Ef(x)] = Ef(x+h) = f (x+2h)

and in the same way

Ef(x) = E[ E™! f(x) | = f{x+nh).

It is easy to extend this operation to negative indices of E
so that we have

% f(x) = E*@) = f(x-h)

| .
E f(x) = E™(x) = f(x-nh).

§ 4. Operation of the Mean. The operation of the mean
introduced by Sheppard (loc. cit. 2) corresponds to the system
of Central Differences which we shall see later. We shall
denote the operation corresponding to the system of differences

considered in § 2, by M.? Its definition is
Mi(x) = Y[f(x) + F(x+h)].
The operation M will be defined in the same manner by
M f(x) = MIM™ f(x) ] = % [M"" f(x) + M™" F(x+-h) ].

Of course the notation M is an abbreviation of M.
z, A
Returning to our table of § 2, we may write into the first

column between f(a) and f(a{+h) the number Mf (a); between

3 Sheppard denoted the central difference by § and the corresponding
central mean by . Since A corresponds to 4 it is logical that M should
correspond to p. Thiele introduced for the central mean the symbol (1,
which has also been adopted by Sfeffensen [loc, cit. 1, p, 10], Nérlund [loc,
cit. 1. p. 31} denoted our mean by the symbol Pseudodelta /. This also
has been adopted by Milne-Thomson {loc, cit. 1, p- 31]. We have seen
that other authors have already used the symbol Y for the operation of
displacement, therefore it is not practical to use it for another operation.
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f(a+h and f(a+-2h) the number Mf(a+h) and so on. In the
second column we put MAf (a) between Af(a) and AF (a+h);
continuing in this manner we shall obtain for instance the

following lines of our table

Ha+2k)  MAF(@+h) A¥(a+h)  MA¥(@)  A¥(a)

M/ (a+2h) Af(a+2h) MA(a+h) A¥(a+h)  MA*H(a)
Ha+3h)  MAF (a+2h) A% (a+2h)  MA¥(ath) A'F(a+h)
M (a43h) Af(a+3h)  MA?f (a+2h) A% (a+2h)  MA*(a+-h)

§ 5. Symbolical Calculus.! It is easy to show that the con-
sidered operations represented by the symbols A, D , M, and
E are distributive; for instance that we have

A"[f(x) + ¢(x) + v(x)] = AF(x) + Arp(x) + Amy(x),
Moreover they are commutative, for instance

E'E" f(x) = E"EY(®) = E™"f(¥
and

A™ Erf(x) = E"Am#(x),

The constant B may be considered as the symbol of mul-
tiplication by k; this symbol will obviously share the properties
above mentioned. For instance we have:

Ak fx) = & A fix) |

Therefore we conclude that with respect to addition, sub-
traction and multiplication these symbols behave as if they were
algebraic quantities. A polynomial formed of them represents
an operation, Several such polynomials may be united by
addition, subtraction, or multiplication, For instance

4 Symbolical methods were first applied by Boole in his Treatise on
Differential Equations, London, 1859 (third edition 1872, pp. 381-461 and
in loc. cit. 1. p. 16).

On the Calculus of Symbols there is a remarkable chapter in
Steitensen’s loc. cit. 1. p. 178—202,, and in S. Pincherle, Equations et
Operations Fonctionnelles, Encyclopédie des Sciences Mathematiques (French
edition) 1912, Tome II, Vol. 5, pp. 1-81.
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(ao+alA+a-.'A=+' . '+anA") (bo+b|A+b:A2+- .+ bmAm) =

n4l  m4d
= 2 2 ab, Arte
¥=0 p==0
Remark. The operation E™ behaves exactly like E™;

we have

E-n Em — Em E—n — Em-n h

Therefore in the case of the displacement operation E, division,
or multiplication with negative powers of E will be permitted,
exactly as with positive powers. Moreover

Elf(x)e(x)¥(x)] = flx+h) g (x+h)w(x+h) = Ef(x) Ep(x) E¥(x)

These are not true for the other symbols introduced.
§ 6. Symbolical Methods, Starting from the definitions of
the operations it is easy to see that their Symbols are connected,

for instance by the following relations
E = 1+A: M= %(U+E): M = 1+ UA;
M =E—UA.
To prove the first let us write
(l+é)f(x) = fx) + /7\ f(x) = Flx) +f(x + h) — F(x) =
the others are shown in the same way.

Differences expressed by successive values of the function.
From the first relation we deduce

A" = (E—1)" = ’E; (-1)° ('L’) Er-v

Knowing the successive values of the function, this formula
gives its m -th difference. We may write it as follows

5 Our notation of the sums is somewhat different from the ordinary
notation. We denote

n
flO) +F1)+ £(2) ++Ffn—1)=X fo( X))
re=x
that is, the value /(0) corresponding to the lower limit is included in the

sum. but not the value f(n) corresponding to the upper limit. The reason
for tbis notation will be given in the paragraph dealing with sums,



A" f(x) = F(x+mh) — ( ’{’Jf(x+mh—h) 1 [’g] F(x--mh—2h) +
S R &)
Differences expressed by means. Starting from the third
formula we have
A= 2M-D = 2 E ) [T M

Performed on f(x), this operation gives
A F(x) = 27 [MnF(x) — () M) +[’g] Mm2F(x) —. . .

+ [—l]mlzlf(x][.

The differences may be expressed by means; moreover,
‘using the fourth formula
m+1 y (m
A= RE-MF =2 2 =) (T E W
this will give

An f) = 27 (1 (xmh) —(T) M Flet-mh—h) +

i B M (etmb—2h) + .+ 1y (] M)

This formula becomes especially useful if f(x) is such a
function that we have M*f (x) = F(x+»); since then we have

E"Mi(x) = F(x+m)
that is, the argument of F{x) is independent of ». This is often
important. n
Example. Let f(x) = le. As we shall see later, we have
»in =_1_[n+1')
M l\) 2 \x+v
and therefore

)= X o (e )
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The function expressed by differences. From the first re
lation it follows that

E = atar = 3" A

Executed on f(x) this gives

fu+mm)=fu1+(T)Amn+1§]A#u)+...

+
m
+ (m) A7f(x) .
The tunction expressed by means. From the second relation
we deduce that
m+1
- (2M——-1]”‘ = {0 (—1]" ( ZZ) (2M]m—r

The operation executed on f(x) gives
He-pmh) = 2"M"F () —| T]Z’“"M""lf @ + (7 JMmat o) —
bt (=[] e
Means expressed by successive values of the function. The
second relation

gives

20!

mtd
M = [R0+E)m = 5 2 (V) Er

and therefore we have

M~ (x) = 2—1,; [F(x) + ( ’;’] flx+h) + ('g] flx+2h) 4. .. +

(™) pmiy 1

Means expressed by differences. From the third relation
we get

Mm = (1+16A) = mZ:,[T]

2v
Hence
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AF(x) A (x)
m m .
Mr(x) = 1) +(T) 2+ (3) 25—+
' Ami(x)
m
+ () A
Expansion of a function by symbolical methods. We

have
E = 0+8- =3 (§)a

since the operation E* performed on f(z) gives f(x) for z=0 if
k=1 Tberefore this is the symbolical expression of Newton’s
formula

W o =t +(T) M + (;C] A (O) + ...

Hitherto we have only defined operations combined by
polynomial relations (except in the case of E™"); therefore the
above demonstration assumes that x is a positive integer.

But the significance of the operation E* is obvious for

any value of xjindeed if A=1 we always have

E*(0) = f(x).
To prove that formula (1) holds too for any values of x

it is necessary to show that the operation E=* is identical with
that corresponding to the series

E3:1+("f]A+("2‘] A24 . +(§]A+

This is obviously impossible if the series

10 +(T)aro+. .+ (3] Ao+

is divergent. On the other hand if f(x) is a polynomial of
degree n then Al f(x) = O and the corresponding series is
finite. Steffensen [loc. cit. 1. p. 1841 has. shown that in such
cases the expansions are justified. If we limit the use of the
symbolical expansions to these cases, their application becomes
somewhat restricted; but as Steffensen remarked, these expan-
sions are nevertheless of considerable use, since the form of an
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interpolation or summation formula does not depend on whether
the function is a polynomial or not (except the remainder term)

If certain conditions are satisfied, the expansion of operation
symbols into infinite series may be permitted even if the function
to which the operations are applied, is not a polynomial when
the corresponding series is convergent. [Pincherle loc. cit. 4.]

To obtain Newton’s backward formula let us remark that
E—A = 1 and start from

[E——A] [1__]"
Expanding the denominator into an infinite series we get
e S xtr—1) A”
@) Er = ;0[ 4 E”
According to what has been said, this formula is applicable,

first if x is a positive integer, if f(x) is a polynomial, and
in the general case if the series

1@ = 10 + (7) M + (31 A2 +
+(x_:*{2)A3f -3+,

is convergent, and  f(x) satisfies certain conditions.
An interesting particular case of (2) is obtained for x=1

o« A 'y
= X [=
E r=0 [ E
and if the operation is performed on f(x), we have

Hx+h) = %}A’ f{x—rh)

r=()

We may obtain a somewhat modified formula when starting
from

Ex*] — T



Expanding and dividing by E, we get
Ex = § (x-}—v AY
=0 v J El"""l

In the same manner we have, if f(x) is a polynomial or if
it satisfies certain conditions:

1 _ ___1’__’ _ ® T n-+4-vy—I1 )
E = = L0 (™ ) A
that is

f(x—nh) = éﬂ —1)” n—{-:—l )%’ f(x)

Expansion of an alternate function. A function (—1)*f(x)
defined for x = 0, 1, 2, 3, . . . is called an alternate function.
Starting from the second formula we deduce

(1 E = a—2M- = £ (1 ()2

This formula may only he applied if x is a positive integer,
since otherwise even in the case of polynomials it is divergent.

It-has been mentioned that the Calculus of Finite Differen-
ces deals also with functions of a continuous variable. In this
case it is possible to determine both the derivatives and the
differences and to establish relations between these quantities.

Relation between differences and derivatives. If we write
Taylor’s series in the following manner:

2 3
f ) = f9 + HDF (9 4 57 D (1) + 57 D% (9 +, .
Written symbolically it will be

E =

h +

thv
|

0 Vi

— o0

I t48

and therefore

(3) A = 0 —1,

A

This formula was found by Lagrange; it gives the first
difference in terms of the derivatives If we expand the second
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member into a series of powers of AD, and multiply this series
by itself, and apply = Cauchy’s rule of multiplication we obtain
A’; multiplying again we get A% and so on. We could express
in this way the m -th difference by derivatives, but we will obtain
this later in a shorter way by aid of Stirling numbers (§ 67).
Starting from e? =1 4 "A we could write formally

@ HD = log(1+4)

In this form the second member has no meaning, but expanding
it into a power series it will acquire one:

hD = Anw— IA’AI:_) + 1/ %“ - ‘/4%‘ 4.

This formula gives the first derivative expressed by
differences. It holds if the function is a polynomial, or if the
series 1s convergent and satisfies certain conditions.

Again applying Cauchy’s rule we obtain {32, then [J% and
so on. We could thus get the expression of the m -th derivative,
but we shall determine it in another way (§ 56).

§ 7. Receding Differences. Some authors have introduced
besides the differences considered in the preceding paragraph,
called also advancing differences, others, the receding differen-
ces. defined by

NE ) = f) — f (x-h).

The symbol A’ is that used by Sheppard®; in our notation this
will be

N = —é- and (A)" = é,.

Since the formulae containing symbols of receding dif-
ferences are very easily expressed by formulae of advancing
differences, and since there is no advantage whatever in
introducing the receding differences, they are only
mentioned here.

¢ Sheppard |loc, cit. 3]; different notations have been proposed
for the receding differences. Steffensen |loc. cit. 1, pp. 2241 puts

7 1ix) = 1(x) — f(x—1).
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§ 8. Central Differences. If we accept the notation of the
advancing or that of the receding differences, there will always
be a want of symmetry in the formulae obtained. Indeed, to have
symmetrical formulae the argument of the difference

Flx+h) — F(x)

should be x-Vhh; and therefore the difference corresponding to
the argument x would be

f(x+Yoh) — f (x—1Lh)

This has been adopted in the system called Central Differ-
ences. Different notations have been proposed; we will adopt
Sheppard’s notation, which is the following for the first central

difference’
Of (x) = F(x+Voh) — f (x—/2h)
and for the first Central Mean
wh(x) = YalH(x+'2h) + Fx—14h) .
From the above formulae it follows immediately that
oF (1) = Mla—h)  and () = MF (x—12h),
Moreover from these relations we easily deduce the following:
§f(x) = AHlx—h); 8t (x) = N*f (x-nh)
w#ix) = M (x—h); wf (x) = M (x-nh)
wof(x) = MAF(x—h);  wd*'F (x) = MA*™'F (x-nh-h).
The connection between the formulae of the advancing and

those of the central differences may be established easily by the
calculus of symbols. Starting from
M

A
S:W and W= Ex

) 7 An excellent monograph on Central Differences is found in Sheppard
ioc, cit. 3. p. 224]. Of the other notations let us mention Joffe's [see
Whittaker and Robinson |oc, cit. 1. p, 36}

AN f(x) = Flx+ %) —Hx—2%).
The notation of the Central Mean introduced by Thiele and adopted by
Steffensen [loc, cit. 1. p. 10] is the following

OH(x) = %[Hx+ %) + Hx—%))
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we obtain

o AZn ) w1 A2n+1 ) Y M2n
6—E",21_Em,u2_En

and so on.

Working with central differences there is but one difficulty,
since generally the function f(x) is given only for values such as
f(x+tnh) where n is a positive or negative integer. In
such cases f (x+14h) or f (x—Ll4h) has no meaning, nor have
& ) and wf (x). But there is no difficulty in determining
0f %), u*t (x) and ud**F (x).

Returning to our table of differences (§ 4) written in the
advancing system, we find for instance the following line

fa4-2h) MAf(a+h) A*(a+h) MA% (o ) A*(a). . |

If in this table we had used the central difference notation
the numbers of the above line would have been denoted by

f (a+2h) udf (a+2hk) 8% (a+2h) ud3f (a+2h)  §4 (a+2h). .

That is, the argument would have remained unchanged
along the line. This is a simplification.
Since in the notation of central differences the odd ones are

meaningless, the difference

(I ' E
e ] I A R
must be expressed by aid of the even differences 32" and by
p&?tn‘i‘l
To obtain an expression for A we will start from the above
symbolical expressions, writing

Ed + 2Eund = A% + 2MA = A(A+E+1) = 2AE
From this we get the important relations
(1) A=ud +148* and A = Er[pdt + %)

Symbolical methods. We have seen in § 6 that E = ef0
and A = %0 — 1. Putting A=w, to avoid mistakes in the
hyperbolic formulae, we deduce from the definitions
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IHD —_ .
d = _A_ =!:e="’o ¢—""0 — 2 sinh ! .wD

E‘/e - 2E‘!2 - 2D

Starting from these formulae we may determine any
symbolical central difference expression in terms of the
derivatives, for instance §*, yd**'! and others.

To obtain $*" we use the expansion of (sinh x)*" into a
power series. The simplest way of obtaining this series is to
express first (sinh x)*" by a sum of cosh »x. Since

2 sinh x = @' — ¥

we have

DLt

(2 sinh x)*» = 2 (—1}* 2N 2=,
=0 Y1
In the second member the terms correspon-
ding to ¥ and 2n—» combined give
e‘.’(n—qle + e 2ln)x — 2 COSh z(n__},]x
so that we have
2n
(25mhx)-"—2 (—1) [ J cosh2(n—»)x + (-1)” ( n J

From this it follows that

|D?™1(2 sinh x)%")s—0 = 0.

For m>0 we find

@ |D=m@sinhx) ho=2 £ ()7 [ 2] @n—2r)ims
r==0
therefore the required expansion will be
© 20 n 2 .
(2 sinh x)?" = 2 2‘.1 (f I 2. (—1)" {:] (2n—2v) 2,
me= Zmj
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Finally putting x = wD we have
2, (U)D) = ” [ ] 2m
2n _ n—vj=".
6 = 2 mzl (zm)' r={ ( 1] ( V]
Expansion of nd**1 in powers of the derivative-symbol D
Futting again Y%wD = x, we have
ud*™! = 2°"1 (sinh x)2"*! cosh x

Ihe first derivative will be
Dud>*' = (n+l) (2 sinh x}27*2 4 2(2n+1) (2 sinh x)2

Using formula (2) we obtain the 2m -th derivative of this
expression

(D21 8] o = 2n+1) = (=" | 2512 | 2nt2—2n)n

+4@n+1) X (—-1)"(2;’] (2n—2y)

and finally

uazm«] = 2 (wD)

2@ntn) T () [i"] (n—v)?m.

§ 9. Divided differences. So far we have supposed that the

function f(x) is given for x=x, x,, x, . ., x, and that the
interval

Xiyg — Xj = h
is independent of i. Now we deal with the general problem
where the system of x,, X, . . .., X, may be anything whatever.

By the first divided difference of f(x;), denoted by ®F (xi)
the following quantity is understood:

v £ ) — =)
D (x)) = X, —xi
The second divided difference of f(x;) is
D (x;) = D (xi,,) — D (x)
Xiy = X;
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and so on; the m -th divided difference is

DF(x;) __’D”Mf(xiﬂ ]ﬂﬂ(xi)_

xi+m_" Xi

From these equations we may deduce successively

f(xo) _ f(x,)
rbf(x()] - +— xl_xO 4
. f(x,) , f(x,) +
DY y +
D> = (xj—=x,) (x4—x,) (x,—2x,) (x,—x,)
F(x.)
+ (x,—x,) (xz—;;—) '
and so on. Putting  w,f{x) = (x-x,,) (x-x,) . ., . (x-x,,) we
may give to the general term @yf(x,) the following form
) AN A L7
() b f(xO) - Dwm(xo] ¥ Dwm(xx) o Dw’"(x”‘) '

The divided differences may also be given by Vandermonde’s
determinant

1 x, x,° cen x,m! F(x,)
1 Xy x,® C x,"! fx,)
x Xt ... X, ! flx
3’"“"0) — om m — m ( m)
1 X X0
1 x,  x!
1 Xm Xm™ Xm

NOW we shall deduce an expression forf(x,) by aid of the
divided differences.

First multiplying @ (x,) by wy (xm), then Q% (x,) by o, (x,)
and so on: Q'F (x,) by w,_, (x») and finally D™f (x,) by wm_, (xm)
we obtain

3! n
2 0l D ) = flx) B —metlial
=t r==1 D(v)r (xu]

m+l omtl W, (xm)

" =1 o= D w, (x) (xi).
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In consequence of the relation

Wy (Xm) = Donlxn)
it follows that the coefficient of f(x,} in the preceding equation
is equal to one, since it can be shown that
"%' ! Wyt (xm) _
=1 D v, (x) =
so that the coefficient of f(x,) is equal to -1. Moreover it can
be demonstrated that
mg] Wy,_1 ($t1:) ~ 0
pr=I1 D Wy (x")_

therefore for these values the term f(x;) will vanish from the
equation and we have

f (xm) = f (%0) + (xn—2x,) Qf (xn) + (xm—xo) (xn—x;) D*F(x,) +
() + (%) (*n—x,) (xr—x,) D} (x,) + ...
+ (xn—xo) (xm—%1) 1 o 1 (Xm—2m_y) D (x,)-

This is the required expression of the function by aid of

divided differences, Putting into this equation x instead of xj

and adding the remainder, we obtain Newton’s expansion for
functions given at unequal intervals

3) Flx) = F (%) + (x—x,) DF (%) + (x—x,) (x—x,) D (%) ;.
ot (xx,) (x-x,) ... (x-"xm—ll @mf(x”] + Rm+1'

We shall see in § 123 that the remainder R, of the series
is equal to

13

#m>i>o

_ (x_xo] (x__le [ (x—xm] m+
Rnur = Ay D (2)

where § is included in the interval of x, x4, x,, , ., %, -
Formula (3) may be written

= fe)+ E o) B () e D).

§ 10. Generating functions. One of the most useful methods
of the Calculus of Finite Differences and of the Calculus of
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Probability is that of the Generating Functions, found by
Laplace and first published in his "Théorie Analytique des
Probabilités” [Courcier, Paris 1812].
Given a function f(x) for x=a, a+1, a+2,. . . ., bl

u(t) will be defined as the generating function of f(x) if the
coefficient of #* in the expansion of u(t) is equal to f(x) in the
interval a, b, and if moreover this coefficient is equal to zero
for every other integer value of x. Therefore we have

b
u) = X flx) t~
I=a

To denote that u(t) is the generating function of f(x) we

shall write
Gf(x) = u(t)

If b is infinite, the generating function of f(x) will be
considered only for values of # for which the series is convergent.

Remark. Another function u,(f] may be determined so that
the coefficient of # shall be equal , in certain intervals, to the
function f(x) given above.

For instance, denoting by f,,(x) the number of partitions
of order m, of the number x (with repetition and permutation
of 1, 2, ... n), it is easy to see that the generating function
cf f(x) is the following:

u(f) = (B8 + .+ 1)
but for x<n the expansion of the function
tm
= a—pn
leads to the same coefficient as the function u(f). Since the

expansion of u,(f) is simpler than that of u(f) we will use
the former for the determination of f(x). We get

)=+, )n

u, M — tm EU (_l)r [ ‘;’m] ¥ = §0 [ ITI"{‘:—I] tm+Y
Finally we have

x—1
) = | o
if x<n.
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To determine the generating functions there are several
methods.

First method. In Infinitesimal Calculus a great number of
expansions in power series are known. Each function expanded
may be considered as a generating function. For instance we
found:

1 = 1
1. 1 = ,Eo t therefore (G 1 = i

= 1, 1
? et:ri:o-{'_jt G,;:_!—e{
3. —log (1-f) = 2L 6L = —log (f)

sy X X
ntl n

4. (148" = E ( ) t G (T) = (148"

5. f@E) 2 ., . (t—nt+1) = ’2: S #
G S:= f(1) . . (t—n+1),

Where the numbers Sf are the Stirling Numbers of the first
kind. We shall see them later (§ 50).

6. f2r) =0, f(2v4-1) = 2Vi—1 u(t) = log 1._+:£
7 fF2r) =0 F2r+1) = =1’ u(f) = arctan f
’ vh= T 241 -

1) — ) = =0 _
8. F(2r41) =0, 7(2¥) B! u(f) = cos f

_ _ =7 — s

9. f(2r) =0, f2v4+1) = 2] u(f) = sin f
0. F2v41)=0, F(2v] (TI)T u(f) = cosh f
1. F0) =1, F2r+1)=0, f(2v) = L= u(f) = sech f

@n)!
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The numbers E;, are Euler numbers (§ 105).
By, t
12 1) = =% H2v1) =0, HR) = oyl =gy

The numbers B,, are Bernoulli numbers (§ 78) .

Second method. Starting from the generating functions
obtained by the first method we may deduce, by derivation,
integration, or other operations, new generating functions. Of
course the conditions of convergence needed for these opera-
tions must be fulfilled.

For instance starting from formula (1) we remark that the
series & # is uniformly convergent for every value of ¢ such
that | ¢ | < y < 1. Therefore all derivative of the series, may be

determined by term by term differentiation in the domain
111 < 1. The first derivation gives after multiplication by #

a t
13. t___ % x t sothat Gx

(1—)2 ~ .5 : (1—t)* -

The » -th derivative obtained from formula (1}, multiplied
by t*Jv! gives

' [ tv
M —t_ 3 Ak G(’f) P

(1—f)™+1 = a=o I (Q—f7+”
Formula (1) may also be integrated term by term and we get
il & 1
— . = — —_— = ——‘ 1—t
15. log (1—t) ,E: p G P og(1—t)
if x>0.

In this way we obtain again formula (3). A second
integration will give

a tx
| S
Gm =t + (1-4) log(1—t)

if x> 1.
Third method. Sometimes it is possible to obtain the ge-
nerating function of f{x) by performing directly the summation

éﬂ 0 & = uft).
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First, this is possible if f(x) is &he x -th power of a
number a; then we have
1

3 e~ L
viee) - =0 (at) _1-—at

Example. Let f(x) = cos ¥x. cos ¥x is the real part
of %= therefore a(t) will be the real part of

_r
1—e*t
This is easily determined and we find

| — { cos i
1= 2tcosd+1I

17. ll(t) —

Secondly, the summation may be executed directly if it is
possible to express the function f(x) by a definite integral in
such a way that under the integral sign there figures the x -th
power of some quantity independent of x. For instance if we
have

b
fx) = C [ lp)|x dv

then we shall have

— ty(v)

In this manner we obtain u(t}) in the form of a definite
integral whose value may be known. '

(2 - ,./' dl'
u(f) = CJ‘ 20 [ty ()| dv = C . 1
« T= 2

Example. Let f(x) = Zx\) We shall see later that the

binomial coefficients are given by Cauchy’s formula (5), § 22.

"’/g.'l
(ZA)Z—?i [4cos*v]* dv;
from this we conclude
2 M A
) = 2 ————
u(t) f 1—A4t cos*v *

This is already the required solution; but since in the
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tables of Bierens de Haan® we find that this integral is equal to

1/]/ 1—4t we may give the generating function this
simpler form }

(18) w(f) = G(Z;J .

Remark 1. Since

(Z)=2 s = 2 (357),

we have

2x-1 1

(19) G(x)=—21/—i~:—4—t—

Remark 1I. Starting from the above result we may obtain
the generating functions of many other expressions. For instance
according to Cauchy's rule of multiplication of series we obtain

from (18)
\ 2 (2x),., & & (2x—2v\(2r
) =1 2 (x)t F= 2R (B (Y) s
moreover
1 [ -]
P i — X 47
[u(f)i 1—4¢ =0

Hence noting that the coefficients of #* are the same in the two
expressions we get
1 2x—2v) [20) -
(2] - e
p==0

This is a very useful formula.
§ 11. General rules to determine generating functions.
1. The generating function of the sum of functions is equal
to the sum of the generating functions

G If,(x) +L&)+....] = Gf(x) + Gf.(x) +....

8 D. Bierens de Haan, Nouvelles Tables d'Intégrales Définies, Leide,
1867. In formula (13) of Table 47 we have to put p—=1 and 1—¢*® =— 41
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2. If ¢ is a constant, then we have
Gcf(x) = cGfx).

Therefore, for instance, if a polynomial of degree n is
given by its Newton expansion

f(x) = f(0) + (O AF(0) + (;]NHO) 4+ (,‘,] A"(0)

then according to these rules we shall obtain the generating
function of f(x) by aid of formula (14) of § 10. We find

(1) GF{x) :"i: A"f(O)“_t;%‘yH

3. Given the generating function of f(x)

®
G v = ut) = _EO fx) £
we may easily deduce the generating function of f (x+41) : indeed
from the preceding equation we may obtain

(2) w = ‘“?U f[x—{—l) = GHx+1)

Therefore the generating function of the difference of f{x}
will be
1

(27) GAflx) = 5

In the same manner we have

((A—=8u(t) -f(0))

(3) Gflx- n) :t% la(f) —£(©0) = tF(1) =~ . .+ 'F(n—1) 1.

The last formula enables us to determine the generating fune-
tions of A"™f(x) or of M™f(x) and so on,

Example. We have seen that
2x) - i

| l/l~=-4.f

. 2x . .
Let us determine G A( ¥ ] i according to (2} we have

X

6|
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2x 1 1t

1—4¢
Determination of the generating function of t(x) starting
from a difference equation. If the function f(x) is not directly

given, but we know that it satisfies the following equation
forx 20

(4) a.f(x+n) + a ,_, f(x+n-1) +. . .+ a,f(x+1) + a,f(x) = V(x)
where the a; are independent of x and V(x) is a given function
of x then we shall call the expression (4) “a complete linear dif-
ference equation of order n with constant coefficients” If we
denote the generating function of f(x) by u(t), the preceding
rules (3) permit us to express the generating function of the
first member of (4) by aid of wu(t); if we know moreover the
generating function R(t) of V(x), then, equating the generating
functions of both members we obtain an ordinary equation of
the first degree in u(t) ; solving this we have finally the generating
function of f(x).

(5)  u(t) ={trR({H) + 2 | ant™ "[HO) + F()E4. . .+

+f (m—llt""' m ?_:0 aut™

Example. Let us suppose that the generating function of
f(x) is required, and that f(x) satisfies the following equation for
x=20.

1
(6 Fx+0)-f(x) = £
We have seen that G—i = — log (I-t) ; log 1=0, hence
according to (2) we shall have G -;1T1- = _ log (1—1) (1 —1) = R(t),

Therefore from (5) it follows that
_ aft (0) —log (I-t)  F(0)— log [1——!]
@) al) = = T = f
Remark. We shall see that if f (0) = — C (Euler’s constant)
then the solution of the difference equation (6) is the digamma
function (§ 19) and then (7) will be its generating function.
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4. Starting from the generating function u{#} of f(x) we
may obtain immediately the following generating functions

G xf(x) = tDu(f)
G x(x—1}f(x) = £2D>?u(?)
G x(x-1) (x-2), . . (x-m+D)f(x) = "Dmu(#)
and in the same manner as before
G xx-1) .. . (x-m+)f (x4n) =

— ,mDm[u(f) -f(0) —tH(1) = tif (n-1) .

Other simple particular cases are

G (x-+1)f(x+1) = Du(t)
Glx+2) (x+1)Hx+2) = Dulf)
and so on.

By aid of these formulae we may determine the generating
function of f(x), if f(x) is given by a linear difference equation
whose coefficients are polynomials of x.

We shall call the expression x(x-1) (x-2) . . , (x-m+l)
‘factorial of degree m’and denote it by (x),. If we expand the
coefficients of the difference equation into factorials, the equation
may be written

n+1
(8) 2'0 f(x+m) _20 ami (x); - V(x).

n=l =l
By aid of the above relations we deduce from this equation a
linear differential equation of u(f) which will determine the
required generating function.

Example. Given (2x42)f(x4+1)— (2x+1)f (x) = 0. This
we may write

20+ 1) Hx+1) —2xF(x) -f(x) =0
hence

2Du(t) — 2tDu(t) -uv (f) =0

that is 2(1—f)Du(f) = u(f). The solution of this differential
equation is easily obtained by integration. We find

w(t]=cQ -9
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To determine the constant c let us remark that u(0) = f0)
therefore

u (1) =f(0)[1 =

§ 12. Expansion of functions into power series. If the func-
tion f(x) is unknown but we have determined its generating
function u(t), then to obtain f(x) we have to expand u(f) into a
power series. In the Calculus of Finite Differences this occurs
for instance when solving difference equations by the method of
generating functions. In the Calculus of Probability very often it
is much easier to determine the generating function of a quan-
tity than the quantity itself. In these cases also we have to
expand the obtained generating function.

The methods for expanding functions into power series are
found in the treatises for Infinitesimal Calculus. Here only the
most useful will be given.

First method. Expansion by division. Example:

1
1-f

Second method. Stirling’s method of expansion of
1/(a,La,t+a,t*] [Methodus Differentialis, 1730. p. 2).

R f R

Let us put
1
e ey | (/) B4 x) 4L
e~ (O I IR B T e
multiplying both members by the denominator. We must have

1=a,f(0)

moreover the coefficient of # must be equal to zero for every value
of x>0. This gives a,f(1} +a,f(0) = 0 and the following
equation

af(x) + a,f (x-1) + a,f(x—2) = 0.

Putting into this equation successively x = 2, 3, , . . we may
determine, starting from f(O) and f(1), step by step f(2), f(3).
.,, and so on. Remark: f(x) may be obtained by solving directly
the above linear difference equation of the second order with

constant coefficients (§ 165).
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This method is known as that of indeterminate coef-
ficients.
Third method. Expansion by the binomial theorem. Examples.

@ . a+nr = T (2) ¢

Za=()

@ iy - 5 e () £ 5 (720 6

z=0

Example 1.
HA+t) (1—)® = t(1+1) .i ("fz) t

and finally the coefficient of # will he

o x4-1 x )i 2
fx) = (x—1]+( x—2)|= -
Example 2.
) Attt o+ 1) = (1—m)e (7 =
2 n ntvr—1 rp(mt1)

To obtain the coefficient f(x) of # we have to put
x= v+u (m+ 1).We find

n+1
f(x) =% [—1)¥

n=0

n] x+n—1—mp—p
i ( n—I1 )

Example 3. Given u = (c¢,+c,t+c¢,t?)" Applying the bino-
mial theorem we have

|ey+(c, +ec,t)t|" = :og{ g) "t (e teot) .

A second application of the theorem gives

* il ) Y
(6) u — X X n( 1)(’}7 ¢ —=r Cy'' fre .

.

Putting x=v»--pu, the coefficient f(x) of ¢ will be

f(x] = = (,,_) ( x—u) C" c]Zv-x Cy°"

r==0 .

Fourth method. Expansion by Maclaurin’s Theorem.
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3 Du ,

ll(f) = = x'

Hence we have to determine D*u(f) for +=0.

A. This may b¢ pbtained by successive differentiation, For
instance if # is equa to 1/(1—f}, to a!, to sin ¢, etc.

B. If u(t) is a § pduct of two factors u = p(f), y(f), then
we may apply Leibn ¥'s theorem

0 =% (¥)Dre) Do,

unction of function. [See Schlémilch's
t us write # = u(y) and y = y(f). We

(7) D

C. Derivation of &
Compendium II. p. 4.]
have

du  dudy
dt = dy dt

dra _ dta (dyp | du iy

dez ~— dy* \ dt dy dt?

d3u _ d%u ( ) 4 d?u dy d%y + du diy
dfs — dy* dy? df d¢ 7 dy df

du _ du d*u du
H—I"_ — Yiu '&E + Y dy2 +. +th dy

ependent of u. Therefore we may
e most convenient function z(y) ,

where the functions ¥ are .
determine them by choosing

Let
u £ ew),
hence
d*u i
d—y-‘— - {w e*.
Consequently
%;‘ ev) = (Y4, 4 @Fpy + 0+ 0"Yp,) e,

From this we deduce that

, 1] ds n
(7) Vi = = [ o (e—wv ‘.}F ewv)]wo
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Moreover,

L a

gp YR = o eltth),

da’ da:

— @(t) = |—— M

FrRAY) [dh, <p(t+h)]h=o
hence

dr o) P id

by = | = guyltth '

ar® [dh"e . ):lh=0 ’
from this it follows by aid of (7') that

Y dln"l

— —— g y(t+th)~uylt)

ns [dw‘d’i" e ! ]w=o, h=0

so that
1 (a Al

Yis = Sl {W l{})’(f]] frco .

Finally we have
d.'tu "l dlu{ 1 dn

8 au _ y o eul L & s}
(®) df . dg ST am lywly

For every particular function y we may determine once for
all the quantities Y, , Y, ., ., . Y.
Example 1. Let y = ¢!, We may write

[{}el]s = e (e—1)s = e ?}__; (__”i(‘?)eh{s-i)

hence
ar . o s+1 [ S) . Wi
— s = et ¥ (—1)] ;) (s—i)mehlsh.
dh"[ ln&e ] =0 =0 (s—)
Putting h = 0 and dividing by s! we get

eat s+1 (S o
Voo = 55 2 1) (3 500

We shall see in § 58 that putting {—=0 the second member
will be equal to (5:, a Stirling number of the second kind. SO that
Yis = & and
"dru ] nt1 dru

=0

— m
df" - m—0 n ,dy.’" y=1 .
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Example 2. Let y = 2, We shall have

(AB)s = @t4h) e = 3 [f] (26)5 hi
h 1=0

moreover
s+1 s o
0o = 5 oqn, (3) @osiaee,
Putting h=0 every term will vanish except that in which

s+i=n. Therefore we find

Vo = 25 | o A ] = L5 ey,

Example 3. Let y = 1/t. We have

. 1 h
e
Proceeding in the same manner as in the preceding example

we get

. !t n—1 1
Y = =0 2 (71

Derivation of a function of function by Faa Bruno’s formula.
Given u=u(y) and y=y(x), let us write

D2 t) 8
=

Y = ¥ + (x—%) DY, + (x-X) =5

+....

and

o
u:E
r=0

y
= éo 1_1' [(x—"xo]Dy + [x—x,)? I)2~‘}!'0 +e- II%.F% :

The coefficient of (x—x,)" in the expansion of u is equal

first to
[ 1 d"u]
n! dx" |:—,

Y=Yo




34

and secondly in consequence of the above equation to

n+l 1 du pi o, D Yt) "
.‘Ex K [dy"Jy=!/» z ‘11‘ ad. . apt (Dyo)™ (57 2! ) o

LR

so that finally we may write

- 3 ﬂ n' « D .Vu "3
(9] [dxn I ‘dy” = Z E'—,‘.—:a—(D}'.,) ) ,
( D Yo ) "
nl!
where
@ +a2+""+“n = .
and

a, + 2a, + ., .+ nu, = N
Remark. Comparing formulae (8) and (9) we find

Dy.))z

(10 3 |4 I@V| = 2o, Dy - y

.,.u"

(D—y)

§ 13. Expansion of functions by aid of decomposition into
partial fractions. Let the following function be given

_olt)
——TT)

where @(f) and y'{t} are polynomials; the degree of ¢{t) being
less than that of (). We may always suppose that ¢ (t) and yi{t)
have no roots in common; since if they had, it would always be
possible to simplify the fraction, dividing by f-r,,, , if r, is
the root. '

A. Let us suppose that the roots r,, ry,, ,,, I, of 0;'(t)
are all real and unequal. We have

nt1 a;

u =
1=1 t—f,'
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Reducing the fractions to a common denominator we obtain u if
for every value of f we have

nkl (1)
—_ S g
olt) = e l—r;

therefore this is an identity: so that the coefficients of #*, in both
members, must be equal, This gives n equations of the first
degree which determine the coefficients g;,

But these may be determined in a shorter way. Indeed

w(t) = Clt—r)) (t—r,) ., . . (t—r,),

therefore putting {=r; into the above equation every term will
vanish except that of a; and we shall have

¢ ) = a lim 2 = o Duir:

t—rf
so that
o — 2
YT D) ?
and therefore
n+1
=y el .t
“ =1 T,'D’\P(fg) ( r.») *

Finally the coefficient f(x) of #* in the expansion of u will be
equal to

. n+1 —'_q)(ri)
f(x) - Eﬂ r,_x+1 D‘p(ri] .

Example 1. Let u(t) = 2t | (t*+#—1), From this we deduce
r, = /2(_1+[/ 5) and r, = ‘/2[—1—V§. Hence we have

¢lr) =-1+ |/5 and ¢(r,) = —1—|/5.

Since Dy (t) = 241 it follows that
Dv(r,) = [/5_ and Dylr,) = — |/§ '
consequently
1—|/5 ot 1 4 |/5 z+1
f(x) - [/ 2 — L r 2

5 |-1+5 5 L—I—I/S_ :
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this gives
fa) = 5 V[u )5 —a+ |5+,

and finally

() i) = oo 2 (amy1) 5™

We could have obtained the same result by solving the

difference equation deduced in Sfirling’s method (Method II,
§ 12).

On the other hand the third method giving the expansion
of the trinomial

2t (2 4-t—1)71
would lead to
_ 2 ,*l ( ) tl+n+l
1—-0 4=0
Putting x = v+ u+1 we obtain
2) f(x) = -2 3 (F7270)
u=0 &

Equating this result to (1) gives the interesting relation

X 7 _ x-1 Nl (x_[J-—l)
§0 (2;1.—}—1 )5 = 2 ”30 i ,

Example 2. Decomposition of the reciprocal factorial

w@® = 1 [t ) @2 ., .. (tm),

a — 1 m+i(’;l)
TIDHE) L (t—m) ] ~ =) “m!

We have

therefore
g2 ()
U= 8 Tl )

In the same manner we should have
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| mgl (—*1)"(7!
U= 02 L. (t+m) ~ 2 m! (i)

B. The roots r,, 7o, ..., Ty of yw(£) are all single, but there
are complex roots among them.? The coefficients of y(t)
are real: therefore if r, = a+pfi is a root of y(t) = 0,
r, = a—fi will be a root too. The preceding method is still
applicable but the corresponding values of a, ‘and a, will be
complex conjugate:

5
i
&
i
h

_ elatpi) .
% = Byt = ¢ TH
and
_ Ple=p) _ e
% = Dya—p) = G—Hi.
Therefore the decomposition of u will be
G 4 Hi G—Hi
— R(H.
il s ey R i oy
This may be written
_ 2G(t—a) —2H$
—aprp RO

The expansion of the trinomial has been shown in Method III
(§ 12); putting into formula (6) n= -1, ¢,=1, ¢,= -2a¢ and
¢, = a®>4-f2, we obtain

L »+1
2 ) (—1)“‘ (;) (2a) y-p (az..l_ﬂ‘b’)—’—] i
v=0 F=o

This multiplied by the numerator gives

2 .2;0 ,Eo —1* ¢ (u) (22)"—# (a2 4-42) "1 frHi4L +
] , Evi\ [_1)." (Ga—}—Hﬂ) ;) (2a) v_u (a2+ﬂ2)—""" e
=0 =0

® Ch. Hermite, Cours d’Analyse, 2. p. 261-266, Paris 1873.
Ch. Sturm, Cours d’Analyse, Vol. I. p. 331. Paris 1895.
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Putting x=wv-+u-1 into the first expression and x=v+4yu into
the second we obtain finally
Ha) = 2 B (1) oyt @p) o] 6 (FThT ) -
= = G p.
__2a(Ga+Hp) ) +
a2+ﬂ2 p‘ gy rry e

C. The roots r,, ry, . . . , ra of the polynomial Y (f) are all
real, but there are multiple roots. Let us suppose that the
multiplicity of the root r, is m,; where m, may be equal tol
1,2,3,,,., and so on. The general formula of decomposition
into partial fractions is the following:

olt) _ [ a, a, A .
B Yy = 2[ T oot (t—-r,.)"']

v=1 t—r »

If we multiply this expression by (t—r,)™» we get

(4) \f((;)) (t———rv)m" = an (t-"rr)m"‘-l to. a"mr + R(t] ’ (t—r,]'"l'

We have
Y(t) = Clt—r)™ (t—r,)ms.. ., (t—rs)™

Hence if we denote the first member of (4) by A,.(?),
A,(r,) will be different from zero:

Av(rv] = arm,
In the same manner the first m,—s derivatives give

5) D™—4,(r) = (m,—s)! a,.,

This operation repeated for every value of v will give the
required coefficients a,, , Finally we shall have

r (t) . ’:{El mm,2+l Dm,,—tAv [r”) ] 1
l/)(t) - =1 $=1 (mr—s] ! (t—rv}v .
This may be written

o) _ oty +1( —1)¢ D*—A,(r,) £ Vs
() — El =1 (m,—s) .\ r} [lwr_..) )
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Therefore the coefficient f{x) of # in the expansion of this
expression will be

$ et » -4, (r) {x+s—1
— 2 —1]s _q—“ ( ]
J®) 2z (—1) s)lr x

D. Multiple complex roots. Let us suppose that the roots
a-+pi and a—pi are of the multiplicity m. We may write the
fraction in the following manner

ef) _ _atid, at4-b,
G e A [ Exw 2 R
ant+by
T e RO,

To obtain the coefficients a, and b, let us multiply this
equation by [ (t—a)? + £%™; denoting

20 | (pg)ry prym

A(t) = ()

we shall have

¢  A® = RW[t—a)*+F]" + (a,t4b,)[(t—a)* 5] -I-
+ (ayt4-b,) [(ta) 2 +p2]m2 +. ..., + (aut-+bn).

From this we obtain immediately

(6) A (a+pi) = ana + by + apfi.
We should have also
) A(o—pi) = ama + b, — appi.

The last two equations-permit us to determine @y and ban. But
the second one ig superfluous; indeed knowing that a4, and b
are real, by equating first the real parts in both members of (7),
and then the imaginary parts we get the two necessary equations.

The first derivative of A(@) for t—=a+pi ds

DA(at+pi) = an + |am_, (a+pi) + bmi] (25i).

This gives again two equations. Determining D*A(a-pi) for
s=0,1, 2, , .. (m-)) will give 2m equations which determine
the 2m unknowns a,, b,, . . . ., a, b,
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Example 3. Let u=1 | (t—1}|(t—1)}*+4]%. We have
A(D =5 = (at+b,) [((—1)2+4] + (a,t+b,) +
= [—1)*+4]%
Putting § =1+42i gives

A (142i) = -21—1 —a, + b, + 2a,i.

Hence
a, + b, =0 and 1 = —4a,

1 1
@ = —7i b, 2 =T

The first derivative of A(f) gives for t=142i
DA(1+2i) = (21’)2 = (a,4b,+2a,i) (4) + a, .

From this it follows that

| 1
a,+b,=0 and = —8a, — T
that is
1 i
a _— jg 2 0 d b, 16 -
To obtain ¢ we multiply A(f) by (f-]) and put {=1, getting

1=16¢c .

If the coefficients @ and b; are calculated we may expand

each term
aif + b

[(t—a)®+5°]
using Method IIIfor the expansion of a trinomial. Here we have
to put in formula (6) of § 12 n= —s, ¢c,=1, ¢; = -2a and
¢, = a®+-p%
§ 14. Expansion of functions by aid of complex integrals.
If the function wu(f), of the complex variable #, has no poles or
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other singularities in the interior or on the boundary of the
circle of. radius g, then f{x), the coefficient of {* in the expansion
of u(f), is given, according to a known theorem of Cauchy, by
the following integral taken round this circle:

1 t
f(x] = 5':"'1"' —;—i{—l)-dt.

Putting f = p ¢/, and therefore df — ip ¢¥ dp we obtain
— 1 - i‘[) ~ifx o
f(x) ——2-;:”?0-[ u(oe'?) e Q.
Example. Let u(f) = (1 +#)"~ If n is a positive integer
then u(#) has no poles in the circle of unit radius. Putting p=1,
we have

27T
f(x) = % f (14-e%) e dyp,
“Q

Now writing ¢ =2a, we obtain
f(x] - J (el'a + e-iu)n ema—Zl'ax da —

| cos "a cos (n—2x) a da.

Remarking that the coefficient of #* in the expansion of
u(t) is equal, according to Newton’s rule, tooxn , and moreover
that the above integral taken between the limits 0 and lb7 is
equal to the half of that taken between the limits 0, 7,
we conclude that

2n+1 1/27,;
(n) = I cos "a cos (n—2x)a da.

X T3

This is Cauchy’s formula expressing the binomial coefficient
by a definite integral.

§ 15. Expansion of a function by aid of difference equations.
If'a function of the following form is given, where R(t) is a
function expansible into a power series,
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Rff) . t"+ g, #"1+.. ... + a,t+ ¢

a " +a "+, ., + a i+ oq,

(1) u(f) =

then u(f) may be considered as being the generating function of
a function f(x) determined by the difference equation

2) af(x+n) + a,._f(x+n—1). , ..
+ a;f(x+1) 4 a,f(x) = V{x).
Indeed, we have seen (formula 5. § 11) that the generating

function of f(x) deduced by aid of the difference equation (2) is

" R(t) + 2'1 go ap £Q) prmi

m—=

”§1 a, trm

m=0

(3) u(f) =

where R(f) is the generating function of V(x); that is, V(x) is
the coefficient of # in the expansion of R(f).

Knowing V(x), let us suppose that we are able to solve the
difference equation (2) by a method which does not require the
expansion of the generating function (3). If we find f(x) =
= O(x, ¢;, s, ..., C,,) Where the c are arbitrary constants, then
we shall determine them by identification of (1) and (3), and
thus obtain the n equations:

n+1
(4) a :_mzl a,f(x+m—n).

Putting in the corresponding values of f(x) we may
determine the n arbitrary constants a,,, , and obtain in this way
the required coefficient f(x) of #* in the expansion of w(f).

Example 1. The function uff) = { | (8£2—6f--1) is to be
expanded into a series of powers of f. According to what has
been said, if we denote by f(x) the coefficient of # in this ex-
pansion then f(x) will be the solution of the difference equation

f (x+2) — 6f(x-+1) + 8f(x) = 0.
We shall see in § 165 that the solution of this equation is
(5) f(x) = ¢, 4+ ¢, 2%
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From (4) we get

% = ayt (0) or 0 = f(0)
o = af(0) + af(1) 1 = —6f(0) + £(1)
therefore

f(0) = 0 and f(l) — 1.

Putting these vdues into (5) we may determine the constants ¢,

we find ¢, = ¥ and ¢, = —W. Finally we have

flx) = 280 —2=1,

If we do not know the solution of the difference equation
(2) the method may still be applied. Starting from equation (4)
we determine as before the values f (0), f(1), . ., , f (n-l) and
then, by aid of equation (2) we compute step by step the values
f(n), H{(n+1) and s0 on.

Example 2. [Leonardo Eulero, Introductio in Analysin
Infinitorum 1748. Lausanne, p. 280. ] The function u(t) =
— 12| (8t*—6f+41) is to be expanded into a power series. The
coefficient f(x) of t is given by the difference equation:

(6) f(x+3) — 6f(x+1) + 8f(x) = 0
Without solving this equation we get from (4)

a, = a,f(0) + a,f(l) + a,f(2) or 1 =—6f(1) + f(2)

4y = af(0) + asf(1) 0 = £(1)
uy = a,f (0) 0 = f0).
Hence
f(0) = 0, f(a) - 0o, f2) = 1.

By the aid of these values we obtain from (6) step by step

f(3) = 6, f(4) =36;f(5) = 216~8 = 208, f(6) = 1248—48=1200
and so on.

Remark. This method is identical with that of Stirling
(Method 11, § 12). Given the function
L o L R
uil) = =T T o a
= f(0) + H{1) + £} 12) 4 . and
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multiplying both members by the denominator we have

= ntl .
o T+ apt"? 4+t = X i a,_f(i] £,
=0 =0
From this we deduce the equations (=0, 1, 2, . . , , n-])
w41
a, = 2 q, f(v+m—n)
m=0

which are identical with the equations (4).



CHAPTER 1L

FUNCTIONS IMPORTANT IN THE CALCULUS OF FINITE
DIFFERENCES.

§ 16. The Factorial. In Infinitesimal Calculus the simplest
function’is the power. Its derivative is very simple. Inded we have

D x* = nxv1,

On the other hand the difference of a power is complicated;
we have

éx"—_— ('11] x 1+ (g) xR+, ...+ A

Therefore powers and power-series will be less useful in the
Calculus of Finite Differences than in Infinitesimal Calculus.

But there are other functions whose differences are as
simple as the derivatives of x", These are the products of
equidistant factors, for instance the function

xx-1) x-2) . ... (x-nt]) = (x),

called factorial of degree n, which we denoted by (x), , or the
function

(1) x(x-h) (x-2h) , . , (x—nh4-h)-  (x)4 1
called the generalised Factorial of degree n and denoted by
[x)u,h-

Of course the above definitions are valid only for positive
integer values of n. It was Stirling who first recognised the
importance of the factorial, but he did not use any special
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notation for it. The first notation is due to Vandermonde'® who
was the first to extend the definition of the factorial to any value
of n. To do this he proceeded in the following way:

If n and m are positive integers such that n > m then it
follows from the definition (1) that

2) (x)n, a = (x)m. (x_mh)n—m, ho.

This formula will be considered valid for any value of n and m.
Putting m=0, gives

(x)n,h = (x)o,h(x)n.h

(x] o h = 1
Secondly, putting » = 0 into (2), it results that

that is

1 = (X)m. 4 (x —mh)_m, 4
so that
1

(x+mh) m, h

Later authors dealing with factorials used different notations:

(X)om, s =

Kramp’s notation in 1799 was
x/" = x(x4-h) (x+2h) . ... (x+-nh—h)

corresponding to our (x-+4nh—h), ,. This notation was used
till the middle of the XIX. Century. Gauss used it, as did
Bierens de Haan, in his “Tables d'Intégrales Définies” (1867).
It is mentioned in Nielsen, “Gammafunktionen” 1906, p. 66;

and in Hagen, “Synopsis der Héheren Mathematik” 1891, Vol. I,
p- 118.

10 N. Vandermonde, Histoire de 1’Académie Royale des Sciences,
Année 1772 {quarto edition, Imprimerie Royale), Part 1, p.
"Mémoire sur des Irrationnelles de differens ordres avec application ay
cercle."

The notation introduced in this paper was

L}
[ 2] = x(x1) x2) .., , (x—n+1)
and  accordingly
—n

(x]=1/{x+1)(x+2)... (x+n).

This memoir has been republished in a German translation: N. Vander-
monde, Abhandlungen aus der reinen Mathematik, Berlin 1888, pp. 67—S81,
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De la Vallée Poussin (loc. cit. 2, p. 332) used the following

notation:
x[ = x(x-h) (x-2h) , , . (x-nh+h).

Whittaker and Robinson (loc. cit. 1, p. 8) adopt  the
notation:
[x]" = x(x-1) (x-2) , . . . (x-n+])
Steffensen (loc. cit. 1, p. 8) introduces three different
notations:
x = x(x-1) (x-2) . . .. (x-n+l)
xl = (x4+1n—1) ... .x,, .. (x—Vn+1)
x = x(x4-1) (x+2) . , . (x+n-1)

Andoyer, Encyclopédie des Sciences Mathématiques (French
edition) I. 21, p. 59, introduce

1

[x]") = (x)a a and |x]™ = Femp— (x)n.
Milne-Thomson’s notations [loc. cit. p. 25| are
1
(nh) — fnb) — - ot ‘
x" = (x), » and xtH) = (qnh) s - (x) .

Remark. Several authors have introduced special notations
for x(x-h) (x—2h), , , (x-nh+h) and for x(x+h) (x+2h). . ,
{x--nh-—h) but this is needless, since both factorials can be
expressed by the same notation, only the argument being
different; for instance, the above quantities would be, in our
notation,

(x)..n and (x+-nh—h), ..

One should always use the fewest possible notations, since
too many of them, especially new ones, make the reading of
mathematical texts difficult and disagreeable.

Particular cases. If A==1 and x=0 we have

1
O =173

In this manner the definition is extended to negative integer
values of the index and to zero.
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It is easy to see that
(x+1)n = (x)a + nr(x)ny.
From this it follows that
(x+2)n = (x)a + 2n(x)ny + (1)2(x)ns

and so on;
m+1
(x+m), = ‘Eo (?)(m)i(x)n—i'

This formula, due to Vandermonde, may be deduced from
Cauchy's formula (14) § 22.

Putting into it x4n instead of x and multiplying both
members by (x), we find

m+l (p
EERSTONE I o ) [T
=0
but in consequence of (2) we have

(x)—n(x+")nJ = (x)_,- 5

therefore
m+1 n
(x+m-+n),{(x)_, = ;>=:o l,] (m)(x)_:.

This formula is symmetrical with respect to n and m, and

may be written in the following way:
m+-1 n
(a) (¥)alx)n = .2"0 (i ’ (x)i (y—x—n);.

1=l

The above formula can be considered valid even for frac-
tional values of n.
We may express (yv) ,(x)_r by an infinite product in the

following manner. Putting ¥ into formula (2) instead of *»
and h=1and m=—v, we get

(}’)n = (Y)—v(y+v]n+y.
Again applying formula (2) we have
) = M y+2)aly+v—n) .

this may be written
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W = (y+9)a 7}@#

In the same manner we should have found
_ (x) -
(x)n = (x+7) (xfn)_,

From the last two equations we obtain by multiplication

0)a(x)n = (y+2)a (x-+2) (y_(:,c)): (fg:n) -

mlyty—if 1 A (x+n+i) (y-n+i)
=11 - n : ;
=1 Xtvti o oy (x+i) (y+1i)
It is easy to see that

oMy by i+l 4.
71__1;11 .'=I1I xtvHi b
therefore it follows that
_ 2 (xnti) p—nti)
(8 e, = 7 EEAI

This infinite product may be written as follows:

a n n
I 1 P ) ( 1— )
=1 + x+7 y-+i
There is no difficulty in showing that it is convergent.
Application. 1. Vandermonde determined by aid of the above

formulae the value of the following integral:

1
) J = vx [t (1—tr) dt,
0
Using Newton’s formula we find
_ % =) (lll)_x
=0 x+i '
Putting n = —x into formula (a) we have

—1)il¥) «
@)x = 2 T)onmi=5 %&‘) —.
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Finally in consequence of (f) we get
( ) (x)x(y)—,\ et (x+1) (y+z) .

In the particular case of =2, x=14 and y= —14 equation
{y) gives

S dt
J :O.I ﬁ = Yon

and according to formula (6)
J = (W)nl—"t), = Yor = I =2
o : =1 (2i—1) (2i41)
This is Wallis's well-known formula.
Since from formula (2) it follows that

(2)we = (2) ,(—14) -

(%) —u = |a.

We shall see in § 17 that (x), = I'(x+1) so that the
above quantity is equal to I'(14), moreover that I'(14) = l Re
Application 2. Putting y-1 instead of y and y=1 into

formula (y) we have according to (1) § 24
1

J=x | #71 (1—t)r1 df = x B(xy).
[]

hence

Therefore in consequence of the preceding formulae we may
write

(—I)i( N ) — x) =),

x+i X

() B(x!y) = 'Eo

Finally in consequence of (d) we have

. 1] = i (xty-1 +i)
) Bew) = = I ) =14 »

and in the particular case of x= 14 and y=14,

o @)
BUAY) =2 Il 5=t




Differences of a factorial. The first difference is

Ax)n = (x+1)n— (x)n = [x+1—x+4n—1] (x)sy = n(x),-, .
The second difference:
A x)n = A[A(x)n] = n{n—1) (X)py = (7)2(x)ps -

The higher differences are obtained in the same manner and
we get

(3) A™(x)n = (A)n(X)n_m .
Differences of the generalised factorial
é(x)n.h = l-x+h'_x+"h“—h] (x) n-1.h = hn (x) n-1,h

and

(4) %m(x)n.h = hm(n)m(x)n—m,h-

Differences of the factorial with negative arguments. It has
been shown in § 2 that the differences of a function with negative
arguments are not of the same form as the differences of the same
function with positive arguments, Let us determine for instance the
differences of the following generalised factorial: (—x),, s , The
simplest way 1s, first to transform this factorial into another with
positive argument and then apply the above rule.

Since

(—=x)pn = (=1)"(x+nh—h)us-

we have
Am=)an - (1) hn () mlenh—h)rom

Now the factorial in the second member may be  trans-
formed into one with a negative argument, so that finally we have

hAm ("—X) mnh = (—1)m hm (M) m (_x—mh] n-m.h*

That is,in the m -th difference the argument is diminished by mh.
In the particular case of h=1, this formula gives

(5) Am (—X) n = (_l)m (n) m (“""x—m] n—m ¢




52

Differences of the reciprocal factorial. The differences of
(x)_ns = 1/{(x+nh),, are determined in the usual manner;
1 1 —
ABws = Grmh iR, Grahlo

[x+h—x—nh—h)| |

1
(x+nh+h)n+1‘h
therefore
A(x)_n.h = —hn(x)—"-l.h'

Repeating the operation m times we find
(6) A’"(X).,,J, - (—llm hm(n+m—1)lll(x)—ﬂ~ﬂt.’1 -
= h’"[—n],,, (x)—n-m.h .
Hence the proceeding is exactly the same as in formula (4) in
the case of positive indices.
Particular case. Let h= 1 and n= 1.

1 -
x+1 - ('l) (X)-,,-, -
. (-1) mm!

(x+1) x+2) . . . (x+m+1).

Mean of a factorial. \We have

M(x), = Vol (x+1), + ()| = Y%(x)s. [2x+2—n].
The higher means are complicated.

Computation of factorials. If in an expanson x, (X) o, {x), ,

(x),, are needed, to calculate them it is best to multiply first
x by (x-1), then to multiply the result {x), by (x—2) and so
on If x, x%, ..., x" were wanted we should proceed’ also by
multiplication. The amount of work is in both cases nearly
the same.

If only (x), is required, and x is an integer, as it generally
will be, then we may obtain

(N Am(x)—l =A"

log(x),, = logx! — log(x—n)!
using Duarte's Tables; "' and the computation will not be longer
than that of log x.

W F. J. Duarte, Nouvelles Tables de log n! & 33 décimales depuis
n=1 & n=23000. Genéve, 1927.
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§ 17. The Gamma-Function. The factorial may be considered
as a function of the' index. Then in (n), the independent vari-
able 1s x. The differences of this function with respect to x are
not simple; since

A(n), = (n) fn—x—1]}.
Hence the higher differences are complicated. This function is
seldom considered in the generdl case; on the other hand in the
particular case, if n—=x and x is an integer, we get a very
important function,
x), =12 3.,..x

In Kramp's notation [loc. cit. 10] this function would be 1#1,
Considering its importance, shorter notations were introduced.
For instance Kramp used later (in 1808)

We will adopt this notation, which is the most in use to-day. In
England in the past the notation |x was often used for1.2.3.,, x
The first difference of x! is simple:

Ax! = x.x!

but the higher differences are complicated.
The gamma function denoted by I'(x) is given for 2> 0 by
the following definite integral:

*x

(1) Tx)=[ et t1as

0

It may be considered, we shall see, as a generalisation of

(x"'i)x_l .
From formula (1) it follows that I'(1} =1, and by integration
by parts we get

I'ix) = (x-1) J’we_l FPae = (x-1) F(x—-l).

The difference equation thus obtained

(2) I'ix) = (x-1) I'(x—1)
equivalent to

Al (x) = (x-1) I(x)
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may be considered as a characteristic property of the gamma
function. If x is an integer, then the solution of (2] is given by

Ix)= (x-1)!

Therefore I'(x+1) may be considered as ageneralisation of x!
Another definition of the gamma function may be had
starting from the definite integral below (beta-function) in which
n is a positive integer. By successive integration by parts we get
1

n!
' (l—u)"du = ———
o w ( ) (x+n) nel
let us put now u = #/n, then
’ t\» n!n
11— —_—
(3) Je(= ) ar = Hm—

If n increases indefinitely, we have
lim (1— -t')” = et
n—x ﬂ

To determine the limit of an integral containing a parameter
n, some caution must be used” but here the proceeding is
justified, and we shall have

. n! n*
I'(x) =

(4] (x) 7}3‘1 (x'i'n)//'/
valid for every value of x.

If x is a integer, then formula (4) may be deduced from
formula (2), § 16, indeed from the latter it follows that

n! n* . n* (n)n*p-x (x_l)x—]
(x+n)ll1, - (x+n).\' (fl),,_ 1
since
. n’
"l;qimi-la nd (x—1),,=f (x) .

Hence formula (4) is demonstrated.
A third definition of the gamma-function is given by
12 See Hobson, Functions of a Real Variable, Cambridge. 1997, p. 599

1 The demonstration of this formula may be found. for instance, in
E. Artin, Einfithrung in die Theorie der Gammafunktion, 1931 Berlin p 14

7
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5 = xeo di [142]
F(X) v=1 v
where C is Euler’s constant. The formula holds for every real
or complex value of x.
Gauss has given a multiplication formula for the gamma
function:

(6) I’(Z)F[z—{—%] r(z +%] , ..r[z+ "“1] =

n

2)hin—1)
= (n%_ I'(nz),

A demonstration is given in Arfin [loc. cit. 13. p. 18].

Owing to Euler’s formula, the values of the gamma function
corresponding to negative arguments may be expressed by those
corresponding to positive arguments:

(7) Il—x) =— sinn x “I'(x-{-l] '

[See Artin p. 25]. From this formula we easily deduce

™

(8) I'(x) I'(1—x) =

sin 71 X +
Computation of I'(z). Equation (2) gives
I'(z) = (z—1)I'(z—1) = (z—1), I'(z—2) = .
= (Z——l]" F[z—n].

Therefore if z-1 > n > z-2, the argument z—n=x of the
gamma function will be such that 1 < x < 2. Consequently it is
sufficient to have tables for these values.

The best tables are those of Legendre giving logl’ (x) from
x=1000 to x=2'000 and the corresponding first three differen-
ces, to twelve figures.™

Particular values of the gamma function. If x 1s a positive
integer, then we have seen that I'(x) = (x-1)! ; moreover
from (8) it follows that

1# A. M. Legendre, Tables of the logarithms of the Complete I-function
to twelve figures. Tracts for computers. Cambridge University Press. 1921,
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I'(—x)=c,I'(0)=cand I = l/?.

The definition of the factorial may be extended by aid of
gamma functions for every value of x and n by the following
formula:

_ _I'lx+1)
9) ) = Fle—nit]

This gives, it m is a positive integer,

™), = x(x-1) (x2) - . ., (x—n+1).
For n = 0 (9) will give (x), = 1; if n is a negative integer
n—=—m, from (9) we obtain
1 QS S
(X]_m = [x+1) (x4+2) .., (x+m) T (x+m)

conformably to our definitions of § 16.

Moreover, the extension of the definition of the factorial by
gamma functions conforms to the extension by formula (2) of
§ 16; indeed, putting the values (9) into this formula, we find
the following identity:

I'ix+1)  _  I'lx+1) I'(x—m-1)
I'(x4+1—n)  I'(x—m+1) . I'(x—n--1) .

§ 18. Incomplete Gamma-Function. The definition of this
function is the following:

"

(1) Pulp+1) = | petdt,
0

Pearson introduced the function [{u,p), obtained by dividing
the incomplete gamma function by the corresponding complete

function

rm(p"l“‘ll 1 'm P
A R L S

where u is an abbreviation for mj V p+l

Pearson published a double-entry table giving the values
of the function I{u,p), to seven decimals, from p = -1 to p = 50
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(where Ap=072), for the necessary values of u, (where
Au=01).1%

The table also contains several formulae enabling us to
calculate [(u,p) corresponding to values of g and p outside the
range of the table.

Equation (1) gives by integration by parts

2 _ e mP e—tp—1
@ Hep) = —pry + f TR
From this we conclude that
3) L ol <2 p—1];
putting
e m*

(4) Y(m,x) = T+
we may write

m
(5) Al (Vx-l-l ,x] = —ylma).

The function Y(m,x} has also been tabulated. There are for
instance tables of this function in Pearson's Tables for Statisticians
and Biometricians, [vol. I, pp. 113—121.] from m=01to m=15
(where Am=0°1) for all the necessary values of x (if Ax=1).

It can be shown by the tables of the function I(u,p) that for

u= l/; or m:Vp(p—H) we have I[V_p,p) <14 and for
u__Vp—H or m=p+1 we have 1([ +1,p) > Y.
If p is an integer, by repeated integration by parts we obtain
from (1)
p+1 m*

(6) I(u,p]_.l---E jem=1— 2 r (m,x).

Remark. From this we may deduce the sum of a first
section of the series em; indeed

Pl m* .
20 e |1 —1I(u,p)].

15 K. Pearson, Tables of the Incomplete Gamma-Function, London, 1922.
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Moreover from (4) we get

n

Jwitxdt = —w(ma) + | witx—1) dt.
) 0

§ 19. The Digamma Function. Pairman called the deriva-
tive of log I'(x41) digamma function and denoted it by F(x).
(Digamma is an obsolete letter of the Greek alphabet.)!®

To obtain the derivative of log I' (x4-1) we shall start from
formula (4) of § 17. It will give

n42

log I'(x+1) = lim [log n! 4+ (x+1) log n — E: log (x4-v)].

n=uwo =]

It can be shown that the derivative of the second member

may be obtained by derivation term by term, moreover that after

derivation the second member tends to a limit if n increases
indefinitely; therefore we shall have

. w2
(2 F(x) = DlogI" (x+1) = lhr_’l}m [log n— E‘ P 1.
From this we deduce
) n4-2 1
3 FO)=lim[logn— 2 -] =—C

where C is Euler’s constant. It may be computed by formula (3)
as exactly as required. We find

C = 057721 56649 01532 86060 65120 90082,

A function denoted by y({x), which differs but little from
the digamma function, has already been considered, first by
Legendre in 1809 and later by Poisson and Gauss. (See N. Niel-
sen, Handbuch der Gammafunktion, p. 15). We have

Y(x) = Flx—1).
First difference of the digamma function:
r 2 )
A F (x) = DAlogl'{x+1) = D log I—((%}l-)]— = Dlog {x+1) =
1
x—}-l_-

¥ E. Pairman, Tables of the Digamma- and Trigamma-Functions.
Tracts for Computers, Cambridge University Press, 1919,
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Therefore we have F (1) = F (0) + 1 and if n is an integer
i
Fd = F O +1+4%+h+. .+

Hence F (x-1) is a function whose difference is equal to
1/x; it is analogous to logx, whose derivative is 1/x.
The higher differences of the digamma function are easily
obtained by aid of formula (7) § 16; we find
1 _ (=)™ (m—1) ]
x+1 (x"l"m)m
The values of the digamma function corresponding to
negative arguments may be expressed by those of positive
arguments. Starting from formula (8) of § 17, we have
logI' (x) + logI' (I-x) = log 7=~ log sin 7 x}

by derivation we obtain

(5) F (—x) = F (x-4) + @ cot zx.

4 A" F(x) = A™*

= (—1) -y (%) e

To deduce a Multiplication Formula for the digamma func-
tion, we start from formula (6) of § 17; taking the logarithms
of both members of the equation; we find

?no log I'(z -}-#) = 14 (n-1) log 2n—(nz—L%) log n4log I"(nz),

‘Derivation with respect to z gives
2 Dlog I (z+ ’;) = —nlogn+ DlogT (nz)
=

which gives, putting z=x +% and u = n-i-/

{6) F (nx) = logn+ % éol-' (x— %)_

Remark. Starting from formula (5) § 17, we may obtain
another expression for the digamma function. Indeed, taking the
logarithms we have

o

—log I' (x) =log x + cx + 21 [log (1+%) _ﬁv—]‘
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Putting in %41 instead of x, since derivation term by
term is justified, we get

1 2|1 1
Fio == —¢+ 5[ miml
This may be written more simply
=1 1
)] F(x) = —C+ ,51 lT—HJ.

Computation of the digamma function. Pairman’s Tables
quoted above give the values of the digamma function and its
central differences 8 and 8% to eight decimals, from x=0'00
to x=2000 where Ax=002. If F (z) is needed, and z>20,

then we will use formula (6) and put z=nx so as to have

%: x < 20. It may be useful to remark that the logarithm

figuring in this formula is a Napier’s logarithm.
§ 20. The Trigamma Function. Pairman denoted the second
derivative of log I’ [x+1) by F (x), calling it trigamma function.
F(x) =D FIx) =D?log I {x+1).
Hence starting from formula (2) or (7) of § 19 we get

= 1
1 = X ——
(] F (x) =1 (x+"')2.
Prom this we deduce
a1
F lO) = 7-2_.—‘1?’

In the paragraph dealing with Bernoulli polynomials we

shall see that
« 1 . 11'2
v 6"
Therefore we have

2
F0) = 36— — 1.64493 40668 48226 43647 24151 66646.. . .

First “difference of the trigamma function:

1

AF(x)=DAF(x)=Dxi?= oy
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The higher differences are complicated.
From this we obtain F (1) = F (0) — 1 and if n is an
integer
1 1 1
F = —_1l—— - R
) =FO)—1—5 — e
The values of the trigamma function corresponding to
negafive arguments may be expressed by those of positive
arguments. Starting from formula (5) § 19, we obtain by deriva-
tion with respect to x

) F (-x

sin Znx

Multiplication formula for the trigamma function. Starting
from formula (6) § 19, derivation gives

3) F (nx) =

Compufafion of the frignmma function. In Pairman’s Tables
we find F (z) and its central differences % and d* to eight deci-
mals from z=000 to z=20 00 (where Az=002).

If z > 20 we shall use formula (3) putting z=nx so as to

have 2 _ x<20.
n

§ 21. Expansion of log ' (x-+1) into a power series.
If ! x | < 1 then we shall have

log I' (x+1) = E ID'" log I' (x+1) |,=0.
We have seen in § 20 that
$ 1
2
D?log I' (x41) = v-l PR
If 1 > I x1 this series is uniformly convergent, and the

derivative of the second member may be obtained term by term,
so that we get for m>1

. N Vil L VI
() D" log I (x+1) = 2 — 00—

and therefore
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@

[ D™log I (x+1) ls=o = (—1)" (m—1)! X2 1

y=1 ym
Let us Write

L —

i Mg

1
L v
In the paragraph dealing with Bernoulli polynomials we
shall see that
. (zn)zn
® = 2(2n)!
where B,, is a Bernoulli number.

There is no known formula for s,,,, but Stieltjes computed
these sums to 32 decimals for m=2, 3, 4, . . ., 70.17

log I' (1}=0 and [ D log I (x+1) J»=0 = F (0) = —C.

an

Hence
(2) logI' (x41) = -cx + 2 [—-1)"' —
if —1<x<1,

Putting x=1 into formula (2) we get

C = 2 (—1)"'
m=2
The series is convergent, but the convergence is very slow.
§ 22. The Binomial Coefficient. In Infinitesimal Calculus
sequences of functions which satisfy the condition

(a) D Fa(x) = Foy (x)
are very important. Such sequences are for instance
xﬂ
fulx) = "
and

fn(x] = @alx) ; fn(x] = En(x)

where @,{x) is the Bernoulli polynomial of the first kind, of
degree n, and E,,(x) the Euler polynomial.

17 T. J. Stieltjes, Acta Mathematica, Vol. 10, 1887. Table des valeurs
des sommes ®
s"‘ = Z n—"'

n=1



63

The sequences satisfying
D fn(x) = t, (x]
are also important. Such sequences are for instance

(=1)" (n-1) !
e

Fa(x) =
and
Falx) = e ="' H, (x) ‘
where H,(x) is the Hermite polynomial of degree n (§ 147); and
m*
fn (x) = Nl e G'I(x)
where G,(x) is the polynomial of degree n of § 148.
If f(x) is a polynomial of degree n then expanding it in
the following manner

” xn xn'l
() fOf):co;!—+cl(7_—_T),—+.....+cn_1x+cn
we have in consequence of (u]
x1 2
f"_] (x) = cu (n_l),—'i“ [ [n—2] ! +. . ... +C 1

from this we conclude that the coefficients c¢; of the polynomial
(#) are independent of the degree n of the polynomial, so that
they may be determined once for all. This is a great simpli-
fication.

If a function F(x) is expanded into a series of f,(x) func-
tions (d

F(x) = Z cifulx)
n=0
then we may easily determine the integral and the derivatives of

this function. Indeed we have on the hypothesis that these
operations are permited term by term

[Fde= &+ £ cdualo)
n=0
and
D"F(x) = I cfynlx).

n=m
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In the same manner, in the Calculus of Finite Differences
the sequences satisfying

() Ah(x) = F., (x)

are important. Such sequences are, for instance, the binomial
coefficients

hix) = 2D (x2) .. (x—n+1) (]

and
fux) = Wwix) a n d flx)= C(x)
where ,(x) is the Bernoulli polynomial of the second kind of
degree n, and &,(x} the Boole polynomial.
Equally important are the sequences which satisfy the con-
di tion
At\(x) =ty (x).

Such a sequence is for instance

F(x) = (—1)=11.2.3...... (n—1)
T 1) (x4+-2) (x4-3). 5 - (xtn) T

If £,,(x) 1s a polynomial of degree n then, expanding it in the
following manner,

X

O hi = o] +a (5

we have in consequence of (y)

1] +..... + Cny [T] + ¢y

f,,_l(x) = Co[n_x_ll +Cl [niZ] +....+ Cny»

Therefore we conclude that the coefficients ¢; of the polynomials
(9) are independent of the degree n of the polynomial; they may
be determined once for all, which is a great simplification.

If a function F(x) is expanded into a series of such func-
tions

le] = =2 c,,f,,[x)
n—0
then we may easily determine the differences of F(x)

A™F (x) = p> Cufnm(x)

n=—m
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and moreover as we shall see ($32) also the indefinite sum
of F(x).

The binomial coefficient is without doubt the most
important function of the Calculus of Finite Differences, hence
it is necessary to adopt some brief notation for this function.
We accepted above the notation of J. L. Raabe [Journal fiir reine
und angewandte Mathematik 1851, Vol. 42, p. 350.] which is most
in use now, putting

x . x(x1) x2) ... (x—n+1)
o 1.2.3....n

The binomial coefficients corresponding to integer values of
x and n have been considered long ago. Pascal’s “Triangle
Arithmétique", printed in 1654, is formed by these numbers; but
they had been published already a century earlier in Nicolo
Tartaglia's “General Trattato di Numeri i Misure” (Vinegia 1556,
Parte II, p. 70, 72).

In Chu Shih-chieh’s treatise ,Szu-yuen Yii-chien" (The
Precious Mirror of the Four Elements), published in 1303, they
are indicated as an old invention, Omar Khayyam of Nishapur
(d. 1123) knew them already in the eleventh century; and this
is our earliest reference for the subject.

Omar Khayyam’s fame as a poet and philosopher seems
to have thrown his eminence in mathematics and astronomy into
the shade; nevertheless it must be recorded that these sciences
owe much to him. [ Woepcke, L'Algébre d'Omar Alkhyami, Paris
1851.]

In those early times no mathematical notation was used for
these numbers. It seems that the first notation used was that of
Euler.*”

Condorcet in the article “Binome* of the Encyclopddie

(1)

z
18 Euler first used the notation [;J in Acta Acad. Petrop. V, 1781;

and then ({‘) in Nova Acta Acad, Petrop. XV. 1799-1802. Raabe’s notation
(:) is a slight modification of the second. It is used for instance in:
Bierens de Haan, Tables d'Intégrales définies, Leide, 1867.
Hagen, Synopsis Vol. 1. p. 57. Leipzig, 1891.
Pascal, Repertorium Vol. 1. p. 47, Leipzig, 1910.
Encyclopidie der Math, Wissenschaften, {1898—1930,
L. M. Milne Thomson, Calculus of Finite Differences, London, 1933.
G. H. Hardy, Course of Pure Mathematics, p. 256, London, 1908.
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Mdthodique [Tome I, 1784, p. 223] used the notation (x)" cor-

responding to our : ; but later, in his “Essai sur I'Application

de I'Analyse a la Pluralité des voix” [Paris, 1785, p. 4], he
x
\n
Meyer Hirsch [Integral Tables, London 1823], uses the Hin-
denhurgian notation, “well known in Germany” at that time. It
was the following:

(== [)== [5)==
[;] =M, [inJ = M, {xiz) — M,

French authors generally use the following notation:

) -

Schlémilch [Compendium, 4 th ed. Vol. 1. p. 35], Whitfaker
and Robinson [loc. cit. 1. p. 43] use the following notation:

[;] = (@)

Mathews [Encyc. Brit. 11th ed. Vol. I. p. 607] and G. ]. Lid-
stone {Journ. Inst. of Actuaries Vol. LX111 p. 59, 1932] use

* X
n = »)

The following notation has also been proposed:

(:] _ (=),

This notation, though seldom used, would be the best; indeed, if
x and n are complicated expressions, for instance fractions, then
in all other notations the printing is very difficult; moreover, the
formulae lose their clearness.

. x
adopted the notation 1 for

The binomial coefficient n was considered first as

the coefficient of " in the expansion of (1 #)*, for instance by
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Tartaglia, and later, as the number of combinations of x elements
taken n by n by Pascal.

The definition (1) of the binomial coefficient given above
may be extended to every value of x, provided that n be a
positive integer.

From (1) we get, putting x—=n,

(=1
(£)-o

Moreover, if x is a positive integer smaller than n, from (1)
it follows that
x
[ ] = 0.
n

On the other hand, if x is a positive integer larger than n,
we deduce

g HEETEv .

Putting into (1) x = —z we obtain

(3) [;Z’ — (_1),, [Z+:'—1]

Remark. If z is a positive integer, then the absolute value of

For x=0 we have

[:lzl is equal to the number of combinations with repetition of 2z

elements taken n by n,
We may extend the definition of the binomial coeifigient X

to every real or complex value of x and n, by writing )
x) _ () _ I(x+41)
@) n) =), = T+l [a—nt1)

It is easy to show that, in the cases considered before, the
definition (4) leads to the same results as definition (1).
Moreover, putting n = 0 into formula (4) we have
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HE

This i1s true even if x is also equal to zero (g] =1,

If n is a negative integer and if x is not a negative integer,
putting n = -m we get
x |_. I'(x+1) -0
-m r'l—m) I'(x+m+1) — ™/
since then ' (I-m) = oo ,
If x and n are negative integers, then putting into (4)
X == —z and n = --m we find

[—z] . I'(1—z)
-m) — T(1—m) I'(m+i—z) "

By aid of formula (8) §17, remarking that

sinnz = sin[n (z-m) +mna] = (—1)*"sinmn,

we get

—z ) (—1)*+m " (m) _ crm
~m) = TG Fmii—) = U l

From this we conclude, z and m being positive- integers, that if
2>m or if z=0, then

[ I L

m—1 ]
z—1}

and if z=m

Bes{des from (4) it follows that|®| = 1 for every value of n.
\n
The definition of the binomial coefficient may be extended

also by Cauchy's formula. (See § 14, and N. Nielsen, Gamma-
function p. 158.) If x > -1 then

b}
Yy

r
- OJ cos* ¢ cos(x—2n)p dp == I’(n-{—l;xljii)—n-{-l): (;

2x+1

®)
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Differences of the binomial coefficient with respect to the
upper index. If n is a positive integer, we have

o Al =710 = (o) =] =
x
n—1 ]
x 1 x
A {n] = (n—m !
Formula (6) may be written

x—|—l] _
h )=

and therefore

™

n—l

)
This gives a very good rule for computing step by step a

table of the numbers xJ,
n
Equation (7) shows that the numbers [x] form a solution
n

of the homogeneous partial difference equation
(™) f (n4-1,x41) = f (n+41,x) = f (n,x) = 0.

The general solution of this equation is given later (§ 182
and § 183) where it is shown that starting from .the initial con-
ditions f (0,0) = 1 and f (n,0) = 0 if n>0 or n<0, we find that
f{n,x) is equal to the coefficient of #* in the expansion of
(1+1)~

Differences of the function with negative argument.
e have seen that
—X x+4n—1
— _%)n ’
[ n ] = (1) [ n ’
therefore we have

A7) = w7 = - (5

n—1
and moreover

@) a7

n

—X—mn
n-—m

I
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Let us remark that, if the argument of the binomial coeffi-

cient is negative, it is diminished by one in the difference. This
will be useful later.

Differences of the reciprocal binomial coefficient. Since
this latter may be written

1 — n!
i

we may apply formula (6) § 16, giving the differences of a
reciprocal factorial. We find

= n! (x—n)_,

I =

Am

= nl A™(x—n)_, = nl(—n), (x—n)_p.m =

[:l:] —_ e
(n+m)[x+m

Generalised binomial coefficients. We will denote the ge-

; its definition
A

neralised binomial coefficient of degree n by [x
- n
is

[x) — x(x-h) (x—2h) . . , (x—nh-+h),
nn 1,2.3.....n

To determine the differences of this function in a system
in which the increment of x is equal to h, that is Ax==h, we will
write

’nl!’ (x) .k

and applying our formula giving the difference of the generalised
factorial (4) § 16, we find

AA[;L =gy W = [,,f_l L

and in the same manner

o e
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Mean of {x] We have

MGl =3 [5G = () =

therefore the higher means will be complicated.
Generating function of the binomial coefficient with respect
to x. We have seen [formula 14, § 10] that this generating

function is:

x+4-1

of:) - = - 3l *

Starting from this expression we may deduce a forniula
analogous to that of Cauchy given below (14). Obviously we
fntm

have
22k =

Putting x+y=z and noting that the coefficient of # in both
members is the same, we have

(1) 2RO = (3R

Formula (11) may be extended to multiple sums. Indeed,
starting from (11) we may write

z+1—z1J — [

frty —

2 (mpmyrad { o
n1+n2+1 n,+n,+ny+2
applying formula (11) to the first factor of the first member of
this equation we get
z4+1—2 ) x ) z,—x —--l)
z2 { R, ] (n: "sl

Putting now 2z,—x,—1 = x, and z-x,-x, = x3 we find:

x z+2
=z (3] () (R) =
n, "1+"2+"3+2
In the sum of the first member every combination of the

numbers x,, X, and Xx,, with repetition and permutation, must

be taken so that
X, + X, + x5 = 2z
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Continuing in the same way, we should obtain a still more
general formula:

=(7) (7)) () () = (s
where

n+n,4,.. +ap=n and x+x,4,.. FxXn= 2.

In the sum of the first member every combination of the
numbers X;, X;,, . . , X= should be taken, with permutation and
repetition, satisfying the above equation.

The derivatives and the integral of the binomial coefficient
will be deduced later by aid of the S#irling numbers of the first
kind. Here only the results are mentioned.

1 ni1 -

D () = 57 2 0hn e
X 1 'l+‘l xv+l

J na %= a1 ﬂ PR

We shall see later that this integral may be expressed by
the Bernoulli polynomial of the second kind of degree n+1,
that is by Wn..(x)

=8 + k.

J(5)ax = vatn) +

The binomial coefficient may be considered as a function

; ] L. n
of the lower index. Let us write it thus: l x)
The difference of this function with respect to x is

w2 a(z)=(4)-E)=GIE—] =
—_ [n) [n——Zx—l] -
x x+1
The higher differences are complicated.
The mean 0[3} is

M(z) =3[l (B =2 () ] =2 ()
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and therefore

m () == (2im

Hence in this case the higher means are very simple.

(13)

The generating function of{ :)with respect to x is

(1) i = 3, 2]

From this we may deduce a useful formula found by Cauchy.
Putting

1+ 4-)™ = (14f)m
and moting that in both members of this equation the coeffi-
cients of {2 are the same, we get

(14) (") =% (3) (=)

This is Cauchy’s formula. It may be extended for any
number of factors. From (14) we deduce

s (Em) [0 )= () = o 2 () (R) (R)

7 T
where x, = z;—x; and x5 = z—x,—X,.
Continuing in the same manner we finally obtain Cauchy’s
polynomial formula

a [P A) = s (2 (3) - (3):

In the sum of the second member every combination with

repetition and permutation of the numbers %;, x5, . . y X should

be taken so that x;4-x,+4%;4+ ... +x, = 2.
Computation of binomial coelficients. If in an expansion

[ﬂ (926], ey (‘::) are needed, since (;) = (x)a/n!, it is best to
compute the factorials x, (x),, .... (x)s as has been said
in paragraph 16, and then divide respectively by 11, 2!, ., ., nl.

If only one terrn( is required, and if x and »n are positive

ni
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integers, less than 3001, then we may use Dude’s Tables [loc.
cit. 11], and the formula

1og(f,):logx!—1ogn!—1og (x-n)!
.. X
There are also small tables gwmg( n 13
To compute a table of the binomial coefficients correspon-
ding to positive integer values of X and n, it is best to start
from the difference equation (7'}, which will be written in the
following manner:

f(nx) = Hnx—1) + F(n—1,x—1},

taking account of the initial conditions F{(n0) = 0, if n is
different from zero and f(O,0) = 1. These conditions are
necessary and sufficient. Indeed, starting from them we may
obtain by the aid of the above equation every value of f(n,x)
Putting x=1 we find

finl) = 0 if n>1 or n<0
f(1,1) = 1 and #(01) = 1.
Putting x=2 we have
fn2) = 0 if n>2 or n<0O
f22) =1, H12) =2,f02) = 1.
Continuing in this manner we should find in general
f(-n,x) =0, flx+ng) =0 Fx) =1 and f(O,x) = 1.

§ 23. Expansion of a function into a series of binomial
coefficients.  If the function is a polynomial of degree n, and the
polynomial Pi(x) of degree i is given for every value of i then ,
it 1s easy to show that it may be expanded into a series of
polynomials Pi(x) in one way only. Indeed, putting

fix) = cp4+¢,P(x) + ... + cPulx)

1 See Ch. Jordan, Approximation by orthogonal polynomials. Annals
of Mathematical Statistics Vol. 3, p. 354. Ann Arbor, Mich. 1932. The table
gives the values for x<{111 and n<i{,
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and noting that the coefficients of x* are in both members

identical, we obtain for 7:0.‘ 1,. , . n, in all, n+1 equations
determining the n41 unknown coefficients ¢4y ¢, , . . . €, .
If the polynomial f(x) is given by
(1) F(x) = @y + @y + @ 4 ... + @
X—a
and Pi(x) = [ )

then the required expression is the following:

@ #) = bo+b, (T +6.(F)s -+ 0 (*7)-

The shortest way to determine the coefficients b; is to use
formula (10) of § 22; to do this, let us write the m -th difference
of the expression (2) of f(x); we have

o e oo 50eonl2]

therefore
bn = émf (@ | hr
and the expansion will be
Af(a) A%#(a)
@ f(x) = fla) + [x a)n'h_h_"l"(x;a i h—hz"'“f’-w-i‘

Arf(a)
+ ‘ x_,:aJ/, —h—hi— ’

This is the general form of Newton’s. formula for a poly-
nomial; the function f(x) and its differences for x=—a must be
known.

From formula (4) we may easily deduce the differences
of f(x) for any value whatever of x:

[ x—a [‘}"f(a)

y—Tm b

(5) Arflx) =

If f(x) is a polynomial of degree R, then from (3) it follows
that the m -th difference of f(x) is of degree n-m,; the n -th
difference is a constant, and the higher differences are equal
to zero.
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Therefore in the calculus of finite differences it is always
advantageous to express polynomials by Newton’s formuia.

It has been shown elsewhere [Ch. Jordan loec. cit. 19. p.
257—357] what importance Newton’s formula has for the sta-
tistician, This is not yet sufficiently recognised, since nearly
always the statistician expands his polynomials in power series
in spite of the fact that he is generally concerned with the
differences and sums of his functions, so that he is obliged to
calculate these quantities laboriously. In Newton’s expansion
they would be given immediately.

If f(x) corresponding to a given value of x is needed; the
computation is not much longer in the case of a Newton series.
than in that of a power series. In the latter it is necessary to
compute x, X%, x3, . . ., x" and these are obtained most readily
by multiplication. In the case of a Newton series it is necessary
to compute (x-a), (x-a) (x-e--h), (x-u) (x*—a—h) (x-a-2h)
and so on; these should also be obtained by multiplication; the
only additional work is division by 1, 2, 3, and so on.

But if a table of the values f(a), f(a+h), f(a+2h), . . ., and
so on, is required, this is obtained by Newton’s formula with
much less work than by a power series,2°

The method used is that of the addition of differences. Since
f(x) is a polynomial of degree n, At (x) = &f(u) is
constant. Putting x=a-£&h the differences A"!f(x) are then
given step by step by ’

A" (a+-¢h) = A (a) + EAF (@)
for £=1,2,3,... The differences A" ?#(x) are given by
A2t (a+-th+-h) = A™ (a+-&h) + A7 (a-+-£h)

and so on:

A7t (a+Eh+-h) = A F (a+Eh) + A™ ' (a+5hR).
Finally

fla+th+h) = FHa+éh) + Af(a+-h).
In this way we obtain by simple additions not only a table

of f(a+£&h) but also that of the corresponding differences.

2 The method is shown in loc, cit. 19, p. 290, and an example is
given on p. 301.
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For instance, given: A3f{x) =6, A%(0) =12, Af(0) =7,
F(0)=1 we find

x A%#(x) A% (%) AF(x) f(x)
0 6 12 7 I
I 18 =19 8
9 924 37 27
3 30 61 T 64
4 36 91 125

We have seen that Newton’s formula may be obtained by
symbolical methods (§ 6). Indeed from

E=1+A
it follows that

Ex=(1+A)= = x] Am.
m=0 m
This gives, for z=a if f(z) is a polynomial of degree n

flat+x) = ( ) Ami(a).

Putting : x = = b and writing f{a + r’; b) = F(z)

h
we have

(6) F(z) =

n§1 z_bj. A"‘F(b]

This i1s the general form of Newton’s formula.

Application. Expansion of g f(x). Writing in formula (6)
x instead of z and v instead of b, and moreover putting A=1,
we get

fx) = f(y)+( )Af(v)+l ]/\"f(vl+ -+
+ (%57 avron.

[:] (xm_v) = (mj_v] (m:-v] !

Since
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. . . . X
we have multiplying the preceding equation b}( ,,] ,

m MECIE N (g | P9 )
Example. xl We find
CIE) = ::('"J”) (2 Zm) ]

The expansion of (x) ,f (x) would be made in the same
manner. Formula (7) is not only useful for determining the
X
differences but as we shall see later also the sum of v f(x)*

Newton’s backward formula. In Newton’s formula treated
above, the argument of each difference is the same. Sometimes
it is useful to have decreasing arguments in the expansion,

In § 6 we found by symbolical methods E == 1/(1— % ), hence
Er — $ x-{—m—l] Am
m=0 m Em ’
f(x) being a polynomial of degree n, if we apply this operation
to f(a) we have

8 — E x+m—1 l .
(8) f la+x) z [ m A (a-m).
Putting into this equation x = (z-b) [h and writing

Hat220) = E(2)
we get

AF (b- mh)

nil z—b+mh—h )
A h™ ’

(9) Fz) = X (
m==0

This is Newton’s backward formula in its general form.
Putting h=1 and b = -1 we obtain an important

particular case. Writing x instead of z we have

(10) Fla) = 3 ("jn‘”’] A"F (—m—1).

wm==0
It may be useful to remark that

()" [AF (x) ]eemy = [A"F(—2)]e_, .
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Formula (10) may serve in the same manner as (0} for
the expansion of Of F(x). Indeed, multiplying (10) by I;’f]
we obtain

an (5 Fw = (") (ZET) (A e

m=0

Example 1. Given F(x) = (z} Formula (10) will give

(7) =2 (75" (=) = & o (n) (527).

m=0 m;

Example 2. Let us put into formula (11) F(x) = (g) We

find
x) (x g (v+m (x—l-m -—m—l]
vl \n)= m:O( v v4m ) n—m |}’
This formula may serve to determine the wu -th difference
of the first member; we obtain

(xY (x\] _ "3 (v-{—m) (-—m—-—l) x+m

a [B) ()] = & 27 () ()

A function f(x) which is not a polynomial may nevertheless
in certain cases be expanded nto a Newton series (§ 124); but
then the series will be infinite. Applying formula (10) we get
for instance

2 (x+m 1
2 = 3 m )"‘é;;‘i—

m=0

An arithmetical progression is a polynomial f(x) correspon-
ding to x=a, a+h, a+2h, . . . whose first difference is constant;

therefore it can be expressed by Newton’s formula in the fol-
lowing way:

At(a)

I

fo) = fQ + lx—a)"p—.

Example 3. Given the series 1, 3,5, 7, , . ., Here we must put
h=1, a=1, f(a)=1 and Af{a) =2. Therefore we have

f(x) = 1 + 2(x-1)
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The general term of an arithmetical progression of order n
is a polynomial whose n -th difference is constant. It may be
given by formula (4).

Example 4. Arithmetical progression of the third order.
Given: 1, 8, 27, 64, . . . In this case n=3, h=1, a=1and f(a) =1.
To determine the differences for x=1 let us write the table of
the successive values of f{x):

I 8 27 64
7 19 37
12 18

Therefore
S —1 —1
Fa) =1+ 7 ("11)+ 12("‘2 )+6(x3 J

§ 24. Beta functions. These are functions of two variables
denoted by B(x,y). Their definition is

1

(1) [ +=1(-t) dt = Blay).
.

It is easy to show that B(x,y) = B(y,x). The Beta function
may be expressed by Gamma functions?°2:

I'(x) I'(y)
(2) B(x,y) =1~(xx—+ﬁ'

This follows immediately from formula (E) § 16; indeed,
by aid of (9) § 17 we deduce

B(xy) = (s —1)x __ (=1 =)y _

X (x+y_1)x+y—1
=TIy
I'(x+y)
B(x,y) may be expressed with aid of (2) by a binomial
coefficient
1_—.
x+y—l]'
x [ y

3) B(xy) =

2% See for instance C. Jordan, Cours d’'Analyse, 3. ed. Tome II, P. 222.
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This formula may serve to compute B(x,y) if x is a positive
integer.

On the other hand, in the general case, the binomial coeffi-
cient may be expressed by a Beta function; writing in formula
(3) n+1 instead of x and x—n--1instead of y we get

(2] = (x+1) B(njl-l , x—n+1)’

From the expression (2) we may deduce by aid of formula

@) § 17
B(x+1,y) =

Tx1)T(y)  _x
TetyFl) = =ty D0

This gives the difference of B(x,y} with respect to x

ABlxy) =— 2 Blxy).

x+y

In the same manner we should obtain

[}B(x,y] =

o +y B(x,y).

Therefore we conclude that B (x,y) satisfies the following part -
ial difference equation

(4) E Blxy) + EB (x.y) —B(x.y) = 0.
By aid of (3) we get from formula (7) § 16

1
m - (.1)’ !
A PER (-1 | Blx+1, m+1)
and from formula (4) § 19 we obtain the m -th difference of the
digamma-function:

A™ F (x) = (~1)=1 B(x+1,m).
Putting f = af(14u) we may deduce from formula (1),
©) J T

6

du = Bix,y).
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On the other hand, putting { = sin%p into (1) we get
a7

(6) B(xy) =2 J‘ sin 2x1p cos lp dp.
0

Finally in § 16 we found formula ()

1 20 (x+y+i—1)
m Bed) = 5 L oD

Particular case 1. Let y==x. From (6) it follows that
ym

2
Bmﬂzzﬁﬁj sin 21 (2¢) do

but this integral is equal to

2.2.4.6.,..(2x2
2x~-1 _
2..1._‘37.5.7.. .. (2x-])

B(x,x)

if x is an integer [Bierens de Haan, Nouvelles Tables d'Intégra-
les Définies (2) Table 40].
In the case considered formula (7) will give

_ 1z i(2x+i—1)
Blex) = = I a4 (x#1-D)
Since according to (2)
2
By = LLOIF

and in consequence of the multiplication formula (6) § 17

r@2x) = I'(x) T'(x+14) 32-;-1
K

Hence writing V; = I'(}5) we have

1 I'(x)I'(%)
221 I'(x+14)
From (6) it follows directly that

B(1,1) = 1 and B(%,4) = n

1
B(x,x) = 22x-1 B(x,3) -
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Particular case 2. Let y=1—=x. By aid of formula (6) we
have [Bierens de Haan, (1) Table 42]
gm

B(x1—x) =2 [ tan g dp =
t

T

sinax

Since from formula (2) it follows thatB(x, 1-x) = I'{x) I'(1—x),
Euler’s formula (8) of § 17 is demonstrated.
Formula (5) gives
P yyx-1
B 1wy = [ 5
(x. lx) o.f +u du
This integral is, according to Bierens de Haan [(1) Table 16]
equal to zfsinnx.
Finally from formula (7) we get
1 ® i2
B(x, 1—x) = — -
(x, %) x =1 i—x2
this is the well-known infinite product giving afsinzx.
Particular case 3. Let y=1; from (1) we immediately deduce

B(x1) = ;1‘- .

§ 25. Incomplete Beta-Function, This function, denoted by
B, (p. q), is the following:

(1) B.p. q) = [+ (Lt ™

Instead of B,(p, q) the function I;(p, q) is generally intro-
duced. This is obtained by dividing the incomplete Beta-func-
tion by the corresponding complete function:

_Bip.q) _ T(0+9) (i1t
@ L9 = B g = rriay ) ¢ 0

The numerical values of I(p, ) may be evaluated by in-
tegration by parts or taken from Pearson’s tables, if p = 50 and
g £ 50,2

n H. E. Soper, Numerical Evaluation of the Incomplete B-function.
Tracts for Computers, Cambridge University Press, 1921.

K. Pearson, Tables of the incomplete Beta-function, Cambridge Uni-
versity Press, 1934.
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In the tables, I:(p, 9) is given only for the values p 2 gq,
This is sufficient, since we have
(3) I:(p, 9} =1 — I_«(q, p).

Let us remark moreover that

Lip. p)= 1 — 5 L (5, 1)
where x, = I- (4x—15)2
The tables give the function for p and g from 0’5 to 50. The
intervals Ap and Aq are equal to 0'5 from 0’5 to 11, and to 1°0
from 11 to 50. Moreover x is given from O to I; and Ax=0'01.
Some mafhemafical properties of the function. The function
L:(p, q) satisfies the following difference equation:

(4) Lilp+1.q41)- xI(p,g+1) . (1—x)I(pt+1,91

hence the values of I(p, g may be computed for every integer
value of p and g, starting from
I,(p,1) - x» and I, (I, q) = I- (1—x)*.
From (2) we obtain, by integration by parts,
INin4gl _
1, (v, q) = =—t0 —xr (1—x)-1 + I, (p+1, ¢—1).
® LoD = e Tk

From this it follows immediately that

(6) L (p. q) > L (p+1, ¢—1).
Soper has obtained another formula “by raising p” in the
following way: Starting from

D[tr(1—t)7] = ptr—! (1-f) 9—qt"(1—t)71 =
= ptr=' (1—)~' — (p+q) t* (1—1)

integrating both members and multiplying by
Tlp+q)iL(p+1) I'(g)  gives

_I'lptq) 1.
(7 L(p, q) _ T+ 1-x) 1+ I, (p+1, q).
From this it results that
(8) I (p, q)>1x [p‘*'l!q)')

moreover it can be shown in like manner that

I.\-(P» q+1] > Ix(p| q).
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Starting from I,(p, p) we deduce from what preceds

L(pq)>1:(pp) > I: (g, P) if q>p

and therefore

) Lgp .1l .(qp<1 i g¢>p
In the particular case of p=q we have
(10] Ix (p’ P) + 11-).‘ (P! P) = and ll/, (p, p) = ]/2.

moreover if g = p, then
Ly, (¢, P) <%

To compute the numerical value of I; (p, q) if p and q are
beyond the range of Pearson’s table, it is best to follow Soper's
method [loc. cit. 21]. First we have to reduce I (p, 9) by
repeated integration by parts to I, (p+m, q-m), This gives

n _at(l—x)ri
(11 L (p.q) = I'(p+q) 2 —~ T'(p+i+1) I'(g—i) +

+ lx(p+m. q—m).

We have seen that I.(p+m, g-m) diminishes with increa-
sing m, hence it is often possible to continue the proceeding
till this quantity becomes negligible. To perform the compu-
tation Soper transformed formula (11) by  factoring the
first term of the sum, in this way: a, (1 + ¥, . . then again fac-
tor ing the first term of the new sum thus:
a,[1+ et + 2. and so on. In the end he obtained

77

I'(p+q), -
12 Lp q). — s xr(l—x)1[1,
q
+p=|-‘l l-x1[+pt" et
+ g—m--1 -
et (1 x) m-...1+ Ip4m, g—m).
The computation is continued till
(g—m+1)x/ (p+m—1) (1—x) become small enough.

If xq > (1—x)p then it is better to determine 1 — I, (g, p)
instead of I, (p, q).
It may happen that the desired precision is not attained
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before g-+1—m becomes negative. Should we still continue the
proceeding then the absolute value of the terms would begin to
increase and the series to diverge. To obviate this inconvenience
Soper advises us then to use the method of raising p.

Let us suppose that by repeated integration by parts I.(p, q)
has been reduced to I,(p’, ¢') so that 1 > ¢’ > 0. Now repeating
operation (7) n times, we shall have

o LlP+q) vt
13)  L(p, ¢) = @) (1—x)7 2 T + L(p'+i, q').

To shorten the work of computation Soper transformed this

formula in the following way:

rp+e)
(14) L(p. ¢) - ﬁ%{’—,) x?' (1—x) ¢ ll—l—p — x,

p’+q+l p+q +n_2 ]J I ’ ’
[H- 2 X +—+n_1 x| [reeep s «(P'+n, ).
This can be continued till the required precision is obtained.

In case p and ¢ are integers we shall have from (11)

9 Line =t § A

Remark 1, If in p+0-2 repeated trials p-1 favourable
events are obtained, then, according to Bayed theorem the
probability that the probability of the favourable event does
not exceed x is equal to I, (p, q).

Remark 2. The quantity I, (x, n4+1—x) may be considered
as the probability that in n trials the number of the favour-
able events should not be less than x, provided that the pro-
bability of the favourable event is equal to . Indeed, from (15) it
follows that

ni-1
(16) Ip (x, n+1—X) - vi (’f,l] pv(l_P)n—v.
From this we may deduce

ny _ 1—I(xn4+1—x)
. "’]a pn-rl" o

(17)

where we have to put p = 8/ (14a).
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Moreover if p=14 we get

(18) §0 (") = 20t =1, (= ne1-201.

Particular case. If mp is an integer, then v=np is the most
probable number of the favourable events in n trials. Putting
into (16) x=np-+1 we get the probability that in n trials the
number of the favourable events should be more than np. This
will be equal to

I, (np+1,nq).
Moreover the probability that v is less than np is

t —1I,(np, ng+1).
According to Simmons’ theorem this second probability is greater
than the first if p<g.

§ 26, Exponential functions. The exponential function is as
important in the Calculus of Finite Differences as in Infinitesimal
Calculus; the differences and the means of this function are easy
to express.

Differences of a*. We have

(1) Ad* = gt — a* = a*(a"—1)
h
and therefore
(2) Arer = a*(a"—1)™,
W

Particular cases. If h= 1 and a=2, then

A2 = 2%,
If A=1and a=15
AlR)* = = (o)
Am(e)* = (1) (e)*™
Meahs of the function ax. According to what we have seen
we have

&) Ma* = Y%a*(a"+1)

h
and

@ Mrax = (f2)"a* (@ + 1)™.




Example. Hyperbolic functions. We have
sinh x = 14 (e*—e™)
cosh x = 1&(e* + e7%),

hence the differences and the means of these functions may be
expressed by formulae (1) and (3). To avoid mistakes we will
write in the formulae below w instead of h. We find

Acosh x = V5[e*(ev—1) + e7*(e™v—1)]=14(ev—1)[e*—e = v]=
“’= /(e — e="w)[ex+'w — g=x-'w] — 2 sinh Vo sinh (x+lew)
and in the same manner

% sinh x = 2 sinh 4w cosh (x4 14w).
Therefore

éz"‘ cosh x = (2 sinh Y4w) " cosh (x4mw)
A*™* cosh x = (2 sinh Yhw)2m1 sinh (x+-mw-+4w)
Z\)Zm sinh x = (2 sinh Ysw) M sinh (x+mw)
%2"'“ sinh x = (2 sinh Y4w) 2™ cosh (x+mw-4-Lhw).

The means of the hyperbolic functions are obtained in the
same manner as the differences. We find

M™ cosh x = (cosh Yow) ™ cosh (x4 1omw)
M™ sinh x = (cosh Y4w)™ sinh (x4Lsmw).
(2]

The differences and the means of the trigonometric func-
tions could be determined by the above method; but we will
determine them directly.

§ 27. Trigonometric Functions, Of these functions only the
cosine and the sine functions, whose differences and means are
simple enough to calculate, play a role in the Calculus of
Finite Differences.

Differences of the trigonometric functions. We have
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Acos (ax+b) = cos (ax+b+ah) -cos (ax+b) =
= -- 2 sin Yhahsin (ax+b+Ysah) =
= 2 sin Y,ah cos [ ax+b+Y4({ah+-n) ].

Hence
(1) A™ cos (ax+b) = (2 sin Yeah)™ cos [ax++b+1em(ah+x)].
4

In the same manner we could obtain A™ sin (ax+b), but we
h

may deduce this difference directly from (1) by putting into it
b—14%n instead of b; we find

(2) [hy" sin (ax+b) = (2 sin Yoah)™ sin [ax4-b+Vom(ah+n)].

From formulae (1) and (2) it follows that if the period of
the trigonometric function is equal to & then its difference in a
system of increment A& will be equal to zero.

The period of cos {ax+4b) or of sin (ax+b) will be

equal to h if a = but then sint4ah = 0 and both differences

h

will vanish. Therefore we conclude that

[}cos (%'x—{-b] =0 and A sin ( x+b) = 0.

Means of the trigonometric functions. We obtain
M cos (ax+b) = Vi[cos (ax+b+ah) + cos (ax+b)] =
' = cos Vpah cos (ax-+b—+14ah).
Hence
(3) M~ cos (ax+b) = (cos Yoah)™ cos (ax+b-+Yomah).
In the same manner we should get

(4) M'" sin (ax +b) == (cos Yoah)™ sin (ax+b+Y5mah).

From (3) and (4) it follows that if a = -F then the cor-

responding means in the system of increment h will be equal to
zero. Hence

Mecos (- x+b] and M sin (%x+b) = 0.
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Differences and Weans of cos" x and sin" x. To determine
these quantities, if # is a positive integer, the best way is to
transform these powers into sines and cosines of multiples of x
by Euler’s formula.

Two cases must be distinguished, n odd or even. First if n
is odd: n=2m+1 then FEuler’s formula will give:

n+2(2m4-1Y)
: i _ 1-2
22mtl cog2mtl x — (@i . grix)emtl E—o ( v gix(2mt1-2v)

where iz]/—1.

Combining together the terms corresponding to v and
2m+1—» we have

"‘i‘(Zm;l—l] [eixemti-20) + grix(mti-2] —
¥=0
= 2 m§t (Zm;i-l ) cos (2m+1—2) x.
=0
Therefore
m--1
(5) cos?mt1 x :2—2"; Eo ( 2”;,+1) cos (2m4-1—2) x.

In the same manner we get by Euler’s formula
(_l)mi 22mtl gin2mtl p — (eix_ e-ix) 2mil —
— 8"'2“ (—1)" (2m+ 1 )eix[2m+1-2v) .
14
=0
Combining again the terms corresponding to v and 2m-4-1—» we

obtain

(6) sin®™!x = 1:2212 53 (_1)v( Zm+1 ) sin (im+1-2v) x.
m =0

Secondly, n is even: n=2m. Proceeding as before we get
em+1
22m cos2m X — 2 [zm) eix|2m-21)'
=0 v

The number of the terms in the second member is odd,
therefore, combining the terms corresponding to v and 2m—v

there will remain the tern{zrrnn], Hence
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Zm]
m m 1 2 (2m
(7) cos®mx — W “+ 227{ .,Eo ( v ) cos (2m—21') X.

In the same manner

2m<+-1
(—1)m 227 sin?nx = 3 (—1) (2:71) elx(2m=2y) —
=0

= (~1)m [zr;zn] 2 3 (—1)* (2£n)cos (2m—2y)x
and finally =
(21'11: 3, (="

+

(8) sin®"x — 22m 22m-1

(—1] [ ) cos (2m—2v)x.
Now we may write the differences and the means of these
quantities, using formulae (I), , . ., (4). We find the differences:

1
22m—

. cos [ (2m+1—-—2v] (x+3%h) + Vo).
[2m+1]

9) A cos?mt x —
h

2 2m-+1 ) sin [Yoh(2m-1—2)] ,

(10) Asin®™ x = (27»1-’"’ S (—1)”

sin [Y5h(2m+-1—2v) ]

sin [ (2m+-1—2v) (x+Y5h) + Yon).

(11) %coszmx = ?;1{-'2_ Eo (2’:1) sin (m-v) h

cos [(2m—2v) (x+-Y%h) + Yon].

(12 Asinnx = (szl_)"' 2 (=1 (2 ) sin (m-») h

cos [(2m—2v) (x+Y5h) + Vo]

and the means:

(13) Mcosz"'“ X = 2%;’”1 (2m+1 coS [Voh(2m+4-1—2)].

cos [ (2m+1—2v) (x+14h)].
('2'21,)"' 3 1 2m+1)cos [16h(2m+1—2v)1
sin [ 2m—41—2v) (x4-146h) ].

(14) M sin?m1x
h
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(),
2im 22m- ’ =0
cos [ (2m—2») (x+14h)].

(15) Mcos“’x = (Z’r,n ) cos (m—v) h

(), o
(16) MsinZ'"x: Som +22m_ E {(— 1)[ )cos[m——v)h

cos [ (2m—2v) (x+- 1/2h) ].

§ 28. Alternate functions, The function f(x) is called
alternate in a system of increments h if we have

F(x) E Hx)<oO.
Example 1. The function
1) fix) = cos(%x +b) p(x)

is alternate in the system of increments h if q(x) = 0 for every
value of x considered.
Differences of the above alternate function. We have

A#(x) = —cos (F +b)glx-+h) —cos (3 + blolx) =

= -2c0s (F+5Molx)

therefore
A™ [cos (1-;:—{-[— b)e (x)] = (—2)™cos (1;2_1' + b) M"’q?(x)-

Particular case. If in the forgoing example b =0, h=1 and
for every integer value of x we have ¢(x]) >0, then

fx) = (—1)xp(x)

is an alternate function in the system of increment A—{.
The difference of this function will be

Al o(x)] = (—1)* p(x+1) — (—1)7p(x) =
= -2 (—1)*Mo(x)

and therefore
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2 A" [(—1)*p(x)] = (=2 (—1)* M p(x).

Means of the alternate function (1). In the same manner as
before we obtain:

@ Mrleos(F +b) p(x)] = (—)" cos( + DA™ ().
or if h=1 and b=0
M [(—1)*(x)] = (—A)" (—1)* A" p(x).
Particular cases. If p(x) =1 and then h=1 we have
A™ (—1)* = 2m (—1)*™ and M(1)*=o0.

Expansion of an alternate function into an alternate binomial
series. Symbolical method. We saw in § 6 that E=2M—1,
therefore we may write

1) Er = -2 M = 3 om () 22 me

Performing this operation on ¢(z), for z=0, we get, if X is a
positive integer,

@ (ol = T (1) (2) 22 M o0,
Example 2. Given ¢(x) = a*. We have M™ a* = &* (a 2 LY
therefore
x+1
®) e = 2 (e (7).

Example 3. Given f(x) :(; . Then

B n B
l_ M (x] ]r:O -
therefore

) —-(3) = £ eom (5] ()

This is an expression of the alternate binomial coefficient con-
sidered as a function of the lower index, as a function f the
binomial coefficient considered as a function of the upper index.

g AL
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§ 29.. Functions whose differences or means are equal to
zero. The difterence oi the function f(x) will he equal to zero if
this function satisfies the following difference equation.

(1) Flx+h) -f(x) =0 .

It is obvious that if f(x) is equal to a constant, this equation
is satisfied. But if w(x) is any periodic function whatever with
period equal to h, that is if

w(x+h) = w(x)

for every value of x, then f(x) = w(x) is also a solution of
equation (1).
Example:

fx) = cos(?gx +b),

The Mean of a function will be equal to zero if this func-
tion satisfies the difference equation

(2) flx+h) + f(x) = 0.

It we put f(x) = cos{ ”h_x + 6) then this equation will

obviously be satisfied. But if w(x) is any periodic function
whatever with period equal to A, then

cos(%— - b) w(x)

will also be a solution of equation (2).
§ 30. Product of two functions. Differences. The operation
of displacement performed on a product gives

E" [u(x)v(x) w(x)...]=u(x+nh)v(x+nh) w(x+nh). ...
E'fuvw... | = EruE"vE"w...

Therefore if we want to determine ¢(E)uv w , . . it is sufficient
first to expand ¢(E) into a series of powers of E, and then
apply the rule above. For instance

Alwv) = (E-1) w = EuEv—uv
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putting E v = v + Av and remarking that v(E u — u} = vAu
we have
(1) Aluv) = vAu + Au E u

in the same manner we could have obtained
(2) Alwv) =uAv + AuE u.

The two formulae are not symmetrical with respect
to u and v; but we may obtain a symmetrical formula, taking
the mean of (1) and (2). We get

k) Aluv) = MuAv + AuMv.
Particular case of u=v
Al )=2Mu Au

From (1) we may obtain another symmetrical formula

(4) Aluw) = uAv + vAu + AuAv.

This formula may be easily generalised for m factors.
Putting u,u,u,. ... un == w we have

u; AuAu;
(5) Alggty ... up| = 2w — A ~+ 22w u-:r -+
1887
+ 3580 AlliAujAll k
uux

The first sum is to be extended to every combination of the

first order of the m elements u,,u,, , . . ., Uni the second sum to

every combination of the second order of the same elements; and
so on. The total number of terms will be 2™ — 1.

Higher  Differences. Starting from formula (3) we may
obtain by repeating the operation

A%(w) = M2uA?v + 2MAuMAv + M*0A%u
and in the same manner
ma1
(6] Am(uv] = ,Eo (T) Mm-vAv qu Am-vv.

This formula is not often used, since it presupposes the
knowledge both of the differences and means of the functions
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u and v; and we have seen that, except for the exponential
and. circular functions, whose differences and means are simple,
generally, if the differences of a function are easy to obtain,
the means are complicated, orcomwversely. Therefore formula
(6) is to be transformed so as to contain differences only or
means only.
Example for formula (6). Given uv = a* sinx. Let us put

u=a* and v=sinx. Then

]Avax — ax(ah_l] v

i
moreover

h [ry—
Mm-vA O R ax(ah__l) v(a ;-1 )
] h

and

é’"‘" sin x = (2 sin Y% h)™* sin [x—l— (m-v) h_;n]

finally
M v [lX"""sin x = (2sinY2h)™ " (cos Vo h)*,
sin [x+Y5(m—v)a + V5 mhj.

We conclude
m+41

%’"(a" sinx) :EO (T] [a”——-li' (ah—;_})m_v (2sin 15 )™,

(cos Vo h) ¥ a* sin [x + Vs (m—v)m + Vo mh].

Leibnitr has given a formula to determine the higher deri-
vatives of a product [see Hardy, loc. cit. 18, p. 202]

D" (uw) = ’;2: (7) DwuD™w.

We will deduce an analogous formula for differences.
Using the symbolical method we shall write

&= € = % (3) Em

This operation performed on uv gives

@) Ar{av) = ’g (1) (?) E~ u Erv,
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If we put in the place of E™ its value expressed by diffe-
rences

g B = 5 (777) d
we shall have ,
An(av) = 2 Axu"_;zl (—1)v(ﬁ] (",_-”] Erv.

Remarking that

® ) =)
and
o) T [ B = A

we conclude that
n-+1 n . e
(10) M) =2 (7] au A Ew
This is the formula that corresponds to that of Leibnitz.

Since it needs only the knowledge of differences, it is more
advantageous than formula (6).

Example 1. The n -th difference of 2"1;:1] is required if
h=1. Let us put u=2* and v:[::z}' formula (10 will give

wefee ()] = E (7] o (w5

We have seen that there are functions whose difference is
a function of the same kind, but the argument is diminished
by one:

—x ) _ —x—1
Alm — T lm—1 .

If we apply formula (10) to the product of such a function,
for instance to [:] [ Tnx) putting u= (i: and v= [—r—nx) then the

argument of v will be diminished in consequence of A" by n—i
and moreover it will be increased in consequence of E! by i, so
that it will always remain equal to -x-n. Often this is a great
simplification, as we shall see later.




Example 2.

-—X—n

)= 5 el 5 (25

i

Differences of a product expressed by means. Since there
are functions whose means are more easily determined than their
differences, it may be useful to determine the differences of a
product by aid of means.

Putting into formula (7) E™ expressed by means

oyt [

(11) Er'u = @M—1)u = 2 (=) —|” v] (2M)'u

=0
we obtain

M) = F oM S () 77 B s

applying again formula (8) and remarking that

n—-i+41 n_i i _ n-i n=i
(12) iEO, [ . }En v = 2 M v
it “follows that
n+1
(13) Afwo) = Z (1) 20 l , MuM~ E.

This formula is analogous to (10) but means figure in ii
instead of differences.

Example 3. The n -th difference of 2x (Z) is to be determined
if h=1. Let us put u=2xand v = (z] Then we find
m-}—n—i]

2Mu =23 and " ' M"iv= xtn—i

therefore
(m ntl Lafn n+m—i
a2 (7)1= b (-—1)"'3'[1.]?[ i
§ 31. Product of two functions. Means. To obtain the mean
of a product, we will apply again the method of displacement
used in the preceding paragraph. We have
M = 12(1 + E),

and therefore
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M(uv) = Yeuv + 15 Eu Ev.
Since E = 2 M-1,” we may write

2M (w) = ww -+ CMv—u)(2Mv—v).
This gives
M) = w—uMr—vMu + 2MuMo.
Putting again
2Mu—u = Eu we find
M(uw) = uww—vMu + EuMv.

To determine the higher means we proceed in the same way,
writing

n41 n
M = car+Er = 0 2 (3] Em
and therefore
-1 n _
1) Mriw) = o) = (3] Eu Emvo.
v==0

Putting into this formula E™*u expressed by means, given
by formula (11) of § 30, we get

M) = e S —omama’ S o} (77 e

Applying again formulae (8) and (9) of § 30, we finally
obtain a formula analogous to that of Leibnifr:

@ M) = s 5 2 (}) M Edo.

To have a second formula, we put into (1) the expression
for E™*u by differences, given by formula (7’) § 30; the result
may be written

M) = 0 2 a3 (3] ") Ero.

Applying formulae (8) and (12) of § 30, we obtain the required
formula

@) Mw) = % L (7] su ErM-e.




CHAPTER III.

INnvERsE OPERATION QF DIFFERENCES AND MEANS. Suws.

§ 32, Indefinite sums. The operation of differences was

defined by
Af(x) = f(x+h) -f(X).

From the point of view of addition, subtraction, and
multiplication, the symbol A behaved like an algebraic quantity;
but division by A or multiplication by A™ has not yet been
introduced. Let us put

(1) Afx) = f(x+h) -f(x) = olx).
By symbolical multiplication with A we should get
A plx) = f(x).

The significationof theoperation A™ is therefore the follow-
ing: a function f(x) is to be determined, whose difference is
equal to a given quantity @(x).

It must be remarked in the first place, that this operation is

not univocal. Indeed, if w(x) is an arbitrary function whose
difference is equal to zero, then

Alf(x) +olx)] = o(x)

and therefore
(2) Alolx) = Fx) + olx).

We have seen in § 29 that w(x) may be any arbitrary
periodic function with period #.

If the variable x is a discontinuous one, then o(x) is
equal to a constant.

From (2) we conclude that the operations A™ and A are
not commutative. Indeed we have
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AA*=1 and A'A F+ 1

On the other hand we have seen that the operations A, M,
D and E were commutative.

The operation A~ being analogous to the inverse operation
of derivation which is called indefinite integration, therefore the
operation A! has been called indefinite summation, and instead
of the symbol A™! the symbol £ is generally used. It may be
useful to remark that the two symbols must be considered as
identical.

Determination of the indefinite sum. ¢(x) being given, the
problem of deducing A'g(x) = f(x) is identical with the
resolution of equation (1).

The variable being considered as a discontinuous one, it
is always possible to obtain a system of differences in which the
increment is equal to one, and the variable takes only integer
values. For this it is sufficient to put x=a--£h. Then if x=a--h,
the new variable will be £{=1 and so on. Therefore we may
suppose without restriction, that A=1 and x is an integer.

Starting from this supposition equation (1) will be

3) Fx+1) -/ (x) = olx).

This is a linear difference equation of the first order.
André*? considered equation (3) as equivalent to the system
of X equations:

Flx) = f (x-1) = @(x—1)
f(x-1) = f (x-2) = @(x—2)
f(a+1) —#(a) =pla)

where a and X are integers and f(a) is arbitrary. From these
x-a equations we may determine the x-a¢ unknowns f(x),

5 .

f 1), . .. f(a+l) but it is sufficient to determine f(x), For
this, let us add together the above equations; we get:
(4) flx) = Ha) + 2 o()) = Aoplx).

1—=a

22 Désiré André, Terme général d'une série quelconque. Annales de
I'Ecole Normale Supérieure. 1878, pp. 375—408,
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It is easy to verify that this solution satisfies equation (3).
In this manner the operation A is expressed by a sum and
an arbitrary constant f(a). This is one of the reasons why this
operation is called indefinite summation.

Formula (4) presents more theoretical than practical
interest. Indeed, it is the expression of A*! by a sum; and we
shall see that generally to evaluate sums we make use of the
operation A!. In other cases formula (4) may be used. For
instance it may be shown directly that

A'x = flo) +.-=§:1 i = (’zc]—(—r(O).

Therefore according to (4) we have A'x= [;) + k.

General rules. The symbol A™! is distributive, hence
ANMuot+v+w+..)=Au+ Ao+ A'w+ ...
and, if ¢ is a constant,
A-=colx) = cA™ plx).

Therefore we may determine the indefinite sum of a func-
tion F(x) by expanding it first into a Newton series, and then
applying the above rules:

_ F{a) _ x a

We have seen that
x—a
[V+l J = h [ v ]lx

- |x—a 1 [ x—a
& 5= w5+
Finally we obtain

(5) zhr]F(xl = éﬂ A—,,qlﬂ[:If)h + k.

and therefore

In this chapter k will signify a quantity whose difference
is equal to zero.
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From formula (5) it follows that the indefinite sum of a
polynomial of degree n may be expressed as a polynomial of
degree n+1 neglecting k.

Example. Let F(x) be a polynomial of degree n, putting
a=0 and h= 1; the indefinite sum of F(x) will be

A FE =k +| ’1‘] F(O] +[3)oF @ + [’;] AF(O) + ... +

[a31) AFO.
If we have A f(x) = ¢(x) + k then
N1H—%) = — pl—x+h) + &
that is, if in the first case the argument does not change, then in
the second the argument —x is increased by h. This will be
useful later on.

Remark. The inverse differences may be determined by
symbolical methods. We have

1 1 y
(6) a =_‘1j_‘E‘—_“(1+E+E +....)

Taking account of what has been said in § 6 concerning the
necessary precautions in the case of infinite series of symbolical
expressions we may perform the operations figuring in equation

(6), starting from f(x). We find
(7) A-f(x) = — gof(x-}-i] - — E{L( i).

This may be easily checked; indeed, the difference of the
quantity in the second member is equal to f(x).

Finally we conclude that the inverse difference may be ex-
pressed by aid of a sum, if certain conditions of convergence are
fulfilled.

§ 33. Indefinite sum obtained by inversion. There are dif-
ferent methods of determining the indefinite sums. The first is
that of the inversion of the formulae obtained by calculating the
differences. For instance, if we have found

A(x) = c¢(x—a)
then we conclude that
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1
1p(x) =7 flx+a) +k.
In this way we get the following formulae:

M Ate :£x+k

1 () ns1,n
(2) A (X)nn = w

o &=

h

1 x
h [n—{-l]h L+ k
@ Ao = f +k

(5) A7 o= “"2—;{ +k (h=1)
cos (ax+b—lhah—1hn) + 5

(6) hA'l cos (ax+b) =

2 sin Y4 ah
) %" sin (ax4-b) = iin(ax;_s?;/:ﬁ:h—%n) + k
B AT =F(x-1) + & (h=1)
O A= —Fla1) 4k (h=1)
-1 1
(10) A" (x)_os = — =)k $loana + k (n>1)
(11) A- log x =log I'(x) + k (h=1)
12 4 (T = () = (5
(h=1)
ay A (f) s (T 4k pey
-1 (__1)x X — . _1)x+1 ax pa—
149 A7 (—1)* ar = (~1) ki +k (h=1)

cos (ax{b—1ia) k
2cos s a
(h=1).

(15) A (—1)* cos (ax+b) = (—1)x —
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Remark. In the formulae 10, 12, and 13, the argument X is
diminished by h.

§ 34. Indefinite sum obtained by summation by parts,
Starting from the formula of the difference of a product obtained
in § 30 (formula 2),

AlU(x) V,(x)] = U(x) AV, (x) + V,(x+h) AU (x).

Writing AV,(x) = V,(x), and performing the operation
At on both members of this equation, we have

1) A'UE V()] =Ux) V, (x) —A* [V, (x+h) AU(x)].

This formula, being analogous to that of integration by
parts, is called formula of summation by parts. It becomes
useful if the indefinite sum of the first member is unknown,
while that of the second member may be determined.

Examples. In the following examples we will denote the
first factor by U(x) and the second by V,(x). We find

I xa o hast  xa* hatt
@) ,,Al == - 4" d—1 ~ o1 (@17’ k
) ) x si (x—l/ h—1/7) h sin (x4-Yoh—Y57)__
(3)hAlxsmx: smlsinl/zéh AT sin sm12/2
__ X sin{x—Yoh—Vbn)  hsin (x—=n) Lk
- 2sin 14 h (2sin 14 h)?
o a6l (3= [E]=a
1
- ["HZ‘J—["? )+
a 1 - __ x+1
(5) A x.?_ 21—1 +A 2x.___ 2x—1 +k

6 A'F).1=F(x .x—A'ix+1 —x[F(x)—1]+k

_x+1
(x+1)®

If w(x) is a periodic function with period h, we have

(8) A'ox)Vix) 1= 0 (x) V,(x) + &

M A"F@®,1=Fx.x+ A"’ =xF® +F®+Ek
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Repeated summation by parts. If we introduce the following
notation

A Vilx) = Vi, (x)

and start from formula (1), repeating the summation by parts
on the last term of the second member, we obtain

A Vs(x)Ux)] = V, (x)U(x) =~ V,(x+h)AU(x) +
+ A [V, (x+2R) AU (x)).

Again performing the summation by parts on the last term,
we get

AV x)U(x}] = Vi(x)U(x)—V,(x+h)AU(x) +
i Vo (x+2R) AU (2) -A- [V, (x+3R)AU (x))
and so on; finally we have
(10) A [V, (U] =V, (xU(x) — V,(x+R)AU () +
+ Vi (x4+2R)AU(x) —. . , .+ (—1)"V,(x+nh—h) AU (x) +
+ (——1)"A'1[V,,(x+nh)A"U(x)].

This formula will be especially useful if U(x) is a poly-
nomial of degree n—1; in this case A"U(x) =0, the last term
of (10) vanishes, and the problem is solved. If U{x) is not a
polynomial, the last term will be considered as the remainder

of the series.
Example 1.

& (5) 5= () (5) - (4 )+ (<4%) +

i A (2 (2)=E e i) () e

We have seen that there are functions whose indefinite sum
is a function of the same kind but in which x is diminished
by h. For instance if A= 1 we have

At 27 = — 2 4
—x| _ —x+1
{F)== 5w
Therefore if V, is such a function, the argument will remain
constant throughout the operations of repeated summation by
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parts. If moreover U(x} is a polynomial of degree n, then
formula (10) will give

A2 UR = =251 S AU + &
=0

and
" nt1 — l )
(o] = - 3 (it
A l[ n (x] im0 (n4141i )
Formula (10) may also be applied in some cases in which
U(x) is not a polynomial, provided that the corresponding
series (10) be convergent. Then we have

14 A- Vo= (x)]= 3 (=1 Vi (x4 mh—h) AW (x).

m=

Example 2. Given x/2%; if we put Vy=x and U=1/2* then
formula (14) will give

s g =(5) 7 (4 et (g

It is easily seen that this is equal to 2—(14x}/2* which
result could have been obtained directly by putting into (14)
Vo, =12 and U=x.

Example 3. Given 27¥x. Putting V,=2* and U=1/x by
aid of formula (14) we find according to formulae 7, § 16 and 6,
§33

A_I_Z::___ 2-st1 E __!——-l)nu )
x = x+n
= (n+1)[ 511
= 2% 3 (—1)™1 B(n+1,x) + k.
n=0

Remark. Condorcet, in his “Essai sur 1'Application de
I'Analyse 4 la Probabilite des Decisions” (Paris, 1785, pP. 163)
has found a formula of repeated summation by parts, somewhat
different from (10), which written in our notation is the
following:

A= VU=V U = (v, + VAU + (V, + 2V, + V)AU —, , .
m+1
+ (—-l)mAmU 'E_l ['InJ V,,,“_i,

the argument x in every term being the same.
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. Sllllllllatl()ll by pal tS Of altel “ate fllllctl()lls. “ e }lave
35

A = 2(—1),
From this we conclude
(1) AY (—1)* = Vo (—1)*1 .
Putting into formula (10) § 34 V,(x) = (-1)” and
U®x) = f(x) we find
) AV (1) f(x) = Yo (—1)* [flx) — YeAflx) +
+—212— AN¥(x)—....+ (-1)” —217 Af(x) ] + k.

It must be noted that this formula holds only if f(x) is
a polynomial of degree n; moreover if in this alternate func-
tion X is an integer.

Example 1. Let f(x) = x; then

(3) A (1) x = (1) (x—1%) + k.

If f(x) is not a polynomial, we apply formula (14) of § 34,
but the condition of convergence must be satisfied.

Example 2. Given f(x) — 1/(x+1). We have

“1(___1)x 1 — x+1 3 m!
@ AN g = ) et T

It is easy to see that in this case the condition mentioned is
satisfied,

Remark. It would be possible to calculate in the same way
A (—1)* @* butit is shorter to put A (—a)* and then apply
the known formula of exponential functions:
(—a)*
a+i

Summation of alternate functions by aid of inverse means.
From formula (3) of § 30 we deduce

ANlf—a)r = —

A2 [Mu Av] = av — A [Mv Au |

Putting into this equation v=(—1)* and u=Ff(x) we find Mv=0,
hence we have
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5 AY (=) 9 | = Yol—1)™1 M £,

That is, the indefinite sum of the alternate function figuring in
the first member, is expressed by aid of the inverse mean of
f(x) (formulae 3, § 38 and 10, § 39).

§ 36. Indefinite sums determined by aid of difference
equations, The indefinite sum is according to our definition the
solution of the linear difference equation of the first order

1) Flx+1) --r(X) = ¢ (x)

where ¢(x) is given.

There are several methods for the resolution of these equa-
tions, but for our purpose only the methods may serve in which
the solution is not obtained by inversion of differences.

One of these methods is that of the generating functions,
due to Laplace, which is applicable if x is an integer.

According to formula (3) § 11, if u is the generating func-
tion of f(x), then that of f(x+l) will be

Gi(x+1) = "‘—t’“’l

Let us denote by R(f) the generating function of ¢(x} and
not that the corresponding generating functions satisfy the
difference equation (1). We have

Lt(o) “a = R(t);

this gives
__iR(f) + #(0)
- | —¢

where f(O) is an arbitrary constant.
Finally the coefficient of #* in the expansion of g will be

cqual to the required indefinite sum f(x).
Example. Let ¢'(x) = x* To determine the generating func-

tion R(f) of x* let us remark that x? = 2(;) + (T) and the

generating function of the second member is, according to for-
mula (14) § 10,
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. e
Gx: =R (1) =g,

therefore
L e _ f(0)
= T o1

The expansion of u gives

(B4 (1—1)* = (£248) = [74] (1)i# =
= e+ 2 ) e

Putting into the first term i—x—2 and into the second i=x-3
we have

fo = A xt = (5 4 [ Z5) + B =5 xeem) 2x)) 4+ R

§ 37. Differences, sums and means of an infinite series. Let
us suppose that the function f(x) is expanded into an infinite
series which is convergent in the interval a, b:

(1) foo) = UX) 4+ w@) +,, . .+ ualx) +....
The function
fx+]) = gp{x+1) + u,(x+1) +. ... + ulx+1} .. ..
will be convergent in the interval a-l, b-1.
It is known that the difference of two convergent series is

also a convergent series, whose sum is equal to the difference
of the sums of the given series. Therefore
(2 A(x) =T(x+1) - f(x) =
Auy(x) + Au, (x) + .o+ Aug (x) +, ..
Consequently if f(x) is given by its expansion into a con-
vergent series, the difference of f(x) may be obtained, by taking
the difference of the series term by term.

‘We have Mf(x) = V4|F(x+1) + f(x) |; therefore for
the same reasons, if f(x) is given by a convergent series, then
to obtain the mean it is sufficient to determine the mean of the
series term by term.

To obtain the indefinite sum of f(x) given by formula (1)
we determine it term by term.
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(3) AY(x)=A'uyx)+ A'u, (x) + ...+ Alun(x) + .,

If this series is convergent, then in consequence of what
has been said before, the difference of the second member is
equal to f(x) and therefore the required indefinite sum is
given by (3).

§ 38. Inverse operation of the mean. The mean has been
defined by the following operation

Mf(x) = Vo [f(x+h) + F(x)|.

We have seen that from the point of view of addition,
subtraction, and multiplication the symbol M behaved like an
algebraic quantity; but division by M or multiplication by
M-! has not yet been introduced here. Let us put

) M) = 1 [Fth) & Flx) | = glx).

Multiplying both members of this quantity by M we
shall have
f(x) =Melx).
The significance of the operation M is therefore the
following: a function f(x) is to be determined so that its mean

shall be equal to a given quantity ¢(x).

Here the same difficulty presents itself as in the case of
the operation A™. In § 29 we have seen that there are functions
whose mean is equal to zero. We may write these functions
in the form

cos (—;— x 4-b) . w(x)
where w(x) is an arbitrary periodical function with period h.
Therefore in consequence of (1) we shall have also

M [7(x) + cos (% x+b) wx) 1 = ¢lx)

and moreover,
%
hhﬂ" w{x)=f(x) 4+ cos e x-4-b) w(x).
From the preceding it follows that
MM-" =1
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but we may have
M'M + 1

Remark. If the required function f(x) is necessarily a
polynomial, then the operation ™ is univocal and there is only
one solution.

Determination of M™¢(x). In the case of a discontinuous
and equidistant variable we may always suppose without restric-
tion that x is an integer and h— 1, since by introducing a new
variable this can always be obtained.

Supposing A=1 and x integer, Mp(x) = f(x) is the
solution of the equation
2) Hx+1) + Hx) = 2¢(x)
where @(x} is given.

This is a linear difference equation of the first order:
it can be solved by André’s method [loc. cit. 221, in which
equation (2) is considered as being equivalent to the following
system of equations

fix) + f(x-1) = 2¢p(x—1)
f (x-1) + f (x-2) = 2¢ (x-2)

fla+1) + Hl@ = 2¢(a)

where x and o are integers and f(a) is arbitrary.
Multiplying the first equation by (—1)2% the second by
(—1)3 and so on, the n th by (—1)"!; then adding them

together we obtain
B (x) =1)"Ha +22(—1)""gli) = M p(x).

It is easy to verify that f(x) satisfies equation (2) ; indeed
we have

fx) = (1) #(a)+ 2[p(x—1) —@(x—2) +., . + (—1)="'¢(a)]
and from this
f(x+1) = (D)= (@)+ 2fp(x)—g¢(x—1) + ., + (—1)"¢p(a) |;

therefore
f(x) + Hx+1) = 2p(x).
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Formula (3) is more important from the theoretical than
from the practical point of view, but nevertheless it may be useful
in some cases. It i1s an expression of the inverse mean by
alternate sums. If the alternate sum of @(x) is known, formula
(3) may be applied directly.

Example. Let @(x) = ¢* and @=0. It can be shown that

X A x 1—(—(:)3
— — i - :
iE (—1)'e¢ = .2 (—c)! = c+1
therefore formula (3) will give
2¢*
=1 AX -1)x —_—
Mte = (1)K + )

This may be verified by inversion.

§ 39. Other methods of obtaining inverse means, A. In-
version. In the preceding chapter we have determined the mean
of several functions t(x); now inverting the results we may
obtain formulae for M. For instance, having found

Mi(x) = colx+ta)

we deduce
1
M o(x) = - dx—d] + %

In this paragraph 2 signifies an arbitrary function, whose mean
is equal to zero.
By this method we obtain the following formulae:

(1) Mlc=c+1z
(2) Mix = x—1%h+z

o w2 =2(0)+e
W M=)+

13
(5) M- cosh x = cosh (x—lhw) + x

~  cosh Yhw
. __ sinh (x—Ysw)
(6) f‘ﬂ 1ginh x = ~cosh g +zx

b—V5ah
I =
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sin (ax-+-b—14ah)

cos Vsah

B. Symbolical Methods. We have
) A [ (1) F(x)] = (1) [Flx+1) +F(x)] =

= 2(—1)"' M F.
Putting into this equation F(x) == M f(x) we get
2(—1)* f(x) = Al (1) M fw)],

Performing on both members the operation A we find
(10 M1 #(x) = 2(—1)" A7 [(—1)*F(x) |.

This is identical with formula (3) of § 38, giving the inverse
mean expressed by aid of an alternate sum.

Putting into (10) f(x) = (—1)*¢(x) we obtain an 1nde-

finite sum expressed by the inverse mean of the alternate func-
tion.

(11) A olx) = Yol—1)"" M [(—1)* p(x)}.

Examples. To determine M IIJ;] we may use formula (10).

It gives - T
M () = 20 a0 | =0<( 3]

By repeated summation by parts performed on the second
member we find (formula 10, § 34)

x
1 ) ] .
M (2] = S g [ S ) 42
From formula M = 1 + XA of § 6 we deduce

(12) M = (1+%A)" = 2 (—1)’" Am.

This formula applied to polynomlals presents no difficulty;
indeed in this case the series of the second member is finite.
Formula (12) would lead in the case of the preceding example
directly to the result obtained above.

Formula (12) may be applied to other functions, if certain
conditions are satisfied.

{8) M" sin (ax4b) = + 1.
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C. By Euler’s Polynomials. If a function f(x) is expanded
into a convergent Maclautin series

xm

i) = 3 X0 Do)

then we may obtain the inverse mean of the function, remarking
that

M1 —E(x)+x

where E, (x) represents Euler’s polynomial of degree m (§ 100).
The operation performed term-by-term gives

(13 M i) = £ En(x) D" F(O) + 1

If this series is convergent, then according to what has been
said above, the mean of the second member will be equal to f(x)
and therefore the inverse mean of f(x) is given by (13).

From this we may deduce a formula giving the indefinite
sum of an alternate function (—1}* f(x). By aid of formula (10)

we get

14 A (1)) | = (=) S B.(x) DHO) + k.
Particular case. Given f(x) — xm

(15) A [(—1)% x| = Va(—1)=*t nl E,(x) + k.
D. By aid of #, functions. A function f(x) being expanded

into a convergent reciprocal power series;

(16) Hx) = X &

n=0 X"
To determine its inverse mean we remark that (§ 122)
, 1
Mpl(x—ll =
x
and
(—1)" n!
M D" 4, (x-1) :*TLT
and therefore

W= S0 ey
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Hence, performing the operation term-by-term we get

D" 8, (:‘—_1)_

a1 T

M7 f(x) = e+ = (1) ey —4

If this series is convergent it gives the inverse mean of
f (x). By aid of (10) we may obtain A (—1)* #(x).

§ 40. Sums. It has been mentioned before (§ 2) that in the
case of a discontinuous variable with equal intervals, we may
always suppose that x is an integer and that A=1. Let us con- ’
sider in this case the indefinite sum:

Atolx) = f(x) +k.
If a and n are integers we may write
A-’ pla4n) — A pla) = f(a+-n) -f(a).

In § 32 we have seen that the operation A may be expres-
sed by a sum, so that

Alo(x) = k+opla) +elat+l) +.. ..+ ¢lx—1) =

=3 o)+
Therefore from the above equation it will follow that
(1) Ha+n) —FHa) = pla) + pla+1) + ...+

a+n
+ glat+n—1) = gy(i).
i—a
Hence to calculate the sum of g{x] from x=a to x=a-n
it is sufficient to determine f(x), the indefinite sum of ¢(x}, and
then obtain f (a4-n) by putting x equal to the upper limit, and
f(u) by putting x equal to the lower limit. The required sum is
equal to the difference of these quantities. The process is exactly
the same as that used to determine a definite integral. Moreover
we have, as in the case of these integrals,

xfbu olx) + rz; plx) = E o(x) = ) —1{a)

and

S pfx) = 0.
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This harmony and the above simple rule are due to the
definition of the sum used in the Calculus of Finite Differences,
which is somewhat different from the ordinary mathematical
definition. Indeed, the definition used here is the following:

¢la) + ¢la+41) + ... plat+n—1) = :E:Mx]

that is, the term @(a) corresponding to the lower limit is
included in the sum, but not the term ¢(a+-n) corresponding to
the upper limit. In the ordinary notation the sum above would
be denoted by
an—1
=, ol
but  with this notation the concord between the two calculi
would cease, and the rules of summation would be complicated.
However, it should be mentioned that our notation is* not
symmetrical with respect to the limits; this inconvenience is due
to the want of symetry of the notation of forward differences.
Remark. In § 32 formula (7) the inverse difference has been
expressed by aid of a sum. Starting from this we obtain the sum
of f(x) from x=—=a to x=2z, indeed

[A-1 f(X)], — [A" f(x)]x=a =
—— I f) + éﬂ ) = r:>:a 1),

§ 41. Sums determined by indefinite sums.
1. Sum of binomial coefficients. In § 33 we found, if h=1,

that
f x+ec) __ [ x+c
AI[ n ]_ [n-.l-l] +k
therefore, @ and m being integers
(1) "'§" [x—}—c] — [a+m+c] _ [a+c
s n n+1 n+1},
Particular case of ¢==n and a=0

()=, -
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Sum of a binomial coefficient with negative argument; we
had (12). § 33,
—x ] —x+1 J
- | n41 ki
therefore
m —_— —_ +1
H‘L~[m
(2) =0 n - ﬂ+1 ’

—n
To determine the sum of (-1)* [ ;I] [ x ] let us remark that
we have

Ax)([—n) _ (n+m—1 [ x4+n—1
(1) [m x| m n-+m—1
and therefore
a1 xY(—-n1 . [n+a —n]
o e (n) ()= e (B (W)
2. Sum of an arithmetical progression. We have seen that

the general term of an arithmetical progression may be repre-
sented by

f(x) = a+hx.
The corresponding indefinite sum is
a i = (3) 0+ (f)atk
Finally the sum of the n first terms will be
W s =370 = (3 r+[1)e
Particular cases. If a= 1 and h= 1 then Sf E+ n. If
a=1 and h=2 then S = f[! g +n=n’

3. Sum of an arithmetical progression of order n. We have
seen in § 2 that the general term of this progression is a po-
lynomial f(x) of degree n. To obtain the sum of f(x) it is best to
expand it into a Newton series, We have

o =t + () oo + (3] ot +....+ ] arro).

The corresponding indefinite sum is (§ 33)
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n+1 < m
A e = 3 (g, AF(O) +

Finally the sum of first p terms is

n+1
5ra) = 2( 0] Ao

Hence, to obtain the sum required, it is sufficient to know
the differences of f(x) for x=0.

Example 1. Given f(x) = (2x-+1)% To obtain the diffe-
rences the simplest way is to write a table of the first values of
the function:

1 9 25
8 16
8
Therefore [ (0) = 1, AH0) = 8, A*f{(0) = 8. Since the polyno-
mial is of the second degree, the higher differences will be
equal to zero.

In this manner it would be possible to determine _’% X"

x—
but later on we shall see shorter methods, by aid of Stirling
numbers, or by Bernoulli polynomials.

If the sum of f(x) is required for x=a, a+h,. ,..a+ (u—1}h,
that is, if the increment is equal to A, this should be indicated
in the symbol of the sum; for instance

a--puh

(5) z, ).

To determine this sum we generally introduce a new variable
¢ = (x—a)/h; then ¢ will be an integer, and Aé= 1, and the
preceding methods may be applied, We expand f(a+£&h) into
a Newton series, determine the indefinite sum, and put into it
the limits. We shall have, if f(x) is a polynomial of degree n

(6 £ Hatem = T 0 )

) ;.—_0 (a+ ) - m—=0 m+1 (a]'

The significance of Amf(a) in this formula is |A™f(a+-&h) jg=o.
Example 2. Given f(x) = x%. Introducing the new variable,

we get Fla+4¢h) = (a4-£h)?; determining the differences with

respect to & we have
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[AH(a-+ER)] =0 = 2ah + h* and [A*(a+Eh)];— = 2%

According to formula (6) we find
a+yh I3 '
O 3 1) = £ [ ateh) = vat +[ 3] ahth) +[ 3262

On the other hand, it is often possible to obtain the sum
(5) directly , by determining

;.A-l f(x)

and putting the values of the limits into the results.

For this we expand f(x) into a series of generalised binomial
coefficients whose increment £ is the same as that of x in f(x) ;
if this function is a polynomial of degree n, then we shall have

ntl ,.Amf (a)
= = %57 ),
The corresponding indefinite sum will be
o drtla)
A-f(x) = [m+l TR +k
and therefore the required sum is
otk . A.'"f (@ 3

® =% (M) =2 (] A,
The significance A”'f (a) in this formula is [é"'f(x)]r_—a. since
(A% (a-tR) im0 = (A% (e))ome

therefore formulae (6) and (8) are identical.
Example 3. f(x) = x% The expansion gives

x? = @? +[xTa],I (2a+-h) +2 lx—-—a

The indefinite sum is

e = [T ) ) G

h

and finally
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aduh

2 x = pa? +[;] (2a+h)h+[§]2h2.

x=a
§ 42. Sum of reciprocal factorials by indefinite sums. If

the increment of the factorial is equal to that of the variable,
then the summation presents no difficulties. For instance if

F(x — 1
(=) I ) I (x+nh),,,,,
and the sum of f(x) is required for x=a, x=a+h, x—=a-|2h,

«+s. Xx=a+(p—1)h, then according to formula (10) of § 33 we
have, if n>1

N W b - =gy @, ke

1
= __ h{n—l] (x+nh—h)n_1.h +

and therefore

k

at-uh
’Ea (x)-n,n

. l 1 . 1
— h (n]) (a+"h"‘h)n-1. h (a+p‘h+"h_h)n-1. h ]

and if u=o

E (x)—n, h

1
* h(n—1) (a+nh—h)ny, 5 -
Example 1. Let n=2, h-2, and a=1. Then

(%) = S S
(x+2) (x+4)

and
2“’ i 1 1

.o ) 4 T 20) (1442 = 6

Remark. If the increment h of the factorial is not equal to
that of the variable, it is advisable to introduce a new variable
whose increment is equal to A.

There is another method: to introduce a new variable
whose increment is equal to one and expand the function into a
series of reciprocal factorials whose increment is also equal

to one.
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This should be done also in cases when the sum of a fraction
is required whose numerator f(x) is a polynomial and the
denominator a factorial, the degree of the numerator being less
than that of the denominator. For instance, the sum of

2) , f(x) _
' (x+a) (x+p) ... (x+4)
is to be determined, where «, f§, . . ., 2 are positive integers in

order of increasing magnitude.

This problem has been solved by Stirling in his memorable
treatise “Methodus Differentialis” (Londin. 1730).

Let us multiply the numerator and the denominator of this
expression by the quantity x(x-41) , , , necessary to make the
denominator equal to (x42) ;+1.

The numerator F(x), whose degree is necessarily
less than 241, expanded into a series of factorials gives:

FX) = Ao+ A+ + Ay (x4, +.,, + A (x40

Comparing this expression with the Newton expansion of F(x)
(4, § 23) the coefficient of (x47)y is

AmF (—7)
(3) Aisim S —
Therefore we have
f(x) Ay A, A
= — 4, —
GFa) GAA), - D = x D), T k)
the corresponding indefinite sum is 1 be
-1 f(x) . F o ___I_q_t_ —_ A:l —
NoFa wr ;" U=~ sm=n,
151
T T ), &

From this the required sum is obtained without difficulty;
only the determination of the numbers A,,, is needed.

Example 2 (Stirling, Meth. Diff. p. 25). If h=1 the following
sum is required:

2 1

=t X(x+3) ,
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Here we have 4=3, and F(x) = (x+1) (x+2). Therefore
according to (3) we have
A, = F(-3) = 2
A:;, = AF(—=3) = -2
A, = HAF(—3) = 1
A, = YANF(—=3) = 0.
Hence it follows that
1 1 2 2
TR T x T 2t 1),  3(x+2), T
and finally
L 1 11

,El x(x+3) = 18
Example 2. The following sum is to be determined (Stirling

p. 25) if h:l.
z  (x—1)2

X
=2 (x+3),

Since here we have 1=3 and F(x) = (x—1)2,
A, = F(-3) = 16
A:, = AF(—3) = -7
A, = 1WAF (3) =1
A, = LAF(—3) = 0

The indefinite sum is
7 16

1
~ % T, T 36ta, tF

1)
(x+3) 4

and finally
§ (=1 _ 5
=2 (x+3), 36 °
§ 43. Sums of exponential and of trigonometric functions
(same method). The indefinite sum of the exponential function

g* is according to § 33 equal to
X

1 gr — 9
Alq _qh—l +k

(1)
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Applications. 1. Sum of a geometrical progression. Given
f(x) = c ¢*, the sum of f(x) is to be determined for x=a, ath,
a-2h,.,,, at (n—1)h. From formula (1) it follows that

adnh cqa
p) ¥ = = [g"—1],
Znocq F—1 [g™—1]

2. We may obtain by formula (1) the sums of trigonometric
or hyperbolic functions. For instance if hpl, we have

eu,x
_| 1273 S i +
2) A-' et = o k
and therefore
> eifxriy — gty enr—1 — sin 1/2"‘PQ/,.'(,._1+2»)<,, .
x=0 ev—1 sin Yop

. . ilr+4-b)¢
Since cos (x+b)p is the real part of e+

[ : ]/n
p> p = 227 cos 1 (n—1 + 2b) .
Zeos (xehb)p = "0 cos Yo (n—1+26)

This method becomes especially useful in the case of several
variables; for instance if we have to determine

S = § P %ﬂ cos (x,+x,+x:;;+ , . Fx,+b)e.

x==0 Xm=0
S is the real part of
an4-1 ", Cmdt sin l/é(]}n,

es‘bq II 2 e X, ei[u, I

- e‘/giq‘(n,-—l)
=1 x,=0 =y sinYop

and therefore

m+l sin Vig
S =cos V(Zn,—m+2b)y 1 S2r29M
r==1 Sm;lpqu

In the particular case of n, =n for every value, of v, we have

S = cos i (mn-m +2b) ¢

“sin 1/{2'1([) m

sin Y |-
The sum of a product of a polynomial and an exponential
function is determined by repeated summation by parts (§ 34).

Example. The sum of xa* is required from x=0to x=n+1
if Ax=1. The indefinite sum is as we have seen (formula 2, § 34),
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a* (ax—x—a)

-1 X
A xa* = T 4+ k
therefore
nl _ a"l(an—n—1) + a
3 xer = =) LI

In the particular case of @ =14 we have

n+-1 x
x=0 2’

n-4-2 A
2 2 an =t 2% !
The sum of trigonometric functions may be obtained directly.
According to 6, § 33 the indefinite sum of cos ax is, if A=1

sin (ax—4a) 1k

-1 X = n
A cosa 2 sin Ysa

and that of sin ax

P __ —cos {ax—14a)
A sin ax = 2 sin 1a + k,

Therefore

n __ sin (an—15a)
(3) :E.o cos ax = ~Zsnilba + 15
and

LA __ cos Yoa— cos (an—1/a)
“ 2 smex = S g

We will now examine several particular cases of trigono-
metric functions which play an important part in the trigonometric
expansions of functions and in the resolution of difference
equations.

1. First form. Trigonometric functions occurring in expan-
sions :

. 2nk 2nk
sin =— X, cos —,
P

If k and p are integers, and if k is not divisible by p,

then in consequence of formulae (3) and (4) it follows that

é coszikx:O; ﬁ sinzn—kxzo.
=0 P x*=0 P
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From these equations we may deduce others. Indeed we
have

5) = cosgﬂxmsz—nﬁle/z 2 cos .g’l(liﬁ_].x+
=0 p p =0 P

P —_
+ 145 Z cos %&x.

Therefore if v and p are different and if »+u and
v-p are not divisible by p, then, the sum of the first member
will be equal to zero.

If v is equal to @ but different from Y4p, then we shall have

’ 2ny
2 [cos“x]t = Ihp.
2 [cos o x] lop

If we have 2v=2u=p, it is obvious that this sum is equal
to p.

In the same way we could obtain, if v is equal to u but
different from 14p,

(6) xéo[sin —-2;’;—”x]2 = l4p.

If 2v=2pu=p then this sum is equal to zero.
Moreover, if v and u# are different, and if »4u and
v-p are not divisible by p, then

. . 2
(7) 2 sm~——2m x sinZE ¥ = 0.
P P
If v and p are integers we always have
2
8) 3 sin 2w xcos—E x = 0.
x=0 P

Divisibilify. If k is divisible by p, that is if k=4p (% being
an integer) then

s cos@x =p; s [cos—'?—'?'i".a:']2 = p; 5 [singizfx]2 =0.
x=0 p =0 P : x=0 p

The other formulae will change according to these. For
instance, if »4-u=4»1p and y—u then we shall have

2np

T X = —
> Lop

p ) 2 2y
2 cos-z—ﬂx cos 2y Lop; 2 sinx sin"E
x=0 P P x=0 P

and so on.
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If 2k—p then
23k

4 2: 4 . "
> cosix =0 Z |cos— x|* = p.
x:ﬂ P x==0 p

The corresponding sine values are equal to zero. The above
formulae will be used later {§ 146).

2. Second form. Trigonometric expressions occurring in

certain difference equations.
nk .
cos — x, sin—x
P P

where k and p are integers. If k is not divisible by p, or if
k= (2141)p, 1 being an integer, then

p ; o
X cos j—k—x = L1—(—1)*].
x==0 P
On the other hand, if k=2.p, then

p

E—o cosﬂx = p.

If v and u differ and are integers, moreover, if v-p and
v+ u are not divisible by p, it follows that

P ny i
9 S = 3 sin— x sin — x =
9) o P F
L ) 2 ()
= 1, ¥ cos ——— x—14 Z cos =
©r=0 P /2 x=0 p
and
P ar nu
10 C = 2 cos—xcog— x =
(10) 2 s <5
4 J— »
— %E‘cos mx+ % 3 cos szo,
x=0 x=0 P

On the other hand, if y=u but v is different from p and
from 14p, then
s = lbp and c = Ysp
If v=y=p then S§=0 and C=p
If v—u=%p then S=p and C=0.
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», ¢ and p being integers, the following expression will
always be equal to zero:

P b
SsinZxcosZx=0 .
x=0 P p

3. Third form. Trigonometric functions occurring in the
resolution of certain difference equations:

421 R o 4
—(2x4-1); — 2x1).
cosp(x-l—) Slﬂpl +1)

a) The indefinite sum of the first expression will be

. 2nvx
sin -
A-’ cos ﬂ(2x+l): 7‘:"’ +k.
P 2 sin 22

Therefore if v is not divisible by p we have
»
S cos X (2x+1) = O
x=0 P

and if it is divisible, so that y=Jip, then

(11) ﬁo cos 5 (2x+1) = (—1)%p.
X
b) We have
2nvx
, CoSs

Atsin Z@2x41) = — —L2 4 p

p 2 sin id

P

therefore whether » is divisible by p or not,
P

(12) S sin = (2x+1) = 0.
=0 p

c¢) If v is different from p and if moreover »+4u and
v—u are not divisible by 2p, we have
»
S = = sin= (2x41) sin 2E 2x+1) = 0
x=0 p p
and
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a

p" (2x+1) = 0.

(13) C= x__% cos % (2x+41) cos

If ¥ 3y and if 2» is not divisible by p then S=14p and C=14p.
If »=p and if 2» is divisible by p then S=p and C=0.
d) In consequence of formula (12) we always have

§ sin> (2x+41) cos ZE (2x+1) = 0.
=0 P p
whether 2» is divisible by p or not.

The sum of a product of a polynomial and a trigonometric
function is obtained by repeated summation by parts.

Example. The sum of X sinx, for x=0, h, 2A, . . . , (n—1)h
is to be determined. The indefinite sum will be, according to
formula (3) § 34,

_ 2x sin Yh sin (x—Yoh—Y%n) + h sin x +

4‘1 xsinx = @ sin 1oh) 2 k
and therefore
w . __ 2nh sin Yoh sin (nh—Yoh—Y5n) + h sin (nh)
x;}_lé.xs1nx_ @ sin 14R)2 .

§ 44. Sums of other functions (same method).
1. In paragraph 33 we had (8)

At = F—1) + &

therefore
n+41 1

(1) 2 ~=Fmn) + C
x=1 X

where C is Euler’s constant (§ 19).
2. Since (9, § 33)

A0 = —Fle—1) +4
we obtain

I§l 1 ;‘12
(2) x=1 —X——z = _E - F(n)'

3. Let us mention here two formulae, which we will deduce
later. The first is (1, § 83) :

9
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8 . IB+m)™' — By,
) ,on - m+1 '

This is a symbolical formula, in which B; must be substitu-
ted for Bi. The numbers B; are the Bernoulli numbers given by
the symbolical equation (B41)""'—By,, = 0.

The second is given by the symbolical formula (3) of § 108:

n , 1 .
Eo (-1)” xm = ST [Gr—(—1)" (G+2n)m] .
The numbers @; are the tangent-coefficients of § 104, given by the
symbolical relation (E42)}7" + &, = 0.

4. To determine the sum of logx fromx=a to x=a+m if

Ax=1 we make use of formula (11) § 33:

A-" logx =log(x} + &

from which it follows that
a+m "(ﬂ-l:ml
z = — .
(5) x;dl 0gx log I'(a)
5. To obtain the sum of the digamma function from x=0

to x=n if Ax=1 let us remark that we have found formula
(6) § 34:

N'F(x) = xF(x)—x+k.

Hence
(6} }JU F(x) = nF(n)—n.

6. In § 34 we found{formula (7)) that the indefinite sum of
the trigamma function is

A'F(x) = xF(x) + F(x) + k.
Therefore

(7) 2”_?0 F(x) = nF(n) + Fm) 4+ C

where C is Euler’s constant.
Example. For n=20 we find

gF(x) = 20F(20) + F(20) + ¢ = 4’57315605.
x==0
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Adding the numbers F(x) from x=0 to x=20 in Pairman’s
Table we find 4'57315614. The error is equal to 9 units of the
eighth decimal.

7. Sum of alternate functions. Let f(x) be a polynomial of
degree n; then the indefinite sum of {—1)* f(x) is given by
formula (2) of § 35:

. U=
(8) At (=1)5H(x) = 14(—1)=" = — A"f(x).
m=0 2%
From this formula we deduce, for instance,
o I x = (Y

If the function f(x) is not a polynomial, then the series in
formula (8) is infinite; but the formula holds if the series is
convergent. For instance if

1
f(x) = xT{-I-
then
—1)"m!
mf = ( .
Amt(x) (x+m+-1) sy
The series

1
tyzrmn [R5

is convergent, therefore we shall have

(1) sl -

10) £ EV gy 3 s L

( ] x=0 x+1 /Z( ) n 02"‘[,u+m+1),,.+1 + m==1 m2""
If w=c°, in consequence of what has been said before, the

first sum of the second member will vanish, and we get

s (1) z 1

2 [ = e T e -l =

(11) 2 i )"321 o log (1—1%) = log 2.

§ 45. Determination of sums by symbolical formulae, In
§ 6 we have expressed the n -th difference of a function by its
successive values: we had

At = :%:) (—1)x*n ‘ 2 l Ex

from this it follows immediately that
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Q) 3 () 1o = araton.

Therefore to have this sum it is sufficient to know the n -th
difference of the function f(x), for x=0.

Example 1. Given f(x) = 1/(2x+1)}. To determine the n-th
difference if Ax—1 this may be written as a reciprocal factorial
of the first degree; then we get

1 (-1)” n!
"+‘/2 ) () . (=+

Putting x=0,

YoA"

2n+1 y*
2

(_1)” ﬂ! 2”

At )] = T35 @ag1)®
therefore
n41 '2"
Z =) ( J2x+l 1.3.5... (2n+41)

Example 2. Given f(x) = cos ax. We have seen in § 27
(formula 1) that if Ax—1 then

A" cos ax = (2 sin Y4a)" cos [ax+Von(a++) |
hence
[A" cos ax) = = (2 sin Y4a)" cos Lon(a-+n)
so that finally

n4-1 n
b (—-—1]"(x] cos ax = [—1)" (2 sinY4a)" cos Yon(a+-a) .
=0

Example 3. Given f(x) = 1/(x+m)n,. We found the n -th
difference of a reciprocal factorial (formula 6, § 16); if Ax=1

An 1 (__l)n (m+n—1)n
(x+m)m =  (x+m-4-n)p,n
hence
n (="
[A"F (%)]x=0 = (m+n) (m—1) |
and finally
1 1
2 (1) [ J xfm)m _ (mtn)(m—1) 1"
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Example 4. Given f(x) = ( e

= |rfL+1n [This gives

% e [3)750) = o [a2a)

x=0

] we had &f(x) =

Putting into this expression a=0 we get a useful formula
for the reversion of series (see later). Indeed the second

member of
n+1

n x 0
Eo 1) {xJ { m] = =1y [ m—n ]
will be equal to zero if m is different from n, and equal to (;-l)"
if n=m.
) a—n
Example 5. Given f(x) = (—1)*| p—, l . We have

a—n J a—n

b—x| = {a—n—b-{—x ]

Moreover formula (2) § 28 gives the n-th difference of an
alternate function expressed by means:

. A [(—1) (x)] = (—2)" (1) Me(x)
M- [a—-—n——b-{—x’ = on a—-b-{-x] = on [bixJ

therefore

&fx) = (= (B2

m(ae—n) __(a
2 [ J [ =13
This is Cauchy’s formula, which we have deduced already

in another way (formula 14 § 22).
Example 6. Given f(x) = F(x). In-§ 19.we found (formula 4)

(=) (1) |
(x+n),

and finally

AF(x) = = (—1)"! B(x+1,n).

Therefore
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n4-t 1

= () )P =—2
Example 7. Let f(x) = x™. We shall see later that
[An X"|e=0 = 1 ! e
where @* 1is a Stirling number of the second kind. Hence
n+1 n
2 (3] e = nte

and in the particular case of m=n we have

:é: (—l)"*"[;l] x"=nl,

Example 8. Given f(x) = wp(x), the Bernoulli polynomial
of the second kind of degree m. We shall see later that

[A"Wm (x)]x=0 = bm—n

where b,,_, is a coefficient of these polynomials. Therefore

2 —02(7) vale) = D baa,

Particular case: m=n
r+1 n
3 (0 (3] val) = e
In § 6 we deduced other symbolical formulae. For instance
An . 1\* n4-1 nJ .
E=l—g) =20 (J)E

This operation executed on f(x) gives for x—a

41 n
@ S (0| }) Ha) = Arta—n).

Example. f(x) = (;) Then &flx) = [ M— nj hence
g o () (w)=(a)

Particular case of a=n:

2 e (7)) = ()
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This formula is identical with that obtained in Example 4.
A third symbolical formula of § 6 was the following;

(1+E)" = (2M)".

This operation performed on f(x) gives for x=0
ﬂ+1
(3) [ ] f(v) = 2*M"#(0).

Hence the sum of the first member is known if'we know the n -th
mean of f(x} for x=0,

Example 1. Given f(x) :(: b-‘iz-xj’ We get M ¥(x) =
= b—?—i_—?—n :} therefore

2 o) (b ) =15

this is again Cauchy’s formula.

Example 2. If n is not very large, we may determine M"f{0)
numerically. For instance, given fix) = 1,9, 25,49, 81,. . , , and
n=3. Computing a table containing the means we have

1 9 25 49
5 17 317

11 27
19

then from (3) we get

4
p> 3 (2v+1)2 = 23,19 = 152.
v={ o
Example 3. Given f{x) = cos ax. Since (formula 3, § 27)
M" cos ax = (cos Yaa)" cos (ax+ Vona)
we have
n+1 n
pX (v] cos av = 2" (cos Y%a)" cos Yona.
=0

A fourth symbolical formula of § 6 was
2u Mn
1 ] :
+e

The operation performed on f{x) gives for x=a
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4 sa Ha—v) =2” M" t(a—n).
@ oo =
This formula generally leads to results similar to (3) ; for

instance f(x) = l TJ gives Cauchy’s formula: flx) = e* would

2 Inl}' = (14e)~

Starting from formula (3) of § 6 we may obtain a fifth
summation formula. Indeed from

. nyl
give

1 _ 3 R o B IPW

g= 5 e (") a

we get

E—1_ Al+ E+...+E7]_ & " n—{-v——l) ,
En Tn = 3 (—1) [ ” A:

Performing the operation E"A™ on both members we have

14+E+...+E0= ¢+ 3 (77

A v-lEn.
This operation performed on f(x), if it is a polynomial or if it
satisfies certain conditions, gives

3 Foetit) = 3 (—1)~+1["+:_‘] A" (x-+nh).

-
Indeed, since for n=0 the first member vanishes, we have
also C=0.

§ 46. Determination of sums by generating functions. It
is often possible to determine sums by the method of generating
functions. This will be shown in a few examples.

1, If the following sum is required

_ i (n ]
= 3!:0 (x x

we may start from the generating function
wtl (p
o) = (14" = = [x ] =,
x=0

The operation # . [) performed on both members of this equation
gives



o

1317

t.Du(t) = tn(1+£)" = b (:) x 1=,
x=0
Now putting # =1 we obtain
S =n21,
Remark. According to formula (3) § 45 this sum is
s =2 [Mx],-

but Mx = x + 1%; hence M?x = x + 14n and finally S=n 2~

2. To have
"+1 —1)=
= HE(
x=0 x+a
we start from

, _ S < 07)
u(f) = (1-f)” = ’Eo(—l) lx]i .

multiplying both members by #! and integrating from 0 to 1
we get

1
S= [t~ (1—t)dt = B(n+1,a).
4]
If n and a are integers we have

_ 1 — n!
- (n+1) ["-’i;ile (n+a) .,

Remark. According to formula (1) § 45 this sum is

V=

1 (—1)* n! 3 1
n =— — and theref S= —5—.
but A xta ~ (xfatn),, o onerenare (a+n)n.
3. To obtain
nt
S= 2 xa&
x=0
let us start from
u(f) = 2 (at) 21

determining D u(f) and putting = 1 we have
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a**! (an---n-1) + a
(a—1)? '

This has already been obtained in § 43 by summation by parts.
4. We could easily determine by summation by parts

S=

fn+1
s = 2 x(n—x)

x=0
but it may also serve as an example for the use of generating
functions of two variables, Let
zn*l_[nﬂ n4-1

U(Z,t) = R o ,¢§0 FARE Cad

from this we conclude that

ol
§ = [az at]tzle
that is

§ = [lat1)z" + (a4t )] (z—t) + 2(t™1—2™) }
- { (z_.t)3 s=l=1

If we put z=t this gives O/O; therefore we must apply Hépi-
tal's rule. The derivative with respect to z of the numerator
divided by the derivative of the denominator gives again O/O for
z=1; and so do the second derivatives also. Finally the third

derivatives give
_ [ n+1
s—("1),

Remark. According to § 34, summation by parts would give

& ) = (5) ) A *F1) -

=(3) o=+ ("] +=

ﬂ)e required sum is therefore

nil _ n41 n—f—2] . n+1)
3 st =~ (") +("37) = ("3Y).
§. 47. Determination of sums by geometrical considerations.

It occurs sometimes that the result of a geometrical problem is
expressed by a sum. If it is possible to solve the problem in
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another way the result will be equal to the sum obtained

previously.

As a simple example let us consider the sum

n--1

(1) s = 4.21 ’V(n—“"’l’)
which we have already determined by other methods.

This sum is equal to the number of points whose coordinates
are x = 0,1, 2 ., ., n2; y=012 .... (n2);
z=0,1, 2 ..., (n2) provided that

x+y+z<n—1.
The points above are situated in a tetrahedron whose summits
are the points of coordinates:
x=0, y=0, 2=0, x=0,y=0,2=n—2, x=0,y=n—2,2z=0,
x:n—2, y:O. z=0.

The number of the given points contained in the plane

x+y = V-1
is equal to »(n—v) ; and the number of points contained in the
planes parallel to this one, and corresponding to »=1,2, ., ., (n-])
is equal to the required sum S.
On the other hand, if we consider the plane

x+yz=s
the number of the points in this plane will be, as is easily seen,
equal to

142434+ (s+1) = (5‘52].

The number of the points contained in the planes parallel to this
one, corresponding to §=0,1,2, ..., (h-2) will be

S s+2) (a4t

,\'2‘0 k 2 ] - [ 3 ] )

this is the total number of the points, therefore equal to S. So

that
s- (" )
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§ 48. Determination of sums by the Calculus of Probability.
Sometimes the result of a problem of probability is obtained in
the form of a sum; if it is possible to solve the problem in
another manner, the result will be equal to the sum above.23

Example. Given an urn in which there are m balls marked
1,2,3,..., m. Successively n balls are drawn, putting the ball
taken, back into the urn before the next drawing.

The probability that the sum of the n numbers obtained shall
be less than x is equal, according to Monmorf’s solution, to

1 2 Jn)( x—mv—1
P=m 2 =02

Since the probability that the obtained sum shall be less
than x=nm--1 is equal to unity, we have

m : E (—1) ( [mn—mv).

Finally putting u—n—v we get
" n+1 n mp-]
(—mjr= S (—1)»[1,‘)[ ™).

§ 49, Determination of alternate sums starting from usual
sums. Often if we know a sum we may deduce the correspond-
ing alternate sum,

Example. We have, as we shall see in formula (6) § 82,

(1) S= § 1 = 1p(qe ! Bul
= ey — 7 @n)!
where B,, is a Bernoulli number. This multiplied by 1/2*" gives
S 1 a*| B
2) S - 3 — 1Byl
22n 1 (2x)2n 2(2n)!

2 Let us remark that Croffon determined by the same method the
values of several very interesting definite integrals, which were verified
later, by analytical methods, by Serref.

Morgan W. Crofton, On the Theory of Local Robahility, ..., the

method used being also extended to the proof of new Theorems in the
Integral Calculus. Phil. Trans. Royal Society, London, 1868. Vol. 158,
pp. 181-199.

J. A. Serret, Sur un probléme du calcul mtegral Comptes Rendus de
I’Académie des Sciences, Paris, 1869. Vol. 2, p. 1132

Sur un problhme de calcul 1ntegral Annales Sc1ent1f1ques de I'Ecole
Normale sup. Paris, 1869, Vol. 6, p, 1



141

Since this series is absolutely convergent, it follows that the
2n -th power of the odd numbers is

S % b i iom 2n | Bual
@) S—am = 2 Gegnr 2@ 2T G

and moreover the alternate sum will be

Z—S _ 3 =(_—L):=— 2n- g,,'anl
@ S=2m = 2 prym - ET0 Gy




CHAPTER [ V.

STIRLING’S NUMBERS.

§ 50. Expansion of factorials into power series. Stirling’s
numbers of the first kind. The expansidn of the factorial into a
Maclaurin series gives

(1) (e = 2 2 21D (x), ]

Denoting the number in brackets by S we have

x==

m 1 m
@) S = |27 D
so that equation (1) may be written
(3) (%), = Slx + S2x* + S3x3 +, . . + Six~.

The numbers S” defined by equation (2) are called Stirling’s
Numbers of the first kind. They were introduced in his Methodus
Differentialis, in which there is a table of these numbers (p. 11)
up to n=9.24

M (. Schlémilch, Compendium der Hé&heren Analysis, Braunschweig.
1895, II, p. 31, gives a table of these numbers, which he calls Facultiten-
coefficienten. His notation is different; his

ch corresponds to our FS::_—"‘I
A larger table is to be found in:

Ch. Jordan, On Stirling’s Numbers, Téhoku Mathematical Journal,
Vol. 37, 1933, p. 255.

J. F. Steffensen, Interpolation, London, 1927, p. 57, introduces numbers
which he calls differential coefficients of nothing, denoted by Dm0(-»), and
gives a table of these numbers divided by m!; his

Dm0(-n)
ml
Niels Nielsen, Gammafunktionen, Leipzig, 1906, p. 67, introduces the
“Stirlingschen Zahlen Erster Art”; his

CoQn—m
Cn corresponds to our | S, ‘

corresponds to our t S:"

[nearly the same notation as Schlomilch's).



143

Stirling’s Numbers are of the greatest utility in Mathematical
Calculus. This however has not been fully recognised; the num-
bers have been neglected, and are seldom used.

This is especially due to the fact that different authors have
reintroduced them under different names and notations, not
mentioning that they dealt with the same numbers.

Stirling’s numbers are as important or even more so than
Bernoulli’s numbers; they should “ccupy a central position in
the Calculus of Finite Differences.

From (2) we deduce immediately that

$8=0;8!'=1and S§;y=0if m>n

The other numbers could also be calculated by (2], but we
will give a shorter way. Let us write the identity

@ (xlllﬂ = (x_n] (x]n-

If we put v = x-n and u = (x),, then Leibnifi’s formula giving
the higher derivatives of a product (§ 30) is

D™ (uv) = vD™u + ( T] Dv D™ 'u
that is.
D™ (), = {(x—n) D™(x), + mD™" (x),.
Dividing both members by m! and putting x=0 we get, in con-
sequence of (2],
5) S, =8Syt-n SH

This could have been obtained from (4) by expanding the
factorials (x),,, and (x), into power series (3), and writing that
the coefficients of x™ in both members are the same.

Equation (5) is a partial difference equation  of the first
order. It is true that the general solution of this equation is
unknown; but starting from the initial conditions we may compute
by aid of this equation every number S”. According to § 181
one initial condition is sufficient for computing the numbers S¥;
for instance S given for every positive or negative integer value
of m. But from definition (2) it follows directly that

Sr=0if m+0and S =1

Therefore, putting into the equation n=0 we get ST =S/~!

and this gives
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St =1and S$Y=0if mjl.

Putting into the equation n=1 we find
Sy = §p—' — 8
This gives
S2=1,8Sl=—tand 8§ =0if m>20r m<1

and so on; we obtain the following table of the Stirling numbers:

Stirling’s Numbers of the First Kind. S:‘

n\m 1 2 3 4 5
1

2 —1 1

3 2 -3 1

4 —6 11 -6 1

5 24 -50 35 -10 1
6 -120 274 -225 85 -15
7 720 -1764 1624 -135 175
8 -5040 13068 -13132 6769 —1960
9 40320 -109584 118124 -67284 22449
10 -362880 1026576 -1172700 723680 -269325
11 3628800 -10628640 12753576  -8409500 3416930
12 -39916800 120543840  -150917976 105258076 —45995730

=1

n\m 6 1 8 9 10 1112
2

3

4

5

6 1

7 -21 1

8 322 -28 1

9 4536 546 -36 1
10 63273 -9450 870 -45 1
11 -902055 157773 -18150 1320 -55 1
12 13339535  -2637558 357423  --32670 1925 66 1

From equation (5) we conclude that -the Stirling numbers of
the first kind are integers.
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Putting x=1 into equation (3) we get if n>1
{6) S!+824+83+...4+8*=0.

That is, the sum of the numbers in each line of the preceding
table is equal to zero. This can serve as a check of the table. To
obtain a second check, let us put x = -1 into equation (3) ;
we get

n4-1
(—1)*n! = X (—1)m S .
m-=1

By aid of (5) it can be shown step by that the sign of SIis
identical with that of (—1)™™; therefore we have the second
check :

nit

(7 al= = IS~

m==1

viz., the sum of the absolute values of the numbers in the line n

is equal to n! .

Generating function of the Stirling numbers of the first kind
with respect to m. From equation (3) we conclude that the
generating function of 8™ with respect to m is

(8) u(t,n) = (f)m
that is, in the expansion of u(f, n) in powers of « the coefficient

of ™ is equal to S™.
In fact, the Stirling numbers, in their definition (2), are

given by their generating function.
§ 51, Determination of the Stirling numbers starting from
their definition. The expression

x(x-1) (x-2) . . . (x—n+1) = 0
may be considered as an equation whose roots are #;=i for
i—0,1,2,..., n. Hence in this equation the coefficient of x™ is
equal to
(1) S =(—1)r"Zuu,.. . Upm

where the sum in the second member is extended to every com-
bination of order m-m of the numbers 1, 2, . , , (n-1), without
repetition and without permutation.

10
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Equation (1) may be transformed by multiplying the first
factor of the second member by (n-1)! and by dividing the
quantity under the sign ¥ by (n-1) ! . This gives

1
m o= (—f)rm (n-1)) - -
(2) S o= (=) )L uE
The sum in the second member is extended to every com-

bination of order m-1 of the numbers 1,2,3,. .. (n-1), without

repetition and without permutation.
Formulae (1) and (2) show also that the sign of S§* is the

same as that of (—1)%m™,

Later on we shall see that it is possible to express the sum
(2) by others having no restriction concerning repetition.

We may obtain a third expression analogous to (1) and (2),
starting from the following equation, which will be demonstrated
later (§ 71). We have

L !
3) [log 1+)] = = 2 sy 1n

n=m

On the other hand, from the known series of log (1--1),
applying m times Cauchy's rule of multiplication of infinite

series, we get

@ log (140 I = (-1)7 F (e T

Uy, ... .Uy

In the sum contained in the second member, u; takes every
value of 1, 2, 3, , . . with repetition and permutation but satis-

fying the condition:
u, fut Uyt ...+ Uy= N,

From (3) and (4) it results that

m _
(5] Sn - (__1) ml 2 wu, ..Uy )

Examples. Let us determine S} by the formulae obtained
above. From (1) we have

S =1,2+1.3+1.442.34+2.4+3.4 = 35.

Formula (2) gives
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1 1 1 i 1 1
3 — 24 | —_ 4= 4 = 4 - L~ —
Ss [1-2+1.3+1.4+2.3+2.4+3.4] = 3.

Formula ®)

3 3
3 — —_
§3 =4.5 [1.1.3+1.2.2] = 3.
Starting from equation (3) § 50 by integration we get
1 741 m
6 B "
©) T dx o B

Later it will be shown that this integral is also equal to
n b, where b, is a coefficient of the Bernoulli polynomial of the
second kind. Therefore we have

1 g
M by = n! m:? m--1 ’

This is an expression of the coefficient b, by Stirling’s numbers.
§ 52. Resolution of the difference equation

1) §n, =S —nSn

A1 "

As has been said, the general solution of this equation of
partial differences is unknown; but in some particular cases it
can be solved easily.

1. Putting into it m=1 we obtain

Sl =—nS.

w1
Taking account of Sf =1 the solution of this linear difference
equation with variable coefficients i1s, as we shall see later,

S! = (—1)" (n-1)!.
2. Putting m=2 into equation (1) we have
82yt S =8 = =1 (D) !
fm) = (—1)* 82 () |
then the above difference equation will be
1
t(n+1) -f(n) = A”f(n) = T

and therefore according to § 19

If we write
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f(n) = F(n-1) + k.
S$2=1 hence f (2) =1; moreover as F(1) =1—C, therefore
k=C, the Euler’s constant. Finally
§2 = (-1)” (n-)! [F(n-1) + C].

Example. Let n=35. Replacing the digamma function by the
corresponding sum (p, 59) we find

Sz = —24[Y, + Yy + Yy + ] = -50.

Remark. From the above we deduce the sum of l/x ex-
pressed by Stirling’s numbers:
» 1 (__l)n
> = = - 2
x=1 X (n_l)! "
3. If m==3 we have
8§ . 4+nS}=8 = (-1)" (n-1! [F(n-1) + C].

n+1
Writing again

fn) = (=1} §}f (@) !
we get, Af(n) =[F(n—1) 4-C|/n so that
fn) = QI% [F(n—1) + CI.
By summation by parts we obtain
A+ — F(re1) = [Fla—1) F— A" 2 F(2)
since (pp. 58 and 60)

F(n) = F(n-l) + -15 and A" — % — F(n-1) + k.
Putting F(n) into the preceding equation we find A'F(n—1)/n
which gives by aid of (2°)

f(n) = Ye[F(n—1)]* + Y|F(n—1) | + CF (n-1) + k.
Since f (1) =0 and F(0) = 26:) it follows that
k= %C—2]
and finally
S, = (=1 (n-p! 1/_>{[F (n-1) + € + Fln—1) —1‘63}
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Example. Let n=>5. Then the preceding formula gives, since

F(4)4+C = 14+ }+%+Y and FA)— 5 =—14++Y+ )
S; — 35.
The formula above gives the sum of 1/x® expressed by
Stirling’s numbers :

$1_[_s 7P _|s
=1 xt  |{n—1)! (n—1) 1"

It would be possible to continue in this manner and deter-
mine S: and so on, but the formulae would be more and more

complicated.
4. If we put m=n-1 into equation (1) we have

S::} :S::....:S::l.

a

6

5. Putting into equation (1) n+l-m instead of m we
obtain
S::::—-m — Su;m —n Sl’l‘-}-l—m
therefore it follows that the difference of the Stirling number
below, with respect to 2. is

(2] éS:_m = =1 S:a‘+1—m.
Particular case of this formula. Making m=1 we have
[}S:“ = —n

and therefore

S = A (o) = — HEX

Since 8§ = 0 therefore k=0.
In consequence of formula (2) we have

S =AM [~n St = A (’2‘) ]
and finally
s = 3(5) +2(5)

This is a polynomial of the fourth degree. After multiplying
it by —n, the indefinite sum will give §?~3. This is a polynomial
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of the 6 -th degree; indeed, the degree is increased by one by
the multiplication, and by one again by the summation. Con-
tinuing in this manner, we obtain S$*~" which will be a polynomial
of the variable n of degree 2m.

Let us write it in the following way

@ Sim =Coo(gn) 4 Cont [t ) £+ Cren

After multiplication by —n the coefficient of Cm» will be

n n
_nl 2mn_,y] - — (Zm—v—f-l][ 2m___,,+1) — (2m—) (Zm—v)
therefore we have
- n—m 2ln+‘ n
S:_"'—l = A 1[—" Sim]=— TEO Cn o (2m—v+- l]lZm-—v-i»Z) -

p2

n
— 3 Cp. (2m— ) + k.
2 Cn. 2m—) ( 2m—yt1

Writing in the second sum »—1 instead of v we obtain

2m+1 n
Sm= =2 @m—rt1) {50 0y o) [Cn s+ Co ] + B
Here we put Cp, _; = 0.

On the other hand we have according to (3)
2md.3
C

—m—1 —
Su - 2

=

( n
mit. v\ 2m—-2—p
From the last two equations we deduce

(4) Cm+1,v = - (2m—v+ 1) [Cm. v + Cm,r -1} and k = Cm+1. ams+2 .

The general solution of this partial difference equation
is unknown, but in some particular cases the solution is easily
obtained.

From St = — [ ’211

we conclude that C, ,=-1 and C,, = 0 if v > 0.
Putting m=1 into equation (4], it follows that

€, =01if v > 1.

From this we conclude, putting m=2 into (4), that
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C,, =0 if »>2
and so on; finally we find
Cnr»=01if v > m-1,

Therefore we have also B = Cp, om = 0; and equation (3) will be
n n
5 Sy =Cn, (Zm) + Can. (Zm—l) +.... F

+Coms )

Equation (4) may be solved in some particular cases.
L. Putting y=m it becomes

Cm+1,m = ""(m+1)cm, m—y -

This is a homogeneous linear difference equation with
variable coefficients; we shall see that its solution is

Comy = @ ﬁo —(i+1) = (—1)"m! w.

C, o = -1; therefore w=1.
2. Putting »=0 into equation (4) we get

Cmir, 0 = — (2m+1) Cp, 4.

The solution of this equation, which is of the same type as the
preceding, will be

Cmo = w I —Qi+1) = (—1)".1.3.5.... 2m—1) ..
=0

Since C,, = -1, hence w=1.
Multiplying equation (4) by (—1)* and summing from »==0
to v=m-1, we obtain

m+1

m41 m+1
b [——1)' Cm+1,l = - 2 (_l)l Cm, [ 2 ('1) : (Zm_v)cm,r +
= r--0 r=0

w1
+ 2 (-1) ' 2m—y+1) Cpii .
r==(0
Remarking that the last two sums in the second member
are equal to
41

— 2 A (""l)v_l [zm_v‘i‘l) Cm,v—l]

v=0 'y
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moreover that at the limits the quantity in the brackets is equal
to zero, as Cp, _, = 0 and C,,_ , = 0, we have

m41 m1
2 (1) Cpo = = T (1)Ca!

from this we conclude that

"

W E )G () 2 (0, = ()

Starting from the initial conditions C, , = 0 if v + 0 and
C, , = -1 we may compute step by step the numbers Cp, .
by aid of equation (4). The results are given in the table below.
Equation (7) may be used for checking the numbers.

Table of C,,.,
m\* 0 1 2 3 4 5 6
1 -1
2 3 2
3 -15 -20 -6
4 105 210 130 24
5 945 2520  -2380 —924  -120
6 10395 34650 44100 26432 7308 720

Remark. From formula (5) we may deduce the differences
of § x—" with respect to n:

" Sn-~-m — mz C n
é‘ n =0 m.r| 2m—1'—~/(

and in the particular case of u=2m

2m bl
A Si" = Cpyyy-
H

From equation (5) we deduce the important formula:

IS Gl 18357, 2m—1) _ |
@) lim — e —=Tm1= @m)] =mi 2

7)

permitting us to deduce asymptotic values of S* " .
The difference equation (5), § 50 multiplied by (—1)*™*"
gives

|So,, = 18p=1] + n IS2I.



Dividing both members of this equation by n! we obtain
18zl )18

[(n—-—l)!J = Tal

The difference of the quantity in the brackets is understood tobe

with respect to n.
From (9) we conclude, »+1 instead of m

10) ¢ 1S | 8rtt
wey AL = (u—1) 17
Remark 2. Formula (5) is advantageous for the determina-
tion of §*~™if n is large and m small. For instance we have

st, =105 ('2) +210 (7] + 130 (7] + 24 ( ?) = 357428,

§ 53, Transformation of a multiple sum “without repetition”
into sums without restriction. Let us consider the following sum

9 A

n

(1) go= "8 8% ) Huy) .. Hun)

=1 ug=l u,—1

from which repetitions such as u; = u; are excluded. Putting
nti
@ = @)= o

it is easy to show that & may be expressed by sums without
restriction, We have

&, =3fw)2f () — Zf(u)f ()= 0,*—0,.

Indeed, to obtain < it is necessary to subtract from the first
expression the terms in which u, =u,.

In the case of ¢, we should proceed in the same manner:
from ¢,® we must subtract the terms in which #;=u, or #,=Uy
or u,=u,; we obtain ¢,*—30,0,. But in this manner we have
subtracted the terms in which u, =u,=u, three times, therefore
we must add a, twice. Finally

&, = 6,3—30,0, + 205,

Continuing in this manner we could show that <5 may
be expressed by a sum of terms of the form

ao,r g4 ... 0p""
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where 4 may be equal to 0, 1,2,3,.. ., but are such that

A +20,+ 3+ ... miy =m,
and @ is a numerical constant.

To distinguish these constants, we will introduce first the
index 24; which is equal to the degree of the term in ¢. Since
there may be several terms of the same degree, we introduce in
these cases a second index u; u= 1 will correspond to the term
in which 2, is the greatest (2£4; being the same), u=2 to the
following, and so on. If there are several terms in which 4, is the
same, then these are ranged in order of magnitude of 1,
and so on.

The number of terms in which Z4; is the same, is equal to
the number of partitions of the number m, with repetition but
without permutation, into 24; parts (i. e. of order 24;).

Adopting Netto's notations (Combinatorik, p. 119) this
number will be written:

e mit2,..)=ra ([ m.

It is difficult to determine these numbers in the general
case, but there are formulae by aid of which a table containing
them may be calculated step by step. For instance

ri(m) = re1(f meny + () m—h).

Starting from I { ‘m) = 1 and from ['™{ r m) = 0 the following
table is rapidly computed by aid of this equation:

Table of "% ( [ m)

m\Z4 1 2 3 4 5 6 1
1 1

2 1 1

3 1 1 1

4 1 2 1 1

5 1 2 2 1 1

6 1 3 3 2 1 1

7 1 3 4 3 2 1 1
8 1 4 5 5 3 2 1
9 1 4 7 6 5 3 2
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The total number of terms in &, is equal to the number
of all the partitions of m with repetition (but without permuta-
tion), of any order whatever. Netfo denoted this number by

r(fm1,23.,.) = I(| m).

These numbers are also difficult to determine in the
general case; but starting from I' [l 1) = 1, they can be rapidly
computed by

r(fm) = r(jm—1) + r(jm; 2.3,.. .).

Table of F(J‘m].

m 1 2 3 4 5 6 7 89 10 11
T(‘m] 1 2 3 5 7 11 15 22 30 43 58

These numbers are connected with the former ones by
Euler’s formula

r# ((m)=r(m—24;1,2,3,.. ., 34).
Finally our formula will be
(3) =2 Az, 0'|;" 0-;"‘ sy Oytm

where Zil;—m and the sum is extended to 24 =1,2,3,., . m,
and p varies from 1 to I'™( rm)

Example. Let m=4, then the number of the terms will be,
according to the second table, equal to five. Moreover two terms
will corfeépond to B = 2 (First table). Indeed the partitions
are

14+14141, 14142, 143, 242, 4,
therefore ¢ will be
¥ =a,0"+a 0,%0, + @y, 0,0, 4 @, 5 0,° + a,o,.

Determination of the coefficient @, , , First we wiil remark
that they are independent of n and of the function f(u) chosen.
Therefore we may deduce these numbers by choosing the most
convenient function. Let us put first
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Fu) = 1;
according to formula (2) we have g; = n, for every value of §,
Hence &%, becomes
T =@, A+ @y "+, (@m F amgz + ., ) nPh o+
t.0+an

but the first member is equal to the number of combinations of
order m, with permutation but without repitition, of the numbers
1,2,3,...,n 1 and | therefore equal to (m), . From this we
conclude, taking account of equation (3) of § 50, that the coef-
ficients may be expressed by Stirling’s numbers of the first kind:

(4) a, =8 @y =81, 4 =8}
and
—_ X2
Qs+ sz +t.,.. = Sk

This gives m equations, since the number of the unknown
coefficients is equal to I’ (fm) an daccording to the second table
we generally have I’ (' m) > m; therefore we need more equa-
tions. )

To obtain them we will put

f(ll,‘) = a%

where y; = 1,2,3,...,n
Since the coefficients a are independent of n we may put
n—=o therefore if a < 1 it follows that:

0,(':"""*—7.

Hence, according to (3), we have
(5) In = Zay,, a"(1—a) “H(1—a2) 4 . . . (1—¢™)~n
where, as we have seen, Zil; — m.
On the other hand, in the case considered
(6) & =2..., ghtat .. tu,.

The coefficients of ¢~ in (5) and (6) are equated, for
w=m+41, m42,m}3,., .. and so on, till the necessary number
of equations for determining the unknown number a.,, is
obtained.
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The coefficient of «” in (6) is equal to the number of parti-
tions of @ into m parts (#; = 1,2,3,, . . ) with permutation but
without repetition.

Netto denoted this number in his Combinatorik (p. 119) by

Ve([wi1,2,3,... ) = V(f o).

The general expression for this number is complicated, but we
know that

(6) Va( fw) =0 if < (-’"5*‘1]
and
V(o) =m! it o=("F").
Indeed the smallest sum, since there cannot be repetition, is
1424, . pm= (’"*2‘1 ) .

The coefficient of a* in (5) becomes, after the expansions,
equal to

) —~.11 —12 ( —lm
(7) % au. 2. 2| }(x2 N
(_1]*I+xi+- Fxy, a‘l+2x'+- -+”’xm+m,
In the sums above, x; takes every value of 0, 1,2, .. . with
repetition and permutation, but so as to have
(8) x, + 2%, +.,,. + mx, = o-m

Moreover the first sum in (7) is extended to every value of 2
and u such that 2il; = m.

In this way we get from (6") with the m equations obtained
previously, in a‘lf"‘zkl) equations, which will generally be

sufficient to determine the @.. since according to our table
m-+1
(™5 ] > 1([m).

But if necessary it would be easy to get even more equations.
Example. Let us determine &, Here Zil; = m = 4; we
have seen already that
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Fe=a, 0t ay0.%0, t ay, 0,0, % a,, 0,° + ¢, 0.
The equations (4) give
04252:1 a, =8} =-6
a,,ta,=S=11 a, = S = -6.
Since there are five unknowns, we need one equation more. To
obtain it, let us remark that since ¢ —=5is less than mé*-l =10,

according to what precedes, the coefficient of ¢° in (6)
is for m=4 equal to zero. We get an expression for this coef-
ficient starting from (8):

x, +2x, +3x, +4x, = 1.

The only solution of this equation is %, = 1 and Xo=Xy==
=x,=0; therefore from (7) we obtain the required coefficient
Zaw.h=4a,+2a,+a,,=0.

Indeed if 24; = 4 then 4, = 4; and if 2/, = 3 then 4, = 2; finally
if 34; = 2 then 4; = 1. From the above equations we conclude that
@, = 8 and Q.,, =3

and finally
& =o0,*—60%, + 84,0, + 36,°—ba,.
Particular case. f(u;) = 1/u; and therefore

1
wi,,.. u,

F =3

Let m = 4 and u; = 1,2, 3,4. We shall have

o __2~5_ _ 205 ) 3 2035. o, — 22369
1=7130 295 % = 8t % T 20736
we find

207360, %) = 390625 20736[——601”02) = -768750
20736(80,0,) = 407000 20736 (—69,) = -134214
923700
therefore

20736¢% = 923700 — 902964 = 20736 and & = 1.

This was obvious, since as there is no repetition the fraction
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can only be 1/1.2. 3.4, and this in every permutation, that is
4] times.

§ 54. Stirling’s numbers expressed by sums, Limits. From
formula (2) of § 51 we have

1

where the sum in the second member is to be extended to every
combination of order m of the -umbers 1,2,3,. . ., n, without
repetition and without permutation. If there is no repetition
the last restriction may he suppressed when dividing the second
member by m! . In order to suppress the first restriction con-
cerning repetition, let us put

According to formula (3) of § 53 the sum in expression (1)
may be transformed into ordinary sums, writing
__n!
(2) Sntt = (=1)~m o 2 amyu ooy .. optn

where Xil; = m.
Particular cases. 1. From m=0 it follows that 4 = 0 for

every value of i, and we have seen (4), § 53 that a, = S = 1;
hence
L= (1) n!
2. Putting m=1we have 4, =1and 4, =4,=...=0

since a, = 1

SZ

2= (=1)" nlo,.

3. If m=2 we may have 4; = 2 or .4, = 1. Moreover we have
seen that @m, = S8~!' = 8} = -1, therefore

S}, = (—1)"n! 1% (0,2—0,).
4, If m=3 we may have 2, = 3,0or 4, = 1 and 4, = 1, or
A3 = 1 we have @p_; = S™' = -3 and a, = S,‘": 2; therefore
4 +1 n ’ 3
Sn+l = (‘—1)" 3 (01 —30,0, + 203)

and so on.
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If we have tables giving o; we may determine the Stirling’s
numbers by these formulae.
Example. 82, = 11 ! o, , but according to § 19

F(11) = 24426 6168
C = 0’5772 1566

o, = 30198 7734

Hence sz == 120 543839’8. In this result the error is equal to
—02,

Formula (2) permits us to determine the approximate
value of §”*! if n is large. Since according to (14) § 87 for
large values of n we have approximately

3) a, = F(n) + C ~ log (nt]) + C
therefore
S'Z:-H ~ (=1)"1 n! [log (nt]) + C].

The logarithm in this formula is a Napier’s logarithm. If
for instance n=11 then log (m+) + C = 3°062123. Multiplying
it by 11! we obtain the result with an error of 1’4% in excess,

Knowing the first values of the coefficients @x, . we
may deduce from (2) the limits of certain expressions containing
Stirling numbers, if n increases indefinitely. For instance

. ISu . 1 [om m) 9" %, '
Jim G ’..';‘Eﬁilmrf(z} nf1 T
Since
7-2

v

or < — if  k>1

and moreover
e . [log (n+1)] _
,122 log (n+1) — 1 ”1;12 n =0
it “follows that
St

. a1l
@) hzr?. —(n—}—l)!
and
|5

mtl 1

,}l:nl n! [log (n+1)]™ “mi

(5)
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From this formula asymptotic values of S%I} can be

obtained, for instance
n—1)!
| S ~ H—l [log n + C]™1.

Variation of S™ in the lines of the table; that is if n
remains constant and m increases. Formula (2) permits us to
determine approximately the value of m corresponding to the
greatest term. We have, writing n instead of n+l

O1m m. e, ™26, ., , .
lim — gueer = lim - ;(_L]; 1_1
r—o0 G',SW,S;"T n—w M 1 m-1___, m—1 alm-aoz + Dy 1 U' m
2

g

Therefore an asymptotic value of the ratio will be:
Sm-H
"
Sy
If n>2 then for m—1 this ratio will be greater than one, that is
the numbers will increase at the beginning of the rows. This can

be verified in the table from n=3 upward, S,’f will be the
greatest term of the row, if

S¥
Sx-1
From (6) we conclude that we have approximately
2> logn>y—1.

- log n
m

(6)

Sx+1

Sz

”

>1 and <1.

Examples.
n=3 logn =1099 greatest term of the row n §?
n=8 logn = 2079 \H
n=21 log n = 3°045 S
n=55 log n = 4007 Sgs
n=131log n = 5’003 S8,

The first two items can be checked by our table.

Change of S™ in the columns of the table; that is if m
remains constant and n increases. From formula (2) we may
obtain

11
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. So
M ..122 N

This will lead, for instance, to the following asymptotic formula

=1,

(8) S"."+1 ~ n§ "
which gives acceptable values if m is not too large. If m=1, the
values given are exact.

for n—oc

m
We have seen that, m being given, the limit of —%—

is equal to zero; now we will determine the differences of this
expression with respect to n. Formula (9) § 52 gives
[ st _ |Sn-1|

(n—1)! n!

9) A .

»
Writing
Sm

SN

“n  (n—1)!

and applying to the second member the formula (1) of § 30,
which gives the difference of a product, we get

m!

o Aot s s
2iallT " nt)n (n-D)! T a1 T gl T
—_— ___1___ m—1

CERVHC R
Therefore we conclude that if
| Qm
—T" <0.

A |8S™1| >0 then we have A
m n

l
n
Therefore the quantity n—';I will decrease with increasing

n if m is smaller than the index corresponding to the maximum
of |§™1 in the row n. We have seen that this maximum is
obtained if m-l is equal to the greatest integer contained in
m
will increase

n!

logn+ 1. Hence if m—1>logn 1,

with increasing n.
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For instance, since log 8 = 2’079, if n=8, the
m
quantity | 8| will be maximum if m—1=3 an{l 7{ will

decrease with increasing n if m < 4. This can be checked by
the table.
Remark. From formula (9) it follows that

A 1S3l Ise

n! (n—1)! +

§ 55. Some applications of the Stirling numbers of the
first Kind.

1. Expansion of factorials and binomial-coefficients into
power series. We have seen that

n41
(1) (o= = Srxm
nd

1 it
@ (R =a % s

The expansion of the generalised factorial was
»41
@) (s = = Sy am b

The above formulae enable us to determine the derivatives
or the integral of factorials and binomials. We have

@) D(})=2% % 8 nx
and
n+41 m+1

Moreover we may determine by aid of the preceding
formulae the factorial, or the binomial moments of a function
f(x) expressed by power-moments, Let us recall the definition
of these moments. Denoting the power moment of degree n by
e#,, the factorial moment of degree n by M, and the binomial
moment of degree n by &%, , we have

oy = £ b M, o= £ @

x=0 x=0
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ofy = I l:] ().

Therefore if we expand (x), into a power series (1) we have
nt1
M= = S::’ M.
m=—1

Expandinglz into a power series (2) we obtain

Particular cases. Expansion of the factorial (x4-n—1), into
a power series. Since we have
(xA-n—1)n = (-1)” (—x)a
it follows that
nﬁl ni-1
(x+n—1), = (—1)mm Smxm= = 181 xm
m==1 m=1
§ 56, Derivatives expressed by differences. Given f(a),

Af(a), A%#(a),,,, and so on, it is required to find DF (x).
Starting from Taylor's series

fex) =3 g

m=0
we obtain "
S (x) =3 xTA™ g,
(1) D (x) “E:;WD f(a).

Therefore it is sufficient to express by differences the
derivatives of f(x) for x=a. To obtain them we will expand
f(x) into a generalised Newton series

A"H(a)
LI
hn

According to the formulae of the preceding paragraph we have

> [x
2 e - 3 (50,

n=0

x—a il ]
[ n '}h = 2 a1 (X-e)” St

Y=n

From this we deduce
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x—a " 1 v=m hn-v k4
p (%°), = E 3 Gl e—a) A S
For x—a this expression gives

[or () = e

" A (a)
G) D f(a) = = _m_'l L S,

n=mnu n - hm

and finally

The value thus obtained put into (1) gives the required
formula, If t(x) is a polynomial, there is no difficultyinapplying
formulae (1) and (3). If f(x)is not a polynomial, the Newton
series (2) must be convergent and the Taylor series too.

Example 1. Given f(x) = t/x;if h = 1 then we shall have

m — (_l}mm! n _(___l)nn'[’
Df @) = 5 and  Ahla) = (o 0

moreover from (3) it follows that

Dt = £ kg

Therefore
(4) 1 _ 2 1Sy
mi g™*! n==m (a+n” '
If a=1 we get
2 ISy
1 =

T

Let us remark, that the last sum is independent of m. Using
formula (10) of § 54 it can be shown that its difference with
respect to m is equal to zero for every value of m.

Example 2. Let f(x) =2%. Putting a=0 and A=1 we obtain

A"t (x) = 2* and D™f(x) = 2= {log 2)™5
therefore according to (3) it follows that

wem N’
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The conditions of convergence are satisfied.
Example 3. Let f(x) = F(x) = Dlog I'(x+1). Putting a=0
and A=1 we deduce

A"F(x) . (—l)n-l (ll-l) !

(x+n)a
From formula (2) § 21 it follows that

DF(0) = (—1)™iml 3

x=1 xmtl ‘
Therefore formula (3) gives
@ ® Sm
(6) L g IS
=1 X" w=m nln

Remark. Formula (3) becomes especially useful if we deal
with functions whose derivatives are complicated, and the
differences simple.

§ 57. Stirling’s numbers of the first kind obtained by aid
of probability. Let us consider the following particular case of
Poisson’s problem of repeated trials: n trials are made, and
the probability that the i -th trial is favourable is p; = if(n-1).

According to the general theorem of repeated trials, the
probability that among n trials x shall be favourable is:

) Pe) = E (11 (3] Toum.

where p,,, », denotes the probability that the », -th, », -th,
..., and that the »¢ -th trial shall be favourable. Since in the case
considered the events are independent, we have

VVy .. Vg

Py w w = Py, Prg--- Pu= W.

The second sum in formula (1) is to be extended to the sum
of the products of the combinations of order s (without repe-
tition and without permutation) of the numbers 1,2, ... n. But
we have seen, in § 51 (formula 1), that this sum is equal to
the absolute value of the Stirling number of the first kind SjFi—.

Therefore

s] [Suti—]

nt1
(2] P(x) - s§x (_I)Xﬁ [x _(n—}—l]s
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Multiplying both members of this equation by[ 1:and

summing from x=i to x=n+41 we make use of formula (3},

§ 65:
E:H (— 1)"*'[ ]( ) l—'S

x=1

that is, the sum is equal to zero if s3i and equal to one if §=i.
Consequently we shall have

_ n4-1 x
3) |S*Hi—s| = (nb1)s 2.(1'] P(x) = (n+1)*B:.

1
nt x=i

If we denote by 6O(f) the generating function of the
probability P(x), then 3 the binomialmoment of order § of the
function P(x) is given by

1 [de
@s: S_[dts Q(t]]bl-

It is easy to show that in the case considered above gener-
ating function is the following:

(@ o1 = T (gtai)

where ¢; = 1—py
From this we conclude that

This formula may serve for the determination of the
Stirling numbers. From (4) it follows that

n+4
D@(t) = X
o = ol Z (qi+th)

Determining the s-1 -th derivative of this quantity by Leibnifr’s
theorem, and putting #=1 into the result obtained, we get:

. w41
Dow =X (oo E (1) ot

and in the particular cases:
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D 6(1) ==p,
D? 6(1) = (Zp))*—2pi
D? 6(1) = (2p) 2—3 Zp; Zp;2 + 2 Zp?

and so on.
For instance, if n—=6 and s—=3, we have
343 91 441
4 — 77 — —_ ——| =
St = [27 9. %5 +2343] 735.

§ 58. Stirling’s numbers of the second kind.>® Expansion
of a power into a factorial series. Let us first expand x" into a
Newton series:

x 7 =

w1 A"'x"
2 (x )[ .
m=1 mll *=0

We will call the number in the brackets, a Stirling number of
the second kind, and denote it by &7,

W:Amxn

(1) & =T e

Hence we have
2 x=8lx+&(x), +... 4G (Xnt...+ &)

Starting from the definition (1) we conclude immediately
that =0 and &*t” = 0 if m>0. Moreover, putting into
equation (2) x=1 we get &'!= 1.

2% The first table of these numbers has been published in:

Jacobo Stirling, Methodus Differentialis., . , Londini, 1730, p. 8, up
to n=9; but the author did not use any notation for them.

There is a table in:

George Boole, Calculus of Finite Differences, London, 1860, p, 20, of the
“differences of zero”, which Boole denotes by /A#0m; this corresponds to

Adm = [Anxm],_ = m! &)
the range of the table is up to n—=10.
A smaller table of the Stirling numbers of the second kind is given by
Oskar Schlomiich, Compendium der Hoheren Analysis, Braunschweig,
1895, p. 31; his notation

C," corresponds to our &y7,.

Niels Nielsen, Gammafunctionen, Leipzig, 1906, p. 68, calls these num-
bers, for the first time Stirling numbers of the second Kind; his

€, corresponds to our (—1)#+m G:;L 1

In C. Jordan, loc. cit. 24, p. 263, there is a table of &, up to n=12,
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From the definition we may deduce a general expression for
the Stirling numbers of the second kind. Indeed, dealing with
symbolical methods in § 6 we found that the operation of the
m -th difference is equivalent to the following:

mtt
A? = (=) 3 (—1) (’:’]E
=1
If f(x) = x"/m! the operation gives for x=0
" xn e (_1)m m+1 ‘[m]
@ |4 =er="TCTE af)e
If a few of the Stirl/ing numbers are wanted, this formula
is a very convenient one to determine them; but if we want to
compute a table of these numbers, then there is a better way.

The formula giving the higher differences of a product is
the following (§ 30):

Am(uv) = v(x+4+m) A™u + [t;z ]Av(x+m—1) A" u 4. . uAmv(x).
Putting v=—x and u—x", gives
A™ xr1 = (x+m) Amxr + mA™ xn;

dividing both members of this equation by m! and putting
x=0 we obtain according to (1)

@ @:H =@r' + mep.

We may also obtain this equation starting from x™' = x . x" and
expanding x™! and x" into series of factorials, then writing
x . (x); = (x)uy + i . (x); and finally equating the coefficients
of (x), in both members.

We shall see in § 181, dealing with partial difference
equations , that the solution of equation (4) leads to formula (3).
But if we want a table of the numbers @ there is no need to
solve this equation. Starting from the initial conditions

€y=1and @r=0if m+0

which follow directly from the definition (1}, we may obtain
these numbers step by step, by aid of the equation (4).

From this equation it follows that the Stir/ing numbers of
the second kind are positive integers.
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Stirling numbers of the second kind €%,

n\ m 1 2 3 4 5
1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1
7 1 63 301 350 140 21
8 1 127 966 1701 1050 266
9 1 255 3025 7770 6951 2646
10 1 511 9330 34105 42525 22827
11 1 1023 28501 145750 246730 179487
1 2 1 2047 86526 611501 1379400 1323652
n\'" 1 8 9 10 11 12

1

2

3

4

5

6

7 1

8 28 1

9 462 36 1

10 5880 750 45 1

11 63987 11880 1155 55 1

12 627396 159027 22215 1705 66 1

If we put x=-—1 into formula (2) we get
(5 1)” H:S_‘l, !
- —_ —_—1lm & m
5) (-1) _...=1( " m! €p.

This equation may be used for checking the rumbers in the
table.

In some particular cases the resolution of the difference
equation (4) is simple. The results obtained may shorten the
computation of the table. For instance, putting into (4) m=1
we have

la=8L=8 =1
Putting m=n-1 it follows that
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6:1} =8 =6} = 1.
Determination of @™ by’ aid of equation (4). Putting
m=n we get
&, —&' = A G = n.

the operation A™ gives

n—] — n
et = [21 + k.
Sinc_e %1: .1, ,k.-.ol

Putting into equation (4) m=n—v41 we obtain in the same
manner

(6) A 8 = (n—v+1) Gl

. n
Hence to have @*=2?we multiply @ = (2) by mn-1 and
perform the operation A™'; consequently &*~% will be of the

fourth degree in n, &3 of the sixth, and so on. &
o will be a polynomial of n of degree 2m. Let us write it as
follows:
w—n n = n
- (7) e = Cm,o[zm‘ +Cos2m 1) +

+...+(“7,,,,,,,_1[m’;1] 4 oo 4 Chom-

Multiplying both members by (n-m), the operation [P" gives

2m43 — —_
&t =" ((m—st 1)y + m—st1Cni)(2m fas] + &

but in consequence of the definition (7) we have also
. i3 n
—m— —_ L4
e:; —_ .950 Cm+1,s ( 2m+2—s A

therefore the ‘numbers C, ; satisfy the following partial
difference equation

(8] Cm+1, s = (m—s+1]ém, s-1t (2m—s+1)é,,, s
and 6m+1, omye = k-

From @r~1= [g]it follows that C,, o = 1 and C,s=0if
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s#+ 0. Starting from this, we obtain by aid of (8}, as in § 52,
step by step, that Cp, s=0 if s > m—1; hence we have also k=0,
Therefore, putting s=m into (8) we get:

CM+1.m = Hm, m-y = Cl. o= 1.
If §==0, from (8) it follows that

Criio = 2m4+1)Cp .

The solution of this difference equation is
Cn ,= k o (2i+1).

C. , = 1: therefore k=1, and Cp , =1.3.5..... (2m—1).

Starting from _61.0 = 1 we may compute by aid of (8) a
table of the numbers Cp. ;.

Table of the numbers C, ;.

m\i 0 i 2 3 4 5
1 1

2 3 1

3 15 10 1

4 105 105 25 1

5 945 1260 490 56 1

6 10395 17325 9450 1918 119 1

From (8) let us deduce an equation which may serve for
checking the numbers of the table. Multiplying both members of
the equation by (—1}* and summing from s=0to s=m--1 we get

" (1) Cpurs = = [(—1)° (mt1—s) Cnss +
=0 =0

+ (—1)* 2m+-1—s) C,, 4]

Putting into the first part of the sum in the second member s
instead of s-1 and simplifying we obtain

41

2 (—1)Cpys = (m+1) = (—1)Cpys.
=0 5==0
Denoting the sum in the second member by f{m), we have

f(m+]) = (m+D)f(m).
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The solution of this difference equation is f(m) = m! k. Since
#(1)=C,.,=1 k=1 and finally we have

©) ;":'0 (—1)Cps = m!

This relation may be used for checking the table.
From (7) we conclude that

[10) AZm e:--m - EM.O .

Remark TFormula (7) is advantageous for the determination
of €™ if nis large and m small, For instance if n= 12 and m =3,
we have

&, =15[2] + 10 2] +| 2| = 2235,

The computation can be made very short by aid of a table
of binomial coefficients.
§ 59. Liits of expressions containing Stirling numbers of
the second kind. From equation (3) § 58 it follows that
(o —1)m mid (m il
(1) o= EE 7] (2)"
m m: =1 m
If n increases indefinitely, every term of the second member
will vanish, except that in which i—=m; therefore we have

7)) lim —» = —.

The values thus obtained are acceptable if m is small. For
m=1 the value is exact; for m=2 it gives 2"! instead of 2"!'—1{,
If m>2 then the error increases indefinitely with .

From (1) we may deduce

o @...“ [m+l) —m+1)| 22 )+
T w2+
m
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Neglecting the terms which are not written in this formula
we may determine the greatest term of the row n in the table, @
will be the greatest term if for m=y% the ratio (3) is smaller than
one, and for m=y%—1 greater. According to (3) the conditions fos.
a fmaximum are

(x+1)" + 2(—1)"< 2y"

£+ (—1) (7—2)"> 2(—1)".

By aid of these inequalities we find, for instance, the follow-
ing greatest terms: &%, &}, &3,. Our table shows that this is
exact.

From formula (3) we may deduce the following limits:

@m+l 1

4 imn —————— = ——
@ m @...(m+1_]" m+1

"t m
and from (2)

@m

(9) lim =X = m,

n—up 6:‘
If m is small in comparison with n, then the asymptotic formula

g:l"-H ~ m@:

gives a relatively good approximation. For instance from &} we

should get €}, ~ 85503 instead of 86526.
Starting from the polynomial expression of &=, formula
(7) § 58, we may deduce:

. &= ¢, 1.3.5... (2m—1) 1
(6) Im —em = Gm)1 om) ! ~ml2m

We have seen, § 52, formula (8), that the limit of the cor-
responding Stirling number of the first kind is the same.

§ 60. Generating function of the Stirling numbers of the
second kind, with respect to the lower index, Starting from
the difference equation of these numbers (4, § 58)

1) e’;’_ﬂ—e:‘ — (m+1) €™l =9

we denote the generating function of &” with respect to n by
u(m, t) and determine it by the method of § 11. We have
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Ger = umt) = 3 &

Obviously it follows that
GS»t! = u(m+1, #).

Since &»t! = 0,

GEnt! = u(m+4-1,1) '

n41 t

Finally writing that the corresponding generating functions
satisfy equation (I), we obtain

(1—t—mt) u(m4-1,¢{) — t u(m,t) = 0,

This is a homogeneous linear equation of the first order,
with variable coefficients; its solution is, as we shall see later,

m t
ulm, ) = () go ==
where w(f) is an arbitrary function of # which may be deter-
mined by the initial conditions. Since & ! = 1 and therefore
u(l, f) =t | (-f), we conclude that w(f) =1; so that the gener-
ating function with respect to n of the numbers '6__':' will be

1 m ®

= 1-H (1—2f) (1—=38 , , , A-mbH 2,

2 u Sutn.
Remark. The expansion of this function in a series of powers
of t gives the solution of the difference equation (1). This is
Laplace’s method for solving partial difference equations.
To expand the function u let us put f =1/z; then we may
write

u = z|z(z—1) (z-2) . . . (z-m).
This decomposed into partial fractions (§ 13, Example 2)
gives
fm
—1)m m+4-1 (—l)'[ ]
(=1) : x — 8

u =—
m! =0 r-i

Putting again z=1/t we find
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(——1)"’ m4-1 (_I]i{ ] —1)’" m+1
m! :’=o 1—it m! =

2 1| 7) e
n=0
Therefore the coefficient of #* is the following
] m+t (m) .,
§) or = (1 53 [ 7)i
This formula has already been obtained in § 58.

The generating function (2) may be written in the following
form

(4) u= (1 t4224. . ) (142622824, , ).. (L +mi4-m22 . | )™

From this we conclude that &2 , the coefficient of " in
the expansion of this function is equal to the sum of the products
of the combinations, with repetition, but without permutation, of
order n-m of the numbers 1, 2, 3, . . ., m.

Example.

€ =1.1+1,2+1.342.242.343.3=25
€ =1.1.1.141.1.1.241.1.2.241.2.2.24
t-2.2.2.2 = 31.

We may deduce another rule to obtain these numbers.
t? t
therefore using Cauchy’s rule of multiplication of series we get

hd 1
et—1)m = X £ ¥ —
( ] n=m f rr! r2.'. . .r,,,!
where the second sum is extended to every value of r;=>0 (with
repetition and permutation) such that r, + r, + ...+ rp = n.
We shall see later that

w
( _._l)m — E ._nL@m tn
therefore we conclude that
! 1
5 " — —n—— - -
©) <. m! rdrl o ryd

where the sum is formed)as above.



Examples.
c3 .| _25
H 1!1!3!-}-31!2!2!
2 2 ‘i =
~2 ~ 31
€ = 6.5.4.3 1“5';_2!4! 3731 - 31.

§ 61. The Stirling numbers of the second kind obtained
by probability.”?2 Let an urn be given, which contains the numbers
1,2,3,,,.,m. Let us draw successively # numbers, putting back
every time the number drawn, before the next drawing. The
probability that in n drawings the number one should occur r,
times, the number two r, times, and so on, finally the number m
should occur r, times, is, according to the generalised Bernoulli
theorem of repeated trials, equal to

(1)

rllrz.,..r,,, ( )

Let us now determine the probability that in n drawings
every number out of 1,2,3,., ., m, should be drawn at least
once. This is given by the theorem of total probabilities

@ P= (%) 2

where the above sum is extended to every value of r; > 0 with
repetition (and permutation), but satisfying the condition

r+r,tr,t.,..trp=n

According to formula (5) § 60 the sum above is equal to
m! 3™, so that the required probability is

(3) P —_ n? @m
On the other hand this probability can be determined by
using the generalised Poincard theorem, which gives the proba-
bility that in n trials every one of the m events should occur
at least once. According to the theorem, this probability is ob-
%a Ch. Jordan, Théoréme de la probabilité de Poincaré généralisé. Acta
Scientiarum Mathematicarum, Tome VII, p. 103. Szeged, 1934,

12
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tained by subtracting from unity the probability that one of the
events should not occur; this is

[m) m—1 "
i m
then adding the probability that #wo of the events should

not occur
2) (%)
2 m

then again subtracting the probability that three of the events

should not occur
[m [m—3 "
3 m

and so on. Finally we have
1 2 m
P = — 3 (1 [ ] m-s)“.
=2 | | mo

Equating this value to that obtained above (3), and putting
m—s—i, we get the expression forthe Stirling number obtained
before (§§ 58 and 60):

i m+1 Am
foam . — - . 77!
\'nl__m! '_El [ l)m‘[l]l,

Remarks. 1. From formula (1) we may deduce in the same
manner the probability that in n trials, out of the m numbers
there should be drawn any g numbers, no more and no less;
this is

nv[T] (_1_ "

= ¥ ——
P rtr.door t Um
where the sum is extended to every value of r; > 0 (with repeti-
tion and permutation) such as r, +r, +., .+ r, = n. Then
according to (5) § 60 we shall have
1 w!
—— == Il
rirdt. . or! n!c”

and finally the required probability will be

— m S
(4) P.“ - m" Cn '



179

2. From formula (3) it follows that the number of such
combinations with repetition, of order n, of m elements in which
each occurs at least once, is equal to m!&™ .

3. Moreover from (3) we may obtain the probability that in
n trials every one of the m numbers occurs, but the last of them
only at the n -th trial. This is:

m! m! .
P,,~--P,,_1 = ﬁ [@;,"—m @T:‘l] -— ﬁ @n_‘l.

§ 62. Decomposition of products of prime numbers into

factors [see also Netto, Combinatorik p. 168]. Given

Wy = qa,a, .., . Cp
where every ¢ i1s a different prime number, Let us denote by
f (n, ¥) the number of ways in which w, may be decomposed into

y factors (without permutation). For instance, if wg == a,a,a4
we shall have

f31)=1; (a,a,0,)
f(3v 2] =3, (alaz)a3 t (azas)al v (agay)a,
f(3,3) = 1 (o) {2;) (ay)

From these we may easily deduce the number of ways in
which w, = e;a,e¢,a, may be decomposed into factors. For
instance, the decompositions of w, into three factors will be
obtained:

First by adding a, to each decomposition (3, 2) :

(2,0, (a3) (ay) (az0;) (a,) (@) , (2;2,) (a,) (a,) .
Secondly by multiplying successively each factor of the
decompositions f (3,3) by a,
(@,a,) (ay) (a)) (o) {az0,) () (a,) (a3) (aga4] '

Thus we have obtained every decomposition of w, into three
factors, and each only once; therefore we have

F(4,3) = £(3,2) + 3/(3,3).

Proceeding exactly in the same manner we should obtain
f (n, ¥} starting from f (n-l, v—1) and f (n-], »); we will obtain
them first by adding the factor a, to the decompositions
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f (n-1, r-1), secondly, by multiplying successively every factor
of the decompositions f (n-l, ») by @, j therefore each of these
decompositions will give » new ones, so that we shall have

Fny) = f(n-1, V-1) + »#(n—1p).

But this is the equation of differences which the Stirling
numbers of the second kind satisfy; moreover the initial con-
ditions are the same, indeed ¥#(n,1) =1if n>0 and f(n,1) =0 if
n 4 0. Therefore we conclude that

(1) f (n,v) pomas
That is: a product of n different prime numbers may be

decomposed into v factors in &} different ways (no permutation).
Starting from the number of the decompositions of

Wp_o == alaz P an_g

into v factors, denoted by f(n-2,u) we may deduce the number
of decompositions of

— g2
Wy =0°010y. ... Oy

into v factors, which we will denote by F(n,u). Let us remark
that into w, the prime number a enters twice.

The decompositions of @, into v factors are obtained:

First, from those of w,_, into v-2 factors by adding to each
of them the two factors a. a ; the number of decompositions
obtained in this way will be equal to f (n-2, »—2).

Secondly, from those of w,_, into v-1 factors by adding the
factor @ and then multiplying each of the ¥ factors by a: the
number obtained in this manner will be equal to v . f (n-2, »—1).

Thirdly, from those of w,_, into v factors by multiplying two
of these factors by a; the number of ways in which this may be
done is equal to the number of combinations with repetition but
without permutation of v numbers taken two by two, that is,

[ »+1 ] Hence the number of decompositions thus obtained will
be equal to | —5 f(n—2p).
Finally we have

F (ny) = f (n-2, v-2) +vf {2 v—l]+[v+1]f(n—27)
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and in consequence of (1)

F(ny) = €2 +v6,_2 + {1’+1] e,

n-2

Example. Let w, = 420 = 22 .3 .5 .7 and »=3. Since n=5,
we find
F(53) =8!+3&? + 68} =16.

This result may easily be verified.

§ 63. Application of the expansion of powers into a series
of factorials, The expansion of x" into a series of generalised
factorials is the following:

(1) = §i b &:(x) .

1. From this formula we may obtain A™x" immediately
h

il
[Ay" xt = f: e *m (0)  6; (%) vomi-
=
Putting x=0 we have
[A’" X0 = h* ! @:'
A

2. Determination of the sum of x". From (1) we obtain
w41 hn -p~1
v (x), k.

151 'l'+1 @ﬂ( ) +1.h +

We shall see later, that if A—1 the sum may be expressed
by the Bernoulli polynomial ¢, ,(x) of degree n4-1, as follows

A x" = nl gy, (x) + k.

This polynomial written by aid of the Bernoulli numbers

Bl is
S n+1 ) n1-i

(3) (pll-ﬂ [x] (n+1)! ,_2'0 B [ ¢

Expanding the factorials figuring in the second member of
(2), into a series of powers of x we find, if A=1,
n4-1 @" v42

0 Arar =2 28 3 S, e

(2) é’l F S
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Equating the coefficients of x! in the expressions (3) and
(4) we get
(5) B — (—1)"!

VEI 'y+1

This is an expression for the Bernoulli numbers by Stirling
numbers of the second kind.

3. Expression of the power moments My by factorial
moments M, and by binomial moments By. In § 55 we
denoted by

6#

My = § x"f(x)
2=0
¥
M, = xzﬂ x(x-1). , , . {x—n+1) f(x)

B, = = [:] #(x).

From (1) it follows that

n+-1
(6) My= I Er My
and B
(7) My = 21 m! &» B,
m=

§ 64. Some formulae containing Stirling numbers of both
kinds, Let us expand (x), into a power series, and then expand
the powers into a factorial series again. We get

n+1 . ) nﬁl i1
w = 2 § x = PDRACEY
=1 =1 m=]

Since the coefficients of (x) , in the first and in the last
member must be identical, we conclude that

n+1 o 0
(1) 2 S ®=um,

that is, this sum is equal to zero if m is different from m and

. . . - 0 .
equal to one if n=m; the binomial coefﬁcnszntI m J being equal
to zero for every positive or negative integer value of m ac-

cording to formula (4) of § 22. Moreover 181 =1
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In the same manner expanding x" into a factorial series,
and then expanding the factorials into a power series again,

we find
i+l

ntl . n+1 .
= 2 € (x):; = 2‘; 21 & Srxm.
=1 =1 m=

Since the coefficients of x# in the first and in the last
member must be the same, we have
n+1

2) S e sr=|

=m

0

n—im.-

This is also equal to zero if n is different from m and equal to
one if n=m.

The limits of the sums (1) and (2) can be made independent
of n and m, since for i<m or i>n the expressions under the
sign 2 are equal to zero. We may sum from i=0 to i=; this
is often very useful. We shall see in the following paragraph
that the above formulae may serve for the inversion of series.

§ 65. Inversion of sums and of series. Sum equations. In
certain cases it 1s possible to perform this inversion, by which the
following 1s understood. Given

(1) rex) =5 i) pled

where f(x) and ¢ (x,i) are known and y (1) is to be determined:
Let us suppose that equation (1) holds for every integer value
of x in the interval § 2x 2 y.

If it is possible to find a function w(x,n) such that

J

(2) 2 ol olen) = | 2

n—i

that, is if the first member is equal to zero for every value of i
different from »n, and equal to one for i=n (supposing
B 2 n 2 a), then multiplying both members of (1) by w(x,n) and
summing from x=y to x=4 we obtain

[i]
2 f(x) wlxn) = y(n).
=y

Indeed in the second member of (1) each term will vanish
except that in which i=n.
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The only difficulty is to find the function w(x,n) corres-
ponding to @(x,i). We have deduced already a few formulae of
the form (2). For instance we had in § 45

3) § () (m] n—m
0 "2 o (7)) = (220
and in § 64

n41
) T ser=(2,
(6 3 osre =00

In these formulae, the limits may he made independent of
n and m since for m>x=20, the first members of (3), (5) and (6)
are equal to zero and also for x>n. Therefore we may sum
from x=0 to x=0.

Example 1. Given the Newton series

1) =10) +[7] ar0) + (3)a0 +... + 3] am@ + ..

multiplying both members by (—-—1]"*"[ 2 J and summing from
x=0 to x=n-}+1 we get

T o (3] 16 = Ao,

This formula has already been obtained in § 6.
Example 2. We found, formula (3) § 52:

m

s = £ Con |

2m—i ‘I .
n and summing

multiplying both members by (—1)mi
from n=m+41 to n=2m—i-}-1 we get, according to formula (3],

2m—|'+1
T () ’2m

Sn [ J— Cm:

n=m+1

Example 3. We had, formula (7) § 58:
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n

e " = ,-Eo Cm.» [2m—'y ];
C w [ 2m—i . .
multiplying it by (—1)** n J and proceeding as in Example

2, we obtain

m = Cpy

m—é+1
2 2-i~ (—1)’”'[2’"

a=m+1
Example 4. In § 50 we found
(X)m =S, x+ 8 x24+ 83 x3+,, , +8 x+.. .+ 87am

multiplying this equation by ™ and summing from m=1 to
m=n-+1 we have, according to (6),

n+1
2 (@nr=x

This formula has already been obtained in § 58.
§ 66, Deduction of certain formulae containing Stirling
numbers. 1. Let us write

(x+1)s = (x+1) (%)ny .

Expanding both members into power series we obtain
n+1
28 (et1) = (xt) 2 Sk, xv
y=

Equating the coefficients of x™ in both members of this
equation, it results that

n+l
0 PR MR
Znversion of the sum (1). Let us multiply both members of

(1) by (—1)mt* ["T;Jand sum from m=Fk to m=n+1; we get

k & +kjMm m—1
Sn = ME_ (_1]’" [ ][Sn—l + Sn—l

If we put m+4-1 instead of m in the second term of the
second member, then the terms of the second member may be
reunited, and we obtain
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@ $t = 3 (—ymhn (I sm

m=k—1
Repeating the operation, multiplying both members by

(—1) =+ Ik-:l ] and summing from k=»+41 to k=n41 we
have

n+1 S
3 2 (=1 [ kv ! ] Sh=25_,.
k=vr+1
Particular cases. Putting m=1 into (1) we have
n§1
@ v 8 =S8_,= (1) (n-2)!

=1
Putting 2=2 into formula (2) we find
n
2 (—1)"'mSr, =S§3.
m=]
From (3) we get

n41 m
F (F) smt = 2.

2. Multiplying both members of formula (4) by &? and
summing from n=2 to n=m-4}1 we obtain

m4-1 n+1 m+1
B 2(-1)” (n=2)I€2 =3 2,8 8" = m-I.
n=2 = =2 m
Indeed, in consequence of formula (2) § 64, the second
member summed from 71== 1 to m+1 would give m; but since the
first member is to be summed from n=2 to m-41 and therefore

the second member too, we must subtract from m in the
second member its value corresponding to n=1, that is
1 &1 —
SigL=1

so that it will become equal to m-L
3. Formula (2) may be written

n+1
R o i l',','] Sm = Sy,

Multiplying both members by €; and summing from n=y to
n=u-+1 will give
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(6) 2 S+l Cn = (—1)rtr [‘:,]

n+1

Formula (6) multiplied by C , and summed from y=m—1
to v=u+1 gives

41

™ =2 e, |

y=m-—

4. Formula (3) may be written

avl |
5 (T sum =si;
multiplied by c"*, and summed from n—=y to n= u+1 this
gives
v - @&ntl *] -
® 3 siem=(}):
multiplied again by €™ and summed from y=m to »=p-+1 we
obtain
att

©) M[ ]@"’ = entl.

5. Starting from x(x), and expanding the factorial into a
power series, and then expanding the powers again into a fac-
torial series, we get

n<42 -1

x{x), :n§2 St xt = 2 3 §1@ (x);
1=2

=2 =t
but we have also
x(x)n = (X)nar + 1 (x)n
therefore we conclude, writing »+1 instead of v, that

n--1

(10) El S: €, =n n_,)+[n+1—zl

That is, the first member is equal to zero if i is different from n
and n+1; moreover, it is equal to one if i=n+1 and equal to n
ifi:n.

6. Starting from x. x" and expanding x" into factorials and
then the factorials into a power series again, we find
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n41 n+4-1
x.x" = 2’", x(x), &7 = 21 S [(x)vsy + ¥(x).] =
n4-1 42
=% &% (85, +r5)x.
=1

=1
From this we conclude
nt1 4+l ,
(11) F's & + T 08 &
=] v -

vl r=1

[ 0
n1—i}.
That is, the first member is equal to zero if i is different from

n+1, and equal to one if i=n+1, In consequence of (6) it
follows that

n+1 i Y - n
(12) 2 vsie = (- ()

if n is different from i-l.
This formula multiplied by ©T and summed from i=m to
i=n+1 gives

n+i A n
(13) Z =)™ [ i—-l] & =mey
Equation (12) multiplied by S? and summed from n=i to
n=m-+1 gives
! -+ n n i
(14) 2 e (L) sn=ms;,.
7. Starting from the difference equation (4) § 58
@:,"_H —_ @'_"—"‘ —m @"r" =0

and summing from m =1 to m=n-}2 we obtain

n+2 n42 n+1
2 oer, = % et +'3 men,
m=1 m=1 m=1
this gives
n+2 a1
(15) El er, - §1 (1-+m) &
m= o=

Multiplying the difference equation by (—1)™ (m-1)! we
get

(=)™ m-n { &r,, = (—1)" m! & —(—1)™* (m-1) | !

that is
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A [(—1)™ (m-D) | @r—t] = (—1)™ (m—1) [ &7,

hence performing the operation A™ we find

1 A2 [CD” (m-D) 18r,]= (1) (m-1) | &+

From this we conclude that the sum, m varying from one to
n+2 is equal to zero, since the quantity in the second member is
at both limits equal to zero. That is

n4-1
a7 2 (~1)" (m-1)! &™ = 0.
m=1
Moreover if m varies from y--1to n+2 formula (16) gives
n+2
(18) m=§+1(—1)"' (m-1) ! &r, = (-1) #'ul &.
This equation multiplied by S #*! and summed from n=x to n=y
gives
(19) S ST Gp = (—1)rrett
n=u

(»—1)!
—T

§ 67. Differences expressed by derivatives, Given #a),
D/{a),D?*(a),... and so on; it is required to determine ASf(x).
Starting, from Newion’s series,
A"#(a)
2 (x—a %
(1 = 2 (%20, A

if this series is convergent, we may determine the differences of
f(x) term-by-term

2) hAsf(x) = mi (;_—_; Jh hsm hAmf(a) .

Therefore it is sufficient to express, by derivatives, the
differences of the function f(x) for x—=a. To obtain them we will
expand f(x) into a Taylor series:

[ nf
f(x) = % (e—ap D7D,
But according to formula (1) § 58 we have
[é"‘(x—a)"]m =m! A" CM
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therefore

© i
3) A"f@) = £ =5 k' DHa) &
h n=mh.

The value thus obtained put into (2) gives the required
formula. Formula (3) may be deduced by inversion of the series
(3) § 56. Indeed, multiplying this series by A"&* Jm} and summing
from m=~% to m=c°, we get
-] hm [ é"f(a) ®
b — D"f(e) @ = = z Sr@t.

m! m . n=0

m=k n ! m—=k
We have seen (5 § 65) that the second sum of the second
member is equal to zero if n is different from & and equal to one
if n=~k. Accordingly we have

AY f(u) = § nT hm D" (a) &t .

This formula is identical with (3).

Example 1. Putting into formula (3) A=1 and f(x) = log x
we find:

(_1]n+1
(4) Amlogx =l o g e 27" e,
n=m nx

In the particular case of the even differences m=2» it is
more advantageous to expand A% logx into a series of inverse
powers of x-+v instead of the inverse powers of x. Writing

z=1/(x4») we find x:(l—vz)/z and
1 —n i
—_ e iy ——
== 20— = oy £ - (Y rraan
finally putting n4+i=g we have
-1 |
@ pie [ (—'l)n [ ]
2 Jog x = (2v) ! ] L2y T Mg,
(5) A 0g X (21’) og e ME—Zv (x+v)[b a=2v pn @
From this we conclud2 according to § 6, that the last sum
of the second member is equal to

@211
[ %]
n=0.

But in consequence of formula (1) , § 59 we have
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F=gn 2 o (D)E)
therefore

He= @i 2 ol
— A2 3 i ) i
] = 2 () e

We remark that if g is odd, the terms of this sum corres-
ponding to i and 2»—i are equal and of opposed sign, moreover
the term corresponding to i=w» is equal to zero. Therefore if u
is odd the sum is equal to zero, so that we may write 2i insted
of u in formula (5).

Determining the first two terms of (5) we have

(2v—1)1 v(2v+1)!
2w —— — — —

A logx“‘loge[ x+9)> = 12 (xpP*?

2
»2 2o‘§1 (=1)" [ l] @m ]
i=rt2 2i(x4+2)¥ =20 n»"
Particular cases.

— (@)1

A?logx = loge [ 1 __ 1 - 1 —1
- (x+41)2 2(x+1)4 3(x+1)¢
6 20
9 —— . — °
A logx._loge[ =12 TESID ....1
Two terms of the first expression and one of the second are

sufficient for an exactitude to twenty decimal$ if x 2 10000.
In the notation of central differences this is

1 1

1
2 - —— — —————— — —— ——
8% log x = loge[ po Rl ot 3

and

6‘logx:loge[——i——. ]

x* x
Let us choose tbe most unfavourable example. Putting
x==10000 the first two terms give

9% log 10000 = —0°00000 00043 42944 81903 25
—_ 2171 47

— 000000 00043 42444 84075

the first term gives
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&* log 10000 = — 000000 00000 00000 26057 64.

The results are exact to twenty decimals.
Example 2. Putting m=1 into formula (3) and writing x
instead of @ we get
«  hinyif
Afe = 2 %,(_")-.
Letting # (x) =1/*™ and h= 1, we have
1 s (=) (m+i—1)
—_ = X
A xm

i=1 l ! xm+i ¢

Performing the operation A™ on both members of this equation
we get

S +k= 5y T Jas L

Let us introduce the notation

s 1
s = 2 —,
" =2 X"
The sum of the above equation from x==2 to x=% is
1 s m4-i—1
C = e Y

Putting m=1 we obtain
v L] M +
Yo = 2 (1) s,
=t

The series is  alternating and lim s,’=0; therefore the
series 1s convergent. =
Verification.

32
) 2 (—1)" s, = 0’50000 00000.

The numbers §," are taken from 7. J. Stieltjes' paper, “Table

des valeurs des Sommes 2 n7F,"” (Acta Mathematica. Vol. 10,
1

p. 299.)
§ 68. Expansion- of a reciprocal factorial into a series of
reciprocal powers and vice versa, We found in § 60, that the
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generating function of the Stirling numbers of the second kind 5:'
with respect to n, is the following
m
1—fH(1—-26.. . (t—mt) —
Putting {=1/z we get
(1) SLE .

(Z)mea  w=m zZP1

EG#"

If z>m this series is convergent. To show it, let us write
u, = ©[z** and remark. that according to formula (2) § 59

we have
e (7
- 1=
lim 4, = lim —% ~2— == [’")
n—=o —c mMm* z mlz n—-a
therefore if z>m this limit is equal to zero. Moreover from for-
mula (5) § 59 it follows that

lim 51— iy omt T
n=n U w=w zS. z
Hence if z>m then this limit is smaller than one and the series
is convergent.
Formula (1) may be transformed by writing z—=—x; then
we have
« =~ _ 3 &
(2) (-D“(x), = (x+m) 2 (_1)" .
In consequence of what has been said, this series is con-
vergent if x>m.
The expansion of a reciprocal power into a series of recipro-
cal factorials may be obtained by the inversion of the series (2).
Let us multiply each member of (2) by (-1)’ S* and sum from
m=0 to m= %, According to (5) § 66 every term of the second
member will vanish except that in which n=». Hence we have

_§ w5 IS
- ...E, (x+m)m S'" - hzv (x+m)

= § lS:,l(x]_,,.

Multiplying both members by 1/x and writing »-1=n, we
obtain a second formula for the expansion of a reciprocal power:
13




1 O s .t
[4] F = ——t (x+m)m+1 = —E—ll Sm | (X_l)r_’

This formula was first deduced by Stirling (Methodus
Differentialis, p. 11).

Application of the above expansions. Formula (1) may serve
for the determination of the derivatives of a reciprocal factorial.

We find:
° 1 s U1 %Is (n+s)s "
(5) D m = 2 (—1) Tgetivg 6»

n=m

The’integral of the reciprocal factorial is also obtained by
aid of (1)

® @:
(6) Im: Emm+k.

Equations (3) and (4) may serve for the determination of
the differences, or of the sum, of a reciprocal power. From (3)
we deduce

) A= E )l S @)
and
1 ]
®) N o=— 3 181 @
Starting from formula (4) we get in the same way
9) A L= E e, 1S )
and
a1 _ 2 1 (e
(10) A i _m_§—1 n ] S (x—1)_m.

By aid of (8) or (10) we may obtain the sum of the reci-
procal powers, X varying from x=1 to x=u. For instance from
(10) it follows that

£ 1 1
x§1 x* _m—n-—t m ‘S ll [t?’ ——(,u—l)__,,, ]
and if u=
o o S”-l
(11) $ L_ 3 IS

x=1 x" m=n—1 m m !
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This was the formula that Stirling used for the determination
of sums of reciprocal power series (p. 28).
In the same manner we should have obtained from (8)

2 2 |S%]
(12) ,21 F=,§,(m-n ml ' .

Stirling’s example of expansion into reciprocal factorial
series. (Meth. Diff. p. 12.) To expand 1/(x2>--ax) we write

1 1 _ 3 ; a
x® Fax x2[1+_$] =0

Now we may use formula (4) to expand the reciprocal power
in the second member; putting n—i+2 into (4) we deduce

g g 0
x34ax =0 w=in1 (xt+m)p, ™
= 5 U™ § gagm,

w=t A(X4+M)m,y =0

But according to § 50 the last sum is equal to (@)n)there-
fore we have

1 s (=)™ {a—1)m,
) i - 3 )™ (e—1)my
x2tax m=—1 (x+m)m,,
By aid of this formula we may determine the indefinite sum
of this quantity

1 — E (=m (a—l)m—l_

(14 A x*fax = w1t m(x+m—1),

Finally the sum, x varying from one to °°, will be

s & =)t (a—1)my
(13) 21 x24ax ,,.f, m m} )

§ 69, The operation @. In mathematical analysis an opera-
tion often occurs which we will denote by @, and define by the
relation

9=x%=xD.

The operation repeated gives
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02 = xD (xD) = =D + «*D?
3= xD 02 = xD + 3x?D? + x°D?
and so on. It is easy to see that
(1) 9"=C1xD+C2x2D2+....+C,,x"D"

where the numbers C; above are independent of the function on
which the operation isperformed.For their determination we can
choose the most convenient function. Let f(x) =x*, then we have

Ox* =ixt; O"xt =1"x* D’ x* = (a), x*.

Putting these values into (1) and dividing by x* we get
n41
mn = 2 C,A4)..
=1

Taking account of formula (2) of § 58 we conclude that C, = &
and therefore

ntl
(2) 0 = El € x D

This is the expression of the @ operation in terms of
derivatives.
Particular cases.

k=0 Ox=nx
Ologx =1 Oxt =1x
Example 1. Let f(x) = 1/x* We have
Of(x) =-/ix-"  @“f(x) = (—A)"x*

D g = AL )

therefore according to (2) it results that

w4l
(3) A= 2 € (1) (i4r—1) .
Putting A=1, this formula gives a formula already obtained
(5 § 58).
Example 2. Let f(x) =(x41}*. We obtain

“ @“f(x) = ':g: [’:) v
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On the other hand from (2) it follows that
m4-1
6) 00 =S & x (w 1)

Equating the second members of (4)and (5) and putting x=1

we get
n+41 n m+1
(6) ) [V] m= 3 (m),2 @,

Determination of the power moments of a function. If u(t)
is the generating function of f(x), that is if

u(t) = §o flx) #
then
O ulf)= 3 xn f(x) t~
x=0

Therefore, if the @ operation is performed on the generating
function of f(x) and then we put f=1, we obtain the n -th
power mcment of the function f(x):

7) My = [@" u(t)]l:l-
Example 3. The generating function of the probability
of repeated trials
n
(8) IVJp" g (where ¢ = l-p)
is equal to

u(t) = (q+pt)"
Therefore the m -th power moment of (8) is in consequence of
(7) and of (2) equal to
n+1 m+1
Mp="8 P pg = z e, o p
y=1 V=
Inversion of the sum {2). Multiplying it by S% and summing
from n=1to n=m+1 it results that
1 m+1

©) Dr=_ = S, 0"

X" =1

This formula gives the m -th derivative in terms of the
O operations.
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Example 4. Let f(x) = log x. Since @ log x = 1 and
O"logx =0 if n>1, we have

Dmlogx = ; (—1)m1 (m—l)! —

Sometimes it is possible to determine both members of the
equation (9) directly, and they lead to useful formulae.
Remark A formula analogous to that of Faa de Bruno given
in § 12 is applicable for the @ operation performed on a function
of function. Given u=u(y) and y=y(t), we have
du du dy d*u _du a[v ]7 dy_ _ d%y
S@oa de T @ + & ae

and so on; on the other hand
du _ du 2y 3 gy

u

u—_t—

e dt
and so on. It is easy to see that the two sets of formulae will
remain similar, so that to obtain @"u starting from a_formula

d™u ds
ivin, it is sufficient to put in it @‘y instead of B4 . For
dtl p dtl’

instance in the case of Faa de Bruno's formula (9, § 12) we obtain:

(10 [Ou]y, = ) [dvu] . > . agl [6"")“’

A U 3'd PR R N 1!
()

The second sum is extended to every value of ¢;=0, 1,2, ... such
that

a + G + ... T ag=V
a, +2a,+...+ Sag=s.
Example 5.. Determination of the power moments g of x-np
if P(x) :-.[: 1p-" g™* and g=1—p. We have
(9 + pt)" = 2 Plx) #;
therefore
u=(q+ pt)" £ = (qt* 4 pt?)" = T P(x)t="*

and

ms =[Oty = = (x—np)* Plx).
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To determine us let us put y—=gqi?- ptt; then we have u=y" and

) [ZT;L:= (1), and [@'y}e: = PILg™ + (—1)p™].

Let us remark that for i= 1 we have [@y]i=1 = 0 and therefore
4,=0; from this we conclude that in the case in hand, in formula
(10), a, must be always equal to zero. So that a; +, , . + a, =¥
and 2a, + . .. + sa, — s; that is, the partitions of $, formed by
2,3,4,... only are to be considered.

Formulae (10) and (11) solve the problem

(12) us= 'i‘ (n).prgr 2= P la., ol ( ] (q—P]m
(q"'+p3] . [ ﬂ-}-(——1)‘1"3'1]"' .

s!

§ 70. The operation W, In the Calculus of Finite Differen-
ces there occurs an operation analogous to that of ©, which we
will denote by ¥ and define by

¥ = xA.
The operation repeated gives, according to the formula for the
difference of a product § 30,

P2 =xA (xA) = xA + (x+1), A®
Pé = xA W2 = xA + 3(x+1), A2 + (x+2), A3
and so on. We may write
M) WPr=C,xA+C,(x+1), A2+ ....+ C,(x+n-1), A~

The numbers C; being independent of the function on which
the operation is performed, to calculate them we may
choose the most convenient function. This is  f(x) = (x+1—1),,

Then
Avflx) = (1) (x+i—1) .o,

and
P H(x) = xAF(x) = Ax+i—1),, PH(x) = P(x4+i—1); .

Putting these values into equation (1) and dividing by
(x+2—1); we get

.
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w1
o= 2 C.(),.

Hence according to formula (2) of § 58 we have C, = & i and
finally

) Yn — ”ﬁi (x+r—1),8: A”.

This gives the P" operation in terms of differences.
Particular cases:

PYEhk=0 Yx=ux
Y F(x-1) = 1 Y (x+4—1) ; = A(x+4—1)
Example 1. Let #{x)=1/(x—1) i it follows that

— 4"
f(x) = ———and ¥ (x1 = __,
¥ f(x) = G—1J; Wrt ( —1);
Inversion of formula (2). Multiplying this equation by S?%
and summing from n=1 {0 n=m-1 we get
m+1

3 A" !

m+1
Tam), & S» Y=l 2 S0

This gives the m -th difference in term s of the ¥ opera-
tions.
Example 2. Given f(x) = F(x—1). Since ¥ F(x—1)=1
and P*f (x—1)=0 if n>i,
S (—1)™1 (m-1) 1
m — -
AFlx—1) = (x+m—1), (x+m—1)n

§ 71. Operations A™ D™ and D™ A ™. The operation AD™
is univocaf, that is, it leads to one definite solution only. Let us
write

[ 1) dx = Fiy () + &5
then we have
1

AD™ f,(x) = Flx+1) —h(x) = Af(x) = | folx+1,) dt.

Repeating the operation we have
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(AD-Y f.@) = # (x+2)—2f (x+1)+F,(x) = A%, (%) =
J' j Fo e+t 1) dt, dt,

and so on. Finally we have
1) (AD?) m fy (x) = A™a (x) =
t
= J o | o Kxrtt et dty,.
0
From
(AD-)” £,(x) = A™n(x)
it follows that
(AD-)” £,(x) = A"D™ fo(x).

That is, the operations (AD™)™ and A”D™ are equivalent.
This is not obvious, since in

(AD-) (AD-) = AD-A) D

the operations D! and A are not commutative.
Particular cases.

AD-k = k AD1 ef = e*(e—1)

AD-’ x—x+1/2 AD- 25 = 2% [ log 2
, 1

AD- 5 = Gy,

Examples. 1. Let f(x) = F(x). We have
D1 F(x) =log I'(x41) + k;

therefore
AD- F(x) = log (x+1).
To perform the operation A™[D™ on a given function f(x)
it is best to expand the function f(x) into a Maclaurin series
w0 xﬂ
f(x) = 2 —'D"f(O].
w=0 Il
The operation A"D™ gives

@  aDmie = E oo an| T

7|
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We have seen in § 58 that putting x=0, the difference in
the second member will be equal to @:_*_‘. so that

(3) [A"D ™ H(x)]e=0 = D (0) &

n4mo

2 ot

This formula is useful for the determination of the multiple
integral

(4 .,J".;I oo+ taddty o dtg = )!m(m S

Sometimes the operation AMD™ maybe performed directly
on the function f(x); then equating the result to the second
member of (3) we may obtain interesting relations.

Example 2. Let f(x) = e*, We have

X xt(of——1)™ ,
DO =, D —a,  An o =T

therefore from (3) it follows that
® inl
(5) e—)m = = Dgnyp.
== »] v
Or putting e’—1 =z we have
> ml
(6) = I L& [log (z4+1)].

From this formula we may obtain an important expansion
by inversion of the series, Let us multiply each member of equa-
tion (6) by S*/m! and sum from m=n to m=%, According to
the formulae of § 65 we get

(7) [log (1 +2)]" = ME“ rﬁ Snozm.

This formula has been applied already in § S5I.

Operation D™A™. This operation is the inverse operation of
the preceding. Indeed, from

DA f (x) = plx)
f(x) = A"D™ @(x).

it follows that
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The second operation is univocal, that is, to a given function
@(x) there corresponds only one function f(x) ; on the other hand
the first operation is not univocal; to a given f(x) there cor-
respond several functions @(x}. Indeed, we have seen that if
At (x) =F#,(x) then the following equation is also true:

AH(x) = F, (x) + ofx)

where w(x) is a periodic function with a period equal to one;

If m =1 then ¢(x) = Df, (x) + Do(x). But the
derivative of a periodic function is a periodic function with the
same period, hence this may be written

¢ (x) = Df, (x) + o,(x)
where ,(x) is an arbitrary periodic function satisfying certain
conditiong.
In the same manner, if A™ x) = [x) then too
A (x) = fnl(x) + [mx—ll o, (x) +... 4+ (’1‘) Oy (xX) + wp(x)

The w;(x) are arbitrary periodic functions. From
this, taking the m -th. derivative, we get

p(x) = D"ulx) + 2(x)
where 02(x) = (mf—l) Ay (x) +(mx_2) Lix) + ...+ ln(x)

the J;(x) being arbitrary periodic functions.
Remark. For x=0 we obtain

[D"A™H(x)]e=0 = D™ nl0) + &

where the constant % is equal to 2(0) =i,(0).
Particular cases. We have

DAk =k + w,{x)
DA- x -:1 X w— 1/21+.w1 (x)
DA~ EESTRREF] + o, (x)
DA~ 71‘— =DF(x—1) + o, (x) = F(x—1) + ©, (x)
DA-’ 10g(x+1)= D log I'(x+1) + o, (x) = F(x) +o, (x).

To perform the operation PD™A™ on a function f(x) we may
expand it first into a Newton series
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o) = . . (5) avon:
then the operation will give

DA #) = £ 40 D" ( p ) + Gnae).

The derivative figuring in the second member may be
expressed by Stirling numbers of the first hind (§ 50); we get,
putting x=0,

DA™ o = £ iy
Example. Given f(x) = (1+£)*. We have A"f(0) = t* and
Am jiey = U0

————A"(0) Sr_. + k.

+m

moreover
D™ (1+1)* = (14#)* [log(t+1)]"

therefore

(8) [log (14" = 2‘. [n+m” Sm ™+ k.

Since for ¢=0 the first member is equal to zero, I (=0, and
formula (8) becomes identical with our formula (7) obtained
above.

$72. Expansion of a function of function by afd of Stirling
numbers. Semi-invariants of Thiele. In § 12 we found Schlomilch's
formula (8) giving the n- th derivative of a function of function.
If u=u(y) and y=y(x), then

dru skt 1 du(d”

@ == 2 3l dy {d [.A"("”'}.=o°
1. Expansion of u=u (logx). Putting into formula (1)
y=Ilog x we have

[Alogz) = [log(1+ %)]

and according to formula (7) § 71

[log(l—}- %)] =3 m! sv x”'
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the n -th derivative of this quantity with respect to h is
3 YL (ml b o,
m=0 m!| x™ m
Putting into it A=0 every term will vanish except the term in
which m=n, that is »! 8!/ x*; therefore we shall have

dmy ntt Sy odry
(2) dx = 2 » dyv’
X =t X y
Finally writing in this equation x=1, or y=0 Taylor’s
theorem will give

_ ] (X-l)” nt1 ., dvu
o wteen = 5 PO Bs [T

This is the required expansion.
2. Expansion of u=u(e*). Let us put into (1) y=e*. We have

[hAe.\']v — e (eh_1)v .

In § 71 we found (formula 5)

s > vlh™
(eh_ll = mi W ™

The n -th derivative of this quantity, with respect to h, is
2 vl (m), ™™

_i €.
Putting h=0 every term will vanish except that corres-

ponding to m=n, and this will be »| & .
Therefore we shall have

d™u qtdu .,
4) dx = ,il dT‘ e‘@n.

Finally writing in this equation x=0, Maclaurin's theorem
will give the required expansion
xll

)= £ X % g |2
4 Y e € [d}"]y=x°

Expansion of a function of function by Faa de Bruno's formula.
We have seen (formula 9 § 12) that if u=u(y) and y=y(x) are
given, the derivatives needed for this expansion are supplied by
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d™u Y d*u o [D yo]
(6) [dxn e = milay o —{Dyo)*y )
Where
a, +ay+...+e¢=v and a + 2e,+.,..+na =n

This formula is useful even in cases where u=F(x) is given,
but the direct determination of d"u/dx" is difficult, provided
it is possible to find a function y=@(u) such that the calculation

of dnry/dx" and of d™u/dy™ is easy. (See examples 4 and 5).
Example 1. Derivatives of u=e® and y=y(x). The

derivatives for ¥=0 are obtained by aid of formula (6).

Remarking that
d"u]
- —_— a"eayo.
[dy " ly=y,

we find

dneay n+41 D y an
_— —ev X g E D o, °]
m |G| = T a — Oy
The numerical coefficients in this formula are independent
of the function y; to determine them we may choose the most
convenient function, that is y=e*. Then we shall have y,=1 and
[DF¥y]x=0 = 1; therefore from (7) we get
drew lHél nl
. — pt r ¥
[dx"},d i S 1) CI P ) L
Comparing this result with that obtained in formula {4), we
get an expression of the Stirling numbers of the second kind:

. n!
(8) ©.=2 T aiEhe .
where the sum is extended to every value such that a,+4a,--
+ ...+ o=» and a,+20¢,+... na,=n.

From this we conclude that in the derivative (7) the sum of
the numerical coefficients of the terms multiplying aq* is equal
to &2,

If =1, the coefficient of a(D"y)is @} = 1; and if y=n then
the coefficient of a*(Dy)" is &"= 1; moreover if v=n-1 the
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n
coefficient of 2 (Dy)™2 (D?%) is equal to &"'= lzl Finally
the sum of all the numerical coefficients in the derivative

n4-1
d"ew|dx" is equal to 2 ©? ; moreover the number of terms in
==l

this expression is equal to the number of partitions of n with
repetition, but without permutation; this number, I'(}n) in
Netto's notation. is given in a table in § 53. For instance in D%
this will be I (J n) = 11. Moreover we have
Dée®y — e . aDey +
+ a’[15(D%y) (D*y) + 6(Dy) (D%y) + 10(D%)*] +
+ @®[15(Dy)*(D*y) + 60(Dy) (D%y) (D%} + 15(D%)°] +
+ @*[20(Dy)*(D%) + 45(Dy)*(D%)?] + 15a°(Dy)*(D%y) +
+ a*(Dy)*¢
in which
2=154+6+4+10=31; €}=154604 15=90;
@ = 20 + 45 = 65.
Example 2. Expansion of u—u (y) , when y =e*. We have
[D*y]s=o=1.

Therefore, according to (6), we shall have

[d"u] _ n+1 [d"u] ) n!
dx" x=0 - =1 dy’ y=1 a1!...a,,| (2!)“' ce e (n!)""‘

and in consequence of what has been said in the preceding

example we find
n n41 v
d_u] S [4.9] e
dx" . ¢ v=t |AY" |y=1 "

Example 3. Expansion of u =u (y) , when y=log x. The
derivatives of y are:

Ds ___%ﬂl and [Dylo=(—1)"(s—1)!

since Z$ag— Za; — n— v Hence from (6) it follows that
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d"u _ ¥ [du (—1)** n!
ldx"Jx.—_l - El [dy']yzo 2 avll PR a"! 2“' 3“3 s e n“" '

Comparing the above result with that of formula (2) we find

n!

(13) Si= ™ 2 et e
where a;4a,4. . . +4, = and @,+2a,+.. .+ na, =n. The
sum 1s extended to every partition of n, of order v with repetition
but without permutation. This formula is different from (5) § 51,
in which partitions with permutation are considered.

Example 4. The generating function of the probabilities in
Poisson’s problem of repeated trials is

+1
u(t) = o (gtpd).

To obtain the factorial moments of the probability function
the derivatives of u with respect to { are needed for f—1,
Indeed

ﬂR,. = [D"ll] t=1.

Since the derivatives of log u are less complicated than those of
u we shall use formula (6) putting u=e’ and y=logu;
the derivatives of y with respect to ¢ are

gt =0 )y

sy — D5 | =3
Dy =D logu =1 (9: + pit)*

Since for y=0 we have y—=1land f =1, and ss—,_: =1 we

may write Y
[Dyler= (1) (s—1)}! Zps.

Remarking that Ssq; — Sas=n — v we find

n . n+1 s n! “ zpiZJag Epi:i]ug
[Dra)es = 2 (=10 = g e (55 (53]

[Ezﬁlﬂ =M.

Particular  cases:
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M, = Du(l) = Zp;

RN, =Du(1) =(Zp) * —

M, = D%u(l) = (Bp) 3 — 32p;Tp;2 + 2Zpy.
Example 5. Expansion of I' (x+1) in powers of x. Let us

put u=I"(x4+1) and y=logu. Starting from the well-known
formula (see p. 59)

log I'(x+41) = —(x+1) C-log (x+1) +
+ I xTH — log x+1+"]
=1

we find
1 = (1 1
Dlogl(x+1) =—C— 5 + % (7"““”“x+1+7]
and if i > 1
: = (—1) {i—1)!
¢ = X — 7
D lOgF(x+l) ot (x+l+v)‘ .
Moreover
[D log I'(x+1) Jx=o=—C
[Dibog I'(x+1)]==0= (-1)" {i—1)!s
where.
L |
=2
For x=0 we get yg=1 and y-—O, Moreover since
i
u=e’, for y=0 we get ﬂ'— = 1) therefore remarking that

dy'

Zig;=n, from (6) we deduce that

(10) [DT(x4+1]e0 = (-1)” £ ra2 an C“‘[s'] [s,]a,

Sn
In
We have also

DT+ = " e (log r dt




210

therefore the second member of (10) will be equal to this definite

integral.
Example 6. Semi-invariants of Thiele.* Let x; and F (x;) be
given fori=20,1,2, ..., N-1. Denoting the power-moment of

order n of #(x;) by
N
oAy = 2 x"F(x)
=0

and by 4, the semi-invariant of degree n of f(x;) with respect to
Xo1 X34 +00ey Xy_, the definition of 4, is

i !
(11) ehut vt 3 3t _71/7 3 ewn f(x)-

The expansion of the second member gives
® 2//,, w”
n=0 ‘%n! )

To expand the first member of (11) by aid of formula (6)

(12)

we denote it by u and put y = Lo + Yel,0? +3’; +., .

remarking moreover that

[¥lo=c = 0, [(D*y] w=0 = s and IZ; )H =13

therefore the expansion of the first member of (11) into powers
of @ will give according to (6)

®  yh n! )\’ ay

R T JE ( )"
(13) —o n! a,!...agl n!

Since the expansions (12) and (13) must be identical,

the coefficients of w" in both expressions must be the same;
therefore

M ay )\‘n an
(14‘ %_Er— Al'[ ...[m]

giving the power moments in terms of the semi-invariants.

e« T. N. Thiele, Theory of Observations, London, 1903,
Ragnar Frisch, Semi-invariants et Moments des Distributions Sta-
tistiques. Oslo, 1926,
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Particular cases:
@l = 1 ?/{
ety = [A, + 2] 24
afly = Ag + 34, + A4,3] 24
oAy = (4, + 44,4, + 32, + 61,71, + A R
The sum of the numerical coefficients in 24, is equal to Z&,
from y=1 to y=n+1.

To deduce the formula which gives the semi-invariants in
terms  of the moments, let us now denote by y the second
member of (11), whose expansion is given by formula (12) :

& oM, wh

y= ..Eoe//l.,nl

and moreover let us write u = logy; then
du_ (1) (VD) |
dyv Yn

Since for =0 we have y=1, it follows that

d'u N . _ A
[dy’].,;o = (-1) " p—1}l and [Dy]u= = A

On the otherhand the first member of (1 1), equal to y gives
u = logy = 24, @' /»! Therefore, by aid of (6) we find

n+l — 1)1 — 1
15  [Dulem = 3 SN 5l g

vt oAy al...al

[@/% & [\/// an _

Py = 4n.

Particular cases

oA 1
).1 = Q/f: 12 = Q///og [@/ o(%_g/[lﬁl
1,:@/,{%, [eAy2ety — 3 Aot Ay + 2 A7)
1, = 7 [eH Bk, — 3ot oMy — ohyiohyt +

+ 12@!@[’@/ —62%/1‘] -
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Remark. The sum of the numerical coefficients in the
derivative (15) is, according to what has been said concerning
formula (6), equal to

n+1

(16) 2 (1) VD |8

but this is, in consequence of formula (17) § 66, equal to zero.

The semi-invariants are useful in the expansion of functions,
since if the origin of the variable x is changed, the semi-
invariants, except the first, do not change. If the unit is chosen
¢ times greater, the, semi-invariant 4, becomes equal to ¢*4, .
Therefore unity and the origin may be chosen so as to have
4,=0 and 4,=1; this is a great simplification.

The invariance with respect to the origin is a consequence
of the fact that the sum of the numerical coefficients in 4, is equal
to zero, according to formula (16).

8§ 73, Expansion of a function into reciprocal factorial
series, and into reciprocal power series. Given the function
F(x) for x>0 if the solution ¢{#) of the integral equation

(1) F(x) zoj’ @ (1) =1 dt

is known, then we may expand F(x) into a series of reciprocal
factorials. For this purpose ¢{#) is expanded into a series of
powers of {1—f) :

2) #lt) = 2 (-1 (19" D9(1).
Since

1
| @-0” #1dt = Blnt1,2)
0

where the second member is a Beta-function (§ 24), we have

— e (_l)" n
(3) F(x) = ”Eo T B(n+1,x) D‘P(l)-
If x and n are integers, then

B(n+1x) . ":n(_’i%]ll”:
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therefore
(—1)» . _
F(x) = . _(n+ O De(1) =

=§;’ (—1)" (x—1)__, D0 (1) D" (1).

(4)

This is the required expansion. If the series is convergent
(§ 37) then it may serve for the determination of A™F(x) and

A™F(x). From (4) we get
F(o) = 3 ) (xe1)-, D) + p(FG—1) +k

and
2 (—1)" (—n—1)n (x—1)_m, De(1).

A"F(x) = 2
Remark. Formula (2) of § 68 may
—1)m o [

be written

therefore from (4) we may obtain the expansion of F(x) into a

series of reciprocal powers

® oo =3 6D + 2

n—1
If this series is uniformly convergent, then we may
determine the indefinite integral of F(x) by integrating term by

term. We find
[Fmae= 3 SO S erDplt) + o) logx + k.
n=1 m=

Moreover then the derivatives of F(x) may be determined too
(1) sle(l)

s (1) (n4s am Pm
DF(x) :.E ( )xn+[.+1+ ) 7% E e Dmolt) + %1
Example 1. By integration by parts wg get
t
__1\m
f (log t)™ =1 dt ::-(:m#!
0

[See also Petit Bois, Tables d'Intégrales Indéfinies, p. 144.1
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Therefore to obtain the expansion of 1/x™! in  a series

reciprocal factorials, we have to put

o) = =2 og fm
but in consequence of (7) § 71 we obtain;
[D*(log )™]e=1 = m! S™
and finally according to (4)
1 = |8

= T EMISN (x—1) -

n=m (X+A)pyy = w=
This is identical with formula (3) § 68.

of

Example 2. Expansion of 1/x(x-a) into a series of inverse

factorials. Let us write
_t  _ O
x(x4a) T w=2 (x4+n—1),
Multiplying both members by X it may be written

1 ® a,

x+1+(a-1) — nEZ (X+1+n—2)n—1'

We have

x+a .[t“t"dt i f xta>oi

hence according to (1) F(x41) gives
) =t and Dg(l) = (e—1)

therefore
1 i _(—1]"(a—1
x+a = wmz (X+n—1)s,
Finally multiplying by l/x we get
® e 1B e

x(xta) T a=2 (x+n—1),

This problem has been solved by Stirling in another way for

a=—1% (loc. cit. 25. p. 27).

Remark. Formula (6) is useful for the summation of

1/x(x+4a}. For instance
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1
3y 1 _ 3 et (1)
R e e 7 R A

For a-1/z the integral gives 4 log 2.

Remark. There is a simple method for the expansion of
@m(x)/y,(x) into a series of inverse factorials, if ¢, (x) and y,{x]
are polynomials respectively of degree m and n (where n > m),
Let us write

Pm (%) S a;
valx) = = (x4+i—1);

It is easy to show, multiplying both members by (x-»—1),
that a, =0 if v < n-m. Multiplying by (x+n—m—1),_n we
have

.(x+n_m—1)n—m Pm(x) —a + = a;

'(/)n(xl — Tem =R 1 (x+i—1)i_n+m
therefore a,, is equal to the constant obtained by the division
figuring in the first member, Denoting the rest by wp_n(x) which
is of degree n-1, we have

Wy_p (x) - 3 q; .
v (x) $=n—m+1 (x+i_1)i—n+m
multiplying both members by (x+n—m) we find
(x4-n—m) wg_p(x) = appy * $ a;
ya (x) + =n-mi2 (X+i—1)inymy

Qn_m.; is the constant obtained by division. Denoting the rest (of
degree n-l) by ®p_m.. (x) we continue in the same manner to
obtain step by step any coefficient @; whatever.

Applying this method to the preceding example, the first

division gives x41 N {—a
x =
the second e *ta
o ey 20
the third
(-a) (2-a) ’;‘—}3 - (l-a) (2—a) + 1= (:J:)(-’r—al

and so on. @,=1, @;=(1—a), a,=(1—a) (2—a).
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§ 74. Expansion of the function 1/y" into a series of powers
of x. Suppose that for x=0 we have y=1, Maclaurin's
theorem gives

L5 x[oy
Since
1 _ _._____1_.___. -3 [—n —1)
@ F=aro=r = & (7] -0
we have

ok= & 5 () (4o

To determine this value corresponding to x=0, let us
remark that if iy then we have

[D* (y—1)'ly=1 = O;
therefore it will be sufficient to make i vary in the first sum
from zero to »+-1, Moreover we may put in the second sum also

»41 for the upper limit, since for m>i we haveI';l].—_O, so that

the additional terms are equal to zero. But if tbe upper limit
of the second sum is independent of i then the summation with
respect to i can be performed. Let us write therefore

41l w4t —_ ']

o] = 2 % o () [7) Dy
The part of the second member containing i may be written

v1( § fu —1 ) v+t e

) (M) = () E () =

- [n+m—l] [n-{—v — (n-f—v) [v] n_
m n4-m v m) ntm
Finally we obtain

3) lDyL]:zo —n [":',"’) T —(511% ,’,’1) (D y™]=o.

m—t

Therefore, knowing the derivatives of y™ for x=0, that is
for y=1, this formula gives the derivatives of 1/y" figuring in
the expansion (1) so that the problem is solved.
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In each particular case [D* y™],—. is to be determined,
which is generally much easier than (D’ 1/y"]y I,

Example 1. If the expansion of x"/(e*—f)"® is required,
then we put y=={(e*—1)/x' and the derivatives of y™ are to be
determined. It is easy to show that for x=0 we have y—1,
Moreover to determine D*y™ let us write

@ ) xMym — (e*—1)™,

The v+m -th derivative of the first member is given by
Leibnitz's theorem (§ 30) :

m+41

["—HI' D™y D'x™

For x==0 each term of this sum will vanish except that of
i==m so that we shall have

ml (,;;,,,) [D"y™] =0

The second member of (4) may be written according to

5) § 71:

=0

s ml
e—1)" = I —— e xtm,
( ) =0 (i+m)] ™
From this expression it follows that for x=0 its v+m -th
derivative is equal to m/ &2 +v+ Equating this to the preceding
result we get
@n
» —_ ety
6) D'y )eo = i -
(")
Therefore from (3) it follows that

o [o(Z)]_ =-{"")E &L [,E,"}r),] e,..

This can also written in the following form:

NEER -n[n-’{’-v ol
@ [D (ex——1”,=o“ [2») Z n+m[ )6-+-'




218

Finally by aid of (6) we obtain the required expansion:

v
. B n (=) [m]
@ (=)= £ 5. ("F) 3 B &,
e*—1 — 7! vV ) m2y n4m [v+m]
v
Sometimes it is possible to determine in another way the
coefficient of x* in the expansion of 1jy*; then equating the
result to that given by (3), we may thus obtain interesting re-
lations.
For instance in the case of Example 1 we may write:
( x_ " 5" A(n,p)

e—I11= ,= (n-1)*

To determine the coefficients A(n»), we will equate the
first derivatives of both members of this equation. We shall find

o= ()] 5

Taking account of (9), the coefficient of x"“ will be
nA(ny) __ nA(my—1) . nd(nt+1y) _ rAlne)

x¥.

G

(n—1), (1) 1 (0), = ") .
this gives after simplification
9) A(n+1p) = A(np) ~ nA(np—1).

The difference equation giving the Stirling’s Numbers
of the first kind (5, § 50) may be written

S:I:—v — Sn—w —n SII—-v+l

therefore these numbers satisfy equation (9) and moreover,
since the initial values A(n,0) =1and 8" = 1 are the same, we
conclude that

A(ny) = §*~
so that

o el

Finally, equating the second members of (7) and (10) we
obtain after simplification
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vl n+vy ) [n4+m—1

s =% con (0] [ e,
which gives the Stirling number of the first kind in terms  of
those of the second kind. This is the simplest known expression
of the Stirling numbers of the first kind, It has been found in
another way by Schlémilch [Compendium 1895, Band II. p. 28].

Remark. Since x/(e*—1) is the generating function of B./v!
where B, is the v -th Bernoulli number, therefore putting into
(7) n=1 the first will be equal to B, j after simplification we get

N o
B, . 'S (—qn-mtl ca
-2 (—1)m m-I—V' Gn
LY
In the particular case of ¥=4, it will give
10 , 1031 5.301 1701 1
B s+ 3%t T

In § 63, we found already a much simpler expression (5)
giving the Bernoulli numbers by aid of the Stirling numbers of the
second kind,

§ 75. Changing the origin of the intervals. If the values
of the function f(x) are given for x=a, a+h, a42h,. . and so
on, then the differences

Afa) = ' (—1) (3) Hatoh
h v—0

are known, and also the following Newtfon expansion of the
function

A(a)
el x—a)l &
(1) fo = % (*7°). 4%
Sometimes it is needed to compute the values of f{x)
corresponding to x=e¢, ¢+h, €¢+2h,. . . . This problem often

occurs in mathematical statistics. To solve it, the best way is to
determine the Newton expansion of the function f{x) in the
form given below:
A'Hc)
2 X—C i
@) foo = 8 (*7°),
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Therefore it is necessary to compute the differences A‘f (c).
They are deduced from formula (1)

- At (a)
c—a
o= % ] -
and
A (a)

i _ had c—a ‘h
M) = 2 (573,

Particular case. If c—a—=mh, where m is an integer, then
Nt(c) = /A" f(a+-mh).
h 4

Therefore if the table of f(a), f (a+h), f (@+2h), . . . contains
also the differences of f(x), then the numbers above will already
figure in the table.

§ 76, Changing the length of the interval, Sometimes when
a function f(x) is given by its differences in a system where the
increment is equal to A, it is necessary to express this function
in another system of differences in which the increment is k;
that is, the differences of f(x) are required in this system for
x=0, 1. e. Ak”‘f(O], for m=1,2,3, ...

This problem is identical with the following: Given a table
of the function f(x) corresponding to equidistant values of x,
the interval of x being equal to h; another table is to be
computed in which the increment of x is equal to k.

To solve the problem we first expand f(x) into a Newton
series with increment A (formula 4 § 23)

A"f(0)
i [ : J A k_h"_

. .. X . )
Hence it is sufficient to expand InT’ into a series of (X) mk. For

this we will write, according to formula (3) § 55:

M8

(1) flx) =

x ) R —r

[n]h = ;!— 2 S x h :
Formula (1) § 63 gives
41

= Fer tus k.



221

Therefore we have
w41 o4t
(Z), =1L 8 Y sermk (s
v=1 m=1

Now we may write the differences ofI;Cl ) in a system of
increment k:
x 1 LT S 3 | _
Ni)=a E E s ek o (m: (e

Pllttillg x=0 we have

' i1 ntl

i x) =L’_ 2 hn"v kv Sv @0’ .
lé [n h]x:o n! P n

To abbreviate, let us write k/h—w, and

(2) P(ni) = 2 w*ST G
then we obtain
" x llh
[éi [n]h]x:o = P(ni)
and therefore
x ”+1 il An
® (7). = (), o5 Pwa

Finally putting this value into (1) we may determine A’”f 0).
We find

@) A”'f o) = i — P(n m) A"f 0)
and the required expansion will be
A"‘f(O)
flx) = 2 [ ),

Determination of the expression P (n,m) . 1. Let m=1, Since
@! = 1, it follows that

P(ni) = 3 0 S = (0
=1

2. Putting i=n into formula (2) we get

P(n.,n) = o™
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3. Putting i=n—1 into (2), since &*~! = — 8§~ = (’21]
we find

P(nn—1) = [’2’) (@), o™

It is easy to obtain a difference equation corresponding to
the quantity P(nm). Let us start from

nl x )  Am [x) x——nh].
é [n+l h _é [nh n-+1

The difference figuring in the first member is deduced from
(3) ; to have that in the second member we apply the rule which

gives the higher differences of a product; we shall find, after
putting x=0 into the result obtained,

m| h™1 (mk—nh) m! k"
g Plttm) =—gon= gr—flm
.mk  (m=1) A .
(n+1) n P(n,m—l)q
simplified this gives
(5) P(n+4-1,m) = (mw—n) P(n,m) + oP(nm—1).

From (2) it follows that P(n,m)=0 if m>n; moreover that

P(n,0)=0. Therefore, putting m=n-+1 into (5) we get
P(n+1,n+1) = wP(n,n)

Agccording to (2) we have P(1,1)=w, hence the solution of
this equation is P(n,n) =w". This value has been found directly.
In the same manner we could deduce from (5) the values of
P(n,n—1) and P(n,1) obtained above. This equation is especially
useful for the computation of a table of P(n,m).

Application. {, Determination of the differences or of the
indefinite sum of Ill) in a system of differences where the
increment’ is equal to one. Putting k=1 into formula (3) we get

(i]h :nﬁl f] il b P(n,i)

=1
and from this
ntl il hn
A'"[,’f] = 3 [ ] P(n,i)
h t=m i—m !
moreover
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(:206—ymg9)* ()
:®%(®)01

My

2@ ()ST + (:G0T—™06)° (@)  @*(m)gg+ (mez—@1E)* (@)  °(m) o

@ (@) SE—¢m® () GZ m¥(o)gz—@*(m)g1 (@) ¢
:@(™)9 o) [I—@* (@)L *(0) p

@ of(m)g  f(m) ¢

@ (@) ¢

®

‘(w'u)q Jo o1qe],



A‘1( ) _ n+l i_f_l} z!nh P(n,i) + K.

o‘—-l
Let us remark that in this case w=1/h .
. . . axy. . .
2. Expansion of the blnomlal[ n )mto a Newton series with
increments equal to one.

(aric) _ ax(ax—1) .. ’;', , (ax—n+1) (:]6

where h=1/a. Putting k=1 and w=ga into formula (3) we have

(%)= % () 3y Pna

Example. Give{lsgl. Since w=3, by aid of the table of

P(n,m) we get
[3) = (1) +s(3) +2(3).

3. We shall see later that Cofes’' numbers may be determined
by aid of the P(n,m) and the coefficients of the Bernoulli poly-
nomials of the second kind too.

§ 77. Stirling polynomials. We have seen (§ 52) that the
Stirling number of the first kind Sz—™ is a polynomial of x of
degree 2m.

n

(1) =2z C"'-'(me—v)'

According to Nielsen [Gammafunktionen, p, 71, Leipzig,
1906], let us call the following expression a Stirling polynomial:

(1) ™ ST

2 x .
(2) ¥m(x) (x+1)m+2

If X > m then in consequence of formula (1) the numerator
is a polynomial of X of degree 2m-2 divisible by (x-+1)m,, |
therefore ¥n(x) is a polynomial of degree m. Indeed we have

B = O E e em— )

Particular cases:
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1 x i
v, (x) = ‘8—+'1_2

J(x) = ;1—18 x(x+1).

By aid of the numbers C,; (Table in § 52) we may easily
write down a Stirling polynomial of any degree whatever. From
cme it follows that the coefficient of x™ in @u(x) is equal to
1/{m +1)2™1,

Notable particular values. Putting x—m+1 into formula (2)

we obtain
m+n) = E g, =1
¥m = (mt2)l P T m42

If we put x=m+2 into formula (2) we get (p. 148)
_ (_1)m+1 _ 1 m+3 1
yn(m42) = (m+3)! S:-+3 = m+"3' El P
If x*<m+-1 then formula (2) gives 0/0. But we may use for-
mula (3), which gives
{(m—i)!

m41
alm) =, )" Coss Ty

m41 . C my1.i
vm(l) = i 0" Gmiz—n, =D

0) = E}H (—1)# __C_""LI_L__
Yal) = 2 (2m-4-2—i), ml
m4-1 C
. —_ — )i+t mi1.d
wml—1) = 2 (0 G
from 7, § 52
m<-1 C (___1)7”
2) = 3 (—1)n myl .
v (-2) = Z O EET Gmra),

Deduction of the difference equation of the Stirling polyno-
mials. We have seen (4) § 52 tbat tbe numbers C,,; satisfy tbe
following difference equation:

Cmyri = = (2m+4-1—i) (Cpy + Caiy).
Multiplying both members by (—1)™1 (x—m), | (2m+1—i) I
and summing from i=0 to i=m+1 we obtain

15
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m+1 ( 1)m+ m+1 ;

@) Z Gmri—y o+ e =

m+1
— +2 (__1),,, mt+Cm1_

(2m-—-¢)' R (x_'m)m-l'

The first member of this equation may be written

gt Cm+1 i s
(—1)m* 2 BT [(x+2) + (2m—x—i)] (x—m)n_;
but this is, accordmg to (3), equal to
) (x42) ymlx+1) + (m—x) ym(x).

The first term of the second member of (4) is

SN Coi (s = (x—2m 1) Y (x)
= (2m l) m-i — Ym .

The second term may be transformed by putting i+l instead
of i and we shall have
1" Gy
=0 (2m—1—1)'
We may write m-1 for the upper limit, since for i=m this
expression is equal to zero. Therefore the second member of (4)
will be equal to

(x—m)p_, i - @m—i) Yp_; (x) &

(x4+1)yp, (x).
Equating this to the value (5) of the first member obtained before
we get the difference equation of the Stirling polynomials:
6 () va. (¥ (m—2) pulx) . (x42) wulxe+1).

Starting from y,,(x) =L4, we may determine by aid of this
equation the Stirling polynomials step by step,
For instance, putting v, (x) =@,+a,x we have

1 (x+ 1) — (1—x) (ay+a,x) — (x+2) (¢, +-a,+a,x) = 0.
Since this 1s an identity, the coefficients of xi must be equal to
zero for every i. This gives 6a,+4a, =1 and 8a, =1 so that

x 1
v (x) = §+E

Continuing in the same manner we could obtain the polynomial
of any degree.
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Equation (6) has been found by Nielsen in another way.
Nielsen defined the Stirling polynomials by giving their gene-
rating function with respect to m:

= 1 =
= m,
(7 ) G—e)™ — @)t = o Ym0

We will show that this definition leads to the same poly-
nomial wg(x) as our definition (2). Indeed, multiplying both
members of equation (7) by (x4-1)#* it becomes:

(8) (l—elm - t,,lﬂ' = (x+1) mgo Ynlx) ™=,

The derivative of this expression with respect to # divided
by x+1 will be
—e™ 1 z

) (1—e)*2 t o T ,..Eo (m-x) wmix) t7*1,

Writing into (8) x+1 instead of x and adding the result
to (9) we find

(1) —1
(1_e-t)x+1
Finally equating the coefficients of #**1 in the expressions
(8) and (10) we find the difference equation (6) of the Stirling
polynomials obtained before. Moreover from (7) it follows
directly that

2 [(x+2ymlx+1) + (m—x)ynlx) 7=,
m=0

Wo(x) = ]/2,-
Therefore the two definitions lead to the same results.
Putting x*=0 into the generating function (7) we have

1 1 G
-— == 2 ™,
1—e! 1 — yvm(0) £
Multiplying this equation by {, and then writing in it —¢ instead
of t, it will become
=1 B ()
e“'—l m=0
We shall see later that the first member of this equation
is the generating function of By/ml, where B, stands for the
m -th Bernoulli number; therefore we have
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Bm+1 — m§1 (_l)‘ﬂ Cm+.',-'
m+l = 29 ml @mto-),

Since By,,, = 0, if n>0 hence we conclude,

¥m(0) = (—1)™

— B —
(11] "I’zn(o) =0 and Wan_1(0) = (2 )!

Writing in the generating function (7) —t instead of ¢ and

= x «~ 1 instead of x, we obtain

(-)X (l-e")y" 1 &

e W = L T el
Now multiplying this equation by x #**! we get

(e—1)f—tr =x = (—1)™ y,(—x—1) w1,
m=0

But we have seen [formula (5) § 71] that

= x! .
=)= 2 57 &
therefore

[ x'

n=xt+1 N/ & 1 = *, E (—1)™ pm(—x—1) tm+s+1,

From this we conclude finally that

X gr = ()" e, (-x-1).

n!

This may be transformed by putting n—x—-1=m; we obtain

(_._l)m n—ni—1

(n) mye 6’ = ¥ (m—n)
and writing x4-1 instead of n it follows for x>m that

1)m @x—m

(12) m—x—1) = ey

volm—r—1) = ..,

We have seen that the Stirling number @27 is a polynomiel
of degree 2m-}-2 of x' [formula (7) § 58]. By aid of this formula
we get

+ (—1) m+1 i

13 ym(m—x—1) = Z Gmiz T

—m—l) md o
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If x £ m then formula (12) gives O/O but (13) may be used even
in these cases.
Particular values. From (13) we deduce
_m-zt‘ ( -1 ) i ém-l.i
v O =2 a1

Hence from (11) it follows if m>1,

(m4+-1—i) |

14 _ 2 (=1)Cn _ & (=11 Cny
9 Bn = -Eo l2m—i) =m .-_Eo m—i),
m

This is an expression forthe Bernoulli numbers in terms  of the
numbers C,,; respectively of C,;.

Putting x=m+1 into {13), since (0),y is equal to
zero for every value of i except for i=m, for which it is equal
to one, and noting that Cp,, n» = 1, we have yn (2) =
= (—1)™/(m4-2) | obtained before.

Limits of the Stirling polynomials. Writing in: (2) n+x
instead of x and n instead of m we have

—1)t1 -1)!
yaln4-x) = ( (n)+x—:—);)l ) Sn’fo-xﬂ .

Since according to formula (4) § 54 we have.
Sx
lim —==l_ — ¢
= (n+x+l)l
if x>0
lim yy,(n4-x) = 0.
n—w
Putting into (12) x+m instead of x we obtain

_ m ®fn+x+l
Ym(—x—1) = (—1)"(x—1}! mtxt1)T "
From formula (2) §.59 it follows that

@x
. m—+x-+1 —
,}.Lni (m+x+1)1 — 0.
Hence if x>0 we conclude that
lim ¥m (—x—1) =0




CHAPTER V.

BERNOULLI POLYNOMIALS AND NUMBERS .

§ 78. Bernoulli polynomials of the first kind, Denoting the
Bernoulli polynomial of tbe first kind of degree n by @,(x), let
its definition be'?®

2} Different authors have given different definitions of the Bernoulli
%ol nomials. Our definition is that of Nielsen [Traité des Nombree de
rnoulli, Paris, 1923, p. 40]. He denoted the polynomial by B, (x).
Seliwanoff [Differenzenrechnung, Leipzig 1904, p. 49 and Encycl. des
Sciences Mathem. Vol. 1. 20, p 111] gave the following definition for the case
of integer values of x:
- x w—1
x) =3 - ___
Pn o (A1)
This differs from our definition only by a constant.
In Saalschiitz’s Bernoulli’sche Zahlen [Berlin, 1893, p. 91] the definition
is for integer values of x the following

x
@ (xn) = I m* L
m=0
This definition differs from ours by a factor equal to (n-1)! and by a
constant,
Nériund [Differenzrechnung, Berlin, 1924, p 19) defined these poly-
nomials by

A B, (x) = nx"!
DB, (x) = nBu_1 (x)

so as to have

4 — 1
S m"'=_[B,(x) —B,]
m=0 n
where B" is the n -th Bernoulli number, This definition differs from ours
only by the factor (n-1)! .

Steffensen [Interpolation, London, 1927, p. §19] uses the same definition
as Nérlund; and so does Pascal [Repertorium L, p.1217).

E. Lindelot [Calcul des Résiidis, Paris, 1905, p. 34] introduces the
polynomial "q;n(x)" which corresponds to ours by the relation

"(pn[x]“ =nl q;"(x).
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xn1
(1) A‘Pn(x] = [n——l] !
From this it follows that
I

Hence the definition (1) is not a complete one; there still remains
an arbitrary constant to dispose of. Let us write the Bernoulli
polynomial of degree n in the following way:
() Palx) = @n m

By derivation we obtain from (1)

xn-z
x) = ——
but the second member is, in consequence of (1}, equal to
Agn_,(x) S0 that
AD @alx) = Agny(x) .

Performing the operation A™ on both members of this equation,
we may dispose of the arbitrary constant, which enters by this
operation, so as to have
k) Dealx) - @u,(x)3
then the Bernoulli polynomial ¢, (x) is, by equations (1) and (3),
completely defined.

In § 22 a class of functions important in Mathematical
Analysis has been mentioned in which

DF.(x) = F,,(x)

for n=1,2,3,... According to (3) the Bernoulli polynomials
belong to this class of functions.

Moreover if F,(x) is a polynomial of degree n "belonging to

this class
x'l'l

F.(x) = @ -7 + a, =T + ..ot an

% have seen that the coefficients @ are independent of the
degree n of the polynomial, so that they may be calculated once
for all.
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To obtain them we put n—1 into formula (1) and get

Ag,(x) = 15

therefore ¢, (x) = x + a, hence a,, = 1. Moreover if n > 1, then
putting into (1) x=0 we find

Aga(0)=0.

On the other hand from (2) we deduce

= : an n—m
Agal0) = mEO m [Ax ]x:o-
But
[(x+1)* ™ —xm™] =1
consequently we find
(4) Zn‘. L = (.

By aid of this equation we may determine, starting from
ao=1 step by step, the coefficients @,. For instance:

+ l' = gives a=—14
—l+ + 1= a, = 1/12
+ + +“1—": 03:0

and so on.

Table of the numbers a,, .

a,=1 a; = 1/30240
a, = —1;, ag = — 1/1209600
a, =112 a,, = 1/479001 60
a, = —1/720 a;, - —691/1307674368000
or to ten decimals,
a2 = 0°08333 33333 a; = —0°00000 0(?267
= -0°00138 88889 a,, - 000000 00209

a, = 0700003 30688 a,, = —0°00000 00005
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Remark. We found a;=0 for i=3,5,7,9,11. Later we shall
see that @y, =0 if n>0.
Writing a,=B,/ml, equation (2) will be

©) pule) = 0 2 (7] Buxrn

where the B, are the Bernoulli numbers.
Equation (5) may be written in a symbolical manner:

©) @alx) = (x+B)"

In the expansion of the second member B, is to be put instead
of B™,

Since A ¢{0) = 0 if n>1, hence from (6) there follows the
symbolicai equation giving step by step the Bernoulli numbers:

7) (1+B)*—B, = 0.

This equation is identical with (4). Starting from By=a,=1

it gives:

1+2B,=10 hence BI = -1,
1+3B,+3B,=0 B, =1/6
and so on.

In the Table below we see that the Bernoulli numbers
increase rapidly with n whereas the coefficients a,, decrease

rapidly.
The Bernoulli numbers are very important in Mathematical
Analysis, especially when dealing with expansions.?’

27 The Bernoulli numbers were first introduced by Jacob Bernoulli [Ars
Conjectandi, Basileae, 1713, p. 97]. They have been denoted differently by
later authors. Our notation is that used by Nérlund [Differenzenrechnun
p. 18], Steffensen [Interpolation, p, lml, Pascal [Repertorium, I, p. lZl"ﬁ’,

There is another notation in use, in which the Bernouwlli numbers are
considered as being positive, and in which B" corresponds to our | BL’! Js
This notation is found in Saalschiitz [Bernoullische Zahlen, p. 4], in Hagen
[Synopsis I, p. 91], in Seliwanoff [Differenzenrechnung, p. 45 in and Encyecl.
des Sciences Mathematiques 1. 20. p. 111} in Nielsen [Nombres de Bernoulli,
% 42) in E. Lindelst [Calcul des Residue, Paris, 1985, p. 33] and in

eano [Formulaire Mathématique, Paris, 1901, p. 190]. In the last work we
find an extensive table of these numbers,up to By in our notation,
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Table of the Bernoulli Numbers.

B, =—14

B, =1/6

B, = —1/30

By, = 1/42

B, = —1/30

B,, = 5/66

B,, = —691/2730
B, =176

B,y = —3617/510

B,, = 43867198

By, = -17461 1/330

B,, = 8545131138

B,, = -23636409112730

B,, = 855310316

B, — -237494610291870

B,, = 8615841276005/14322

B,, = —17709321041217/510

B,, = 257768785836716

B,, = —26315271553053477373/1919190

B,, = 292999391384155916

B,, = —261082718496449122051/13530

B,, = 1520097643918070802691/1806

B,, = —27833269579301024235023/690

B,, = 596451111593912163277961/282

B,, = —5609403368997817686249127547/46410
B, = 495057205241079648212477525/66

B, = —801165718135489957347924991853/1590
B, = 29149963634884862421418123812691/798
Bss = —2479392929313226753685415739663229/870
By = 84483613348880041862046775994036021/354
Bg, =—1215233140483755572040304994079820246041491/ 56786730
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Bernoulli Numbers, Table IL
—0'5
016666666 . ..
—003333333.....
002389523895 . ...
= -0'03333333. , .,
= 0075757575 . . ,
= -0.25311355311355.. . .
= 1’166666666..
-7°0921568627 450980392
549711779448 62155388
-529'124242424 . .
6192'1231884057 898550
-86580°25311355311355.. .
1425517°1666666 .. .
-27298231'0678160919 54
601580873’9006423683 8
-15116315767°092156862 .
429614643061°1666 . ,
-13711655205088’332772
488332318973593’16666.

Moo= 00 S e N e
N o
| i
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w
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Expansion of the Bernoulli polynomial into a series of factor-
ials. Replacing in formula (I), the power x"! by factorials,
using formula (2) § 58 we obtain

1 : m
Agnl(x) = T;,“;’fﬁ mEO e, (x)m -

Since

-1 (x)m+1
N (2 = 00 4 b

we get, performing the operation A on both members,

@m
2= (*)msy + Gn-

(®) Pl = Tt 2, mod
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The constant &, which entered by this operation, has been
disposed of, so as to have g, (0) =a, .

This is the expansion of the Bernoulli polynomial into a
factorial series. It shows immediately that

0 Argato) =l e

moreover that

w0 = wall) = @ Pl = @+t
and so on.

Formula (8) permits us to determine. the coefficients a,,,
and therefore also the numbers B, in term!s of the Stirling
numbers. For this, let us replace in the second member of (8)
the factorial (x)n,, by its expansion into a power series (3,
§ 50);: we get

@m

l n—1 i
o0 = =1 .2 mrt ‘__2_‘ St x+a.

Since the coefficient of xf in the first member is equal to
a,;/i! and a,; = B, (n-i)/,
n 3 1

n—i — (n] m=§_1 m+1 S;a-i-l @:'-t
i

B

This may be simplified by putting i=1, and writing
n-+1 instead of n, The required expression will be

" (—1)mm!
(10) n| a, — B,, = m=2=:1 W @" .
Example. Let us determine B, by aid of this formula:

1,2, 6 W __ 1
Bz—gt3. 13 6+t5="3"

We may transform formula (10) by putting into it the value
of & given by formula (3) § 58:
. n4+1 mHt (_l)l( "
B, = :E—:x Es m--1 i]!'

§ 79. Particular cases of the Bernoulli polynomials. From
the table of the coefficients a,, we deduce



1
@1 (x) =x—?

1l 1. L

1 1 ., 1
plx) =g FX— ¥+ 5 X

1 1

1
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and so on. (See Figure 1.)
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Figure 1.
2
N
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Yy = ¢2(®)
Y
X -~ o \:_/
Yy = 92
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Particular values of the polynomials. We obtained already
if n>1,
#s(0) = a, P2n(0) - O
‘Pn(l) =a, en(2) = an +——— ( l]! ‘.

Moreover . i

— e
Aga(—1) = (( 1)1”; hence g,(—1)=a, - (}g.—l])l'

§ 80. Symmetry of the Bernoulli polynomials. From the
definition of these polynomials it follows that
x2n‘1

A@u(x) = @onlx+1) —@aulx) - _(—271—_17—!-

Putting into this equation —x instead of x we get

Panll—%) — @an(—2) = — Zo—)

but the first member is equal to —A@,.(1-x) ; hence we conclude
that

A @an(1—x) = Apalx).

Let us sum this expression from =0 to x=z; since the
indefinite sum of the first member is ¢,;(1—x) and that of the
second member @..{x) we find after putting into them the
values of the limits:

@an (1—2) — @an (1) = Pan [z] — 92(0) .
We have seen that ¢g(0)=@n(1), if m>1; hence
(1) @an{1—2) = Panl2).

Formula (1) has been demonstrated only for integer values
of x, but  this expression ts a polynomial of degree 2n—1,
and it is satisfied for more than 2n—1 values of x, hence it is
an identity, and is therefore satisfied by any value whatever of x.

This is the expression of the symmetry of the polynomials
of even degree. This can be written in another way; putting

z=lo+x we get
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(2) Pan(Yo+x) = @qn(Yo—x).
By derivation this gives, according to (3) § 78:
3) Pony (Yot-X) = — @ony (Yo—x).

Hence the polynomials of odd degree are symmetrical to
the point ‘of coordinates x=1V4, y=0. Putting x=0 into (3) we
have

Pan-1(¥2) = — @ony (Y2) =0

Putting x=14 into (3) we get @gn_q (1) = = @gn, (0) , but we
have seen that if m>1 then @y, (1) =@, (0} ; therefore we conclude
that
(4) @ong 0O) = 0 or a,,, = 0 if n > 1.

Roots of the polynomials. We have already seen that the
equation @,,,, (x) =0 has three roots if n>1, namely x=0, x=%
and x= 1; hence the polynomial of odd degree is divisible by
x(x-1) (2x-1) if n2l.

We shall show now that it cannot have more than three
roots in the interval 0 6 x S 1; that is, more than one in the
interval 0< x < 1. If it had at least four in the first interval,
then its derivative should have at least three in the interval
0 <x <1 and its second derivative at least two. But

D? 92041 (%) = @on, ().

Hence we conclude that if @gny, (x) =0 had four roots in the
interval 06 x £ 1, then @any (x) =0 would have also at least
four in this interval, and so on; @, (x) =0 too, which is impossible,
since @4(x) is only of the third degree.

Summing up, we state that ¢gn,,(x) =0 has three roots in
the interval 0 £ x S 1 and only three (if n>0).

D ¢’2n(x) = @ony (X)

and the polynomial of the second member has no roots in the
interval 0 < x < 14, therefore @,5(x) cannot have more than one
root in the interval 0 < x < 14, But

D¢z (x) = @onlx)

and we have seen that @g,, (%) is equal to zero for x=0 and
x=14; therefore @,z(x) =0 must have at least one root in the
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interval 0<x<15, therefore @,,(0) and @,;(}2) are both different
from zero, so that ¢,,(0) =a,, & 0. Finally @,,(x) =0 has one
root and only one in the interval 0Sx<14. In consequence of the
symmetry, @,, (x) =0 has another, root in the interval 14<x<1.

Extrema of fhe polynomials. If n>1, then @, ,(x) is equal
to zero for x=0, 15, 1; therefore @,,(x) will have extrema at
these three places. @,;(x) has only one at x=14.

If n=>0 then @y, (x) has two extrema, one in the interval
0<x<]/2 and one in 1//2<x<1; @4 (x) has none.

Sign of the numbers a,,, and B,. Let us suppose that a,,~0;
then in consequence of @;,(0) =a,, and of the fact that @,,(x) =0
has a root in the interval 0<x<14 without having an extremum
in it, we conclude that @,,(x} must be decreasing in the vicinity
of x=0. Therefore we must have

D @2n(x) = @2n,(x) <0

but if x is small, the sign of @.._,(x) is equal to that of @y, ,x
therefore we have

Ay o <0

Had we supposed that @,,<0, then we should have found
that @,,{x) must be increasing in the vicinity of x=0 and con-
sequently we should have

02,,_2 > 0.

Finally summing up, we always have
Qyn Qg 3 <0
that is, the aumbers a,, and also B,,= (2n) I a,, are alternately

positive and negative with increasing n. Since a, is positive,
we have

<0 and a,, >0

B4ll <0 and B4,|_2 >0,

or

§ 81. Operations performed on the Bernoulli polynomials.
Derivatives of the polynomial. According to (3) § 78, we have

D~ @alx) = ‘pn-m(x)-

From this we deduce the integral of the polynomial
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J(P,.(JC) dx _ @u,(x) . Rk

and |
(1) | pumidx=0i £ n>o0.
0

The difference of @a(x) may he expressed by a definite integral:
241
z,
[ oal)dx = @ui2H1) — @ua () = A gy (2) = 55

therefore if u is an integer £ 2" may also be obtained by the
integral

1

[ o) dx - - 2 2 - gua (@) — 90 0).
0 =0

Differences of the polynomial. According to (1) § 78
xn—l
Agalx) = D"
and from this by aid of (2) § 58
1 S ¢4 i .
A" (p,,(x] = W iz-; (1)m-1 @:,_, (x)t_m+1|

moreover

A gul0) = L2 ey

Sum of the polynomial. Applying the method of summation by
parts (§ 34) we obtain

A~ ulx) = x@nlx) -A-" (x+1) (_;"_"'..1‘)_!
Hence
(2) A n(x) = (x—1) @n (X) = 1 @,y (x) T B

Mean of the polynomial. Tn § 6 we have seen that M= 14+12As

therefore
n-1

x
M o:(x) = galx) + =01’
From this we obtain, applying the inverse operation of the mean,

3) M @n (x) = @n (x) — L2E,_, (x)

16
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where, as we shall see, in § 100, E,_, (x) is the Euler polynomial
of degree u-l.

§ 82, Expansion of the Bernoulli polynomial into a Fourier
series. Limits. Sum of reciprocal power series,

If y is a periodic function of period equal to one, with
limited total fluctuation {or,a fortiori, if it has a limited deriva-
tive), then it may be expanded into a Fourier series (§ 145),
such as

@ ]
(1) y = Yea, + Zla, cos2amx -+ 21,8,,, sin2nmx

where
1 1
(2) Oy = 2 f y cos2amx dx | B, =2 f y sin2amx dx.
0 o

Hence we conclude that g,,(x) may be expanded into a
Fourier series between zero and one. By aid of formulae (2)

we obtain |

Ay = Zof Pan(x) dx - Pane1(1) — P2ns (0) = O

if m > 0. Moreover we find by integration by parts that

1
L ,
Yoom = | punla) costamz dx = T g, 5) | ~

1
J‘ sin2nmx
0

le—l (x) dx.

The quantity in the brackets is equal to zero at both limits,
and the integral in the second member becomes, after a second
integration by parts:

1
Yoan, C(O;:% Pon-y (%) ]_oj -c?zsnz;)-”;x Pan2(x) dx.
The quantity in the brackets has the same value for
x=0 and x=1,if n>1, therefore the corresponding difference is
equal to zero.
We conclude that the operation of integration by parts
performed twice, gives an expression similar to the initial; only
the sign has changed, the degree of the polynomial is diminished
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by two, and it has been divided by the quantity (2am)3.
Therefore in 2i operations we should get

" cos2
Yoam = (_1)‘0_‘ c&sn:;r)r;f Panai(x) dx.

Writing in it i=n—1 we get by integration by parts

Yoan = | (1) G () | + 1) ff;f”,’;’,.’f, ?1(x) dx.

The quantity in the brackets is equal to zero; further integration
by parts gives

| (_qyw1 cOS2mx " ‘cos2nmx
Yoay, = [( 1) -(an)z" ](x)] + (—1) f (an)z" dx.

The integral in the second member is equal to zero. Since
¢, (1) =—¢,(0)=1% we find
_2(=1)™
tm = "(2mm)2 !

Determination of the coefficients f,, . It would be possible
to determine them by integration by parts in the same way as
the coefficients a,,, , but it is easy to show by aid of formula (1)
§ 80 that §,=0. Indeed, putting l-x into (1) instead of x
we should obtain ¢,,(1—x) =¢,,(x) for every value of x.

cos2zm (1-x) = cos2mx
and
sin2zm (l-x) = — sin2amx;
hence the coefficients of sin2nmx in the expansion (1) must all
be equal to zero, so that we have f,=0.
Finally, the expansion of @,,(x) will be

P EEPTY - cos2n11£
(3) <P2ﬂ(x) 2( 1) mzl (2nm)2n'

To obtain the expansion of @,, ,(x) we determine the
derivatives of both members of (3), and find

” sinZnmx
@ Pana(x) -2(-1)" 2 Gam)™
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Applications of the trigonometrical expansion. 1. If we
write x=0 in equation (3}, we have
® i—l]"_l’:l [ 1
5) om0 =am =32, =g 2

m—=1 M*

This shows again the rule of the signs of @, obtained in
§ 80. From formula (5) the sum of the reciprocal power series
may be deduced.

o 1 (271) 2n
(6) El x2n =1%(2a)*" la,,| = 2(2n)! | B,al.
Particular  cases:
®© 1 w2 ® 1 . nt
ﬁl?ﬁ_? 2 E T

2. Putting x=14 into formula (3) we obtain

‘Pzn(%) = él (—1)" a, = 2([2;121" m2:l (—,'11)2:' :

If the central value @,,{}2) of the polynomial is known then
this expression gives a formula for the sum of the alternating
reciprocal power series. We will determine @,a{Y2) in § 86; but
in § 49 we have seen that if we denote the sum (6) by $;s then
the sum of the alternatingeries will be

1
Son ll - 72?1]

therefore
© 4)x+1

(7) z % = (22"1—1) a? | q,, |.
x=1 ¢

Particular  cases:

}‘_, ( 1)x+1 wz (___l]xﬂ -t

_- X2 12 "o xf _720

From this we may obtain the value of ®4(%2) ; since the
sign of @,y is that of (—1)*?, we get from (7)

@ Pulh) - s —1)

We will find this result later by another method.
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3. Limits. Since in the interval zero and one we have

2(—1)*! & + cos2amx

Panlx) = 2r) = m®
it follows that
| <25 L g
‘Pzn(x)l = O™ oy m2 T Aol
From
2(—1)" & sin2max
Pansy (%) - 22)™T oy me
we deduce
2 5 o2 2 omT e

' Pani1 (%) | < 2n)7 =, mn n)2 1

We have seen that

G | 2n)2" la,,] . 2
1< = = =2 e g —.
x=1 X3 2 = x=1 X 6

From this we conclude

2 . 1
< I\
) Bajz eSS HogET
theiefore
limlay =0 and limk%*a,, =0
n—w n—w
if I RI < 27, Moreover
2(2n) ! < < (2n) !
(2n) 2n |B2'l '= 12 (2n]2"'2 '

Hence I B,, I increases indefinitely with n.
s L ss L.
x=1 x2n x=1 x2n+2

hence from (6) it follows that

02n+2i < 1

on (27)?

and in consequence of this, the series X I a,, | is absolutely

convergent. On the other hand from (9) it results that

24(2n+1) (2n+2) .
(27)4 !

(10)

>

' Bonss

By,
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hence this ratio is increasing indefinitely with n. Moreover
from (10) we get

< nt1) (2n42)
(27)? '

l Bonis
2n

§ 83. Application of the Bernoulli polynomials.
1. Determination of sums of powers. From formula (1)

§ 78 we deduce

A2 x" =nl @, (x) + k = (x+B)™* + k;

+1 )
in the last term figures the symbolical expression of the
Bernoulli polynomial (6, § 78). From this it follows that

1) xéo x" =

1 [ (z+B)** —B,,,].

By aid of this formula we may determine the sum of a
function expanded into a Maclaurin series: If we have

fa) = £ X DY0)
n=0 n!
then
A~ Hx) = £ pulx) DY (0) + B
and finally

3 flx) = [(z+B)™ —B,,,] D).

o (n +1)|

Remark. We may. determine A™x" by using Lacroix's
method (Trait6 des Differences et des Series p. 68). The
difference of x™! may be written

Axt1 — (x1)"1 — g1 — nz n+l] xit1-i §
the operation A™ will give
2= (1) Ae +E T A
i=2 I *

Putting A2x* = f(n) we find
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@ o+ (7] 5 ) +(3) S b2+

le'.l

( )n-f—l m

Starting from f (0) = x+C Lacroix determined by aid of
this equation step by step A™'x, A'x? and so on. But we shall
solve this difference equation by aid of André's method in § 178.
Example 3. The result obtained there is the following

0) =

(3) fn) = Ax" =
41 xHImu ekt (—1)!
— 2 3 .
=0 n! (n1—p)! = (k1) R +1)! L (RiH1) !
In the second sum ky, k,, ., ., k; take every integer value

with repetition and permutation such that
k,+ky+ . + b = uand B >0

that is, every partition of x with repetition and permutation of
order 1.
But on the other hand from formula (1) it follows that

(4) A-lxn — ll+1 (Iu_l ) B«“ xnt1l-n + C

Equating the coefficients of x™1* in (3) and (4) we get

1 i
6 Fo oa. E e
e l—l(k +1) '(:b +1)!.., (A+1)!
where R, +k,+ , ., +ki=p and k,>0.

This is an interesting expressionfoi the Bernoulli numbers,
which may be obtained directly, starting from their generating
function (p. 251).

Example. Let pu=4. For i=1 we have k,=4 and the cor-
responding term is —1/120. For i=2 we have k=1, k,=3 or
k=3, k,=1 or k, =2, k,=2. The corresponding terms are 248
and 1/36. For i=3 we have k=1, k=1, kg=2 or k=1,
ky=2, ky=1 or k,=2, k,=1, ky=1 the corresponding term
1s —=3[24. For i=4 we have k,=k,=k;=k,=1 corresponding to
1/16. Finally we find




248

B. __ _ 1 2 1 8 1 1
WU Tt T T T T TR0

2. One of the most important applications of the Bernoulli
numbers is the expansion of certain functions by aid of these
numbers, as we shall see later.

§ 84, Expansion of a polynomial f(x) into a series of
Bernoulli polynomials. It is known, that if @,x), @,(x), . . . ,
¢a(x) are polynomials of degree 0, 1, . . . , m, then it is possible,
and only in one manner, to expand any polynomial whatever
of degree n, in the following form:

n+1
1) Hx) 50 ¢ ¢i(x).

If gi(x) is the Bernoutti polynomial of degree i, then the
coefficients e¢; may be determined in the following way. Integra-
ting both members from zero to one, every term of the second
member will vanish in consequence of formula (1) § 81 except
that of ¢, § since @,(x) =1, we obtain

1
(2) o =jf(x) dx.
0
According to (3) § 78, the m -th derivative of f(x) will be

Dmf[x] = Cm + Cmyy @1 (X) + Cmig @2x) + .00+ €y Pn-m(x)

integrating both members from zero to one, we find
3) cn = D™1H(1) — D™ 1#(0) = AD™1#(0).

Consequently,if we know the integral of a polynomial f(x)
from zero to one, and its derivatives for x—Q and x=1, then the
expansion (1) is known.

Formula (1) may serve for the determination of the inde-
finite integral of f(x), of its derivatives and also of its indefinite
sum. This last is obtained by aid of (2) § 81.

Example 1, Given f(x) = x"n!

xn—m+1

X1 i _ .
J oo dx = wrnr ©F oand D) =y

therefore
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=1/(n4+1)la n d ¢n = 1/(n—m+1}!
and finally
X" n+1 ‘Pm(x)

m - m=0 _(;'+1—m)! ’

Example 2. Given t(x) = I; r We shall see later that

(z) ax=s.

where b, is the general coefficient of the Bernoulli polynomial of
the second kind. From (2) it follows that c,=b, . Moreover since

o (7)=[a)

and according to (4) § 55

Dm-l

x 1 - .
1) = E Wi

hence putting into it x=0 we get

(m—1)! .,
o = (n—1)1 Srt
Finally the required expansion will be
X 1 nt1
= N —1 m—1
@) on = bt T (m—1) ln (x) 77
’,
Putting into this expression x=0 and writing @m (0) =Bpn/m!
we have

1 n41 Bm m—t
(1)l ez m Or=ic

©) by =—

This is an expression of the coefficient b, by aid of
Bernoulli numbers By,

According to § 65 we may obtain by inversion an expres-
sion of the Bernoulli number B,. Multiplying both members of
(5) by -(n-1) I €' and summing from n=2 to n=v+-2,every
term of the second member will vanish except that in which
m=v»-}1; therefore we find
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w2 . _ B

6) — 3 b (D! = R

§ 85, Expansion of functions imte Bernoulli polynomials.
Generating functions. If the function to be expanded is not a
polynomial, the series will be infinite, and considerations of
convergence must be made; but the coefficients €, will be
determined in the same manner as in the preceding paragraph.

Example 1. Let us determine the generating function f(t)
of the polynomials ¢,(x). In the case of the generating function
we must have

cm = AD™#(0) = ¢t

and
|
Co = f H)dt = 1.
Since
Dm—1 ext — fm=1 e"‘
and

Aexf - ext [el___l]

it is easy to see that

a0t -
— 4 jx=0
therefore
texf [d
(1 ) = 255 = 2 ) to

is-the genetafing tunction of the polynomial @n,(x). From this we
may obtain the generating function of the number a, by putting
x=0.

{2) —-— = 2% a, "

From equation (2) we conclude that Z a, {®is the reciprocal
value of the function
ef— o -1
(3) - = ¥ —.

t = !

On the other hand, by aid of formula (4) § 78, we could
show that the product of the series (2) and (3) is equal to one,
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and deduce in this way the generating function of the numbers
@, . We have seen that the series 2 a, is convergent; therefore,
putting into (2) f =1 we obtain the sum of the coefficients @

1
E ap = ——— == (0’58197 67070 .
m=0 e - 1

The convergence is rapid, indeed we have:

a,= 1

a, =—05

a, = 008333 33333

a, =—0'00138 88889

as — 000003 30688 This gives

a, =—0'00000 08267

a,,= 000000 00209

a,,=—0'00000 00005.
There is an error only in the tenth decimal.

The generating function (2) may be expanded in the fol-
lowing way writing:

1

13
2 an=0'58197 67069

=iy E (s ).
This will give
t+ & e £ whl

and after performing the multiplication of the i sertes the result
may be written
© mit (___l)i tm
1 2 3
T2 A BN TR (D))
where k,+k,..,. +k=m and k, >0.
Therefore we conclude that
m—H (—1)!
ap =
1 (Ry+1) (R +1)! . . (Rit-1)! .

This expression has been obtained before, in § 83.
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§ 86. Raabe’s multiplication theorem of the Bernoulli po-
lynomials, Let us start from the expansion of

Hx) = p™! 5 @n [3_2] . n>1
u=0 p

into a series of Bernoulli polynomials.
To determine ¢, let us put x=pz; we shall have

[ ¢ (" :

co = xjdx = p" X n [ + __] .
0 P u=0 o‘[ ol p dz’
therefore

Co = p" ﬁ [¢n+1 Epil"] —Pnuy [%]] =

n=0
= P[@ns1 (1)—9n1(0)] = O.
Since we have seen that c,=AD™f ),

o[ £ g2

x=0

=pwm i [ Prms [l;:ﬁ]—%_m [%]]»

from this it follows that
Cm = pTm [‘Pn+1—m(l) — @n1-m(0) ]
Therefore if m & n then ¢,=0, and
=@ (1) —9,(0) = 1,
Finally we have
t (x) = (Pn(x)'
Putting again x=pz we obtain Raabe’s multiplication
theorem

L4 ®
1 (pz) . ™ 2 o —).
(1) ealpz) - p 2@ Ft
Writing z=0 we get
@ . a=p 3 gL .

u
u=0 P
Particular cases. For p=2 formula (2) gives
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@ ral48) = a5 —1 ).

This result has been obtained in (8) § 82.
We may obtain another expression of @,{Y%) starting from
@n(x) = (x+B)*nl . We get
n41 n B'

2. Putting into (2) n=2m and p=4, taking account of the
preceding result and remarking that in consequence of the

symmetry
1 8
Pom (4] = Pom (4]

1 a
‘Pznl[f): 222’:. 22m—1 1]

3. Putting again n=2m and p=3, we obtain in the same

way
Wl o)
P2m 3 =—-2-—a7.m = T 1 '

we find that

32m=1

§ 87, The Bernoulli series. If certain conditions are satis-
fied we may expand a function into a series of Bernoulli poly-
nomials in the same way as has been done in the case of poly-
nomials {§ 85) j but the series will be infinite and its convergence
must be examined.

Let us start from f(x<-u); its expansion will be, in conse-
quence of formulae (2) and (3) § 85,

w1

) Hatu) = [ Ho)dt + 2 palx) AD™ (a).
Putting into this formula #—=0 we obtain the expansion of

f(x) into a series of Bernoulli polynomials found before. On the
other hand, putting x=0 we have

w1 ®
fw = feyde+ = ap AD™ (1)

or
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2 fu) = fw f(H)dt + $ Bn AD™ #(u)
2) (@) = 5o :

This expansion might be termed a Bernoulli series, owing
to the Bernoulli numbers figuring in it, It often leads to very
useful formulae. For instance, starting from cos Z we may obtain
the expansions of cot z, tan 2, etc., into power series.

Sometimes these formulae may serve for the computation of
the values of the function f(u) as for instance in the cases of
F(u) and F(u).

Remainder of the Bernoulli series. If the series is infinite,
its remainder should be determined. For this we will start from
f(x-}-u) integrating by parts, u varying from zero to unity;
proceeding in the following way:

1 |
o | Herode = @)} = | o (@DHx-+a) da.
To determine the quantity in the brackets, let us remark
that
.00 = @, =— Y% and ¢,(1) = —a, = 1
therefore we may write this quantity
Vo[F(x+1) +F(x)] = £(x) + M (x) = f(x) = a,AH).

The integral in the second member of (3) gives by integra-
tion by parts

- | 9, (@)DF(u+2) du = [— o, () DF(x+u)]3 +

1
+ I ¢ (u) D* (x+u) du,
Since we have
@,(1) = ‘Pz(o) = a,

the quantity in the brackets will be equal to —a, ADf (x).

Continuing in this manner, equation (3) will become
x+4-1

@ fx) = f f(0)dt + a,Af(x) + a,ADF(x) +., ., +

+ a,,AD*™ ' (x) — J @on (1) D*F (x+u) du .
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This is the expansion of f(x) into a Bernoulli series, and
the last term of the second member is the remainder, it may be
transformed as follows:

— [ [pan(t) — aynetas, D% (a-+x) du =

1
— 0, AD* Y (x) — | [@mnlt)—aya] , D*# (x-+u) du,

0
The quantity in the brackets, in the second member,
does not change its sign in the interval 0, 1, therefore the mean
value theorem may be applied, and we have
1

(5) Ry, =—D?rf (x+6) J [@en(u)—0sn]du = a,,D*# (x+6)

where 0 < 6 < 1. Finally the expansion will be
01+1
© He) = | F(0dt+ a, M (2) + @,ADF () +, ..+

x
+ ay_, AD? % (x) + a,, D**f (x+9).,

If D?f(x) does not change its sign in the interval 0, 1
moreover if P?F(x) D2**2f (x)>0, it is possible to obtain a still
more simple form of the remainder. Indeed, since @aplyn,s<0 in
this case we have

Ryn Rynyp <0.
From (6) it follows that
Rzn = ay ADZn-lf (x) + R2n+2 .

This equation may be written in the following way; if A=B+4C
and AC < 0; then, from

A? = AB } AC,
it follows that AB > A? > 0; dividing by AB we get
A
> =20
1> 3B
so that we may put A = éB where 0 < ¢ < 1. Finally we have
(7 Ry, = £ a3 AD*™ M ().

Formula (6) may be transformed by putting DF(x) =F(x);
we find
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@) DF(x) = AF(x) + 2 B ADVF(s) + R

This formula may be useful first for the determination of
DF (x) if the derivative of F(x) is complicated but the deriva-
tives of AF(x) are simple.

Example 1. If F(x) = logIl" (x41), then DF(x) = F(x) and

AF(x) = log(x+1) moreover AD'F(x) :‘L_L]:—“Il%,—'!‘)‘!‘

Since from formula (1) § 21 we have
2 1
2n+1 = )21 ——
D F(x] - D 10gF(x+1) - (2”) 1 mEl [x+m)2n+1
therefore D?™*1F(x) D****F (x)>0 so that the remainder of the
form (7) may be used, that is

o Ry = 528 ADMF (2

where 0 < §< 1. Fmally from (8) we get'

(10) F(x) = log(x-+1) + . 2 (—1)" [,+1] ng" (x+l)2:'

Although the infinite series is divergent, the formula may be
used to compute the values of F(x) in Pairman’'s Tables (loc.
cit. 16). Indeed at the beginning of the series R,, is diminishing
with increasing n. In § 82 we have seen that

1:2n+2 < (2n+1) (2n+2) .
2n (27)2 !

neglecting &, this gives approximately

i R2n+2 (2n+1) (2n)
! (27)* (1+x)2 .

So that R,, will d1m1n1sh till the second member becomes
equal to one: or,approximately, till n reaches the value of 3x+43.
Therefore if x is large it will be easy generally to obtain the
prescribed precision. The most unfavourable case is that of x=0;
this should give Euler’s constant, Writing x=0 we get:

— — < 21 'fan
C=—F0 =%+ .Zn %t 2n
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For n=1 this would give C=05+ 1—;2 ; the best value of C is

obtained for n=3, that is C=5575 + §§5
Example 2. 1f F(x) = DlogI'(x-+1), then DF(x) =F(x) and
AF(x) = —+—1; moreover ADF(x \(( _:i),lf] :

From formula (1) § 21 it follows that

D2 1F (x) = D?*2logl" (x+4-1) = (2n+1) | E [x+1)2"*2 H

therefore the remainder will be given by (9) so that we have

according to (8):
st (1) B ¢B

11 E(x) = 2 + L

(11) (x) = +1 + o (F)F T )

Though the infinite series is again divergent, the formula is
still useful for the computation of F(x); since at the beginning
of the series R,, decreases with increasing m. (Approximately
till n becomes equal to 3x+3.) The less favourable case is that
of x=0; then we obtain

=2 n
FO) =5 =14 %+ 3 ButeBa
For n=1 this gives F(0) = 1’5 + —i— The best value of F(Q) is

obtained for n=3, that is F(0) =1'633 + é

Secondly formula (8) may ‘be useful to determine AF(x) if
the derivatives of AF[x)

By 1
[(x+1]”"
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[ADF (x,t) le=o = ci o ({)

where ¢; i1s a numerical constant. From this it follows that
[AF (x,t) ]x=0 = €, @ (8).

Writing in (8) F{x,#) instead of F(x), putting x=0 and
dividing both members of the equation by €, w(#), we find

|DF (x,£) Je=o | E'__B_' ; Ron
c, w(f) - .Eo co il £+ cowl(t)

This equation will give the expansion of the first member
into a power series.

Example 4. If F(x,f) =e* then DF(0) =t and AF(0) —e*—1
moreover [AD'F (x,t) Jx=0 =#'(e'—1) hence ¢;=1 and w(f)=e'—1.
Since

(12)

D2n+1F(x't] DQn+3F(x't) >0

it follows that the remainder is given by (9) and from (12)
“we get

U Bty
(13) el—1 - i-—§0 . t + (2’1)! t"

In this manner we again obtained the generating function
of the numbers a@;=B; /il .

Example 5. If F(x,t) =sin xf then DF (0) =t and AF (0) =sin ¢
ADF(0) —=#(cos f-1), AD"F(O) = (-—1)‘ 2 sint.

Since D2*1F (x,t) D*"*3F (x,t) <0 the remainder (5)
must be used, that is
" Ru= 2 D#F(x49)

where 0 < ¢ < 1. So that the required expansion (12) will be
[noting that ¢y= (-1’ and w(f) =sinf]

t _ Bjf(cost—1). 2"21 1= i+
sint sin# i=0 1) (2 )l
(_ L ,,, frnt1 cos 9
(2n)! sint

(cos t + 1) [ sin t = cotlif; therefore we may write the
preceding equation in the following manner
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(15) 1ot cotlpt = 2 (—1)i -Bat iy R

(2 ) !
In § 82 we have seen that Jim a,, k2" = 0 if 0 S k < 27; there-

fore if I #| <2m we shall have lim R,, = 0. Moreover, according to
n=m

formula (10) § 82 we have

+
a2n+2 {2nt2 P t2

a,, 12" > (27)2"

hence we conclude that if I # I < 2x the first member of this in-

equality is less than one and the series (15) is convergent.
Writing in (15) B,/ (2i) ! = a, and subtracting it from

2 + Y4t we find

2n—1 . i
2+ t(l—cotlpt) =1+ Yot + 3 (—1)" ay #¥ +

i=1

—R,= 3 lalt.
i=0

Hence the first member is the generating function of the
absolute values of ag.

From this formula we may deduce the sum of the absolute
values of the a,, by putting §—1;

®

Eo | @m| = 2°5 — ljcotlp == 15847561

(Let us remark that arcl4 = 28° 38" 52” 40).
The numbers a, in § 85 would give

13
2 la, | = 1’58475 61391.
_o

Writing in formula (15) #=2z and dividing by z we get the
well known formula

(16)  cotz = % + g (—)m2m

B,, cos29z
28 2211 —_—
(2m)! sin2z

We have fgsgmrs—* corSs=it

z2m—1 +

+ (—1)n 221

B2m -
et Gyl 2t R
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From (16) and (17) we may obtain several other formulae.
For instance by integration

i

— [ tan x dx = log cos z
0
or by derivation

1 ' 1
Dtanz = 7 —Dcot z= prrc
Since
1
1 L 1/ = .
l4[tanlox + cotlox] pr
Hence we have
_—___ __ 1\m ___22m 2’" 2m=1 + R .
=5+ 2 (—2"") Gyt * an

§ 88. The Maclaurin-Euler Summation Formula, This is a
formula by aid of which the sum of a function may be expressed
by its integral and its derivatives, or the integral by the sum and
the derivatives.

Apart from the remainder, the formula may be easily
deduced by symbolical methods. In § 6, we had formula (3)

A =eP—1
from this it follows that
Al = 1 j— L _h_D
T et®—1 7 AD|e™ -1

But according to formula (2) § 85 the expression in the brackets
is equal to the generating function of the numbers g@;, the
coefficients figuring in the Bernoulli polynomial; since @ = B, /il
where B; is the i -th Bernoulli number; hence we may write

- S Bi . 1 . = ' B, -
At = iEO 71 (D)™ =% D'+ ,2:1 T (hD)*"*.

This operation performed on f(x) gives, if the sum from
x—=a to x=2z is calculated,

D % J' flx) dx + i % k™t |D"'#(z) —D™*fa)].

#=u
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This is the required summation formula.

To obtain the summation formula with its remainder we
start from the Bernoulli series (6) of § 87. Let us write it in the
following way:

xH 211
(1) fx) =x,| fe)dt Z an AD™H(x) +  ayy D*F(x+9)

where 0 <9< 1.
Summing each member of the equation from x—g to x=z
we find

@  Ere =]t 'S au[D"H(z)— D ] +

+ a,, S Dt (x+6) .

x=a

Remark. The remainder in this equation may be written:
(3) Ry = ayn = D (x+%) — ay, g' DF (x+¢).

Particular cases. 1. If we have

Df (x) D*™% (x) > 0
and moreover if [P?"(x) does not change its sign in the interval

(a, 2) then, according to § 87, the remainder may be written:
(4) Ry = £ ay[ D (2) — D*F ()]

where 0<§<1,

2. If f(x) 1s a function such that for every value of
m=1,2,3,.., we have D"} (o) =0, then we will use form (3) of
the remainder; and equation (2) may be written

(5) S fex) =) 10 L5 e
xX=q ] m=1
— ay 3 D™Hx+e) + G

where C; denotes the part of 2 f(x) which is independent
X—=q
of z, that 1is,
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C, =— :’g an D™H(0) + ay E DH(x-+0).

We may obtain another expression for C; writing z=% in (5}

(6) C, = = Ha)— | Hodt—a,f().
xX=a a

The value of C; must be determined for each particular
function. From (6) we conclude that C, is independent of n.

Formula (5) will be really advantageous in cases in which
one of the expressions 2 f(x) or | (x)dx is unknown,

Example 1. Given f(x)=1/(x-+1) and a=0. Here we have
D7f()=0 for m=1,2,3,.. ., therefore formula (5) may be
used. Since moreover we have f (%)=0, it follows that

K 1
6= % x+1 j £y 4t = lim [ 3 ~:{—mg(u-u]
but according to formula (3) § 19 the second member is equal
to Euler’s constant C; therefore C; =€ =057721 56649 01532.. . .

D2t x) D2*2F (x) > 0 and D*f (x) does not change
its sign in the interval (0,2); therefore according to Particular case
1, the part of the remainder dependent on z may be written:
a,, ¢ D*'f(z). For instance, we shall have, stopping at n=2

X ) =Cr+ | HOdt +af(s)+a,Df (2) + o, § DY (2
or
s 1 1 ¢
Z a1 = Ot et ) sy e T 120G 1)

For instance, if z=21 then

C 0’57721 566
log21 304452 244
—1/2(21) -0°02380 952
—1/12(21)2 -0.00018 896

359773 962 + 000000 004 §.

Comparing this with the exact result, we find, neglecting the
remainder, that the error is only —3,108,
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In some cases the FEuler-Maclaurin formula performed on
f(x) will lead to the same result as the expansion of

Fia) = 2 Hx)

into a Bernoulli series (6) § 87. For instance the expansion of
F(x)4C by formula (10) § 87 is identical with the expansion
above.

Example 2. Given f(x) = log x, and 21 log x is

required. We have D™og(>) = 0 for m = 1,2,3, , . . so that
formula (5) may be used. Moreover since D#f{x) D***f (x) 7 0
and P?f (x) does not change its sign, therefore remainder (4)
will be applied. We find by aid of (6):

C;=1lim [log(z—1)! —zlogz+ z— 1 — a, log 2]
F= 4

but tbis expression may be written

C,+1=1log Ll_i__tg e;{l{:)].

Stirling has shown that the limit of the quantity in the
brackets is equal to V2n. Therefore

From formula (5) we get
n élogx:C/+zlog1—z+l+allogz+
x=1
n —2Y/ o
4 E_lazm (2m—2)! + ayé (2n—2)1

z2m—1 z2n-l

Finally adding log 2 to both members of the equation (7)
and writing @,=Bn/m! we obtain

@) log z1 = log | 22 + (z+14) log 7 — 2 +
n BZm 5 an
+ 2, dm@m—1) 2 ¥ Znn—1)

This is Stirling’s celebrated series for log zl . According to
what we have seen in § 82, the general term increases indefinitely
with n and therefore the series obtained by putting n=% will
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be divergent; nevertheless formula (8) is useful for the compu-
tation of log z! , The best value of n would be approximately
zn(z4-1).

Remark. Of course the logarithms figuring in these formulae
are Napier’s logarithms, To have Briggs’ logarithms, the result must
still be multiplied by log 10 = 2’30258 50929 9.

Example 3. Given f(x) = 1/(x41)2 and a=0. Since
D™f{)=0 for m=1, 2,3,.. ., moreover D*"f{x) D**2f(x) > 0
and D% (x) does not change its sign in the interval {0,z) therefore
we may use formula (5) and the remainder may be written
¢ a,D2 1 (x).

According to (6) we find

a 1

Cr= ¥ —nu—1¢
1= L e
2
in consequence of § 82 this is equal to Cy= % -1 and
L] 1 1 B
S ——=2¢C l-- __
OB A e | A g PR
3 B £B,,

N VN R I
For instance, stopping at n=2, we shall have

L 1 w2 1 1 1 3

Eo x40z~ 6 z+1 2(z+l)2—6(z+1)3+ 30(z+1)°
The best value of n would approximately be m(g-+1).
The series obtained by putting n=9° would be divergent,
but nevertheless the above formula is useful for the computation
of 2 1/(x+1)2 For instance, let z=20:

a6 1'64493 4067
-—1/(21) -0'04761 9048
—1/2(21)2 -0°00113 3787
—1/6(21)? -0°00001 7997

1’59616 3235
and

R,=¢/30(21)® 0'00000 0008 £.
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The expansion (9) is the same as that obtained by expanding
x? : 1
- 2 ——_ F
a =0 (x+1)2 ~ (2)
into a Bernoulli series in § 87 (Ex. 2).
§ 89. The Bernoulli polynomials of the second kind. We
will denote the polynomial of degree n by ,(x). Its definition
is the following:**

(1) Dualx) = [,

from this we obtain by integration

wle) = [ (7] dx 4k

Hence by the definition (1) the polynomial is not wholly
determined, there still remains an arbitrary constant to dispose
of. This will be done as follows:

The expansion of the polynomial into a Newton series may
be written

2) vale) = (5)+ 0, (a2q) +.- -+

The operation A performed on both members of (1) gives

AD valx) = (7 5)

but this is also equal, in consequence of (1), to D wa, (x).
Integrating both members of

ADWn(x] = D'Pn—1 (x)

and disposing conveniently of the arbitrary constant figuring in
Y, [x) we get
(3) Ay (x) = oy (x).

The Bernoulli polynomial of the second kind is completely
determined by equations (1) and (3).

In § 22 it has been mentioned that the sequences of func-
tions F,,(x) satisfying

3 Ch, Jordan, Polynomes analogues aux polynomes de Bernoulli.. .
Acta Scientiarum Mathematicarum, Vol. 4, p. 130, 1929, Szeged.
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AFq(x) = Fo_, ()

for x=1,2,3,..., play an important rdle in the Calculus of
finite differences.
Moreover, if F,(x) is a polynomial of degree n:

F.(x) :co[:]+c1(nil)+....+c,,

then we have seen that the coefficients ¢; are independent of the
degree m of the polynomial, so that they may be determined
once for all.
From (1) we deduce Dy, (x) =1 and therefore v, (x)=x+b,
so that by=1. Moreover if 1 then formula (1) gives D, (0)=0.
On the other hand we have

Du© = % ba|D(nm]|

m==

but we saw that (§ 50)

x . 1 L . . (_lln—m—l
[D ( n—m ] =0 (a—m)| n-m T T p—m
Therefore we get from (2)
< ”» bm —
4) mzo(-l) __n_m_o.

Starting from ,==1 and writing in this equation successively
n=2,3, .., ., we obtain step by step the coefficients b,. For
instance:

Yoby — b, =0 gives b, = 14
1
llabo—'l/sz + b2 =0 b2 —— TE
and so on.

Table of the numbers b, :

by = b, = — 19720 b, = — 3395313628800
by, = % b, = 3/160 » = 57281/7257600
b, ===1/12 b, = — 863/60480 b,, = — 3250433/479001600.

b, = 1/24 ; = 275124192
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Particular values of the polynomials. From (2) we deduce:
val0) = b,
vall) = bny + by
pl=t) - (= 3 —umb,

m=0

From the first two it follows that

0 Tk vat—vea@. b

It is easy to express the Bernoulli polynomial of the second
kind by aid of a power series. Since (§ 50) :

1 nl
I)’K'I = a §...=1S”'" o
by integration we get
(6 o) =7 T ST A b
this is the required expression. Putting into it x=1 we have
1 Sy
(7) b, = al .2 m

Knowing the Stirling numbers, the coefficients b, may be
computed by aid of this formula. For instance
1 6 11 6 1 19
=% [—?+T_T+FJ =~ 720
Remark. From formula (7) we may obtain another one by
inversion (§ 65). Indeed, multiplying both members by nl&"
and summing from n=1to n=»-+41 we obtain:
S ! by = —
n! = —,
n=i " r+1
Sign of the numbers b,. Let us remark, starting from equa-

b,

tion (8), that the sign of(:‘) in the interval 0,1 is the same as
that of (-1)“’ ; therefore we shall have

by < 0 and by, > 0.
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The polynomial y,(x) may be expressed by a definite
integral :

(8) of (3] da s G+1) —vaale) = wala).

§ 90. Symmetry of the Bernoulli polynomials of the second
kind. A. Polynomials of an even degree. Putting x—n—1 +y
into Dy,a(x) we find

Dy.n(n—1+y) = my(y 1) (»*—2%) ....[y*—(n—1)°].

Since this is an  odd function of ¥ 1 its integral will
be an even function of y; so that

(l) "l"-2n (n‘_‘l +y) = WYan (n—1—y)
or ,
Yon (%) = Yon (2n—2—x).
Hence the polynomial ,,(x) is symmetrical. The symmetry
axis is x=n—1. ,
B. Polynomials of an odd degree. The operation A per-
formed on both members of
. Yoz (A4Y) = yonia(n—y)
will give, according to what we have seen (p. 5)
(2) Yony1 (u+y) = = Yonyy (n—y—1).
Writing in this equation y=n—1—x, we get
W2n+1 (x) = . hound w2n+1 (2ﬂ—1-—x]
or putting y=x—15 into equation (2):
3) Yoy (F—Yo+x) = — Yaniy (n—Vo—x).

This is the expression of the symmetry of the polynomials
of odd degree. Putting into it x=0Q we obtain
Yo (n—1%2) = 0.

The polynomials of odd degree are symmetrical with respect
to the point x=n~-—14,
‘General expression of the symmetry of the polynomials:

'Pn(l/?"—l-l-x) = (—1)" v, (Yen—1—x).
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Corresponding particular cases:

va(n—2) = (—1)"vu(0) = (—1)"bs

win=1) = ()= =1 =T bl

m=1

8§ 91. Extrema of the polynomials, A. Polynomials of an
odd degree. From

Dy, (%) = (‘2",_)'! x(x—1) (x—2) , ..o (x—2n41)

it follows that the extrema of gy, (x) correspond to x=0, 1, 2,
... 2n—1. Since between — and; zero the derivative of Wsn,, (x)
is positive,

x=0,2,4,.... ,2n—2
correspond to maxima, and

x=13,.,,,2n—1 .
to minima. !

Theorem 1. Every maximum of the polynomial.of odd deg-
ree 1s positive and every minimum negative.
To show it, let us write (8, § 89): -
i

1

) J (5] du =yt

0 .

Remark 1. x, being an integer,’ if ‘x 2 m + 1 then every
factor of (x-n{;u) is positive, and therefore y,,,(x) > 0.

Remark 2. If 0 S x < m then there are ~x+4-1 positive and
m-x-1 negative factors in (x;ln—lu] so that its sign and that of
¥n(x) will be the same as the sign of (—1)™*1,

X . .

Remark 3. If x < 0 then every factor of ( xu] is negative
and the sign of wu(x) will be that of (=1)™..

From this we conclude that

@ Yona (2v) > 0 if »20.
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and
) Y @—1)<0 i f 0<wsSn.

The inequalities (2) and (3) demonstrate the theorem.
Moreover in consequence of Remark 3 we get

WYonpy (—x) <0 if x> 0.

B. Polynomials of an even degree. Theorem 2. The maxima
of the polynomial w,,(x) correspond to x=1,3,5, . . ., 2n—3
and they are all positive. The minima correspond to x=0, 2, 4,
., -+ 2n—2 and they are all negative.

From Remark 2. we deduce that

4) Yo (2—1 )>0

hence the maxima are all positive. Moreover from 2. it follows
that
(5) Y <01 f 0svEn—1

hence the minima are all negative. Finally in consequence of 3.
we have

Wzn("‘x) >0i1i f x>0

Theorem 3. If x is an integer, then the absolute value of
V,,,(x) decreases from x=—1 up to the point or axis of sym-
metry, and then it increases again. So that we have

(6)
lym(—1) 1> 1y,0) 1>, .. > T yu(em—1)I<...<Iyn(m—1) L

To prove it we shall show that
(7) 1Y) [>T yulx4-1) ]

if -1 £ x 6 Ym—2, For this we shall determine the mean of
v,,,(x). We find

MWm(x] = Yo [ym(x) + ymlx+1) 1

and in consequence of formula (8) § 89 we have:
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8) Munlx) = 1 fl[[ e+ida) | x’-T}l-u]] du =
_I [x+u]x+u+l-—1/2_md
m

The sign of the mean will be equal to that of (x+4u+ 1—1om),
(x+4u)m_; . In the interval considered

(9) —1sxs’—;’-—2

the first factor is always negative. The number of the negative
factors in {(x4u)pm_, is equal to m-2-x; therefore if m and X
are both odd or both even then the mean is negative; that is

VYan(29) + ou(2v+1)< 0
Yaps1 (2"—'1) + Yanyy (21 <o,

On the other hand if one of them is odd, the other even, then the
mean is positive and we have

Wan(2v—1) + wan(2v) > 0
Vens1 (2”) -+ Yaonty (21’-+-1) >0.

Hence from (2), (3) and (4) we conclude immediately that in the
interyal (9) we have for every integer value of x:

1¥m(%) 1> ym(x+1) |

therefore Theorem 3 is demonstrated.

Since the maxima of wp(x) decrease from x=0 to the
symmetry point or axis and then increase again, hence the maxi-
mum nearest to this point or axis is the minimum maximorum. The
minima of y,,,(x) increase from x=0 to the symmetry point or
axis, and then they decrease again, so that the minimum
nearest to this point is the maximum minimorum.

If m=2n+41 and » is odd, the minimum maximorum cor-
responds to x=n—1 and the maximum minimorum to X=n. If n
is even, then x=n corresponds to the first and x=n—1 to the
second. In both cases we have

Vans (R—1) = == Yop,, (n).

Let us remark that the highest maximum corresponds to
x=0 and is equal to
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Yonir (0) b2n+1

moreover, that the lowest minimum corresponds to x=2n—1 and
is equal to

Yar+1 (2)‘1—1) = = Wny1(0) - bonyq -

If m=2n and if n is even, the minimum maximorum is on
the symmetry axis and is equal to w,s(n—1) ; the maximum
minimorum is then at x=n—2 and we have w., (n-2) = y,.(n).
If n is odd, then w,,{n—1) is the maximum minimorum and
Yon (0-2) =Wus (n) the minimum maximorum.

Roots of the polynomials. The roots of ws(x) =0 are all
situated in the interval -1, mn-l1 ; indeed in this interval the
function changes its sign n times; since y,,(x) is of degree n,
hence all roots are real and single.

§ 92. Particular cases of the polynomials. From formula
(2) § 89 it follows that

1
vl =x+

vt = (3 + 5 [7) - 3
‘Pa(")—[al‘*"}m i[JltJ7L214
wi = () + 3 (3) - 53 +%l) - =

etc. (See Figure 2.)
§ 93. Limits of the numbers b, and of the polynomials

Y, (X) . Since
1
b,, = ' [‘z] dx

[:]=l x-lj(x—ZJ . x—n+1 l"

n—1

and

then the absolute value of each factor of the second member is
less than one if 0 < x < 1 and we have

()] <+
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and therefore
bl <L
n
so that

Moreover we may write

bny = f[n+1)d"— I[ ::?

Figure 2.
y
v l X f, \r’ ¥
Y
¥y =% (2 Yy =

- - 1 / T — ) /
/ O T Z x T i ~—r
]
| 1
!

Y = ) y = %@

,’:] does not change its sign in the interval (0,1}; hence

we may apply to this integral the mean value theorem. We
obtain

&—n

> i < gL
n+1b,,1f0 & 1.

boy =
from this we deduce

n—1 n
- - < < -
1001 <1by, I<—T 18,1

and

5
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b,., \ n .
<
@ ' n41 ’
that is, by increasing n, the absolute values of the numbers b,
diminish.
Since the series
by + b, +b,+.....+b+....

is alternate, from (1) and (2) it follows that it is convergent.
In the preceding paragraph we have seen that in the interval
0<x<n—2

(3) lya(x) | < 1Bal.
From this we conclude by aid of (1) that
4) limy,(x) = O
n==on

if 0 < x < n-2. But this interval may be somewhat enlarged.
Indeed, according to formula (1) of § 89 we have

1
y),,(x] = o'[ [x;l'_u] du
therefore

val—1) = of[ w1 du.

Starting from this formula A. Sziics has shown that the limit
of yu(—1), for n= is equal to zero. Let us write the quantity
under the integral sign in the following way:

=2 ) [1=2). (=2,

1+xSe%,

From

remarking that 0 <u < 1, we deduce

ll_") 1“-] .[1—%) PPCTITE NI

and then

EAr
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1 1

e ——

J.l (u--l ) du < I‘e_u(l+%+...+;‘_) du — 1—e 777w
n = |
0

1 1
T

Since for r=0% the limit of the last member is equal to
zero, we conclude

(5) lim yy(—1) = 0.
But according to formula (3) § 89 we have
val—1) = (—1)"[b—b,+b;—b; + . . . . + (—1)"b,]

or
w41 B
—1)l = 2—"%
[ pa{—1) o | b
and if n increases indefinitely
-]
Z byl = 2.
m=0
Hence the series 21 b, I is convergent.
Moreover, in consequence of (3) the series £ | y,,(X) | is
convergent too, if n-2 > x 2 0.
§ 94, Operations on the Bernoulli polynomials of the second

kind. Differences of the polynomials. According to formula (3)
§ 89 we have

(l) Am yalx) = Wn—m(x)'
Hence the indefinite sum of the polynomial is
(2) A7 yu(x) = (%) + R

From this we deduce the sum of the polynomial; for instance,
taking account of (3) § 90 we find

2n—1
x§o WYan(x) - Yansq (2n—1) — wpu, (0) - — 2 sz]
or in consequence of (1) § 90
252
i Yan-1 [x) = Wzn(zn—z) — 1l’n(ol =0

Mean of the polynomial: Since M = 141%A, therefore
@) wyrx) = yalx) + 1o vau (x).
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Inverse operation of the mean: According to formula (12) § 39
we have

(4) M yalx) = 2 (_21 i Yn_m(x).

Derivatives of the polynomial:
x
D vai(x) = [n-—-]]

1 " , .
D™ya(x) = F:I_)ij—l (¥)mey Su—t 21

& brvio =5 s

Integral of the polynomial. By integration by parts we obtain
J vale) dx = (x—rt) ale) — [ Ge—nt) o5y )

Since the quantity under the integral sign of the second member

may be written n{";] we have

6) [ ynl®)dx = x-n+D) yule) 0 v la) + K

from this we obtain
1

f ya(x)dx = (2—n)b,_, + (1—n)b, .
0

§ 95. Expansion of the Bernoulli polpomials of the second
kind into a series of Bernoulli polynomials of the first kind.
According to § 84 the coefficients of this expansion are given by

|
o= | valx)dx = @—n)b,_, + (1—n)b,
0

¢ = A"IJ" (0] = Yn, (0) = bn-1

} —2) | m—
m = [D" Ayn(x)]z=0 = [D" 95y (x)] =0 = (;: 2; { Sns

The values of the above integral and of the derivatives have
been obtained in the preceding paragraph.
The required expansion will be
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"Pn(x) = (2—n]bn—1 + (l_n)bu + b _1<p1(x) +

+ "+l (m——2)! m-2

m=2 (n‘2)- L (x)'

Putting x=0 we get
-1 — NI
(n= 3 ) by b= 5 P20

m==2 (H—Z)!
From this formula we may obtain a, by inversion (§ 65).
Let us multiply both members by (n-2)! @".'_—22 and sum from
n=3 to n=i+1. We obtain
B, , s 3
gy = —dla= 3 [[n—~ 2 b,._l-l-nb,.] (n—2)! &2
This equation gives the Bernoulli numbers by aid of the
coefficients b, .
§ 96. Application of the Bernoulli polynomials of the second
kind. 1. Integration of a function expanded into a Newton
series, Given

f(x) = f(o) + [’1‘] AFO) + | ;] A*F(O) + ..., + [’;]A"f(O) +. .

according to formula (1) § 89 we have

[ H2)dx =, (0F0) + p,(AFO) + . , , , + Ve (BAH(O) +
+..,+k

—2
S:‘.z ay .

and moreover
1

(1) | Flx)dx = byF(0) + B,AF(0) + . . . + bAH(0) + ...

0

Example 1.
1
C_dx v (—1)"b o 1bal
L g2 =y 2O g Sl 1R
o" x+1 n=0 n4+1 1 a=1 n-}1

§ 97. Expansion of a polynomial into a series of Bernoulli
polynomials of the second kind. Let us write

(1) Ha) =2 cmile).

The operation A™! executed on both members of this equa-
tion gives
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n4-1
A2 F®) =2 () + ks
=0
by derivation we obtain

DA-" f(x) = zqty

Putting x—0 it results that
(2) ¢, = DA-1 (0).
To obtain ¢, let us write
A (x) = cpy + cnyy (x) + Cmaya(x) + .0 L
By derivation and subsequently putting =0 we find
(3) cn=DA™ £ (0).

Example 1. Given f(x) = x*[ n! . We have A™f (x) =@pn,,(x)
the Bernoulli polynomial of the first kind of degree m-4-1. Hence
Dy, (x) = y,(x) and ,{0) = a,. Therefore

Cc, = a,
moreover

¢, =DF(O0) =0 ifn>1

m-1 1 Mm-1 4o~

A™D = =1 &7 =
Hence ( 1)!

m— m—
= =1 &
Finally
" 1 n41

W =t aopr 2, mU! e vl

Putting x=0 we get another expression of the Bernoulli
numbers in terms of the coefficients byt

B n+1
5  Sr=m)la=— 2 (mlI b, &
n m=2

From this formula we may obtain the number b; by inversion
(§ 65). Multiplying both members by §?-! and summing from
n=2 to n=i41 we get
i+l

(6) ()b = — §z (n-1) I a, S*1

-1
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Remark. To obtain the expansion of the Bernoulli polynomial
of the first kind into a series of the second kind, it is sufficient
to sum formula (4) from x=0 to x=2; we find

(7) Onyy(2) - Quyy . @z .
1 n+1
T =01 Z (m—1)! &7 [yma (2) — bma].

If the function to be expanded is not a polyno‘mial, then the
series (1) will be infinite and questions of convergence will arise.

Example 2. Given f(x) = 2*. We find, using the preceding
method ¢, = log 2 for m=0, 1,2, ., .; therefore the expansion
will be

2 =1og 2[1 + v, (x) + w,(x) +....13
putting x=0, we have
1
log 2
We have seen in $93 that both series are convergent.
Example 3. By aid of the expansion (1) it is possible to
determine the generating ‘function of the Bernoulli polynomial
of the second kind. For this it is sufficient to dispose of f{x) so
as to have g = " Since A™ (1 4#)*=t"1(14-#)* and D(1+#)*=
=(1+1#)*log(1+1) it is easy to see that
_ t+4*
I = toglih

indeed, the coefficients of the expansion of this function will be

cm = [DA* (%) )s=0 = ™
therefore if -1 < £ £ 1 then

a4y m
(8) Tog(1+5 = m2=0 Ym(x) ¢

is the generating function of the polynomials y,,,(x).

Putting x=0 we obtain the generating function of the
numbers b,, ,

t o
® g = wioom ™

=1+b+by+....
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After what we have seen, if -1 < f £ 1 then both series are
convergent. Putting into (8) and (9) =1 we obtain the results
of Example 2.

Putting into (9) ¢ = = 14 we have

§ [_1)m bm_ 1

m=0 2m o 2 10g2 ’
This may je written in the following manner:
2 byl 1
mEO 2m 2 lOg 2

Example 4. Given f(x) = log(l+x) ; we have
A log(x41) = logl'(x41) + R and DA™ logx = F(x)

therefore

¢, =F(0)=—C
where C is Euler’s constant. Moreover
) ’ 1 (—1)=1
¢n = [A™* Dlog(x+1)1m0 = A ‘;+—1],=0=-—m"
so that finally
(10) logl+1) = —C + 3 (:;lﬂ Vilx).

We have seen that 2|y, (x) I is convergent if m-2 2 X 2 == 1,
therefore the series (10) is absolutely convergent. Putting x=(Q
‘we find

-
a c= 5%

This is an expression of Euler’s constant in terms of the
numbers b, , but the convergence is very slow,
§ 98, The Bernoulli series of the second kind, If we put

A1l = =y, (u-x)

then the operation of summation by parts executed on X f(x)
may be written

(1) A HE) = =y (ux) F (&) + Ay, (u-x-D) AF (#)])-
Putting again
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Ay, (u—x—1) = — y, (u—x)

the operation of summation by partsperformedon the second
member of (1) will give

—y, (u—x) AF(x) + A’ [y, (u—x—1) A% ()]
continuing in the same manner we shall obtain, after having
applied the operation of summation by parts n-1 times,

A f(x) = m B pplu—x) A" (x) +
+ A7 [ oy (uxD) AT f ()]

As we may add to an indefinite sum any arbitrary constant,
the next summation by parts may be written

A [yns (u-x-i) A7 f (x)] = [—walu—=x) + ba] A" f(x) +
+ A Lya(u—x—1) — b,] A" (%) }

therefore we shall have

n+1
@ AW == T ymlu—x) AT () + bAT () +
+ A { [y (a—x—1) — b) A () }
Now let us write the sum of f(x) from x=u—1to x=z in

the following manner

@3 2 fx) = — n%llwm(u—-z)A’"‘lf(z) + bA"(z) + A(u)+R,

x=u—1

where A{u} is a function independent of z, obtained by putting
into every term of the indefinite sum (2), except the last,
x=u—1. To abbreviate we have written R, for the remainder

) R= X Tyalu—sx—1)—b,] A"F(x).

X=u—

From (3) we get by derivation with respect to z:

DA (z) =—— i_“l v (6—2) DA™H(2) + 3 [ 25 |Amit) +
+ 5, DA™ () + D R, .

If we put z—=u we have




282

6) O 3 (] =iw= % by DA™ Ha) + [D Rl

X —

To determine the remainder let us remark that
(6) vy (u—x—1) — b,

will never be negative if n=2m; and it will never be positive if
n=2m-1 and u-x £ 2m. Therefore, supposing that u—z<n the
expression (6) will never change its sign in the interval x—=u—1,
x=z so that we may apply the mean value theorem We shall
find, starting from (4)

Ro=MHE) 2 [vnli—x—1)—b]

where u- 1 <& < z, We have seen above that the indefinite sum
of y,(u—x—1) is —yy,,, (u—x); therefore the summation in R,
will give
R, = AFE)[—yn(u—2) —buz + yp, (1) + balu—1)].
Now the derivation with respect to z gives

DR,= ["“"Pm.l (u_.z) - bnz + Y1 (1) + b,,(u—l)] DA(¢) +
+ ety [( 777 =)

If we put into this equation z=u, the first term of the
second member will vanish, and we shall obtain

[D R.]:=« = —b, A" (y) where u-1 <y <u.

Putting this value into equation (5) and writing x instead of #
we obtain the Bernoulli series of the second kind:

M 0 =[D I HOles + £ by DA™H() + bAO)

where x-1 < g < x.
Remark. If A" (x) and A*'}{x) do not change their sign in
the interval (0,1) and if

&f(x) A (x) > 0
and therefore

R.R,,, <0,
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then the same ratiocination as that in § 87 leads to
(8) R,=¢b, DA™ (x) where 0 < <1,

Formula (7) may be transformed by putting f(x) =AF (x}}
then we find:

© OF(®) =(D [Fl)—F(x—1)]),_, + = by DA"F(x) +
+ b, A™'F (7).

Remark. The first term of the second member is generally
equal to DF(x), except if F(x) contains a periodic. . function
whose period is equal to one, which function vanishes in
F(z)—F (x—1); so that then the derivative of this quantity with
respect to Z is not necessarily equal to that of F(r).

Formula (9) may be useful, first if the derivative of the
function is to be determined and the differences of the derivative
are simple.

Example 1. If F(x) = log I'(x+1) then AF(x) = log(x+])
and D [log I'(z4+1)—log I'(x)]s=x = f(x) and moreover

DAF(x) = SHE )

therefore
2 (—1)7? (m—1)!
10) F(x)=log(x+1)— =L
(10) F(x)=log(x+1)— X =Tm)..
This expansion is similar to that of F(x) obtained by aid
of the Bernoulli series of the first kind (formula 10, § 87), but
that series was divergent and the present series (10) is con-
vergent. Indeed the absolute value of the general term is smaller

than I b,/m I and we have seen that this series is convergent.
ib,1 < (b1
[x—i—m] m
m

b,—b. A" log(n+1).

if x>0,

If x i1s large enough, the convergence is rapid, as we shall
see in a numerical example (§ 118).

Putting x=0 into (10) we should obtain the expression of
the Euler’s constant found before (1 1, § 97).

Secondly, formula (9) may be useful for the determination
of AF(x) if the derivative and its differences are simple.
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Example 2. If F(x)=log(x+1) then DF(x)= ﬁ and

(—1)™ m!
A"DF (x) = +—————
%) = - nn
a=d finally
1 n o (—1)™ m! b,
— Yy A= T b A 1).
ST i Gebmtd)y,, T AT gl )
Thirdly, formula (9) may be useful still in other cases; for
instance if [DA™F (x, ) ]:=0 = ¢m ™ @(f) where €n is a numerical
constant. From this it follows that [DF(x, #)]z=0= ¢, o(}).
Dividing both members of equation (9) by ¢, w(£), we find

Alog(x+1) =

R G

¢, w(f) m=0 Cp cow(f)

Example 3. If F(x)=(14#)* then DF(x)=(1+1)* log(t+1)
and AmDF(x) = (1+#)*f"log(f+1) moreover A"DF(0) =
= t" log(t+1) and AF(x) = (1+4-#)* t so that AF(0) = {. Con-
sequently we shall have

- _t . -m e R’.'__-
log(t-+1) = mzio bnt" | log(t+1)

To determine the remainder R, let us remark that in the
case considered we have A"F(x) A"'F (x) > 0; therefore we may
use formula (8) so that

R, = £b,DA"F(x) = &b, t" log(t+1).

The formula above has already been obtained (in 9, § 97),
but not the remainder.

§ 99. Gregory’s Summation Formula. This is a formula by
aid of which the integral of a function may be expressed by its
sum and its differences, or the sum by the integral and the
differences.

Apart from the remainder, the formula may be easily
deduced by aid of the symbolical method. In § 6 we had
formula (4) :

D = log(l-}-é].
From this it follows that



285

1 1 [ A
D = A | log(1+A)

Since according to formula (9) § 97 the expression in the
brackets is equal to the generating function of the coefficients b,
of the Bernoulli polynomial of the second kind, we have

1

-] l - -
L -1 i1
RD — .'Eo bih - hA + .‘21 bihA

Performing this operation on f(x), and calculating the sum
corresponding from x=@ to x=z, we get

1 : 2 - -

= [t de=27(X) + = b [A7Hz) —AH()]

h a X==d =1 h h

This is Gregory’s formula. Putting h=1, a=0 and
2= 1 we get formula (1) of § 96.

To obtain the summation formula with its remainder, we
start from equation (7) § 98, integrating both members from
x—=a to x=2z; the first term of the second member will give

2 f(x).
Xx=a

In consequence of the mean value theorem the remainder
will be

[ Bt () dx = (z—a) by AP (2)

where a < { < z, Finally it follows that

(1) aJ‘ P (x)dx :xi.;af(x) + él ba[A™(z) —A™F (a)] +
+ b, (z—a) A™ (0).

This formula is more advantageous than Euler’s summation
formula, if we deal with functions whose differences are less
complicated than their derivatives. Moreover there are functions
which lead to convergent series if we use formula (i), while the
corresponding Euler formula is divergent. For instance, this may

be due to the fact that D" [—i—) increases indefinitely with n and

1 . .
A [; tends to zero if n increases,
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There are some particular cases in which the remainder
may be given in another form.

First, for instance, if A"{x)} and A®!(x} do not change
their sign in the interval, a, 2, and moreover if

A (x) A (x) > 0

then we may obtain the remainder by integrating the expression
(8) of § 98 from x—ato x=2z; we find

(2) EbJAT™ ¥ (z2)— A*# (@)] where 0<¢<1.
Secondly, let us suppose that A™ () = 0 for m=1, 2,3, , . .

and write the remainder of (1) in the following form:

R, = b, f AF(2)dx—b, f AF(2)dx.
1] L

If we denote by C, the part of the second member of (1)
which is independent of 2z, then

® Cr=bn ) A (Q)dx— 2 by A™ @

and consequently

(1) [twyds =2 7(x) + 2 baA™H(2) —b, | AHQ)dxHCy,

Putting 7= we obtain an expression which permits
us to compute the number C;. Indeed, in consequence of
Am#(©) = 0 we obtain from (1)

6 C=— 3 fw) —limbi()+ | (xdx

Remark. In some cases, when the operation DA™ gives the
same result as A[); then the expansion (1) becomes identical
with that of

Fo) = | fe) dx
a

expanded by aid of formula (7) § 98.
Example 1. Given f(x) = l/(x-1-]). We find
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[ #x)dx = log(z+1) —log(a+1)

and moreover

: 1
xi‘ =1 - F(z) — F(a)
and Y
el _ (=1 (m—1
A™Hx) = (xt+m) ‘

Hence from (1) it follows that
log(z+1) — log(a+]) = F(z) — F(a)+ 2 bal—1)""(m—1) |

1 1 ] [ —1)" nl
| GFm)e ~ (aFm)a C¥ntDa,

From this we conclude that the remainder is smaller than
b,{z—a)/(n+1).

This formula may serve for the determination of f(z), if a
is not too small; otherwise the convergence is too slow. If a=0
it is much better to use formula (4). The constant C; will be
determined by (5):

+ bule—a)

€= Lif loateat) — 2 g =
where C is Euler’s constant. Since
b —1; = Flz) + ¢

formula (4) will be
log(z+1) = Flz) * é, buA™#(2) — by f A (¢)dx.

This is the same formula as that we obtained in Example 1,
§ 98, except for the remainder.

Remark. Formula (1) but without the remainder, has been
discovered by Gregory in 1670 [Whittaker and Robinson, Cal-
culus of Observations, p. 144]; this was the earliest formula of
numerical integration,




CHAPTER VL

EULER S anD BOOLE'S POLYNOMIALS.
SUMB OF RECIPROCAL POWERS.

§ 10J. Euler’s polynomials, We shall define the Euler po-
lynomial E,,(x) of degree n by the following equation

(1) ME,(x) = %

that is, the mean of this polynomial is equal to x"/n!. From (1)
it follows that

n-1

DME.(x) = —[;:—_—1)—!

but according to (1) this is also equal to ME,_,(x) therefore
(2) DME.(x) = ME._, (x)

Performingthe operation M™' on both members of this equation
we obtain

G DE.(x) = E,_, (x).

Since we are dealing with polynomials only, this solution
is, according to § 38, univocal.

From (3) it follows that the Euler polynomials belong to
the important class of polynomials in which the derivative of the
polynomial of degree n is equal to the polynomial of degree
n-1.

From (1) we deduce

_ xil
En(x) - M ! ;" ’
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We have seen in (12) § 39 that

o m
M = >3 =" 5
0 2m

hence the above equation gives
n+1 A’" xP

E,(x) ::El- Z (=™

n=0

From
1
b L § a;
=1
it follows that

n4l
Am x" vy ? ('y)m (x) y—m @:l
and finally

1 nt-1 ndl (_1]
4) E.(x) = o "Eo Em V'[v——m] €r.
This is the Newton expansion of the Euler polynomials.
Let us write the expansion of E,(x) in  a power series in
the following manner:
xn 1

(5) E,(x) :e°n% +81(n_1],—+,,,.+e,._,%+e,,.

From (3) it follows that the coefficients e; are, according
to § 22, independent of the degree of the polynomial E, (x). To
determine these coefficients we start from (1), writing MEO x) =1
and conclude that E,(x) =1 and e,=1.

If n > 0 then we have in consequence of (1) ME,, (0) = 0;
moreover if i > 0

[Mxi]x:t() = 1/2-

Hence, performing the operation M on both members of (5)
we obtain, if we put subsequently x—=0,

na1 e;

2w =%

(6) e+
Starting from e,=1 we may determine by aid of this
equation step by step any number e;. For instance we have
19
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e+ 2e, =0 which gives e, =—1
G O 5 - 0
2!-{-“ + 2e, =0 e, =
@ 8 e _ ~ L
TR TR = 2

and so on.

Table of the numbers e;

e —20
e, —1 e, = = 1/240
e, =— 14 e. = 17/40320
e, =1/24 e, — — 31/362880

Knowing the numbers ¢; we may write the expansion of the
Euler polynomials into a power series:

x3 2 1
E(x) =1 E(x) = 33— 2f2v 5
4 '3 1
E(x) =x—"h Efx) = 51— 531 +35 %
_x? x  fx
B = 55— 5 =3)

and so on.”? (See Figure 3.)

Particular values of the Euler polynomials. From (5) we
have

E,,[O) = @, P

2 Our definition of the Euler polynomial is neariy the same as that
used by. Niels Nielsen Traité Elémentaire des Nombres de Bernoulli, Paris .
1923, p. 41, where ‘he introduces the "fonction d'Euler” denoted by
“E,(x)“. The correspondence of his notation with ours is the following :

"E,(x)" = 2E (x).

That is, our polynomial is the half .of that defined by Nielsen.
To Nérlund's definition of the “Eulersches Polynom”, "E, (x)", corres-

ponds in our notation
“E.¢)" = nl E,X).
(See his Differenzenrechnung, Berlin 1924, p. 23.)

Ernst Lindel6f, in his "Calcul des Résidus” Paris 1905, introduces the
polynomial Xn[x] to which in our notation “%n! E,,(x) corresponds.
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If n>0 then from (1) it follows that ME.(0) = 0 and
therefore

which gives

En(l] = —2,.
Moreover from (1) we deduce
—])n
ME.(—1) = %IE.(—1) + E0] ==

Figure 3.

y = E) y = Ex)
v ]
}/ [ ‘[‘\.—‘/ 2 2 B -1 X 2 =
¥ = Eyx) v = Efx)

From this we get
2
E,(—1) =(—1)" 7l —e,.

Putting x=14 into equation (5)  gives

.ot en
(7 ECA) = Z 7o o)

The coefficients e, may be computed by aid of the Stirling
numbers of the second kind. Indeed, putting x=0 into equation
(4) we obtain

1 & (—1)"m!
= 2 *———gm,
(8) e" n! m=1 2’" 3“
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§ 101. Symmetry of the Euler polynomials. Let us start

from
X2+

ME...,(x) = mﬁ!_

and put into it =2 instead of x; we find
_ zZn+1
(1) [ME,,,,(x]]mel—“—(2n+1)'F‘—ME,,+, (Z) .
On the other hand we have
ME2n+1 (x) = Y5 [Eppnyy(x) + E2n+1(x+1)]:|
writing x=—z, we obtain
(2) [ME,,,, (x)] 2= 1 =% [Egnyy (—2) + E,n, (1—2)] =
= ME,..,, (1—2).
From (1) and (2) follows, if we write again x instead of 2,
ME2n+1 (x) = —ME;, (l—x)'
Finally the operation of M leads to the relation of symmetry
(3) E,ny () = — Eynyy (1—x)
or
E2n+1 (Vo+x) = — Egnyy (Vo—x).
From this it follows that
E2n+1 (1/2] = 0.
Equation (3) gives by derivation
(4) E,.(x) = E,,(1—x)

or

E;.(Vo+tx) = E,n(Vo—x).
Putting x=1 we obtain
E,.(0) = E,.(1).
But we have seen that E, (O) = -E, () if n>>1; hence we shall
have, if n>0
(5) E,.(0) = E,,(1)=e,, = 0.
From this it follows that E,,(x) is divisible by x(x-1).
Equation (5) gives by aid of (8) § 100,
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ZEH (—1)™ m!
m=1 2m

Roots of the polynomials between zero and one. According
to (5) Eqn(x) = 0 has roots at x=0 and x=1. Let us show that
there are no roots in the interval 0<x<1. For if there were we
should have at least three roots in the interval 0Sx=<1, the first
derivative should have at least two, and the second Eano(x) at
least one in the interval 0<x<1, and therefore at least three in
the interval 0Sx<1. Continuing in this manner, we should find
that E,(x) had at least three roots in the interval 0Sx<1, which
is impossible. Finally we conclude that E,;(x) has no roots in
0<x<1,

We have seen that E,,+,(x) =0 has a root at x=14. We will
now show that it has no other roots in the interval 0Sx<1. Indeed
if it had at least two in this interval, then its derivative E,,(x)
should have at least one in 0<x<1; and we have seen that it
has none. Therefore E,,,,(x) = 0 has only one root in the in-
terval 0=x<1 so that e,,,, F 0.

Exttema of the polynomials. From what precedes we con-
clude that in the interval 0 £ x £ 1 the function y=E,,(x)
has only one extremum, and this at x=14; moreover y=E,,,, (%)
has only two extrema in this interval, and these correspond to
x=0 and x=1.

If E,(0) = egy < 0 then E,(x) will decrease at x=0
and the extrema of E,,(x) corresponding to x=4 will be a
minimum. On the other hand if E,,_; (0) = @y,, > 0 then E,4(x)
will be a maximum. '

Let us suppose first that e,, ; < 0. Since E,,_; (12) =0
its derivative has no roots in this interval; therefore the derivative
must be positive in the whole interval, so that

@;"" =0.

2n-2
€y X

Ez,,_z(x) = -(ZT—ETT -l— e €op 2 X >0.

Since in the vicinity of x=0 the sign of E,,-,(x) is identical with
that of e,,_,, we conclude that

e3> 0
and therefore

(6) €y €y < 0.
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Starting from the supposition that e,,_, -0, we should
have also reached the result (6). Consequently from e, = — 1%
it follows that

(7) €n1>0, €4, <0
or
(—1)"eyp, > 0.

E. Lindeléf has shown in a very interesting way [Calcul des
Résidus, p. 37], using the Theory of Residues, discovered by
Cauchy, that the following form may be given to the Euler
polynomials :

(6) Ey ,(x) = 4(=1)" § cos(2mi1)ax

A e @m0
4(—1)" & sin(2m+41)nx
E,.(x) - : T /T

(7) an(X) = - Pi- 2 @m+1)21
These formulae are valid if 0 £ x 6 1. From the first it
follows that | E,py ()| is maximum in this interval for x=0.

For this value we find

4—1)" = 1
L — SV
Prom this it follows, if 0 € x £ 1, that

(8) Eypi (0) = €5, =

9) VE (%) S leya, |

In § 49 we found (formula 3) that the sum figuring in the
second member of (8) may be expressed by Bernoulli numbers
or by the coefficient @, of the Bernoulli polynomials. Indeed we
have

® 1 | Byel

——— =1 2n__ 2n - 2n___ 2n 380
mfo (2m+1)2n V2 (2 1) 7% | ay | = %2(2 1) n%" (2n)1
therefore
(10) legny I = 2(22%—1) 1 @,y .

We have seen that the extremum of E,,(x) is reached if
x=14, Putting this value into (7) we obtain
4{—1)n » —1\m
=) 3 =)

E;n(12) = Tl — W
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This formula is very useful, for it gives the value of the
alternate sum, since we have already determined E,(34) in other
ways (7, § 100 and 4, § 102). So that we have

(_1)m _ (_1)n 2n+1 1
X Gmpypem — g B A
This sum is necessarily smaller than
§ 1

m=0 (2m+1)2" '
hence from formula (8) we deduce that in the interval 0 < x <1
(12) 7| Egn(x) |S 7l Egy(Y2)l <legay!.

§ 102. Expansion of the Euler polynomial into a series of
Bernoulli polynomials of the first kind. According to § 84 we
have

¢ - J‘E,,(x)dxz—Ze,.H, ¢, = [AEs(x)]c-0=—2e,

Cm= [AD”, En (x)]x———o = Eu—m+1 (1] - En—m+1 (0] =2 .

Therefore the required expansion will he
n+1
(1) Ey(x) = - 2 m—oz enmi1 Pm(x).

If the FEuler polynomial is of an even degree, then we shall have,

putting x=0,
n+1
() ;= - 2 m=§ €2n_ams1 Ggm = 0

where @,y is a coefficient of the Bernoulli polynomial (§ 78).
The polynomial being of even degree, if we put into it x=14
we get the central value of E,,(x)

n+1
(3) E2n(1/2) = - 2m_=EO €2n-2ms1 Pom(V2).
From this, by aid of formula (3) § 86, it follows that
n+1 1 .
Ep(l) - — 2 mzo €anomiy agm[ﬁ:‘t —1]1

finally in consequence of (2)
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n-4-1 L
(4) En(}f) = — m2=0,ezn—2m+1 Um oot

The value of E, (¥4) has already been obtained in another form

(7 § 100).
If the pclynomial is of odd degree, then we find

n+1
(5) Epy(x)=—2 20 30 2m 1 Pamiy (%)

m=l

§ 103. Operations on the Euler polynomials, From the
definition of the polynomials it follows tlmt the derivatives are

(1) D™ E.(x) - Ennl(x).

Therefore the indefinite integral of the polynomial will be
f E.(x) dx = E,, (x)+ B

and the integral between zero and one
1
[ En(x) dx =—2e,,.
0

Hence, if the polynomial is of an odd degree this integral will
be equal to zero.
The mean of the polynomial follows from its definition:
x’l
@ ME, (x) = =7 .

n

The differences of the polynomials are more complicated.
From the Newton expansion of the polynomial, formula (4) § 100,
we deduce

AmElx) = Flt g (__.X=J &t

y=m =0 2‘ v——m—i N
this gives, putting x=0,

(3) A™ E,(0) = 1 ”§1 _(:M@v

Ir—m "
! [ =11 &

From formula (4) § 100 we may determine in the same way
the indefinite sum of E,(x). But we may obtain a more simple
formula in another way. Dealing with symbolical methods we
saw that
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A=2(M—1)
and therefore
x"
. AE () =25 —E) .
Let us remark that this again gives A £,(0) = — 2 e, -

We have
) x"
A2 Sy = nalx) + &

where @, (x) is the Bernoulli polynomial of degree n+l; hence
from (4) we deduce

(5) A', En(x) = Pnu1 (x) - 1/2. En(x] + k.

Inverse Mean of the Euler polynomial. In § 6, dealing with
symbolical methods, we found

~1 17_ m
R Tl

This formula may be applied to the Euler polynomials; but since
their differences are complicated, the formula will not have
practical value. We obtain a simpler one, starting from the
formula forthe mean of a product deduced in § 31,

M[uv] = uv — vMu + EuMv;
performing on this equation the operation N we get
uv = M{uv] — M [vMu] + M [EuMv].
Putting now u=x and v=E,(x) we find
xE,(x) = M7 [xE,(x) | — M7 [ (x+12)En(x)] + M‘ll (x+1) :L']

Remarking that

= l= M x"
M l(xﬂl n!J M [(”“] (n+1)l * ﬁ]‘ =
= (n+1)E,,, (x) + E.(x)
we get after simplification

(6) M E,(x) = 2[(1—=x)E.(x) + (n+1)E,,, (x)]

t
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and in the particular case of x=0
[M—l En(x)]x=0 = 2 e, 2(n+41) eqy, .
But from formula (5) § 100 we obtain immediately

n+1
MlE(x) = 2 enE, nx]).
m=0

Supposing that the polynomial is of an even degree, then,
putting into it 2n instead of ny writing ¥=0 and equating the
result to that of the preceding equation, will lead to the
important relation found by Euler in another way:

(7) 2(2n+1) egpyy = 2 €ynpmy Comia .
m=0

§ 104. The Tangent-coefficients. Dealing with Euler poly-
nomials we could proceed as has been done in the case of the
Bernoulli polynomials, where we have written

nla, = B,
and B, was called a Bernoulli number. If we now put
n! e, — (9(,,

the number &, would be interesting, and equation (6) § 100
would lead to the symbolical relation

U+ ET 4 6,=0
in the expansion of which £, is to be put, instead of #™.
Starting from &7 it would be possible to determine step by step
the numbers &y, .

But it is much better to introduce instead of € the
following numbers

1) G, =2%nl e,

The number &, , which as we shall see is the coefficient
of x*/nl in the expansion of tan x into a power series, has
been called tangent-coefficient.®

% Several authors have introduced the tangent-coefficients, using
different definitipns and notations. For instance in

Leonhurdi Euleri, Opuscula Analytica, Petropolis, 1783-85, p. 372, the
number 271 ¢, has been introduced, which is the coefficient of 2x7 in the
expansion of tan x.
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Euler in his work quoted below has given several formulae
for the determination of these numbers; one of them is equivalent
to our formula (7) § 103; multiplying it by 2% (2n) I, by
aid of (1) it will become

d 2n
(2) (&2n+1 - 2 2m_|_11(52m+1 Gzn-zm—l

m=0

or symbolically
(3) Cyny = (€ + €]

We may deduce other formulae for the determination of the
numbers &,. For instance, multiplying both members of equa-
tion (6) § 100 by 2" n! we get the symbolical formula

(4) 2+C]"+6G.=0.

From formula (5) § 100 we obtain in the same way the
symbolical expression of the Euler polynomials:

|2x G

() B0 =

Finally, equation (8) § 100 gives the number €, by aid of
the Stirling numbers of the second kind:

. n41
(6) G, = 5_1(—1)m 2rm my @

Since e,,; = 0, hence from (1) it follows that ¢,, = 0. The
Stirling numbers being integers, from (6) we conclude that the
numbers §,, are integers too.

Table of the numbers &, .

n G, n &,
0 1 3 2
1 -1 5 -16

L. Saalschiitz, Vorlesungen iiber Bernoulli’sche Zahlen, Berlin, 1893.

p. 22. His ﬂn corresponds to our 56‘2,,_1

N. Nielsen, Traité des Nombres de Bernoulli, Paris, 1923, p. 178. His
T,l corresponds to our | on1 *

N. E. Nérlund, Differenzenrechnung, Berlin. 1924, p. 458. His C, corres-

ponds to our (§,.




300

n &, n G,

7 272 17 — 209865 342976

9 -7936 19 29 088885 112832

11 353792 21 4951 498053 124096

13 22 368256 23 1 015423 886506 852352

15 1903 757312 25 -246 921480 190207 983616
27 70251 601603 943959 887872
29 -23 119184 187809 597841 473536

§ 105. Euler Numbers. If we put x=15 into the polyno-
mial F,(x) and multiply the result by 2" n/ we obtain a number
which will be denoted by E, ,

(1) E, =2"n! E,(1%).

This number was first called a secant-coefficient and later
an Euler number. E, is, as we shall see, the coefficient of x"/n!
in the expansion of sec x. It would have been better to call the
tangent coefficients “Euler numbers”, because in consequence
of (5) § 104 they figure in the coefficients of the Euler poly-
nomials, whereas the secant-coefficients are only particular values
of the polynomials.?!

Putting x=14 into equation (5) § 104, we obtain in con-
sequence of (1)

) . "1 n
2) E,=[1+6G= = li]@,-.
=0
From this formula it follows that the numbers E, are inte-

3 Several authors have dealt with Euler numbers:

Leonhardi Euleri, Institutiones differentiales, 1755, p. 522, or Opera
omnia Vol. X, p, 419. Euler denoted the number E, Iby a, the number
\E;:EI‘ by 8 | £ ‘ by ¥ and so on. He gave a table of these numbers up
to

18 .

Scherk, Mathematische Abhandlungen, Berlin, 1825 p. 7, gives a table
of these numbers up to Esy , This table is reproduced by Saalschiitz; Vor-
lesungen tiber Bernoulli’sche Zahlen, Berlin, 1893, p. 22. His a, corresponds
to our I E on 1 .

N. Nielsen, Trait6 des Nombres de Bernoulli, Paris, 1923, p. 178, also
reproduces Scherk’s table. His number E, corresponds to our |E2n

Lindelf, Calcul d e s Résidus, Paris, 1905, p. 33, Same notation as
Nielsen’s,

Nérlund, Differenzenrechnung, Berlin, 1924, p. 458. The notation WE have
adopted here is the same as Nérlund's notation.
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gers. The formula gives the Euler numbers in terms of the
tangent-coefficients. It is easy to get an inverse formula: indeed,

multiplying both members of (2) by (—1)m" (7:] and summing
from n=0 to n=m+1 we obtain, according to § 65 (Inversion),

&
m+1
@) 6 =% (—t)on (7B, = E—11m

E,..,(15) = Oitherefore E,,,; = 0. Moreover we have
seen that @y = 0 if i > 0, consequently from (2) we deduce,

writing 2n instead of n
Ezn =1+ 2 [2,_,_1 ] (5'2i+1

and writing in it 2n+1 instead of n:

"l [ 2n+1
Finally from (3) we obtain in the same manner
5 (a0
and
— m+-1 2m+l
szu ” .,__2.0 ] Eyr

The above formulae were found by Euler [Opuscula Analy-
tica, t. II, p. 269-270, Petropolis, 1785].

Table of the numbers E,.

n E, n E,
0 1 14 -199 360981
2 -1 16 19391 512145
4 5 18 -2 404879 675441
6 -61 20 370 371188 237525
8 1385 22 -69348 874393 137901
10 -50521 24 15 514534 163557 086905
12 2 702765 26 —4087 072509 293123 892361

28 1 252259 641403 629865 468285




§ 106. Limits of the Euler polynomials and numbers. We
found (formula 10, § 101) that

(1) I e2ﬂ-—1 I = 2(22"_1] I azn I :'

moreover in § 82 we have seen that (formgla 9)

2 1
—_ < Z -
BT "l 1 gy
From the formulae above, it follows that

1 2
Tl..<|ezn_1|< W.

1
(2) 4(1- ) 7
Therefore
limey,, , =0
n—w
and even
limk*™le, =0i f |ki<a.

n—w
From equation (1) we deduce
€opny 1 (2“—1) Qon _
ey | = (2°72—1) iGynsn

according to formula (9) and (10) § 82 we have

2 ., a ;

Lo > B s g0
3) 77 Lag.s 4n
Hence in consequence of (1)

ot €ony 4

z 22 | s 2o,
() 6 legy,| 5"

The series 2 e, is absolutely convergent.
In § 101, formulae (9) and (12), we have seen that

1Epn (x)iSleg ;1 and #lEu(x) <lep,lif 0SxS13

from (2) it follows that

1Egn, ()] < 52 and | Eplo)] < 52

3 nzn-l-
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Therefore we conclude that

(5) |E"(x)|s%i f 0Sxst

and in the same interval

lim E,(x) =0.

The series ¥ E,(x) is absolutely convergent in the interval

0sxs1.
In § 104, formula (1) the tangent-coefficients were given by

Cyny = 221 (2n—1) ! ey qs

from this we deduce by aid of (2)

J (5211_ 4 ( )
(2n——1)| C
and
(Szn_ .
fim Gy

From these relations we conclude that the serlfi@fﬁl

is absolutely convergent.
In § 105 we defined the Euler numbers by

E,, =22 (2n) ! E..(1%).
From (3) it follows that

2
IEznll/.Z]f < W
Therefore
]E2,.' <i -2_]211-1
(2n)! 3 [1':
and
. Egn _—
Jim an)7 =

The series = E,,/ (2n) ! is absolutely convergent.

§ 107. Expansion of the Euler Polynomial into a Fourier
series. The expansion of the polynomial of even degree in the
interval 0 < x £ 1 may be written:
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b B sin2zmx.

1) E,p(x) = Yoa, + Eztlz,,, cos2nmx + 2

Since
E,.(x) = E;(1—x)

we have

Moreover we have
1

Yoa, = ‘ E, (x)dx ==—2e,,,,
.

and if m > 0
! sin2manx !
(2) Yo, = [ E,.(x)cos2amxdx = [ I E,(x) Jn -
1.
_n’[ 3131'27’5 Eyo, (2)dx.

The quantity in the brackets is equal to zero at both limits;
a second integration by parts gives:

Vit = iy Eos 2

1
1 J cos2mnx
0

(mel—)"’_ E2n—2 (X) dx.

The quantity in the brackets is equal to

L 2e,,
(2ma)*-

moreover the integral is the same as that in (2), only the degree
of the polynomial has been diminished by two, and it has been
multiplied by —1/(2mn)2, Therefore repeating the above opera-
tions v times we get:

1

ril (—1) 2e,,, 1 i cos2max
Putting y=n the integral in the second member will

be equal to zero and we have

" (—1)f degn,.
3) tan = —

=1
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The expansion of E,, , (x) will be obtained, in the interval
0 £ x £ 1, by determining the derivative of both members of
equation (1). We find
E,,-,(x) == p> 2mna, sin2max = )5 B., sin2mnx;

m=1 m=—1
from (3) it follows that
ntt [-—l]i4e ,
v — E 2."+1—23
1) ﬂm o (2mz)#1
Let us remark, that the function E,, ,(x} considered as a

periodic function with a period equal to one, is discontinuous
at x=0, being equal to * e,,_, ; therefore the Fourier series will

give Eyn_y (0) =0
Remark. Putting x=0 into equation (1) we get

$ 2=
1 (2mn)?r”
But we have seen (6), § 82 that the second sum is equal to
—a;, ; therefore we have

ni1 n+1
(5) €ny1 T b ezn+1_gr az’ = pX sy Coniior = 0.
=1 ! 1'——-‘0-

n+1
E’)(O) = 0 = - 2 ezn+1 + 12 E e2ﬂ+l—2‘
=

This equation has been obtained before (2 § 102).

To obtain the central value of E,,(x) expressed by aid
of the coefficients of the Bernoulli polynomials, let us write in
equation (1) x=14. We find

Enl() = Yoo+ = (—1)"ap

in consequence of (3) this will be
n4-1 . @ (_llm
Epn(te) =—2e,,, + 4 451 (—1) emnpyer 2 W

m=1
and according to § 49 we have
L] — m
5 =)

m—1 (2mn) 2r

1 1
= (—1)"ax [ 5 T 9w
Therefore

n+1 1
En(%) = 2 i @y Cxti—z [ I Sz

20
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Since according to (5) the first sum is equal to zero, we
find
"t ay, eny1-2
(6) Epn(p) = — 750 92v—2

This formula is the same as that of 4, § 102.

Multiplying first both members of (6) by (2n}! 22 and
then the numerator and the denominator of the second member by
(2v)! (2n4+1—2»)! remarking that (2»)!a,, = B,, is the Bernoulli
number, we get, in consequence of (1) § 104 and (1) § 105,

— =3 B,, G,y g
En=— 02 2 S Gnti—2)]

or

2 nd 2n+l]
Ezn _ 2n+1 1-50 ( (552n+1_.2x

This may be written symbolically'

Y)) E,, = [€4-B]21,

2+1

Equation (7) gives the Euler numbers in terms of the
tangent coefficients and the Bernoulli numbers.
Example.

E4:—%[(’:‘5+10@3Bz+5@134‘:5'

Remark By aid of formula (10) § 101 we may eliminate az.
of (6) and get an expression of the Euler numbers by tangent
coefficients; or we may eliminate e,,,,_,, and obtain the Euler
numbers in term s  of the Bernoulli numbers.

§ 108. Application of the Euler polynomials, 1. Determina-
tion of the inverse mean of f(x) .

Let us expand f(x) into a Maclaurin series:

fx) = H(0) +Df(0) 4 +; D FO) +. ...+ %‘"T D#(0) + . ..

The inverse operation of the mean gives
(1) M) = f(o) + E(x) DFO) + E,(x)D*(0) +.
+ E.(x)D(0) . ...
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Starting from this formula we may determine moreover the
inverse difference of the alternate function (—1)*f (x). According
to formula (10) § 39, we have

A~ (—1)* flx) = Yo(—1)*"M (x).
Therefore the indefinite sum of the alternate function will be
2) A~ (—1)*F(x) = L5(—1)**[#(0) + E,(x)DFO)+. . . +
+ E.(x)D"(0) +...]
and in the particular case of f(x) =x™
A~ (17 & = Yoml (—1)%1 En(x) + By
moreover
2 (UK xm = ml [En(0) — (—1)" En(n)]

or, if we introduce the symbolical formula containing the tangent
coefficients,

@) 2 (—1)F e = o [G—(—1)" (G+20)7].

x={0

Particular ease.
n » n
rfo (-1)” x2 = (—1)™ lzl
§ 109, Expansion of a polynomial f(x) into a series of Euler
polynomials, Let

(1) ) = €o + €,E, (%) + e,Ez(x) + . . . + exEn(x)s
The operation M gives

t x"
M/ (x):co"'cx‘ix—!"'cz%""w -+c'l",'{f'

Hence
¢, = M#(0).

Moreover
D7 (x) = ¢+ mnaE (%) + cpoEs(x) + .01+ CEnm(x)s
hence we have in the same manner

2 cm = MD™(0).
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Example 1. Given f(x) =g¢,(x), the Bernoulli polynomial of
degree n, we find
cm = 1/2 [’I’n~m (x) + (pu_m (x+1) ]x:() .
Hence if m % n-1
Cm =Qu_m
and
Cry = 0.

Finally the expansion will be
n--1
(3) Pn (x) = m§0 U B (x) — a,E,_, (x)3

putting x=0 we get

nd-1
An_m €m= a; € ;.

m=1

Writing 2n+41 instead of n we find
n+1
4 20 Azn_om Comyy = 0.

m=

This equation has been obtained already in (2) § 102 and (5)
§ 107.
The formula may be written symbolically,

[2B + @)™ = 0.

Example 2. Given f(x) = x"/n} We deduce
xﬂ—m

n —_—
D" @ = (n—m) !~
Therefore
xm + (x+1)n—m

(n—m}! Jx=0*

Cm = MDm f(O) = IAZ

Hence if m +n
1

Cnm = 2 (n___m)—! 3

and if m=n
cn= 1.

The required expansion will be
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n n Em
(5) i‘—, = E,(x) + I T [n_(_’;)m .

If fix) is not a polynomial the series becomes infinite and
its convergence must be examined, but the coefficients are
determined in the same manner.

Example 3. Given f(x) = e, It follows that

Dm ext — fm exl

MDm ex! — 1/2 m (exm + exl)"

putting x=0 we have

and

Cn = 15 t™ (e'+1)
and the required expansion is

(6) e =Yoo t1) I E,(0) tm,

The generating function of the polynomial E,(x}) may be
obtained immediately from (6) :

2ex 3 .
g GEx) = 25 = 3 E@ s
We have seen in § 106 that, if 0 £ x £ 1, we have
D)
lE,,,(x) 1 < m

consequently if T ¢ | < =, the series (7) is convergent.
Putting into (7) x=0 we obtain the generating function of

the numbers e, :
2
(8) Gen = m = "E_O €, tm:1+elt+est3+....

This may be written in another form:

®

® e'—1
(9) mzl em m—__ m—:—tanh%t
or putting £=2iz we find
tanz = = (—l)mﬂ €omi1 (27') m,
m=10

According to § 104 (formula 1) this is equal to
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fod z2m+]
1 mr= 0 G gy
@ ; I z2m+1
= 2 1G] oy

where the numbers @, are the tangent-coefficients. We have
[D™tanz}.=0 = iG,i.
Let us remark that we have already expanded tan z into
a power series in § 87 (formula 17). Writing that the coefficients

of 2! in the two expansions are identical, we find the
important relation

(11) eyn_y = 2(1—2%") a,,
which has been already obtained in § 101 (formula 10).
Wiriting x=14 in (7) we get
2¢7 ! 1 s 1
— = = tm,
1+ e ™ coshipt sech 12 ¢ mEO En (%)
This is the generating function of the numbers E, (14). Let
us write again #=2iz; we shall find

(12) secz = 3 (—1)" Eyml¥4) (22)*" 3
according to formula {1}, § 105 this may be written
secz =— (—1) E,,—— (2 )' = E [Eom 1 )

where the numbers E, are FEuler’s numbers or the secant-
coefficients. We have

[D™secz|,—0 = | E,l.
Example 4. Given f(x) = cos xt, We have
D2m cos xt = (—1)™ t*™ cos xt
D2™1cos xt = (—1)™ #2m1 gin xt,
Hence
MD>" f0) = Y5(—1)" £27(14-cos §
MDZM"] f(o) 1/2(___1)01 t2m 1 s1n t

so that the required expansion will be
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A 1+4-cos ¢ | o
§f — > — T (—=1)m g2mr -
(13) eosxt = ————+ 3 =z (—1) sin 7 E,,-,(x)
1 2 m o
3 mi (—1)" £m (1+cos t) E,pn(x).

Writing x=0 and multiplying by 2/sin { we get

1—cos ¢ - sy L m 2m-1

(14) = tan 15f = mél (—1)™ ey, t2m1,

Putting into it £=2z we obtain formula (10) found before.
If i | < 7 then the series (13) is convergent for 0 S x £ 1, in
consequence of (5), § 106.

§ 110. Multiplication theorem of the Euler polynomials. To
deduce the theorem, let us expand the following polynomial
into a series of Fuler polynomials:

I m x-+m
Fl) = @p+1)" 2 (—)"Ed| 377 |-
According to § 109 the coefficient of E;(x) is
¢ = MDF(0)
we have
2p1
D'F(a = @p+1)™ = ()" Eud 51
moreover
i — n-i wdt mv x+m
MD'Flx) = %@p+0)™ 2 (7| By [0 ) +
x+m+41
eS|

If in the second term of the sum we put m instead of m+l
then it will become equal to the first term, but with a negative
sign; the new limits will be m=1 and m=2p+-2. Therefore we
shall have, putting x—=0:

¢i = MDF(0) = V4 (2p+1)"* [E.Li(0) + E,i(1) |

Hence ¢,=1 and ¢;=0 if i & n. In consequence F(x) will
be equal to E,(x). Finally putting x=(2p+1)z we obtain the
first multiplication formula (for odd factors):
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n 2ﬂ+1 m m
()  E[@pt1)z] = @+1)" = (—)rE, [z il
Writing in  this formula z=0 we obtain an expression for
e, . For instance, if p= 1 we have

=3[ eti(5)+ 5 (5])

To obtain the second theorem of multiplication (for even
factors) we shall expand, into a series of Euler polynomials, the
following polynomial:

z x+m
e 1 X (—1)m
Fix)==20p)" 2 ()" [,
where @,(£) is a Bernoulli polynomial of the first kind. We
obtain

x+m

D'Fla) = —2prm %, (=0 s [ 57

The operation M gives

Putting m instead of m+1in the second term of the sum,
it becomes equal to the first term, except the sign and the limits,
which will be m=1 and m=2p+ 1. Therefore every term will
vanish except those corresponding to m=0 and m=2p; it results,
after having put x=0, that

¢ = (2p)""! [@ni(1) — @ni(0)].

In consequence of what we have seen in § 79, the second
member will be equal to zero for every value of i except for
i=n— 1 where ¢,_; = 1, Therefore the expansion will be

F(x) = En,(x).

If we write x=2pz, we get the second multiplication
formula

2p
@ E@p)=—20™ 2 (—me (24 5).
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Particular case. Let p=1, then

E, ,(22)= — 27 [#a(2) — @a(z+14)].
Putting z=0 we have

epy = =20 [an_q’n (%2) )-
But we have seen that (8, § 82)

1 .
en(12) = @ (_ZF{ —1]s
therefore we find
eny = 2ax(1—2").
This equation has already been deduced in § 101 (formula 10),

and in § 109 (formula 11).

§ 111. Expansion of a function inte an Euler series. Starting
from the function f (x+4u) and integrating by parts, we may write
1

1
| Haxtu) dx = (B Haxtu))l — 0)[ E,(x) Df(x-+u) dx.

0

The quantity in the brackets is equal to —2e,MFf(u). The
integral in the second member gives by integration by parts

—[E,(x) DFx+u)1} +0j E,(x) D*(x+u) dx.

The quantity in the brackets being equal to -+2e,MD¥(u)
is equal to zero. A further integration by parts gives

—2e,MD?* (1) — I-E,(x) D (x+u) dx

and so on. Finally we shall have

[feetu) de=—2 S eMD () + [ Eulx) D¥(c+a) dx.

By derivation with respect to u we obtain

1 41
D | Hxtuwdx=D | 0 d = A);
)

*wt g
therefore
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n-+ ~l
1) A2 =-2 2,}‘11 eMD/#(u)+ | Epnlx) D*H(x+u) dx.
Remarking that Af(u) =2 M#{u)—2f(u), .. .« we obtain

2n+41 . 1 !
@ fw= 2 eMD fw) — 5 | Eulx) D™ (x+u)dx.

The integral in the second member is the remainder; let us
denote it by R,y . E,,(x) does not change its sign in the
interval 0 £ x < 1 therefore; in consequence of the the®rem of
mean values, we shall have

1
() Ruw=—1%D"f () | Ey(x)dx = €30, D1 (1)
0

where u <9 <u 4 1.

Particular cases. 1. If D™ (u4x) and D***f(u+x) have
the same sign and do not change their sign in the interval
0 £ x =1, then we shall have RynR;n,5 < 0; the same ratiocination
as in the case of the Bernoulli series § 87 will lead to

(4) R,, = ey PMD**' f (W) where 0<¢$<1.
Example 1. Given f(u) = e". We have seen that
MD e =1 t (e'4-1) e,
D2 fu) and D2**? f(u) have the same sign, and do

not change it; therefore the remainder (4) may be used, and
we have

R,, =14 9 ey, (e' 1) 12741 out,
Hence the required series will be, after multiplication by
2/ (1+e')ev,
2

Tra = ltraltefli+, ey 270 +6 ep, 20

This may be written

l—e t
1+e,——tanh )

n+1
— z]eZLl 21+ 9 €oniy f2n+1
1=

The preceding series has been obtained before (9, § 109),
but not the remainder,



315

§ 112 Boole’s first Summation Formula, It gives the in-
verse mean of the function f(x) or the sum of the alternate
function (-1)X f(x) expressed by aid of the derivatives of f(x).

Apart from the remainder, the formula may be deduced by
aid of the symbolical method. In § 6 we found

M=1+1A=1%[14 eo].
From this it follows that
1 2

M~ T+
but according to formula (8) § 109 the second member is equal

to the generating function of the numbers e;, the coefficients
figuring in the Euler polynomials. Therefore we have

M = 2 e (RD).
=0
This is the first form of the formula.

To obtain the second we remark that in § 39 formula (10)
we had

M'l -2 (_l)x+l A~ (_1)1/‘
This gives
A (—1)* = (1) 2 e(hD).
i=0

The above operation performed on f(x) gives, if the sum of
the alternate function is calculated from x—=a to x=2;

2 (0w =—~% £ K e/ (—1yDF &)—(—1) DF @]

To obtain the formula with its remainder in the particular
case of

D2n+1F(u) D2n+3F(u] >0

and if P?**1F (u) does not change its sign in the interval 0 S x £ 1
we consider the expansion of F(u) into an Euler series according
to formulae (2) and (4) of § 111:

(1) Flu) = MF{u) + :zo e, MD*"'F(u) + ¢ eyn,,MD**F ()
where 0 <9< 1.
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Putting now F(u) =M™*F (v) we find

M@=+ 3 €D () +8 emaD™# W) +(—1) b

where k is an arbitrary periodic function with period equal
to one.
Since according to formula (11) § 39 we have

A = Yot M (1)
the indefinite sum of {—1)* f{w) will be

At (1) ) = BN (1) + 2 e, DH @) +

L dey,, D (w) ]+ K.
Finally the alternate sum from u=0 to u=z is
) S (—1)* Hw) = 2HO) — (1) Fla) 1 +

1 3 ew [(—1)7 D ) + DH (0)] +
. 1/2 b)) ezn+1[ (__1):+1 Dznﬂf (Z) + Dzn+1f (0”

This is Boole's first summation formula for alternate func-
tions, which plays the same réle in these cases as the Maclaurin-
Euler formula for ordinary functions.32

Example 1. Let f(u) —e%. From equation (2) it follows
that

3 (—1)ve =1 [I+ (—1)"e*][14 3 e,,, £+ +
u=0 =0
+6 e2n+l 12n+1].

Particular case of Boole’s formula. Let us suppose that
we have D™ (©) = 0 for m = 0,1, 2, 3 .. .. v and
D**f(u) D?**3f(u) > 0 and that D*"*'f(u+x) does not change
its sign in the interval 0 < x < I; then we may write formula (2)
in the following manner:

@ I 0@ = %)) ¢ 2 e, D +
+ 9 ey D () ] + C;

3 B, Boole, Calculus of Finite Differences, London, 1860, p. 95.
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where C; has been put for

(4) Cr=1%F(0)+% X en; D*H(0) + 1 & ey D*H(0).
Writing z=c we obtain from (3)

(5) 2 ) fw = Cy.

The constant Cr must be determined by aid of (4) or (5).
Example 2. Given f(u)=1/(u+1). We may determine C
easily, using equation (5). Indeed we have

ki 1
(6) & =1

Integrating both members of this equation from £=0to =1
we get

& (—1)e
uzo u+l

Hence according to (5) we have C; = log 2. Since moreover

D2i+1f(u] — M

(u+1)2i+2
the required alternate sum will be

= log2.

__1+

:( (_l)u _ e "
) 3 = 1og2 4 34-1) lz+1

n(2i41)! (2n+1)!
+ EO '(‘zq__l—)ﬁeztu‘l‘ P egnyq 1)z,

The series obtained by putting n=2° is divergent, neverthe-
less the formula is useful for the computation of the alternate
sum if z is large enough. On the other band for z = 0 the series
is practically useless, According to (3), § 106 the best value of

n is approximately lbnz.
§ 113. Boole’s polynomials, We shall call Baole's poly-

nomial of degree n the polynomial {,(x]) satisfying tbe equa-
tion

(1 Me() = (5]

Performing the operation M we obtain
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@) tale) = M )

Since {,(x) is a polynomial, there is only one solution or
equation (1 ), as we have seen in § 38.

The operation A performed on (1) gives

Mz () = (7 )-
Now executing the operation ! we find, according to {2},
@3) Aba(x) = Loy (x).

Therefore Boole's polynomials belong to the important class
of functions mentioned in § 22 (p. 64).

. . X\ .
The coefficients of i jin the expansion of Boole's polyno-
mials into a binomial series, could be determined in the same

way as has been done in the case of the Bernoulli polynomials of
the second kind; but there is a shorter way.
Indeed we have seen, formula (12) § 39, that

- 5 Am
1 - —1\ym 8_
Mi= £ nm F
Applied to equation (2) this gives
n+1 ___l m x

This is the expansion of the Boole polynomials into a Newton
series. The coefficients of (ﬂare in consequence of § 22 in-

dependent of the degree of the polynomials; moreover they are
very simple,
Particular  cases.

LT =x—1%

6 = (3] — 5 (§) +5

£a(x) :(:ﬂ ’“%(;) + 515(?) - 51;

and so on. (See Figure 4.)
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Remark. (-1)” 2”7 ¢, [x)is equal to the first part of the ex-

pansion of (1—2)*. Indeed we have

(5) (—1)"2" Lalx) = g (1)’ [’,‘] 2.
From this it follows that .
a0 = S
Figure 4.
’ ,

y o= 5@ Yy = ua®
L]
9 bz 2 /
/‘ 1 \___/
Y = @
:ll\ { e ‘3 :
9] e Wy 2 4
|
¥ o= 5, (x)

moreover if x is an integer such that 0 <x £ n then

—-—1 n . __,l nix
) Lulx) = (7)— (1—2)* :(2—”)
If x=-1 from (5) we obtain

tl=1) = S e,
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Roots of the Boole polynomials. According to formula (5')
the polynomial C,(x) changes its sign between 0 and 1, between
1 and 2, and so on, between n—1 and n. Hence the roots are
all real, single, and situated in the interval (0, n).

Application of the Boole polynomials. 1. Determination of
alternate sums. Since according to (10), § 39 the operation M™
may be expressed by

M? = 2(-Dx+ A7 (1)

we have

A (—1)* t)] = %(—1)"' M ¢(x) + k.

If £ (x) is expanded into a Newton series we have, taking account

Of (2)|
© Ay ol =% e 3 avoMs ()=

= Wo(—1)™ 2 L(x) A%(O0) + k.

This is the indefinite sum of the alternate function.
From formula (6) we deduce immediately the alternate sum
for x varying from zero to 2,
= )"
M 3 o= 5 Ao [ |
=0 n—_

§ 114. Operations on the Boole polynomials. Differences.
We have seen that

A ¢, (x] ={nm (x]
From this it follows that the indefinite sum is
A- ¢, (x) = £n+1 (x] +k

and therefore the definite sum
I 4
Y Cn(x) = ¢n+1 (Z) - En+1 (0)

Derivatives. Starting from the Newtfon expansion of the
polynomial
n+1 (_l)n—m

0 aw == ST (0]

m=—0
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we expand( m) into a power series and determine the derivative
term by term. We get

(2] Dcn(x] _ nil (__l)n—m m+-1

v r—1
—1 m! 2n-m —1 v sm x

and putting x=0
DZ,(0) = (—71)““ s

m=1 m
The higher derivatives are easily obtained from (2).
Integral.

! \
ondx =y +k

where y,,, (v) is the Bernoulli polynomial of the second kind of
§ 89; therefore from (1) we obtain
(1)
| Calx) dx ——mzzo e ¥na (%) + K
and
1

- 1(_1]n—m
oJ Cn(x)d x m—_ﬂ- 2 2n-m

bn

Mean of the polynomial. From the definition of the polyno-
mial it follows directly that

M (x) = (;J

Znverse operation of the mean. In consequence of formula
(12) § 39 we have

Miaw == S0
m=0

§ 115. Expansion of the Boole polynomials into a series of
Bernoulli polynomials of the second kind. According to formulae
(1) and (3) of § 97 we have

i . (_I]n -2 —21
=DA f =Dl 0 = - 2

and

| — )t n—it2 9m
c; = DA“Jf(O) = Dcn-—i+1 (O) = (2“'321 m=1 m’

21




322

The above values of D, (0) are those deduced in the pre-
ceding paragraph. Finally we find
n+1 ('*1 n+i n—i+2 9m

{alx) = ‘Eo —27_,)+—, wilx) mzl -

§ 116, Expansion of a function into a series of Boole
polynomials. If f(x) is a polynomial of degree n we may write
it as follows:

(1) f(x) = cg+ €5y (x) + elp(x) + o0+ enlalx).

It is easy to determine the coefficients ¢, ; indeed, since

x X x

M/ (x) :cl)+c|[l’ "IL‘CQ(Q) +'-'+cn!n]

it follows that
c, = MF{0).

Moreover

A” f(x) = Cm -+ Cmis 51 (x] S e o Cnm (X)
and

cn = MA™F(0).
If f(x) is not a poynomial, the series (1) will be infinite

and considerations of convergence will arise; but the coefficients
are determined in the same way as above.

Example 1. Given f(x) = {:;]. the formulae above give
Coy = Yo and ¢, = 1.

The other coefficients c,, are equal to zero. SO that we find
[):l) = ;n(x) + 1/2 qu(x];

The second member is equal to (1 +14A)Z,(x) or to MZ.(x)
therefore this equation would immediately follow from formula

() § 113.
Example 2. Given f(x) = w,(x), the Bernoulli polynomial
of the second kind. We have
A" n (%) = yu_m ()3
therefore

Cm = MA'" Yn (0] = %2 [Wll—m (0) + Ynom (1] l = bn—m + 1/2 b"—"l—l
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and finally
a4l
Yn (x] = i [bn—m + 1/2 bn-m_1 ) Cm (X) '

m=0
Example 3. Given f(x) — F(x}. We have

MF(x) = F(x) + 2(#”soﬂmt%__%-—c.
Since
(—1)™" (m—1)!
(x+m)m

A™F(x) =
it follows that

en = MATF(0) = Yol—1)™1 | 4

m(m+1)

so that

=)™ (m+2)
2m{m-+1) *

Finally the required expansion will be

Chn =

(=)™ (m+2)
1/) ——— 4
F[x) - C + mEl zm[m_{_l) m (x)
(See also the expansion of fj, (x) in § 122].
The Boole series. The expansion of f(x-4u) into a series of
Boole polynomials gives

Faxtu) = ¢y + ¢, fi(x) + elalx) 4+, .
where as we have seen ¢, = MA™ (w),

Putting into this equation u=0 we obtain the preceding
expansion (1) of f(x) into Boole polynomials; and putting into it
x=0 we obtain the expansion of f(u) into a series which we will
call a Boole series, just as we have done in the cases of the
expansion of f(x-tu) into series of Bernoulli and Euler poly-
nomials,

Since {m (0) = (—1)™/2" the Boole series will be

) = 3 MA"F (@) (17

An example is given in § 122.

% 117. Boole’s second summation formula. It gives the
inverse mean of the function f(x) and the sum of the alternate
function (—1)* f(x) expressed by aid of the differences of f(x).
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The formula may easily be deduced by aid of the symbolical
method. In § 6 we found
M=1+1%A
from this it follows that
1 1 z  (—1)
— T — — b ,\____Az
M 14+ L5A i=0
this leads to the first formula. To obtain the second, we remark
that, according to formula (10) § 39.
M =2(1) # A7 (1) X
so that

A= 3 S0 A

This operation performed on f(x) gives, if the sum from x=a to
x= z is to be cdculated,
Eociw = 5 Sl e ana——n-aval
We may obtain this formula by aid of the Boole’s poly-

nomials introduced in the preceding paragraph. The expansion
of f{x+u) into a series of Boole polynomials may be written

Fatu) = 5 2, w)MAT(x).
Putting into it u=0 we obtain
| i = 3 B mami)
Executing the operation M‘1 it will follow that
Mii = 3 S ami + (1)

Hence by aid of {10), § 39 we deduce the indefinite sum of the
alternate function:*:’

=0 o) = e £ T A b

m.:=

> G. Rode, Treatise on the Calculus of Fipite Differences. London,
‘860 p 95.
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This will give the sum from x=0to x=z

£ ) @ __1 m
£ com i = £ 5 o) ~ 1y aa))
Example 1. Given f(x) = ’&1— . We find

s

e 14K = 2 _1l--- 1 (-1)'m!

m=0 2™ m + 1 (z4+m+1)m, 1
We have seen in (6], § 112 that the first member is equal to
log2 if z=¢°, so that we have also

1
——— = log2.
m—_E—l m2m 08

Therefore the preceding sum may be written

Eﬂ:10g2+(—1]”“2 - -

! .
A
=01 + x P
I m

this may be useful for the determination of the sum if Z is
large.

§ 118. Sum of reciprocal powers. Sum of 1/x by aid of the
digamma function. This function has been already treated of in
§ 19; here some complementary formulae are added.

The definition of the function was the following

f(x) = D logl'(x+1).
From this we deduced
1

and therefore

A-’ % = F(x—1) + kg

moerover if n is a positive integer

n+1 1
¥ — = F(n)--F(O).
=1 X
We have seen (5, § 19) that the digamma function with
negative arguments may be expressed by a digamma function

with positive arguments:
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F(-x) = F(x—1) + ncotax.
From formula (2) § 19 we deduce

kd 1

DR = 8, ety
therefore we conclude that the function F(x) is a monotonous-
ly increasing function. Since we have F (0) <0 and F (1) > 0
the equation F(x) = 0 has only one root, and this in the
interval zero to one. Determining it we find x = 0.46163 21.

The indefinite sum of the digamma function is given by (6)
§ 34:

>0;

A-F(x) =xF(x) - x + &

from this we obtain, if # is a positive integer:
n
2 F(x) = nF(n) -n.
x=0
For instance

10
_Eof(x) = 10 F(10)— 10 = 13.51752 592

This result may be checked by adding the numbers
FO)+F1) -F2) +....,+F©9

taken from the tables of the function
We have seen (7, § 19) that the function f(x) may be
expressed by the aid of sums. We found:

0

_x
=0 ¥ [x-l—v) ’

1) Fxj=—C+ = li__i__

==l

Let us remark, that this series is uniformly convergent in
the interval O,N where N is any finite positive quantity
whatever. Indeed, if 0 £ x £ N, we have

T 1

T

From (1) we may deduce the derivatives of F(x); we obtain

n _ @ :Umﬂ m!
D) = 2 e

and
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o (__l}m—l ml
D"F(0) = E S
or if we introduce the notation
%z 1
Sy = E o

then
D"F(0) = (—1)™1 m! S

Hence the expansion of F(x) into a power series will be
(2) F(x) = —c + 2 (—1)™1s,, x"
m=]

Smy1 = @2/63 therefore this series is convergent if
|2l < 1.
The function F(x) may be expressed if x is a positive
integer by the definite integral

1
" 1 x
3) (x) +0J )

Indeed the expansion of the quantity under the integral sign
will be
14t 4., —[Ex 24, LT,

integrated from f =0 to t =1 it gives

m=1 | M x+m I ’
therefore from (1) it follows that the second member of (3) is
equal to F(x). Let us remark that this is true even if x is not
an integer.
From the above formulae it follows that
— _(_‘“1) n-1
(@) 8 = gy D7FO).
In formula (6) of § 82 we expressed $,, by aid of the Bernoulli
numbers. Using this formula we obtain from (4)

Dzn—lF(o) (271] |an|

Expansion of the digamma function into a Newton series.
Since AF(x) = 1/(x+1), we have
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@) AMF(x) = (“1(’;"1;”]’:‘“ and A"F(0) :—(:;1&
so that

o (_l)m-l
(5) Fay=—C+ 3 = ] .

If 0 < x < 1 the absolute value of the general term is
smaller than 1/m? therefore the series is uniformly convergent
in this interval.

The values of F(x) for x>1 may be computed by other
series. For instance if x is large the Maclaurin-Euler series is
indicated, We found in § 88 an expansion of the sum of 1/(x+1),
from which, by remarking that

z l _
XEO x_—H = F(Z) + c,
we deduce:
_ 1 r (2m—1)! _
€ P = logletl) =5~ L2 G
(2n—1)!
T D

where 0 < § < 1. The logarithms figuring in these formulae are
Napier's logarithms. The best tables for these are Schultze's
Recueil de Tables Logarithmiques (Berlin, 1778). If we do not
possess such tables, we may obtain the Napier logarithms by
multiplying Briggs’ logarithms by the modulus

log 10 = 2.30258 50929 94045 68402.

If in the expansion (6) we put n=o0, the series obtained
will be divergent; but nevertheless formula (6) is useful for the
computation of F(x). E. Pairman has used it for computing her
tables, 3¢

Since from formula (6) it follows that the remainder is

|B,,|

IR 1< ~—2aml
=t 2n{x4-1)20
% FEleanor Pairman, Tables of the Digamma and Trigamma Functions,
Tracts for Com}z)uters. Cambridge, 1919. They contain [ (x) and £ (x) from
x=0. 00 to x=20 ., 00 (Ax=0 .01) and the corresponding second and fourth
central differences, to eight decimals.
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we may increase n in formula (6) advantageously till
satisfies the inequalities below
(x+1)2 1By, | > | Bl < len+2|
(M 2n—2 2n 2n+2) (x+1)%.
The greater x is, the closer the approximation that may be
obtained. For instance for x=0 from Table II of § 78 it follows

taking account of (7) that the smallest remainder will be
obtained for n=3. Then formula (6) gives:

F (0) =— 0.57517 — £.0,0040398

the error will be less then 4 units of the third decimal. But for
x=9 already a precision of twenty decimal places may be
obtained for n—12.

Example 1. Determination of F(99) to ten decimal places.
We have

ol
r:«u‘
=3

— 1 a, _6_a_4
We found in § 78 that a, — 1/12 and a, = — 1/720; therefore
we shall have
log 100 = 4.605170 1860
—1/200 = —0.005
—1/12.10¢ = —0.000008 3333

F(99)

According to the remainder the error is less than one unit of
the tenth decimal,

If x is large, F(x) may be calculated also by the aid of the
series obtained in (10), § 98:

_ o (1) (m—1)!

(7) F(x) = log(x+]) m:21 ) b
where x <7 < x-41. We have seen that this series is convergent
for x > 0. This is the expansion of F(x) into a reciprocal fac-
torial series.

The formula applied to the preceding example gives

4.600161 8527

m—bn A" lOg (77 +1)

h by, 2b. 6b,
F(99) =1og100— 3o + 70100~ T00.101.102 TR KA R
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In § 89 we found that b, = 15, b, — — 1/12 and b, = 1/24,
b, =19/720, therefore

log 100 = 4.605170 1860
—1/200 = -0.005

—1/12.100.101 — —0.000008 2508
—1/12.100.101.102 = -0.000000 0809

-—19/120,100.101.102.103 -0.000000 0015
F(99) —  4.600161 8528

The error is less than one unit of the tenth decimal.

Finally F(x) may be determined by the aid of Pairman’s
tables, and though these tables contain F(x) only up to x=20 we
may employ them also for x > 20 by using the multiplication
formula given by (6), § 19.

F(nx):logn+—1—2Fx— L
ni=o I n
Example 2. Determination of F(IOO). Putting into the
preceding formula x=20 and n=5 we get

F(100) :10g5+é'(F(20) 4 F(198) + F(19.6) + F(19,4) + F(19.2)].

By aid of Pairman’s tables we find

log5 = 1.609437 91
3.000723 94

F(100) = 4,610161 85.

Since F(I00O) = 0.01 + F(99), the above result is in good ac-
cordance with those obtained before.

§ 119, Sum of 1/x? by the aid oi the trigamma function.
The trigamma function has already been treated of in § 20. Its
definition; is the following

F(x) = D?logl" (x+1) = DF(x);

therefore
1

x+1 7 (x+1)2 °
From this we obtain the indefinite sum

, 1
A = —F(xl) 4k

AF (x) =DAF(x)=D
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and finally if z is an integer
=1 1
2 — = F() -F(z).
x 1 X
In {7), § 34 we obtained by aid of summation by parts the in-
definite sum of F(x)

A F(x) = xF(x) + F(x) + k

where k is, as has been said in § 32, an arbitrary periodic func-
tion of x with period equal to one.

Fom this it follows that the sum of F(x) is, when x varies
from x=0 to x=n,

?0 f(x) = ¢ + nF(n) + F(n).

The trigamma function may be expressed by a sum. Indeed
the derivative of F(x) given by formula (1) § 118 is
* 1
1 Flx} = ¥ ———
( ] ( ) me1 (x+m)_-
This series is uniformly convergent if 0 < x.

It is easy to show that the difference of this expression is
equal to —1/({x+1)2

From (1) it follows that F(~) = 0; moreover by aid of
formula (6) § 82 (1)gives

M8

F(0) =

o

1
1 m?

m

f

Since AF(0) =—
2

F(1) :3‘6— -1,

The values of F(x) for negative arguments are deduced by
derivation from the formula giving F(x) for negative values
{§ 118); we find

F(—=x) _?1%? — F(x—1).

The derivatives of F(x} may be obtained by the relation
D"F(x) = D™'F )
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which leads by aid of § 118 to

v =" (m+1)!
m —_
D"l = % gy
and to
& (—1)™ (m4-1)!

o) = £ R = g 1)) s
where we introduced the denotation s, of the preceding pa-
ragraph.

Hence the expansion of the trigamma function into a power
series will be

(2) F(x) = i‘o (—1)" (m-t-1) Sp., x™

The series is convergent if |{x | < 1.
There are other series useful for the computation of f(x) if
x 1s large. We found in the case of the Maclaurin-Euler formula
an expansion into a reciprocal power series (9, § 88) from which,
by remarking that
4 1 712
5w fE

we deduce

1 B : B _E_Bz"_
@) Flx) Taxl (x—l—lll2 + m.—a (x+1)2mH + (x+1)%

The series obtained by putting n=~ is divergent but
nevertheless formula (3) is useful for the computation of F(x) if
x>n, Pairman’s tables were computed by aid of this formula.
In consequence of formula (2) p. 302 the best value of n would
approximately be ;1 (x4 1).

Example 1. The value of f(20) is required to ten decimals;
let us write:

_ 1 B, B, B, . 3B
Fl20) = 57 — 21)° + @) + 2z T Dt

Determining the remainder, we see that the error is less than
two units of the eleventh decimal. Moreover



333

1/21 = 0.047619 04762
1/2(21)2 = 1133 78685
1/6(21)2 = 17 99661
-1/30(21)” = — 816

F(20) = 0.048770 82292

The Bernoulli numbers B; have been taken from our table
of § 78.
B, = - 1,/2' B~_> — 1/6, B, = —1/30' Bﬁ = 1 /42-

Formula (4) § 68 gives the expansion of 1/x% into a series
of reciprocal factorials:

1 E (n—1)!

x* n=1 (x+n)n+!

If x 2 1 then the general term of this series is less than
1 'n2 and therefore the series is uniformly convergent; hence the
sum of this expression may be calculated term by term; we
obtain by the inverse operation of the differences

(n—1}!
n=1 n(x+"—1]n

il M8

(4) —F(x—1) = + olx)

where w(x) is a periodic function with period equal to one.
Therefore the sum from x=1to x=z will be

s 13 (n—l)
FO)— Flz—1) = 2 —5 — 2 iz 1), + w(z) -o(1).
We remark that, since z is an integer, o(z) = w(l)

moreover that the first sum of second member is equal to F(O),
so that this equation may be written
Fle—1) = £ (70 '
=1 n[z—{—n——-l],,
or

(5) F(x) !

1o g xtn
()
From this it is easy to see that the general term of (5) is

less than 1/n* and that the series is convergent. If x is large, the
formula is useful for the computation of F(x).

48

Y
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Remark. Formula (5) has been demonstrated above only for
integer values of x.
Example 2. F(100) is to be calculated to nine decimals.3
Tbe successive terms are:
0.009900 9901
48 5343
6282
136
4

F(100) = 0.009950 1666

If we calculate by the aid of this formula F(20), it would be
an excellent example to show that a convergent series may lead
less rapidly to the result than a divergent series. To obtain the
same precision as in Example 1, where we calculated four terms,
here it would be necessary to calculate more than ten terms;
indeed we have

0.047619 0476
1082 2511

62 7392

5 8818

7529

1207

230

52

12

5

F(20) = 0.048770 8232.

Comparing this result with that obtained in Example 1, we
remark that there is here still an error of three units of the
tenth decimal.

Determination of F(x) by the aid of Pairman’s tables. 1f
0 <x £ 20 then F(x) may be obtained by interpolation from the
tables. If x > 20 the tables still give F(x) by using the multip-
lication formula of the trigamma functions

% The binomial coefficients occurring in (5) may be taken out of
tables, for instance such tables as are to be found in the “Annals of Mathe-
matical Statistics”, Vol. III, p. 364, ff.
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F(mx) = mi, 'ﬁ'ﬂ F e ,}1)

Example 3. Computation of F(100). We shall put m = 5
and x — 20; it follows that

F(I00) — 2i5 [F(20) + F(19.8) - F(19,6) + F(19,4) + F(19.2) |.

By aid of the tables we find
F(100) = 0,009950 166

in good accordance with the result of Example 2.

§ 120. Sum of a rational fraction. Given a fraction in which
the degree of the numerator is at least two less than that of the
denominator such as,

(1)
F(x) a, tax+,....+ 0.4, :
= (X‘}—bl] (x+-b,) o v (X+6,,) [x_}‘c,)z(x_{_c.z)l L (x+cm)2

To begin with, we shall decompose this expression into
partial fractions, so as to have

n+1 A m+1 B m-+1 C
2 Flx)= ¥ — + = ! b ! =
@) (x) i=t X+b; =t X--c; =1 (x+¢;)*

We have seen in § 13 that if we denote the numerator of

the fraction (1) by ¢ (x), and the denominator by y(x) then we

shall have

+om—2
xll 2m—2

? (—b)

A = Dy(—b)

and denoting ,

Pix) = 22 (xta):

we have (formula 5, § 13)
C,‘ - Pi(_ci) and B,‘ = DP,‘{—'C,']

Reducing the fractions (2) to a common denominator, the
numerator obtained must be identical with ¢(x) ; since the degree
of g(x} is at most equal to n--2m—?2, therefore the coefficient of
x2m1 obtained must be equal to zero. That is, we must have

3) A, +4,+.... +A,+B +B,+,., +B,=0.
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The operation of A™! performed on both members of (2)
gives

n+1 m--1
NF@ =S AFetb—1) + 75 BF(e4e—1) —
— :§1 CiF(x4+c—1) + P

From this we deduce without difficulty the sum of F(x)
from x=0to x=gz, if z is finite and integer:

W  Zrox) = S A [Fle-b—1) — F(b—1)] +
x—=i i—=1
+E BlFz+a—1) — Flo—1) | +
=1

+ '"?: Ci [Flem1) — Flz-e1)].

This formula is not applicable if z is infinite, since then the
digamma functions in the second member will become infinite
too. The following transformation of formula (1) will meet the
case |

Let us add to the second member of (2) the quantity

1
— 7xi A4t +AAB 4B T 4B =0,

Since according to formula (7) § 19 we have

® 1 1

xEO x—‘f"?:l - x+1
the sum of F(x) will be, taking account of (2}, equal to

® 41 m+-1

(5) E——oF (x) =— Eo Aif(b—1) ~— Z B (c—1)+

=0

= —F(b—1)—C

m--1
+ % CiF(c—1).
=0

The coefficient of C is in consequence of (3) equal to zero.
The last term of the second member has been obtained by
aid of the indefinite sum,

Example. To determine by this method the sum of a re-
ciprocal factorial let us decompose 1/(x-n), into partial frac-
tions. Since now ¢(x) =1 and w(x) = (x4n), we shall have
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A — 1 . (—1)+1
LT DIl G (T
So that
1 . nfl A n4-1 (_____1)1—1
6 =2 L -
SR PO B s AR ey e
Performing on both members the operation A™ we get
—1

n+1
(n—1) (x+n—1),, — 31 AF(x+i—1) + &

therefore the sum of (6), x varying from zero to z, will be
—1 1 1
("_1) (z+n_1)n—1 ("__1]
To determine the sum, x varying from zero to °°, we must
use formula (5); we get

v "8 AR
{(n—1) (n—1)! =1

putting in the value of A; obtained above and multiplying by
(n-1) ! we obtain the formula

!' _ g‘ A F (z-Hi—t)—F (i—1)].

1 n+1 . n—1 .
ol — ,-Ex =07 i JF(I_I)'
Derivatives of the reciprocal factorial. Starting from (6)
we may determine the derivatives of 1/(x+n}, . We have

DL _ % =)
@ G, o D T ()
and

1 n4-1 (_l)i!mﬂ m!

n._ )
D (x+n), = ,E. (i—1) ! (n—i)! (x4-i)™
From formula (4) of § 118 we deduce the derivative
£3 (-1)°

DA*F (x)=A"F (x) = (—1)}""} (n—1) ! El (—0) T(n—0) T (x+0)?

Putting x=0 we get

DA (0) = A"F(0) =

SEE )

22




338

According to formula (5) of § 118 the sum in the second
member is equal to F(n) 4-C; therefore we get the interesting
formula

—1) & 1
(8) parri) =aF() = S F e = L 2 L

Integral of the reciprocal factorial. The integral from zero
to z is obtained from formula (6):

¢ dx net z4i
T - 2 Aleg —.
J (x+n)rl = = g g ]

This formula is not applicable if z=%, since then the terms
of the second member become infinite. To remedy this incon-
venience we add to (6) the following quantity (which is equal to
zero in consequence of (3):

14, + A, + ... + A

x + 1
then integrating we find
 dx 1 Wl 1
— Z A — — — dx =
o‘[ (x+n)y = i OJ x+i  x41
mEl xHi
= 2 A, log =~ —
=1 1 ! g x:+'11
Finally
W dx n41 1 n+3 n—1
- S = — 2 (—1)] .
OLI (x+n]n IEI A logl (n—l)! i—t ( 1] l l——l ] logl
From this we conclude:
. o dx
Al 1) |y=0= (—1)"'n! | ——————
|Arloglet1) Ir=o = (=)t || gy -
§ 121. Sum of Reciprocal Powers, Sum of {/x" A. By

aid of Stirling Numbers.
In § 68 we found that the expansion of a reciprocal power
into a series of reciprocal factorials is the following:

I « m - ‘m -1

—_ =3 —{Ym*+i — 1 1 \ym+ti-1 __..___i .
™ T izm (1) (x*[—t), A':m-l( 1) (x+i),
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The operation A™! gives

_1_1—_ - (_l)nHi‘-lS;" - (_l)m+i s:.""l
1y A xm T fzm (i—1) (x+i—1);, _.-:,,.Ell i.(x+i—1);

From this we obtain the sum from x—1 to x=2°

!

= ® —1)mti g ® (__f)mtiv1 M1
L — p! —1'—n = = u = -(—u— .
x=1 X i=m (l—l) il =m—1 i.il

We may obtain a third formula for s,, indeed, remarking
that (p. 163)
| Sm| | Sm+t]
-1 ¥ — ' )
A= —n1 T

from the first expression we obtain by summation by parts
(p. 105)

N o L = g SEA (—=1)min
G-DT T TGEAD 1". IR == ] @,
Since 8™*!' = 0 and the quantity in the brackets is equal to zero
for i=% (formula 4, p. 160), s» may be written:
: z |7+ |
S =

mmtt (i-1), (i-1)!
Instead of s, it is more advisable to introduce the quantity

A |
sm‘:E“‘—_sm_1

x=2 xm_

as the series 2 s,' is convergent; moreover there are several
interesting formulae concerning s,,'.
From formula (1) we may deduce

_p sz ofsy)
T km- b () = =a 1) (i1
Since from the first it follows that

2 sy

3 (Sri
= TG

the second relation (2) gives

] Vo sm' > Smuy'
and finally
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s, 1
L
(3] Sn 2n-2 > 3,283
This may he verified by aid of Stieltjes’ table.?®
From (3) it follows that lim §,' = 0 moreover that the series

n—=»r

X s, is convergent.

Since
S 18 =l
n=2
from (2) we get
e = 1 1]*
= Y = ==} =1.
@ 55 T A0 T ,L

We have seen moreover that

3 |S#t= il and 3 |S¥|=

Q re—1

'
l!s

leir-‘

r=1

hence putting m—2v+1 into the first equation (2) we obtain

© £ Y ! — » 1
f o= 3 $._S> =3 1 _1
CF 2 e =2 ST T L A

On the other hand, iwhen i putting m=2», we must also
consider the case of i= 1, so that we have

jS2 1St s

! T T2 T

Formulae (5) and (6) are given in Stieltjes’ paper.
Multiplying both members of the first equation (2) by

w

(6) T os=

Al
=] =2

T M

(—1)"&f _, and summing from m=2 to m=> we obtain, ac-
cording to formula (5) § 65 (Inversion):
': —1\m -4 — (—1)k+‘

7 oz N s = ey
This formula gives in the particular case . k=1

i 1

3 (—1)m ., = =

m:Z( ) ° 2

M The values of s, were first calculated by Euler (Institutiones Calculi

Differentialis, Acad. Petropolitanae, 1755, p. 456) up to m - 16 to 18 decimals,
Later T, J. Stieltjes' {Acta Mathematica, Vol. 10, p. 299, 1887) computed
these values up to m 70 to 33 decimals.
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We have already obtained this result in § 67 (formula 6).

B. Determination of the sum of reciprocal powers by aid of
the derivatives of log I' (x-4-1).

In § 21 we expanded log I'(x41) into a series of powers of
x; but in consequence of what has been said at the beginning
of this paragraph it is better to expand it into a series of
powers of x-1.

[log I'(x+1)]x=1 = 0 and |Dlog I'(x41) |xcv= F(1)=1—C

moreover (1, § 21)

Dlog Plx41)], o = 3 T Gy 1 gy

L)

therefore we have

8 log I'(x+1) = (1-C) (x-1) + 3 (_n?m Sm (x-1)%.
m=—2
This gives in the particular case of x=2
1 log24+ 3 U
C=1—log2 -} UEZ 7 S
and if x=14
lOg 11 (':;3—] + l/f,(l—C) = 2 —iﬂi‘
2 = m=2 mMm2m
or if x — —g‘
(5]l = § EU%se
og 1’| 5]~ 300 = § EUT

Subtracting the second from the first we get

2 . S Samy1
log g +1—c=2 2 Gy g -

Finally

Coltlog2—logd— 3 —Sema’ _

flog2—log3 — 2 mo M)z
This formula is very useful for the computation of C if the
quantities s," are known, as Stielties has shown in his paper,®
in which s, is given,up to s;,, at an exactitude of 33 decimals.
Moreover we have seen in § 82, dealing with the expansion

of the Bernoulli polynomials into Fourier series, that
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IB,n]
2@n)T

Let us now introduce the following functions:

(10) Y, (x) = D" log I'(x+1).
These belong to the class of functions mentioned in § 22,
indeed we have

(11) D ¥, (x) = Wn., (x).

Remark. W, (x) is equal to the digamma-function and W¥,(x)
to the trigamma function.

The function W,(x) may be expressed by aid of sums. In
§ 20 we found formula (1)

D? log I'(x+1) = El (_x?f—T):

and from this it follows according to (10)

s (=) (m—1)!

San = (2n)2"

(12) v = 3
where m 2 2. Putting x=0 we get
a3 wa) = 3 S yn w1 s,

Moreover from (12) it follows that W,{>) =0, and therefore
from (11) we conclude if m > 2,

| W (x)dx = — ¥, (0).
o
From (12) we may deduce
[ 1 [__1 m-
b
x=0 (x+1)"' (m—1)!
In § 68 we have seen formulae (3) and (4)

1 = |8 = |SPY

I‘P,rll) Wn(0)].

- —_ 2 R — T o
xm i=m (x+1); i=m—1 (X41);,,
(The second expression may be obtained from the first by sum-

mation by parts.) From this it follows, in consequence of (12},
after having performed the summation from r=1 to y=">°:
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) = |Smt]
Ynlx) = ()" (m—1)! T et
(14) | ST

Wnlx) = ()" m—1)! 2 s

From this we conclude that

lim (x)py Wn(x) = ()" (m-2) ! if m22
15 =
" lim (%), Wp(x) =0i f m>n41.

Since log I'(x+1) may be expressed by aid of a definite
integral (Nielsen Gammafunktionen, p. 187)

Lyg (1 —1)*
S

its m -th derivative W, (x) will be if m > 1

1
Walx) = — [ (1—t)> [log(1—~)] dt

and
1
W, (0) =~ [ 3 og(1—t) 1 dt.

This may also be deduced by starting from formula (7) of § 71,
putting there z——t, dividing by ¢ and integrating from £=0 to
t=1. For m=2 we obtain the trigamma function expressed by
a definite integral.

Derivatives of Wy(x). From (11) we get

D"q’m (x) = 1I’"H-Hl (x)

and therefore from (13)
DY, (0) = (-D“+*" (m4-n—1) ! $mn-
Difference of W, (x). Remarking that
AW, (x)=D"AF (x)
it follows that
(16) A W,(x) = D™

and

1 (—1)™ (m-1) |
x+1 T (x4-1)m
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A ¥.(0) = (1) (m-D! .
This may be obtained directly from (12).
Inverse difference of W,{x). Summation by parts gives,
(p. 105) taking account of (16),

A Y, (X) =xY, (JC) + (m—l] Yoy (x) + k.

Therefore if m>2 in consequence of (15) we have
(i7) EO Yplx) = = (m-1) ¥, (0) = (—1)" (m-1) ! Sp_y.

This formula may also be obtained in the following way:
Writing successively W (0), ¥ (1), Wp (2), and so on, by aid
of (12) it is easy to see that in the sum (17) the term 1/x™ occurs
x times, so that

L

2 W,(x)= (1" (m-)! = = = (=)™ (m-1) ! Smoy .
x=-0 x=0 X

Moreover from formula (14) we obtain (m=22)

Wn _ i s [Sp
(x)n B (_1) ‘(m——l)i:!:m—El i, (x+i],+,.

and
m—11
z i ‘ |

iz m—1{ i(x+i)i—n ‘

By summation of the inverse factorial we find

Yalx) — m < iS:n—l'
x=n (X} = (=) (m_l)!i%—-x i(i++n—1) (i+n—1)!

(18)

(x+n)y W @ = (—1)" (m-]) !

r 5 _S""—l;
3 k) Walx) - ()" (1) 2 (z'_il—'n('iifm

{ m-=1

Putting m=2 and n—=1 into the first formula we obtain
® s
pX Falx) =5,
x=1 X !

Remark. Stieltjes’ tables | loc. cit. 36 | give s, = 1.2020569031
and computing by aid of Pairman’s tables to eight decimals
we find
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§ -’ig(—xl~ = 1’1538 7192.
£=1

Sum of the alfernafe function (—1)* ¥, (x). This is obtained
without difficulty. Indeed putting first into formula (12) x=0
and then x=1; subtracting the second result from the first we
get [—1)™ (m-1) !/1™, Putting now x=2 and x=3, proceeding
in the same manner as before we find (—1}” (m-1) !/3™; and so
on. Finally we shall have

x§0 (—1)*W¥,(x) = (—1)" (m—1)! .‘Eo (2i+—1]m

In the same manner as in § 49 it can be shown that the sum in
the second member is equal to (1—2™) $p, therefore

& 1
(20) S (1) Wnlx) = 1= 55| Tal0).
x=0
Particular case. For m=2 we find
@® ‘2
I (—1)* Wy(x) = i— ¥,(0) :%— = 12334 0055.
x=0

Remark. By aid of Pairman’s tables of the trigamma func-
tion we get

20
S (—1)* W,(x) = 12087 0132  and
x=0
1
S (—1)* W,(x) = 12574 7214
x=0

C. Sum of the reciprocal powers determined by the Maclau-
rin-Euler summation formula. Let us put into formula (5) § 88
F(x)=1/(x+1)" and a=0. Since we have

J‘ dx o 1
o0 (x+1)" = m—1 (m-1) {z+1)m?

and

Di 1 _ ( -1 ) ’ (m-H—
Grr = )™

moreover as D (x)D**#f(x) > 0, and D?"f (x) does not change

its sign in the interval x=) to x=z, the remainder
(4) of § 88 may be applied and omitting the term independent of z,

Ui and DiF(~) = 0
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. 2n—2) 4,
Ry, = £a,, D*7f(z) = —éay, %{%n)-f—

so that the expansion will be

z 1 1 1
2 G T md  m e

i 2"2—1 ‘(—l)"l (m+i—2), tq (m+M+ C,.

i1 ( +1)m+1 1 s 2n~ (Z—f—l)””z"'
Writing z=o we obtain
' @ 1 1 1
G =2 Grm w1 = w1
so that we have
3 ___1 — .____1 5t i+1 m-+i—2 .
C (x+1)"'_s"'+m—1l PRI G
B;

m-+4-2n—2 1
GrnT B 2n ]——(Z+1)m+2n—1]'

Though the series corresponding to n=% is divergent,
nevertheless formula (27) may be useful for the computation of
the sum, if z is large enough.

The expansion of Y,,,(x) into a Bernoulli series leads to a
similar result. In § 87 we have seen that the quantities to be
determined for this are

z+1
' (—1)" (m—2)!
Ndt=AY, . (Xx) = ——_——""

and

. —1)m (m4-i—2) !
D7 A W,(x) = ( ll(x_{_(l);tl_l )

Since we have D*"W¥,(x) D> (x) > 0 and D*'W,(x)
does not change its sign in the interval  (0,x) the remainder
will be (7, § 87)

R,, = §agn AD?* 1 W, (x)
where 0<¢£<1,

Finally the expansion is:

s (1) (m-i—2) ! £(—1)" (m+2n—2)!
Ynlx) = .Eo (x+1)mi a; -+ (x1)mHe2n1 @z -
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This formula may be useful if x is large enough.

§ 122. Sum of alternate reciprocal powers, by aid of the
Bi{x) function. Besides the digamma, the trigamma and the
Y., (x) function, useful for the summation of reciprocal powers,
it is advisable to introduce still another function denoted by
£, x) serving for the summation of alternate reciprocal powers.
It has been considered first by Stirling (loc. cit. 25).

Its definition is the following

(1) ﬂl(x)z—ZDlgB[x-H _‘_).

Hence £, (x) is the derivative of the logarithm of a particular
Beta-function. It may also be expressed by gamma functions:

r (x+l )['(1/2] T (f_';i)
T = 2Pl Tpmy
Mean of the B,(x) function.

(=) roge)

(1) Bix)=—2D log

20 MB,(x)=—Dlog

(Yox+1) T ( "+3) B

2 I
=—Dlog =511

Differences of p, (x). Since symbohcally we have A=2M—2
therefore

AB () = 57 —2B.(x).

From this it is possible to deduce step by step A™f; (x) and
we find
) m 28 (m—i—1)!
2 _ m —1ym-1 vy 7
A () =(=1)m2m B (0 + (=)™ 2 e

Inverse difference of f, [x] We have

and M=1 +14A, therefore the operation A-> performed on the
preceding equation gives
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A= Bi(x) = Flx) — Vo By (x) + .
Finally the sum of f, (x} if x varies from x=0 to x=2z is
I 4 = Fla) + C+ 140 —%hile)

where C is Euler’s constant.
Expansion of $, (x) into a series of Boole polynomials.
According to § 116 the coefficients of this expansion are given by

Cm = MAmﬂ] [O].\

therefore
_ _ —1)™ m! (1)
€ =1 and en = [Fci+m+1)m+l]x:o‘ m+1
Finally
@) = £ 50 .

m=0

Putting into this formula x=0 we obtain (§ 113)

1
£.(0) = mzzo I

It is easy to see that this is equal to the expansion of
-2 log (I--t) into a power series, where #=1/43
hence

B. (0) = 2 log 2.

Expansion of 5, (x) info a Boole series. According to § 116
we have
@ p = 2 EL Mg 0= 3

=0 im0 2 (x+1 i)y,

From this it follows that g, (~) =0; moreover, putting into
it x—=0 we obtain the result above,

Example ], Computation of g, (200) to 12 decimals.

1/201 = 0.004975 124378
1/2(282), = 12 314664
1/2(203), = 60663
3/4(205), = 446
6/4(205) = 4

0.004987 500155
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Expansion of f, (x) into a series of Euler polynomials. In
§ 109 we have seen that the coefficient ¢, in this expansion is

given by
cn = MD™8, (0);
therefore
¢, =1 and cn = (—1)™ m!
so that

) = 2 (—1)"m!Enlx).

This series is divergent.
Expansion of f,(x) into an Euler series. According to § 111,

since Dzt 8, (x) D** B,(x) > 0 the remainder of the
series may be given by (4) § 111; moreover,
1 (=i

MDD/, (x) = D PRt (x+1)i+1

So that the required formula will be

1 o (2r+1)!  @2n+1)!
5 Ailx) =il 30 TLT‘_WL—QQJ.-H—- FESVEGERC N

This is the expansion of f, (x) into a reciprocal power
series, For n—=cc the series is divergent but nevertheless formula

(5) is useful for the computation of f, (x) especially if x is large.
From (4}, § 106 it follows that the remainder will decrease until we

., 3
have approximaiel yn~ 5 x.

Example 2. Computation of £, (200). In § 100 we found
e, — = 14, e, = 124 and e, = — 1/240.
Hence putting n=2 the remainder of (5) will be less than

1/2(201)" < 1/10'%,

Therefore we have

1/201 = 0,004975 124378
1/2(201)* - 12 375931
—1/4(201)* =— 153

B, (200) =  0.004987 500156

The result is exact up to twelve decimals,
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Expression of P, (x) by digamma functions. From formula
(1) it follows immediately that

(6) B, (X) = F(Vox) = F ("_—2_'1)

Expression of B,(x) by sums. The digamma function has
been given (7, § 19) also by formula

) =—C+ % | —om

Let us put into this first 14x instead of x and secondly
15(x—1) instead of x; then subtracting the second equation so
obtained from the first we get

F(l/_»x)—F[x:1| _2 E, .(.‘;jr]lf"

and in consequence of (6) we have

s e (=)
) bl =2 2 0T

This is an expression for f, (x) by aid of an alternate sum.
Putting x=0 into (6) we find that

F({—Y%)=—c—2log 2.

To obtain the sum of the alternate function from zero to g,
we may start from

ﬂ(x]_M‘m

and applyformula (10) of § 39, which gives
futx) = 2= a0 BT e
Therefore

® 3 S _vino— s

On the other hand we may express f, (z) by aid of the
alternate sum

I e L e

=0 X'1—1




Example 3. Computation of

T =0 g2 —148 (200)
bt ll+l_ 2P 1

From Example 1, we have
— 3% ,(200) = —0.002493 750078
log 2 =  0.693147 180560
0,690653 430482

The results i1s exact to twelve decimals.
Expression of f,(x) by a definite integral. We found in for-
mula (3) § 118 the following expression forthe digamma function:

1
R
f(x) = =C + ll—t dt.
o 1—t
By aid of formula (6) this gives
t /2(1—t h)
Bulx) = i y—ri
and introducing the new varlable u?=¢t we obtain
(9) B (®) =2 0 i—+—u du.
Expanding 1/(1+4-u) into a power series and integrating, we find:
- Bix) =2 > "1 (—1)™ uxm dy = 2 § —ﬂ-.
m=0 m=0 x+m+1

This 1s identical with formula (7). It is easy to show that the
mean of (9) is equal to 1/x41.

Formula for negative values of the argument of B,{x}. Put-
ting into (6) first —~x instead of x and then x-l1 instead of x,
we obtain the two equations

i, [—x} = F{—15x)

x+IJ

pra—1) = F [*71 | — Foge=1).

Now using the equation deduced in § 19
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F (x-1) — F(-x) = —ncotax,

by the aid of the preceding equations we may eliminate the
digamma functions with negative arguments. We find from the
first

Bi (x) = 7 cot Lonx ~~ n cot (xT—i_l ] 74+ F(lox—1) = F (’%ll
and from the second
B, (X) + B, (x-1) = n [cotlonx + tan Yomx].

Therefore

2n
10 — —1) =
(10) B (=) + Ay lx—1) = ==
Particular case. Putting x=14 we find
Bi(—%) ==.

Derivatives of i, (x). D™f, (x) may be expanded into an
Euler series in the way used above for f, (x); we find

! n
(11) D8, (x) = (—1)m (T4Tmf)m— -z r%%ﬂ;ﬂ—'_ o5, 11 +
(m+4-2n4-1)!

- 7’ (x_l_l)nwzm? e2H+1I

where 0 £ 5 £ 1. The series corresponding to n=o0 is divergent,

nevertheless it is useful if x is large. According to formula (4)
§ 106 the best value of r is approximately

(12) n ~ 1 (x.-c-m) .

We may obtain the derivatives of f§,(x) expressed by an
alternate sum; starting from formula (7) we find

m — S (—1]’"“
(13) D"f,(x) =2m! = (R

Putting x—0 we get

(14) D"6,(0) =2m! 3 U™
r=U (7’+1)m+1
and if we introduce the notation
Op = > —(_—l))

s=o (v1)™
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then we find
(15) D", (8) = 2m! (—1)™ oy, -

Therefore the expansion of 8, (x) into a power series will be
(16) hilx) =2 T (—1)"op,, a"

We may obtain the sum of the alternate function in (13),
from zero to x in the following way: Putting x2=0 into (13) we
obtain D™, (0) given by (14) ; now writing in (13) v instead of
x-+4» we have

s 1)
(__l)x Dmﬂ] (x] = 2 (—1)’" m! ,-Ez ('V+l)"'+l_‘

Finally

an £ S0 7 peg 00— (1), ()1

=0 (v+1)™1 7 2m!

In § 49 we have seen that the alternate sum a, may be
expressed by the ordinary sum s, as follows:

(18) a,=sm(1 ).

 ml

Since the numbers §,, are given to 33 decimals up to m=70
in Stieltjes’ tables [loc. cit. 36] therefore by aid of (15) we may
calculate D™g, (0). Moreover D™, (x) may be easily computed
by the aid of formula (11), if x is large enough, so that the
alternate sum may be obtained by (17).

Example 4. The sum of (—1)*/{x4-1) % is required to 12
decimals. We have

100 (_l)x _-1_ e
2 epqp = 71D (=D, (10D)).

3 .
According to (18) we have o, = vy s, ; and in consequence
of (15), D?8, (0) = 3s,. The tables mentioned give
Dzﬂl (0) = 3.606170 709479.

D%p,(100) is then computed by aid of (11). Stopping at n=2,
the remainder will be less than
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7! e’ 21
[fon® = {rorys 0"
Therefore
2/(101)3 = 0,000001 941180
—6e,/(101)* = 28829
—5le3f(101)¢ = — 8

0,000001 970001

This value subtracted from D?8, (0), and the difference divided
by four gives the required result

0,901542 184870.

Determination of the alternate sum by Boole’s first sum-
mation formula (§ 112). From formula (11) it follows that
D™8, () = 0. Therefore we may apply formula (3) § 112. Putting
F(x)=1/(x+1)™ we have C; = o, and

2441 — (m+-2i)]
D f(x) = — (m-1) | (x4-1)m*2i

so that we have
£ (_I)x _ . 1
(19) z~2_—0 Tx—'mﬂl - 1/2(_1] +1 [m_w —

_ - (m+2i)! (2 (m+2n]!
;-_—Eo (m—1) ! (z+1]m:;i+1 d ey, (m—1) 1 (z_*_l),,”._,,,ﬂJ + Om

This is identical with formula (17).




CHAPTER VII.

EXPANSION OF FUNCTIONS, INTERPOLATION.
CONSTRUCTION OF TABLES.

¥ 123. Expansion of a function into a series of polynomials.
Given the infinite series of polynomials, Po , P(x), P(x),,, .,
P,(x),..., where we denoted by P,(x) a polynomial of degree n.

If certain conditions are satisfied, the function f{x] may he
expanded into a series of the polynomials P,(x)

Fix) = ciPy+¢,P,(x) + c.Py(x) + ... + ciPalx) + ...
But if we stop the expansion at the term P,(x),
(1) F(x)= coPo+ P, (x) + Py (x)+ ... .+ ¢ Py(x)

and determine the constants ¢; so that the equation (1) shall he
satisfied for X=x4,%;, ..., X, then for any other value of x the
second member will only give an approximation to f(x).

Let us suppose that ¢, is different from zero, and add to the
second member of (1) a term denoted by R,,, and called the
remainder of the series. It must be equal to zero for x=x,, x,,

.., Xp so that it does not change equation (1) for these values;
therefore we shall write

R,,, = (x—x,) (x-x,) . . . (x-x,) Q.
Now we shall dispose of the function £ so that
f(x)= c,P,+ ¢,P,y (x) +, ., . + caPulx) + Ry,

shall be exact for a given value x==z; hence £ will be a function
of z only. To obtain it we shall write

yx) =t (x)—c,P,—c,P, - . .. —c,Py(x)— (x-x). . .(x-x,)!?.
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Let us suppose now that f{x) is a continuous function whose
n-+1 -th derivative has everywhere a determi-aie value. In con-
sequence of what has been said before, y(x) i’s equal to zero for
the n+42 values

X = Xpy Xy Xos oo 5 Xy 2.

From this we conclude that the n-{1 -th derivative of ¢(x)
must be equal to zero, at least once in the smallest interval
containing these numbers. If this occurs for x—=¢ we shall have

D™'p(¢) = D™'(¢) — (n4-1)! 2 =03
therefore the remainder will be, if x—z

_ (=) (z—x,) + « « (z2—%4) s 3
(2) R.,, = (n+1)1 D#(6).

Finally writing x instead of 2z the required expansion will be

%) Hx) = coPo + P (%) + €,Pa (2) + .0 + €iP (%) +
+ (x—x,) (x—x,) .+ Z_(_x_____x_.") D*#(¢).
(n+1)!
This is exact for any value whatever of x; £ being a function
of x, whose value is included in the smallest interval containing
the numbers

x0| x]l le ) x"l x.

We conclude that the remainder R,,, depends only on these
numbers, and on the derivative of f(x) and not on the poly-
nomials P,,(x) chosen.

If a second series of polynomials Q, , Q, , . .. Q, is given
and if we expand the function f(x) into a series of Qu(x)
polynomials, stoping the expansion at the term Q,(x) we obtain

()] f(x) = koQo + lel (x)+...+ kQ,(x)
and if this equation is satisfied for the same values x=%, , X, ,
.... Xy as expansion (1), then the two expansions are identical
and so also will be the remainders of the two series. and therefore
the obtained precision too.

But if the coefficients ¢; of formula (3) are tabulated to ¥
decimals only, so that their error is less than ¢=5/10**' then
this will be another cause of error; therefore the absolute value
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of the error of f(x) will be
n+1
(5) |8f(x) | < IRy l+e 2 1Pilx) 1.

From this it follows that, finally, the precision will never-
theless depend on the patire of the expansion.

Remark 1. If f(x) is a polynomial whose degree does not
exceed n, then the remainder is equal to zero and the second
member of the expansion (1) will be equal to f(x) for every
value of x.

Remark 2. Should ¢, be equal to zero, R,,, given by (2)
could nevertheless be considered as the remainder of the series
(1), but then it would be possible to chose a remainder R, more
simple, in which the range of § is smaller.

§ 124. The Newton series. We have seen when treating
the symbolical methods that the operation E is equivalent to

1+A; therefore we have
Er=(+ar= I

S)ar

Since E*}{a)=F(a-+x) we may write the above equation in
the following manner:

(1) Hatx) = 1@ + () M@ +(3) A%@ +.. +

+(3) o+

This is Newton’s series. It can he transformed in different
ways. For instance, putting x=2z—a we have

(2) f(z) = Z z;"] A™(a)

which gives the expansion of sz into a series of binomial
coefficients.

Expansion into a generalised Newton series. Putting into
(1) x=(z—a})/h we find

z—a

f(a+ ’;"]_—_ S|P At = §o%(’;“)h A (a).

m=0 m m=
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Indeed we have
z—a
_ (z-a) (z-a-h) . . , (z-a-mh+h) __ 1 z——-a)
- h™ m) ~ hm

The last term is the generalised binomial coefficient of § 22.
(p. 70). If we write moreover

fla+ ZT):F(Z)

then from the above it follows that

f(a) = F(a), E"f(a) = E’"F (@, A"fla)= 9’"1’ (a).

Finally the expansion of F(z) into a series of generalised
binomial coefficients will be:

A"F,
(3) F(s) = F@) + [z‘“] -_(_q_‘ L+ (z—“] L. (_9_\

Expansion by aid of Newton’s backward formula. This for-
mula has been deduced by symbolical methods in § 6. We had
for a polynomial of degree n

fo = £ T aviem)
putting again x=(z—a)/h, as above, we get
A '"F (a-mh)
hm

Expansion of a function into a Newton series. If the function
f(x) is a polynomial of degree n, then we shall have

A""Hx) =01 f m>0.
Therefore the series will be finite:
6 fw=fo)+(flar@ + . ...+ (7).

In the case considered f(x) is a polynomial whose
degree does not exceed m; therefore according to what we have

z—a--mh—h
@ P =3 (TR
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seen in the preceding paragraph equation (5) is an identity true
for any wvalue whatever of x.

Problem. Given yu ¥y, . . , ¥n corresponding to x=0, 1,
2, ..., n; a polynomial f(x) of degree n is to be determined so
that for the given values of x we shall have f(x) = y,. .

The solution may be obtained from formula (5), which gives
for x=0,1,2,,..,n the necessary n+l equations for the deter-
mination of the n+l unknowns f(O), Af (0), ..., A* (0). But it
is easier to proceed as follows: From A = E—1 we deduce

A" = (E-1)” = mg (-1y ( '?] E™
this gives
m41
pi="% 1 (7) 7 omix

putting into this f (m-i) = yp_; the problem is solved.

Remark. The problem above is identical with that of deter-
mining a curve of degree n passing through given n+1 points of
coordinates x and y, .

It f(x) is not @ polynomial, the series will be infinite. Stopping
at the term A" (0) the second member of (5) will give the exact
value of f(x) if x is an integer such that

(6) 0<x<n

Indeed, for these values of x the terms | ;;]A’"f (0) will vanish if

m > n, so that equation (5) will give the same value as the

infinite series would give.

If x is an integer satisfying (6), then equation (5) may be
written

(1+A)* H0) = E(0) = f(x).

That is, the second member of (5) gives the exact value of
f(x) for x=0,1,2,.. . ,n; but for other values of x it will be
only an approximation of f(x). To remedy this inconvenience we
may add to the second member the remainder R, of (2),§ 123.
This can be done since, as we have seen above, the conditions
enumerated in this paragraph are satisfied.
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Finally we shall have
(7) 1) =10) +(}) 00 + ..+ (5] avo) +

(1) D

where ¢ is included in the smallest interval containing
0,12,...,nx

Remark. If f(x) is a polynomial of higher degree than n
and we stop the expansion at the term A" then a remainder must
be added as in the general case before.

Putting into this formula n=0, we obtain one of Lagrange’s
formulae

Hx) --£(0) = DF(e)
X

according to which in the interval 0,x there is at least one point
of the curve y—=f(x) at which the tangent is parallel to the
chord passing through the points of coordinates 0,f (0) and x,f (x).

Putting into formula (7) x=(z—a)/h and 2_~h;aI: F(z2)

we obtain the expansion of the function F(z) into a series of
generalised binomial coefficients, with its remainder
AF (a) A'F (a)
z—a) z—a) %
8 Flz) = F@) +( ) ),, — +[ - J,."‘hTJF

+(239), D F aten

%o
where £ is included in the smallest interval containing 0,n, —/—Oh—a.
d"F dz
1 n+1 e . — k-
In this formula, by D**'F we understand prl ix = h:

therefore in the last term of (8) the number A™! will vanish from
the denominator.

§ 125. Interpolation by aid of Newton’s Formula and Con-
struction of Tables. The problem of interpolation consists in
the following: Given the values of y; corresponding to z; for
i=0,1,2 ... r; a function f(z) of the continuous variable z is
to be determined which satisfies the equation
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(1) yi=Fz)for i=012...n

and finally f(z) corresponding to z = z' is required. The solu-
tion of this problem is not univocal; indeed, if we write

Fz) = f2) + (==, (Z2-2) , . .. (z=--z) O(2)

where ©(z) is an arbitrary function; then from (1) it will follow
that

(2) F(z) = i
for the given values of i,

But if the n+1 points of coordinates y;, z; are given and a
parabola y=f (z) of degree n passing through these points is
required, then there is but one solution.

This problem has been solved for equidistant values of z in
§ 124. If we put z=—a-xh and z is given for x=0,1,2,..., n,
then equation (8) of § 124 will become:

@) F@) = Flatxh) = F@) + xAF @ + ... + U," A"F(a) +

, [ it }hnn D" F (a+¢h).

A second case of interpolation is the following: A function
F (2) of the continuous variable z is given in a table for 2=2,+-ih
where i=0,1,2,.,.,N. A polynomial f(z) of degree n is to be
determined so as to have

@) F(z) =~ f(z) for z=a,a<th,,..., a+nh.

Finally the value of f(z) is required for z=2z' different from
a-+ih. First we must choose the quantity a. This choice is
arbitrary, but it is considered best to choose a so as to have on
each side of 2’ the same number m of values for which (4) is
satisfied. To obtain this, it is necessary that the number n be
odd, that is n—=2m—1, then a must be chosen so that

a+4mh—h < 2’ < a4-mh.

But sometimes it is not possible to choose a in such a way.
This happens for instance at the beginning or at the end of the
table, when we are obliged to take respectively the first,and the
last 2m numbers,
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In some cases it may happen that we have to determine
}(z’) corresponding to a value of 2z’ outside the range of a
-table (extrapolation). This is considered as unfavourable. For
instance, given the table

£(0)
A#(0)
f(1) A*(0)
A#(1) A%(0)
1(2) A*(1) :
; AF(2) !
3 .
9 A¥(n—3)
. A?H(n—2)
Af{n—1)
f(n)

and f(n+1) is to be calculated. It is best to use Newton’s back-
ward formula (§ 124) which would give

f(n+l) =f(n) + Af(n—1) + A*(n—2) + A3 (n—3).

General case of parabolic interpolation of odd degree by aid
of Newton’s formula. Let us write 2m—1 instead of n in formula
(3), then the polynomial obtained will give exactly F(z) for
z=a,a+h,..., a4+2mh—h. As has been said, it is best to choose
a so as to have

atmh-h < z< atmh or m—1<x<m

since then the polynomial will give on each side of z the same
number m of exact values.

To determine the maximum of the binomial coefficient[;;n]

figuring in the remainder of (3), if m—1<x<m, we shdl put
x=#+m—1 sothat —14<8#<15, We have

("5 %) = Gt |3 =l (=) T

moreover #2 < 1/4, hence the maximum of the absolute value of
this expression will be obtained if #=0, or x=m—14. So that

(am)| <

—1/ .
(m /)4 if m—1<x<m.
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For instance

GBl=s Bz |6)=wa
and so on.
Finally we shall have if m-1 < x < m
5) | Ryn 1 < iom | ™5%) DEF (a4-£H)

where & is included in the smallest interval containing 0,2m—1,x.
Construction of Tables. A table of a function F(z) should
always be computed from the point of view of the interpolation
formula to be used for the determination of the values of F(z).
Let us suppose that an interpolation of degree a1 is chosen, the
error of F(z), denoted by 8F (z), will arise from two sources:
First, by putting approximate values of F(a) and é‘F (a)

into formula (3) instead the exact ones; secondly, by neglecting
the remainder of the formula.

- If in the table F(a) and A'F{a) are given exactly up to »
decimals, then the absolute value of their error will not exceed

6
= {on

Hence in the case of Newton’s formula the corresponding
part of the absolute value of the error of F{a+xh) will be less

B RN N 1,

Since the errors of the function and of its differences are not all
of the same sign, the resulting error will generally be much less.
We have

|6F(a+xh)|<we—|—|R,.+1|_ 10,_*,, + IR, |.

The two parts of the error should be of the same order of
magnitude. If the remainder is much greater than wg then there
are superfluous decimals in the table, since with fewer decimals
the same precision of F(z) would be obtained by formula (3). If
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the remainder is much smaller than ws, there are not enough
decimals in the table; indeed, increasing them, the same formula
would lead to a greater precision.

Therefore we conclude that if the degree of the interpola-
tion formula, the range and the interval of the table, are chosen
(the remainder depends on these quantities), they will determine
the most favourable number of decimals for the table.

Linear interpolation. Putting into formula (3) n=1 or m=1
we get

(6) F(z) = Fla+xh) = Fl@ + xAF(a) + R,

where according to (5)

) IR,I< %’ |D*F (a+2h)| .

Since we chose a so that a<z<a+h or 0<x<1, we shall

have 0<¢<1,

If the table contains the numbers F{a+ih) and their differen-
ces, the error being the same for each item, for instance less
than ¢ ; then, according to what we have seen,

[6F (a+xh)| < (14+x)e + | R, 1 <2¢ 4 |R,|.

But if the differences are computed by aid of the numbers
F(a+-ih) of the table, then their error may be much greater.

Parabolic interpolation of the third degree. From formula
(3) it follows that

6 Fla) = Flatxh) = Fla)+ xAF(@) +(5) A% (@) +
+(’3‘) . A%F(a) +. h4[’4‘)D*F(a+eh).
Since this curve passes through the points
aF(a); (a+h), Fla+h); (a+2h),F(a+2h); (a+3h), Fla+3h)

and a must be chosen so as to have two points on each side of 1.
hence we must have a+h < z<q-;2h or1 <x <2, and
0 < &< 3. According to (5) the remainder will be

IR,1< 3 |DF(atsh)).
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If the numbers F(a+ih) and their differences are given by
the table, to « » decimals then we have

[1+x+— x(x—1)(5—x)] + IR, |s —

+ IR, I.

Parabolic interpolation of the fifth degree. From formula (3)
it follows that

(8)  F(z) = Fla+xh) = F(a) + xAF(a) + (g) AF(a) +

| o0F (a+xh){ < —

0 10+1 10v +

[g) A3F (a) + (Z) AF (a) + (g) AF(a) + k8 ( g)D“F(a+§h].

This formula is of practical use only in tables where the
first five differences are given, but there are hardly any such tables.
Using this formula it is best, as has been said, to choose a in such
a way that a+2h < z < a-+3h; then as the curve passes through
the points corresponding to z=a, a--h, a+4-2h, a+3h, a-+4h,a+-5h,
there will be three points on each side of z, and we shall have
2<x<3.

According to (5) the remainder will be

SFla+sh
R,; < 1024 - D'Fla+sh) 1

where 0 < & <5,
It can be shown that interpolating by aid of formula (8)
the absolute value of the error of F(z) is

oF(z) < 8 + |R,|.

Parabolic interpolation of even degree is seldom used, since
in this the curve passes through an odd number of points, and
therefore o cannot be chosen so that the position of z shall be
symmetrical.

Putting into formula (3) n=2m we get

(9) F(z) = F(a+-xh) = F(a) + xAF(a) +.., ., +
‘%—( 2);;1)A:"1F(a) + A 12mx;4— I D2m*1F (a+$h).

In this case the best way is to choose = so as to have
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at+mh<z<ag+mh+h or a+mh—h<z<at+mh

but neither of these dispositions is symmetrical. In both cases
we have
0<¢<2n

If the differences A, A% A3, ... A" are given by the table,
then the interpolation by Newton’s formula is the simplest.
The difficulty consists in the differences being printed, which
makes the tables bulky and expensive. Moreover to obtain the
differences with the same precision as the values of the function,
they must be calculated directly, and not by simple subtraction
starting from’ the values of the function given by the tables, and
therefore the determination of the differences is complicated.

§ 126. Inverse interpolation by Newton’s formula. If a func-
tion F(z) is known for z — z,,z,,, ..., z,, then the *following
problems may arise:

a) Interpolation: To determine F{(z) if z is given.

b) Inverse Interpolation: To determine z if F(z) is given.

The second problem is not univocal; to a given F(z) there
may correspond several solutions; but if we add a condition, for
instance that z should satisfy the inequality ¢ < z < 6, the
interval being small enough, then there will be only one solution.

If F(z) is given by a polynomial of degree n and by a
remainder, as in Newton’s series, then we will have in the second
problem an equation of degree n to solve; this is generally done
by a somewhat modified method of the Rule of False Position. If
the polynomial is given by a Newton, a Lagrange or any other
series the procedure will always be the same.

Let us suppose that for the required precision, the function
F(z) is given by a Newton series of degree n, for z—a-xh

(1) F(@r) = F(a+xh) = F(Q) + xAF{a) + . . ., +
[;) AF(a) + hml[ n_’;q] D" F (a4-£h).
To obtain a linear inverse interpolation we shall start from

(2) F(z) = F(a) + xA\F(a) + h*(;)D“F(a—i—_Eh)

this gives, neglecting the remainder,
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_ Flz) —Fla _ _Fl(z) —Fla)

~— " AF(@ =~ F(a+-h)—F(a)
and
z, = a+xh

where z, is the first approximation to z. If F(s) is considered
exact and if the precision of the numbers F(a), F (a+h) in the
table is equal to g then the absolute value of the error of z, due
to this cause, will be less than (§ 133):

[dz < AF(TH— |2£+ ID'F(0+§’1) | =9

From this it follows that if 8, is smaller than the correspond-
ing quantity in linear direct interpolation, then inverse inter-
polation will give better results than the direct; and if 8, is
larger, then it will give inferior results.

Example 1. Given a table of F(z) = log z to seven decimals,
of the integers from 1000 to 10000. Here we have h=1; the
number @ is chosen in such a way that

F(a) < F(z) < Fla+1)

the absolute value of the error of z will be less than

L0 7
Al Aloga 108 " 100a? |

It can be easily shown that this is less than 1/103. That is, z will
be exact to three decimals, which will give with the four figures
of the integer part of z a precision of seven figures.

If a greater precision is wanted it is best to repeat the ope-
ration. For this it is necessary to determine F(z,) with the
required precision, by putting into equation (1) x=x, .

If we find F(z,) < F(t) then we start from the points
2,,F(z,) and (a+h),F(a+h) and get

. - Fl—=Flz)
2~ F(a+h) —F(z,)

where h, —a+h—z, .
z, will be the second approximation of z. The error of z,
caused by neglecting the remainder will be less than

oz < - 2r+

or z, = z, + xyh,
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h®  DF(z,+¢h)
8 [Fla+h)—F(z,)|

If a still greater precision is wanted, then we determine
Z,~—a
h

Since we shall have F(z,) < F(z) < F{a+h), we may deter-
mine z,; in the same manner, and continue till the required preci-
sion is attained.

If we had F@ < F(z) < F(z,) we should have proceeded
to determine z, in a way similar to the foregoing.

But we may shorten the computation by the following
method: having obtained z,, and shown that the error of z, is
smaller than 8, we may put h,=¢, and determine F(z,-}-h,).
Then we shall have

F(z)) <F(z) < F(z,+h,).

Starting from these we determine 2z, with a much greater pre-
cision, since the interval now considered is much smaller than
in the method above. An example will be given in § 133.

§ 127. Interpolation by the Gauss series. In the following
we will give only in a summary way the deductions of the Gauss,
Bessel and Stirling interpolation formulae, as they are now very
seldom used, and are merely of historical interest.

If we stop one of the series at the term of degree 2n—1, and
if the series gives exact values of f(x) for every integer x such
that -n 4 1 £ x € n, then the error of the approximation of f(x)
for other values of x will be measured by the remainder given by
formula (2) of § 123, that is, by

(1) R =727 Dot )

where ¢ is included in the smallest interval containing
—n+1, x, n.

If the curves pass through the same points, the remainder
of every series will be the same; therefore from this point of
view there is no advantage whatever in using any one of them.

Gauss’s first series may be obtained, starting from the
symbolical expression for Newton’s formula:

F(z,) by putting into (1) x =
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> (x
F— X )A’"
E m=0 m
Let us multiply the second member of this equation from
the term A? up by Ag— 1 = 1. This will not change the value

of the series. We find
B+ (Far(3)8 + 2SR+ mi)|

Remarking that [t::z] + (mi—l] = [m+1] the expansion
becomes

(i ()2 508+ £ RIS

Repeating the operation on this series, from the term A* up,
we obtain

S (T E

oA |

m=4

This may be simplified again by remarking that the quantity
' x+2 .
in the brackets is equal to m—*—;—l . Then the above operation is
repeated from A® up, and so on; finally we shall have

x+m—1 A~"' x4m\ A*m1
( 2m =+ [ Smt E

This is the symbolical expression for the first Gauss series.
Written in the ordinary way, starting from fi0) we get

3) f(x):f(01+[’1‘JAf(0J+[§] A1)+ ["JgIJA:=f{—1)+
(1) v + (712 wore + () A+

(Gt Aty [*t ) pembem)

2 E= 3

m=0

If the differences of the function f(x) are known, then its
4
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expansion in this series presents no difficulties. If f(x) is a poly-
nomial of degree n, the series is finite and the second member is
always exactly equal to f(x).

Example 1. Given the function f(x) by its Newton expan-

sion
R I B

Starting from this we may easily construct a table of f(x)
and of its differences, in the same manner as in § 2.

x fx) A A(x) A'i(x) V(=)

-1 8
6
0 14 4
10 2
1 24 6
16 2
2 40 8
24
3 64

Formula (3) gives by aid of this table

x x x+1
f(x) = 14+10[1] +4(3] +2[ T ]
From this we conclude that only the terms of the rows of f(0)
and Af (0) are figuring in the formula.
If the function f(x) is not a polynomial, then the series is

x+n—1
infinite. Stopping the series (3) at the term [ ;,—:_1 ). we shall
obtain

f(x) = Eo [[ x+2',';,—1)A‘-""f (-m) + 2",,',1"1) A (-m) |+
“ + Ry

This will give exact values of f(x) for every integer x such
that

—n+4+1Sx<n

Indeed, in these cases every term of the sum in which m = n will
vanish and the limited series will give the same value as the
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infinite series. From this we conclude that the remainder R,,
will be given by (1).
Interpolation by the first Gauss formula. Let us put

x=(z—a)/h and f(z—) = F(z), we shall have
n x+m —1 x+m +
F(z) = 2mF (a—mh) + A?*™1F (a—mh) | +
@ =3 |(Fhm ) amFa—mh) + | 0 (a—mh |

+(F l)h""D‘"F(a-l— sh).

It has been said that it is considered advantageous when
interpolating to choose a so that the points for which the
equation above gives exact values, shall be symmetrical to the
point z,F(z). Then

a<z<a+h or 0<x<1and —n41<é<n

According to (5) of § 125 the absolute value of the
remainder will be less than

) k("3 ) D F(ateh) 1.

The second Gauss series may also be obtained, starting from

the symbolical form of Newton’s expansion, by first multiplying

1
the terms from A up by A—i—_— = 1. We get

25 [3)+ 3]

Noting that the quantity in the brackets is equal to (m +1

Boieff) &

m

we repeat the operation from A3 up. This gives
x+1 A? x+41) A3
e () g+ [T+ () E

S G

m==32

2
We note that the quantity in the brackets is equal to ( f;il)

and repeat the operation from A® up; and so on. Finally we find
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(6) E— =

m-~0

2m+1 Em1

This is the symbolical expression of the second Gauss series:
written in the ordinary way it gives, starting from f (0):

) @ = fo) + | §)arn + ("f]A'—’f(—n +
+ {73 s + (P12 A + (x+2]A”f(-—-3) +

[ x-}—m Azm x+m | A

Ix—é-3] A (-3) +. ., x+m] A {(—m)

+ ;nf}r" ] A (-m-1) +
If f(x) is a polynomlal, this series is finite and the second
member exactly equal to f(x).
Example 2. Expansion of the function given in Example 1.
By aid of the table computed there, we obtain

flx) =14+ 6 [’1‘]+4 (x—é-I]*_z ‘x-g{-ll{

The table shows that in the second Gauss formula only the
numbers of the rows f(0) and Af(—1) figure.

If f(x) is not a polynomial, then the series is infinite.
Stopping at the term A®"! we get a polynomial of degree 2n—1;
which is an approximate value of f(x). But for x=n, . . . ,
0,1,...,n-l it gives exact values. This can be shown by
remarking that if x is an integer such that

—n<x<n—1
then every term of the infinite series vanishes in which m 2 n,
and therefore the limited series gives the same value as the
infinite series,

For other values of x the error is measured by the remain-
der (1).

Interpolation by the second Gauss formula. Let us again put

X= (z-a)/h and write f z-a] — F(z). We have

(8) F(z) = Fla-+xh) = m] A*"F (a—mh) -+

F [2’5,11”;] A2tV F (a—mh—h) l+ w557 | DF (at-2h).
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It is best to choose a so that the points, for which the
second member of (8) gives exact values, be symmetrical to the
point 2z,F(z) . Then

a—h<z<gor —1<x<0and —n<&<np—1

and the absolute value of the remainder will be less than (5).

Stopping the first or the second Gauss formula at the term
A*" we get an interpolation formula of even degree. The exact
values correspond to x=-n, . ..., 0, ..., n The results are the
same as in the case of Newton’s formula of even degree.

§ 128. The Bessel and the Stirling series. To deduce the
Bessel series, we start from the second Gauss formula (6, § 127)
writing in it x-1 instead of x and multiplying it by E; in this
way its value will not change. We get
) x+m—1] Am [x—f—m—l Azl
[ 2m JE= T 2m41 "E—']
Now let us determine the mean of this series and of the first
Gauss series (2, § 127) ; we find , putting 14(E+1) = M

2 (x-4+m—1 2m s AU x+m x+m—1
E = E‘[ +2m ]MA z 2J+1]+[ 2Tn+1 J]

n=:0

w

Er= X

m==Q)

E’" -+ m=0 2 ETn—_

This may still be simplified so that we shall have

. ® x+m__1 MAzm x_l/z A'_’mﬂ'
1) E= = [ Bt amit B

m 0
This is the symbolical form of Bessel’s formula. Fully
written,  starting from £(0) it will be

@) Hx) = MFO) + (x—Ya)AHO) + (3| MAZ (1) +
+(3) 52 vt + [FT M) +

T [ xz‘ll x;]/;z Ar’f [‘—2] + yr0, T [X+2I,T;1—1 [MAme (_m) 4+

x—n 2m=1
+ 2m 1 A H—m)

If f(x) is a polynomial, then the above series will be finite
and the second member will give f(x) exactly.

+ .,

7
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Example 1. Given the function figuring in Example 1 § 126,
we find, using the corresponding table, that

x__l

f) =19 + 10(e—15) + 5 (3] +2(3] %5

From this table we conclude that the numbers in Bessel’s
formula are all in the same row of the table, e. i. in that of Mf (0),

M/ (0) =19, AH{0) = 10, MA* (-1) =5, A*(—1) =2.
If f(x) is not a polynomial, and if we stop the series at

the term of A**"! then we obtain a polynomial of degree 2p—1
which is an approximation of f(x) giving for

x=—n<+1,....,0,...,n

the exact values of f(x). Indeed, formula (1) shows
that if x is such an integer, every term of the infinite series in
which m 2 n will vanish; therefore the limited series will give
the same value as the infinite series. Since these numbers are
the same as those corresponding to the first Gauss sefies;
therefore according to § 123 the remainder will also be the
same (1, § 127).

Stirling’s series. This series may be obtained by determining
the mean of the two Gauss series. Of course Stirling obtained his
series in another way a century before Gauss.

The first Gauss series (2, § 127) may be written

T e o LU

et 2m—1 kEAr-r_t——-l 2m E™
and the second (6, § 127)
. 2 f{x+m—1, AP fx4my AP
E =1 + mEl 2m—1 ) Em J Em

Hence the mean will be

(x2—{’—nm_~Il %‘l ( +1]+ A'"’l

After simplification this gives the symbolical expression for
Stirling’s formula

€x

E":l—{— 2

m=1

x—,—m] +

x+m—1)

+
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Or if written in the usual way

X

(5)  fx) =#(0) + [1] MAF(—1) _|_[’I‘J _’2‘_ A (—1) +
(3 masrea + (1Y) 5 a2 +
[ 25 mark—n [T Z A+

HShmTY) £ Amtm) + [ fh | MASt —m—t) + .

If f(x) 1s a polynomial, the second member of (5) is exactly
equal to f(x).

Example 1. From the table of § 126 we obtain

. x) x x+1
f(x) :14+8[’,‘) +4[,]—2—+2[ 3 ]

From this table it is readily seen that the coefficients in
Stirling’s formula are all in the same row, in that of f (0).

If f(x) 1s not a polynomial, and if we stop the series (5) at
the term MA*"! we obtain a polynomial of degree 2n—1; by aid
of (4) it may be shown that this polynomial gives f(x) exactly
for the following 2n values x=—n+1,. . , , n. Therefore the
remainder will be given by formula (1) of § 127.

Remark. Stirling’s formula 1s in reality a formula of central
differences. We have seen in § 8 that .

om MA'.'m-l
= =dm and ——
Em 8 Em
Therefore we shall have Stirling's formula (4) expressed by
central difference notation

— I.l-ﬁzm-l'

> I 2m-1 \ 27m x+m—l
(6) Ex=1 +w§' nd* 4 —25,; o l[ 2m—1

or fully written
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(1) ) = #0) + (] ud7(0) + () E87(0) +| "fg‘]u&fw) I

+[*5 )z s+ +[’gtn"’:1‘][ nF(0) + 5 5] |.
+...

Let us remark that in this formula the argument in each term
of the second member is the same.

§ 129. Everett’s formula. If from Stirling’s formula expres-
sed by central differences (6, § 128), we eliminate p§ by aid of
the following equation (found in § §),

ud = E—1—1%

we get
2 —1 . o P .,
Ex=1+ El lx;;nm ) ][Eﬁ m w21, 82m + ,')_7’%1_ b_m'_

Let us write in the first two terms of the preceding sum
m+-1 instead of m; then m must vary in these terms from zero
to . Therefore we shall have

m%o Zxr;l{_—:; J IEB”’-&ZM I

The third and the fourth terms will give

x-t+m—1 X—M o § x+m —1 m,
no:l zm——l 2m 8 o IHEI ]6

So that the above formula may be written

eo 5 (e § [ ()] o

m=0 i)

From this we obtain after simplification the symbolical ex-
pression of Everett's formula

T e (5o

Or written in the usual way, if the operations are performed
on f(0) we have

(1)

m*O
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@  f(x) = [’1‘] £(1) +[x§'—1J8'—’f(l) + (x—;—zj Ot (1) +
+H 55 s 4T r0 = (5] 0 —
L S

If f(x) is a polynomial, the second member of (2) will be
finite and it will give f(x) exactly for every value of x.

Example 1. Given the function of Example 1, § 126. For-
mula (2) will immediately give the expansion of this function
into an Fuverett series by aid of the table (§ 127). We find

x x+1 ] x—1 x]
f(x):24[ll+6| $H=1a [T =1 [3):
The mentioned table shows that in Everett’s formula there
figure only the numbers of the rows f (0) and f (1).
If f(x) is not a polynomial, the series (2) is infinite; stopping

it at the term §?"2 we obtain a polynomial of degree 2n—1
which gives the exact values of f(x) if

x=—n-+1,...,0,...,n,

therefore the remainder will be given by formula (1) of § 127.

The precision of Everett's formula will be the same as for
instance, that of Newton’s formula of the same degree; but while
Newton’s formula requires a knowledge of the differences A,
A2 A3, ... A1, Everett’s formula needs only the even dif-
ferences A%, A, .. .A*"2; this is an advantage.

Interpolation by Everett’s formula. To obtain the general
formula, we put x=(z—a)/h into equation (2) and write

f [z_;g ] = F(r). Stopping at the term 8*"2? we shall have

" + m
3) Fl(z) = Fla+xh) :m};o U zxm_;nl) 8*"F (a+-h) —

_ (a+rn-1

2m--1 )52’"F (a) J+ h2"|x+£,,— ! ] D*"F (a+¢h).

The curve passes through the points corresponding to
z= {a—nh+h), . , , (a+ nh), To determine F({z] it is best to
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choose, if possible, as has been said, the number a so as to have
the same number of points on each side of z, that is

) a<z<atho r 0<x<1,

If we interpolate in a table where the given values cor-
respond to Z;=2z,+ih (for i =0, 1, 2,. . . , N) then condition (4)
can only be fulfilled if

Zny <2< Zy_gu

Putting into equation (3) x=6 and 1—x=¢ it will become
o [(P+m ) com P+m \gom
) Flatoh) = £ |(57) omFlath) +{ 50 JorF @ |+

+ oo [ ST | DoF (s

where —n+1<é<n,
A. J. Thompson has constructed a table which gives to ten
decimals the coefficients figuring in this formula,*’

, g
Ezm(u) = (‘_l)m [2,;1:?11

for m=1, 2,3 and 0 £4 £ 1 where AY¥ = 0,001.
Formula (5) may be written therefore

F(a+9h) = 9F(a-+h) —E,(9)8:F (a+h) + E,(8)8‘F(a+h) —
— E (9)8°F (a+h) + ¢F(a) —E,(¢)d*F(a) + E,(¢)d*F (a) —

(6) - E () °F(a) + R, .
The remainder deduced from formula (5) will be
oy V— M e
7) Ry = (=)™ b2 5= Eoyy (9) D*F lat-5h)

where —n+4-1<§&<np,

If z<z,, then we are obliged to put into equation (3)
a=z,+(n—1)h and we shall have z—a=7»h < 0; the formula
thus obtained is called by Pearson, a first-panel interpolation
formula. To compute the value of F(z) it is necessary to calculate

8 A. J. Thompson, Table of the Coefficients of Everett's Central-
Difference Interpolation Formula. Cambridge University Press, 1921.
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the binomial coefficients, since 6 is out of the range of
Thompson’s table.

If 2> 2y n,, we are obliged to put a=zy-- (N-n+l) & and we
shall have z—a=1%h > h; the formula obtained is called an end-
panel interpolation formula. Since 19 is out of the range of the
tables, the coefficients must also in this case be calculated.

An interesting particular case of Everett’s formula (5) is
that of $=¢=14. For this value the formula will become

& Yo+m
Flatwoh = 2 (257 ) oMo Fia) + Ron.

Stirling already knew this formula, and determined the
coefficients up to ' in his “Methodus Differentialis” (Lond.
1730, p. 111). His formula is, in our notation,

Flat 5 i) = MF(e) — 5 M8F(a) + 128 Mb*F (@) —

Mb°F(a) + F(a) — Mb'°F(a) + .

- 1024 32768 262144

Stirling was the first to use interpolation formulae which
needed only even differences.

Example 1. Given a seven-figure logarithmic table (K.
Pearson, On the Construction of Tables and on Interpolation,
Part 1. p. 60, Cambridge University Press) where logz and
d%log z are given for 10 < z < 100 to seven decimals, and where
h=1.

Let us determine log 35.562. In the table we find

F(a) =1log 35=1,544 0680 8F(a) = — 3547
F(a+1) = log36 = 1,556 3025 8*F (a+1)= — 3352.
From Thompson’s Tables we get
9 = 0.562 E,(9) = 0.0641
@ = 0.438 E,(p) = 0.0590

According to (7) the remainder will be

1,438 3 1
<= —_—
|R, <=7 - 00641 52 < 7.

The computation of F(r) gives
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9F (a+1) = 0.814 6420 1
¢F(a) = 0.676 3017 8
—E,(9)8*F (a+1) = 214 9
—FE, (¢)}8*F (a) = 209 3
1.550 9862

This result is exact up to the last decimal.

Example 2. We have to determine F(r) = antilog 0.9853426
by aid of the antilogarithmic table (Pearson, Interpolation, p. 60)
to seven decimals. In this table antilog z and d%antilog z are
given from zero to one, to seven decimals, and A=0,01. We find
the following values in the table:

Fla) = antilog 0.98=9.549926 8F(a) =5063
F(a4-h) = antilog 0.99 = 9,772372 8%F(a+h) = 5182

Hence 6 = 0.53426 and ¢ = 0,46574.

Since Thompson’s Tables can be entered only with three
decimals of 6, then, if there are more, as for instance in this
example, E,, may be determined by different methods,
depending on the number of figures contained in §2mF(a) or
0°"F (a+h).

If, as in the present example, there are four figures only
in §2F(a4h) then a precision of 6 decimals of E,(#) is large
enough. This may generally be obtained from Thompson’s Tables
by a rough linear interpolation.

In the present case we have in this manner

E,(9) = 0,063627 E. (¢) = 0,060786.
The computation will give
OF (a-+h) = 5.220 987 5
oF (a) = 4.447 782 5
—E.,(¢)6*F(a) = 307 8
—E, (#)8*F (a+h) = 3297
9.668 132 5

If a greater exacitude is required for E,,(%) and # has
more than three decimals and less than seven, it would be
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possible to determine E,,(#) by interpolation, using Everett’s
formula and Thompson’s Tables; but the computation would be
too long, It is far better in these cases to calculate first §* and

then
1

El9) = & 9(1—0?)
- 992
E,(9) = E(8) ——
25—92
E,(9) = E(9) 25—

Thompson has given another method, which we shall see

in the next paragraph,
§ 130. Inverse interpolation by Everett’s formula. We start

from Everett’s formula (3, § 129) in which n is large enough for
the required precision.

1) F(z) =F(a+xh) =xF(a+h) — (x—1)F(a) +
+(F3Y sFarn — (3] 0F @ + (¥52) oF (@t -
— ") sF@+ ...

The function F(z) is given by a table for equidistant values
of z, the interval being equal to & and the necessary differences 0,
8+ and so on, are given too. z is to be determined corresponding
to a given F (z), We choose g among the values of the table, so
as to have
F(a) <F(z) < F(a+h)
or
Fla) > F(t) > F(at+h)
the method is similar in both cases. We will suppose that the
first inequality is satisfied.
By aid of a linear interpolation we deduce x, the first
approximation of x, keeping only three figures in (z,—a)/A.

F(z)—F(a)
(2) = F(a+h) = F(a)

and z,= q + xh
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Now we determine F {2,) by aid of formula (1) with the neces-
sary precision. Let us suppose that F(z,) < F(s) ; then we
determine F (z,+h,) also by formula (1), where for instance
hl = h/1000.

If we have
F(z,) < F(z) < F(z,+h,)

then we may determine X, the second approximation of x by
formula (2) in which we put respectively 2, and h, instead of a
and h. The first member will be equal to X,, in which we again
keep three decimals, and then determine z, = 2, 4 x,h, .

Should F(z,4-h,) be less than F(z) then we should be ob-
liged to calculate F(z,+2h,) and so on, till we have

F(z,+ih,—h) < F(z) < F(z,+ih,).

Then starting from this we would determine the second approxi-
mation of z.
If we had

F(z,) > F(z) > F(z,+h,)

then the determination of z, would have been similar.

Now we determine by formula (1) the quantity F(z,) putting
into it X, instead of X, then X, instead of a and A, instead of h.
Of course the differences &% d*.. . must be given now in the
system Az=h, .

It would be possible to calculate these differences by aid of
formula {1), but this is complicated, and generally superfluous,
since we may nearly always consider the third differences of
F(x) in the system h, negligible, and therefore the second
differences constant. We have

8 Fla) = P Fte, +h) = §F@) (1) =8 Flath (3]

The determination of F(z,) is simple, since in x, there are
only three figures, so that Thompson’s table is applicable directly.
If we have F (z,) < F(z) then we compute in the same manner
F(z,4+h,) where we have chosen h, = h,/1000. If

F(z,)<F(z)<F (z+hy)
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then by aid of (2) we determine x, the third approximation of x
to three decimals, and 23 = z, + *3h; .

2
Now we determine the differences P”F (z,) = §'-’F (a) [—’IEI!)

in the system Az=h,; if they are small enough to be neglected
in determining F (25}, then the linear determination of zz above
will give z exact to the required number of decimals, and the
problem is solved.

If the differences are not negligible, we compute F(zz) and
F (z,+h,), where h;=h,/1000, in a way similar to F(z,). Then
we determine 2, by linear interpolation, and continue in this
way till the differences may be neglected.

Remark. 1t would be possible to determine every value such
as F(z,), F(z,+h,), F(z,), F(z,7+h,), F(z;),, . . by aid of the
same equation (1); this would make the determination of the
differences 82F (2,), 8 F (z,),.., superfluous. But in this case the

evaluation would be complicated, since then, for instance,
(2,—a)/h would have a great number of decimals, and
Thompson’s tables of the coefficients would not be directly

applicable.

Example 1, Given F(z) = log z = 1.95717 32271 83589 39035
and z is to be determined by aid of Thompson’s Logarithmetica
Britannica tables to twenty decimals. There we find

F(@) =1.95717 13373 70099 19928 o = 0.90609
F{a+h) = 1.95717 61304 04846 19226 o+th = 0.90610

Hence h = 1/10°,
Formula (2) will give, if we determine (z,—a)/h to three

figures,
zZ,—a
h

Now we have to determine F(z,) by formula (1) ; to obtain

it exact to twenty decimals, let us take from the table the

differences §* and @*:

8F (@) = == 52898 29042.1072° MFo =—410™

§*F (a+-h) — — 52897 12282.10720 O¢F (a+h) = — 410°°

x, =9 = = 0.394 or z;, = 0.90609394.
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By aid of # = 0.394 and ¢ = 1—& =0.606, Thompson’s
Tables of the coefficients of Everett's formula give

E,(0,394) = 0.05547 28360 E,(0,394) = 0,01066 . , .
E,(0,606) = 0.06390 91640 E,(0,606) = 0.01160 . .,

We conclude that the fourth differences multiplied by E,,
having no influence on the first 20 decimals, may be neglected.
From formula (1) we get

"h_" Flath)+ 3+—’;—‘ﬁ~ F(2) = 1.95717 32258 25789 51451
—E,(9)8°F (a+h)—E,(9)3*F(a) = 6315 03894

F({z,) = 1.95717 32258 32104 55345

Remark. In computing this value before performing the
multiplication of F(a+h) by (z,—a)/h and that of F(a) by
{(a+h—z,)/h since the sum of these factors is equal to one,
therefore the first 6 figures common to F(a) and F(a-+h) have
been set aside and only added to the result.

The new interval will be h; = 1/10%, To determine F(z,+h,)
let us remark that now (z,-+h,—a)/h is equal to 6, = 0.395.
Thompson’s tables give E,(0.395) and E,(0.605). Finally from
formula (1 j we get

F(z,+h,) = 195717 32306 25144 88111.

Since the condition F(z,) < F(z) < F(z,+h,) is fulfilled,
we may proceed to determine the second approximation of z by
formula (2). We find

1
x, = 3~ (27~2) = 0.281 and z, = 0.90609 39428 1 .
ll

To compute the value of F(z,) we must start from F(z, ]
and F(z,-+h,) and form the differences

O°F () = 8F (z, +h) = §°F (@) . 16° =§*F (a-+h), 107 =
= — 5290 .10

We determine F(z,) by Everett’s formula (1), setting aside
the 8 figures common to F (z,) and F (z, +h,}. We get



385

F(z,) = 1.95717 32271 78948 89087.
In the same manner we compute, after choosing h, = 107!

F(z,4+h,) = 195717 32271 83741 93121 .

Since the condition

F(z,) < F(2) < F(z.+h.)

is again satisfied, we may proceed to the evaluation of the
third approximation of z; but this time the second differences

will be equal to
0°F(a)7 107! = == 5.10722

therefore they will not have any influence on the first 20
decimals; hence we conclude that z, may be determined by the
linear formula, up to the 20 -th decimal. We have

z =z, = 0.90609 39428 19681 74509.

20,

The error is equal to —3[10°"; z being equal to ¢/3.%8

§ 131. Lagrange’s interpolation formula. This interpolation
formula differs from those treated before chiefly by the fact that
it does not need the knowledge of the differences of the function
and that the abscissae x; are not necessarily equidistant.
This is a great advantage, since the determination of the
differences causes much work, their printing makes the tables
bulky and expensive. On the other hand the interpolation by aid
of this formula is more complicated.

Given n points of coordinates x;, f(x;) for i=0,1,2,,.,, n
let us put

(1) o(x) = [x—x,) (x-x,) (x-x,) . . . . (x-x,)

and moreover

. w(x)
@) Lilx) = (x—x;) [ Dew (o) s,
It is obvious that we have for m=0,1,2,.. ., n,

Ly (x) = Ly(xp) = 0 if i + m and

M This method is due to Thompson, Logarithmetica Britannica, 1932,
Cambridge University Press, Part IX, Introduction p. vii. The example is
Thompson’s example too.

25
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This permits us to deduce immediately a curve of degree =
which passes through the given n+41 points. We have
(3)  F(x)= L,(x) f(x,) + Ly (x) F(x,) + ... + Laalx) Fxz).

This is Lagrange’s formula.
We may easily determine the sum of the polynomials L,;(x) for

i=0,1,2,. ,.,r let us remark that l/o(x) decomposed into
partial fractions gives (§ 13)
1 Hn4-1 ci
ox) T i x—x

where (§ 13)
1

‘= TDw) e

therefore from (2) it follows that
n+1
2 Lu(x) =1.
=0

If f(x) is a polynomial of degree » it may be represented
exactly by formula (3). If f (x)is not a polynomial’ or if it is a
polynomial of degree higher than n, then the second member of
(3) will give f(x) exactly for x=x,, x;,., ., x5 but for the other
values of x it will be only an approximation to f(x). The error
may be measured by the remainder, which is given according
to (2), § 123 by

_ (x_xo) (x xll) n+1 w(x] atlffe

Finally we shall have

—_ "3 . . w(x] nel
(8) Hx) = 2 Ll ) + 57 D1E)

where f(x) may be any function of x whose n-1 derivative has
a determi value; and where ¢ is in the smallest interval

containing the numbers x,,, x,, X,,...X,, X
Lagrange’s formula becomes much simpler in some particular
cases. Let us suppose for instance that the values of x are equi-

distant, say that x; = ni fori—=0,1,,.., = Then we shall have
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wfx) =x (x—- —:'-] [ x— %] (x_%] = (x)nyn
where h = %

that is w(x) is equal to the generalised factorial of § 16.
Moreover

Do), =1 (=72 LAY =

n
(—mﬂ il (i),
n'l
finally remarking that nph= 1. we have

6 Lulx) = (1" n" ( 9, [x——xh—h) (%), [ ).

Expansion of Lg(x) into a Newton series. From (6) it follows
that Ly(0) =0 (for i=0). The values of Ah"’L,,,(O) may be deduced

from (6}, by aid of the formula which gives the higher differences
of a product (§ 30) and of the formula giving the differences
of a function with negative argument (p. 6). We find

i = 5 o (7) (5 ()

putting ¥*=0, and ,remembering that A=1/n we have for n 2 m

gLty = e () (F ), = ()

Let us now express these differences in the system Ax—1,
According to {4), § 76 we have

n+41 1)
ALu(0) = X — P(mw) A"Ly(0).
—p IT° A
The P(m,») were given by a table in § 76. Let us remark that in
the case considered we have to put into the formulae of the

table w=n, L.i{x) is a polynomial of degree n, therefore
in the preceding formula, for the upper limit of m we may put n- 1

instead of «. From (7) we get
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nt1 . ,,!
ML) = E () 2 Pl

et

and therefore

—1)} ntt n+41 —1)m !

r==1 m={
This is the Newton expansion of L,{x).
From this formula we may deduce the Cofes numbers
defined by

1

C,,i - J‘. L,,,'(x) dx.

0

Since we have seen in § 89 that
1
X
| (5] dx=6.
o
where b; is a coefficient of the Bermoulli polynomial of the
second kind (§ 89); therefore

. I n+t n41 (__{\m
S e S D" pm)
1 r=1 mo= (m-1i) ! .

(9) Cni =

This is the required expression giving the Cofes numbers.
Example 1. Computation of C,, . According to (9) we have
C., = b, |P(2,1) — P(3,1) |-+b,[P(2,2) — P(3.2) | — 3b,P(3,3).

From our table of P(m,) in § 76 we deduce the following

numbers, remarking that we have ; - - = n = 3

h
P21}y =16, PR22) =
P(331) =6, P(32)=154 P(33) =27.
Moreover in § 89 we found:

| 1 |
b, =

b, = —, — s =
! 2 12 ¢ 24
Putting these results into the preceding formula we obtain
C:{g = 3/8.
Interpolation by Lagrange’s formula. If the quantities f(x;)
are given for i == 0, 1, 2, , n then from formula (5) we obtain

f(x) corresponding to a given value of x. If the interpolation is
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made by aid of a table, it is best to choose the numbers
Xgy Xg444 .44 X; Symmetrical to x.
Linear interpolation, Here we have x, < x < x, . Formula
(5) will give
x—x,

(10) Ho) = s 1) + £ e > F(x) +
+ Vo(x—x,) (x—xll sz(é)-

The absolute value of the remainder is

(11) IR, 1 < BB gy

where £ is in at least one of the intervals x,, x, and x,, x

Example 1. x is given, and f(x) = log X is to be determined
by aid of a logarithmic table. If a < x < @41 then we put x,=a
and x,=a-+1. From (10) it will follow that

log x = (@41—x) log a + (x-a) log(a+l) +

+ Y45 (x—a) (a+1—x) loge .

Of course the remainder and the precision are the same as
in the linear Newton interpolation formula. The formula above
may be useful in logarithmic tables where there are no printed
differences. The error committed is less than

loge 1
T

Lagrange’s formula is especially useful for interpolation if
the values of x; are not equidistant, since in this case the only
other available formula is Newton’s expansion into a series of
divided differences (§ 9). But since in general the divided
differences of a function cannot be given in tables, hence they
must be computed in each particular case. Therefore this formula
is more complicated than that of Lagrange.

Lagrange’s formula may be useful in some particular cases
foo, for instance if the x; are roots of a Legendre polynomial of
degree n, (§§ 138, 157) or the roots of a Tchebichef polynomial
of degree n, (§ 158) and finally if the x; are equidistant.
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Inverse interpolation by Lagrange’s formula. This may be
done in the same manner as in the cases of Everett’s or Newton’s
formula 1f f(x) is given, and we have to determine x by aid of
a table giving x;, f(x;) for certain values of i (the x; may be
equidistant or not). If

fla) < f(x) <f(b)

where f(a) and f(b) are two consecutive numbers of the table;
then starting from these values we deduce from (10}, putting
x,=a and x,:b

(b—a) |f(x) — fla})] | (b—x) (x—a)D=f(¢)
¥=a+ gy f@) T 20F6) — Fla)]

(b—a).

Neglecting the remainder, we obtain the first approximation
of x

P-—ali?(x)—f(a) |
5ED)

(12) x'—a+
If the remainder

 (bx) (x—a) D)
13)  F = SrE el

is positive then we have x' <x.
Now we compute f (x’) by ad of (10) ; if we find

fla) < Hx') < flo) < f(b)

then we determine x" the second approximation of x, by putting
into (12) x' instead of a; the corresponding remainder is
obtained by writing in (13) x' instead of a. Then we compute
F(x"') and continue in the same maimer till the prescribed pre-
cision is reached.

8§ 132. Interpolation Formula without Printed Differences,
Remarks on the Construction of Tables. We saw that a para
bolic interpolation of degree n, by Newton’s formula presupposes
the knowledge of the differences AF (0), A*f (), A0}, . ., , ,
A"#(0); o that they must be firg cdculated or given by the tadle
This last is preferable, but it makes the printing of the tables
expensive.

(b—a) wheea <:<b.
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Everett’s formula is much better from this point of view, as
it needs only the even differences; thekalculation is somewhat
shorter than that necessary to compute all the differences; and
if given by the tables, as the odd differences are omitted, they
are smaller and more economical.

Lagrange’s formula does not need differences at all; but
the interpolation, especially with higher parabolas, necessitates
a great amount of computation.

There is another interpolation formula3® which dispenses
with printed differences, reducing the tables to a minimum of
size and cost, and requiring no more work than Everett’s
formula, but it is applicable only for equidistant values of .

The reduction thus obtained will generally be more than
one-third of the tables. Instead of printing the differences it
would be far more useful to publish a table of the inverse
function.

To obtain this formula we start from Newtfon’s formula,
which gives the expansion of a function f(x) into a series of
divided differences (§ 9).

(1) Fa) = Flx,) + g (xmr,) (x—2,) © + + (x—xi) D)+

L (x—x) (x—x,) . (x—x4) et
+ En)T D™ (%).

The remainder has been obtained by remarking that the
polynomial of degree n of the second member gives exactly f(x)
for x=24,X;,...., Xp_y, Xp; from this it follows, according to
§ 123, that the remainder is equal to the quantity above, and
that £ is included in the smallest interval containing the numbers:

XXy oo X X
Let us now consider the remarkable particular case

x,=0, x,=1, x,——1, X.=2,,..,

@)

Xon_y ==—=n-1, Xop_y =H.

3 Ch. Jordan, Sur une formule d’interpolation. Atti del Congresso dei
Matematici, Tomo VI, Bologna, 1928, pp. 165-177.
2 Sur une formule d’interpolation dérivée de la formule d’'Everett, Metron,
Roma, 1928.
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Putting 2n—1 instead of n into formula (1) will now give
the same results as Newton’s ordinary formula, if the curve
passes through the points corresponding to x=—{n—1}, . .. .,
0,..., n. The remainder will be, according to § 123, equal to

(2') R2n —_— [ x+n——l ) D ”f(t]
where ¢ is included in the smallest interval containing
—n-+-1, x, n.

Determination of the divided differences. The (2m—1) -th
divided difference of f(x) for x=x,, , given in § 9 is

o 2m f(x)
(3) zD..m ! f(xo] - 0 Dw vn:(xll
where w,, (x) has been written for (x-x,,)) (x-X,) . ., (X—%.u_).

Putting into it the values (2) we get
Wy (x) = x(x-1) (x+1) .. . (x+m-1) (x-m) = (x+m—1)2m .

Therefore equation (3) may be written

m-1 =8 e
e = ¥ Gl

Since
Dwon(v) = (—1)™" (m+r—1) ! (m—») !
it follows that

. 1 m41 2m }
2m-1 — . ___fYymty»
0 = gy S, 0 (RS e

This may be simplified by putting m—r—=u; we obtain

e £ 0 (7

Introducing the symbol E of displacement (§ 3), we may
write the above difference in the following way:

£ (e [ 2™ Bt )

fb'_'m— 1 f (0) —_

2m

2m-1 — __.__1_.—
3' f(O) — (2m___1] | Em—l

=0

According to § 6 the sum in th2 second member is equal to

(E_l) 2m- 1 — L,_\:ln— 1
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Hence

om-1 Azm—l

By this formula we have expressed the odd divided differences
by ordinary differences.
Determination of the even differences. We have (§ 9)

g Ha)

(5) gsz(xo] = __2_:0 Dw2m+1 (xi)
putting the values (2) into wym,,(x;) we find
Womyy (%) = x(x-1) (x41) x-2) . . . (x-m) (x+m) = (x4+m)ym_y-
Equation (5) may be written
o) - 3 10

v=—m Dwymy (%)
since

Dwymyy (#) = (—1)™ (m+») / (m—) |

therefore putting m—v—=u we obtain
2m _--_L.. ik 12 2m -
DO = i, 07 (3] £ v
Introducing the symbol E gives
D0) = G e 5 ) E f)
Finally, this is equal to
(6) Q2 (0) = @m ]'E'" f(0) = (2 ), £(0).

Hence ®?*(0) may be expressed very simply by aid of central
differences.
Putting into equation (1) the values (2) we have

flx)= 2 [(x—l-m——l)zm‘b mf (0) 4 (x+m) 3 D*™HO) | 4+ Ryn

This will give by aid of formulae (4) and (6), writing again E—1
instead of A:
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o= 2 (et ) Eg (i) B v +
+ Ron.

Expanding the two terms by the binomial theorem and
combining them, we get

i = BE i) (25 = () (23]
LD TERYY £ (0) + R2n'

After simplification it results that

_ e , (2+m—1Y (2m+4-1) x+m—»
) f) = E7E (n (T (> ) S

-E™Tf(0)+R,,
To transform this expression, let us determine the sum of
the terms corresponding to Ef and E—**. If ¥ varies from 0 to
2m--2 then k will vary in the sum from 1 to m+2. To have

the term corresponding to E* we put into (7) m41—y=Fk and
find
" ]

s (g ymak—t x+m——1) 2m+41 x+k—-l .

2, 2 e (" (m+k 1 EF0)
to obtain the second we put m+41—y=—k+41 and get

a mie x+m—1) [2m4-1) x—k

RN TL e | s 2m+1 E O

To combine the two last expressions, let us write

® L= g [xtk—1) B () E*] O)

According to Lagrange’s formula this quantity is the
approximate value of f(x) obtained by linear interpolation
between x—=—~k-+1 and x=*k. Introducing [; into formula (7)
we get

(9) f(x) = z (_l)m [ x—l—m —1 2 (—1)r+1

2m+1 2h—1
m--k 2m+1 I + Rzn
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To simplify this formula let us introduce the numbers

[ 2m+1) 2k—1
(10) Buv = 0" m+t2 ) 3my1°

The following table gives these numbers, sufficient for
parabolic interpolations of the eleventh degree.

Table of Bui.

m\k 1 2 3 4 5 6
0 1

1 1 -1

2 2 -3 1

3 5 -9 5 1

4 14 -28 20 -7

5 42 .90 15 -35 9 -1

To check the table let us remark that from (10) it follows
if m > 0 that

10) Y Bu=0a n {7 2Bl £2m),
k=1 k=1

From the first we conclude for intance, that the sum of the
numbers in each row is equal to zero.
We shall put, moreover,

(11) Colx) = (—1)" [

Starting from C,(x) =1 these numbers are rapidly calcu-
lated step by step by aid of the formula
1) (m—=x)
1 Colx) = M= .
To shorten the work of computation, a table has been given
.containing these numbers from x=0 to x=0,5 (interval
Ax = 0.001) for m =1, 2, 3, 4, sufficient for interpolations up to

the ninth degree (loe. cit. 39).
Since we have

x-l—m 1

Cm(l—x] = Cm(x]
these tables may be used if 0 < x < 1.
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Introducing the above notations into formula (9) we obtain
finally the required interpolation formula

(13 f@= 3 Culd) X Buk+ ["+" Y ey

where & is included in the smallest interval containing
—n+1, n, x
The formula fully written will be
(14) tx) = 1, + C,[1,—1;) 4+ C,[21,—31,+1,) +
+ C,[51,—91,+51,—1,] + C,[14],—281,+20],—171,+1I,] +

. 4o+ x+n }Dz"f(fl

where C; is an abbreviation for C;(x).
Remark. In the particular case x=145 we have:

Ii- Yo [f(k) + F—hR+1)].

Stopping at the term I, we get a linear interpolation; stop-
ping at the term C,(x), we have a parabolic interpolation of
degree 2m-1.

If the absolute value of the error of F(a--ih) in the table
is less than &, then from (8) it follows that the absolute value
of the error of Ix is also less than ¢ if 0 <x <1 ;

[0 | <e

moreover according to (10’) and to (13) the absolute value of the
error of f(x) is

16f(x) | < ¢ S (2’")|C,n (x)| 4 R,n .

Since according to § 125 the maximum of C,(x) in the interval

m—1, J'

2m
<. 3, (275

Particular cases. Linear interpolation:

16F(x) < ¢ + [R,I.

(0, 1) obtained for x = 1% is equal to

+ Ron-
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Interpolation of the third degree:

| 6H(x) | <is + R, 1.

Interpolation of the fitth degree:
|6f(x)|<——s-|—!R l.

From this we conclude that interpolation by aid of formula (14)
is much more adventageous than by Newfon’s formula; indeed, it
not only dispenses with the calculation and printing of the
differences, but moreover the precision is greater.

Interpolation in a table in which the interval is equal to h.
The table containing the numbers F(a-+ih), to obtain F(z) we
choose a so as to have a <z < a+h. But then an interpolation of
degree 2n+1 is only possible by (14) if the table contains the
numbers F(a—nh+h) and F(a+nh), in which case the formula
is called a mid-panel formula.

We put into (14) x=(z—a)/h and write

1) =1 (55%) = Fla) = Fasxn.
Hence according to (8) I may be written
(15) I = —[ (x+k—1) F(a-+kh) + (k-x) Fla—kh{-h)].

I+ is therefore the result of linear interpolation between the
points corresponding to z=a—kh+h and z=a-kh.
C, is given by (11) and the remainder will be

(16) Rr = (*T51 ) koo Do (at-¢h)

where -(n--1) <&<np,
In the case of the mid-panel formula we have 0 <x < 1;
hence according to § 125 the remainder will be

(17) R | < b "3%) D Flateh|.

The interpolation by formula (14) needs no more work
of computation than Everett’s formula, even a little less; there-
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fore the printing of the even differences in the tables is super-
fluous.

Linear Interpolation. Stopping at the first term in (14),
we put n=1, and get

(18) F@) = I, + [ ’2‘ ] h2D?F (a+th)

where 0 < ¢ < 1; moreover x=(z—a)/h, and
I, = xF(a+h) + (1-x) F(a).

Though the computation of I, is easy to make especially
if a calculating machine is used, nevertheless it may be useful
to indicate the shortest way to follow.

Let us denote by A the place on the calculating machine
where the result appears, by B the place where the number to
be multiplied is put in, and finally by C the place where the
multiplicator appears when the handle is turning

First F{a+h) is put into B, then it is multiplied by x, which
number appears in C. Without reading the result in A, we
cancel F (@a+h) in B and put in its place F(a), leaving the num-
bers in A and C untouched. Then we turn the handle till the
number x in C becomes equal to one. The result in A will be
equal to I,.

The remainder is the same as that in the Newton series.
Since 0 € x < 1 we shall have according to (17)

IR, 1< %h‘-’D"-’F (a-+&h)|.

In § 125 it has been shown that the error 8F(z) of F(z) is
due to two causes; first to the inexactitude of the numbers
F (a-+ih) contained in the tables, and then to the neglect of the
remainder. If the tables are computed to ¥ decimals then their
error will be less than £¢=5/10"*'; moreover the resulting error
will be

5
IOF(Z}|<-1W+ IR, I
We have seen that ¢ and R, must be of the same order of
magnitude (§ 125).
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Example 1. Let F(z) = log 2z; given a logarithmic table to
y decimals from b to ¢, the interval being h==1., We shall have
‘ 5 6
< 2 -
oF (z) | i + 100%% -

0r+l
f-fence the most favourable number ¥ of decimals, in the case
of linear interpolation, will be

b ¢ v

10 100 3
100 1000 5
1000 10000 7
9

10000 100000
7 - t

The error of F(z) will not exceed one unit of the last
decimal.

Example 2. Let F(z) =10* Antilogarithmic tables of range
O-1 and interval h. Since

] h? 10a+§/a
2 g (loge)”

From this we conclude that if the interval is equal to h the
best value for the number of decimals v is

R TR

h | y
0.01 3
0.001 5
0.0001 7

Remark. The usual seven decimal logarithmic table contains
182 pages, whereas according to what precedes a table giving the
same precision by aid of linear interpolation, containing the
logarithms from 1000 to 10000 to seven decimals, together with
an antilogarithmic table from zero to one (A=0.0001) would
take only 38 pages that is, hardly more than one fifth. ,

Example 3. Probability integral, F(z) = % f e dt.

T —

0

Table beginning at x=0; interval h. We have
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B z —2%2 h® 3h2
Ry = i—]/_jfe \81/‘25‘ 100°

The interval being equal to h the best number v of decimals is

h v
0.0t 5
0,001 7
Example 4. Probability function F(z) = L e* 2 . Table
beginning from z=0 interval h. Since 2=

_hiﬂ}_ Rl 2 _5__’12‘
R=goi =1 - g

The best value of h corresponding to v is given by the table of
Ex. 3.

Example 5. F(r) = sin z. Range of the table 0 — lam.
Interval h. We have

2
I R2’<%—|sin(a+5h]l<%2,

A. Five-decimal table. Determination of the best magnitude
of the interval. According to what we have seen we should have
h?

L % that is h—0006324

If the circumference is divided into 360 degrees, then
h=0°36 and if it is divided into 400 grades then h—=0¢4.

Steinbecher’s table (Braunschweig, 1914) in which h=0701
is much too large; if we choose h=0¢2 the table would be twenty
times as short, giving the same precision. The table would be,
as we shall see, too large even for a seven-decimal table.

B. Seven-decimal tables, In the same manner we find
h=0°036 or 07 04.

H. Brandenburg’s table (Leipzig, 1923) in which h=10
seconds or 0°00277 . . , is twelve times too large.

T
Example 6, F (z) = tan z. Range of the table 0- . Interval

h. It is sufficient to consider the above range; indeed if we have
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i;— <z< % then instead of tanr we put 1/tan(1/2ﬂ—-z). We have
Ry < h 2 tan!a+£h
cosz(a—{—fh) )
Five-decimal tables. The best magnitude for his given by
R _ 5
2 10°°

Comparing this with the previous example, we see that now
the interval must be twice smaller, that is
h = 10 or 092
and in the seven-decimal table
h=1.. or h=0002..

Therefore we should obtain a rational five-figure trigono-
metric table by choosing the interval 10’ or 072 both for the

sine and the tangent function. This would occupy only one page
and a half.

The interval chosen in seven-decimal table should be 1’ or
0.02 grades. This would take 15 pages

Parabolic interpolation of the third degree. Putting n=2
into equation (14) we obtain, if 0 < x < 1:

(19) F(z) = F(a+xh) = I, +C, (x)|Il—l2]+[x]fljh*D*F(a+5h)

where -1 < ¢ < 2. The number C,(x) is given by the table
mentioned. Moreover

I, = ; l(x-+1) Fla+2k) + (2-x) E(a-h) |.

This is, as has been said, the approached value of F{(z)
obtained by linear interpolation between F(a-h) and F{a+-2h).
The remainder is (17) :

(20) [R, 1< ﬁ ID*F (a+¢h)l.

The error of F(r) will be, as we have seen,
[oF(2) I <%£+1R4|.

2%
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Example 7. Let F(z) =log z and h= 1. The table contains
the logarithms of the integers from b to c, then

7 7
10+ + 1005 °

The most favourable value of v is given by

[6F (2) | <

b c v

10 100 5
32 100 7
100 1000 9
1000 10000| 13
10000 100000| 17
32000 100000| 19

The error of F(z) does not exceed one unit in the last
decimal. If the table begins with 32, and 2z is less, then it is
necessary to bring it within the range of the table by multiplying
it, for instance by 3 and then log3 must be subtracted from
the result.

Example 8. Let F(z) = 10, the range of the table being
0- 1 and the interval equal to h; then

3ht 1045

<= T < 1hpt
IR, 128 (loge)+ A,
The best value of y corresponding to A is
h v
0,01 7
0,001 11
0,0001 15
0,00001 19

Remark. A 13 decimal logarithmic table could be construc-
ted from 1000 to 10000 and a 13 decimal antilogarithmic table
(h=0.0001) taking together 76 pages and giving 13 exact deci-
mals by the aid of an interpolation of the third degree. This
would be the rational logarithmic table for high precision.
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Example 9. F(x) = | 1 f e~PR dt is given by Sheppard’s
2% o

tables (Pearson, Tables for Statisticians and Biometricians)
where h=0,01. Linear interpolation. Putting z=x l/ 2 we get

_ I_z; ze*® R D (x)
IR, = T = = -
The definition of @,(x) is given by
@u(x) = 2D*?
T=.

The quantity @,(x)/2"1 is to be found at the end of Czuber's
Wabhrscheinlichkeitsrechnung (Vol. I) and in Jahnke’s Funk-
tionentafeln.

Linear interpolation would give in this table at the beginning
5 decimals: from z=3.5 up, 7 decimals; and from z=5 up, nine

decimals exactly.
Interpolation of the third degree. We have

IZSV

Into this z=a+&h must be put. Remarking that

TR<3 L |53 .

lh (37—2%) e~ = = (3x—2x%) ¢ =¥ = Q‘g(x) .
B E
we have h | D, (x)
< %
IR, | 40 . 8
From the tables mentioned it follows that 1@, (x)/8 I < 0,55 and
therefore IR I < 2/10°,

The error of F{z) will not exceed one unit of the ninth
decimal. From the point of view of the third degree approxima-
tion the table should contain 9 decimals.

Example 10. Let

F(m) = F(a+ph) = y(mx) = — ~ g

be considered as a function of m. Pearson’s table gives (m,x)
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to six decimals for every integer value of x; the interval being
equal to Am = h = 0.1.*
According to formula (2) of § 148 we have

I;")"t,u (m,x) = G, (m,x) v (m,x)

where D is the symbol of derivation with respect to m. In

consequ:nce of formula (2) and (3) § 148 it follows that
D"y (mx) = (—1)" A"y (m,x—n).
m

Therefore according to (17) the remainder of an interpolation
of degree 2n—1 will be, if 0 < x < 1,

| Ry < bl ("5,%) A% plat-shx—2n).
Linear interpolation:
2
IR, 1< %— IA*yla+éhx—2) 1

where 0 <§<1,

R, may be simplified by remarking first that if m < 1 then
0 > Ay > -1 and therefore I A?y | < 1. On the other hand,
if m21, then the maximum of y is reached for x=m,
hence according to Stirling’s formula we have

Van Vm
and consequently I Ay I < 0,4/ }/m; moreover I A2p 1< 0,8/ Vm.

So that we always have | A%p | < 1.
Of course it is possible to obtain lower limits for A%*p. For

instance, denoting by ¥ (m,i) the largest of the quantities ¥ (mx},
w(mx—1) and y(m,x-2) it follows that

I Ay(max—1}l <y(mid) and | A’w(m,x—2)| <2yp(m,i).

Finally the remainder may be written, in the case of linear
interpolation,

IR,|< % w(mi).

* Pearson, Tables for Statisticians and Biometricians.
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The exactitude will not be much greater than three decimals.
Interpolation of the third degree. We have, if 0 <x < 1

R. < I Aty(atehx—a)
4 128

where —1 < § < 2, Starting from I A2y I <1 we get I A*p [ < 4,

and if m 2 1from A%y |< 9:; we find | Aty <>2;0r denoting
s m m

by y (m,i} the greatest of the quantities plmx), v (mx—1), . ..
w (m,x—4) we have I A*y I < 8By(m,i).

From this it follows that

3nt 3ht 3 ,

IR <= or TR!< — or R, <=— y(m,i).

! 37 101/m to16
This gives five exact decimals.

Example 11. Let

F(m) = Fla+uh) = F—(xl_’_”_oj' e~'t*dt = I(u,p).

Pearson‘s Tables of the incomplete Gamma-Function give
I (u,p) considered as a function of g, to six decimals; the interval

being equal to Au=—h=0,1. Since u:m/]/;?l we have

%’%— ——:V;-ﬁ and
DI - Ve+1DI = | x+1 p(m)
therefore

DI = (x+1) Dy = (xI-) Giy = —(x+1) Ap(m,x—1).

(The polynomials G; will be introduced in § 148))
In consequence of what we have seen in the preceding
example, if m = 1:

0.4(x 1)
,rn

D] <
L

or in the general case

i D <{x+1)yp(m,i)

where 1(m,i) is the larger of the numbers y(m.x) and y(m.x—1}.
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Hence the remainder in linear interpolation will be respectively

IR, 4<h2(;‘|/+” and I R, 1<_ (1) (m,i).
m

The first will be used if m is large or x small, and the
second if m is small or x large

Third degree interpolation. We find
D! = x-1-1)” Gy = —(x+1)% A% w(m,x—3).

We have seen that I A%y | < 2; moreover | A’y < 4y(m,i)
where w(m,i) is the largest of the quantities

y(mx), y(mx—1)},..

1, 6
_y(mx—3)and if m 2 1 then I A3y |<—=
Therefore:

m
RI< 2 et or TR T <Y ei)2pima)
IS g A or LA D=5
moreover if m 2 1
4 2
R, < D)
80Vm

Parabolic interpolation of the third degree will not give, in
the case considered, much over five exact decimals

Parabolic interpolation of the fifth degree by aid of formula
(14). We shall have

Fla+xh)=1,+C,(x)[I,—I,1+C,(x)12]
where I, is, according to (15), equal to

I

I,+ I,] + R,

- % [(x+2)F(a+3h) + (3—x)F(a—2h)).

This is the approached value of F(r) obtained by linear
interpolation between F(a-2h) and F(a+3h). The remainder
is equal, according to (17) :

Ry= s ";‘{2 | D*F (a-t-h)

iRI<

and therefore

where 0 <x <1 and -2 < ¢ < 3.
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The error in F{a+xh) will be, as has been said,
léF(a+xh)|< s+[R l

Example 12. Let F(z) = log 2. The table contains the
logarithms of the integers from 10000 to 100000, the interval
being equal to one, h=1. Therefore the remainder will be

5 120loge _ 3
1024 a® T 0%

IR,1 <

If the table contains the logarithms to v decimal places,
then the error of F(a-xh) will be

3

.1
| OF (a+xh)| < To + 0%

Hence it is best to compute the table to 24 decimals; indeed,
then the error will not exceed one unit of the last decimal.

Example 13. Let F(m) = I(u,p). (See Example 11.) We
have

D¢l = (x+1)* G, v = — (x+1)3 A’p(m,x—5).
From the preceding we deduce
A% <8 moreover, | A*y! < 16y(m,i)
where y(m,i) is the greatest of the quantities yp(m,x}, , , .,

y(m,x—5) and if m = 1 then | A%y I < é-i Therefore we have
m
5ht
9 < 4
R, < =5z Tog 1D or | Ry (x-H] w(m,i)
moreover if m 2 1
3
IR, |< hv (x—|—l)
32Vm

The third degree interpolation will in most cases be suffici-
ently exact; that is, the fables should always be computed, ii
possible either for linear or for third degree interpolation.

Using a calculating machine, the shortest way to obtain a
third degree interpolation is the following. First 7, , will be
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computed, as has been described above. I, will be noted; then
we compute I,. To begin with, we put F(a42h) in B on the
machine (p. 398) and multiply it by (1+x) ; then cancelling
F(a+42h) in B we put in its place F(a-h) without touching the
numbers in 4 and C; we turn the handle till (1 4x) in C becomes
equal to 3. The result in A4 is then equal to 3I,. We divide it
mentally by three, putting the quotient into B and checking it
by subtracting it thrice from the number in 4 where now we
must har : zero.

Turning the handle backwards again once, we have —I, in
A; we add to it I,. The difference I,—I, will now figure in A.
We remove it and put it into B. [There are calculating machines
which permit us to transfer the numbers from A4 to B by turning
a handle. This is useful if we have to calculate a product of
three or more factors.] We multiply it by C, taken from the
table. The product appears in 4. We cancel the number in B,
put there I, obtained before, and add. In 4 we have the
number F(z) desired.

Example 10, To find the value of the probability integral
corresponding to z = 0.6744898 in Sheppard’s tables (h=0.01).

Putting @a=0,67 we have

Fah) = 0.745 3731 FaHy) = 0.751 7478
F(@ =0.748 5711 F(a+2h)=0, 754 9029.

Of course it is not necessary to copy these numbers out of the
table, since they can be transferred directly to the machine when
they are needed.

Putting x=0.44898 we first determine [, by linear inter-
polation as has been described before. We note the result:
I, = 0.749 99737, x contains more than three figures,
hence C,(x) cannot be taken from the tables mentioned; it must
be computed by multiplication; C, (x) = 14x{1—x).. The result
is noted too: C,(x) = 0.123 6985.

Now we determine I,—I, as has been said above; then
without noting it, we multiply it by C,(x) and add I, to the
product. We find

F(2)=0.750 00002,

This 1s exact to seven decimals.
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Interpolations by parabolas of higher order than three are
performed in a similar way; by calculating first the numbers
I,1,...and noting the results. Secondly, by forming XB,, I,
and finally multiplying them by C,(x) and adding the products.
| A table giving the numbers C,,(X) is found in loc. cit. 38.]

Let us suppose that a table contains the numbers z,,2z,,., ., zx
and that F(z) is to be determined by a parabola of degree 2n+1
where .

Zn < z < zmq '
If moreover
n+1<m<N—n—1
that is, if there are n--1 points on each side of z; then, putting
z, — a and (z—a)/h=x we have 0 < x < 1. The corresponding
formula will be termed, as has been said, a mid-panel formula.

If

m< ni1
?hen we put 2,., =a and we shall have x < 0. The corresponding
formula is a first-panel formula, which will serve for all inter-
polations of degree 2n+1ifz < z,,, .

It
N-n-1 < m
then we put a=zy_,_, and we shall have x > 1; then formula is
an end-panel formula; the same will serve for all interpolation
of degree 2n+1ifz > zy ., .

Remark. In the case of the first-panel and of the end-panel
formulae the maximum of the remainder (16) will be greater
than that given by (17). x < 0 or x > 1; therefore the
corresponding values of C,(x) are not in the tables mentioned ,
and they must be calculated in each case.

Conclusions concerning the computation of tables. A rational
table should always be calculated taking account of the inter-
polation formula to be used. For instance:

A five-decimal table for linear interpolation by (18) should
contain the logarithms of the integers from 100 to 1000 and the
antilogarithms with an interval 0.01. Four pages altogether.

A seven-decimal table for linear interpolation by (18)
should contain the logarithms of the integers from 1000 to 10000
and the antilogarithms with the interval 0.001 (38 pages).
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For greater precision a 13 decimal table intended for inter-
polation of the third degree by (19) should contain the logarithms
of the integers from 1000 to 10000 and the antilogarithms with
an interval of 0,0001 (76 pages).

A 19 decimal table for third degree interpolation containing
the logarithms of the integers from 32000 to 100000. (Thompson’s
Logarithmica Britannica could serve for this.)

Finally for an extreme precision a table of 28 decimals
could be constructed for interpolation of the fifth degree con-
taining the numbers from 32000 to 100000.

Generally, in order to obtain a given precision of ¥ decimals,
the intervals could be chosen greater at the end of the table
than at the beginning The table may be shortened in this way
too. Or if the intervals are the same throughout the table, then
at the end more decimals can be given than at the beginning.
This has been done in Sheppard’s table of the probability func-

tion.
Problem. Sometimes if F(u) is determined by aid of a

parabola of degree 2n—1, the tangent to the point of coordinates
u,F(u) is also required. For this a knowledge of DF(u) is
necessary. Putting x=(u—a)/h into formula (14)

+

(21) Flu) = E C..(x) EI Bu.1,.

Since C,(X) =1, we get

DF(u) = ﬁi + DCy(x) 2 Bl +

m+2

+ 2 C,,,(x) 2 B,.»— pl.,

but from formula (15) it follows that
DI - [F[a+vh] — Fla—rh-L-h)).

Taking account of the value of B,,,. given by (10), we may
write

m--2 _ m-+-2 . 2m+1 —y1l F[a)
2 BuDl = - e R
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It can be shown that

m?::j =1+ (zr:ln——:_:] (El —E"") = (—1)m E- Atm,

Therefore
m+2 = ( 1) omii -

The derivative of C,,(x) is obtained by the aid of Stirling’s
numbers (24).

Parficutar case of the third degree (formula 19). Neglecting
the remainder, the derivative of F(u) will, in consequence of

{22), be
DF() = 1 [(5—%) (I,—1) + AF(a) — § C, IAFla—h)].

The u -th derivative of F(u) can be obtained by aid of
Leibnitz's formula. Starting from (21) and remarking that
D%l. = 0, we have

@23 DFlu) =

hf' l 21 D"C (X] 21- Bnn I +

L w3 DClx) '"‘EIB,,,.. DI, |
m=0 X = x

where

(24) D‘”C,,, (x) — [_1}": xD!, [X—}-m—l] _
—1)m 2m+1
((Zm)), (1] (x4+m—1)" S‘Zm .

§ 133, Inverse interpolation by aid of the formula of the
preceding paragraph. In § 132 we found

n m+2
(1) F(z) = F(a+xh) — 2 C,,, %: B I +

=0 k

e [ FH | DoF (ateeh)

where -(n-1) < ¢ < n or 0<:<x;and
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(2) I: = "—;kk_—‘ll F(a+Fkh) + ST—{I F (a—kh+-h).

To begin with, we determine by aid of the remainder in
formula (1), the number n of terms necessary to obtain the
prescribed precision. Generally n=2, corresponding to a third
degree parabola, will be sufficient.

If F(Z) is given, and the corresponding value of Z is to be
determined by aid of a table containing the numbers F(z) cor-
responding to equidistant values of z (the increment of z being
equal to A) then we choose F(a) in the table, so as to have

3) F(a) < F(Z) < F(a+h)

or
F(a) > F(Z) > F(ath).

The method is similar in both cases. We will suppose that the
first inequality is satisfied.

Now we compute 2; the first approximation of Z, by linear
inverse interpolation between a and a+h, using Lagrange’s
formula (12) of § 131. Putting into it a+4-h instead of 6, we get

_ o L HF@—F(@y | ath-2) (Z-a) D*F(atsh)
4 z=a+ F(a--h)—F (a) + Z[F(a—{'-h)_‘mh
where 0 <§&< 1.

The maximum of the absolute value of the remainder #
will be

BD*F (a+£h)
8{Fla+h)—F(a)] *

Denoting by & the precision of the numbers F(z) contained in
the table, for instance ¢ = 5/10't! (v exact decimals), the ab-
solute value of the error of z, produced by the inexactitude of
the numbers in the table will be:

he F(Z) —F(a)
Fla+h) —F(a) | {1 T 2'F(a+h) — F(a)

therefore the absolute value of the total error of z, is

o3k g e L
oz | < pa R F) J TIPS 1o = A

| 07| <

} < 3he
{F(a+h) -F(a) !
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Neglecting the remainder in formula (4) we determine z,
keeping only the v, exact decimals. If Z > 0 we necessarily have

a<z,<Z<a+h

Then adding one unit of the », -th decimal, that is A, = 1/10",
to z, we have
(5) 7,<7 <z,+ h,.

Now by aid of (1) we determine the values of F{z,] and
F {z, +h,), putting first into this equation x= (z,—a)}/h and then
x={(z,+h,—a)/h, using the necessary n terms for the required
precision, In consequence of (3) and (5) we shall have

F(z,) < F(Z) < F(z,+h,).
Then we proceed to the determination of z,, the second

approximation of Z, obtained again by linear inverse interpo-
lation, but between z,and z,+h, . We find

(6)

i, — z

IIIIF(Z)—F(Z_,U_ (z,+h,—Z) (Z—2,)D*F (a+¢h)
'+ F(z,+h,)—F(z,) + 2|F(z,4+h)—F(z,) 1
The remainder rl/ﬁ’l will be
3D2F (a+£h)
[F] < (’étF(zﬁhl)—F(z,)'l

Moreover the absolute value of the error of F(z,) or
F(z,+h,) |caused by the inexactitude of the numbers F(z)
contained in the table, if the interpolation executed was of the

third degree |. being less than —5— ¢, if follows, in consequence of

4
what has been said above, that
. 3h & ) - 1
<>.<I 1 +10f < - —h, .
O R TR Gy T e T

We keep in z, only the », exact decimals. If a greater precision
is necessary, then adding one unit of the », -th decimal, that is
h, = 1/10" to z,, we find

2, <Z < z,+h,.

Now we determine F(z,) and F(z.-+h,) by (1) in ihe same
way as F(z,) before. Then starting from




414

F(z,) < F(2) < F(z,+h,)

we determine z, the third approximation of Z, by writing into
(6) respectively z3, 2,, h, instead of z,, z, , h, ; the error oz,
is given by (7} in the same manner. If 4z, is negligible compared
with the prescribed precision, or if ./, is smaller than the first
part of the error 4z, due to the inexactitude of the numbers of
the table, then the problem is solved; if not, we continue the
proceeding as described before.

Example 1. To compare this method of inverse interpolation
with that of Thompson, by aid of Everett’s formula, using the
even differences, we will again choose Thompson’s example.
Given

F(Z) = logZ = 1.95717 32271 83589 39035

Z is to be determined by Thompson’s logarithmic table to twenty
decimals. In these tables we find

F(a) = 1.95717 13373 70099 19928 , a = 0,90609
F(a+h) = 1.95717 61304 04846 19226 , a+h = 0,90610

therefore h=1/10%; moreover, AF(a) > 4/10% and ¢ = 5/102,
Starting from these values, we determine first the maximum
of the remainder in formula (4). We get
h3 5

"/Z n oA a4 ¢

|71 < t6arpF @ < Tom
Hence

4 5 _ 1

0% o1 < o
therefore the first ten decimals of z, will be exact. From (4) we
obtain, neglecting the remainder:

dz1|< :h1

2, = 0.90609 39428,

Since the last decimal is exact, hence z, <Z and adding one unit
to the tenth decimal of z, we have z,-+h, ~0.90609 39429;
moreover,
7, <Z <z,4h.
Before computing F(z,) and F(z,+-h,) by aid of formula (1)
we must determine the number n of terms necessary to obtain
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a precision of 20 decimals. For this we determine the remainder
of (1) in the case of n=2, and find

3h* 6loge

IR, 1< 128~ at 10’1‘

hence a third degree interpolation is sufficient; so that we have
only to determine I,, I, and C, (x).

For this we put first into equation (1) x = Eh—— = 0,39428
and k=1: we find

— 0.39428 F(a+-h) + 0.60572 F(a) =
— 1.95717 32271 67839 24368.

Remark. Before performing the multiplications by F(a-+-h)
and F(a), since the sum of the factors x and (I-x) is equal to
unity, the first six figures common to F(a) and F(a+4-h) have
been set aside and only added to the result.

In the same way, putting into formula (2) x=0,39428 and

k=2 we get

- 132428 Flatan) 4 160572 160572 Fla—h) =
—1.95717 32271 14941 49591

F(a+2h) and F(a—h) were taken out of the logarithmic table;
and before the multiplications, again, the five common figures
were set aside. From the above results we deduce

1,—I, = 0.00000 00000 52897 74777;
moreover
C, (x,) = (0.39428) (0.30286) = 0.11941 16408
and
C, (x,) |I,—I,] = 0.00000 00000 06316 60686
and finally
F(z,) = 1.95717 32271 74155 85054.

We had F(a) < F(Z) < F(a+h) and z, < Z; therefore
we must have F(z,) <F(Z), and this is what we really find.
Now to obtain F(z,+h,) we put into (1) x=0.39429 and get
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1,' = 0.39429 F(a+4-h) + 0.60571 F(a) =
~-1.95717 32272 15769 59114

and
I, = 1.33429 Fla+2h) + 1.6;)571 Fla-h) —=
=1,95717 32271 62871 84338
therefore
I1;'—1," = 0.00000 00000 52897 T74T76.
Since

C,(0.39429) = 0. 11941 26979 5
it follows that

C,(I,'—1,) = 0.00000 00000 06316 66278
and finally
F(z, +h,) = 1.95717 32272 22086 25392.

AS was to be expected, we have
F(z,) <F(2) < F(z,+h,).

Now we shall determine the maximum of the remainder
corresponding to formula (6). We find
, h? < 2
16a7F(z, Th)—F ()] 107

&7
||

Therefore the error caused by neglecting the remainder will
be less than one unit of the 20 -th decimal. The problem is solved.
The error due to the inexactitude of the numbers of the table
cannot be overcome, and we shall have in consequence of (7)

4 9
Joz,| < T%‘_’ + 16—21—
z, will be determined by (6}, neglecting the remainder. Since we
have
F(Z) — F{z,) = 0.00000 00000 09433 53981
and
F(z,+h,) — F(z,) = 0.00000 00000 47930 40338;

therefore

z, = 0.90609 39428 19681 74509.
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Remark. Taking account of the fact that logZ is equal to
log (e/3) the error being less than 5/10%!, it follows that the
difference between z, and ef3 should not exceed 4/10%; and
really this difference is equal to 3[10%°,

§ 134. Precision of the interpolation formulae, In § 125
we have seen that the precision of an interpolation formula of
degree 2n—1 having the same remainder may be measured by
the maximum of the possible error caused by the inexactitude of
the numbers in the table, that is by we, if. the error of the
data in the tables is less than ¢ = 5/10**!, and if @ is
the sum of the absolute values of the coefficients figuring in the
formula. Therefore, to compare the different formulae we have
to determine the corresponding values of w.

1. In the case of Newton's formula (§ 125) we find:

£ ok

m=1

if 0 £ x £ 1, the series below is then convergent and

«©

b (—l)m[;] =0

m=0

therefore tie have o, < 2.
2. In the first Gauss series we had (2, § 127)

“lx-{-m——l x+m ”_
2m--1 -
_ 3 | x+m —1 x+tm_
m-o [ ( + 2m+1
moreover in the second Gauss series (6, § 127)
= x-+m x4+m
o= 5 |U2")| + 3T ]

From this we immediately deduce that for every value of
x and m we have w; > w,. Indeed from the preceding it follows
that

x+m > m-x or x>0
if this is satisfied, the maximum of the error of the first Gauss
formula is less than that of the second of the same degree; thus
the former is preferable,
i
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3. From Bessel’s formula (4, § 128) we obtain

=T
- Eo ! I+ l2m+l
It is easy to see that if x > 15 then @, < w,. Indeed for every
value of m this gives x—% < x + m. But even if /< x < L,
then we have 1/2—-x < x + m. So that if x > 1/4 then Bessel’s
formula is preferable to the Gauss formulae.

4. Stirling’s formula gives (§ 128)

2 [ +m -1 X | “ x+tm ’
= — | m m—x | + 2m--1 :
From what precedes, we may easily deduce that Stirling’s

formula is preferable to the Gauss’ formulae, if 0 < x < 14,
5. In the case of Everett's formula we get (§ 129) if 0<x<{

22" { m+x——l ](

m==0

w,

wg =

From this it follows that w, > wg.
7. The interpolation formula dispensing with printed
differences of § 132 will give

: ()

m—’O

Other conclusions may be obtained by comparing the inter:
polation formulae in some particular cases.

A. Linear interpolation. The Newton, the two Gauss and the
Stirling formulae give

0=1+x.
To Bessel's formula corresponds
ow=14x—15]

therefore if + X < !/, it will lead to results inferior to the
former formula, and if x>, to better ones.

Everett’s formula and that of § 132 give w = 1; therefore
these are the most advantageous.

B. Interpolation of fhe third degree. We obtain the follow-
ing values:
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1. Newton: (if 0<x< 1)

o, =14 x+
2. Gauss I:

)+l ==
]
3. Bessel:

, ! x—

o =1 x5 +](E) 52
5. Stirling:

w0y =1+ x4 Lpx* + }["’3“]\-
6. Everett:

I x

a=1+|(3)
7. Formula of § 132:

w;, = 1 + x(1-x).

+

From the above we conclude that in the case of an inter-
polation of the third degree the error is generally the smallest
when using Everett’s formula.

Moreover if x > 14 then Newton’s formula is preferable to
the Gauss formula I. If x=14, then both lead to the same result;
and finally, if ¥ £ 14, then Gauss’ formula is better.

Comparing Newton’s formula with that of Stirling, we find
exactly the above result.

On the other hand, comparing Newton’s formula with
Bessel’s, we are led to x* -9x + 2 > 0; therefore if x = 0,278
both formulae give the same result; Newton’s formula is superior
or inferior to Bessel’s as X is smaller or larger than 0.278.

Comparing Stirling’s formula with Bessel’s, we find that
both lead to the same result if x= !/, moreover that Stirling’s
formula is preferable to Bessel’s if x < Y;.

The formula of § 132 gives better results than the Gauss,
kewton, and Stirling formulae. Comparing it with Bessel’s
formula, we find that if x-=0386 or if x=0,613, both formulae
give the same result; and that Bessel’s formula is preferable if
0.386 <ax < 0.613; for the other values of x the formula of
§ 132 is better.
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This is another reason why the tables constructed for interpo-
lation by aid of the formula of § 132 may be shorter than those in
which the interpolation is to be made by Newton’s, Gauss’ or

Stirling’s formulae.
8 135. General Problem of Interpolation. A. The Function

and some of its Differences are given for certain values of the

variable.
We have seen that if a function f(x) and its differences are

given for x=—gq then the function may be expanded into a Newton
series, Moreover if the function f(x) and its even differences are
given for x—a and for x=a-h, then the function may be ex-

panded into an Everett series.
Now we shall treat the general problem. The function f(x) is
given for x—a,, a;, a,, ..., a, ; moreover some of the differences

Af (@), A (a),.., A" (a)
are given. Let us suppose that
Yo+ v, FYat v+ v =0

that is, there are given n quantities in all.
We may obtain the required interpolation formula of f(x)
satisfying the above conditions by aid of a Newton series. Let us

write
fo = f(o) + [ ’fJ AH0) - ("J AHO) +. ...+ [nil ] A" (0)
and
AT = AHO) + () ar o) + .+ [ i, | ATIFO)
Putting into these equations the n given values
A“if(a)for y;—0,1,2,.,.,(r—1),
we get n equations, which determine the n unknowns:
A f0) for k =0,1,2 ,..., n-lL

The remainder of the series will be that of a Newton series
stopped at the term A", Hence the interpolation formula will be

o =+ [0+ (L5 ) A+ (5] D
where 0 < & < p-l or 0<§<x.
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B. The Function and some of its Derivatives are given for
certain values of the variable.

If a function f(x) and its derivatives are given for x =a then
the function may be expanded into a Taylor series.

If the function f(x) is given for x=a,, a,, . ..., a4, moreover
if Df(a)), D*#(a)), . . . ., D" 'fa;) are given too, then putting

(%% —{—’)’1+V~3+,...+V":1’l

we may expand the function £(x) into a Taylor series. Writing

-1

1x)=F(0) +2DF(0) + J; D*F(0)+ ., . + lni_l)! D" 1#(0)
and
n—l-.u
D#F () =D (0 +xD* F(0) -, ., + (;fT_—mD"-lf ).

Putting into these equations the n given values
D" () for =0,1,2,...,y—1
we may determine the n unknowns:
D) for kB=0,1,2,,..,n,

The remainder of this expansion will be that of the Taylor
series -which has been stopped at the term D"'f (0). Hence the
required formula will be

fo) =f@©O + xDFf (0 +,,., +
where 0 < & < x.

xn-l
(n—1)1

D"'H(0) + 37 D)




CHAPTER VIII.

APPROXIMATION AND GRADUATION.

§ 136. Approximation according to the principle of mo-
ments. When solving the problem of interpolation, f(x) was
given for x = 0,1,2,..., n, and we determined a curve of degree
n passing through the points of coordinates x.f(x).

The corresponding problem of approximation is the follow-
ing: The points of coordinates x,y=Ff (x) are given for x=0,1,2,. .,
N-1 and a function F(x) satisfying certain conditions is to be
determined so that the deviations

e=F(x)—y

shall be, according to some principle, the smallest.

Such a principle is for instance the principle of least
squares, according to which, a function F(x) containing
disposable parameters being given, the parameters must be
determined so that

v ¥
F= T & = Z |F(x)—y]?
x==0 x==0
shall be a minimum.
A second principle of approximation is that of the moments.
Let us denote by
%
(1) oy = T x"y.
x:=0

This is the m -th power-moment of y; given a function F(X)
containing n4- 1 disposable parameters, these must be determined
in such a manner that the moments o#, ¢4, . . ., s#, of y shall
be identical with the corresponding moments of F(x).

There are other principles of approximation.
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A second case of approximation is the following: a function
f(x) of the continuous variable x is given, another function F(x)
satisfying certain conditions is to be determined so that the
deviations of the two curves shall be the smallest according to
some principle.

For instance, according to the principle of least squares,
F(x) containing disposable parameters being given, these are to
be determined so that

&= f |F(x)—F (x) 12 dx

shall be a minimum.
On the other hand, according to the principle of moments, if

(2) = [ xm(x) dx

is given for m = 0, 1, 2, ..., n; the parameters of F(x) are to be
determined so that the first n+1 moments of F(x) shall be
equal to the corresponding moments of t(x) given by (2).

The simplest case of approximation is that in which F(x)
is a polynomial of degree n containing n+l disposable coefficients.
Let us suppose first that the variable is discontinuous,
x=0,1,2,.,.,N-1, and that

Fx) —ay+ ax +....+ aqx".

According to the method of least squares the equations
determining the parameters «; will be

2 N
BT 2 2 [Hx)—Fla)]x =0
da| x==0
therefore we shall have
N N
3) S xf(x) = 2 x'Fl(x)
x=0 x=0
for»=20,1,2,..,, n. But these are also the equations
determining the parameters if the principle of moments is
applied.

From this we conclude that if F(x) is a polynomial the
principles of least squares and of moments lead to the same
resulf, and therefore if the polynomial F(x) is expanded into a
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series of any polynomials whatever, the method of least squares
will always lead to the same result.

Consequently we shall choose the expansion which will
require the least work of computation, This will happen if F(x)
is expanded into a series of orthogonal polynomials.

Remark. 1. The above results are also true in the case of a
continuous variable.

If in order to obtain an approximation the principle of
moments is chosen, it is often adventageous to introduce, instead
of the power-moments given by formula (1], the facforial-
moments M, or the binomial-moments %, given by the follow-
ing definition:

o - « x
B =3 @i A =3 (i

The approximation obtained will be the same whatever th»
chosen moments are, but often the calculus needed is much
simpler in the case of binomial-moments than in that of power-
moments. Moreover the computation of the binomial-moments is
shorter than that of the power moments, as is shown in § 144.

Remurk. 2. If u(t) the generating function of f{x) is known,
then we have

wp = 2 fot and Dult)= 3 i) e

x=0
so that

Mo = [Du(t) s Fs = [Qjﬂﬂ] -

s!

On the other hand, if the binomial-moments are known we
may determine the generating function of f{x) by Taylor’s
formula

u(t) = T (t—1)5F,.

¥==0

Example. The binomial moments of the probability function
F(x) = (g]p" (1—p)™* are < = 0;1 p° and therefore the ge-

nerating function of F(x) will be

uft) = éa [Z] |tp—p1* = (1—p+-tp)".
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Remark. 3. The principle of approximation applied is nearly
always that of the moments; indeed, the other principles, for
instance that of the least squares, or Fisher’s principle of
likelihood, are as a rule used only in cases when they lead to
the same result as the principle of moments. The reason for this
is not that the principle of moments is more in agreement with
our idea of approximation than the others (indeed from this
point of view, the first place belongs to the principle of least
squares), but that the calculus is the simplest in the case of the
principle of moments.

If the principle of approximation is chosen, we have still to
choose the approximating function F(x) containing disposable
parameters. In this, the interval in which x varies, the values of
the function f(x) to be approximated, at the beginning and at
the end of this interval, finally the maxima and minima of f(x)
play the most important parts.

In the case of the principle of least squares, it is the mean-
square-deviation that measures the approximationobtained . In
the case of the moments, we have not so practical a measure, but
we may proceed as follows: If the function F(x) has been
determined so that its first n4+1 power-moments shall respec-
tively be equal to the corresponding moments of f(x), that is to
My, My, ..,. H, then to measure the obtained approximation
we have to compare X x"'F(x] with o#,,,; the less the difference
is, the better the approximation may be considered.

Remark. 4. ] If the function f(x) is expandad into a
series

o+ 6 (xX) + copalx) .o 4 Cnpml(x) + ...

and if we stop at the term c¢,p,(x]) it may happen that the
coefficients ¢,, of this expansion are ithe same as those we should
have obtained by determining them with the aid of the principle
of moments, putting the given moments #,, #,, ..., A, of f(x)
equal to the corresponding moments of

Dy(x}=co+ cp, {x) +. ..+ cppnlx).

This will occur:
1. If ¢,(x) is any polynomial whatever of degree m; for
instance a Legendre polynomial, if the variable is continuous
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{(§ 138), or an orthogonal polynomial of §§ 139—141, if the
variable is discontinuous (x =0, 1,2,...,, N—1).

2. If the variable x is continuous, and if @m(x) = Hpe ~*12
where H,, signifies the Hermite polynomial of degree m (§ 147).

3. If the variable is discontinuous x =0, 1,2, .. . and if
-m X
on(x) =G, ix—'m , where G, is the polynomial defined in
§ 148, ;

This adds to the importance of the principle of moments.

On the other hand it may happen that, stopping the expan-
sion of f(x) at the term ¢,p,{x), the coefficients ¢, are the same
as those we should have obtained by determining them according
to the principle of least squares by making minimum either the
sum or the integral of the quantity

[F(x) — . (x)]*
according as the variable x is discontinuous or continuous.
This will occur:
1. If @n(x) is any polynomial whatever of degree m.
2. If the variable x is continuous and if f(x) is expanded
into a Fourier series (§ 145), in the interval (0, 1), and

Cutpm(x) = aycos2amx + fpsin2amx.

3. If the variable is discontinuous, and if f(x) is expanded
into the trigonometrical series of § 146, where

2zmx . 2amx

Bm sin N

Cnpm(x) = a, cos

This is in favour of the principle of least squares.

§ 137. Examples of the function F(x) chosen.

Example 1. Function with two disposable parameters.
Continuous variable. The range of x extends from 0 to °°. If
f(0) = () =0 and f(x) 20, then we may try to approximate
the function f(x) by aid of

(1) Flx) = C 1,(_;’_‘:]
We have
| Fiaydx = | xF(x)dx = f:”ﬁ; — (p+1)C
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Let us write

o = | xf(x)dx.
o

According to the principle of moments we must put C =
and (p+4-1)C = o#, ; so that the mean of x will be >7 (x) =
=p+ 1= |HM,. The formula (1 ) presupposes that p > 0;
therefore we must have =/ (x) > 1. Writing in (1) C = e#, and
p = o7 (x) —1 we get an approximation of f(x).

To measure the obtained approximation let us determine

My~ | x°F (x)dx = oty ~ (p+2) (pH)C = 7, — (p42)o#,

o
The less this quantity is, the better the approximation,
Let us determine moreover the mean-square deviation
corresponding to f(x), o* being the mean of |x—7=%(x}]*; therefore
o (34/2 ()///l 2
=7 oz

on the other hand, starting from F(x)we get o* ~p+4+1= 7 (x].
Since the function (1) is maximum for x=p, if f(x) is
maximum for x=x,, then the approximation will be useful
only if approximately x, = o7 (x) — 1.
If the approximation of f(x) by F(x) is accepted, then from
(1) we conclude that

x

| #(0)dt ~ | F(#)dt = o, I{u,p).
0 0

Here I(u,p} represents the incomplet¢zgamma-function of § 18,
and u=x/ [/p+1.
The median ¢ of x is obtained from the equation
¢
[ f(x)dx:l[ﬁi—, p] = 1.
’ p+1

The tables of the incomplete-gamma-function show that

p<p<p+1 and therefore x, <p <2#(x).

0

Conclusion. The approximation of f(x) by the function (1)
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may be accepted if x varies from 0 to =,if f(0) = F(<)=0
and if f (x}20; moreover if we have approximately
PN (X)
Xp~dx) — 1
o/ (x) — 1 <p< o (x).

Remark. 1. In certain circumstances formula (1) may be used
also for the approximation of a function f(x), if f (0) = = and
f{><) = 0; but then we must have »/(x) < 1 and -1 < p < (;
moreover there should be no extremum in the interval between
x—0 and x=.

Example 2. Function containing three disposable parameters.
If x is a continuous variable and if its range extends from 0 to 1:
moreover if f0) = f(1) = 0 and f{x) 2 0 then we may try to
approximate the function f(x) by

= (1—x) 71

F =
2 )= T Bhe
where p>1 and ¢ > 1.

1
Since l F(x)dx =C,
o

‘ B(p+1,q) _ Cp
0’[ *Fedx = C g0, 0 = pre
and
P . _Cplp+1)
(,-i ¥Flx)dx = (p+q) (p+g9+1)

we have to put

plp+1)
p-+q) (p+q+1)
From this we conclude that the mean of x is given by
o (x) = p/(p+q) ' and ..the mean-square deviation by
,,2:%_[%1”: Pq ,
A A (p+4)* (ptq+1)
Starting from the above equations we may determine the
parameters p and q ; first we get

C=of; #=-L o oA =
=7y 1 p+q w and 3 (
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Mg = (My—H)p  and  Moq = (H,—,) (p+1)
and finally
(I — ) (Mg ll) (M —b)
= A MM =" =

To find the mode x,, we have to put PF(x) =0, this gives
p—1 _ 1 :

- g—1
1+ p—1

e,
If p>¢q then from the above equation it follows that xp > JI
it |

oH,
and if ¢ > p then Wl >xp.
=70

It is easy to show that the sign of |D?y]e=x, is the same as
that of
(p—1) (1—q)
p+q—2

Since p 2 1 and ¢ 2 1, this is negative, so that a maximum
corresponds to x=x,.

If the approximation of f(x) by formula (2) is accepted, then
we have also

[ 10dt = | Fydt = 1(pag)
0 0
where I,(p,q) is the incomplete Beta-function of § 25.
The median ¢ of x given by
(I
[fx)dx=1,(pq) =
.

is determined by aid of the tables of this function. If p > g then
it can be shown that

o SIS . or X, =927 (x
pte—2 - ptq »2e27 )

and if p < g then
Xm < 0 S o7 (x).

If x,, and g are nearly equal to the above values, then the
approximation is admissible. To check the obtained precision we
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determine first e#,, the third power moment of f(x) and then
that of F(x); the smaller the difference

oty pE2)%
p+q+2

of the obtained quantities is, the better the approximation should
be considered.

Remark. 2. The function (2) may serve as an approximation
of f(x) * also in the following cases:

1. If f(0) =#(1) = > ; but then we must have 0 < p < ],
and 0 < ¢ < 1; moreover x, will correspond to a minimum.

2. If f(0) = < and f(1) =0, then 0<p<1and ¢>1
No extrema in the interval (0, 1).

3. If 7(0) =0 and f(1) =, then p>1and 0<g¢<1;
no extrema.

Example 3. Function containing three disposable parameters.
The variable x is continuous and varies from —® to . If
f (X ) =0and f(x) 2 0, moreover if there is but one maximum
of f(x), it may be approximated by

[4

F(x) =——— e (s-mp20?
(3) 01/2":
Since
| Fdx=C., | xF(x)dx=Cm
and

J' x*F(x)dx = (0*+m*)C

moreover denoting
oty = | xHx)dx
hence according to the principle of moments we have to put

of, _ AN TA
Mode. The maximum of F(x) is reached if x = x,, = m.
If the approximation by aid of (3) is accepted, then we
have also
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| Hxydx = 7,—_ ‘ et dt
-® 2%
where i= (z-m)/ ¢
The median is equal to o=m
Conclusion. The function (3) will only be useful as an appro-
ximation of f(x) if we have nearly

Xn = o (x)~ @

Since the third moment of the deviation x-m with respect
to the function (3) is equal to zero, hence the obtained precision
may be measured by

3, M 2
My—3m My 4+ 3m> M, —m3 My = M, — - % 2 4 )//,, .

The smaller this quantity is, the better the obtained approxi-

mation.
Example 4. Discontinuous variable. Two disposable para-

meters. If x — 0, 1, 2, .., , * then an approximation may be
tried by
(4) Flx) = Con'

3 F(x) =C, < xF[x) Cm, i x*F(x) = C(m*+m);
x=0 x==

moreover  writing

oA = 3 xF(x)

x==0

hence according to the principle of moments we have to put

The precision obtained will be measured by

[2

Mode. The maximum of (4) is reached for x=x,,, , where

m-1 <x, <m.
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If the approximation of f(x) by formula (4) is accepted,
then we have also

£+1
2 f(x) =1—I(up)
=0
where I(u,p) is the incomplete-gamma-function of § 18, and

u_—:m/]/z+1‘ and p=z.
The median of g is drrermined by aid of

S Hx) ~ S fx)
x=0 §

x=9-1—1

that is, by

) )

Since ¢ must necessarily be an integer, hence this equation will
be only approximately satisfied.
From Example 1 it follows that m-1 < ¢ < m + 1.
Conclusion. The approximation by (4) is advisable if we
have

d(x) —1<x,<7(x}, of(x)—1<pe<-/(x)}+1
and

o2 ~ of (x).

Example 5. Discontinuous variable, three disposable para-
meters x=0,1,2, ., ,, n. The approximation of f(x) may be tried by

Cp (1—p)™  _ (7] pr (1—p) =
(5) Flay _ B(x+1,n41—x) ~ ¢ [x]p (1—p)=.
We have

"-EH F(x) =C 'HE-I xF (x) = Cnp
x=0 x=—0
and
n41
20 x(x—1)F(x) = Cn{(n—1)p*
(1) (—2F() = Ca(n—1) (—2)p"

Since we denoted by YR: the factorial moment of degree i, that is
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n4t
M = IEO (x);i f(x)
We have to put
C=M,, Cnp=9R,, Cn(n—1)p>*=M

that is
pe W=, W,
m 2 mlmu
To check the approximation we determine
23— M,
— Cn(n—1) (n—2)p* = M, — 0[—2 0 1.
p ( ) ( )p ™Ms — M- M, M

The less this quantity is, the better the obtained approximation.
The mean of x is

() = P = np.

The standard deviation or mean square deviation of x (p. 427)

o = g}” T [%]zz np(1—p).
Mode. The maximum of F(x) is reached by x==x,, if
p<x,<np+lor (x)<xp<d(x) + 1.

If the approximation by (5) is accepted, we have also
I f0=1—1 (wnt1—)
where [, (x,n-+1—x]) represents the incomplete-beta-function (16},

s 25"I‘he median g is obtained from

4 n1
S fx) ~ Zflx)
x={ x:()+1
or from
1 — 1, (en+1—¢) ~ I, (e+1,n—p).

From example 2 it follows that np-1 < ¢ < np.
Conclusion. The approximation by (5) will be useful if we
have

‘Rx) < xp <o7(x)+ 1
28
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moreover if p > 14 or 162 (x) > o then
of (1) =1 << /(x)
and if p < 3% or 14 <7 (x) < 6% then
of (x) < o <o (x) + 1.

§ 138. Expansion of a function into a series of Legendre’s
polynomials. The Legendre polynomial of degree m denoted by
X,(x) is defined by

(1) X,(x) = ,zn D[ (x>—1) ],
From this it follows that
@ K@=a 2 )] e

where m is the greatest integer in n/2.
Important particular cases and values of the polynomials

X, =1 X (x)=x
X, (x) = 15(3x2—1) X, %) =1 (5x*—3x).
From (2) it follows immediately that X,,_, (0) = 0 and

—1)7¢2 —14
Xn) = (22") (:Jz( n'2]'
Since (1) may be written'

Xn(x) - 3n D" l(x_l),l (x+l]

= n'

hence by aid of Leibnltz formula we get

@) x® =45 ’.'J2 (—1)" (x+1)".
2* 9\t
Therefore
X(1) =1 and X, (—1) = (-1~
Symmetry of the polynomials. From (2’) we easily deduce:
X, (—=x) = (-1)” X"(X),

The roots of the polynomials are all real and single and
comprised between -1 and 1.
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Roots of X,(x) =0 for n =2,3,4,5
n=2 x, = -00.57735026, x, = 0.57735026

n=3 x, =—077459666, x, 0. x, = 0. 77459666
n=4 x, = -00.86113632, x, = -0.33998104
x, = 0.33998104, x, = 0.86113632

n=5 x,——0.90617994, x, = -0.53846922 x, =0
x, = 0.53846922, a, = 0.90617994

In consequence of the symmetry of the polynomials, if x; is
a root of X,(x) =0 then —x; will also be a root.
In Mathematical Analysis it is shown*® that

[ X,00%,,(x) dx = 0 if n % m
-i

B

1
2
[Xo(x)]2dx =——— .
_ i[ " 2n+1
That is, the polynomials are orthogonal in the interval (—1, 1).
A function t(x) of limited total fluctuation in the interval
(—1, 1) may be expanded into a series of Legendre's polynomials.
Let us write

Fix)=co 4+ e, X, (x) + X (x) + . ... + cXn(x)+. ...

Multiplying both members of this equation by X,(x) and
integrating from —1 to 41 in consequence of the equations (3)
we find

2m--1

@) en= 5 | f9 %00 dx.

Putting into this equation the value of X,(x) obtained in (2) we
have

o = v § (1) () 0 s

% See for instance C. Jordan, Cours d'Analyse, Vol. 2, 3¢ éd. p. 299.
E. T. Whittaker and G. N. Watson, Modern Analysis i1927]c p- 305.
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and denoting by =2# the s -th power moment of f(x) in the
interval considered:

1
= | x* f(x) da

-1

we finally find that
2m4+1 & (m) (2m—2i
o s L (1))

T
where u is the greatest integer contained in lim--1.

The determination of the coefficients c,, is very simple in
consequence of the orthogonality of the polynomials; otherwise
it would be a laborious task.

Approximation of a function f(x) by a series of Legendre’s
polynomials. Stopping at the term X, let us write

(6) W = % e Xnlo)

The coefficients ¢, must be determined according to the
principle of least squares so that

) F= | ()] dx
-1

shall be a minimum. Putting into it the value of f,(x) given by
(6) the equations determining the minimum will be
0
O(.'m
In consequence of the orthogonality of the functions we shall
find for ¢, the value (4) obtained above.
Moreover by aid of (3) and (4) we find

-=0form=0,1,2,..., n.

7 I.1 ) tdx— 2 3
» = x) |2 dx —
—1 I ( )I 2m+1 m=—o
§ 139. Orthogonal polynomials with respect to xX=x, X,
... xy_. The polynomials U,,(x) of degree m are called orthogonal
with respect to x=x,, ,, ..., xy_,, if the equation

2
Cp*.

m T Unlx) U (x) = 0

is satisfied, if m is different from .
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These polynomials were first considered by Tchebichef*'
and since then several authors have investigated this subject.

In the general case the polynomials are complicated and of
little practical use. But if the values of x; are equidistant, then
simple formulae may be obtained.

Determination of the orthogonal polynomials, if the given
values of x are equidistant. x=a-h¢ and £==0, 1,2,. .., N-L
Instead of starting at (1) we shall employ the following formula:

N
l2] _go Fm—.l (x) Um(x) =0
where F,-(x) is an arbitrary polynomial of degree m-l. If we

M) Tchebichef, Sur les fractions continues. Journal de Mathématiques
pures et appliquées, 1858, T. III (Oeuvres, tome I, p. 203). — Sur I'inter-
polation par la méthode des moindres carrés. Mém. Acad. Imp. de St. Péters-
bourg, 1859 (Oeuvres, tome I, p. 473). = Sur ’interpolation des valeurs
équidistantes, 1875 (Oeuvres, tome II, p. 219).

Poincari, Calcul des Probabilités, Paris, 1896, p. 251.

A. Quiquet, Sur une methode d’interpolation exposée par Henri Poin-
caré Proc. of the Fifth International Congress of Mathematicians. Cambridge,
1913, p. 385.

J. Gram, Ueber partielle Ausgleichung mittelst Orthogonalfunktionen.
Bull. de [’Association des Actuaires Suisses, 1915.

Ch. Jordan. al Sur une série de uolvnomes dont. chaape somme par-
tielle représente la’ mcilleurc approximation d’un degré donné suivant la
méthode des moindres carrés, Proc. of the London Mathematical Society,
1921, pp. 298-325.

F. Essher. Ueber die Sterblichkeit der Schweden. Lund. 1920. —- On
some methods of interpolation. Scandia, 1930.

R. A. Fisher, Agric. Science Journ. Vol. 9 (1921}, pp. 107—135. —
Fhilos. Transactions Royal Soc. London, B. T. 213 {1924}, pp. 89—142, —
Statistical Method for Research Workers, 1. ed, 1925, IV. ed. 1932.

P. Lorentz, Der Trend, Vierteljahrshefte der Konjunkturforschung.
Perlin, 1928; zweite Auflage 1931.

Ch. Jordan, b) Statistique Mathématique. Paris, 1927, p. 291. — ¢) Sur
la determination de la tendance séculaire des grandeurs statistiques par la
methode des moindres carrés, Journal de la Société Hongroise de Statistfque,
Budapest, 1929, =~ d) Berechnung der Trendlinic auf Grund der Theorie der
kleinsten Quadrate. Mitteil. der Ung. Landeskomm. fiir Wirtschaftsstatistik
und Koniunkturforschung. Budapest, 193), — e) Approximation and Gradua-
tion according to the Principle of Least Squares by Orthogonal Polynomials,
Annals of Mathematical Statistics, Ann Arbor, Michigan, 1932, pp. 257--357,

A Sipos, Praktische Anwendung der Trendberechnungsmethode von
Jordan. Mitteil. der Ung. Landeskomm. fiir Wirtschaftsstatistik und Kon-
iunkturforschung. Budapest, 1930.

F. E. Allan, General form of the Orthogonal Polynomials for simple
scries. Edinburgh, 1930,

c E Dtealefait, Determinacion de la tendencia secular. Rosario, 1932.

A. C. Aitken, Graduation of data by the orthogonal polynomials of least
squares. Edinburgh, 1933.
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were to expand F,-(x) into a series of U,(x) polynomials we
should return to equation (1) again.

Since Fm_, (x) is of degree m-1, formula (10) of § 34, giving
the indefinite sum of a product, may be written, putting there

U(x)= F,_,(x) and V,(x) = U, (x)
in the following way:

A [ m—-1 (x) Um(x) ' - m-—l (x) A-1Um (x) -
—NANFpy () A*Unp(x+h) + AFp_ (x) AU (x+2R)—.. . . +
+ (—1)™ ' A™IF,_ (%) AU, (x+mh—h).

Now. since we are considering polynomials only, A™U(x)
contains an arbitrary constant, to which may be assigned such a
value that [A"W,{(x) Jr=a is equal to zero. But A-2Un(x+h)
contains an additional constant, which may be chosen so that
[A2U(x+h))«- « = 0. Continuing after this fashion, we may
dispose of all these arbitrary constants in such a way as to have

AUy (x+nh—h) = 0
for x=—=a, and for every value of n satisfying to n S m; therefore
VAV TR, -, (X) U0 | fa=a =0,

But in order that the definite sum may be equal to zero, it is
necessary for the above expression to vanish also for the upper
limit x=a+4Nh=>b. But since A' F,-,(b) is arbitrary for all
values of v, it follows that each expression A™*™* U, (x+vh) ob-
tained for »=0, 1, 2, ..., m-1 must vanish separately for x=b.

From this we conclude that (x-a) and (x-b) must both be
factors of A™ Up(x). Considering for the moment only the first
of these factors, we may therefore write

AWUn(x) = (x—a)i(x).

Applying to this expression the formula for the indefinite
sum of a product (10, § 34), we find

AU = 3 (1) o [ 555" ) aviem,

(x-0) must be a factor of AU, (x) too: therefore the
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additional constant must be equal to zero; it follows that (x—a)a2,
is a factor of A“2U,(x). By successive summation we should find
that (x—a) s is factor of A™U,(x) so that it may be written

AU, (x) = l x;a » v(x).

As (x—b). must also be a multiplying factor of A"Um[x]
we deduce by the same reasoning that

s = [, [0,

AU, (x) is of degree 2m; therefore C is an arbitrary
constant, and we conclude that the general formula for the
orthogonal polynomials with respect to x=a-+£h, where £=0,1, 2,

, N-1 and b=a-+Nh is the following:

(.3.) U, (x) = CA'"[[ ]["“”)J.

Starting from this expression, there are two different ways
of deducing the expansion of U,(x) into a Newfon series. First
utilising formula (10) § 30 which gives the m -th difference of a
product; we obtain

o vw=oe BT T

m-—1j,

Secondly, we can develop A™U,(x) into a Newton series

of generalised binomial coefficients Ix ; b Jh . According to § 22
we shall have

A = 0 7F (570 th &%), (=)
but

M) Rt = B o (2228, (5 s

putting x=b, we get
AT I R | Cosanad N farad §

! 2m—i

and finally putting i=m-», and determining the m -th difference
of the above expression, we find
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() Unt=ow T (T (P (27

v=0 v b

As U,,,(x) is symmetric with respect to a and b, we can get
two other formulae from (4) and (5) changing a into b and
inversely. For instance, remarking that b—a=Nh, from (5]

we get
m—N ] x—a
m—y v

m4-1
© U =Chn S h ()
v=0
Remark 1. If in this formula we put m=N then every term
will vanish except that in which »—=m, and we obtain

Uy (x) = Ch?Y [%VI [ xga R

Therefore, if x is equal to the given numbers x=a4&h for
£§=0,1,2,...,N-1 we shall have

Us(x) = 0.
2. If m @ N then every term of (6) will vanish in which
¥ < N; but if x is equal to x==a--£h and £€=0,1,2,., ., N-i, then

the last factor of (6) will be if v > N
x—a E)
[ h = h [ 4 ] - 0'

v
Conclusion. If m 2 N and x is one of the given values, then
we have
Unlx) = 0.
Introducing into (6) the variable &é=(x—a)/h, it w-ill
become

(7 Unla+£h) = Ch=m :“_%: [m';}l—v] [m—NJ (E] .

m—y
We have seen that

2 Up(x) Unle) = 0

>

if u + m. It remains to determine the value of this expression if
u=m. That is



441

(®) ERUANS

This may be done by determining the indefinite sum of the
product U, (x)U, (x). According to formula (10) § 34 we have

(9)
AU n(x)Un(x)] = Un(x) A Un(x) — AUn(x) A2 Un(x+h) + . .
yoos (_l]mAmUm (x)A™ U (x+mh).
To obtain the sum (8) we have to put in this expression x=b and

x=a; but we disposed of the arbitrary constants in U,(X) so as
to have:

AU, (x+nh—h) = 0

for n=1, 2, ..., m at both limits x—=a and x=5b. Hence it remains
to determine the value of the last term at the limits.
For this we start from

AmUn(x) = C |
the above quoted formula of the sum of a product will give
- C [(x—a) {x—b x—b+-h
AWy (x) = —“ m J,, (m+1],, - [m—l l m+4-2 ];.+

b ) = e (2t

A

Putting x+mh instead of x into the preceding expression
it will become

x—a+th [x——b+vh+mh] ].
L]

C m+-1
A ™ (x+mh) = F[ :E-o (—1) m-+-1-4»

At the upper limit x=»b every term in the second member
is equal to zero, so that

99 [A™W,, (x+tmh) Jo=s = 0.

At the lower limit X=a we have (remembering that
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m+1 —.
(A U xbmh) ey = Chem 2 1) [, | (b | =

41

= cmown 5 (1) [ )

=0

and in consequence of Cauchy’s theorem (14, § 22) finally we
have

(10) (AU, () 1xo = (-1) w0 Chm| ¥4

Moreover from (6) it follows that

m~—N

m‘-l’ y—m

' um & A mty
m — sm -
A™Up(x) = Ch Eﬂ h [ m ]

this gives for x—a

(11) A"Unla) = Chem (2],

Finally by aid of (9) we obtain the required sum:
> 2 — (C2him 2m N+m

(12) R A R i | P

It may be useful to remark, that this quantity is independent
of the origin of the variable x.

§ 140. Some mathematical properties of the orthogonal
polynomials.”

Symmetry of the polynomials. Putting into formula (4) § 139
afb-h-x instead of x we find

Unlat+b—h—x) = Ch£‘+>:[ behtviiox ) [a—h-—x)h

V11 \% m——y

but this is equal to

m4-1 ; ,
Un (atb—hx) = (—t)nChn 'S 7 ) (o mi—rh) (x-8)
Now putting into it g=m—>» from (4}, § 139 it follows that
(1) Unla+-b—h—x) = (—1)" Upl(x).
This equation shows the symmetry of the orthogonal poly-

. ¥ They have been described more fully in loc. cit. 41, Jordan, a) PP
314—322 and e) pp. 309--317.
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nomials. Particular case: x—=1%(a+b—Hh) gives the central value
of the polynomial:

a--b—h

U %3 ==

—
therefore

(2) Usmisy (a——%:_h] =0

Functional equation. We may easily deduce a functional equa-
tion which 1s satisfied by the orthogonal polynomials; this can
be done by expanding xU,(x) into a series of orthogonal poly-
nomials. We find

(3] XU,,, (x] = Am' m-IUm~1 (x) 'I" Am.mUln(x] + Am. M+1Um+1 (x) i
as in consequence of the orthogonality of the polynomials the

other terms vanish. Indeed

b
2 xUm(x)U,, (x] = 0
X==d
if u2m+l or u<m-—1 (2, § 139).
Hence we have only to determine the above three coefficients,
Multiplying by Unm,, (x) and summing, we obtain from (3)

(4] i‘. xU (x)U ., (x) = A, M bg [Um+1 (x)]z.

We know already the sum in the second member; to

determine the first member let us apply the formula giving the
indefinite sum of a product (10, § 34).

A1 xUm (x] ' Um+ y (x] I=
= ixU,,,(x] ‘ AW'UIIH-I (x} — A|XU,,, (x) ] AUy (x+h] +
.+ [__l)mﬂ A’"”[IU",(JC) ‘ A—m~zUm+‘ (x+mh+h).

When determining the polynomials U,,(x) we disposed of the
arbitrary constants so as to have

AU (x+nh—h) = 0
forn=1,2,3,..., m at both limits: x=a and x=b.
Therefore every term of the preceding series will vanish at




444

these limits except the last term, which according to formulae (9’)
and (10) of § 139 is equal to zero for x=b; and for x=a it is

amsz NAm+1
(AU, (e m+) o = (1) Gy Bt P

In this formula we have written C,; instead of C, since this
constant may depend upon the degree m+l of the polynomial.
Since formula (11) § 139 gives

AU, (@) = Cn ”2"’12;;1"]
we shall have for x=a
. 2
A [xUp(x)] = h(m+1) A"Up (x) = Cp b2 (m-1) |50 ) -

Finally we find

J 5 2m) (N -
6) 2 (<Un(8)Unis ()] = CaCos s (mt1) (o) (V505

Moreover from formula (12) § 139 it follows that

©) i [UA@]” = Cp? homes [ 202) (N+m+1

m+1 2m+-3
By aid of the last two equations we get from (4)
A (m4+1)2
7 A , = n .
M m om1 = pC 2@2m+1)

Putting into equation (5) m-l instead of m we obtain

&
xz-a [xUm_.l (x”Um(x) I = Cm-—lcm h“’l'lm[fn’n;_lzl [ N+m

2m+4-1
moreover putting m-2 into (6) instead of m it follows that
5 2m 2) [ N+m—1
3 W) = Cort bt | 202 ) (Vo

From (3) we deduce by aid of the last two equations
Cn b (N>—m?)

8 - -

( ) Am. My Cn~1 2(2m+1)

To determine Ap, by the preceding method would be more
difficult; but, since equation (3) must be true for every value of
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x, if we put into it values of x for which U,(x) is known, we
obtain equations which permit us to determine the coefficients.
Putting into it x=b—h we find

9) (b—h)U, (b—h) = Ay, n Un, (b—h) + Ay nUn(b—h) +
+ Am. m+1Um+1 (b""h)

now if we put into (3) x=a we have

10) aUpla) = Apm myUn_y(@) + ApmlUnla) + An myUnila)

remarking that in consequence of the symmetry polynomials
U, (x) it follows’ that

Uyp(a) = (—1)"U,, (b-h)
hence from (9) and (10) we obtain
(b+a—h) Uy (b-h) =2 A, y Un(b—h)
Amm =V (b-+a—h)
therefore the function-equation (3) is determined:
Cak®  N—m
C 2(2m-+1)

(1)

X Um (x) =

Un(x) + Va(b+-a—h)Un(x) +
"
T #Cay leminyme
Application. Let us determine the central value of the func-
tion U, (x), that is U,, a—f—b—h] Uz,,,( +Nh—h

putinto (3) m=2n-}-1 and x= a-+Y4(Nh—h), then in consequence
of (2) it will become

If we

Nh—h Nh-h
- A2n+1. 2nU2n + _] A2n+1 2n+2U2n+2 [a+ '

1

Writing m=2n+-1 we obtain 4,,, .» from equation (8) and
Aqgnyq, anyg from equation (7). Therefore the preceding formula
may be written

o 2
(12) Fla+1) = — %—i”—:)%”— F(n)

where, in order to abbreviate it, there has been put
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Nh—h

Usn [a+
h4n Con

The solution of equation (12}, which is a homogeneous linear
difference equation of the first order, with variable coefficients,
is as, we shall see in § 173, the following:

N+1 ;
i )e +i) (71
— w P—i41)%) [ ) |
Fn) —“’,-SNa(iW =Y ,-.—’.’o [ERIESY

1oN—14 4 14 N—14
F(n) = @ (-1)” [ & ,,’~+")( 2Nn /ZJ.

Since F (0) —1 therefore w= 1, and the required central
value will be

(13) U, (a4 T57R) = Coabngyo VYm0 %)
this may be written

Usn(at YB) = ot (3] (V5027

Difference equafion. It can be shown that the polynomial
U,(x) satisfies the difference equation

(14) (x—a+2h) (x—b-+2h)A*Un(x) +
+ |2x—a—b+ 3h—m(m+1)h|AAU ,, (x}—m (m-+1)h2U ,(x) = 0.

[See loc, cit*l. Jordan a) p. 315; e) p. 316.1

Roofs of the polynomial. L. Fejér has given [See loc. cit.”
Jordan a) p. 319] the following theorems concerning these roots:

The roots of U,(x) =0 are all real and single, and they are
all situated in the interval a,b—h.

Whatever ¢ may be, in the interval a+&h, a+E&h-4-h there
is at most one root of U,(x) =0.

Fejér showed moreover that if Pn(x) is a polynomial of

Fmn) =

hence

e . .. X
degree m, and if in its Newton expansion the coefficient of m

is unity, then the polynomial which minimizes the following
expression
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X [Palx))®

is the orthogonal polynomial U,(x) with the constant C suitably
chosen.

§ 141. Expansion of a function f(x) into a series of poly-
nomials orthogonal with respect to x=a-+&h, where £=0,1,2,
P\ )

Supposing first that f(x} is a polynomial of degree n such
that n < N, then we have

Ha)=eor el (@) +elsx)+ . . . + el (x)

multiplying both members by U,(x), and summing from x=a to
x=b (that is from £=0 to é=N, since a+Nh=>b), we find in
consequence of formula (1) § 139, that

) tn 2 [Unl®)]? = Z HxUnl).
E=0 =0

Hence the coefficients ¢, are easily obtained.

In the general case of t(x) the series will be infinite.
Stopping it at the term Uj_, (x}, the series will nevertheless give
exactly the values of f(x), if x is equal to one of the given values
x=a+4-&h. Indeed, according to what we have seen in the
preceding paragraph, every term in which m 2 N will vanish for
these values; so that the limited series will give the same value
as the infinite series.

To have f(x) exact for the other values of x we must add
the remainder to the limited series; according ‘to § 123 this
will be
@ Ry = % (x-a) (x-a-h) . ., (x-a-Nh+h) D™ (a+th)
where 0 <¢(SN—1 or a<a+¢th<b.

If m 2 N then the coefficients of Up(x) in the expansion of
f(x) cannot be determined by formula (1) since in consequence
of formula (7) U,(x) is equal to zero for each of the values of x
corresponding to §=0, 1,2, . . . , N-1 ; hence both members of
equation (1) will be equal to zero.

In the preceding paragraph we have already determined
2[Un(x) )2 Therefore to determine the coefficients e by aid of
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equation (1) it remains still to compute 22U, (x)f(x). For this,
let us start from the expression (7, § 139) of U,(x); this will
give

b m1 - X

XEH Um(X)f x) = Ch2m :EO (m;il_’l] [Tn__j},, "-—2-0 (E]f(a-{—ﬂ.

According to § 136 the last sum in the second member is
equal to the binomial moment of order v, denoted by ., of the
function f{a--£h); therefore this may be written:

Therefore

b . o m+1 (m+11J (m—N L
(3) E{‘U,,,(x)f (x) = Ch z (m m— | %

As will be shown later, there is a far better method for
rapidly computing the binomial moments than is available in the
case of power moments. If we operate with equidistant discon-
tinuous variables, it is not advantageous to consider powers; it
is much better to express the quantities by binomial coefficients.
Indeed, if an expression were given in power series, it would still
be advantageous to transform it into a binomial series.

Several statisticians have remarked that it is not advisable
to introduce moments of higher order into the calculations, In
fact if N is large, these numbers will increase rapidly with the
order of the moments, will become very large, and their coef-
ficients in the formulae will necessarily become very small. It is
difficult to operate with such numbers, the causes of errors being
many.

To remedy this inconvenience, the mean binomial moment
has been introduced. The definition of the mean binomial moment
#J, of order v of the function F(x+£&h) is the following

P N E N E
g = 3 (;,)f(a+5h)/ > (,)
=0 5=0
therefore
(4) ef,t:%_.
[,41)

The mean binomial moment will remain of the same order
of magnitude as f{x), whatever N or » may be. For instance, if
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}(x) is equal to the constant k then we shall have &, = k for
any value of » or N. On the other hand the power moment of
order v

N
kK T g

§=0

will increase rapidly with v and N.
Introducing into formula (3) ¢/, instead of 8, we shall
have

b U0 =crn S () (R) ()

x=a

This may be written in the following form

(—1)nChen m+1) (g ) 2 00 () (0 ) 55

To simplify the formula we shall write

5 b= =0 (") (V) i1

Since these numbers are very useful they are presented in
the following table, which gives all the numbers necessary for
parabolas up to the tenth degree.

Table for fp.

m\v 0 1 2 3 4 5

1 -1 1

2 1 -3 2

3 -1 6 - 10 5

4 1 -10 30 -35 14

5 -1 15 -70 140 -126 42
6 1 -21 140 -420 630 —462
7 -1 28 -252 1050 --2310 2772
8 1 -36 420 -2310 6930 -12012
9 —1 45 —660 4620 -18018 42042
10 1 -55 990 —8580 42042 -126126

N
¥-1
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m\?¥ 6 7 8 9 10
6 132
T -1716 429
8 12012 -6435 1430
9 -60060 51480 -24310 4862
10 240240 -291720 218790 -92378 16796

The, following relation can be used for checking the numbers:

Bmo + Bmy+ Bmet v v+ Bum=0

that is, the sum of the numbers in the rows is equal to zero.
Moreover let us put
m+-1
(6) S o I = 6.
v=0
If we already know the mean binomial moments, the values
of @, may readily be computed with the aid of the table above.
Finally we obtain

1) 2 Unle) 1) = OFm (mt1) [ 4] 00

As this expression could be termed the orthogonal moment
of degree m of f(x), therefore we can consider @, as a certain
mean orthogonal moment of degree m of fix).

The mean orthogonal moments are independent of the origin,
of the interval, and of the constant C. Particular case:

0, =d, = @’7)’0/1\'

is equal to the arithmetic mean of the quantities f(x;).
By aid of equation (7) and of (12), § 139 we deduce from

(1) the coefficient ¢p:
(2m+1)6p
= Chen N4m

o m

(8) Cn

The coefficient ¢, is independent of the origin. In parti-
cular we have

Cy = QO/C-
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8 142. Approximation of a function y given for :=0, 1, 2,
..., N-I, by aid of a polynomial f(x) of degree n, where
x¥=a--&h, according to the principle of least squares, that is, so
that the sum of the squares of the deviations y—f(x)} for the
given values of x

F - I [yt

0

’sz

shall be a minimum.
If the polynomial f(x) is expressed by orthogonal poly-
nomials:

(1) Flx) = ¢, + c?-Ul (x) + CQUQ (x)+.. .+ U, (%)
then the conditions of the minimum will be

0 Ny
T = —2 :i [y—cy—c,U,(x} —...—c, U, (x)|[Un{x) =0
for m=0, 1,. , ., n.
In consequence of the orthogonality (1,§ 139) most of the
terms will vanish and we shall have

N N
@) 2 YUnlx) =cn 2 [Unlx)}>
=0 E=0

Since this expression is identical with equation (1) of § 141,
which gives the coefficient ¢, of the expansion of y into a series
of orthogonal polynomials: from this we deduce the important
result:

To obtain the best approximation possible of a function y,
according to the principle of least squares, by aid of a polynomial
f(x) of degree m, it is sufficient to expand x into a series of
orthogonal polynomials, and to stop the series at the term U,,(x).

Moreover, if the approximation obtained by aid of a
polynomial of degree n should not be close enough, then to
obtain the best approximation possible by aid of a polynomial
of degree n+1it is sufficient to determine only one additional
coefficient, ¢,,, ; the others would not change. This is an
important  observation, since, if the expansion were not an
orthogonal one, then, passing from the approximation of degree




452

n to that of degree n+l every coefficient would have to be
computed anew.

If the approximation of degree n+l/ is still unsatisfactory,
this can be repeated till the required precision is reached.

Since we have seen in the preceding pragraph that the
coefficient ¢, is given by
) _ 2m+1) 6

m= C h,_,ml N —{—MJ
m

hence if we know the mean orthogonal moments of the y quan-
tities, the problem is solved, It remains but to determine the
obtained precision.

Measure of fhe precision. In the method of least squares the
precision obtained is measured by the mean square deviation o¢,2
(or standard deviation), that is by

o, = /N,

From this it follows that

ot = 2 T I+ () —2y H(x)]
=0

putting into it the above expression of f{x) by orthogonal
polynomials, the equation is much simplified in consequence of
the orthogonality of U,(x), so that we have

cmt S L S Y Unm—2y T enl
0, = N ok y: o+ N o [m=0 cni[Un(x))>—2y oy Cm m(x)]-
Since from (2) we deduce
wl N n+1 ¥
2 ey Z yUplx)= 2 cu? T [Un(x)]?
m=0 5:0 o ma() $=0
therefore o,%2 will be
A S U I ,
0,2 = N = y —N 2 Cm® o {Unl(x) ]2

In formula (12) § 139 we found

£ oy = e (2] (241
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moreover, multiplying it by ¢," taken from (3) we obtain after
simplification

emin (V1)

B3 Cm® [N_;m] On

N

‘v 0
2 [Ua)) =

To abbreviate, let us put

R N

Finally we have
1 ¥ nt1 .
(5) 6 = — EyZ—EI%,,,,,I(-),,,Z.
N = m=0

Remark 1. 45, is easily computed by formula (4) if we have
a table of binomial coefficients; moreover there are tables giving
this quantity up to N=100 and m=7, that is, up to a hundred
observations, and for polynomials up to the seventh degree.
[Loc. cit. 41, Jordan, e¢) p. 336—351.]

Remark 2. All quantities figuring in formula (5) are independ-
ent of the origin, of the interval, and of the constant C; con-
sequently this formula is valid for all systems of orthogonal
polynomials.

If the approximating parabola is known in its form (1) then
the problem is solved; but if it is necessary to compute a table
of the values f{a+&h) for € = 0, 1,2, . . ., NI, then the cor-
responding values of U,(x) must first be computed by aid of
formula (7) § 139. This also seems easy enough, especially when
using the tables of the binomial coefficients; yet if N is large, the
computation is a tedious one. At all events, the calculation
would not be shorter if the U,(x) were expanded into a power
series.

The labour will be decreased considerably, however, if
tables giving the values of U, (a+£h) are available.*® But tables
with a range.large enough would be too voluminous, and we shall
see that they are superfluous, as by a transformation of formula
(1) into a Newton series we can get the required values by the

¥t 1 adopted this ptoceduré in my paper published in 1921, and later
Essher and Lorentz did the same.
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method of addition of differences § 23; and if an interpolation is
necessary for any value whatsoever of x, Newton’s formula will
give it in the shortest way. Moreover by this method we shall be
independent of the value of the constant C, that is of the
orthogonal polynomial chosen.

Transformation of the orthogonal series (1) into a Newton’s
expansion. Since the approximating parabola and the mean
square deviation are independent of the constant of the orthogonal
polynomial used, it is natural to transform equation (1) so that
it shall also be independent of this constant, This can be done
by a transformation into a Newton series.

For this it is sufficient to determine the differences of
f(a+£&h) for £=0 and Aé=1. Starting from (7) § 139 we get

AUnfa) = Chom [ ™4 ) [ 7).
Hence from (1) by aid of (3) it will follow that

N——u——l
n+t
(5) &f(a) = m2= (—1)"“‘"(2m+1)[ ’"“‘]TH')@
1
To abbreviate let us write "
N—,u——l)
(6) o = (1) 2m1)| '",j;/‘]_ﬁ‘],
1 m

Therefore
n+41
Artla) = 2 %, 6,.
m=y
Knowing the differences for §=Q the problem is solved.
The equation of the approximating parabola is

Hateh) = 1) + (§) ) + .+ () Avrta).

The numbers %, may be computed by aid of (6) and a
table of binomial coefficients, but there is a table giving them
up to # = 7 (parabolas of the seventh degree] and to N = 100
[Loc. cit. 41, Jordan e) pp. 336-3531.

Remark. Having obtained, by the above method, the Newton
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expansion corresponding to the approximating parabola of degree
nsay y =f,(x), it may happen that the expansion corresponding
to a parabola of degree n--1 is desired. Then only the calcula-
tion of ,,, is necessary, and the coefficients of the new ex-
pansion will be

A”le.] (0] = _/\‘”f!l(a) ‘+‘ (/7;:!-{—],‘” (T)HH .

The work previously done is therefore not lost.

Summary. Given the points x,y for x—a-ih where
£=0,1,2,..., N-l the equation of the parabola of degree n
approximating these points is, according to the principle of least
squares, or that of moments,

Hath) =ta)+ ()8t + () at@ 1o ) AvGa)

where A“f (a) is the u -th difference of f {a+&h) with respect to
& for £=0 if Aé=1. We have

n+1
A‘”f(a) = 2 /’nllu. @In 4
7m. being given by formula (6) and
m+1 . o v g N
3 & 5= /
@m = '30 ﬂmr r”/v "‘/v — EEO lVJ y/[y+1J '
Moreover fi,,. is given by formula (5) or the table in § 141
The precision obtained is measured by o*

"Cl
o = T (y)— T |¥nyl Op

m==0

where ## (y’) is the mean value of the y*?, that is Zy?/N.
Remark. If there are two sets of observations y,x and z,x

given for x=a-+th where £=0,1,. ., , N-I; and if we denote
the mean square deviation of z by ¢, and the orthogonal
moments of z by &, then the coefficient of correlation between
y and 2z will be

1 n+1 o . N
=y {"‘{(}'Z)_ "ED | Zmo | OnOn' ¢

Particular case. Approximation of the values of y,x by a
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function of the first degree, if y is given for x=0,1,2,, .., N-L
We have

Boo =1 Bro=—1 f1=1

.~ 3(N—1) 6

boo =1 %o =—"NT1 =N

. b 72 7
%:60:9{()’) 1=—(Nﬂ 0, = & —d,
2

and the required function will be

f(x) = H0) + xA}0)

where

f(0) = 7000, + %0 0, = F— 3’%"—;”(77— i
6

Af[O] = %“ @1 = N—+1 (@7;—°C7;) )
If the coordinates are chosen so that 2¢ {y) = 0 then

N—1) 7

Finally the mean-square deviation will be

. ; 3(N—1) ;2
62 = (Y) _T_,_l'”"'

Therefore to obtain the required approximation by formula
(7) it is sufficient to determine ¢/, the mean binomial moment
of the first degree; so that even in this, the simplest case, the
approximation by orthogonal polynomials is preferable to the
usual method. But the great advantage of the orthogonal poly-
nomials, in shortening the computations, is shown, if approxima-
tions are to be performed by parabolas of higher degrees.

§ 143. Graduation. by the method of least squares. If the
observation of a phenomenon has given a set of values y(x;)
where i =0, 1, 2, ...., N-1 then the y{x;) will be affected
necessarily by errors of observation; if the quantities y(x;)
are statistical data (frequencies), then they will show accidental
irregularities so that the differences A™y(x;) will be irregular.
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The statistician generally wants to “smooth®, to “graduate”
or to “adjust” his observations, that is to determine a new
sequence with regular differences, which differs as little as pos-
sible from the observed series.

The simplest way of smoothing is the graphical method; but
this gives no great accuracy. A far better method is that of the
means in which, writing f (xi) for the smoothed value of y (x;), we
put for instance

Hx)) = iifl_ (¥ (x—kh) + y(x—kh+-h) + . . . .+ ¥ [xitkh)]

The best method of smoothing is that of the least squares.
According to this method, to obtain the smoothed value of y (xi),
let us consider first the points of coordinates x,y(x) where

x:x,—kh, x,—kh+h, oo uy x,'+kh.

Then we determine the parabola y—f(x) of degree n which
is the best approximation of these points according to the prin-
ciple of least squares. Finally f(x;] will be the required smoothed
value of y (x1). This will be repeated for every value of i consi-
dered.

Proceeding in the usual way this is complicated, but when
using orthogonal polynomials then the parabola of degree n
approximating the given points may be written

(1) Hx) =¢, +cU,(x) +.... + c,Unlx)
where according to the notation of § 139 we have N=2k--1;
a=x;—kh and b=x+kh +h
and therefore
x; = Yo(a+b—h) = a + 14 (Nh—Hh).

But we have seen in § 140 (formula 2) that

) Uspo “+’2’—_” ] —o.
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Moreover, according to formula (13) § 140 we find

U.l,,,{a + N"Q_" | = Conbtm(—1)m [2,;") lkjn'l" :

Since in consequence of formula (3) § 142 the coefficient
¢,n in the expansion (1) is equal to

__[(4m+1) 6,,

Com = n N4+2mY

hence 7{x;) the smoothed value of y(x;) will be

k+m
Hx) = :Elo (—1)" (4m +1)(m] [2k+21n-lj—2]m O -

To abbreviate, let us write

Fam = (—1) (4m_-1)[2”’][‘+m /t2k+1+2m

2m

The number y.n could be easily computed by aid of a table
of binomial coefficients; but the following table gives y,, up to
parabolas of the tenth degree and up to N=29 points (k=14).
The calculation of f xi) is now very simple:

n+-1

(3) flx) = 20 Yom Ozm
all we need is to compute the mean orthogonal moments &,, ,
and f(x;) will be the smoothed value of y(x;) obtained by aid
of a parabola of degree 2n approximating N—=2k-1 points.

Remark. 1t is useless to consider parabolas of odd degree,
indeed in consequence of formula (2) a parabola of degree 2n
will give the same smoothed value as would a parabola of degree
2n-+1.

In the next paragraph an example will be given.



© 3 a1 w Z

11
13
15
17
19
21
23
25
27
29

Ve

-1
-1.42857143
-1.66666667
-1.81818182
-1.92307694
-2
-2.05882353
-2.10526316
-2.14285714
-2.17391304
-2.2
-2.22222222
-2.24137931
-2.25806451

Table of the numbers Jup.

Va

0,428571429
0.818181818
1.13286713
1.38461538
1.58823529
1.75541796
1.89473684
2.01242236
2.11304348
2,2
2.27586207
2.34260289
2,40175953

1l

—0,151515152

-0.363636364
-0588235294

—0.804953560

-1.00619195
-1.18993135
-1.35652174
-1.50724638
-1.64367816
-1.76739587

-1.87986652 .,

-1.98240469

Vs

0.0489510490
0.141700405
0.263157895
0.400457666
0.544622426
0.689855072
0.832583708
0970708194
1.10307749
1a22914349
1.34873583

V1o

—0,0150036437
-0.0508816799
—0.106851528
-0.179405034
-0.264467766
-0.358311167
-0.457842047
-0.560622914
—0,664792712
-0.768962511

6SP
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§ 144. Computation of the binomial moments. In the
preceding paragraphs we have seen that in the calculus of
approximation and also in that of graduation, knowledge of the
binomial moments is needed. C. F. Hardy** gave a very useful
method for the determination of the binomial moments, which
dispenses with all multiplication and may be executed rapidly
by aid of calculating machines.

If y is given for x=a--£h, where £=0,1,2,..,, N—1, then
the binomial moment of y of order m is given by

x (g
Fu= % ().

The method consists in the following: Denoting by y(S)
the value of y corresponding to £ ; jn the first column in a table,
the values of y(E) are written in the reverse order of magnitude

of £, that'is
y(N—l)vy(N—z)l"' -y(I),}’(O)-

In the first line of every column we write the same
number y(N—1). Into the v -th line of the u -th column we put
the sum of the two numbers figuring in the line »—1 of column
4, and in the line » of column pu—I1.

Therefore, denoting the number written in  the line » of
column y by @(».u), the rule of computation will be

(1) @ h-4 = ¢ (v—1,4) + ¢lu—1).

The solution of this equation of partial differences of the
first order, by Laplace’s method of generating functions (§ 181,
Ex. 5) is the following:

r+1 ) Al —i .

The initial conditions are satisfied; indeed for y=1 we get
¢(1,4) =y(N—1). Putting into the formula obtained v=N—p-}2
and i=N—} we get

% G. F. Hardy, Theory of construction of Tables of Mortality. 1909,
London; p. 59 and onwards.
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Ny
@(N—u+2,4) = ;I.“iz ] Y(£).
gl
Therefore the number figuring in the line N—u--2 of
column g is equal to the binomial moment of degree u—2. Hence
if we want the binomial moments &% ,, &&,, . . , o%,, then we
must compute n-+1 columns. The results obtained give by aid of
formula (4), § 141 the corresponding mean binomial moments
g
Remark. If we put v=N into formula (2) we get the
following moments

oW Xp—2
p | ‘uil|~2 y(x)

x=n

that is the numbers in the last line of the table arc equal to these
quantities.
Example. Given the following observed values:

x=a, y=2502 x=a-+5h, y=2904
x=a+th, y=2548 x=a+46h, y=3064
x=a+2h, y=2597 x=a+47Th, y=3188
x=a+3h, y=2675 x=a+8h, y=3309

x:a+4h , y=2770

The graduated values of y corresponding to x=a-4h are
to be determined corresponding to nine-point parabolas of the
second and of the fourth degree.

To begin with, we shall first determine, by aid of the
preceding method, the binomial moments %, ei)’“ Cy e, a%’*, For
this purpose we write in  the first column below the values of
Y in reverse order, and in  the first line of every column wc
put the last value of y; the other numbers of the table are
computed by aid of rule (1).
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3309 3309 3309 3309 3309 3309
3188 6497 / 9806 13115 16424 19733
3064 9561 — 19367 32482 48906 68630
2904 12465 31832 64314 113220 181859
2770 15235 47067 111381 224601 406460
2675 17910 64973 176358 400959

2597 20507 85484 261842

2548 23055 108539

2502 25557

The last number in the second column is equal to =%, .

hence
g == @J’fo / 9 — 25557 /9 = 2839.6667.

[

The last number in the third column is equal to -%,, therefore
Iy = ﬁ/'gl = 108539 [ 36 = 3014.9722,
The last number in tbe fourth column is +%,, so that
G = F, [g) — 261842 | 84 — 3117.1667.
The last number in the fifth column is %, therefore
Iy = by / 21:1400959 /126 = 3182.2143.
Finally the last number in the sixth column is <#,, hence
G = <%, | 3{2)406460 | 126 — 3225.8730 .

Now by aid of formula (6) § 141 we may compute the
mean orthogonal moments. We have

6, = J, = 2839.6667 ; 6, =2, 3 J, + J, = 29,08335
0, =149, — 35, + 30c%, — 10J, + &, = — 10.33148.
Thbe required graduated values will be
f(a+4h) = 0, + 7,0, = 2786.78783
f, (a+4h) = 6, + 7,0, + 7,0, = 2775.0837.

and
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The constants ;» and y, corresponding to N=9 (nine-point
parabola) were taken from the table of § 143; we found

v, = — 1.81818182 and v = 1.13286713.

2=

§ 145. Fourier series. A function f(x) of a continuous
variable x, with limited total fluctuation in the interval a, b may
be expanded into a Fourier series.

Let us write

2:m(x—a) + 2zm(x—a)

« « kel .
(1) f(x): —20_+ b urllcos—_bT .mzl [""sm_ﬁ

m=1
The determination of the coefficients a,, and f, is simple

in consequence of the orthogonality of the circular functions.
Indeed we have, if m == u

v
' cos 2am (x-a) cos —Z'll—-(f:a)— dx =
& - b - - a b—a
21
b -

=2 _ | %osms cos usdi=9
2=
where =27 (x-a) / (b-a) has been put, In the same manner
we should have
21 m
, sinm$ sinué di =0 and [ sin m¢ cos ué di = 0.
0’ v
The last equation holds for every integer value of m and u.
Moreover if m is different from zero, then
2 N b 2
am(x—a) * —a 9 e gs
cos 2im(x—a) * 4 _ b—a f cos’mi di = 14 (b—a)
o b—a 27

and in the same way

21m (x-
Therefore, multiplying both members of (1) by cos %

b

sin %"a_"] Cdx = 1, (b-a).

a

we obtain, after integration from x-a to x=b:
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b

2 271m(x—a)

(2) ap = b:‘&":[ fx)  cos—p=— dx
2- .
in the same manner, multiplying by sin 7’;:_(;‘—‘1-}
integrating, we find
b

2 ' . 2am(x—a)
2 Bn =+ f(x) sin =—2~—— dx.
CHECS —

Putting these values into (1) we obtain the expansion of
f(x) into a Fourier series.
Approximation of a function f(x) of a continuous variable

by a Fourier series of 2n+1 terms. Let

o) 2am(x—a)
x = L a cos———— +
[4) f) ( ) ./2a(] +m£l 4 b
nii . 2am (x-a)
G

+ m% ﬂm S b—'a

=1

The coefficients a, and f, are to be determined so that
according to the principle of least squares

b
(5) o= | [Hx) —h(x)]*dx

shall be a minimum. Putting into it the value (4) of f,(x), the
equations determining the minimum will be

8e” E4
Bar = 0 and W =0

This gives 2n-+1 equations which determine the coefficients
tm and B . It is easily seen that in consequence of the ortho-
gonality we obtain the same values as before in (2) and (3).

From this we conclude that, expanding f(x) into a Fourier
series and stopping at the terms a, fr we obtain the best
approximation attainable by aid of these terms.

Putting into (5) the value (4) of f,(x] we get in consequence
of the orthogonality and of the equations (2) and (3)

i n$! o  b—a
&= | [1(x)]* dx — V3 (b—a) T (ant ) — g a0*

and
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Example. In the calculus of probability and in mathematical
statistics a function f(x) of a continuous variable is often
considered, in which f(x) =y; i1s constant in the interval
a+¢h <x< a+&h+h; and this is true for every intetrval h,
though the y, generally differ from one interval to another.
For instance, f(x) is the probability that the number of the
favourable events does not exceed x.

This function is a discontinuous one; but since the total
fluctuation is limited, therefore it is representable by a Fourier
series. Putting into the formulae above b=a-Nh, we find

2 X a8k 2am(x—a)
= - X y: _
bn=TJp 5 ¥ vh o 9x
> a3
a n d D ( )
1 ¥ tmé 2am{s+1
= — 2 I3 T — v —
Bm =, ¥: [cos N cos N |
finally v (2541)
2 . ma . am{2541)
Pm=_— sin EEO y; sin N
In the same manner we should have
2 mn X ma(25-41)
= gin— 2 y. _,
Un = = sin T 2 y: €0s N

§ 146. Approximation by trigonometric functions of dis-
continuous variables. Let us suppose that the numbers y(x) are
given for x=a+£fh and £ =0, 1,2,..., N-L

A function f(x) is to be determined which gives for the
above values f(x) =y (x). This will be done in the following
manner :

Starting from equation

g 2 2am(x—a
(1) f(x) = lhay + m2=1 {ﬂmsin _iﬂ]‘(_l%—_ﬂ] + «,cos —1——%—4)]

where n 1s the greatest integer contained in N/2, the coefficients
a,, and B, are to be determined so as to have
fla+th) = y(a+&h) for ¢6=0,1,2,...., N1l

If N is odd, N==2n4}1, then this gives N equations of the first
degree with N unknowns to solve; if N is even, N=2n, then the
30




466

number of the unknowns is also equal to 2n, since then the term
fansin2aé vanishes for every value of & The resolution is greatly
simplified owing to the orthogonality of the introduced circular
functions established in § 43.

Remarking that 2m+1< N and 2u+1 £ N, the formulae
found there will be, writing in order to abbreviate &={x-—a)lh
if m is an integer different from u:

¥ s L 2am 27
b} sin&.'-—rﬂéisinzl =0 and Ros * {:OS 7‘u5: 0
=0 N N £=0 N N
and for every integer value of m and g,
¥ o 2auf 2nme
EEO sin —p—  cos = 0.
Moreover,
X ,2wm¢ X, 2amé N
‘2) SEO cos N - ;;Eo s N T 2

To determine the coefficient a,,, let us multiply both
22m (x-u)
Nh
x—=a+Nh; then in consequence of the formulae above we find

a+Nh 2am (x-a) at Nk , 2am(x—a) _ N «
- T T — T m

) = a, c
2 cos —py . 2 Nh 2

members of (1) by cos and sum from x==a@ to

since the other terms vanish. Finally we have

(3) a, = -N— XE y(x) co —NE

(4) Bm = v y(x) sinN—h.

Putting (3) and (4) into equation (I) the problem is solved.
Approximation. y(x) is given for x=a-+%h and é=0, 1,2,
...., N-1. A function

n+1
(5) f(X) = 322 + 3 ﬂm sin Zﬂm(x;__a_) + ay cos 2am (x_a)

m=0. Nh Nh
where n < 14(N—1), is required so that it shall be the best
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approximation of the given values, according to the principle of
the least squares, that is, which makes

0 #="% pe)—y@

a minimum. Therefore the coefficients a,,, and g, are determined
by the following equations

9 0"
aam _ 0 a n d ﬁm = 0
this gives the necessary 2n+1 equations to determine the
coefficients.
Putting into (6) the value of f(x) given by (5) we obtain
for q,,, and §,, the same expressions as before, (3) and (4).
Moreover from (6) we deduce, in consequence of the

crthogonality by aid of equations (3) and (4), that

M = per— ¥ a2 E s,

Formula (5) may be useful for detecting some hidden
periodicity of the numbers y(x).

§ 147. Hermite polynomials. In the general case this
polynomial of degree m could be defined by*®

H, = e¥* Dme—14)
but it is better to do it in the following particular case, in which

the formulae are the simplest, and which is very suitable for
approximation purposes, by aid of the probability function.

(1) H, = H,(x) = ¢* D™[e—77?] .
This may be written
(2) Hm = Am'mxm + A,,,,,,,_lx""l + e+ Am,o

where the coefficients Am; are independent of Xx; moreover from
(1) it follows that

35 Tchebichef, Sut le dévelop spnent des fonctions. 1859. Oeuvres 1. p. 505.
ermite, Sur un nouveau Igveloppement en série, Compte Rendu 1664.
Markoff, Wahrscheinlichkeitsrechnung, p. 259. 1912.
Moser, Jahresbericht, Band 21, p. 9.
CR. Jordan, Probabilité des Epreuves répétées, Bulletin, Soc. Math.
de France, 1926, pp. 101—137, — Statistique Mathématique, Paris, 1927.
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D" e-*2=p e H,_,]
multiplying both members by e**? this gives
Hm = DHm-l _me—l

writing by aid of (2) that the coefficient of x! in both members
is the same, we get the following equation of partial differences:

3) Ami = (i+1]Am—1Ai+1 —An_ig -
According to § 181 the conditions
A, =1and A,; =0 if i > m or i < 0.

are sufficient for the determination of the coefficients A, ;.
Indeed, starting from these values a table of the coefficients
may rapidly be computed by aid of (3):

m\i 0 1 2 3 4 5
0 1

1 0 -1

2 -1 0 1

3 0 3 0 —1

4 3 0 -6 0

5 0 -15 0 10 0 -1

Therefore we shall have
H,=1, H —=—x, H,—x>—1, H,——x343x, H,—=x'—6x>+3

To obtain Ay in a general form it is better to solve (6'), and get

n
Anner = (—1) | ,.] Ao
Moreover, putting x==0 into (7) to find

Apirg = 0 Agy =(—1)'1.3.5.... (2v—1) :(“_713’2'@!‘

r ___1]m+rxm-—2v
H —ml At e
4) m=ml 2 T m—2)12

where r is the greatest integer contained in (m+2)/2.

Mathematical properties of the Hermite polynomials. From
(1) we obtained above



469

(5) DH, = H,,, + xH,.
On the other hand, by aid of (4) it can shown, that
(6) DH, =- nH,,
that is
(6" iAi=—nAn, 1,

This is another difference equation giving the coefficients Am;.
From (5) and (6) we may deduce immediately the function
equation of the Hermite polynomials.
(7) H,,, +xH, +nH, = 0.
The second derivative of H, obtained from (5) is

D*H, = DH,,, + H, + xDH,

finally by aid of (6) we get the differential equation of the
polynomials.
(8) D:H,—xDH, + nH, = 0.
From (6) it follows that
) [ Hax = —Jl% v
and from (1) ifn2 1

(10) | He—=R dx = H, e =2 4 C.

Orthogonality of the polynomials. It may be shown by
repeated integration by parts, if n &= m, that

T HH,e—* dx = 0
(11)
J' (Hp)2e %2 dx = ml VE;

Remark 1. Determining the polynomial Z(x) of degree n, in
which the coefficient of x" is equal to (—1)*, and which makes
minimum the quantity

LJ
| 1Z@)2e"dx
—

we find that Z(x) = H,(x).
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Remark 2. The roots of the equation H,(x) =0 are all real

and are included in the interval -2 V; and 2 V;

Expansion of a function into a series of Hermite functions
H.e*?, If a function f(x) and its two first derivatives are
continuous and finite from —o to %, and if

F(x~)=0 D+ >) = 0O, D (x>) =0
then f(x) may he expanded into the following convergent series:
(12) 0 = [eote,Hy+ eHy + ., ] e=7R,

Multiplying both members by H, and integrating from —» to
® we find, in consequence of the relations of orthogonality (11),

(13) Cn = - 1 — ‘.°° H,f(x)dx.
m!VZﬂ —o

To obtain the integral contained in the second member, let us
introduce the power-moments of the function f(x) by

A, = j'm xf (x)dx.

-0

Replacing H, in (13) by its value (4) we obtain:

— L s (=) Sy
(14) €m = V2= S0 Hm—2) 2
Particular cases:
L TV
sz /2= 2|/2=
1 1
€ = —F—== [Ml—‘ﬂa] = —— [3"“0—6“412-}_7”4]
6l2= 24 |/ 2=

L R ']

Example. Expansion of x" into a series of Hermite poly-
nomials; that is, x"e—*72 is to be expanded into the series (12).
Hence the coefficients will be

1
m! sz —x

Cm = ‘ x"Hme =12 dx.
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By m times repeated integration by parts, this gives, taking

account of (10),
n
___L(m] J XM e—x¥2 X,

Cm —
VZ'K —®

From this it follows immediately that ¢,=(—1)"
Moreover, integration by parts shows that ¢, ,_,=0. To
obtain ¢,_,; let us write the above integral in the following way:

nw ‘G

| —x#1 (—x e~ dx = (2i—1) | x2~2g —*2 gx.
-_— —_-x
We repeat this operation till we get

©

1.3.5....2i-1) | e™dx=1.3.5..,.@2i—1)} 2=

—_—®

Finally it results in

SN . __(=1)"n!
Crni = (—1) [21.]1 3.5, @)= 5
and

" TR
(15) ¥ = =0l 2 )T

Particular cases:
x=—H, x*=H, + H, x¥=—H,;- 3 Hy,
Integration of a function expanded into a series (12).
According to (10) we get
p

|' f (dx = ¢, l e~ dx + o—¥N2 s el (R) .
™ . 1

- m==

-
We have seen (formula 14) that in the expansion of a func-
tion f(x) into a series of Hermitle functions, and stopping at H,,

£, = |co+ e Hy+. . . cH,] e=2h

the coefficients ¢, are determined by aid of the moments oA, ,
Hy,...,H, of the function f(x), Let us show now that the first
n+1 moments of f,(x) are the same as the corresponding
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moments of f(x) ; and therefore f,(x) is an approximation of f(x)
according to the principle of moments.

To obtain the moment of order m of f,(x) let us multiply
f,(x) by x™ given by formula (15) ; we find

(—1)"m! c, .
xl"f" ( X ) oot EE‘UWT.H”’-Q" H"e-— 22
Integrating from —ce to °°, in consequence of the ortho-
gonality (11) we get

(—1)™ ! €y | 22
il 2

=

Putting into it the value of cn_o taken from (14), it gives

(_l)s m! 'ﬂm—-zi«gs .
22 il sl 20s(m—2i—2s) I’

writing i4-s=pu:

] m! ‘J{m—z'l a1 n
- M2 ¥ (—1)¢ (' l.
2 wrmamt 2 T s

The second sum is equal to zero for every value of i except
for ©=—0; but for ©—=0 the preceding expression is equal to I,.
Consequently, «#, the moment of order m of f(x), is also a
moment of f,(x). Q. E. D,

Numerical evaluation of H,(x)e *1 /Vi Since there are
no good tables giving the derivatives of the probability function

e—x"2
2= —=

V2=

we have to compute H, , (X) (formula 4) and multiply the obtained
value by z taken from Sheppard’s Tables.t52
Particular values .

(—=1)"(2m)!
 mi2m

Hymy, 0 =0 H,, (O] =

. 152 K. Pearson, Tables for Statisticians and Biometricians, Part 1.
(Table If). London.
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§ 148. G. polynomials.*® Let us denote by y(mx) the
following function introduced by Poisson, when he deduced his
formula of probability of repeated trials:

ms
(1) v =y(mx) = 5 e
Let the definition of the polynomial G, (X) of degree n be
Dy (m.x)
(2) G, = Gulx) = o)

where by D the derivative with respect to m is understood.
Deduction of the polynomials. We have
Aw = l m ——1] Y.

In § 6 we found the following formula for the n -th difference
of a function

At (x) = fo (—1)f (7] f lepn—i;

therefore,

pyme—n) = 3 1) (7] wima—i).
Moreover

D y = wlmx—1) — plmx) = — Ay(mx—1).
Hence )

"y = (1) Amp(max—n)
and finally
) Gute) = I Ay (m—n).

(m,

In consequence of what precedes this gives, if we introduce
?he variable y=n—i, this gives

n! il x m
4) G,(x) = ﬁﬁ%‘ (-1)” ( n—w) 1"

% Ch. Jordan, a) Probabilité des Epreuves répétées, Bulletin de la
Société Mathématique de France, 1926, pp. 101—137.
b) Statistique Mathématique. Paris, 1927, pp. 36—40, 99—102, etc.
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Par ticular cases:

G,=1
6,00 = 5[[3] -]

G = :1—'2 |{;) - %[f)* rg:}

G = 5 |(5) -5 (3] + 5 () - 5]

Particular values of the polynomial. From (4) it follow>

immediately that
G,(O) = ('—'1]"
and
(—1)"n! n§1 m’ .
n y=0 V!

G.(—1) =

We get an important particular value of G,(x) by putting
into (4) x=m:

, n! . m Ym
(4) G,(m) = % :,(-EO (——1] n__v) il
or by putting into it [u,:n—r

(m)y
_. 1)n+u
Gulm) = 5 (1) (1) 2

therefore according to § 6 we have
(m),

G(m)_ An-

1==0
Expanding the factorial into a power series we obtain

-1
(m), — '2 S: m—

m i=1

writing in it k=u—i
My _ & Gut i
m.lt k=0 l“

Hence we may write

0
G,(m) = A" | kEO m=* 87 =
1 = N
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According to formula (5) § 52 we have

} .
et = .’=20 Ct,-’[g]:_i];
from this we deduce
f%" S¢~]i=0 = Ci. gt—n
and finally

o 1
(4"] G,(m) = 2 Ck,ik-—u'_k '
k=r m

where r is the greatest integer contained in (n+1)/2.

The numbers C,, may be computed by aid of the difference

equation (4) of § 52, or taken from the table of this paragraph.
Particular cases: + G, (m) =0, G,(m) =-1/m, G,(m) =2/m?,

G,(m)=3(m—2)/m3, G,(m) =4(6—5m)/m* and so on.
Mathematical properties of the G polynomials. Starting from

(2) we deduce, if Ax=1,

Applying Leibnitr’s formula giving the n -th derivative of a
product (§ 30), we obtain

n
(5) ‘?G9 — -’—Tl_ G, .

In the same manner we may deduce from (2)

mD"*':w—(x—-M)"P"w

EG" h my
that is,
(6) DG, = Gnﬂ_‘—;ﬂ G..
From (5) it follows that
(7 AG, = n—-}"—l_l G, + k.

Moreover, by aid of (3) we find
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B A'Gixlwimx) = (1) Amplme—n) + b =
=— G, (x-1) y'(m x—1) tk
Since
mie™ & m*  _ m',
P! e (=) T

b ’l‘] w(m,x) =

therefore from (4)

* n! +1 \ m» x
3G wimn = o Ty () yma

and finally

n| n+1 m* mn-v n+1 n ]
—)p — —— = X (1) —
,Eo Gy =m 2 15 (n—)1 Z =1 [” 0
so that .
9) 2 Gy = 0
x=0
if n>0.

Orthogonality of the polynomials. The operation of sum-
mation by parts gives (§ 35)

8 [(3)- Gutwima | = = (7] Gosle—t1wima—1) +

+ 1|2y ) o wwima) |

It is easy to see that

(10) hm ( )y}[m,x) 0
indeed
m % m* _ em mi m.\'-i
A U il (x-i) !
and
. m.\"l
) R

From (10) it follows in consequence of (4) that

(11) hm l ] G,y =0.
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Therefore

@®

5 [[T] G,,(x)w(m,x)]: =

x=={ x=f—

( i1 ) G, (x)w(m.x)]

continuing in this manner the first member will be equal to

(12) EO Go_i(x)y (m,x).

But if » > :then this quantity is equal to zero according to
(9). So that we have

(13) Eﬂ (?]G,,qﬁ:O it a>u

f-fence if P, is any polynomial whatever of degree ¥ and if
n > y then

(14) PGy =20
and in particular
(15' 2 GnGv Y= 0 if n #:'V.

This is the relation of orthogonality of the polynomials.
Putting into (12) n=i we get
-

— om 3 E:l.
2 ylmx) = e E.ox!

2==0

Therefore
® (x
(16) z (,,] Gy =1.
Finally, if » < i then from the preceding it follows that
5 (o= 5 [

x=0
since the second member is equal to

min ® mxitn mi-n

(i—n)! ,3_1 e (x—itn): - (—n)!"

Therefore
5 (*lG,w =
an £ (flew = &

lf i>n.
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Since, according to (4) the coefficient of{ ;] in G,x) is
equal to n!/m" therefore from (16) it follows that

(18) 2 (G =2

Expansion of a function f(x) of a discontinuous variable
(x=0,1,2,..., N—1)into a series of functions G, ¢(m,x). That is

(19) fx) = [eo+ €,G, +€,G, +. .. .. |y (m,x).
To obtain the coefficients e, in (19) let us multiply both
members of this equation by G,(x), and sum from x=0 to x=x<;

this may be done, if we put f(x) =0 for every integer value of

x such as x & N. In consequence of the orthogonality (15) we
shall have

3 F(x)Galx) = € 5 [Gal?y;
x=0 x=0

hence according to (18) the coefficient ¢, will be

n 3

(20} Cn 20 G, (x)f(x).

= n! —

This may be transformed by putting into it the value of G,
given by equation (4). We get

_ nt+1 . m™ [ X )

€ = :Eo (_1)‘ ‘i—! :(EO n—i f(x)

finally introducing the binomial moments #, of f(x) we find
n+4-1 t

(21) i = & (—1) —’:l, z., .
=0 .

Knowing the coefficients ¢, the expansion (19) is determined.
But in consequence of (3) this equation may be written in
another manner:

22) Ha) = £ ()76, Avplmx—n)

Remark. We may dispose of m so as to have the coefficient
¢, in the expansion (19) equal to zero. For this we shall put

¢, = & —m F,=0.
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Then m will be equal to the mean of the quantities x; m= 48,/ %,.

Example 1. Expansion of into a series of poly-

n
nomials G,

(23) [xlzco-}-chl-{— ¢,G, +....+¢Gn.

This expansion is identical with that of [ ) y(m,x) into a series
(19). Therefore the coefficients ¢; may be determined by aid of
(21); but owing to formula (17) there is a shorter way. Indeed,
multiplying (23) by G,. ¥/(m,x) and summing from x=0 to x=o
in consequence of the orthogonality we find:

Eo [;] G.y(mx) =

Equalizing this result to (17) we have

_m" (n
- &)
and finally

(24) (Z‘)—Tlm( )6..

n!
From this we may deduce the binomial moments of a func-
tion f{x) expressed by (19). Indeed, multiplying (24) by f{x)
and summing from x=0 to x=9% we get by aid of (20)
. n+41 n—v
(25) B =3¢ B
—0 (n-v) !

Sum of a function f(x) expanded into a series (19). Starting
from (19) we may determine A™'f (x) . For this purpose let us
remark first that for x=0Q the quantity (8) will be equal to zero.
Indeed we have

¥ (m,-1) = 0.
This is readily seen if we write w{m,x) in its general form
p(mx) = e™ m*/I' (x41)

the denominator is infinite for every negative integer value of x.
Moreover, according to formula (3) § 18 we have
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i+t
b w(m,x] = 1—1(u,p)
=0

where I(u,p) is the incomplete gamma function; p = i and
Finally we shall obtain by aid of (8)
a+1 . w
(26) Eof ( x ) =co[1=—I({u,p)] — ’P(m-/l)lE CnGn—l (4).
x== n=

We should have obtained this formula starting from (22);
indeed we have

A-" Hx) = c,A'yp(mx) + 5 (—1)"e, A" 'p(m,x—n).
x X n=1 x
This leads to the following result
A+1 @
) Ef® = ali—lwp)l+ 2 (1) A yimiti—n).

The integral with respect to m, of a function expanded into
a series (19) may be obtained in the following way:
From (2) we deduce

(28) DIGw] = Gy, v

therefore it follows, if n > 0, that

(29) | Guydm =G,y + £
em (nl) ! = , X mx ity
Gy - 0V 5 oy [, T BT

Therefore, if m=0 every term of the second member will vanish
except that corresponding to »==n—1-—x; so that we shall have

| Goatlao = 1y 7).

Id x > n-l this quantity is equal to zero, then from
(29) it follows that

2
(30) | G, (mx)y (mx)dm = G, (hx) v (1.2)
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Moreover we have

e m*
I'(x+1)
where I(u,p) is the incomplete gamma function (2, § 18) given

in Pearson’s Tables (loc. cit. 15)}; p = x and u = 4/ Vx-{-l.
Finally it results from (19) that
A

62 [ ream = el@p) + 3 eGuy(a)plha)

0

i 2
(31) _f w(m,x)dm = | dm = I(u,p)
o 0

if x> n—1.
Approximation of the function y(x) given for x=0,1,2, . .
N-1, according to the principle of moments by aid of

’

fio) =g + CIGI + czcz + ...+ cGaly(mx).

Putting y(x)=0 for x 2 N, let us show that the coefficients ¢
corresponding to this principle are the same as those obtained
by the expansion of y(x) into a series of G »¥ (m,X) function&
when stopping at the term Gy,

According to (25) the binomial moment of f(x) of order s

is equal to
i l—r
By = § € ———

(s-v) |
moreover ¢, is given by (21)

|+1 mi
¢ —o (-1)° ﬁ—@?’—i’

Where %, ; is the binomial moment of y(x) of order »—i.
From these equation we conclude that
(___l)imsﬂ"v

= 23 l‘! 75;_[})—]-(’ —

Writing s-4-i—v=u we find

= s+1 m# u+1 ; P-)
F= 3 43 ),

The second sum is equal to zero for every value of u except
for u=0, and then we have

31
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B = o,

for every value of §=0,1,2, ., ., n. Therefore the corresponding
n+1 moments of y(x) and f(x) are the same. Q. E. D.
Remark 1. If we determine the coefficients ¢; so that

S = §_Lf T(X) —y(x) PPly(mx)

shall be a minimum, we find again the same values of ¢; as
before. Moreover the minimum of & will be equal to

S 3 2 sl
= ly(x)]¥yplmx) — 5 2 2
x==0 = m

Remark 2. Among the polynomials P, of degree n in which

the coefficient of (:I is equal to unity, the polynomial which
makes

% Py (max)

a minimum, is equal to m" G,/n! .

Computation of the numerical values. The function f(x) is
expanded into a series of Gpyp(m,x), or into a series of
A'yp(m,x—n) and f(x), corresponding to a given x is to be
determined. Since there are no tables of Gy (m,x) nor of
A"y (m,x) the computation of f(x) by aid of the preceding
formulae would be complicated. To obviate this difficulty there
are two ways:

A. We may start from

v (m,x) G, = (—1)"A"y (m,x—n)

and express the differences contained in the second member by
the successive values of the function (§ 6). We find

#1 n i
Guy(mx) = 'Eo (—1)+ (,) w(m,x—i).
Putting this into formula (19) we get
x+41 . ) (n
(33) fx) =% plmx—i) 2 () (7)e,.
=0 n=0

In the same way from (26) we obtain
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(34 1w - et~ -

+ 3 pmi—i) S (—ym (”Tl) ca.
=0 —

By aid of Peurson’s Tables (§ 18) giving y(m,x) the values
of f{x) may easily be calculated. I(u,p) is computed by aid of
the tables incomplete I" function (§ 18); but if 4 is small and if
the value of m is contained in the table of the function y, then
we may determine

i+
l_l(u!p) - 2 L4 (m,x)
x=—0

by adding the corresponding values of .

B. There is still a better way to compute the function f{x)
corresponding to a given value of x. Indeed we may start from
(4) and write

n+1 " Q_l.)i x
6 = % e 2 (3)

then formula (19) will give

) oo =yima T S (F]E e e
and (26)
A1
136 2w - el | -
A
cowmh) 2 L By,

The coefficients o.{:: J are rapidly calculated, and there is

only one value of y to be determined by the table; this is
important in cases when y(m,x) is to be determined by inter-
polation.

Example 2. Let us denote by P(x) the probability that an
event shall happen x times in n trials, if the probability of its
occurrence is equal to p at each trial. The formula of this
probability was given by Jacob Bernoulli:
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P(x) =(§]P"q""‘

where g= 1—p. This is to be expanded into a series (19). In
order to obtain the coefficients ¢; we must first determine the
binomial-moments of P(x). We have seen in § 136 that if u(f)
is the generating function of P(x) then its binomial moment of
order i will be equal to

=1

il

And since the generating function of the given probability is
(g+pt)", therefore we shall have

7 = (1) ».

Finally the coefficient ¢, of the expansion will be (21)

To simplify we shall dispose of m so as to have ¢, =0 for
this we put m= &%, /65, or m =np. This will give in consequence
of formula (4):

n

’%L_l ni
j—— ¥ i
c=p 2 g7 e

¥

) = %IE’IG,. (n,n)

where G, (n,n) signifies the particular value of G , corresponding
to m=n and x=n. Finally from formula (4”) we get

¢, = (_r:,p% kE; Crae—,n*.
Particular values. By aid of the table {p. 152} giving the
numbers Cm, we find:
c=1; ¢,=0; c,=—Y%np* c,=np3
c, = (n—2)np*8; c;=—(5n—6)np?/30; and so on.

Writing m=np the approximation of the second degree
given by formula (35) will be
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)

P(x) - y(np,x)[cq—c,4c, + (cl—‘zcz) =+ - n°p ,2‘-‘2]

and putting the above values into it we obtain

a 1
P(x) = w(np,{l 1—l4np® + px- ﬂ’z‘]]
Particular case: n=10, p:1/3 and x=5. We find
P(5) =~ 'l ‘5) == — (0 122339) = 0.135932.

The exact value would be: 0.1366.
In the same manner an approximation of the fourth degree
given by formula (36) is

i+t
x§0 P(x) = ¢ [1—I{u,p)] — y(np,}{c, --cz-{—c:;—c* +

)

i" - (c2——2c3+3c4) + =5 (2¢,—6c,) + \3’ 6c, .

Particular case: n:10, p=1/3 and A=5. The value of
I{u,p) is computed by aid of the table of the incomplete I' func-

and g— b = == = 1.360198.
/1 3V6
Interpolation of the third degree gives

I{u,p) = 0.1209823.

tion (§ 18) putting ;:/1:5

In Pearson’s Table of the  function (§ 18) we find

") 13(—), 5] = 0.122339
(interpolation of the third degree). Since
c,=1, ¢ =0, ¢,=—5/9, «¢,=10/81, ¢,=10/81
therefore

6 2
3 1) = 087902 + (0,122339) == = 0.920%5.

The exact value 1s 0.92343.




CHAPTER IX.

NUMERICAL RESOLUTION OF EQUATIONS.

§ 14% Method of False Position, or Regula Falsi, The pro-
blem of the numerical resolution of the equation f(x) =0 is
identical with the problem of inverse interpolation of y=f (x),
when y=0,

The most important method of the resolution of equations
is that of the False Position. We have already used this method
in the inverse interpolations of paragraphs 131, 132 and 134,
with slight modifications.

Given the equation f(x) =0; if f(x) is a continuous function
in the interval a, b, and if f(a) f(b) < 0, then the equation will
have at least one root in the interval mentioned. If b—a is
chosen small enough, there will be only one root in it.

Let us suppose, moreover, that the function f(x) has a first
and a second derivative which do not vanish in the interval.
These last conditions serve only for the determination of the
error.

The curve y=F(x) will pass through the points of coordi-
nates a, f(a) and b, f(b). Let us consider the chord passing
through these points; it will cut the x axis in a point whose
absciss is x,. We have necessarily a < x, < b; x; may be con-
sidered as the first approximation of the root.

To obtain x, and the corresponding error 8, , we shall write
Lagrange’s linear interpolation formula:

fx) = E f(b) + gf(a) + V4 (x—a) (x—b)D2f (&)

where a < ¢ < b. Putting into this equation f(x) =0 we find

’



487

_(b—ata@_ _(b—a) 2 (E1:
W) X _C—p—F@) 77 @ /2 l—b) D)

neglecting the remainder we obtain x, ; the maximum 4, , of the
remainder will be equal to the maximum of the absolute value
of the error. Determining f (x,), there are two cases to be

considered :
First
fa)t(x,) <0

then, denoting the root by r we shall have (Figure 5)
a<r<x,
this will occur if Df (x) Df (x) <0.

Figure 5.

Putting into formula (1) b=x,, we determine x, the second
approximation of r and 8, the corresponding maximum of the
error. Necessarily we have @ < r < x,, and continue in the

same manner.

Secondly,
F(x,)f(b) <0

then we have (Figure 6)
x,<r<b

this will occur if Df (x) D¥ (x) > 0. We put into formula (1) x,
instead of @ and determine X, the second approximation of r.

We have
x,<r<b

and continue in the same way.
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It is possible to shorten the method in the following manner:
If we have obtained, for instance, in the first case the approxi-
mated value x; and 4, the maximum of error, then, since in the
case considered the error is positive,* we have

x,—6,<r<x,
and we may apply the method in this interval. Since 6, is con-
siderably smaller than x,—a therefore the second approximation
will be far better.

In the second case the error being negative we shall have
x; <r,< x, + 6, and we may apply the method to this interval.

Figure 6.

Example 1. Let us choose for our first example that of
Newton’s equation given by Wallis

fix) =x*—2x—5=0

which has been solved subsequently to 101 decimal places.”
Since f(2)=—1 and f(3) =16 therefore between x=2 and
x=3 there is a root; this must be determined- to twelve de-
cimals. It would be possible to put a=2 and b=3 and apply
the method; but remarking that f(3) is very large in comparison
with f (2), therefore the root will be near a=2. We may try to
put a=2 and b=2,1. Since f(2,1) =0,061 hence 2 <r <2,1.

* If x, is the obtained value for r then by error we understand the
difference x,—r.
7 J Wallis, Treatise of Algebra, London, 1685, p. 338.
Whittaker and Robinson, Calculus of Observations, p. 106 and p. 86
where 51 decimals are given. x=2.094 551 481 542 326 591 482, , . ., .
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Putting a=2 and b=2,1 we obtain by aid of formula (1):

01
X _ 2 + M_Z,OMZ....

The corresponding maximum of the error is also given by
formula (1); we find §; < 6. 107, Therefore

2.094 < x<2.095.
We repeat the operation, putting @ = 2,094 and b = 2,095.
If follows that
F(2,094) = -0.00615 3416
F{2,095) = 0.00500 7375.
Therefore from formula (1) we get
x, == 2.09455 134228. . .,

Determining the corresponding maximum of the error we find
0, < 2.107 hence we shall have

2.094551 < x < 2.094552.
Repeating the operation, starting from these values we obtain
#{2,094551) — —0.00000 53747 03234
£(2,094552) = 0,00000 57867 28439.
Formula (1) gives
x; = 2.09455 14815 4245,. .

The corresponding maximum of the error will be 8, < 2, 10723 ;
hence the problem is solved and we have

x = 2.09455 14815 42

exact to the last decimal.

§ 150, The Newton-Raphson method of numerical solution
of equations. Given f (x)=0 let us suppose that between x=a
and x=b there is a root denoted by r, and that

fla)f (b)<o0.

We will suppose moreover that f(x) is a continuous function
whose first two derivatives are different from zero in this
interval.
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We shall distinguish two different cases. First let
(1) Df(x) D¥#(x) < 0

(figure 7) then the tangent to the curve y=F(x) at the point of
coordinates a, f(a) will cut the x axis at a point x=x; such that
we have

a<x,<r<b

while on the contrary, the tangent at the point b,f () will not
necessarily cut the x axis in a point belonging to the interval
a, b

Since we want to consider x, as the first approximation of
the root #, it is generally advisable to start from the point a.f (a)
if inequality (1) is satisfied.

Figure1.

¢
[
o
!
-

An exception to this rule is the following. If Df (x) is large,
that is, if the curve y=F(x) is steep in the interval, then the
tangent to the curve at the point @,f (a) will meet the x axis
near x—a and therefore the approximation obtained will he not
much better than that of x=a; but in this case the tangent at the
point b,f(b) may cut the axis nearer to x=r, giving thus a more
favourable approximation. Hence, although the inequality (1) is
satisfied, we may start nevertheless from the point b,f(b) if
Df(x) is large.

Secondly (figure 8], if we have

@ Di(x) D*(x) >0

then, to obtain certainly a number x, belonging to the interval
a,b, we must start from the point b,f (b). This we shall generally
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do unless the curve is very steep, in which case we may obtain
a better approximation by starting from the point a,f(a).

Having found X, we compute f{x,) and determine the
tangent at the point x,,f (x,) which will cut the x axis at a point
xX=X,, serving as a second approximation of the root r. Then
we compute f(x,) and continue in the same manner till the re-
quired approximation is reached.

We shall proceed in the following way: First we expand
f(x) into a Taylor series.

3) F(x) = F(x,) + (x—x,) Df (x,) + Va(x—=x,) ? D*(x,+¢)
where 0 < § < x-x,, .

If we start from the point corresponding to x=a then we
put into this formula X,=a; in the other case we put x,=b.

Figure 8.

g
7

Xt

Omitting the remainder in formula (3) we obtain the equa-
tion of the tangent at the point x,f (%)} this will cut the x
axis in

F(x,
(4) x, =x,— Dg (;1) .
The corresponding error will be
. , . 2f £
(5) 6, = —V2 (x;—x,) _lef-xi‘;‘)jT—)

The second approximation and the corresponding error are
given by (4) and (5), if we put into these equations x, instead of
X, and x, instead of x,. Having obtained x, we continue in the
same manner till the required precision is obtained.
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Example. We will take again Newton’s example. Let
fx) =x8—2x—5 = 0.
There is a root between x=2 and x=3; indeed, f(2) = -1 and
#(3) =16. We have
Df x) = 3x" — 2

D (x) = 6x.

Since in the interval considered we have DFf (x)D*f(x) > 0
we should start, as has been said, from the point 3,f{3); but
since Pf (3) =25, the curve is very steep; it is advisable to start
from the point 2,f{2) where DF (2) =10. Since this is the second
case, we shall have a <r < x, .

Starting from xy=2, we find [ (x,) =—1, DF{x,) =10 and
therefore according to (4) and (5)

x,= 21, ¢, <7/1000.

Starting from x,=2,1, we have f(x,)=0.061, DF(x,) =11,23

and therefore
x,= 20045681, ..  [8,1<2/10°,

Starting from x,=2,09457, we obtain f (x,) =0.000206694976

and DF (x,) = 11,16167 0455 and therefore
x, = 2.09455 14817 26,  18,1<3/10",
§ 151. Method of Iteration, Given the equation F{x)=0,

let us suppose that it has a root x=r in the interval x,, x,4h.
If we write

and

fx) = f,(x) —#(x).

Then the root of f(x)=0 will be equal to the absciss of the
point in which the two curves y—F,(x) and y=F,{x) meet. We
will suppose that the decomposition has been made so that the
second curve is steeper than the first in the interval considered;
that is

1D, (x,) 1> 1D/, (x,) I

The method of iteration described below is applicable if it
is possible to determine the algebraic solution of y=Ff,(x) and
obtain x=g,(y). Then we start from the equations
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y=F(x) and x - ¢,0)
and put x, into the first equation to obtain y,=I (x,) ; then
putting y, into the second equation we get x, — ¢,(y,). This is
the first approximation of r. Since generally we have

lr—x,| <|r—x,

The second move is to put x, into the first equation and get
¥, , which gives by aid of the second equation x,, the second
approximation of the root. Continuing in this manner we reach
the prescribed precision.

Figure 9. Figure 10.

i
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X, X, X, * x, X, & %3

We may consider two cases; first, both curves are increasing
(figure 9), or both are decreasing, and therefore

Df,(x)Df, (x)> 0

in this case we shall have

Secondly, one of the curves is increasing and the other
decreasing (fig. 10), and therefore

Dfl(x) Df:_: (x]<0
and we shall have
%, <x,<x,<,...<r<..,.<x<x.

In the first case there is no simple way to estimate the
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error committed when stopping at the term x,; in the second
case since X,, <r < Xgn,, therefore the error is obviously less
than

| Xpn — Xgn,y |
Example. The equation
f(x) = x3—2x—5=0

has a root between 2 and 3, since #{2)f(3)< 0. Let us put

fi(x) = 2x+5 and f(x) = x3.
Our condition, that the second curve shall be steeper than the
first in the interval 2, 3, is satisfied. Indeed (first case)

Df,(x)=2 and Dhix) = 3x2
and therefore

Df, (x} > Dt, (x) in (2, 3).

The second condition was that it must be possible to solve
algebraically y=F, (x). We have

3
x = ¢(y) = Vy-
Starting from x,=2, the first equation will give y,=9, For
this value of y, the second equation gives x,=2.08. ., . The

value of x, put into the first equation gives y,=-9.16, and this
by aid of the second: x,==2.094, and so on.
The operations are given in the following table:

i X yi=f(x)) X, =@a (¥
0 2 9 2.08 ..,

1 2.08 9,16 2.094, , .

2 2.094 9.188 2.0944 .

3 2.0944 9.1888 2.09453 . .,

§ 152. Daniel Bernoulli’s method for solving numerical
equations. Given the equation with real coefficients:

(1) flx) =x"+ @y x" 1 +. ... +tax+a,=0.

We may consider this as the characteristic equation of the
following homogeneous linear difference equation
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(2 et+n)+a_plt+n—1)+ .. + ap(t+1)4ap(f) =0.

If the roots of the characteristic equation (1) are all
different, say x,, X, ..., X;, then we shall see (§ 165) that
the solution of (2) is equal to

vy = ex)f + )t L L+ oy

If we denote by x, the root whose modulus is the greatest,

then it results that

gt
3) lim —"’(M-t)’ =
CoXy Xy ! c,.x,,
e x1+-251—=l}-=, R [ ] .

o o - R C1(]

Hence if we determine @(f41)/¢(f) for ¢ sufficiently great,
we shall have the value of the root with the required precision.
It is easy to show that equation (3) holds even if the roots of the
characteristic equation are multiple roots. If some of the roots
of (1) were complex (except the root x, with the greatest
modulus), we should have the same result; but if x, were a
complex root, then, as the root conjugate to x, would have the
same modulus, the ratio (3) would not tend to a limit but would
oscillate.

To determine ¢(f) by the aid of (2) we may start from any
n initial values of this function, Let them be

YO = ()= (@Q2)=.... = ¢(n—2) =0 and ¢(n—1) = 1;

then the difference equation (2) will give

p(n) =—a,,

p(n+1) - —a, ,p(n)—a,,

¢(n+2) = —a, ,9(n41) —ar,p(n) —a,_4
and so on.

Example. Given the equation
x® + 5%4-5 = 0.

The corresponding difference equation is
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@) (t+5) + Sp(t+4) -559,(f) = 0.
We shall start from

0 =¢(1) = (2) = 9(B)=0 and ¢4 =1

From equation (4) we get successively

t 0 1 2 3
o(t45) -5 25 -125 625
t 4 5 6 7
o(t+5) -3125 15600 -77875 388750
5 -25 125 -625

-3120 15575 -77750 388125

and from this

®(9) /p(8) =—4992..
p(10)/¢{9) = — 4.991987 .,
#(11)/¢(10) = -4.99197431 . ,
9(12)/9(11) = — 4.991961415 ..

By this method we may also obtain the root whose modulus
is the smallest. For this we have to put into (1) x=1/y, and
apply the method on the equation y(y) =0 obtained.

§ 153. The Ch’in-Vieta-Homer method for solving nu-
merical equations, This method was known in China as early
as the XIII Century.4® It was given by CHKin Chiushao in his
book on the “Nine Sections of Mathematics” published in 1247.

The method was first used in Europe by Vieta about 1600.
It is probable that he had not heard of the Chinese method, but
that he rediscovered it, since his procedure is more complicated
than Ch’in’s. Indeed it was considered as very difficult, was
seldom used, and soon superseded in Europe by the Rule of
False Position or by other methods.

In 1819 Horner published a numerical process for carrying
out the method, which was very convenient and in consequence
it became widely known and is now generally considered as the

8Y, Mikami, The.Development of Mathematics in China and Japan,
Leipzig, 1913, pp. 74—71.
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most practical of the methods for solving numerical equations.
Horner’s process differs but very little from that of Ch'in.
It consists in the following:
Given the equation f(x) = 0, let us suppose that by means
of a graph or in another way, we know that this equation has a
root x, between r, and r,41 ; where r; is an integer. Therefore
we have

Hro)Hro,+1) <O.

The method consists in the following operations:

First we deduce from f(x) =0 another equation, such that
the roots of the new equation shall be equal to those of f(x) =0
but each diminished by r,. This equation will be f(x+r,) =0,
which expanded into a Taylor series gives

() fetrd =f () + 2D ir) +, . + D) = 0.

From this, an equation is deduced, such that its roots are
each ten times larger than those of (1). This will be

x
flro+5) =0
expanded into a Taylor series, and multiplied by 10" it gives:
2) 107 [ 7\ +1"—OJ = 1014(ry) + 107 2D ) + ... + 55 D¥(ro).

Since equation (1) has a root in the interval 0, 1 therefore
(2) will, have a root in the interval 0, 10. Let us denote this root
by x,. From (2}, by inverse interpolation we obtain approximately

. ~ —10f (r,)

v DHr)
It r, < x, <r, + 1, where r, is an integer, then the
approached value of the root obtained by the above operations is

— o+
X, =7, 1— e

To have another digit of x4, we start from (2) and determine
an equation (3) whose roots are those of (2) diminished by .,
2
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and then an equation (4) whose roots are each ten times larger
than those of (3). From this last equation we deduce

1, <x,<py+ 1

and we shall have
T, r
xozro-{—-l—ld-—*—ﬁo‘-{—....

and so on till the prescribed precision is attained.

Let us show Homer's method for determining the coefficients
of the transformed equations in the case of an equation of the
fifth degree.

Given

(5) f(x) = F + Ex + Dx2 + Cx® + Bx* + Ax®.

The coefficients of the equation whose roots are those of
(5) diminished by r, are

Fi=f(rg)=Arl>+ Br*+ Cr3+ Dr2+ Er,+ F

E, = DFr,) = 5Ar,* + 4Br3 + 3Cr,2 + 2Dr, + E
, = % D (r,) = 10Ar,3 + 6Br,? + 3Cr, 4 D

C, =i D (r,) = 10Ar,? + 4Br, + C

B Df[ro)_SAr0+B

/ - 120 Dﬁf (rO] -

Homer’s process for computing these values is given by the
following table

5_24

A B c D E F
+A4r, Br, Cyry Dy Eyr,
B, ¢, D, E F,
+Ar, By, C,r, Dyry
Bz Cz D2 Ez

+Ar, B,r, C.r,
B:x Ca D:&
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A B G D,
+Ar, B,r,
B, C,
+Ar,
B,
, Where

B" = B‘—l + Aro E‘ = E‘—l + Di ro
C,“__Ci_1+Bgro F5=FL1+E5r0
Dj = Dg_l + C,~r0

In this manner we obtain
(6) F(x+r)) =F, + E,x + Dx* + C,x® + Bx* + Ax>.

The equation, whose roots are each ten times larger than
those of (6) will become, if multiplied by 10°:

(7 108 f[ro + 5] =100 F, + 10° Eyx +10° Dyx +10: Cxt

+ 10 Bxt + Ax®* = 0.
From this we get by linear inverse interpolation

o~ — 10F,
1 E,

If we have r, <x, <r, + 1, where r, is an integer, r, will
be the second digit of the root. Then the above operations are
repeated till the required number of digits is obtained.

The error will always be less than one unit of the last
decimal.

Example. Given

flx) = x3—2x—5 =0.

Since f(2)#(3) < 0 therefore this equation has a root x, in the
interval 2, 3; so that we shall put r,=2.

To obtain an equation whose roots are those of f(x) =0 but
diminished by 2, and multiplied by ten, we will perform
Horner’s  computations:
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1 0 -2 -5
2 4 4
2 2 -1
2 8
4 10
2
6

The transformed equation will be
x% 4- 60x% 4- 1000x — 1000 = 0.

From the last two terms we conclude that r;=0; so that
there is no need to diminish the roots by 71 . We make the roots
ten times larger and get

(8) x5 4 600x? + 100000x — 1000000 = 0.

From the last two terms we deduce r,=9. To determine the
coefficients of an equation whose roots are the same as those
of (8) but diminished by nine and multiplied by ten; we follow
Horner's method and find

1 600 100000 —1000000
9 5481 949329
609 105481 -5067 1
9 5562
618 111043
9
621

so that the fourth equation will be
x3 + 6270x2 + 11104300x — 50671000 = 0.
The last two terms give r;=4. Now we diminish the roots

of this equation by 4 and multiply by 10, using the same method
as before. We have
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1 6270 11104309 -50671000
4 25096 44517584
6274 11129396 -6153416
4 , 25112
6278 11154508
4
6282

Therefore the fifth equation will be
x® + 62820x2 + 1115450800x — 6153416000 = 0.

This will give r,=5; and we could proceed in the same manner
as before; but let us suppose that the root is only required to

six decimals exact; then we may obtain the last three decimals
by simple division. In fact we may write

6153416000 — 62820x* — x*
- 1115450800

The term in x? is less than 216 (the root being less than
6), hence if we neglect this term the error in x will be less than
2/107 and that of the root x,, less than 2/10'', Moreover the term
in x* is less than (62820) (36) —2261520; therefore neglecting
this term too, the error of x will be less than 3103, and that of
x, less than 3/107. Accordingly we have

r, = 6153416000/1115450800 = 5.5165

and finally
X, = 2.094551 65.

The equation of this example has been solved by this
method, in 1850, to 101 decimals.

One of the advantages of the method is the following: If
for instance the root is exactly equal to two figures, then we
obtain these in two operations, whereas by the other methods a
great number of operations is necessary to show that the root is
approximately equal to these two figures.

If the root to be determined is greater than ten, it is
advisable to deduce first an equation whose roots are the same
as those of the given equation, but divided by 10*; where k is
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chosen so that the root under discussion should be in the interval
0, 10. For instance, equation

ax"+..,..tax+a,=0

will be transformed into

4a
apx" +-ﬁ,}—x"“+ x4+ =0

10'"' 0""
and then we proceed as before.

Ch’in Chiushao’s method differs but little from the
preceding. Indeed the only difference is that if the first digit r,
of the root of f(x) =0 is found, then Ch’in first deduces an equa-
tion whose roots are ten times larger than those of f(x) =0, and
secondly deduces from this another equation whose roots are
diminished by 10r,.

The result will be the same as in the method described
above, moreover, Ch’in’s computation is exactly the same as that
of Horner. Indeed, starting from the equation :

Ax* 4+ Bx* + Cx* - Dx+E =0

we shall have

A 10B 10°C 103D 10¢E
10Ar, 10B,r, 10C,r, 10D.r,
B, cl D, E,
10Ar,  10B,r, 10C,r,
B2 C2 DZ
10Ar,  10B.r,
B3 C:!
10Ar,
B,

and the new equation will be
Ax'+ Bx*+ C;x2+ Dyx + E, = 0.
Example. Ch’in solves the following equation

xt — 763200x” + 40642560000 = 0.
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It is easily seen that 100 <x, < 1000 therefore we deduce
another equation whose roots are those of (1) but each divided
by 100; so that the root will be between 0 and ten. This
equation is
(8") x*— 76,32 x* + 406,4256 — o
since F{8)#(9) < O therefore there is a root between 8 and 9.

CHhin’s computation for multiplying the roots by ten and
diminishing them afterwards by 80, will give

1 0 -7632 0 4064256

80 6400 -98560 -7884800
80 -1232 -98560 -3820544
80 12800 925440

160 11568 826880

80 19200

240 30768

80

320

Therefore the transformed equation will be
(9) x* + 320x3 + 30768x2 + 826880x = 3820544 = 0.

From this we deduce by linear inverse interpolation r, = 4. The
roots multiplied by ten and dinimished by 40 will give

| 3200 3076800 826880000 —38205440000
40 129600 128256000 38205440000
3240 3206400 955136000 0

Since the last term vanishes, hence 4 will be the last digit
of the root, so that the root of equation (8’) will be 8,4 and that
of the given equation x, —840.*)

§ 154. Root-squaring Method of Dandelin, Lobatchevsky
and Graeffe, Given the equation:

1) ax" + @, x"1+ .. . +ax+a,=0.

® ) Mikami's interpretations of Ch'in's processes, in the book quoted
above, are not quite correct, and in consequence of this the coefficients of
the equation corresponding to (9), given on page 77, are erroneous. Indeed
the coefficients of x and X* are ten times smaller and the absolute term is
10000 larger than they should be.
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We shall deduce from this equation another whose roots are
x,2,x,%, . .. x,% Since equation (1) is identical with

a(x—x,) xx) . ... (xx) =0
it is obvious that multiplied by
an(x+x1] (x‘Jf‘xz) e (x+xn] =0

it will give the required equation, if we put into the product
obtained x instead of x2.
But the last equation is identical with

(2) a,,x”—a,,_lxn'l + ...+ (—1)a, = 0
therefore if we write the new equation in the following way:
(3) boxt + by x4, ..+ b, =0
then we shall have
b, = (—1)~" a2 + '_21 2(—1) = a,p a,.
The upper limit of the sum in the second member is equal to the

smaller of the numbers »+1 and n—v+-1.
Starting from (3) we may obtain, repeating the same opera-

tion, an equation whose roots are x,* X,%, ., ., X,*; and repeating
it again several times we get an equation whose roots are
x2" x,2", L., x

Let this equation be
(4) WX" + W X1+ L+ wx 4 @y = 0.
Moreover we will suppose now that the moduli of the roots are
unequal, so that we have in descending order of magnitude
PREIT AT > il
Since
wll—i —_ 1‘2x2mx2m am
A — [ — eeoXe .
= () B e

Therefore we shall have
X x2" . —w
lim X" lim fi-1
n=wx xl2m m=« (), xﬁ"‘

=1

and approximately
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x’ 2~ __.91‘_:1'_
Wp
Let us suppose first that the roots of equation (1) are all
real; then we must have w,_;,/w, <(,

In the same way we have

> x2"'x.2"' w
lim % = lim —”-Z_m = 1
n=w x‘ x22 m=@ w"xlz"‘x22

and therefore

xl2mx22"’ ~ _a.)kl.

Wy
or
2,2 ~ — Zn2
(Dn_l
and finally
L R
Wp—y~1

starting from these equations the roots are easily cal-
culated by aid of logarithms. In this way we get in the same
computation every root of equation (1) without needing any
preliminary approximate determination. This is one of the
adv‘antages of the method.

There is but one small difficulty; the method gives only the
absolute values of the roots. The signs must he found out by
putting the obtained values into the equation. Often Descartes’
rule giving the number of the positive and negative roots is
useful, and sometimes the relation 2 x; = — da,_,/a, gives also
some indications,

It is advantageous to make the computations in the follow-
ing tabular form:
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an a,, an_, an_, ay_s
—n, an_; —ly_3 —On_g
a,? ~—p_; a,_, 2 —Q, 3 2 | 2
2a,a, , 20, .0, ; 205 38, —2an ,8n 5 20, Gy g
2a,0, , —2a,..a,, 20, ,a,, —2a, .d,,
20,,0,,_6 —'20,._10"_7 zan__zaa_.a
2anan-a —zan—lan—n
2a,a,_y,
b, ba., ba_y bpg bn_s
Example 1. Given the equation
x®+9x2+ 23x + 14 = 0.

The roots are to be determined fo four significant digits. Ac-
cording to the preceding table we will write

1 9 23 14 First powers
-81 529
46 -252
1 -35 277 -196 Second powers
-1225 76729
554 -13720
1 -671 63009 -38416 4 th powers
450241 3,9701.10°
126018 —0,0516
1 —=3,2422,10° 3,9185.10° —1,4758.10* 8 th powers
—1,0512.10%1
__ 718
1 —9,728.10'° 1,5355.10'*¢ 16 th powers
—9,4634.10%
307
1 —9,4327.102* 2,3578.103% 32 nd powers
—8,8976.1043
5

—8,8971.1042

64 th powers.
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If the coefficient corresponding to Z x,2™ is only the square
of the coefficient corresponding to 2 x™ ' then we stop the
computation, since by continuing we should get the same value
for x, . In the present case this happens at the 64 -th power.

For the determination of 2 x2" x;*" the computation could
have been stopped at the 8 th power; therefore to minimise the
error we will choose this value for the determination of x,.To
have x, we start, for the same reason, from x,x,x3=14. We
have

log x, = 6‘12 log 8.8971.10* = 43,94924/64 = 0.68671

log x,%, = - log 39185.100 = 9.59312/8 = 119914

log x, = log x,x, — log x, = 0.51243
log x,x,x, — log 14 = 1,14613
and therefore

log x, = log x,x,%, — log x,x, = 1,94699.

Since according to Descartes’ rule the given equation has
only negative roots, therefore we have

x, =—48608, x,——32541, x,=—0.8851.

General case. Let us suppose that the equation f (x)=0 with
real coefficients has both real and complex roots. We shall denote
the real roots by X and the pairs of complex roots by

o.(cosp . + ising,) and g.(cosp,— ising,).

The indices will correspond as before to the moduli in

decreasing order of magnitude. We shall have
“"—170__ 2x, +22p, cosp,
n

ga"i =2 xx, + 29,2+ 2 2 0,x, cosp,+ 2 Z ¢.0x ¢08 (p. L ¢,)
n

s _ 5 XXX + 2 x,0.%+ 2 2 0,0.% cosp,+ 2 T x1x,.0.cosp,+

+2Zx,0.01c08(pu L2 + 22 gi0.0. cos(ps + @5 L @)
and so on.
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Particular case. I, Let us suppose that we have for instance
an equation of the fourth degree, the roots corresponding to the

moduli:
Ql>ix2f>|x3!.

From the preceding formulae we deduce

wn— m wll—z om+-1
2 v 20,2" cos 2™ —=% ~ 9,2
o, 01 %1 w, &
Whp_ [ o }
— =2 vx,2 2" =4 o, i x, 2" g, 2T
Wp Wy
By aid of these four equations we determine ¢, , X, , x;, and
2=
k4 P, .
2m 1
Particular case 7Z7. x, > 9, > ' x,1. We have
m m m
—Wp_, [, - X, Wy _ofw, ~ %,2" 02" cos 2™,
- m m4‘-| - m am gm-+t
—Wp_gfw, ~ X, 2" 05 wn_yJwn, %, X327 0y .
Particular case III. Let ¢, > 0, > x, . We have
N 1
—Wn_yjw, ¢ 20,2 cos 2™, wn_pfw, 0,7
) m+1 om ~ 2m+1 am+1
Wy_glw, < 02" @7 cos 2Ty, Wn_yfws ™~ 02" 02

. 2m mt1  gm-tt
Wn_glwn * X5 " 0,27 0y .

Example 2. Given the equation
x3 —6x*+9x + 50 = 0.

The roots are to be determined to four significant figures
accurately. The computation by the method considered will give:

1 -6 9 50 First powers
-36 81
18 600
1 -18 681 -2500 Second powers
-324 4,63761.10°
1362 -90000

1 1038 3.73761.10” —6,25.10° 4 thpowers
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1 1038 3.73761.10° —6,25.10¢
—1.07744.108 1.39697.1011
74752 12975

1 —0.32992.108 1.52672.10! -3.90625.10’s 8 thpowers
—1.08847.10'!  2,33087.1022
3.05344 -258
1 1.96497.10'*  2,32829.1022 16 th powers.

Since the numbers of the first column oscillate between
positive and negative values, therefore we conclude that the root
with the greatest modulus is a complex one. So that we have
according to Case I,

— 2m1 25,1 cos 16p, = — 1.96497.10'

Wy

Dug = .32 = 2.32829.10"
wll

0,2 x, = 50.

From the second we obtain ¢, = 5,0000. The third equation
divided by g,2 gives | x4 1 = 2.
Finally from the first we deduce

0
cos lé(pl = —_ %g_‘ll_'s&__ or k“t -+ 80 7°48”

(pl = 8) -
where & is equal to one of the values 0, 1,2, ... ,7. To determine
k we choose one of these values, determine the corresponding
root, and put it into the given equation: this we repeat till the
equation is verified. But generally there is a shorter way. For
instance, in the present example we know that the only real
root X, must be negative, since for x=-—— the first member of
the equation is negative and for x=0 it is positive. Therefore
x,——2. Moreover the sum of the roots must be equal to 6,

that is,

x, + 2p,cosp; — -2 + 10cosp, = 6

this gives ¢, =36° 52’ 12” corresponding to k=-1.
Finally the roots are

x, =44 3i, x, —4—3i, x, =—2.
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Multiple roots. 1f the given equation has multiple roots or
roots whose moduli are the same, the treatment of the problem
is somewhat different. Let us suppose for instance that we have

= 1%, 1> 0 x40

From our computation table we conclude that

w w w .
e Ona xl.-_,m; Wn_g :xlzm-{'l; _ Wng - x32 x12m+1‘
a),, wn wﬂ
On the other hand if we have
L2, 1> (2, | = 1,1
then
Wy m wn_z m m, Wo_y m m+1
Bl o=y TR =2 27 27— =x,2" x,2"",
W, Wy @y

Therefore if in a column of the table of computation the
number corresponding to the 2™ -th powers does not tend to the
square of the number corresponding to 2™ but to half the
square of this number, then we conclude that there are two
roots corresponding to this column whose moduli are the same.

There is no difficulty in deducing, in the same way, the rule
corresponding to any other case of multiple roots.

Example 3. Given the equation

x3—2x2—9x 4 18 = 0.

The table of computation will be:

I -2 -9 18 First powers
4 81
-18 72
1 -22 153 -324 Second powers
484 2.3409.10°
306 -1.4256

1 -178 9.153-10° -1.0498-10° 4 th powers
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-178 9.153-10s  —1,0498-10°
—3.1684-10 8.3777 107
1.8306 -3.7373
—1,337810* 4,6404-10" -1.1021~10°0 8 th powers
—1.7897108 2.153510°5
9281 -2949
I —8.616-10° 1.8586-10'° —1.2146-10%° 16 th powers
—17.423510'° 3.45441030
3.7172 -209
1 —3.7063-10%° 3,4335-10%° —1,475110%° 32 nd powers
—1.3737-10%! 1.1789-10¢!
6867

1 -0.6870 1103 64 th powers.

Since the number of the first column corresponding to the
64 th powers is approximately equal to half the square of the
number corresponding to the 32 nd powers, we may stop the
computation, concluding that there are two roots having the
greatest modulus.

T2, | = lx,] > |x4].
Hence we have

2x,%4 = 6,870-10%,

This gives | x, I = 3,000. In the second column we should get the
same number from

x,%% = 3.4335:10%,

Finally x,x,x;=18 gives | 2, I = 2. From x;+x,+x; = 2 we
conclude that x;=3, x,=—3 and x,=2.

We have seen that in the Ch'in-Vieta-Horner method the
fewer figures there are in the root, the less is the work of com-
putation. The above example shows that the computation in
Graefte's method is independent of the number of figures by
which the root is expressed, and this is a drawback; but the
method is nevertheless very useful, especially for the determina-
tion of complex roots.
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§ 155. Numerical integration. Given y (x,,) y (¥1), .. ., y{(x.),
the integral of a function f(x) satisfying to

fx)=y(x) for i=0,1,2...,n.

is to be determined from x=a to x=b.

The problem becomes univocal if the condition is added that
the function f(x) shall be a polynomial of degree n.

Then by aid of Langrange's interpolation formula (§ 132) we
obtain this function

m i) =8 Ly

where L;(x) is given by formula (2) § 132. It may be written as
follows:

x—x,) (xx,) . ... (xx,)

2 Li(x) = ( g ==

2) ilx) (x—x,) (x—x,) 1+ (x—21)

In this expression the terms: x-xi in the numerator and x—=x;
in the denominator are suppressed.

The required integral will be
b

) I= | Hdx = 3 yix) [ Lixds

To determine this integral we will introduce a new variable # so
that the limits of the integral shall be zero and &. ‘We put

x:a-}—(b——:—alt and x,~:a+ (b;':q]‘tg.

The transformation gives

t—t,) () ., . . (f-f)

Li(x (t—t, d

l( ) = (tl”'—t()] (ti_‘tl) e (ti'—tn)

This is of the same form as the corresponding expression of x;
we shall denote it by Z4(t). As we have dx={(b—a)dt/n therefore

Hn

n4-1 - i
Z = (b—a) 'Eo y(x) % OJ Zu(t)dt.

If the same values of &, &, . ..., t, occur often, it is useful
to construct a table of the integrals
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% [ Zupdtt o v i=01,...,n

o
which are independent of the function f{x). Having these values,
the computation of the integral I is reduced to a few multiplica-
tions and additions. The above integral has been determined for
several systems of £, , as we shall see.

Formula in the case of equidistant values of x. Putting

. ihn .

b—a=nh and x;—a--ih we have t;= b—h—a =i

The integrals corresponding to these values of f have been
denoted by

1 n
Cu= Of Za(t)dt.

The numbers C; are the celebrated Cotes numbers; they are
given in the table below?®

Table of the Cp.

n/i 0 I 2 3 4 5
1 1% Yo

2 16 46 1/6

3 18 3/8 318 1/8

4 79 3290  12/90 3290  7/90

5 19/288 75288 50288 50/288 757288 191288

6 41/840 216/840 27/840 272/840 27/840 2161840 41/840

Remark. The Cotes numbers are not always positive, for
instance in the cases of n=8 and n=10 some of them are
negative.

The integral Z expressed by aid of these numbers will be

@ [ Fe)dx = (5—a) [Cay (%) + Caryla) + - . . + Cary ()]

% £ Pascal, Repertorium Vol. 1., p. 524.
Cotes, Harmonia Mensurarum, 1722.

33
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Putting into this a=0,b=1, f(x) =1 and y(x;) =1 we obtain an
interesting relation between the Cofes numbers:
Cnoi— Cll1+ o:a.-+ ""=1,
It can be shown moreover that

Cana = Cm'-‘

Determination of the Cotes numbers by aid of Stirling
numbers. If t;=i, then Lagrange’s polynomial -Zy(#) will become

208 = ( ] [ n—t

Replacing the binomials figuring in this formula by their
expansion into a power series (§ 55) we obtain if, n > i:
2§ S t{n—t)e.

1 _
o = n() | (n-i) ! =1

The integration, if  varies from zero to n, gives, according
to § 24,

1 n 4t n—i+41 1
5 Cu==1;] = 2 pte Si Sai.

n" i+1  n—i41

In the case of i=n we have

1o p Lty 8 mgt
(6 r M(”—Fn)——‘n.nr Z S

—1
Integration from #=0to t=n gives:
1 ' S,
m va=] 1’+1 l

If the Stirling numbers of the first kind S, are known then
the Cotes number C,, may be computed by aid of this formula;

but we may obtain them. still in another way. By aid of formula
(5) of § 89 from (6) we get

M Crm =

(8) le = % ['Pn“ (n) = Yny (0)]

where y,,, (x) is the Bernoulli polynomial of the second kind
(§ 89 of degree n-1.
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In consequence of the formulae of p. 269 we may write

_1_{1—— "i“ ,b;'_bnu[l'l"(—_!]n]}'

(9) Crm - n 1

On the other hand if the Cotes numbers C,, are known the
sum of the coefficients b; in the Bernoulli polynomial of the
second kind may be obtained by

(10) go 151=2—(2n—1)Cony, on ;.

Examples. 1f C,,, from (7) it follows that

104 3 ., 1
Co=% Z 1S —%

If C,,, then n=3 and i=2, and every term will vanish
except those in which = 1; since S} = 1, hence we shall have
1 —‘3 3+ S . 3 .

2 =1 (»42) (»4+1) = 8’
and from (9) by aid of the table of p. 266 we find

1 1 1 1 1
C33:?[1 —————— ]=—.

In § 131 we have seen another method for obtaining these

numbers (Formula 9).
Application of the Cotes numbers. Trapezoidal rule. 1f n=1
then C,,=C,, = 14 and the integral (4) will be

I = Ya(b—a)[F(x,) + (x,)].

If we have m+l equidistant points Xxi,; —X; = h, then
applying this rule between each two points we get

1= h{Yok(x,) + Flx) + o0 oo+ Haxmy) + VoF (xn) |-

1 4
Simpson’s rule. If n=2 then C,,=C,,= g and C,,=  and

Car _

the integral will be
1= ) + 4(x) + Fma))

If there are 2m-+1 equidistant points, then applying the rule
between each three points we have
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1
= 3 [0+ Yom + 2024yt o0 Yom o) + 4(y1+y3+' 4 Yamy) |

Boole’s formula. 1f n=4, by aid of the Cotes numbers we
deduce

I = o 1700 + 320(x,) + 12F(x) + 326(x) + TH(x,) |

§ 156. Hardy and Weddle’s formulae, Hardy’s proceeding
for numerical integration is the following. We start from the,
points of coordinates:
a—3, y(a—3]v a—2, y(a—2)1 a, }'(a], a+21y(a+2)| a+3,}’ (d+3]
and determine the parabola of the fourth degree passing through
these five points. Let it be
(1) fla+x) = Co + Cix + Cyx? + Cox® + C,xt,

From this it follows that

fw) = y(@ = C,

f(a+2)= y(a+2) =C, + 2C, + 4C, + 8C, + 16C,
(@2 =yla—2)=C, — 2C, + 4C, —8C; + 16C,
f(@+3) = y(a+3) = C, + 3C, + 9C,+27C, + 81C,
f(a-3) = y(@—3) = C,— 3C, + 9C,—21C, + 81C,.

By the aid of the above five equations we may determine
the coefficients C;, For instance we find

Cy= 5813 (a+2) +¥(a—2) |16y (a-+3)-+y (a—3) | 130y (o)

1
Ci= 3g5 {41y (a+3)+y(a—3)] —9[y(a+2) +y(a—2)] +10y(a)}

Now we may determine the integral of f{a-}x) from a-3
to a4-3. It will give

3
I= [ fatxar = 6c, + 18¢,+ .

Putting into it the obtained values of C,, C,and C, we get
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@) 1= g5 {110y(a) +81[y(a+2) +yla—2)] +14y(a+3)+
+ y(@—3)] ;-

This is Hardy’s formula of numerical integration.

Weddle’s formula is obtained from (2) by adding to it a
quantity equal to zero, therefore it will give the same values as
Hardy’s formula.

The quantity added is the sixth difference of f (a+x) divided
by 50; since f(a+x) is of the fourth degree, obviously the sixth
difference is equal to zero, According to § 6 this quantity is
equal to

-S%Aef(a-s) :Sl-o[f(a-3) — 6f (@2) + 15f (a]) — 20 (@) -

+15f (a+1) ~— 6f (a+2) + f (a-1-3) | = 0.
We shall have

B I= g [vle—3)+ 5yla—2) + 6y(a) + Syla+2) +
+ y(a+3) + f(a—1) + Fla4-1)].

Now [ {a+1) and f (a-1) should be determined by aid of
equation (1), but if we do this, then the obtained formula becomes
identical with Hardy’s formula.

Weddle’s formula is obtained from (3) by putting simply
f(a+1) = y(a+1) and Ff{a—1) = y(a-1) which is inexact.

§ 157. The Gauss-Legendre method of numerical integra-
tion. This method differs from the preceding methods especially
in the following: The given n41 points through which the
parabola of degree n shall pass do not correspond to equidistant
abscissae but to the roots of Legendte’s polynomial of degree
n+ 1.

The roots of the polynomials of the first five degrees are
given in § 138.

The equation of the parabola is given by Lagrange’s inter-
polation formula § 132:

) o) = 3 Lubolf (x)

where
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. Xai (x) _
(2) Lni (X] - (x—xl)qun-n (xi) (where 1_0' l' 2' T n).

If we add to (1) the remainder

Xna (x)
Rpyy = (—n"—ji—-}_i“ D (§) (where-1 < §<1)
then it will represent any curve passing through the given n-+1
points.
If the integral of (1) is required from x=—1to x=1, then
we must determine the integral of Ly(x). We shall have

! 2
(3) Ay = _J Ly(x) dx = (=) [DX,., x) ]*

These numbers may be determined once for all and given by a
table. They may be considered as Cotes numbers corresponding
to the Gauss-Legendre method of numerical integration.

The numbers A, are always positive; this is an advantage
over the numbers corresponding to equidistant abscissae, which
as has been mentioned may be negative.

Table of the numbers A,.
0 1 2 3 . 4
1 1 1
2 0.5555556 0.8888889 0,5555556
3  0.3478558 06521452 0.6521452 0.3478558
4 0.2369268 0.4786286 0.5688889 0,4786286 0.2369268

Remark. It can be shown that Au;=A,,; and
nt1
f Aﬂi = 2
=0
Finally the integral of f(x) will be

1
(4) ff(x) dx a Anoy (xo) +An1y (xll ot A’"‘y (x")'

-1

Gauss introduced this method because the value of the
integral (4) is the same as that corresponding to a parabola of
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degree 2n-4-1 passing through the given n+l points and through
any other n+l chosen points.
Indeed, if we add to (1) the following remainder
Ay =222 Q1)

where Q,,(X) is a polynomial of degree n, then, first the curve
will still pass through the given n+l points; as ﬁ?nﬂ is equal
to zero at these values; secondly, we may dispose of the coef-
ficients in Qn(x) so that the curve shall pass also through the
other n-1 chosen points. Moreover, in consequence of the
orthogonality of the polynomial X,(x) we have

1

‘J' Xnos (%) Qulx) dx = 0,

From this we conclude that the integral corresponding to the new
curve will be equal to (4).

L. Fejér's step parabola. *° Fejér disposes of the polynomial
Q,(x) so that the tangents at the points of coordinates x;, y (x;)
are parallel to the x axis. He found

ot 1—2xx 4 x? Xn,y (x) :
6B) Hx)= 2 1—x;2 [(x—xi) DX.., [xi)] Y ()

==
where the X; are the roots of X,,, (x)=0; and y(x;) the corres-
ponding given values.

The advantage of this formula over the other is the fol-
lowing. If a given continuous function F(x), is approximated by
the step-parabola (5) then if 7 is increasing indefinitely the
curve (5) tends to F(x). This is not so in the general case.

§ 158. Tchebichef’s formula for numerical integration.
Given x;,y (x;) fori =0, 1,2,, .., n, if a polynomial f(x) is
determined so as to have

flx) = vi(x)

® L. Fejér: Az interpolaciérél. Mathematikai és Természettudoményi
Ertesitd, Vol. 34. 1916. pp. 209 and 229,
r Interpolation, Nachrichten der Gesellschaft der Wissenschaften.
Gottingen, 1916.
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for the given values, then according to Lagrange’s formula (§ 132)
we have

-1
fx) = = Lu(x) v (x))
=0

and the integral of f(x) from x=—1to x=1 will be

1 . .
_1‘[ fx)dx = éo }’(xi)_J L{x)dx

or if we denote the integral in the second member by By (the
Cotes numbers corresponding to this formula of numerical

integration), then we have
1

n+1
(1) J#mdx = 2 Buytx.

Since the numbers B, are independent of y(x;) therefore

putting y(x;)=1and #{x)=1 we find

n41

= B,,g = 2
whatever the system of values %, , , , . ., X, may be; but the By,
themselves depend on these values.

If the quantities y{x;) are results of observation, then owing
to the errors of observation, which necessarily occur, they will
not be absolutely exact, and consequently the integral (1) will
be affected by the errors.

Denoting the error of y {x;) by &, the error E of the
integral will be

E = Byey + Buje, + . .. + Bpue,.

Supposing that the probability of the error & is independent
of i, and denoting by ¢ the standard error of y (x;), then the
probability P(4) of having I E I <1, as shown in the Calculus of
Probability is given approximately by

—
PU) = V%o [ e at

—r
0'1//2 B,,,'z .

where we have

§=
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Now Tchebichef wanted to dispose of the numbers By so
that the probability P(1) should be maximum. This problem is
identical with the following. Given ¥ B, = 2, to dispose of the
By so that 2 B,2 shall be minimum. This will be obtained when
the equations

a 2 T —
3B [Z B.*—A(ZB;—2)|=10

are satisfied for every value of i. We get
28,,1——-}» = 0
or By = 14 The numbers By are all equal and therefore
B.; = 2/(n-+1)}. Finally the integral will be
2
I =
n-1

Therefore it is necessary to dispose of the values %, , x, ,
Xy,..., X, so that

i
2) _f Lidx =

[¥(x,) +y(x,) +.... + ylx)]

2

n+1’

Tchebichef has introduced a certain polynomial obtained
from

wm
S

(3) x"e p=l 2“’(2’)’+IIX'
by expanding the second factor into a series of inverse powers;
neglecting, after multiplication by x", the fractional parts. Let us
denote the polynomial of degree n by T,.

Tchebichef has shown that the roots of the polynomial T,
satisfy the conditions (2) ,51

If y(x) is a function of x such that y (O)=0 then the expan-
sion of e¥ will be

X ' i x2 9 x3 3
er — 1+ Ti [Dgnyzo+§[D-ey]y=0+ ?[D )=t .. ..

The expressions [D™e” are given by formulae (6) of § 72.
If we put

% Tchebichef, Qeuvres, Vol. II, pp. 165—180.
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__ 3 _n¥
y= =t 2¥(2r+1) '

Writing in the exponential of (3) 1/x—=z we shall have
’I(ZLI)M. z2v—m

Dmy = VE' 21’+l

where r is the greatest integer in (m--1)/2.

From this we conclude that
n(2m—1)!

[D*™y],.0 =0 and [D*ylizo = ~ om¥i
Therefore from the above-mentioned formulae it follows that
ID¥eY]y=0 = 0
and
[D?e*}y=0
[D*e']y=0 = [3(D%)* + DY]e=0 = 3 — &
[D%e*]y—0 = [15(D?%)® + 15D% D‘y + Dfy]i—0 =

=6n’——g—n3— 1_39,'

[D“’y’].=o = - g—

Finally the expansion of e¢¥ will be

—q__n n(n_6y, n (o 5., 120
©=1—gm +3a(5 5) + 720w (o= =T+
+’li

and the polynomial of degree n
— ot Qin-z ‘ [_ —_ £)+
nE=EXTTe 24 \37T 5
_ nx™ _E_ 120
+ o |6n—5-— ) +
Particular cases:
1 5 7
T,:x—? T,,:x“——6—x3+ﬁx
1 1 1
Ts=x3——é—x To=xt—xt 5 05
2 i 7 119 149
—d S 2 L — 5T 23— o
Ti=x—gxtg Ii=d— g 30— aso

Hh
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The roots of these polynomials are given in the table below.
Let us remark that we have

Xi= == Xp_jy.

Table.
n=2 x, =—0577350 n=6 x,=—0.866247
x, = 0577350 x, = — 0,422519
n=3 x,==— 0707107 X, = — 0.266635
x, = 0 Xy = 0.266635
x, =  0.707107 x, = 0.422519
x; =  0.866247
n—4 x,= = (0.794654
x, =— 0187592 n=7 x,=—0.883862
x, = 0.187592 x, = 0,529657
X3 = 0.794654 x, = — 0323912
n=5 x,=— 0832497 = 0
x, = — 0374541 x, = 0323912
x,= 0 x; = 01529657
x;, = (0.374541 xg =  0.883862
x, = 0.832497

This method is only useful if the roots of the polynomial used
are all real; it has been shown that in certain cases some of the
roots may be complex; for instance if n=8 or if n=10.

Let us mention here the numerical integration corresponding
to the “Tchebichef abscissae” given by

cosnd = 0 and cos? = x
and that corresponding to the abscissae

sin(n+1)9

; = 0 and cos¥ = x.
sint

Fejér* has shown that in both cases the corresponding Cotes
numbers are always positive, like those in the Gauss-Legendre

* L Feiér, Mechanische Quadraturen mit positiven Cotesschen Zahlen.
Mathematische Zeitschrift, Berlin, 1933,
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method (§ 157) ; moreover that if the abscissae are chosen so
that the corresponding Cotes numbers are positive, then the
integral obtained by numerical integration will converge to

|

F(x) dx.

§ 159. Numerical f&ration of functions expanded into
a series of their differences. In the preceding paragraphs we
have integrated Lagrange’s formula in different particular cases;
now we shall proceed to the integration of series expressed by
differences.

1. Newton’s formula. Given f(a), At (a), . , , A" (a), the
integral of the corresponding polynomial of degree n is to be
determined. We have

1) Flx) =

T determine ‘f(x)dx we need the integrals of the general-
ized binomial coefficients. These we may obtain by expanding
the coefficients into a series of powers of (X-U) by aid of the
Stirling numbers of the first kind. (§ 55).

l x—a A"'f(al

X-a _ ml_ 2 Sv (x (1) hm_.
m L m! »=0
therefore
‘ n4-1 n m-q et
2 [lwdx= = A"(a) fx—a)ytt

me0  m! .= " (1) A
Particular cases. The most important particular case is that
in which the integral is taken between a and a+nh. Then we

obtain
a--nh

"—H Amf[a) m+4-1 n|+1
= = pIRN
(3) .,J fade= kb 2 S5S 3 8 o
If we put in this formula n=2, it becomes identical with
Simpson’s formula; and for n=4 with Boole’s formula (§ 155).
We get a more simple expression if the limits are a and
a+h. Since according to formula (7) § 89 we have

m-4-1 Sm

1 4\l
-njl% 11V+1

by,
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where b, is a coefficient of the Bernoulli polynomial of the
second kind, hence from (2) it follows that

ot ntl
@ | twdx = B°E b, Ania).

This is a particular case of Gregory’s formula.

2. Everett’s formula. Given f(O), f(I) and the corresponding
central differences §% (0}, 62#(1),, . . , , &*"/(0), d**f(1), the
integral of f(x) is to be calculated. In § 130 we had (1)

_o M x4y ) . "I xtr—1) g,
o fx) =2 (3]s = (5 80
In § 89 we have seen that

’ (:l] dx = W"l-i-l(x) + k

where . ,(x) is the Bernoulli polynomial of the second kind of
degree m-1. Therefore from (5) we deduce

© [ e = "3 ppalets HI—

- :é: Worys (X+r—1)27F (0) + k.

Let us consider first the particular case of this integral if
the limits are 0 and 1. Since Aw;(x) =y;_, (x), we have

! nt1 n+1
,| F@de = 2y 0)82F (1) — 2| varn 0—1) 8% £ (0)

remarking moreover that
Yarsr (1’] = == Yarn (”_’1)
finally we get
1
. n+1
M | Fxddx =2y s ()182F(1) + 52 (O
o v

3. Numerical integration by the Euler-Maclaurin formula.
According to § 88 this formula may be written (the interval
being h):
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K h m hn B
{8) ‘ f(u)du =h xfa fx) — ..E, _—-'_" [Dn-lf(b)—Dn-lf(a)]

n
— B pons 3 pemp(xtom)
(ZM) ! z==a
where Ax=h, and b=a+-zh, z being an integer, and 0 <6 < 1.
The numbers B, are the Bernoulli numbers (§ 78). Given
are the values of f (atih) and the derivatives of f{x) correspond-
ing to x=a and to x=b.
Since Bys,, =0 if n > 0, therefore formula (8) may be
written:

b
@) | Hu)du = b [%F @ + flath) + ., . + f(b-h) + Ys(b)] —
— 3 pon 2 (D () — D @] — Ram,

n=1

4. Numerical integration by aid of Gregory’s formula. Let us
u—a

start from formula (1) § 99, putting into it x=a + T and
u—a . . du
f[a + 5 ] = I y,moreover writing z—a=y. Since dx = T

hence we shall have

ot yh

1 o yrh
(10) 7 | Fludu= Z Fu)+

3

+ g"_l b [A™F (atyh) — A™F (@) + yby AF (a£h)

where Au=h and 0 <¢h <z or 0 <£<n. The numbers b; are
the coefficients of the Bernoulli polynomial of the second kind
(8 89).

Example 1. [Whittaker and Robinson, Calculus of Observa-
tions, p. 145}, We have to determine

"105 dx |
100 x

Since

1 _ )™ m!

x ~ (x+m)p,

A”
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Therefore from formula (10) we deduce
105

odx _ft t ., t ,t 1,1t 1 1]
' '{—[5'100+1o1+102+1o3+104+2 105_]

100°

-1 + 1 +l 2 _ 2 )
12 [105.106 ' 100.101 241 105.106.107 100.101.102 |
The terms in the three brackets will give
1105 dx
| =¥ =0.0879 95— 0.000000 76 —0.000000 01 =
= 0,048790 18.
There is an error of one unit of the last decimal, since the
integral is equal to
log 105 —log 100 = 0.048790 169432. . .
§ 160. Numerical resolution of differential equations. The
best method is that of I. C. Adams. Let us apply it to a dif-

ferential equation of the first order. Given the quantity y, cor-
responding to X, and the equation

100’

{1) Dy = F(xy).
A suite of numbers ¥, Y25 ¥35 . . . . corresponding to X, ,
Xy, X3, . ... iS to be determined.

From (1) we deduce by derivation

. at, (x,y) + of, (x,y) af, af,
2 1 1 = %I °h _

Dy 3 ox ay Dy — Bx +f1 ay —fz(x’y)-
From this we obtain in the same manner D3y = #,(x,y), and so
on: D™y.

First, putting x, and y, into the obtained formulae we

compute the values of Dy, , D%,, D®, and D*y,.
Then we may obtain y(x) by the aid of Taylor’s series:

@ yix) - § =Rl pry,

But it must be remarked that x-x,, should be chosen small
enough, so that stopping formula (2) at the term m=4, this
latter should be negligible; hence putting x —=x,+4£&h the quantity
h must be small, and moreover let us say: & < 5.
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Now we may compute ¥; , ¥, Y3 , ¥4 by aid of formula (2},
and then Dy, , Dy, , Dy, , Dy, by aid of (1). Finally let us
form by simple subtractions the following table of the differences

of hDygi _

hDy,
AhDy,
hDy 1 92”03’0
éhD}’ 1 éahD)’o
hDy, A*hDy, A*hDy,
AhDy, A*hDy,
hDy 3 IhAZhD}’z
L}hDys
hDy,

Consequently & should be small enough, so that A*hDy; shall
also be negligible.

The expansion of Dy(a+-&h) by Newfon’s backward formula
(8), § 23, gives

Dy(a+sh) = 3 | 1) Dy (a—nh)

Multiplying it by dx—=hd§, the integration of this expression will
give, if x varies from a to a-{-h, or £ from O to 1:

a+

A 1
Dy()dx = Avia) = i 3 ADyla—nt) [ [*T7 ) ae.

According to § 89 we have

b
“f [z] dx:‘l’nn(b]—""l)nn( a)

where yn,, (x) is the Bernoulli polynomial of the second kind of
degree n+1. Remarking that Awn,,(x) =va(x]}, it follows that

fl ‘E + ’111 -1 J dé = yuu (1) — Yy (n-) = ¥a (n-])
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but in consequence of the symmetry of these polynomials (§ 90)
we have
Ya(n—1) = (—-1)"%(—1)
Moreover we found {§ 89) that
n+1
pal—1) = (1" [1—"% [byl].

mz==1

This will give

=

Yn (n—l )

1/2
5/12
38
251/720
233/720

G Wy -

Finally we have

®) Ay @ =1 2 paln—1) A'D (a—nh)

that is

®  Ayla) = hDyla) + 3 hADy(a—h) + {3hA'Dyla—2k) +

3 4As ] 251 4 A Dy (a—
S hé Dy (a-3h) + 50 hé Dy(a—4h).

Putting into this equation a=x,+4h=x, we get
1 5 3 4. A
(5) Ay, =hDy,+ 5 AhDy, + 35 A*hDy, + ¢ A’hDy, +

+ 3L Aapy, .

720 %
Thirdly, by aid of (5) we compute y;=y,+Ay, and
Dy.’):fl (xznys]-
Then we add the number ADy, to the table above, and
compute the differences hAhD}’p éghDy‘p 93’!0}’4 and é‘hD)’y

After this we may put a=x,+5h=x; into equation (4) and
proceed to the determination of y; in the same way; and so on.
In this way we may obtain y, generally with sufficient exactitude
for any value of ».

34




CHAPTER X.
FUNCTIONS OF SEVERAL INDEPENDENT VARIABLES.

& 161. Functions of two independent variables. Given a
function z=# (x,y) we may apply the methods already established
for determining the differences of z with respect to the variable
x, considering y constant. The first difference will be denoted
as follows:

éf (x.y) = (x+hy) — f (x,y).

Moreover we may determine the difference of z with respect
to y, considering x constant:

yAf(x.y) = Fx,y+kR) —F(x,y).

The above differences are called partial differences of the
function z. The second partial differences are obtained in the
same way:

ézf (x,y) = f (x+2hy) = 2f (x+h,y) +  (x,y)
ée'(x'}’) = Hx+hy+k) = F(x,y+R)— I (x+hy) + f(x,y)
92, (x,y) = f (x.y+2k) — 2f (x,y+k) +f (x.y).

The other operations will be defined in the same manner.
For instance the operation of displacement with respect to X is

E*(x,y) = f (x+nh,y)

and that of the displacement with respect to y
E™f (x.y) = f (x.y+mRk).
y

An equation of partial differences will be written symbolically
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?(E F) fxy) = V(x.y).

where @ is a polynomial.
The operation of the mean with respect to x will be

M f(xy) = YalHxthy) + Haxy)]
and with respect to y
M #(xy) = Yolf (xy+R) + Hxy)].

Strictly in the symbols A, A, ., , the increments of x and of
x ¥y

y should also be indicated, for instance thus:

A, A

b’ gk

but if in the following formulae we always have Ax—h and
Ay=~F then, to simplify, the increments. may be omitted in the
notations.

The operations will be executed exactly as has been des-
cribed in the foregoing paragraphs. For instance:

Expansion of a function of two variables by Newton’s theo-
rem. Given the function z=# (x,y), first we expand it with
respect to x considering y constant; we shall have

f(x,y) == Eo ( x:a] h—éi;;:’—y—) . .

Now considering x constant we will give y an increment
equal to k and obtain
» P x—a y b "A’"f{a,b)
— o x ¥
(l) f(x,}']—— n:zo mEO ( n ],‘ [ m ]k hn bm .

If f (x,y) is a polynomial the expansion (1) is always* legi-
timate, since then the series is finite. If not, formula (1) is ap-
plicable only if certain conditions are satisfied.

Putting into equation (1) x=a-+¢h and y=>b+nk we find

Hatehbtok) = 5 2 (1] (7] avanfiab).
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§ 162. Interpolation in a double entry table. If the values
of f (u;v)) corresponding toi =0, 1,2, ,..and toj=0,1,2,3,.,.
are given, it is possible to range them into a double entry table:

i 0 1 2 3 4
0 flu,v,) f(u,v,) f(u,v,) Fugv.,)
1 Hu,.v,) f(a,.v,) Hu,v,)  flu,v,)
2 fluyv,) H(uyv,) Fluyvs,) fluyw,)
3 Huyw,) Hu,v,) Hu,,)  Flugwy) e

Let us suppose that such a table is given, where the values
Hu;,v;) are equidistant, that is, where

4y =u,+ih and v; =v, + jk

The following problem occurs very often: the value of f (u,v)
1s to be determined corresponding to given values of u and v
which do not figure in the table. We choose from the numbers
Uy, U, U, . ., and from v,, v,, v,, . . . the numbers a and b so as
to have respectively

a<u<a+4+h and b<v<b+rk

If linear interpolation is considered as sufficiently exact,
and if the table contains, besides the values of f (u;,v,) also the
first differences of this function with respect to u and to v then,
using Newton’s formula, we have

At(a,b) At (a,b)
(1) Ffuw) =f @b + (wa = —— * (u-b) ’ -

In this way the first approximation of the point u,v is
obtained by the plane (1) passing through the three points cor-
respohding to a,b; a+hb and a,b+4k.; but these are not sym-
metrical with respect to u,v (Figure 11).

If the differences are given, the determination of f(u,v) by
aid of this formula presents no difficulty.

But if greater precision is wanted, then the application of
Newton’s formula requires the knowledge of the following five
differences:
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u v “ v u v
indeed
Af(a,b) Af(ab)
() @) =f(@ab) + (wa) *—p— + (0-b) —p— +
A*t(a,b) AAf@b) 4y Atlab)
') e+ o b o s (73]
Figure 11.
a,b'2l< 4
L sk e
ab a+h b q,b (1~h, b a~2h,b

Here w=# (u,v) is an equation of a second degree hyperboloid
which passes through the six points corresponding to a,b; a,b+k;
ab+2k; a+h,b; a+hb-+-k; a+2hk. Since these points are not
symmetrical with respect to the point corresponding to u,v, to
be determined, therefore the interpolation formula is not ad-
vantageous (Figure 11) .

There are hardly any tables containing the five differences
mentioned above. A third degree approximation by Newton’s
formula would require the knowledge of ten differences; these
it would be nearly impossible to give in a table, and it would be
superfluous, since by the aid of Everett’s formula for two
variables, the same approximation may be obtained by the two
central differences

84 (ab) and 62f (a,b).

Moreover, using FEverett’s formula it would be possible to
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obtain an approximation corresponding to that of a fifth degree
Newton formula if the following five differences were given:

5*t(ab) 6*(ab) o'F(ab) &F(ab) 28 (ab).
“ ] % [’ I

In fact, in Pearson’s celebrated Tables of the Incomplete
Gamma-Function [§ 18, lac. cit. 15] the first four are given; to
apply Everett’s formula only the last is to be calculated.

We will not describe the proceedings of interpolation of a
function of two variables by Everett’s formula, since there is an-
other formula which permits us to interpolate as rapidly with
the same amount of work, and has the advantage that no printed
differences at all are necessary, and therefore the table may be
simplified by suppressing the differences. The reduction thus
obtained will generally be more than one-third of the table.?®

Let us suppose that a table contains the values of f(u,v]
corresponding to # = uy, U, t+h, u,+2h, . , . and to v = v,, v,+5,
vo+2k,... If f(uv) is to be determined for a given value of u
and v, then we will choose from the table the numbers a=u,+nh
and b=v,+mk so as to have

a<u<a+h and b<v<bik
Putting moreover
X = (u-a)/h and y = (v—>b)/k

we shall have
0<x<t1and 0<y<i,

To begin with we start from the formula (16) of the third

degree of § 133
x-+1 " .
3) Fiz) =1+ CJI,—1,|+|" 4 | D*Fla+£h)
where -1 < & < 2, and C, = L4x(1—x). Moreover according to
(15), § 133, we have
1

@ L= ] | (x+r—1)F(a+rh) + (r—=x)F(a—vh+h) .

If we apply formula (3) to F{uuv), considering u variable
_and v constant, we get

* Ch, Jordan, Interpolation without printed differences in the case of
two or three variables. London Mathematical Society, Journal, Vo. 8, 1933.
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) F o) =1,{) +C, (x)[], (v) — L{v)]
where according to (4)

I, (v) = xFla+hv) + (1—x)F(a,v)
and

L) = % [(x+1)F (a+2hv) + (2—x)F (a—h,v)).

Let us again apply formula (3) to the above quantities, but
considering now v variable and u constant. We find

1, =8, +Cily) [S1 —S]

I, =S, +C, B[Sy — S,)
where S,, is the result of interpolation of Z,(v), between the
points corresponding to v=b and v=b-}k; or that of F(uyv)

interpolated between the four points corresponding to u—a,a+h
and p=b,b+k (Fig. 12). Therefore S,, is equal to

S, = xy . Fla+hb+k) +
+ x(1—y) . Fla+hb) +
+ (1—a)y . Flab+h) +

+ (1-x) (1-y) . F(ab).

S,z is obtained by interpolating Z,(v) between the points
corresponding to v=b—*k and v=b+2k, or F(u,u) between the
four points corresponding fo u—=a,a+h and v=b—k,b-+2k.
Hence we shall have

385 = x(2-y) . F(a+hb—k) +
+ x(1+y) . F(a+hb-2k) +
+ (1—=x) 2—y) . F(ab—k) +
+ (1—x) (14+y) .Flab+2k)
S, is the result of interpolation of I,{v) between the
points corresponding to v=>b and v=b-k; or that of F(u,)
between the four points corresponding to u=a—h,a+2h and

v:b,b+k.

3S,, = (14=x) (1-y) ,F(a+2hb) +
+ (14x)y . F (a42h,b+k) +
+ (2—x) (1-v) . F(a—hb) +
+ (2—x)y . F(a-h,b+k).
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And finally S,, is obtained by interpolation of Z,(u) between
the two points corresponding to v=b—Fk and v=b+2k; or that
of F(u,v) between the four points corresponding to u=a—h,a+2h
and v=b—k,b=2k. Therefore

9S,, = (1+4x) (2—y) F(a+2hb—F) +
+ (14-x)(1+y) F(a{-2h,b+-2R) +
+ (2—x) (2-y) Fla—hb—k) +
+ (2—=x) (1 +y) F(a—h,b+2k)

Consequently the numbers §,; , S;5 , S;, and S,, can be
easily calculated, especially when a calculating machine is used.

In the end, putting the obtained values of Z,(u) and Z,(u)
into equation (5), the interpolation formula for two independent
variables will be

(6) F(up) =S, +C, (x) [S,,—S,,]1+ C, (¥) [S;;—Sa] +
C.(x)C,(¥)[S1y + Sz2 — 12 — S

The numbers C,(x) and C,(y) may be taken from the table
mentioned in § 133. If we had first interpolated with respect to
v and after obtaining I; (u) and Z,(u) interpolated with respect
to u, we should have found the same formula (6). This is an ad-
vantage over some of the other methods.

The term §,;, may be considered as the first approximation
of H{u,w); in which the hyperboloid z=S§,, of the second degree
passing through the mentioned four points is substituted for the
surface z=F (u,v).

Formula (6) may be considered as the second approximation
of f (u,v) in which we substitute for the surface z=F(u,) an
hyperboloid of the sixth degree which passes through the sixteen
points corresponding to ¥ =a — h,a,a + h,a + 2h, and
v=b—h,bb+k,b+2k.

Remark. Equation (6) of the hyperboloid does not contain
terms with x*, x5, x%, y%, y° y¢ or terms of the first degree
or a constant.

Formula (6) is identical with the Newton expansion of a
function of two variables, in which the partial differences of
higher order than three are neglected and in which the first term
is F (a—h,b—Fk).

The sixteen points through which the hyperboloid passes



531

are represented in Figure 12. As has been said, we must choose
if possible a, and b so that the point u,v should be in the inner
square. The figure shows also the four points corresponding
respectively to the interpolation of S., .

Figure 12.

b2k
bk
+
b
b-k
a-~h a a+h a+Z2h
A T R ;
o L P S
i + . | + '
L. ! . ;
- .: bow e wton e - -
oo ! [
t ! ¢ ] 1 ]
| S R TR | RPN SR
Sy Sz
P : Lo
Y [T
L ] N R
S b
S S S | N
S24 S22

If the square of the sixteen points lies on one of the
boundaries of the table, then the point u,v may be situated in one
of the side squares; formula (6) is still valid, but then x and y
do not necessarily satisfy the inequalities

0<x<1 and 0<y<1,
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In these cases C,(x) and C,(y) must be calculated by
C,(x) = %.(1—=x)x and C,(y) = %(1—y)y

as the corresponding values of x and y are outside the range of
the mentioned tables.

Example. Let us take Pearson’s example of the Incomplete
Gamma Function [Loc, cit. 15 p. XXXIII]. The table contains
the numbers F(#,0) corresponding to #=uy,uy+h,u,12k,. . . and
v=0,V,+kv,+2k, ... where h=0,1 and k=0.2. The value of
F({4.025;7.05) is to be computed by interpolation. We shall have
a=4.0; b =17.0 and

x=2"2=025,; y==b_ s
h k
Computation of S,
xy = 0.0625 Fla+-hb+k) = 0.8861276
41-Y) = 0.1875 F(a+h,b) = 0.8913309
(1—~x)y = 0.1875 F(a,b+k) = 0,8700917
(1I-x) (d-y) = 05625 F(a,b) = 0.8759367

The sum of the products is equal to §,,=0.878364106, this
may be considered as the first approximation of the required
value of F (uv).

Computation of S,,

(14-x)y = 03125  F(a+2hb+k) = 0.9004831
(1+x)(1—y) =09375  F(a+2hb) = 0.9050932
(2—x)y —~ 04375 F (a-hb+tk) = 0.8522574
2—=x)(1—y) =13125  F(ab) = 0,8759367

One-third of the product is equal to S., ~0.876650329.

Computation of S,,

x(1+y) = 0.3125 Flathb+2k) = 0.8807594
X(2-Y) = 04375  F(ath,b-k) = 0.8963699
(Ix) A +y) = 09375  F(ab+2k) = 0.8640723
(I-x) (2-y) = 13125  F(ab—k) = 0.8816070

One third of the sum of the product is equal to S,,=0.878192038.
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Computation of S,,

(14-x) (+y) = 1.5625 F(a+2h,b4-2k) = 0.8957190
(14-x} (2—y) = 2,1875 F{a+4-2h,b—Fk) = 0.9095504
(2x) (1 +y) = 2.1875 F(a—h,b4-2h) = 0.8455420
(2-x) (2-y) = 3.0625 F{a—hb—k) = 0.8651402

One-ninth of the sum of the products is equal to S,,—0.876479714,

Since we have C,(x) =C,(y) = 0,09375 and C,(x)C, (y) =
= 0,008789 therefore

C,(x) [S;;—S,;] = 0.000160667
C, () [S,;—S,2] = 0,000016149
C, (x)C, ) [S;;+8,,—S,:—S,,] = 0.000000127
and finally
f (uv) = 0.8785410.

This result is exactly the same as that obtained by Pearson
using Everett’s formula and requiring the second central dif-
ferences. Our computation by formula (6) is in no way longer
than that by Everett’s formula, perhaps even somewhat shorter.
It is not necessary to copy out of the table the values contained
in the second columns; they can be transferred directly to the
machine.

Should the precision of the result obtained by formula (6)
be insufficient, it would be possible to make a further step and
obtain a third approximation (of the tenth degree) by starting
from

Fluw)=1,0)+C, (x) [, (0} () 1 +
+C, (x)[21, () =31, (v) +1, (v) 1
obtained by interpolation of the fifth degree with respect to u;
this followed by an interpolation of the fifth degree with respect

to v will give an hyperboloid of the tenth degree passing through
the 36 points corresponding to '

u—a—2h,a—h,a,a+h,a4-2h,a+43h
v=b—2k,b—k,b,b-+k,b--2k,b+3k.

and

We find
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) Flav)= §,, + C, (x) [S;:—Sal + Ci(¥) [S1;—S,2] +
+ C(x)C () [S1:—8:0— 8214802 4+C, (%) [25,,—38,,+8,, ] +
+ C.(y) [28,,—38,, 4,1 + C, (x)C, (¥) [2S,, 438 ,,—Sz—
"2821‘_3812+ 813] + C2 (x)Cl (v [2811+3522+531—2512"
_3821—832] + Cz(x)cz (y} [45“—{—2313+S33+9522+2531—6312—
—68,,—38,,—3S,,1|.

Where the nine values of S,, are obtained by nine interpola-
tions, each between four points, we shall have

(2v—1) 2u—1) S.p = (—1+x) (u—1+y) F(a+rhb+uk) +

(8) + (—1+x) (u—y)  Flatrvhb—uk+k) +
+ b-4 [u—1+y) F (a—vhb+puk) +
+ (r—x) (p—y) F(a—vh+-h,b—uk k)

In formula (6) we had four such values to determine,
therefore the work of computation would be now somewhat more
than the double of the preceeding example. If a machine is used,
this may be undertaken in important cases. Nevertheless,
constructing a table of a function f (u,v), the intervals should be
chosen so that the second approximation by formula (6) should
be sufficiently exact. This may generally be done.

Remark. If the tangent plane is wanted at the point corres-
ponding to u,v we have to determine

8F (u,v)/V uw and OF (u,v)/0v.
In the case of the first approximation we shall have

oF(wp) 1 9S, . OFmv) _ 13s,
ou  h ox w = & Ty -

8S,,/8x and 9S,,/0y may be expressed by the differences
of the function F (u,v). Indeed we have

%1 = v AAF(ab) + AF(ab)
and . '
i%s.u = xAAF(ab) + AF(ab).
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In the case of the interpolation of the sixth degree (6) we
should find

oF(u, ED 88 ﬁ'z_]
gﬁvlzz{ 11+C()[ 11 _ ax1>+

asll _88,] os,, 8S,, 09§, —
32|+ C,Cy )| 0 o T — 2
- 8821 }— (x—1%2) [S1:—Sx] —

ox |
- (x_1/2)C1 (¥) [S11+S30—S:2—S., 1.

Therefore it will be necessary to compute the numbers
98,,/0 x. To obtain them we have only to change in formula (8)
of S,, the first factors. For instance in the case of 9§,,/9x they
will be ¥, (I-y), —¥, -(-y), The term OF(u,v}/0v is obtained
in the same manner.

§ 163. Functions of three independent variables, It is easy
to extend the methods of the preceding paragraphs to functions
of three variables. Interpolating between the 8 points cor-
responding to u=a,a+h, v=>bb+k and w=c,c+j we obtain
a hyper-surface of the third degree z = Q,,, passing through
these points and giving the first approximation of f(u,v,w); 0, | is
given by formula (9) below. Its computation is easy enough but
generally the precision obtained will be insufficient. To remedy
this inconvenience we shall determine a hypersurface of the ninth
degree passing through the 64 points corresponding to

u=a—h,a,a+4ha+42h; v=b—kbbtkb+2k;
w=c—j,c,ct+jc+2j.
To obtain it we shall start from formula (6) considering the
quantities S,, as functions of w. For instance
S,,(w) = xyF(a+hb+kw) + x(1-y) Fla+hbuw) +
(1—x)y Flab+hw) + (I-x) (1-y) Flabw)
and so on; then we interpolate with respect to w by formula (3).
Denoting by Q,,; the result of interpolation of S,, (w) be-
tween the two points ¢—J1j-}j and ¢+4j, or that of F(uu,w)
between the 8 points corresponding to

u=a—vh+ha+vh ; v=b—uk-+k, b+uk; w=c—Aj+j, ct+ij.
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Therefore we shall have

(1) (2v—1) (2u—1) (21—1) Q.2 =

= (x4»—1) (y+u—1) (z4+-1—1) F (a—vh+h,b—uk+k,c—ij+jf)
+ (x+v—1) (y +p—1) y.a  Fla—vh+hb—upk+k,c+1j)

+ (x4+»—1) (p-Y) (z2+4—1)  F(a—vh4hb+pukc—2j+j)

+ (x+r—1) (p—y) (A2 F (a—vh+4-hb+pk,c+-1j)

+ (—x) p+p—1) (z+2—1)  Flatvhb—pk{kec—ij+j)
4 6—2) (y+p—1) i—2)  Flatvhb—uk-thetij)

+ (p—x) (p—y) (z+1—1) F(a+vhb+pk.c—2j+j)

+ (»—=x) (P-Y) (—2) F (a4vh,b+uk,c+1j).

Finally the interpolation formula giving the second appro-
ximation of F{u,v,w) will be

(2)

Flapw) = Qy, + €, (x) [Q11,—Qsi] + C(0[Q111—Q1ai] +
+ C,(2) [Qiyi—Qy5,] + Ci(*)C, (1Q11:+ Q20—
- Q121_Qzu] + C1 (x)c1 (z] [0111"'0112_Q211+
+ Quiz] + Ci ()G, (2)[Qu1y—Qu15—Quzy + Q122 +
+ C, ()C, (vC, (2) [Quii— Qui2+Qo0i—Qups—
- 0121+Q122_0211 +Q212]

where 2= (w—c}[j. Since we have to compute nine values of
Q... and each is twice as long as that of §,, hence the inter-
polation will give a little more than four times as much work as
the example in § 162.



CHAPTER XI.

DIFFERENCE  EQUATIONS.

§ 164, Genesis of the difference equations, Let y be a
function of the variable x, which is considered as a discontinuous
one, taking only integer values. If we had a function of the
variable z taking the values of z,+ih (where i is an integer)
then we should introduce a new variable x=(z—z,)/h, which
would take only integer values, and Ax—1, Given

(l] W(x'}’-a] =0
where a is a constant parameter. If x is increased by one, the
increment of y will be Ay. As y+Ay=Ey, we get

(2) v(x+1,Ey,a) = 0.
Eliminating a from (1) and (2) we obtain
F(xyEy) = 0.

As in this expression one is the highest exponent of E, this
is called a difference equation of the first order.
If we start from a function containing two parameters @ and

b, we have

v (x,y.a,b) = 0
and deduce in the same manner

w(x+l.Ey,a.b) =0

and repeating the operation,
w(x+2,E2y,0,b) = 0

then eliminating from the last three equations a and b, we find

F(x’y'Ey’Ezy) =0

which is a difference equation of the second order.
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If the function (1) contained n arbitrary constants ¢, , c.,
cry cn

) w(X¥.€10€0 vy €)= 0

then we should be led in the same way to the difference equation
of the n-th order:

@ F(xy.EyE?,.... E¥v)=0.

If the quantities ¢; instead of being constants should be
periodic functions with period equal to one, then we should. be
led to the same equation.

Example 1. Given y—c,+¢,x; it follows that

Ey = ¢, + c,(x+1)
E%y = ¢, + ¢,(x+2)

and

after elimination of ¢, and ¢, from the three equations we obtain
a difference equation of the second order

E*y—2Ey + v=0.

Generally, instead of deducing the difference equation of
order n, starting from a function containing n constants, the
inverse problem is to be solved; that is, the difference equation of
order n being given, a function y containing n arbitrary periodic
functions with period equal to one is to be determined, which
satisfies the given difference equation.

If starting from a difference equation of the n- th order
the function obtained contains n arbitrary periodic func-
tions, then it is called a general solution; if it contains fewer, it
is a particular solution.

Remark. If the highest power of E in the difference equa-
tion (4) is equal to n and the lowest power to m (where y is
considered as being equal to E°y), then the equation is of order
n-m only, and there will be only n-m arbitrary constants in
the solution,

In the particular case of n—=m equation, (4) becomes an
ordinary equation and its solution E"y=f(x) or y=Ff(x—n] does
not contain arbitrary constants.
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Equations of the form:
) Fixy.Ay.A%, .. . A) =0
(6) F(xy.MyM?2y, ..., My)=0

are also difference equations according to the above definition,
indeed if we eliminate from them A™y or M™y by aid of

A" = (E—1)" 0 r Mm :(1+E)"'21,,.~

we obtain an equation of the form (4).

There are some cases in which it is easier to solve equation
(5) or (6) than (4).

In the foregoing Chapters we have already solved several
such difference equations. For instance, when Ay=Ff(x) was
given, and we determined the indefinite sum y=A"¥(x);
moreover when solving My=¢(x} by aid of y=M"¢(x); and
also in other cases.

Difference equations are classed in the same manner as
differential equations. The equation

() a.ky+a, E'y+, ., . +aEy+ay=V(x)

is called a linear difference equation, provided that the coef-
ficients @; are independent of y and E™y .

If V(x}=0 then the equation is termed homogeneous; if not
it is a complete equation.

The coefficients @; may be constants or functions of x; we
shall consider the two cases separately,

Remark. Sometimes, though the increment of x is equal to
cne, the difference equation may concern a function of a con-
tinuous variable. Then for instance

f(x+) -f(x) = V(x)

is true for every value of x. These equations will be solved by
the same methods as those of a discontinuous variable; hut as
we shall see some precautions will be necessary.

§ 165. Homogeneous linear difference equations with
constant coefficients. Before solving the equation

1) aEy+....+aEy+ay=0

35
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we will establish a preliminary theorem. It is easy to see that
Elrfl=r.r; Eslrsl =es.re;  ES[r] =rsr~.
From this we conclude that if ¢{E) is a polynomial of
E then
(2) v (E) [r*] = ryplr).

~ Moreover if ¢(E) and y(E) are polynomials, then we may
give the following definition of the operation @(E)/w(E) per-
formed on f(x): The equation

2B

means that y(x) is a particular solution of the difference equa-

tion
y(E)y(x) = ¢(E)(x).
This definition is, in agreement with that given of
A =1] (E-D) (6. § 32)
M'=2/(E+1) (2, § 38).

In the particular case of f(x) =r* the equation

|ZEL =y

v(B)y(x) = ¢(E)r* = riplr)

but according to (2) this equation is satisfied by

implies that

re(r)
y(x] = w(r)
therefore
¢(E) _ . vl
w® M1 =7 0

In this way the operation F(E) has been performed on r* if
F(E) i1s a rational fraction.

3) F(E) [r] = r* F().

Remark. In the particular case when F(E) = 1/{(E—1) =A""
we find the formula A™ r¥*=r*] (r-]) and if F(E) =2/{(E+41) =
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= M then we have M™ r* = 2r*/(r+1) as it has been obtained
before.

Now if r, is equal to one of the roots (real or complex) of
the equation

(4) y(r)=ag"+a, r'+.,..+ar+a, =0

which. is called the characteristic equation of (1) then it follows
from (2) that ¢ry* is a particular solution of (1). If it has n
unequal roots, we Shall have n solutions or the form y;—c;r/* .

It is easy to see that if ¢;y,, C,¥5, ..., €y, are particular
solutions of the difference equation (1); then their sum.

y=or e+ ot et

will also be a solution; since this function contains n arbitrary
periodic functions ¢;, it is the general solution.

In the Calculus of Finite Differences the variable is dis-
continuous and takes only equidistant values; the particular
solutions y,, ¥5, . . +, Ya, Will be called independent if starting
from any n initial values such as y,Ey, . . . . E*y, the cor-
responding constants ¢; may be determined by aid of the equa-
tions l

Y = €Y+ C2I3’2+ cav o+ Co¥n
Ey = CIE}’l + czEyz +....+ anyn
E7'y = ¢,E™y, + .E"'y, + ., . 4 c,E™y,

that is if the determinant

Y2 Yo o e y"
Eyl Ey2 ..... EYu
E™'y, Evly, v E™'yn

is different from zero.

On the other hand if it is equal to zero for every value of a
then the constants ¢; corresponding to given initial values E’y
cannot be determined; and the particular solutions are not
independent. It can be shown that in this case one of them may
‘be expressed by aid of the others. For instance if y,, Y4, ... ¥4
are given, then y, may be determined by aid of the linear equa-
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tion of differences of order n-l, obtained by writing that the
determinant is equal to zero.

From the above it follows that an equation of differences
of order n has only n independent particular solutions; moreover
that if the n initial values y(a), y(a+1), . . . y(a+n-1) are
given, then every value of y(a+£) may be computed step by step
by aid of the equation of differences (1).

Example 1. Given the difference equation

(5) F(x+2) —3F(x+1) 4+ 2F(x) =0
the corresponding characteristic equation is
r’—3r4+2=0

therefore r;, =1 and r,=2. So that the general solution is
f) = ¢ + ¢, 2",

Putting this value into (5) it is easy to see that it verifies this
equation.
Example 2. Fibonacci’s numbers are the following

0,11,2358,1321,...

each of which is the sum of the two numbers immediately
preceding it. If we denote the general term of this series by f(x),
we shall have

fx) + f(x+l) = F(x+2).
The corresponding characteristic equation is
r’—r—1=90
and therefore
ro= W45, = %iu—|s)
so that the general solution will be
— 1/
l ! 5 x 1— x
(6) f(x):cl(_f_zl ] +c2[ 2V5]'

To obtain the general term of the Fibonacci numbers, the
arbitrary constants ¢, and ¢, should be determined by the inital
conditions. Let us put f (0) = 0 and f (1) = 1; we find
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¢, +¢=0 (c;—cz)VS:Z
therefore
1
C; =—Cp == ——=.
' s
Finally expanding the powers in (6) by Newton’s formula
we have

i = | (§)+(B)s+(5) 4o+ (amis )5t

§ 166. Characteristic equation with multiple roots, If the
characteristic equation y(r) = 0 has multiple roots, then,
proceeding as before, the solution will contain less than n arbitrary
constants or periodic functions, and therefore it will be only a
particular solution. To obviate this we must find new solutions
of the difference equation y(E)y = 0.

Let us show the method, first in the case of double roots.
If r, is a double root of the characteristic equation, then we shall
suppose that r, and r,+4¢ are roots of this equation, and later
on we will put ¢=0.

If r, and r,4¢ are roots of the characteristic equation,
p (t) = 0, then obviously
0 y okl Ary

will also be a solution of y(r) =0.
The expression (1) will really be a solution, if putting ¢=0;

but

Ar>

g

ES Drl"' ::"xrl’"‘ .

lim
&=20
Where D denotes the derivative with respect to r, .
Therefore a,xr,*! is a new solution, putting a,—=c,r this
solution will be ¢,xr,*. If r, is the only double root of the
characteristic equation, then the general solution will be

y = (e, e, x)r,* + cgrg +, ., + e .

If there were other double roots we should proceed in the
same way.
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It is easy to verify that xr,* is a solution of the differenue
equatidn yw(E)y=0 if r, is at least a double root of the charac-
teristic equation y(r) =0. Indeed, putting y=x r,* the operation
E* gives

a,E'xry* = a, (x4-8)r, %" = agxr)*(r?) + agr, 1 (s7,5)
from this we conclude, summing from §=0 to s=n-1, that

y(E)xr*=xr"y(r,) + r*' Dy(r,).

Since r; is a root of w(r) =0 therefore the first term will
vanish and y=xr,* will be a solution if we have Dy(r;) =0 that
is, if 7, is at least a double root of the characteristic equation.

Example 1. Given the difference equation

f(x+2) — 6f(x+1) + 9 (x) = 0.
The corresponding characteristic equation is
rP—6r+9=0

so that r, =r, = 3. According to what we have seen the complete
solution of the difference equation is

f(x) = {e,+e.x)3%

Example 2. Calculus of Probabilify. The first player has
a shillings, the second b shillings. The probability of winning one
shilling in each game is 14 for each player; play is finished if one
of them has won all the money of his adversary. The probability
is required that the first player shall win, Let us denote this
probability by f(x) if he possesses x shillings.
He may win in two ways. First, by winning the next game;
the probability of this event is 14; then his fortune will be x—1
and the probability of winning will become f(x-4-1). Secondly, by
losing the next game, the probability of this event is also ¥4 ;
then his fortune will be x-1, and the probability of winning will
become f (x-1), Hence applying the theorem of total probabilities
we have
f(x) = Vof(x+1) + Yof (x—1)
that is f(x) will satisfy the difference equation

t(x+2) —2f(x+1) +#(x) = 0.
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The corresponding characteristic equation is
r’—2r+1=0hence r,=r,=1.

Therefore the general solution is f(x) =c¢,4¢,x.

The arbitrary constants are determined by the initial con-
ditions, If x=0 the first player has lost and f(0)=0; if x=a+-b
he has won, f(a4b)=1. From this we deduce ‘

¢;=0 and ¢,=1/(a+d).

So that the required probability is f{x) =x/{(a-b). This gives
at the beginning when x=a, f(a) =a/(a+b).

Multiple roots. Let us suppose now that r, is a root of
multiplicity m of the equation y(r) =0. To obtain the general
solution of the difference equation w(E)y=0 we may proceed as
before considering first the m roots of the characteristic equation
as being different, and equal to

r.rter,42...., 7+ (m—1)e.
Supposing i < m, then a solution of the difference equation is
given by
Al'lx

1 , i ] x
o Ly —{ {Jtrs i) 4, + =0 = 50
Putting ¢=0 this solution will become
1 -
y=a g ir* = [’;]rl”a,
or
Y =¢ [ﬂrl" if i<m.

Therefore the solution corresponding to r, containing m
arbitrary constants will be

2) y:[c,-}-cz[’l‘)+c3[’2‘J+....+cm[mil)] rr.

This formula holds for all real or complex values of T, .
Verification. r, being a root of yw(r}) = 0 let us determine

the conditions so that J:] r,* shall be a solution of yw(E)y=0.
We have
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af [[F)r] = e (FF°) rie

In consequence of Cauchy's rule (14, § 22) this may be written

i+1 i+1 x+v
x (s r x
a;r*ts 2 ( )(): 2 [ }a N At
sty S Vi~ )Y 2 vl li «(S) 1y

Hence, summing from $=0 to s=n+41 we must have
x i+1 x 7. Xty
v(E) [lt] ’1x]: Eo(x—'y] ,1,!

Therefore[ J:J r,* is a solution of the difference equation if

Dy(r) =0.

D'y(r,)=0 for »=0,12,.,.,1i.

That is, r; must be at least a root of multiplicity i-+1 of y(r)=0;
hence, if r; is of multiplicity m, then a particular solution with
m arbitrary constants is given by (2).

§ 167. Negative roots, We have seen that the obtained
solutions of the difference equation vy (E)y=0 were applicable
also in cases when the roots of the characteristic equation y(r) =0
were negative or complex. But in these cases the solutions may
appear in a complex form, and generally the real solutions are
required; therefore they must be isolated.

If the function considered is one of a discontinuous variable
the increment of x being equal to one, and the root r, is negative,
then the preceding methods may be applied without modifica-
tion.

Example 1. Let us consider the series

103 5 112
2' 4' 8' 16' 32 '
obtained in the following manner: each number is equal to the

arithmetical mean of the two numbers immediately preceding it.
If we denote the general term of the series by f(x), we have

Yoltx) + Flx+1)] = Flx4-2)

this is a homogeneous linear difference equation with constant
coefficients

01,

2f(x42) — F(x+1) — f0) = 0.
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The corresponding characteristic equation is
2r*—r—1 =0, hence r, =1 and ry=—145.
Therefore the general solution will he
Y - €+ 6—%)*

The arbitrary constants are determined by the initial conditions.

We have
¥(0) = 0 and y(1) =1

therefore
¢;+c,=0and ¢ —Ye,=1
This gives
2
¢ =—C, = 3‘ .

) . . 2 (—1)*
Finally the general term of the series will be y = 33 i
Remark: .

limy = Z
me’ = T

Secondly, if the function considered is one of a continuous
variable and if r, is negative, then the solution y = r* is
complex.

Let us write the general expression of a number r,

(1) r, = o, + if, = ¢,(cosp, + ising,) = g,e'"
where i = I//;_l_; 0, > 0; 9, = a;* + f,2and tang, = ffa,.

From (1) it follows that
(2) r* = g,*(cosxg, + i sinxp,) = g, e*n

If r, is a negative number, then from (1) we deduce @,==n
and @, =~r, . Therefore

7.t = p,*(cosnx + i sinax) = p,%ei 7%,
The real part of the solution is .
y = €0,* cosnx .

According to what we have seen, if r, is a double root of
y{r)=0 then we have the particular solution corresponding to r,:

y = (¢, + ¢,x)g,* cosnx.
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If the coefficients in the difference equation are all real,
then the real and the complex part of 7,* must each satisfy
separately the difference equation; so that the solution may be
written

y = 0,* |¢, cosnx + ¢, sinnx}].

But since the difference equation is of the first order, the
two particular solutions cannot be independent; and indeed the
corresponding determinant is equal to zero. Moreover since X
takes only the values x—=a--¢ (where £ is an integer) hence we
have

sinax — sinx (a+$) = (-1) Ssinna, cosnx = (-1) fcosna

therefore
sinnx — tanza cosnx.

Finally the above solution will be
y = ¢,* [¢, +¢, tanza] cosax = ¢g,* cosnx.

Example. 2. Given the homogeneous linear difference equa-
tion

F(x+1) + Fx) = 0.

The corresponding characteristic equation r+1=0 gives r;=—1.
Therefore the complete solution will be

F(x) = ¢, cosnx .

§ 168. Complex roots. Given a homogeneous difference
equation with real, constant coefficients y{E)y=0. If the root r,
of the characteristic equation (r) =0 is a complex one,

r, = o,(cosp, + i sing,)

then, since the coefficients of the difference equation are real, it
follows that

ry = 9, (cosp, —ising,)

will also be a root of the equation. Therefore if the characteristic
equation has no multiple roots, the general solution may be
written
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y = klrl“ + k,‘,rgx +.,,= (k, +k2)91x cosxp, +
+ i(k,—hk,)o,* sinxp, + . . .,
If we put

kl = 1/2(C1—ic2] and k2 = 1/2(01+i02)
we have

Y = €,0," cOSX@, + €50, sinxp, + . . , .

Remark. If the complex root is a double one, the solution is
of the following form:

y = [e;+ex] 00" cosxg, + [b, +-byx]| o," sinxg, .
Example 1. Given the difference equation
Fx+2) + 2f(x41) + 4f(x) = O
the corresponding characteristic equation is

r°+2r4+4=0

therefore
rn=—1+il3, r,=—1—il'3
this gives, according to (1), § 167:

o= 2, tang, = —]3 and ¢ = 2r3.
The complete solution will be
2 .2
y = ¢, 2*cos %x_ +¢, 2% sin —;—E .

Example 2. Given the difference equation
f (xt4) — flx) = 0.
The corresponding characteristic equation is
r+—1-=0.

It is necessary therefore to determine the fourth roots of
unity. Let us write the general expression of a number @ in the
following way

a = o|cos(¢+2ka) + i sin{p+2ka)].
Its n th roots are given by
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p+2kn l
n

(1) '_./; = l;[ cos -¢+:kn + isin

putting for k the values 0, 1,2,. .. (n-i).
Therefore writing a= 1, p= 1, =0 and n=4 we shall have
4_
"1 = coslbka + i sinVokn
for k=0, 1, 2, 3. So that
=1 r,= —1,

= ~-1.

r,=14, r,=
The general solution will be
y = ¢, + ¢, cosax + ¢, cosVeax + ¢, sinonx .
Example 3. Given the equation
F(x+4+4) + f(x) =
The characteristic equation is
ri+1=0.
Hence the fourth roots of -1 are needed. Putting a = -1,
a and n=4 into (1) we get

e=1, ¢=
—cos = + i sin —- r, = —5f+!sm2
r, = 1 i 3 = COS 1
3=, .. 3= 7=, , . 7x
r, — e —_ r, — —_ —_—
2 = €05 -+ i sin 1 4 =cos 7 -+ i sin 1
Remarking that
co h—co—:— E—-co-:ixf
s =& =cos cos o~ =cos
in <7 2 sin n_ sin 3—1?
sin Iz = — sin 3 7= 1
the general solution will be
y = ¢, cos ‘—:+ ¢, sin - 4 =+ ¢, cos é;— + ¢, su‘?;;x

Example 4. Given the difference equation

F(x+2) —2cosp F(x+1) +F(x) =

The characteristic equation is
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r’*—2rcosp+1=0
hence r = cosg * i sing and therefore
(2) f(x) = ¢, cospx + ¢, sinpx.

The constants must be determined by the aid of the initial
conditions. Let for instance f (0) =0 and f (n)=0, then equation
(2) will give

¢c;= 0 and ¢, singn=0.
From this we conclude that if ¢ is not equal to av/n, where
y=1,2,3,...,n—1 then ¢,=0 and the only solution is f(x) =0.

On the other hand if g=mv/n then we shall have

. awvx
f(x) = ¢, sin T

Since this equation still contains an arbitrary constant, therefore
we may impose upon f(x) a further condition.

Recapitulation. Given the homogeneous linear difference
equation, with real, constant coefficients:

af(x+n) + a o, fxtn-1) 4+.. .. + af(x+1) + a,f(x) =0
if
r, =Q» (COS(}) ¥ + i sin', ,.)

is a real or complex root of the characteristic equation, of mul-
tiplicity m, then the solution of the difference equation is

y=.n... +[°‘+°2(ﬂ+”'+°‘"(milu'
. 6% (cosxp, + 1 sinxp, ) +. ...

§ 169. Complete linear equation of differences with con-
stant coefficients. Given the equation

{1 af(x+n)+.,.., + af(x+1) + af(x) = Vix)
or written symbolically
y([E)flx) = V(x).

Let us suppose that the function u is a particular solution
of equation (1}, so that we have

y(E)u = V(x).
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Subtracting this equation from the preceding we obtain
v(E)[f(x) = u] = 0.

Hence y—=Ff(x)—u is a solution of the homogeneous equation

v(E)y = 0.

From this we conclude that f(x) —u--y is the solution of
equation (1). Therefore first we have to determine the general
solution of the homogeneous equation; then we must find one
particular solution of the complete equation. This last may be
attained in different ways; sometimes a particular solution may
be obtained by simple reasoning. Often the symbolical methods
lead to it easily enough, or even the direct method of determi-
nation.

Symbolical methods. They may be useful in some particular
cases, A, First let V(x)=Ca*. If the difference equation

(1) v(E)f(x) = Ca*
is given, where a is not a root of the characteristic equation
y(r) =0 that is y(a) & 0; (the equation y(r) may have multiple
root8 or not).

Dividing formula (1) by p(E) and using formula (3) of § 165
we have

1 ~ Ca*

X

which is a particular solution of equation (1). Denoting again by
y the general solution of the homogeneous equation correspond-
ing to (1), the solution of the complete equation will be

Ca*
3 Fix) = — + .
6} ®) =Gt
Particular case. a=1, V(x)=C. If r=1 is not a root of
y(r)=0 then according to (3) the general solution will be

c
@ Hx) = TN + .

Example 1. Given the equation

F(x+2) — 5f(x-1) + 6f(x) = 2.
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The corresponding characteristic equation is
y@) =r2—5r4+6=0

so that r,=2 and r,=3; since moreover @=1 and w(1}=2, the
general solution of the complete equation will be given by (4)

fx) =1+ ¢,2* + ¢,3% .
Example 2. Given the difference equation
F(x+3) — 7H(x+2) + 16f(x+1) — 12f(x) = Ca*.
The corresponding characteristic equation is
w(r) =r® — Tr?+ 16r -12 = 0.

Hence r, =2, r,=2 and r;=3.
Therefore if a is different from 2 and from 3, then the
general solution of the complete equation is given by (3)

Ca* _
fHx) = e 16a—12 + (¢, 4-c.x) 2*4-¢, 3*.

Secondly, given the difference equation
y(E)(x) = Ca*

where a is a simple root of the equation y({r) =0. To solve the
difference equation we put

yw(E)f(x) = Cla+¢)*
then the particular solution will be as we have seen:
_ Cla+4¢)*
=@
The general solution of the homogeneous equation is
y = h@ Fert oS4
If we put
S C
" yladt-e)
then the general solution of the complete equation may be
written

B = c

fx) — C et —a"

— teat e +rerS4 ...
lagn)  TOCFersrants
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w(a) =0; hence we have

lim (0+£] x__ax xax-l ;
e~ vla+e) Dy (a)

moreover a being a simple root, therefore Dy(a)+ 0 and the
required solution will be:

(5) f(x) :% +c,aF + cor,t + ...

Particular case. Let a=1, y(1)=0 and Dw(1) %0. The
solution of

y(E)f(x) = C
will be, according to (5),

cx
= —— *¢, Lor* "

(6) f(x) DTP(I] €+ et 4
Example 3. Given the equation of differences

f(x+2) e 4f (x+1)+ 3f (x) = 3*.
The characteristic equation is

r?—4r+4+3=0 hence r,=1 and r,=3.

Since 3 is a simple root of this equation, the solution is given
by (5)
flx) = Yox3* 1 + ¢, + ¢,3° .

Example 4. Given the equation of differences
Flx+2) — 4F(x4-1) + 3F(x) = 2.
The characteristic equation is
r?e=4r+3 =0 hence r,=17r,=3;

moreover we have Dy (r) = 2r—4. The solution will be, according
to (6):
f(x) = -x + ¢, + ¢,3*.
B. Let V(x) =a*p(x) where @{x) is a polynomial of degree
n. Before solving the equation of differences

(7 y(E)f(x) = a*¢(x)
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we will establish the following auxiliary theorem. It is easy to
see that

E"[a¢(x) | = [E"a*][E"¢(x)] = ¢*[aE]"¢(x).
This holds for every positive or negative integer value of m.

Therefore if y(E) is a polynomial of E and ¢(x) is any function
whatever, we have

(8) v(E)|a*¢(x)] = a*y(aE)p(x).

Let us show now that, if w(E) is a rational fraction,
+(E)=U(E)/V(E) where U(E) and V(E) are polynomials, we
have

UE . U
o e =e|vglee
Indeed, multiplying both members by V(E) we find:

U(E) [a*¢(x)] = V(E) [@* V((ag ¢(%)]

but according to (8) the second member will be equal to

. U(4aE)
a*V(aE) V(‘E) @(x)
that 1is, it will be identical with the first member. Therefore
formula (9) 1s demonstrated; so that if F(E) is a rational fraction
we have

(10) F(E)a*¢(x) = a*F(aE)¢p(x).

Let us execute the operation 1/y(aE) performed on a
polynomial ¢(x) of degree §; if y(aE) is a polynomial of E of
degree n; and if a is not a root of the characteristic equation
y{r)=0. (The roots of this equation may be multiple or not.)
From the equation of differences (7) it follows by aid of
(10) that

1
(11) x) = @ = ¢lx].
T =@ e *W
Eliminating E from w(aE) by aid of E==A+1 we get a
polynomial @(A) of degree n. Let us suppose first that the
36
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coefficient of A® in @(A) is different from zero. Then 1d(\)
may be expanded into a power series of A:

ot A+ e, A2+ ..+ A
#(x) being of degree § the series may be stopped at the term
¢\, since Aty (x) =0 (if i > 0).
Finally we have

1
(12) Wq)(")=|%+"1A+ o P e plx)

The coefficients ¢; are easily determined. For instance, Taylor’s
series would give
! (x) = ¥ [ ;
——— x — i

09 arany v = 2 |0 sy ]ee At
and the required particular solution will be given by (11).

Since the higher derivatives of 1/y are necessarily complica-
ted, it is better, if n 2 2, to determine the coefficients in another
way. If we have

yla+aA) = b, +b,A +, .. + bA"
then the coefficients ¢; of the expansion (12) are given by the
following equations:
by, =1
bicy + bye, =0
b,c, + bc, + by, =0
bl'co + bi—-lcl +. yy r + bt)ci =0.

On the other hand if for instance b,=b,=b,=0, then we

may write

1 1., -
B, B8 T B Al T O AT T ]

and the coefficients ¢; are determined in a similar way, as before.
Example 5. Given the equation

flxe42) —4f(x+1) + 3F(x) =x4”.
The roots of the characteristic equation r*—4r+43—=0 are r, =1
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and r,=3. Moreover Dy(r) =2r — 4 and D l'l'= - ‘3.’2) there-

fore Vl(azél- and — 01?21/()0(;1] = 196 so that the particular so.

lution according to (11) and (13) will be
3x-16
”
u=4". —9

Using the second method, we have
vlat+aA) = a?(1+A)2—4a(1+A) + 3 = 3 + 16A + 16A°
therefore the equations will be

3c,=1 3¢, +16¢c, =0
so that

4\'; A]

Example 6. Given the equation
F(x4-2) ~ 4F(x+1) + Y(x) = x.
The roots of y(r) = r>—4r+4=0 are r,=r,—=2, Moreover q=1
and @(x) =x. Therefore
y(a) = a?—4a+4=1
Dyl(e) = 2a—4=—2
from (13) it follows that
u = (14+2A)x=x+2.
The second method would give
ylataA) = a?(14-A)*—4a(14+A) + 4 =1 — 2A + A2

Therefore

4 3516

=1 and ¢, ~—2c,=0
and

u= (1 +2A)x = x+2.
Example 7. Given
Hx+2) + F(x) = xa* .

We have y(r) =r241 =0; the roots of the equation are complex.
The particular solution will be, according to (11) :
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_ X _ 2at
a*+1  (a*+1)7
Particular case of the difference equation of the first order.

In the second case (B) the difference equation of the first order
may he written

(14) fx+1) —rt (0 = a*¢(x)

where @(x) is a polynomial of degree s.

Let us suppose that a 7, , then we shall have

= a*

1 . (_1)1// m!
D~ r-r, (r__rl)mﬂ '
Therefore the particular solution given by (13) will be
) nt1 amAm(P(x)
—— X —__1m RS
{15) u—=a "EO (—1) fa—r )™

Example 8. Given the equation
fuﬂ)—mm=[ﬂ.
Hence r, =2, a=1, y(1)=—1 and Dy(1)=1, therefore

x x x
”:_lsl“[zl - [1]*1-

Formulae could be deduced for cases in which a is a single
or a multiple root of w(r) =0; but it is simpler then to use the
method given in the next paragraph.

Summing up we conclude that this method is independent
of the order n of the difference equation, and therefore especially
useful for equations of high order. It does not matter if the roots
of y(r) =0 are single. or multiple, real or complex; to obtain the
particular solution it is not even necessary to determine the roots
of the characteristic equation; but the formulae are different if a
is a root of i(r) =0. Since the number of terms in the solution
given by (11) increases with the degree s of the polynomial ¢ (x) ,
the method is not advantageous if it is of a high degree.

§ 170. Determination of the particular solution in the
general case. Given the difference equation

y(E)f(x) = V(x).
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The particular solution obtained by the symbolical method is

1
= o ) V(x).
To determine the second member we shall decompose ly(E)
into partial fractions. Let us denote the roots of the charac-
teristic equation y(r) =0 by r,, *;, ., ., I, first we suppose that
these roots are all real and single.
If we write

1 b, b, b,
wB  E—r, TE=r, T T E=\

then according to § 13 we have

(2) b, = luDl/"(r)]r:r,,, .

Let us apply now to each term Eb"' V(x) the following
— 'm

transformation. It is easy to see that
(E—a) [a** F(x)] = a*AF (x).
Putting the second member equal to V(x), it gives
AMa*V(x)] = F(x)

moreover from the preceding equation we get

Ei-a v(X) = a'F(x).

Eliminating F(x) between the last two equations we obtain
the important formula

(3) E—l_; Vix) = a“ A" a>*V(x}]

this gives the required particular solution in the form of in-
definite sums:*$

(4) u=br* " ANrV(x)]+... + bt AN ra*V (x)]
The formula supposes that r=0 is not a root of y(r) =0 but
this may always be attained, For instance, starting from

% This formula is identical with that given by G. Wahlenberg und A.
Guldberg, Theorie der linearen Differenzengleichungen, Berlin 1911, p. 175.
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Hx43) -2f (x+2) + f (x+1) = V(x)
we get by putting x-1 instead of x
Hx+2) —2f(x+1) + f(x) = V({x—1).

If y(r)=0 has multiple roots, for instance if m is the
multiplicity of the root r,, then the decomposition of 1/y(E) into
partial fractions will contains terms of the form:

(E—f E—rF ' foru=1,2,3,.

Denoting

r—r, )"

Afr) = ="

="

then the numbers b, are given according to (4) § 13 by
DA (r)

Tm—u)! fr=r,

bo = (m—p)!

Now we have to perform the operations

(E r.) Vix).

For this let us remark that, according to (3), the operation
1/(E—a) performed on

! v
‘E——_—a‘(X)

will give

gz V) = 7 A @A @ V(g)]) = 277 A2 a7 v

(E

Contmumg in this manner we get

1 -
e V(%) = > A {1 VX)L
=7 "W Al
Finally the corresponding particular solution will be
mti
(5) u = 2 bvu rlx—” A— [ - V(x)] + A

=1

This method may also be applied in the particular cases of
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§ 169. Sometimes it is even more advantageous than the previous
methods. For instance, given the equation

p(E) (x) = a*p(x)

where @(x) is a polynomial, then in this method it does not matter
if @ is a root of ¢{r) =0 or not. The number of terms in formula (5)
is equal to the order of the difference equation, therefore the
method is especially useful for equations of low order. For
instance, in the case of an equation of the first order we have
only one term. The degree of ¢(x) does not increase the number
of terms.

If the roots of w(r)=0 are multiple or complex, if the
equation is of a high order, then the method is more complicated
than that of § 169. The following example will serve as a
comparison:

Example 1. Given the equation of differences

f (x+3) — 7f (x+2) + 16f (x41) — 12f (x) = Ca* .

We have y(r) = r®— Tr? + 16r—12 = 0, hence r, =3, ry=r,=2.
Moreover Dy(r) =3r*—14r + 16 and A(r) = 1/(r—3).
By aid of the preceding formulae we find

b=1,b,=—1a n d by,=—1
therefore the required particular solution will be
u=3" A [3* Ca*] = 281 A1 27 Ca¥] — 252 A2 [27* Ca¥)
determining the indefinite sums in the second member we obtain
u = Ca* | (u-2) 2 (a-3).

This result would have been given directly by formula (3)
of § 169.

Exampte 2. Given the equation

flx+1) —2f(x) = 2"(;).

Since we have y(r) =p—2 and r,=2, hence the particular solu-
tion is given by (4):

u =251 A [2 2x( x ]J — 21 (i; )
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The method of § 169 would have been much more compli-
cated. Indeed, since a=2 is a root of y(r}=0, hence after
executing the derivations in the second member of formula (9),
putting a-}-¢ instead of @ and determining the limits for ¢=0 we
should have had

o= 5)- (15 o (e (e

It can be shown that this is equal to 2! (z] .
Negatiue roofs. If the root r of y(r}=0 is negative, then we
may put
r.* =p,*cosax

and formula (4) will give
u=....+b.o* cos[x—1)7 Ao, costx V(X)] + ., ..

Complex roofs. If the root r, of the characteristics equation

is complex .

r, = o(cosg + i sing)
then

r, = o(cosp — i sing)
is also a root of this equation, since the coefficients of the given
equation are supposed to be real. The decomposition of 1/y(E)}
into partial fractions will give

b;_A L b2 __.1—..
B BT e b By
Putting Dy(r,) =M-+iN and therefore Dy(r,)=M—iN, we have
b m - (N b, — M+iN
1 = M2+N2 ' 2 — Mz—f-N"'

consequently formula (4) will give
u = b, ¢*"1 [cos(x—1)p+i sin(x—1)¢]-
+ A {@¥[cosxp—i sinx¢] V(x) } +
+ b, o*1 [cos (x—1) p—i sin(x—1} ¢ ]A™! {Q""[cosx<p+i sinxg] V(x]}

and after simplification
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Mij" ¢** cos (x-1) pA™* {o™ cosxgp V(x) } +

+ MOZ_*]_VNZ o*"! sin(x—1) A" {¢™* sinxp V(x) }

§ 171. Method of the arbitrary constants. Given the equa-
tion of differences

(1) v(E) fx) = V(x).

We will suppose that the coefficient a, of f(x+n) in this
equation is equal to one, and that V(x) is of the following form

(2) Vix) = a’[a0+al(f]+a2[;)+...+am[:1]].

We shall consider a as a root of multiplicity & of the characteris-
tic equation y(r) =0. If @ is not a root of this equation then k=0.
According to what we have seen, the particular solution of
this equation may be obtained also by the method of § 169, or
by that of § 170.
Now we will try to write a particular solution in the following
way

@ u=a[(5) +8 (s50) -+ n [ £1m)]

and dispose of the coefficients g, in such a manner as to make
this expression satisfy the difference equation (1). Putting there
! (x) =u we shall have

m-+1

2 pv® {43, )f = Ve,
In consequence of formula (8) § 169 we get

m+1 . x N

3 b arvleE) (35, ) = Vi)

on the other hand we have

y(aE) = wla+aA) = 2 D“v(a) (ﬂA)
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Indeed, y(r) being of degree n, hence D"!y(a) =0; moreover
a is a root of multiplicity 2 of y(r)=0, therefore D"y{a)=0
if u<k.

Finally we shall have

L a1 gn D-"Ip(a! x _
ad X B, = ] [k-—|—1"—,u] =Vix)

v=0 =k
writing k+-y—py=i we find
m+41 m+-1 kv—i DL‘+v—l' (a)
= (x) X 4, a Y1) — y(x),
a* =0 \lU/ o A [k+v—i).’ (x)

NOW we shall dispose of the coefficients §, so as to make
the first member identical with V(x) given by (2); we obtain

_ m4-1 aktr=i Dk+1'—i ’/’lﬂ] @ a* Mt
@ a = 2 B, i) 1 = Mzo ﬂp+1-—kﬁ Dvy(a)

=i

fori=0,1,2,...,m.

If Dty(a) and a are different from zero then the last of
these equations will give f,, the last but one 8,_,, and so on; since g
is a root of the equation y{x)=0 of multiplicity k, therefore the
first condition is satisfied. The second is satisfied too; indeed, if
we had @g=0 then equation (1) would be homogeneous.

The f. being determined, the problem is solved. This
method is applicable whatever the roots of iy (r)=0 may be, and
it is not even necessary to determine these.

Particular case of the equation of the first order.

O Her—rie) = el at [+ aly)]
From (4) we deduce

(6) a; = fisyp(a) + Bi,_+aDy(a).

Here we have y(r) =r—r, , Dy(a)=1 and D?y(a)=0. Let us
suppose first that a3 r, and therefore k=0, we find

o = By (@) + fi,a

fori=0,1,2,... (m-1), moreover since f,,, =0, therefore
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an = Bmyla).
Example 1. Given

FeH) — 27 = (3.

We have y(r) = r-2, Dy(r) = 1 and a= 1; therefore k=0 and
formulae (6) are applicable.

aa=1=—4,

aa=0=—4,+ 8,

a=0=—4,+5

a=0=—4p+5,
therefore §, = f, = f, = fs = = 1; and according to (3)

1= -13)-(5)

Secondly let @ = r, and therefore k = 1; since y(a) = O
formula (6) will give,

(7) o =gaDy (a) = af;.
The particular solution given by (3) is
(8) u = a*! ’"ﬁ" oy ( r
P i+11.

Example 2. Given
FlaH1) — 2f(x) = zx( 3)-
Since y(r) = r-2, @=2 and moreover @;=0, a¢,=0 and e,=1
therefore the particular solution is given by (8)

x -
u= 2“-103.

Example 3. Given
Hat2) —3F(x+1) + 2F(x) = (’2‘)
Therefore
y(r) = r2—3r + 2; Dy (t) = 2r—3 and D%y (r) = 2.

Moreover r,=1, r,=2. Since a=1, it follows that k=1. Putting
into (4) m=2, a,=0, a,=0, a,=1 we find
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¢, = 0 = f,aDy(a) * ,%a’D?y(a) = — 7y + B,
a, = 0 = p,aDyla) + p,%a’D*y(a) = — B, + B,
a, = 1= p,aDy(a) = — 5,
so that
Po=B=py=—1

and according to formula (3):

_ X X _{x
«==(1)-(3)- ()
Example 4. Given
Flx+3) — 2f (x+2) + f (x4-1) = 2f () = x3”
Hence
y(r) = r*=2r:4r—2 and Dy(r) = 3r*—4r41; e=3.
Since y(3) = 0 therefore k=0, Moreover putting into (4) m=1,
uy==0 and a,=1 we find
% = 0= Byla) + faDyl(a)
o = 1= fyla).
Since y(a)=10 and Dy(a)=16 therefore
105, + 488, = 0
105, =1

so that §,=1/10 and pg,=—12/25. From (3) we obtain the
required particular solution

§ 172. Resolution of linear equations of differences by
aid of generating functions,u—u(t) is the generating function of
f(x) if in the expansion of u(f) into a series of powers of ¢, ths
coefficient of #* is equal to f(x), that is if

(1) u=F0) + FU)E+ FR)E+ ..+ F) ...

The generating function of f(x) was denoted in § 10 by
Gf(x). Starting from this generating function we deduced in
§ 11 the gengrding function of f (x+m) :
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1
2) Gflx+m)= F[u(t] -fO) —ft W)t —., ., , —t"H{m—1)].
Therefore if the following difference equation is given
3) af(x+n}+ ap Flxt+n—1)+ .. .. +af(x+1)+ a = V(x)
then, denoting the generating function of V(x) by R() we
obtained the following relation between the corresponding ge-
nerating functions: .

"SI u(t) —10) — (1) — ... — " m—1)] = R(#).

m-0 t—m_
From this we deduced
n+1
M) u) = RO+ I a0+

nt1

+f (m-) ey X apten

Remark 1. The characteristic equation of the difference
equation (3) is the following

ar"+.,,,tar+a =0
hence the denominator of u(f) is obtained from this equation by
multiplying it by #* and putting into it r=1/t.
Remark 2. Knowing u(f) the generating function of f(x), it

is easy to deduce w(t) the generating function of the indefinite
sum of f(x), that is of Af(x) =F (x). Indeed we have

F(x+1) -F(x) = f(x)

we get
2O-FO iy = uer
that is
w(t) = tu(tl]—}_—I;(O]A'

Having determined u(f) by aid of (4), the expansion of this
function into a series of powers of ¢ will give the required
function,

In the general solution of a difference equation of order n
we must have n arbitrary constants; in fact the generating func-
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tion (4) contains the m constants f(O), 1), . ., , , f{n—1). Hence
it will lead to the general solution. Finally the constants will be
disposed of so that the initial conditions shall be satisfied.

Formula (4) gives the generating function of the difference
equation of the first order if we put into it n=1:

e, (0)+1R(¢)
(5) u-- = Tai
11T

This expression expanded into a series of powers of ¢ will
become

1 L] " o ao v
= — 1] 2 |——
u= 10 + 5 2 Ve E (2]
therefore, putting —a,/a, =r, , we deduce
1 32 e
(6) f(x) = r*(0) + o “Eo V(u)ry=te,

This formula is identical with that corresponding to (4) § 170.
Example 1. Given the equation

F(x+41) — 2f(x) = xa*.

In consequence of (6) we have
I
fix) = 2%F (0) + 21 20 n(Yea) ©,
”=

According to formula (2) § 34 the second member is equal to

F(x) = 2F(0) + .axﬂ(x"I(L:ZZ)J:a‘ + a2

From formula (4) we may obtain the generating function of
the difference equation of the second order. Putting into it n=2
we find

_a,f(0) + [a,f(0) + a,F(1)]t + £2R(¢t)
- a, + a,t + ayt? '
Example 2. Given the equation
F(x+2) — 3 (x4-1) + 2f(x) =0.

Since r; = 1 and r,=2, hence the denominator of u is equal to
(1-f) (1-2t) and the expansion of u will give

(7)
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a= (£ (0) + [F(1)—3F0)}t} = 3 21+,
=0 u=0
Therefore
x+1 x
Ha) = 1(0) 2 2+ [F(1)-34(0)] = 2

and

fx) = 28(0) —H(1)+[F(1)—F(0) ] 2.

Example 3. Calculus of Probability. A player possessing x
shillings plays a game repeatedly; he stakes each time one shil-
ling, if he wins he gets two. The probability of winning is equal
to p. It is required to find the probability f(x) that the player
will lose his money before winning m-x shillings. This problem
is a little more general than that of Example 2, § 166. Applying
the theorem of total probability as in this example, we shall get

f(x) = pf(x+1) + ¢f(x—1)
where g—1—p. Hence we have to solve the difference equation
pf(x+2) —F(x+1) + gf(x) = 0.
Applying formula (7) we get

2 (0) . [pF(1) —FO]
p—t+ gt
Since the roots of the characteristic equation are r,=1 and

u=

r,=g/p, hence the denominator will be p(1-—t} (1- % t) and the

expansion of u will give
l o » q L4
= ——1 = =1 ¢+
u = (HO) + ) —HO)) £ B (2] oo
so that

x+41 q r —1_ x lv
foo =10 S (&) + 1w —5 o1 5 ()
performing the summations we find
8) t) =910 —pH1)  PIF—H(0)] g -
o-p ) P

To determine the arbitrary constants let us remark that if
x=0 the player has lost so that f fO] =1; and if x=m he cannot
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lose before winning m-x, as he has already done so; therefore

fm) =0.
Putting into (8): f(0) =1, x=m and f(m) =0 we find

q(p™'—q™)
and finally

fe) =1 q"—p™ %]x]/ (g"—p™).

Remark. In the method considered above we supposed that x
is a positive integer, but putting the obtained result, in order of
verification, into the given equation of differences, it is easy to
see that the result holds for any value whatever of x, the opera-
tion E being always the same.

Since the method does not presuppose the resolution of the
characteristic equation, it may be useful if this equation cannot
be solved and if we are able to expand the generating function
without the knowledge of the roots of the characteristic equation.

Generally this method leads to the same formulae as the
methods applied previously, so that its real advantage will show
only when applied to functions of several independent variables,
when the other methods fail.

§ 173. Homogeneous linear equations of differences of the
first order with variable coefficients. We may write these
equations in the following way

(1) Hx+1) —p(x)f(x) = 0.
Let uvs suppose that x takes only integer values such as
X 2 a. Then we shall introduce a function y(x) so as to have
y(a]:l and for x>a:
y(x)- pla)plat+1)pla42). ...p(x—1).
Now dividing both members of equation (1) by y{x-+1) and
putting
u(x) = #x) [ylx)
we obtain
u(x+1) --ux) =0 or Au®x =0

therefore
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ux) =C and f(x) = Cy(x)
moreover f(a@)=C; hence from x > a it follows that
@ Ho) = fla) 1T pt)

Example 1. The general term f(x) of the series given by the
following equation of differences is to he determined if the initial
value is f(0) = 1. [Stirling, Methodus Differentialis, p. 108.1

FaxtH) — g"j;; Fx) = 0,
According to (2) we have
* 2+1 2x
e = 100) 1 25 = (%] 5

Example 2. Let us denote by f(x) the number of permutations
of x elements. Starting from the permutations of % elements we
may obtain those of x-i-1 elements, if we insert the x41 th element
into every permutation, successively in every place. For instance,
if x=2 the permutations are ab and ba. This gives for x=3

cab, acb, abc, and cba, bca, bac
therefore we have
F(x+1) — (x+1)#(x) = 0.

The solution of this equation of differences is, according to
formula (2),

f(x) = £(1) 1_11 (i+1) = £()x!.

Since f (1) = 1 hence the solution is f(x) =x!.

Example 3. Let us denote by f(x) the number of the possible
combinations with permutation of y elements taken x by x, i . e.
of order x.

Starting from the combinations of order x we may obtain
those of order x+41, if we add at the end of each combination
successively one of the still disposable y-x elements. In this
way we obtain from each combination of order x a number of
y-x different combinations of order x41.

31
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For instance, if y=4 and x=1 we have the combinations
a, b, ¢, d; this gives for x=2: ab, ac, ad, ba, be, bd, and so on.
Hence we shall have

Hx+1) = (y-2)f (x) = 0.

The solution is according to (2),
Hx) = #(1) 1_11 (v--i) = F(1) —1)es .

Since f (1) =¥ therefore f(x) = (¥)x .

Example 4. Let us denote by f(x) the number of combina-
tions without permutation of y elements of order x. Starting from
the combinations of order ¥ we may obtain those of order x--1
by adding to each combination one of the still disposable y-x
elements. But proceeding in this way we obtain every combina-
tion x-1 times.

For instance if y=4, x= 1, we have the combinations a,b,c,d.
From this we obtain the combinations of order x=2:

ab, ac, ad, ba, be, bd, ca, cb, cd, da, db, dc

every combination has been obtained twice.
Therefore we have the difference equation

Hxtt) = f;‘; f(x)

whose solution is according to (2):

fe) =HM) I 37 = (1) =t 1

Since f (1) =¥, hence

e =(?).

Example 5. Let us denote by f(x) the number of combina-
tions with repetition but without permutation of y elements of
order x. Starting from the combinations of order x we obtain
those of order x-1, by adding first to every combination succes-
sively every element of y. In this way we should obtain every
combination of order x+1 but not each the same number of
times; to obviate this, we add secondly to every combination of
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order x successively each element which figures already in the
combination. Then we get each combination x--1 times.

For instance, if y=4 and x=1 we have a, b, c, d. First we
have

aa, ab, ac, ad
ba. bb, bc, bd
ca, cb, cc, cd,
da, db, de, dd.
The combination ab has been obtained twice, but @a only
once. Secondly we get
aa, bb, cc, dd

now we have obtained each combination twice.
Therefore the difference equation will be

y+x _
fle1) =223 7o) = 0
and its solution

— oyt (y+1) v+2) . .. (y+x—1)
f(x) =#H{1) a i

2.3....x
Since f (1) = y therefore

f(x) = [” +:_1].

§ 174, Laplace’s method for solving linear homogeneous
difference cquations with variable coefficients, Given the
equation

(1) af (x+n)+. .., + af (x4+1) + af (x) =0
where the @; are polynomials of x. Let us put
b

(2) fo) = | ot

a

The function ¢(#) is still to be disposed of, and so are the limits
of the integral. From (2) it follows that

fletn) = | £r(t)de
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therefore we get f (x+n) starting from f(x), if we write in (2)
#'v(t) instead of wv(t}.
Multiplying equation (2) by x and integrating by parts we
find
h

b
A(x) = | xtw(dt = [Fo()] — [ #Do(at.

Multiplying this by x+1 and repeating the integration by
parts we have

(x+1),F(x) = | (x+1)Ew(H) — = Do(A)]2 + | ' D (B)dt.
a

Multiplying this by (x+2) and repeating the operation, and so
on, in the end we obtain
m-1 . . . b
bm—lat 9 =[S 1 etm—t)p D00 ||+
[ a
b

+ (=) | D (f)dt,

Now writing into it #%w(f) instead of v{t) we get the general
formula
(3) (x+m—1), f(x+n) =

m+-1 R , . \b
= {2 ()" (x4m—1), Dt ()], +

b
+ (—1)m |t Dty (#) ]t

Since we may suppose that the coefficients a,. of (1) are
expanded into a series of factorials (x+m—1), therefore
formula (3) permits us to write the difference equation (1) in

the following form:
b

[plew) e + | £ (. dt = 0.

First we dispose of v=v(#} so as to have y(v,f) =0. Generally
this gives a homogeneous linear differential equation whose
solution is equal to u(f) . Having obtained this, we dispose secondly
of the limits of the integral, so that ¢(x,v,t) shall be equal to zero
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at both limits. The limits must therefore be roots of the
equation in #:

p(xv,t) = 0.

Let us suppose that they are, in order of magnitude, ¢, ,{,,,.. i
each combination of these roots, two by two, will give by aid of
(2) a particular solution of the difference equation. The sum of
n independent particular solutions each multiplied by an
arbitrary constant will give the general solution.

Remark. Having determined f(x]) by equation (2) it is easy
to deduce A™f(x) and A 'F(x); we find
b

> Ht—1)"u(t) d t

Am#(x) =

b
A = [ e 2y

113

Example 1. Given
F(x+1) — xF (x) = 0.

From (3) it follows that
b

|— o1, + | £v(t) + Do()1dt = 0.

a
Putting first
wt+ Dov(t) = 0
we obtain
v=_Ce".
Secondly, the limits of the integral are the roots of
et =90

therefore { =0 and #,—=<.
Finally we shall have

f(x) = c ".w tletdt = CI'{x).

Starting from the difference equation of I'(x), we have got
its expression by a definite integral.
Particular case of formula (1). The coefficients @; are all of
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the first degree in x; so that we may write equation (1) in the
following manner:

" (@xtp)Hx+v) = 0
y==l)

where a,. and g, are numerical coefficients. From (2) we obtain

b

a 1

§l B (x+4v) = nf ﬂ,_[t*‘"*'vdt
=0 =0 a

and from (3)

£ a— X n§1 vlé "ﬁl btx t*
2 axxp) =[tv T ark— T a,af D[t vl dt.

Hence v will be the solution of the equation

a+1 n+41
2 (Bo~a,) v — I g, #**Dv =0
==() =0

which can be written
Dv_2 t*(B,—va,)
(4) v Sa

The limits of the integral are chosen from the roots of the
equation

n+1
v 2 at = 0.
v=0

First we have the root t=0; moreover, if the roots of
oat" +. ...+ at+ a, =0

are all real, different from zero and unequal, say ¢, , tz e
t,, then the general solution will be:%4

{ tn

f(x) = ¢, j Flodt+.... +¢, _[ f=1lp dt.
0 0
Example 2. Given the difference equation corresponding to
Siding’s series (Ex. 1, § 173):
(2x+2)F (x41) ~ (2x-+1)F (x) = O.

M See Schlesinger, Handbuch der linearen Differenzialgleichungen, Vol
1.. p. 409.
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In consequence of (4) we have

Dv |
VT 2t(1—)

) t \ '
=(5)
therefore the limits are determined by
F(2t=2)v = — 2" (1—f)" = 0
so that we have {, =0 and #,= 1, and finally

_ ! s
f(x) = O| T dt,

whence

Verification. This integral is equal, according to a formula in
Bierens de Haan [Nouvelles Tables d'Intégrales définies, Table
8, F. 2.] to

1.3.5. 2x-1) 2%
) =—%73%. (X) ]22*'

This result has been found before (Ex. 1. § 173).

§ 175. Complete linear equation of differences of the first
order with variable coefficients,

We will suppose again as in § 173 that x takes only integer
values, such that x 2 a. Given the equation

(1) F(x+1) —plx)f(x) = V(x),
we introduce the function y(x) as in § 173; putting y{a) =1 and
y(x)=p(a)pla+1)... p(x—1), for x > 4; moreover
u®) = f(x) | y(x).
Now dividing both members of (1) by y(x+1) we get
x
Bale) _ S

therefore

x V(i)
u(x) = u(a) +i=2n SEE1)

and finally
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@) Hx) = y[—[xl Ha) + 3 ymT)]

Example 1. Given the equation
F(x+1) —xf(x) = (x4-1)!

where x 2 1, therefore we have to put a=1 and y(x) = (x]) ! .
Formula (2) will give

3) fx) = (-t F) + ?;; (i"l:'!l)!:l:

= (x-1)! [f(l) " ["42‘1)--1]

Remark 1. In the particular case, if a=0 and p(x) is
constant, say p(x) =r,, then we shall have y(x)=r,* and formula
(2) will be the same as that corresponding to (4) of § 170.

Remark 2. As has been said at the end of § 172, though we
supposed x to be an integer, nevertheless, if the result may be
written in such a way that it has a meaning for every value of x,
for instance in the case of (3), writing

Ha) = I'(x) [f(l] + 5 —1]

then this will necessarily satisfy the given equation, Indeed the
operation [ is the same whatever the value of x may be.

§ 176. Reducible linear equations of differences with va-
riable coefficients. In some cases the equations with variable
coefficients can be reduced to equations with constant coefficients.

A. If the following equation is given

a,f(x+n) + a,_,p(x) f(x+n—1) + a,.p(x)p(x—1) f(x+n—2)+
{1)

+.ooos @, plx)plx—1)... plx—n+1) f(x) = V(x)
where the @; are numerical coefficients, then the equation may be
reduced by putting

/6 = plx—m)plx—n—1) . . . . p@ (x).
Supposing that x Zn + a.

Dividing both members of equation (1) by p{x}p(x—1).. .
pla) we find
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Vix)
p(x)p(x—1). . .p(a)
B, Given the equation where the @; and c are constants,
{2) a,f(x+n) + a,_,c* f(x+n—1) 4+ @, ,¢* f (x+n-2) +
+....1t a.c™ fix) = V()

If we write ¢'* in the following manner

a,,rp(x—}—n] + ... + 019)(X+1) + a,,(p(x] =

¢t =¢* ex 1 .. cx—v+l c‘[,v(v—l).

Then putting ¢* = p(x) equation (2) will become of the same
type as equation (1) and may be reduced therefore to constant
coefficients.

In the particular case of the equation of differences of the
first order

Flx+1) -P(X) H(x) = V(x)
putting f(x) =p(x—1)p(x—2) . . . p(a) y(x) we find

_ _ Vix)
eletl) —olx) = Arle) = g ,oopla)
The solution of this is the same’ as that in § 170.
Example 1. Given the difference equation.
f(x+2) — 3xf (x+1) + 2x(x-1) flx) = 0
let us put )
f(x) = (x—2) (x-3) . ,.2.1.¢(x) = (x—2)! p(x)

where x 2zand a = 1.
Dividing both members of the given equation by x! we find

@(x+2) — 3¢ (x+1) + 2¢p(x)= 0

the equation is reduced to one of constant coefficients. The cor-
responding characteristic equation is

r’—3r+2=0

therefore r,=1 and r,=2, so that

p{x) =¢, + ¢,2¢
and finally
f(x) = (x-2)! (c, +¢,2%).
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8 177, Linear equations of differences whose coefficients
are polynomials of X, solved by the method of generating
flinctions.5”

We have seen in § 172 that if the generating function of
f(x) is u then the generating function of f(x+tm) is

G.Hxtm) = 7‘; [u-f(0) — (1) — . . . .—t"F(m—1)].
The first derivative of this function with respect to ¢
multiplied by # gives the generating function of xf (x-+m). The
second derivative multiplied by #22! will give that of (;lf{x{—m]
and so on.

(1) G[[’,;] f(x+m)]=7:ﬁ! pr—t Ot ()= .. —tmH(m—1)

m
Let us consider now the equation of differences
2) af{x+n)+....+ af (x+1) + af (x) = V(x)

where the coefficients a; are polynomials of x. If the generating
function of V(x) is known, we may write that the generating
functions corresponding to both members of the equation (2) are
equal. This will give a linear differential equation:

o(...., Dtq,.. ..., Duut)—0

whose solution gives the generating function g, Developing it
into a series of powers of f we get the required function f(x).
If the coefficients in equation (2) are of the first degree,
then the differential equation will be of the first order.
Example 1. We have seen that if we denote by f(x) the
numbers of the combinations of n elements of order x, then this
number is given by the equation of differences

(x+1)}Hx+1) — (n—x)F(x) = 0.

Let us solve this equation by the method of generating
functions. Noting that
% Laplace, Théorie analytique des Probabilités, p, 80.

Selivanof-Andoyer, Calcul des Differences et Interpolation, Encycl.
des Sciences Mathimatiques, I. 21,. p. 76,
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G [(x+1)#{x+1)] = Du
from the given equation it follows that

Du—nu*+tDu=0
and therefore

du __ ndt
u - 1+t
Hence
u=C(1+1).
Developing this into a series of powers of # this gives
_ n
fx) =c [x]

As f{1) =n, therefore it follows that C=1 and finally f(x)
Example 2. Given the equation

(2x+4-2)F (x4+1) — 2x+1)F (x) = 0
according to formula (2) we have

2Du—2tDu—u—=0.

_n
—IxI

Hence

Du_ |

T T 211
whose solution is

u=C{1—f)

and finallv

fx) =c [i" 2—12; .

§ 178. André's method for solving difference equations.*®
If x is a positive integer, the method consists in considering the

slution of a linear equation of differences as identical with that
of a system of x linear equations, with x unknowns.

Given for instance the complete linear equation of differen-
ces of the n -th order, written in the following way:

(1)
fx) — a,(x)F(x—1) —a,(x)f(x—2) —... —a,(x)f(x—n) =V(x)

. % Désiré André, Terme général d'une série quelconque. Annales de
I'Ecole Normale Supérieure. 1878, pp. 375—-408.
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and the corresponding initial values f{1), f (2), ., ., f(n) ; then the
solution will be that of the following system of equations:
f(x) — a,(x)f(x—1) —a,(x)f(x—2) — ... — a,(x)F(x—n) =V (x)

f(x-1) — a, x-Df (x-2) —, .. =~ a,(x—1)f xnl) = V{x—1)

N ;[n—H) —a,(n4+1)f{n) —..,. = a(n4+1)f(1) = V(n+])
fn) —a,(Mf(n—1) — .. . —a, (n)f(1) = ya

e s

H2) —a,(2)H{1) =,
f1) =y, .

If instead of the #(1}, / (2), . . ., f(n), the quantities y, , y, ,
.., ¥n , are considered as known, then from the above system
of x equations, the x unknowns, (1), f {2}, . , , . fix) may be
determined; but it is sufficient’to determine only one of them,
viz. f(x).
It is easy to see that the determinant figuring in the denomi-
nator of f(x) is equal to unity. Indeed it is equal to

! —a, (x) —a, (x) —a,(x) . ...

0 ! —a,(x—1) —ay(x—1)....

0 0 1 —al(x——2).,.. -1
0 0 0 1

0 0 0 0 eoas 1

The numerator of f(x) is equal to the following determinant
of order x

V(x) —a,(x) —a,(x) -a, (x) ...
Vix—1) 1 —a, (x-1) —a,{x—1) . . . .
V(ix—2) 0 | —a, (x—2), . ..
V(x—3) 0 o - 1 C

¥, 0 0 0 L1 —ay(2)
Yi 0 0 0 0 1
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Let us determine the coefficient of V(x—m) in the expan-
sion of this determinant.

The coefficient of V(x) is obviously equal to one. The coef-
ficient of V(x—1) is equal to u,(x); that of V(x—2) is

—a,(x) —a, () —a,(x)
1 —a, 1) —a,(x—-1) . . ,

0 0 l )
0 0 0 ,
0 0 0 1

therefore equal to
—a,(x) -a,x
D ety | = @ e ) ()

In the same manner we should have the coefficient of
V(x-3)

—a,(x) —a,(x) —a,(x)
=13 1 —a,(x—1) —a,(x—1)| =
0 1 —a, (x-2)

= a,(x}a, (x—1)a, (x—2) +a,(x} + a,(x)a,(x—1)+a,(x}a,{x—2)

and so on; the coefficient of V(x-m) will be

—a,(x) —a,(x] -a,(x) C e =y (x)
I —a(x—1) —ay(x—1). ., . . —@u, (x-])
(—1)m 0 1 —a, x-2),..,. —@y,(x—2)
0 0 1 yoos s —Om g (x-3)
0 ] 0 o, .. —a, (x-m-1),

Let us denote the general term of the expansion of this

determinant by

a;, (x,)an(x,)....an, Xi).
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We shall show that these expressions satisfy the following
conditions

1. The terms are homogeneous with respect to the indices
of a, and we have

k,+k,+. ., , +h=m

2. The first argument is always equal to X, so that x,=x;
the others are: x,—=x—Fk,, x,=x—k,—k,, . . . .

Xi=x—bhk —h,—....—k_ =—x—mtk.
Therefore the coefficient of V(x-m) will be equal to
2 ap (x))ai(x.). .. ax xi.

This sum is extended to every partition of the number m with
repetition and permutation. The number of the terms being
equal to

F(Jm) — 2m—1 .

(See Netto's Combinatorik, p. 120))

This may be verified in the cases considered above of
V{x—1), V(x—2) and V{x—3). For instance in the last the
terms correspond to 1 +1 +1, 142, 2+1, 3.

We shall show now that if the sum above is equal to the
coefficient of V(x-m), then it follows a similar formula for
V(x—m—1) and therefore the formula is true for every m such
that x > m.

The coefficient of V(x—m—1) in the numerator of f(x)
being equal to the determinant

—a, (x) —a, (x) c e —ag(x) —ap,, (x)
1 -a, (X'l) L R _am--l(x_l) _am(x——ll
(—1)mt 0 1 e, =y, (X-2) —Amy (x-2)
0 0 e v . -a,(x-m-1) —a,(x—m+1)
1 —a, (x—m)

We shall examine each term of the expansion of this
determinant to see whether our conditions are satisfied.
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The coefficient of the term a,+,(x) is equal to one, hence
it satisfies both conditions.

The coefficient of a,(x—1) is equal to a,(x) therefore the
term a, (x)a,(x—1) satisfies the conditions.

The coefficient of @m_,(x—2) is equal to that of V(x—2),
Since the sum of the indices in this coefficient is equal to 2, there-
fore 2+4+m—1=m+1 satisfies condition (1). Moreover the
arguments in the last factors of the terms in this coefficient being
equal to (x—2—#;) so that the terms

..... ax, (—2+ki)a m— 1 (x-2)

also satisfy condition (2).

The coefficient of a,_,(x—3) is equal to that of V(x—3).
For the same reasons this coefficient satisfies both conditions,
and so on; finally, the coefficient of a,(x—m) is equal to that
of V(x-m). The sum of the indices which has been equal to m,
has become now equal to m-1; moreover the argument in the
last factor has been (x—m--k;), therefore

...... ax, (x—m-+kj)a, (x-m)

satisfies the second condition too.
Finally putting

(2) 2 ai (x))an(x,) ., . . ax(x) = y(x,m)
we have
3) X x:."—o: 3 y(x,m) V(x—m) + _é w(xm)y,_m.

We have already used Andrh’s method in simple cases, so,
for instance, in § 32 determining the indefinite sum of V(x), that
is, solving the difference equation

Flx4+1) -1(X) = V()
or in § 38 by the inverse operation of the mean, solving the
equation

Hat1) 4 £(x) = 2V ().
Now we shall apply it to more complicated problems.

Particular case. 1. Difference equation of the first order with
constant coefficients. We have
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f(x) — a,f(x-1) = V(x)
f (x-1) = a,f(x-2) = V(x-1)

F(2) = a,(1) - V(2)
f(1) =Y
Multiplying the second equation by a, , the third by a,® the
fourth by a,3, and so on; after addition we get
r-1
(4) fx) = T a™ V(x-m) + a*ly,.
m==0
This result could have been obtained directly by formula
(3). Indeed the sum of the indices must be equal to m, therefore
we have a@,™; moreover, since a, is constant, there is no need to
consider the arguments. Finally we shall have 2 a,"V (x—m) and
a,*'y,.
Particular case 2. If the given equation is homogeneous, then
we have V(x) =0 and the solution (3) will become

() f(x) =Zyplxmycnm.
m=x—n

Particular case 3. Linear equations with constant coef-

ficients of order n. If the coefficients a, are constants, then
formula (2) will become

(6) plx,m)=2Zaxdxr,.. . . ay.

In this sum every combination with repetition and permutation
of the numbers k, =1,2,...., n will occur, in which

ki +hky4.... +khi=m

If, in the product above, the coefficient a, occurs a, times
for v=1,2,..., n, then we may write this product as follows

a,fa,“....a,“
where

a, + 2u, + 3a, 4+ ..,. + na, = m.

But in the sum (6) this product will occur
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times, where a,+a,+ ... +a,=2 has been put. Indeed this
expression is equal to the number of permutations of 1 elements
among which there are @, elements a, , moreover a, elements a,
and so on, u,, elements being equal to a,.
Therefore formula (6) may be written
il

(7} l/'[x,m] = 2 m;[ a‘m a-‘ag' . ana”

where the sum is extended first to every combination with repe-
tition of the numbers a4, =0, 1,2, ., ,, satisfying the equations:

a,+dy+... 4+, =2 and uy+20+....+n00,=m
and secondly extended to every value of } from the smallest
integer not less than m/n to m (inclusive).

Finally f(x) is given by (5).

In this way we obtain the solution of the difference equation
without determining the roots of the characteristic equation. This
is an advantage of the method; but the result is obtained in the
form of a sum generally very complicated.

If we solve the problem in both ways, then, equalizing the
results, we may obtain interesting formulae.

Example 1. | Waring, Meditationes Algebraicae, Cantabri-
giae, 1782] Newton has deduced a difference equation, one of
whose particular solutions f(x) is equal to the sum of the x th
powers of the roots of a given equation. Writing this equation in
the following way:

(8) rm—ar!'—a,r"t—.,, . —a_ r—a, =0
he found

f1) = a

1(2) — a,f{1) = 2a,

3 —af2) —af(t) = 3a,

f(n) _alf (n-l) T ey T an_1f (1) - na,
and if x > n, then
9) fo) —af () —af(x2) —... — apf (x-n) == 0.

The last equation is a linear equation of differences of order
n whose characteristic equation is given by (8). Therefore,

38
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denoting the roots of (8) by *;, Ps, . ... I'n, the solution of (9)
will be

fx) =Crx+Cor* 4 ...+ Cory*.

If we dispose of the constants so as to have C, = C, = ... =
= C, = 1, then we get the particular solution

n41
f) = _§l re

that is, f(x) obtained from Newton’s difference equation (9)
will be really equal to the sum of the x th powers of the roots
of equation (8).

Waring has determined the generating function of f(x); this
we will obtain by André's method of solving equation {9).
Remarking that in the problem considered the n given values
figuring in this method are

Y= y2:2a2,...., Yo = na,.
Equation (9) being homogeneous therefore, according to
formula (5), its solution will be

f(X) = _é_‘ y"(x!m) (x—m)a._,.

Putting into this equation the value of y'(x,m) obtained in
the case of equations with constant coefficients (7) we find

Al
(10) Flx) = 2 (x—m) ——— @y ay™ . .. ;% Gy_y .
79 N
This sum is first to be extended to every value of ¢, =0, 1, 2, . ..
satisfying the following equations
a,+a,t+....+a, =14
(11)
a4+ 2a,+. ...+ Ny, =m

secondly to every value above mentioned of i and finally to
every value of m from m=x--n to m=x (inclusive).

We may write (10) in the following way, putting x—m=i

f(x) - 2 i(a1+ v + an)! alu, e a‘.u‘-{-] . 'anan

afan!., . al

where we have
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a,+2a, ... 4+ nay, = x-i.

Writing moreover ; instead of a1 we get

, a+ ...+ a—1) |
£(x) = 2 ig; 2 (o, + 1) 4% . . ass
al....a,l
and
a,+ 20, +...+na =nx

Now the second sum is independent of i, therefore we may
execute the summation with respect to i. Since ¥ igy=x hence
finally we shall have

o = x 3 (o ) L. agen
This sum is to be extended to every combination with
permutation and repetition of the numbers a,. satisfying
u, +2a,+tna,=x. This is Waring’s formula. It is easy to see that
f(x) is the coefficient of #* in the expansion of the following
expression

x+1
x En—ialt+azt2+. . dan)”
r=0

that is in
log (1—a,t—a,t*— . .. . —q,i")™>

therefore this is the generating function of f(x).

Example 2. Equation with variable coefficients. Problem of
Coincidences. (Rencontre.) From an urn containing the numbers
1,2,3,...,x these are all drawn one after another. If at the
m th drawing the number m is found, then it is said that there
is coincidence at the m th drawing.

The number of the possible cases is equal to the number of
permutations of x elements, that is to x!. If we denote by f(x)
the number of permutations in which there are no coincidences
at all; then the number of permutations in which there is one

coincidence will be OT f (x-1); the number of those in which
there are two coincidences is equal to 1;1f (x-2) and so on;

finally, there is only one permutation in which there are x
coincidences.
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Therefore we may write the following difference equation

iu)+{f]nx—4)+{§]ﬂx—a)+..,+[bjlhu)=xz-1.

From (2) we may deduce

o =zen(7) 7] [

Since x, =x, x,==x—k, , x,=x—k,—hk, and so on, therefore

putting

x,]__ x! _ (x2] (x-k,) !
Ry) — RT(x—k)!' \Re)= k! (ckok) /7. "
we obtain

_ x!
vlem) =2 (1) e T Rl e—m)

In this sum we have
{12) ky+k,+... ki=m.
Therefore if i is given and the k, > 0 then according to (5)
§ 60 we have
1 il sy
2 R R m om

where the sum is extended to every value of %k, different from
zero and satisfying equation (12). The number & is a Stirling's
number of the second kind. In consequence of (5) § 58 we have

m+1 . )
S (—1)iil @ = (—1)m
i=1

the expression of (x,m) will be equal to (-—1)’”[ ;1] and finally
according to (3)

(SR

x41 1
f(x) = (-1)*" l;) | (x-m) !-——1] — x! ,"2:2 (_l)m ;{{1

m=0

il

Example 3. In § 83 we deduced Lacroix’s difference equa-
tion giving f{x)=A"'u*!; we found:
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(13) f(x) +[le)—;-f(x—1)+(x;l)—;— Fe—2) 4 ... +

X-1y 1 1, w0
+l Y ]V+1 f(x—v)+....+-;f(1)_ *

The initial condition being
f(1) = u + c.

Let us solve this equation by aid of the preceding method.
We have

x-1 1
(14) a, =) A5
and
Vie—m) = ——.
According to formula (2) we have
_ x| (x x; (—1)
plom) = 2 [k‘] (k:] v (k.-] ) (k1) .., (Rt 1)

where the sum is extended first to every combination of order i
with repetition and permutation of the numbers k, =1,2,3, . . .
such that

ki+k+..,.+hh=m
then to every value of i. Moreover,

=X X, =xk, . ... x=x—k—k—...—k_;

therefore x;—x—m--k; . After simplification we have
x— (-1)’ .
05)  ylem) = mf Tf = F ) R DT (Bt 1)1

and y(x,0)=1. Finally the solution is given by formula (3):

1= X o xm ¥ (_l)i
(16) f(x) :x—_m=20 ml " 2 (k1)1 (R, +1)T ... (k1+1)!+

(—1)*
+ @O 2 TR D )

The last sum is extended to k,+k,+ ...+ ki—=x—1.
Remark. It is possible to express the preceding sums in
another form. In § 60 we found formula (5):
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l'

(17) b _k_k—k_ o s &

the sum being extended to the same values of k, as the sums
figuring in (16). If in the latter sum R, could also he equal to
zero, then its value would be, in consequence of (17),

il
(m<i)! ©
In order to obtain from this the required sum, we have to
subtract from this the terms in which . — 0, and that for every
value of »=1,2,3,, ., , i. That is:

[ ] (m:_lll)!! o

Proceeding in this way, we have twice subtracted the terms
in which we had k, =k,,=0. Hence we must add these again

for every combination of »,, »,, that is (12) times:
1“2) i—2
[2 (m+i—2)! Sute-r

But in this manner we have added twice the terms in which
k,=hk,—k,,=0; so that we must now subtract

i) _(—3)! o
l3 (i3] s

and so on; finally we shall have:
i1 (—1)(i—v)! [
Eo(m+t-v)"l§"'+""-
putting now m--i—y—n, we get
il mi - [m+i l _
2 ___.4)m+i~n Gn m
(m+i) l a=m+1 ( 1) n "
but we have seen in § 65 (p. 185) that this sum is equal to _C,,,_,,,_.'
(see Table p. 172); therefore
1 il
(ki + 1)1 (R4 1)! ... (R0 = m+i)

(18] p> Cm m—d
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The sum being extended to every combination of order i
with repetition and permutation of the numbers k, =1,2,3,. ..
such that

ki+k+...+ki=m, (k. >0).
To obtain f(x) we have still to sum the expression (18) from
i=1to i:m—H
In § 83 we found the symbolical formula

fx) = % lu+BJ* + k.

Equating the coefficient of u*™ in this expression and in
(16) we have
(=)
FF DL+ D1 (D)
where k,+k,+ . . .+ k=m and k, > 0 and the sum is extended

for every value of i from one to m. Moreover in consequence
of (18)

(19) B,=m! =

- m (_l)l —
(20) B, = ?x [_m__i_i_cm.m_i .
m ]

§ 179. Sum equations which are reducible to equations of
differences. Besides the forms of difference equations (4), (5)
and (6) considered in § 164 there is another form in which sums
and differences figure. The simplest case is:

(1) olxf(x), M), A%, . . ., £ 1()]= 0.

In certain cases this equation may be solved; for instance
if it may be written in the following way:

2) Hi) = @, 1%, F(x), AF(x),...]
then performing on both members the operation A we find

Hx) = AD|xf(x), AF(x), .. . ]

an ordinary equation of differences.
Example 1. Probability of repeated trials. In a game the
player gets n times the amount of his stake, if he wins. If he

| 1]

i

4
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loses he plays again, staking each time anew, and continues till

he wins in the end.

Let us denote by f(i) his stake in the i th game. This
quantity is to be determined in such a manner that if the player
wins, say the x th game, he gets back not only the stakes he
lost previously but moreover a certain sum s fixed in advance.
Therefore we shall have

x+1
nf(x) = s + 2 i)
i=1

performing the operation of differences we obtain
nAf(x) = f(x+])
or

Flx+1) ““n—L f(x) =o.

This is a linear equation with constant coefficients, whose solu-
tion is

=1

f(x) = c

To determine C let us remark, that we must have (n-)f(l) =s§,
therefore C=s/n and

Fle) = S| ]x

(x) n (n——l

Particular case. If n=2 (for instance in the roulette), then
f(x) = s2%1

that is, the stakes must always be doubled.
The given equation may be somewhat more general than (2)

for instance:
(3 2 p0) /) = SleA A, ]

where p(i) is a given function. Proceeding in the same way as
before we perform the operation of differences and get

p(x)F(x) = AD|xH(x) AF(x),. . . |

§ 180. Simultaneous linear equations of differences with
constant coefficients. Given two such equations:
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¢(E)u + y(E)v = F(x)
‘pl(E)u -+ Wl(E)v = Fl (x)

where the unknown functions u and v are to be determined,

Starting from these equations we may deduce a difference
equation containing only one function. Indeed, executing the
operation ¢, (E) on both members of the first equation, and the
operation @(E) on both members of the second, we get, after
subtracting the second result from the first:

2) e (E)y(E) —o(E)y: (E)]o=¢, (E)F(x) — ¢(E)F, (x).

This is a complete linear equation of differences with
constant coefficients whose order n is equal to the highest power
of E in the first member of (2); n will also be equal to the
number of the arbitrary constants in the solution of v.

Denoting by V(x) a particular solution of (2], then if the
characteristic equation has no multiple roots, the general solu-
tion of (2) will be

(3) v+ V (x).

In the same manner we could get a difference equation of
order n determining the function u#. Denoting by U(x) a parti-
cular solution of

(4) (¢ (E)p(E) —¢(E)y, (E)lu=v(E)F,(x) — v, (E)F(x)

then its general solution will be

(1)

(5) u=c,'r+....+ec'r*+ Ulx).

It may be shown that if V(x) is a p'articular solution of (2)
and U(x) a particular solution of (4), then it follows that V(x)
and U(x) are also solutions of equation (1).

u contains also m arbitrary constants, but they are not
independent of those figuring in v. Indeed, from the first of the
equations (1) it follows, in consequence of formula (2) § 165, that

n41
3,:, feiw(r) + ¢’ @r)]r* =0.

Since this is to be satisfied for all values of x, therefore
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the coefficients of each exponential must be separately equal
to zero, so that we have

. ey(r)
@ plr) -~

Remark. If the equations (1) are homogeneous, the functions
u and v will differ only by the values of the arbitrary constants.
Example 1. Given

4E— 17u + (E—4)v =0
RE— 1)u + (E—2)v=0
from these it follows that

[E:— 8E+15]v = 0

v=¢3"+¢, 5

and therefore

moreover

, 1
¢,)=—-—=¢ and e, =—3F6

so that

! 1
u=—gc, 3-“———3—c25".

If the characteristic equation of (2) has double roots, the
calculus is a little more complicated. We have seen that in this

case the solution is of the form

V=(c, +exjr,c+ . ...
u=(c +e'x)r +, ...

Before putting these values into the first equation (1), let us
deduce the following formula. In § 165 we had

¢(E)r* = rip(r).
Derivation with respect to r followed by multiplication by r gives
{6) @(E)xr* =xr'p (r) + rrDe (1)
therefore from (1) we get
c,'p(r,)) + ¢.'r,\Dolr) + c.'olr)x + ¢, v(r) + c,r,.Dy(r)) +
+ cylr)x=0
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for every, value of x, and therefore

vl

(7) =T o)
C.' — — S240%,) + ¢, Dy(ry) + ¢,'r,Do(r,)
v o(r,)

Example 2. Given
(E>—8)u + 2Ev =0 and Eu—(E*—2)v=0.
From this we deduce
(E2—4)2v = 0,
Hence the solution will be
v = le;+6%)2" + (c;34-¢,%) (—2)*
finally by aid of (7) we deduce
u = (e, 3¢, 46,%)2" — (c3+3¢c,+¢,x) (-2)“




CHAPTER XII.

EQUATIONS OF PARTIAL DIFFERENCES.

§ 181. Introduction. If z is a function of the two indepen-
dent variables x and ¥, so that z=f(x,y), then the equation

(1) F(x,y,z, Az, Az, N*z,. ..., Nz, JA"’z) =0
X y X X 4

is called an equation of partial differences, or a difference equa-
tion with two independent variables.
Eliminating from equation (1) the symbols A and A by aid

x I
of E=14+A and E=1+A we obtain a second form of these
x x Y Y

equations
(2) F, (x,y.2,.Ez,Ez.E*2,E*z,.... ,E"z,E"2z) = 0.
x y x Y x Y

The function z may be determined by aid of (2) if certain
initial conditions are given. But in these cases a few particular
values of z are not sufficient, here particular functions must be
given. For instance, if equation (2) is a linear equation of the
first order with respect to x and also with respect to y, and if
the equation contains each of the four possible terms, so that
we have

(3) 011E§z+ 001§z+ aloxf z+4ay,z- Vixy)

then, to enable us to compute z=F (x,y) for every integer value
of x and y, two functions must be given as initial conditions.
For instance:

f(x,0) = p(x) and f(0,y) = w(y)

for every positive or negative integer value of x and y.
If the two functions are given, then putting x=0 and y=0
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into (3) the only unknown quantity in this equation will be f {1,1).
This being calculated we put into (3) x=1and y=0 and get
f (2,1}, and so on. Moreover putting into (3) x=—1 and y=0 we
obtain f (—1,1) ; and so on step by step we may find any value
f (x,1 ) whatever. [Figure 13)

In the same way, dating from x=0 and y= 1 we now obtain
#(x,2) and starting from x=0 and y=2 we get f(x,3). Continuing
we may find finaly any value of f (x,y) whatever.

In the general case of a difference equation of order n with
respect to x and of order m with respect to y, the number of
the possible terms

E'E‘for v=0,1,2,...nand u=0,1,... m

x oy

will be equal to (n+1) (m+4-1).

Figure 13.
% % 2%
7 %
/7/ il %/é’/f a7 17 fqyj
Zs 5y, 7l a7

% Z

If the equation contains all these terms, then the initial con-
ditions necessary to compute f(x,y) are m+n given independent
functions. For instance the following:

Fled)=gilx) for i=0 1,2,.,,, ()
fliy) = wily) for j=0 1,2 ..., (ml).

Indeed, after having put x=0 and y=0 into (2), the above
equations will give mn+4m+n of the quantities figuring in (2],
so that there will remain in this eguation only one unknown,
f {n,m). Having determined this we may proceed to the determi-
naion of f(n+41,m), and so on.

But if from the {n4-1) (m+4-1) possible terms in equation (2)
some are missing and if x and y are positive, then the number of
the necessary conditions may often be reduced. For instance,

\\
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if the equation is of order n with respect to X and of the first
order with respect to y; moreover if there is but one term E in

¥
the equation, and if y 2 0, then instead of the n+ 1 necessary
conditions, one condition will be sufficient. For instance if we
have

aof(x+2,y) + a,,f(x+1,y+1)4a,Flx+1y) + a,f(xy)=V(x.y)

then f {x,0) =¢(x) given for every positive and negative value of
x will be sufficient for computing step by step every number
f(x,y). Indeed, putting y=0 and x=—1 into this equation, the
only unknown will be f (0,1} ; this being calculated we put into
the equation y=0, x=0 and obtain (1,1},and so on. (Figure 14.)

Figure 14.
g7 77
A, 04 IR AN
TXGAY e

We may determine in every particular case the number of
the necessary and sufficient conditions for the computation of
f(x,y). We have to dispose of them so, that putting the cor-
responding values of f (x,y;} into equation (2}, there shall
remain only one unknown in it, for instance f (n,m}. But this must
be done in such a way that having determined f{n,m) we may
proceed in the same manner to the determination of f(n--1,m)
and po on.

The conditions must be independent; that is, no condition
shall be obtainable starting from the other conditions, by aid of
the equation of differences.

Let us suppose that the necessary initial conditions cor-
responding to an equation of partial differences are the following
functions:

f(x'yo)v f(x'YI)v Cee :f(x.-yj); f(xo’yld f(xvy) v f(xlvy]
given for every value of x and y; if the arbitrary functions
contained in the solution are such that they may be disposed of
so as to satisfy the above initial conditions, then this solution
may be considered as the general solution.

N

—
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§ 182. Resolution of linear equations of partial differences
with constant coefficients, by Laplace’s method of generating
functions.

If the given equation is of order 7z in X and of order m in
y then the complete difference equation may be written in the
following manner:

(1) ng §+1“w fx+ry+u) = Vixy).

=l

Let us call u(t,t,) the “generating function of F{x,y) with
respect to x and y” if in the expansion of u(ft,) into a double
series of powers of ¢ and #, the coefficient of ¥ ¢ is equal to
} (x,y) ; if x and y vary from zero to %, then

= § % Fx,y) t¢>
2 at) = I % 1) 0ty

[should y vary for instance from one to ® , we should simply
have to put f(x,0) =0].
This generating function is also denoted by @G . f{x.y). If

xy
first we expand u(4,t,) into a series of powers of { and have
3) u(t,t,) = 20 w(xt,) tF

then we say that u(tt,) is the generating function of w(x.t,)
with respect to x, that is

Gw (xt)=u(tt)

¢, is in this formula only a parameter.
Expanding w{x,t,) into a series of powers of #, we get

(4 wieh) = E Hep) by = Gl

Here w(x,t,) is the generating function of f {x,y) with respect
to y; in this formula x is a parameter.

In this manner, instead of a generating function of two vari-
ables we have obtained two functions of one variable.

From (4) we deduce directly

G. 1 (x+r.y) = w (x+v)
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and according to formula (3) § 11
G Flx4vy+up) = w[x+y t)) —FHx+»0) —F(x+v 1)t —. ..

'f (x4v,u—1)t,477] .

Let us denote by R(x,f,) the gknerating function of V(x,y)
with respect to y, that is

?. Vix,y) = R{x.1,).

Now we may write that the generating functions with respect
to ¥ corresponding to the terms of equation (1) satisfy this
difference equation. Therefore we have

(5) ,Hél m%: ar[u tlm_!l !iw(x_'_'y'tl) 'f (x+v|0] . tlf [x-}-v,l) T

v=0 u=
— 1 (xvu—1)] = 4" R(x,t,).

This is a linear difference equation with constant coefficients
of the variable x, of order n,; it contains already m arbitrary
functions of x

F(x+»,u—1) where x =1,2,3,..., m.

Into the solution w(x,t,) there will enter moreover n arbitrary
functions of ¢, , The expansion of w(x,{,} into a series of powers
of t, will give f (x,y); the arbitrary functions of ¢, expanded will
give n arbitrary functions of y.

Finally the m+n arbitrary functions of x or of y are deter-
mined by the aid of the initial conditions.

Example 1. Problem of poinfs. In a game the first player
needs x points to win the stakes; the second needs y points. The
probability that the first player shall win the stakes, is denoted
by f (x,y). Let us suppose that the probability of winning a point
is p for the first player and 1—p=g for the second.

To determine f(x,y) let us remark, that the first player may
win the stakes in two different manners; first by winning the next
point, the probability of which event is p; then, as he needs now
only x—1 points to win and his adversary y points, the probabi-
lity of his winning the stakes will be f (x-1,y); and the compound
event, viz. of winning the next point and afterwards the stakes
too is pf (x—1,y) .



609

Secondly, the first player may win the stakes by losing the
next point, the probability of which is ¢, then for winning the
stakes he needs still ¥ points and his adversary y-1 points,
therefore the probability of the compound event will be gf (x,y—1).

According to the theorem of total probabilities, the probabi-
lity #(x,y) that the first player shall win in one of the two ways
is equal to the sum of the two probabilities obtained above,
that is, to

flxy) = pf(x—1y) + gf (x,y—1).
We shall write this equation of differences in the following
manner:

(6) flx+1,y+1) — pHxy+1) — gf(x+1,y) = 0.

To solve this equation we have to put into (5) n—=m=1;
we find

(7) (1—qt)w(x+1,t,) —pw(x,t,) = F(x+1,0) — pf (x,0).

According to § 181, it is easy to see that, knowing the
values of #(x,0) and f (0,y) we may compute f (x,y) by aid of the
equation of differences, step by step for every integer value of x.

But f(x,0) is the probability that the first player wins the
stakes if he needs x points and his adversary none. This pro-
bability is obviously equal to zero, Therefore f (x,0) =0 for every
positive value of x; (0,0} cannot occur.

f (0,y) is the probability that the first player wins the stakes
if he needs no points at all; if y > 0 this probability is equal to
one, since he has won already. Therefore f(0,y) =1.

Since f (x,0)=0 if x > 0, therefore from (7) it follows that

p -
w(x+1.4) — =gt wix,d,) = 0.
[f x=0 then we have

w{O4) = FO1)E, + FO2)82 + . . . ..
Since f{0,y) =1, hence

t
wloh) = 2

The equation above is a homogeneous linear equation of
39
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differences of the first order, with constant coefficients; hence
its soiution will be

wlxt) = (h) |

p 'x
l_qtl

p(f,] must be determined by aid of the initial condition cor-
responding to x2=0, therefore

¢ (t,) :w(o'tl]‘

wixh) = 121‘1 ()

Hence

The expansion of w(x,t,) into a series of powers of # will
give f (x,y)

w(xt) =22 4t p*(—1) [-_lx] q't)’.

If we put R41-+4i=y, then the coefficient of ##, that is, the
required probability, will be
Fx,y) = p* 2/ [x-}—;—-l] q.
i=0

Example 2. The problem of coincidence considered in § 178
(Ex. 2), somewhat generalised, will lead to a partial equation of
differences. From an urn containing the numbers 1,2,3,.., .,y
these latter are all drawn one after another. The probability is
required of not having coincidence in x given drawings.

The number of the different ways of drawing y numbers is
equal to the number of permutations of y elements, that is, to y!
If we denote by f(x,y) the number of the favourable cases, that
is, those in which there is no coincidence in x given drawings;
then the required probability will be f(x,y)/y!

But f{x,¥) may be considered as equal to the number of ways
of drawing y numbers so as to have no coincidences at x-1
given places, that is to f(x—1,y) less the number of ways of
drawing the y numbers; so that there is coincidence at the place
x, and no coincidences at the other given x-1 places, This last
number is obviously equal to f (x-1,y-1). Consequently we have

flxey) = f (x—1y) — [ (xLy-D.
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Let us write this equation of partial differences in the following
manner :

(8) flx+1,y+1) = f (x,y+1) + f (x,y) = 0.

Since this equation contains only one term of x+1, moreover,
since y 2 xl 0, therefore one initial condition will be sufficient
for the computation of f (x,y). Such a condition is for instance
f (0,y) = ¢(y). But f (0,y) is equal to the number of ways of
drawing y numbers without any restriction at all; therefore
7(0,y)=y! for y=0, 1, 2,. . . . Moreover, since there is only one
way of not drawing numbers, we have f(x,0) =1.

Starting from the conditions f(x,0) =1 and f (0,y) =¥! we
may compute step by step every value of f{x,y).

In consequence of (5) the generating function of F(x,y) with
respect to y, denoted by w(x,t,), will be given by

w(x+1.t) — (1—t)w(xt,) = f(x4+1,0) —F(x,0) = 0
therefore, if x > 0, the solution is

wixt) = o(t) 1—4)*

moreover if x=0, then
w(0,2,) =7 (0,0)+7(01) £, + 7(0,2)£,2 + . ..
and in consequence of f(0,¥) =y Iwe have:

w(0t,) = ,50 "

this is equal to the arbitrary function e(t,), and we get
w(x,t,) = (1—4)* Z »itp
The expansion of this function will give
w(x,t]) = 2 V! tl'lf 2 (—1)"' (;)tl‘u
Finally, putting ¥+ u=Y, the coefficient of ¢, will be equal to
x+1 x
Hay) = 2 05 —u)l
pu=0 -

From this there follows the interesting formula (p. 8)

f(xy)= (-1)X [A: (y—2) o
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In the particular case of y=x we obtain a formula already
deduced in § 178:
x4-1 (g_l)m
flxx) =x! = —"—
m=0 m!

From this the probability of not having coicidences at all
in x drawings is obtained by dividing f (x,x) by x! , If x increases
indefinitely this probability tends to e .

Example 3. The rule of computation of the numbers in
Pascal’s arithmetical triangle is given by the following equation
of partial differences:

flx+1y+1) = Hxtly) + Flxy).
Since this equation contains only one term of y+41, and since
¥ 2 x 2 0 therefore the condition, which follows from the defini-
tion of these numbers:
f{x0) =0 if =0 and f0,0) =1

will be sufficient for the computation of f (x,y).
According to (5) G #{x,y) will be given by

u(y+1,8) — (1+1) u(yt) = F#(0.y+1) —#(0,y).
Starting from the initial conditions it is easy to show that
f (0,y) =1, therefore we have
The resolution of this equation gives
u(yt) = ¢(f) (1+t)”

for y=0 we get u(0,f) =¢(f); but in consequence of the initial
condition it follows that

u(0,t) = (0,0) + F1,0)t + }(20)2 +. . .. =1

so that finally
u(yt) = (1+¢)

Hx,y) = ( 3’:)
Example 4. We have seen in § 58 that, denoting the Stirling

numbers of the second kind & by f(x,y), they satisfy the follow-
ing equation of partial differences:

and
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©) Flx+1,y+1) — (x+1) Hx+1y) — f (xy) = 0.

Since this equation contains only one term in y-+1, and
y 2 x 2 0 hence the condition

fx,0) =0 if x+0 and fO0) = 1
which follows from the definition of the Stirling numbers, is
sufficient for the computation of f (x,y).
According to (5) w(x,t;) the generating function of f(x,y)
with respect to y is given by the difference equation:
W(x+1,t1) — ,(I+l¢0) - (1+x)t1 w(x+1lt1) h tlw(x:tl] =0.
Since f (x+41,0) =0 therefore we have
t —
10 wlx1,4) = —___ wxt,)=0.
(10) (e+14) = e wlat)
This is a homogeneous equation of the first order with
variable coefficients, whose solution is (§ 173):

x t
wiet) = wOh) 1 —atm—.

To determine w(O,t,] let us remark that starting from the
initial condition it is easy to show that fO,y) =0 if y > 0;
therefore

w(0,,) = #(0,0) + F(0,1)¢, +F(0,2)t,2 + ... = 1
so that finally

t*
wleh) o (o —at,) ..., =)

To expand this generating function into a series of powers
of ¢, it is best to decompose it into partial fractions and then
expand. This has been done in § 60, where we found the coeffi-
cient of £, equal to

—1}x xH1 .
few = EL T cf)r =

Example 5. In § 144 we denoted by F(E) the frequency of
& which was given for £ =0, 1,2, ., , ., N-l. There in a table,
we put into the first line of every column the same number
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F(JV-1) ; moreover into the first column we put F {(N—1),
F(N—-2), F(N-3), . . ., FQ), F(0).
Denoting by f (x,y) the number figuring in the line x and

in the column y, we have

f,y) = F(N—1)

f(x1) = F (N-x)
where x 2 1 and y 2 1. These are the initial conditions. The
other numbers f(x,y) of the table are computed by aid of the

equation

(12) f(x+1y+1) — Flxy+1) —f (x+1.y)= 0

Since in this equation there are two terms of y-+41 and two
of x+1, hence, according to § 181, two equations of condition are
necessary to compute f {x,¥). The two equations given above
are such.

To solve equation (12) we shall denote by w (y,f) the ge-
nerating function of f {x,y) with respect to x; since in our problem
x > 0 therefore

w(yt) = Fat+ 2y + . .+ i+, .

Starting from equation (12) we obtain

w(y+1,t) — l_iT w(yt) = 0.

The solution of this linear equation with constant coef-
ficients 1s

wvt) =g i)y »(t)

where ¢(f} is an arbitrary function to be determined by aid of
the initial conditions. Putting into this equation y=1 we find

N o LV+1
"=t = 3 i) = 2 FW—) £
- p=1 y=
therefore
1 N+41

Tl——"t)yul IEI

and expanded into powers of ¢

wiyt) = F(N—) t*
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® . Nti
wyt)l = = [y+122] t ¥ F(N—)¢
u=0 y

y==1

Finally putting »+u=x we obtain the solution

21 S
Hey) = = [PTI72) P,
=1 y
This will give, in the particular case, the number of the line
x=N—y+42 and of the column y:

N—y+1 (N—,

fW—yy2n="% (V) Fv—s).

Therefore this number is equal to the binomial moment of
degree y-2, of the function F(£):
F(N—y+2.y) = %,.,.

Computing the table mentioned above the required binomial
moments are obtained all at the same time by simple additions:
this is the shortest way, since no multiplications are necessary.

Example 6. Bernoulli’s formula of the probability of
repeated trials, Let the probability of an event be equal to p at
each trial. The probability is required that the event shall occur
x times in n trials. Denoting this-probability by P(n,x) we obtain
by aid of the theorems of compound and total probabilities

(1) P(n41,x+1) = pP(nx) + qP(nx+1).

Indeed the probability that the event shall occur x-41 times
in nt+l trials is eqtial to the sum of the two probabilities: first,
the probability that it shall happen x times in n trials, and
moreover also at the n+l th trial; and secondly, the probability
that the event shall occur x-f1 times in n trials and fail at the
last trial.

Equation (1) is a linear homogeneous equation of partial
differences of the first order with respect to both variables. To
solve it, since n2 x2 0, according to § 181 one equation of
initial conditions is sufficient, For instance, if P{0,x) is given for
every value of x; but P[0,x) =0 unless x=0 and then P(0,0) =1;
indeed, if the number of trials is equal to zero, then the event
can only occur zero times; hence the probability of it is equal
to one.
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If now we denote by u(n,] the generating function of
P(n,x) with respect to X, that is

G P(nx) = u(nt)
then we have (p. 608) )
GP(nt1x+1) = 7 [uln+1) —P(nt10))
and
GP(nxt1) = 1 [u(nt) —P(n0)]
hence from (1) it follows that

(2) u(n+1,t) — (pt4-q) u(nt) = P(n+1,0) — gP(n,0) = 0.

Indeed, from the theorem of compound probability it fol-
lows immediately that

P(n+41,0) — ¢P(n0) = 0
hence the solution of equation (2) will be
u(nt) = C(pt+q)"

In consequence of the initial condition u(0,f)=1, we have
C= 1, and P (n,x) will be equal to the coefficient of t* in the

expansion of u(n,f)=(pt+q)" thatis P(n,x) = (:J P qgrE,
§ 183. Boole’s symbolical method for solving partial ditfe-
rence equations. This method is applicable *to partial difference

equations in which one of the variables (e. g. the variable y) does
not figure in an explicit manner:

(1) w(xygrf)f(x,yl = 0.

We write k instead of the symbol E, and considering it

as a constant solve the equation (1) and f&d
Haxy) = vilxk) o) = vi(6E) #by)

where @(y) is an arbitrary function of y.
Finally we obtain f(x,y) by performing the operation ¥, (xE)
on the function ¢(y). y
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As in every symbolical method, the result obtained must be
verified by putting it into equation (1).

The function ¢(y) will be determined in particular cases by
aid of the initial conditions.

Example 1. Given the difference equation

Ef(x.y) — Ef(xy) = 0
let us put E=%k and have
Yy
Ef (xy) = & (x.y)

the solution of this homogeneous equation with constant coef-
ficients is

Hxy) = Foly) = E"qv(y] = plx+y).
Where @ (¥} is an arbitrary function. Since the equation contains
only one term of x-1, so that to compute f(x,y) for x20 only
one equation of condition is necessary, and this is for instance

1(0,y) given for every integer value of y. Putting x=0 into the
above equation, we get f (0,y) =¢(y} and therefore

flxy) = H0y+x).

It 1s easy to verify that this result satisfies the given equation.
Example 2. Given the equation

E E fxy) — Ef(xy) —F(xy) =0
x y
putting E=k we have
]
k E f(xy) — (B+1)f (x,y) = 0
the solution of the equation with constant coefficients is
k1)
Hey) = (S o).
Finally the expansion gives
*=o(x) 1 =3 [x .
flxy) = Z (,] 7= Z ,']w(y—l].

This result satisfies the given equation. In this case too, one
initial condition is sufficient for the computation of any value
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of f(x,y) . For instance if X = 0 and if f (0,y) is given for every
integer value of y, we find f (0,y) =¢(y) and

Hew) = 2 (3) Foa—).
Example 3. Given the equation
EEHxy) —f (xy) =0
the transformation gives

RE f(x,y) — xf(x,y) = 0.

The solution of this equation with variable coefficients is

Hxy) = I{_Z 72‘ y{y) =(x-1) ! ”E"‘” @y) =(x-1) | gp(y—x+1).

Since the given equation contains only one term of x--1,
hence if x 2 0 one initial condition, for instance f (1,y} given for
every integer value of y, is sufficient for the computation of
f(x,y). We find #(1,y) = ¢(y) and

flx,y) = (x-1)! F(1,y—x+1).

Example 4. The difference equation giving the numbers in
Pascal’s arithmetical triangle is

Fat1y+1) — Fx+1y) — Fxy) = 0
or written in the symbolical way
[EE—E—H Flry)=0
the transformation gives
(k—1)E F(x,y) ~ f (xy) = 0

whose solution is
1 x 1 x
Hey) = () 001 = (5] 0.
Yy

The function y(y) is determined by aid of the initial values.

Since the given equation contains only one term of y-1-1 and
y = 0 hence one initial condition f(x,0) =0 if x +0 and /(0,0) =1
is sufficient for the computation of f{x,y).
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Putting into the above result x=0 we get

o) = #0y).
From the initial condition it follows that f (0,y) = 1. Therefore
¢(y)=1 and

Hey) = A1 = (1) +Foy

where F(y) is a polynomial of y; but putting x=0 into this
equation we find F(y) =0. Finally

Flxy) = [ﬁ]

that is, the numbers in the arithmetical triangle are the binomial
coefficients.

§ 184. Method of Fourier, Lagrange and Ellis, for solving
equations of partial differences, Given the linear homogeneous
equation of partial differences

(1) w(g'g]f(x,y] =0

and likewise the necessary initial conditions corresponding to a
problem, the method consists in determining a certain number
of particular solutions of equation (1), multiplying them by
arbitrary constants, forming the sum of the products obtained,
and finally disposing of the arbitrary constants in such a4 manner
that the initial conditions may be satisfied.?”

The method was first applied in the case of partial differen-
tial equations; but there the difficulties were much greater;
indeed, to satisfy the initial conditions, the number of arbitrary
constants and therefore that of the particular solutions to be
determined is infinite. On the other hand difference equations
are generally valid only for a finite number of values of the
variables, and therefore it will suffice to dispose of a finite
number of arbitrary constants, in order to satisfy the initial con-
ditions.

Of course, the number of these constants will be very great,
_espec_ially _in the case of three, four, or more variables; so that it

% R. L. Ellis, On the solution of equations in finite differencer.

Cambridge Mathematical Journal, Vol. 4, p, 182, 1844; or in his Mathe-
matical and other Writings, Cambridge, 1863, p. 202.
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would be impossible to carry out the calculations in the usual
way; this is only possible, as we shall see, by means of the
orthogonal properties of certain trigonometric functions given
in § 43

Example 1. “Third Problem of Play.” Two players have
between them a number a of counters; they play a game in which
the first player has a chance p of winning one counter from the
second in each game. At the beginning, the first player has x
counters. Required the probability that after a number y of
games the first player shall have z counters, neither of the
players having previously lost all his counters (ruin).

Let us denote this probability by f(x,y,z). If the first player
wins the next game, of which the probability is p, then the
required probability becomes equal to f(x-+1,y—1,z). If he loses
it, the probability of which is 1—p=g, then it becomes equal to
f(x—1,y—1,2). Therefore, applying the theorem of total proba-
bilities, we get

(2) f(x,y,2) = pfx+1,y—1,2) + g¢f(x—1,y—1,2).

This is an equation of partial differences of two variables, which
may be written

3) pf(x+2,y,z) — fx+1y+1,2)+ gf(xy2)- O

where z is merely a parameter,

Since there is only one term of y+1 in this equation, and
moreover since y 2 0, hence, according to § 181, one initial con-
dition will be sufficient for computing the values of f(x,y,z} by
aid of equation (3). Such a function is, for instance, f (x,0,z),
given for every integer value of x from —o to -}, We shall
suppose that 0 < z< a.

Obviously we have

(4) f(x,0,z) = 0 if x = 2z and f (20,2) = 1

this will give for x = 1,2,..., @/ in all a-/ conditions.

Starting from (4) we may compute step by step any value
of f(x,y,z). There is but one difficulty; in our problem there are
two supplementary conditions, viz. :

(5) f0yz)=0 and f(ayz) =20
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that is, the probability of having z counters after y games is
equal to zero if one of the players has already lost all his
counters, since then the play is over.

But the values (5) are necessarily incompatible with those
corresponding to the difference equation (2). To obviate this
inconvenience, we will restrict the validity of (2) to the interval
0 < x < a; then there can be no contradiction.

In the end we shall have a-1 condition to satisfy, therefore
the number of the arbitrary constants in the particular solution
must also be equal to that number.

It is easy to find a particular solution of (3), by putting

f(xy,2)=0a F(x)

and disposing of a in such a way that equation (3) shall be
satisfied. From (3) it follows that:

{6) pF(x+2) —aF(x+41)+ qF(x) = 0.

If we write a=2 cosp ] pg then the roots of the character-
istic equation corresponding to (6) will be

Yo

. . q
r = (cosp T i sing) (;—] .

In consequence of the sign * this gives, according to § 165, two
different solutions of (6), so that we obtain the general solution

of (6)
Fx) = [%]’d2 [A,cospx + A,sinpx]

and therefore a solution of (3) containing the three disposable
parameters A4,, A,, @, will be

x.2
(7) f(x,y,2) = (4pq)¥? (%) (cosp)” [A cospx + A,sinpx].

To satisfy the condition #(0,y,z2) =0 we have to put in (1
A,=0. Moreover, to satisfy f(a,y,z2) =0 we put ¢=wn/a, where
v is an integer such that 0 <y < a. To each value of v there
corresponds one particular solution of (3) ; multiplying it by the
constant C, and summing from »=0 to y=a we get a particular
solution containing a-l arbitrary constants.
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;'—, ¥

xf2 o I
8)  Fleyz) = (4pq)*? [%] Z C sin —(

(There 1s no objection to beginning the summation with »=0
instead of »=1, since the term corresponding to »==0 is equal
to zero.)

The number of the conditions (4) still to be satisfied is also
equal to a-1, therefore we may attain this result by disposing
of the constants C, in the following manner:

x/2

Putting y=0 into equation (8); after division by [—p—) we
get for x=1,2,, .., a-1 the equations

yax

(B.]xlz H{x,0,2) = s C,sin —/ .
4 =0 a

Multiplying the first of these equations by sin l:I—T , the
2ua

second by sin —[—l—'~ , ., .the x th by sin X and adding up the
results, we find
x[2 a v an
D> [_p_] f(x,0,z) sin £X % ¢, sin 5 sin 12
=1 q a =0 a a

The first member of this equation is equal, in consequence
of (4], to

52 nrz
[£] sin “———
a

The sum in the second member, according to formula (9) § 43,
is equal to zero if v=tu and to %aC. if y==1. Therefore we

shall have
2 [ ] (nz

Finally the required probability obtained from (8) will be

(9)
yx vz _yn 4

2 T _
f(x,y,2) =7 (4pq)” (_p] EO sin —= sin —=|cos

This formula has been found by Ellis (loc. cit. 57, p. 210),
it may be transformed in the following way; the product of sines
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is expressed by the corresponding difference of cosines, and the
power of cosine by cosines of multiples.

Let us suppose first that y is odd; ¥=2n—1; then the sum
in the second member may be written:

$ 1 ‘co x—z ] "‘H [Zn—l 2i—1
—0 22"‘1 S a a

.

The products of cosines occurring in this formula are again
expressed by sums of cosines. We find

ntl g a 2n—1 ) l—l—l—x-—-z 21_1_x+z
Zm X [ n—i ”cos———-a va + cos S———1% v1 —
(10)
— 2i—1—x—
— cos 21 +x+z )1 — cos _L=a{‘=z ver

In § 43 we have seen that

3 avn
p)

(11] COST =0

=0
if a is an integer not divisible by a. Therefore the first term of
(10) will be equal to zero unless we have

2i4+x—z-—1=1a or i =V(la—x+2z+1).

Since the number y of the games is odd, hence z-x is also
odd; moreover, since i must be an integer, therefore 2.a must be
even. If 1 is odd, we have

a
(12) 3 coshva = 1 — (—1)e,

=0
But if 1 is odd, then a is necessarily even, and the above expres-
sion is equal to zero. Hence it is sufficient to consider the even
values of A.If 1 is even, then

a
(13) 3 coslvn = a.
v=0
If we put 1=2p, then in the first term of (10) we shall have
i=ay+414(z—x+1), and the sum of this term will be

2n--1

ax (n—ar—-!/é1+ Vax—Yal -
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Since we must have i 2 1, hence if z > x then y may be equal to
0,1,2,... andif z<x,theny=1,2,3,, .,

In the second term we have i=ay+ Y (x—z+1), therefore
it gives

aS [ 2n—1 ]
n—ay—Vax+ Y2z—14).
If x > z, then in this sum we have y=0,1, 2, . ., , if not, then
y=1,2,3,... Since
[ 2n—1 _ l 2n—1
n—Yoz+Yox—Ve 17 (nt Yy z—Yox—Vs |

therefore we conclude that the first two terms of (10) will give
2n—1
U n—Yax4Yor—Yo 1
) [ ( 2n—1 [ 2n—1 ]
Ta y=1 L "‘"“7’_1/27'‘1‘1/295—'1/21+ n-a y + Yozr—lox—14) |

In the third term of (10) we have i=ay—V5 (x+z—1), hence
we get

. S ( 2n—1
y=] n-a y + y2x+1/21—1/2

In the fourth term we have i=ay+ 15 (x4z-+41), therefore

- a N 2n—1 }
y=0 n—ay—Y; x—lbz—13 "

Finally the required probability will be

q l(*‘5)/2

(14) Hx2n—1,2) = (pq) " g

Y S R AN T

y=0

2n—1 2n—1
+ 2z [(n—‘/z—ay+‘/2x—‘/éz]_(n—V2—07+‘/2x+1/_>ZJ}’

;;=1

In the same manner we could obtain the formula for
}(x,2n,z) ; but there is a shorter way; indeed, we have

f(x,2n,z) = pf(x+1,2n—1,2) + ¢f(x—1,2n—1,2}.



625

By aid of (14) this will give
{x—s-F1)/2
t(x.2n,z) = p(pq)h (%] {Z...}+

(x—5—-1)/2
+ q(pg)y—a [%] {z...].

Let us remark that both factors preceding the brackets are
equal to

{rq)* (%)kﬂm

Moreover, the two first terms under the ¥ signs corresponding
to x-1 and x-1-1, are

( 2n—1 ] [ 2n—1
n—t—ay—Yax4 Voz) + \n—ayYox4 1z, -
We have seen in § 22, formula (13) :

[2)+(u71) =om (3) =377

therefore the sum of the two terms above will be equal to

2n
| n—ay—Yox+ Yz ] '
Combining in the same way the other terms two by two, we find

(15) F(x.2n,2) = (pqg)” ( %]"2.

{ z Hn—ay—'%Zx—szz}—[n—W—z‘Z"_%z ” t

y=0
+ 2 [ n—«zy+21?2x—%z] - [n—a?+2‘/nzx+1/2’ ”}

From (14) and (15) it follows that for y even or odd we have

f(x.y.2) = (pq) (—;";](x—'m .

{ ,Ea [( Yoy—tx't Vo z-ay] - [ sz~1/é;—~1/2z—ay ]] *

y Y
+ ,E, [[1/2y+ Yox—Voz—ay1 — 1 Voy+ Vo x+ 1/22—0?”} '

40
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The probability above is necessarily equal to zero if y—z+ x
is odd; therefore, to simplify, we may put

2w=y—z+=x
We find
(16) F(xy.2) = (pq)*P [%]"‘""” .
I { ygo [[ w+z—¥—x—ay) - [w—:——-ay ]] +

+ 2 [[oXa) = (orial]

This formula is advantageous for the computation of the
required probability.

Particular Cases. 1. If the two players have the same
chance for winning, then p=¢= 14, and the term preceding &he
sign ¥ in formula (9) reduces to 2a; moreover the term
preceding the brackets in (16) will be equal to 1/27. In this case
the formulae will be symmetrical with respect to x and z.

2. In the particular case of x=z, formulae (9) and (16) give
the probability that the players have the same number of
counters at the beginning and at the end of the play. The for-
mulae are much simplified by this substitution.

3. An important particular case is that in which the number
of counters the second player has, may be considered infinite;
this occurs if he has more counters than the number y of games
he will play, that is if a—x>¥. But in this case we have to put
into formula (16) y=0; it will become

(17) S xysz) = (pq) l %]“_'"2 “ w+§—x] - l w-y—x ]

This formula was found by D. Arany.’®

We may obtain another formula for the required probability,
by starting from (9) and putting into it ¢=waja and therefore
Ap=ns/a. Now if a increases indefinitely, then the sum in (9)
will become a definite integral:

® Considerations sur le Probléme de la Durée du Jeu. Téhoku Mathe-
matical Journal, 1926, Vol. 30, p. 160. What in our notation is f(x,y,2), is

in Arany's notation, in the case of ¢ = oo: yf__xz_,; and in the general case:
,0—1T T
=X T8
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(r—2)/2 X
©) Hxy.2) = 2(4pq)y”[f;] | sinxp sinzp (cosp)” dp.

k3
0

From (9) and (16) it follows that

T
(18) —ﬂ} j sinxgp sinzp (cosp)? dp =
0

= % U ‘/zy—VZx—l/zz] - [1/2y_1/’2'x+1/2,]]-

In the case of z=x this may be simplified as has been mentioned
before.

Problem of ruin. Let us suppose now that play continues
until one of the players has won all the counters. What is the
probability that the first player shall lose his last counter at
the y th game? This would be f (x,y,0) ; but this number cannot
be obtained by putting 2=0 into formula (9) or into (16). Indeed,
in establishing these formulae we supposed z to be different
from zero. Nevertheless we may derive this probability from
these formulae. First, by determining the probability that the
first player has only one counter left after y-1 games; this is
equal to f(x,y~-1,1) and may be obtained by the formulae (9) or
(16); and secondly by writing that he lost the y th game; the
probability of this is equal to ¢, so that the required probability
will be: ¢f (x,y—1,1).

Putting y-1 instead of y and z=1 into formula (9), we find
after multiplication by 9

(19) f(x,,0) =

1 qye & v vax v P!
- yz | L > in — sin ——— el .
P (4pq) [p] & sin—csin —= | cos —

This formula has also been obtained by Ellis, but starting
anew from the difference equation (2).

We may obtain gf (x,y—1,1) also by aid of equation (16},
putting into it y-1 instead of y and z=1 ; after multiplication
by 9 we find
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1) = e ] 2 (s o) - 250+

(20)
+ 3 (3= ) - (3 1)

where 20=y-4x—2.
If moreover we put @=o°, then the above formula will be

Hx,y,0) = (pq)"” [—g']m “ wﬁ-Tl—x] - Z)——jc ]

This may be simplified; indeed in § 22 we found formula (12) :

Al =L =) =) "2

therefore the difference in the brackets is equal to

2x y - IJ
y—x Jwo—x
so that the required probability will be
2x —1
f(x.y, 412 ¥
(21) (x,,0) = (pq)* ( J o

This formula is identical with that found by Ampére.??
We may obtain a corresponding formula by starting from
(9) and putting @=w»a/a and therefore Ap=nfa. Now if a
increases indefinitely, then the sum in (9) will become a definite
integral
/4

22 FHxy0) = (4pq) ¥* l 1 } = | . | sing sinxy (cosp)> ! dg .
”

From (21) and (22) it follows if p=14 that

1 j L i ox —1
— | sing sinxe (cosp) ¥ 1 dp = - — ml 4 J
=) s @ (cosp) >! do F Ty Tk Vyy—Vhx—1

Remark. Starting from (19) we may moreover deduce the
probability that the first player shall be ruined during the games
1,2,3,,,., 0. This probability will be

50 Cons:derahons sur la Théorie Mathématique du Jeu. Lyon, 1802. In
Ampere’s notation A(m+-2p) corresponds to our }Hm ,m-+2p0). See p. 9.
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F v = Lolfpa (L] % a2
,El f(x,y,0) = 2qu( 3 sin ——sin —

(u-H y—1

[21/ Pg cos —l
the second sum bemg equal to
_1 - [2]_/;;7 cos %) )
1 - 21 PQq cos ’;—W

From this it follows the probability ¢(x) that the first
player shall be ruined at all, by putting w = . We find
(23)

f 214 Ynx
sin — sin —~
a a

=0

o) = 3 Hxn) = p2)p(L)"  —L 2
1——2V Pg cos —-
This probability can be determined directly by aid of the
difference equation
@(x) = p g (x+1) + q¢(x—1)

the initial values being equal to ¢(0)=1and ¢(a) =0. According
to § 165, the solution will be

) q9

('u(X) =c + cz[—p—-r
and taking account of the initial conditions we find

a~X a—X
24 o) = TP =g
(24) )=
Now from (23) and (24) we deduce the value of the definite

sum

si va ., vyax
n— sin- - _
a a __ ak!

(25) o

¢ M

pa-x - qc-x J
pe— q°

0

1

yn
1—kcos —
a

where we put 2 V;:]: k. To have the definite sum, we must still
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determine p and ¢ by aid of k. Starting from 2 / p(1—p) =k, we
find p—l/g(l—‘/l—k") and g= ’2(1+V1—k2] or vice versa; the
formula being symmetrical with respect to p and ¢.

In the particular case, if @ may be considered as infinite,
we shall put into the first member of (25) p=w»aja, then ¢ will

become a continuous variable whose range is 0,7. In the second
member, if ¢ has been chosen for the larger root, we have

‘na—X___qa-N l— 1——k2 x
fm [ L ZK[L,__]
a=w p—q° | q ) k:
Finally we shall have

. sm sinx

1—Fk cosp =% i

= I_V:’;JI'

k

The formula may be verified by aid of formula 12, Table 64,
in Bietens de Haan's book quoted above.

Example 2. Problem of Parcours. A point is moving on the x
axis; starting from x, it may advance one step to x-+1 or it may
go back one step to x-1, the probabilities of both‘events being
the same, that is, equal to 15, Having moved, it can again take
one step in one of the two directions, under the same conditions.
The probability is required that in n steps the point shall be at
», without having touched in its movement the points x-0 and
x=2a.

If at the first move the point has advanced one step (proba-
bility 15}, then it has still to cover a distance of x,—x—1 in n-1
steps. If we denote the required probability by ¢(x,n), then the
probability of both the above events is lop(x4-1,n—1).

If at the first move the point has gone back to x-1 (pro-
bability 1), then it has to cover a distance of x,—x41 in n-l
steps; the probability of both events is Vop(x—1,n—1)}. Finally,
according to the theorem of total probabilities ¢ (x,n) will be
equal to the sum of the two probabilities mentioned.

p(x,n) = Vap(x+1,n—1) + Vop(x—1,n—1).

This equation of partial differences is the same as that of
Example 1.; moreover, the initial conditions are also the same,
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except that in (9) 2a is to be written instead of @, moreover n
instead of y and p=g¢=". We find

1 2 | vax , vax; v ]"
(27) plx,n) = rl .Ex sin——= sin —— [cos 2a) "

Let us consider the particular case in which x—a. Since
sinYowr is equal to zero for the even values of v, hence we may
put »=2i+1. Then sinl(2i+1)a=(—1)". Introducing moreover
the new variable {=x—a (so that £, =x,—a}, the above formula
will give:

1 ¢ 241 .

(@8)  Flm = 4 I cos"o

This is the probability that the point starting from =0 shall
reach in r steps the point { =¢,, without having touched in its
movement the point {= * a.
The formula has been found by Courant and Arany®’ in
different ways, but in the first paper there are certain mistakes.
From formula (16) we obtain by putting into it 2a instead
of a, moreover Xx=a and p=¢=1,, y=n and 2—a=¢,

Feun) = 5 2, “ wt5i2ar) ~ [o—a2ar ]] +

+ 7.21 |j(w£2cz;'] - (w+51‘|r‘1“_2a7”}

where 2o=n—¢, . The formula may be still further simplified by

writing
. 1 n | n n
(29) F(,n) = 5{((”_1_51] + lzl (—1) [g_,+§l—ai]+[w—ai]]}
If a=o°, then the sum vanishes, and we have
1 n 1 (n
(30) Fian) = 5 (o hs) = 20)

The problem may be solved directly in this case by aid of
Combinatorial Analysis. The total number of ways possible in

@ R_Courant. {iher partielle Dilferenzengleichungen, A tti del Congresso
Matematico di Bologna, 1928, Vol. 3., p. 83.
D. Army, Le Probléme des Parcours, Téhoku Mathematical Journal,
Vol. 37, p. 17.
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n steps is 2% To obtain the number of ways starting from =0
and ending in &, let us remark that to reach the point §,,inn
steps, starting from £=0 the number of steps in positive direc-
tion must be equal to w+£&; and in negative direction equal to .,
Since the number of steps is n, therefore

2w=n—¢,.

Hence the number of ways ending in §, in n steps is equal
to the number of permutations of p elements, among which there
are w+4-¢, elements equal to +1 and o elements equal to -1.
That is

e
(&) @) Lo
and the required probability will be P = (14)" [:]

§ 185. Homogeneous linear equations of mixed differences.
If such an equation F (A, D, x, z) = 0 is given; where z is an
x 4

unknown function of the two variables x and y, and F is a poly-
nomial with respect to the symbols A and [, moreover the
variable y does not figure explicitly in F, then Boole's symbolical
method is the following: Instead of the symbol D we have to

¥
write k, and considering it as a constant, to solve the ordinary
equation of differences

F (Ak,x,z) = 0.

Supposing that its solution is:

2=y, (xR) C, + o (xk) Ca +......

Now we put
k = D and C = @)
where the ¢;(y) are arbztrary functions of y. The equation
2= yi(xD)e, () + v, (x Dl ) + .o

will give the function z.
Example 1. Given the equation

Az—Dz=Ez—z—Dz=0
2 ¥ z Y
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writing D=k we have
Y
Ez— (1+k)z=0.
Y
The solution of this equation is

z = (14-k)*C = (1+D) e (y)

that is
x41 x
(1) := 3 (2] D'o0).
r=-0 ]
If for instance the initial conditions are for x=0 to have
z=y"n!l , then @(y)=y"n! and

x-+1 X yn-r
= .-:E.o 0¥ @m-ov)! '

As has been said; when solving difference equations by
symbolical methods, it is always necessary to verify the results
by putting the obtained functions into the given equation. In the
case considered, it is easily seen that the general solution (1)
satisfies the given equation.

§ 186. Difference equations of three independent variables.
Sometimes it is possible to solve a linear homogeneous equation
of differences of three independent variables by using the me-
thod of § 184 due to Fourier, Lagrange and Ellis.

Example. Problem of parcours in two dimensions. A mobile
starting from the point of coordinates X,y may advance one step
to the point x+41,y, or to the point x,y}1; it may go back to the
point x—1,y or to the point x,y-—1. The probability of either of
the four events is equal to 1/4. Having moved, it may again take
one step in one of the four directions, and so on. The probability
is required that the mobile reaches in n steps the point of coor-
dinates x,,y,, without touching the four lines,

x=0, y=0, x=2a y=2b

The same ratiocination as that employed in the case of the
problem in one dimension (§ 184) shows that this probability
satisfies the following difference equation:
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M) Feyn) = & Hx-Ly,n-1) + 3 fertyn—n +
+ 7} flx,y—1,n—1) + % } (x,y+1,n—1).

The values of the function f (x,y,n) may be computed step
by step by aid of (1) starting from f (x,y,0). In the problem
considered this latter is known, Indeed, for every value of x.,y
except for x,,y; we have
(2) f(x,y0 =0 and f(x,y.,0) = 1.

Putting n=1 into (1) we obtain f (x,y,1); and having de-
termined in the same manner f{x—1,y,1), f{x+1,y,1), F(x,y—1,1)
and F(x,y+1,1) we may proceed to the computation of f(x,y,2)
and so on; finally we should obtain any value of f(x,y,n).

In this problem, as in that of § 185, there are also sup-
plementary conditions to satisfy:

f (0,y.,n) = 0, f(x,0n) =0

) f (2a,y,n) = 0, f {x,2b,n) = 0.

They are also necessarily incompatible with the results given
by (1); to obviate this contradiction we are again obliged to

restrict the validity of (1) to 0 <x <2aand 0 <y < 2b.
To determine a particular solution of (1}, let us write:

(4) f(x,y,n) = a" p*ypy.

Now we dispose of a, B, y so as to satisfy equation (1) ;
putting the expression (4) into equation (1), we get after simpli-
fication:

(5) yf* + (y*—day+1)f +y = 0.
If we put
(6) Cosp — ~— }’"—’;%—IJ

then from (5) it follows that
= cosp 1 ising7
(i= I/—l) and from (6)
y:—2(2¢—cos¢) y+ 1 = 0;
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putting into it
cosy = 2a — cosyp
we have
» —cosy L i siny
and moreover
a — Lb (cosg-+cosy),
Finally, by aid of these expressions, from (4) we get

1 . ..
f (x,y,n) = > (cosp+cosy)” (cospx + i singx) (cosyy L i sinyy).

In consequence of the signs =+ , this gives four different
particular solutions with two arbitrary parameters ¢ and .
Multiplying them by arbitrary constants and summing, we shall
have the following particular solution:

1 . .
f (x,y,n) = % (cosgp+cosy)™ (A, singx sinyy4 A, cospx cosyy +
+ A, singx cos yy + A, cosgx sinyy)

To satisfy the first two of the conditions (3) that is f(0,y,n}=0
and #(x,0,n)=0 we have to put A,=A,=A,=0. To satisfy the
other two conditions (3) viz. #(2a,y,n) =0 and (x,2b,n)=0, we put

rR !J.’n
= T and = 47
¥=2¢ M YT
where v and g are arbitrary positive integers.
Finally, writing C,, instead of A, and summing from »=0
to »=2a, and also from u=0 to u=2b, we obtain a solution of

(1), which is sufficiently general for our problem, as will be seen.

M f (xy,n) = Z 2 C.. (317 cos - T 4 cosEE nsm— sin £

y=0 w=0 2 2b 2a 2b
Putting n=0 into equation (7) we obtain for x = 1,2, . . .,
2a—1 and y=1, 2, .., ,2b—1 the equations:
& vax . Mny
f(x,y,0) = E} ygo C. 2 sin TR

Let us first consider the equations corresponding to x=1,

2, ... ,2a—1. Multiplying the first equation by sin 2: , the
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2v,n . "X

' —== , and sum-
second by s 2a and so on, the x th by sin a7’

ming up the results, we find:

nax _ 22‘ 2 C uny yIX ., VAX
2a

e SIS 2 sin—— sin

2 f(x,y,0) sin o o 2b 2a 2a

We have seen in § 43 that the last sum is equal to zero if
v+, and to a if ¥=»,. Therefore the second member will be

2
a 2 C,. s1n‘u27;,y
Now we consider the equations obtained for y=1, 2,., .,
2b—1, and multiply the first equation by sin l;‘: , the second
2b , and so on, the y th by sin ‘1‘2’:"’. Summing up the
results obtained we have:
5 B/ ey sin % oin A2 -

—_ ury “ry
=a 2 Cou ’_2_71 sin == 5 sin == T

The last sum is equal to zero if u Fu, and equal to b if
#=p, , Therefore the second member will be ab C,,,. In con-
sequence of (2) the first member becomes equal to

VX, 7ty
sin 2a sin 2

Finally we shall have writing v and u instead of », and y,:

_ 1 vx, _ puny,
Cow = g5 %0 ¢ S0

This gives, by aid of (7), the required probability:

f £z il

( 8 ) #Haxyn)= N~ 3 cosZa + cos = %)
s ain YAX o VX HAY  in BV
sin 5o S o sin 2% 2

Particular case. The mobile starts from x=a, y=b (centre);
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putting these values into (8), the terms sin 12?- and sin ‘u?n in

which » or u is even, are equal to zero, so that we may write
y=2i4+1and p=2j+1

Moreover, introducing the new variables é=x—a and 7=y—b
we obtain the probability that the mobile starting from x—=a,y =b
that is from §=0, y=0 reaches the point ¢, =x,—a, 3, =y,—b
in n steps:

RN | 2i-1 2j 41
9 P = — == =l .
© .-Eo 2;':02" ab ©08. "3 ™ - cos 2b
2i+1 2741
cos, —~— aé, cos-%b an,.

If a and b may be considered infinite, then the expression of the
probability (9) is transformed into a double integral; putting
u=(2i41)nf2a and v=(2j41)=f2b and therefore Au=nja and
Av=n[b, we get

T

l N
(10) P = -2—,,?40’ (cosutcosv)” cosué, cosvy, du dv.

But if a=° and b= then the probability P may be ob-
tained directly by aid of combinatorial analysis. The total
number of ways possible in n steps is, under the conditions of
the problem, equal to 4”. To determine the number of ways
starting from the point §=0,7=0 and ending in &, let us
remark, that the number of steps taken in the positive direction
of the { axis is equal to i+£, and that in the negative direction
to i; moreover, the number of steps in the positive direction of
the 7 axis is equal to w—i+7, and in the negative direction to
w—i. Since the number of steps is equal to n, hence we have

20 = n—&,—, .

Therefore the required number of ways ending in £,y is
given by the number of permutations of n elements, among which
there are i+£, elements equal to a and i elements equal to -4,
moreover (w—i+1,) elements equal to § and (0-i) elements to
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-—p. But this number of permutations must still be summed for
every value of i from i=0 to i=w+1. Hence we have

m-&l n]
— [+ i (w—i+n,) ! (0-) !

This may be expressed by a product of binomial coefficients:

[g] l:g (5) n—?o:afjl—i)'

Applying Cauchy’s formula (14) § 22, we find that the last sum
is equal to

(nie) = (ofs.)

Finally the required probability will be

1) P=g (o) {ute)

The formulae found by Courant and Arany (loc. cit. 60) are
particular cases of formula (9).

Equating the quantities (10) and (11), we obtain an evalua-
tion of the double integral (10).

§ 187. Difference equations of four independent variables.
The method of § 184 is applicable in the case of four or more
independent variables.

Example: Problem of Parcours in three dimensions. The
mobile starts from the point x,y,z and may take one step parallel
to the axes in one of the six directions, the probability of either
direction being equal to 1/6. Having moved, it can take again one
step in one of the six directions, and so on. The probability is
required that the mobile reaches in n steps the point of coordi-
nates X;, ¥;, Z; without touching the six planes

x=0, y=0, 2=0, x=2a, y=2b, z=2c.

It may be shown, in the same way as in the case of one or
two dimensions, that this probability satisfies the following
equation:
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1 1
O f(xyzn)=7¢ flx+1y,zn—1) + § fx—1y.zn—1) +

1
%f(x,y—i—l,z,n—-l} + zf(x,y—l,z,n——-l) +

—é—f(x,y,z—{—l,n—l] + %f(x,y,z—l,n—l).

To compute f (x,y,z,n) by aid of this equation, it is sufficient
to know the values of the function f (x,y,z,0). In the problem
considered we know that this function is equal to zero for every
value of x,y,z except x,,¥,,Z;, so that we have:

(2) F(x,20) =0 and F(x,y,2,,0) = 1.

Here too we have supplementary conditions:
FO,y,z,n) = 0 f (x,0,z,n) = 0 f (xy0n) =0
f (2a,y,2,n) = 0 f(x2bzn) =0 f(x¥y2cn) = 0.

Since the conditions (3) are necessarily incompatible with
the general results given by equation (1), hence we must restrict
the validity of this equation to

0<x<2a 0<y<2b 0<z< 2
TO determine a particular solution of (1}, let us write
(4) f(xy.z,n) = o f¥yv 82
This gives by aid of (1), after simplification,
6afyd = p*y0 + 0 + ypd + PO + OBy + By
that is
Fiyd + Bly*0+0°y+y+0—bayd)+yd = 0

therefore, putting

(5) cosp = — 7'6+5'745;;i~6—6a76

so that we obtain
f = cosy + { sing

(i= l{—~1) from (5) it follows that
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y28+y(26 cosp+624 1—6ad) + 6 = 0.
Putting again

20 cosp 4 0* + 1 — 6ad
26

(6) cosy = —

we find
y = cosy % i siny
and from (6)
8% + 24 (cosp + cosy — 3a) +1 = 0.

Putting
cosy = — (cosp + cosy — 3q)
we have
6 = cosy * i siny
and

o — SOS9 -+ cosy 4 cosy
- 3

The above values give by aid of (4), the solution

f (xyz.n) = % (cosp+-cosy-+cosy)” (cosxp T isinxy) .
. (cosyy T isinyy)(coszy  isinzy) .
In consequence of the signs *, this gives 8 different parti-

cular solutions; multiplying them by arbitrary constants and
summing, we obtain a more general solution:

f (x,y,2,n) = 31; (cosp-cosytcosy)® [A, singx sinyy singz +

+ A, singx sinyy cosyz + ..., + A, cosex cosyy cosyz].

To satisfy the first conditions (3) f (0,y,2,n) =0, f (x,0,z,n) =0
and f(x,y,0,n) =0 for every value, we must put A,—A,— ... =
=A; =0

To satisfy the second conditions (3), f(2a,y,z,n) = 0,
f (%.2b,z,n) = 0 and F(x,y,2¢,n) = 0 we put

_m _ 4 =t
=2 ¥ =2 =7
.44 being arbitrary positive integers.
Writing moreover C,,; instead of A,, and and summing from
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»=0 to ¥=2q, from px=0to u=2b and i=0to ;=2¢ we obtain
a sufficiently general solution for our problem:

2 26 2¢ 1
(7) fxyzn)= ¥ I I -

vui
=0 u=0 i=0 3* ©

[cos +cos 5 + cos l”] sin —— su’fmy 542’62-

Putting into this equation n=0 we find

22 2% 2% . vax ny . Anz
(8) f (xy20) ::”=§ ,,Eozfo C,ua sin Sg Sin ’uz—by sin <=

To begin with, let us consider these equations correspond-
ing to x=1, 2,.. ., 2a—1, and multiply the first by sin %;1 , the

2vin

second by sin — and so on, the x th by sin v{;;x.; adding

up the results we have

2a , vlnx 2a
2 Hxy,20)sin+t= = = 2 5‘.. Coa
x=1 20 v=0 u=0 =0

2 VX
. uwry o in_i 3 s;nix sin—4+—
sin 2 sin 20 o=y 2a 2a

The last sum is equal to zero if »F», and equal to a if
y=v, . Therefore we have

2a , VX _ 2b 2¢ . My btz
E___‘ F(x,9,2, 22 = ¢ ,io ;.Eo Coyui sin = sin ——= 2 -

We will now consider these equations for y=1,2,...,2b—1,

and multiply the first equation by sin Lz the second by

26 '
sin 2b , and so on the y th by sin ’ué—zy , finally adding up
the results we get
22 oMAX . 7y
E B st 5 o 52 -
=a £ 3 in 23 G gy Y
e 2 2 cw s g N Mo

41
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The last sum is equal to zero if w3, and equal to b if
u=p,. We have

2 2 . VX "My 22": . Az
El Zyzfl(x,y,z,O) sino—s in ST = ab 2 C.puasin 2
Considering these equations for z=1, 2,. . . ,2¢—1 and

A . zmm
multiplying the first by sin Elc—, the second by sin 2’ the

z th by sin 17}'2, moreover adding up the results, we find

X . 7y . Anz
X i BT g AT

2 )
2:1 3 f(x,y,2,0) sin 2a b .

=1 =

2a
b
a=1
2 Anz Az

— . Dl s, D174

— ab ;EO C.ui sin 3¢ S

The last sum is equal to zero if 43 1, and equal to . if
A=1; . Therefore the second member is equal to abc Cyya,. The
first member is according to (2) equal to

YAXy Ay, o Az
——— Ssin sin —— .
S "2a 2b 2¢

Therefore writing »,u,A instead of ¥,,4y4, we get

1 . v M yl sin /J‘lll )
ol 2a L sin b 2

(9) Cl"'l/: =

Finally the required. probability will be:

. 2z 2h  2¢ 1 ZJL 'u + lﬂ n
Hexyizm) = Eo ,Eo Eo 3"abe ( cos 2a S2b COS - ]
(10) N
.ovAx  , umy lnz . vax, . pay, z,
sin 2a sin 2b sin 2¢ sin 3a sin b sin %

Particular case of x=a, y=b, and z=c. Since in this case
sinloyn, sinloun and sinlhin are equal to zero if wu or A are
even, therefore we shall consider only the odd values, and put
v=2i+1, u=2j+1and A=2k+41, Moreover, introducing the new
variables &z=x—a, n=y—b and (=z—c we find
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- 2i-1 2j+1 2k+1 ®
> z - L
P _ 2 1‘20 2 7 abe cos -2a" - -} cos 55" + cos 3 nl.
(11)
2i-L1 2j+1 2k+1
.cos ﬂ'f] cos

—2b an, (o0 1] —20 nCl

where £, =x,—a, 3,=y,—b and {,=z,—c,

If @, b, and c increase indefinitely, this becomes a triple
integral. But on the other hand we may then determine this
probability by combinatorial analysis.

The total number of ways possible in n steps is 6”. To
determine the number of ways starting from £=0, =0 and
{=0 and ending in &,, »,, {, let us remark that the number of
steps taken in the positive direction of the ¢ axis must be equal
to i4-£, and in the negative direction to i, where i may vary
from zero to every possible value, Moreover the number of steps
in the positive direction of the % axis must be equal to $4-7,; and
in the negative direction to s, where s varies also from zero to
every compatible value. Finally the number of steps in the
positive direction of the { axis is w—i—s+{; and in the negative
direction w-i-s. Since the sum of the steps is equal to n we
have

20=n—§& —n,—¢,.

Hence the required number of ways is given by the number
of permutations of n elements, among which there are i+¢§,
elements equal to «, and i elements equal to --a then S+,
elements equal to § and s elements equal to —f moreover
w—i—s§+¢, elements equal to y and w-i-s elements equal to
—7. But this number of permutations must still be summed for
every possible value of i and s. Therefore we have

o+t o—it+1 n!

P

22 T ST (o—mis i T Tw—i—s)1

This may be written in the form of a sum of a product of binomial
coefficients

(1) 2 () () 2 () i)
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The second sum is, in consequence of Couchy’s formula (14)
§ 22, equal to

n—§1—2i — n_El—zi ]
[A—o——n—i1 " 1 o+n—i )"

Therefore the required probability will be

“+‘ n—§1—21 .
(12) - 6" ,_—_o ( ] [l+§1 ] ( w+"71_l

Remark. Starting from formula (11) we may easily derive
the formula corresponding to the problem in two dimensions and
also that of the problem in one dimension,

First we have to put into (11) {;=0 and then ¢=1; thus we
obtain the probability that a mobile starting from §=0, =0, =0
reaches the point §,, ,, 0 without touching the planes §= +a,
7= * b and {= % 1. But then the corresponding ways will all be
in the plane {=0. This is therefore the solution of the problem
in two dimensions. Only the total number of ways will now be
4” instead of 6% hence we have still to multiply the probability

"
(11) by [—Z—‘ . Then it will become identical with formula (9)

of § 186.

In the same manner, starting from this formula we may
solve the problem in one dimension, putting first ;=0 and then
b=1. The corresponding ways will all be on the § axis. The total
number of ways will now be 2” instead of 4% hence we have still

to multiply the probability (9) § 186 by [—45] . The formula
obtained will be identical with formula (25) § 184.

* Courant's formula (loc. cit. 60) is erroneous. The formula given by
Army. without demonstration, is another form of formula (12).
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The numbers refer to pages.

Addition of differences, method of, 76.

Alternate functions, 92-94; sum of, 320, 324; summation by
parts, 108.

Alternate reciprocal powers, sum of, 251.

a, numbers, table of, 232, 251, expressed by sums, 251; gene-
rating function of, 251.

Antilogarithmic tables, 399, 402.

Approximation, principle of least squares, 422; principle of
moments, 422; by Bernoulli’s probability function, 432; by
Laplace’s probability function, 430; by Poisson’s probabi-
lity function, 431; by incomplete B function, 428; by in-
complete I' function, 426.

Arithmetical progression, 79.

Bayes’ theorem, 86.

Beta functions, 50, 80.

f, functions, 347; expansion into Boole polynomials, 348; into
Boole series, 438; into Euler polynomials, 349; into Euler
series, 349; expansion by digamma function, 351, by a
definite integral, 351; derivatives of, 352.

fm. numbers, table of, 449, 450.

Bernoulli numbers, 23, 62, 130, 140, 181, 182, 227, 229; ex-
pressed by b,, 250; by a sum, 247; by Stirling numbers, 219,

236; by Cni, 229, 599; by C,;, 229; table of, 234, 235;
symbolical formula of, 233,

Bernoulli polynomials, first kind, 60, 62, 181, 230; multiplication=
formula of, 252; expansion into factorials, 235; into Fourier
series, 242; into Euler polynomials, 308; generating function
of, 250; limits, 245; roots, 240; extrema, 240.

Bernoulli polynomials, second kind, 64, 72, 134, 147, 224, 265--
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277; expansion into Bernoulli polynomials first kind, 276;
into Boole polynomials, 323; generating function of, 279;
limits, 272; symmetry, 268,

Bernoulli series, 253.

Bernoulli series, second kind, 280.

D. Bernoulli’s solution of numerical equations, 494.

Binomial coefficients, 62-70; Cauchy’s formula of, 73; gene-
ralised, 70.

Binomial moments, 424; computation of, 460, 613.

b,, numbers, table of, 266; expressed by Bernoulli numbers, 249,
278; by Stirling numbers, 267, 147; generating function of,
258, 279, 284.

Boole’s first summation formula, 315, 354; second summation
formula, 323.

Boole polynomials, 64, 317, 321; expanded into Bernoulli po-
lynomials second kind, 321.

Boole series, 323.

Faa Bruno’s expansion of a function of function, 33, 205;
formula for the @ operation, 198.

Cauchy’s formula for binomials, 24, 41, 48, 68; rule of multipli-
cation of series, 25; rule for summing binomials, 73, 133,
135, 136; integral, 41.

Changing the origin of intervals, 219; the length of inter-
vals, 220.

Cn». numbers, table of, 152.

C.., numbers, table of, 172.

Combinations, difference equation giving number of, 578.

Construction of tables, 363.

Correlation, coefficient of, 455.

Cotes numbers, 224, 388; determined by Stirling numbers, 514.

cot z expansion of, 259.

Decomposition into partial fractions, 34-40, 335.

JDerivatives expressed by differences, 164-165; by ©® opera-
tion, 197.

Differences (advancing), 2; divided, 18; receding, 14; central, 15.

Differences expressed by derivatives, 189-192; by the Y ope-
ration, 200; by means, 9; by values of the function, 8.
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Difference of a product, 94-98; of a function with negative
argument, 5, 69.

Difference equations, genesis of, 543.

Difference equations, linear, constant coefficients, homoge-
neous, 545; characteristic equation with single roots, 542;
with multiple roots, 549-552; with negative roots, 552; with
complex roots, 554.

Difference equations, linear, constant coefficients, complete,
557-564; particular solution obtained directly, 564; by
method of arbitrary constants, 569; resolved by generating
functions, 572.

Difference equation linear variable coetficients first order, 576;
homogeneous by Laplace’s method, 579; complete, 583;
reducible, 584; resolution by generating functions, 586;
resolution by Andre’s method, 587.

Difference equations, linear mixed, 632.

Digamma function, 58-60; expressed by Bernoulli series, 256;
by Bernoulli series, of the second kind, 283; by reciprocal
powers, 328; by powers series, 327; sum of 1/x expressed
by, 325; derivative of, 326.

Displacement, 6.

Endpanel interpolation formula, 379.

Expansion of functions into binomials, 74; Bernoulli polyno-
mials, 307, 248, 250; Bernoulli series, 253; Boole polyno-
mials, 322; Boole series, 323; Euler polynomials, 307; Euler
series, 313; Legendre polynomials, 434; Newton series, 74,
358; orthogonal series, 447; polynomials, 355; powers,
29-34; reciprocal factorials, 192, 212; reciprocal powers,
212.

Expansion of a function by decomposition inte, partial fractions,
34—40; complex intergrals, 40-41; difference equations,
41-44; symbolical methods, 11.

Expansion of a function of functions, 31, 83, 204, 205; of 1/y®
into powers of x, 216; of x"/(e*—1)", 217; of an alternate
function, 13; of a product, 31.

Exponential functions, 87-88.

Euler’s constant, 27, 55, 58, 129, 130, 148, 341.
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Euler’s formula for I' functions, 55, 83; for trigonometric func-
tions, 90.

Euler numbers, 23, 300; limits of, 302.

Euler polynomials, 62, 115, 288; extrema of, 293; generating
function of, 309; inverse difference of, 297; inverse means
of, 297; limits of, 302; multiplication theorem of, 311; roots
of, 293; symmetry of, 292.

Euler’s polynomials expanded into Bernoulli polynomials, 295;
Fourier series, 303; Newton series, 289.

Factorials, 45-53; difference of, 51; mean of, 52; computation
of, 52; definition by gamma functions, 56; expansion into

powers, 142.

Factorial moments determined by generating functions, 208.

Fibonacci numbers, 548.

First panel interpolation formula, 378.

Fourier series, 242, 426, 463.

Functions expressed by differences, 10; by means, 10; whose
differences or means are zero, 94; product of two, 94-98.

Gamma function, 53-56; computation of, 55.
I'( ’m) numbers, table of, 155.
I"'('lm) numbers, table of, 154.
72,,,. numbers table of, 429.
G, polynomials, 426, 473.
Generating functions, 20--29, 109; determination by difference
equations, 27; of binomial coefficients, 71, 73.
Graduation by least squares and orthogonal polynomials, 456.
Gregory’s formula of numerical integration, 525.

Hermite polynomials, 63, 426, 467.
Hospital’s rule, 133.
Hyperbolic functions, 38.

Incomplete B function, 83-37; I’ function, 56-53; Table of,
405, 485.

Indefinite sum, 101; by difference equation, 109; by inversion,
103; by summation by parts, 105.

Infinite series, differences and means of, 110.

Interpolation by Bessel's formula, 373; Gauss’ formulae, 363;
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Everett’s formula, 376; Newton’s formula, 361; Stirling’s
formula, 374; formula needing no differences 390; in a
double entry table, 532; case of three variables, 541; by aid
of calculating machines, 398.

Interpolation formula, precision of, 417-420; general case
420, 421.

Inverse difference, 101.

inverse interpolation, Newton, 366; Everett 381, Lagrange 390;
Formula needing no differences, 411.

Inverse mean, 111-116; of a function, 306.

Inversion of sums and series, 183—185,

Iteration, method of, for solving numerical equations, 492.

Lacroix’s difference equation giving the sum of x" 596.

Lagrange’s formula, 360; interpolation formula, 386; polyno-
mial, 385.

Legendre polynomials, 389, 434; roots of the, 435.

Leibnitz’ formula of higher derivatives, 96, 143, 167.

log, tables, 399, 402, 407, 409, 410.

log(x+1] differences of, 191; expansion of, 257; expansion into
Bernoulli series, second kind, 284, 287; expansion into
Bernoulli polynomials, second kind, 280.

[log(z-+1)]" expansion into powers, 146, 202, 204.

log z ! expansion of, 263.

logI'(x+4-1) expansion, 61, 62, 130, 209.

Maclaurin-Euler summation formula, 260—265.

Maclaurin series, 201, 216, 246,

Mean of a function, 7; central, 15; of a product, 98-99.

Mean-square deviation, 427, 433, 452,

Mean, arithmetical, 433; binomial moment, 448; orthogonal
moment, 450.

Median, 433.

Midpanel interpolation formula, 397.

Mode, 433.

Moments, power, 163, 164, 812; expressed by semi-invariants,
211; factorial, 424; binomial, 424; computation of binomial
moments, 615.

Newton’s binomial formula, 49; expansion, 26, 75, 76, 77, 79, 164,
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189, 219, 357; expansion for unequal intervals, 20; formula
for two variables, 531.
Newton-Rapbson solution of numerical equations, 489.
Numerical integration, 512; Euler-Maclaurin formula, 525; by
Everett’'s formula, 525; by Gregory’s formula, 526.
Numerical resolution of difference equations, 527.

Operation O, 199; ¥ 199; AD? and DA?, 200.
Orthogonal polynomials, 436; central value of the, 445.

Partial differences, 530.

Partial difference equations, 604; linear, constant coefficients,
60 ; Boole’s symbolical method, 616; Fourier, Legendre,
Ellis'" method, 619; Laplace’s method of generating func-
tions, 607; three independent variables, 633; four in-
dependent variables, 638.

Pascal’s arithmetical triangle, 612.

P(n,m) numbers, table of, 223.

Powers expressed by factorials, 181.

Power moments expressed by @ operations, 197; of devia-
tions,. 199.

Power series, sum of, 246.

Probability function, table of, 400, 403; 408.

Probability, Examples on, Bayes’ theorem, 86; repeated trials,
86, 599, 615; coincidences, 595, 610; problem of, 575;
problem of points, 608; ruin, 550, 627; parcours, 630, 633,
638; Third problem of play, 620.

Probability, determination of, by sums, 140; by Stirling num-
bers, 166, 177.

Probability function, binomial moments of, 424; expanded into G
polynomials, 483, 484.

Product of prime numbers, decomposition of, 179--181.

Progression, arithmetical, 118; geometrical, 124.

¥n(x) numbers table of, 404,

W operation expressed by A, 200.

wm(x) function, 342; differences of, 343; sum of, 344; sum of the
alternate functions, 345, expanded into Bernoulli series,
343; expressed by Stirling numbers, 343; expressed by
definite integrals, 343.




I e e

651

Rational fraction, sum of, 335.

Reciprocal factorial, sum of, 121; expanded into reciprocal pow-
ers, 193-195; integration of, 194, 338; derivation of, 337.

Reciprocal powers, sum of, 194, 244, 214, 325, 338; alternate sum
of, 244; difference of, 194.

Reciprocal powers, sum of, by Stirling numbers, 338; by deriva-
tives of logI'(x+41), 341; by Maclaurin-Euler summation
formula, 345; alternate sum of, by p,(x) function, 347;
expanded into reciprocal factorials, 183.

Regula falsi, 366, 486.

Remainder of the expansion into a series of polynomials, 356;
maximum of, 362,

Rule of false position, 366, 486.

Schiomilch’'s expansion formula, 31, 204.

Semi-invariants of Thiele, 204, 210; expressed by moments, 211,

Simmons theorem, 87.

Simultaneous linear difference equation, 601.

Standard deviation, see mean square deviation.

Stirling’s interpolation formula containing only even differences,
379.

Stirling numbers of the first kid, 22, 72, 142-168, 218, 219;
table of, 144; limits of, 152, 160, 161; generating function of,
145; expressed by sums, 159-163, 146, 208; expressed by
probability, 166-168; expressed by Stirling numbers second
kind, 219,

Stirling numbers of the second Icind, 32, 134, 168—179; table
of, 170; limits, 173, 174; generating function, 174—177, 193;
expressed by sums, 106, 176; expressed by difference
equations, 612; obtained by probability, 177—179.

Stirling numbers, formulae containing, 182, 185-189.

Stirling polynomials, 224-229; expressed by C,,, 224; ex-

pressed by C,., 228; limits of, 229; diff. equations of, 226;
generating function, 227.

Sums, 116.

Sum of 1/(x+41), 262; of 1/(x+1)2, 264; of exponential and tri-
gonometric functions, 123.

Sums obtained by symbolical formulae, 131; generating func-
tions, 136; probability, 140.
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Summation by parts, 105, 106, 107; of alternate functlon, 108,
140, 320, 324.

Sum without repetition transformed, 153-158.

Symbolical calc., 7-14.

Taylor’s series, 13, 165, 189.

Tangent coefficients, 130, 298.

tan z, expansion of, 259.

Tchebichef polynomial, 389.

©® operation expressed by derivatives, 196; performed on a
function, of function, 198.

Trigamma function; 60-61; expansion of, 257; indefinite sum
of, 331, expansion into reciprocal powers, 332; expansion
into reciprocal factorials, 333; sum of 1/x? by, 330.

Trigonometric functions, 88-92; sum of, 124; tables of, 400, 401;
series, 426.

Vandermonde’s determinant, 19.

Wallis’ formula, 50.

QUOTATIONS
NO p Ne p. NO P NO p.
1 2 16 58 30 298 46 473
2 5 17 62 -31 300 47 488
3 6 18 64 32 316 48 496
4 7 19 74 33 324 49 513
5 8 20 76 34 328 50 519
6 14 20a 80 35 334 51 521
7 15 21 83 36 340 52 534
8 25 22 101 37 378 53 565
9 37 23 140 38 385 1) 582
10 46 24 142 39 391 '~ 55 586
11 52 25 168 40 435 56 587
12 54 25a 177 41 437 57 619
13 54 26 230 42 442 58 626
14 55 27 2338 43 453 59 628
15 57 28 265 44 460 60 6 31

29 290 45 467



