
Maximum RPM
Taking the Red Hat Package Manager to the Limit

Edward C. Bailey

February 17, 1997

Copyright c 1997, 1998 Red Hat Software, Inc.

Red Hat is a registered trademark and the Red Hat Shadow Man logo, RPM, and the RPM
logo are trademarks of Red Hat Software, Inc.

All other trademarks and copyrights referred to are the property of their respective owners.

Originally published under ISBN: 1-888172-78-9

Revision History

1.1, June 1998 (RHDL added, trademarks, addresses updated)
1.0, February 1997 (Original version)

Red Hat Software, Inc.
4201 Research Commons, Suite 100
79 T. W. Alexander Drive Research Triangle Park, NC 27709
(919) 547-0012
redhat@redhat.com
http://www.redhat.com

Red Hat Documentation License

Version 1.0, modi�ed 9 June 1998

1. The following copyright license applies to all works published under the Red Hat Documentation License
(referred to below as the RHDL).

Please read the RHDL carefully { it is similar to the Linux Documentation Project Copying License, which
is, in turn, somewhat like the GNU General Public License, but there are several conditions in the RHDL
that di�er from what you may be used to. If you have any questions about the RHDL, please send email to
docs@redhat.com.

Documentation published under the RHDL (hereinafter "Document," which includes both the singular and
the plural) is copyrighted by Red Hat Software, Inc., or the Document's author. NO DOCUMENT IS IN
THE PUBLIC DOMAIN.

A Document published under the RHDL may be reproduced and distributed, in whole or in part, subject
to the following conditions:

� The Document's copyright notice and the RHDL must be published and preserved in their entirety
on all complete or partial copies of the Document.

� Any translation or derivative work based on a Document must be approved by Red Hat Software,
Inc. in writing before it is distributed to third parties. Please send requests for such approval via
email to docs@redhat.com.

� If you distribute any Document in part, you must also include instructions for obtaining the complete
version of the Document.

� Small portions of any Document may be reproduced as illustrations for reviews of the complete
Document or as quotes in other works without also publishing the RHDL if proper citation is given,
subject to the provisions of fair use under copyright law.

Exceptions to these rules may be granted for academic purposes: Write to docs@redhat.com and ask. These
restrictions are here to protect us as authors, not to restrict you as educators and learners.

Although every precaution has been taken in the preparation of each Document, the publisher and author
assume no responsibility for errors or omissions in the Document, and assume no liability for damages
resulting from the use of the information contained in the Document.

2. Publishing Documents

If you are interested in publishing and distributing one or more Documents, please read the following notice.

By the license given in the previous section, anyone is allowed to publish and distribute verbatim copies
of any Document. You need no additional permission for this. However, if you would like to distribute a
translation of, or a derivative work based upon, any Document, you must �rst obtain written permission
from Red Hat Software, Inc. Send requests for permission via email to docs@redhat.com.

All translations and derivative works of any Document must also be copyrighted and licensed under the
RHDL. For example, if you plan to release a translation of a Document, the translation must also be subject
to the RHDL.

You may, of course, sell any Document for pro�t. Keep in mind, however, that because each Document is
freely redistributable, anyone may make copies (in either printed or electronic form) and may redistribute
those copies free of charge, if they wish to do so.

We do not require royalty payments for any revenue or pro�t earned from selling any Document. However,
we ask that you send to Red Hat Software, Inc. two free copies of each Document that you publish. If you
are publishing or planning to publish any Document, please send email to docs@redhat.com, and we will
send you our current shipping address.

We encourage Linux software distributors to include Documents with their products. The Documents are
intended to be used as the authorized documentation for Red Hat Software, Inc.'s products.

Copyright c 1998 Red Hat Software, Inc.

To Deb | My lover, editor, indexer, and friend.

To Matt, who heard, \Daddy can't play right now" far too often. . .

Contents

Preface xxi

0.1 Linux and RPM - A Brief History . xxi

0.2 Parts of the book, and Who They're For . xxii

0.3 Acknowledgements . xxii

I RPM and Computer Users { How to Use RPM to E�ectively
Manage Your Computer 1

1 An Introduction to Package Management 3

1.1 What are Packages, and Why Manage Them? 3

1.1.1 Enter the Package . 4

1.1.2 Manage Your Packages, or They Will Manage You 5

1.2 Package Management: How to Do It? . 6

1.2.1 Ancestors of RPM . 7

1.3 RPM Design Goals . 10

1.3.1 Make it easy to get packages on and o� the system 10

1.3.2 Make it easy to verify a package was installed correctly 11

1.3.3 Make it easy for the package builder 11

1.3.4 Make it start with the original source code 11

1.3.5 Make it work on di�erent computer architectures 11

1.4 What's in a package? . 12

1.4.1 RPM's Package Labels . 12

1.4.2 Labels And Names: Similar, But Distinct 13

1.4.3 Package-wide Information . 13

1.4.4 Per-�le Information . 13

vi CONTENTS

1.5 Let's Get Started . 14

2 Using RPM to Install Packages 15

2.1 rpm -i | What does it do? . 16

2.2 Performing an Install . 17

2.2.1 URLs | Another Way to Specify Package Files 17

2.2.2 A warning message you might never see 19

2.3 Two handy options . 19

2.3.1 Getting a bit more feedback with -v 19

2.3.2 -h: Perfect for the Impatient . 20

2.4 Additional options to rpm -i . 20

2.4.1 Getting a lot more information with -vv 21

2.4.2 - -test: Perform Installation Tests Only 21

2.4.3 - -replacepkgs: Install the Package Even If Already Installed 22

2.4.4 - -replacefiles: Install the Package Even If It Replaces Another
Package's Files . 23

2.4.5 - -nodeps: Do Not Check Dependencies Before Installing Package . . 27

2.4.6 - -force: The Big Hammer . 28

2.4.7 - -excludedocs: Do Not Install Documentation For This Package . . 28

2.4.8 - -includedocs: Install Documentation For This Package 29

2.4.9 - -prefix <path> : Relocate the package to <path> , if possible 30

2.4.10 - -noscripts: Do Not Execute Pre- and Post-install Scripts 31

2.4.11 - -percent: Not Meant for Human Consumption 31

2.4.12 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc File . . 32

2.4.13 - -root <path> : Use <path> As An Alternate Root 32

2.4.14 - -dbpath <path> : Use <path> To Find RPM Database 32

2.4.15 - -ftpport <port> : Use <port> In FTP-based Installs 33

2.4.16 - -ftpproxy <host> : Use <host> As Proxy In FTP-based Installs . 33

2.4.17 - -ignorearch: Do Not Verify Package Architecture 33

2.4.18 - -ignoreos: Do Not Verify Package Operating System 34

3 Using RPM to Erase Packages 35

3.1 rpm -e | What Does it Do? . 35

3.2 Erasing a Package . 36

3.2.1 Getting More Information With -vv 36

CONTENTS vii

3.3 Additional Options . 37

3.3.1 - -test | Go Through the Process of Erasing the Package, But Do
Not Erase It . 37

3.3.2 - -nodeps: Do Not Check Dependencies Before Erasing Package . . . 38

3.3.3 - -noscripts | Do Not Execute Pre- and Post-uninstall
Scripts . 39

3.3.4 - -rcfile <rcfile> | Read <rcfile> For RPM Defaults 39

3.3.5 - -root <path> | Use <path> As the Root 40

3.3.6 - -dbpath <path> : Use <path> To Find RPM Database 40

3.4 rpm -e and Con�g �les . 40

3.5 Watch Out! . 41

4 Using RPM to Upgrade Packages 43

4.1 rpm -U | What Does it Do? . 44

4.1.1 Con�g �le magic . 44

4.2 Upgrading a Package . 47

4.2.1 rpm -U's Dirty Little Secret . 47

4.3 They're Nearly Identical. 47

4.3.1 - -oldpackage: Upgrade To An Older Version 47

4.3.2 - -force: The Big Hammer . 48

4.3.3 - -noscripts: Do Not Execute Install and Uninstall Scripts 48

5 Getting Information About Packages 51

5.1 rpm -q | What does it do? . 52

5.2 The Parts of an RPM Query . 52

5.2.1 Query Commands, Part One: Package Selection 52

5.2.2 Query Commands, Part Two: Information Selection 58

5.2.3 Getting a lot more information with -vv 74

5.2.4 - -root <path> : Use <path> As An Alternate Root 74

5.2.5 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc File . . 75

5.2.6 - -dbpath <path> : Use <path> To Find RPM Database 75

5.3 A Few Handy Queries . 75

5.3.1 Finding Con�g Files Based on a Program Name 75

5.3.2 Learning More About an Uninstalled Package 75

5.3.3 Finding Documentation for a Speci�c Package 76

5.3.4 Finding Similar Packages . 77

viii CONTENTS

5.3.5 Finding Recently Installed Packages, Part I 77

5.3.6 Finding Recently Installed Packages, Part II 77

5.3.7 Finding the Largest Installed Packages 78

6 Using RPM to Verify Installed Packages 79

6.1 rpm -V | What Does it Do? . 79

6.1.1 What Does it Verify? . 80

6.2 When Veri�cation Fails - rpm -V Output . 82

6.2.1 Other Veri�cation Failure Messages 84

6.3 Selecting What to Verify, and How . 84

6.4 We've Lied to You. 90

7 Using RPM to Verify Package Files 93

7.1 rpm -K | What Does it Do? . 93

7.1.1 Pretty Good Privacy: RPM's Assistant 94

7.2 Con�guring PGP for rpm -K . 94

7.3 Using rpm -K . 94

7.3.1 -v | Display Additional Information 96

7.3.2 When the Package is Not Signed . 96

7.3.3 When You Are Missing the Correct Public Key 97

7.3.4 When a Package Just Doesn't Verify 97

7.3.5 - -nopgp | Do Not Verify Any PGP Signatures 99

7.3.6 -vv | Display Debugging Information 99

7.3.7 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc File . . 100

8 Miscellania 101

8.1 Other RPM Options . 101

8.1.1 - -rebuilddb | Rebuild RPM database 101

8.1.2 - -initdb | Create a New RPM Database 102

8.1.3 - -quiet | Produce as little output as possible 103

8.1.4 - -help | Display a help message . 104

8.1.5 - -version | Display the current RPM version 105

8.2 Using rpm2cpio . 105

8.2.1 rpm2cpio | What does it do? . 105

8.2.2 A more real-world example | Listing the �les in a package �le 106

CONTENTS ix

8.2.3 Extracting one or more �les from a package �le 106

8.3 Source Package Files and How To Use Them 108

8.3.1 A gentle introduction to source code 108

8.3.2 Do you really need more information than this? 109

8.3.3 So what can I do with it? . 109

8.3.4 Stick with us! . 111

II RPM and Developers { How to Distribute Your Software
More Easily With RPM 113

9 The Philosophy Behind RPM 115

9.1 Pristine Sources . 115

9.2 Easy Builds . 116

9.2.1 Reproducible Builds . 117

9.2.2 Unattended Builds . 117

9.3 Multi-architecture/operating system Support 117

9.4 Easier For Your Users . 117

9.4.1 Easy Upgrades . 117

9.4.2 Intelligent Con�guration File Handling 118

9.4.3 Powerful Query Capabilities . 118

9.4.4 Easy Package Veri�cation . 118

9.5 To Summarize. 118

10 The Basics of Developing With RPM 119

10.1 The Inputs . 119

10.1.1 The Sources . 119

10.1.2 The Patches . 119

10.1.3 The Spec File . 120

10.2 The Engine: RPM . 122

10.3 The Outputs . 122

10.3.1 The Source Package File . 122

10.3.2 The Binary RPM . 123

10.4 And Now. 123

11 Building Packages: A Simple Example 125

x CONTENTS

11.1 Creating the Build Directory Structure . 125

11.2 Getting the Sources . 126

11.3 Creating the Spec File . 126

11.3.1 The Preamble . 126

11.3.2 The %prep Section . 129

11.3.3 The %build Section . 130

11.3.4 The %install Section . 130

11.3.5 The %files Section . 130

11.3.6 The Missing Spec File Sections . 131

11.4 Starting the Build . 132

11.5 When Things Go Wrong . 136

11.5.1 Problems During the Build . 136

11.5.2 Testing Newly Built Packages . 137

12 rpm -b Command Reference 139

12.1 rpm -b | What Does it Do? . 139

12.1.1 rpm -bp | Execute %prep . 140

12.1.2 rpm -bc | Execute %prep, %build . 142

12.1.3 rpm -bi | Execute %prep, %build, %install 143

12.1.4 rpm -bb | Execute %prep, %build, %install, package (bin) 144

12.1.5 rpm -ba | Execute %prep, %build, %install, package (bin, src) . . . 145

12.1.6 rpm -bl | Check %files list . 146

12.1.7 - -short-circuit| Force build to start at particular stage 149

12.1.8 - -buildarch <arch> | Perform Build For the <arch> Architecture 151

12.1.9 - -buildos <os> | Perform Build For the <os> Operating System . 152

12.1.10- -sign | Add a Digital Signature to the Package 153

12.1.11- -test | Create, Save Build Scripts For Review 154

12.1.12- -clean | Clean up after build . 155

12.1.13- -buildroot <path> | Execute %install using <path> as the root 156

12.1.14- -timecheck <secs> | Print a warning if �les to be packaged are
over <secs> old . 159

12.1.15-vv | Display debugging information 160

12.1.16- -quiet | Produce as Little Output as Possible 161

12.1.17- -rcfile <rcfile> | Set alternate rpmrc �le to <rcfile> 161

12.2 Other Build-related Commands . 162

CONTENTS xi

12.2.1 rpm - -recompile | What Does it Do? 162

12.2.2 rpm - -rebuild | What Does it Do? 163

13 Inside the Spec File 165

13.1 Comments: Notes Ignored by RPM . 165

13.2 Tags: Data De�nitions . 166

13.2.1 Package Naming Tags . 166

13.2.2 Descriptive Tags . 168

13.2.3 Dependency Tags . 171

13.2.4 Architecture- and Operating System-Speci�c Tags 173

13.2.5 Directory-related Tags . 176

13.2.6 Source and Patch Tags . 176

13.3 Scripts: RPM's Workhorse . 180

13.3.1 Build-time Scripts . 180

13.3.2 Install/Erase-time Scripts . 183

13.3.3 Veri�cation-Time Script | The %verifyscript Script 185

13.4 Macros: Helpful Shorthand for Package Builders 186

13.4.1 The %setup Macro . 186

13.4.2 The %patch Macro . 195

13.5 The %files List . 198

13.6 Directives For the %files list . 198

13.6.1 File-related Directives . 199

13.6.2 Directory-related Directives . 201

13.7 The Lone Directive: %package . 204

13.7.1 -n <string> | Use <string> As the Entire
Subpackage Name . 205

13.8 Conditionals . 205

14 Adding Dependency Information to a Package 209

14.1 An Overview of Dependencies . 209

14.2 Automatic Dependencies . 210

14.2.1 The Automatic Dependency Scripts 210

14.2.2 Automatic Dependencies: An Example 212

14.2.3 The autoreqprov Tag | Disable Automatic
Dependency Processing . 213

14.3 Manual Dependencies . 213

xii CONTENTS

14.3.1 The requires Tag . 213

14.3.2 The conflicts Tag . 215

14.3.3 The provides Tag . 215

14.4 To Summarize. 216

15 Making a Relocatable Package 219

15.1 Why relocatable packages? . 219

15.2 The prefix tag: Relocation Central . 220

15.3 Relocatable Wrinkles: Things to Consider . 221

15.3.1 %files List Restrictions . 221

15.3.2 Relocatable Packages Must Contain Relocatable Software 222

15.3.3 The Relocatable Software Is Referenced By Other Software 222

15.4 Building a Relocatable Package . 223

15.4.1 Tying Up the Loose Ends . 225

15.4.2 Test-Driving a Relocatable Package 226

16 Making a Package That Can Build Anywhere 229

16.1 Using Build Roots in a Package . 230

16.1.1 Some Things to Consider . 233

16.2 Having RPM Use a Di�erent Build Area . 234

16.2.1 Setting up a Build Area . 234

16.2.2 Directing RPM to Use the New Build Area 235

16.2.3 Performing a Build in a New Build Area 235

16.3 Specifying File Attributes . 237

16.3.1 %attr | How Does It Work? . 237

16.3.2 Betcha Thought We Forgot. 239

17 Adding PGP Signatures to a Package 241

17.1 Why Sign a Package? . 241

17.2 Getting Ready to Sign . 241

17.2.1 Preparing PGP: Creating a Key Pair 242

17.2.2 Preparing RPM . 244

17.3 Signing Packages . 244

17.3.1 - -sign { Sign a Package At Build-Time 245

17.3.2 - -resign { Replace a Package's Signature(s) 247

CONTENTS xiii

17.3.3 - -addsign { Add a Signature To a Package 248

18 Creating Subpackages 251

18.1 What Are Subpackages? . 251

18.2 Why Are They Needed? . 251

18.3 Our Example Spec File: Subpackages Galore! 252

18.4 Spec File Changes For Subpackages . 253

18.4.1 The Subpackage's \Preamble" . 253

18.4.2 The %files List . 257

18.4.3 Install- and Erase-time Scripts . 260

18.5 Build-Time Scripts: Unchanged For Subpackages 261

18.5.1 Our Spec File: One Last Look. 262

18.6 Building Subpackages . 263

18.6.1 Giving Subpackages the Once-Over . 265

19 Building Packages for Multiple Architectures and Operating Systems 269

19.1 Architectures and Operating Systems: A Primer 269

19.1.1 Let's Just Call Them Platforms . 270

19.2 What Does RPM Do To Make Multi-Platform
Packaging Easier? . 270

19.2.1 Automatic Detection of Build Platform 270

19.2.2 Automatic Detection of Install Platform 271

19.2.3 Platform-Dependent Tags . 271

19.2.4 Platform-Dependent Conditionals . 271

19.3 Build and Install Platform Detection . 271

19.3.1 Platform-Speci�c rpmrc Entries . 271

19.3.2 Overriding Platform Information At Build-Time 273

19.3.3 Overriding Platform Information At Install-Time 274

19.4 optflags { The Other rpmrc File Entry . 274

19.5 Platform-Dependent Tags . 274

19.5.1 The excludexxx Tag . 275

19.5.2 The exclusivexxx Tag . 275

19.6 Platform-Dependent Conditionals . 276

19.6.1 Common Features of All Conditionals 276

19.6.2 %ifxxx . 278

xiv CONTENTS

19.6.3 %ifnxxx . 278

19.7 Hints and Kinks . 278

20 Real-World Package Building 279

20.1 An Overview of Amanda . 279

20.2 Initial Building Without RPM . 280

20.2.1 Setting Up A Test Build Area . 280

20.2.2 Getting Software to build . 281

20.2.3 Installing and testing . 283

20.3 Initial Building With RPM . 285

20.3.1 Generating patches . 285

20.3.2 Making a �rst-cut spec �le . 287

20.3.3 Getting the original sources unpacked 290

20.3.4 Getting patches properly applied . 291

20.3.5 Letting RPM do the Building . 292

20.3.6 Letting RPM do the Installing . 293

20.3.7 Testing RPM's Handiwork . 294

20.4 Package Building . 294

20.4.1 Creating the %files list . 297

20.4.2 Testing those �rst packages . 303

20.4.3 Finishing Touches . 304

21 A Guide to the RPM Library API 313

21.1 An Overview of rpmlib . 313

21.2 rpmlib Functions . 314

21.2.1 Error Handling . 314

21.2.2 Getting Package Information . 314

21.2.3 Variable Manipulation . 316

21.2.4 rpmrc-Related Information . 317

21.2.5 RPM Database Manipulation . 318

21.2.6 RPM Database Traversal . 320

21.2.7 RPM Database Search . 320

21.2.8 Package Manipulation . 324

21.2.9 Package And File Veri�cation . 327

21.2.10Dependency-Related Operations . 328

CONTENTS xv

21.2.11Diagnostic Output Control . 330

21.2.12Signature Veri�cation . 331

21.2.13Header Manipulation . 332

21.2.14Header Entry Manipulation . 334

21.2.15Header Iterator Support . 336

21.3 Example Code . 337

21.3.1 Example #1 . 337

21.3.2 Example #2 . 340

21.3.3 Example #3 . 343

A Format of the RPM File 347

A.1 RPM File naming convention . 347

A.2 RPM File Format . 348

A.2.1 Parts of an RPM File . 348

A.2.2 The Lead . 349

A.2.3 Wanted: A New RPM Data Structure 350

A.2.4 The Signature . 353

A.2.5 The Header . 356

A.2.6 The Archive . 359

A.3 Tools For Studying RPM Files . 360

A.4 Identifying RPM �les with the file(1) command 361

B The rpmrc File 363

B.1 Using the - -showrc Option . 363

B.2 Di�erent Places an rpmrc File Resides . 364

B.2.1 /usr/lib/rpmrc . 365

B.2.2 /etc/rpmrc . 368

B.2.3 .rpmrc in the user's login directory . 368

B.2.4 File indicated by the - -rcfile option 368

B.3 rpmrc File Syntax . 368

B.4 rpmrc File Entries . 368

B.4.1 arch canon . 369

B.4.2 os canon . 369

B.4.3 buildarchtranslate . 369

B.4.4 buildostranslate . 370

xvi CONTENTS

B.4.5 arch compat . 370

B.4.6 os compat . 370

B.4.7 builddir . 371

B.4.8 buildroot . 371

B.4.9 cpiobin . 371

B.4.10 dbpath . 371

B.4.11 defaultdocdir . 371

B.4.12 distribution . 371

B.4.13 excludedocs . 372

B.4.14 ftpport . 372

B.4.15 ftpproxy . 372

B.4.16 messagelevel . 372

B.4.17 netsharedpath . 372

B.4.18 optflags . 373

B.4.19 packager . 373

B.4.20 pgp name . 373

B.4.21 pgp path . 374

B.4.22 require distribution . 374

B.4.23 require icon . 374

B.4.24 require vendor . 374

B.4.25 rpmdir . 374

B.4.26 signature . 375

B.4.27 sourcedir . 375

B.4.28 specdir . 375

B.4.29 srcrpmdir . 375

B.4.30 timecheck . 376

B.4.31 tmppath . 376

B.4.32 topdir . 376

B.4.33 vendor . 376

C Concise RPM Command Reference 377

C.1 Global Options . 377

C.2 Informational Options . 377

C.3 Query Mode . 378

C.3.1 Package Speci�cation Options To Query Mode 378

CONTENTS xvii

C.3.2 Information Selection Options To Query Mode 378

C.4 Verify Mode . 379

C.4.1 Options To Verify Mode . 379

C.5 Install Mode . 379

C.5.1 Options To Install Mode . 379

C.6 Upgrade Mode . 380

C.6.1 Options To Upgrade Mode . 380

C.7 Erase Mode . 381

C.7.1 Options To Erase Mode . 381

C.8 Build Mode . 381

C.8.1 Build Mode Stages . 381

C.8.2 Options To Build Mode . 382

C.9 Rebuild Mode . 382

C.9.1 Options To Rebuild Mode . 382

C.10 Recompile Mode . 382

C.10.1 Options To Recompile Mode . 383

C.11 Resign Mode . 383

C.11.1 Options To Resign Mode . 383

C.12 Add Signature Mode . 383

C.12.1 Options To Add Signature Mode . 383

C.13 Check Signature Mode . 383

C.13.1 Options To Check Signature Mode . 383

C.14 Initalize Database Mode . 384

C.14.1 Options to Initalize database Mode . 384

C.15 Rebuild Database Mode . 384

C.15.1 Options to Rebuild Database Mode 384

D Available Tags For - -queryformat 385

D.1 List of - -queryformat Tags . 385

E Concise Spec File Reference 397

E.1 Comments . 397

E.2 The Preamble . 397

E.2.1 Package Naming Tags . 397

E.2.2 Descriptive Tags . 398

xviii CONTENTS

E.2.3 Dependency Tags . 400

E.2.4 Architecture- and Operating System-Speci�c Tags 401

E.2.5 Directory-related Tags . 402

E.2.6 Source and Patch Tags . 402

E.3 Scripts . 403

E.3.1 Build-time Scripts . 403

E.3.2 Install-/Erase-time Scripts . 405

E.3.3 Veri�cation Script . 406

E.4 Macros . 406

E.4.1 The %setup Macro . 406

E.4.2 The %patch Macro . 407

E.5 The %files List . 408

E.6 Directives For the %files list . 409

E.6.1 File-related Directives . 409

E.6.2 Directory-related Directives . 410

E.7 The %package Directive . 411

E.7.1 The %package -n Option . 411

E.8 Conditionals . 411

F RPM-related Resources 413

F.1 Where to Get RPM . 413

F.1.1 FTP Sites . 413

F.1.2 What Do I Need? . 415

F.2 Where to Talk About RPM . 417

F.2.1 The rpm-list Mailing List . 417

F.2.2 The redhat-list Mailing List . 418

F.2.3 The redhat-digestMailing List . 418

F.3 RPM On the World Wide Web . 418

F.4 RPM's License . 419

F.4.1 Preamble . 419

F.4.2 GNU GENERAL PUBLIC LICENSE 420

F.4.3 How to Apply These Terms to Your New Programs 424

G An Introduction to PGP 427

G.1 PGP - Privacy for Regular People . 427

CONTENTS xix

G.1.1 Keys your Locksmith Wouldn't Understand 427

G.1.2 Are RPM Packages Encrypted? . 429

G.1.3 Do All RPM Packages Have Digital Signatures? 429

G.1.4 So Much to Cover, So Little Time . 429

G.2 Installing PGP for RPM's Use . 430

G.2.1 Obtaining PGP . 430

G.2.2 Building PGP . 432

G.2.3 Ready to Go! . 432

xx CONTENTS

Preface

0.1 Linux and RPM - A Brief History

Welcome! This is a book about the Red Hat Package Manager or, as it is known to it's
friends, RPM. The history of RPM is inextricably linked to the history of Linux, so a bit
of Linux history may be in order. Linux is a full-featured implementation of a UNIX-like
operating system, and has taken the computing world by storm.

And for good reason | With the addition of Linux, an Intel-based personal computer that
had previously been prisoner of the dreaded Windows hourglass is transformed into a fully
multitasking, network capable, personal workstation. All for the cost of the time required
to download, install, and con�gure the software.

Of course, if you're not the type to tinker with downloaded software, many companies
have created CDROMs containing Linux and associated software. The amount of tinkering
required with these distributions has varied widely. The phrase \You get what you pay for"
is never more true than in the area of Linux distributions.

One distribution bears the curious name \Red Hat Linux". Produced by a company of the
same name, this Linux distribution was di�erent. One of the key decisions a new Linux user
needs to make is which of the many di�erent parts of the distribution to install on their
system. Most distributions use some sort of menu, making it easy to pick and choose. Red
Hat Linux is no di�erent.

But what is di�erent about Red Hat Linux is that the creators of the distribution wanted
their customers to have the the ability to make the same choices long after the installation
process was over. Some commercial UNIX systems have this capability (called \package
management"), and a few Linux distributors were trying to come up with something similar,
but none had the extensive scope present in RPM.

Over time, Red Hat Linux has become the most popular distribution available today. For
it to edge out the previous leader (known as Slackware) in just two years is amazing. There
has to be a reason for this kind of success, and a good part of the reason is RPM. But
until now, there has been precious little in terms of RPM documentation. You could say
that RPM's ease of use has made detailed instructions practically unnecessary, and you'd
be right.

However, there are always people that want to know more about their computers, and given
the popularity of Red Hat Linux, this alone would have made a book on RPM worthwhile.

xxii Preface

But there's more to the story than that.

There is a truism in the world of free software, that goes something like this: If there's a
better solution freely available, use it! RPM is no exception to the rule. Put under the
terms of the GNU General Public License (Meaning: RPM cannot be made proprietary by
anyone, not even Bill Gates), RPM started to attract the attention of others in the Linux,
Unix, and free software communities.

At present, RPM is used by several commercial software companies producing Linux appli-
cations. They �nd that RPM makes it easier to get their products into the hands of their
customers. They also �nd that it can even make the process of building their software easier.
(Those of you that develop software for fun and pro�t, stick around - the second half of this
book will show you everything you need to know to get your software \RPM-ized")

People have also ported RPM to several commercial UNIX systems, including DEC's Digital
Unix, IBM's AIX, and Silicon Graphics' IRIX. Why? The simple answer is that it makes
it easier to install, upgrade, and de-install software. If all these people are using RPM,
shouldn't you?

0.2 Parts of the book, and Who They're For

This book is divided into two major sections. The �rst section is for anyone that needs to
know how to use RPM on their system. Given the state of the Linux arena today, this could
include just about anyone, including people that are new to Linux, or even UNIX. So those
of you that think that

ls -FAl !*|less

is serious magic (or maybe even a typing error), relax | we'll explain everything you'll need
to know in the �rst section.

In the book's second half, we'll be covering all there is to know about building packages using
RPM. Since software engineering on Linux and UNIX systems requires in-depth knowledge
of the operating system, available tools, and basic programming concepts, we're going to
assume that the reader has su�cient background in these areas. Feel free to browse through
the second half, but don't hesitate to seek additional sources of information if you �nd the
going a bit tough.

0.3 Acknowledgements

Writing a book is similar to entering a long-term relationship with an obsessive partner.
Throughout the nine months it took to write this book, life went on: job changes, births,
deaths, and even a hurricane. Throughout it all, the book demanded constant attention.
Therefore, I'd like to thank the people that made it possible to focus on the book to the
exclusion of nearly everything else. My wife, Deb and son, Matt supported and encouraged
me throughout, even when I was little more than a reclusive houseguest hunched over the

0.3 Acknowledgements xxiii

computer in the study. Additionally, Deb acted as my editor and indexer, eventually reading
the book completely three times! Thank you both.

Thanks also to Marc Ewing and Erik Troan, RPM architects extraordinaire. Without their
programming savvy, RPM wouldn't be the elegant tool it is. Without their boundless
patience, my many questions would have gone unanswered, and this book would have been
much less than it is now. I hope you �nd this book a worthy companion to your programming
handiwork.

Rik Faith provided some much-needed information about PMS and PM, two of RPM's
ancestors. Thank you!

Finally a great big thank you goes to Jessica and the gang at L'il Dinos, Jennifer and her
crew at the Cary Barnes & Noble co�ee shop, and Mom and her \kids" at Schlotzsky's Deli
in Durham. If all of you hadn't let me sit around for hours writing, this book wouldn't be
nearly as fat as it is. And neither would I!

February, 1997
Cary, North Carolina

xxiv Preface

Part I

RPM and Computer Users {

How to Use RPM to E�ectively

Manage Your Computer

Chapter 1

An Introduction to Package

Management

1.1 What are Packages, and Why Manage Them?

To answer that question, let's go back to the basics for a moment. Computers process
information. In order for this to happen, there are some prerequisites:

� A computer (Obviously!).

� Some information to process (Also obvious!).

� A program to do the processing (Still pretty obvious!).

Unless these three things come together very little is going to happen, information processing-
wise. But each of these items have their own requirements that need to be satis�ed before
things can get exciting.

Take the computer, for example. While it needs things like electricity and a cool, dry place
to operate, it also needs access to the other two items | information and programs | in
order to do its thing. The way to get information and programs into a computer is to place
them in the computer's mass storage. These days, mass storage invariably means a disk
drive. Putting information and programs on the disk drive means that they are stored as
�les. So much for the computer's part in this.

OK, let's look at the information. Does information have any particular needs? Well, it
needs su�cient space on the disk drive, but more importantly, it needs to be in the proper
format for the program that will be processing it. That's it for information.

Finally, we have the program. What does it need? Like the information, it needs su�cient
disk space on the disk drive. But there are many other things that it may need:

� It may need information to process, in the correct format, named properly, and in the
appropriate area on a disk drive somewhere.

4 An Introduction to Package Management

� It may need one or more con�guration �les. These are �les that control the program's
behavior and permit some level of customization. Like the information, these �les
must be in the proper format, named properly, and in the appropriate area on a disk.
We'll be referring to them by their other name | con�g �les | throughout the book.

� It may need work areas on a disk, named properly, and located in the appropriate
area.

� It may even need other programs, each with their own requirements.

� Although not strictly required by the program itself, the program may come with one
or more �les containing documentation. These �les can be very handy for the humans
trying to get the program to do their bidding!

As you can imagine, this can get pretty complicated. It's not so bad once everything is
set up properly, but how do things get set up properly in the �rst place? There are two
possibilities:

1. After reading the documentation that comes with the program you'd like to use, you
copy the various programs, con�guration �les, and information onto your computer,
making sure they are all named correctly, are located in the proper place, and that
there is su�cient disk space to hold them all. You make the appropriate changes to the
con�guration �le(s). Finally, you run any setup programs that are necessary, giving
them whatever information they require to do their job.

2. You let the computer do it.

If it seems like the �rst choice isn't so bad, consider how many �les you'll need to keep track
of. On a typical Linux system, it's not unusual to have over 20,000 di�erent �les. That's a
lot of documentation reading, �le copying, and con�guring! And what happens when you
want a newer version of a program? More of the same!

Some people think the second alternative is easier. RPM was made for them.

1.1.1 Enter the Package

When you consider that computers are very good at keeping track of large amounts of data,
the idea of giving your computer the job of riding herd over 20,000 �les seems like a good
one. And that's exactly what package management software does. But what is a \package"?

A package in the computer sense is very similar to a package in the physical sense. Both
are methods of keeping related objects together in the same place. Both need to be opened
before the contents can be used. Both can have a \packing slip" taped to the side, identifying
the contents.

Normally, package management systems take all the various �les containing programs, data,
documentation, and con�guration information, and place them in one specially formatted
�le | a package �le. In the case of RPM, the package �le is sometimes called a \package",

1.1 What are Packages, and Why Manage Them? 5

a \.rpm �le", or even an \RPM". All mean the same thing | a package containing software
meant to be installed using RPM.

What types of software are normally found in a package? There are no hard and fast rules,
but normally a package's contents consist of one of the following types of software:

� A collection of one or more programs that perform a single well-de�ned task. This is
normally what people think of as an \application". Word processors and programming
languages would �t into this category.

� A speci�c part of an operating system. Examples might be system initialization scripts,
a particular command shell, or the software required to support a web server, for
example.

Advantages of a Package

One of the most obvious bene�ts to having a package is that the package is one easily
manageable chunk. If you move it from one place to another, there's no risk of any part
getting left behind. But although this is the most obvious advantage, it's not the biggest
one.

The biggest advantage is that the package can contain the knowledge about what it takes
to install itself on your computer. And if the package contains the steps required to install
itself, the package can also contain the steps required to uninstall itself. What used to be
a painful manual process is now a straightforward procedure. What used to be a mass of
20,000 �les becomes a couple hundred packages.

1.1.2 Manage Your Packages, or They Will Manage You

A couple hundred? Even though the use of packages has decreased the complexity of man-
aging a system by an order of magnitude, it hasn't yet gotten to the level of being a \no-
brainer". It's still necessary to keep track of what packages are installed on your system.
And if there are some packages that require other packages in order to install or operate
correctly, these should be tracked as well.

Packages Lead Active Lives

If you start looking at a computer system as a collection of packages, you'll �nd that a
distinct set of operations will take place on those packages time and time again:

� New packages are installed. Maybe it's a spreadsheet you'll use to keep track of
expenses, or the latest shoot-em-up game, but in either case it's new and you want it.

� Old packages are replaced with newer versions. Whoever wrote the word processor
you use daily, comes out with a new version. You'll probably want to install the new
version and remove the old one.

6 An Introduction to Package Management

� Packages are removed entirely. Perhaps that over-hyped strategy game just didn't cut
it. You have better things to do with that disk space, so get rid of it!

With this much activity going on, it's easy to lose track of things. What types of package
information should be available to keep you informed?

Keeping Track of Packages

Just as there are certain operations that are performed on packages, there are also certain
types of information that will make it easier to make sense of the packages installed on your
system:

� Certainly you'd like to be able to see what packages are installed. It's easy to forget
if that fax program you tried a few months ago is still installed or not.

� It would be nice to be able to get more detailed information on a speci�c package.
This might consist of anything from the date the package was installed, to a list of
�les it installed on your system.

� Being able to access this information in a variety of ways can be helpful, too. Instead
of simply �nding out what �les a package installed, it might be handy to be able to
name a particular �le and �nd out which package installed it.

� If this amount of detail is possible, then it should be possible to see if the way a
package is presently installed varies from the way it was originally installed. It's not
at all unusual to make a mistake and delete one �le | or a hundred. Being able to tell
if one or more packages are missing �les could greatly simplify the process of getting
an ailing system back on its feet again.

� Files containing con�guration information can be a real headache. If it were possible
to pay extra attention to these �les and make sure any changes made to them weren't
lost, life would certainly be a lot easier.

1.2 Package Management: How to Do It?

Well, all that sounds great | easy install, upgrade, and deletion of packages; getting package
information presented several di�erent ways; making sure packages are installed correctly;
and even tracking changes to con�g �les. But how do you do it?

As mentioned above, the obvious answer is to let the computer do it. Many groups have
tried to create package management software. There are two basic approaches:

1. Some package management systems concentrate on the speci�c steps required to ma-
nipulate a package.

2. Other package management systems take a di�erent approach, keeping track of the
�les on the system and manipulating packages by concentrating on the �les involved.

1.2 Package Management: How to Do It? 7

Each approach has its good and bad points. In the �rst method, it's easy to install new pack-
ages, somewhat di�cult to remove old ones, and almost impossible to obtain any meaningful
information about installed packages.

The second method makes it easy to obtain information about installed packages, and fairly
easy to install and remove packages. The main problem using this method is that there
may not be a well-de�ned way to execute any commands required during the installation or
removal process.

In practice, no package management system uses one approach or the other | all are a
mixture of the two. The exact mix and design goals will dictate how well a particular
package management system meets the needs of the people using it. At the time Red
Hat Software started work on their Linux distribution, there were a number of package
management systems in use, each with a di�erent approach to making package management
easier.

1.2.1 Ancestors of RPM

Since this is a book on the Red Hat Package Manager, a good way to see what RPM is all
about is to look at the package management software that preceded RPM.

RPP

RPP was used in the �rst Red Hat Linux distributions. Many of RPP's features would be
recognizable to anyone who has worked with RPM. Some of these innovative features are:

� Simple, one command installation and uninstallation of packages.

� Scripts that can run before and after installation and uninstallation of packages.

� Package veri�cation. The �les of individual packages can be checked to see that they
haven't been modi�ed since they were installed.

� Powerful querying. The database of packages can be queried for information about
installed packages, including �le lists, descriptions and more.

While RPP possessed several of the features that were important enough to continue on as
parts of RPM today, it had some weaknesses, too:

� It didn't use \pristine sources". Every program is made up of programming language
statements stored in �les. This source code is later translated into a binary language
that the computer can execute. In the case of RPP, its packages were based on source
code that had been modi�ed speci�cally for RPP, hence the sources weren't pristine.
This is a bad idea for a number of fairly technical reasons. Not using pristine sources
made it di�cult for package developers to keep things straight, particularly if they
were building hundreds of di�erent packages.

8 An Introduction to Package Management

� It couldn't guarantee executables were built from packaged sources. The process of
building a package for RPP was such that there was no way to ensure the executable
programs were built from the source code contained in an RPP source package. Once
again, this was a problem for the package builder, especially those who had large
numbers of packages to build.

� It had no support for multiple architectures. As people started using RPP, it became
obvious that the package managers that were unable to simplify the process of building
packages for more than one architecture, or type of computer, were going to be at a
disadvantage. This was a problem, particularly for Red Hat Software, as they were
starting to look at the possibility of creating Linux distributions for other architectures,
such as the Digital Alpha.

Even with these problems, RPP was one of the things that made the �rst Red Hat Linux
distributions unique. Its ability to simplify the process of installing software was a real boon
to many of Red Hat's customers, particularly those with little experience in Linux.

PMS

While Red Hat Software was busy with RPP, another group of Linux devotees were hard at
work with their package management system. Known as PMS, its development, lead by Rik
Faith, attacked the problem of package management from a slightly di�erent viewpoint.

Like RPP, PMS was used to package a Linux distribution. This distribution was known
as the BOGUS distribution, and all the software in it was built from original unmodi�ed
sources. Any changes that were required were patched in during the processing of building
the software. This is the concept of \pristine sources" and is PMS's most important con-
tribution to RPM. The importance of pristine sources can not be overstated. It allows the
packager to quickly release new version of software, and to immediately see what changes
were made to the software.

The chief disadvantages of PMS were weak querying ability, no package veri�cation, no
multiple architecture support, and poor database design.

PM

Later, Rik Faith and Doug Ho�man, working under contract for Red Hat Software, pro-
duced PM. The design combined all the important features of RPP and PM, including
one command installation and uninstallation, scripts run before and after installation and
uninstallation, package veri�cation, advanced querying, and pristine sources. However it
retained RPP's and PM's chief disadvantages: weak database design and no support for
multiple architectures.

PM was very close to a viable package management system, but it wasn't quite ready for
prime time. It was never used in a commercially available product.

1.2 Package Management: How to Do It? 9

RPM Version 1

With two major forays into package management behind them, Marc Ewing and Erik Troan
went to work on a third attempt. This one would be called the Red Hat Package Manager,
or RPM.

Although it built on the experiences of PM, PMS, and RPP, RPM was quite di�erent under
the hood. Written in the Perl programming language for fast development, the creation of
RPM version 1 focused on addressing the aws of its ancestors. In some cases, the aws
were eliminated, while in others, the problems remained.

Some of the successes of RPM version 1 were:

� Automatic handling of con�guration �les. The contents of con�g �les are often changed
from what they were in the original package, making it hard for a package manager
to know how a particular con�g �le should be handled during installs, upgrades, and
erasures. PM made an attempt at con�g �le handling, but in RPM it was improved
further. In many respects, this feature is the key to RPM's power and exibility.

� Ease of rebuilding large numbers of packages. By making it easy for people who were
trying to create a Linux distribution consisting of several hundred packages, RPM was
a step in the right direction.

� It was easy to use. Many of the concepts used in RPP had withstood the test of time
and were used in RPM. For instance, the ability to verify the installation of a package
was one of the features that set RPP apart. It was adapted and expanded in RPM
version 1.

But RPM version 1 wasn't perfect. There were a number of aws, some of them major:

� It was slow. While the use of Perl made RPM's development proceed more quickly, it
also meant that RPM wouldn't run as quickly as it would have, had it been written
in C.

� Its database design was fragile. Unfortunately, under RPM version 1 it was not unusual
for there to be problems with the database. While the approach of dedicating a
database to package management was a good idea, the implementation used in RPM
version 1 left a lot to be desired.

� It was big. This is another artifact of using Perl. Normally, RPM's size requirements
were not an issue, except for one area. When performing an initial system install,
RPM was run from a small, oppy-based system environment. The need to have Perl
available meant space on the boot oppies was always a problem.

� It didn't support multiple architectures (types of computers) well. The need to have a
package manager support more than one type of computer hadn't been acknowledged
before. With RPM version 1, an initial stab was taken at the problem, but the
implementation was incomplete. Nonetheless, RPM had been ported to a number of
other computer systems. It was becoming obvious that the issue of multi-architecture
support was not going away and had to be addressed.

10 An Introduction to Package Management

� The package �le format wasn't extensible. This made it very di�cult to add func-
tionality, since any change to the �le format would cause older versions of RPM to
break.

Even though their Linux distribution was a success, and RPM was much of the reason for
it, Marc and Erik knew that some changes were going to be necessary to carry RPM to the
next level.

The RPM of Today: Version 2

Looking back on their experiences with RPM version 1, Marc and Erik made a major change
to RPM's design: They rewrote it entirely in C. This did wonderful things to RPM's speed
and size. Querying the database was quicker now, and there was no need to have Perl
around just to do package management.

In addition, the database format was redesigned to improve both performance and reliability.
Displaying package information can take as little as a tenth of the time spent in RPM version
1, for example.

Realizing RPM's potential in the non-Linux arena, they also created rpmlib, a library of
RPM routines that allow the use of RPM functionality in other programs. RPM's ability to
function on more than one architecture was also enhanced. Finally, the package �le format
was made more extensible, clearing the way for future enhancements to RPM.

So is RPM perfect? No program can ever reach perfection, and RPM is no exception. But
as a package manager that can run on several di�erent types of systems, RPM has a lot
to o�er, and it will only get better. Let's take a look at the design criteria that drove the
development of RPM.

1.3 RPM Design Goals

The design goals of RPM could best be summed up with the phrase \something for every-
one". While the main reason for the existence of RPM was to make it easier for Red Hat
Software to build the several hundred packages that comprised their Linux distribution, it
was not the only reason RPM was created. Let's take a look at the various requirements
the Red Hat team used in their design of RPM:

1.3.1 Make it easy to get packages on and o� the system

As we've seen earlier in this chapter, the act of installing a package can involve many complex
steps. Entrusting these steps to a person who may not have the necessary experience is a
strategy for failure. So the goal for RPM was to make it as easy as possible for anyone to
install packages. The same holds true for removing packages. It is a complex and error-prone
operation, and one that RPM should handle for the user.

The other side of this issue is that RPM should give the package builder almost total control
in terms of how the package is installed. The reason for this is simple: if the package builders

1.3 RPM Design Goals 11

do their homework, their package should install and uninstall properly.

1.3.2 Make it easy to verify a package was installed correctly

Because software problems are a fact of life, the ability to verify the proper installation of
a package is vital. If done properly, it should be possible to catch a variety of problems,
including things such as missing or modi�ed �les.

1.3.3 Make it easy for the package builder

While we're dedicating an entire book to package management, in reality it should be a
small portion of the package builder's job. Why? They've got better things to do! If they
are the people that are actually creating the software to be packaged, that's where they
should be spending the majority of their time.

Even if the package builder isn't actually writing software, they still have better things to
do than worry about building packages. For instance, they may be responsible for building
many packages. The less time spent on building an individual package translates to more
packages that can be built.

1.3.4 Make it start with the original source code

Delving a bit more into the package builder's world, it was deemed important that RPM
start with the original, unmodi�ed source code. Why is this so important?

Using the original sources makes it possible to separate the changes required to build the
package from any changes implemented to �x bugs, add new features, or anything else. This
is a good thing for package builders, since many of them are not the original authors of the
programs they package.

This separation makes it easy, months down the road, to know exactly what changes were
made in order to get the package to build. This is important when a new version of the
packaged software becomes available. Many times it's only necessary to apply the original
\package building" changes to the newer software. At worst, the changes provide a starting
point to determine what sorts of things might need to be changed in the new version.

1.3.5 Make it work on di�erent computer architectures

One of the tougher things for a package builder to do is to take a program, make it run on
more than one type of computer, and distribute packages for each. Because RPM makes it
easy to take a program's original source code, add the changes necessary to get it to build,
and produce a package for each architecture in one step, it can be pretty handy.

12 An Introduction to Package Management

1.4 What's in a package?

With all the magical things we've claimed that package management software in general
(and RPM in particular) can do, you'd think there was a tiny computer guru bundled in
every package. However, the reality is not that magical. Here's a quick overview of the more
important parts of an RPM package1.

1.4.1 RPM's Package Labels

Every package built for RPM has to have a speci�c set of information that uniquely identi�es
it. We call this information a package label. Here are two sample package labels:

� nls-1.0-1

� perl-5.001m-4

While these labels look like they have very little in common, in fact they all follow RPM's
package labelling convention. There are three di�erent components in every package label.
Let's look at each one in order:

Component #1: The Software's Name

Every package label begins with the name of the software. The name may be derived from
the name of the application packaged, or it may be a name describing a group of related
programs bundled together by the package builder. The software names in the packages
listed above are: nls and perl. As you can see, the software name is separated from the
rest of the package label by a dash.

Component #2: The Software's Version

Next in the package label is an identi�er that describes the version of the software being
packaged. If the package builder bundled a number of related programs together, the soft-
ware version is probably a number of their own choosing. However, if the package consists of
one major application, the software version normally comes directly from the application's
developer. The actual version speci�cation is quite exible, as can be seen in the examples
above. The versions shown are: 1.0 and 5.001m. A dash separates the software version
from the remainder of the package label.

Component #3: The Package's Release

The package release is the most unambiguous part of a package label. It is a number chosen
by the package builder. It reects the number of times the package has been rebuilt using the
same version software. Normally, the rebuilds are due to bugs uncovered after the package

1See Appendix A on page 347 for complete details on the contents of a .rpm �le.

1.4 What's in a package? 13

has been in use for a while. By tradition, the package release starts at 1. The package
releases in the example above are: 1 and 4.

1.4.2 Labels And Names: Similar, But Distinct

Package labels are used internally by RPM. For example, if you ask RPM to list every
installed package, it will respond with a list of package labels. When a package �le is created,
part of the �lename consists of the package label. There is no technical requirement for this,
but it does make it easier to keep track of things.

However, a package �le may be renamed, and the new �lename won't confuse RPM in the
least. That's because the package label is contained within the �le. For a fairly technical
view of the inside of a package �le, refer to Appendix A.

1.4.3 Package-wide Information

Some of the information contained in a package is general in nature. This information
includes such items as:

� The date and time the package was built.

� A description of the package's contents.

� The total size of all the �les installed by the package.

� Information that allows the package to be grouped with similar packages.

� A digital \signature" that can be used to verify the authenticity and integrity of the
package.2

1.4.4 Per-�le Information

Each package also contains information about every �le contained in the package. The
information includes:

� The name of every �le and where it is to be installed.

� Each �le's permissions.

� Each �le's owner and group speci�cations.

� The MD5 checksum of each �le.3

� The �le's contents.

2For more information on RPM's signature checking capability, refer to section 7.1 on page 93.
3We'll discuss MD5 checksums in greater detail in section 6.1 on page 79.

14 An Introduction to Package Management

1.5 Let's Get Started

To summarize, a package management system uses the computer to keep track of all the
various bits and pieces that comprise an application or an entire operating system. Most
package management systems use a specially formatted �le to keep everything together in
a single, easily manageable entity, or package. Additionally, package management systems
tend to provide one or more of the following functions:

� Installing new packages.

� Removing old packages.

� Upgrading from an old package to a new one.

� Obtaining information about installed packages.

RPM has been designed with Red Hat Software's past package management experiences in
mind. PM and RPP provided most of these functions with varying degrees of success. Marc
Ewing and Erik Troan have worked hard to make RPM better than its predecessors in every
way. Now it's time to see how they did, and learn how to use RPM!

Chapter 2

Using RPM to Install Packages

rpm -i (or - -install) options �le1.rpm . . . �leN.rpm

Parameters
file1.rpm ... fileN.rpm One or more RPM package �les (URLs OK)

Install|speci�c Options Page
-h (or - -hash) Print hash marks (\#") during install 20
- -test Perform installation tests only 21
- -percent Print percentages during install 31
- -excludedocs Do not install documentation 28
- -includedocs Install documentation 29
- -replacepkgs Replace a package with a new copy of itself 22
- -replacefiles Replace �les owned by another package 23
- -force Ignore package and �le conicts 28
- -noscripts Do not execute pre- and post-install scripts 31
- -prefix <path> Relocate package to <path> if possible 30
- -ignorearch Do not verify package architecture 33
- -ignoreos Do not verify package operating system 34
- -nodeps Do not check dependencies 27
- -ftpproxy <host> Use <host> as the FTP proxy 33
- -ftpport <port> Use <port> as the FTP port 33

General Options Page
-v Display additional information 19
-vv Display debugging information 21
- -root <path> Set alternate root to <path> 32
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 32
- -dbpath <path> Use <path> to �nd the RPM database 32

16 Using RPM to Install Packages

2.1 rpm -i | What does it do?

Of the many things RPM can do, probably the one that people think of �rst is the installation
of software. As mentioned earlier, installing new software is a complex, error-prone job.
RPM turns that process into a single command.

rpm -i (- -install is equivalent) installs software that's been packaged into an RPM pack-
age �le. It does this by:

� Performing dependency checks.

� Checking for conicts.

� Performing any tasks required before the install.

� Deciding what to do with con�g �les.

� Unpacking �les from the package and putting them in the proper place.

� Performing any tasks required after the install.

� Keeping track of what it did.

Let's go through each of these steps in a bit more detail.

Performing dependency checks: Some packages will not operate properly unless some
other package is installed, too. RPM makes sure that the package being installed will have
its dependency requirements met. It will also insure that the package's installation will not
cause dependency problems for other already-installed packages.

Checking for conicts: RPM performs a number of checks during this phase. These
checks look for things like attempts to install an already installed package, attempts to install
an older package over a newer version, or the possibility that a �le may be overwritten.

Performing any tasks required before the install: There are cases where one or more
commands must be given prior to the actual installation of a package. RPM performs these
commands exactly as directed by the package builder, thus eliminating a common source of
problems during installations.

Deciding what to do with con�g �les: One of the features that really sets RPM apart
from other package managers, is the way it handles con�guration �les. Since these �les
are normally changed to customize the behavior of installed software, simply overwriting
a con�g �le would tend to make people angry | all their customizations would be gone!
Instead, RPM analyzes the situation and attempts to do \the right thing" with con�g �les,
even if they weren't originally installed by RPM!1

1Are you interested in what exactly \the right thing" means? Turn to page 44 and read section 4.1.1 for
more details.

2.2 Performing an Install 17

Unpacking �les from the package and putting them in the proper place: This is
the step most people think of when they think about installing software. Each package �le
contains a list of �les that are to be installed, as well as their destination on your system. In
addition, many other �le attributes, such as permissions and ownerships, are set correctly
by RPM.

Performing any tasks required after the install: Very often a new package requires
that one or more commands be executed after the new �les are in place. An example of this
would be running ldconfig to make new shared libraries accessible.

Keeping track of what it did: Every time RPM installs a package on your system,
it keeps track of the �les it installed, in its database. The database contains a wealth of
information necessary for RPM to do its job. For example, RPM uses the database when it
checks for possible conicts during an install.

2.2 Performing an Install

Let's have RPM install a package. The only thing necessary is to give the command (rpm
-i) followed by the name of the package �le:

rpm -i eject-1.2-2.i386.rpm

#

At this point, all the steps outlined above have been performed. The package is now installed.
Note that the �le name need not adhere to RPM's �le naming convention:

mv eject-1.2-2.i386.rpm baz.txt

rpm -i baz.txt

#

In this case, we changed the name of the package �le eject-1.2-2.i386.rpm to baz.txt

and then proceeded to install the package. The result is identical to the previous install, that
is, the eject-1.2-2 package successfully installed. The name of the package �le, although
normally incorporating the package label, is not used by RPM during the installation pro-
cess. RPM uses the contents of the package �le, which means that even if the �le was placed
on a DOS oppy and the name truncated, the installation would still proceed normally.

2.2.1 URLs | Another Way to Specify Package Files

If you've surfed the World Wide Web, you've no doubt noticed the way web pages are
identi�ed:

http://www.redhat.com/support/docs/rpm/RPM-HOWTO/RPM-HOWTO.html

18 Using RPM to Install Packages

This is called a Uniform Resource Locator, or URL. RPM can also use URLs, although they
look a little bit di�erent. Here's one:

ftp://ftp.redhat.com/pub/redhat/code/rpm/rpm-2.3-1.i386.rpm

The ftp: signi�es that this URL is a File Transfer Protocol URL. As the name implies, this
type of URL is used to move �les around. The section containing ftp.redhat.com speci�es
the hostname, or the name of the system where the package �le resides.

The remainder of the URL (/pub/redhat/code/rpm/rpm-2.3-1.i386.rpm) speci�es the
path to the package �le, followed by the package �le itself.

RPM's use of URLs gives us the ability to install a package located on the other side of the
world, with a single command:

rpm -i ftp://ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm

#

This command would use anonymous FTP to obtain the foobar version 1.0 package �le and
install it on your system. Of course, anonymous FTP (no username and password required)
is not always available. Therefore, the URL may also contain a username and password
preceding the hostname:

ftp://smith:mypass@ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm

However, entering a password where it can be seen by anyone looking at your screen is a
bad idea. So try this format:

ftp://smith@ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm

RPM will prompt you for your password, and you'll be in business:

rpm -i ftp://smith@ftp.gnomovision.com /pub/rpms/apmd-2.4-1.i386.rpm

Password for smith@ftp.gnomovision.com: mypass (not echoed)
#

After entering a valid password, RPM installs the package.

On some systems, the FTP daemon doesn't run on the standard port 21. Normally this is
done for the sake of enhanced security. Fortunately, there is a way to specify a non-standard
port in a URL:

ftp://ftp.gnomovision.com:1024/pub/rpms/foobar-1.0-1.i386.rpm

This URL will direct the FTP request to port 1024. The - -ftpport option is another way
to specify the port. This option is discussed later in the chapter, on page 33.

2.3 Two handy options 19

2.2.2 A warning message you might never see

Depending on circumstances, the following message might be rare or very common. While
performing an ordinary install, RPM prints a warning message:

rpm -i cdp-0.33-100.i386.rpm

warning: /etc/cdp-config saved as /etc/cdp-config.rpmorig

#

What does it mean? It has to do with RPM's handling of con�g �les. In the example above,
RPM found a �le (/etc/cdp-config) that didn't belong to any RPM-installed package.
Since the cdp-0.33-100 package contains a �le of the same name that is to be installed in
the same directory, there is a problem.

RPM solves this the best way it can. It performs two steps:

1. It renames the original �le to cdp-config.rpmorig.

2. It installs the new cdp-config �le that came with the package.

Continuing our example, if we look in /etc, we see that this is exactly what has happened:

ls -al /etc/cdp*

-rw-r--r-- 1 root root 119 Jun 23 16:00 /etc/cdp-config

-rw-rw-r-- 1 root root 56 Jun 14 21:44 /etc/cdp-config.rpmorig

#

This is the best possible solution to a tricky problem. The package is installed with a con�g
�le that is known to work. After all, the original �le may be for an older, incompatible
version of the software. However, the original �le is saved so that it can be studied by
the system administrator, who can decide whether the original �le should be put back into
service or not.

2.3 Two handy options

There are two options to rpm -i that work so well, and are so useful, you might think they
should be RPM's default behavior. They aren't, but using them only requires that you type
an extra two characters:

2.3.1 Getting a bit more feedback with -v

Even though rpm -i is doing many things, it's not very exciting, is it? When performing
installs, RPM is pretty quiet, unless something goes wrong. However, we can ask for a bit
more output by adding -v to the command:

20 Using RPM to Install Packages

rpm -iv eject-1.2-2.i386.rpm

Installing eject-1.2-2.i386.rpm

#

By adding -v, RPM displayed a simple status line. Using -v is a good idea, particularly if
you're going to use a single command to install more than one package:

rpm -iv *.rpm

Installing eject-1.2-2.i386.rpm

Installing iBCS-1.2-3.i386.rpm

Installing logrotate-1.0-1.i386.rpm

#

In this case, there were three .rpm �les in the directory. By using a simple wildcard, it's as
easy to install one package as it is to install one hundred!

2.3.2 -h: Perfect for the Impatient

Sometimes a package can be quite large. Other than watching the disk activity light ash,
there's no assurance that RPM is working, and if it is, how far along it is. If you add -h,
RPM will print �fty hash marks (\#") as the install proceeds:

rpm -ih eject-1.2-2.i386.rpm

##

#

Once all �fty hash marks are printed, the package is completely installed. Using -v with -h

results in a very nice display, particularly when installing more than one package:

rpm -ivh *.rpm

eject ##

iBCS ##

logrotate ##

#

2.4 Additional options to rpm -i

Normally rpm -i, perhaps with the -v and -h, is all you'll need. However, there may be
times when a basic install is not going to get the job done. Fortunately, RPM has a wealth
of install options to make the tough times a little easier. As with any other powerful tool,

2.4 Additional options to rpm -i 21

you should understand these options before putting them to use. Let's take a look at them:

2.4.1 Getting a lot more information with -vv

Sometimes it's necessary to have even more information than we can get with -v. By adding
another v, we can start to see more of RPM's inner workings:

rpm -ivv eject-1.2-2.i386.rpm

D: installing eject-1.2-2.i386.rpm

Installing eject-1.2-2.i386.rpm

D: package: eject-1.2-2 files test = 0

D: running preinstall script (if any)

D: setting file owners and groups by name (not id)

D: ///usr/bin/eject owned by root (0), group root (0) mode 755

D: ///usr/man/man1/eject.1 owned by root (0), group root (0) mode 644

D: running postinstall script (if any)

#

The lines starting with D: have been added by using -vv. The line ending with \files
test = 0", means that RPM is actually going to install the package. If the number were
non-zero, it would mean that the - -test option was present, and RPM would not actually
perform the installation. For more information on using - -test with rpm -i, see section
2.4.2.

Continuing with the above example, we see that RPM next executes a pre-install script (if
there is one), followed by the actual installation of the �les in the package. There is one line
for each �le being installed, and that line shows the �lename, ownership, group membership,
and permissions (or mode) applied to the �le. With larger packages, the output from -vv

can get quite lengthy! Finally, RPM runs a post-install script, if one exists for the package.
We'll be discussing pre- and post-install scripts in more detail in section 2.4.10 on page 31.

In the vast majority of cases, it will not be necessary to use -vv. It is normally used
by software engineers working on RPM itself, and the output can change without notice.
However, it's a handy way to gain insights into RPM's inner workings.

2.4.2 - -test: Perform Installation Tests Only

There are times when it's more appropriate to take it slow and not try to install a package
right away. RPM provides the - -test option for that. As the names implies, it performs all
the checks that RPM normally does during an install, but stops short of actually performing
the steps necessary to install the package:

rpm -i - -test eject-1.2-2.i386.rpm

#

22 Using RPM to Install Packages

Once again, there's not very much output. This is because the test succeeded; had there
been a problem, the output would have been a bit more interesting. In this example, there
are some problems:

rpm -i - -test rpm-2.0.11-1.i386.rpm

/bin/rpm conflicts with file from rpm-2.3-1

/usr/bin/gendiff conflicts with file from rpm-2.3-1

/usr/bin/rpm2cpio conflicts with file from rpm-2.3-1

/usr/bin/rpmconvert conflicts with file from rpm-2.3-1

/usr/man/man8/rpm.8 conflicts with file from rpm-2.3-1

error: rpm-2.0.11-1.i386.rpm cannot be installed

#

If you'll note the version numbers, we're trying to install an older version of RPM (2.0.11)
\on top of" a newer version(2.3). RPM faithfully reported the various �le conicts and
summarized with a message saying that the install would not have proceeded, even if - -test
had not been on the command line.

The - -test option will also catch dependency-related problems:

rpm -i - -test blather-7.9-1.i386.rpm

failed dependencies:

bother >= 3.1 is needed by blather-7.9-1

#

Here's a tip for all you script-writers out there: RPM will return a non-zero status if the
- -test option detects problems. . .

2.4.3 - -replacepkgs: Install the Package Even If Already Installed

The - -replacepkgs option is used to force RPM to install a package that it believes to be
installed already. This option is normally used if the installed package has been damaged
somehow and needs to be �xed up.

To see how the - -replacepkgs option works, let's �rst install some software:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

OK, now that we have cdp-0.33-2 installed, let's see what happens if we try to install the
same version \on top of" itself:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

2.4 Additional options to rpm -i 23

package cdp-0.33-2 is already installed

error: cdp-0.33-2.i386.rpm cannot be installed

#

That didn't go very well. Let's see what adding - -replacepkgs will do :

rpm -iv - -replacepkgs cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

Much better. The original package was replaced by a new copy of itself.

2.4.4 - -replacefiles: Install the Package Even If It Replaces An-
other Package's Files

While the - -replacepkgs option permitted a package to be installed \on top of" itself,
- -replacefiles is used to allow a package to overwrite �les belonging to a di�erent package.
Sounds strange? Let's go over it in a bit more detail.

One thing that sets RPM apart from many other package managers is that it keeps track
of all the �les it installs in a database. Each �le's database entry contains a variety of
information about the �le, including a means of summarizing the �le's contents.2 By using
these summaries, known as MD5 checksums, RPM can determine if a particular �le is going
to be replaced by a �le with the same name, but di�erent contents. Here's an example:

Package \A" installs a �le (we'll call it /bin/foo.bar). Once Package A is installed,
foo.bar resides happily in the /bin directory. In the RPM database, there is an entry
for /bin/foo.bar, including the �le's MD5 checksum.

However, there is a another package, \B". Package B also has a �le called foo.bar that it
wants to install in /bin. There can't be two �les in the same directory with the same name.
The �les are di�erent; their MD5 checksums do not match. What happens if Package B is
installed? Let's �nd out. Here, we've installed a package:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

OK, no problem there. But we have another package to install. In this case, it is a new
release of the cdp package. It should be noted that RPM's detection of �le conicts does
not depend on the two packages being related. It is strictly based on the name of the �le,
the directory in which it resides, and the �le's MD5 checksum. Here's what happens when
we try to install the package:

2We'll get more into this aspect of RPM in chapter 6 when we discuss rpm -V, speci�cally section 6.1 on
page 79

24 Using RPM to Install Packages

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

/usr/bin/cdp conflicts with file from cdp-0.33-2

error: cdp-0.33-3.i386.rpm cannot be installed

#

What's happening? The package cdp-0.33-2 has a �le, /usr/bin/cdp, that it installed.
Sure enough, there it is. Let's circle the size and creation date of the �le for future reference:

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root
�

�

�

�34460
�

�

�

�Feb 25 14:27 /usr/bin/cdp

#

The package we just tried to install, cdp-0.33-3 (note the di�erent release), also installs a
�le cdp in /usr/bin. Since there is a conict, that means that the two package's cdp �les
must be di�erent | their checksums don't match. Because of this, RPM won't let the second
package install. But with - -replacefiles, we can force RPM to let the /usr/bin/cdp

from cdp-0.33-3 replace the /usr/bin/cdp from cdp-0.33-2:

rpm -iv - -replacefiles cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

#

Taking a closer look at /usr/bin/cdp, we �nd that they certainly are di�erent, both in size
and creation date:

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root
�

�

�

�34444
�

�

�

�
Apr 24 22:37 /usr/bin/cdp

#

File conicts should be a relatively rare occurrence. They only happen when two packages
attempt to install �les with the same name but di�erent contents. There are two possible
reasons for this to happen:

� Installing a newer version of a package without erasing the older version. A newer
version of a package is a wonderful source of �le conicts against older versions |
the �lenames remain the same, but the contents change. We used it in our example
because it's an easy way to show what happens when there are �le conicts. However,
it is usually a bad idea when it comes to doing this as a way to upgrade packages.
RPM has a special option for this (rpm -U) that is discussed in chapter 4 on page 43.

� Installing two unrelated packages that each install a �le with the same name. This
may happen because of poor package design (hence the �le residing in more than one
package), or a lack of coordination between the people building the packages.

2.4 Additional options to rpm -i 25

- -replacefiles and Con�g Files

What happens if a conicting �le is a con�g �le that you've sweated over and worked on
until it's just right? Will issuing a - -replacefiles on a package with a conicting con�g
�le blow all your changes away?

No! RPM won't cook your goose.3 It will save any changes you've made, to a con�g �le
called file.rpmsave. Let's give it a try:

As system administrator, you want to make sure your new users have a rich environment
the �rst time they log in. So you've come up with a really nifty .bashrc �le that will be
executed whenever they log in. Knowing that everyone will enjoy your wonderful .bashrc
�le, you place it in /etc/skel. That way, every time a new account is created, your .bashrc
will be copied into the new user's login directory.

Not realizing that the .bashrc �le you modi�ed in /etc/skel is listed as a con�g �le in a
package called (strangely enough) etcskel, you decide to experiment with RPM using the
etcskel package. First you try to install it:

rpm -iv etcskel-1.0-100.i386.rpm

etcskel /etc/skel/.bashrc conflicts with file from etcskel-1.0-3

error: etcskel-1.0-100.i386.rpm cannot be installed

#

Hmmm. That didn't work. Wait a minute! I can add - -replacefiles to the command
and it should install just �ne:

rpm -iv --replacefiles etcskel-1.0-100.i386.rpm

Installing etcskel-1.0-100.i386.rpm

warning: /etc/skel/.bashrc saved as /etc/skel/.bashrc.rpmsave

#

Wait a minute. . . That's my customized .bashrc! Was it really saved?

ls -al /etc/skel/

total 8

-rwxr-xr-x 1 root root 186 Oct 12 1994 .Xclients

-rw-r--r-- 1 root root 1126 Aug 23 1995 .Xdefaults

-rw-r--r-- 1 root root 24 Jul 13 1994 .bash logout

-rw-r--r-- 1 root root 220 Aug 23 1995 .bash profile

-rw-r--r-- 1 root root 169 Jun 17 20:02 .bashrc

-rw-r--r-- 1 root root 159 Jun 17 20:46
�

�

�

�
.bashrc.rpmsave

drwxr-xr-x 2 root root 1024 May 13 13:18 .xfm

lrwxrwxrwx 1 root root 9 Jun 17 20:46 .xsession -> .Xclients

cat /etc/skel/.bashrc.rpmsave

3You'll have to do that yourself!

26 Using RPM to Install Packages

.bashrc

User specific aliases and functions

Modified by the sysadmin

uptime

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

#

Whew! You heave a sigh of relief, and study the new .bashrc to see if the changes need to
be integrated into your customized version.

- -replacefiles Can Mean Trouble Down the Road

While - -replacefiles can make today's di�cult install go away, it can mean big headaches
in the future. When the time comes for erasing the packages involved in a �le conict, bad
things can happen.

What bad things? Well, �les can be deleted. Here's how, in three easy steps:

1. Two packages are installed. When the second package is installed, there is a conict
with a �le installed by the �rst package. Therefore, the - -replacefiles option is
used to force RPM to replace the conicting �le with the one from the second package.

2. At some point in the future, the second package is erased.

3. The conicting �le is gone!

Let's look at an example. First, we install a new package. Next, we take a look at a �le it
installed, noting the size and creation date.

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root
�

�

�

�34460
�

�

�

�Feb 25 14:27 /usr/bin/cdp

#

Next, we try to install a newer release of the same package. It fails:

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

/usr/bin/cdp conflicts with file from cdp-0.33-2

error: cdp-0.33-3.i386.rpm cannot be installed

#

2.4 Additional options to rpm -i 27

So, we use - -replacefiles to convince the newer package to install. We note that the
newer package installed a �le on top of the �le originally installed:

rpm -iv - -replacefiles cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root 34444 Apr 24 22:37 /usr/bin/cdp

#

The original cdp �le, 34,460 bytes long, and dated February 25th, has been replaced with a
�le with the same name, but 34,444 bytes long from the 24th of April. The original �le is
long gone.

Next, we erased the package we just installed.4 Finally, we tried to �nd the �le:

rpm -e cdp-0.33-3

ls -al /usr/bin/cdp

ls: /usr/bin/cdp: No such file or directory

#

The �le is gone. Why is this? The reason is that /usr/bin/cdp from the �rst package was
replaced when the second package was installed using the - -replacefiles option. Then,
when the second package was erased, the /usr/bin/cdp �le was removed, since it belonged
to the second package. If the �rst package had been erased �rst, there would have been
no problem, since RPM would have realized that the �rst package's �le had already been
deleted, and would have left the �le in place.

The only problem with this state of a�airs is that the �rst package is still installed, except for
/usr/bin/cdp. So now there's a partially installed package on the system. What to do? Per-
haps it's time to exercise your new-found knowledge by issuing an rpm -i - -replacepkgs

command to �x up the �rst package. . .

2.4.5 - -nodeps: Do Not Check Dependencies Before Installing Pack-
age

One day it'll happen. You'll be installing a new package, when suddenly, the install bombs:

rpm -i blather-7.9-1.i386.rpm

failed dependencies:

bother >= 3.1 is needed by blather-7.9-1

#

What happened? The problem is that the package you're installing requires another package

4For more information on erasing packages with rpm -e, see chapter 3 on page 35.

28 Using RPM to Install Packages

to be installed in order for it to work properly. In our example, the blather package won't
work properly unless the bother package (and more speci�cally, bother version 3.1 or later)
is installed. Since our system doesn't have an appropriate version of bother installed at all,
RPM aborted the installation of blather.

Now, 99 times out of 100, this exactly the right thing for RPM to do. After all, if the
package doesn't have everything it needs to work properly, why try to install it? Well, as
with everything else in life, there are exceptions to the rule. And that is why there is a
- -nodeps option.

Adding the - -nodeps options to an install command directs RPM to ignore any dependency-
related problems and to complete the package installation. Going back to our example above,
let's add the - -nodeps option to the command line and see what happens:

rpm -i - -nodeps blather-7.9-1.i386.rpm

#

The package was installed without a peep. Whether it will work properly is another matter,
but it is installed. In general, it's not a good idea to use - -nodeps to get around dependency
problems. The package builders included the dependency requirements for a reason, and
it's best not to second-guess them.

2.4.6 - -force: The Big Hammer

Adding - -force to an install command is a way of saying \Install it anyway!" In essence, it
adds - -replacepkgs and - -replacefiles to the command. Like a big hammer, - -force
is an irresistible force5 that makes things happen. In fact, the only thing that will prevent
a - -force'ed install from proceeding is a dependency conict.

And like a big hammer, it pays to fully understand why you need to use - -force before
actually using it.

2.4.7 - -excludedocs: Do Not Install Documentation For This Pack-
age

RPM has a number of good features. One of them is the fact that RPM classi�es the �les
it installs into one of three categories:

1. Con�g �les.

2. Files containing documentation.

3. All other �les.

RPM uses the - -excludedocs option to prevent �les classi�ed as documentation from being
installed. In the following example, we know that the package contains documentation:

5No pun intended.

2.4 Additional options to rpm -i 29

speci�cally, the man page, /usr/man/man1/cdp.1. Let's see how - -excludedocs keeps it
from being installed:

rpm -iv --excludedocs cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls -al /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

#

The primary reason to use - -excludedocs is to save on disk space. The savings can
be sizeable. For example, on an RPM-installed Linux system, there can be over 5,000
documentation �les, using nearly 50 megabytes.

If you like, you can make - -excludedocs the default for all installs. To do this, simply add
the following line to /etc/rpmrc, .rpmrc in your login directory, or the �le speci�ed with
the - -rcfile (which is discussed on page 32) option:

excludedocs: 1

After that, every time an rpm -i command is run, it will not install any documentation
�les.6

2.4.8 - -includedocs: Install Documentation For This Package

As the name implies, - -includedocs directs RPM to install any �les marked as being docu-
mentation. This option is normally not required, unless the rpmrc �le entry \excludedocs:
1" is included in the referenced rpmrc �le. Here's an example. Note that in this example,
/etc/rpmrc contains \excludedocs: 1", which directs RPM not to install documentation
�les:

ls /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

#

Here we've checked to make sure that the cdp man page did not previously exist on the
system. Then after installing the cdp package, we �nd that the \excludedocs: 1" in
/etc/rpmrc did its job: the man page wasn't installed. Let's try it again, this time adding
the - -includedocs option:

ls /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

6For more information on rpmrc �les, refer to Appendix B on page 363.

30 Using RPM to Install Packages

rpm -iv --includedocs cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls /usr/man/man1/cdp.1

-rw-r--r-- 1 root root 4550 Apr 24 22:37 /usr/man/man1/cdp.1

#

The - -includedocs option overrode the rpmrc �le's \excludedocs: 1" entry, causing
RPM to install the documentation �le.

2.4.9 - -prefix <path> : Relocate the package to <path> , if possible

Some packages give the person installing them exibility in determining where on their
system they should be installed. These are known as relocatable packages. A relocatable
package di�ers from a package that cannot be relocated, in only one way | the de�nition of
a default pre�x. Because of this, it takes a bit of additional e�ort to determine if a package
is relocatable. But here's an RPM command that can be used to �nd out:7

rpm -qp --queryformat "%{defaultprefix\}\n" <packagefile>

Just replace <packagefile> with the name of the package �le you want to check out. If
the package is not relocatable, you'll only see the word (none). If, on the other hand, the
command displays a path, that means the package is relocatable. Unless speci�ed otherwise,
every �le in the package will be installed somewhere below the path speci�ed by the default
pre�x.

What if you want to specify otherwise? Easy: just use the - -prefix option. Let's give it
a try:

rpm -qp - -queryformat "%fdefaultprefixg\n" cdplayer-1.0-1.i386.rpm

/usr/local

rpm -i - -prefix /tmp/test cdplayer-1.0-1.i386.rpm

#

Here we've used our magic query command to determine that the cdplayer package is
relocatable. It normally installs below /usr/local, but we wanted to move it around. By
adding the - -prefix option, we were able to make the package install in /tmp/test. If
we take a look there, we'll see that RPM created all the necessary directories to hold the
package's �les:

ls -lR /tmp/test/

total 2

drwxr-xr-x 2 root root 1024 Dec 16 13:21 bin/

drwxr-xr-x 3 root root 1024 Dec 16 13:21 man/

7We discuss RPM's query commands in chapter 5.

2.4 Additional options to rpm -i 31

/tmp/test/bin:

total 41

-rwxr-xr-x 1 root root 40739 Oct 14 20:25 cdp*

lrwxrwxrwx 1 root root 17 Dec 16 13:21 cdplay -> /tmp/test/bin/cdp*

/tmp/test/man:

total 1

drwxr-xr-x 2 root root 1024 Dec 16 13:21 man1/

/tmp/test/man/man1:

total 5

-rwxr-xr-x 1 root root 4550 Oct 14 20:25 cdp.1*

#

2.4.10 - -noscripts: Do Not Execute Pre- and Post-install Scripts

Before we talk about the - -noscripts option, we need to cover a bit of background. In
section 2.4.1 on page 21, we saw some output from an install using the -vv option. As can
be seen, there are two lines that mention pre-install and post-install scripts. When some
packages are installed, they may require that certain programs be executed before, after, or
before and after the package's �les are copied to disk.8

The - -noscripts option prevents these scripts from being executed during an install. This
is a very dangerous thing to do! The - -noscripts option is really meant for package
builders to use during the development of their packages. By preventing the pre- and
post-install scripts from running, a package builder can keep a buggy package from bringing
down their development system. Once the bugs are found and eliminated, the - -noscripts
option is no longer necessary.

2.4.11 - -percent: Not Meant for Human Consumption

An option that will probably never be very popular is - -percent. This option is meant
to be used by programs that interact with the user, perhaps presenting a graphical user
interface for RPM. When the - -percent option is used, RPM displays a series of numbers.
Each number is a percentage that indicates how far along the install is. When the number
reaches 100%, the installation is complete.

rpm -i - -percent iBCS-1.2-3.i386.rpm

%f iBCS:1.2:3

%% 0.002140

%% 1.492386

%% 5.296632

8It's possible to use RPM's query command to see if a package has pre- or post-install scripts. See section
5.2.2 on page 66 for more information.

32 Using RPM to Install Packages

%% 9.310026

%% 15.271010

%% 26.217846

%% 31.216000

%% 100.000000

%% 100.000000

#

The list of percentages will vary depending on the number of �les in the package, but every
package ends at 100% when completely installed.

2.4.12 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc
File

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc

located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
defaults. Software developers and package builders will normally be the only people using
the - -rcfile option. For more information on rpmrc �les, see Appendix B.

2.4.13 - -root <path> : Use <path> As An Alternate Root

Adding - -root <path> to an install command forces RPM to assume that the directory
speci�ed by <path> is actually the \root" directory. The - -root option a�ects every
aspect of the install process, so pre- and post-install scripts are run with <path> as their
root directory (using chroot(2), if you must know). In addition, RPM expects its database
to reside in the directory speci�ed by the dbpath rpmrc �le entry, relative to <path> .9

Normally this option is only used during an initial system install, or when a system has
been booted o� a \rescue disk" and some packages need to be re-installed.

2.4.14 - -dbpath <path> : Use <path> To Find RPM Database

In order for RPM to do its handiwork, it needs access to an RPM database. Normally,
this database exists in the directory speci�ed by the rpmrc �le entry, dbpath. By default,
dbpath is set to /var/lib/rpm.

Although the dbpath entry can be modi�ed in the appropriate rpmrc �le, the - -dbpath

option is probably a better choice when the database path needs to be changed temporarily.
An example of a time the - -dbpath option would come in handy is when it's necessary
to examine an RPM database copied from another system. Granted, it's not a common
occurrence, but it's di�cult to handle any other way.

9For more information on rpmrc �le entries, see Appendix B.

2.4 Additional options to rpm -i 33

2.4.15 - -ftpport <port> : Use <port> In FTP-based Installs

Back in section 2.2.1 we showed how RPM can access package �les by the use of a URL.
We also mentioned that some systems may not use the standard FTP port. In those cases,
it's necessary to give RPM the proper port number to use. As we mentioned above, one
approach is to embed the port number in the URL itself.

Another approach is to use the - -ftpport option. RPM will access the desired port when
this option, along with the port number, is added to the command line. In cases where
the desired port seldom changes, it may be entered in an rpmrc �le by using the ftpport

entry.10

2.4.16 - -ftpproxy <host> : Use <host> As Proxy In FTP-based In-
stalls

Many companies and Internet Service Providers (ISPs) employ various methods to protect
their network connections against misuse. One of these methods is to use a system that will
process all FTP requests on behalf of the other systems on the company or ISP network.
By having a single computer act as a proxy for the other systems, it serves to protect the
other systems against any FTP-related misuse.

When RPM is employed on a network with an FTP proxy system, it will be necessary for
RPM to direct all its FTP requests to the FTP proxy. RPM will send its FTP requests to
the speci�ed proxy system when the - -ftpproxy option, along with the proxy hostname,
is added to the command line.

In cases where the proxy host seldom changes, it may be entered in an rpmrc �le by using
the ftpproxy entry.11

2.4.17 - -ignorearch: Do Not Verify Package Architecture

When a package �le is created, RPM speci�es the architecture, or type of computer hard-
ware, for which the package was created. This is a good thing, as the architecture is one of
the main factors in determining whether a package written for one computer is going to be
compatible with another computer.

When a package is installed, RPM uses the arch compat rpmrc entries in order to determine
what are normally considered compatible architectures. Unless you're porting RPM to a
new architecture, you shouldn't make any changes to these entries.12 While RPM attempts
to make the right decisions regarding package compatibility, there are times when it errs
on the side of conservatism. In those cases, it's necessary to override RPM's decision. The
- -ignorearch option is used in those cases. When added to the command line, RPM will
not perform any architecture-related checking.

Unless you really know what you're doing, you should never use - -ignorearch!

10The use of rpmrc �les is described in Appendix B
11The use of rpmrc �les is described in Appendix B
12If you are porting RPM, you'll �nd more on arch compat in section 19.3.1 on page 273.

34 Using RPM to Install Packages

2.4.18 - -ignoreos: Do Not Verify Package Operating System

When a package �le is created, RPM speci�es the operating system for which the package
was created. This is a good thing as the operating system is one of the main factors in
determining whether a package written for one computer is going to be compatible with
another computer.

When a package is installed, RPM uses the os compat rpmrc entries to determine what are
normally considered compatible operating systems. Unless you're porting RPM to a new
operating system, you shouldn't make any changes to these entries.13 While RPM attempts
to make the right decisions regarding package compatibility, there are times when it errs
on the side of conservatism. In those cases, it's necessary to override RPM's decision. The
- -ignoreos option is used in those cases. When added to the command line, RPM will not
perform any operating system-related checking.

Unless you really know what you're doing, you should never use - -ignoreos!

13If you are porting RPM, you'll �nd more on os compat in section 19.3.1 on page 273.

Chapter 3

Using RPM to Erase Packages

rpm -e (or - -erase) options pkg1 . . . pkgN

Parameters
pkg1 ... pkgN One or more installed packages

Erase|speci�c Options Page
- -test Perform erase tests only 37
- -noscripts Do not execute pre- and post-uninstall scripts 39
- -nodeps Do not check dependencies 38

General Options Page
-vv Display debugging information 36
- -root <path> Set alternate root to <path> 40
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 39
- -dbpath <path> Use <path> to �nd the RPM database 40

3.1 rpm -e | What Does it Do?

The rpm -e command (- -erase is equivalent) removes, or erases, one or more packages
from the system. RPM performs a series of steps whenever it erases a package:

� It checks the RPM database to make sure that no other packages depend on the
package being erased.

� It executes a pre-uninstall script (if one exists).

� It checks to see if any of the package's con�g �les have been modi�ed. If so, it saves
copies of them.

� It reviews the RPM database to �nd every �le listed as being part of the package, and
if they do not belong to another package, deletes them.

� It executes a post-uninstall script (if one exists).

36 Using RPM to Erase Packages

� It removes all traces of the package (and the �les belonging to it) from the RPM
database.

That's quite a bit of activity for a single command. No wonder RPM can be such a time-
saver!

3.2 Erasing a Package

The most basic erase command is:

rpm -e eject

#

In this case, the eject package was erased. There isn't much in the way of feedback, is
there? Could we get more if we add -v?

rpm -ev eject

#

Still nothing. However, there's another option that can be counted on to give a wealth of
information. Let's give it a try:

3.2.1 Getting More Information With -vv

By adding -vv to the command line, we can often get a better feel for what's going on
inside RPM. The -vv option was really meant for the RPM developers, and its output may
change, but it is a great way to gain insight into RPM's inner workings. Let's try it with
rpm -e:

rpm -evv eject

D: uninstalling record number 286040

D: running preuninstall script (if any)

D: removing files test = 0

D: /usr/man/man1/eject.1 - removing

D: /usr/bin/eject - removing

D: running postuninstall script (if any)

D: removing database entry

D: removing name index

D: removing group index

D: removing file index for /usr/bin/eject

D: removing file index for /usr/man/man1/eject.1

#

3.3 Additional Options 37

Although -v had no e�ect on RPM's output, -vv gave us a torrent of output. But what
does it tell us?

First, RPM displays the package's record number. The number is normally of use only to
people that work on RPM's database code.

Next, RPM executes a \pre-uninstall" script, if one exists. This script can execute any
commands required to remove the package before any �les are actually deleted.

The \files test = 0" line indicates that RPM is to actually erase the package. If the
number had been non-zero, RPM would only be performing a test of the package erasure.
This happens when the - -test option is used. Refer to section 3.3.1 on page 37 for more
information on the use of the - -test option with rpm -e.

The next two lines log the actual removal of the �les comprising the package. Packages with
many �les can result in a lot of output when using -vv!

Next, RPM executes a \post-uninstall" script, if one exists. Like the pre-uninstall script,
this script is used to perform any processing required to cleanly erase the package. Unlike
the pre-uninstall script, however, the post-uninstall script runs after all the package's �les
have been removed.

Finally, the last �ve lines show the process RPM uses to remove every trace of the package
from its database. From the messages, we can see that the database contains some per-
package data, followed by information on every �le installed by the package.

3.3 Additional Options

If you're interested in a complex command with lots of options, rpm -e is not the place to
look. There just aren't that many di�erent ways to erase a package! But there are a few
options you should know about.

3.3.1 - -test | Go Through the Process of Erasing the Package,
But Do Not Erase It

If you're a bit gun-shy about erasing a package, you can use the - -test option �rst to see
what rpm -e would do:

rpm -e - -test bother

removing these packages would break dependencies:

bother >= 3.1 is needed by blather-7.9-1

#

It's pretty easy to see that the blather package wouldn't work very well if bother were
erased. To be fair, however, RPM wouldn't have erased the package in this example unless
we used the - -nodeps option, which we'll discuss shortly.

However, if there are no problems erasing the package, you won't see very much:

38 Using RPM to Erase Packages

rpm -e - -test eject

#

We know, based on previous experience, that -v doesn't give us any additional output with
rpm -e. However, we do know that -vv works wonders. Let's see what it has to say:

rpm -evv --test eject

D: uninstalling record number 286040

D: running preuninstall script (if any)

D: would remove files test = 1

D: /usr/man/man1/eject.1 - would remove

D: /usr/bin/eject - would remove

D: running postuninstall script (if any)

D: would remove database entry

#

As you can see, the output is similar to that of a regular erase command using the -vv

option, with the following exceptions:

� The \would remove files test = 1" line ends with a non-zero number. This is
because - -test has been added. If the command hadn't included - -test, the number
would have been 0, and the package would have been erased.

� There is a line for each �le that RPM would have removed, each one ending with
\would remove" instead of \removing".

� There is only one line at the end, stating: \would remove database entry", versus
the multi-line output showing the cleanup of the RPM database during an actual erase.

By using - -test in conjunction with -vv, it's easy to see exactly what RPM would do
during an actual erase.

3.3.2 - -nodeps: Do Not Check Dependencies Before Erasing Pack-
age

It's likely that one day while erasing a package, you'll see something like this:

rpm -e bother

removing these packages would break dependencies:

bother >= 3.1 is needed by blather-7.9-1

#

What happened? The problem is that one or more of the packages installed on your system
require the package you're trying to erase. Without it, they won't work properly. In our

3.3 Additional Options 39

example, the blather package won't work properly unless the bother package (and more
speci�cally, bother version 3.1 or later) is installed. Since we're trying to erase bother,
RPM aborted the erasure.

Now, 99 times out of 100, this is exactly the right thing for RPM to do. After all, if the
package is needed by other packages, why try to erase it? As with everything else in life,
there are exceptions to the rule. And that is why there is a - -nodeps option.

Adding the - -nodeps options to an erase command directs RPM to ignore any dependency-
related problems, and to erase the package. Going back to our example above, let's add the
- -nodeps option to the command line and see what happens:

rpm -e - -nodeps bother

#

The package was erased without a peep. Whether the blather package will work properly is
another matter. In general, it's not a good idea to use - -nodeps to get around dependency
problems. The package builders included the dependency requirements for a reason, and
it's best not to second-guess them.

3.3.3 - -noscripts | Do Not Execute Pre- and Post-uninstall
Scripts

In section 3.2.1 on page 36, we used the -vv option to see what RPM was actually doing
when it erased a package. We noted that there were two scripts, a pre-uninstall and a
post-uninstall, that were used to execute commands required during the process of erasing
a package.

The - -noscripts option prevents these scripts from being executed during an erase. This is
a very dangerous thing to do! The - -noscripts option is really meant for package builders
to use during the development of their packages. By preventing the pre- and post-uninstall
scripts from running, a package builder can keep a buggy package from bringing down their
development system. Once the bugs are found and eliminated, there's very little need to
prevent these scripts from running; in fact, doing so can cause problems!

3.3.4 - -rcfile <rcfile> | Read <rcfile> For RPM Defaults

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc

located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
defaults. Software developers and package builders will normally be the only people using
the - -rcfile option. For more information on rpmrc �les, see Appendix B on page 363.

40 Using RPM to Erase Packages

3.3.5 - -root <path> | Use <path> As the Root

Adding - -root <path> to an install command forces RPM to assume that the directory
speci�ed by <path> is actually the \root" directory. The - -root option a�ects every
aspect of the install process, so pre- and post-install scripts are run with <path> as their
root directory (using chroot(2), if you must know). In addition, RPM expects its database
to reside in the directory speci�ed by the dbpath rpmrc �le entry, relative to <path> .1

Normally this option is only used during an initial system install, or when a system has
been booted o� a \rescue disk" and some packages need to be re-installed.

3.3.6 - -dbpath <path> : Use <path> To Find RPM Database

In order for RPM to do its handiwork, it needs access to an RPM database. Normally,
this database exists in the directory speci�ed by the rpmrc �le entry, dbpath. By default,
dbpath is set to /var/lib/rpm.

Although the dbpath entry can be modi�ed in the appropriate rpmrc �le, the - -dbpath

option is probably a better choice when the database path needs to be changed temporarily.
An example of a time the - -dbpath option would come in handy is when it's necessary
to examine an RPM database copied from another system. Granted, it's not a common
occurrence, but it's di�cult to handle any other way.

3.4 rpm -e and Con�g �les

If you've made changes to a con�guration �le that was originally installed by RPM, your
changes won't be lost if you erase the package. Say, for example, that we've made changes
to /etc/skel/.bashrc (a con�g �le), which was installed as part of the etcskel package.
Later, we remove etcskel:

rpm -e etcskel

#

But if we take a look in /etc/skel, look what's there:

ls -al

total 5

drwxr-xr-x 3 root root 1024 Jun 17 22:01 .

drwxr-xr-x 8 root root 2048 Jun 17 19:01 ..

-rw-r--r-- 1 root root 152 Jun 17 21:54
�

�

�

�
.bashrc.rpmsave

drwxr-xr-x 2 root root 1024 May 13 13:18 .xfm

#

1For more information on rpmrc �le entries, see Appendix B.

3.5 Watch Out! 41

Sure enough: .bashrc.rpmsave is a copy of your modi�ed .bashrc �le! Remember, how-
ever, that this feature only works with con�g �les. Not sure how to determine which �les
RPM thinks are con�g �les? Chapter 5, speci�cally, section 5.2.2 on page 61 will show you
how.

3.5 Watch Out!

RPM takes most of the work out of removing software from your system, and that's great.
As with everything else in life, however, there's a downside. RPM also makes it easy to erase
packages that are critical to your system's continued operation. Here are some examples of
packages not to erase:

� RPM: RPM will happily uninstall itself. No problem | you'll just re-install it with
rpm -i. . . Oops!

� Bash: The Bourne-again Shell may not be the shell you use, but certain parts of many
Linux systems (like the scripts executed during system startup and shutdown) use
/bin/sh, which is a symbolic link to /bin/bash. No /bin/bash, no /bin/sh. No
/bin/sh, no system!

In many cases, RPM's dependency processing will prevent inadvertent erasures from causing
massive problems. However, if you're not sure, use rpm -q to get more information about
the package you'd like to erase.2

2See chapter 5 on page 51 for more information on rpm -q.

42 Using RPM to Erase Packages

Chapter 4

Using RPM to Upgrade

Packages

rpm -U (or - -upgrade) options �le1.rpm . . . �leN.rpm

Parameters
file1.rpm ... fileN.rpm One or more RPM package �les (URLs OK)

Upgrade|speci�c Options Page
-h (or - -hash) Print hash marks (\#") during upgradez 20
- -oldpackage Permit \upgrading" to an older package 47
- -test Perform upgrade tests onlyz 21
- -excludedocs Do not install documentationz 28
- -includedocs Install documentationz 29
- -replacepkgs Replace a package with a new copy of itselfz 22
- -replacefiles Replace �les owned by another packagez 23
- -force Ignore package and �le conicts 48
- -percent Print percentages during upgradez 31
- -noscripts Do not execute pre- and post-install scripts 48
- -prefix <path> Relocate package to <path> if possiblez 30
- -ignorearch Do not verify package architecturez 33
- -ignoreos Do not verify package operating systemz 34
- -nodeps Do not check dependenciesz 27
- -ftpproxy <host> Use <host> as the FTP proxyz 33
- -ftpport <port> Use <port> as the FTP portz 33

General Options Page
-v Display additional informationz 19
-vv Display debugging informationz 21
- -root <path> Set alternate root to <path> z 32
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile>z 32
- -dbpath <path> Use <path> to �nd the RPM databasez 32

zThis option behaves identically to the same option used with rpm -i. Please see Chapter 2 for more
information on this option.

44 Using RPM to Upgrade Packages

4.1 rpm -U | What Does it Do?

If there was one RPM command that could win over friends, it would be RPM's upgrade
command. After all, anyone who has ever tried to install a newer version of any software
knows what a traumatic experience it can be. With RPM, though, this process is reduced
to a single command: rpm -U. The rpm -U command (- -upgrade is equivalent) performs
two distinct operations:

1. Installs the desired package.

2. Erases all older versions of the package, if any exist.

If it sounds to you like rpm -U is nothing more than an rpm -i command (see chapter 2)
followed by the appropriate number of rpm -e commands, (see chapter 3) you'd be exactly
right. In fact, we'll be referring back to those chapters as we discuss rpm -U, so if you
haven't skimmed those chapters yet, you might want to do that now.

While some people might think it's a \cheap shot" to claim that RPM performs an upgrade
when in fact it's just doing the equivalent of a couple of other commands, in fact, it's a very
smart thing to do. By carefully crafting RPM's package installation and erasure commands
to do the work required during an upgrade, it makes RPM more tolerant of misuse by
preserving important �les even if an upgrade isn't being done.

If RPM had been written with a very \smart" upgrade command, and the install and erase
commands couldn't handle upgrade situations at all, installing a package could overwrite a
modi�ed con�guration �le. Likewise, erasing a package would also mean that con�g �les
could be erased. Not a good situation! However, RPM's approach to upgrades makes it
possible to handle even the most tricky situation | having multiple versions of a package
install simultaneously.

4.1.1 Con�g �le magic

While the rpm -i and rpm -e commands each do their part to keep con�g �les straight, it
is with rpm -U that the full power of RPM's con�g �le handling shows through. There are
no less than six di�erent scenarios that RPM takes into account when handling con�g �les.

In order to make the appropriate decisions, RPM needs information. The information
used to decide how to handle con�g �les is a set of three large numbers known as MD5

checksums. An MD5 checksum is produced when a �le is used as the input to a complex
series of mathematical operations. The resulting checksum has a unique property, in that any
change to the �le's contents will result in a change to the checksum of that �le.1 Therefore,
MD5 checksums are a powerful tool for quickly determining whether two di�erent �les have
the same contents or not.

In the previous paragraph, we stated that RPM uses three di�erent MD5 checksums to
determine what should be done with a con�g �le. The three checksums are:

1Actually, there's a one in 2128 chance a change will go undetected, but for all practical purposes, it's as
close to perfect as we can get.

4.1 rpm -U | What Does it Do? 45

1. The MD5 checksum of the �le when it was originally installed. We'll call this the
original �le.

2. The MD5 checksum of the �le as it exists at upgrade time. We'll call this the current
�le.

3. The MD5 checksum of the corresponding �le in the new package. We'll call this the
new �le.

Let's take a look at the various combinations of checksums, see what RPM will do because
of them, and discuss why. In the following examples, we'll use the letters X, Y, and Z in
place of lengthy MD5 checksums.

Original �le = X, Current �le = X, New �le = X { In this case, the �le originally
installed was never modi�ed.2 The �le in the new version of the package is identical to the
�le on disk.

In this case, RPM installs the new �le, overwriting the original. You may be wondering
why go to the trouble of installing the new �le if it's just the same as the existing one. The
reason is that aspects of the �le other than its name and contents might have changed. The
�le's ownership, for example, might be di�erent in the new version.

Original �le = X, Current �le = X, New �le = Y { The original �le has not been
modi�ed, but the �le in the new package is di�erent. Perhaps the di�erence represents a
bug-�x, or a new feature. It makes no di�erence to RPM.

In this case, RPM installs the new �le, overwriting the original. This makes sense. If it
didn't, RPM would never permit newer, modi�ed versions of software to be installed! The
original �le is not saved, since it had not been changed. A lack of changes here means that
no site-speci�c modi�cations were made to the �le.

Original �le = X, Current �le = Y, New �le = X { Here we have a �le that was
changed at some point. However, the new �le is identical to the existing �le prior to the
local modi�cations.

In this case, RPM takes the viewpoint that since the original �le and the new �le are
identical, the modi�cations made to the original version must still be valid for the new
version. It leaves the existing, modi�ed �le in place.

Original �le = X, Current �le = Y, New �le = Y { At some point the original
�le was modi�ed, and those modi�cations happen to make the �le identical to the new �le.
Perhaps the modi�cation was made to �x a security problem, and the new version of the
�le has the same �x applied to it.

2Or, as some sticklers for detail may note, it may have been modi�ed, and subsequently those modi�ca-
tions were undone.

46 Using RPM to Upgrade Packages

In this case, RPM installs the new version, overwriting the modi�ed original. The same
philosophy used in the �rst scenario applies here { although the �le has not changed, perhaps
some other aspect of the �le has, so the new version is installed.

Original �le = X, Current �le = Y, New �le = Z { Here the original �le was
modi�ed at some point. The new �le is di�erent from both the original and the modi�ed
versions of the original �le.

RPM is not able to analyze the contents of the �les, and determine what is going on. In this
instance, it takes the best possible approach. The new �le is known to work properly with
the rest of the software in the new package | at least the people building the new package
should have insured that it does. The modi�ed original �le is an unknown: it might work
with the new package, it might not. So RPM installs the new �le.

BUT. . . The existing �le was de�nitely modi�ed. Someone made an e�ort to change the �le,
for some reason. Perhaps the information contained in the �le is still of use. Therefore,
RPM saves the modi�ed �le, naming it file.rpmsave, and prints a warning, so the user
knows what happened:

warning: /etc/skel/.bashrc saved as /etc/skel/.bashrc.rpmsave

These �ve scenarios cover just about every possible circumstance, save one. The missing
scenario?

Original �le = none, Current �le = ??, New �le = ?? { While RPM doesn't use
checksums in this particular case, we'll describe it in those terms, for the sake of consistency.
In this instance, RPM had not installed the �le originally, so there is no original checksum.

Because the �le had not originally been installed as part of a package, there is no way
for RPM to determine if the �le currently in place had been modi�ed. Therefore, the
checksums for the current �le and the new �le are irrelevant; they cannot be used to clear
up the mystery.

When this happens, RPM renames the �le to file.rpmorig, prints a warning, and installs
the new �le. This way, any modi�cations contained in the original �le are saved. The system
administrator can review the di�erences between the original and the newly installed �les
and determine what action should be taken.

As you can see, in the majority of cases RPM will automatically take the proper course of
action when performing an upgrade. It is only when con�g �les have been modi�ed and are
to be overwritten, that RPM leaves any post-upgrade work for the system administrator.
Even in those cases, many times the modi�ed �les are not worth saving and can be deleted.

4.2 Upgrading a Package 47

4.2 Upgrading a Package

The most basic version of the rpm -U command is simply \rpm -U", followed by the name
of a .rpm package �le:

rpm -U eject-1.2-2.i386.rpm

#

Here, RPM performed all the steps necessary to upgrade the eject-1.2-2 package, faster
than could have been done by hand. As in RPM's install command, Uniform Resource
Locators, or URLs, can also be used to specify the package �le.3

4.2.1 rpm -U's Dirty Little Secret

Well, in the example above, we didn't tell the whole story. There was no older version of
the eject package installed. Yes, it's true | rpm -U works just �ne as a replacement for
the normal install command rpm -i.

This is another, more concrete example of the strength of RPM's method of performing up-
grades. Since RPM's install command is smart enough to handle upgrades, RPM's upgrade
command is really just another way to specify an install. Some people never even bother
to use RPM's install command; they always use rpm -U. Maybe the \-U" should stand for,
\Uh, do the right thing". . .

4.3 They're Nearly Identical. . .

Given the fact that rpm -U can be used as a replacement to rpm -i, it follows that most
of the options available for rpm -U are identical to those used with rpm -i. Therefore, to
keep the duplication to a minimum, we'll discuss only those options that are unique to rpm

-U, or that behave di�erently from the same option when used with rpm -i. The table on
page 43 at the start of this chapter shows all valid options to RPM's upgrade command,
and indicates which are identical to those used with rpm -i.

4.3.1 - -oldpackage: Upgrade To An Older Version

This option might be used a bit more by people that like to stay on the \bleeding edge" of
new versions of software, but eventually, everyone will probably need to use it. Usually, the
situation plays out like this:

� You hear about some new software that sounds pretty nifty, so you download the .rpm
�le and install it.

3For more information on RPM's use of URLs, please see section 2.2.1 on page 17.

48 Using RPM to Upgrade Packages

� The software is great ! It does everything you ask for, and more. You end up using it
every day for the next few months.

� You hear that a new version of your favorite software is available. You waste no time
in getting the package. You upgrade the software by using rpm -U. No problem!

� Fingers arched in anticipation, you launch the new version. Your computer's screen
goes blank!

Looks like a bug in the new version. Now what do you do? Hmmm. Maybe you can just
\upgrade" to the older version. Let's try to go back to release 2 of cdp-0.33 from release
3:

rpm -Uv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

package cdp-0.33-3 (which is newer) is already installed

error: cdp-0.33-2.i386.rpm cannot be installed

#

That didn't work very well. At least it told us just what the problem was | we were trying
to upgrade to an older version of a package that is already installed. Fortunately, there's a
special option for just this situation: - -oldpackage. Let's give it a try:

rpm -Uv - -oldpackage cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

By using the - -oldpackage option, release 3 of cdp-0.33 is history, and has been replaced
by release 2.

4.3.2 - -force: The Big Hammer

Adding - -force to an upgrade command is a way of saying \Upgrade it anyway!" In
essence, it adds - -replacepkgs, - -replacefiles, and - -oldpackage to the command.
Like a big hammer, - -force is an irresistible force4 that makes things happen. In fact,
the only thing that will prevent a - -force'ed upgrade from proceeding is a dependency
conict.

And like a big hammer, it pays to fully understand why you need to use - -force before
actually using it.

4.3.3 - -noscripts: Do Not Execute Install and Uninstall Scripts

The - -noscripts option prevents a package's pre- and post-install scripts from being ex-
ecuted. This is no di�erent than the option's behavior when used with RPM's install com-

4Pun intended.

4.3 They're Nearly Identical. . . 49

mand. However, there is an additional point to consider when the option is used during an
upgrade. The following example uses specially-built packages that display messages when
their scripts are executed by RPM:

rpm -i bother-2.7-1.i386.rpm

This is the bother 2.7 preinstall script

This is the bother 2.7 postinstall script

#

In this case, a package has been installed. As expected, its scripts are executed. Next, let's
upgrade this package:

rpm -U bother-3.5-1.i386.rpm

This is the bother 3.5 preinstall script

This is the bother 3.5 postinstall script

This is the bother 2.7 preuninstall script

This is the bother 2.7 postuninstall script

#

This is a textbook example of the sequence of events during an upgrade. The new version
of the package is installed (as shown by the pre- and post-install scripts being executed).
Finally, the previous version of the package is removed (showing the pre- and post-uninstall
scripts being executed).

There are really no surprises there | it worked just the way it was meant to. This time,
let's use the - -noscripts option when the time comes to perform the upgrade:

rpm -i bother-2.7-1.i386.rpm

This is the bother 2.7 preinstall script

This is the bother 2.7 postinstall script

Again, the �rst package is installed, and its scripts are executed. Now let's try the upgrade
using the - -noscripts option:

rpm -U - -noscripts bother-3.5-1.i386.rpm

This is the bother 2.7 preuninstall script

This is the bother 2.7 postuninstall script

#

The di�erence here is that the - -noscripts option prevented the new package's scripts
from executing. The scripts from the package being erased were still executed.

50 Using RPM to Upgrade Packages

Chapter 5

Getting Information About

Packages

rpm -q (or - -query) options

Package Selection Options Page
pkg1 ... pkgN Query installed package(s) 52
-p <file>(or ``-'') Query package �le <file> (URLs OK) 56
-f <file> Query package owning <file> 54
-a Query all installed packages 54
- -whatprovides <x> Query packages providing capability <x> 58
-g <group> Query packages belonging to group <group> 57
- -whatrequires <x> Query packages requiring capability <x> 58

Information Selection Options Page
<null> Display full package label 52
-i Display summary package information 59
-l Display list of �les in package 60
-c Display list of con�guration �les 61
-d Display list of documentation �les 62
-s Display list of �les in package, with state 62
- -scripts Display install, uninstall, verify scripts 66
- -queryformat (or - -qf) Display queried data in custom format 67
- -dump Display all veri�able information for each �le 65
- -provides Display capabilities package provides 63
- -requires (or -R) Display capabilities package requires 64

General Options Page
-v Display additional information 61
-vv Display debugging information 74
- -root <path> Set alternate root to <path> 74
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 75
- -dbpath <path> Use <path> to �nd the RPM database 75

52 Getting Information About Packages

5.1 rpm -q | What does it do?

One of the nice things about using RPM is that the packages you manage don't end up
going into some kind of black hole. Nothing would be worse than to install, upgrade, and
erase several di�erent packages and not have a clue as to what's on your system. In fact,
RPM's query function can help you get out of sticky situations like:

� You're poking around your system, and you come across a �le that you just can't
identify. Where did it come from?

� Your friend sends you a package �le, and you have no idea what the package does,
what it installs, or where it originally came from.

� You know that you installed XFree86 a couple months ago, but you don't know what
version, and you can't �nd any documentation on it.

The list could go on, but you get the idea. The rpm -q command is what you need. If
you're the kind of person that doesn't like to have more options than you know what to
do with, rpm -q might look imposing. But fear not. Once you have a handle on the basic
structure of an RPM query, it'll be a piece of cake.

5.2 The Parts of an RPM Query

It becomes easy to construct a query command once you understand the individual parts.
First is the -q (You can also use - -query, if you like). After all, you need to tell RPM what
function to perform, right? The rest of a query command consists of two distinct parts:
package selection (or what packages you'd like to query), and information selection (or what
information you'd like to see). Let's take a look at package selection �rst:

5.2.1 Query Commands, Part One: Package Selection

The �rst thing you'll need to decide when issuing an RPM query is what package (or
packages) you'd like to query. RPM has several ways to specify packages, so you have quite
an assortment to choose from.

The Package Label

In earlier chapters, we discussed RPM's package label, a string that uniquely identi�es every
installed package. Every label contains three pieces of information:

1. The name of the packaged software.

2. The version of the packaged software.

3. The package's release number.

5.2 The Parts of an RPM Query 53

When issuing a query command using package labels, you must always include the package
name. You can also include the version and even the release, if you like. The only restrictions
are that each part of the package label speci�ed must be complete, and that if any parts of
the package label are missing, all parts to the right must be omitted as well. This second
restriction is just a long way of saying that if you specify the release, you must also specify
the version as well. Let's look at a few examples.

Say, for instance, you've recently installed a new version of the C libraries, but you can't
remember the version number:

rpm -q libc

libc-5.2.18-1

#

In this type of query, RPM returns the complete package label for all installed packages
that match the given information. In the example above, if version 5.2.17 of the C libraries
was also installed, its package label would have been displayed, too.

In this example, we've included the version as well as the package name:

rpm -q rpm-2.3

rpm-2.3-1

#

Note, however, that RPM is a bit picky about specifying package names. Here are some
queries for the C library that won't work:

rpm -q LibC

package LibC is not installed

#

rpm -q lib

package lib is not installed

#

rpm -q "lib*"

package lib* is not installed

#

rpm -q libc-5

package libc-5 is not installed

#

rpm -q libc-5.2.1

package libc-5.2.1 is not installed

#

54 Getting Information About Packages

As you can see, RPM is case sensitive about package names and cannot match partial names,
version numbers, or release numbers. Nor can it use the wildcard characters we've come to
know and love. As we've seen, however, RPM can perform the query when more than one
�eld of the package label is present. In the above case, rpm -q libc-5.2.18, or even rpm

-q libc-5.2.18-1 would have found the package, libc-5.2.18-1.

Querying based on package labels may seem a bit restrictive. After all, you need to know
the exact name of a package in order to perform a query on it. But there are other ways of
specifying packages. . .

-a | Query All Installed Packages

Want lots of information fast? Using the -a option, you can query every package installed
on your system. For example:

rpm -qa

ElectricFence-2.0.5-2

ImageMagick-3.7-2

...

tetex-xtexsh-0.3.3-8

lout-3.06-4

#

(On a system installed using RPM, the number of packages can easily number 200 or more;
we've deleted most of the output.)

The -a option can produce mountains of output, which makes it a prime candidate for
piping through the many Linux/UNIX commands available. One of the prime candidates
would be a pager such as more, so that the list of installed packages could be viewed a
screenful at a time.

Another handy command to pipe rpm -qa's output through is grep. In fact, using grep,
it's possible to get around RPM's lack of built-in wildcard processing:

rpm -qa | grep -i sysv

SysVinit-2.64-2

#

In this example, we were able to �nd the SysVinit package, even though we didn't have
the complete package name, or capitalization.

-f <file> | Query the Package Owning <file>

How many times have you found a program sitting on your system and wondered \what
does it do?" Well, if the program was installed by RPM as part of a package, it's easy to

5.2 The Parts of an RPM Query 55

�nd out. Simply use the -f option. Example: You �nd a strange program called ls in /bin

(Okay, it is a contrived example). Wonder what package installed it? Simple!

rpm -qf /bin/ls

fileutils-3.12-3

#

If you happen to point RPM at a �le it didn't install, you'll get a message similar to the
following:

rpm -qf .cshrc

file /home/ed/.cshrc is not owned by any package

#

A Tricky Detail It's possible that you'll get the \not owned by any package" message in
error. Here's an example of how it can happen:

rpm -qf /usr/X11/bin/xterm

file /usr/X11/bin/xterm is not owned by any package

#

As you can see, we're trying to �nd out what package the xterm program is part of. The
�rst example failed, which might lead one to believe that xterm really isn't owned by any
package.

However, let's look at a directory listing:

ls -lF /usr

...

lrwxrwxrwx 1 root root 5 May 13 12:46 X11 -> X11R6/

drwxrwxr-x 7 root root 1024 Mar 21 00:21 X11R6/

...

#

(We've truncated the list; normally /usr is quite a bit more crowded than this.)

The key here is the line ending with \X11 -> X11R6/". This is known as a \symbolic link".
It's a way of referring to a �le (here, a directory �le) by another name. In this case, if
we used the path /usr/X11, or /usr/X11R6, it shouldn't make a di�erence. It certainly
doesn't make a di�erence to programs that simply want access to the �le. But it does make
a di�erence to RPM, because RPM doesn't use the �lename to access the �le. RPM uses
the �lename as a key into its database. It would be very di�cult, if not impossible, to keep
track of all the symlinks on a system and try every possible path to a �le during a query.

56 Getting Information About Packages

What to do? There are two options:

1. Make sure you always specify a path free of symlinks. This can be pretty tough,
though. An alternative approach is to use namei to track down symlinks:

namei /usr/X11/bin/xterm

f: /usr/X11/bin/xterm

d /

d usr

l X11 -> X11R6

d X11R6

d bin

- xterm

#

It's pretty easy to see the X11 to X11R6 symlink. Using this approach you can enter
the non-symlinked path and get the desired results:

rpm -qf /usr/X11R6/bin/xterm

XFree86-3.1.2-5

#

2. Change your directory to the one holding the �le you want to query. Even if you use
a symlinked path to get there, querying the �le should then work as you'd expect:

cd /usr/X11/bin

rpm -qf xterm

XFree86-3.1.2-5

#

So if you get a \not owned by any package" error, and you think it may not be true, try
one of the approaches above.

-p <file> | Query a Speci�c RPM Package File

Up to now, every means of specifying a package to an RPM query focused on packages
that had already been installed. While it's certainly very useful to be able to dredge up
information about packages that are already on your system, what about packages that
haven't yet been installed? The -p option can do that for you.

One situation where this capability would help, occurs when the name of a package �le has
been changed. Since the name of the �le containing a package has nothing to do with the
name of the package (though, by tradition it's nice to name package �les consistently), we
can use this option to �nd out exactly what package a �le contains:

5.2 The Parts of an RPM Query 57

rpm -qp foo.bar

rpm-2.3-1

#

With one command RPM gives you the answer.1

The -p option can also use Uniform Resource Locators to specify package �les. See section
2.2.1 on page 17 for more information on using URLs.

There's one last trick up -p's sleeve | it can also perform a query by reading a package
from standard input. Here's an example:

cat bother-3.5-1.i386.rpm | rpm -qp -

bother-3.5-1

#

We piped the output of cat into RPM. The dash at the end of the command line directs
RPM to read the package from standard input.

-g <group> : Query Packages Belonging To Group <group>

When a package is built, the package builder must classify the package, grouping it with
other packages that perform similar functions. RPM gives you the ability to query installed
packages based on their groups. For example, there is a group known as Base. This group
consists of packages that provide low-level structure for a Linux distribution. Let's see what
installed packages make up the Base group:

rpm -qg Base

setup-1.5-1

pamconfig-0.50-5

filesystem-1.2-1

crontabs-1.3-1

dev-2.3-1

etcskel-1.1-1

initscripts-2.73-1

mailcap-1.0-3

pam-0.50-17

passwd-0.50-2

redhat-release-4.0-1

rootfiles-1.3-1

termcap-9.12.6-5

#

1On most Linux systems, the file command can be used to obtain similar information. See Appendix A
for details on how to add this capability to your system's file command.

58 Getting Information About Packages

One thing to keep in mind is that group speci�cations are case-sensitive. Issuing the com-
mand rpm -qg base won't produce any output.

- -whatprovides <x> : Query the Packages That Provide Capability <x>

RPM provides extensive support for dependencies between packages. The basic mechanism
used is that a package may require what another package provides. The thing that is required
and provided can be a shared library's soname. It can also be a character string chosen
by the package builder. In any case, it's important to be able to display which packages
provide a given capability.

This is just what the - -whatprovides option does. When the option, followed by a ca-
pability, is added to a query command, RPM will select those packages that provide the
capability. Here's an example:

rpm -q - -whatprovides module-info

kernel-2.0.18-5

#

In this case, the only package that provides the module-info capability is kernel-2.0.18-5.

- -whatrequires <x> : Query the Packages That Require capability <x>

The - -whatrequires option is the logical complement to the - -whatprovides option de-
scribed above. It is used to display which packages require the speci�ed capability. Expand-
ing on the example we started with - -whatprovides, let's see which packages require the
module-info capability:

rpm -q - -whatrequires module-info

kernelcfg-0.3-2

#

There's only one package that requires module-info | kernelcfg-0.3-2.

5.2.2 Query Commands, Part Two: Information Selection

After specifying the package (or packages) you wish to query, you'll need to �gure out just
what information you'd like RPM to retrieve. As we've seen, by default, RPM only returns
the complete package label. But there's much more to a package than that. Here, we'll
explore every information selection option available to us.

5.2 The Parts of an RPM Query 59

-i | Display Package Information

Adding -i to rpm -q tells RPM to give you some information on the package or packages
you've selected. For the sake of clarity, let's take a look at what it gives you and explain
what you're looking at:

rpm -qi rpm

Name : rpm Distribution: Red Hat Linux Vanderbilt

Version : 2.3 Vendor: Red Hat Software

Release : 1 Build Date: Tue Dec 24 09:07:59 1996

Install date: Thu Dec 26 23:01:51 1996 Build Host: porky.redhat.com

Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm

Size : 631157

Summary : Red Hat Package Manager

Description :

RPM is a powerful package manager, which can be used to build, install,

query, verify, update, and uninstall individual software packages. A

package consists of an archive of files, and package information, including

name, version, and description.

#

There's quite a bit of information here, so let's go through it entry by entry:

� Name| The name of the package you queried. Usually (but not always) it bears some
resemblance to the name of the underlying software.

� Version| The version number of the software, as speci�ed by the software's original
creator.

� Release | The number of times a package consisting of this software has been pack-
aged. If the version number should change, the release number should start over again
at \1".

As you've probably noticed, these three pieces of information comprise the package label
we've come to know and love. Continuing, we have:

� Install date | This is the time when the package was installed on your system.

� Group | In our example, this looks suspiciously like a path. If you went searching
madly for a directory tree by that name, you'd come up dry | it isn't a set of
directories at all.

When a package builder starts to create a new package, they enter a list of words
that describe the software. The list, which goes from least speci�c to most speci�c,
attempts to categorize the software in a concise manner. The primary use for the
group is to enable graphically oriented package managers based on RPM to present
packages grouped by function. Red Hat Linux's glint command does this.

60 Getting Information About Packages

� Size | This is the size (in bytes) of every �le in this package. It might make your
decision to erase an unused package easier if you see six or more digits here.

� Summary | This is a concise description of the packaged software.

� Description| This is a verbose description of the packaged software. Some descrip-
tions might be more, well, descriptive than others, but hopefully it will be enough to
clue you in as to the software's role in the greater scheme of things.

� Distribution | The word \distribution" is really not the best name for this �eld.
\Product" might be a better choice. In any case, this is the name of the product this
package is a part of.

� Vendor | The organization responsible for building this package.

� Build Date | The time the package was created.

� Build Host | The name of the computer system that built the package.2

� Source RPM | The process of building a package results in two �les:

1. The package �le used to install the packaged software. This is sometimes called
the binary package.

2. The package �le containing the source code and other �les used to create the
binary package �le. This is known as the source RPM package �le. This is the
�lename that is displayed in this �eld.

Unless you want to make changes to the software, you probably won't need to worry
about source packages. But if you do, stick around, because the second part of this
book is for you. . .

-l | Display the Package's File List

Adding -l to rpm -q tells RPM to display the list of �les that are installed by the speci�ed
package or packages. If you've used ls before, you won't be surprised by RPM's �le list.

Here's a look at one of the smaller packages on Red Hat Linux | adduser:

rpm -ql adduser

/usr/sbin/adduser

#

The adduser package consists of only one �le, so there's only one �lename displayed.

2Note to software packagers: Choose your build machine names wisely! A silly or o�ensive name might
be embarrassing. . .

5.2 The Parts of an RPM Query 61

-v | Display Additional Information In some cases, the -v option can be added to
a query command for additional information. The -l option we've been discussing is an
example of just such a case. Note how the -v option adds verbosity:

rpm -qlv adduser

-rwxr-xr-x- root root 3894 Feb 25 13:45 /usr/sbin/adduser

#

Looks a lot like the output from ls, doesn't it? Looks can be deceiving. Everything you see
here is straight from RPM's database. However, the format is identical to ls, so it's more
easily understood. If this is Greek to you, consult the ls man page.

-c | Display the Package's List of Con�guration Files

When -c is added to an rpm -q command, RPM will display the con�guration �les that are
part of the speci�ed package or packages. As mentioned earlier in the book, con�g �les are
important, because they control the behavior of the packaged software. Let's take a look at
the list of con�g �les for XFree86:

rpm -qc XFree86

/etc/X11/fs/config

/etc/X11/twm/system.twmrc

/etc/X11/xdm/GiveConsole

/etc/X11/xdm/TakeConsole

/etc/X11/xdm/Xaccess

/etc/X11/xdm/Xresources

/etc/X11/xdm/Xservers

/etc/X11/xdm/Xsession

/etc/X11/xdm/Xsetup 0

/etc/X11/xdm/chooser

/etc/X11/xdm/xdm-config

/etc/X11/xinit/xinitrc

/etc/X11/xsm/system.xsm

/usr/X11R6/lib/X11/XF86Config

#

These are the �les you'd want to look at �rst if you were looking to customize XFree86 for
your particular needs. Just like -l, we can also add v for more information:

rpm -qcv XFree86
-r--r--r--- root root 423 Mar 21 00:17 /etc/X11/fs/config

...

lrwxrwxrwx- root root 30 Mar 21 00:29 /usr/X11R6/lib/X11/XF86Config

-> ../../../../etc/X11/XF86Config

#

62 Getting Information About Packages

(Note that last �le: RPM will display symbolic links, as well.)

-d | Display a List of the Package's Documentation

When -d is added to a query, we get a list of all �les containing documentation for the
named package or packages. This is a great way to get up to speed when you're having
problems with unfamiliar software. As with -c and -l, you'll see either a simple list of
�lenames, or (if you've added -v) a more comprehensive list. Here's an example that might
look daunting at �rst, but really isn't:

rpm -qdcf /sbin/dump

/etc/dumpdates

/usr/doc/dump-0.3-5

/usr/doc/dump-0.3-5/CHANGES

/usr/doc/dump-0.3-5/COPYRIGHT

/usr/doc/dump-0.3-5/INSTALL

/usr/doc/dump-0.3-5/KNOWNBUGS

/usr/doc/dump-0.3-5/THANKS

/usr/doc/dump-0.3-5/dump-0.3.announce

/usr/doc/dump-0.3-5/dump.lsm

/usr/doc/dump-0.3-5/linux-1.2.x.patch

/usr/man/man8/dump.8

/usr/man/man8/rdump.8

/usr/man/man8/restore.8

/usr/man/man8/rmt.8

/usr/man/man8/rrestore.8

#

Let's take that alphabet soup set of options, one letter at a time:

� q | Perform a query.

� d | List all documentation �les.

� c | List all con�g �les.

� f | Query the package that owns the speci�ed �le (/sbin/dump, in this case).

The list of �les represents all the documentation and con�g �les that apply to the package
owning /sbin/dump.

-s | Display the State of Each File in the Package

Unlike the past three sections, which dealt with a list of �les of one type or another, adding
-s to a query will list the state of the �les that comprise one or more packages. I can hear
you out there; you're saying, \What is the state of a �le?" For every �le that RPM installs,
there is an associated state. There are four possible states:

5.2 The Parts of an RPM Query 63

1. normal | A �le in the normal state has not been modi�ed by installing another
package on the system.

2. replaced | Files in the replaced state have been modi�ed by installing another
package on the system.

3. not installed | A �le is classi�ed as not installed when it, er, isn't installed!
This state is normally seen only if the package was partially installed. An example of
a partially installed package would be one that was installed with the - -excludedocs
option. Using this option, no documentation �les would be installed. The RPM
database would still contain entries for these missing �les, but their state would be
not installed.

4. net shared | The net shared state is used to support client systems that NFS
mount portions of their �lesystems from a server. Since the server most likely exports
�lesystems to more than one client, if a client erased a package that contained �les on
a shared �lesystem, other client systems would have incompletely installed packages.
The net shared state is used to alert RPM to the fact that a �le is on a shared
�lesystem and should not be erased. Files will be in the net shared state when two
things happen:

(a) The netsharedpath rpmrc �le entry has been changed from its default (null)
value.3

(b) The �le is to be installed in a directory within a net shared path.

Here's an example showing how �le states appear:

rpm -qs adduser

normal /usr/sbin/adduser

#

(That normal at the start of the line is the state, followed by the �le name)

The �le state is one of the tools RPM uses to determine the most appropriate action to take
when packages are installed or erased.

Now would the average person need to check the states of �les? Not really. But if there
should be problems, this kind of information can help get things back on track.

- -provides: Display Capabilities Provided by the Package

By adding - -provides to a query command, we can see the capabilities provided by one
or more packages. If the package doesn't provide any capabilities, the - -provides option
produces no output:

rpm -q - -provides rpm

3For more information on rpmrc �le entries, please refer to Appendix B on page 363.

64 Getting Information About Packages

#

However, if a package does provide capabilities, they will be displayed:

rpm -q - -provides foonly

index

#

It's important to remember that capabilities are not �lenames. In the above example, the
foonly package contains no �le called index; it's just a character string the package builder
chose. This is no di�erent from the following example:

rpm -q - -provides libc

libm.so.5

libc.so.5

#

While there might be symlinks by those names in /lib, capabilities are a property of the
package, not a �le contained in the package!

- -requires: Display Capabilities Required by the Package

The - -requires option (-R is equivalent) is the logical complement to the - -provides

option. It displays the capabilities required by the speci�ed package(s). If a package has no
requirements, there's no output:

rpm -q - -requires adduser

#

In cases where there are requirements, they are displayed as follows:

rpm -q - -requires rpm

libz.so.1

libdb.so.2

libc.so.5

#

It's also possible that you'll come across something like this:

rpm -q - -requires blather

bother >= 3.1

#

5.2 The Parts of an RPM Query 65

Packages may also be built to require another package. This requirement can also include
speci�c versions. In the example above, the bother package is required by blather; specif-
ically, a version of bother greater than or equal to 3.1.

Here's something worth understanding. Let's say we decide to track down the bother

that blather says it requires. If we use RPM's query capabilities, we could use the
- -whatprovides package selection option to try to �nd it:

rpm -q - -whatprovides bother

no package provides bother

#

No dice. This might lead you to believe that the blather package has a problem. The
moral of this story is that, when trying to �nd out what package ful�lls another package's
requirements, it's a good idea to also try a simple query using the requirement as a package
name. Continuing our example above, let's see if there's a package called bother:

rpm -q bother

bother-3.5-1

#

Bingo! However, if we see what capabilities the bother package provides, we come up dry:

rpm -q - -provides bother

#

The reason for the lack of output is that all packages, by default, \provide" their package
name (and version).

- -dump: Display All Veri�able Information for Each File

The - -dump option is used to display every piece of information RPM has on one or more
�les listed in its database. The information is listed in a very concise fashion. Since the
- -dump option displays �le-related information, the list of �les must be chosen by using the
-l, -c, or -d options (or some combination thereof):

rpm -ql --dump adduser

/usr/sbin/adduser 4442 841083888 ca5fa53dc74952aa5b5e3a5fa5d8904b 0100755

root root 0 0 0 X

#

What does all this stu� mean? Let's go through it, item-by-item:

66 Getting Information About Packages

� The /usr/sbin/adduser is simple: it's the name of the �le being dump'ed.

� 4442 is the size of the �le, in bytes.

� How about 841083888? It's the time the �le was last modi�ed, in seconds past the
Unix zero date of January 1, 1970.

� The ca5fa53dc74952aa5b5e3a5fa5d8904b is the MD5 checksum of the �le's contents,
all 128 bits of it.

� If you guessed 0100755 was the �le's mode, you'd be right.

� The �rst root represents the �le's owner.

� The second root is the �le's group.

� We'll take the next part (0 0) in one chunk. The �rst zero shows whether the �le is
a con�g �le. If zero, as in this case, then the �le is not a con�g �le. The next zero
shows whether the �le is documentation. Again, since there is a zero here, this �le
isn't documentation, either.

� The �nal 0 represents the �le's major and minor numbers. These are set only for
device special �les. Otherwise, it will be zero.

� If the �le were a symlink, the spot taken by the X would contain a path pointing to
the linked �le.

Normally, the - -dump option is used by people that want to extract the �le-related infor-
mation from RPM and process it somehow.

- -scripts | Show Scripts Associated With a Package

If you add - -scripts (that's two dashes) to a query, you get to see a little bit more of
RPM's underlying magic:

rpm -q - -scripts XFree86

preinstall script:

(none)

postinstall script:

/sbin/ldconfig

/sbin/pamconfig --add - -service=xdm - -password=none - -sesslist=none

preuninstall script:

(none)

postuninstall script:

/sbin/ldconfig

5.2 The Parts of an RPM Query 67

if ["$1" = 0] ; then

/sbin/pamconfig - -remove - -service=xdm - -password=none - -sesslist=none

fi

verify script:

(none)

#

In this particular case, the XFree86 package has two scripts: one labeled postinstall, and
one labeled postuninstall. As you might imagine, the postinstall script is executed just
after the package's �les have been installed; the postuninstall script is executed just after
the package's �les have been erased.

Based on the labels in this example, you'd probably imagine that a package can have as
many as �ve di�erent scripts. You'd be right:

1. The preinstall script, which is executed just before the package's �les are installed.

2. The postinstall script, which is executed just after the package's �les are installed.

3. The preuninstall script, which is executed just before the package's �les are removed.

4. The postuninstall script, which is executed just after the package's �les are removed.

5. And �nally, the verify script. While it's easy to �gure out the other scripts' functions
based on their name, what does a script called verify do? Well, we haven't gotten to
it yet, but packages can also be veri�ed for proper installation. This script is used
during veri�cation.4

Is this something you'll need very often? As in the case of displaying �le states, not really.
But when you need it, you really need it!

- -queryformat - Construct a Custom Query Response

OK, say you're still not satis�ed. You'd like some additional information, or you think a
di�erent format would be easier on the eyes. Maybe you want to take some information on
the packages you've installed and run it through a script for some specialized processing.
You can do it, using the - -queryformat option. In fact, if you look back at the output of
the -i option, RPM was using - -queryformat internally. Here's how it works:

On the RPM command line, include - -queryformat. Right after that, enter a format
string, enclosed in single quotes \'".

The format string can consist of a number of di�erent components:

� Literal text, including escape sequences.

4For more information on package veri�cation, please see section 6.1 on page 79.

68 Getting Information About Packages

� Tags, with optional �eld width, formatting, and iteration information.

� Array Iterators.

Let's look at each of these components.

Literal text Any part of a format string that is not associated with tags or array iterators
will be treated as literal text. Literal text is just that: It's text that is printed just as it
appears in the format string. In fact, a format string can consist of nothing but literal text,
although the output wouldn't tell us much about the packages being queried. Let's give the
- -queryformat option a try, using a format string with nothing but literal text:

rpm -q - -queryformat 'This is a test!' rpm

This is a test!#

The RPM command might look a little unusual, but if you take out the - -queryformat

option, along with its format string, you'll see this is just an ordinary query of the rpm

package. When the - -queryformat option is present, RPM will use the text immediately
following the option as a format string. In our case, the format string is 'This is a test!'.
The single quotes are required. Otherwise, it's likely your shell will complain about some
of the characters contained in the average format string.

The output of this command appears on the second line. As we can see, the literal text
from the format string was printed exactly as it was entered.

Carriage Control Escape Sequences Wait a minute. What is that # doing at the end
of the output? Well, that's our shell prompt. You see, we didn't direct RPM to move to a
new line after producing the output, so the shell prompt ended up being tacked to the end
of our output.

Is there a way to �x that? Yes, there is. We need to use an escape sequence. An escape
sequence is a sequence of characters that starts with a backslash (\). Escape sequences add
carriage control information to a format string. The following escape sequences can be used:

� \a | Produces a bell or similar alert.

� \b | Backspaces one character.

� \f | Outputs a form-feed character.

� \n | Outputs a newline character sequence.

� \r | Outputs a carriage return character.

� \t | Causes a horizontal tab.

� \v | Causes a vertical tab.

� \\ | Displays a backslash character.

5.2 The Parts of an RPM Query 69

Based on this list, it seems that a \n escape sequence at the end of the format string will
put our shell prompt on the next line:

rpm -q -queryformat 'This is a test!\n' rpm

This is a test!

#

Much better. . .

Tags The most important parts of a format string are the tags. Each tag speci�es what
information is to be displayed and can optionally include �eld-width, as well as justi�cation
and data formatting instructions.5 But for now, let's look at the basic tag. In fact, let's
look at three | the tags that print the package name, version, and release.

Strangely enough, these tags are called NAME, VERSION, and RELEASE. In order to be used in
a format string, the tag names must be enclosed in curly braces and preceded by a percent
sign. Let's give it a try:

rpm -q - -queryformat '%fNAMEg%fVERSIONg%fRELEASEg\n' rpm

rpm2.31

#

Let's add a dash between the tags and see if that makes the output a little easier to read:

rpm -q - -queryformat '%fNAMEg-%fVERSIONg-%fRELEASEg\n' rpm

rpm-2.3-1

#

Now our format string outputs standard package labels.

Field Width and Justi�cation Sometimes it's desirable to allocate �elds of a particular
size for a tag. This is done by putting the desired �eld width between the tag's leading
percent sign, and the opening curly brace. Using our package-label-producing format string,
let's allocate a 20-character �eld for the version:

rpm -q - -queryformat '%fNAMEg-%20fVERSIONg-%fRELEASEg\n' rpm

rpm- 2.3-1

#

The result is a �eld of 20 characters: 17 spaces, followed by the three characters that make
up the version.

5RPM uses printf to do - -queryformat formatting. Therefore, you can use any of the printf format
modi�ers discussed in the printf(3) man page.

70 Getting Information About Packages

In this case, the version �eld is right justi�ed; that is, the data is printed at the far right of
the output �eld. We can left justify the �eld by preceding the �eld width speci�cation with
a dash:

rpm -q - -queryformat '%fNAMEg-%-20fVERSIONg-%fRELEASEg\n' rpm

rpm-2.3 -1

#

Now the version is printed at the far left of the output �eld. You might be wondering what
would happen if the �eld width speci�cation didn't leave enough room for the data being
printed. The �eld width speci�cation can be considered the minimum width the �eld will
take. If the data being printed is wider, the �eld will expand to accommodate the data.

Modi�ers | Making Data More Readable While RPM does its best to appropriately
display the data from a - queryformat, there are times when you'll need to lend a helping
hand. Here's an example. Say we want to display the name of each installed package,
followed by the time the package was installed. Looking through the available tags, we see
INSTALLTIME. Great! Looks like this will be simple:

rpm -qa - -queryformat '%fNAMEg was installed on %fINSTALLTIMEg\n'
setup was installed on 845414601

pamconfig was installed on 845414602

filesystem was installed on 845414607

...

rpm was installed on 851659311

pgp was installed on 846027549

#

Well, that's a lot of output, but not very useful. What are those numbers? RPM didn't lie {
they're the time the packages were installed. The problem is, the times are being displayed
in their numeric form used internally by the operating system, and humans like to see the
day, month, year, and so on.

Fortunately, there's a modi�er for just this situation. The name of the modi�er is :date,
and it follows the tag name. Let's try our example again, this time using :date:

rpm -qa - -queryformat '%fNAMEg was installed on %fINSTALLTIME:dateg\n'
setup was installed on Tue Oct 15 17:23:21 1996

pamconfig was installed on Tue Oct 15 17:23:22 1996

filesystem was installed on Tue Oct 15 17:23:27 1996

...

rpm was installed on Thu Dec 26 23:01:51 1996

pgp was installed on Tue Oct 22 19:39:09 1996

#

5.2 The Parts of an RPM Query 71

That sure is a lot easier to understand, isn't it?

Here's a list of the available modi�ers:

� The :date modi�er displays dates in human-readable form. It transforms 846027549
into Tue Oct 22 19:39:09 1996.

� The :perms modi�er displays �le permissions in an easy-to-read format. It changes
-32275 to -rwxr-xr-x-.

� The :depflags modi�er displays the version comparison ags used in dependency
processing, in human-readable form. It turns 12 into >=.

� The :fflags modi�er displays a c if the �le has been marked as being a con�guration
�le, a d if the �le has been marked as being a documentation �le, and blank otherwise.
Thus, 2 becomes d.

Array Iterators Until now, we've been using tags that represent single data items. There
is, for example, only one package name or installation date for each package. However, there
are other tags that can represent many di�erent pieces of data. One such tag is FILENAMES,
which can be used to display the names of every �le contained in a package.

Let's put together a format string that will display the package name, followed by the name
of every �le that package contains. We'll try it on the adduser package �rst, since it contains
only one �le:

rpm -q - -queryformat '%fNAMEg: %fFILENAMESg\n' adduser

adduser: /usr/sbin/adduser

#

Hey, not bad | got it on the �rst try. Now let's try it on a package with more than one
�le:

rpm -q - -queryformat '%fNAMEg: %fFILENAMESg\n' etcskel

etcskel: (array)

#

Hmmm. What went wrong? It worked before. . .Well, it worked before because the adduser
package contained only one �le. The FILENAMES tag points to an array of names, so when
there is more than one �le in a package, there's a problem.

But there is a solution. It's called an iterator. An iterator can step through each entry in
an array, producing output as it goes. Iterators are created when square braces enclose one
or more tags and literal text. Since we want to iterate through the FILENAMES array, let's
enclose that tag in the iterator:

rpm -q - -queryformat '%fNAMEg: [%fFILENAMESg]\n' etcskel

72 Getting Information About Packages

etcskel: /etc/skel/etc/skel/.Xclients/etc/skel/.Xdefaults/etc/skel/.ba

#

There was more output | it went right o� the screen in one long line. The problem? We
didn't include a newline escape sequence inside the iterator. Let's try it again:

rpm -q - -queryformat '%fNAMEg: [%fFILENAMESg\n]' etcskel

etcskel: /etc/skel

/etc/skel/.Xclients

/etc/skel/.Xdefaults

/etc/skel/.bash logout

/etc/skel/.bash profile

/etc/skel/.bashrc

/etc/skel/.xsession

#

That's more like it. If we wanted, we could put another �le-related tag inside the iterator.
If we included the FILESIZES tag, we'd be able to see the name of each �le, as well as how
big it was:

rpm -q - -queryformat '%fNAMEg: [%fFILENAMESg (%fFILESIZESg bytes)\n]'

> etcskel

etcskel: /etc/skel (1024 bytes)

/etc/skel/.Xclients (551 bytes)

/etc/skel/.Xdefaults (3785 bytes)

/etc/skel/.bash logout (24 bytes)

/etc/skel/.bash profile (220 bytes)

/etc/skel/.bashrc (124 bytes)

/etc/skel/.xsession (9 bytes)

#

That's pretty nice. But it would be even nicer if the package name appeared on each line,
along with the �lename and size. Maybe if we put the NAME tag inside the iterator:

rpm -q - -queryformat '[%fNAMEg: %fFILENAMESg (%fFILESIZESg bytes)\n]'

> etcskel

etcskel: /etc/skel(parallel array size mismatch)#

The error message says it all. The FILENAMES and FILESIZES arrays are the same size. The
NAME tag isn't even an array. Of course the sizes don't match!

Iterating Single-Entry Tags If a tag only has one piece of data, it's possible to put it
in an iterator and have its one piece of data displayed with every iteration. This is done by

5.2 The Parts of an RPM Query 73

preceding the tag name with an equal sign. Let's try it out on our current example:

rpm -q - -queryformat '[%f=NAMEg: %fFILENAMESg (%fFILESIZESg bytes)\n]'

> etcskel

etcskel: /etc/skel (1024 bytes)

etcskel: /etc/skel/.Xclients (551 bytes)

etcskel: /etc/skel/.Xdefaults (3785 bytes)

etcskel: /etc/skel/.bash logout (24 bytes)

etcskel: /etc/skel/.bash profile (220 bytes)

etcskel: /etc/skel/.bashrc (124 bytes)

etcskel: /etc/skel/.xsession (9 bytes)

#

That's about all there is to format strings. Now, if RPM's standard output doesn't give you
what you want, you have no reason to complain. Just - -queryformat it!

In Case You Were Wondering. . . What's that? You say you don't know what tags
are available? You can use RPM's - -querytags option. When used as the only option
(ie, rpm - -querytags), it produces a list of available tags. It should be noted that RPM
displays the complete tag name. For instance, RPMTAG ARCH is the complete name, yet you'll
only need to use ARCH in your format string. Here's a partial example of the - -querytags
option in action:

rpm - -querytags

RPMTAG NAME

RPMTAG VERSION

RPMTAG RELEASE

...

RPMTAG VERIFYSCRIPT

#

Be forewarned: the full list is quite lengthy. At the time this book was written, there were
over 70 tags! You'll notice that each tag is printed in uppercase, and is preceded with
RPMTAG . If we were to use that last tag, RPMTAG VERIFYSCRIPT, in a format string, it could
be speci�ed in any of the following ways:

%{RPMTAG_VERIFYSCRIPT}

%{RPMTAG_VerifyScript}

%{RPMTAG_VeRiFyScRiPt}

%{VERIFYSCRIPT}

74 Getting Information About Packages

%{VerifyScript}

%{VeRiFyScRiPt}

The only hard-and-fast rule regarding tags is that if you include the RPMTAG pre�x, it must

be all uppercase. The fourth example above shows the traditional way of specifying a tag
| pre�x omitted, all uppercase. The choice, however, is yours.

One other thing to keep in mind is that not every package will have every type of tagged
information available. In cases where the requested information is not available, RPM will
display (none) or (unknown). There are also a few tags that, for one reason or another,
will not produce useful output when using in a format string. For a comprehensive list of
queryformat tags, please see Appendix D on page 385.

5.2.3 Getting a lot more information with -vv

Sometimes it's necessary to have even more information than we can get with -v. By adding
another v, we can start to see more of RPM's inner workings:

rpm -qvv rpm

D: opening database in //var/lib/rpm/

D: querying record number 2341208

rpm-2.3-1

#

The lines starting with D: have been added by using -vv. We can see where the RPM
database is located and what record number contains information on the rpm-2.3-1 package.
Following that is the usual output.

In the vast majority of cases, it will not be necessary to use -vv. It is normally used
by software engineers working on RPM itself, and the output can change without notice.
However, it's a handy way to gain insights into RPM's inner workings.

5.2.4 - -root <path> : Use <path> As An Alternate Root

Adding - -root <path> to a query command forces RPM to assume that the directory
speci�ed by <path> is actually the \root" directory. In addition, RPM expects its database
to reside in the directory speci�ed by the dbpath rpmrc �le entry, relative to <path> .6

Normally this option is only used during an initial system install, or when a system has been
booted o� a \rescue disk", and some packages need to be re-installed in order to restore
normal operation.

6For more information on rpmrc �le entries, see Appendix B.

5.3 A Few Handy Queries 75

5.2.5 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc File

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc,
located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
options. Software developer and package builders will be the people using - -rcfile. For
more information on rpmrc �les, see Appendix B.

5.2.6 - -dbpath <path> : Use <path> To Find RPM Database

In order for RPM to do its handiwork, it needs access to an RPM database. Normally,
this database exists in the directory speci�ed by the rpmrc �le entry, dbpath. By default,
dbpath is set to /var/lib/rpm.

Although the dbpath entry can be modi�ed in the appropriate rpmrc �le, the - -dbpath

option is probably a better choice when the database path needs to be changed temporarily.
An example of a time the - -dbpath option would come in handy is when it's necessary
to examine an RPM database copied from another system. Granted, it's not a common
occurrence, but it's di�cult to handle any other way.

5.3 A Few Handy Queries

Below are some examples of situations you might �nd yourself in, and ways you can use
RPM to get the information you need. Keep in mind that these are just examples. Don't
be afraid to experiment!

5.3.1 Finding Con�g Files Based on a Program Name

You're setting up a new system, and you'd like to implement some system-wide aliases for
people using the Bourne Again SHell, bash. The problem is you just can't remember the
name of the system-wide initialization �le used by bash, or where it resides:

rpm -qcf /bin/bash

/etc/bashrc

#

Rather than spending time trying to hunt down the �le, RPM �nds it for you in seconds.

5.3.2 Learning More About an Uninstalled Package

Practically any option can be combined with -qp to extract information from a .rpm �le.
Let's say you have an unknown .rpm �le, and you'd like to know a bit more before installing

76 Getting Information About Packages

it:

rpm -qpil foo.bar
Name : rpm Distribution: Red Hat Linux Vanderbilt

Version : 2.3 Vendor: Red Hat Software

Release : 1 Build Date: Tue Dec 24 09:07:59 1996

Install date: (none) Build Host: porky.redhat.com

Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm

Size : 631157

Summary : Red Hat Package Manager

Description :

RPM is a powerful package manager, which can be used to build, install,

query, verify, update, and uninstall individual software packages. A

package consists of an archive of files, and package information,

including name, version, and description.

/bin/rpm

/usr/bin/find-provides

/usr/bin/find-requires

/usr/bin/gendiff

/usr/bin/rpm2cpio

/usr/doc/rpm-2.3-1

...

/usr/src/redhat/SOURCES

/usr/src/redhat/SPECS

/usr/src/redhat/SRPMS

#

By displaying the package information, we know that we have a package �le containing RPM
version 2.3. We can then peruse the �le list, and see exactly what it would install before
installing it.

5.3.3 Finding Documentation for a Speci�c Package

Picking on bash some more, you realize that your knowledge of the software is lacking.
You'd like to see when it was installed on your system, and what documentation is available
for it:

rpm -qid bash
Name :bash Distribution: Red Hat Linux (Picasso)

Version :1.14.6 Vendor: Red Hat Software

Release :2 Build Date: Sun Feb 25 13:59:26 1996

Install date:Mon May 13 12:47:22 1996 Build Host: porky.redhat.com

Group :Shells Source RPM: bash-1.14.6-2.src.rpm

Size :486557

Description :GNU Bourne Again Shell (bash)

/usr/doc/bash-1.14.6-2

5.3 A Few Handy Queries 77

/usr/doc/bash-1.14.6-2/NEWS

/usr/doc/bash-1.14.6-2/README

/usr/doc/bash-1.14.6-2/RELEASE

/usr/info/bash.info.gz

/usr/man/man1/bash.1

#

You never realized that there could be so much documentation for a shell!

5.3.4 Finding Similar Packages

Looking at bash's information, we see that it belongs to the group \Shells". You're not sure
what other shell packages are installed on your system. If you can �nd other packages in
the \Shells" group, you'll have found the other installed shells:

rpm -qa - -queryformat '%10fNAMEg %20fGROUPg\n' | grep -i shells
ash Shells

bash Shells

csh Shells

mc Shells

tcsh Shells

Now you can query each of these packages, and learn more about them, too.7

5.3.5 Finding Recently Installed Packages, Part I

You remember installing a new package a few days ago. All you know for certain is that the
package installed a new command in the /bin directory. Let's try to �nd the package:

find /bin -type f -mtime -14 | rpm -qF

rpm-2.3-1

#

Looks like RPM version 2.3 was installed sometime in the last two weeks.

5.3.6 Finding Recently Installed Packages, Part II

Another way to see which packages were recently installed is to use the - -queryformat

option:

rpm -qa - -queryformat\

7Did you see this example and say to yourself, \Hey, they could've used the -g option to query for that
group directly"? If you did, you've been paying attention. This is a more general way of searching the RPM
database for information: we just happened to search by group in this example.

78 Getting Information About Packages

> '%finstalltimeg %fnameg-%fversiong-%freleaseg %finstalltime:dateg\n'\
> | sort -nr +1 | sed -e 's/^[^]* //'

rpm-devel-2.3-1 Thu Dec 26 23:02:05 1996

rpm-2.3-1 Thu Dec 26 23:01:51 1996

pgp-2.6.3usa-2 Tue Oct 22 19:39:09 1996

...

pamconfig-0.50-5 Tue Oct 15 17:23:22 1996

setup-1.5-1 Tue Oct 15 17:23:21 1996

#

By having RPM include the installation time in numeric form, it was simple to sort the
packages and then use sed to remove the user-unfriendly numeric time.

5.3.7 Finding the Largest Installed Packages

Let's say that you're running low on disk space, and you'd like to see what packages you
have installed, along with the amount of space each package takes up. You'd also like to see
the largest packages �rst, so you can get back as much disk space as possible:

rpm -qa - -queryformat\

> '%fnameg-%fversiong-%freleaseg %fsizeg\n'\
> | sort -nr +1

kernel-source-2.0.18-5 20608472

tetex-0.3.4-3 19757371

emacs-el-19.34-1 12259914

... rootfiles-1.3-1 3494

mkinitrd-1.0-1 1898

redhat-release-4.0-1 22

#

If you don't build custom kernels, or use TEX, it's easy to see how much space could be
reclaimed by removing those packages.

Chapter 6

Using RPM to Verify Installed

Packages

rpm -V (or - -verify, or -y) options

Package Selection Options Page
pkg1 ... pkgN Verify named package(s) 84
-p <file> Verify against package �le <file> 86
-f <file> Verify package owning <file> 85
-a Verify all installed packages 85
-g <group> Verify packages belonging to group <group> 86

Verify|speci�c Options Page
- -noscripts Do not execute veri�cation script 87
- -nodeps Do not verify dependencies 86
- -nofiles Do not verify �le attributes 88

General Options Page
-v Display additional information 88
-vv Display debugging information 89
- -root <path> Set alternate root to <path> 90
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 90
- -dbpath <path> Use <path> to �nd the RPM database 90

6.1 rpm -V | What Does it Do?

From time to time, it's necessary to make sure that everything on your system is \OK".
Are you sure the packages you've installed are still con�gured properly? Have there been
any changes made that you don't know about? Did you mistakenly start a recursive delete
in /usr and now have to assess the damage?

RPM can help. It can alert you to changes made to any of the �les installed by RPM. Also,
if a package requires capabilities provided by another package, it can make sure the other

80 Using RPM to Verify Installed Packages

package is installed, too.

The command rpm -V (The options -y and - -verify are equivalent) veri�es an installed
package. Before we see how this is done, let's take a step back and look at the big picture.

Every time a package is installed, upgraded, or erased, the changes are logged in RPM's
database. It's necessary for RPM to keep track of this information; otherwise it wouldn't
be able to perform these operations correctly. You can think of the RPM database (and the
disk space it consumes) as being the \price of admission" for the easy package management
that RPM provides.1

The RPM database reects the con�guration of the system on which it resides. When RPM
accesses the database to see how �les should be manipulated during an install, upgrade, or
erase, it is using the database as a mirror of the system's con�guration.

However, we can also use the system con�guration as a mirror of the RPM database. What
does this \backward" view give us? What purpose would be served?

The purpose would be to see if the system con�guration accurately reects the contents of
the RPM database. If the system con�guration doesn't match the database, then we can
reach one of two conclusions:

1. The RPM database has become corrupt. The system con�guration is unchanged.

2. The RPM database is intact. The system con�guration has changed.

While it would be foolish to state that an RPM database has never become corrupt, it is a
su�ciently rare occurrence that the second conclusion is much more likely. So RPM gives
us a powerful veri�cation tool, essentially for free.

6.1.1 What Does it Verify?

It would be handy if RPM did nothing more than verify that every �le installed by a package
actually exists on your system. In reality, RPM does much more. It makes sure that if a
package depends on other packages to provide certain capabilities, the necessary packages
are, in fact, installed. If the package builder created one, RPM will also run a special
veri�cation script that can verify aspects of the package's installation that RPM cannot.

Finally, every �le installed by RPM is examined. No less than nine di�erent attributes of
each �le can be checked. Here is the list of attributes:

� Owner

� Group

� Mode

� MD5 Checksum

1Actually, the price is fairly low. For a completely RPM-based Linux distribution, it would be unusual
to have a database over 5MB in size.

6.1 rpm -V | What Does it Do? 81

� Size

� Major Number

� Minor Number

� Symbolic Link String

� Modi�cation Time

Let's take a look at each of these attributes and why they are good things to check:

File Ownership

Most operating systems today keep track of each �le's creator. This is done primarily for
resource accounting. Linux and UNIX also use �le ownership to help determine access rights
to the �le. In addition, some �les, when executed by a user, can temporarily change the
user's ID, normally to a more privileged ID. Therefore, any change of �le ownership may
have far reaching e�ects on data security and system availability.

File Group

In a similar manner to �le ownership, a \group" speci�cation is attached to each �le. Pri-
marily used for determining access rights, a �le's group speci�cation can also become a
user's group ID, should that user execute the �le's contents. Therefore, any changes in a
�le's group speci�cation are important, and should be monitored.

File Mode

Encompassing the �le's \permissions", the mode is a set of bits that speci�es permitted
access for the �le's owner, group members, and everyone else. Even more important are
two additional bits that determine whether a user's group or user ID should be changed if
they execute the program contained in the �le. Since these little bombshells can let any
user become root for the duration of the program, it pays to be extra careful with a �le's
permissions.

MD5 Checksum

The MD5 checksum of a �le is simply a 128-bit number that is mathematically derived from
the contents of the �le. The MD5 algorithm was designed by Ron Rivest, the \R" in the
popular RSA public-key encryption algorithm. The \MD" in \MD5" stands for Message

Digest, which is a pretty accurate description of what it does.

Unlike literary digests, an MD5 checksum conveys no information about the contents of the
original �le. However, it possesses one unique trait:

82 Using RPM to Verify Installed Packages

� Any change to the �le, no matter how small, results in a change to the MD5 checksum.2

RPM creates MD5 checksums of all �les it manipulates, and stores them in its database.
For all intents and purposes, if one of these �les is changed, the MD5 checksum will change,
and RPM will detect it.

File Size

As if the use of MD5 isn't enough, RPM also keeps track of �le sizes. A di�erence of even
one byte more or less will not go unnoticed.

Major Number

Device character and block �les possess a major number. The major number is used to
communicate information to the device driver associated with the special �le. For instance,
under Linux the special �les for SCSI disk drives should have a major number of 8, while
the major number for an IDE disk drive's special �le would be 3. As you can imagine, any
change to a �le's major number can have disastrous e�ects, and is tracked by RPM.

Minor Number

A �le's minor number is similar in concept to the major number, but conveys di�erent
information to the device driver. In the case of disk drives, this information can consist of
a unit identi�er. Should the minor number change, RPM will detect it.

Symbolic Link

If the �le in question is really a symbolic link, the text string containing the name of the
linked-to �le is checked.

Modi�cation Time

Most operating systems keep track of the date and time that a �le was last modi�ed. RPM
uses this to its advantage by keeping modi�cation times in its database.

6.2 When Veri�cation Fails - rpm -V Output

When verifying a package, RPM produces output only if there is a veri�cation failure.
When a �le fails veri�cation, the format of the output is a bit cryptic, but it packs all the
information you need into one line per �le. Here is the format:

2From a strictly theoretical standpoint, this is not entirely true. Using the lingo of cryptologists, it is
believed to be \computationally infeasible" to �nd two messages that produce the same MD5 checksum.

6.2 When Veri�cation Fails - rpm -V Output 83

SM5DLUGT c file

Where:

� S is the �le size.

� M is the �le's mode.

� 5 is the MD5 checksum of the �le.

� D is the �le's major and minor numbers.

� L is the �le's symbolic link contents.

� U is owner of the �le.

� G is the �le's group.

� T is the modi�cation time of the �le.

� c appears only if the �le is a con�guration �le. This is handy for quickly identifying
con�g �les, as they are very likely to change, and therefore, very unlikely to verify
successfully.

� file is the �le that failed veri�cation. The complete path is listed to make it easy to
�nd.

It's unlikely that every �le attribute will fail to verify, so each of the eight attribute ags
will only appear if there is a problem. Otherwise, a \." will be printed in that ag's place.
Let's look at an example or two:

.M5....T /usr/X11R6/lib/X11/fonts/misc/fonts.dir

In this case, the mode, MD5 checksum, and modi�cation time for the speci�ed �le have
failed to verify. The �le is not a con�g �le (Note the absence of a \c" between the attribute
list and the �lename).

S.5....T c /etc/passwd

Here, the size, checksum, and modi�cation time of the system password �le have all changed.
The \c" indicates that this is a con�g �le.

missing /var/spool/at/spool

This last example illustrates what RPM does when a �le, that should be there, is missing
entirely.

84 Using RPM to Verify Installed Packages

6.2.1 Other Veri�cation Failure Messages

When rpm -V �nds other problems, the output is a bit easier to understand:

rpm -V blather

Unsatisfied dependencies for blather-7.9-1: bother >= 3.1

#

It's pretty easy to see that the blather package requires at least version 3.1 of the bother
package.

The output from a package's veri�cation script is a bit harder to categorize, as the script's
contents, as well as its messages, are entirely up to the package builder.

6.3 Selecting What to Verify, and How

There are several ways to verify packages installed on your system. If you've taken a look
at RPM's query command, you'll �nd that many of them are similar. Let's start with the
simplest method of specifying packages | the package label.

The Package Label | Verify an Installed Package Against the RPM Database

You can simply follow the rpm -V command with all or part of a package label. As with
every other RPM command that accepts package labels, you'll need to carefully specify each
part of the label you include. Keep in mind that package names are case-sensitive, so rpm

-V PackageName and rpm -V packagename are not the same. Let's verify the initscripts
package:

rpm -V initscripts

#

While it looks like RPM didn't do anything, the following steps were performed:

� For every �le in the package, RPM checked the nine �le attributes that were discussed
above.

� If the package was built with dependencies, the RPM database was searched to ensure
the packages that satisfy those dependencies were installed.

� If the package was built with a veri�cation script, that script was executed.

In our example, each of these steps was performed without error | the package veri�ed
successfully. Remember, with rpm -V you'll only see output if a package fails to verify.

6.3 Selecting What to Verify, and How 85

-a | Verify All Installed Packages Against the RPM Database

If you add -a to rpm -V, you can easily verify every installed package on your system. It
might take a while, but when it's done, you'll know exactly what's been changed on your
system:

rpm -Va

.M5....T /usr/X11R6/lib/X11/fonts/misc/fonts.dir

missing /var/spool/at/.lockfile

missing /var/spool/at/spool

S.5....T /usr/lib/rhs/glint/icon.pyc

..5....T c /etc/inittab

..5..... /usr/bin/loadkeys

#

Don't be too surprised if rpm -Va turns up a surprising number of �les that failed veri�-
cation. RPM's veri�cation process is very strict! In many cases, the changes agged don't
indicate problems | they are only an indication of your system's con�guration being dif-
ferent than what the builders of the installed packages had on their system. Also, some
attributes change during normal system operation. However, it would be wise to check into
each veri�cation failure, just to make sure.

-f <file> | Verify the Package Owning <file> Against the RPM Database

Imagine this: you're hard at work when a program you've used a million times before
suddenly stops working. What do you do? Well, before using RPM, you probably tried to
�nd other �les associated with that program and see if they had changed recently.

Now you can let RPM do at least part of that sleuthing for you. Simply direct RPM to
verify the package owning the ailing program:

% rpm -Vf /sbin/cardmgr

S.5....T c /etc/sysconfig/pcmcia

Hmmmm. Looks like a con�g �le was recently changed.

This isn't to say that using RPM to verify a package will always get you out of trouble, but
it's such a quick step it should be one of the �rst things you try. Here's an example of rpm
-Vf not working out as well:

% rpm -Vf /etc/blunder

file /etc/blunder is not owned by any package

(Note that the issue surrounding RPM and symbolic links mentioned in \A Tricky Detail"
(page 55) also applies to rpm -Vf. Watch those symlinks!)

86 Using RPM to Verify Installed Packages

-p <file> | Verify Against a Speci�c Package File

Unlike the previous options to rpm -V, each of which veri�ed one or more packages against
RPM's database, the -p option performs the same veri�cation, but against a package �le.
Why on earth would you want to do this when the RPM database is sitting there just
waiting to be used?

Well, what if you didn't have an RPM database? While it isn't a common occurrence, power
failures, hardware problems, and inadvertent deletions (along with non-existent backups)
can leave your system \sans database". Then your system hiccups | what do you do now?

This is where a CD full of package �les can be worth its weight in gold. Simply mount the
CD and verify to your heart's content:

rpm -Vp /mnt/cdrom/RedHat/RPMS/i386/adduser-1.1-1.i386.rpm

#

Whatever else might be wrong with this system, at least we can add new users. But what
if you have many packages to verify? It would be a very slow process doing it one package
at a time. That's where the next option comes in handy. . .

-g <group> | Verify Packages Belonging To <group>

When a package is built, the package builder must classify the package, grouping it with
other packages that perform similar functions. RPM gives you the ability to verify installed
packages based on their groups. For example, there is a group known as Shells. This
group consists of packages that contain, strangely enough, shells. Let's verify the proper
installation of every shell-related package on the system:

rpm -Vg Shells

missing /etc/bashrc

#

One thing to keep in mind is that group speci�cations are case-sensitive. Issuing the com-
mand rpm -Vg shells wouldn't verify many packages:

rpm -Vg shells

group shells does not contain any packages

#

- -nodeps: Do Not Check Dependencies Before Erasing Package

When the - -nodeps option is added to a verify command, RPM will bypass its dependency
veri�cation processing. In this example, we've added the -vv option to so we can watch
RPM at work:

6.3 Selecting What to Verify, and How 87

rpm -Vvv rpm

D: opening database in //var/lib/rpm/

D: verifying record number 2341208

D: dependencies: looking for libz.so.1

D: dependencies: looking for libdb.so.2

D: dependencies: looking for libc.so.5

#

As we can see, there are three di�erent capabilities that the rpm package provides:

� libz.so.1

� libdb.so.2

� libc.so.5

If we add the - -nodeps option, the dependency veri�cation of the three capabilities is no
longer performed:

rpm -Vvv - -nodeps rpm

D: opening database in //var/lib/rpm/

D: verifying record number 2341208

#

The line D: verifying record number 2341208 indicates that RPM's normal �le-based
veri�cation proceeded normally.

- -noscripts: Do Not Execute Veri�cation Script

Adding the - -noscripts option to a verify command prevents execution of the veri�cation
scripts of each package being veri�ed. In the following example, the package veri�cation
script is executed:

rpm -Vvv bother

D: opening database in //var/lib/rpm/

D: verifying record number 616728

D: verify script found - running from file /var/tmp/rpm-321.vscript

+ PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin

+ export PATH

+ echo This is the bother 3.5 verification script

This is the bother 3.5 verification script

#

88 Using RPM to Verify Installed Packages

While the actual script is not very interesting, it did execute when the package was being
veri�ed. In the next example, we'll use the - -noscripts option to prevent its execution:

rpm -Vvv - -noscripts bother

D: opening database in //var/lib/rpm/

D: verifying record number 616728

#

As expected, the output is identical to the prior example | minus the lines dealing with
the veri�cation script, of course.

- -nofiles: Do Not Verify File Attributes

The - -nofiles option disables RPM's �le-related veri�cation processing. When this option
is used, only the veri�cation script and dependency veri�cation processing are performed.
In this example, the package has a �le-related veri�cation problem:

rpm -Vvv bash

D: opening database in //var/lib/rpm/

D: verifying record number 279448

D: dependencies: looking for libc.so.5

D: dependencies: looking for libtermcap.so.2

missing /etc/bashrc

#

When the - -nofiles option is added, the missing �le doesn't cause a message any more:

rpm -Vvv - -nofiles bash

D: opening database in //var/lib/rpm/

D: verifying record number 279448

D: dependencies: looking for libc.so.5

D: dependencies: looking for libtermcap.so.2

#

This is not to say that the missing �le problem is solved, just that no �le veri�cation was
performed.

-v | Display Additional Information

Although RPM won't report an error with the command syntax if you include the -v option,
you won't see much in the way of additional output:

rpm -Vv bash

6.3 Selecting What to Verify, and How 89

#

Even if there are veri�cation errors, adding -v won't change the output:

rpm -Vv apmd

S.5....T /etc/rc.d/init.d/apm

S.5....T /usr/X11R6/bin/xapm

#

The only time that the -v option will produce output is when the package being veri�ed
has a veri�cation script. Any normal output from the script won't be displayed by RPM,
when run without -v:3

rpm -V bother

#

But when -v is added, the script's non-error-related output is displayed:

rpm -Vv bother

This is the bother 3.5 verification script

#

If you're looking for more insight into RPM's inner workings, you'll have to try the next
option:

-vv | Display Debugging Information

Sometimes it's necessary to have even more information than we can get with -v. By adding
another v, that's just what we'll get:

rpm -Vvv rpm

D: opening database in //var/lib/rpm/

D: verifying record number 2341208

D: dependencies: looking for libz.so.1

D: dependencies: looking for libdb.so.2

D: dependencies: looking for libc.so.5

#

The lines starting with D: have been added by using -vv. We can see where the RPM
database is located and what record number contains information on the rpm-2.3-1 package.
Following that is the list of dependencies that the rpm package requires.

3Failure messages will always be displayed.

90 Using RPM to Verify Installed Packages

In the vast majority of cases, it will not be necessary to use -vv. It is normally used
by software engineers working on RPM itself, and the output can change without notice.
However, it's a handy way to gain insights into RPM.

- -dbpath <path> : Use <path> To Find RPM Database

In order for RPM to do its handiwork, it needs access to an RPM database. Normally,
this database exists in the directory speci�ed by the rpmrc �le entry, dbpath. By default,
dbpath is set to /var/lib/rpm.

Although the dbpath entry can be modi�ed in the appropriate rpmrc �le, the - -dbpath

option is probably a better choice when the database path needs to be changed temporarily.
An example of a time the - -dbpath option would come in handy is when it's necessary
to examine an RPM database copied from another system. Granted, it's not a common
occurrence, but it's di�cult to handle any other way.

- -root <path> : Set Alternate Root to <path>

Adding - -root <path> to a verify command forces RPM to assume that the directory
speci�ed by <path> is actually the \root" directory. In addition, RPM expects its database
to reside in the directory speci�ed by the dbpath rpmrc �le entry, relative to <path> .4

Normally this option is only used during an initial system install, or when a system has been
booted o� a \rescue disk", and some packages need to be re-installed in order to restore
normal operation.

- -rcfile <rcfile> : Set Alternate rpmrc �le to <rcfile>

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc,
located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
options. Software developer and package builders will be the people using - -rcfile. For
more information on rpmrc �les, see Appendix B.

6.4 We've Lied to You. . .

Not really; we just omitted a few details until you've had a chance to see rpm -V in action.
Here are the details:

RPM Controls What Gets Veri�ed Depending on the type of �le being veri�ed, RPM
will not verify every possible attribute. Here is a table showing the attributes checked for
each of the di�erent �le types:

4For more information on rpmrc �le entries, see Appendix B.

6.4 We've Lied to You. . . 91

File Type Fi
le
Si
ze

M
od
e

M
D
5
C
he
ck
su
m

M
aj
or
N
um
be
r

M
in
or
N
um
be
r

Sy
m
lin
k
St
rin
g

O
w
ne
r

G
ro
up

M
od
i�
ca
tio
n
T
im
e

Directory File X X X
Symbolic Links X X X X
FIFO X X X
Devices X X X X X
Regular Files X X X X X X

The Package Builder Can Also Control What Gets Veri�ed When a package
builder creates a new package, they can control what attributes are to be veri�ed on a
�le-by-�le basis. The reasons for excluding speci�c attributes from veri�cation can be quite
involved, but here's an example just to give you the avor:

When a person logs into a system, there are device �les associated with that user's terminal
session. In order for the terminal device (called tty) to function properly, the owner and
group of the device must change to that of the person logging in. Therefore, if RPM were
to verify the package that created the tty device �les, any ttys that were in use at the time
would fail to verify. However, by using the %verify5 directive, a package builder can save
you from trivial veri�cation failures.

5See page 200 for details on %verify

92 Using RPM to Verify Installed Packages

Chapter 7

Using RPM to Verify Package

Files

rpm -K (or - -checksig) options �le1.rpm . . . �leN.rpm

Parameters
file1.rpm ... fileN.rpm One or more RPM package �les (URLs OK)

Checksig|speci�c Options Page
- -nopgp Do not verify PGP signatures 99

General Options Page
-v Display additional information 96
-vv Display debugging information 99
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 100

7.1 rpm -K | What Does it Do?

One aspect of RPM is that you can get a package from the Internet, and easily install it. But
what do you know about that package �le? Is the organization listed as being the \vendor"
of the package really the organization that built it? Did someone make unauthorized changes
to it? Can you trust that, if installed, it won't mail a copy of your password �le to a system
cracker?

Features built into RPM allow you to make sure that the package �le you've just gotten
won't cause you problems once it's installed, whether the package was corrupted by line
noise when you downloaded it, or something more sinister happened to it.

The command rpm -K (The option - -checksig is equivalent) veri�es a package �le. Using
this command, it is easy to make sure the �le has not been changed in any way. rpm -K can
also be used to make sure that the package was actually built by the organization listed as
being the package's vendor. That's all very impressive, but how does it do that? Well, it
just needs help from some \Pretty Good" software.

94 Using RPM to Verify Package Files

7.1.1 Pretty Good Privacy: RPM's Assistant

The \Pretty Good" software we're referring to is known as \Pretty Good Privacy", or PGP.
While all the information on PGP could �ll a book (or several), we've provided a quick
introduction to help you get started.

If PGP is new to you, a quick glance through Appendix G should get you well on your
way to understanding, building, and installing PGP. If, on the other hand, you've got PGP
already installed and have sent an encrypted message or two, you're probably more than
ready to continue with this chapter.

7.2 Con�guring PGP for rpm -K

Once PGP is properly built and installed, the actual con�guration for RPM is trivial. Here's
what needs to be done:

� PGP must be in your path. If PGP's usage message doesn't come up when you enter
pgp at your shell prompt, you'll need to add PGP's directory to your path.

� PGP must be able to �nd the public keyring �le that you want to use when checking
package �le signatures. You can use two methods to direct PGP to the public keyring:

1. Set the PGPPATH environment variable to point to the directory containing the
public keyring �le.

2. Set the pgp path rpmrc �le entry to point to the directory containing the public
keyring �le.1

Now we're ready.

7.3 Using rpm -K

After all the preliminaries with PGP, it's time to get down to business. First, we need to get
the package builder's public key and add it to the public keyring �le used by RPM. You'll
need to do this once for each package builder whose packages you'll want to check. This is
what you'll need to do:

pgp -ka RPM-PGP-KEY ./pubring.pgp

Pretty Good Privacy(tm) 2.6.3a - Public-key encryption for the masses.

(c) 1990-96 Philip Zimmermann, Phil's Pretty Good Software. 1996-03-04

Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.

Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.

1For more information on rpmrc �les, rpmrc �le entries, and how to use them, please see Appendix B on
page 363.

7.3 Using rpm -K 95

Current time: 1996/06/01 22:50 GMT

Looking for new keys...

pub 1024/CBA29BF9 1996/02/20 Red Hat Software, Inc. <redhat@redhat.com>

Checking signatures...

Keyfile contains:

1 new key(s)

One or more of the new keys are not fully certified.

Do you want to certify any of these keys yourself (y/N)? n

Here we've added Red Hat Software's public key, since we're going to check some package
�les produced by them. The �le RPM-PGP-KEY contains the key. At the end, PGP asks us if
we want to certify the new key. We've answered \no" since it isn't necessary to certify keys
to verify package �les.

Next, we'll verify a package �le:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size pgp md5 OK

#

While the output might seem somewhat anti-climactic, we can now be nearly 100% certain
this package:

1. was produced by Red Hat Software, Inc.

2. is unchanged from their original copy.

The output from this command shows that there are actually three distinct features of the
package �le that are checked by the -K option:

1. The size message indicates that the size of the packaged �les has not changed.

2. The pgp message indicates that the digital signature contained in the package �le is
a valid signature of the package �le contents, and was produced by the organization
that originally signed the package.

3. The md5 message indicates that a checksum contained in the package �le and calcu-
lated when the package was built, matches a checksum calculated by RPM during
veri�cation. Because the two checksums match, it is unlikely that the package has
been modi�ed.

96 Using RPM to Verify Package Files

The OK means that each of these tests were successful. If any had failed, the name would
have been printed in parentheses. A bit later in the chapter, we'll see what happens when
there are veri�cation problems.

7.3.1 -v | Display Additional Information

Adding v to a veri�cation command will produce more interesting output:

rpm -Kv rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm:

Header+Archive size OK: 278686 bytes

Good signature from user "Red Hat Software, Inc. <redhat@redhat.com>".

Signature made 1996/12/24 18:37 GMT using 1024-bit key, key ID CBA29BF9

WARNING: Because this public key is not certified with a trusted

signature, it is not known with high confidence that this public key

actually belongs to: "Red Hat Software, Inc. <redhat@redhat.com>".

MD5 sum OK: 8873682c5e036a307dee87d990e75349

#

With a bit of digging, we can see that each of the three tests was performed, and each
passed. The reason for that dire-sounding warning is that PGP is meant to operate without
a central authority managing key distribution. PGP certi�es keys based on webs of trust.
For example, if an acquaintance of yours creates a public key, you can certify it by attaching
your digital signature to it. Then anyone that knows and trusts you can also trust your
acquaintance's public key.

In this case, the key came directly from a mass-produced Red Hat Linux CDROM. If
someone was trying to masquerade as Red Hat Software, Inc. then they have certainly gone
through a lot of trouble to do so. In this case, the lack of a certi�ed public key is not a
major problem, given the fact that the CDROM came directly from the Red Hat Software
o�ces.2

7.3.2 When the Package is Not Signed

As mentioned earlier, not every package you'll run across is going to be signed. If this is the
case, here's what you'll see from RPM:

rpm -K bother-3.5-1.i386.rpm

bother-3.5-1.i386.rpm: size md5 OK

#

2Red Hat Software's public key is also available from their website, at
http://www.redhat.com/redhat/contact.html. The RPM sources also contain the key, and are available
from their FTP site at ftp://ftp.redhat.com/pub/redhat/code/rpm.

7.3 Using rpm -K 97

Note the lack of a pgp message. The size and md5 messages indicate that the package
still has size and checksum information that veri�ed properly. In fact, all recently-produced
package �les will have these veri�cation measures built in automatically.

If you happen to run across an older unsigned package, you'll know it right away:

rpm -K apmd-2.4-1.i386.rpm

apmd-2.4-1.i386.rpm: No signature available

#

Older package �les had only a PGP-based signature; if that was missing, there was nothing
left to verify.

7.3.3 When You Are Missing the Correct Public Key

If you happen to forget to add the right public key to RPM's keyring, you'll see the following
response:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size (PGP) md5 OK (MISSING KEYS)

#

Here the PGP in parentheses indicates that there's a problem with the signature, and the
message at the end of the line (MISSING KEYS) shows what the problem is. Basically, RPM
asked PGP to verify the package against a key that PGP didn't have, and PGP complained.

7.3.4 When a Package Just Doesn't Verify

Eventually it's going to happen | you go to verify a package, and it fails. We'll look at
an example of a package that fails veri�cation a bit later. Before we do that, let's make a
package that won't verify, to demonstrate how sensitive RPM's veri�cation is.

First, we made a copy of a signed package, rpm-2.3-1.i386.rpm, to be speci�c. We called
the copy rpm-2.3-1.i386-bogus.rpm. Next, using Emacs (in hexl-mode, for all you Emacs
bu�s), we changed the �rst letter of the name of the system that built the original package.
The �le rpm-2.3-1.i386-bogus.rpm is now truly bogus: it has been changed from the
original �le.

Although the change was a small one, it still showed up when the package �le was queried.
Here's a listing from the original package:

rpm -qip rpm-2.3-1.i386.rpm
Name : rpm Distribution: Red Hat Linux Vanderbilt

Version : 2.3 Vendor: Red Hat Software

Release : 1 Build Date: Tue Dec 24 09:07:59 1996

98 Using RPM to Verify Package Files

Install date: (none) Build Host: porky.redhat.com

Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm

Size : 631157

Summary : Red Hat Package Manager

Description :

RPM is a powerful package manager, which can be used to build, install,

query, verify, update, and uninstall individual software packages. A

package consists of an archive of files, and package information,

including name, version, and description.

#

And here's the same listing from the bogus package �le:

rpm -qip rpm-2.3-1.i386-bogus.rpm

Name : rpm Distribution: Red Hat Linux Vanderbilt

Version : 2.3 Vendor: Red Hat Software

Release : 1 Build Date: Tue Dec 24 09:07:59 1996

Install date: (none) Build Host: qorky.redhat.com

Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm

Size : 631157

Summary : Red Hat Package Manager

Description :

RPM is a powerful package manager, which can be used to build, install,

query, verify, update, and uninstall individual software packages. A

package consists of an archive of files, and package information,

including name, version, and description.

#

Notice that the build host name changed from porky.redhat.com to qorky.redhat.com.
Using the cmp utility to compare the two �les, we �nd that the di�erence occurs at byte
1201, which changed from \p" (octal 160), to \q" (octal 161):

cmp -cl rpm-2.3-1.i386.rpm rpm-2.3-1.i386-bogus.rpm

1201 160 p 161 q

#

People versed in octal numbers will note that only one bit has been changed in the entire
�le. That's the smallest possible change you can make! Let's see how our bogus friend fares:

rpm -K rpm-2.3-1.i386-bogus.rpm

rpm-2.3-1.i386-bogus.rpm: size PGP MD5 NOT OK

#

Given that the command's output ends with NOT OK in big capital letters, it's obvious there's
a problem. Since the word size was printed in lowercase, the bogus package's size was OK,

7.3 Using rpm -K 99

which makes sense | we only changed the value of one bit without adding or subtracting
anything else.

However, the PGP signature, printed in uppercase, didn't verify. Again, this makes sense,
too. The package that was signed by Red Hat Software has been changed. The fact that
the package's MD5 checksum also failed to verify provides further evidence that the bogus
package is just that: bogus.

7.3.5 - -nopgp | Do Not Verify Any PGP Signatures

Perhaps you want to be able to verify packages but, for one reason or another, you cannot
use PGP. Maybe you don't have a trustworthy source of the necessary public keys, or maybe
it's illegal to possess encryption (like PGP) software in your country. Is it still possible to
verify packages?

Certainly | in fact, we've already done it, in section 7.3.3, on page 97. You lose the ability
to verify the package's origins, as well as some level of con�dence in the package's integrity,
but the size and MD5 checksums still give some measure of assurance as to the package's
state.

Of course, when PGP can't be used, the output from a veri�cation always looks like some-
thing's wrong:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size (PGP) md5 OK (MISSING KEYS)

#

The - -nopgp option directs RPM to ignore PGP entirely. If we use the - -nopgp option on
our example above, we �nd that things look a whole lot better:

rpm -K - -nopgp rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size md5 OK

#

7.3.6 -vv | Display Debugging Information

Nine times out of ten, you'll probably never have to use it, but if you're the curious type,
the -vv option will give you insights into how RPM veri�es packages. Here's an example:

rpm -Kvv rpm-2.3-1.i386.rpm

D: New Header signature

D: magic: 8e ad e8 01

D: got : 8e ad e8 01

D: Signature size: 236

D: Signature pad : 4

100 Using RPM to Verify Package Files

D: sigsize : 240

D: Header + Archive: 278686

D: expected size : 278686

rpm-2.3-1.i386.rpm:

Header+Archive size OK: 278686 bytes

Good signature from user "Red Hat Software, Inc. <redhat@redhat.com>".

Signature made 1996/12/24 18:37 GMT using 1024-bit key, key ID CBA29BF9

WARNING: Because this public key is not certified with a trusted

signature, it is not known with high confidence that this public key

actually belongs to: "Red Hat Software, Inc. <redhat@redhat.com>".

MD5 sum OK: 8873682c5e036a307dee87d990e75349

#

The lines starting with D: represent extra output produced by the -vv option. This output
is normally used by software developers in the course of adding new features to RPM and
is subject to change, but there's no law against looking at it.

Briey, the output shows that RPM has detected a new-style signature block, containing
size, MD5 checksum, and PGP signature information. The size of the signature, the size of
the package �le's header and archive sections, and the expected size of those sections are all
displayed.

7.3.7 - -rcfile <rcfile> : Use <rcfile> As An Alternate rpmrc File

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc

located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
defaults. Software developers and package builders will normally be the only people using
the - -rcfile option. For more information on rpmrc �les, see Appendix B.

Chapter 8

Miscellania

As with any other large, complex subject, there are always some leftovers | things that
just don't seem to �t in any one category. RPM is no exception. This chapter covers those
aspects of RPM that can only be called \miscellania". . .

8.1 Other RPM Options

The following options are not normally used on a day to day basis. However, some of them
can be quite important when the need arises. One such option is - -rebuilddb.

8.1.1 - -rebuilddb | Rebuild RPM database

We all hope the day never comes, and for many of us, it never does. But still, there is a
chance that one day, while you're busy using RPM to install or upgrade a package, you'll
see this message:

free list corrupt (42)- contact rpm-list@redhat.com

Once this happens, you'll �nd there's very little that you can do, RPM-wise. However, before
you �re o� an e-mail to the RPM mailing list, you might try the - -rebuilddb option. The
format of the command is simple:

rpm - -rebuilddb

The command produces no output, either. After a few minutes, it completes with nary
a peep. Here's an example of - -rebuilddb being used on an RPM database that wasn't
corrupt. First, let's look at the �les that comprise the database:

cd /var/lib/rpm

ls

102 Miscellania

total 3534

-rw-r--r-- 1 root root 1351680 Oct 17 10:35 fileindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 10:35 groupindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 10:35 nameindex.rpm

-rw-r--r-- 1 root root 2342536 Oct 17 10:35 packages.rpm

-rw-r--r-- 1 root root 16384 Oct 17 10:35 providesindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 10:35 requiredby.rpm

#

Then, we issue the command:

rpm - -rebuilddb

#

After a few minutes, the command completes, and we take a look at the �les again:

ls

total 3531

-rw-r--r-- 1 root root 1351680 Oct 17 20:50 fileindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 20:50 groupindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 20:50 nameindex.rpm

-rw-r--r-- 1 root root 2339080 Oct 17 20:50 packages.rpm

-rw-r--r-- 1 root root 16384 Oct 17 20:50 providesindex.rpm

-rw-r--r-- 1 root root 16384 Oct 17 20:50 requiredby.rpm

#

You'll note that packages.rpm decreased in size. This is due to a side-e�ect of the
- -rebuilddb option { While it is going through the database, it is getting rid of unused
portions of the database. Our example was performed on a newly installed system where
only one or two packages had been upgraded, so the reduction in size was small. For a
system that has been through a complete upgrade, the di�erence would be more dramatic.

Does this mean that you should rebuild the database every once in a while? Not really. Since
RPM eventually will make use of the holes, there's no major advantage to regular rebuilds.
However, when an RPM-based system has undergone a major upgrade, it certainly wouldn't
hurt to spend a few minutes using - -rebuilddb to clean things up.

8.1.2 - -initdb | Create a New RPM Database

If you are already using RPM, the - -initdb option is one you'll probably never have to use.
The - -initdb option is used to create a new RPM database. That's why you'll probably
not need it if you're already using RPM | you already have an RPM database.

It might seem that the - -initdb option would be dangerous. After all, won't it trash your
current database if you mistakenly use it? Fortunately, the answer is no. If there is an
RPM database in place already, it's still perfectly safe to use the option, even though it

8.1 Other RPM Options 103

won't accomplish much. As an example, here's a listing of the �les that make up the RPM
database on a Red Hat Linux system:

ls /var/lib/rpm

total 3559

-rw-r--r-- 1 root root 16384 Jan 8 22:10 conflictsindex.rpm

-rw-r--r-- 1 root root 1351680 Jan 8 22:10 fileindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 groupindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 nameindex.rpm

-rw-r--r-- 1 root root 2349640 Jan 8 22:10 packages.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 providesindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 requiredby.rpm

#

Next, let's use the - -initdb option, just to see what it does to this database:

rpm - -initdb

ls /var/lib/rpm

total 3559

-rw-r--r-- 1 root root 16384 Jan 8 22:10 conflictsindex.rpm

-rw-r--r-- 1 root root 1351680 Jan 8 22:10 fileindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 groupindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 nameindex.rpm

-rw-r--r-- 1 root root 2349640 Jan 8 22:10 packages.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 providesindex.rpm

-rw-r--r-- 1 root root 16384 Jan 8 22:10 requiredby.rpm

#

Since an RPM database existed already, the - -initdb option did no harm to it | there
was no change to the database �les.

The only other option that can be used with - -initdb is - -dbpath. This permits the easy
creation of a new RPM database in the directory speci�ed with the - -dbpath option.

8.1.3 - -quiet | Produce as little output as possible

Adding the - -quiet option to any RPM command directs RPM to produce as little output
as possible. For example, RPM's build command (the subject of the second half of this
book) normally produces reams of output; by adding the - -quiet option, this is all you'll
see:

rpm -ba - -quiet bother-3.5.spec

Package: bother

1 block

3 blocks

104 Miscellania

#

The - -quiet option can silence even the mighty -vv option:

rpm -Uvv --quiet eject-1.2-2.i386.rpm

#

8.1.4 - -help | Display a help message

RPM includes a concise built-in help message for those times when you need a reminder
about a particular command. Normally you'll want to use the - -help option by itself,
though you might want to pipe the output through a pager such as less, since the output
is more than one screen long:

rpm - -help|less

RPM version 2.3

Copyright (C) 1995 - Red Hat Software

This may be freely redistributed under the terms of the GNU Public License

usage:

--help - print this message

--version - print the version of rpm being used

all modes support the following arguments:

--rcfile <file> - use <file> instead of /etc/rpmrc and $HOME/.rpmrc

-v - be a little more verbose

-vv - be incredibly verbose (for debugging)

-q - query mode

--root <dir> - use <dir> as the top level directory

--dbpath <dir> - use <dir> as the directory for the database

--queryformat <s> - use s as the header format (implies -i)

install, upgrade and query (with -p) allow ftp URL's to be used in place

of file names as well as the following options:

--ftpproxy <host> - hostname or IP of ftp proxy

--ftpport <port> - port number of ftp server (or proxy)

This is just the �rst screen of RPM's help command. To see the rest, give the command a
try. Practically everything there is to know about RPM is present in the - -help output.
It's a bit too concise to learn RPM from, but it's enough to refresh your memory when the
syntax of a particular option escapes you.

8.2 Using rpm2cpio 105

8.1.5 - -version | Display the current RPM version

If you're not sure what version of RPM is presently installed on your system, the easiest
way to �nd out is to ask RPM itself using the - -version option:

rpm - -version

RPM version 2.3

#

8.2 Using rpm2cpio

From time to time, you might �nd it necessary to extract one or more �les from a package
�le. One way to do this would be to:

� Install the package

� Make a copy of the �le(s) you need

� Erase the package

An easier way would be to use rpm2cpio.

8.2.1 rpm2cpio | What does it do?

As the name implies, rpm2cpio takes an RPM package �le and converts it to a cpio archive.
Because it's written to be used primarily as a �lter, there's not much to be speci�ed.
rpm2cpio takes only only one argument, and even that's optional!

The optional argument is the name of the package �le to be converted. If there is no �lename
speci�ed on the command line, rpm2cpio will simply read from standard input and convert
that to a cpio archive. Let's give it a try:

rpm2cpio logrotate-1.0-1.i386.rpm

0707020001a86a000081a4000000000000000000000001313118bb000002c200000008000

000030000000000000000000000190000e73eusr/man/man8/logrotate.8." logrotate

- log fi

le rotator

.TH rpm 8 "28 November 1995" "Red Hat Software" "Red Hat Linux"

.SH NAME

(We've just shown the �rst few lines of output.)

What on earth is all that stu�? Remember, rpm2cpio is written as a �lter. It writes the
cpio archive contained in the package �le to standard output, which, if you've not redirected
it somehow, is your screen. Here's a more reasonable example:

106 Miscellania

rpm2cpio logrotate-1.0-1.i386.rpm > blah.cpio

file blah.cpio

blah.cpio: ASCII cpio archive (SVR4 with CRC)

#

Here we've directed rpm2cpio to convert the logrotate package �le. We've also redirected
rpm2cpio's output to a �le called blah.cpio. Next, using the file command, we �nd that
the resulting �le is indeed a true-blue cpio archive �le. The following command is entirely
equivalent to the one above and shows rpm2cpio's ability to read the package �le from its
standard input:

cat logrotate-1.0-1.i386.rpm | rpm2cpio > blah.cpio

#

8.2.2 A more real-world example | Listing the �les in a package
�le

While there's nothing wrong with using rpm2cpio to actually create a cpio archive �le, it's
takes a few more steps and uses a bit more disk space than is strictly necessary. A somewhat
cleaner approach would be to pipe rpm2cpio's output directly into cpio:

rpm2cpio logrotate-1.0-1.i386.rpm | cpio -t

usr/man/man8/logrotate.8

usr/sbin/logrotate

14 blocks

#

In this example, we used the -t option to direct cpio to produce a \table of contents" of
the archive created by rpm2cpio. This can make it much easier to get the right �lename
and path when you want to extract a �le.

8.2.3 Extracting one or more �les from a package �le

Continuing the example above, let's extract the man page from the logrotate package. In
the table of contents, we see that the full path is usr/man/man8/logrotate.8. All we need
to do is to use the �lename and path as shown below:

rpm2cpio logrotate-1.0-1.i386.rpm |cpio -ivd usr/man/man8/logrotate.8

usr/man/man8/logrotate.8

14 blocks

#

8.2 Using rpm2cpio 107

In this case, the cpio options -i, -v, and -d direct cpio to:

� Extract one or more �les from an archive.

� Display the names of any �les processed, along with the size of the archive �le, in
512-byte blocks.1

� Create any directories that precede the �lename speci�ed in the cpio command.

So where did the �le end up? The last option (-d) to cpio provides a hint. Let's take a
look:

ls -al

total 5

-rw-rw-r-- 1 root root 3918 May 30 11:02 logrotate-1.0-1.i386.rpm

drwx------ 3 root root 1024 Jul 14 12:42 usr

cd usr

ls -al

total 1

drwx------ 3 root root 1024 Jul 14 12:42 man

cd man

ls -al

total 1

drwx------ 2 root root 1024 Jul 14 12:42 man8

cd man8

ls -al

total 1

-rw-r--r-- 1 root root 706 Jul 14 12:42 logrotate.8

cat logrotate.8

.\" logrotate - log file rotator

.TH rpm 8 "28 November 1995" "Red Hat Software" "Red Hat Linux"

.SH NAME

logrotate \- log file rotator

.SH SYNOPSIS

\fBlogrotate\fP [configfiles]

.SH DESCRIPTION

\fBlogrotate\fP is a tool to prevent log files from growing without

...

Since the current directory didn't have a usr/man/man8/ path in it, the -d option caused
cpio to create all the directories leading up to the logrotate.8 �le in the current directory.
Based on this, it's probably safest to use cpio outside the normal system directories unless
you're comfortable with cpio, and you know what you're doing!

1Note that the size displayed by cpio is the size of the cpio archive and not the package �le.

108 Miscellania

8.3 Source Package Files and How To Use Them

One day, you may run across a package �le with a name similar to the following:

etcskel-1.0-3.src.rpm

Notice the src. Is that a new kind of computer? If you use RPM on an Intel-based computer,
you'd normally expect to �nd i386 there. Maybe someone messed up the name of the �le.
Well, we know that the file command can display information about a package �le, even
if the �lename has been changed. We've used it before to �gure out what package a �le
contains:

file foo.bar

foo.bar: RPM v2 bin i386 eject-1.2-2

#

In this example, foo.bar is an RPM version 2 �le, containing an executable package {
hence, the \bin" { built for Intel processors { the \i386". The package is eject version 1.2,
release 2.

Let's try the file command on this mystery �le and see what we can �nd out about it:

file etcskel-1.0-3.src.rpm

etcskel-1.0-3.src.rpm: RPM v2 src i386 etcskel-1.0-3

#

Well, it's a package �le all right { for version 1.0, release 3 of the etcskel package. It's in
RPM version 2 format, and built for Intel-based systems. But what does the \src" mean?

8.3.1 A gentle introduction to source code

This package �le contains not the executable, or \binary", �les that a normal package
contains, but rather the \source" �les required to create those binaries. When programmers
create a new program, they write the instructions, often called \code", in one or more �les.
The source code is then compiled into a binary that can be executed by the computer.

As part of the process of building package �les (a process we cover in great detail in the
second half of this book), two types of package �les are created:

1. The binary, or executable, package �le

2. The source package �le

The source package contains everything needed to recreate not only the programs and asso-
ciated �les that are contained in the binary package �le, but the binary and source package
�les themselves.

8.3 Source Package Files and How To Use Them 109

8.3.2 Do you really need more information than this?

The following discussion is going to get rather technical. Unless you're the type of person
who likes to take other people's code and modify it, chances are you won't need much more
information than this. But if you're still interested, let's explore further.

8.3.3 So what can I do with it?

In the case of source package �les, one of the things that can be done with them is that they
can be installed. Let's try an install of a source package:

rpm -i cdp-0.33-3.src.rpm

#

Well that doesn't tell us very much and, take our word for it, adding -v doesn't improve
the situation appreciably. Let's haul out the big guns and try -vv:

rpm -ivv cdp-0.33-3.src.rpm

D: installing cdp-0.33-3.src.rpm

Installing cdp-0.33-3.src.rpm

D: package is a source package major = 2

D: installing a source package

D: sources in: ///usr/src/redhat/SOURCES

D: spec file in: ///usr/src/redhat/SPECS

D: file "cdp-0.33-cdplay.patch" complete

D: file "cdp-0.33-fsstnd.patch" complete

D: file "cdp-0.33.spec" complete

D: file "cdp-0.33.tgz" complete

D: renaming ///usr/src/redhat/SOURCES/cdp-0.33.spec

to

///usr/src/redhat/SPECS/cdp-0.33.spec

#

What does this output tell us? Well, RPM recognizes that the �le is a source package. It
mentions that sources (we know what they are) are in /usr/src/redhat/SOURCES. Let's
take a look:

ls -al /usr/src/redhat/SOURCES/

-rw-rw-r-- 1 root root 364 Apr 24 22:35 cdp-0.33-cdplay.patch

-rw-r--r-- 1 root root 916 Jan 8 12:07 cdp-0.33-fsstnd.patch

-rw-r--r-- 1 root root 148916 Nov 10 1995 cdp-0.33.tgz

#

There are some �les that seem to be related to cdp there. The two �les ending with

110 Miscellania

\.patch" are patches to the source. RPM permits patches to be processed when building
binary packages. The patches are bundled along with the original, unmodi�ed sources in
the source package.

The last �le is a gzipped tar �le. If you've gotten software o� the Internet, you're probably
familiar with tar �les, gzipped or not. If we look inside the �le, we should see all the usual
kinds of things: README �les, a Make�le or two, and some source code:

tar ztf cdp-0.33.tgz

cdp-0.33/COPYING

cdp-0.33/ChangeLog

cdp-0.33/INSTALL

cdp-0.33/Makefile

cdp-0.33/README

cdp-0.33/cdp

cdp-0.33/cdp-0.33.lsm

cdp-0.33/cdp.1

cdp-0.33/cdp.1.Z

cdp-0.33/cdp.c

cdp-0.33/cdp.h

There's more, but you get the idea. OK, so there are the sources. But what is that \spec"
�le mentioned in the output? It mentions something about \/usr/src/redhat/SPECS", so
let's see what we have in that directory:

ls -al /usr/src/redhat/SPECS

-rw-r--r-- 1 root root 397 Apr 24 22:36 cdp-0.33.spec

Without making a long story too short, a spec �le contains information used by RPM to
create the binary and source packages. Using the spec �le, RPM:

� Unpacks the sources.

� Applies patches (if any exist).

� Builds the software.

� Creates the binary package �le.

� Creates the source package �le.

� Cleans up after itself.

The neatest part of this is that RPM does this all automatically, under the control of the
spec �le. That's about all we're going to say about how RPM builds packages. For more
information, please refer to the second half of this book.

8.3 Source Package Files and How To Use Them 111

8.3.4 Stick with us!

As we've noted several times, we'll be covering the entire subject of building packages with
RPM, in the second half of the book. Be forewarned, however: Package building, while
straightforward, is not a task for people new to programming. But if you've written a
program or two, you'll probably �nd RPM's package building a piece of cake.

112 Miscellania

Part II

RPM and Developers { How to

Distribute Your Software More

Easily With RPM

Chapter 9

The Philosophy Behind RPM

As we saw in the �rst half of this book, RPM can make life much easier for the user. With
automated installs, upgrades, and erasures, RPM can take a lot of the guesswork out of
keeping a computer system up-to-date.

But what about people that sling code for a living? Does RPM have anything to o�er them?
The answer is yes ! One of the best things about RPM is that although it was designed to
make life easier for users, it was written by people that would be using it to build many

packages. So the design philosophy of RPM has a de�nite bias toward making life easier for
developers. Here are some of the reasons you should consider building packages with RPM:

9.1 Pristine Sources

While many developers might use RPM to package their own software, just as many, if not
more, are going to be packaging software that they have not written. Because of this, there
are some aspects to RPM's design that are geared toward \third-party" package builders.
One such aspect is RPM's use of \pristine" sources.

When a third-party package builder decides to package someone else's software, they often
get the software from the Net, normally as a tar �le compressed with something like GNU
zip. That's probably about the only generalization we can make when talking about software
that is eligible for packaging. Once we look inside the tar �le, there are a world of possible
di�erences:

� The application could be available in pure source form, in pure binary form, or some
combination of both.

� The application might have been written to be built using make, imake, or a script
included with the sources. Or, it might have to be built entirely by hand.

� The application might need to be con�gured prior to use. Maybe it uses GNU
configure, a custom con�guration script, or one or more �les that need to be edited
to reect the target environment.

116 The Philosophy Behind RPM

� The application might have been written to reside in speci�c directories, and those
directories do not exist, or are not appropriate on the target system.

� The application might not even support the target environment, requiring all manner
of changes to port it to the target environment.

We could go on, but you probably get the idea. It's a rare application that comes o� the
Net ready to package, and the changes required vary widely. What to do?

This is where the concept of pristine sources comes in. RPM has been designed to use the
sources as they come from the application's developer, no matter how it has been packaged
and con�gured. The main bene�t is that the changes you as a package builder need to make,
remain separate from the original sources, in a distinct collection of patches.

This may not sound like much of an advantage, but consider how this would work if a new
version of the application came out. If the new version had a few localized bug �xes, it's
entirely possible the original patches could be applied, and a new package built, with a
single RPM command. Even if the patches didn't apply cleanly, it would at least give an
indication as to what might need to be done to get the new version built and packaged.

If your users sometimes customize packages, having pristine sources makes it easier for them,
too. They can see what patches you've created and can easily add their own.

Another bene�t to using pristine sources is that it makes keeping track of multiple versions
of a package simple. Instead of keeping patched sources around, or battling a revision control
system, it's only necessary to keep:

� The original sources in their tar �le.

� A copy of the patches you applied to get the application to build.

� A �le used by RPM to control the package building process.

With these three items, it's possible to easily build the package at any time. Keeping track
of multiple versions only entails keeping track of each version of these three components,
rather than hundreds or thousands of patched source �les.

In fact, it gets better than that. RPM can also build a source package containing these
three components. The source package, named using RPM's standard naming convention,
keeps everything you need to recreate a speci�c version of a package, in one uniquely named
�le. Keeping track of multiple versions of multiple packages is simply a matter of keeping
the appropriate source packages around. Everything else can be built from them.

9.2 Easy Builds

RPM makes it easy to build packages. Just as with the use of pristine sources, the fact that
the build process is simple is an even greater advantage to the third-party package builders
responsible for many packages, than it is to a one-package software development house. But
in either case, RPM's ease of building is a welcome relief. The following sections document
some of the ways that RPM makes building packages a straightforward process.

9.3 Multi-architecture/operating system Support 117

9.2.1 Reproducible Builds

One of the biggest problems facing developers is reproducing a particular build. This single
problem is the main reason so much e�ort is put into creating and deploying version control
systems to manage sources.

While RPM cannot compete with a full-blown revision control system, it does an excellent
job of keeping in one place everything required to build a particular version of a package.
Remember the source package we mentioned above? With one command, RPM can open
the package, extract the sources, patch them, perform a build, and create a new binary
package, ready for your users. The best part is that the binary package will be the same
every time you build it because everything needed to create it is kept in one source package.

9.2.2 Unattended Builds

As we mentioned above, completely building a package takes only one RPM command. This
makes it easy to set up automated build procedures that can build one hundred packages
as easily as one. Anything from a single package consisting of one application to the several
hundred packages that comprise an entire operating system, can be built automatically using
RPM.

9.3 Multi-architecture/operating system Support

It has always been a fact of life for software developers that their applications may need to
be ported to multiple operating systems. It is also becoming more common that a particular
operating system might run on several di�erent platforms, or architectures.

RPM's ability to support multiple architectures and operating systems makes it easy to
build the same package for many OS/platform combinations. A package may be con�gured
to build on only one architecture/OS combination, or on several. The only limitation is the
application's portability.

9.4 Easier For Your Users

While we are primarily concerned with RPM's advantages from the developer's point of
view, it's worth looking at RPM from the user's standpoint for a moment. After all, if RPM
makes life easier for your users, that can translate into lower support costs.

9.4.1 Easy Upgrades

Probably the biggest headache for user and developer alike is the upgrade of an application,
or worse yet, an entire operating system! RPM can make upgrading a one-step process.
With one command, a new package can be installed, and the remnants of the old package
removed.

118 The Philosophy Behind RPM

9.4.2 Intelligent Con�guration File Handling

Con�guration �les | nearly every application has them. They may go by di�erent names,
but they all control the behavior of their application. Users normally customize con�g �les
to their liking and would be upset if their customizations were lost during the installation,
upgrade, or removal of a package.

RPM takes special care with a user's con�g �les. By using MD5 checksums, RPM can
determine what action is most appropriate with a con�g �le. If a con�g �le has been
modi�ed by the user and has to be replaced, it is saved. That way a user's modi�cations
are never lost.

9.4.3 Powerful Query Capabilities

RPM uses a database to keep track of all �les it installs. RPM's database provides other
bene�ts, such as the wide variety of information that can be easily retrieved from it. RPM's
query command makes it easy for users to quickly answer a number of questions, such as:

� Where did this �le come from? Is it part of a package?

� What does this package do?

� What packages are installed on my system?

These are just a few examples of the many ways RPM can provide information about one
or more packages on a user's system.

9.4.4 Easy Package Veri�cation

Another way that RPM leverages the information stored in its database, is by providing an
easy way to verify that a package is properly installed. With this capability, RPM makes
it easy to determine, for example, what packages were damaged by a wildcard delete in
/usr/bin. In addition, RPM's veri�cation command can detect changes to �le attributes,
such as a �le's permissions, ownership, and size.

9.5 To Summarize. . .

RPM was written by developers for developers. It makes building packages as easy as
possible, even if the software being packaged hasn't been developed in-house. In addition,
RPM presents some signi�cant advantages to users, thereby reducing support needs.

In the next chapter, we'll introduce the basic concepts of package building with RPM.

Chapter 10

The Basics of Developing With

RPM

Now that we've seen the design philosophy of RPM, let's look at the nuts and bolts of
RPM's build process. Building a package is similar to compiling code { there are inputs, an
engine that does the dirty work, and outputs.

10.1 The Inputs

There are three di�erent kinds of inputs that are used to drive RPM's build process. Two
of the three inputs are required, and the third, strictly speaking, is optional. But unless
you're packaging your own code, chances are you'll need it.

10.1.1 The Sources

First and foremost, are the sources. After all, without them, there wouldn't be much to
build! In the case of packaging someone else's software, the sources should be kept as the
author distributed them, which usually means a compressed tar �le. RPM can handle other
archive formats, but a bit more up-front e�ort is required.

In any case, you should not modify the sources used in the package building process. If
you're a third-party package builder, that means the sources should be just the way you got
them from the author's FTP site. If it's your own software, the choice is up to you, but you
should consider starting with your mainstream sources.

10.1.2 The Patches

Why all the emphasis on unmodi�ed sources? Because RPM gives you the ability to auto-
matically apply patches to them. Usually, the nature of these patches falls into one of the

120 The Basics of Developing With RPM

following categories:

� The patch addresses an issue speci�c to the target system. This could include changing
make�les to install the application into the appropriate directories, or resolving cross-
platform conicts, such as replacing BSD system calls with their SYSV counterparts.

� The patch creates �les that are normally created during a con�guration step in the
installation process. Many times, it's necessary to either edit con�guration �les or
scripts in order to set things up for compilation. In other cases, a con�guration utility
needs to be run before the sources are compiled. In either instance, the patches create
the environment required for proper compilation.

Creating the Patches

While it might sound a bit daunting to take into account the types of patches outlined
above, it's really quite simple. Here's how it's done:

1. Unpack the sources.

2. Rename the top-level directory. Make it end with \.orig", for example.

3. Unpack the sources again, leaving the top-level directory name unchanged.

The source tree that you created the second time will be the one you'll use to get the software
to build.

If the software builds with no changes required, that's great { you won't need a patch. But
if you had to make any changes, you'll have to create a set of patches. To do so, simply clean
the source directory of any binaries. Then, issue a recursive diff command to compare the
source tree you used for the build, against the original, unmodi�ed source tree. It's as easy
as that!

10.1.3 The Spec File

The spec �le is at the heart of RPM's packaging building process. Similar in concept
to a make�le, it contains information required by RPM to build the package, as well as
instructions telling RPM how to build it. The spec �le also dictates exactly what �les are
a part of the package, and where they should be installed.

As you might imagine, with this many responsibilities, the spec �le format can be a bit
complex. However, it's broken into several sections, making it easier to handle. All told,
there are eight sections:

The Preamble The preamble contains information that will be displayed when users
request information about the package. This would include a description of the package's
function, the version number of the software, and so on. Also contained in the preamble are
lines identifying sources, patches, and even an icon to be used if the package is manipulated
by graphical interface.

10.1 The Inputs 121

The Prep Section The prep section is where the actual work of building a package starts.
As the name implies, this section is where the necessary preparations are made prior to the
actual building of the software. In general, if anything needs to be done to the sources prior
to building the software, it needs to happen in the prep section. Usually, this boils down to
unpacking the sources.

The contents of this section are an ordinary shell script. However, RPM does provide two
macros to make life easier. One macro can unpack a compressed tar �le and cd into the
source directory. The other macro easily applies patches to the unpacked sources.

The Build Section Like the prep section, the build section consists of a shell script.
As you might guess, this section is used to perform whatever commands are required to
actually compile the sources. This section could consist of a single make command, or be
more complex if the build process requires it. Since most software is built today using make,
there are no macros available in this section.

The Install Section Also containing a shell script, the install section is used to perform
the commands required to actually install the software. If the software's author added an
install target in the make�le, this section might only consist of a make install command.
Otherwise, you'll need to add the usual assortment of cp, mv, or install commands to get
the job done.

Install and Uninstall Scripts While the previous sections contained either information
required by RPM to build the package, or the actual commands to do the deed, this section
is di�erent. It consists of scripts that will be run, on the user's system, when the package
is actually installed or removed. RPM can execute a script:

� Prior to the package being installed.

� After the package has been installed.

� Prior to the package being erased.

� After the package has been erased.

One example of when this capability would be required is when a package contains shared
libraries. In this case, ldconfig would need to be run after the package is installed or
erased. As another example, if a package contains a shell, the �le /etc/shells would need
to be updated appropriately when the package was installed or erased.

The Verify Script This is another script that is executed on the user's system. It is
executed when RPM veri�es the package's proper installation. While RPM does most of
the work verifying packages, this script can be used to verify aspects of the package that
are beyond RPM's capabilities.

122 The Basics of Developing With RPM

The Clean Section Another script that can be present is a script that can clean things
up after the build. This script is rarely used, since RPM normally does a good job of
clean-up in most build environments.

The File List The last section consists of a list of �les that will comprise the package.
Additionally, a number of macros can be used to control �le attributes when installed, as well
as to denote which �les are documentation, and which contain con�guration information.
The �le list is very important | if it is missing, no package will be built.

10.2 The Engine: RPM

At the center of the action is RPM. It performs a number of steps during the build process:

� Executes the commands and macros in the prep section of the spec �le.

� Checks the contents of the �le list.

� Executes the commands and macros in the build section of the spec �le.

� Executes the commands and macros in the install section of the spec �le. Any macros
in the �le list are executed at this time, too.

� Creates the binary package �le.

� Creates the source package �le.

By using di�erent options on the RPM command line, the build process can be stopped at
any of the steps above. This makes the initial building of a package that much easier, as it
is then possible to see whether each step completed successfully before continuing on to the
next step.

10.3 The Outputs

The end product of this entire process is a source package �le and a binary package �le.

10.3.1 The Source Package File

The source package �le is a specially formatted archive that contains the following �les:

� The original compressed tar �le(s).

� The spec �le.

� The patches.

10.4 And Now. . . 123

Since the source package contains everything needed to create the binary package, the source
package, and provide the original sources, it's a great way to distribute source code. As
mentioned earlier, it's also a great way to archive all the information needed to rebuild a
particular version of the package.

10.3.2 The Binary RPM

The binary package �le is the one part of the entire RPM building process that is most visible
to the user. It contains the �les that comprise the application, along with any additional
information needed to install and erase it. The binary package �le is where the \rubber hits
the road."

10.4 And Now. . .

Now that we've seen, in broad brush terms, the way RPM builds packages, let's take a look
at an actual build. The next chapter will do just that, showing how simple it can be to
build a package.

124 The Basics of Developing With RPM

Chapter 11

Building Packages: A Simple

Example

In the previous chapter, we looked at RPM's build process from a conceptual level. In
this chapter, we will be performing an actual build using RPM. In order to keep things
understandable for this �rst pass, the build will be very simple. Once we've covered the
basics, we'll present more real-world examples in later chapters.

11.1 Creating the Build Directory Structure

RPM requires a set of directories in which to perform the build. While the directories'
locations and names can be changed, unless there's a reason to do so, it's best to use the
default layout. Note that if you've installed RPM, the build directories are most likely in
place already.

The normal directory layout consists of a single top-level directory (The default name is
/usr/src/redhat), with �ve subdirectories. The �ve subdirectories and their functions
are:

� /usr/src/redhat/SOURCES| Contains the original sources, patches, and icon �les.

� /usr/src/redhat/SPECS| Contains the spec �les used to control the build process.

� /usr/src/redhat/BUILD| The directory in which the sources are unpacked, and the
software is built.

� /usr/src/redhat/RPMS | Contains the binary package �les created by the build
process.

� /usr/src/redhat/SRPMS | Contains the source package �les created by the build
process.

126 Building Packages: A Simple Example

In general, there are no special requirements that need to be met when creating these
directories. In fact, the only important requirement is that the BUILD directory be part
of a �lesystem with su�cient free space to build the largest package expected. Here is a
directory listing showing a typical build directory tree:

ls -lF /usr/src/redhat

total 5

drwxr-xr-x 3 root root 1024 Aug 5 13:12 BUILD/

drwxr-xr-x 3 root root 1024 Jul 17 17:51 RPMS/

drwxr-xr-x 4 root root 1024 Aug 4 22:31 SOURCES/

drwxr-xr-x 2 root root 1024 Aug 5 13:12 SPECS/

drwxr-xr-x 2 root root 1024 Aug 4 22:28 SRPMS/

#

Now that we have the directories ready to go, it's time to prepare for the build. For the
remainder of this chapter, we'll be building a �ctional piece of software known as cdplayer.1

11.2 Getting the Sources

The �rst thing we need to do in order to build a package for cdplayer, is to obtain the
sources. Being avid cdplayer fans from way back, we know that the latest source can be
found at GnomoVision's FTP site, so we go get a copy.

We now have a gzipped tar �le of cdplayer version 1.0 on our system. After putting a
copy in the SOURCES directory, we're ready to tell RPM what to do with it.

11.3 Creating the Spec File

The way we direct RPM in the build process is to create a spec �le. As we saw in the
previous chapter, the spec �le contains eight di�erent sections, most of which are required.
Let's go through each section and create cdplayer's spec �le as we go.

11.3.1 The Preamble

The preamble contains a wealth of information about the package being built, and the people
that built it. Here's cdplayer's preamble:

#

Example spec file for cdplayer app...

1In reality, this software is a mercilessly hacked version of cdp, which was written by Sariel Har-Peled.
The software was hacked to provide a simple example package, and in no way represents the �ne work done
by Sariel on cdp.

11.3 Creating the Spec File 127

#

Summary: A CD player app that rocks!

Name: cdplayer

Version: 1.0

Release: 1

Copyright: GPL

Group: Applications/Sound

Source: ftp://ftp.gnomovision.com/pub/cdplayer/cdplayer-1.0.tgz

URL: http://www.gnomovision.com/cdplayer/cdplayer.html

Distribution: WSS Linux

Vendor: White Socks Software, Inc.

Packager: Santa Claus <sclaus@northpole.com>

%description

It slices! It dices! It's a CD player app that

can't be beat. By using the resonant frequency

of the CD itself, it is able to simulate 20X

oversampling. This leads to sound quality that

cannot be equaled with more mundane software...

In general, the preamble consists of entries, one per line, that start with a tag followed by a
colon, and then some information. For example, the line starting with \Summary:" gives a
short description of the packaged software that can be displayed by RPM. The order of the
lines is not important, as long as they appear in the preamble.

Let's take a look at each line and see what function it performs:

Name | The name line de�nes what the package will actually be called. In general, it's
a good idea to use the name of the software. The name will also be included in the package
label, and the package �lename.

Version | The version line should be set to the version of the software being packaged.
The version will also be included in the package label, and the package �lename.

Release | The release is a number that is used to represent the number of times the
software, at the present version, has been packaged. You can think of it as the package's
version number. The release is also part of the package label and package �lename.

Copyright | The copyright line is used to hold the packaged software's copyright in-
formation. This makes it easy to determine which packages can be freely redistributed, and
which cannot. In our case, cdplayer is made available under the terms of the GNU General
Public License, so we've put GPL on the line.

128 Building Packages: A Simple Example

Group | The group line is used to hold a string that de�nes how the packaged software
should be grouped with other packages. The string consists of a series of words separated
by slashes. From left to right, the words describe the packaged software more explicitly.
We grouped cdplayer under Applications, because it is an application, and then under
Sound, since it is an application that is sound-related.

Source | The source line serves two purposes:

� To document where the packaged software's sources can be found.

� To give the name of the source �le as it exists in the SOURCES subdirectory.

In our example, the cdplayer sources are contained in the �le cdplayer-1.0.tgz, which
is available from ftp.gnomovision.com, in the directory /pub/cdplayer. RPM actually
ignores everything prior to the last �lename in the source line, so the �rst part of the
source string could be anything you'd like. Traditionally, the source line usually contains
a Uniform Resource Locator, or URL.

URL | The URL line is used to contain a URL, like the source line. How are they
di�erent? While the source line is used to provide the source �lename to RPM, the URL

line points to documentation for the software being packaged.

Distribution | The distribution line contains the name of the product which the
packaged software is a part of. In the Linux world, the operating system is often packaged
together into a \distribution", hence the name. Since we're using a �ctional application in
this example, we've �lled in the distribution line with the name of a �ctional distribution.
There's no requirement that the spec �le contain a distribution line, so individuals will
probably omit this.

Vendor |The vendor line identi�es the organization that distributes the software. Main-
taining our �ctional motif, we've invented �ctional company, White Socks Software, to add
to our spec �le. Individuals will probably omit this as well.

Packager | The packager line is used to identify the organization that actually packaged
the software, as opposed to the author of the software. In our example, we've chosen the
greatest packager of them all, Santa Claus, to work at White Socks Software. Note that
we've included contact information, in the form of an e-mail address.

Description | The description line is a bit di�erent, in that it starts with a percent
sign. It is also di�erent because the information can take up more than one line. It is used
to provide a more detailed description of the packaged software than the summary line.

11.3 Creating the Spec File 129

A Comment on Comments | At the top of the spec �le, there are three lines, each
starting with a pound sign. These are comments and can be sprinkled throughout the spec
�le to make it more easily understood.

11.3.2 The %prep Section

With the preamble, we provided a wealth of information. The majority of this information
is meant for human consumption. Only the name, version, release, and source lines have
a direct bearing on the package building process. However, in the %prep section, the focus
is entirely on directing RPM through the process of preparing the software for building.

It is in the %prep section that the build environment for the software is created, starting
with removing the remnants of any previous builds. Following this, the source archive is
expanded. Here is what the %prep section looks like in our example spec �le:

%prep

rm -rf $RPM_BUILD_DIR/cdplayer-1.0

zcat $RPM_SOURCE_DIR/cdplayer-1.0.tgz | tar -xvf -

If the %prep section looks like a script, that's because it is. Any sh constructs can be
used here, including expansion of environment variables (Like the $RPM BUILD DIR variable
de�ned by RPM), and piping the output of zcat through tar.2

In this case, we perform a recursive delete in the build directory to remove any old builds.
We then uncompress the gzipped tar �le, and extract its contents into the build directory.

Quite often, the sources may require patching in order to build properly. The %prep section
is the appropriate place to patch the sources, but in this example, no patching is required.
Fear not, however, as we'll explore patching in all its glory in chapter 20 on page 279, when
we build a more complex package.

Making Life Easier With Macros

While the %prep section as we've described it isn't that di�cult to understand, RPM pro-
vides macros to make life even easier. In this simple example, there's precious little that
can be made easier, but macros will prevent a wealth of headaches when it's time to build
more complex packages. The macro we'll introduce here is the %setup macro.

The average gzipped tar �le is %setup's stock in trade. Like the hand-crafted %prep section
we described above, it cleans up old build trees and then uncompresses and extracts the
�les from the original source. While %setup has a number of options that we'll cover in
later chapters, for now all we need for a %prep section is:

%prep

%setup

2For more information on the environment variables used in the build-time scripts, please refer to section
13.3.1 on page 180.

130 Building Packages: A Simple Example

That is simpler than our %prep section, so let's use the %setup macro instead. The %setup
macro has a number of options to handle many di�erent situations. For more information
on this and other macros, please see section 13.4 on page 186.

In our example here, the %prep section is complete. Next comes the actual build.

11.3.3 The %build Section

Not surprisingly, the part of the spec �le that is responsible for performing the build, is the
%build section. Like the %prep section, the %build section is an ordinary sh script. Unlike
the %prep section, there are no macros. The reason for this is that the process of building
software is either going to be very easy, or highly complicated. In either case, macros won't
help much. In our example, the build process is simple:

%build

make

Thanks to the make utility, only one command is necessary to build the cdplayer applica-
tion. In the case of an application with more esoteric build requirements, the %build section
could get a bit more interesting.

11.3.4 The %install Section

The %install section is executed as a sh script, just like %prep and %build. If the ap-
plication is built with make and has an \install" target, the %install section will also be
straightforward. The cdplayer application is a good example of this:

%install

make install

If the application doesn't have a means of automatically installing itself, it will be necessary
to create a script to do so, and place it in the %install section.

11.3.5 The %files Section

The %files section is di�erent from the others, in that it contains a list of the �les that are
part of the package. Always remember | if it isn't in the �le list, it won't be put in the
package!

%files

%doc README

/usr/local/bin/cdp

/usr/local/bin/cdplay

/usr/local/man/man1/cdp.1

11.3 Creating the Spec File 131

The line starting with %doc is an example of RPM's handling of di�erent �le types. As you
might guess, %doc stands for documentation. The %doc directive is used to mark �les as
being documentation. In the example above, the README �le will be placed in a package-
speci�c directory, located in /usr/doc, and called cdplayer-1.0-1. It's also possible to
mark �les as documentation and have them installed in other directories. This is covered
in more detail in section 13.6.1 on page 199.

The rest of the �les in the example are shown with complete paths. This is necessary as the
�les will actually be installed in those directories by the application's make�le. Since RPM
needs to be able to �nd the �les prior to packaging them, complete paths are required.

How Do You Create the File List?

Since RPM automates so many aspects of software installation, it's easy to fall into the trap
of assuming that RPM does everything for you. Not so! One task that is still a manual
process is creating the �le list. While it may seem at �rst glance, that it could be automated
somehow, it's actually a more di�cult problem than it seems.

Since the majority of an application's �les are installed by its make�le, RPM has no control
over that part of the build process, and therefore, cannot automatically determine which
�les should be part of the package. Some people have attempted to use a modi�ed version
of install that logs the name of every �le it installs. But not every make�le uses install,
or if it does, uses it sporadically.

Another approach tried was to obtain a list of every �le on the build system, immediately
before and after a build, and use the di�erences as the �le list. While this approach will
certainly �nd every �le that the application installed, it can also pick up extraneous �les,
such as system logs, �les in /tmp, and the like. The only way to begin to make this approach
workable would be to do nothing else on the build system, which is highly inconvenient. This
approach also precludes building more than one package on the system at any given time.

At present, the best way to create the �le list is to read the make�le to see what �les it
installs, verify this against the �les installed on the build system, and create the list.

11.3.6 The Missing Spec File Sections

Since our example spec �le is somewhat simplistic, it's missing two sections that might
be used in more complex situations. We'll go over each one briey here. More complete
information on these sections will be covered at various points in the book.

The Install/Uninstall Scripts

One missing section to our spec �le is the section that would de�ne one or more of four
possible scripts. The scripts are executed at various times when a package is installed or
erased.

The scripts can be executed:

� Before a package is installed.

132 Building Packages: A Simple Example

� After a package is installed.

� Before a package is erased.

� After a package is erased.

We'll see how these scripts are used in chapter 20 on page 279.

The %clean Section

The other missing section has the rather descriptive title of %clean. This section can be
used to clean up any �les that are not part of the application's normal build area. For
example, if the application creates a directory structure in /tmp as part of its build, it will
not be removed. By adding a sh script to the %clean section, such situations can be handled
gracefully, right after the binary package is created.

11.4 Starting the Build

Now it's time to begin the build. First, we change directory into the directory holding
cdplayer's spec �le:

cd /usr/src/redhat/SPECS

#

Next, we start the build with an rpm -b command:

rpm -ba cdplayer-1.0.spec

The a following the -b option directs RPM to perform all phases of the build process. Some-
times it is necessary to stop at various phases during the initial build to resolve problems
that crop up while writing the spec �le. In these cases, other letters can be used after the -b
in order to stop the build at the desired phase. For this example however, we will continue
through the entire build process.

In this example, the only other argument to the build command is the name of the package's
spec �le. This can be wild-carded to build more than one package, but in our example, we'll
stick with one.

Let's look at RPM's output during the build:

* Package: cdplayer

+ umask 022

+ echo Excuting: %prep

Excuting: %prep

+ cd /usr/src/redhat/BUILD

11.4 Starting the Build 133

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz

+ tar -xvvf -

drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/

-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING

-rw-r--r-- root/users 627 Nov 10 01:10 1995 cdplayer-1.0/ChangeLog

-rw-r--r-- root/users 482 Nov 10 01:11 1995 cdplayer-1.0/INSTALL

.

.

.

-rw-r--r-- root/users 2720 Nov 10 01:10 1995 cdplayer-1.0/struct.h

-rw-r--r-- root/users 730 Nov 10 01:10 1995 cdplayer-1.0/vol.c

-rw-r--r-- root/users 2806 Nov 10 01:10 1995 cdplayer-1.0/volume.c

-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h

+ [0 -ne 0]

+ cd cdplayer-1.0

+ cd /usr/src/redhat/BUILD/cdplayer-1.0

+ chown -R root.root .

+ chmod -R a+rX,g-w,o-w .

+ exit 0

The output continues, but let's stop here for a moment, and discuss what has happened so
far.

At the start of the output, RPM displays the package name (cdplayer), sets the umask,
and starts executing the %prep section. Thanks to the %setup macro, RPM then changes
directory into the build area, removes any existing old sources, and extracts the sources
from the original compressed tar �le. Although each �le is listed as it is extracted, we've
omitted most of the �les listed, to save space.

The %setup macro continues by changing directory into cdplayer's top-level source direc-
tory and setting the �le ownership and permissions properly. As you can see, it does quite
a bit of work for you.

Let's take a look at the output from the %build section next:

+ umask 022

+ echo Excuting: %build

Excuting: %build

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make

gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c

gcc -Wall -O2 -c -I/usr/include/ncurses color.c

gcc -Wall -O2 -c -I/usr/include/ncurses display.c

gcc -Wall -O2 -c -I/usr/include/ncurses misc.c

gcc -Wall -O2 -c -I/usr/include/ncurses volume.c

volume.c: In function `mix_set_volume':

134 Building Packages: A Simple Example

volume.c:67: warning: implicit declaration of function `ioctl'

gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c

gcc -Wall -O2 -c -I/usr/include/ncurses database.c

gcc -Wall -O2 -c -I/usr/include/ncurses getline.c

gcc -o cdp cdp.o color.o display.o misc.o volume.o hardware.o database.o

getline.o -I/usr/include/ncurses -L/usr/lib -lncurses

groff -Tascii -man cdp.1 | compress >cdp.1.Z

+ exit 0

There are no surprises here. After setting the umask and changing directory into cdplayer's
top-level directory, RPM issues the make command we put into the spec �le. The rest of
the output comes from make as it actually builds the software. Next comes the %install

section:

+ umask 022

+ echo Excuting: %install

Excuting: %install

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make install

chmod 755 cdp

chmod 644 cdp.1.Z

cp cdp /usr/local/bin

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

cp cdp.1 /usr/local/man/man1

+ exit 0

Just like the previous sections, RPM again sets the umask and changes directory into the
proper directory. It then executes cdplayer's install target, installing the newly built soft-
ware on the build system. Those of you that carefully studied the spec �le might have
noticed that the README �le is not part of the install section. It's not a problem, as we see
here:

+ umask 022

+ echo Excuting: special doc

Excuting: special doc

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ DOCDIR=//usr/doc/cdplayer-1.0-1

+ rm -rf //usr/doc/cdplayer-1.0-1

+ mkdir -p //usr/doc/cdplayer-1.0-1

+ cp -ar README //usr/doc/cdplayer-1.0-1

+ exit 0

After the customary umask and cd commands, RPM constructs the path that will be used
for cdplayer's documentation directory. It then cleans out any preexisting directory and

11.4 Starting the Build 135

copies the README �le into it. The cdplayer app is now installed on the build system. The
only thing left to do is to create the actual package �les, and perform some housekeeping.
The binary package �le is created �rst:

Binary Packaging: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

usr/doc/cdplayer-1.0-1

usr/doc/cdplayer-1.0-1/README

usr/local/bin/cdp

usr/local/bin/cdplay

usr/local/man/man1/cdp.1

93 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

The �rst line says it all: RPM is creating the binary package for cdplayer version 1.0,
release 1. Next, RPM determines what packages are required by cdplayer-1.0-1. Part of
this process entails running ldd on each executable program in the package. In this example,
the package requires the libraries libc.so.5, and libncurses.so.2.0. Other dependency
information can be included in the spec �le, but for our example we'll keep it simple.

Following the dependency information, there is a list of every directory and �le included
in the package. The list displayed is actually the output of cpio, which is the archiving
software used by RPM to bundle the package's �les. The \93 blocks" is also printed by
cpio.

The line \Generating signature: 0" means that RPM has not been directed to add a
PGP signature to the package �le. During this time, however, RPM still adds two signatures
that can be used to verify the size and the MD5 checksum of the package �le. Finally, we
see con�rmation that RPM has created the binary package �le.

At this point, the application has been built, and the application's �les have been packaged.
There is no longer any need for any �les created during the build, so they may be removed.
In the case of the sources extracted into RPM's build directory, we can see that, at worst,
they will be removed the next time the package is built. But what if there were �les that
we needed to remove? Well, they could be deleted here, in the %clean section:

+ umask 022

+ echo Excuting: %clean

Excuting: %clean

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ exit 0

In our example, there are no other �les outside of the build directory that are created during
cdplayer's build, so we don't need to expend any additional e�ort to clean things up.

The very last step performed by RPM is to create the source package �le:

136 Building Packages: A Simple Example

Source Packaging: cdplayer-1.0-1

cdplayer-1.0.spec

cdplayer-1.0.tgz

80 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

This �le includes everything needed to recreate a binary package �le, as well as a copy of
itself. In this example, the only �les needed to do that are the original sources and the spec
�le. In cases where the original sources needed to be modi�ed, the source package includes
one or more patch �les. As when the binary package was created, we see cpio's output
listing each �le archived, along with the archive's block size.

Just like a binary package, a source package �le can have a PGP signature attached to it.
In our case, we see that a PGP signature was not attached. The last message from RPM is
to con�rm the creation of the source package. Let's take a look at the end products. First,
the binary package:

ls -lF /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

-rw-r--r-- 1 root root 24698 Aug 6 22:22 RPMS/i386/cdplayer-1.0-1.i386.rpm

#

Note that we built cdplayer on an Intel-based system, so RPM placed the binary package
�les in the i386 subdirectory.

Next, the source package �le:

ls -lF /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

-rw-r--r-- 1 root root 41380 Aug 6 22:22 SRPMS/cdplayer-1.0-1.src.rpm

#

Everything went perfectly | we now have binary and source package �les ready to use. But
sometimes things don't go so well.

11.5 When Things Go Wrong

This example is a bit of a fairy tale, in that it went perfectly the �rst time. In real life, it
often takes several tries to get it right.

11.5.1 Problems During the Build

As we alluded to earlier in the chapter, RPM can stop at various points in the build process.
This allows package builders to look through the build directory and make sure everything

11.5 When Things Go Wrong 137

is proceeding properly. If there are problems, stopping during the build process permits
them to see exactly what is going wrong, and where. Here is a list of points RPM can be
stoped at during the build:

� After the %prep section.

� After doing some cursory checks on the %files list.

� After the %build section.

� After the %install section.

� After the binary package has been created.

In addition, there is also a method that permits the package builder to \short circuit"
the build process and direct RPM to skip over the initial steps. This is handy when the
application is not yet ready for packaging and needs some �ne tuning. This way, once the
package builds, installs, and operates properly, the required patches to the original sources
can be created, and plugged into the package's spec �le.

11.5.2 Testing Newly Built Packages

Of course, the fact that an application has been packaged successfully doesn't necessarily
mean that it will operate correctly when the package is actually installed. Testing is required.
In the case of our example, it's perfect and doesn't need such testing.3 But here is how
testing would proceed

The �rst step is to �nd a test system. If you thought of simply using the build system,
bzzzzt, try again! Think about it | in the course of building the package, the build system
actually had the application installed on it. That is how RPM gets the �les that are to be
packaged: by building the software, installing it, and grabbing copies of the installed �les,
which are found using the %files list.

Some of you dissenters that have read the �rst half of the book might be thinking, \Why
not just install the package on the build system using the - -replacefiles option? That
way, it'll just blow away the �les installed by the build process and replace them with the
packaged �les." Well, you folks get a bzzzzt, too! Here's why.

Say, for example, that the software you're packaging installs a bunch of �les | maybe a
hundred. What does this mean? Well for one thing, it means that the package's %files list
is going to be quite large. For another thing, the sheer number of �les makes it likely that
you'll miss one or two. What would happen then?

When RPM builds the software, there's no problem: the software builds, and the appli-
cation's make�le merrily installs all the �les. The next step in RPM's build process is to
collect the �les by reading the %files list, and to add each �le listed to a cpio archive.
What happens to the �les you've missed? Nothing | they aren't added to the package �le,
but they are on your build system, installed just where they should be.

3Like we said, it's a fairy tale!

138 Building Packages: A Simple Example

Next, when the package is installed using - -replacefiles, RPM dutifully installs each of
the packaged �les, replacing the ones originally installed on the build system. The missed
�les? They aren't overwritten by RPM since they weren't in the package. But they're still
on disk, right where the application expects them to be! If you go to test the application
then, it will �nd every �le it needs. But not every �le came from the package. Bad news!
Using a di�erent system on which the application had never been built is one sure way to
test for missing �les.

That wraps up our �ctional build. Now that we have some experience with RPM's build
process, we can take a more in-depth look at RPM's build command.

Chapter 12

rpm -b Command Reference

rpm -b<stage> options �le1.spec . . . �leN.spec

<stage> Page
p Execute %prep 140
c Execute %prep, %build 142
i Execute %prep, %build, %install 143
b Execute %prep, %build, %install. Package (bin) 144
a Execute %prep, %build, %install. Package (bin, src) 145
l Check %files list 146

Parameters
spec1 ... specN One or more .spec �les

Build|speci�c Options Page
- -short-circuit Force build to start at particular stage (-bc, -bi only) 149
- -test Create, save build scripts for review 154
- -clean Clean up after build 155
- -sign Add a digital signature to the package 153
- -buildroot <root> Execute %install using <root> as the root 156
- -buildarch <arch> Perform build for the <arch> architecture 151
- -buildos <os> Perform build for the <os> operating system 152
- -timecheck <secs> Print a warning if �les are over <secs> old 159

General Options Page
-vv Display debugging information 160
- -quiet Produce as little output as possible 161
- -rcfile <rcfile> Set alternate rpmrc �le to <rcfile> 161

12.1 rpm -b | What Does it Do?

When RPM is invoked with the -b option, the process of building a package is started. The
rest of the command will determine exactly what is to be built and how far the build should

140 rpm -b Command Reference

proceed. In this chapter, we'll explore every aspect of rpm -b.

An RPM build command must have two additional pieces of information, over and above
\rpm -b":

1. The names of one or more spec �les representing software to be packaged.

2. The desired stage at which the build is to stop.

As we discussed in chapter 10, the spec �le is one of the inputs to RPM's build process. It
contains the information necessary for RPM to perform the build and package the software.

There are a number of stages that RPM goes through during a build. By specifying that
the build process is to stop at a certain stage, the package builder can monitor the build's
progress, make any changes necessary, and restart the build. Let's start by looking at the
various stages that can be speci�ed in a build command.

12.1.1 rpm -bp | Execute %prep

The command rpm -bp directs RPM to execute the very �rst step in the build process.
In the spec �le, this step is labeled %prep. Every command in the %prep section will be
executed when the -bp option is used.

Here's a simple %prep section from the spec �le we used in chapter 11:

%prep

%setup

This %prep section consists of a single %setup macro. When using rpm -bp against this
spec �le, we can see exactly what %setup does:

rpm -bp cdplayer-1.0.spec

* Package: cdplayer

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz

+ tar -xvvf -

drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/

-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING

-rw-r--r-- root/users 627 Nov 10 01:10 1995 cdplayer-1.0/ChangeLog

...

-rw-r--r-- root/users 2806 Nov 10 01:10 1995 cdplayer-1.0/volume.c

-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h

+ [0 -ne 0]

12.1 rpm -b | What Does it Do? 141

+ cd cdplayer-1.0

+ cd /usr/src/redhat/BUILD/cdplayer-1.0

+ chown -R root.root .

+ chmod -R a+rX,g-w,o-w .

+ exit 0

#

First, RPM con�rms that the cdplayer package is the subject of this build. Then it sets
the umask and starts executing the %prep section. At this point, the %setup macro is doing
its thing. It changes directory into the build area and removes any old copies of cdplayer's
build tree.

Next, %setup unzips the sources and uses tar to create the build tree. We've removed the
complete listing of �les, but be prepared to see lots of output if the software being packaged
is large.

Finally, %setup changes directory into cdplayer's build tree and changes ownership and �le
permissions appropriately. The exit 0 signi�es the end of the %prep section, and therefore,
the end of the %setup macro. Since we used the -bp option, RPM stopped at this point.
Let's see what RPM left in the build area:

cd /usr/src/redhat/BUILD

ls -l

total 1

drwxr-xr-x 2 root root 1024 Aug 4 22:30 cdplayer-1.0

#

There's the top-level directory. Changing directory into cdplayer-1.0, we �nd the sources
are ready to be built:

cd cdplayer-1.0

ls -lF

total 216

-rw-r--r-- 1 root root 17982 Nov 10 1995 COPYING

-rw-r--r-- 1 root root 627 Nov 10 1995 ChangeLog

...

-rw-r--r-- 1 root root 2806 Nov 10 1995 volume.c

-rw-r--r-- 1 root root 1515 Nov 10 1995 volume.h

#

We can see that %setup's chown and chmod commands did what they were supposed to |
the �les are owned by root, with permissions set appropriately.

If not stopped by the -bp option, the next step in RPM's build process would be to build
the software. RPM can also be stopped at the end of the %build section in the spec �le.
This is done by using the -bc option:

142 rpm -b Command Reference

12.1.2 rpm -bc | Execute %prep, %build

When the -bc option is used during a build, RPM stops once the software has been built.
In terms of the spec �le, every command in the %build section will be executed. In the
following example, we've removed the output from the %prep section to cut down on the
redundant output, but keep in mind that it is executed nonetheless:

rpm -bc cdplayer-1.0.spec

* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make

gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c

gcc -Wall -O2 -c -I/usr/include/ncurses color.c

gcc -Wall -O2 -c -I/usr/include/ncurses display.c

gcc -Wall -O2 -c -I/usr/include/ncurses misc.c

gcc -Wall -O2 -c -I/usr/include/ncurses volume.c

volume.c: In function `mix_set_volume':

volume.c:67: warning: implicit declaration of function `ioctl'

gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c

gcc -Wall -O2 -c -I/usr/include/ncurses database.c

gcc -Wall -O2 -c -I/usr/include/ncurses getline.c

gcc -o cdp cdp.o color.o display.o misc.o volume.o hardware.o database.o

getline.o -I/usr/include/ncurses -L/usr/lib -lncurses

groff -Tascii -man cdp.1 | compress >cdp.1.Z

+ exit 0

#

After the command, we see RPM executing the %prep section (which we've removed almost
entirely). Next, RPM starts executing the contents of the %build section. In our example
spec �le, the %build section looks like this:

%build

make

We see that prior to the make command, RPM changes directory into cdplayer's top-level
directory. RPM then starts the make, which ends with the groff command. At this point,
the execution of the %build section has been completed. Since the -bc option was used,
RPM stops at this point.

The next step in the build process would be to install the newly built software. This is done
in the %install section of the spec �le. RPM can be stopped after the install has taken
place by using the -bi option:

12.1 rpm -b | What Does it Do? 143

12.1.3 rpm -bi | Execute %prep, %build, %install

By using the -bi option, RPM is directed to stop once the software is completely built and
installed on the build system. Here's what the output of a build using the -bi option looks
like:

rpm -bi cdplayer-1.0.spec
* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make install

chmod 755 cdp

chmod 644 cdp.1.Z

cp cdp /usr/local/bin

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

cp cdp.1 /usr/local/man/man1

+ exit 0

+ umask 022

+ echo Executing: special doc

Executing: special doc

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ DOCDIR=//usr/doc/cdplayer-1.0-1

+ rm -rf //usr/doc/cdplayer-1.0-1

+ mkdir -p //usr/doc/cdplayer-1.0-1

+ cp -ar README //usr/doc/cdplayer-1.0-1

+ exit 0

#

As before, we've excised most of the previously described sections. In this example, the
%install section looks like:

%install

make install

After the %prep and %build sections, the %install section is executed. Looking at the
output, we see that RPM changes directory into cdplayer's top-level directory and issues
the make install command, the sole command in the %install section. The output from
that point until the �rst exit 0, is from make install.

The remaining commands are due to the contents of the spec �le's %files list. Here's what
it looks like:

144 rpm -b Command Reference

%files

%doc README

/usr/local/bin/cdp

/usr/local/bin/cdplay

/usr/local/man/man1/cdp.1

The line responsible is %doc README. The %doc tag identi�es the �le as being documenta-
tion. RPM handles documentation �les by creating a directory in /usr/doc and placing
all documentation in it. The exit 0 at the end signi�es the end of the %install section.
RPM stops due to the -bi option.

The next step at which RPM's build process can be stopped is after the software's binary
package �le has been created. This is done using the -bb option:

12.1.4 rpm -bb | Execute %prep, %build, %install, package (bin)

rpm -bb cdplayer-1.0.spec
* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

...

+ exit 0

Executing: special doc

...

+ exit 0

Binary Packaging: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

usr/doc/cdplayer-1.0-1

usr/doc/cdplayer-1.0-1/README

usr/local/bin/cdp

usr/local/bin/cdplay

usr/local/man/man1/cdp.1

93 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

+ umask 022

+ echo Executing: %clean

Executing: %clean

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ exit 0

12.1 rpm -b | What Does it Do? 145

#

After executing the %prep, %build, and %install sections, and handling any special docu-
mentation �les, RPM then creates a binary package �le. In the sample output, we see that
�rst RPM performs automatic dependency checking. It does this by determining which
shared libraries are required by the executable programs contained in the package. Next,
RPM actually archives the �les to be packaged, optionally signs the package �le, and outputs
the �nished product.

The last part of RPM's output looks suspiciously like a section in the spec �le being executed.
In our example, there is no %clean section. If there were, however, RPM would have
executed any commands in the section. In the absence of a %clean section, RPM simply
issues the usual cd commands and exits normally.

12.1.5 rpm -ba | Execute %prep, %build, %install, package (bin,
src)

The -ba option directs RPM to perform all the stages in building a package. With this one
command, RPM:

� Unpacks the original sources.

� Applies patches (if desired).

� Builds the software.

� Installs the software.

� Creates the binary package �le.

� Creates the source package �le.

That's quite a bit of work for one command! Here it is, in action:

rpm -ba cdplayer-1.0.spec
* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

...

+ exit 0

Executing: special doc

...

+ exit 0

Binary Packaging: cdplayer-1.0-1

146 rpm -b Command Reference

...

Executing: %clean

...

+ exit 0

Source Packaging: cdplayer-1.0-1

cdplayer-1.0.spec

cdplayer-1.0.tgz

80 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

As in previous examples, RPM executes the %prep, %build, and %install sections, handles
any special documentation �les, creates a binary package �le, and cleans up after itself.

The �nal step in the build process is to create a source package �le. As the output shows, it
consists of the spec �le and the original sources. A source package may optionally include
one or more patch �les, although in our example, cdplayer requires none.

At the end of a build using the -ba option, the software has been successfully built and
packaged in both binary and source form. But there are a few more build-time options that
we can use. One of them is the -bl option:

12.1.6 rpm -bl | Check %files list

There's one last letter that may be speci�ed with rpm -b, but unlike the others, which
indicate the stage at which the build process is to stop, this option performs a variety of
checks on the %files list in the named spec �le. When l is added to rpm -b, the following
checks are performed:

� Expands the spec �le's %files list and checks that each �le listed actually exists.

� Determines what shared libraries the software requires by examining every executable
�le listed.

� Determines what shared libraries are provided by the package.

Why is it necessary to do all this checking? When would it be useful? Keep in mind that
the %files list must be generated manually. By using the -bl option, the following steps
are all that's necessary to create a %files list:

� Writing the %files list.

� Using the -bl option to check the %files list.

� Making any necessary changes to the %files list.

It may take more than one iteration through these steps, but eventually the list check will
pass. Using the -bl option to check the %files list is certainly better than starting a

12.1 rpm -b | What Does it Do? 147

two-hour package build, only to �nd out at the very end that the list contains a misspelled
�lename.

Here's an example of the -bl option in action:

rpm -bl cdplayer-1.0.spec

Package: cdplayer

File List Check: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

#

It's hard to see exactly what RPM is doing from the output, but if we add -vv, we can get
a bit more information:

rpm -bl -vv cdplayer-1.0.spec

D: Switched to BASE package

D: Source(0) = sunsite.unc.edu:/pub/Linux/apps/sound/cds/cdplayer-1.0.tgz

D: Switching to part: 12

D: fileFile =

D: Switched to package: (null)

D: Switching to part: 2

D: fileFile =

D: Switching to part: 3

D: fileFile =

D: Switching to part: 4

D: fileFile =

D: Switching to part: 10

D: fileFile =

D: Switched to package: (null)

* Package: cdplayer

File List Check: cdplayer-1.0-1

D: ADDING: /usr/doc/cdplayer-1.0-1

D: ADDING: /usr/doc/cdplayer-1.0-1/README

D: ADDING: /usr/local/bin/cdp

D: ADDING: /usr/local/bin/cdplay

D: ADDING: /usr/local/man/man1/cdp.1

D: md5(/usr/doc/cdplayer-1.0-1/README) = 2c149b2fb1a4d65418131a19b242601c

D: md5(/usr/local/bin/cdp) = 0f2a7a2f81812c75fd01c52f456798d6

D: md5(/usr/local/bin/cdplay) = d41d8cd98f00b204e9800998ecf8427e

D: md5(/usr/local/man/man1/cdp.1) = b32cc867ae50e2bdfa4d6780b084adfa

Finding dependencies...

D: Adding require: libncurses.so.2.0

D: Adding require: libc.so.5

Requires (2): libc.so.5 libncurses.so.2.0

#

148 rpm -b Command Reference

Looking at this more verbose output, it's easy to see there's a great deal going on. Some of
it is not directly pertinent to checking the %files list, however. For example, the output
extending from the �rst line, to the line reading * Package: cdplayer, reects processing
that takes place during actual package building, and can be ignored.

Following that section is the actual %files list check. In this section, every �le named in
the %files list is checked to make sure it exists. The phrase, ADDING:, again reects RPM's
package building roots. When using the -bl option, however, RPM is simply making sure
the �les exist on the build system. If the - -timecheck option (described a bit later, on
page 159) is present, the checks required by that option are performed here, as well.

After the list check, the MD5 checksums of each �le are calculated and displayed. While
this information is vital during actual package building, it is not used when using the -bl

option.

Finally, RPM determines which shared libraries the listed �les require. In this case, there
are only two | libc.so.5, and libncurses.so.2.0. While not strictly a part of the list-
checking process, displaying shared library dependencies can be quite helpful at this point.
It can point out possible problems, such as assuming that the target systems have a certain
library installed when, in fact, they do not.

So far, we've only seen what happens when the %files list is correct. Let's see what
happens where the list has problems. In this example, we've added a bogus �le to the
package's %files list:

rpm -bl cdplayer-1.0.spec

Package: cdplayer

File List Check: cdplayer-1.0-1

File not found: /usr/local/bin/bogus

Build failed.

#

Reecting more of its package building roots, rpm -bl says that the \build failed". But
the bottom line is that there is no such �le as /usr/bin/bogus. In this example we made
the name obviously wrong, but in a more real-world setting, the name will more likely be a
misspelling in the %files list. OK, let's correct the %files list and try again:

rpm -bl cdplayer-1.0.spec

Package: cdplayer

File List Check: cdplayer-1.0-1

File not found: /usr/local/bin/cdplay

Build failed.

#

Another error! In this case the �le is spelled correctly, but it is not on the build system,
even though it should be. Perhaps it was deleted accidentally. In any case, let's rebuild the
software and try again:

12.1 rpm -b | What Does it Do? 149

rpm -bi cdplayer-1.0.spec

* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

...

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

...

+ exit 0

Executing: special doc

...

+ exit 0

#

rpm -bl cdplayer-1.0.spec

Package: cdplayer

File List Check: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

#

Done! The moral to this story is that using rpm -bl and �xing the error it agged doesn't
necessarily mean your %files list is ready for prime-time: Always run it again to make
sure!

12.1.7 - -short-circuit | Force build to start at particular stage

Although it sounds dangerous, the - -short-circuit option can be your friend. This option
is used during the initial development of a package. Earlier in the chapter, we explored
stopping RPM's build process at di�erent stages. Using - -short-circuit, we can start

the build process at di�erent stages.

One time that - -short-circuit comes in handy is when you're trying to get software to
build properly. Just think what it would be like | you're hacking away at the sources,
trying a build, getting an error, and hacking some more to �x that error. Without
- -short-circuit, you'd have to:

1. Make your change to the sources.

2. Use tar to create a new source archive.

3. Start a build with something like rpm -bc.

150 rpm -b Command Reference

4. See another bug.

5. Go back to step 1.

Pretty cumbersome! Since RPM's build process is designed to start with the sources in their
original tar �le, unless your modi�cations end up in that tar �le, they won't be used in
the next build.1

But there's another way. Just follow these steps:

1. Place the original source tar �le in RPM's SOURCES directory.

2. Create a partial spec �le in RPM's SPECS directory (Be sure to include a valid Source

line).

3. Issue an rpm -bp to properly create the build environment.

Now use - -short-circuit to attempt a compile. Here's an example:

rpm -bc - -short-circuit cdplayer-1.0.spec

* Package: cdplayer

+ umask 022

+ echo Executing: %build

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make

gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c

gcc -Wall -O2 -c -I/usr/include/ncurses color.c

gcc -Wall -O2 -c -I/usr/include/ncurses display.c

gcc -Wall -O2 -c -I/usr/include/ncurses misc.c

gcc -Wall -O2 -c -I/usr/include/ncurses volume.c

volume.c: In function `mix_set_volume':

volume.c:67: warning: implicit declaration of function `ioctl'

gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c

gcc -Wall -O2 -c -I/usr/include/ncurses database.c

gcc -Wall -O2 -c -I/usr/include/ncurses getline.c

gcc -o cdp cdp.o color.o display.o misc.o volume.o

hardware.o database.o getline.o -I/usr/include/ncurses

-L/usr/lib -lncurses

groff -Tascii -man cdp.1 | compress >cdp.1.Z

+ exit 0

#

1As we mentioned in chapter 10, if the original sources need to be modi�ed, the modi�cations should
be kept as a separate set of patches. However, during development, it makes more sense to not generate
patches every time a change to the original source is made.

12.1 rpm -b | What Does it Do? 151

Normally, the -bc option instructs RPM to stop the build after the %build section of the
spec �le has been executed. By adding - -short-circuit, however, RPM starts the build
by executing the %build section and stops when everything in %build has been executed.

There is only one other build stage that can be - -short-circuit'ed, and that is the install
stage. The reason for this restriction is to make it di�cult to bypass RPM's use of pristine
sources. If it were possible to - -short-circuit to -bb or -ba, a package builder might take
the \easy" way out and simply hack at the build tree until the software built successfully,
then package the hacked sources. So, RPM will only - -short-circuit to -bc or -bi.
Nothing else will do.

What exactly does an rpm -bi - -short-circuit do, anyway? Like an
rpm -bc - -short-circuit, it starts executing at the named stage, which in this case is
%install. Note that the build environment must be ready to perform an install before
attempting to - -short-circuit to the %install stage. If the software installs via make

install, make will automatically compile the software anyway.

And what happens if the build environment isn't ready and a - -short-circuit is at-
tempted? Let's see:

rpm -bi - -short-circuit cdplayer-1.0.spec

* Package: cdplayer

+ umask 022

+ echo Executing: %install

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

/var/tmp/rpmbu01157aaa: cdplayer-1.0: No such file or directory

Bad exit status

#

RPM blindly started executing the %install stage, but came to an abrupt halt when it
attempted to change directory into cdplayer-1.0, which didn't exist. After giving a de-
scriptive error message, RPM exited with a failure status. Except for some minor di�erences,
rpm -bc would have failed in the same way.

12.1.8 - -buildarch <arch> | Perform Build For the <arch> Ar-
chitecture

The - -buildarch option is used to override RPM's architecture detection logic. The option
is followed by the desired architecture name. Here's an example:

rpm -ba - -buildarch i486 cdplayer-1.0.spec

Package: cdplayer

...

Binary Packaging: cdplayer-1.0-1

...

152 rpm -b Command Reference

Wrote: /usr/src/redhat/RPMS/i486/cdplayer-1.0-1.i486.rpm

...

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

We've removed most of RPM's output from this example, but the main thing we can see from
this example is that the package was built for the i486 architecture, due to the inclusion of
the - -buildarch option on the command line. We can also see that RPM wrote the binary
package in the architecture-speci�c directory, /usr/src/redhat/RPMS/i486. Using RPM's
- -queryformat option con�rms the package's architecture:

rpm -qp - -queryformat '%farchg\n'\
> /usr/src/redhat/RPMS/i486/cdplayer-1.0-1.i486.rpm

i486

#

For more information on build packages for multiple architectures, please see Chapter 19 on
page 269.

12.1.9 - -buildos <os> | Perform Build For the <os> Operating
System

The - -buildos option is used to override RPM's operating system detection logic. The
option is followed by the desired operating system name. Here's an example:

rpm -ba - -buildos osf1 cdplayer-1.0.spec

...

Binary Packaging: cdplayer-1.0-1

...

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

Source Packaging: cdplayer-1.0-1

...

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

There's nothing in the build output that explicitly states the build operating system as been
set to osf1. Let's see if - -queryformat will tell us:

rpm -qp - -queryformat '%fosg\n'\
> /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

osf1

#

12.1 rpm -b | What Does it Do? 153

The package was indeed built for the speci�ed operating system. For more information on
building packages for multiple operating systems, please see Chapter 19 on page 269.

12.1.10 - -sign | Add a Digital Signature to the Package

The - -sign option directs RPM to add a digital signature to the package being built.
Currently, this is done using PGP. Here's an example of - -sign in action:

rpm -ba - -sign cdplayer-1.0.spec

Enter pass phrase: <passphrase> (not echoed)
Pass phrase is good.

Package: cdplayer

...

Binary Packaging: cdplayer-1.0-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

...

Source Packaging: cdplayer-1.0-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

The most obvious e�ect of adding the - -sign option to a build command is that RPM then
asks for your private key's passphrase. After entering the passphrase (which isn't echoed),
the build proceeds as usual. The only other di�erence between this and a non-signed build
is that the Generating signature: lines have a non-zero value.

Let's check the source and binary packages we've just created and see if they are, in fact,
signed:

rpm - -checksig /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

/usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm: size pgp md5 OK

rpm - -checksig /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

/usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm: size pgp md5 OK

#

The fact that there is a pgp in - -checksig's output indicates that the packages have been
signed.

For more information on signing packages, please see Chapter 17 on page 241. Appendix G
on page 427 contains information on obtaining and installing PGP.

154 rpm -b Command Reference

12.1.11 - -test | Create, Save Build Scripts For Review

There are times when it might be necessary to get a more in-depth view of a particular
build. By using the - -test option, it's easy. When - -test is added to a build command,
the scripts RPM would normally use to actually perform the build, are created and saved
for you to review. Let's see how it works:

rpm -ba - -test cdplayer-1.0.spec

Package: cdplayer

#

Unlike a normal build, there's not much output. But the - -test option has caused a set
of scripts to be written and saved for you. The question is: Where are they?

If you are using a customized rpmrc �le, the scripts will be written to the directory speci�ed
by the rpmrc entry tmppath. If you haven't changed this setting, RPM, by default, writes
the scripts in /var/tmp. Here they are:

ls -l /var/tmp

total 4

-rw-rw-r-- 1 root root 670 Sep 17 20:35 rpmbu00236aaa

-rw-rw-r-- 1 root root 449 Sep 17 20:35 rpmbu00236baa

-rw-rw-r-- 1 root root 482 Sep 17 20:35 rpmbu00236caa

-rw-rw-r-- 1 root root 552 Sep 17 20:35 rpmbu00236daa

#

Each �le contains a script that performs a given part of the build. Here's the �rst �le:

#!/bin/sh -e

Script generated by rpm

RPM_SOURCE_DIR="/usr/src/redhat/SOURCES"

RPM_BUILD_DIR="/usr/src/redhat/BUILD"

RPM_DOC_DIR="/usr/doc"

RPM_OPT_FLAGS="-O2 -m486 -fno-strength-reduce"

RPM_ARCH="i386"

RPM_OS="Linux"

RPM_ROOT_DIR="/tmp/cdplayer"

RPM_BUILD_ROOT="/tmp/cdplayer"

RPM_PACKAGE_NAME="cdplayer"

RPM_PACKAGE_VERSION="1.0"

RPM_PACKAGE_RELEASE="1"

set -x

umask 022

12.1 rpm -b | What Does it Do? 155

echo Executing: %prep

cd /usr/src/redhat/BUILD

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

As we can see, this script contains the %prep section from the spec �le. The script starts
o� by de�ning a number of environment variables and then leads into the %prep section. In
the spec �le used in this build, the %prep section consists of a single %setup macro. In this
�le, we can see exactly how RPM expands that macro. The remaining �les follow the same
basic layout | a section de�ning environment variables, followed by the commands to be
executed.

Note that the - -test option will only create script �les for each build stage, as speci�ed in
the command line. For example, if the above command was changed to:

rpm -bp - -test cdplayer-1.0.spec

#

only one script �le, containing the %prep commands, would be written. In any case, no
matter what RPM build command is used, the - -test option can let you see exactly what
is going to happen during a build.

12.1.12 - -clean | Clean up after build

The - -clean option can be used to ensure that the package's build directory tree is removed
at the end of a build. Although it can be used with any build stage, it doesn't always make
much sense to do so:

rpm -bp - -clean cdplayer-1.0.spec
* Package: cdplayer

Executing: %prep

...

+ exit 0

+ echo Executing: sweep

Executing: sweep

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

156 rpm -b Command Reference

+ exit 0

#

In this example, we see a typical %prep section being executed. The line
\+ echo Executing: sweep" indicates the start of - -clean's activity. After changing
directory into the build directory, RPM then issues a recursive delete on the package's
top-level directory.

As we noted above, this particular example doesn't make much sense. We're only executing
the %prep section, which creates the package's build tree, and using - -clean, which removes
it! Using - -clean with the -bc option isn't very productive either, as the newly built
software remains in the build tree. Once again, there would be no remnants left after
- -clean has done its thing.

Normally, the - -clean option is used once the software builds and can be packaged suc-
cessfully. It is particularly useful when more than one package is to be built, since - -clean
ensures that the �lesystem holding the build area will not �ll up with build trees from each
package.

Note also that the - -clean option only removes the �les that reside in the software's build
tree. If there are any �les that the build creates outside of this hierarchy, it will be necessary
to write a script for the spec �le's %clean section.

12.1.13 - -buildroot <path> | Execute %install using <path> as
the root

The - -buildroot option can make two di�cult situations much easier:

� Performing a build without impacting the build system.

� Allowing non-root users to build packages.

Let's study the �rst situation in a bit more detail. Say, for example, that sendmail is to
be packaged. In the course of creating a sendmail package, the software must be installed.
This would mean that critical sendmail �les, such as sendmail.cf and aliases, would be
overwritten. Mail handling on the build system would almost certainly be disrupted.

In the second case, it's certainly possible to set permissions such that non-root users can
install software, but highly unlikely that any system administrator worth their salt would
do so. What can be done to make these situations more tenable?

The - -buildroot option is used to instruct RPM to use a directory other than / as a \build
root". This phrase is a bit misleading, in that the build root is not the root directory under
which the software is built. Rather, it is the root directory for the install phase of the build.
When a build root is not speci�ed, the software being packaged is installed relative to the
build system's root directory \/".

However, it's not enough to just specify a build root on the command line. The spec �le
for the package must be set up to support a build root. If you don't make the necessary
changes, this is what you'll see:

12.1 rpm -b | What Does it Do? 157

rpm -ba - -buildroot /tmp/foo cdplayer-1.0.spec

Package can not do build prefixes

Build failed.

#

Chapter 16 has complete instructions on the modi�cations necessary to con�gure a package
to use an alternate build root, as well as methods to permit users to build packages without
root access. Assuming that the necessary modi�cations have been made, here is what the
build would look like:

rpm -ba - -buildroot /tmp/foonly cdplayer-1.0.spec

* Package: cdplayer

Executing: %prep

+ cd /usr/src/redhat/BUILD

...

+ exit 0

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

...

+ exit 0

+ umask 022

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make ROOT=/tmp/foonly install

install -m 755 -o 0 -g 0 -d /tmp/foonly/usr/local/bin/

install -m 755 -o 0 -g 0 cdp /tmp/foonly/usr/local/bin/cdp

rm -f /tmp/foonly/usr/local/bin/cdplay

ln -s /tmp/foonly/usr/local/bin/cdp /tmp/foonly/usr/local/bin/cdplay

install -m 755 -o 0 -g 0 -d /tmp/foonly/usr/local/man/man1/

install -m 755 -o 0 -g 0 cdp.1 /tmp/foonly/usr/local/man/man1/cdp.1

+ exit 0

Executing: special doc

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ DOCDIR=/tmp/foonly//usr/doc/cdplayer-1.0-1

+ rm -rf /tmp/foonly//usr/doc/cdplayer-1.0-1

+ mkdir -p /tmp/foonly//usr/doc/cdplayer-1.0-1

+ cp -ar README /tmp/foonly//usr/doc/cdplayer-1.0-1

+ exit 0

Binary Packaging: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

usr/doc/cdplayer-1.0-1

158 rpm -b Command Reference

usr/doc/cdplayer-1.0-1/README

usr/local/bin/cdp

usr/local/bin/cdplay

usr/local/man/man1/cdp.1

93 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

+ umask 022

+ echo Executing: %clean

Executing: %clean

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ exit 0

Source Packaging: cdplayer-1.0-1

cdplayer-1.0.spec

cdplayer-1.0.tgz

82 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

As the somewhat edited output shows, the %prep, %build, and %install sections are exe-
cuted in RPM's normal build directory. However, the - -buildroot option comes into play
when the make install is done. As we can see, the ROOT variable is set to /tmp/foonly,
which was the value following - -buildroot on the command line. From that point on, we
can see that make substituted the new build root value during the install phase.

The build root is also used when documentation �les are installed. The documentation
directory cdplayer-1.0-1 is created in /tmp/foonly/usr/doc, and the README �le is
placed in it.

The only remaining di�erence that results from using - -buildroot, is that the �les to be
included in the binary package are not located relative to the build system's root directory.
Instead they are located relative to the build root /tmp/foonly. The resulting binary
and source package �les are functionally equivalent to packages built without the use of
- -buildroot.

Using - -buildroot Can Bite You!

Although the - -buildroot option can solve some problems, using a build root can actually
be dangerous. How? Consider the following situation:

� A spec �le is con�gured to have a build root of /tmp/blather, for instance.

� In the %prep section2, there is an rm -rf $RPM BUILD ROOT command to clean out
any old installed software.

2Or the %clean section, it doesn't matter | the end result is the same.

12.1 rpm -b | What Does it Do? 159

� You decide to build the software so that it installs relative to your system's root di-
rectory, so you enter the following command: \rpm -ba - -buildroot / foo.spec".

The end result? Since specifying \/" as the build root sets $RPM BUILD ROOT to \/",
that innocuous little rm -rf $RPM BUILD ROOT turns into rm -rf /! A recursive delete,
starting at your system's root directory, might not be a total disaster if you catch it quickly,
but in either case, you'll be testing your ability to restore from backup. . . Er, you do have
backups, don't you?

The moral of this story is to be very careful when using - -buildroot. A good rule of
thumb is to always specify a unique build root. For example, instead of specifying /tmp as a
build root (and possibly losing your system's directory for holding temporary �les), use the
path /tmp/mypackage, where the directory mypackage is used only by the package you're
building.

12.1.14 - -timecheck <secs> | Print a warning if �les to be pack-
aged are over <secs> old

While it's possible to detect many errors in the %files list using rpm -bl, there is another
type of problem that can't be detected. Consider the following scenario:

� A package you're building creates the �le /usr/bin/foo.

� Because of a problem with the package's make�le, foo is never copied into /usr/bin.

� An older, incompatible version of foo, created several months ago, already exists in
/usr/bin.

� RPM creates the binary package �le.

Is the incompatible /usr/bin/foo included in the package? You bet it is! If only there was
some way for RPM to catch this type of problem. . .

Well, there is! By adding - -timecheck, followed by a number, RPM will check each �le
being packaged, to see if the �le is more than the speci�ed number of seconds old. If it is,
a warning message is displayed. The - -timecheck option works with either the -ba or -bl
options. Here's an example using -bl:

rpm -bl - -timecheck 3600 cdplayer-1.0.spec
* Package: cdplayer

File List Check: cdplayer-1.0-1

warning: TIMECHECK failure: /usr/doc/cdplayer-1.0-1/README

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

#

In this example, the �le /usr/doc/cdplayer-1.0-1/README is more than 3,600 seconds, or
one hour, old. If we take a look at the �le, we �nd that it is:3

3It should be noted that the package was built substantially later than November of 1995!

160 rpm -b Command Reference

ls -al /usr/doc/cdplayer-1.0-1/README

-rw-r--r-- 1 root root 1085 Nov 10 1995 README

#

In this particular case, the warning from - -timecheck is no cause for alarm. Since the
README �le was simply copied from the original source, which was created November 10th,
1995, its date is unchanged. If the �le had been an executable or a library that was suppos-
edly built recently, - -timecheck's warning should be taken more seriously.

If you'd like to set a default time check value of one hour, you can include the following line
in your rpmrc �le:

timecheck: 3600

This value can still be overridden by a value on the command line, if desired. For more
information on the use of rpmrc �les, see Appendix B.

12.1.15 -vv | Display debugging information

Unlike most other RPM commands, there is no -v option for rpm -b. That's because the
command's default is to be verbose. However, even more information can be obtained by
adding -vv. Here's an example:

rpm -bp -vv cdplayer-1.0.spec

D: Switched to BASE package

D: Source(0) = sunsite.unc.edu:/pub/Linux/apps/sound/cds/cdplayer-1.0.tgz

D: Switching to part: 12

D: fileFile =

D: Switched to package: (null)

D: Switching to part: 2

D: fileFile =

D: Switching to part: 3

D: fileFile =

D: Switching to part: 4

D: fileFile =

D: Switching to part: 10

D: fileFile =

D: Switched to package: (null)

* Package: cdplayer

D: RUNNING: %prep

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

12.1 rpm -b | What Does it Do? 161

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz

+ tar -xvvf -

drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/

-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING

...

-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h

+ [0 -ne 0]

+ cd cdplayer-1.0

+ cd /usr/src/redhat/BUILD/cdplayer-1.0

+ chown -R root.root .

+ chmod -R a+rX,g-w,o-w .

+ exit 0

#

Most of the output generated by the -vv option is preceded by a D:. In this example, the
additional output represents RPM's internal processing during the start of the build process.
Using the -vv option with other build commands will produce di�erent output.

12.1.16 - -quiet | Produce as Little Output as Possible

As we mentioned above, the build command is normally verbose. The - -quiet option can
be used to cut down on the command's output:

rpm -ba - -quiet cdplayer-1.0.spec

Package: cdplayer

volume.c: In function `mix set volume':

volume.c:67: warning: implicit declaration of function `ioctl'

90 blocks

82 blocks

#

This is the entire output from a package build of cdplayer. Note that warning messages
(actually, anything sent to stdout) are still printed.

12.1.17 - -rcfile <rcfile> | Set alternate rpmrc �le to <rcfile>

The - -rcfile option is used to specify a �le containing default settings for RPM. Normally,
this option is not needed. By default, RPM uses /etc/rpmrc and a �le named .rpmrc

located in your login directory.

This option would be used if there was a need to switch between several sets of RPM
defaults. Software developers and package builders will normally be the only people using
the - -rcfile option. For more information on rpmrc �les, see Appendix B.

162 rpm -b Command Reference

12.2 Other Build-related Commands

There are two other commands that also perform build-related functions. However, they do
not use the rpm -b command syntax that we've been studying so far. Instead of specifying
the name of the spec �le, as with rpm -b, it's necessary to specify the name of the source
package �le.

Why the di�erence in syntax? The reason has to do with the di�ering functions of these
commands. Unlike rpm -b, where the name of the game is to get software packaged into
binary and source package �les, these commands use an already-existing source package �le
as input. Let's take a look at them:

12.2.1 rpm - -recompile | What Does it Do?

The - -recompile option directs RPM to perform the following steps:

� Install the speci�ed source package �le.

� Unpack the original sources.

� Build the software.

� Install the software.

� Remove the software's build directory structure.

While you might think this sounds a great deal like an install of the source package �le,
followed by an rpm -bi, this is not entirely the case. Using - -recompile, the only �le
required is the source package �le. After the software is built and installed, the only thing
left, other than the newly installed software, is the original source package �le.

The - -recompile option is normally used when a previously installed package needs to be
recompiled. - -recompile comes in handy when software needs to be compiled against a
new version of the kernel.

Here's what RPM displays during a - -recompile:

rpm - -recompile cdplayer-1.0-1.src.rpm
Installing cdplayer-1.0-1.src.rpm

* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

...

+ exit 0

12.2 Other Build-related Commands 163

Executing: special doc

...

+ exit 0

Executing: sweep

...

+ exit 0

#

The very �rst line shows RPM installing the source package. After that are ordinary execu-
tions of the %prep, %build, and %install sections of the spec �le. Finally, the cleanup of
the software's build directory takes place, just as if the - -clean option had been speci�ed.

Since rpm -i or rpm -U are not being used to install the software, the RPM database is
not updated during a - -recompile. This means that doing a - -recompile on an already-
installed package may result in problems down the road, when RPM is used to upgrade or
verify the package.

12.2.2 rpm - -rebuild | What Does it Do?

Package builders, particularly those that create packages for multiple architectures, often
need to build their packages starting from the original sources. The - -rebuild option does
this, starting from a source package �le. Here is the list of steps it performs:

� Install the speci�ed source package �le.

� Unpack the original sources.

� Build the software.

� Install the software.

� Create a binary package �le.

� Remove the software's build directory tree.

Like the - -recompile option, - -rebuild cleans up after itself. The only di�erence between
the two commands is the fact that - -rebuild also creates a binary package �le. The only
remnants of a - -rebuild are the original source package, the newly installed software, and
a new binary package �le.

Package builders �nd this command especially handy, as it allows them to create new binary
packages using one command, with no additional cleanups required. There are several times
when - -rebuild is normally used:

� When the build environment (eg. compilers, libraries, etc.) has changed.

� When binary packages for a di�erent architecture are to be built.

Here's an example of the - -rebuild option in action:

rpm - -rebuild cdplayer-1.0-1.src.rpm

164 rpm -b Command Reference

Installing cdplayer-1.0-1.src.rpm

* Package: cdplayer

Executing: %prep

...

+ exit 0

Executing: %build

...

+ exit 0

Executing: %install

...

+ exit 0

Executing: special doc

...

+ exit 0

Binary Packaging: cdplayer-1.0-1

...

Executing: %clean

...

+ exit 0

Executing: sweep

...

+ exit 0

#

The very �rst line shows RPM installing the source package. The lines after that are ordinary
executions of the %prep, %build, and %install sections of the spec �le. Next, a binary
package �le is created. Finally, the spec �le's %clean section (if one exists) is executed. The
cleanup of the software's build directory takes place, just as if the - -clean option had been
speci�ed.

That completes our overview of the commands used to build packages with RPM. In the
next chapter, we'll look at the various macros that are available and how they can make life
easier for the package builder.

Chapter 13

Inside the Spec File

In this chapter, we're going to cover the spec �le in detail. There are a number of di�erent
types of entries that comprise a spec �le, and every one will be documented here. The
di�erent types of entries are:

� Comments | Human-readable notes ignored by RPM.

� Tags | De�ne data.

� Scripts | Contain commands to be executed at speci�c times.

� Macros | A method of executing multiple commands easily.

� The %files list | A list of �les to be included in the package.

� Directives | Used in the %files list to direct RPM to handle certain �les in a speci�c
way.

� Conditionals | Permit operating system- or architecture-speci�c preprocessing of the
spec �le.

Let's start by looking at comments.

13.1 Comments: Notes Ignored by RPM

Comments are a way to make RPM ignore a line in the spec �le. The contents of a comment
line are entirely up to the person writing the spec �le.

To create a comment, enter an octothorp (#) at the start of the line. Any text following the
comment character will be ignored by RPM. Here's an example comment:

This is the spec file for playmidi 2.3...

Comments can be placed in any section of the spec �le.

166 Inside the Spec File

13.2 Tags: Data De�nitions

Looking at a spec �le, the �rst thing you'll see are a number of lines, all following the same
basic format:

<something>:<something-else>

The <something> is known as a \tag", because it is used by RPM to name or tag some
data. The tag is separated from its associated data by a colon. The data is represented by
the <something-else> above. Tags are grouped together at the top of the spec �le, in a
section known as the preamble. Here's an example of a tag and its data:

Vendor: White Socks Software, Inc.

In this example, the tag is \Vendor". Tags are not case-sensitive | they may be all upper-
case, all lowercase, or anything in-between. The Vendor tag is used to de�ne the name of the
organization producing the package. The data in this example is \White Socks Software,

Inc.". Therefore, RPM will store White Socks Software, Inc. as the vendor of the
package.

Note, also, that spacing between the tag, the colon, and the data is unimportant. Given
this, and the case-insensitivity of the tag, each of the following lines are equivalent to the
one above:

VeNdOr : White Socks Software, Inc.

vendor:White Socks Software, Inc.

VENDOR : White Socks Software, Inc.

The bottom line is that you can make tag lines as neat or as ugly as you like { RPM won't
mind either way. Note, however, the tag's data may need to be formatted in a particular
fashion. If there are any such restrictions, we'll mention them. Below, we've grouped tags of
similar functions together for easier reference, starting with the tags that are used to create
the package name.

13.2.1 Package Naming Tags

The following tags are used by RPM to produce the package's �nal name. Since the name
is always in the format:

<name>-<version>-<release>

it's only natural that the three tags are known as name, version, and release.

13.2 Tags: Data De�nitions 167

The name Tag

The name tag is used to de�ne the name of the software being packaged. In most (if not all)
cases, the name used for a package should be identical in spelling and case to the software
being packaged. The name cannot contain any whitespace: If it does, RPM will only use
the �rst part of the name (up to the �rst space). Therefore, if the name of the software
being packaged is cdplayer, the name tag should be something like:

Name: cdplayer

The version Tag

The version tag de�nes the version of the software being packaged. The version speci�ed
should be as close as possible to the format of the original software's version. In most cases,
there should be no problem specifying the version just as the software's original developer
did. However, there is a restriction. There can be no dashes in the version. If you forget,
RPM will remind you:

rpm -ba cdplayer-1.0.spec

Package: cdplayer

Illegal '-' char in version: 1.0-a

#

Spaces in the version will also cause problems, in that anything after the �rst space will be
ignored by RPM. Bottom line: Stick with alphanumeric characters and periods, and you'll
never have to worry about it. Here's a sample version tag:

Version: 1.2

The release Tag

The release tag can be thought of as the package's version. The release is traditionally
an integer | for example, when a speci�c piece of software at a particular version is �rst
packaged, the release should be \1". If it is necessary to repackage that software at the same
version, the release should be incremented. When a new version of the software becomes
available, the release should drop back to \1" when it is �rst packaged.

Note that we used the word \traditionally", above. The only hard and fast restriction to
the release format is that there can be no dashes in it. Be aware that if you buck tradition,
your users may not understand what your release means.

It is up to the package builder to determine which build represents a new release and to
update the release manually. Here is what a typical release tag might look like:

Release: 5

168 Inside the Spec File

13.2.2 Descriptive Tags

These tags provide information primarily for people who want to know a bit more about
the package, and who produced it. They are part of the package �le, and most of them can
be seen by issuing an rpm -qi command.

The %description Tag

The %description tag is used to provide an in-depth description of the packaged software.
The description should be several sentences describing, to an uninformed user, what the
software does.

The %description tag is a bit di�erent than the other tags in the preamble. For one, it starts
with a percent sign. The other di�erence is that the data speci�ed by the %description tag
can span more than one line. In addition, a primitive formatting capability exists. If a line
starts with a space, that line will be displayed verbatim by RPM. Lines that do not start
with a space are assumed to be part of a paragraph and will be formatted by RPM. It's
even possible to mix and match formatted and unformatted lines. Here are some examples:

%description

It slices! It dices! It's a CD player app that can't be beat. By using

the resonant frequency of the CD itself, it is able to simulate 20X

oversampling. This leads to sound quality that cannot be equaled with

more mundane software...

The example above contains no explicit formatting. RPM will format the text as a single
paragraph, breaking lines as needed.

%description

It slices!

It dices!

It's a CD player app that can't be beat.

By using the resonant frequency of the CD itself, it is able to simulate

20X oversampling. This leads to sound quality that cannot be equaled with

more mundane software...

In this example, the �rst three lines will be displayed by RPM, verbatim. The remainder of
the text will be formatted by RPM. The text will be formatted as one paragraph.

%description

It slices!

It dices!

It's a CD player app that can't be beat.

By using the resonant frequency of the CD itself, it is able to simulate

20X oversampling. This leads to sound quality that cannot be equaled with

more mundane software...

13.2 Tags: Data De�nitions 169

Above, we have a similar situation to the previous example, in that part of the text is
formatted and part is not. However, the blank line separates the text into two paragraphs.

The summary Tag

The summary tag is used to de�ne a one-line description of the packaged software. Unlike
%description, summary is restricted to one line. RPM uses it when a succinct description
of the package is needed. Here is an example of a summary line:

Summary: A CD player app that rocks!

The copyright Tag

The copyright tag is used to de�ne the copyright terms applicable to the software being
packaged. In many cases, this might be nothing more than \GPL", for software distributed
under the terms of the GNU General Public License, or something similar. For example:

Copyright: GPL

The distribution Tag

The distribution tag is used to de�ne a group of packages, of which this package is a part.
Since Red Hat Software is in the business of producing a group of packages known as a
Linux distribution, the name stuck. For example, if a suite of applications known as \Doors
'95" were produced, each package that is part of the suite would de�ne its distribution
line like this:

Distribution: Doors '95

The icon Tag

The icon tag is used to name a �le containing an icon representing the packaged software.
The �le may be in either GIF or XPM format, although XPM is preferred. In either case,
the background of the icon should be transparent. The �le should be placed in RPM's
SOURCES directory prior to performing a build, so no path is needed.

The icon is normally used by graphically-oriented front ends to RPM. RPM itself doesn't
use the icon, but it's stored in the package �le and retained in RPM's database after the
package is installed. An example icon tag might look like:

Icon: foo.xpm

170 Inside the Spec File

The vendor Tag

The vendor tag is used to de�ne the name of the entity that is responsible for packaging
the software. Normally, this would be the name of an organization. Here's an example:

Vendor: White Socks Software, Inc.

The url Tag

The url tag is used to de�ne a Uniform Resource Locator that can be used to obtain
additional information about the packaged software. At present, RPM doesn't actively
make use of this tag. The data is stored in the package however, and will be written into
RPM's database when the package is installed. It's only a matter of time before some
web-based RPM adjunct makes use of this information, so make sure you include URLs!
Something like this is all you'll need:

URL: http://www.gnomovision.com/cdplayer.html

The group Tag

The group tag is used to group packages together by the types of functionality they provide.
The group speci�cation looks like a path and is similar in function, in that it speci�es more
general groupings before more detailed ones. For example, a package containing a text editor
might have the following group:

Group: Applications/Editors

In this example, the package is part of the Editors group, which is itself a part of the
Applications group. Likewise, a spreadsheet package might have this group:

Group: Applications/Spreadsheets

This group tag indicates that under the Applications group, we would �nd Editors and
Spreadsheets, and probably some other subgroups as well.

How is this information used? It's primarily meant to permit graphical front-ends to RPM,
to display packages in a hierarchical fashion. Of course, in order for groups to be as e�ective
as possible, it's necessary for all package builders to be consistent in their groupings. In
the case of packages for Linux, Red Hat Software has the de�nitive list. Therefore, Linux
package builders should give serious consideration to using Red Hat Software's groups. The
current group hierarchy is installed with every copy of RPM, and is available in the RPM
sources as well. Check out the �le groups in RPM's documentation directory (normally
/usr/doc/rpm-<version>), or in the top-level source directory.

13.2 Tags: Data De�nitions 171

The packager Tag

The packager tag is used to hold the name and contact information for the person or persons
who built the package. Normally, this would be the person that actually built the package,
or in a larger organization, a public relations contact. In either case, contact information
such as an e-mail address or phone number should be included, so customers can send either
money or hate mail, depending on their satisfaction with the packaged software. Here's an
example of a packager tag:

Packager: Fred Foonly <fred@gnomovision.com>

13.2.3 Dependency Tags

One RPM feature that's been recently implemented is a means of ensuring that if a package
is installed, the system environment has everything the package requires in order to operate
properly. Likewise, when an installed package is erased RPM can make sure no other package
relies on the package being erased. This dependency capability can be very helpful when
endusers install and erase packages on their own. It makes it more di�cult for them to paint
themselves into a corner, package-wise.

However, in order for RPM to be able to take more than basic dependency information
into account, the package builder must add the appropriate dependency information to the
package. This is done by using the following tags. Note, however, that adding dependency
information to a package requires some forethought. For additional information on RPM's
dependency processing, please review chapter 14 on page 209.

The provides Tag

The provides tag is used to specify a \virtual package" that the packaged software makes
available when it is installed. Normally, this tag would be used when di�erent packages
provide equivalent services. For example, any package that allows a user to read mail might
provide the mail-reader virtual package. Another package that depends on a mail reader
of some sort, could require the mail-reader virtual package. It would then install without
dependency problems, if any one of several mail programs were installed. Here's what a
provides tag might look like:

Provides: mail-reader

The requires Tag

The requires tag is used to alert RPM to the fact that the package needs to have certain
capabilities available in order to operate properly. These capabilities refer to the name of
another package, or to a virtual package provided by one or more packages that use the
provides tag. When the requires tag references a package name, version comparisons
may also be included by following the package name with <, >, =, >=, or <=, and a version

172 Inside the Spec File

speci�cation. To get even more speci�c, a package's release may be included as well. Here's
a requires tag in action, with a speci�c version requirement:

Requires: playmidi = 2.3

If the Requires tag needs to perform a comparison against a serial number de�ned with
the serial tag (described below), then the proper format would be:

Requires: playmidi =S 4

The conflicts Tag

The conflicts tag is the logical complement to the requires tag. The requires tag is
used to specify what packages must be present in order for the current package to operate
properly. The conflicts tag is used to specify what packages cannot be installed if the
current package is to operate properly.

The conflicts tag has the same format as the requires tag | namely, the tag is followed
by a real or virtual package name. Like requires, the conflicts tag also accepts version
and release speci�cations:

Conflicts: playmidi = 2.3-1

If the conflicts tag needs to perform a comparision against a serial number de�ned with
the serial tag (described below), then the proper format would be:

Conflicts: playmidi =S 4

The serial Tag

The serial tag is another part of RPM's dependency and upgrade processing. The need
for it is somewhat obscure, but goes something like this:

1. The package being built (call it package A) uses a version numbering scheme su�-
ciently obscure so that RPM cannot determine if one version is older or newer than
another version.

2. Another package (package B) requires that package A be installed. More speci�cally,
it requires RPM to compare package A's version against a speci�ed minimum (or
maximum) version.

Since RPM is unable to compare package A's version against the version speci�ed by package
B, there is no way to determine if package B 's dependency requirements can be met. What
to do?

The serial tag provides a way to get around this tricky problem. By specifying a simple
integer serial number for each version, you are, in essence, directing how RPM interprets the
relative age of the package. The key point to keep in mind is that in order for this to work,

13.2 Tags: Data De�nitions 173

a unique serial number must be de�ned for each version of the software being packaged. In
addition, the serial number must increment along with the version. Finally, the package
that requires the serialized software needs to specify its version requirements in terms of the
serial number.

Does it sound like a lot of trouble? You're right! If you �nd yourself in the position of needing
to use this tag, take a deep breath and seriously consider changing the way you assign version
numbers. If you're packaging someone else's software, perhaps you can convince them to
make the change. Chances are, if RPM can't �gure out the version number, most people
can't, either! An example serial tag would look something like this:

Serial: 4

Note that RPM considers a package with a serial number as newer than a package without
a serial number.

The autoreqprov Tag

The autoreqprov tag is used to control the automatic dependency processing performed
when the package is being built. Normally, as each package is built, the following steps are
performed:

� All executable programs being packaged are analyzed to determine their shared li-
brary requirements. These requirements are automatically added to the package's
requirements.

� The soname of each shared library being packaged is automatically added to the
package's list of \provides" information.

By doing this, RPM reduces the need for package builders to manually add dependency
information to their packages. However, there are times when RPM's automatic dependency
processing may not be desirable. In those cases the autoreqprov tag can be used to disable
automatic dependency processing.

To disable automatic dependency processing, add the following line:

AutoReqProv: no

(The number zero may be used instead of no) Although RPM defaults to performing auto-
matic dependency processing, the e�ect of the autoreqprov tag can be reversed by changing
no to yes. (The number one may be used instead of yes)

13.2.4 Architecture- and Operating System-Speci�c Tags

As RPM gains in popularity, more people are putting it to work on di�erent types of
computer systems. While this would not normally be a problem, things start to get a little
tricky when one of the following two situations becomes commonplace:

174 Inside the Spec File

1. A particular operating system is ported to several di�erent hardware platforms, or
architectures.

2. A particular architecture runs several di�erent operating systems.

The real bind hits when RPM is used to package software for several of these di�erent system
environments. Without methods of controlling the build process based on architecture and
operating system, package builders that develop software for more than one architecture or
operating system will have a hard time indeed. The only alternative would be to maintain
parallel RPM build environments and accept all the coordination headaches that would
entail.

Fortunately, RPM makes it all easier than that. With the following tags, it's possible to
support package building under multiple environments, all from a single set of sources,
patches, and a single spec �le. For a more complete discussion of multi-architecture package
building, please see chapter 19.

The excludearch Tag

The excludearch tag directs RPM to ensure that the package does not attempt to build
on the excluded architecture(s). The reasons for preventing a package from building on a
certain architecture might include:

� The software has not yet been ported to the excluded architecture.

� The software would serve no purpose on the excluded architecture.

An example of the �rst case might be that the software was designed based on the assumption
that an integer is a 32-bit quantity. Obviously, this assumption is not valid on a 64-bit
processor.

In the second case, software that depended on or manipulated low-level features of a given
architecture, should be excluded from building on a di�erent architecture. Assembly lan-
guage programs would fall into this category.

One or more architectures may be speci�ed after the excludearch tag, separated by either
spaces or commas. Here is an example:

ExcludeArch: sparc alpha

In this example, RPM would not attempt to build the package on either the Sun SPARC
or Digital Alpha/AXP architectures. The package would build on any other architectures,
however. If a build is attempted on an excluded architecture, the following message will be
displayed, and the build will fail:

rpm -ba cdplayer-1.0.spec

Arch mismatch!

cdplayer-1.0.spec doesn't build on this architecture

13.2 Tags: Data De�nitions 175

#

Note that if your goal is to ensure that a package will only build on one architecture, then
you should use the exclusivearch tag.

The exclusivearch Tag

The exclusivearch tag is used to direct RPM to ensure the package is only built on the
speci�ed architecture(s). The reasons for this are similar to the those mentioned in the
section on the excludearch tag above. However, the exclusivearch tag is useful when the
package builder needs to ensure that only the speci�ed architectures will build the package.
This tag ensures that no future architectures will mistakenly attempt to build the package.
This would not be the case if the excludearch tag were used to specify every architecture
known at the time the package is built.

The syntax of the exclusivearch tag is identical to that of excludearch:

ExclusiveArch: sparc alpha

In this example, the package will only build on a Sun SPARC or Digital Alpha/AXP system.

Note that if your goal is to ensure that a package will not build on speci�c architectures,
then you should use the excludearch tag.

The excludeos Tag

The excludeos tag is used to direct RPM to ensure that the package does not attempt to
build on the excluded operating system(s). This is usually necessary when a package is to be
built on more than one operating system, but it is necessary to keep a particular operating
system from attempting a build.

Note that if your goal is to ensure that a package will only build on one operating system,
then you should use the exclusiveos tag. Here's a sample excludeos tag:

ExcludeOS: linux irix

The exclusiveos Tag

The exclusiveos tag has the same syntax as excludeos, but it has the opposite logic. The
exclusiveos tag is used to denote which operating system(s) should only be be permitted
to build the package. Here's exclusiveos in action:

ExclusiveOS: linux

Note that if your goal is to ensure that a package will not build on a speci�c operating
system, then you should use the excludeos tag.

176 Inside the Spec File

13.2.5 Directory-related Tags

A number of tags are used to specify directories and paths that are used in various phases
of RPM's build and install processes. There's not much more to say collectively about these
tags, so let's dive right in and look them over.

The prefix Tag

The prefix tag is used when a relocatable package is to be built. A relocatable package
can be installed normally or can be installed in a user-speci�ed directory, by using RPM's
- -prefix install-time option. The data speci�ed after the prefix tag should be the part of
the package's path that may be changed during installation. For example, if the following
prefix line was included in a spec �le:

Prefix: /opt

and the following �le was speci�ed in the spec �le's %files list:

/opt/blather/foonly

then the �le foonly would be installed in /opt/blather if the package was installed nor-
mally. It would be installed in /usr/local/blather if the package was installed with the
- -prefix /usr/local option.

For more information about creating relocatable packages, see chapter 15.

The buildroot Tag

The buildroot tag is used to de�ne an alternate build root. The name is a bit misleading,
as the build root is actually used when the software is installed during the build process.
In order for a build root to be de�ned and actually used, a number of issues must be taken
into account. These issues are covered in chapter 16. This is what a buildroot tag would
look like:

BuildRoot: /tmp/cdplayer

The buildroot tag can be overridden at build-time by using the - -buildroot command-
line option.

13.2.6 Source and Patch Tags

In order to build and package software, RPM needs to know where to �nd the original
sources. But it's not quite that simple. There might be more than one set of sources that
need to be part of a particular build. In some cases, it might be necessary to prevent some
sources from being packaged.

And then there is the matter of patches. It's likely that changes will need to be made to the
sources, so it's necessary to specify a patch �le. But the same issues that apply to source
speci�cations are also applicable to patches. There might be more than one set of patches

13.2 Tags: Data De�nitions 177

required.

The tags that follow are crucial to RPM, so it pays to have a �rm grasp of how they are
used.

The source Tag

The source tag is central to nearly every spec �le. Although it has only one piece of data
associated with it, it actually performs two functions:

1. It shows where the software's developer has made the original sources available.

2. It gives RPM the name of the original source �le.

While there is no hard and fast rule, for the �rst function, it's generally considered best to
put this information in the form of a Uniform Resource Locator (URL). The URL should
point directly to the source �le itself. This is due to the source tag's second function.

As mentioned above, the source tag also needs to direct RPM to the source �le on the build
system. How does it do this? There's only one requirement, and it is ironclad: The source
�lename must be at the end of the line as the �nal element in a path. Here's an example:

Source: ftp://ftp.gnomovision.com/pub/cdplayer-1.0.tgz

Given this source line, RPM will search its SOURCES directory for cdplayer-1.0.tgz.
Everything prior to the �lename is ignored by RPM. It's there strictly for any interested
humans.

A spec �le may contain more than one source tag. This is necessary for those cases where
the software being packaged is contained in more than one source �le. However, the source
tags must be uniquely identi�ed. This is done by appending a number to the end of the tag
itself. In fact, RPM does this internally for the �rst source tag in a spec �le, in essence
turning it into source0. Therefore, if a package contains two source �les, they may either
be speci�ed as:

Source: blather-4.5.tar.gz

Source1: bother-1.2.tar.gz

or as:

Source0: blather-4.5.tar.gz

Source1: bother-1.2.tar.gz

Either approach may be used. The choice is yours.

The nosource Tag

The nosource tag is used to direct RPM to omit one or more source �les from the source
package. Why would someone want to go to the trouble of specifying a source �le, only to

178 Inside the Spec File

exclude it? The reasons for this can be varied, but let's look at one example: The software
known as Pretty Good Privacy, or PGP.

PGP contains encryption routines of such high quality that the United States government
restricts their export.1 While it would be nice to create a PGP package �le, the resulting
package could not legally be transferred between the U.S. and other countries, or vice-versa.

However, what if all �les other than the original source, were packaged using RPM? Well,
a binary package made without PGP would be of little use, but what about the source
package? It would contain the spec �le, maybe some patches, and perhaps even an icon �le.
Since the controversial PGP software was not a part of the source package, this sanitized
source package could be downloaded legally in any country. The person that downloaded
a copy could then go about legally obtaining the PGP sources themselves, place them in
RPM's SOURCES directory, and create a binary package. They wouldn't even need to change
the nosource tag. One rpm -ba command later, and the user would have a perfectly usable
PGP binary package �le.

Since there may be more than one source tag in a spec �le, the format of the nosource tag
is as follows:

nosource: <src-num>, <src-num>...<src-num>

The <src-num> represents the number following the source tag. If there is more than
one number in the list, they may be separated by either commas or spaces. For example,
consider a package containing the following source tags:

source: blather-4.5.tar.gz

Source1: bother-1.2.tar.gz

source2: blather-lib-4.5.tar.gz

source3: bother-lib-1.2.tar.gz

If the source �les for blather and blather-lib were not to be included in the package, the
following nosource line could be added:

NoSource: 0, 3

What about that 0? Keep in mind that the �rst unnumbered source tag in a spec �le is
automatically numbered 0 by RPM.

The patch Tag

The patch tag is used to identify which patches are associated with the software being
packaged. The patch �les are kept in RPM's SOURCES directory, so only the name of the
patch �le should be speci�ed. Here is an example:

Patch: cdp-0.33-fsstnd.patch

1There is also an \international" version that may be used in non-US countries. See Appendix G on page
427.

13.2 Tags: Data De�nitions 179

There are no hard and fast requirements for naming the patch �les, but traditionally the
�lename starts with the software name and version, separated by dashes. The next part of
the patch �le name usually includes one or more words indicating the reason for the patch.
In our example above, the patch �le contains changes necessary to bring the software into
compliance with the Linux File System Standard, hence the fsstnd magic incantation.

RPM processes patch tags the same way it does source tags. Therefore, it's acceptable to
use a Uniform Resource Locator (URL) on a patch line, too.

A spec �le may contain more than one patch tag. This is necessary for those cases where
the software being packaged requires more than one patch. However, the patch tags must
be uniquely identi�ed. This is done by appending a number to the end of the tag itself. In
fact, RPM does this internally for the �rst patch tag in a spec �le, in essence turning it
into patch0. Therefore, if a package contains three patches, the following two methods of
specifying them are equivalent:

Patch: blather-4.5-bugfix.patch

Patch1: blather-4.5-config.patch

Patch2: blather-4.5-somethingelse.patch

This is the same as:

Patch0: blather-4.5-bugfix.patch

Patch1: blather-4.5-config.patch

Patch2: blather-4.5-somethingelse.patch

Either approach may be used, but the second method looks nicer.

The nopatch Tag

The nopatch tag is similar to the nosource tag discussed earlier. Just like the nosource

tag, the nopatch tag is used to direct RPM to omit something from the source package. In
the case of nosource, that \something" was one or more sources. For the nopatch tag, the
\something" is one or more patches.

Since each patch tag in a spec �le must be numbered, the nopatch tag uses those numbers
to specify which patches are not to be included in the package. The nopatch tag is used in
this manner:

NoPatch: 2 3

In this example, the source �les speci�ed on the source2 and source3 lines are not to be
included in the build.

This concludes our study of RPM's tags. In the next section, we'll look at the various scripts
that RPM uses to build, as well as to install, and erase, packages.

180 Inside the Spec File

13.3 Scripts: RPM's Workhorse

The scripts that RPM uses to control the build process are among the most varied and
interesting parts of the spec �le. Many spec �les also contain scripts that perform a variety
of tasks whenever the package is installed or erased.

The start of each script is denoted by a keyword. For example, the %build keyword marks
the start of the script RPM will execute when building the software to be packaged. It
should be noted that, in the strictest sense of the word, these parts of the spec �le are not
scripts. For example, they do not start with the traditional invocation of a shell. However,
the contents of each script section are copied into a �le and executed by RPM as a full-
edged script. This is part of the power of RPM: Anything that can be done in a script can
be done by RPM.

Let's start by looking at the scripts used during the build process.

13.3.1 Build-time Scripts

The scripts that RPM uses during the building of a package follow the steps known to every
software developer:

� Unpacking the sources.

� Building the software.

� Installing the software.

� Cleaning up.

Although each of the scripts perform a speci�c function in the build process, they share a
common environment. Using RPM's - -test option2, we can see the common portion of
each script. In the following example, we've taken the cdplayer package, issued an rpm

-ba - -test cdplayer-1.0-1.spec, and viewed the script �les left in RPM's temporary
directory. This section (with the appropriate package-speci�c values) is present in every
script RPM executes during a build:

#!/bin/sh -e

Script generated by rpm

RPM_SOURCE_DIR="/usr/src/redhat/SOURCES"

RPM_BUILD_DIR="/usr/src/redhat/BUILD"

RPM_DOC_DIR="/usr/doc"

RPM_OPT_FLAGS="-O2 -m486 -fno-strength-reduce"

RPM_ARCH="i386"

RPM_OS="Linux"

RPM_ROOT_DIR="/tmp/cdplayer"

2Described in section 12.1.11 on page 154.

13.3 Scripts: RPM's Workhorse 181

RPM_BUILD_ROOT="/tmp/cdplayer"

RPM_PACKAGE_NAME="cdplayer"

RPM_PACKAGE_VERSION="1.0"

RPM_PACKAGE_RELEASE="1"

set -x

umask 022

As we can see, the script starts with the usual invocation of a shell (in this case, the
Bourne shell). There are no arguments passed to the script. Next, a number of environment
variables are set. Here's a brief description of each one:

� RPM SOURCE DIR | This environment variable gets its value from the rpmrc �le entry
sourcedir, which in turn can get part of its value from the topdir entry. It is the
path RPM will prepend to the �le, speci�ed in the source tag line.

� RPM BUILD DIR | This variable is based on the builddir rpmrc �le entry, which
in turn can get part of its value from the topdir entry. This environment variable
translates to the path of RPM's build directory, where most software will be unpacked
and built.

� RPM DOC DIR| The value of this environment variable is based on the defaultdocdir
rpmrc �le entry. Files marked with the %doc directive can be installed in a subdirectory
of defaultdocdir. For more information on the %doc directive, refer to section 13.6.1
on page 199.

� RPM OPT FLAGS | This environment variable gets its value from the optflags rpmrc

�le entry. It contains options that can be passed on to the build procedures of the
software being packaged. Normally this means either a con�guration script or the
make command itself.

� RPM ARCH | As one might infer from the example above, this environment variable
contains a string describing the build system's architecture.

� RPM OS | This one contains the name of the build system's operating system.

� RPM BUILD ROOT | This environment variable is used to hold the \build root", into
which the newly built software will be installed. If no explicit build root has been
speci�ed (either by command line option, spec �le tag line, or rpmrc �le entry), this
variable will be null.

� RPM PACKAGE NAME | This environment variable gets its value from the name tag line
in the package's spec �le. It contains the name of the software being packaged.

� RPM PACKAGE VERSION | The version tag line is the source of this variable's trans-
lation. Predictably, this environment variable contains the software's version number.

� RPM PACKAGE RELEASE | This environment variable contains the package's release
number. Its value is obtained from the release tag line in the spec �le.

182 Inside the Spec File

All of these environment variables are set for your use, to make it easier to write scripts
that will do the right thing even if the build environment changes.

The script also sets an option that causes the shell to print out each command, complete
with expanded arguments. Finally, the default permissions are set. Past this point, the
scripts di�er. Let's look at the scripts in the order they are executed.

The %prep Script

The %prep script is the �rst script RPM executes during a build. Prior to the %prep

script, RPM has performed preliminary consistency checks, such as whether the spec �le's
source tag points to �les that actually exist. Just prior to passing control over to the
%prep script's contents, RPM changes directory into RPM's build area, which, by default,
is /usr/src/redhat/BUILD.

At that point, it is the responsibility of the %prep script to:

� Create the top-level build directory.

� Unpack the original sources into the build directory.

� Apply patches to the sources, if necessary.

� Perform any other actions required to get the sources in a ready-to-build state.

The �rst three items on this list are common to the vast majority of all software being pack-
aged. Because of this, RPM has two macros that greatly simplify these routine functions.
More information on RPM's %setup and %patch macros can be found in section 13.4 on
page 186.

The last item on the list can include creating directories or anything else required to get
the sources in a ready-to-build state. As a result, a %prep script can range from one line
invoking a single %setup macro, to many lines of tricky shell programming.

The %build Script

The %build script picks up where the %prep script left o�. Once the %prep script has
gotten everything ready for the build, the %build script is usually somewhat anti-climactic
| normally invoking make, maybe a con�guration script, and little else.

Like %prep before it, the %build script has the same assortment of environment variables
to draw on. Also, like %prep, %build changes directory into the software's top-level build
directory (located in RPM BUILD DIR, or usually called <name>-<version>).

Unlike %prep, there are no macros available for use in the %build script. The reason is
simple: Either the commands required to build the software are simple (such as a single
make command), or they are so unique that a macro wouldn't make it easier to write the
script.

13.3 Scripts: RPM's Workhorse 183

The %install Script

The environment in which the %install script executes is identical to the other scripts. Like
the other scripts, the %install script's working directory is set to the software's top-level
directory.

As the name implies, it is this script's responsibility to do whatever is necessary to actually
install the newly built software. In most cases, this means a single make install command,
or a few commands to copy �les and create directories.

The %clean Script

The %clean script, as the name implies, is used to clean up the software's build directory
tree. RPM normally does this for you, but in certain cases (most notably in those packages
that use a build root) you'll need to include a %clean script.

As usual, the %clean script has the same set of environment variables as the other scripts
we've covered here. Since a %clean script is normally used when the package is built in a
build root, the RPM BUILD ROOT environment variable is particularly useful. In many cases,
a simple

rm -rf $RPM_BUILD_ROOT

will su�ce.3

13.3.2 Install/Erase-time Scripts

The other type of scripts that are present in the spec �le are those that are only used
when the package is either installed or erased. There are four scripts, each one meant to be
executed at di�erent times during the life of a package:

� Before installation.

� After installation.

� Before erasure.

� After erasure.

Unlike the build-time scripts, there is little in the way of environment variables for these
scripts. The only environment variable available is RPM INSTALL PREFIX, and that is only
set if the package uses an installation pre�x.

Unlike the build-time scripts, there is an argument de�ned. The sole argument to these
scripts, is a number representing the number of instances of the package currently installed

3Keep in mind that this command in a %clean script can wreak havoc if used with a build root of, say,
/. Section 12.1.13 on page 158 discusses this in more detail.

184 Inside the Spec File

on the system, after the current package has been installed or erased. Sound tricky? It
really isn't. Here's an example:

Assume that a package, called blather-1.0, is being installed. No previous versions of
blather have been installed. Since the software is being installed, only the %pre and %post

scripts are executed. The argument passed to these scripts will be 1, since the the number
of blather packages installed is 1.4

Continuing our example, a new version of the blather package, version 1.3, is now available.
Clearly it's time to upgrade. What will the scripts' values be during the upgrade? As
blather-1.3 is installing, its %pre and %post scripts will have an argument equal to 2 (1
for version 1.0 already installed, plus 1 for version 1.3 being installed). As the �nal part of
the upgrade, it's then time to erase blather version 1.0. As the package is being removed,
its %preun and %postun scripts are executed. Since there will be only one blather package
(version 1.3) installed after version 1.0 is erased, the argument passed to version 1.0's scripts
is 1.

To �nally bring an end to this example, we've decided to erase blather 1.3. We just don't
need it anymore. As the package is being erased, its %preun and %postun scripts will be
executed. Since there will be no blather packages installed once the erase completes, the
argument passed to the scripts is 0.

With all that said, of what possible use would this argument be? Well, it has two very
interesting properties:

1. When the �rst version of a package is installed, its %pre and %post scripts will be
passed an argument equal to 1.

2. When the last version of a package is erased, its %preun and %postun scripts will be
passed an argument equal to 0.

Based on these properties, it's trivial to write an install-time script that can take certain
actions in speci�c circumstances. Usually, the argument is used in the %preun or %postun
scripts to perform a special task when the last instance of a package is being erased.

What is normally done during these scripts? The exact tasks may vary, but in general, the
tasks are any that need to be performed at these points in the package's existence. One
very common task is to run ldconfig when shared libraries are installed or removed. But
that's not the only use for these scripts. It's even possible to use the scripts to perform tests
to ensure the package install/erasure should proceed.

Since each of these scripts will be executing on whatever system installs the package, it's
necessary to choose the script's choice of tools carefully. Unless you're sure a given program
is going to be available on all the systems that could possibly install your package, you
should not use it in these scripts.

4Or it will be 1, once the package is completely installed. Remember, the number is based on the number
of packages installed after the current package's install or erase has completed.

13.3 Scripts: RPM's Workhorse 185

The %pre Script

The %pre script executes just before the package is to be installed. It is the rare package that
requires anything to be done prior to installation; none of the 350 packages that comprise
Red Hat Linux 4.0 make use of it.

The %post Script

The %post script executes after the package has been installed. One of the most popular
reasons a %post script is needed is to run ldconfig to update the list of available shared
libraries after a new one has been installed. Of course, other functions can be performed
in a %post script. For example, packages that install shells use the %post script to add the
shell name to /etc/shells.

If a package uses a %post script to perform some function, quite often it will include a
%postun script that performs the inverse of the %post script, after the package has been
removed.

The %preun Script

If there's a time when your package needs to have one last look around before the user
erases it, the place to do it is in the %preun script. Anything that a package needs to do
immediately prior to RPM taking any action to erase the package, can be done here.

The %postun Script

The %postun script executes after the package has been removed. It is the last chance for a
package to clean up after itself. Quite often, %postun scripts are used to run ldconfig to
remove newly erased shared libraries from ld.so.cache.

13.3.3 Veri�cation-Time Script | The %verifyscript Script

The %verifyscript executes whenever the installed package is veri�ed by RPM's veri�-
cation command. The contents of this script is entirely up to the package builder, but in
general the script should do whatever is necessary to verify the package's proper installa-
tion. Since RPM automatically veri�es the existence of a package's �les, along with other
�le attributes, the %verifyscript should concentrate on di�erent aspects of the package's
installation. For example, the script may ensure that certain con�guration �les contain the
proper information for the package being veri�ed:

for n in ash bsh; do

echo -n "Looking for $n in /etc/shells... "

if ! grep "^/bin/${n}\$" /etc/shells > /dev/null; then

echo "missing"

echo "${n} missing from /etc/shells" >&2

186 Inside the Spec File

else

echo "found"

fi

done

In this script, the con�g �le /etc/shells, is checked to ensure that it has entries for the
shells provided by this package.

It is worth noting that the script sends informational and error messages to stdout, and error
messages only to stderr. Normally RPM will only display error output from a veri�cation
script; the output sent to stdout is only displayed when the veri�cation is run in verbose
mode.

13.4 Macros: Helpful Shorthand for Package Builders

RPM does not support macros in the sense of ad-hoc sequences of commands being de�ned
as a macro and executed by simply referring to the macro name.

However, there are two parts of RPM's build process that are fairly constant from one
package to another, and they are the unpacking and patching of sources. Because of this,
RPM makes two macros available to simplify these tasks:

1. The %setup macro, which is used to unpack the original sources.

2. The %patch macro, which is used to apply patches to the original sources.

These macros are used exclusively in the %prep script; it wouldn't make sense to use them
anywhere else. The use of these macros is not mandatory | It is certainly possible to write
a %prep script without them. But in the vast majority of cases they make life easier for the
package builder.

13.4.1 The %setup Macro

As we mentioned above, the %setup macro is used to unpack the original sources, in prepa-
ration for the build. In its simplest form, the macro is used with no options and gets the
name of the source archive from the source tag speci�ed earlier in the spec �le. Let's look
at an example. The cdplayer package has the following source tag:

Source: ftp://ftp.gnomovision.com/pub/cdplayer/cdplayer-1.0.tgz

and the following %prep script:

%prep

%setup

In this simple case, the %setup macro expands into the following commands:

13.4 Macros: Helpful Shorthand for Package Builders 187

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

As we can see, the %setup macro starts by changing directory into RPM's build area and
removing any cdplayer build trees from previous builds. It then uses gzip to uncompress
the original source (whose name was taken from the source tag), and pipes the result to
tar for unpacking. The return status of the unpacking is tested. If sucessful, the macro
continues.

At this point, the original sources have been unpacked. The %setup macro continues by
changing directory into cdplayer's top-level directory. The two cd commands are an artifact
of %setup's macro expansion. Finally, %setupmakes sure every �le in the build tree is owned
by root and has appropriate permissions set.

But that's just the simplest way that %setup can be used. There are a number of other
options that can be added to accomodate di�erent situations. Let's look at them.

-n <name> { Set Name of Build Directory

In our example above, the %setup macro simply uncompressed and unpacked the sources.
In this case, the tar �le containing the original sources was created such that the top-level
directory was included in the tar �le. The name of the top-level directory was also identical
to that of the tar �le, which was in <name>-<version> format.

However, this is not always the case. Quite often, the original sources unpack into a directory
whose name is di�erent than the original tar �le. Since RPM assumes the directory will be
called <name>-<version> , when the directory is called something else, it's necessary to use
%setup's -n option. Here's an example:

Assume, for a moment, that the cdplayer sources, when unpacked, create a top-level di-
rectory named cd-player. In this case, our %setup line would look like this:

%setup -n cd-player

and the resulting commands would look like this:

cd /usr/src/redhat/BUILD

rm -rf cd-player

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

188 Inside the Spec File

cd cd-player

cd /usr/src/redhat/BUILD/cd-player

chown -R root.root .

chmod -R a+rX,g-w,o-w .

The results are identical to using %setup with no options, except for the fact that %setup
now does a recursive delete on the directory cd-player (instead of cdplayer-1.0), and
changes directory into cd-player (instead of cdplayer-1.0).

Note that all subsequent build-time scripts will change directory into the directory speci�ed
by the -n option. This makes -n unsuitable as a means of unpacking sources in directories
other than the top-level build directory. In the upcoming example on page 191, we'll show
a way around this restriction.

A quick word of warning: If the name speci�ed with the -n option doesn't match the name
of the directory created when the sources are unpacked, the build will stop pretty quickly,
so it pays to be careful when using this option.

-c { Create Directory (and change to it) Before Unpacking

How many times have you grabbed a tar �le and unpacked it, only to �nd that it splattered
�les all over your current directory? Sometimes source archives are created without a top-
level directory.

As you can see from the examples so far, %setup expects the archive to create its own
top-level directory. If this isn't the case, you'll need to use the -c option.

This option simply creates the directory and changes directory into it before unpacking the
sources. Here's what it looks like:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

mkdir -p cdplayer-1.0

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

The only changes from using %setup with no options, are the mkdir and cd commands,
prior to the commands that unpack the sources. Note that you can use the -n option along
with -c, so something like %setup -c -n blather works as expected.

13.4 Macros: Helpful Shorthand for Package Builders 189

-D { Do Not Delete Directory Before Unpacking Sources

The -D option keeps the %setupmacro from deleting the software's top-level directory. This
option is handy when the sources being unpacked are to be added to an already-existing
directory tree. This would be the case when more than one %setup macro is used. Here's
what %setup does when the -D option is employed:

cd /usr/src/redhat/BUILD

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

As advertised, the rm prior to the tar command is gone.

-T { Do Not Perform Default Archive Unpacking

The -T option disables %setup's normal unpacking of the archive �le speci�ed on the
source0 line. Here's what the resulting commands look like:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

Doesn't make much sense, does it? There's a method to this madness. We'll see the -T in
action in the next section.

-b <n> | Unpack The nth Sources Before Changing Directory

The -b option is used in conjunction with the source tag. Speci�cally, it is used to identify
which of the numbered source tags in the spec �le are to be unpacked.

The -b option requires a numeric argument matching an existing source tag. If a numeric
argument is not provided, the build will fail:

rpm -ba cdplayer-1.0.spec

Package: cdplayer

Need arg to %setup -b

Build failed.

190 Inside the Spec File

#

Remembering that the �rst source tag is implicitly numbered 0, let's see what happens
when the %setup line is changed to %setup -b 0:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

That's strange. The sources were unpacked twice. It doesn't make sense, until you realize
that this is why there is a -T option. Since -T disables the default source �le unpacking,
and -b selects a particular source �le to be unpacked, the two are meant to go together, like
this:

%setup -T -b 0

Looking at the resulting commands, we �nd:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

That's more like it! Let's go on to the next option.

-a <n> | Unpack The nth Sources After Changing Directory

The -a option works similarly to the -b option, except that the sources are unpacked after

changing directory into the top-level build directory. Like the -b option, -a requires -T in

13.4 Macros: Helpful Shorthand for Package Builders 191

order to prevent two sets of unpacking commands. Here are the commands that a %setup

-T -a 0 line would produce:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

Note that there is no mkdir command to create the top-level directory prior to issuing a cd

into it. In our example, adding the -c option will make things right:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

mkdir -p cdplayer-1.0

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

The result is the proper sequence of commands for unpacking a tar �le with no top-level
directory.

Using %setup in a Multi-source Spec File

If all these interrelated options seem like overkill for unpacking a single source �le, you're
right. The real reason for the various options is to make it easier to combine several separate
source archives into a single, build-able entity. Let's see how they work in that type of
environment.

For the purposes of this example, our spec �le will have the following three source tags:5

source: source-zero.tar.gz

source1: source-one.tar.gz

source2: source-two.tar.gz

5Yes, the source tags should include a URL pointing to the sources.

192 Inside the Spec File

To unpack the �rst source is not hard; all that's required is to use %setup with no options:

%setup

This produces the following set of commands:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

If source-zero.tar.gz didn't include a top-level directory, we could have made one by
adding the -c option:

%setup -c

which would result in:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

mkdir -p cdplayer-1.0

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

Of course, if the top-level directory did not match the package name, the -n option could
have been added:

%setup -n blather

which results in:

cd /usr/src/redhat/BUILD

rm -rf blather

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

13.4 Macros: Helpful Shorthand for Package Builders 193

fi

cd blather

cd /usr/src/redhat/BUILD/blather

chown -R root.root .

chmod -R a+rX,g-w,o-w .

or

%setup -c -n blather

This results in:

cd /usr/src/redhat/BUILD

rm -rf blather

mkdir -p blather

cd blather

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/blather

chown -R root.root .

chmod -R a+rX,g-w,o-w .

Now let's add the second source �le. Things get a bit more interesting here. First, we
need to identify which source tag (and therefore, which source �le) we're talking about. So
we need to use either the -a or -b option, depending on the characteristics of the source
archive. For this example, let's say that -a is the option we want. Adding that option, plus
a \1" to point to the source �le speci�ed in the source1 tag, we have:

%setup -a 1

Since we've already seen that using the -a or -b option results in duplicate unpacking, we
need to disable the default unpacking by adding the -T option:

%setup -T -a 1

Next, we need to make sure that the top-level directory isn't deleted. Otherwise, the �rst
source �le we just unpacked would be gone. That means we need to include the -D option
to prevent that from happening. Adding this �nal option, and including the now complete
macro in our %prep script, we now have:

%setup

%setup -T -D -a 1

This will result in the following commands:

cd /usr/src/redhat/BUILD

194 Inside the Spec File

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

cd /usr/src/redhat/BUILD

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-one.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

So far, so good. Let's include the last source �le, but with this one, we'll say that it needs
to be unpacked in a subdirectory of cdplayer-1.0 called database. Can we use %setup in
this case?

We could, if source-two.tgz created the database subdirectory. If not, then it'll be
necessary to do it by hand. For the purposes of our example, let's say that source-two.tgz
wasn't created to include the database subdirectory, so we'll have to do it ourselves. Here's
our %prep script now:

%setup

%setup -T -D -a 1

mkdir database

cd database

gzip -dc /usr/src/redhat/SOURCES/source-two.tar.gz | tar -xvvf -

Here's the resulting script:

cd /usr/src/redhat/BUILD

rm -rf cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

cd cdplayer-1.0

cd /usr/src/redhat/BUILD/cdplayer-1.0

chown -R root.root .

chmod -R a+rX,g-w,o-w .

cd /usr/src/redhat/BUILD

13.4 Macros: Helpful Shorthand for Package Builders 195

cd cdplayer-1.0

gzip -dc /usr/src/redhat/SOURCES/source-one.tar.gz | tar -xvvf -

if [$? -ne 0]; then

exit $?

fi

mkdir database

cd database

gzip -dc /usr/src/redhat/SOURCES/source-two.tar.gz | tar -xvvf -

The three commands we added to unpack the last set of sources were added to the end of
the %prep script.

The bottom line to using the %setup macro is that you can probably get it to do what you
want, but don't be afraid to tinker. And even if %setup can't be used, it's easy enough to
add the necessary commands to do the work manually. Above all, make sure you use the
- -test option when testing your %setup macros, so you can see what commands they're
translating to.

Next, let's look at RPM's second macro, %patch.

13.4.2 The %patch Macro

The %patch macro, as its name implies, is used to apply patches to the unpacked sources.
In the following examples, our spec �le has the following patch tag lines:

patch0: patch-zero

patch1: patch-one

patch2: patch-two

At its simplest, the %patch macro can be invoked without any options:

%patch

Here are the resulting commands:

echo "Patch #0:"

patch -p0 -s < /usr/src/redhat/SOURCES/patch-zero

The %patch macro nicely displays a message showing that a patch is being applied, then
invokes the patch command to actually do the dirty work. There are two options to the
patch command:

1. The -p option, which directs patch to remove the speci�ed number of slashes (and
any intervening directories) from the front of any �lenames speci�ed in the patch �le.
In this case, nothing will be removed.

2. The -s option, which directs patch to apply the patch without displaying any infor-
mational messages. Only errors from patch will be displayed.

196 Inside the Spec File

How did the %patch macro know which patch to apply? Keep in mind that, like the source
tag lines, every patch tag is numbered, starting at zero. The %patch macro, by default,
applies the patch �le named on the patch (or patch0) tag line.

Specifying Which patch Tag to Use

The %patch macro actually has two di�erent ways to specify the patch tag line it is to use.
The �rst method is to simply append the number of the desired patch tag to the end of the
%patch macro itself. For example, in order to apply the patch speci�ed on the patch2 tag
line, the following %patch macro could be used:

%patch2

The other approach is to use the -P option. This option is followed by the number of the
patch tag line desired. Therefore, this line is identical in function to the previous one:

%patch -P 2

Note that the -P option will not apply the �le speci�ed on the patch0 line, by default.
Therefore, if you choose to use the -P option to specify patch numbers, you'll need to use
the following format when applying patch zero:

%patch -P 0

-p <#> { Strip <# > leading slashes and directories from patch �lenames

The -p (Note the lowercase \p"!) option is sent directly to the patch command. It is
followed by a number, which speci�es the number of leading slashes (and the directories in
between) to strip from any �lenames present in the patch �le. For more information on this
option, please consult the patch man page.

-b <name> { Set the backup �le extension to <name>

When the patch command is used to apply a patch, unmodi�ed copies of the �les patched
are renamed to end with the extension .orig. The -b option is used to change the extension
used by patch. This is normally done when multiple patches are to be applied to a given
�le. By doing this, copies of the �le as it existed prior to each patch, are readily available.

-E | Remove Empty Output Files

The -E option is passed directly to the patch program. When patch is run with the -E

option, any output �les that are empty after the patches have been applied, are removed.

Now let's take %patch on a test-drive, and put it through its paces.

13.4 Macros: Helpful Shorthand for Package Builders 197

An example of the %patch Macro in Action

Using the example patch tag lines we've used throughout this section, let's put together an
example and look at the resulting commands. In our example, the �rst patch to be applied
needs to have the root directory stripped. Its %patch macro will look like this:

%patch -p1

The next patch is to be applied to �les in the software's lib subdirectory, so we'll need to
add a cd command to get us there. We'll also need to strip an additional directory:

cd lib

%patch -P 1 -p2

Finally, the last patch is to be applied from the software's top-level directory, so we need to
cd back up a level. In addition, this patch modi�es some �les that were also patched the
�rst time, so we'll need to change the backup �le extension:

cd ..

%patch -P 2 -p1 -b .last-patch

Here's what the %prep script (minus any %setup macros) looks like:

%patch -p1

cd lib

%patch -P 1 -p2

cd ..

%patch -P 2 -p1 -b .last-patch

And here's what the macros expand to:

echo "Patch #0:"

patch -p1 -s < /usr/src/redhat/SOURCES/patch-zero

cd lib

echo "Patch #1:"

patch -p2 -s < /usr/src/redhat/SOURCES/patch-one

cd ..

echo "Patch #2:"

patch -p1 -b .last-patch -s < /usr/src/redhat/SOURCES/patch-two

No surprises here. Note that the %setup macro leaves the current working directory set to
the software's top-level directory, so our cd commands with their relative paths will do the
right thing. Of course, we have environment variables available that could be used here,
too.

Compressed Patch Files If a patch �le is compressed with gzip, RPMwill automatically
decompress it before applying the patch. Here's a compressed patch �le as speci�ed in the
spec �le:

198 Inside the Spec File

Patch: bother-3.5-hack.patch.gz

This is part of the script RPM will execute when the %prep section is executed:

echo Executing: %prep

...

echo "Patch #0:"

gzip -dc /usr/src/redhat/SOURCES/bother-3.5-hack.patch.gz | patch -p1 -s

...

First, the patch �le is decompressed using gzip. The output from gzip is then piped into
patch.

That's about it for RPM's macros. Next, let's take a look at the %files list.

13.5 The %files List

The %files list indicates to RPM which �les on the build system are to be packaged. The
list consists of one �le per line. The �le may have one or more directives preceeding it.
These directives give RPM additional information about the �le and are discussed more
fully below.

Normally, each �le includes its full path. The path performs two functions. First, it speci�es
the �le's location on the build system. Second, it denotes where the �le should be placed
when the package is to be installed.6

For packages that create directories containing hundreds of �les, it can be quite cumbersome
creating a list that contains every �le. To make this situation a bit easier, if the %files list
contains a path to a directory, RPM will automatically package every �le in that directory,
as well as every �le in each subdirectory. Shell-style globbing can also be used in the %files
list.

13.6 Directives For the %files list

The %files list may contain a number of di�erent directives. They are used to:

� Identify documentation and con�guration �les.

� Ensure that a �le has the correct permissions and ownership set.

� Control which aspects of a �le are to be checked during package veri�cation.

� Eliminate some of the tedium in creating the %files list.

6This is not entirely the case when a relocatable package is being built. For more information on
relocatable packages, see chapter 15 on page 219.

13.6 Directives For the %files list 199

In the %files list, one or more directives may be placed on a line, separated by spaces,
before one or more �lenames. Therefore, if %foo and %bar are two %files list directives,
they may be applied to a �le baz in the following manner:

%foo %bar baz

Now it's time to take a look at the directives that inhabit the %files list.

13.6.1 File-related Directives

RPM processes �les di�erently according to their type. However, RPM does not have a
method of automatically determining �le types. Therefore, it is up to the package builder
to appropriately mark �les in the %files list. This is done using one of the directives below.

Keep in mind that not every �le will need to be marked. As you read the following sections,
you'll see that directives are only used in special circumstances. In most packages, the
majority of �les in the %files list will not need to be marked.

The %doc Directive

The %doc directive ags the �lename(s) that follow, as being documentation. RPM keeps
track of documentation �les in its database, so that a user can easily �nd information
about an installed package. In addition, RPM can create a package-speci�c documentation
directory during installation and copy documentation into it. Whether or not this additional
step is taken, is dependent on how a �le is speci�ed. Here is an example:

%doc README

%doc /usr/local/foonly/README

The �le README exists in the software's top-level directory during the build, and is included
in the package �le. When the package is installed, RPM creates a directory in the documen-
tation directory named the same as the package (ie, <software>-<version>-<release>),
and copies the README �le there. The newly created directory and the README �le are
marked in the RPM database as being documentation. The default documentation direc-
tory is /usr/doc, and can be changed by setting the defaultdocdir rpmrc �le entry. For
more information on rpmrc �les, please see chapter B on page 363.

The �le /usr/local/foonly/README was installed into that directory during the build and
is included in the package �le. When the package is installed, the README �le is copied into
/usr/local/foonly and marked in the RPM database as being documentation.

The %config Directive

The %config directive is used to ag the speci�ed �le as being a con�guration �le. RPM
performs additional processing for con�g �les when packages are erased, and during instal-
lations and upgrades. This is due to the nature of con�g �les: They are often changed by
the system administrator, and those changes should not be lost.

200 Inside the Spec File

There is a restriction to the %config directive, and that restriction is that no more than
one �lename may follow the %config. This means that the following example is the only
allowable way to specify con�g �les:

%config /etc/foonly

Note that the full path to the �le, as it is installed at build time, is required.

The %attr Directive

The %attr directive permits �ner control over three key �le attributes:

1. The �le's permissions, or \mode".

2. The �le's user ID.

3. The �le's group ID.

The %attr directive has the following format:

%attr(<mode>, <user>, <group>) file

The mode is speci�ed in the traditional numeric format, while the user and group are
specifed as a string, such as \root". Here's a sample %attr directive:

%attr(755, root, root) foo.bar

This would set foo.bar's permissions to 755. The �le would be owned by user root, group
root. If a particular attribute does not need to be speci�ed (usually because the �le is
installed with that attribute set properly), then that attribute may be replaced with a dash:

%attr(755, -, root) foo.bar

The main reason to use the %attr directive is to permit users without root access to build
packages. The techniques for doing this (and a more in-depth discussion of the %attr

directive) can be found in chapter 16, on page 229.

The %verify Directive

RPM's ability to verify the integrity of the software it has installed is impressive. But
sometimes it's a bit too impressive. After all, RPM can verify as many as nine di�erent
aspects of every �le. The %verify directive can control which of these �le attributes are
to be checked when an RPM veri�cation is done. Here are the attributes, along with the
names used by the %verify directive:

1. Owner (owner)

2. Group (group)

13.6 Directives For the %files list 201

3. Mode (mode)

4. MD5 Checksum (md5)

5. Size (size)

6. Major Number (maj)

7. Minor Number (min)

8. Symbolic Link String (symlink)

9. Modi�cation Time (mtime)

How is %verify used? Say, for instance, that a package installs device �les. Since the
owner of a device will change, it doesn't make sense to have RPM verify the device �le's
owner/group and give out a false alarm. Instead, the following %verify directive could be
used:

%verify(mode md5 size maj min symlink mtime) /dev/ttyS0

We've left out owner and group, since we'd rather RPM not verify those.7 However, if all
you want to do is prevent RPM from verifying one or two attributes, you can use %verify's
alternate syntax:

%verify(not owner group) /dev/ttyS0

This use of %verify produces identical results to the previous example.

13.6.2 Directory-related Directives

While the two directives in this section perform di�erent functions, each is related to direc-
tories in some way. Let's see what they do:

The %docdir Directive

The %docdir directive is used to add a directory to the list of directories that will contain
documentation. RPM includes the directories /usr/doc, /usr/info, and /usr/man in the
%docdir list by default.

For example, if the following line is part of the %files list:

%docdir /usr/blather

any �les in the %files list that RPM packages from /usr/blather will be included in the
package as usual, but will also be automatically agged as documentation. This directive is
handy when a package creates its own documentation directory and contains a large number
of �les. Let's give it a try by adding the following line to our spec �le:

7RPM will automatically exclude �le attributes from veri�cation if it doesn't make sense for the type of
�le. In our example, getting the MD5 checksum of a device �le is an example of such a situation.

202 Inside the Spec File

%docdir /usr/blather

Our %files list contains no references to the several �les the package installs in the
/usr/blather directory. After building the package, looking at the package's �le list shows:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

...

#

Wait a minute: There's nothing there, not even /usr/blather! What happened?

The problem is that %docdir only directs RPM to mark the speci�ed directory as holding
documentation. It doesn't direct RPM to package any �les in the directory. To do that, we
need to clue RPM in to the fact that there are �les in the directory that must be packaged.

One way to do this is to simply add the �les to the %files list:

%docdir /usr/blather

/usr/blather/INSTALL

Looking at the package, we see that INSTALL was packaged:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

...

/usr/blather/INSTALL

#

Directing RPM to only show the documentation �les, we see that INSTALL has indeed been
marked as documentation, even though the %doc directive had not been used:

rpm -qdp ../RPMS/i386/blather-1.0-1.i386.rpm

...

/usr/blather/INSTALL

#

Of course, if you go to the trouble of adding each �le to the %files list, it wouldn't be that
much more work to add %doc to each one. So the way to get the most bene�t from %docdir

is to add another line to the %files list:

%docdir /usr/blather

/usr/blather

Since the �rst line directs RPM to ag any �le in /usr/blather as being documentation,
and the second line tells RPM to automatically package any �les found in /usr/blather,
every single �le in there will be packaged and marked as documentation:

13.6 Directives For the %files list 203

rpm -qdp ../RPMS/i386/blather-1.0-1.i386.rpm

/usr/blather

/usr/blather/COPYING

/usr/blather/INSTALL

/usr/blather/README

...

#

The %docdir directive can save quite a bit of e�ort in creating the %files list. The only
caveat is that you must be sure the directory will only contain �les you want marked as
documentation. Keep in mind, also, that all subdirectories of the %docdir'ed directory will
be marked as documentation directories, too.

The %dir Directive

As we mentioned in section 13.5, if a directory is speci�ed in the %files list, the contents of
that directory, and the contents of every directory under it, will automatically be included
in the package. While this feature can be handy (assuming you are sure that every �le
under the directory should be packaged) there are times when this could be a problem.

The way to get around this, is to use the %dir directive. By adding this directive to the
line containing the directory, RPM will package only the directory itself, regardless of what
�les are in the directory at the time the package is created. Here's an example of %dir in
action.

The blather-1.0 package creates the directory /usr/blather as part of its build. It also
puts several �les in that directory. In the spec �le, the /usr/blather directory is included
in the %files list:

%files

...

/usr/blather

...

There are no other entries in the %files list that have /usr/blather as part of their path.
After building the package, we use RPM to look at the �les in the package:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

...

/usr/blather

/usr/blather/COPYING

/usr/blather/INSTALL

/usr/blather/README

...

#

204 Inside the Spec File

The �les present in /usr/blather at the time the package was built were included in the
package automatically, without entering their names in the %files list.

However, after changing the /usr/blather line in the %files list to:

%dir /usr/blather

and rebuilding the package, a listing of the package's �les now includes only the
/usr/blather directory:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

...

/usr/blather

...

#

-f <file> | Read the %files List From <file>

The -f option is used to direct RPM to read the %files list from the named �le. Like the
%files list in a spec �le, the �le named using the -f option should contain one �lename
per line and also include any of the directives named in this section.

Why is it necessary to read �lenames from a �le rather than have the �lenames in the spec
�le? Here's a possible reason:

The �lenames' paths may contain a directory name that can only be determined at build-
time, such as an architecture speci�cation. The list of �les, minus the variable part of the
path, can be created, and sed can be used at build-time to update the path appropriately.

It's not necessary that every �lename to be packaged reside in the �le. If there are any
�lenames present in the spec �le, they will be packaged as well:

%files latex -f tetex-latex-skel

/usr/bin/latex

/usr/bin/pslatex

...

Here, the �lenames present in the �le tetex-latex-skel would be packaged, followed by
every �lename following the %files line.

13.7 The Lone Directive: %package

While every directive we've seen so far is used in the %files list, the %package directive
is di�erent. It is used to permit the creation of more than one package per spec �le and
can appear at any point in the spec �le. These additional packages are known as subpack-
ages. Subpackages are named according to the contents of the line containing the %package
directive. The format of the package directive is:

13.8 Conditionals 205

%package: <string>

The <string> should be a name that describes the subpackage. This string is appended
to the base package name to produce the subpackage's name. For example, if a spec �le
contains a name tag value of \foonly", and a \%package doc" line, then the subpackage
name will be foonly-doc.

13.7.1 -n <string> | Use <string> As the Entire
Subpackage Name

As we mentioned above, the name of a subpackage normally includes the main package
name. When the -n option is added to the %package directive, it directs RPM to use the
name speci�ed on the %package line as the entire package name. In the example above, the
following %package line would create a subpackage named foonly-doc:

%package doc

The following %package line would create a subpackage named doc:

%package -n doc

The %package directive plays another role in subpackage building. That role is to act as a
place to collect tags that are speci�c to a given subpackage. Any tag placed after a %package
directive will only apply to that subpackage.

Finally, the name string speci�ed by the %package directive is also used to denote which
parts of the spec �le are a part of that subpackage. This is done by including the string
(along with the -n option, if present on the %package line) on the starting line of the section
that is to be subpackage-speci�c. Here's an example:

...

%package -n bar

...

%post -n bar

...

In this heavily edited spec �le segment, a subpackage called bar has been de�ned. Later in
the �le is a post-install script. Because it has subpackage bar's name on the %post line, the
post-install script will be part of the bar subpackage only.

For more information on building subpackages, please see chapter 18 on page 251.

13.8 Conditionals

While the \exclude" and \exclusive" tags (excludearch, exclusivearch, excludeos, and
exclusiveos) provide some control over whether a package will be built on a given archi-
tecture and/or operating system, that control is still rather coarse.

206 Inside the Spec File

For example, what should be done if a package will build under multiple architectures, but
requires slightly di�erent %build scripts? Or what if a package requires a certain set of �les
under one operating system, and an entirely di�erent set under another operating system?
The architecture and operating system-speci�c tags we've discussed earlier in the chapter
do nothing to help in such situations. What can be done?

One approach would be to simply create di�erent spec �les for each architecture or operating
system. While it would certainly work, this approach has some problems:

� More work. The existence of multiple spec �les for a given package means that the
e�ort required to make any changes to the package is multiplied by however many
di�erent spec �les there are.

� More chance for mistakes. If any work needs to be done to the spec �les, the fact
they are separate means it is that much easier to forget to make the necessary changes
to each one. There is also the chance of introducing mistakes each time changes are
made.

The other approach is to somehow permit the conditional inclusion of architecture- or op-
erating system-speci�c sections of the spec �le. Fortunately, the RPM designers chose this
approach, and it makes multi-platform package building easier and less prone to mistakes.

We discuss multi-platform package building in depth in chapter 19. For now, let's take a
quick look at RPM's conditionals.

The %ifarch Conditional

The %ifarch conditional is used to begin a section of the spec �le that is architecture-
speci�c. It is followed by one or more architecture speci�ers, each separated by commas or
whitespace. Here is an example:

%ifarch i386 sparc

The contents of the spec �le following this line would be processed only by Intel x86 or Sun
SPARC-based systems. However, if only this line were placed in a spec �le, this is what
would happen if a build was attempted:

rpm -ba cdplayer-1.0.spec

Unclosed %if

Build failed.

#

The problem that surfaced here is that any conditional must be \closed" by using either
%else or %endif. We'll be covering them a bit later in the chapter.

13.8 Conditionals 207

The %ifnarch Conditional

The %ifnarch conditional is used in a similar fashion to %ifarch, except that the logic is
reversed. If a spec �le contains a conditional block starting with %ifarch alpha, that block
would be processed only if the build was being done on a Digital Alpha/AXP-based system.
However, if the conditional block started with %ifnarch alpha, then that block would be
processed only if the build were not being done on an Alpha.

Like %ifarch, %ifnarch can be followed by one or more architectures and must be closed
by a %else or %endif.

The %ifos Conditional

The %ifos conditional is used to control RPM's spec �le processing based on the build
system's operating system. It is followed by one or more operating system names. A
conditional block started with %ifos must be closed by a %else or %endif. Here's an
example:

%ifos linux

The contents of the spec �le following this line would be processed only if the build was
done on a linux system.

The %ifnos Conditional

The %ifnos conditional is the logical complement to %ifos: that is, if a conditional starting
with the line %ifnos irix is present in a spec �le, then the �le contents after the %ifnos
will not be processed if the build system is running Irix. As always, a conditional block
starting with %ifnos must be closed by a %else or %endif.

The %else Conditional

The %else conditional is placed between a %if conditional of some persuasion, and a %endif.
It is used to create two blocks of spec �le statements, only one of which will be used in any
given case. Here's an example:

%ifarch alpha

make RPM_OPT_FLAGS="$RPM_OPT_FLAGS -I ."

%else

make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"

%endif

When a build is performed on a Digital Alpha/AXP, some additional ags are added to the
make command. On all other systems, these ags are not added.

208 Inside the Spec File

The %endif Conditional

A %endif is used to end a conditional block of spec �le statements. It can follow one of the
%if conditionals, or the %else. The %endif is always needed after a conditional, otherwise
the build will fail. Here's short conditional block, ending with a %endif:

%ifarch i386

make INTELFLAG=-DINTEL

%endif

In this example, we see the conditional block started with a %ifarch and ended with a
%endif.

Now that we have some more in-depth knowledge of the spec �le, let's take a look at some
of RPM's additional features. In the next chapter, we'll explore how to add dependency
information to a package.

Chapter 14

Adding Dependency

Information to a Package

Since the very �rst version of RPM hit the streets, one of the side e�ects of RPM's ease
of use was that it made it easier for people to break things. Since RPM made it so simple
to erase packages, it became common for people to joyfully erase packages until something
broke.

Usually this only bit people once, but even once was too much of a hassle if it could be
prevented. With this in mind, the RPM developers gave RPM the ability to:

� Build packages that contain information on the capabilities they require.

� Build packages that contain information on the capabilities they provide.

� Store this \provides" and \requires" information in the RPM database.

In addition, they made sure RPM was able to display dependency information, as well
as to warn users if they were attempting to do something that would break a package's
dependency requirements.

With these features in place, it became more di�cult for someone to unknowingly erase a
package and wreak havoc on their system.

14.1 An Overview of Dependencies

We've already alluded to the underlying concept for RPM's dependency processing. It is
based on two key factors:

� Packages advertise what capabilities they provide.

� Packages advertise what capabilities they require.

210 Adding Dependency Information to a Package

By simply checking these two types of information, many possible problems can be avoided.
For example, if a package requires a capability that is not provided by any already-installed
package, that package cannot be installed and expected to work properly.

On the other hand, if a package is to be erased, but its capabilities are required by other
installed packages, then it cannot be erased without causing other packages to fail.

As you might imagine, it's not quite that simple. But adding dependency information can
be easy. In fact, in most cases, it's automatic!

14.2 Automatic Dependencies

When a package is built by RPM, if any �le in the package's %files list is a shared library,
the library's \soname" is automatically added to the list of capabilities the package provides.
The soname is the name used to determine compatibility between di�erent versions of a
library.

Note that this is not a �lename. In fact, no aspect of RPM's dependency processing is
based on �lenames. Many people new to RPM often make the assumption that a failed
dependency represents a missing �le. This is not the case.

Remember that RPM's dependency processing is based on knowing what capabilities are
provided by a package and what capabilities a package requires. We've seen how RPM
automatically determines what shared library resources a package provides. But does it
automatically determine what shared libraries a package requires?

Yes! RPM does this by running ldd on every executable program in a package's %files
list. Since ldd provides a list of the shared libraries each program requires, both halves of
the equation are complete | that is, the packages that make shared libraries available, and
the packages that require those shared libraries, are tracked by RPM. RPM can then take
that information into account when packages are installed, upgraded, or erased.

14.2.1 The Automatic Dependency Scripts

RPM uses two scripts to handle automatic dependency processing. They reside in /usr/bin

and are called find-requires, and find-provides. We'll take a look at them in a minute,
but �rst let's look at why there are scripts to do this sort of thing. Wouldn't it be better to
have this built into RPM itself?

Actually, creating scripts for this sort of thing is a better idea. The reason? RPM has
already been ported to a variety of di�erent operating systems. Determining what shared
libraries an executable requires, and the soname of shared libraries, is simple, but the exact
steps required vary widely from one operating system to another. Putting this part of RPM
into a script makes it easier to port RPM.

Let's take a look at the scripts that are used by RPM under the Linux operating system.

14.2 Automatic Dependencies 211

find-requires | Automatically Determine Shared Library Requirements

The find-requires script for Linux is quite simple:

#!/bin/sh

note this works for both a.out and ELF executables

ulimit -c 0

filelist=`xargs -r file | fgrep executable | cut -d: -f1 `

for f in $filelist; do

ldd $f | awk '/=>/ { print $1 }'

done | sort -u | xargs -r -n 1 basename | sort -u

This script �rst creates a list of executable �les. Then, for each �le in the list, ldd determines
the �le's shared library requirements, producing a list of sonames. Finally, the list of sonames
is sanitized by removing duplicates, and removing any paths.

find-provides | Automatically Determine Shared Library Sonames

The find-provides script for Linux is a bit more complex, but still pretty straightforward:

#!/bin/bash

This script reads filenames from STDIN and outputs any relevant

provides information that needs to be included in the package.

filelist=$(grep "\\.so" | grep -v "^/lib/ld.so" |

xargs file -L 2>/dev/null | grep "ELF.*shared object" | cut -d: -f1)

for f in $filelist; do

soname=$(objdump -p $f | awk '/SONAME/ {print $2}')

if ["$soname" != ""]; then

if [! -L $f]; then

echo $soname

fi

else

echo ${f##*/}

fi

done | sort -u

First, a list of shared libraries is created. Then, for each �le on the list, the soname is
extracted, cleaned up, and duplicates removed.

212 Adding Dependency Information to a Package

14.2.2 Automatic Dependencies: An Example

Let's take a widely used program, ls, the directory lister, as an example. On a Red Hat
Linux system, ls is part of the fileutils package and is installed in /bin. Let's play the
part of RPM during fileutils' package build and run find-requires on /bin/ls. Here's
what we'll see:

find-requires

/bin/ls

<ctrl-d>

libc.so.5

#

The find-requires script returned libc.so.5. Therefore, RPM should add a requirement
for libc.so.5 when the fileutils package is built. We can verify that RPM did add
ls' requirement for libc.so.5 by using RPM's - -requires option to display fileutils'
requirements:

rpm -q - -requires fileutils

libc.so.5

#

OK, that's the �rst half of the equation | RPM automatically detecting a package's shared
library requirements. Now let's look at the second half of the equation { RPM detecting
packages that provide shared libraries. Since the libc package includes, among others, the
shared library /lib/libc.so.5.3.12, RPM would obtain its soname. We can simulate this
by using find-provides to print out the library's soname:

find-provides

/lib/libc.so.5.3.12

<ctrl-d>

libc.so.5

#

OK, so /lib/libc.so.5.3.12's soname is libc.so.5. Let's see if the libc package really
does \provide" the libc.so.5 soname:

rpm -q - -provides libc

libm.so.5

libc.so.5

#

Yes, there it is, along with the soname of another library contained in the package. In this
way, RPM can ensure that any package requiring libc.so.5 will have a compatible library

14.3 Manual Dependencies 213

available as long as the libc package, which provides libc.so.5, is installed.

In most cases, automatic dependencies are enough to �ll the bill. However, there are cir-
cumstances when the package builder has to manually add dependency information to a
package. Fortunately, RPM's approach to manual dependencies is both simple and exible.

14.2.3 The autoreqprov Tag | Disable Automatic
Dependency Processing

There may be times when RPM's automatic dependency processing is not desired. In these
cases, the autoreqprov tag may be used to disable it. This tag takes a yes/no or 0/1 value.
For example, to disable automatic dependency processing, the following line may be used:

AutoReqProv: no

14.3 Manual Dependencies

You might have noticed that we've been using the words \requires" and \provides" to
describe the dependency relationships between packages. As it turns out, these are the
exact words used in spec �les to manually add dependency information. Let's look at the
�rst tag: requires.

14.3.1 The requires Tag

We've been deliberately vague when discussing exactly what it is that a package requires.
Although we've used the word \capabilities", in fact, manual dependency requirements are
always represented in terms of packages. For example, if package foo requires that package
bar is installed, it's only necessary to add the following line to foo's spec �le:

requires: bar

Later, when the foo package is being installed, RPM will consider foo's dependency re-
quirements met if any version of package bar is already installed.1

If more than one package is required, they can be added to the requires tag, one after
another, separated by commas and/or spaces. So if package foo requires packages bar and

baz, the following line will do the trick:

requires: bar, baz

1As long as the requiring and the providing packages are installed using the same invocation of RPM,
the dependency checking will succeed. For example, the command rpm -ivh *.rpm will properly check for
dependencies, even if the requiring package ends up being installed before the providing package.

214 Adding Dependency Information to a Package

As long as any version of bar and baz is installed, foo's dependencies will be met.

Adding Version Requirements

When a package has slightly more stringent needs, it's possible to require certain versions
of a package. All that's necessary is to add the desired version number, preceded by one of
the following comparison operators:

< Requires package with a version less than the speci�ed version.

<= Requires package with a version less than or equal to the speci�ed version.

= Requires package with a version equal to the speci�ed version.

>= Requires package with a version equal to or greater than the speci�ed version.

> Requires package with a version greater than the speci�ed version.

Continuing with our example, let's suppose that the required version of package bar actually
needs to be at least 2.7, and that the baz package must be version 2.1 | no other version
will do. Here's what the requires tag line would look like:

requires: bar >= 2.7, baz = 2.1

We can get even more speci�c and require a particular release of a package:

requires: bar >= 2.7-4, baz = 2.1-1

When Version Numbers Aren't Enough

You might think that with all these features, RPM's dependency processing can handle
every conceivable situation. You'd be right, except for the problem of version numbers.
RPM needs to be able to determine which version numbers are more recent than others, in
order to perform its version comparisons.

It's pretty simple to determine that version 1.5 is older than version 1.6. But what about
2.01 and 2.1? Or 7.6a and 7.6? There's no way for RPM to keep up with all the di�erent
version-numbering schemes in use. But there is a solution; two, in fact. . .

Solution Number 1: Serial numbers When RPM can't decipher a package's version
number, it's time to pull out the serial tag. This tag is used to help RPM determine
version number ordering. Here's a sample serial tag line:

Serial: 42

This line indicates that the package has a serial number of 42. What does the 42 mean?
Only that this version of the package is older than the same package with a serial number

14.3 Manual Dependencies 215

of 41, but younger than the same package with a serial number of 43. If you think of serial
numbers as being nothing more than very simple version numbers, you'll be on the mark.

In order to direct RPM to look at the serial number instead of the version number when
doing dependency checking, it's necessary to append an \S" to the end of the conditional
operator in the requires tag line. So if a package requires package foo to have a serial
number equal to 42, the following tag line would be used:

Requires: foo =S 42

If the foo package needs to have a serial number greater than or equal to 42, this line would
work:

Requires: foo >=S 42

It might seem that using serial numbers is a lot of extra trouble, and you're right. But there
is an alternative:

Solution Number 2: Just Say No! If you have the option between changing the soft-
ware's version-numbering scheme, or using serial numbers in RPM, please consider changing
the version-numbering scheme. Chances are, if RPM can't �gure it out, most of the people
using your software can't, either. But in case you aren't the author of the software you're
packaging, and its version numbering scheme is giving RPM �ts, the serial tag can help
you out.

14.3.2 The conflicts Tag

The conflicts tag is the logical complement to the requires tag. It is used to specify
which packages conict with the current package. RPM will not permit conicting packages
to be installed unless overridden with the - -nodeps option.

The conflicts tag has the same format as requires. It accepts a real or virtual package
name and can optionally include version and release speci�cations or a serial number.

14.3.3 The provides Tag

Now that you've seen how it's possible to require a package using the requires tag, you're
probably expecting that you'll need to use the provides tag in every single package. After
all, RPM has to get those package names from somewhere, right?

While it is true that RPM needs to have the package names available, the provides tag is
normally not required. It would actually be redundant, because the RPM database already
contains the name of every package installed. There's no need to duplicate that information.

But wait { We said earlier that manual dependency requirements are always represented in
terms of packages. If RPM doesn't require the package builder to use the provides tag to
provide the package name, then what is the provides tag used for?

216 Adding Dependency Information to a Package

Virtual Packages

Enter the virtual package. A virtual package is nothing more than a name speci�ed with
the provides tag. Virtual packages are handy when a package requires a certain capability,
and that capability can be provided by any one of several packages. Here's an example:

In order to work properly, sendmail needs a local delivery agent to handle mail delivery.
There are a number of di�erent local delivery agents available | sendmail will work just
�ne with any of them.

In this case, it doesn't make sense to force the use of a particular local delivery agent; as
long as one's installed, sendmail's requirements will have been satis�ed. So sendmail's
package builder adds the following line to sendmail's spec �le:

requires: lda

There is no package with that name available, so sendmail's requirements must be met
with a virtual package. The creators of the various local delivery agents indicate that their
packages satisfy the requirements of the lda virtual package by adding the following line to
their packages' spec �les:

provides: lda

(Note that virtual packages may not have version numbers.) Now, when sendmail is in-
stalled, as long as there is a package installed that provides the lda virtual package, there
will be no problem.

14.4 To Summarize. . .

RPM's dependency processing is based on tracking the capabilities a package provides, and
the capabilities a package requires. A package's requirements can come from two places:

1. Shared library requirements, automatically determined by RPM.

2. The requires tag line, manually added to the package's spec �le.

These requirements can be viewed by using RPM's - -requires query option. A speci�c
requirement can be viewed by using the - -whatrequires query option. Both options are
fully described in chapter 5.

The capabilities a package provides, can come from three places:

1. Shared library sonames, automatically determined by RPM.

2. The provides tag line, manually added to the package's spec �le.

3. The package's name (and optionally, version/serial number).

14.4 To Summarize. . . 217

The �rst two types of information can be viewed by using RPM's - -provides query option.
A speci�c capability can be viewed by using the - -whatprovides query option. Both
options are fully described in chapter 5.

The package name and version are not considered capabilities that are explicitly provided.
Therefore, if a search using - -provides or - -whatprovides comes up dry, try simply
looking for a package by that name.

As you've probably gathered by now, using manual dependencies requires some level of
synchronization between packages. This can be tricky, particularly if you're not responsible
for both packages. But RPM's dependency processing can make life easier for your users.

218 Adding Dependency Information to a Package

Chapter 15

Making a Relocatable Package

RPM has the ability to give users some latitude in deciding where packages are to be installed
on their systems. However, package builders must �rst design their packages to give users
this freedom.

That's all well and good, but why would the ability to \relocate" a package be all that
important?

15.1 Why relocatable packages?

One of the many problems that plague a system administrator's life is disk space. Usually,
there's not enough of it, and if there is enough, chances are it's in the wrong place. Here's
a hypothetical example:

� Some new software comes out and is desired greatly by the user community.

� The system administrator carefully reviews the software's installation documentation
prior to doing to the installation.1 She notes that the software, all 150MB of it, installs
into /opt.

� Frowning, the sysadmin �res o� a quick df command:

df
Filesystem 1024-blocks Used Available Capacity Mounted on

/dev/sda0 100118 28434 66514 30% /

/dev/sda6 991995 365527 575218 39% /usr

#

Bottom line: There's no way 150MB of new software is going to �t on the root
�lesystem.

1Hey, we said it was hypothetical!

220 Making a Relocatable Package

� Sighing heavily, the sysadmin ponders what to do next. If only there were some way
to install the software somewhere on the /usr �lesystem. . .

It doesn't have to be this way. RPM has the ability to make packages that can be installed
with a user-speci�ed pre�x that dictates where the software will actually be placed. By mak-
ing packages relocatable, the package builder can make life easier for sysadmins everywhere.
But what exactly is a relocatable package?

A relocatable package is a package that is standard in every way, save one. The di�erence
lies in the prefix tag. When this tag is added to a spec �le, RPM will attempt to build a
relocatable package.

Note the word \attempt". There are a few conditions that must be met before a relocatable
package can be built successfully, and this chapter will cover them all. But �rst, let's look at
exactly how RPM can relocate a package. And the one component at the heart of package
relocation is the prefix tag.

15.2 The prefix tag: Relocation Central

The best way to explain how the prefix tag is used is to step through an example. Here's
a sample prefix tag:

Prefix: /opt

In this example, the pre�x path is de�ned as /opt. This means that, by default, the package
will install its �les under /opt. Let's assume the spec �le contains the following line in its
%files list:

/opt/bin/baz

If the package is installed without any relocation, this �le will be installed in /opt/bin.
This is identical to how a non-relocatable package is installed.

However, if the package is to be relocated on installation, the path of every �le in the %files
list is modi�ed according to the following steps:

1. The part of the �le's path that corresponds to the path speci�ed on the prefix tag
line is removed.

2. The user-speci�ed relocation pre�x is prepended to the �le's path.

Using our /opt/bin/baz �le as an example, let's assume that the user installing the pack-
age wishes to override the default pre�x (/opt), with a new pre�x, say, /usr/local/opt.
Following the steps above, we �rst remove the original pre�x from the �le's path:

/opt/bin/baz becomes /bin/baz

Next, we add the user-speci�ed pre�x to the front of the remaining part of the �lename:

15.3 Relocatable Wrinkles: Things to Consider 221

/usr/local/opt + /bin/baz = /usr/local/opt/bin/baz

Now that the �le's new path has been created, RPM installs the �le normally. This part of
it seems simple enough, and it is. But as we mentioned above, there are a few things the
package builder needs to consider before getting on the relocatable package bandwagon.

15.3 Relocatable Wrinkles: Things to Consider

While it's certainly no problem to add a prefix tag line to a spec �le, it's necessary to
consider a few other issues:

� Every �le in the %files list must start with the path speci�ed on the prefix tag line.

� The software must be written such that it can operate properly if relocated. Absolute
symlinks are a prime example of this.

� Other software must not rely on the relocatable package being installed in any partic-
ular location.

� inside-install/erase

Let's cover each of these issues, starting with the %files list.

15.3.1 %files List Restrictions

As mentioned above, each �le in the %files list must start with the relocation pre�x. If
this isn't done, the build will fail:

rpm -ba cdplayer-1.0.spec

* Package: cdplayer

+ umask 022

+ echo Executing: %prep

...

Binary Packaging: cdplayer-1.0-1

Package Prefix = usr/local

File doesn't match prefix (usr/local): /usr/doc/cdplayer-1.0-1

File not found: /usr/doc/cdplayer-1.0-1

Build failed.

#

In our example, the build proceeded normally until the time came to create the binary
package �le. At that point RPM detected the problem. The error message says it all:
The prefix line in the spec �le (/usr/local) was not present in the �rst part of the �le's
(/usr/doc/cdplayer-1.0-1) path. This stopped the build in its tracks.

222 Making a Relocatable Package

The fact that every �le in a relocatable package must be installed under the directory
speci�ed in the prefix line, raises some issues. For example, what about a program that
reads a con�guration �le normally kept in /etc? This question leads right into our next
section.

15.3.2 Relocatable Packages Must Contain Relocatable Software

While this section's title seems pretty obvious, it's not always easy to tell if a particular
piece of software can be relocated. Let's take a look at the question raised at the end of
the previous section. If a program has been written to read its con�guration �le from /etc,
there are three possible approaches to making that program relocatable:

1. Set the pre�x to /etc and package everything under /etc.

2. Package everything somewhere other than /etc and leave out the con�g �le entirely.

3. Modify the program.

The �rst approach would certainly work from a purely technical standpoint, but not many
people would be happy with a program that installed itself in /etc. So this approach isn't
viable.

The second approach might be more appropriate, but it forces users to complete the install
by having them create the con�g �le themselves. If RPM's goal is to make software easier
to install and remove, this is not a viable approach, either!

The �nal approach might be the best. Once the program is installed, when the rewritten
software is �rst run, it could see that no con�guration �le existed in /etc, and create one.
However, even though this would work, when the time came to erase the package, the con�g
�le would be left behind. RPM had never installed it, so RPM couldn't get rid of it. There's
also the fact that this approach is probably more labor intensive than most package builders
would like.

None of these approaches are very appealing, are they? Some software just doesn't relocate
very well. In general, any of the following things are warning signs that relocation is going
to be a problem:

� The software contains one or more �les that must be installed in speci�c directories

� The software refers to system �les using relative paths (Which is really just another
way of saying the software must be installed in a particular directory)

If these kinds of issues crop up, then making the software relocatable is going to be tough.
And there's still one issue left to consider.

15.3.3 The Relocatable Software Is Referenced By Other Software

Even assuming the software is written so that it can be put in a relocatable package, there
still might be a problem. And that problem centers not on the relocatable software itself,
but on other programs that reference the relocatable software.

15.4 Building a Relocatable Package 223

For example, there are times when a package needs to execute other programs. This might
include backup software that needs to send mail, or a communications program that needs
to compress �les. If these underlying programs were relocatable, and not installed where
other packages expect them, then they would be of little use.

Granted, this isn't a common problem, but it can happen. And for the package builder inter-
ested in building relocatable packages, it's an issue that needs to be explored. Unfortunately,
this type of problem can be the hardest to �nd.

If, however, a software product has been found to be relocatable, the mechanics of actually
building a relocatable package are pretty straightforward. Let's give it a try.

15.4 Building a Relocatable Package

For this example, we'll use our tried-and-true cdplayer application. Let's start by reviewing
the spec �le for possible problems:

#

Example spec file for cdplayer app...

#

Summary:A CD player app that rocks!

Name: cdplayer

...

%files

%doc README

/usr/local/bin/cdp

/usr/local/bin/cdplay

%doc /usr/local/man/man1/cdp.1

%config /etc/cdp-config

Everything looks all right, except for the %files list. There are �les in /usr/local/bin,
a man page in /usr/local/man/man1, and a con�g �le in /etc. A pre�x of /usr/local
would work pretty well, except for that cdp-config �le.

For the sake of this �rst build, we'll declare the con�g �le unnecessary and remove it from
the %files list. We'll then add a prefix tag line, setting the pre�x to /usr/local. After
these changes are made, let's try a build:

rpm -ba cdplayer-1.0.spec
* Package: cdplayer

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz

224 Making a Relocatable Package

...

Binary Packaging: cdplayer-1.0-1

Package Prefix = usr/local

File doesn't match prefix (usr/local): /usr/doc/cdplayer-1.0-1

File not found: /usr/doc/cdplayer-1.0-1

Build failed.

#

The build proceeded normally up to the point of actually creating the binary package. The
Package Prefix = usr/local line con�rms that RPM picked up our prefix tag line. But
the build stopped { and on a �le called /usr/doc/cdplayer-1.0-1. But that �le isn't even
in the %files list. What's going on?

Take a closer look at the %files list. See the line that reads %doc README? In section 13.6.1
on page 199, we discussed how the %doc directive creates a directory under /usr/doc. That's
the �le that killed the build { the directory created by the %doc directive.

Let's temporarily remove that line from the %files list and try again:

rpm -ba cdplayer-1.0.spec
* Package: cdplayer

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz

...

Binary Packaging: cdplayer-1.0-1

Package Prefix = usr/local

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

bin/cdp

bin/cdplay

man/man1/cdp.1

90 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

+ umask 022

+ echo Executing: %clean

Executing: %clean

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ exit 0

Source Packaging: cdplayer-1.0-1

cdplayer-1.0.spec

cdplayer-1.0.tgz

15.4 Building a Relocatable Package 225

82 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

The build completed normally. Note how the �les to be placed in the binary package �le
are listed, minus the pre�x of /usr/local. Some of you might be wondering why the cdp.1
�le didn't cause problems. After all, it had a %doc directive, too. The answer lies in the
way the �le was speci�ed. Since the �le was speci�ed using an absolute path, and that path
started with the pre�x /usr/local, there was no problem. A more complete discussion of
the %doc directive can be found in section 13.6.1 on page 199.

15.4.1 Tying Up the Loose Ends

In the course of building this package, we ran into two hitches:

1. The con�g �le cdp-config couldn't be installed in /etc.

2. The README �le could not be packaged using the %doc directive.

Both of these issues are due to the fact that the �les' paths do not start with the default
pre�x path /usr/local. Does this mean this package cannot be relocated? Possibly, but
there are two options to consider. The �rst option is to review the pre�x. In the case of
our example, if we chose a pre�x of /usr instead of /usr/local, the README �le could be
packaged using the %doc directive, since the default documentation directory is /usr/doc.
Another approach would be to use the %docdir directive to de�ne another documentation-
holding directory somewhere along the pre�x path.2

This approach wouldn't work for /etc/cdp-config, though. To package that �le, we'd need
to resort to more extreme measures. Basically, this approach would entail packaging the �le
in an acceptable directory (something under /usr/local) and using the %post post-install
script to move the �le to /etc. Pointing a symlink at the con�g �le is another possibility.

Of course, this approach has some problems. First, you'll need to write a %postun script to
undo what the %post script does.3 A %verifyscript that made sure the �les were in place
would be nice, too. Second, because the �le or symlink wasn't installed by RPM, there's no
entry for it in the RPM database. This reduces the utility of RPM's -c and -d options when
issuing queries. Finally, if you actually move �les around using the %post script, the �les
you move will not verify properly, and when the package is erased, your users will get some
disconcerting messages when RPM can't �nd the moved �les to erase them. If you have
to resort to these kinds of tricks, it's probably best to forget trying to make the package
relocatable.

2For more information on the %docdir directive, please see section 13.6.2 on page 201.
3Install and erase-time scripts have an environment variable, RPM INSTALL PREFIX, that can be used to

write scripts that are able to act appropriately if the package is relocated. See section 13.3.2 on page 183
for more information.

226 Making a Relocatable Package

15.4.2 Test-Driving a Relocatable Package

Looks like cdplayer is a poor candidate for being made relocatable. However, since we did
get a hamstrung version to build successfully, we can use it to show how to test a relocatable
package.

First, let's see if the binary package �le's pre�x has been recorded properly. We can do this
by using the - -queryformat option to RPM's query mode:

rpm -qp - -queryformat '%fDEFAULTPREFIXg\n' cdplayer-1.0-1.i386.rpm

/usr/local

#

The DEFAULTPREFIX tag directs RPM to display the pre�x used during the build. As we
can see, it's /usr/local, just as we intended. The - -queryformat option is discussed in
chapter 5, speci�cally, in section 5.2.2 on page 67.

So it looks like we have a relocatable package. Let's try a couple of installs and see if we
really can install it in di�erent locations. First, let's try a regular install with no pre�x
speci�ed:

rpm -Uvh cdplayer-1.0-1.i386.rpm

cdplayer ##

#

That seemed to work well enough. Let's see if the �les went where we intended:

ls -al /usr/local/bin

total 558

-rwxr-xr-x 1 root root 40739 Oct 7 13:23 cdp*

lrwxrwxrwx 1 root root 18 Oct 7 13:40 cdplay -> /usr/local/bin/cdp*

...

ls -al /usr/local/man/man1

total 9

-rwxr-xr-x 1 root root 4550 Oct 7 13:23 cdp.1*

...

#

Looks good. Let's erase the package and reinstall it with a di�erent pre�x:

rpm -e cdplayer

rpm -Uvh - -prefix /usr/foonly/blather cdplayer-1.0-1.i386.rpm

cdplayer ##

#

15.4 Building a Relocatable Package 227

(We should mention that directories foonly and blather didn't exist prior to installing
cdplayer.)

RPM has another tag that can be used with the - -queryformat option. It's called
INSTALLPREFIX and using it displays the pre�x under which a package was installed. Let's
give it a try:

rpm -q - -queryformat '%fINSTALLPREFIXg\n' cdplayer

/usr/foonly/blather

#

As we can see, it displays the pre�x we entered on the command line. Let's see if the �les
were installed as we directed:

cd /usr/foonly/blather/

ls -al

total 2

drwxr-xr-x 2 root root 1024 Oct 7 13:45 bin/

drwxr-xr-x 3 root root 1024 Oct 7 13:45 man/

#

So far, so good { the proper directories are there. Let's look at the man page �rst:

cd /usr/foonly/blather/man/man1/

ls -al

total 5

-rwxr-xr-x 1 root root 4550 Oct 7 13:23 cdp.1*

#

That looks ok. Now on to the �les in bin:

cd /usr/foonly/blather/bin

ls -al

total 41

-rwxr-xr-x 1 root root 40739 Oct 7 13:23 cdp*

lrwxrwxrwx 1 root root 18 Oct 7 13:45 cdplay -> /usr/local/bin/cdp

#

Uh-oh. That cdplay symlink isn't right. What happened? If we look at cdplayer's
make�le, we see the answer:

install: cdp cdp.1.Z

...

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

228 Making a Relocatable Package

Ah, when the software is installed during RPM's build process, the make �le sets up the
symbolic link. Looking back at the %files list, we see cdplay listed. RPM blindly packaged
the symlink, complete with its non-relocatable string. This is why we mentioned absolute
symlinks as a prime example of non-relocatable software.

Fortunately, this problem isn't that di�cult to �x. All we need to do is change the line in
the make�le that creates the symlink from:

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

To:

ln -s ./cdp /usr/local/bin/cdplay

Now cdplay will always point to cdp, no matter where it's installed. When building relo-
catable packages, relative symlinks are your friend!

After rebuilding the package, let's see if our modi�cations have the desired e�ect. First, a
normal install with the default pre�x:

rpm -Uvh - -nodeps cdplayer-1.0-1.i386.rpm

cdplayer ##

cd /usr/local/bin/

ls -al cdplay

lrwxrwxrwx 1 root root 18 Oct 8 22:32 cdplay -> ./cdp*

Next, we'll try a second install using the - -prefix option (after we �rst delete the original
package):

rpm -e cdplayer

rpm -Uvh - -nodeps - -prefix /a/dumb/prefix cdplayer-1.0-1.i386.rpm

cdplayer ##

cd /a/dumb/prefix/bin/

ls -al cdplay

lrwxrwxrwx 1 root root 30 Oct 8 22:34 cdplay -> ./cdp*

#

As you can see, the trickiest part about building relocatable packages is making sure the
software you're packaging is up to the task. Once that part of the job is done, the actual
modi�cations are straightforward.

In the next chapter, we'll cover how packages can be built in non-standard directories, as
well as how non-root users can build packages.

Chapter 16

Making a Package That Can

Build Anywhere

While RPM makes building packages as easy as possible, some of the default design decisions
might not work well in a particular situation. Here are two situations where RPM's method
of package building may cause problems:

1. You are unable to dedicate a system to RPM package building, or the software you're
packaging would disrupt the build system's operation if it were installed.

2. You would like to package software, but you don't have root access to an appropriate
build system.

Either of these situations can be resolved by directing RPM to build, install, and package
the software in a di�erent area on your build system. It requires a bit of additional e�ort
to accomplish this, but taken a step at a time, it is not di�cult. Basically, the process can
be summed up by addressing the following steps:

� Writing the package's spec �le to support a build root.

� Directing RPM to build software in a user-speci�ed build area.

� Specifying �le attributes that RPM needs to set on installation.

The methods discussed here are not required in every situation. For example, a system
administrator developing a package on a production system may only need to add support
for a build root. On the other hand, a student wishing to build a package on a university
system will need to get around the lack of root access by implementing every method
described here.

230 Making a Package That Can Build Anywhere

16.1 Using Build Roots in a Package

Part of the process of packaging software with RPM is to actually build the software and
install it on the build system. The installation of software can only be accomplished by
someone with root access, so a non-privileged user will certainly need to handle RPM's
installation phase di�erently. There are times, however, when even a person with root
access will not want RPM to copy new �les into the system's directories. As mentioned
above, the reasons might be due to the fact that the software being packaged is already in
use on the build system. Another reason might be as mundane as not having enough free
space available to perform the install into the default directories.

Whatever the reason, RPM provides the ability to direct a given package to install into an
alternate root. This alternate root is known as a \build root". Several requirements must
be met in order for a build root to be utilized:

� A default build root must be de�ned in the package's spec �le.

� The installation method used by the software being packaged must be able to support
installation in an alternate root.

The �rst part is easy. It entails adding the following line to the spec �le:

BuildRoot: <root>

Of course, you would replace \<root>" with the name of the directory in which you'd
like the software to install.1 If, for example, you specify a build root of /tmp/foo, and
the software you're packaging installs a �le bar in /usr/bin, you'll �nd bar residing in
/tmp/foo/usr/bin after the build.

A note for you non-root package builders: make sure you can actually write to the build
root you specify! Those of you with root access should also make sure you choose your build
root carefully. For an assortment of reasons, it's not a good idea to declare a build root of
\/"! We'll get into the reasons why shortly.

The �nal requirement for adding build root support is to make sure the software's instal-
lation method can support installing into an alternate root. The di�culty in meeting this
requirement can range from dead simple to nearly impossible. There are probably as many
di�erent ways of approaching this as there are packages to build. But in general, some
variant of the following approach is used:

� The environment variable RPM BUILD ROOT is set by RPM and contains the value of
the build root to be used when the software is built and installed.

� The %install section of the spec �le is modi�ed to use RPM BUILD ROOT as part of the
installation process.

1Keep in mind that the build root can be overridden at build-time using the - -buildroot option or the
buildroot rpmrc �le entry. See chapter 12 on page 139 for more details.

16.1 Using Build Roots in a Package 231

� If the software is installed using make, the make�le is modi�ed to use RPM BUILD ROOT

and to create any directories that may not exist at installation time.

Here's an example of how these components work together to utilize a build root. First,
there's the de�nition of the build root in the spec �le:

BuildRoot: /tmp/cdplayer

This line de�nes the build root as being /tmp/cdplayer. All the �les installed by this
software will be placed under the cdplayer directory. Next is the spec �le's %install

section:

%install

make ROOT="$RPM_BUILD_ROOT" install

Since the software we're packaging uses make to perform the actual install, we simply de�ne
the environment variable ROOT to be the path de�ned by RPM BUILD ROOT. So far, so good.
Things really start to get interesting in the software's Makefile, though:

install: cdp cdp.1.Z

chmod 755 cdp

cp cdp /usr/local/bin

install -m 755 -o 0 -g 0 -d $(ROOT)/usr/local/bin/

install -m 755 -o 0 -g 0 cdp $(ROOT)/usr/local/bin/cdp

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

ln -s ./cdp $(ROOT)/usr/local/bin/cdplay

cp cdp.1 /usr/local/man/man1

install -m 755 -o 0 -g 0 -d $(ROOT)/usr/local/man/man1/

install -m 755 -o 0 -g 0 cdp.1 $(ROOT)/usr/local/man/man1/cdp.1

In the example above, the commented lines were the original ones. The uncommented
lines perform the same function, but also support installation in the root speci�ed by the
environment variable ROOT.

One point worth noting is that the Makefile now takes extra pains to make sure the proper
directory structure exists before installing any �les. This is often necessary, as build roots
are deleted, in most cases, after the software has been packaged. This is why install is
used with the -d option | to make sure the necessary directories have been created.

Let's see how it works:

rpm -ba cdplayer-1.0.spec
* Package: cdplayer

Executing: %prep

+ cd /usr/src/redhat/BUILD

...

+ exit 0

232 Making a Package That Can Build Anywhere

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

...

+ exit 0

+ umask 022

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ make ROOT=/tmp/cdplayer install

install -m 755 -o 0 -g 0 -d /tmp/cdplayer/usr/local/bin/

install -m 755 -o 0 -g 0 cdp /tmp/cdplayer/usr/local/bin/cdp

ln -s ./cdp /tmp/cdplayer/usr/local/bin/cdplay

install -m 755 -o 0 -g 0 -d /tmp/cdplayer/usr/local/man/man1/

install -m 755 -o 0 -g 0 cdp.1 /tmp/cdplayer/usr/local/man/man1/cdp.1

+ exit 0

Executing: special doc

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ DOCDIR=/tmp/cdplayer//usr/doc/cdplayer-1.0-1

+ rm -rf /tmp/cdplayer//usr/doc/cdplayer-1.0-1

+ mkdir -p /tmp/cdplayer//usr/doc/cdplayer-1.0-1

+ cp -ar README /tmp/cdplayer//usr/doc/cdplayer-1.0-1

+ exit 0

Binary Packaging: cdplayer-1.0-1

Finding dependencies...

Requires (2): libc.so.5 libncurses.so.2.0

usr/doc/cdplayer-1.0-1

usr/doc/cdplayer-1.0-1/README

usr/local/bin/cdp

usr/local/bin/cdplay

usr/local/man/man1/cdp.1

93 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

+ umask 022

+ echo Executing: %clean

Executing: %clean

+ cd /usr/src/redhat/BUILD

+ cd cdplayer-1.0

+ exit 0

Source Packaging: cdplayer-1.0-1

cdplayer-1.0.spec

cdplayer-1.0.tgz

82 blocks

Generating signature: 0

16.1 Using Build Roots in a Package 233

Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

Looking over the output from the %install section, we �rst see that the RPM BUILD ROOT

environment variable in the make install command, has been replaced with the path
speci�ed earlier in the spec �le on the BuildRoot: line. The ROOT environment variable
used in the make�le now has the appropriate value, as can be seen in the various install
commands that follow.

Note, also, that we use install's -d option to ensure that every directory in the path exists
before we actually install the software. Unfortunately, we can't do this and install the �le
in one command.

Looking at the section labeled Executing: special doc, we �nd that RPM is doing some-
thing similar for us. It starts by making sure there is no pre-existing documentation direc-
tory. Next, RPM creates the documentation directory and copies �les into it.

The remainder of this example is identical to that of a package being built without a build
root being speci�ed. However, although the output is identical, there is one crucial di�er-
ence. When the binary package is created, instead of simply using each line in the %files
list verbatim, RPM prepends the build root path �rst. If this wasn't done, RPM would
attempt to �nd the �les, relative to the system's root directory, and would, of course, fail.
Because of the automatic prepending of the build root, it's important to not include the
build root path in any %files list entry. Otherwise, the �les would not be found by RPM,
and the build would fail.

Although RPM has to go through a bit of extra e�ort to locate the �les to be packaged, the
resulting binary package is indistinguishable from the same package created without using
a build root.

16.1.1 Some Things to Consider

Once the necessary modi�cations have been made to support a build root, it's necessary for
the package builder to keep some issues in mind. The �rst is that the build root speci�ed
in the spec �le can be overridden. RPM will set the build root (and therefore, the value of
$RPM BUILD ROOT) to one of the following values:

� The value of buildroot in the spec �le.

� The value of buildroot in an rpmrc �le.

� The value following the - -buildroot option on the command line.

Because of this, it's important that the spec �le and the make�le be written in such a way
that no assumptions about the build root are made. The main issue is that the build root
must not be hard-coded anywhere. Always use the RPM BUILD ROOT environment variable!

Another issue to keep in mind is cleaning up after the build. Once software builds and
is packaged successfully, it's probably no longer necessary to leave the build root in place.
Therefore, it's a good idea to include the necessary commands in the spec �le's %clean

section. Here's an example:

234 Making a Package That Can Build Anywhere

%clean

rm -rf $RPM_BUILD_ROOT

Since RPM executes the %clean section after the binary package has been created, it's
the perfect place to delete the build root tree. In the example above, that's exactly what
we're doing. We're also doing the right thing by using the RPM BUILD ROOT, instead of a
hard-coded path.

The last issue to keep in mind revolves around the %clean section we just created. At the
start of the chapter, we mentioned that it's not a good idea to de�ne a build root of \/".
The %clean section is why: If the build root was set to \/", the %clean section would blow
away your root �lesystem! Keep in mind that this can bite you, even if the package's spec
�le doesn't specify \/" as a build root. It's possible to use the - -buildroot option to
specify a dangerous build root, too:

rpm -ba --buildroot / cdplayer-1.0.spec

But for all the possible hazards using build roots can pose for the careless, it's the only way
to prevent a build from disrupting the operation of certain packages on the build system.
And for the person wanting to build packages without root access, it's the �rst of three steps
necessary to accomplish the task. The next step is to direct RPM to build the software in
a directory other than RPM's default one.

16.2 Having RPM Use a Di�erent Build Area

While RPM's build root requires a certain amount of spec �le and make �le tweaking in
order to get it working properly, directing RPM to perform the build in a di�erent directory
is a snap. The hardest part is to create the directories RPM will use during the build
process.

16.2.1 Setting up a Build Area

RPM's build area consists of �ve directories in the top-level:

1. The BUILD directory is where the software is unpacked and built.

2. The RPMS directory is where the newly created binary package �les are written.

3. The SOURCES directory contains the original sources, patches, and icon �les.

4. The SPECS directory contains the spec �les for each package to be built.

5. The SRPMS directory is where the newly created source package �les are written.

The description of the RPMS directory above, is missing one key point. Since the binary
package �les are speci�c to an architecture, the directory actually contains one or more

16.2 Having RPM Use a Di�erent Build Area 235

subdirectories, one for each architecture. It is in these subdirectories that RPM will write
the binary package �les.

Let's start by creating the directories. We can even do it with one command:

% pwd

/home/ed

% mkdir mybuild\

? mybuild/BUILD\

? mybuild/RPMS\

? mybuild/RPMS/i386\

? mybuild/SOURCES\

? mybuild/SPECS\

? mybuild/SRPMS

%

That's all there is to it. You may have noticed that we created a subdirectory to RPMS called
i386 | This is the architecture-speci�c subdirectory for Intel x86-based systems, which is
our example build system.

The next step in getting RPM to use a di�erent build area is telling RPM where the new
build area is. And it's almost as easy as creating the build area itself.

16.2.2 Directing RPM to Use the New Build Area

All that's required to get RPM to start using the new build area is to de�ne an alternate
value for topdir in an rpmrc �le. For the non-root user, this means putting the following
line in a �le called .rpmrc, located in your home directory:

topdir: <path>

By replacing \<path>" with the path to the new build area's top-level directory, RPM will
attempt to use it the next time a build is performed. Using our newly created build area as
an example, we'll set topdir to /home/ed/mybuild:

topdir: /home/ed/mybuild

That's all there is to it. Now it's time to try a build.

16.2.3 Performing a Build in a New Build Area

In the following example, a non-root user attempts to build the cdplayer package in a
personal build area. If the user has modi�ed rpmrc �le entries to change the default build
area, the command used to start the build is just like the one used by a root user. Otherwise,
the - -buildroot option will need to be used:

236 Making a Package That Can Build Anywhere

% cd /home/ed/mybuild/SPECS

% rpm -ba - -buildroot /home/ed/mybuildroot cdplayer-1.0.spec

* Package: cdplayer

+ umask 022

Executing: %prep

+ cd /home/ed/mybuild/BUILD

+ cd /home/ed/mybuild/BUILD

+ rm -rf cdplayer-1.0

+ gzip -dc /home/ed/mybuild/SOURCES/cdplayer-1.0.tgz

+ tar -xvvf -

drwxrwxr-x root/users 0 Aug 20 20:58 1996 cdplayer-1.0/

-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING

...

+ cd /home/ed/mybuild/BUILD/cdplayer-1.0

+ chmod -R a+rX,g-w,o-w .

+ exit 0

Executing: %build

+ cd /home/ed/mybuild/BUILD

+ cd cdplayer-1.0

+ make

gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c

...

Executing: %install

+ cd /home/ed/mybuild/BUILD

+ make ROOT=/home/ed/mybuildroot/cdplayer install

install -m 755 -o 0 -g 0 -d /home/ed/mybuildroot/cdplayer/usr/local/bin/

install: /home/ed/mybuildroot/cdplayer: Operation not permitted

install: /home/ed/mybuildroot/cdplayer/usr: Operation not permitted

install: /home/ed/mybuildroot/cdplayer/usr/local: Operation not permitted

install: /home/ed/mybuildroot/cdplayer/usr/local/bin: Operation not

permitted

install: /home/ed/mybuildroot/cdplayer/usr/local/bin/: Operation not

permitted

make: *** [install] Error 1

Bad exit status

%

Things started o� pretty well | The %prep section of the spec �le unpacked the sources
into the new build area, as did the %build section. The build was proceeding normally in
the user-speci�ed build area, and root access was not required. In the %install section,
however, things started to fall apart. What happened?

Take a look at that install command. The two options, \-o 0" and \-g 0", dictate that
the directories to be created in the build root are to be owned by the root account. Since
the user performing this build did not have root access, the install failed, and rightly so.

OK, let's remove the o�ending options and see where that gets us. Here's the install section

16.3 Specifying File Attributes 237

of the make �le after our modi�cations:

install: cdp cdp.1.Z

install -m 755 -d $(ROOT)/usr/local/bin/

install -m 755 cdp $(ROOT)/usr/local/bin/cdp

rm -f $(ROOT)/usr/local/bin/cdplay

ln -s ./cdp $(ROOT)/usr/local/bin/cdplay

install -m 755 -d $(ROOT)/usr/local/man/man1/

install -m 755 cdp.1 $(ROOT)/usr/local/man/man1/cdp.1

We'll spare you from having to read through another build, but this time it completed
successfully. Now, let's put our sysadmin hat on and install the newly built package:

rpm -ivh cdplayer-1.0-1.i386.rpm

cdplayer ##

#

Well, that was easy enough. Let's take a look at some of the �les and make sure everything
looks OK. We know there are some �les installed in /usr/local/bin, so let's check those:

ls -al /usr/local/bin

-rwxr-xr-x 1 ed ed 40739 Sep 13 20:16 cdp*

lrwxrwxrwx 1 ed ed 47 Sep 13 20:34 cdplay -> ./cdp*

#

Looks pretty good. . . Wait a minute! What's up with the owner and group? The answer
is simple: User ed ran the build, which executed the make �le, which ran install, which
created the �les. Since ed created the �les, they are owned by him.

This brings up an interesting point. Software must be installed with very speci�c �le own-
ership and permissions. But a non-root user can't create �les that are owned by anyone
other than his or herself. What is a non-root user to do?

16.3 Specifying File Attributes

In cases where the package builder cannot create the �les to be packaged with the proper
ownership and permissions, the %attr macro can be used to make things right.

16.3.1 %attr | How Does It Work?

The %attr macro has the following format:

%attr(<mode>, <user>, <group>) file

238 Making a Package That Can Build Anywhere

� The <mode> is represented in traditional numeric fashion.

� The <user> is speci�ed by the login name of the user. Numeric UIDs are not used,
for reasons we'll explore in a moment.

� The <group> is speci�ed by the group's name, as entered in /etc/group. Numeric
GIDs are not used, either. Yes, we'll be discussing that, too!

� <file> represents the �le. Shell-style globbing is supported.

There are a couple other wrinkles to using the %attr macro. If a particular �le attribute
doesn't need to be speci�ed, that attribute can be replaced with a dash \-" and %attr will
not change it. Say, for instance, that a package's �les are installed with the permissions
correctly set, as they almost always are. Instead of having to go to the trouble of entering
the permissions for each and every �le, each �le can have the same %attr:

%attr(-, root, root)

This works for user and group speci�cations, as well.

The other wrinkle is that, although we've been showing the three �le attributes separated
by commas, in reality they could be separated by spaces as well. Whichever delimiter you
choose, it pays to be consistent throughout a spec �le.

Let's �x up cdplayer with a liberal sprinkling of %attrs. Here's what the %files list looks
like after we've had our way with it:

%files

%attr(-, root, root) %doc README

%attr(4755, root, root) /usr/local/bin/cdp

%attr(-, root, root) /usr/local/bin/cdplay

%attr(-, root, rot) /usr/local/man/man1/cdp.1

A couple points are worth noting here. The line for README shows that multiple macros can
be used on a line | in this case, one to set �le attributes, and one to mark the �le as being
documentation. The %attr for /usr/local/bin/cdp declares the �le to be setuid root. If
it sends a shiver down your spine to know that anybody can create a package that will run
setuid root when installed on your system | Good! Just because RPM makes it easy to
install software doesn't mean that you should blindly install every package you �nd.

A single RPM command can quickly point out areas of potential problems and should be
issued on any package �le whose creators you don't trust:

% rpm -qlvp ../RPMS/i386/cdplayer-1.0-1.i386.rpm

drwxr-xr-x- root root 1024 Sep 13 20:16 /usr/doc/cdplayer-1.0-1

-rw-r--r--- root root 1085 Nov 10 01:10 /usr/doc/cdplayer-1.0-1/README

-rwsr-xr-x- root root 40739 Sep 13 21:32 /usr/local/bin/cdp

lrwxrwxrwx- root root 47 Sep 13 21:32 /usr/local/bin/cdplay -> ./cdp

-rwxr-xr-x- root rot 4550 Sep 13 21:32 /usr/local/man/man1/cdp.1

%

16.3 Specifying File Attributes 239

Sure enough | there's that setuid root �le. In this case we trust the package builder, so
let's install it:

rpm -ivh cdplayer-1.0-1.i386.rpm

cdplayer ##

group rot does not exist - using root
#

What's this about group \rot"? Looking back at the rpm -qlvp output, it looks like
/usr/local/man/man1/cdp.1 has a bogus group. Looking back even further, it's there in
the %attr for that �le. Must have been a typo. We could pretend that RPM used advanced
arti�cial intelligence technology to come to the same conclusion as we did and made the
appropriate change, but in reality, RPM simply used the only group identi�er it could count
on | root. RPM will do the same thing if it can't resolve a user speci�cation.

Let's look at some of the �les the package installed, including that worrisome setuid root
�le:

ls /usr/local/bin

total 558

-rwsr-xr-x 1 root root 40739 Sep 13 21:32 cdp*

lrwxrwxrwx 1 root root 47 Sep 13 21:36 cdplay -> ./cdp*

#

RPM did just what it was supposed to | It gave the �les the attributes speci�ed by the
%attr macros.

16.3.2 Betcha Thought We Forgot. . .

At the start of this section, we mentioned that the %attr macro wouldn't accept numeric
uids or gids, and we promised to explain why. The reason is simply that, even if a package
requires a certain user or group to own the package's �les, the user may not have the same
uid/gid from system to system. There | wasn't that simple?

In the next chapter, we'll discuss how to make your packaged software safe against modi�-
cation by unscrupulous people. The name of the game is Pretty Good Privacy, and you'll
see how signing packages with PGP is easier than you think!

240 Making a Package That Can Build Anywhere

Chapter 17

Adding PGP Signatures to a

Package

In this chapter, we'll explore the steps required to add a digital signature to a package,
using the software known as Pretty Good Privacy, or PGP. If you've used PGP before, you
probably know everything you'll need to start signing packages in short order.

On the other hand, if you feel you need a bit more information on PGP before starting,
please refer to Appendix G on page 427 for a brief introduction. Once you feel comfortable
with PGP, come on back and learn how easy signing packages is. . .

17.1 Why Sign a Package?

The reason for signing a package is to provide authentication. With a signed package, it's
possible for your user community to verify that the package they have was in your possession
at some time and has not been changed since then. That \not changed" part is also a good
reason to sign your packages, as digital signatures are a very robust way to guard against
any modi�cations to the package.

Of course, as with anything else in life, adding a digital signature to a package isn't an
ironclad guarantee that everything is right with the package, but it's about as sure a thing
as humans can make it.

17.2 Getting Ready to Sign

OK, we've convinced you that signing packages is a good idea. Now we've got to make
sure PGP and RPM are up to the task. As you might imagine, there are two parts to this
process: one for PGP, and one for RPM. Let's get PGP ready �rst.

242 Adding PGP Signatures to a Package

17.2.1 Preparing PGP: Creating a Key Pair

There is really very little to be done to PGP, assuming it's been installed properly. The
only thing required is to generate a key pair. As mentioned in our mini-primer on PGP, the
key pair consists of a secret key and a public key. In terms of signing packages, you will use
your secret key to do the actual signing. Anyone interested in checking your signature will
need your public key.

Creating a key pair is quite simple. All that's required is to issue a pgp -kg command,
enter some information, and create some random bits. Here's an example key generating
session:

pgp -kg
Pretty Good Privacy(tm) 2.6.3a - Public-key encryption for the masses.

(c) 1990-96 Philip Zimmermann, Phil's Pretty Good Software. 1996-03-04

Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.

Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.

Current time: 1996/10/31 00:42 GMT

Pick your RSA key size:

1) 512 bits- Low commercial grade, fast but less secure

2) 768 bits- High commercial grade, medium speed, good security

3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3
Generating an RSA key with a 1024-bit modulus.

You need a user ID for your public key. The desired form for this

user ID is your name, followed by your E-mail address enclosed in

<angle brackets>, if you have an E-mail address.

For example: John Q. Smith <12345.6789@compuserve.com>

Enter a user ID for your public key:

Example Key for RPM Book
You need a pass phrase to protect your RSA secret key.

Your pass phrase can be any sentence or phrase and may have many

words, spaces, punctuation, or any other printable characters.

Enter pass phrase: <passphrase> (Not echoed)
Enter same pass phrase again: <passphrase> (Still not echoed)

Note that key generation is a lengthy process.

We need to generate 952 random bits. This is done by measuring the

time intervals between your keystrokes. Please enter some random text

on your keyboard until you hear the beep:

17.2 Getting Ready to Sign 243

(Many random characters were entered)

0 * -Enough, thank you.

..

................................**** ...****

Pass phrase is good. Just a moment....

Key signature certificate added.

Key generation completed.

#

Let's review each of the times PGP required information. The �rst thing PGP needed to
know was the key size we wanted. Depending on your level of paranoia, simply choose an
appropriate key size. In our example, we chose the \They're out to get me" key size of 1024
bits.

Next, we needed to choose a user ID for the key. The user ID should be descriptive and
should also include su�cient information for someone to contact you. We entered Example

Key for RPM Book, which goes against our suggestion, but is su�cient for the purposes of
our example.

After entering a user ID, we needed to add a pass phrase. The pass phrase is used to protect
your secret key, so it should be something di�cult for someone else to guess. It should also
be memorable for you, because if you forget your pass phrase, you won't be able to use your
secret key! I entered a couple of words and numbers, put together in such a way that no
one could ever guess I typed rpm2kool4words

Oops. . .

The pass phrase is entered twice, to ensure that no typing mistakes were made. PGP
also performs some cursory checks on the pass phrase, ensuring that the phrase is at least
somewhat secure.

Finally comes the strangest part of the key-generation process, creating random bits. This
is done by measuring the time between keystrokes. The secret here is to not hold down
a key so that it auto-repeats and to not wait several seconds between keystrokes. Simply
start typing anything (even nonsense text) until PGP tells you you've typed enough.

After generating enough random bits, PGP takes a minute or so to create the key pair.
Assuming everything completed successfully, you'll see an ending message similar to the one
above. You'll also �nd, in a subdirectory of your login directory called .pgp, the following
�les:

ls -al ~/.pgp
total 6

drwxr-xr-x 2 root root 1024 Oct 30 19:44 .

drwxr-xr-x 5 root root 1024 Oct 30 19:44 ..

-rw------- 1 root root 176 Oct 30 19:44 pubring.bak

-rw------- 1 root root 331 Oct 30 19:44 pubring.pgp

-rw------- 1 root root 408 Oct 30 19:44 randseed.bin

-rw------- 1 root root 509 Oct 30 19:44 secring.pgp

#

244 Adding PGP Signatures to a Package

For those interested in learning exactly what each �le is, feel free to consult any of the �ne
books on PGP. For the purposes of signing packages, all we need to know is where these
�les are located.

That's it! Now it's time to con�gure RPM to use your newly generated key.

17.2.2 Preparing RPM

RPM's con�guration process is quite straightforward. It consists of adding a few rpmrc

entries in a �le of your choice. For more information on rpmrc �les in general, please see
Appendix B on page 363.

The entries that need to be added to an rpmrc �le are:

� signature

� pgp name

� pgp path

Let's check out the entries.

signature The signature entry is used to select the type of signature that RPM is to
use. At the time this book was written, the only legal value is pgp. So you would enter:

signature: pgp

pgp name The pgp name entry gives RPM the user ID of the key it is to sign packages
with. In our key generation example, the user ID of the key we created was Example Key

for RPM Book, so this is what our entry should look like:

pgp name: Example Key for RPM Book

pgp path The pgp path entry is used to de�ne the path to the directory where the keys
are kept. This entry is not needed if the environment variable PGPPATH has been de�ned.
In our example, we didn't move them from PGP's default location, which is in the subdi-
rectory .pgp, o� the user's login directory. Since we generated the key as root, our path is
/root/.pgp. Therefore, our entry would look like this:

pgp path: /root/.pgp

And that's it. Now it's time to sign some packages.

17.3 Signing Packages

There are three di�erent ways to sign a package:

17.3 Signing Packages 245

1. Signing a package at build-time.

2. Replacing the signature on an already-existing package.

3. Adding a signature to an already-existing package.

Lets take a look at each one, starting with build-time signing.

17.3.1 - -sign { Sign a Package At Build-Time

The - -sign option is used to sign a package as it is being built. When this option is added
to an RPM build command, RPM will ask for your PGP pass phrase. If the pass phrase is
correct, the build will proceed. If not, the build stops immediately.

Here's an example of - -sign in action:

rpm -ba - -sign blather-7.9.spec

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

* Package: blather

...

Binary Packaging: blather-7.9-1

Finding dependencies...

...

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm

...

Source Packaging: blather-7.9-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm

#

Once the pass phrase is entered, there's very little that is di�erent from a normal build.
The only obvious di�erence is the Generating signature message in both the binary and
source packaging sections. The number following the message indicates that the signature
added was created using PGP.1

Notice, that since RPM only signs the source and binary package �les, only the -bb, and
-ba options make any sense when used with - -sign. This is due to the fact that only the
-bb and -ba options create package �les.

If we issue a quick signature check using RPM's - -checksig option, we can see that there
is, in fact, a PGP signature present:

1The list of possible signature types can be found in the RPM sources, speci�cally signature.h in RPM's
lib subdirectory.

246 Adding PGP Signatures to a Package

rpm - -checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp md5 OK

#

It's clear to see that, in addition to the usual size and MD5 signatures, the package has a
PGP signature.

Multiple Builds? No Problem!

You might be wondering how the - -sign option would work if more than one package is
to be built. Do you have to enter the pass phrase for every single package you build? The
answer is no, as long as you build the packages with a single RPM command. Here's an
example:

rpm -ba - -sign b*.spec

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

* Package: blather

...

Binary Packaging: blather-7.9-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm

...

Source Packaging: blather-7.9-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm

...

* Package: bother

...

Binary Packaging: bother-3.5-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/bother-3.5-1.i386.rpm

...

Source Packaging: bother-3.5-1

...

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/bother-3.5-1.src.rpm

#

Using the - -sign option makes it as easy to sign one package as it is to sign one hundred.
But what happens if you need to change your public key? Will you need to rebuild every

17.3 Signing Packages 247

single one of your packages just to update the signature?

17.3.2 - -resign { Replace a Package's Signature(s)

As we mentioned at the end of the previous section, from time to time it may be necessary
to change your public key. Certainly this would be necessary if your key's security was
compromised, but other, more mundane situations might require this.

Fortunately, RPM has an option that permits you to replace the signature on an already-
built package, with a new one. The option is called - -resign, and here's an example of its
use:

rpm - -resign blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

#

While the output is not as exciting as a package build, the - -resign option can be a
life-saver if you need to change a package's signature, and you don't want to rebuild.

As you might have guessed, the - -resign option works properly on multiple package �les:

rpm - -resign b*.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

bother-3.5-1.i386.rpm:

#

There Are Limits, However. . .

Unfortunately, older package �les cannot be re-signed. The package �le must be in version
3 format, at least. If you attempt to resign a package that is too old, here's what you'll see:

rpm - -resign blah.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blah.rpm:

blah.rpm: Can't re-sign v2.0 RPM

#

248 Adding PGP Signatures to a Package

Not sure what version your package �les are at? Just use the file command to check:

file blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: RPM v3 bin i386 blather-7.9-1

#

The \v3" in file's output indicates the package �le format.

17.3.3 - -addsign { Add a Signature To a Package

The - -addsign option, as the name suggests, is used to add another signature to the
package. It's pretty easy to see why someone would want to have a package that had been
signed by the package builders. But what reason would there be for adding a signature to
a package?

One reason to have more than one signature on a package would be to provide a means of
documenting the path of ownership from the package builder to the end-user.

As an example, the division of a company creates a package and signs it with the division's
key. The company's headquarters then checks the package's signature and adds the corpo-
rate signature to the package, in essence stating that the signed package received by them
is authentic.

Continuing the example, the doubly-signed package makes its way to a retailer. The re-
tailer checks the package's signatures and, when they check out, adds their signature to the
package.

The package now makes its way to a company that wishes to deploy the package. After
checking every signature on the package, they know that it is an authentic copy, unchanged
since it was �rst created. Depending on the deploying company's internal controls, they
may choose to add their own signature, thereby reassuring their employees that the package
has received their corporate \blessing".

After this lengthy example, the actual output from the - -addsign option is a bit anti-
climactic:

rpm - -addsign blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

#

If we check the signatures of this package, we'll be able to see the multiple signatures:

rpm - -checksig blather-7.9-1.i386.rpm

17.3 Signing Packages 249

blather-7.9-1.i386.rpm: size pgp pgp md5 OK

#

The two pgp's in - -checksig's output clearly shows that the package has been signed twice.

A Few Caveats

As with the - -resign option, the - -addsign option cannot do its magic on pre-V3 package
�les:

rpm - -addsign blah.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blah.rpm:

blah.rpm: Can't re-sign v2.0 RPM

#

OK, the error message may not be 100% accurate, but you get the idea.

Another thing to be aware of is that the - -addsign option does not check for multiple
identical signatures. Although it doesn't make much sense to do so, RPM will happily let
you add the same signature as many times as you'd like:

rpm - -addsig blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

rpm - -addsig blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

rpm - -addsig blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

rpm - -addsig blather-7.9-1.i386.rpm

Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.

blather-7.9-1.i386.rpm:

rpm - -checksig blather-7.9-1.i386.rpm

250 Adding PGP Signatures to a Package

blather-7.9-1.i386.rpm: size pgp pgp pgp pgp md5 OK

#

As we can see from - -checksig's output, the package now has four identical signatures.
Maybe this is the digital equivalent of pressing down extra hard while writing your name. . .

Chapter 18

Creating Subpackages

In this chapter, we will explore one of RPM's more interesting capabilities: the capability
to create subpackages.

18.1 What Are Subpackages?

Very simply put, a subpackage is one of several package �les created from a single spec
�le. RPM has the ability to create a main package, along with one or more subpackages.
Subpackages may also be created without the main package. It's all up to the package
builder.

18.2 Why Are They Needed?

If all the software in the world followed the usual \one source, one binary" structure, there
would be no need for subpackages. After all, RPM handles the building and packaging of a
program into a single package �le just �ne.

But software doesn't always conform to this simplistic structure. It's not unusual for software
to support two or more di�erent modes of operation. A client/server program, for example,
comes in two avors: a client, and a server.

And it can get more complicated than that. Sometimes software relies on another program
so completely that the two cannot be built separately. The result is often several packages.

While it is certainly possible that some convoluted procedure could be devised to force these
kinds of software into a single-package structure, it makes more sense to let RPM manage
the creation of subpackages. Why? From the package builder's viewpoint, the main reason
to use subpackages is to eliminate any duplication of e�ort.

By using subpackages, there's no need to maintain separate spec �les and endure the result-
ing headaches when new versions of the software become available. By keeping everything in

252 Creating Subpackages

one spec �le, new software versions can be quickly integrated, and every related subpackage
rebuilt with a single command.

But that's enough of the preliminaries. Let's see how subpackages are created.

18.3 Our Example Spec File: Subpackages Galore!

Throughout this chapter, we'll be constructing a spec �le that will consist of a number of
subpackages. Let's start by listing the spec �le's requirements:

� The main package name is to be foo.

� The version is to be 2.7.

� There are three subpackages:

{ The server subpackage, to be called foo-server.

{ The client subpackage, to be called foo-client.

{ The baz development library subpackage, to be called bazlib.

� The bazlib subpackage has a version of 5.6.

� Each subpackage will have its own summary and description tags.

Every spec �le starts with a preamble, and this one is no di�erent. In this case, the preamble
will contain the following tags:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

This is the long description of the foo app, and the baz library needed to

build it...

As we can see, there's nothing di�erent here: this is an ordinary spec �le so far. Let's
delve into things a bit more and see what we'll need to add to this spec �le to create the
subpackages we require.

18.4 Spec File Changes For Subpackages 253

18.4 Spec File Changes For Subpackages

The creation of subpackages is based strictly on the contents of the spec �le. This doesn't
mean that you'll have to learn an entirely new set of tags, conditionals, and directives in
order to create subpackages. In fact, you'll only need to learn one.

The primary change to a spec �le is structural and starts with the de�nition of a preamble
for each subpackage.

18.4.1 The Subpackage's \Preamble"

When we introduced RPM package building in chapter 10, we said that every spec �le con-
tains a preamble. The preamble contains a variety of tags that de�ne all sorts of information
about the package. In a single package situation, the preamble must be at the start of the
spec �le. The spec �le we're creating will have one there, too.

When creating a spec �le that will build subpackages, each subpackage also needs a preamble
of its own. These \sub-preambles" need only de�ne information for the subpackage when
that information di�ers from what is de�ned in the main preamble. For example, if we
wanted to de�ne an installation pre�x for a subpackage, we would add the appropriate
prefix tag to that subpackage's preamble. That subpackage would then be relocatable.

In a single-package spec �le, there is nothing that explicitly identi�es the preamble, other
than its position at the top of the �le. For subpackages, however, we need to be a bit more
explicit. So we use the %package directive to identify the preamble for each subpackage.

The %package Directive

The %package directive actually performs two functions. As we mentioned above, it is
used to denote the start of a subpackage's preamble. It also plays a role in forming the
subpackage's name. As an example, let's say the main preamble contains the following name
tag:

name: foo

Later in the spec �le, there is a %package directive:

%package bar

This would result in the name of the subpackage being foo-bar.

In this way, it's easy to see the relationship of the subpackage to the main package (or other
subpackages, for that matter). Of course, this naming convention might not be appropriate
in every case. So there is an option to the %package directive for just this circumstance.

Adding -n To the %package directive

The -n option is used to change the �nal name of a subpackage from
mainpackage-subpackage to subpackage. Let's modify the %package directive in our ex-
ample above to be:

254 Creating Subpackages

%package -n bar

The result is that the subpackage name would then be bar instead of foo-bar.

Updating Our Spec File

Let's apply some of our newly found knowledge to the spec �le we're writing. Here's the
list of subpackages that we need to create:

� The server subpackage, to be called foo-server.

� The client subpackage, to be called foo-client.

� The baz development library subpackage, to be called bazlib.

Since our package name is foo, and since the %package directive creates subpackage names
by prepending the package name, the %package directives for the foo-server and
foo-client subpackages would be written as:

%package server

and

%package client

Since the baz library's package name is not to start with foo, we need to use the -n option
on its %package directive:

%package -n bazlib

Our requirements further state that foo-server and foo-client are to have the same
version as the main package.

One of the time-saving aspects of using subpackages is that there is no need to duplicate
information for each subpackage if it is already de�ned in the main package. Therefore,
since the main package's preamble has a version tag de�ning the version as 2.7, the two
subpackages that lack a version tag in their preambles will simply inherit the main package's
version de�nition.

Since the bazlib subpackage's preamble contains a version tag, it must have its own unique
version.

In addition, each subpackage must have its own summary tag.

So based on these requirements, our spec �le now looks like this:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

18.4 Spec File Changes For Subpackages 255

This is the long description of the foo app, and the baz library needed to

build it...

%package server

Summary: The foo server

%package client

Summary: The foo client

%package -n bazlib

Version: 5.6

Summary: The baz library

We can see the subpackage structure starting to appear now.

Required Tags In Subpackages

There are a few more tags we should add to the subpackages in our example spec �le. In
fact, if these tags are not present, RPM will issue a most impressive warning:

rpm -ba foo-2.7.spec

Package: foo

Package: foo-server

Field must be present : Description

Field must be present : Group

Package: foo-client

Field must be present : Description

Field must be present : Group

Package: bazlib

Field must be present : Description

Field must be present : Group

Spec file check failed!!

Tell rpm-list@redhat.com if this is incorrect.

#

Our spec �le is incomplete. The bottom line is that each subpackage must have these three
tags:

1. The %description tag.

2. The group tag.

3. The summary tag.

256 Creating Subpackages

It's easy to see that the �rst two tags are required, but what about summary? Well, we
lucked out on that one: we already included a summary for each subpackage in our example
spec �le.

Let's take a look at the %description tag �rst.

The %description Tag

As you've probably noticed, the %description tag di�ers from other tags. First of all, it
starts with a percent sign. Secondly, its data can span multiple lines. The third di�erence
is that the %description tag must include the name of the subpackage it describes. This
is done by appending the subpackage name to the %description tag itself. So given these
%package directives:

%package server

%package client

%package -n bazlib

our %description tags would start with:

%description server

%description client

%description -n bazlib

Notice that we've included the -n option in the %description tag for bazlib. This was
intentional, as it makes the name completely unambiguous.

Our Spec File So Far. . .

OK, let's take a look at the spec �le after we've added the appropriate %descriptions,
along with group tags for each subpackage:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

This is the long description of the foo app, and the baz library needed to

build it...

%package server

Summary: The foo server

Group: bogus/junque

18.4 Spec File Changes For Subpackages 257

%description server

This is the long description for the foo server...

%package client

Summary: The foo client

Group: bogus/junque

%description client

This is the long description for the foo client...

%package -n bazlib

Version: 5.6

Summary: The baz library

Group: bogus/junque

%description -n bazlib

This is the long description for the bazlib...

Let's take a look at what we've done. We've created a main preamble as we normally
would. We then created three additional preambles, each starting with a %package directive.
Finally, we added a few tags to the subpackage preambles.

But what about version tags? Aren't the server and client subpackages missing them?

Not really. Remember that if a subpackage is missing a given tag, it will inherit the value
of that tag from the main preamble. We're well on our way to having a complete spec �le,
but we aren't quite there yet.

Let's continue by looking at the next part of the spec �le that changes when building
subpackages.

18.4.2 The %files List

In an ordinary single-package spec �le, the %files list is used to determine which �les
are actually going to be packaged. It is no di�erent when building subpackages. What is
di�erent, is that there must be a %files list for each subpackage.

Since each %files list must be associated with a particular %package directive, we simply
label each %files list with the name of the subpackage, as speci�ed by each %package

directive. Going back to our example, our %package lines were:

%package server

%package client

%package -n bazlib

Therefore, our %files lists should start with:

%files server

%files client

%files -n bazlib

258 Creating Subpackages

In addition, we need the main package's %files list, which remains unnamed:

%files

The contents of each %files list is dictated entirely by the software's requirements. If, for
example, a certain �le needs to be packaged in more than one package, it's perfectly all right
to include the �lename in more than one list.

Controlling Packages With the %files List

The %files list wields considerable power over subpackages. It's even possible to prevent a
package from being created by using the %files list. But is there a reason why you'd want
to go to the trouble of setting up subpackages, only to keep one from being created?

Actually, there is. Take, for example, the case where client/server-based software is to be
packaged. Certainly, it makes sense to create two subpackages: one for the client and one
for the server. But what about the main package? Is there any need for it?

Quite often there's no need for a main package. In those cases, removing the main %files

list entirely will result in no main package being built.

A Point Worth Noting

Please keep in mind that an empty %files list (ie, a %files list that contains no �les) is
not the same as not having a %files list at all. As we noted above, entirely removing a
%files list results in RPM not creating that package. However, if RPM comes across a
%files list with no �les, it will happily create an empty package �le.

This feature (which also works with subpackage %files lists) comes in handy when used in
concert with conditionals. If a %files list is enclosed by a conditional, the package will be
created (or not) based on the evaluation of the conditional.

Our Spec File So Far. . .

Ok, let's update our example spec �le. Here's what it looks like after adding each of the
subpackages' %files lists:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

This is the long description of the foo app, and the baz library needed to

build it...

18.4 Spec File Changes For Subpackages 259

%package server

Summary: The foo server

Group: bogus/junque

%package client

Summary: The foo client

Group: bogus/junque

%package -n bazlib

Version: 5.6

Summary: The baz library

Group: bogus/junque

%files

/usr/local/foo-file

%files server

/usr/local/server-file

%files client

/usr/local/client-file

%files -n bazlib

/usr/local/bazlib-file

As you can see we've added %files lists for:

� The main foo package.

� The foo-server subpackage.

� The foo-client subpackage.

� The bazlib subpackage.

Each package contains a single �le.1 If there was no need for a main package, we could
simply remove the unnamed %files list. Keep in mind that even if you do not create a
main package, the tags de�ned in the main package's preamble will appear somewhere {
speci�cally, in the source package �le.

Let's look at the last subpackage-speci�c part of the spec �le: the install- and erase-time
scripts.

1Hey, we said it was a simple example!

260 Creating Subpackages

18.4.3 Install- and Erase-time Scripts

The install- and erase-time scripts, %pre, %preun, %post, and %postun, can all be named
using exactly the same method as was used for the other subpackage-speci�c sections of
the spec �le. The script used during package veri�cation, %verifyscript, can be made
package-speci�c as well. Using the subpackage structure from our example spec �le, we
would end up with script de�nitions like:

� %pre server

� %postun client

� %preun -n bazlib

� %verifyscript client

Other than the change in naming, there's only one thing to be aware of when creating
scripts for subpackages. It's important that you consider the possibility of scripts from
various subpackages interacting with each other. Of course, this is simply good script-
writing practice, even if the packages involved are not related.

Back At the Spec File. . .

Here we've added some scripts to our spec �le. So that our example doesn't get too complex,
we've just added preinstall scripts for each package:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

This is the long description of the foo app, and the baz library needed to

build it...

%package server

Summary: The foo server

Group: bogus/junque

%description server

This is the long description for the foo server...

%package client

Summary: The foo client

Group: bogus/junque

%description client

18.5 Build-Time Scripts: Unchanged For Subpackages 261

This is the long description for the foo client...

%package -n bazlib

Version: 5.6

Summary: The baz library

Group: bogus/junque

%description -n bazlib

This is the long description for the bazlib...

%pre

echo "This is the foo package preinstall script"

%pre server

echo "This is the foo-server subpackage preinstall script"

%pre client

echo "This is the foo-client subpackage preinstall script"

%pre -n bazlib

echo "This is the bazlib subpackage preinstall script"

%files

/usr/local/foo-file

%files server

/usr/local/server-file

%files client

/usr/local/client-file

%files -n bazlib

/usr/local/bazlib-file

As pre-install scripts go, these don't do very much. But they will allow us to see how
subpackage-speci�c scripts can be de�ned.

Those of you that have built packages before probably realize that our spec �le is missing
something. Let's add that part now.

18.5 Build-Time Scripts: Unchanged For Subpackages

While creating subpackages changes the general structure of the spec �le, there's one section
that doesn't change: the build-time scripts. This means there is only one set of %prep,
%build, and %install scripts in any spec �le.

Of course, even if RPM doesn't require any changes to these scripts, you still might need

262 Creating Subpackages

to make some subpackage-related changes to them. Normally these changes are related to
doing whatever is required to get the all the software unpacked, built, and installed. For
example, if packaging client/server software, the software for both the client and the server
must be unpacked, and then both the client and server binaries must be built and installed.

18.5.1 Our Spec File: One Last Look. . .

Let's add some build-time scripts and take a �nal look at the spec �le:

Name: foo

Version: 2.7

Release: 1

Source: foo-2.7.tgz

CopyRight: probably not

Summary: The foo app, and the baz library needed to build it

Group: bogus/junque

%description

This is the long description of the foo app, and the baz library needed to

build it...

%package server

Summary: The foo server

Group: bogus/junque

%description server

This is the long description for the foo server...

%package client

Summary: The foo client

Group: bogus/junque

%description client

This is the long description for the foo client...

%package -n bazlib

Version: 5.6

Summary: The baz library

Group: bogus/junque

%description -n bazlib

This is the long description for the bazlib...

%prep

%setup

%build

make

18.6 Building Subpackages 263

%install

make install

%pre

echo "This is the foo package preinstall script"

%pre server

echo "This is the foo-server subpackage preinstall script"

#%pre client

#echo "This is the foo-client subpackage preinstall script"

%pre -n bazlib

echo "This is the bazlib subpackage preinstall script"

%files

/usr/local/foo-file

%files server

/usr/local/server-file

%files client

/usr/local/client-file

%files -n bazlib

/usr/local/bazlib-file

As you can see, the build-time scripts are about as simple as they can be.2

18.6 Building Subpackages

Now it's time to give our example spec �le a try. The build process is not that much di�erent
from a single-package spec �le:

rpm -ba foo-2.7.spec

Package: foo

Package: foo-server

Package: foo-client

Package: bazlib

...

Executing: %prep

...

Executing: %build

2This is the advantage to making up an example. A more real-world spec �le would undoubtedly have
more interesting scripts.

264 Creating Subpackages

...

Executing: %install

...

Executing: special doc

+ cd /usr/src/redhat/BUILD

+ cd foo-2.7

+ DOCDIR=//usr/doc/foo-2.7-1

+ DOCDIR=//usr/doc/foo-server-2.7-1

+ DOCDIR=//usr/doc/foo-client-2.7-1

+ DOCDIR=//usr/doc/bazlib-5.6-1

+ exit 0

Binary Packaging: foo-2.7-1

Finding dependencies...

usr/local/foo-file

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/foo-2.7-1.i386.rpm

Binary Packaging: foo-server-2.7-1

Finding dependencies...

usr/local/server-file

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/foo-server-2.7-1.i386.rpm

Binary Packaging: foo-client-2.7-1

Finding dependencies...

usr/local/client-file

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/foo-client-2.7-1.i386.rpm

Binary Packaging: bazlib-5.6-1

Finding dependencies...

usr/local/bazlib-file

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/bazlib-5.6-1.i386.rpm

...

Source Packaging: foo-2.7-1

foo-2.7.spec

foo-2.7.tgz

4 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/foo-2.7-1.src.rpm

#

Starting at the top, we start the build with the usual command. Immediately following the
command, RPM indicates that four packages are to be built from this spec �le. The %prep,

18.6 Building Subpackages 265

%build, and %install scripts then execute as usual.

Next, RPM executes its \special doc" internal script, even though we haven't declared
any �les to be documentation. It's worth noting, however, that the DOCDIR environment
variables show that if the spec �le had declared some of the �les as documentation, RPM
would have created the appropriate documentation directories for each of the packages.

At this point, RPM creates the binary packages. As we can see, each package contains the
�le de�ned in its %files list.

Finally, the source package �le is created. It contains the spec �le and the original sources,
just like any other source package.

One spec �le. One set of sources. One build command. Four packages.3 All in all, a pretty
good deal, isn't it?

18.6.1 Giving Subpackages the Once-Over

Let's take a look at our newly created packages. As with any other package, each subpackage
should be tested by installing it on a system that has not had that software installed before.
In this section, we'll just snoop around the subpackages and point out how they di�er from
packages built one to a spec �le.

First, let's just look at each package's information:

rpm -qip foo-2.7-1.i386.rpm
Name : foo Distribution: (none)

Version : 2.7 Vendor: (none)

Release : 1 Build Date: Wed Nov 06 13:33:37 1996

Install date: (none) Build Host: foonly.rpm.org

Group : bogus/junque Source RPM: foo-2.7-1.src.rpm

Size : 35

Summary : The foo app, and the baz library needed to build it

Description :

This is the long description of the foo app, and the baz library needed to

build it...

rpm -qip foo-server-2.7-1.i386.rpm
Name : foo-server Distribution: (none)

Version : 2.7 Vendor: (none)

Release : 1 Build Date: Wed Nov 06 13:33:37 1996

Install date: (none) Build Host: foonly.rpm.org

Group : bogus/junque Source RPM: foo-2.7-1.src.rpm

Size : 42

Summary : The foo server

Description :

This is the long description for the foo server...

3Five, if you count the source package.

266 Creating Subpackages

rpm -qip foo-client-2.7-1.i386.rpm

Name : foo-client Distribution: (none)

Version : 2.7 Vendor: (none)

Release : 1 Build Date: Wed Nov 06 13:33:37 1996

Install date: (none) Build Host: foonly.rpm.org

Group : bogus/junque Source RPM: foo-2.7-1.src.rpm

Size : 42

Summary : The foo client

Description :

This is the long description for the foo client...

rpm -qip bazlib-5.6-1.i386.rpm

Name : bazlib Distribution: (none)

Version : 5.6 Vendor: (none)

Release : 1 Build Date: Wed Nov 06 13:33:37 1996

Install date: (none) Build Host: foonly.rpm.org

Group : bogus/junque Source RPM: foo-2.7-1.src.rpm

Size : 38

Summary : The baz library

Description :

This is the long description for the bazlib...

#

Here we've used RPM's query capability to display a list of summary information for each
package. A few points are worth noting.

First, each package lists foo-2.7-1.src.rpm as its source package �le. This is the only
way to tell if two package �les were created from the same set of sources. Trying to use a
package's name as an indicator is futile, as the bazlib package shows us.

The next thing to notice is that the summaries and descriptions for each package are speci�c
to that package. Since these tags were placed and named according to each package, that
should be no surprise.

Finally, we can see that each package's version has been either \inherited" from the main
package's preamble, or, as in the case of the bazlib package, the main package's version
has been overridden by a version tag added to bazlib's preamble.

If we look at the source package's information, we see that its information has been taken
entirely from the main package's set of tags:

rpm -qip foo-2.7-1.src.rpm

Name : foo Distribution: (none)

Version : 2.7 Vendor: (none)

Release : 1 Build Date: Wed Nov 06 13:33:37 1996

Install date: (none) Build Host: foonly.rpm.org

Group : bogus/junque Source RPM: (none)

18.6 Building Subpackages 267

Size : 1415

Summary : The foo app, and the baz library needed to build it

Description :

This is the long description of the foo app, and the baz library needed to

build it...

#

It's easy to see that if there was no %files list for the main package, and therefore, no main
package, the tags in the main preamble would still be used in the source package. This is why
RPM enforces the requirement that the main preamble contain copyright, %description,
and group tags. So, here's a word to the wise: Don't put something stupid in the main
preamble's %description just to satisfy RPM. Your witty saying will be immortalized for
all time in every source package you distribute.4

Verifying Subpackage-speci�c Install and Erase Scripts

The easiest way to verify that the %pre scripts we de�ned for each package were actually
used is to simply install each package:

rpm -Uvh foo-2.7-1.i386.rpm

foo This is the foo package preinstall script

##

rpm -Uvh foo-server-2.7-1.i386.rpm

foo-server This is the foo-server subpackage preinstall script

##

rpm -Uvh foo-client-2.7-1.i386.rpm

foo-client This is the foo-client subpackage preinstall script

##

rpm -Uvh bazlib-5.6-1.i386.rpm

bazlib This is the bazlib subpackage preinstall script

##

#

As expected, the unique %pre script for each package has been included. Of course, if we
hadn't wanted to actually install the packages, we could have used RPM's - -scripts option
to display the scripts:

rpm -qp - -scripts foo-2.7-1.i386.rpm

4Yes, the author found out about this hard way!

268 Creating Subpackages

preinstall script:

echo "This is the foo-server subpackage preinstall script"

postinstall script:

(none)

preuninstall script:

(none)

postuninstall script:

(none)

verify script:

(none)

#

This approach might be a bit safer, particularly if installing the newly built package would
disrupt operations on your build system.

Chapter 19

Building Packages for Multiple

Architectures and Operating

Systems

While RPM certainly makes packaging software as easy as possible, it doesn't end there.
RPM gives you the tools you need to build a package on di�erent types of computers. More
importantly, RPM makes it possible to build packages on di�erent types of computers using
a single spec �le. Those of you that have developed software for di�erent computers know
the importance of maintaining a single set of sources. RPM lets you continue that practice
through the package building phase.

Before we get into RPM's capabilities, let's do a quick review of what is involved in devel-
oping software for di�erent types of computer systems.

19.1 Architectures and Operating Systems: A Primer

From a software engineering standpoint, there are only two major di�erences between any
two computer systems:

1. The architecture implemented by the computer's hardware.

2. The system software running on the computer.

The �rst di�erence is built into the computer. The architecture is the manner in which
the computer system was designed. It includes the number and type of registers present
in the processor, the number of machine instructions, what operations they perform, and
so on. For example, every \PC" today, no matter who built it, is based on the Intel x86
architecture.

The second di�erence is more under our control. The operating system is software that
controls how the system operates. Di�erent operating systems have di�erent methods of

270 Building Packages for Multiple Architectures and Operating Systems

storing information on disk, di�erent ways of implementing functions used by programs,
and di�erent hardware requirements.

As far as package building is concerned, two systems with the same architecture running
two di�erent operating systems, are as di�erent as two systems with di�erent architectures
running the same operating system. In the �rst case, the software being packaged for
di�erent operating systems will di�er due to the di�erences between the operating systems.
In the second case, the software being packaged for di�erent architectures will di�er due to
the underlying di�erences in hardware.1

RPM supports di�erences in architecture and operating system equally. If there is a tag,
rpmrc �le entry, or conditional that is used to support architectural di�erences, there is a
corresponding tag, entry, or conditional that supports operating system di�erences.

19.1.1 Let's Just Call Them Platforms

In order to keep the duplication in this chapter to a minimum, we'll refer to a computer of
a given architecture running a given operating system as a \platform". If another system
di�ers in either aspect, it is considered a di�erent platform.

OK, now that we've gotten through the preliminaries, let's look at RPM's multi-platform
capabilities.

19.2 What Does RPM Do To Make Multi-Platform
Packaging Easier?

As we mentioned above, RPM supports multi-platform package building through a set of
tags, rpmrc �le entries, and conditionals. None of these tools are di�cult to use. In fact,
the hardest part of multi-platform package building is �guring out how the software needs
to be changed to support di�erent platforms.

Let's take a look at each multi-platform tool RPM provides.

19.2.1 Automatic Detection of Build Platform

The �rst thing necessary for easy multi-platform package building is to identify which plat-
form the package is to be built for. Except in the fairly esoteric case of cross-compilation,
the build platform is the platform on which the package is built. RPM does this for you
automatically, although it can be overridden at build-time.

1This is a somewhat simplistic view of the matter, as it's common for incompatibilities to crop up between
two di�erent implementations of the same operating system on di�erent architectures.

19.3 Build and Install Platform Detection 271

19.2.2 Automatic Detection of Install Platform

The other important platform in package building is the platform on which the package is
to be installed. Here again, RPM does this for you, though it's possible to override this
when the package is installed.

But there is more to multi-platform package building than simply being able to determine the
platform during package building and installation. The next component in multi-platform
package building is a set of platform-dependent tags.

19.2.3 Platform-Dependent Tags

RPM uses a number of tags that control which platforms can build a package. These tags
make it easier for the package builder to build multiple packages automatically, since the
tags will keep RPM from attempting to build packages that are incompatible with the build
platform.

19.2.4 Platform-Dependent Conditionals

While the platform-dependent tags provide a crude level of multi-platform control (i.e., the
package will be built or not, depending on the tags and the build platform), RPM's platform-
dependent conditionals provide a much �ner level of control. By using these conditionals,
it's possible to excise those parts of the spec �le that are speci�c to another platform and
replace them with one or more lines that are compatible with the build platform.

Now that we have a basic idea of RPM's multi-platform support features, let's take a more
in-depth look at each one.

19.3 Build and Install Platform Detection

As we mentioned above, the �rst step to multi-platform package building is to identify the
build platform. This is done by matching information from the build system's uname output
against a number of rpmrc �le entries.

Normally, it's not necessary to worry too much about the following rpmrc �le entries, as
RPM comes with a set of entries that support all platforms that currently run RPM. How-
ever, when adding support for new platforms, it will be necessary to use the following entries
to add support for the new build platform.

19.3.1 Platform-Speci�c rpmrc Entries

Normally, the �le /usr/lib/rpmrc contains the following rpmrc �le entries. They can be
overridden by entries in /etc/rpmrc or ~/.rpmrc. This is discussed more completely in
Appendix B.

272 Building Packages for Multiple Architectures and Operating Systems

Because each entry type is available in both architecture and operating system avors, we'll
just use xxx in place of arch and os in the following descriptions.

xxx canon { De�ne Canonical Platform Name and Number

The xxx canon entry is used to convert information obtained from the system running RPM
into a canonical name and number that RPM will use internally. Here's the format:

xxx canon:<label>: <string> <value>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM as the canonical name, and <value> is used as a unique numeric
value. Here are two examples:

arch_canon: sun4: sparc 3

os_canon: Linux: Linux 1

The arch canon tag above is used to de�ne the canonical architecture information for Sun
Microsystems' SPARC architecture. In this case, the output from uname is compared against
sun4. If there's a match, the canonical architecture name is set to sparc and the architecture
number is set to 3.

The os canon tag above is used to de�ne the canonical operating system information for the
Linux operating system. In this case, the output from uname is compared against Linux.
If there's a match, the canonical operating system name is set to Linux, and the operating
system number is set to 1.

The description above is not 100% complete | There is an additional step performed during
the time RPM gets the system information from uname, and compares it against a canonical
name. Next, let's look at the rpmrc �le entry that comes into play during this intermediate
step.

buildxxxtranslate { De�ne Build Platform

The buildxxxtranslate entry is used to de�ne the build platform information. Speci�cally,
these entries are used to create a table that maps information from uname to the appropriate
architecture/operating system name.

The buildxxxtranslate entry looks like this:

buildxxxtranslate:<label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM as the build platform information, after it has been canonicalized
by xxx canon. Here are two examples:

buildarchtranslate: i586: i386

buildostranslate: Linux: Linux

19.3 Build and Install Platform Detection 273

The buildarchtranslate tag shown above is used to de�ne the build architecture for an
Intel Pentium (or i586 as it's shown here) processor. Any Pentium-based system will, by
default, build packages for the Intel 80386 (or i386) architecture.

The buildostranslate tag shown above is used to de�ne the build operating system for
systems running the Linux operating system. In this case, the build operating system
remains unchanged.

xxx compat { De�ne Compatible Architectures

The xxx compat entry is used to de�ne which architectures and operating systems are
compatible with one another. It is used at install-time only. The format of the entry is:

xxx compat:<label>: <list>

The <label> is a name string as de�ned by an xxx canon entry. The <list> following it
consists of one or more names, also de�ned by arch canon. If there is more than one name
in the list, they should be separated by a space.

The names in the list are considered compatible to the name speci�ed in the label.

arch_compat: i586: i486

arch_compat: i486: i386

os_compat: Linux: AIX

The arch compat lines shown above illustrate how a family of upwardly compatible archi-
tectures may be represented. For example, if the build architecture was de�ned as an i586,
the compatible architectures would be i486, and i386. However, if the build system was
an i486, the only compatible architecture would be an i386.

While the os compat line shown above is entirely �ctional, its purpose would be to declare
AIX compatible with Linux. If it were only that simple. . .

19.3.2 Overriding Platform Information At Build-Time

By using the rpmrc �le entries discussed above, RPM usually makes the right decisions
in selecting the build and install platforms. However, there might be times when RPM's
selections aren't the best. Normally the circumstances are unusual, as in the case of cross-
compiling software. In these cases, it is nice to have an easy way of overriding the build-time
architecture and operating system.

The - -buildarch and - -buildos options can be used to set the build-time architecture
and operating system rather than relying on RPM's automatic detection capabilities. These
options are added to a normal RPM build command. One important point to remember is
that, although RPM does try to �nd the speci�ed architecture name, it does no checking
as to the sanity of the entered architecture or operating system. For example, if you enter
an entirely �ctional operating system, RPM will issue a warning message, and then happily
build a package for it.

274 Building Packages for Multiple Architectures and Operating Systems

Why? Wouldn't it make more sense for RPM to perform some sort of sanity check? In
a word, no. One of RPM's main design goals was to never get in the way of the package
builder. If someone has a need to override their build platform information, they should
know what they're doing, and what the full implications of their actions are.

Bottom line: Unless you know why you need to use - -buildarch or - -buildos, you
probably don't need to use them.

19.3.3 Overriding Platform Information At Install-Time

It's also possible to direct RPM to ignore platform information while a package is being in-
stalled. The - -ignorearch and - -ignoreos options, when added to any install or upgrade
command, will direct RPM to proceed with the install or upgrade, even if the package's
platform doesn't match the install platform.

Dangerous? Yes. But it can be indispensable in certain circumstances. Like the abil-
ity to override platform information at build-time, unless you know why you need to use
- -ignorearch or - -ignoreos, you probably don't need to use them.

19.4 optflags { The Other rpmrc File Entry

While the optflags entry doesn't play a part in determining the build or install platform,
it does play a role in multi-platform package building. The optflags entry is used to de�ne
a standard set of options that can be used during the build process, speci�cally during
compilation.

The optflags entry looks like this:

optflags:<architecture> <value>

For example, assume the following optflags entries were placed in an rpmrc �le:

optflags: i386 -O2 -m486 -fno-strength-reduce

optflags: sparc -O2

If RPM was running on an Intel 80386-compatible architecture, the optflags value would
be set to -O2 -m486 -fno-strength-reduce. If, however, RPM was running on a Sun
SPARC-based system, optflags would be set to -O2.

This entry sets the RPM OPT FLAGS environment variable, which can be used in the %prep,
%build, and %install scripts.

19.5 Platform-Dependent Tags

Once RPM has determined the build platform's information, that information can be used
in the build process. The �rst way this information can be used is to determine whether

19.5 Platform-Dependent Tags 275

a given package should be built on a given platform. This is done through the use of four
tags that can be added to a spec �le.

There can be many reasons to do this. For example, the software may not build correctly
on a given platform. Or the software may be platform-speci�c, such that packaging the
software on any other platform, while technologically possible, would really make no sense.

The real world is not always so clear-cut, so there might even be cases where a package
should be built on, say, three di�erent platforms, but no others. By carefully using the
following tags, any conceivable situation can be covered.

Like the rpmrc �le entries we've already discussed, there are identical tags for architecture
and operating system, so we'll discuss them together.

19.5.1 The excludexxx Tag

The excludexxx tags are used to direct RPM to insure that the package does not attempt
to build on the excluded platforms. One or more platforms may be speci�ed after the
excludexxx tags, separated by either spaces or commas. Here are two examples:

ExcludeArch: sparc alpha

ExcludeOS: Irix

The �rst line prevents systems based on the Sun SPARC and Digital Alpha/AXP architec-
tures from attempting to build the package. The second line insures that the package will
not be built for the Silicon Graphics operating system, Irix.

If a build is attempted on an excluded architecture or operating system, the following
message will be displayed, and the build will fail:

rpm -ba cdplayer-1.0.spec

Arch mismatch!

cdplayer-1.0.spec doesn't build on this architecture

#

The excludexxx tags are meant to explicitly prevent a �nite set of architectures or operating
systems from building a package. If your goal is to insure that a package will only build on
one architecture, then you should use the exclusivexxx tags.

19.5.2 The exclusivexxx Tag

The exclusivexxx tags are used to direct RPM to only build the package on the speci�ed
platforms. These tags insure that, in the future, no brand-new platform will mistakenly
attempt to build the package. RPM will build the package on the speci�ed platforms only.

The syntax of the exclusivexxx tags is identical to excludexxx :

ExclusiveArch: sparc alpha

ExclusiveOS: Irix

276 Building Packages for Multiple Architectures and Operating Systems

In the �rst line, the package will only build on a Sun SPARC or Digital Alpha/AXP system.
In the second, the package will only be built on the Irix operating system.

The exclusivexxx tags are meant to explicitly allow a �nite set of architectures or operating
systems to build a package. If your goal is to insure that a package will not build on a speci�c
platform, then you should use the excludexxx tag.

19.6 Platform-Dependent Conditionals

Of course, the control exerted by the excludexxx and exclusivexxx tags over package
building is often too coarse. There may be packages, for example, that would build just �ne
on another platform, if only you could substitute a platform-speci�c patch �le or change
some paths in the %files list.

The key to exerting this kind of platform-speci�c control in the spec �le is to use RPM's
conditionals. The conditionals provide a general-purpose means of constructing a platform-
speci�c version of the spec �le during the actual build process.

19.6.1 Common Features of All Conditionals

There are a few things that are common to each conditional, so let's discuss them �rst. The
�rst thing is that conditionals are block-structured. The second is that conditionals can be
nested. Finally, conditionals can span any part of the spec �le.

Conditionals Are Block Structured

Every conditional is block-structured { in other words, the conditional begins at a certain
point within the spec �le and continues some number of lines until it is ended. This forms
a block that will be used or ignored, depending on the platform the conditional is checking
for, as well as the build platform itself.

Every conditional starts with a line beginning with the characters %if and is followed by
one of four platform-related conditions. Every conditional ends with a line containing the
characters %endif.

Ignoring the platform-related conditions for a moment, here's an example of a conditional
block:

%ifos Linux

Summary: This is a package for the Linux operating system

%endif

It's a one-line block, but a block nonetheless.

There's also another style of conditional block. As before, it starts with a %if, and ends
with a %endif. But there's something new in the middle:

19.6 Platform-Dependent Conditionals 277

%ifos Linux

Summary: This is a package for the Linux operating system

%else

Summary: This is a package for some other operating system

%endif

Here we've replaced one summary tag with another.

Conditionals Can Be Nested

Conditionals can be nested | That is, the block formed by one conditional can enclose
another conditional. Here's an example:

%ifarch i386

echo "This is an i386"

%ifos Linux

echo "This is a Linux system"

%else

echo "This is not a Linux system"

%endif

%else

echo "This is not an i386"

%endif

In this example, the �rst conditional block formed by the %ifarch i386 line contains a
complete %ifos --- %else --- %endif conditional. Therefore, if the build system was
Intel-based, the %ifos conditional would be tested. If the build system was not Intel-based,
the %ifos conditional would not be tested.

Conditionals Can Cross Spec File Sections

The next thing each conditional has in common is that there is no limit to the number of lines
a conditional block can contain. You could enclose the entire spec �le within a conditional,
if you like. But it's much better to use conditionals to insert only the appropriate platform-
speci�c contents.

Now that we have the basics out of the way, let's take a look at each of the conditionals and
see how they work.

278 Building Packages for Multiple Architectures and Operating Systems

19.6.2 %ifxxx

The %ifxxx conditionals are used to control the inclusion of a block, as long as the platform-
dependent information is true. Here are two examples:

%ifarch i386 alpha

In this case, the block following the conditional would be included only if the build archi-
tecture was i386 or alpha.

%ifos Linux

This example would include the block following the conditional only if the operating system
was Linux.

19.6.3 %ifnxxx

The %ifnxxx conditionals are used to control the inclusion of a block, as long as the
platform-dependent information is not true. Here are two examples:

%ifnarch i386 alpha

In this case, the block following the conditional would be included only if the build archi-
tecture was not i386 or alpha.

%ifnos Linux

This example would include the block following the conditional only if the operating system
was not Linux.

19.7 Hints and Kinks

There isn't much in the way of hard and fast rules when it comes to multi-platform package
building. But in general, the following uses of RPM's multi-platform capabilities seem to
work the best:

� The excludexxx/exclusivexxx tags are best used when it's known there's no reason
for the package to be built on speci�c architectures.

� The %ifxxx and %ifnxxx conditionals are most likely to be used in the following
areas:

{ Controlling the inclusion of %patch macros for platform-speci�c patches.

{ Setting up platform-speci�c initialization prior to building the software.

{ Tailoring the %files list when the software creates platform-speci�c �les.

Given that some software is more easily ported to di�erent platforms than others, this list is
far from complete. If there's one thing to remember about multi-platform package building,
it's don't be afraid to experiment!

Chapter 20

Real-World Package Building

In chapter 11, we packaged a fairly simple application. Since our goal was to introduce
package building, we kept things as simple as possible. However, things aren't always that
simple in the real world.

In this chapter, we'll package a more complex application that will call on most of RPM's
capabilities. We'll start with a general overview of the application and end with a completed
package, just as you would if you were tasked with packaging an application that you'd not
seen before.

So without further ado, let's meet amanda. . .

20.1 An Overview of Amanda

Amanda is a network backup utility. The name amanda stands for \Advanced Maryland
Automatic Network Disk Archiver". If the word \Maryland" seems somewhat incongruous,
it helps to realize that the program was developed at the University of Maryland by James
Da Silva, and has subsequently been enhanced by many people around the world.

The sources are available at ftp.cs.umd.edu, in directory /pub/amanda. At the time of
writing, the latest version of amanda is version 2.3.0. Therefore, it should come as no
surprise that the amanda source tar �le is called amanda-2.3.0.tar.gz.

As with most network-centric applications, amanda has a server component, and a client
component. An amanda server controls how the various client systems are backed up to the
server's tape drive. Each amanda client uses the operating system's native dump utility to
perform the actual backup, which is then compressed and sent to the server. A server can
back itself up simply by having the client software installed and con�gured, just like any
other client system.

The software builds with make, and most customization is done in two .h �les in the config
subdirectory. A fair amount of documentation is available in the doc subdirectory. All in
all, amanda is a typical non-trivial application.

280 Real-World Package Building

Amanda can be built on several Unix-based operating systems. In this chapter, we'll build
and package amanda for Red Hat Linux version 4.0.

20.2 Initial Building Without RPM

Since amanda can be built on numerous platforms, there needs to be some initial cus-
tomization when �rst building the software. Since customization implies that mistakes will
be made, we'll start o� by building amanda without any involvement on the part of RPM.

But before we can build amanda, we have to get it and unpack it, �rst.

20.2.1 Setting Up A Test Build Area

As we mentioned above, the home FTP site for amanda is ftp.cs.umd.edu. The sources
are in /pub/amanda.

After getting the sources, it's necessary to unpack them. We'll unpack them into RPM's
SOURCES directory, so that we can keep all our work in one place:

tar zxvf amanda-2.3.0.tar.gz

amanda-2.3.0/

amanda-2.3.0/COPYRIGHT

amanda-2.3.0/Makefile

amanda-2.3.0/README

...

amanda-2.3.0/man/amtape.8

amanda-2.3.0/tools/

amanda-2.3.0/tools/munge

#

As we saw, the sources unpacked into a directory called amanda-2.3.0. Let's rename that
directory to amanda-2.3.0-orig, and unpack the sources again:

ls

total 177

drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0/

-rw-r--r-- 1 root root 178646 Nov 20 10:42 amanda-2.3.0.tar.gz

mv amanda-2.3.0 amanda-2.3.0-orig

tar zxvf amanda-2.3.0.tar.gz

amanda-2.3.0/

amanda-2.3.0/COPYRIGHT

amanda-2.3.0/Makefile

amanda-2.3.0/README

...

amanda-2.3.0/man/amtape.8

20.2 Initial Building Without RPM 281

amanda-2.3.0/tools/

amanda-2.3.0/tools/munge

ls

total 178

drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0/

drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0-orig/

-rw-r--r-- 1 root root 178646 Nov 20 10:42 amanda-2.3.0.tar.gz

#

Now why did we do that? The reason lies in the fact that we will undoubtedly need to make
changes to the original sources in order to get amanda to build on Linux. We'll do all our
hacking in the amanda-2.3.0 directory, and leave the amanda-2.3.0-orig untouched.

Since one of RPM's design features is to build packages from the original, unmodi�ed
sources, that means the changes we'll make will need to be kept as a set of patches. The
amanda-2.3.0-orig directory will let us issue a simple recursive diff command to create
our patches when the time comes.

Now that our sources are unpacked, it's time to work on building the software.

20.2.2 Getting Software to build

Looking at the docs/INSTALL �le, we �nd that the steps required to get amanda con�gured
and ready to build are actually fairly simple. The �rst step is to modify tools/munge to
point to cpp, the C preprocessor.

Amanda uses CPP to create make�les containing the appropriate con�guration information.
This approach is a bit unusual, but not unheard of. In munge, we �nd the following section:

Customize CPP to point to your system's C preprocessor.

if cpp is on your path:

CPP=cpp

if cpp is not on your path, try one of these:

CPP=/lib/cpp # traditional

CPP=/usr/lib/cpp # also traditional

CPP=/usr/ccs/lib/cpp # Solaris 2.x

Since cpp exists in /lib on Red Hat Linux, we need to change this part of munge to:

Customize CPP to point to your system's C preprocessor.

if cpp is on your path:

#CPP=cpp

if cpp is not on your path, try one of these:

282 Real-World Package Building

CPP=/lib/cpp # traditional

CPP=/usr/lib/cpp # also traditional

CPP=/usr/ccs/lib/cpp # Solaris 2.x

Next, we need to take a look in config/ and create two �les:

1. config.h | contains platform-speci�c con�guration information

2. options.h | contains site-speci�c con�guration information

There are a number of example config.h �les for a number of di�erent platforms. There
is a Linux-speci�c version, so we copy that �le to config.h and review it. After a few
changes to reect our Red Hat Linux environment, it's ready. Now let's turn our attention
to options.h.

In the case of options.h, there's only one example �le called options.h-vanilla. As the
name implies, this is a basic �le that contains a series of #defines that con�gure amanda
for a typical environment. We'll need to make a few changes:

� De�ne the paths to common utility programs.

� Keep the programs from being named with the su�x -2.3.0.

� De�ne the directories where the programs should be installed.

While the �rst change is pretty much standard fare for anyone used to building software,
the last two changes are really due to RPM. With RPM, there's no need to name the
programs with a version-speci�c name, as RPM can easily upgrade to a new version and
even downgrade back, if the new version doesn't work as well. The default paths amanda
uses segregate the �les so that they can be easily maintained. With RPM, there's no need
to do this, since every �le installed by RPM gets written into the database. In addition,
Red Hat Linux systems adhere to the File System Standard, so any package destined for
Red Hat systems should really be FSSTND-compliant, too. Fortunately for us, amanda was
written to make these types of changes easy. But even if we had to hack an installation
script, RPM would pick up the changes as part of its patch handling.

We'll spare you the usual discovery of typos, incompatibilities, and the resulting rebuilds.
After an undisclosed number of iterations, our config.h and options.h �les are perfect.
Amanda builds:

make

Making all in common-src

make[1]: Entering directory `/usr/src/redhat/SOURCES/amanda-2.3.0/com

mon-src'

...

make[1]: Leaving directory `/usr/src/redhat/SOURCES/amanda-2.3.0/man'

#

20.2 Initial Building Without RPM 283

As we noted, amanda is constructed so that most of the time changes will only be necessary
in tools/munge, and the two �les in config. Our situation was no di�erent | after all was
said and done, that was all we needed to hack.

20.2.3 Installing and testing

As we all know, just because software builds doesn't mean that it's ready for prime-time.
It's necessary to test it �rst. In order to test amanda, we need to install it. Amanda's
make�le has an install target, so let's use that to get started. We'll also get a copy of the
output, because we'll need that later:

make install
Making install in common-src

...

make[1]: Entering directory `/usr/src/redhat/SOURCES/amanda-2.3.0/clien

t-src'

Installing Amanda client-side programs:

install -c -o bin amandad /usr/lib/amanda

install -c -o bin sendsize /usr/lib/amanda

install -c -o bin calcsize /usr/lib/amanda

install -c -o bin sendbackup-dump /usr/lib/amanda

install -c -o bin sendbackup-gnutar /usr/lib/amanda

install -c -o bin runtar /usr/lib/amanda

install -c -o bin selfcheck /usr/lib/amanda

Setting permissions for setuid-root client programs:

(cd /usr/lib/amanda ; chown root calcsize; chmod u+s calcsize)

(cd /usr/lib/amanda ; chown root runtar; chmod u+s runtar)

...

Making install in server-src

Installing Amanda libexec programs:

install -c -o bin taper /usr/lib/amanda

install -c -o bin dumper /usr/lib/amanda

install -c -o bin driver /usr/lib/amanda

install -c -o bin planner /usr/lib/amanda

install -c -o bin reporter /usr/lib/amanda

install -c -o bin getconf /usr/lib/amanda

Setting permissions for setuid-root libexec programs:

(cd /usr/lib/amanda ; chown root dumper; chmod u+s dumper)

(cd /usr/lib/amanda ; chown root planner; chmod u+s planner)

Installing Amanda user programs:

install -c -o bin amrestore /usr/sbin

install -c -o bin amadmin /usr/sbin

install -c -o bin amflush /usr/sbin

install -c -o bin amlabel /usr/sbin

install -c -o bin amcheck /usr/sbin

install -c -o bin amdump /usr/sbin

284 Real-World Package Building

install -c -o bin amcleanup /usr/sbin

install -c -o bin amtape /usr/sbin

Setting permissions for setuid-root user programs:

(cd /usr/sbin ; chown root amcheck; chmod u+s amcheck)

...

Installing Amanda changer libexec programs:

install -c -o bin chg-generic /usr/lib/amanda

...

Installing Amanda man pages:

install -c -o bin amanda.8 /usr/man/man8

install -c -o bin amadmin.8 /usr/man/man8

install -c -o bin amcheck.8 /usr/man/man8

install -c -o bin amcleanup.8 /usr/man/man8

install -c -o bin amdump.8 /usr/man/man8

install -c -o bin amflush.8 /usr/man/man8

install -c -o bin amlabel.8 /usr/man/man8

install -c -o bin amrestore.8 /usr/man/man8

install -c -o bin amtape.8 /usr/man/man8

...

#

OK, no major problems there. Amanda does require a bit of additional e�ort to get ev-
erything running, though. Looking at docs/INSTALL, we follow the steps to get amanda
running on our test system, as both a client and a server. As we perform each step, we note
it for future reference:

� For the client:

1. Set up a ~/.rhosts �le allowing the server to connect.

2. Make the disk device �les readable by the client.

3. Make /etc/dumpdates readable and writeable by the client.

4. Put an amanda entry in /etc/services.

5. Put an amanda entry in /etc/inetd.conf.

6. Issue a kill -HUP on inetd.

� For the server:

1. Create a directory to hold the server con�guration �les.

2. Modify the provided example con�guration �les to suit our site.

3. Add crontab entries to run amanda nightly.

4. Put an amanda entry in /etc/services.

Once everything is ready, we run a few tests. Everything performs awlessly.1 Looks like
we've got a good build. Let's start getting RPM involved.

1Well, eventually it did!

20.3 Initial Building With RPM 285

20.3 Initial Building With RPM

Now that amanda has been con�gured, built, and is operational on our build system, it's
time to have RPM take over each of these tasks. The �rst task is to have RPM make the
necessary changes to the original sources. To do that, RPM needs a patch �le.

20.3.1 Generating patches

The amanda-2.3.0 directory tree is where we did all our work building amanda. We need
to take all the work we've done in that directory tree and compare it against the original
sources contained in the amanda-2.3.0-orig directory tree. But before we do that, we need
to clean things up a bit.

Cleaning up the test build area

Looking through our work tree, it has all sorts of junk in it: emacs save �les, object �les, and
the executable programs. In order to generate a clean set of patches, all these extraneous
�les must go. Looking over amanda's make�les, there is a clean target that should take
care of most of the junk:

make clean

Making clean in common-src

...

rm -f *~ *.o *.a genversion version.c Makefile.out

...

Making clean in client-src

...

rm -f amandad sendsize calcsize sendbackup-dump

sendbackup-gnutar runtar selfcheck *~ *.o Makefile.out

...

Making clean in server-src

...

rm -f amrestore amadmin amflush amlabel amcheck amdump

amcleanup amtape taper dumper driver planner reporter

getconf *~ *.o Makefile.out

...

Making clean in changer-src

...

rm -f chg-generic *~ *.o Makefile.out

...

Making clean in man

...

rm -f *~ Makefile.out

...

#

286 Real-World Package Building

Looking in the tools and config directories where we did all our work, we see there are
still emacs save �les there. A bit of studying con�rms that the make�les don't bother to
clean these two directories. That's a nice touch because a make clean won't wipe out old
copies of the con�g �les, giving you a chance to go back to them in case you've botched
something. However, in our case, we're sure we won't need the save �les, so out they go:

cd /usr/src/redhat/SOURCES/amanda-2.3.0

find . -name "* " -exec rm -vf \;

./config/config.h

./config/options.h

./tools/munge

#

We let find take a look at the whole directory tree, just in case there was something still
out there that we'd forgotten about. As you can see, the only save �les are from the three
�les we've been working on.

You'll note that we've left our modi�ed munge �le, as well as the config.h and options.h

�les we so carefully crafted. That's intentional, as we want to make sure those changes are
applied when RPM patches the sources. Everything looks pretty clean, so it's time to make
the patches.

Actually Generating patches

This step is actually pretty anticlimactic:

diff -uNr amanda-2.3.0-orig/ amanda-2.3.0/ > amanda-2.3.0-linux.patch

#

With that one command, we've compared each �le in the untouched directory tree
(amanda-2.3.0-orig) with the directory tree we've been working in (amanda-2.3.0). If
we've done our homework, the only things in the patch �le should be related to the �les
we've changed. Let's take a look through it to make sure:

cd /usr/src/redhat/SOURCES

cat amanda-2.3.0-linux.patch

diff -uNr amanda-2.3.0-orig/config/config.h amanda-2.3.0/config/config.h

--- amanda-2.3.0-orig/config/config.h Wed Dec 31 19:00:00 1969

+++ amanda-2.3.0/config/config.h Sat Nov 16 16:22:47 1996

@@ -0,0 +1,52 @@

...

diff -uNr amanda-2.3.0-orig/config/options.h amanda-2.3.0/config/options.h

--- amanda-2.3.0-orig/config/options.h Wed Dec 31 19:00:00 1969

+++ amanda-2.3.0/config/options.h Sat Nov 16 17:08:57 1996

@@ -0,0 +1,211 @@

20.3 Initial Building With RPM 287

...

diff -uNr amanda-2.3.0-orig/tools/munge amanda-2.3.0/tools/munge

--- amanda-2.3.0-orig/tools/munge Sun May 19 22:11:25 1996

+++ amanda-2.3.0/tools/munge Sat Nov 16 16:23:50 1996

@@ -35,10 +35,10 @@

Customize CPP to point to your system's C preprocessor.

if cpp is on your path:

-CPP=cpp

+# CPP=cpp

if cpp is not on your path, try one of these:

-# CPP=/lib/cpp # traditional

+CPP=/lib/cpp # traditional

CPP=/usr/lib/cpp # also traditional

CPP=/usr/ccs/lib/cpp # Solaris 2.x

#

The patch �le contains complete copies of our config.h and options.h �les, followed by
the changes we've made to munge. Looks good! Time to hand this grunt work over to RPM.

20.3.2 Making a �rst-cut spec �le

Since amanda comes in two parts, it's obvious we'll need to use subpackages: one for the
client software, and one for the server. Given that, and the fact that the �rst part of any
spec �le consists of tags that are easily �lled in, let's sit down and �ll in the blanks, tag-wise:

Summary: Amanda Network Backup System

Name: amanda

Version: 2.3.08

Release: 1

Group: System/Backup

Copyright: BSD-like, but see COPYRIGHT file for details

Packager: Edward C. Bailey <bailey@rpm.org>

URL: http://www.cs.umd.edu/projects/amanda/

Source: ftp://ftp.cs.umd.edu/pub/amanda/amanda-2.3.0.tar.gz

Patch: amanda-2.3.0-linux.patch

%description

Amanda is a client/server backup system. It uses standard tape

devices and networking, so all you need is any working tape drive

and a network. You can use it for local backups as well.

That part was pretty easy. We set the package's release number to 1. We'll undoubtedly
be changing that as we continue work on the spec �le. You'll notice that we've included a

288 Real-World Package Building

URL tag line; the Uniform Resource Locator there points to the homepage for the amanda
project, making it easier for the user to get additional information on amanda.

The Source tag above includes the name of the original source tar �le and is preceded by
the URL pointing to the �le's primary location. Again, this makes it easy for the user to
grab a copy of the sources from the software's \birthplace".

Finally, the patch �le that we've just created gets a line of its own on the Patch tag line.
Next, let's take a look at the tags for our two subpackages. Let's start with the client:

%package client

Summary: Client-side Amanda package

Group: System/Backup

Requires: dump

%description client

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its

filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

The %package directive names the package. Since we wanted the subpackages to be named
amanda-<something>, we didn't use the -n option. This means our client subpackage will be
called amanda-client, just as we wanted. RPM requires unique summary, %description,
and group tags for each subpackage, so we've included them. Of course, it would be a
good idea even if RPM didn't require them | we've used the tags to provide client-speci�c
information.

The requires tag is the only other tag in the client subpackage. Since amanda uses dump
on the client system, we included this tag so that RPM will ensure that the dump package
is present on client systems.

Next, let's take a look at the tags for the server subpackage:

%package server

Summary: Server-side Amanda package

Group: System/Backup

%description server

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two package -- a client, and a server (this package):

The server package enables a network-capable system to control one

or more Amanda client systems performing backups. The server system

will direct all backups to a locally attached tape drive. Therefore,

20.3 Initial Building With RPM 289

the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

No surprises here, really. You'll note that the server subpackage has no requires tag for the
dump package. The reason for that is due to a design decision we've made. Since amanda
is comprised of a client and a server component, in order for the server system to perform
backups of itself, the client component must be installed. Since we've already made the
client subpackage require dump, we've already covered the bases.

Since an amanda server cannot back itself up without the client software, why don't we have
the server subpackage require the client subpackage? Well, that could be done, but the fact
of the matter is that there are cases where an amanda server won't need to back itself up.
So the server subpackage needs no package requirements.

Adding the build-time scripts

Next we need to add the build-time scripts. There's really not much to them:

%prep

%setup

%build

make

%install

make install

The %prep script consists of one line containing the simplest avor of %setup macro. Since
we only need %setup to unpack one set of sources, there are no options we need to add.

The %build script is just as simple, with the single make command required to build amanda.

Finally, the %install script maintains our singe-line trend for build-time scripts. Here a
simple make install will put all the �les where they need to be for RPM to package them.

Adding %files Lists

The last part of our initial attempt at a spec �le is a %files list for each package the spec
�le will build. Since we're planning on a client and a server subpackage, we'll need two
%files lists. For the time being, we'll just add the %files lines | we'll be adding the
actual �lenames later:

%files client

%file server

290 Real-World Package Building

There's certainly more to come, but this is enough to get us started. And the �rst thing we
want RPM to do is to unpack the amanda sources.

20.3.3 Getting the original sources unpacked

In keeping with a step-by-step approach, RPM has an option that let's us stop the build
process after the %prep script has run. Let's give the -bp option a try, and see how things
look:

rpm -bp amanda-2.3.0.spec

* Package: amanda

* Package: amanda-client

* Package: amanda-server

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf amanda-2.3.0

+ gzip -dc /usr/src/redhat/SOURCES/amanda-2.3.0.tar.gz

+ tar -xvvf -

drwxr-xr-x 3/20 0 May 19 22:10 1996 amanda-2.3.0/

-rw-r--r-- 3/20 1389 May 19 22:11 1996 amanda-2.3.0/COPYRIGHT

-rw-r--r-- 3/20 1958 May 19 22:11 1996 amanda-2.3.0/Makefile

-rw-r--r-- 3/20 11036 May 19 22:11 1996 amanda-2.3.0/README

...

-rw-r--r-- 3/20 2010 May 19 22:11 1996 amanda-2.3.0/man/amtape.8

drwxr-xr-x 3/20 0 May 19 22:11 1996 amanda-2.3.0/tools/

-rwxr-xr-x 3/20 2437 May 19 22:11 1996 amanda-2.3.0/tools/munge

+ [0 -ne 0]

+ cd amanda-2.3.0

+ cd /usr/src/redhat/BUILD/amanda-2.3.0

+ chown -R root.root .

+ chmod -R a+rX,g-w,o-w .

+ exit 0

#

By looking at the output, it would be pretty hard to miss the fact that the sources were
unpacked. If we look in RPM's default build area (/usr/src/redhat/BUILD), we'll see an
amanda directory tree:

cd /usr/src/redhat/BUILD/

ls -l

total 3

drwxr-xr-x 11 root root 1024 May 19 1996 amanda-2.3.0

20.3 Initial Building With RPM 291

#

After a quick look around, it seems like the sources were unpacked properly. But wait
| where are our carefully crafted con�guration �les in config? Why isn't tools/munge
modi�ed?

20.3.4 Getting patches properly applied

Ah, perhaps our %prep script was a bit too simple. We need to apply our patch. So let's
add two things to our spec �le:

1. A patch tag line pointing to our patch �le

2. A %patch macro in our %prep script

Easy enough. At the top of the spec �le, along with the other tags, let's add:

Patch: amanda-2.3.0-linux.patch

Then we'll make our %prep script look like this:

%prep

%setup

%patch -p 1

There, that should do it. Let's give that -bp option another try:

rpm -bp amanda-2.3.0.spec
* Package: amanda

* Package: amanda-client

* Package: amanda-server

+ umask 022

+ echo Executing: %prep

Executing: %prep

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf amanda-2.3.0

+ gzip -dc /usr/src/redhat/SOURCES/amanda-2.3.0.tar.gz

+ tar -xvvf -

drwxr-xr-x 3/20 0 May 19 22:10 1996 amanda-2.3.0/

-rw-r--r-- 3/20 1389 May 19 22:11 1996 amanda-2.3.0/COPYRIGHT

-rw-r--r-- 3/20 1958 May 19 22:11 1996 amanda-2.3.0/Makefile

-rw-r--r-- 3/20 11036 May 19 22:11 1996 amanda-2.3.0/README

...

-rw-r--r-- 3/20 2010 May 19 22:11 1996 amanda-2.3.0/man/amtape.8

292 Real-World Package Building

drwxr-xr-x 3/20 0 May 19 22:11 1996 amanda-2.3.0/tools/

-rwxr-xr-x 3/20 2437 May 19 22:11 1996 amanda-2.3.0/tools/munge

+ [0 -ne 0]

+ cd amanda-2.3.0

+ cd /usr/src/redhat/BUILD/amanda-2.3.0

+ chown -R root.root .

+ chmod -R a+rX,g-w,o-w .

+ echo Patch #0:

Patch #0:

+ patch -p1 -s

+ exit 0

#

Not much di�erence, until the very end, where we see the patch being applied. Let's take a
look into the build area and see if our con�guration �les are there:

cd /usr/src/redhat/BUILD/amanda-2.3.0/config

ls -l
total 58

-rw-r--r-- 1 root root 7518 May 19 1996 config-common.h

-rw-r--r-- 1 root root 1846 Nov 20 20:46 config.h

-rw-r--r-- 1 root root 2081 May 19 1996 config.h-aix

-rw-r--r-- 1 root root 1690 May 19 1996 config.h-bsdi1

...

-rw-r--r-- 1 root root 1830 May 19 1996 config.h-ultrix4

-rw-r--r-- 1 root root 0 Nov 20 20:46 config.h.orig

-rw-r--r-- 1 root root 7196 Nov 20 20:46 options.h

-rw-r--r-- 1 root root 7236 May 19 1996 options.h-vanilla

-rw-r--r-- 1 root root 0 Nov 20 20:46 options.h.orig

#

Much better. Those zero-length .orig �les are a dead giveaway that patch has been here,
as are the dates on config.h, and options.h. In the tools directory, munge has been
modi�ed, too. These sources are ready for building!

20.3.5 Letting RPM do the Building

We know that the sources are ready. We know that the %build script is ready. There
shouldn't be much in the way of surprises if we let RPM build amanda. Let's use the -bc

option to stop things after the %build script completes:

rpm -bc amanda-2.3.0.spec
* Package: amanda

* Package: amanda-client

* Package: amanda-server

...

20.3 Initial Building With RPM 293

echo Executing: %build

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make

Making all in common-src

make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'

../tools/munge Makefile.in Makefile.out

make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'

cc -g -I. -I../config -c error.c -o error.o

cc -g -I. -I../config -c alloc.c -o alloc.o

...

Making all in man

make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

../tools/munge Makefile.in Makefile.out

make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

make[2]: Nothing to be done for `all'.

make[2]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

make[1]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

+ exit 0

#

As we thought, no surprises. A quick look through the build area shows a full assortment of
binaries, all ready to be installed. So it seems that the most natural thing to do next would
be to let RPM install amanda.

20.3.6 Letting RPM do the Installing

And that's just what we're going to do! Our %install script has the necessary make

install command, so let's give it a shot:

rpm -bi amanda-2.3.0.spec
* Package: amanda

* Package: amanda-client

* Package: amanda-server

...

echo Executing: %build

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make

Making all in common-src

make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'

../tools/munge Makefile.in Makefile.out

make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'

cc -g -I. -I../config -c error.c -o error.o

294 Real-World Package Building

cc -g -I. -I../config -c alloc.c -o alloc.o

...

+ umask 022

+ echo Executing: %install

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make install

Making install in common-src

make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'

...

install -c -o bin amrestore.8 /usr/man/man8

install -c -o bin amtape.8 /usr/man/man8

make[2]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

make[1]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'

+ exit 0

+ umask 022

+ echo Executing: special doc

Executing: special doc

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ DOCDIR=//usr/doc/amanda-2.3.0-1

+ DOCDIR=//usr/doc/amanda-client-2.3.0-1

+ DOCDIR=//usr/doc/amanda-server-2.3.0-1

+ exit 0

#

Everything looks pretty good. At this point, the amanda software, built by RPM, has been
installed on the build system. Since performed all the con�guration steps before, when we
were manually building amanda, everything should still be con�gured properly to test this
new build.2 So why don't we give the new binaries a try?

20.3.7 Testing RPM's Handiwork

After a quick double-check to ensure that all the con�guration steps were still in place from
our manual build, we reran our tests. No problems were found. It's time to build some
packages!

20.4 Package Building

OK, let's go for broke and tell RPM to do the works, including the creation of the binary
and source packages:

2Of course, if the process of installing the software changed some necessary con�g �les, they would have
to be redone, but in this case it didn't happen.

20.4 Package Building 295

rpm -ba amanda-2.3.0.spec
* Package: amanda

* Package: amanda-client

* Package: amanda-server

...

echo Executing: %build

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make

Making all in common-src

...

+ echo Executing: %install

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make install

Making install in common-src

...

+ echo Executing: special doc

Executing: special doc

...

Binary Packaging: amanda-client-2.3.0-1

Finding dependencies...

Requires (1): dump

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/amanda-client-2.3.0-1.i386.rpm

Binary Packaging: amanda-server-2.3.0-1

Finding dependencies...

1 block

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/amanda-server-2.3.0-1.i386.rpm

+ umask 022

+ echo Executing: %clean

Executing: %clean

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ exit 0

Source Packaging: amanda-2.3.0-1

amanda-2.3.0.spec

amanda-2.3.0-linux.patch

amanda-2.3.0.tar.gz

374 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/amanda-2.3.0-1.src.rpm

296 Real-World Package Building

#

Great! Let's take a look at our handiwork:

cd /usr/src/redhat/RPMS/i386/

ls -l

total 2

-rw-r--r-- 1 root root 1246 Nov 20 21:19 amanda-client-2.3.0-1.i386.rpm

-rw-r--r-- 1 root root 1308 Nov 20 21:19 amanda-server-2.3.0-1.i386.rpm

#

rpm-first-look

Hmmm, those binary packages look sort of small. We'd better see what's in there:

rpm -qilp amanda-*-1.i386.rpm

Name : amanda-client Distribution: (none)

Version : 2.3.0 Vendor: (none)

Release : 1 Build Date: Wed Nov 20 21:19:44 1996

Install date: (none) Build Host: moocow.rpm.org

Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm

Size : 0

Summary : Client-side Amanda package

Description :

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its

filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

(contains no files)

Name : amanda-server Distribution: (none)

Version : 2.3.0 Vendor: (none)

Release : 1 Build Date: Wed Nov 20 21:19:44 1996

Install date: (none) Build Host: moocow.rpm.org

Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm

Size : 0

Summary : Server-side Amanda package

Description :

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two package -- a client, and a server (this package):

20.4 Package Building 297

The server package enables a network-capable system to control one

or more Amanda client systems performing backups. The server system

will direct all backups to a locally attached tape drive. Therefore,

the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

(contains no files)

#

What do they mean, (contains no files)? The spec �le has perfectly good %files

lists. . .

Oops.

20.4.1 Creating the %files list

Everything was going so smoothly, we forgot that the %files lists were going to need �les.
No problem, we just need to put the �lenames in there, and we'll be all set. But is it really
that easy?

How to �nd the installed �les?

Luckily, it's not too bad. Since we saved the output from our �rst make install, we can
see the �lenames as they're installed. Of course, it's important to make sure the install
output is valid. Fortunately for us, amanda didn't require much �ddling by the time we
got it built and tested. If it had, we would have had to get more recent output from the
installation phase.

It's time for more decisions. We have one list of installed �les, and two %files lists. It
would be silly to put all the �les in both %files lists, so we have to decide which �le goes
where.

This is where experience with the software really pays o�, because the wrong decision made
here can result in awkward, ill-featured packages. Here's the %files list we came up with
for the client subpackage:

%files client

/usr/lib/amanda/amandad

/usr/lib/amanda/sendsize

/usr/lib/amanda/calcsize

/usr/lib/amanda/sendbackup-dump

/usr/lib/amanda/selfcheck

/usr/lib/amanda/sendbackup-gnutar

/usr/lib/amanda/runtar

README

298 Real-World Package Building

COPYRIGHT

docs/INSTALL

docs/SYSTEM.NOTES

docs/WHATS.NEW

The �les in /usr/lib/amanda are all the client-side amanda programs, so that part was
easy. The remaining �les are part of the original source archive. Amanda doesn't install
them, but they contain information that users should see.

Realizing that RPM can't package these �les speci�ed as they are, let's leave the client
%files list for a moment, and check out the list for the server subpackage:

%files server

/usr/sbin/amadmin

/usr/sbin/amcheck

/usr/sbin/amcleanup

/usr/sbin/amdump

/usr/sbin/amflush

/usr/sbin/amlabel

/usr/sbin/amrestore

/usr/sbin/amtape

/usr/lib/amanda/taper

/usr/lib/amanda/dumper

/usr/lib/amanda/driver

/usr/lib/amanda/planner

/usr/lib/amanda/reporter

/usr/lib/amanda/getconf

/usr/lib/amanda/chg-generic

/usr/man/man8/amanda.8

/usr/man/man8/amadmin.8

/usr/man/man8/amcheck.8

/usr/man/man8/amcleanup.8

/usr/man/man8/amdump.8

/usr/man/man8/amflush.8

/usr/man/man8/amlabel.8

/usr/man/man8/amrestore.8

/usr/man/man8/amtape.8

README

COPYRIGHT

docs/INSTALL

docs/KERBEROS

docs/SUNOS4.BUG

docs/SYSTEM.NOTES

docs/TAPE.CHANGERS

docs/WHATS.NEW

docs/MULTITAPE

example

20.4 Package Building 299

The �les in /usr/sbin are programs that will be run by the amanda administrator in order
to perform backups and restores. The �les in /usr/lib/amanda are the server-side programs
that do the actual work during backups. Following that are a number of man pages: one for
each program to be run by the amanda administrator, and one with an overview of amanda.

Bringing up the rear are a number of �les that are not installed, but would be handy for
the amanda administrator to have available. There is some overlap with the �les that will
be part of the client subpackage, but the additional �les here discuss features that would
interest only amanda administrators. Included here is the example subdirectory, which
contains a few example con�guration �les for the amanda server.

As in the client %files list, these last �les can't be packaged by RPM as we've listed them.
We need to use a few more of RPM's tricks to get them packaged.

Applying Directives

Since we'd like the client subpackage to include those �les that are not normally installed,
and since the �les are documentation, let's use the %doc directive on them. That will
accomplish two things:

1. When the client subpackage is installed, it will direct RPM to place them in a package-
speci�c directory in /usr/doc

2. It will tag the �les as being documentation, making it possible for users to easily track
down the documentation with a simple rpm -qd command

In the course of looking over the %files lists, it becomes apparent that the directory
/usr/lib/amanda will contain only �les from the two amanda subpackages. If the sub-
packages are erased, the directory will remain, which won't hurt anything, but it isn't as
neat as it could be. But if we add the directory to the list, RPM will automatically package
every �le in the directory. Since the �les in that directory are part of both the client and
the server subpackages, we'll need to use the %dir directive to instruct RPM to package
only the directory.

After these changes, here's what the client %files list looks like now:

%files client

%dir /usr/lib/amanda/

/usr/lib/amanda/amandad

/usr/lib/amanda/sendsize

/usr/lib/amanda/calcsize

/usr/lib/amanda/sendbackup-dump

/usr/lib/amanda/selfcheck

/usr/lib/amanda/sendbackup-gnutar

/usr/lib/amanda/runtar

%doc README

%doc COPYRIGHT

%doc docs/INSTALL

300 Real-World Package Building

%doc docs/SYSTEM.NOTES

%doc docs/WHATS.NEW

We've also applied the same directives to the server %files list:

%files server

/usr/sbin/amadmin

/usr/sbin/amcheck

/usr/sbin/amcleanup

/usr/sbin/amdump

/usr/sbin/amflush

/usr/sbin/amlabel

/usr/sbin/amrestore

/usr/sbin/amtape

%dir /usr/lib/amanda/

/usr/lib/amanda/taper

/usr/lib/amanda/dumper

/usr/lib/amanda/driver

/usr/lib/amanda/planner

/usr/lib/amanda/reporter

/usr/lib/amanda/getconf

/usr/lib/amanda/chg-generic

/usr/man/man8/amanda.8

/usr/man/man8/amadmin.8

/usr/man/man8/amcheck.8

/usr/man/man8/amcleanup.8

/usr/man/man8/amdump.8

/usr/man/man8/amflush.8

/usr/man/man8/amlabel.8

/usr/man/man8/amrestore.8

/usr/man/man8/amtape.8

%doc README

%doc COPYRIGHT

%doc docs/INSTALL

%doc docs/KERBEROS

%doc docs/SUNOS4.BUG

%doc docs/SYSTEM.NOTES

%doc docs/TAPE.CHANGERS

%doc docs/WHATS.NEW

%doc docs/MULTITAPE

%doc example

You'll note that we neglected to use the %doc directive on the man page �les. The reason
is that RPM automatically tags any �le destined for /usr/man as documentation. Now our
spec �le has a complete set of tags, the two subpackages are de�ned, it has build-time scripts
that work, and now, %files lists for each subpackage. Why don't we try that build again?

20.4 Package Building 301

rpm -ba amanda-2.3.0.spec
* Package: amanda

* Package: amanda-client

* Package: amanda-server

...

echo Executing: %build

Executing: %build

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make

Making all in common-src

...

+ echo Executing: %install

Executing: %install

+ cd /usr/src/redhat/BUILD

+ cd amanda-2.3.0

+ make install

Making install in common-src

...

+ echo Executing: special doc

Executing: special doc

...

Binary Packaging: amanda-client-2.3.0-6

Finding dependencies...

Requires (3): libc.so.5 libdb.so.2 dump

usr/doc/amanda-client-2.3.0-6

usr/doc/amanda-client-2.3.0-6/COPYRIGHT

usr/doc/amanda-client-2.3.0-6/INSTALL

...

usr/lib/amanda/sendbackup-gnutar

usr/lib/amanda/sendsize

1453 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/amanda-client-2.3.0-6.i386.rpm

Binary Packaging: amanda-server-2.3.0-6

Finding dependencies...

Requires (2): libc.so.5 libdb.so.2

usr/doc/amanda-server-2.3.0-6

usr/doc/amanda-server-2.3.0-6/COPYRIGHT

usr/doc/amanda-server-2.3.0-6/INSTALL

...

usr/sbin/amrestore

usr/sbin/amtape

3404 blocks

Generating signature: 0

Wrote: /usr/src/redhat/RPMS/i386/amanda-server-2.3.0-6.i386.rpm

302 Real-World Package Building

...

Source Packaging: amanda-2.3.0-6

amanda-2.3.0.spec

amanda-2.3.0-linux.patch

amanda-rpm-instructions.tar.gz

amanda-2.3.0.tar.gz

393 blocks

Generating signature: 0

Wrote: /usr/src/redhat/SRPMS/amanda-2.3.0-6.src.rpm

#

If we take a quick look at the client and server subpackages, we �nd that, sure enough, this
time they contain �les:

cd /usr/src/redhat/RPMS/i386/

ls -l amanda-*
-rw-r--r-- 1 root root 211409 Nov 21 15:56 amanda-client-2.3.0-1.i386.rpm

-rw-r--r-- 1 root root 512814 Nov 21 15:57 amanda-server-2.3.0-1.i386.rpm

rpm -qilp amanda-*

Name : amanda-client Distribution: (none)

Version : 2.3.0 Vendor: (none)

Release : 1 Build Date: Thu Nov 21 15:55:59 1996

Install date: (none) Build Host: moocow.rpm.org

Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm

Size : 737101

Summary : Client-side Amanda package

Description :

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its

filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

/usr/doc/amanda-client-2.3.0-1

/usr/doc/amanda-client-2.3.0-1/COPYRIGHT

/usr/doc/amanda-client-2.3.0-1/INSTALL

...

/usr/lib/amanda/sendbackup-gnutar

/usr/lib/amanda/sendsize

Name : amanda-server Distribution: (none)

Version : 2.3.0 Vendor: (none)

Release : 1 Build Date: Thu Nov 21 15:55:59 1996

20.4 Package Building 303

Install date: (none) Build Host: moocow.rpm.org

Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm

Size : 1733825

Summary : Server-side Amanda package

Description :

The Amanda Network Backup system contains software necessary to

automatically perform backups across a network. Amanda consists of

two package -- a client, and a server (this package):

The server package enables a network-capable system to control one

or more Amanda client systems performing backups. The server system

will direct all backups to a locally attached tape drive. Therefore,

the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both

the client and server packages!

/usr/doc/amanda-server-2.3.0-1

/usr/doc/amanda-server-2.3.0-1/COPYRIGHT

/usr/doc/amanda-server-2.3.0-1/INSTALL

...

/usr/sbin/amrestore

/usr/sbin/amtape

#

We're �nally ready to test these packages!

20.4.2 Testing those �rst packages

The system we've built the packages on already has amanda installed. This is due to the
build process itself. However, we can install the new packages on top of the already-existing
�les:

cd /usr/src/redhat/RPMS/i386

rpm -ivh amanda-*-1.i386.rpm

amanda-client ##

amanda-server ##

#

Running some tests, it looks like everything is running well. But back in chapter 11, specif-
ically section 11.5.2 on page 137, we mentioned that it was possible to install a newly-built
package on the build system, and not realize that the package was missing �les. Well, there's
another reason why installing the package on the build-system for testing is a bad idea. Let's
bring our packages to a di�erent system, test them there, and see what happens.

304 Real-World Package Building

Installing the Package On A Di�erent System

Looks like we're almost through. Let's install the packages on another system that had not
previously run amanda, and test it there:

rpm -ivh amanda-*-1.i386.rpm

amanda-client ##

amanda-server ##

#

The install went smoothly enough. However, testing did not. Why? Nothing was set up!
The server con�guration �les, the inetd.conf entry for the client, everything was missing.
If we stop and thing about it for a moment that makes sense: we had gone through all those
steps on the build system, but none of those steps can be packaged as �les.

After following the steps in the installation instructions, everything works. While we could
expect users to do most of the grunt work associated with getting amanda con�gured, RPM
does have the ability to run scripts when packages are installed and erased. Why don't we
use that feature to make life easier for our users?

20.4.3 Finishing Touches

At this point in the build process, we're on the home stretch. The software builds correctly
and is packaged. It's time to stop looking at things from a \build the software" perspective,
and time to starting looking at things from a \package the software" point of view.

The di�erence lies in looking at the packages from the user's perspective. Does the package
install easily, or does it require a lot of e�ort to make it operative? When the package is
removed, does it clean up after itself, or does it leave bits and pieces strewn throughout the
�lesystem?

Let's put a bit more e�ort into this spec �le, and make life easier on our users.

Creating Install Scripts

When it comes to needing post-installation con�guration, amanda certainly is no slouch!
We'll work on the client �rst. Let's look at a section of the script we wrote, comment on it,
and move on:

%post client

See if they've installed amanda before...

If they have, none of this should be necessary...

if ["$1" = 1];

then

20.4 Package Building 305

First, we start the script with a %post statement, and indicate that this script is for the
client subpackage. As the comments indicate, we only want to perform the following tasks
if this is the �rst time the client subpackage has been installed. To do this, we use the �rst
and only argument passed to the script. It is a number indicating how many instances of
this package will be installed after the current installation is complete.

If the argument is equal to 1, that means that no other instances of the client subpackage
are presently installed, and that this one is the �rst. Let's continue:

Set disk devices so that bin can read them

(This is actually done on Red Hat Linux; only need to add bin to

group disk)

if grep "^disk::.*bin" /etc/group > /dev/null

then

true

else

If there are any members in group disk, add bin after a comma...

sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\)/\1,bin/' /etc/group > /etc/grou

p.tmp

If there are no members in group disk, add bin...

sed -e 's/\(^disk::[0-9]\{1,\}:$\)/\1bin/' /etc/group.tmp > /etc/group

clean up!

rm -f /etc/group.tmp

fi

One of amanda's requirements is that the user ID running the dumps on the client needs
to be able to read from every disk's device �le. The folks at Red Hat have done half the
work for us by creating a group disk and giving that group read/write access to every disk
device. Since our dumpuser is bin, we only need to add bin to the disk group. Two lines
of sed, and we're done!

The next section is related to the last. It also focuses on making sure bin can access
everything it needs while doing backups:

Also set /etc/dumpdates to be writable by group disk

chgrp disk /etc/dumpdates

chmod g+w /etc/dumpdates

Since amanda uses dump to obtain the backups, and since dump keeps track of the backups
in /etc/dumpdates, it's only natural that bin will need read/write access to the �le. In a
perfect world, /etc/dumpdates would have already been set to allow group disk to read
and write, but we had to do it ourselves. It's not a big problem, though.

306 Real-World Package Building

Next, we need to create the appropriate network-related entries, so that amanda clients can
communicate with amanda servers, and vice versa:

Add amanda line to /etc/services

if grep "^amanda" /etc/services >/dev/null

then

true

else

echo "amanda 10080/udp # Added by package amanda-client" >>

/etc/services

fi

By using grep to look for lines that begin with the letters amanda, we can easily see if
/etc/services is already con�gured properly. It it isn't, we simply append a line to the
end.

We also added a comment so that sysadmins will know where the entry came from, and
either take our word for it or issue an rpm -q - -scripts amanda-client command and
see for themselves. We did it all on one line because it makes the script simpler.

Let's look at the rest of the network-related part of this script:

Add amanda line to /etc/inetd.conf

if grep "^amanda" /etc/inetd.conf >/dev/null

then

true

else

echo "amanda dgram udp wait bin /usr/lib/amanda/amandad amandad

added by package amanda-client" >>/etc/inetd.conf

Kick inetd

if [-f /var/run/inetd.pid];

then

kill -HUP `cat /var/run/inetd.pid`

fi

fi

fi

Here, we've used the same approach to add an entry to /etc/inetd.conf. We then hup
inetd so the change will take a�ect, and we're done!

Oh, and that last fi at the end? That's to close the if ["$1" = 1] at the start of the
script. Now let's look at the server's post-install script:

%post server

20.4 Package Building 307

See if they've installed amanda before...

if ["$1" = 1];

then

Add amanda line to /etc/services

if grep "^amanda" /etc/services >/dev/null

then

true

else

echo "amanda 10080/udp # Added by package amanda-server"

>>/etc/services

fi

fi

That was short! And this huge di�erence brings up a good point about writing install
scripts: It's important to understand what you as the package builder should do for the
user, and what they should do for themselves.

In the case of the client package, every one of the steps performed by the post-install script
was something that a fairly knowledgeable user could have done. But each of these steps
have one thing in common. No matter how the user con�gures amanda, these steps will
never change. And given the nature of client/server applications, there's a good chance that
many more amanda client packages will be installed than amanda servers. Would you like
to be tasked with installing this package on twenty systems, and performing each of the
steps we've automated, twenty times? We thought not.

There is one step that we did not automate for the client package. The step we left out is
the creation of a .rhosts �le. Since this �le must contain the name of the amanda server,
we have no way of knowing what the �le should look like. Therefore, that's one step we
can't automate.

The server's post-install script is so short because there's little else that can be automated.
The other steps required to set up an amanda server include:

1. Choosing a con�guration name, which requires user input

2. Creating a directory to hold the server con�guration �les, named according to the
con�guration name, which depends on the �rst step

3. Modifying example con�guration �les to suit the site, which requires user input

4. Adding crontab entries to run amanda nightly, which requires user input

Since every step depends on the user making decisions, the best way to handle them is to
not handle them at all. Let the user do it!

308 Real-World Package Building

Creating Uninstall Scripts

Where there are install scripts, there are uninstall scripts. While there is no ironclad rule
to that e�ect, it is a good practice. Following this practice, we have an uninstall script for
the client package, and one for the server. Let's take the client �rst:

%postun client

First, see if we're the last amanda-client package on the system...

If not, then we don't need to do this stuff...

if ["$1" = 0];

then

As before, we start out with a declaration of the type of script this is, and which subpackage
it is for. Following that we have an if statement similar to the one we used in the install
scripts, save one di�erence. Here, we're comparing the argument against zero. The reason
is that we are trying to see if there will be zero instances of this package after the uninstall
is complete. If this is the case, the remainder of the script needs to be run, since there are
no other amanda client packages left.

Next, we remove bin from the disk group:

First, get rid of bin from the disk group...

if grep "^disk::.*bin" /etc/group > /dev/null

then

Nuke bin at the end of the line...

sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\),bin$/\1/' /etc/group

> /etc/group.tmp

Nuke bin on the line by itself...

sed -e 's/\(^disk::[0-9]\{1,\}:\)bin$/\1/' /etc/group.tmp

> /etc/group1.tmp

Nuke bin in the middle of the line...

sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\),bin,\(.\{1,\}\)/\1,\2/'

/etc/group1.tmp > /etc/group2.tmp

Nuke bin at the start of the line...

sed -e 's/\(^disk::[0-9]\{1,\}:\)bin,\(.\{1,\}\)/\1\2/'

/etc/group2.tmp > /etc/group

Clean up after ourselves...

rm -f /etc/group.tmp /etc/group1.tmp /etc/group2.tmp

fi

20.4 Package Building 309

No surprises there. Continuing our uninstall, we start on the network-related tasks:

Next, lose the amanda line in /etc/services...

We only want to do this if the server package isn't installed

Look for /usr/sbin/amdump, and leave it if there...

if [! -f /usr/sbin/amdump];

then

if grep "^amanda" /etc/services > /dev/null

then

grep -v "^amanda" /etc/services > /etc/services.tmp

mv -f /etc/services.tmp /etc/services

fi

fi

That's odd. Why are we looking for a �le from the server package? If you look back at the
install scripts for the client and server packages, you'll �nd that the one thing they have in
common is that both the client and the server require the same entry in /etc/services.

If an amanda server is going to back itself up, it also needs the amanda client software.
Therefore, both subpackages need to add an entry to /etc/services. But what if one
of the packages is removed? Perhaps the server is being demoted to a client, or maybe
the server is no longer going to be backed up using amanda. In these cases, the entry
in/etc/services must stay. So, in the case of the client, we look for a �le from the server
subpackage, and if it's there, we leave the entry alone.

Granted, this is a somewhat unsightly way to see if a certain package is installed. Some of you
are probably even saying, \Why can't RPM be used? Just do an rpm -q amanda-server,
and decide what to do based on that." And that would be the best way to do it, except for
one small point:

Only one invocation of RPM can run at any given time.

Since RPM is running to perform the uninstall, if the uninstall-script were to attempt to
run RPM again, it would fail. The reason it would fail is because only one copy of RPM
can access the database at a time. So we are stuck with our unsightly friend.

Continuing the network-related uninstall tasks:

Finally, the amanda entry in /etc/inetd.conf

if grep "^amanda" /etc/inetd.conf > /dev/null

then

grep -v "^amanda" /etc/inetd.conf > /etc/inetd.conf.tmp

mv -f /etc/inetd.conf.tmp /etc/inetd.conf

Kick inetd

if [-f /var/run/inetd.pid];

310 Real-World Package Building

then

kill -HUP `cat /var/run/inetd.pid`

fi

fi

fi

Here, we're using grep's ability to return lines that don't match the search string, in order
to remove every trace of amanda from /etc/inetd.conf. After issuing a hup on inetd,
we're done.

On to the server. If you've been noticing a pattern between the various scripts, you won't
be disappointed here:

%postun server

See if we're the last server package on the system...

If not, we don't need to do any of this stuff...

if ["$1" = 0];

then

Lose the amanda line in /etc/services...

We only want to do this if the client package isn't installed

Look for /usr/lib/amandad, and leave it if there...

if [! -f /usr/lib/amanda/amandad];

then

if grep "^amanda" /etc/services > /dev/null

then

grep -v "^amanda" /etc/services > /etc/services.tmp

mv -f /etc/services.tmp /etc/services

fi

fi

fi

By now the opening if statement is an old friend. As you might have expected, we are
verifying whether the client package is installed, by looking for a �le from that package. If
the client package isn't there, the entry is removed from /etc/services. And that, is that.

Obviously, these scripts must be carefully tested. In the case of amanda, since the two
subpackages have some measure of interdependency, it's necessary to try di�erent sequences
of installing and erasing the two packages to make sure the /etc/services logic works
properly in all cases.

After a bit of testing, our install and uninstall scripts pass with ying colors. From a
technological standpoint, the client and server subpackages are ready to go.

20.4 Package Building 311

Bits and Pieces

However, just because a package has been properly built, and installs and can be erased
without problems, doesn't mean that the package builder's job is done. It's necessary to
look at each newly-built package from the user's perspective. Does the package contain
everything the user needs in order to deploy it e�ectively? Or will the user need to �ddle
with it, guessing as they go?

In the case of our amanda packages, it was obvious that some additional documentation
was required so that the user would know what needed to be done in order to �nalize the
installation. Simply directing the user to the standard amanda documentation wasn't the
right solution, either. Many of the steps outlined in the INSTALL document had already been
done by the post-install scripts. No, an interim documente was required. Two, actually:
one for the client, and one for the server.

So two �les were created, one to be added to each subpackage. The question was, how to
do it? Essentially, there were two options:

1. Put the �les in the amanda directory tree that had been used to perform the initial
builds and generate a new patch �le

2. Create a tar �le containing the two �les, and modify the spec �le to unpack the
documentation into the amanda directory tree.

3. Drop the �les directly into the amanda directory tree without using tar.

Since the second approach was more interesting, that's the approach we chose. It required
an additional source tag in the spec �le:

Source1: amanda-rpm-instructions.tar.gz

Also required was an additional %setup macro in the %prep script:

%setup -T -D -a 1

While the %setup macro might look intimidating, it wasn't that hard to construct. Here's
what each options means:

-T | Do not perform the default archive unpacking.

-D | Do not delete the directory before unpacking.

-a 1 | Unpack the archive speci�ed by the source1 tag after changing directory.

Finally, two additions to the %files lists were required. One for the client:

%doc amanda-client.README

312 Real-World Package Building

And one for the server:

%doc amanda-server.README

At this point, the packages were complete. Certainly there is software out there that doesn't
require this level of e�ort to package. Just as certainly there is software that is much more of
a challenge. Hopefully this chapter has given you some idea about how to approach package
building for more complex applications.

Chapter 21

A Guide to the RPM Library

API

In this chapter, we'll explore the functions used internally by RPM. These functions are
available for anyone to use, making it possible to add RPM functionality to new and existing
programs. Rather than continually refer to \the RPM library" throughout this chapter, we'll
use the name of the library's main include �le | rpmlib.

21.1 An Overview of rpmlib

There are a number of �les that make up rpmlib. First and foremost, of course, is the
rpmlib library, librpm.a. This library contains all the functions required to implement all
the basic functions contained in RPM.

The remaining �les de�ne the various data structures, parameters, and symbols used by
rpmlib:

� rpmlib.h

� dbindex.h

� header.h

In general, rpmlib.hwill always be required. When using rpmlib's header-related functions,
header.h will be required, while the database-related function will require dbindex.h. As
each function is described in this chapter, we'll provide the function's prototype as well as
the #include statements the function requires.

314 A Guide to the RPM Library API

21.2 rpmlib Functions

There are more than sixty di�erent functions in rpmlib. The tasks they perform range from
low-level database record traversal, to high-level package manipulation. We've grouped the
functions into di�erent categories for easy reference.

21.2.1 Error Handling

The functions in this section perform rpmlib's basic error handling. All error handling
centers on the use of speci�c status codes. The status codes are de�ned in rpmlib.h and
are of the form RPMERR xxx , where xxx is the name of the error.

Return Error Code | rpmErrorCode()

#include <rpm/rpmlib.h>

int rpmErrorCode(void);

This function returns the error code set by the last rpmlib function that failed. Should only
be used in an error callback function de�ned by rpmErrorSetCallBack().

Return Error String | rpmErrorString()

#include <rpm/rpmlib.h>

char *rpmErrorString(void);

This function returns the error string set by the last rpmlib function that failed. Should
only be used in an error callback function de�ned by rpmErrorSetCallBack().

Set Error CallBack Function | rpmErrorSetCallback()

#include <rpm/rpmlib.h>

rpmErrorCallBackType rpmErrorSetCallback(rpmErrorCallBackType);

This function sets the current error callback function to the error callback function passed
to it. The previous error callback function is returned.

21.2.2 Getting Package Information

The following functions are used to obtain information about a package �le.

21.2 rpmlib Functions 315

It should be noted that most information is returned in the form of a Header structure.
This data structure is widely used throughout rpmlib. We will discuss more header-related
functions in sections 21.2.13 and 21.2.14 starting at page 332.

Read Package Information | rpmReadPackageInfo()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int rpmReadPackageInfo(int fd,

Header * signatures,

Header * hdr);

Given an open package on fd, read in the header and signature. This function operates as
expected with both socket and pipe �le descriptors passed as fd. Safe on nonseekable fds.
When the function returns, fd is left positioned at the start of the package's archive section.

If either signatures or hdr are NULL, information for the NULL parameter will not be
passed back to the caller. Otherwise, they will return the package's signatures and header,
respectively.

This function returns the following status values:

0 | Success.

1 | Bad magic numbers found in package.

2 | Other error.

Read Package Header | rpmReadPackageHeader()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int rpmReadPackageHeader(int fd,

Header * hdr,

int * isSource,

int * major,

int * minor);

Given an open package on fd, read in the header. This function operates as expected with
both socket and pipe �le descriptors passed as fd. Safe on nonseekable fds. When the
function returns, fd is left positioned at the start of the package's archive section.

If hdr, isSource, major, or minor are NULL, information for the NULL parameter(s) will
not be passed back to the caller. Otherwise, they will return the package's header (hdr),
information on whether the package is a source package �le or not (isSource), and the
package format's major and minor revision number (major and minor, respectively).

This function returns the following status values:

316 A Guide to the RPM Library API

0 | Success.

1 | Bad magic numbers found in package.

2 | Other error.

21.2.3 Variable Manipulation

The following functions are used to get, set, and interpret RPM's internal variables. Vari-
ables are set according to various pieces of system information, as well as from rpmrc �les.
They control various aspects of RPM's operation.

The variables have symbolic names in the form RPMVAR xxx , where xxx is the name of the
variable. All variable names are de�ned in rpmlib.h.

Return Value of RPM Variable | rpmGetVar()

#include <rpm/rpmlib.h>

char *rpmGetVar(int var);

This function returns the value of the variable speci�ed in var.

On error, the function returns NULL.

Return Boolean Value Of RPM Variable | rpmGetBooleanVar()

#include <rpm/rpmlib.h>

int rpmGetBooleanVar(int var);

This function looks up the variable speci�ed in var and returns a 0 or 1 depending on the
variable's value.

On error, the function returns 0.

Set Value Of RPM Variable | rpmSetVar()

#include <rpm/rpmlib.h>

void rpmSetVar(int var,

char *val);

This function sets the variable speci�ed in var to the value passed in val. It is also possible
for val to be NULL.

21.2 rpmlib Functions 317

21.2.4 rpmrc-Related Information

The functions in this section are all related to rpmrc information | the rpmrc �les as well
as the variables set from those �les. This information also includes the architecture and
operating system information based on rpmrc �le entries.

Read rpmrc Files | rpmReadConfigFiles()

#include <rpm/rpmlib.h>

int rpmReadConfigFiles(char * file,

char * arch,

char * os,

int building);

This function reads rpmrc �les according to the following rules:

� Always read /usr/lib/rpmrc.

� If file is speci�ed, read it.

� If file is not speci�ed, read /etc/rpmrc and ~/.rpmrc.

Every rpmrc �le entry is used with rpmSetVar() to set the appropriate RPM variable.
Part of the normal rpmrc �le processing also includes setting the architecture and operating
system variables for the system executing this function. These default settings can be
overridden by entering architecture and/or operating system information in arch and os,
respectively. This information will still go through the normal rpmrc translation process.

The building argument should be set to 1 only if a package is being built when this function
is called. Since most rpmlib-based applications will probably not duplicate RPM's package
building capabilities, building should normally be set to 0.

Return Operating System Name | rpmGetOsName()

#include <rpm/rpmlib.h>

char *rpmGetOsName(void);

This function returns the name of the operating system, as determined by rpmlib's normal
rpmrc �le processing.

Return Architecture Name | rpmGetArchName()

#include <rpm/rpmlib.h>

char *rpmGetArchName(void);

318 A Guide to the RPM Library API

This function returns the name of the architecture, as determined by rpmlib's normal rpmrc
�le processing.

Print all rpmrc-Derived Variables | rpmShowRC()

#include <rpm/rpmlib.h>

int rpmShowRC(FILE *f);

This function writes all variable names and their values to the �le f. Always returns 0.

Return Architecture Compatibility Score | rpmArchScore()

#include <rpm/rpmlib.h>

int rpmArchScore(char * arch);

This function returns the \distance" between the architecture whose name is speci�ed in
arch, and the current architecture. Returns 0 if the two architectures are incompatible.
The smaller the number returned, the more compatible the two architectures are.

Return Operating System Compatibility Score | rpmOsScore()

#include <rpm/rpmlib.h>

int rpmOsScore(char * os);

This function returns the \distance" between the operating system whose name is speci�ed
in os, and the current operating system. Returns 0 if the two operating systems are incom-
patible. The smaller the number returned, the more compatible the two operating systems
are.

21.2.5 RPM Database Manipulation

The functions in this section perform the basic operations on the RPM database. This
includes opening and closing the database, as well as creating the database. A function also
exists to rebuild a database that has been corrupted.

Every function that accesses the RPM database in some fashion makes use of the rpmdb

structure. This structure is used as a handle to refer to a particular RPM database.

Open RPM Database | rpmdbOpen()

#include <rpm/rpmlib.h>

21.2 rpmlib Functions 319

int rpmdbOpen(char * root,

rpmdb * dbp,

int mode,

int perms);

This function opens the RPM database located in RPMVAR DBPATH, returning the rpmdb

structure dbp. If root is speci�ed, it is prepended to RPMVAR DBPATH prior to opening.
The mode and perms parameters are identical to open(2)'s flags and mode parameters,
respectively.

The function returns 1 on error, 0 on success.

Close RPM Database | rpmdbClose()

#include <rpm/rpmlib.h>

void rpmdbClose(rpmdb db);

This function closes the RPM database speci�ed by the rpmdb structure db. The db structure
is also freed.

Create RPM Database | rpmdbInit()

#include <rpm/rpmlib.h>

int rpmdbInit(char * root,

int perms);

This function creates a new RPM database to be located in RPMVAR DBPATH. If the database
already exists, it is left unchanged. If root is speci�ed, it is prepended to RPMVAR DBPATH

prior to creation. The perms parameter is identical to open(2)'s mode parameter.

The function returns 1 on error, 0 on success.

Rebuild RPM Database | rpmdbRebuild()

#include <rpm/rpmlib.h>

int rpmdbRebuild(char * root);

This function rebuilds the RPM database located in RPMVAR DBPATH. If root is speci�ed, it
is prepended to RPMVAR DBPATH prior to rebuilding.

The function returns 1 on error, 0 on success.

320 A Guide to the RPM Library API

21.2.6 RPM Database Traversal

The following functions are used to traverse the RPM database. Also described in this
section is a function to retrieve a database record by its record number.

It should be noted that database records are returned in the form of a Header structure.
This data structure is widely used throughout rpmlib. We will discuss more header-related
functions in sections 21.2.13 and 21.2.14 starting at page 332.

Begin RPM Database Traversal | rpmdbFirstRecNum()

#include <rpm/rpmlib.h>

unsigned int rpmdbFirstRecNum(rpmdb db);

This function returns the record number of the �rst record in the database speci�ed by db.

On error, it returns 0.

Traverse To Next RPM Database Record | rpmdbNextRecNum()

#include <rpm/rpmlib.h>

unsigned int rpmdbNextRecNum(rpmdb db,

unsigned int lastOffset);

This function returns the record number of the record following the record number passed
in lastOffset, in the database speci�ed by db.

On error, this function returns 0.

Return Record From RPM Database | rpmdbGetRecord()

#include <rpm/rpmlib.h>

Header rpmdbGetRecord(rpmdb db,

unsigned int offset);

This function returns the record at the record number speci�ed by offset from the database
speci�ed by db.

This function returns NULL on error.

21.2.7 RPM Database Search

The functions in this section search the various parts of the RPM database. They all return
a structure of type dbiIndexSet, which contains the records that match the search term.
Here is the de�nition of the structure, as found in <rpm/dbindex.h>:

21.2 rpmlib Functions 321

typedef struct {

dbiIndexRecord * recs;

int count;

} dbiIndexSet;

Each dbiIndexRecord is also de�ned in <rpm/dbindex.h> as follows:

typedef struct {

unsigned int recOffset;

unsigned int fileNumber;

} dbiIndexRecord;

The recOffset element is the o�set of the record from the start of the database �le. The
fileNumber element is only used by rpmdbFindByFile().

Keep in mind that the rpmdbFindxxx search functions each return dbiIndexSet structures,
which must be freed with dbiFreeIndexRecord() when no longer needed.

Free Database Index | dbiFreeIndexRecord()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

void dbiFreeIndexRecord(dbiIndexSet set);

This function frees the database index set speci�ed by set.

Search RPM Database By File | rpmdbFindByFile()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindByFile(rpmdb db,

char * filespec,

dbiIndexSet * matches);

This function searches the RPM database speci�ed by db for the package which owns the
�le speci�ed by filespec. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

322 A Guide to the RPM Library API

Search RPM Database By Group | rpmdbFindByGroup()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindByGroup(rpmdb db,

char * group,

dbiIndexSet * matches);

This function searches the RPM database speci�ed by db for the packages which are members
of the group speci�ed by group. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

Search RPM Database By Package | rpmdbFindPackage()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindPackage(rpmdb db,

char * name,

dbiIndexSet * matches);

This function searches the RPM database speci�ed by db for the packages with the package
name (not label) speci�ed by name. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

Search RPM Database By Provides | rpmdbFindByProvides()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindByProvides(rpmdb db,

char * provides,

dbiIndexSet * matches);

21.2 rpmlib Functions 323

This function searches the RPM database speci�ed by db for the packages which provide
the provides information speci�ed by provides. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

Search RPM Database By Requires | rpmdbFindByRequiredBy()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindByRequiredBy(rpmdb db,

char * requires,

dbiIndexSet * matches);

This function searches the RPM database speci�ed by db for the packages which require the
requires information speci�ed by requires. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

Search RPM Database By Conicts | rpmdbFindByConflicts()

#include <rpm/rpmlib.h>

#include <rpm/dbindex.h>

int rpmdbFindByConflicts(rpmdb db,

char * conflicts,

dbiIndexSet * matches);

This function searches the RPM database speci�ed by db for the packages which conict with
the conicts information speci�ed by conflicts. It returns matching records in matches.

This function returns the following status values:

-1 | An error occurred reading a database record.

0 | The search completed normally.

1 | The search term was not found.

324 A Guide to the RPM Library API

21.2.8 Package Manipulation

These functions perform the operations most RPM users are familiar with. Functions that
install and erase packages are here, along with a few related lower-level support functions.

Install Source Package File | rpmInstallSourcePackage()

#include <rpm/rpmlib.h>

int rpmInstallSourcePackage(char * root,

int fd,

char ** specFile,

rpmNotifyFunction notify,

char * labelFormat);

This function installs the source package �le speci�ed by fd. If root is not NULL, it is
prepended to the variables RPMVAR SOURCEDIR and RPMVAR SPECDIR prior to the actual
installation. If specFile is not NULL, the complete path and �lename of the just-installed
spec �le is returned.

The notify parameter is used to specify a progress-tracking function that will be called
during the installation. Please refer to page 326 for more information on this parameter.

The labelFormat parameter can be used to specify how the package label should be format-
ted. It is used when printing the package label once the package install is ready to proceed.
If labelformat is NULL, the package label is not printed.

This function returns the following status values:

0 | The source package was installed successfully.

1 | The source package �le contained incorrect magic numbers.

2 | Another type of error occurred.

Install Binary Package File | rpmInstallPackage()

#include <rpm/rpmlib.h>

int rpmInstallPackage(char * rootdir,

rpmdb db,

int fd,

char * prefix,

int flags,

rpmNotifyFunction notify,

char * labelFormat,

char * netsharedPath);

21.2 rpmlib Functions 325

This function installs the binary package speci�ed by fd. If a path is speci�ed in rootdir,
the package will be installed with that path acting as the root directory. If a path is speci�ed
in prefix, it will be used as the pre�x for relocatable packages. The RPM database speci�ed
by db is updated to reect the newly installed package.

The flags parameter is used to control the installation behavior. The ags are de�ned in
rpmlib.h and take the form RPMINSTALL xxx , where xxx is the name of the ag.

The following ags are currently de�ned:

� RPMINSTALL REPLACEPKG | Install the package even if it is already installed.

� RPMINSTALL REPLACEFILES| Install the package even if it will replace �les owned by
another package.

� RPMINSTALL TEST | Perform all install-time checks, but do not actually install the
package.

� RPMINSTALL UPGRADE| Install the package, and remove all older versions of the pack-
age.

� RPMINSTALL UPGRADETOOLD | Install the package, even if the package is an older
version of an already-installed package.

� RPMINSTALL NODOCS | Do not install the package's documentation �les.

� RPMINSTALL NOSCRIPTS | Do not execute the package's install- and erase-time (in
the case of an upgrade) scripts.

� RPMINSTALL NOARCH | Do not perform architecture compatibility tests.

� RPMINSTALL NOOS | Do not perform operating system compatibility tests.

The notify parameter is used to specify a progress tracking function that will be called
during the installation. Please refer to page 326 for more information on this parameter.

The labelFormat parameter can be used to specify how the package label should be for-
matted. This information is used when printing the package label once the package install
is ready to proceed. It is used when printing the package label once the package install is
ready to proceed. If labelformat is NULL, the package label is not printed.

The netsharedPath parameter is used to specify that part of the local �lesystem that is
shared with other systems. If there is more than one path that is shared, the paths should
be separated with a colon.

This function returns the following status values:

0 | The binary package was installed successfully.

1 | The binary package �le contained incorrect magic numbers.

2 | Another type of error occurred.

326 A Guide to the RPM Library API

Track Package Installation Progress | rpmNotifyFunction()

#include <rpm/rpmlib.h>

typedef void (*rpmNotifyFunction)(const unsigned long amount,

const unsigned long total);

A function can be passed to rpmIstallSourcePackage or rpmInstallPackage via the
notify parameter. The function will be called at regular intervals during the installation,
and will have two parameters passed to it:

1. amount | The number of bytes of the install that have been completed so far.

2. total | The total number of bytes that will be installed.

This function permits the creation of a dynamically updating progress meter during package
installation.

Remove Installed Package | rpmRemovePackage()

#include <rpm/rpmlib.h>

int rpmRemovePackage(char * root,

rpmdb db,

unsigned int offset,

int flags);

This function removes the package at record number offset in the RPM database speci�ed
by db. If root is speci�ed, it is used as the path to a directory that will serve as the root
directory while the package is being removed.

The flags parameter is used to control the package removal behavior. The ags that may
be passed are de�ned in rpmlib.h, and are of the form RPMUNINSTALL xxx , where xxx is
the name of the ag.

The following ags are currently de�ned:

� RPMUNINSTALL TEST | Perform all erase-time checks, but do not actually remove the
package.

� RPMUNINSTALL NOSCRIPTS | Do not execute the package's erase-time scripts.

This function returns the following status values:

0 | The package was removed successfully.

1 | The package removal failed.

21.2 rpmlib Functions 327

21.2.9 Package And File Veri�cation

The functions in this section perform the veri�cation operations necessary to ensure that
the �les comprising a package have not been modi�ed since they were installed.

Veri�cation takes place on three distinct levels:

1. On the �le-by-�le level.

2. On a package-wide level, through the use of the %verifyscript veri�cation script.

3. On an inter-package level, through RPM's normal dependency processing.

Because of this, there are two functions to perform each speci�c veri�cation operation.

Verify File | rpmVerifyFile()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int rpmVerifyFile(char * root,

Header h,

int filenum,

int * result);

This function veri�es the filenum'th �le from the package whose header is h. If root is
speci�ed, it is used as the path to a directory that will serve as the root directory while the
�le is being veri�ed. The results of the �le veri�cation are returned in result, and consist
of a number of ags. Each ag that is set indicates a veri�cation failure.

The ags are de�ned in rpmlib.h, and are of the form RPMVERIFY xxx , where xxx is the
name of the data that failed veri�cation.

This function returns 0 on success, and 1 on failure.

Execute Package's %verifyscript Veri�cation Script | rpmVerifyScript()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int rpmVerifyScript(char * root,

Header h,

int err);

This function executes the %verifyscript veri�cation script for the package whose header
is h. err must contain a valid �le descriptor. If rpmIsVerbose() returns true, the
%verifyscript veri�cation script will direct all status messages to err.

This function returns 0 on success, 1 on failure.

328 A Guide to the RPM Library API

21.2.10 Dependency-Related Operations

The functions in this section are used to perform the various dependency-related operations
supported by rpmlib.

Dependency processing is entirely separate from normal package-based operations. The
package installation and removal functions do not perform any dependency processing them-
selves. Therefore, dependency processing is somewhat di�erent from other aspects of rpm-
lib's operation.

Dependency processing centers around the rpmDependencies data structure. The opera-
tions that are to be performed against the RPM database (adding, removing, and upgrading
packages) are performed against this data structure, using functions that are described be-
low. These functions simply populate the data structure according to the operation being
performed. They do not perform the actual operation on the package. This is an important
point to keep in mind.

Once the data structure has been completely populated, a dependency check function is
called to determine if there are any dependency-related problems. The result is a structure
of dependency conicts. This structure, rpmDependencyConflict, is de�ned in rpmlib.h.

Note that it is necessary to free both the conicts structure and the rpmDependencies

structure when they are no longer needed. However, free() should not be used | special
functions for this are provided, and will be discussed in this section.

Create a New Dependency Data Structure | rpmdepDependencies()

#include <rpm/rpmlib.h>

rpmDependencies rpmdepDependencies(rpmdb db);

This function returns an initialized rpmDependencies structure. The dependency checking
to be done will be based on the RPM database speci�ed in the db parameter. If this
parameter is NULL, the dependency checking will be done as if an empty RPM database was
being used.

Add a Package Install To the Dependency Data Structure | rpmdepAddPackage()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void rpmdepAddPackage(rpmDependencies rpmdep,

Header h);

This function adds the installation of the package whose header is h, to the rpmDependencies
data structure, rpmdep.

21.2 rpmlib Functions 329

Add a Package Upgrade To the Dependency Data
Structure | rpmdepUpgradePackage()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void rpmdepUpgradePackage(rpmDependencies rpmdep,

Header h);

This function adds the upgrading of the package whose header is h, to the rpmDependencies
data structure, rpmdep. It is similar to rpmdepAddPackage(), but older versions of the
package are removed.

Add a Package Removal To the Dependency Data
Structure | rpmdepRemovePackage()

#include <rpm/rpmlib.h>

void rpmdepRemovePackage(rpmDependencies rpmdep,

int dboffset);

This function adds the removal of the package whose RPM database o�set is dboffset, to
the rpmDependencies data structure, rpmdep.

Add an Available Package To the Dependency Data
Structure | rpmdepAvailablePackage()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void rpmdepAvailablePackage(rpmDependencies rpmdep,

Header h,

void * key);

This function adds the package whose header is h, to the rpmDependencies structure,
rpmdep.

The key parameter can be anything that uniquely identi�es the package being added. It will
be returned as part of the rpmDependencyConflict structure returned by rpmdepCheck(),
speci�cally in that structure's suggestedPackage element.

Perform a Dependency Check | rpmdepCheck()

#include <rpm/rpmlib.h>

int rpmdepCheck(rpmDependencies rpmdep,

330 A Guide to the RPM Library API

struct rpmDependencyConflict ** conflicts,

int * numConflicts);

This function performs a dependency check on the rpmDependencies structure rpmdep. It
returns an array of size numConflicts, pointed to by conflicts.

This function returns 0 on success, and 1 on error.

Free Results of rpmdepCheck() | rpmdepFreeConflicts()

#include <rpm/rpmlib.h>

void rpmdepFreeConflicts(struct rpmDependencyConflict * conflicts,

int numConflicts);

This function frees the dependency conict information of size numConflicts pointed to by
conflicts.

Free a Dependency Data Structure | rpmdepDone()

#include <rpm/rpmlib.h>

void rpmdepDone(rpmDependencies rpmdep);

This function frees the rpmDependencies structure pointed to by rpmdep.

21.2.11 Diagnostic Output Control

The functions in this section are used to control the amount of diagnostic output produced
by other rpmlib functions. The rpmlib library can produce a wealth of diagnostic output,
making it easy to see what is going on at any given time.

There are several di�erent verbosity levels de�ned in rpmlib.h. Their symbolic names are
of the form RPMMESS xxx , where xxx is the name of the verbosity level. It should be noted
that the numeric values of the verbosity levels increase with a decrease in verbosity.

Unless otherwise set, the default verbosity level is RPMMESS NORMAL.

Increase Verbosity Level | rpmIncreaseVerbosity()

#include <rpm/rpmlib.h>

void rpmIncreaseVerbosity(void);

This function is used to increase the current verbosity level by one.

21.2 rpmlib Functions 331

Set Verbosity Level | rpmSetVerbosity()

#include <rpm/rpmlib.h>

void rpmSetVerbosity(int level);

This function is used to set the current verbosity level to level. Note that no range checking
is done to level.

Return Verbosity Level | rpmGetVerbosity()

#include <rpm/rpmlib.h>

int rpmGetVerbosity(void);

This function returns the current verbosity level.

Check Verbosity Level | rpmIsVerbose()

#include <rpm/rpmlib.h>

int rpmIsVerbose(void);

This function checks the current verbosity level and returns 1 if the current level is set to
RPMMESS VERBOSE or a level of higher verbosity. Otherwise, it returns 0.

Check Debug Level | rpmIsDebug()

#include <rpm/rpmlib.h>

int rpmIsDebug(void);

This function checks the current verbosity level and returns 1 if the current level is set to
RPMMESS DEBUG, or a level of higher verbosity. Otherwise, it returns 0.

21.2.12 Signature Veri�cation

The functions in this section deal with the veri�cation of package signatures. A package �le
may contain more than one type of signature. For example, a package may contain a signa-
ture that contains the package's size, as well as a signature that contains cryptographically-
derived data that can be used to prove the package's origin.

Each type of signature has its own tag value. These tag values are de�ned in rpmlib.h and
are of the form RPMSIGTAG xxx , where xxx is the type of signature.

332 A Guide to the RPM Library API

Verify A Package File's Signature | rpmVerifySignature()

#include <rpm/rpmlib.h>

int rpmVerifySignature(char *file,

int_32 sigTag,

void *sig,

int count,

char *result);

This function veri�es the signature of the package pointed to by file. The result of the
veri�cation is stored in result, in a format suitable for printing.

The sigTag parameter speci�es the type of signature to be checked. The sig parameter
speci�es the signature against which the package is to be veri�ed. The count parameter
speci�es the size of the signature; at present, this parameter is only used for PGP-based
signatures.

This function returns the following values:

� RPMSIG OK | The signature veri�ed correctly.

� RPMSIG UNKNOWN | The signature type is unknown.

� RPMSIG BAD | The signature did not verify correctly.

� RPMSIG NOKEY | The key required to check this signature is not available.

Free Signature Read By rpmReadPackageInfo() | rpmFreeSignature()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void rpmFreeSignature(Header h);

This function frees the signature h.

21.2.13 Header Manipulation

The header is one of the key data structures in rpmlib. The functions in this section perform
basic manipulations of the header.

The header is actually a data structure. It is not necessary to fully understand the actual
data structure. However, it is necessary to understand the basic concepts on which the
header is based.

The header serves as a kind of miniature database. The header can be searched for speci�c
information, which can be retrieved easily. Like a database, the information contained in
the header can be of varying sizes.

21.2 rpmlib Functions 333

Read A Header | headerRead()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

Header headerRead(int fd,

int magicp);

This function reads a header from �le fd, converting it from network byte order to the
host system's byte order. If magicp is de�ned to be HEADER MAGIC YES, headerRead() will
expect header magic numbers, and will return an error if they are not present. Likewise, if
magicp is de�ned to be HEADER MAGIC NO, headerRead() will not check the header's magic
numbers, and will return an error if they are present.

On error, this function returns NULL.

Write A Header | headerWrite()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void headerWrite(int fd,

Header h,

int magicp);

This function writes the header h, to �le fd, converting it from host byte order to net-
work byte order. If magicp is de�ned to be HEADER MAGIC YES, headerWrite() will add
the appropriate magic numbers to the header being written. If magicp is de�ned to be
HEADER MAGIC NO, headerWrite() will not include magic numbers.

Copy A Header | headerCopy()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

Header headerCopy(Header h);

This function returns a copy of header h.

Calculate A Header's Size | headerSizeof()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

unsigned int headerSizeof(Header h,

int magicp);

334 A Guide to the RPM Library API

This function returns the number of bytes the header h takes up on disk. Note that in ver-
sions of RPM prior to 2.3.3, this function also changes the location of the data in the header.
The result is that pointers from headerGetEntry() will no longer be valid. Therefore, any
pointers acquired before calling headerSizeof() should be discarded.

Create A New Header | headerNew()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

Header headerNew(void);

This function returns a new header.

Deallocate A Header | headerFree()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void headerFree(Header h);

This function deallocates the header speci�ed by h.

Print Header Structure In Human-Readable Form | headerDump()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void headerDump(Header h,

FILE *f,

int flags);

This function prints the structure of the header h, to the �le f. If the flags parameter is
de�ned to be HEADER DUMP INLINE, the header's data is also printed.

21.2.14 Header Entry Manipulation

The functions in this section provide the basic operations necessary to manipulate header
entries. The following header entry types are currently de�ned:

� RPM NULL TYPE | This type is not used.

� RPM CHAR TYPE | The entry contains a single character.

� RPM INT8 TYPE | The entry contains an eight-bit integer.

21.2 rpmlib Functions 335

� RPM INT16 TYPE | The entry contains a sixteen-bit integer.

� RPM INT32 TYPE | The entry contains a thirty-two-bit integer.

� RPM INT64 TYPE | The entry contains a sixty-four-bit integer.

� RPM STRING TYPE | The entry contains a null-terminated character string.

� RPM BIN TYPE|The entry contains binary data that will not be interpreted by rpmlib.

� RPM STRING ARRAY TYPE | The entry contains an array of null-terminated strings.

Get Entry From Header | headerGetEntry()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int headerGetEntry(Header h,

int_32 tag,

int_32 *type,

void **p,

int_32 *c);

This function retrieves the entry matching tag from header h. The type of the entry is
returned in type, a pointer to the data is returned in p, and the size of the data is returned
in c. Both type and c may be null, in which case that data will not be returned. Note that
if the entry type is RPM STRING ARRAY TYPE, you must issue a free() on p when done with
the data.

This function returns 1 on sucess, and 0 on failure.

Add Entry To Header | headerAddEntry()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int headerAddEntry(Header h,

int_32 tag,

int_32 type,

void *p,

int_32 c);

This function adds a new entry to the header h. The entry's tag is speci�ed by the tag

parameter, and the entry's type is speci�ed by the type parameter.

The entry's data is pointed to by p, and the size of the data is speci�ed by c.

This function always returns 1.

336 A Guide to the RPM Library API

Note: In versions of RPM prior to 2.3.3, headerAddEntry()will only work successfully with
headers produced by headerCopy() and headerNew(). In particular, headerAddEntry()
is not supported when used to add entries to a header produced by headerRead(). Later
versions of RPM lift this restriction.

Determine If Entry Is In Header | headerIsEntry()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int headerIsEntry(Header h,

int_32 tag);

This function returns 1 if an entry with tag tag is present in header h. If the tag is not
present, this function returns 0.

21.2.15 Header Iterator Support

Iterators are used as a means to step from entry to entry, through an entire header. The
functions in this section are used to create, use, and free iterators.

Create an Iterator | headerInitIterator()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

HeaderIterator headerInitIterator(Header h);

This function returns a newly-created iterator for the header h.

Step To the Next Entry | headerNextIterator()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

int headerNextIterator(HeaderIterator iter,

int_32 *tag,

int_32 *type,

void **p,

int_32 *c);

This function steps to the next entry in the header speci�ed when the iterator iter was
created with headerInitIterator(). The next entry's tag, type, data, and size are returned
in tag, type, p, and c, respectively. Note that if the entry type is RPM STRING ARRAY TYPE,
you must issue a free() on p when done with the data.

21.3 Example Code 337

This function returns 1 if successful, and 0 if there are no more entries in the header.

Free An Iterator | headerFreeIterator()

#include <rpm/rpmlib.h>

#include <rpm/header.h>

void headerFreeIterator(HeaderIterator iter);

This function frees the resources used by the iterator iter.

21.3 Example Code

In this section, we'll study example programs that make use of rpmlib to perform an assort-
ment of commonly-required operations.

21.3.1 Example #1

In this example, we'll use a number of rpmlib's header manipulation functions.

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <rpm/rpmlib.h>

Here we've included rpmlib.h, which is necessary for all programs that use rpmlib.

void main(int argc, char ** argv)

{

HeaderIterator iter;

Header h, sig;

int_32 itertag, type, count;

void **p = NULL;

char *blather;

char * name;

int fd, stat;

Here we've de�ned the program's storage. Note in particular the HeaderIterator, Header,
and int 32 datatypes.

338 A Guide to the RPM Library API

if (argc == 1) {

fd = 0;

} else {

fd = open(argv[1], O_RDONLY, 0644);

}

if (fd < 0) {

perror("open");

exit(1);

}

Standard stu� here. The �rst argument is supposed to be an RPM package �le. It is opened
here. If there is no argument on the command line, the program will use stdin instead.

stat = rpmReadPackageInfo(fd, &sig, &h);

if (stat) {

fprintf(stderr,

"rpmReadPackageInfo error status: %d\n%s\n",

stat, strerror(errno));

exit(stat);

}

Here things start to get interesting! The signature and headers are read from package �le
that was just opened. If you noticed above, we've de�ned sig and h to be of type Header.
That means we can use rpmlib's header-related functions on them. After a little bit of error
checking, and it's time to move on. . .

headerGetEntry(h, RPMTAG_NAME, &type, (void **) &name, &count);

if (headerIsEntry(h, RPMTAG_PREIN)) {

printf("There is a preinstall script for %s\n", name);

}

if (headerIsEntry(h, RPMTAG_POSTIN)) {

printf("There is a postinstall script for %s\n", name);

}

Now that we have the package's header, we get the package name (speci�ed by the
RPMTAG NAME above). Next, we see if the package has pre-install (RPMTAG PREIN) or post-
install (RPMTAG POSTIN) scripts. If there are, we print out a message, along with the package
name.

printf("Dumping signatures...\n");

headerDump(sig, stdout, 1);

rpmFreeSignature(sig);

21.3 Example Code 339

Turning to the other Header structure we've read, we print out the package's signatures in
human-readable form. When we're done, we free the block of signatures.

printf("Iterating through the header...\n");

iter = headerInitIterator(h);

Here we set up an iterator for the package's header. This will allow us to step through each
entry in the header.

while (headerNextIterator(iter, &itertag, &type, p, &count)) {

switch (itertag) {

case RPMTAG_SUMMARY:

blather = *p;

printf("The Summary: %s\n", blather);

break;

case RPMTAG_FILENAMES:

printf("There are %d files in this package\n", count);

break;

}

This loop uses headerNextIterator() to return each entry's tag, type, data, and size. By
using a switch statement on the tag, we can perform di�erent operations on each type of
entry in the header.

}

headerFreeIterator(iter);

headerFree(h);

}

This is the housecleaning section of the program. First we free the iterator that we've been
using, and �nally the header itself. Running this program on a package gives us the following
output:

./dump amanda-client-2.3.0-2.i386.rpm
There is a postinstall script for amanda-client

Dumping signatures...

Entry count: 2

Data count : 20

CT TAG TYPE OFSET COUNT

Entry : 000 (1000)NAME INT32_TYPE 0x00000000 00000001

Data: 000 0x00029f5d (171869)

340 A Guide to the RPM Library API

Entry : 001 (1003)SERIAL BIN_TYPE 0x00000004 00000016

Data: 000 27 01 f9 97 d8 2c 36 40

Data: 008 c6 4a 91 45 32 13 d1 62

Iterating through the header...

The Summary: Client-side Amanda package

There are 11 files in this package

#

21.3.2 Example #2

This example delves a bit more into the database-related side of rpmlib. After initializing
rpmlib's variables by reading the appropriate rpmrc �les, the code traverses the database
records, looking for a speci�c package. That package's header is then dumped in its entirety.

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <rpm/rpmlib.h>

As before, this is the normal way of including all of rpmlib's de�nitions.

void main(int argc, char ** argv)

{

Header h;

int offset;

int dspBlockNum = 0; /* default to all */

int blockNum = 0;

int_32 type, count;

char * name;

rpmdb db;

Here are the data declarations. Note the declaration of db: this is how we will be accessing
the RPM database.

printf("The database path is: %s\n",

rpmGetVar(RPMVAR_DBPATH) ? rpmGetVar(RPM_DBPATH) : "(none)");

rpmReadConfigFiles(NULL, NULL, NULL, 0);

printf("The database path is: %s\n",

rpmGetVar(RPMVAR_DBPATH) ? rpmGetVar(RPM_DBPATH) : "(none)");

21.3 Example Code 341

Before opening the RPM database, it's necessary to know where the database resides. This
information is stored in rpmrc �les, which are read by rpmReadConfigFiles(). To show
that this function is really doing its job, we retrieve the RPM database path before and after
the rpmrc �les are read. Note that we test the return value of rpmGetVar(RPM DBPATH) and,
if it is null, we insert (none) in the printf() output. This prevents possible core dumps if
no database path has been set, and besides, it's more user-friendly.

if (rpmdbOpen("", &db, O_RDONLY, 0644) != 0) {

fprintf(stderr, "cannot open /var/lib/rpm/packages.rpm\n");

exit(1);

}

Here we're opening the RPM database, and doing some cursory error checking to make sure
we should continue.

offset = rpmdbFirstRecNum(db);

We get the o�set of the �rst database record. . .

while (offset) {

h = rpmdbGetRecord(db, offset);

if (!h) {

fprintf(stderr, "headerRead failed\n");

exit(1);

}

Here we start a while loop based on the record o�set. As long as there is a non-zero o�set
(meaning that there is still an available record), we get the record. If there's a problem
getting the record, we exit.

headerGetEntry(h, RPMTAG_NAME, &type, (void **) &name, &count);

if (strcmp(name, argv[1]) == 0)

headerDump(h, stdout, 1);

Next, we get the package name entry from the record, and compare it with the name of the
package we're interested in. If it matches, we dump the contents of the entire record.

headerFree(h);

offset = rpmdbNextRecNum(db, offset);

}

At the end of the loop, we free the record, and get the o�set to the next record.

342 A Guide to the RPM Library API

rpmdbClose(db);

}

At the end, we close the database, and exit.

Here's the program's output, edited for brevity. Notice that the database path changes from
(null) to /var/lib/rpm after the rpmrc �les are read.

./showdb amanda-client
The database path is: (null)

The database path is: /var/lib/rpm

Entry count: 37

Data count : 5219

CT TAG TYPE OFSET COUNT

Entry : 000 (1000)NAME STRING_TYPE 0x00000000 00000001

Data: 000 amanda-client

Entry : 001 (1001)VERSION STRING_TYPE 0x0000000e 00000001

Data: 000 2.3.0

Entry : 002 (1002)RELEASE STRING_TYPE 0x00000014 00000001

Data: 000 7

Entry : 003 (1004)SUMMARY STRING_TYPE 0x00000016 00000001

Data: 000 Client-side Amanda package

Entry : 004 (1005)DESCRIPTION STRING_TYPE 0x00000031 00000001

...

Entry : 017 (1027)FILENAMES STRING_ARRAY_TYPE 0x00000df3 00000015

Data: 000 /usr/doc/amanda-client-2.3.0-7

Data: 001 /usr/doc/amanda-client-2.3.0-7/COPYRIGHT

Data: 002 /usr/doc/amanda-client-2.3.0-7/INSTALL

Data: 003 /usr/doc/amanda-client-2.3.0-7/README

Data: 004 /usr/doc/amanda-client-2.3.0-7/SYSTEM.NOTES

Data: 005 /usr/doc/amanda-client-2.3.0-7/WHATS.NEW

Data: 006 /usr/doc/amanda-client-2.3.0-7/amanda-client.README

...

Entry : 034 (1049)REQUIRENAME STRING_ARRAY_TYPE 0x0000141c 00000006

Data: 000 libc.so.5

Data: 001 libdb.so.2

Data: 002 grep

Data: 003 sed

Data: 004 NetKit-B

Data: 005 dump

...

#

As can be seen, everything that you could possibly want to know about an installed package
is available using this method.

21.3 Example Code 343

21.3.3 Example #3

This example is similar in function to the previous one, except that it uses rpmlib's search
functions to �nd the desired package record:

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <rpm/rpmlib.h>

Here we include rpmlib's de�nitions.

void main(int argc, char ** argv)

{

Header h;

int stat;

rpmdb db;

dbiIndexSet matches;

Here are the storage declarations.

if (argc != 2) {

fprintf(stderr, "showdb2 <search term>\n");

exit(1);

}

rpmReadConfigFiles(NULL, NULL, NULL, 0);

if (rpmdbOpen("", &db, O_RDONLY, 0644) != 0) {

fprintf(stderr, "cannot open /var/lib/rpm/packages.rpm\n");

exit(1);

}

In this section, we do some argument processing, processing the rpmrc �les, and open the
RPM database.

stat = rpmdbFindPackage(db, argv[1], &matches);

printf("Status is: %d\n", stat);

if (stat == 0) {

if (matches.count) {

printf("Number of matches: %d\n", matches.count);

h = rpmdbGetRecord(db, matches.recs[0].recOffset);

344 A Guide to the RPM Library API

if (h) headerDump(h, stdout, 1);

headerFree(h);

dbiFreeIndexRecord(matches);

}

}

In this section we use rpmdbFindPackage() to search for the desired package. After checking
for successful status, the count of matching package records is checked. If there is at least
one match, the �rst matching record is retrieved, and dumped. Note that there could be
more than one match. Although this example doesn't dump more than the �rst matching
record, it would be simple to access all matches by stepping through the matches.recs

array.

Once we're done with the record, we free it, as well as the list of matching records.

rpmdbClose(db);

}

The last thing we do before exiting is to close the database. Here's some sample output
from the program. Note the successful status, and the number of matches printed before
the dump:

./showdb2 rpm
Status is: 0

Number of matches: 1

Entry count: 37

Data count : 2920

CT TAG TYPE OFSET COUNT

Entry : 000 (1000)NAME STRING_TYPE 0x00000000 00000001

Data: 000 rpm

Entry : 001 (1001)VERSION STRING_TYPE 0x00000004 00000001

Data: 000 2.2.9

Entry : 002 (1002)RELEASE STRING_TYPE 0x0000000a 00000001

Data: 000 1

Entry : 003 (1004)SUMMARY STRING_TYPE 0x0000000c 00000001

Data: 000 Red Hat Package Manager

...

Entry : 034 (1049)REQUIRENAME STRING_ARRAY_TYPE 0x00000b40 00000003

Data: 000 libz.so.1

Data: 001 libdb.so.2

Data: 002 libc.so.5

Entry : 035 (1050)REQUIREVERSION STRING_ARRAY_TYPE 0x00000b5f 00000003

Data: 000

Data: 001

Data: 002

Entry : 036 (1064)RPMVERSION STRING_TYPE 0x00000b62 00000001

21.3 Example Code 345

Data: 000 2.2.9

#

346 A Guide to the RPM Library API

Appendix A

Format of the RPM File

A.1 RPM File naming convention

While RPM will run just as well if a package �le has been renamed, when the packages
are created during RPM's build process, they follow a speci�c naming convention. The
convention is:

name-version-release.architecture.rpm

where:

� name is a name describing the packaged software.

� version is the version of the packaged software.

� release is the number of times this version of the software has been packaged.

� architecture is a shorthand name describing the type of computer hardware the
packaged software is meant to run on. It may also be the string src, or nosrc. Both
of these strings indicate the �le is an RPM source package. The nosrc string means
that the �le contains only package building �les, while the src string means the �le
contains the necessary package building �les and the software's source code.

A few notes are in order. Normally, the package name is taken verbatim from the packaged
software's name. Occasionally, this approach won't work | usually this occurs when the
software is split into multiple \subpackages," each supporting a di�erent set of functions.
An example of this situation would be the way ncurses was packaged on Red Hat Linux.
The package incorporating ncurses basic functionality was called ncurses, while the pack-
age incorporating those parts of ncurses' program development functionality was named
ncurses-devel.

The version number is normally taken verbatim from the package's version. The only
restriction placed on the version is that it cannot contain a dash \-".

348 Format of the RPM File

The release can be thought of as the package's version. Traditionally it is a number, starting
at 1, that shows how many times the packaged software, at a given version, has been built.
This is tradition and not a restriction, however. Like the version number, the only restriction
is that dashes are not allowed.

The architecture speci�er is a string that indicates what hardware the package has been
built for. There are a number of architectures de�ned:

� i386 | The Intel x86 family of microprocessors, starting with the 80386.

� alpha | The Digital Alpha/AXP series of microprocessors.

� sparc | Sun Microsystem's SPARC series of chips.

� mips | MIPS Technologies' processors.

� ppc | The Power PC microprocessor family.

� m68k | Motorola's 68000 series of CISC microprocessors.

� SGI | Equivalent to \MIPS".

This list will almost certainly change. For the most up-to-date list, please refer to the
�le /usr/lib/rpmrc. It contains information used internally by RPM, including a list of
architectures and equivalent code numbers.

A.2 RPM File Format

While the following details concerning the actual format of an RPM package �le were accu-
rate at the time this was written, two points should be kept in mind:

1. The �le format is subject to change.

2. If a package �le is to be manipulated somehow, you are strongly urged to use the
appropriate rpmlib routines to access the package �le. Why? See point number 1!

3. This appendix describes the most recent version of the RPM �le format: version 3.
The file(1) utility can be used to see a package's �le format version.

With those caveats out of the way, let's take a look inside an RPM �le. . .

A.2.1 Parts of an RPM File

Every RPM package �le can be divided into four distinct sections. They are:

� The lead.

� The signature.

A.2 RPM File Format 349

� The header.

� The archive.

Package �les are written to disk in network byte order. If required, RPM will automatically
convert to host byte order when the package �le is read. Let's take a look at each section,
starting with the lead.

A.2.2 The Lead

The lead is the �rst part of an RPM package �le. In previous versions of RPM, it was used
to store information used internally by RPM. Today, however, the lead's sole purpose is to
make it easy to identify an RPM package �le. For example, the file(1) command uses
the lead.1 All the information contained in the lead has been duplicated or superseded by
information contained in the header.2

RPM de�nes a C structure that describes the lead:

struct rpmlead {

unsigned char magic[4];

unsigned char major, minor;

short type;

short archnum;

char name[66];

short osnum;

short signature_type;

char reserved[16];

} ;

Let's take a look at an actual package �le and examine the various pieces of data that make
up the lead. In the following display, the number to the left of the colon is the byte o�set,
in hexadecimal, from the start of the �le. The eight groups of four characters show the hex
value of the bytes in the �le | two bytes per group of four characters. Finally, the characters
on the right show the ASCII values of the data bytes. When a data byte's value results in a
non-printable character, a dot (\.") is inserted instead. Here are the �rst thirty-two bytes
of a package �le | in this case, the package �le rpm-2.2.1-1.i386.rpm:

00000000: edab eedb 0300 0000 0001 7270 6d2d 322erpm-2.

00000010: 322e 312d 3100 0000 0000 0000 0000 0000 2.1-1...........

The �rst four bytes (edab eedb) are the magic values that identify the �le as an RPM
package �le. Both the file command and RPM use these magic numbers to determine
whether a �le is legitimate or not.

1Please refer to section A.4 on page 361 for a discussion on identifying RPM package �les with the file

command.
2The header is discussed in section A.2.5 on page 356.

350 Format of the RPM File

The next two bytes (0300) indicate RPM �le format version. In this case, the �le's major
version number is 3, and the minor version number is 0. Versions of RPM later than 2.1
create version 3.0 package �les.

The next two bytes (0000) determine what type of RPM �le the �le is. There are presently
two types de�ned:

� Binary package �le (type = 0000)

� Source package �le (type = 0001)

In this case, the �le is a binary package �le.

The next two bytes (0001) are used to store the architecture that the package was built for.
In this case, the number 1 refers to the i386 architecture.3 In the case of a source package �le,
these two bytes should be ignored, as source packages are not built for a speci�c architecture.

The next sixty-six bytes (starting with 7270 6d2d) contain the name of the package. The
name must end with a null byte, which leaves sixty-�ve bytes for RPM's usual
name-version-release-style name. In this case, we can read the name from the right side
of the output:

rpm-2.2.1-1

Since the name rpm-2.2.1-1 is shorter than the sixty-�ve bytes allocated for the name, the
leftover bytes are �lled with nulls.

Skipping past the space allocated for the name, we see two bytes (0001):

00000040: 0000 0000 0000 0000 0000 0000 0001 0005

00000050: 0400 0000 24e1 ffbf 6bb3 0008 00e6 ffbf$...k.......

These bytes represent the operating system for which this package was built. In this case,
1 equals Linux. As with the architecture-to-number translations, the operating system and
corresponding code numbers can be found in the �le, /usr/lib/rpmrc.

The next two bytes (0005) indicate the type of signature used in the �le. A type 5 signature
is new to version 3 RPM �les. The signature appears next in the �le, but we need to discuss
an additional detail before exploring the signature.

A.2.3 Wanted: A New RPM Data Structure

By looking at the C structure that de�nes the lead, and matching it with the bytes in an
actual package �le, it's trivial to extract the data from the lead. From a programming
standpoint, it's also easy to manipulate data in the lead | It's simply a matter of using the
element names from the structure. But there's a problem. And because of that problem
the lead is no longer used internally by RPM.

3It should be noted that the architecture used internally by RPM is actually stored in the header. This
value is strictly for file(1)'s use.

A.2 RPM File Format 351

The lead: An Abandoned Data Structure

What's the problem, and why is the lead no longer used by RPM? The answer to these
questions is a single word: inexibility. The technique of de�ning a C structure to access
data in a �le just isn't very exible. Let's look at an example.

Flip back to the lead's C structure on page 349. Say, for example, that some software comes
along, and it has a long name. A very long name. A name so long, in fact, that the 66 bytes
de�ned in the structure element name just couldn't hold it.

What can we do? Well, we could certainly change the structure such that the name element
would be 100 bytes long. But once a new version of RPM is created using this new structure,
we have two problems:

1. Any package �le created with the new version of RPM wouldn't be able to read older
package formats.

2. Any older version of RPM would be unable to install packages created with the newer
version of RPM.

Not a very good situation! Ideally, we would like to somehow eliminate the requirement that
the format of the data written to a package �le be engraved in granite. We should be able
to do the following things, all without losing compatibility with existing versions of RPM.

� Add extra data to the �le format.

� Change the size of existing data.

� Reorder the data.

Sounds like a big problem, but there's a solution. . .

Is There a Solution?

The solution is to standardize the method by which information is retrieved from a �le. This
is done by creating a well-de�ned data structure that contains easily searched information
about the data, and then physically separating that information from the data.

When the data is required, it is found by using the easily searched information, which points
to the data itself. The bene�ts are, that the data can be placed anywhere in the �le, and
that the format of the data itself can change.

The Solution: The Header Structure

The header structure is RPM's solution to the problem of easily manipulating information
in a standard way. The header structure's sole purpose in life is to contain zero or more
pieces of data. A �le can have more than one header structure in it. In fact, an RPM
package �le has two | the signature, and the header. It was from this header that the
header structure got its name.

352 Format of the RPM File

There are three sections to each header structure. The �rst section is known as the \header
structure header". The header structure header is used to identify the start of a header
structure, its size, and the number of data items it contains.

Following the header structure header is an area called the \index". The index contains one
or more index entries. Each index entry contains information about, and a pointer to, a
speci�c data item.

After the index comes the \store". It is in the store that the data items are kept. The data
in the store is packed together as closely as possible. The order in which the data is stored
is immaterial | a far cry from the C structure used in the lead.

The Header Structure in Depth

Let's take a more in-depth look at the actual format of a header structure, starting with
the header structure header:

The Header Structure Header | The header structure header always starts with a
three-byte magic number: 8e ad e8. Following this is a one-byte version number. Next
are four bytes that are reserved for future expansion. After the reserved bytes, there is
a four-byte number that indicates how many index entries exist in this header structure,
followed by another four-byte number indicating how many bytes of data are part of the
header structure.

The Index Entry | The header structure's index is made up of zero or more index
entries. Each entry is sixteen bytes longs. The �rst four bytes contain a \tag" | a numeric
value that identi�es what type of data is pointed to by the entry. The tag values change
according to the header structure's position in the RPM �le. A list of the actual tag values,
and what they represent, will be included later in this appendix.

Following the tag, is a four-byte \type", which is a numeric value that describes the format
of the data pointed to by the entry. The types and their values do not change from header
structure to header structure. Here is the current list:

� NULL = 0

� CHAR = 1

� INT8 = 2

� INT16 = 3

� INT32 = 4

� INT64 = 5

� STRING = 6

� BIN = 7

A.2 RPM File Format 353

� STRING ARRAY = 8

A few of the data types might need some clari�cation. The STRING data type is simply
a null-terminated string, while the STRING ARRAY is a collection of strings. Finally, the
BIN data type is a collection of binary data. This is normally used to identify data that is
longer than an INT, but not a printable STRING.

Next is a four-byte \o�set" that contains the position of the data, relative to the beginning
of the store. We'll talk about the store in just a moment.

Finally, there is a four-byte \count" that contains the number of data items pointed to by
the index entry. There are a few wrinkles to the meaning of the count, and they center
around the STRING and STRING ARRAY data types. STRING data always has a count
of 1, while STRING ARRAY data has a count equal to the number of strings contained in
the store.

The Store | The store is where the data contained in the header structure is stored.
Depending on the data type being stored, there are some details that should be kept in
mind:

� For STRING data, each string is terminated with a null byte.

� For INT data, each integer is stored at the natural boundary for its type. A 64-bit
INT is stored on an 8-byte boundary, a 16-bit INT is stored on a 2-byte boundary,
and so on.

� All data is in network byte order.

With all these details out of the way, let's take a look at the signature.

A.2.4 The Signature

The signature section follows the lead in the RPM package �le. It contains information that
can be used to verify the integrity, and optionally, the authenticity of the majority of the
package �le. The signature is implemented as a header structure.

You probably noticed the word, \majority", above. The information in the signature header
structure is based on the contents of the package �le's header and archive only. The data in
the lead and the signature header structure are not included when the signature information
is created, nor are they part of any subsequent checks based on that information.

While that omission might seem to be a weakness in RPM's design, it really isn't. In the
case of the lead, since it is used only for easy identi�cation of package �les, any changes
made to that part of the �le would, at worst, leave the �le in such a state that RPM wouldn't
recognize it as a valid package �le. Likewise, any changes to the signature header structure
would make it impossible to verify the �le's integrity, since the signature information would
have been changed from their original values.

354 Format of the RPM File

Analyzing the Signature Area

Using our new-found knowledge of header structures, let's take a look at the signatures in
rpm-2.2.1-1.i386.rpm:

00000060: 8ead e801 0000 0000 0000 0003 0000 00ac

The �rst three bytes (8ead e8) contain the magic number for the start of the header struc-
ture. The next byte (01) is the header structure's version.

As we discussed earlier, the next four bytes (0000 0000) are reserved. The four bytes after
that (0000 0003) represent the number of index entries in the signature section, namely,
three. Following that are four bytes (0000 00ac) that indicate how many bytes of data are
stored in the signature. The hex value 00ac, when converted to decimal, means the store is
172 bytes long.

Following the �rst 16 bytes is the index. Each of the three index entries in this header
structure consists of four 32-bit integers, in the following order:

� Tag

� Type

� O�set

� Count

Let's take a look at the �rst index entry:

00000070: 0000 03e8 0000 0004 0000 0000 0000 0001

The tag consists of the �rst four bytes (0000 03e8), which is 1000 when translated from hex.
Looking in the RPM source directory at the �le lib/signature.h, we �nd the following
tag de�nitions:

#define SIGTAG_SIZE 1000

#define SIGTAG_MD5 1001

#define SIGTAG_PGP 1002

So the tag we are studying is for a size signature. Let's continue.

The next four bytes (0000 0004) contain the data type. As we saw earlier, data type 4
means that the data stored for this index entry, is a 32-bit integer. Skipping the next
four bytes for a moment, the last four bytes (0000 0001) are the number of 32-bit integers
pointed to by this index entry.

Now, let's go back to the four bytes prior to the count (0000 0000). This number is the
o�set, in bytes, at which the size signature is located. It has a value of zero, but the question
is, zero bytes from what? The answer, although it doesn't do us much good, is that the

A.2 RPM File Format 355

o�set is calculated from the start of the store. So �rst we must �nd where the store begins,
and we can do that by performing a simple calculation.

First, go back to the start of the signature section. (We've made a copy here so you won't
need to ip from page to page)

00000060: 8ead e801 0000 0000 0000 0003 0000 00ac

After the magic, the version, and the four reserved bytes, there is the number of index
entries (0000 0003). Since we know that each index entry is sixteen bytes long (four for
the tag, four for the type, four for the o�set, and four for the count), we can multiply the
number of entries (3) by the number of bytes in each entry (16), and obtain the total size of
the index, which is 48 decimal, or 30 in hex. Since the �rst index entry starts at hex o�set
70, we can simply add hex 30 to hex 70, and get, in hex, o�set a0. So let's skip down to
o�set a0, and see what's there:

000000a0: 0004 4c4f b025 b097 1597 0132 df35 d169 ..LO.%.....2.5.i

If we've done our math correctly, the �rst four bytes (0004 4c4f) should represent the size
of this �le. Converting to decimal, this is 281,679. Let's take a look at the size of the actual
�le:

ls -al rpm-2.2.1-1.i386.rpm

-rw-rw-r-- 1 ed ed
�

�

�

�282015 Jul 21 16:05 rpm-2.2.1-1.i386.rpm

#

Hmmm, something's not right. Or is it? It looks like we're short by 336 bytes, or in hex, 150.
Interesting how that's a nice round hex number, isn't it? For now, let's continue through
the remainder of the index entries, and see if hex 150 pops up elsewhere.

Here's the next index entry. It has a tag of decimal 1001, which is an MD5 checksum. It is
type 7, which is the BIN data type, it is 16 bytes long, and its data starts four bytes after
the beginning of the store:

00000080: 0000 03e9 0000 0007 0000 0004 0000 0010

And here's the data. It starts with b025 (Remember that o�set of four!) and ends on the
second line with 5375. This is a 128-bit MD5 checksum of the package �le's header and
archive sections.

000000a0: 0004 4c4f b025 b097 1597 0132 df35 d169 ..LO.%.....2.5.i

000000b0: 329c 5375 8900 9503 0500 31ed 6390 a520 2.Su......1.c..

Ok, let's jump back to the last index entry:

00000090: 0000 03ea 0000 0007 0000 0014 0000 0098

356 Format of the RPM File

It has a tag value of 03ea (1002 in decimal | a PGP signature block) and is also a BIN
data type. The data starts 20 decimal bytes from the start of the data area, which would
put it at �le o�set b4 (in hex). It's a biggie | 152 bytes long! Here's the data, starting
with 8900:

000000b0: 329c 5375 8900 9503 0500 31ed 6390 a520 2.Su......1.c..

000000c0: e8f1 cba2 9bf9 0101 437b 0400 9c8e 0ad4C{......

000000d0: 3790 364e dfb0 9a8a 22b5 b0b3 dc30 4c6f 7.6N...."....0Lo

000000e0: 91b8 c150 704e 2c64 d88a 8fca 18ab 5b6f ...PpN,d......[o

000000f0: f041 ebc8 d18a 01c9 3601 66f0 9ddd e956 .A......6.f....V

00000100: 3142 61b3 b1da 8494 6bef 9c19 4574 c49f 1Ba.....k...Et..

00000110: ee17 35e1 d105 fb68 0ce6 715a 60f1 c660 ..5....h..qZ`..`

00000120: 279f 0306 28ed 0ba0 0855 9e82 2b1c 2ede '...(....U..+...

00000130: e8e3 5090 6260 0b3c ba04 69a9 2573 1bbb ..P.b`.<..i.%s..

00000140: 5b65 4de1 b1d2 c07f 8afa 4a9b 0000 0000 [eM.......J.....

It ends with the bytes 4a9b. This is a 1,216-bit PGP signature block. It is also the end
of the signature section. There are four null bytes following the last data item in order to
round the size out so that it ends on an 8-byte boundary. This means that the o�set of the
next section starts at o�set 150, in hex. Say, wasn't the size in the size signature o� by 150
hex? Yes, the size in the signature is the size of the �le | minus the size of the lead and
the signature sections.

A.2.5 The Header

The header section contains all available information about the package. Entries such as the
package's name, version, and �le list, are contained in the header. Like the signature section,
the header is in header structure format. Unlike the signature, which has only three possible
tag types, the header has more than sixty di�erent tags. The list of currently de�ned tags
appears later in this appendix on page 357. Be aware that the list of tags changes frequently
| the de�nitive list appears in the RPM sources in lib/rpmlib.h.

Analyzing the Header

The easiest way to �nd the start of the header is to look for the second header structure by
scanning for its magic number (8ead e8). The sixteen bytes, starting with the magic, are
the header structures's header. They follow the same format as the header in the signature's
header structure:

00000150: 8ead e801 0000 0000 0000 0021 0000 09d3!....

As before, the byte following the magic identi�es this header structure as being in version 1
format. Following the four reserved bytes, we �nd the count of entries stored in the header
(0000 0021). Converting to decimal, we �nd that there are 33 entries in the header. The
next four bytes (0000 09d3) converted to decimal, tell us that there are 2,515 bytes of data
in the store.

A.2 RPM File Format 357

Since the header is a header structure just like the signature, we know that the next 16
bytes are the �rst index entry:

00000160: 0000 03e8 0000 0006 0000 0000 0000 0001

The �rst four bytes (0000 03e8) are the tag, which is the tag for the package name. The
next four bytes indicate the data is type 6, or a null-terminated string. There's an o�set of
zero in the next four bytes, meaning that the data for this tag is �rst in the store. Finally,
the last four bytes (0000 0001) show that the data count is 1, which is the only legal value
for data of type STRING.

To �nd the data, we need to take the o�set from the start of the �rst index entry in the
header (160), and add in the count of index entries (21) multiplied by the size of an index
entry (10). Doing the math (all the values shown, are in hex, remember!), we arrive at the
o�set to the store, hex 370. Since the o�set for this particular index entry is zero, the data
should start at o�set 370:

00000370: 7270 6d00 322e 322e 3100 3100 5265 6420 rpm.2.2.1.1.Red

Since the data type for this entry is a null-terminated string, we need to keep reading bytes
until we reach a byte whose numeric value is zero. We �nd the bytes 72, 70, 6d, and 00 |
a null. Looking at the ASCII display on the right, we �nd that the bytes form the string
rpm, which is the name of this package.

Now for a slightly more complicated example. Let's look at the following index entry:

00000250: 0000 0403 0000 0008 0000 0199 0000 0018

Tag 403 means that this entry is a list of �lenames. The data type 8, or STRING ARRAY,
seems to bear this out. From the previous example, we found that the data area for the
header began at o�set 370. Adding the o�set to the �rst �lename (199), gives us 509.
Finally, the count of 18 hex means that there should be 24 null-terminated strings containing
�lenames:

00000500: 696e 6974 6462 0a0a 002f 6269 6e2f 7270 initdb.../bin/rp

00000510: 6d00 2f65 7463 2f72 706d 7263 002f 7573 m./etc/rpmrc./us

The byte at o�set 509 is 2f | a \/". Reading up to the �rst null byte, we �nd that the �rst
�lename is /bin/rpm, followed by /etc/rpmrc. This continues on for 22 more �lenames.

There are many more tags that we could decode, but they are all done in the same manner.

Header Tag Listing

The following list shows the tags available, along with their de�ned values, for use in the
header. This list is current as of version 2.3 of RPM. For the most up-to-date version, look
in the �le lib/rpmlib.h in the latest version of the RPM sources.

358 Format of the RPM File

#define RPMTAG_NAME 1000

#define RPMTAG_VERSION 1001

#define RPMTAG_RELEASE 1002

#define RPMTAG_SERIAL 1003

#define RPMTAG_SUMMARY 1004

#define RPMTAG_DESCRIPTION 1005

#define RPMTAG_BUILDTIME 1006

#define RPMTAG_BUILDHOST 1007

#define RPMTAG_INSTALLTIME 1008

#define RPMTAG_SIZE 1009

#define RPMTAG_DISTRIBUTION 1010

#define RPMTAG_VENDOR 1011

#define RPMTAG_GIF 1012

#define RPMTAG_XPM 1013

#define RPMTAG_COPYRIGHT 1014

#define RPMTAG_PACKAGER 1015

#define RPMTAG_GROUP 1016

#define RPMTAG_CHANGELOG 1017

#define RPMTAG_SOURCE 1018

#define RPMTAG_PATCH 1019

#define RPMTAG_URL 1020

#define RPMTAG_OS 1021

#define RPMTAG_ARCH 1022

#define RPMTAG_PREIN 1023

#define RPMTAG_POSTIN 1024

#define RPMTAG_PREUN 1025

#define RPMTAG_POSTUN 1026

#define RPMTAG_FILENAMES 1027

#define RPMTAG_FILESIZES 1028

#define RPMTAG_FILESTATES 1029

#define RPMTAG_FILEMODES 1030

#define RPMTAG_FILEUIDS 1031

#define RPMTAG_FILEGIDS 1032

#define RPMTAG_FILERDEVS 1033

#define RPMTAG_FILEMTIMES 1034

#define RPMTAG_FILEMD5S 1035

#define RPMTAG_FILELINKTOS 1036

#define RPMTAG_FILEFLAGS 1037

#define RPMTAG_ROOT 1038

#define RPMTAG_FILEUSERNAME 1039

#define RPMTAG_FILEGROUPNAME 1040

#define RPMTAG_EXCLUDE 1041 /* not used */

#define RPMTAG_EXCLUSIVE 1042 /* not used */

#define RPMTAG_ICON 1043

#define RPMTAG_SOURCERPM 1044

#define RPMTAG_FILEVERIFYFLAGS 1045

A.2 RPM File Format 359

#define RPMTAG_ARCHIVESIZE 1046

#define RPMTAG_PROVIDES 1047

#define RPMTAG_REQUIREFLAGS 1048

#define RPMTAG_REQUIRENAME 1049

#define RPMTAG_REQUIREVERSION 1050

#define RPMTAG_NOSOURCE 1051

#define RPMTAG_NOPATCH 1052

#define RPMTAG_CONFLICTFLAGS 1053

#define RPMTAG_CONFLICTNAME 1054

#define RPMTAG_CONFLICTVERSION 1055

#define RPMTAG_DEFAULTPREFIX 1056

#define RPMTAG_BUILDROOT 1057

#define RPMTAG_INSTALLPREFIX 1058

#define RPMTAG_EXCLUDEARCH 1059

#define RPMTAG_EXCLUDEOS 1060

#define RPMTAG_EXCLUSIVEARCH 1061

#define RPMTAG_EXCLUSIVEOS 1062

#define RPMTAG_AUTOREQPROV 1063 /* used internally by build */

#define RPMTAG_RPMVERSION 1064

#define RPMTAG_TRIGGERSCRIPTS 1065

#define RPMTAG_TRIGGERNAME 1066

#define RPMTAG_TRIGGERVERSION 1067

#define RPMTAG_TRIGGERFLAGS 1068

#define RPMTAG_TRIGGERINDEX 1069

#define RPMTAG_VERIFYSCRIPT 1079

A.2.6 The Archive

Following the header section is the archive. The archive holds the actual �les that comprise
the package. The archive is compressed using GNU zip. We can verify this if we look at the
start of the archive:

00000d40: 0000 001f 8b08 0000 0000 0002 03ec fd7b{

00000d50: 7c13 d516 388e 4e92 691b 4a20 010a 1428 |...8.N.i.J ...(

In this example, the archive starts at o�set d43. According to the contents of
/usr/lib/magic, the �rst two bytes of a gzipped �le should be 1f8b, which is, in fact,
what we see. The following byte (08) is the ag used by GNU zip to indicate the �le has
been compressed with gzip's \deation" method. The eighth byte has a value of 02, which
means that the archive has been compresed using gzip's maximum compression setting.
The following byte contains a code indicating the operating system under which the archive
was compressed. A 03 in this byte indicates that the compression ran under a UNIX-like
operating system.

The remainder of the RPM package �le is the compressed archive. After the archive is
uncompressed, it is an ordinary cpio archive in SVR4 format with a CRC checksum.

360 Format of the RPM File

A.3 Tools For Studying RPM Files

In the tools directory packaged with the RPM sources, are a number of small programs
that use the RPM library to extract the various sections of a package �le. Normally used by
the RPM developers for debugging purposes, these tools can also be used to make it easier
to understand the RPM package �le format. Here is a list of the programs, and what they
do:

� rpmlead | Extracts the lead section from a package �le.

� rpmsignature| Extracts the signature section from a package �le.

� rpmheader | Extracts the header from a package �le.

� rpmarchive | Extracts the archive from a package �le.

� dump | Displays a header structure in an easily readable format.

The �rst four programs take an RPM package �le as their input. The package �le can be
read either from standard input, or by including the �le name on the command line. In
either case, the programs write to standard output. Here is how rpmlead can be used to
display the lead from a package �le:

rpmlead foo.rpm | od -x

0000000 abed dbee 0003 0000 0100 7072 2d6d 2e32

0000020 2e32 2d31 0031 0000 0000 0000 0000 0000

0000040 0000 0000 0000 0000 0000 0000 0000 0000

0000100 0000 0000 0000 0000 0000 0000 0100 0500

0000120 0004 0000 e124 bfff b36b 0800 e600 bfff

0000140

#

Since each of these programs can also act as �lters, the following command is equivalent to
the one above:

cat foo.rpm | rpmlead | od -x

0000000 abed dbee 0003 0000 0100 7072 2d6d 2e32

0000020 2e32 2d31 0031 0000 0000 0000 0000 0000

0000040 0000 0000 0000 0000 0000 0000 0000 0000

0000100 0000 0000 0000 0000 0000 0000 0100 0500

0000120 0004 0000 e124 bfff b36b 0800 e600 bfff

0000140

#

A.4 Identifying RPM �les with the file(1) command 361

The dump program is used in conjunction with rpmsignature or rpmheader. It makes
decoding header structures a snap:

rpmsignature foo.rpm | dump

Entry count: 3

Data count : 172

CT TAG TYPE OFSET COUNT

Entry : 000 (1000)NAME INT32_TYPE 0x00000000 00000001

Data: 000 0x00044c4f (281679)

Entry : 001 (1001)VERSION BIN_TYPE 0x00000004 00000016

Data: 000 b0 25 b0 97 15 97 01 32

Data: 008 df 35 d1 69 32 9c 53 75

Entry : 002 (1002)RELEASE BIN_TYPE 0x00000014 00000152

Data: 000 89 00 95 03 05 00 31 ed

Data: 008 63 90 a5 20 e8 f1 cb a2

Data: 016 9b f9 01 01 43 7b 04 00

Data: 024 9c 8e 0a d4 37 90 36 4e

Data: 032 df b0 9a 8a 22 b5 b0 b3

Data: 040 dc 30 4c 6f 91 b8 c1 50

Data: 048 70 4e 2c 64 d8 8a 8f ca

Data: 056 18 ab 5b 6f f0 41 eb c8

Data: 064 d1 8a 01 c9 36 01 66 f0

Data: 072 9d dd e9 56 31 42 61 b3

Data: 080 b1 da 84 94 6b ef 9c 19

Data: 088 45 74 c4 9f ee 17 35 e1

Data: 096 d1 05 fb 68 0c e6 71 5a

Data: 104 60 f1 c6 60 27 9f 03 06

Data: 112 28 ed 0b a0 08 55 9e 82

Data: 120 2b 1c 2e de e8 e3 50 90

Data: 128 62 60 0b 3c ba 04 69 a9

Data: 136 25 73 1b bb 5b 65 4d e1

Data: 144 b1 d2 c0 7f 8a fa 4a 9b

#

One aspect of dump worth noting, is that it is optimized for decoding the header section of a
package �le. When used with rpmsignature, it displays the tag names used in the header,
instead of the signature tag names. The data is displayed properly in either case, however.

A.4 Identifying RPM �les with the file(1) command

The magic �le on most UNIX-like systems today should have the necessary information to
identify RPM �les. But in case your system doesn't, the following information can be added

362 Format of the RPM File

to the �le:

#---

#

RPM: file(1) magic for Red Hat Packages

#

0 beshort 0xedab

>2 beshort 0xeedb RPM

>>4 byte x v%d

>>6 beshort 0 bin

>>6 beshort 1 src

>>8 beshort 1 i386

>>8 beshort 2 Alpha

>>8 beshort 3 Sparc

>>8 beshort 4 MIPS

>>8 beshort 5 PowerPC

>>8 beshort 6 68000

>>8 beshort 7 SGI

>>10 string x %s

The output of the file command is succinct:

file baz

baz: RPM v3 bin i386 vlock-1.0-2

#

In this case, the �le called baz is a version 3 format RPM �le containing release 2 of version
1.0 of the vlock package, which has been built for the Intel x86 architecture.

Appendix B

The rpmrc File

The rpmrc �le is used to control RPM's actions. The �le's entries have an e�ect on nearly
every aspect of RPM's operations. Here, we describe the rpmrc �les in more detail, as well
as the command used to show how RPM interprets the �les.

B.1 Using the - -showrc Option

As we'll see in a moment, RPM can read more than one rpmrc �le, and each �le can contain
nearly thirty di�erent types of entries. This can make it di�cult to determine what values
RPM is actually using.

Luckily, there's an option that can be used to help make sense of it all. The - -showrc

option displays the value for each of the entries. The output is divided into two sections:

1. Architecture and operating system values.

2. rpmrc values.

The architecture and operating system values de�ne the architecture and operating sys-
tem that RPM is running on. These values de�ne the environment for both building and
installing packages. They also de�ne which architectures and operating systems are com-
patible with each other.

The rpmrc values de�ne many aspects of RPM's operation. These values range from the
path to RPM's database, to the name of the person listed as having built the package.

Here's an example of - -showrc's output:

rpm - -showrc

ARCHITECTURE AND OS:

build arch : i386

build os : Linux

364 The rpmrc File

install arch : i486

install os : Linux

compatible arch list : i486 i386

compatible os list : Linux

RPMRC VALUES:

builddir : /usr/src/redhat/BUILD

buildroot : (not set)

cpiobin : cpio

dbpath : /var/lib/rpm

defaultdocdir : /usr/doc

distribution : (not set)

excludedocs : (not set)

ftpport : (not set)

ftpproxy : (not set)

messagelevel : (not set)

netsharedpath : (not set)

optflags : -O2 -m486 -fno-strength-reduce

packager : (not set)

pgp_name : (not set)

pgp_path : (not set)

require_distribution : (not set)

require_icon : (not set)

require_vendor : (not set)

root : (not set)

rpmdir : /usr/src/redhat/RPMS

signature : none

sourcedir : /usr/src/redhat/SOURCES

specdir : /usr/src/redhat/SPECS

srcrpmdir : /usr/src/redhat/SRPMS

timecheck : (not set)

tmppath : /var/tmp

topdir : /usr/src/redhat

vendor : (not set)

#

As you can see, the - -showrc option clearly displays the values RPM will use. - -showrc
can also be used with the - -rcfile option, which makes it easy to see the e�ect of specifying
a di�erent rpmrc �le.

B.2 Di�erent Places an rpmrc File Resides

RPM looks for rpmrc �les in four places:

1. In /usr/lib/, for a �le called rpmrc.

2. In /etc/, for a �le called rpmrc.

B.2 Di�erent Places an rpmrc File Resides 365

3. In a �le called .rpmrc in the user's login directory.

4. In a �le speci�ed by the - -rcfile option, if the option is present on the command
line.

The �rst three �les are read in the order listed, such that if a given rmprc entry is present in
each �le, the value of the entry read last is the one used by RPM. This means, for example,
that an entry in .rpmrc in the user's login directory will always override the same entry
in /etc/rpmrc. Likewise, an entry in /etc/rpmrc will always override the same entry in
/usr/lib/rpmrc.

If the - -rcfile option is used, then only /usr/lib/rpmrc and the �le following the
- -rcfile option are read, in that order. The /usr/lib/rpmrc �le is always read �rst.
This cannot be changed.

Let's look at each of these �les, starting with /usr/lib/rpmrc.

B.2.1 /usr/lib/rpmrc

The �le /usr/lib/rpmrc is always read. It contains information that RPM uses to set some
default values. This �le should never be modi�ed! Doing so may cause RPM to operate
incorrectly.

After this stern warning, we should note that it's perfectly all right to look at it. Here it is,
in fact:

###

Default values, often overridden in /etc/rpmrc

dbpath: /var/lib/rpm

topdir: /usr/src/redhat

tmppath: /var/tmp

cpiobin: cpio

defaultdocdir: /usr/doc

###

Please send new entries to rpm-list@redhat.com

###

Values for RPM_OPT_FLAGS for various platforms

optflags: i386 -O2 -m486 -fno-strength-reduce

optflags: alpha -O2

optflags: sparc -O2

optflags: m68k -O2 -fomit-frame-pointer

###

366 The rpmrc File

Canonical arch names and numbers

arch_canon: i986: i986 1

arch_canon: i886: i886 1

arch_canon: i786: i786 1

arch_canon: i686: i686 1

arch_canon: i586: i586 1

arch_canon: i486: i486 1

arch_canon: i386: i386 1

arch_canon: alpha: alpha 2

arch_canon: sparc: sparc 3

arch_canon: sun4: sparc 3

arch_canon: sun4m: sparc 3

arch_canon: sun4c: sparc 3

This is really a place holder for MIPS.

arch_canon: mips: mips 4

arch_canon: ppc: ppc 5

This is really a place holder for 68000

arch_canon: m68k: m68k 6

This is wrong. We really need globbing in here :-(

arch_canon: IP: sgi 7

arch_canon: IP22: sgi 7

arch_canon: 9000/712: hppa1.1 9

arch_canon: sun4u: usparc 10

###

Canonical OS names and numbers

os_canon: Linux: Linux 1

os_canon: IRIX: Irix 2

This is wrong

os_canon: SunOS5: solaris 3

os_canon: SunOS4: SunOS 4

os_canon: AmigaOS: AmigaOS 5

os_canon: AIX: AIX 5

os_canon: HP-UX: hpux10 6

os_canon: OSF1: osf1 7

os_canon: FreeBSD: FreeBSD 8

###

For a given uname().machine, the default build arch

buildarchtranslate: osfmach3_i986: i386

B.2 Di�erent Places an rpmrc File Resides 367

buildarchtranslate: osfmach3_i886: i386

buildarchtranslate: osfmach3_i786: i386

buildarchtranslate: osfmach3_i686: i386

buildarchtranslate: osfmach3_i586: i386

buildarchtranslate: osfmach3_i486: i386

buildarchtranslate: osfmach3_i386: i386

buildarchtranslate: i986: i386

buildarchtranslate: i886: i386

buildarchtranslate: i786: i386

buildarchtranslate: i686: i386

buildarchtranslate: i586: i386

buildarchtranslate: i486: i386

buildarchtranslate: i386: i386

buildarchtranslate: osfmach3_ppc: ppc

###

Architecture compatibility

arch_compat: alpha: axp

arch_compat: i986: i886

arch_compat: i886: i786

arch_compat: i786: i686

arch_compat: i686: i586

arch_compat: i586: i486

arch_compat: i486: i386

arch_compat: osfmach3_i986: i986 osfmach3_i886

arch_compat: osfmach3_i886: i886 osfmach3_i786

arch_compat: osfmach3_i786: i786 osfmach3_i686

arch_compat: osfmach3_i686: i686 osfmach3_i586

arch_compat: osfmach3_i586: i586 osfmach3_i486

arch_compat: osfmach3_i486: i486 osfmach3_i386

arch_compat: osfmach3_i386: i486

arch_compat: osfmach3_ppc: ppc

arch_compat: usparc: sparc

Quite a bunch of stu�, isn't it? With the exception of the �rst �ve lines, which indicate where
several important directories and programs are located, the remainder of this �le contains
rpmrc entries that are related to RPM's architecture and operating system processing. As
you might imagine, any tinkering here will probably not be very productive, so leave any
modi�cations here to the RPM developers.

368 The rpmrc File

Next, we have /etc/rpmrc.

B.2.2 /etc/rpmrc

The �le /etc/rpmrc, unlike /usr/lib/rpmrc, is fair game for modi�cations and additions.
In fact, /etc/rpmrc isn't created by default, so its contents are entirely up to you. It's the
perfect place to keep rpmrc entries of a system-wide or global nature.

The vendor entry is a great example of a good candidate for inclusion in /etc/rpmrc. In
most cases, a particular system is dedicated to building packages for one vendor. In these
instances, setting the vendor entry in /etc/rpmrc is best.

Next in the hierarchy is a �le named .rpmrc, residing in the user's login directory.

B.2.3 .rpmrc in the user's login directory

As you might imagine, a �le called .rpmrc in a user's login directory is only going to be read
by that user when he or she runs RPM. Like /etc/rpmrc, this �le is not created by default,
but it can contain the same rpmrc entries as the other �les. The packager entry, which
should contain the name and contact information for the person who built the package, is
an appropriate candidate for ~/.rpmrc.

B.2.4 File indicated by the - -rcfile option

The - -rcfile option is best used only when a totally di�erent RPM con�guration is desired
for one or two packages. Since the only other rpmrc �le read is /usr/lib/rpmrc with its
low-level default settings, the �le speci�ed with the - -rcfile option will have to be more
comprehensive than either /etc/rpmrc or ~/.rmprc.

B.3 rpmrc File Syntax

As you might have surmised from the example �le we briey reviewed, the basic syntax of
an rpmrc �le entry is:

<name>:<value>

The <name> part of the entry is not case sensitive, so any capitalization is acceptable. The
colon separating the name from its value must immediately follow the name. No spaces are
allowed here. The formatting requirements on the value side of the entry vary from value
to value and will be discussed along with each entry.

B.4 rpmrc File Entries

In this section, we discuss the various entries that can be used in each of the rpmrc �les.

B.4 rpmrc File Entries 369

B.4.1 arch canon

The arch canon entry is used to de�ne a table of architecture names and their associated
numbers. These canonical architecture names and numbers are then used internally by
RPM whenever architecture-speci�c processing takes place. This entry's format is:

arch canon:<label>: <string> <value>

The <label> is compared against information from uname(2) after it's been translated using
the appropriate buildarchtranslate entry. If a match is found, then <string> is used by
RPM to reference the system's architecture. When building a binary package, RPM uses
<string> as part of the package's �lename, for instance.

The <value> is a numeric value RPM uses internally to identify the architecture. For
example, this number is written in the header of each package �le so that the file command
can identify the architecture for which the package was built.

B.4.2 os canon

The os canon entry is used to de�ne a table of operating system names and their associated
numbers. These canonical operating system names and numbers are then used internally
by RPM whenever operating system-speci�c processing takes place. This entry's format is:

os canon:<label>: <string> <value>

The <label> is compared against information from uname(2) after it's been translated using
the appropriate buildostranslate entry.1 If a match is found, then <string> is used by
RPM to reference the operating system.

The <value> is a numeric value used to uniquely identify the operating system.

B.4.3 buildarchtranslate

The buildarchtranslate entry is used in the process of de�ning the architecture that RPM
will use as the \build" architecture. As the name implies, it is used to translate the raw
information returned from uname(2) to the canonical architecture de�ned by arch canon.

The format of the buildarchtranslate entry is slightly di�erent from most other rpmrc
�le entries. Instead of the usual <name>:<value> format, the buildarchtranslate entry
looks like this:

buildarchtranslate:<label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM to de�ne the build architecture.

1The buildostranslate rpmrc �le entry is discussed on page 370.

370 The rpmrc File

B.4.4 buildostranslate

The buildostranslate entry is used in the process of de�ning the operating system RPM
will use as the \build" operating system. As the name implies, it is used to translate the raw
information returned by uname(2) to the canonical operating sysetm de�ned by os canon.

The format of the buildostranslate entry is slightly di�erent from most other rpmrc �le
entries. Instead of the usual <name>:<value> format, the buildostranslate entry looks
like this:

buildostranslate:<label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM to de�ne the build operating system.

B.4.5 arch compat

The arch compat entry is used to de�ne which architectures are compatible with one an-
other. This information is used when packages are installed; in this way, RPM can determine
whether a given package �le is compatible with the system. The format of the entry is:

arch compat:<label>: <list>

The <label> is an architecture string, as de�ned by an arch canon entry. The <list>

following it consists of one or more architectures, also de�ned by arch canon. If there is
more than one architecture in the list, they should be separated by a space.

The architectures in the list are considered compatible to the architecture speci�ed in the
label.

B.4.6 os compat

Default value: (operating system-speci�c)

The os compat entry is used to de�ne which operating systems are compatible with one
another. This information is used when packages are installed; in this way, RPM can
determine whether a given package �le is compatible with the system. The format of the
entry is:

<name>:<label>: <list>

The <label> is an operating system string, as de�ned by an os canon entry. The <list>
following it consists of one or more operating systems, also de�ned by os canon. If there is
more than one operating system in the list, they should be separated by a space.

The operating systems in the list are considered compatible to the operating system speci�ed
in the label.

B.4 rpmrc File Entries 371

B.4.7 builddir

Default value: (topdir)/BUILD

The builddir entry is used to de�ne the path to the directory in which RPM will build
packages. Its default value is taken from the value of the topdir entry, with \/BUILD"
appended to it. Note that if you rede�ne builddir, you'll need to specify a complete path.

B.4.8 buildroot

Default value: (none)

The buildroot entry de�nes the path used as the root directory during the install phase of a
package build. For more information on using build roots, please see chapter 16, speci�cally,
section 16.1 on page 230.

B.4.9 cpiobin

Default value: cpio

The cpiobin entry is used to de�ne the name (and optionally, path) of the cpio program.
RPM uses cpio to perform a variety of functions, and needs to know where the program
can be found.

B.4.10 dbpath

Default value: /var/lib/rpm

The dbpath entry is used to de�ne the directory in which the RPM database �les are stored.
It can be overridden by using the - -dbpath option on the RPM command line.

B.4.11 defaultdocdir

Default value: /usr/doc

The defaultdocdir entry is used to de�ne the directory in which RPM will store doc-
umentation for all installed packages. It is used only during builds to support the %doc

directive.

B.4.12 distribution

Default value: (none)

372 The rpmrc File

The distribution entry is used to de�ne the distribution for each package. The distribution
can also be set by adding the distribution tag to a particular spec �le. The distribution
tag in the spec �le overrides the distribution rpmrc �le entry.

B.4.13 excludedocs

Default value: 0

The excludedocs entry is used to control if documentation should be written to disk when
a package is installed. By default, documentation is installed; however, this can be over-
ridden by setting the value of excludedocs to 1. Note also that the - -excludedocs

and - -includedocs options can be added to the RPM command line to override the
excludedocs entry's behavior. For more information on the - -excludedocs and
- -includedocs options, please refer to chapter 2 on page 15.

B.4.14 ftpport

Default value: (none)

The ftpport entry is used to de�ne the port RPM should use when manipulating package
�les via FTP. See section 2.4.15 on page 33 for more information on how FTP ports are
used by RPM.

B.4.15 ftpproxy

Default value: (none)

The ftpproxy entry is used to de�ne the hostname of the FTP proxy system RPM should use
when manipulating package �les via FTP. See section 2.4.16 on page 33 for more information
on how FTP proxy systems are used by RPM.

B.4.16 messagelevel

Default value: 3

The messagelevel entry is used to de�ne the desired verbosity level. Levels less than 3
produce greater amounts of output, while levels greater than 3 produce less output.

B.4.17 netsharedpath

Default value: (none)

B.4 rpmrc File Entries 373

The netsharedpath entry is used to de�ne one or more paths that, on the local system, are
shared with other systems. If more than one path is speci�ed, they must be separated with
colons.

B.4.18 optflags

Default value: (architecture-speci�c)

The optflags entry is used to de�ne a standard set of options that can be used during the
build process, speci�cally during compilation.

The format of the optflags entry is slightly di�erent from most other rpmrc �le entries.
Instead of the usual <name>:<value> format, the optflags entry looks like this:

optflags:<architecture> <value>

For example, assume the following optflags entries were placed in an rpmrc �le:

optflags: i386 -O2 -m486 -fno-strength-reduce

optflags: sparc -O2

If RPM was running on an Intel 80386-compatible architecture, the optflags value would
be set to -O2 -m486 -fno-strength-reduce. If, however, RPM was running on a Sun
SPARC-based system, optflags would be set to -O2.

This entry sets the RPM OPT FLAGS environment variable, which can be used in the %prep,
%build, and %install scripts.

B.4.19 packager

Default value: (none)

The packager entry is used to de�ne the name and contact information for the individual
responsible for building the package. The contact information is traditionally de�ned in the
following format:

packager:Erik Troan <ewt@redhat.com>

B.4.20 pgp name

Default value: (none)

The pgp name entry is used to de�ne the name of the PGP public key that will be used to
sign each package built. The value is not case sensitive, but the key name entered here must
match the actual key name in every other aspect.

374 The rpmrc File

For more information on signing packages with PGP, please read chapter 17 on page 241.

B.4.21 pgp path

Default value: (none)

The pgp path entry is used to point to a directory containing PGP keyring �les. These �les
will be searched for the public key speci�ed by the pgp name entry.

For more information on signing packages with PGP, please read chapter 17 on page 241.

B.4.22 require distribution

Default value: 0

The require distribution entry is used to direct RPM to require that every package built
must contain distribution information. The default value directs RPM to not enforce this
requirement. If the entry has a non-zero value, RPM will only build packages that de�ne a
distribution.

B.4.23 require icon

Default value: 0

The require icon entry is used to direct RPM to require that every package built must
contain an icon. The default value directs RPM to not enforce this requirement. If the
entry has a non-zero value, RPM will only build packages that contain an icon.

B.4.24 require vendor

Default value: 0

The require vendor entry is used to direct RPM to require that every package built must
contain vendor information. The default value directs RPM to not enforce this requirement.
If the entry has a non-zero value, RPM will only build packages that de�ne a vendor.

B.4.25 rpmdir

Default value: (topdir)/RPMS

The rpmdir entry is used to de�ne the path to the directory in which RPM will write binary
package �les. Its default value is taken from the value of the topdir entry, with \/RPMS"

B.4 rpmrc File Entries 375

appended to it. Note that if you rede�ne rpmdir, you'll need to specify a complete path.
RPM will automatically add an architecture-speci�c directory to the end of the path. For
example, on an Intel-based system, the actual path would be:

/usr/src/redhat/RPMS/i386

B.4.26 signature

Default value: (none)

The signature entry is used to de�ne the type of signature that is to be added to each
package built. At the present time, only signatures from PGP are supported. Therefore,
the only acceptable value is \pgp".

For more information on signing packages with PGP, please read chapter 17 on page 241.

B.4.27 sourcedir

Default value: (topdir)/SOURCES

The sourcedir entry is used to de�ne the path to the directory in which RPM will look
for sources. Its default value is taken from the value of the topdir entry, with \/SOURCES"
appended to it. Note that if you rede�ne sourcedir, you'll need to specify a complete path.

B.4.28 specdir

Default value: (topdir)/SPECS

The specdir entry is used to de�ne the path to the directory in which RPM will look for
spec �les. Its default value is taken from the value of the topdir entry, with \/SPECS"
appended to it. Note that if you rede�ne specdir, you'll need to specify a complete path.

B.4.29 srcrpmdir

Default value: (topdir)/SRPMS

The srcrpmdir entry is used to de�ne the path to the directory in which RPM will write
source package �les. Its default value is taken from the value of the topdir entry, with
\/SRPMS" appended to it. Note that if you rede�ne srcrpmdir, you'll need to specify a
complete path.

376 The rpmrc File

B.4.30 timecheck

Default value: (none)

The timecheck entry is used to de�ne the default number of seconds to apply to the
- -timecheck option when building packages. For more information on the - -timecheck

option, please see section 12.1.14 on page 159.

B.4.31 tmppath

Default value: /var/tmp

The tmpdir entry is used to de�ne a path to the directory that RPM will use for temporary
work space. This normally consists of temporary scripts that are used during the build
process. It should be set to an absolute path (ie, starting with \/").

B.4.32 topdir

Default value: /usr/src/redhat

The topdir entry is used to de�ne the path to the top-level directory in RPM's build
directory tree. It should be set to an absolute path (ie, starting with \/"). The following
entries base their default values on the value of topdir:

� builddir

� rpmdir

� sourcedir

� specdir

� srcrpmdir

B.4.33 vendor

Default value: (none)

The vendor entry is used to de�ne the name of the organization that is responsible for
distributing the packaged software. Normally, this would be the name of a business or other
such entity.

Appendix C

Concise RPM Command

Reference

C.1 Global Options

The following options can be used in any of RPM's modes:

� - -quiet | Print as little output as possible.

� -v | Be a little more verbose.

� -vv | Be incredibly verbose (for debugging).

� - -root <dir> | Use <dir> as the top level directory.

� - -dbpath <dir> | Use <dir> as the directory for the database.

� - -rcfile <file> | Use <file> instead of /etc/rpmrc and $HOME/.rpmrc.

C.2 Informational Options

The following options are used to display information about RPM:

Format: rpm <option>

� - -version | Print the version of rpm being used.

� - -help | Print a help message.

� - -showrc | Show rc�le information.

� - -querytags | List the tags that can be used with - -queryformat.

378 Concise RPM Command Reference

C.3 Query Mode

RPM's query mode is used to display information about packages:

Format: rpm - -query <options>

or
Format: rpm -q <options>

C.3.1 Package Speci�cation Options To Query Mode

No more than one of the following options may be present in every query command. They
are used to select the source of the information to be displayed.

� <packagename>| Query the named package.

� -a | Query all packages.

� -f <file>+ | Query package owning <file>.

� -g <group>+ | Query packages with group <group>.

� -p <packagefile>+| Query (uninstalled) package <packagefile>.

� - -whatprovides <i> | Query packages that provide <i> capability.

� - -whatrequires <i> | Query packages that require <i> capability.

C.3.2 Information Selection Options To Query Mode

One or more of the following options may be added to any query command. They are used
to select what information RPM will display. If no information selection option is present
on the command line, RPM will simply display the applicable package label(s):

� -i | Display package information.

� -l | Display package �le list.

� -s | Show �le states (implies -l).

� -d | List only documentation �les (implies -l).

� -c | List only con�guration �les (implies -l).

� - -dump | Show all available information for each �le (must be used with -l, -c, or
-d).

� - -provides | List capabilities that the package provides.

� - -requires, -R | List capabilities that the package requires.

C.4 Verify Mode 379

� - -scripts | Print the various [un]install, veri�cation scripts.

� - -queryformat <s> | Use <s> as the header format (implies -i).

� - -qf <s> | Shorthand for - -queryformat.

C.4 Verify Mode

RPM's veri�cation mode is used to ensure that a package is still installed properly:

Format: rpm - -verify <options>

or
Format: rpm -V <options>

or
Format: rpm -y <options>

C.4.1 Options To Verify Mode

The following options can be used on any verify command:

� - -nodeps | Do not verify package dependencies.

� - -nofiles | Do not verify �le attributes.

� - -noscripts | Do not execute the package's veri�cation script.

C.5 Install Mode

RPM's installation mode is used to install packages:

Format: rpm - -install <packagefile>

or
Format: rpm -i <packagefile>

C.5.1 Options To Install Mode

The following options can be used on any install command:

� -h, - -hash | Print hash marks as package installs (good with -v).

� - -prefix <dir> | Relocate the package to <dir>, if relocatable.

� - -excludedocs| Do not install documentation.

380 Concise RPM Command Reference

� - -force | Shorthand for - -replacepkgs and - -replacefiles.

� - -ignorearch | Do not verify package architecture.

� - -ignoreos | Do not verify package operating system.

� - -includedocs| Install documentation.

� - -nodeps | Do not check package dependencies.

� - -noscripts | Do not execute any installation scripts.

� - -percent | Print percentages as package installs.

� - -replacefiles| Install even if the package replaces installed �les.

� - -replacepkgs| Reinstall if the package is already present.

� - -test | Do not install, but tell if it would work or not.

C.6 Upgrade Mode

RPM's upgrade mode is used to upgrade packages:

Format: rpm - -upgrade <packagefile>

or
Format: rpm -U <packagefile>

C.6.1 Options To Upgrade Mode

The following options can be used on any upgrade command:

� -h, - -hash | Print hash marks as package installs (good with -v).

� - -prefix <dir> | Relocate the package to <dir>, if relocatable.

� - -excludedocs| Do not install documentation.

� - -force | Shorthand for - -replacepkgs, - -replacefiles, and - -oldpackage.

� - -ignorearch | Do not verify package architecture.

� - -ignoreos | Do not verify package operating system.

� - -includedocs| Install documentation.

� - -nodeps | Do not verify package dependencies.

� - -noscripts | Do not execute any installation scripts.

C.7 Erase Mode 381

� - -percent | Print percentages as package installs.

� - -replacefiles| Install even if the package replaces installed �les.

� - -replacepkgs| Reinstall if the package is already present.

� - -test | Do not install, but tell if it would work or not.

� - -oldpackage | Upgrade to an old version of the package (- -force on upgrades
does this automatically).

C.7 Erase Mode

RPM's erase mode is used to erase previously installed packages:

Format: rpm - -erase <package>

or
Format: rpm -e <package>

C.7.1 Options To Erase Mode

The following options can be used on any erase command:

� - -nodeps | Do not verify package dependencies.

� - -noscripts | Do not execute any installation scripts.

C.8 Build Mode

RPM's build mode is used to build packages:

Format: rpm -b<stage> <options> <specfile>

(Note that -vv is the default for all build mode commands.)

C.8.1 Build Mode Stages

One of the following stages must follow the -b option:

� p | Prep (unpack sources and apply patches).

� l | List check (do some cursory checks on %files).

� c | Compile (prep and compile).

382 Concise RPM Command Reference

� i | Install (prep, compile, install).

� b | Binary package (prep, compile, install, package).

� a | Binary/source package (prep, compile, install, package).

C.8.2 Options To Build Mode

The following options can be used on any build command:

� - -short-circuit| Skip straight to speci�ed stage (only for c and i).

� - -clean | Remove build tree when done.

� - -sign | Generate PGP signature.

� - -buildroot <s> | Use <s> as the build root.

� - -buildarch <s> | Use <s> as the build architecture.

� - -buildos <s> | Use <s> as the build operating system.

� - -test | Do not execute any stages.

� - -timecheck <s> | Set the time check to <s> seconds (0 disables it).

C.9 Rebuild Mode

RPM's rebuild mode is used to rebuild packages from a source package �le. The source
archives, patches, and icons that comprise the source package are removed after the binary
package is built. Rebuild mode implies - -clean.

Format: rpm - -rebuild <options> <source-package>

(Note that -vv is the default for all rebuild mode commands.)

C.9.1 Options To Rebuild Mode

Only the global options may be used.

C.10 Recompile Mode

RPM's recompile mode is used to recompile software from a source package �le. Unlike
- -rebuild, no binary package is created.

Format: rpm - -recompile <options> <source-package>

(Note that -vv is the default for all recompile mode commands.)

C.11 Resign Mode 383

C.10.1 Options To Recompile Mode

Only the global options may be used.

C.11 Resign Mode

RPM's resign mode is used to replace a package's signature with a new one:

Format: rpm - -resign <options> <packagefile>+

C.11.1 Options To Resign Mode

Only the global options may be used.

C.12 Add Signature Mode

RPM's add signature mode is used to add a signature to a package:

Format: rpm - -addsign <options> <packagefile>+

C.12.1 Options To Add Signature Mode

Only the global options may be used.

C.13 Check Signature Mode

RPM's check signature mode is used to verify a package's signature:

Format: rpm - -checksig <options> <packagefile>+

or
Format: rpm -K <options> <packagefile>+

C.13.1 Options To Check Signature Mode

The following option can be used on any check signature command:

� - -nopgp | Skip any PGP signatures (size and MD5 only).

384 Concise RPM Command Reference

C.14 Initalize Database Mode

RPM's initalize database mode is used to create a new RPM database:

Format: rpm - -initdb <options>

C.14.1 Options to Initalize database Mode

Only the global options may be used.

C.15 Rebuild Database Mode

RPM's rebuild database mode is used to rebuild an RPM database:

Format: rpm - -rebuilddb <options>

C.15.1 Options to Rebuild Database Mode

Only the global options may be used.

Appendix D

Available Tags For

- -queryformat

The following tags were de�ned at the time this book was written. For the latest list of
available queryformat tags, please issue the following command:

rpm --querytags

Keep in mind that the list of tags produced by the - -querytags option is the complete list
of all tags used by RPM internally; for instance, during package builds. Because of this,
some tags do not produce meaningful output when used in a - -queryformat format string.

D.1 List of - -queryformat Tags

For every tag in this section, there can be as many as three di�erent pieces of information:

1. A short description of the tag.

2. Whether the data speci�ed by the tag is an array, and if so, how many members are
present in the array.

3. What modi�ers can be used with the tag.

The NAME Tag

The NAME tag is used to display the name of the package.

Array: No

Used with modi�ers: N/A

386 Available Tags For - -queryformat

The VERSION Tag

The VERSION tag is used to display the version of the packaged software.

Array: No

Used with modi�ers: N/A

The RELEASE Tag

The RELEASE tag is used to display the release number of the package.

Array: No

Used with modi�ers: N/A

The SERIAL Tag

The SERIAL tag is used to display the serial number of the package.

Array: No

Used with modi�ers: N/A

The SUMMARY Tag

The SUMMARY tag is used to display a one-line summation of the packaged software.

Array: No

Used with modi�ers: N/A

The DESCRIPTION Tag

The DESCRIPTION tag is used to display a detailed summation of the packaged software.

Array: No

Used with modi�ers: N/A

The BUILDTIME Tag

The BUILDTIME tag is used to display the time and date the package was created.

Array: No

Used with modi�ers: :date

The BUILDHOST Tag

The BUILDHOST tag is used to display the hostname of the system that built the package.

D.1 List of - -queryformat Tags 387

Array: No

Used with modi�ers: N/A

The INSTALLTIME Tag

The INSTALLTIME tag is used to display the time and date the package was installed.

Array: No

Used with modi�ers: :date

The SIZE Tag

The SIZE tag is used to display the total size, in bytes, of every �le installed by this package.

Array: No

Used with modi�ers: N/A

The DISTRIBUTION Tag

The DISTRIBUTION tag is used to display the distribution this package is a part of.

Array: No

Used with modi�ers: N/A

The VENDOR Tag

The VENDOR tag is used to display the organization responsible for marketing the package.

Array: No

Used with modi�ers: N/A

The GIF Tag

The GIF tag is not available for use with - -queryformat.

The XPM Tag

The XPM tag is not available for use with - -queryformat.

The COPYRIGHT Tag

The COPYRIGHT tag is used to display the copyright terms of the package.

Array: No

Used with modi�ers: N/A

388 Available Tags For - -queryformat

The PACKAGER Tag

The PACKAGER tag is used to display the person or persons responsible for creating the
package.

Array: No

Used with modi�ers: N/A

The GROUP Tag

The GROUP tag is used to display the group to which the package belongs.

Array: No

Used with modi�ers: N/A

The CHANGELOG Tag

The CHANGELOG tag is reserved for a future version of RPM.

The SOURCE Tag

The SOURCE tag is used to display the source archives contained in the source package �le.

Array: Yes (Size: One entry per source)

Used with modi�ers: N/A

The PATCH Tag

The PATCH tag is used to display the patch �les contained in the source package �le.

Array: Yes (Size: One entry per patch)

Used with modi�ers: N/A

The URL Tag

The URL tag is used to display the Uniform Resource Locator that points to additional
information on the packaged software.

Array: No

Used with modi�ers: N/A

The OS Tag

The OS tag is used to display the operating system for which the package was built.

Array: No

D.1 List of - -queryformat Tags 389

Used with modi�ers: N/A

The ARCH Tag

The ARCH tag is used to display the architecture for which the package was built.

Array: No

Used with modi�ers: N/A

The PREIN Tag

The PREIN tag is used to display the package's pre-install script.

Array: No

Used with modi�ers: N/A

The POSTIN Tag

The POSTIN tag is used to display the package's post-install script.

Array: No

Used with modi�ers: N/A

The PREUN Tag

The PREUN tag is used to display the package's pre-uninstall script.

Array: No

Used with modi�ers: N/A

The POSTUN Tag

The POSTUN tag is used to display the package's post-uninstall script.

Array: No

Used with modi�ers: N/A

The FILENAMES Tag

The FILENAMES tag is used to display the names of the �les that comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

390 Available Tags For - -queryformat

The FILESIZES Tag

The FILESIZES tag is used to display the size, in bytes, of each of the �les that comprise
the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The FILESTATES Tag

The FILESTATES tag is used to display the state of each of the �les that comprise the
package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A1

The FILEMODES Tag

The FILEMODES tag is used to display the permissions of each of the �les that comprise the
package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: :perms

The FILEUIDS Tag

The FILEUIDS tag is used to display the user ID, in numeric form, of each of the �les that
comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The FILEGIDS Tag

The FILEGIDS tag is used to display the group ID, in numeric form, of each of the �les that
comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

1Since there is no modi�er to display the �le states in human-readable form, it will be necessary to
manually interpret the ag values, based on the RPMFILE STATE xxx #defines contained in rpmlib.h. This
�le is part of the rpm-devel package and is also present in the RPM source package.

D.1 List of - -queryformat Tags 391

The FILERDEVS Tag

The FILERDEVS tag is used to display the major and minor numbers for each of the �les
that comprise the package. It will only be non-zero for device special �les.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The FILEMTIMES Tag

The FILEMTIMES tag is used to display the modi�cation time and date for each of the �les
that comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: :date

The FILEMD5S Tag

The FILEMD5S tag is used to display the MD5 checksum for each of the �les that comprise
the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The FILELINKTOS Tag

The FILELINKTOS tag is used to display the link string for symlinks.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The FILEFLAGS Tag

The FILEFLAGS tag is used to indicate whether the �les that comprise the package have
been agged as being documentation or con�guration.

Array: Yes (Size: One entry per �le)

Used with modi�ers: :fflags

The ROOT Tag

The ROOT tag is not available for use with - -queryformat.

392 Available Tags For - -queryformat

The FILEUSERNAME Tag

The FILEUSERNAME tag is used to display the owner, in alphanumeric form, of each of the
�les that comprise the package.

Array: No

Used with modi�ers: N/A

The FILEGROUPNAME Tag

The FILEGROUPNAME tag is used to display the group, in alphanumeric form, of each of the
�les that comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A

The EXCLUDE Tag

The EXCLUDE tag is deprecated and should no longer be used.

The EXCLUSIVE Tag

The EXCLUSIVE tag is deprecated and should no longer be used.

The ICON Tag

The ICON tag is not available for use with - -queryformat.

The SOURCERPM Tag

The SOURCERPM tag is used to display the name of the source package from which this binary
package was built.

Array: No

Used with modi�ers: N/A

The FILEVERIFYFLAGS Tag

The FILEVERIFYFLAGS tag is used to display the numeric value of the �le veri�cation ags
for each of the �les that comprise the package.

Array: Yes (Size: One entry per �le)

Used with modi�ers: N/A2

2Since there is no modi�er to display the veri�cation ags in human-readable form, it will be necessary
to manually interpret the ag values, based on the RPMVERIFY xxx #defines contained in rpmlib.h. This

D.1 List of - -queryformat Tags 393

The ARCHIVESIZE Tag

The ARCHIVESIZE tag is used to display the size, in bytes, of the archive portion of the
original package �le.

Array: No

Used with modi�ers: N/A

The PROVIDES Tag

The PROVIDES tag is used to display the capabilities the package provides.

Array: Yes (Size: One entry per provide)

Used with modi�ers: N/A

The REQUIREFLAGS Tag

The REQUIREFLAGS tag is used to display the requirement ags for each capability the
package requires.

Array: Yes (Size: One entry per require)

Used with modi�ers: :depflags

The REQUIRENAME Tag

The REQUIRENAME tag is used to display the capabilities the package requires.

Array: Yes (Size: One entry per require)

Used with modi�ers: N/A

The REQUIREVERSION Tag

The REQUIREVERSION tag is used to display the version-related aspect of each capbility the
package requires.

Array: Yes (Size: One entry per require)

Used with modi�ers: N/A

The NOSOURCE Tag

The NOSOURCE tag is used to display the source archives that are not contained in the source
package �le.

Array: Yes (Size: One entry per nosource)

Used with modi�ers: N/A

�le is part of the rpm-devel package and is also present in the RPM source package.

394 Available Tags For - -queryformat

The NOPATCH Tag

The NOPATCH tag is used to display the patch �les that are not contained in the source
package �le.

Array: Yes (Size: One entry per nopatch)

Used with modi�ers: N/A

The CONFLICTFLAGS Tag

The CONFLICTFLAGS tag is used to display the conict ags for each capability the package
conicts with.

Array: Yes (Size: One entry per conict)

Used with modi�ers: :depflags

The CONFLICTNAME Tag

The CONFLICTNAME tag is used to display the capabilities that the package conicts with.

Array: Yes (Size: One entry per conict)

Used with modi�ers: N/A

The CONFLICTVERSION Tag

The CONFLICTVERSION tag is used to display the version-related aspect of each capability
the package conicts with.

Array: Yes (Size: One entry per conict)

Used with modi�ers: N/A

The DEFAULTPREFIX Tag

The DEFAULTPREFIX tag is used to display the path that will, by default, be used to install
a relocatable package.

Array: No

Used with modi�ers: N/A

The BUILDROOT Tag

The BUILDROOT tag is not available for use with - -queryformat.

D.1 List of - -queryformat Tags 395

The INSTALLPREFIX Tag

The INSTALLPREFIX tag is used to display the actual path used when a relocatable package
was installed.

Array: No

Used with modi�ers: N/A

The EXCLUDEARCH Tag

The EXCLUDEARCH tag is used to display the architectures that should not install this package.

Array: Yes (Size: One entry per excludearch)

Used with modi�ers: N/A

The EXCLUDEOS Tag

The EXCLUDEOS tag is used to display the operating systems that should not install this
package.

Array: Yes (Size: One entry per excludeos)

Used with modi�ers: N/A

The EXCLUSIVEARCH Tag

The EXCLUSIVEARCH tag is used to display the architectures that are the only ones that
should install this package.

Array: Yes (Size: One entry per exclusivearch)

Used with modi�ers: N/A

The EXCLUSIVEOS Tag

The EXCLUSIVEOS tag is used to display the operating systems that are the only one that
should install this package.

Array: Yes (Size: One entry per exclusiveos)

Used with modi�ers: N/A

The AUTOREQPROV Tag

The AUTOREQPROV tag is not available for use with - -queryformat.

396 Available Tags For - -queryformat

The RPMVERSION Tag

The RPMVERSION tag is used to display the version of RPM that was used to build the
package.

Array: No

Used with modi�ers: N/A

The TRIGGERSCRIPTS Tag

The TRIGGERSCRIPTS tag is reserved for a future version of RPM.

The TRIGGERNAME Tag

The TRIGGERNAME tag is reserved for a future version of RPM.

The TRIGGERVERSION Tag

The TRIGGERVERSION tag is reserved for a future version of RPM.

The TRIGGERFLAGS Tag

The TRIGGERFLAGS tag is reserved for a future version of RPM.

The TRIGGERINDEX Tag

The TRIGGERINDEX tag is reserved for a future version of RPM.

The VERIFYSCRIPT Tag

The VERIFYSCRIPT tag is used to display the script to be used for package veri�cation.

Array: No

Used with modi�ers: N/A

Appendix E

Concise Spec File Reference

E.1 Comments

Comments are a way to make RPM ignore a line in the spec �le. To create a comment,
enter an octothorp (#) at the start of the line. Any text following the comment character
will be ignored by RPM:

This is the spec file for playmidi 2.3...

Comments can be placed in any section of the spec �le.

See also: Section 13.1, page 165

E.2 The Preamble

E.2.1 Package Naming Tags

The name Tag

The name tag is used to de�ne the name of the software being packaged.

Name: cdplayer

See also: Section 13.2.1, page 167

The version Tag

The version tag de�nes the version of the software being packaged.

Version: 1.2

See also: Section 13.2.1, page 167

398 Concise Spec File Reference

The release Tag

The release tag can be thought of as the package's version.

Release: 5

See also: Section 13.2.1, page 167

E.2.2 Descriptive Tags

The %description Tag

The %description tag is used to de�ne an in-depth description of the packaged software.
In the descriptive text, a space in the �rst column indicates that that line of text should
be presented to user as-is, with no formatting done by RPM. Blank lines in the descriptive
text denote paragraphs.

%description

It slices!

It dices!

It's a CD player app that can't be beat.

By using the resonant frequency of the CD itself, it is able to simulate

20X oversampling. This leads to sound quality that cannot be equaled with

more mundane software...

The %description tag can be made speci�c to a particular subpackage by adding the
subpackage name, and optionally, the -n option:

%description bar

%description -n bar

The subpackage name and usage of the -n option must match those de�ned with the
%package directive.

See also: Section 13.2.2, page 168

The summary Tag

The summary tag is used to de�ne a one-line description of the packaged software.

Summary: A CD player app that rocks!

See also: Section 13.2.2, page 169

The copyright Tag

The copyright tag is used to de�ne the copyright terms applicable to the software being
packaged.

E.2 The Preamble 399

Copyright: GPL

See also: Section 13.2.2, page 169

The distribution Tag

The distribution tag is used to de�ne a group of packages, of which this package is a part.

Distribution: Doors '95

See also: Section 13.2.2, page 169

The icon Tag

The icon tag is used to name a �le containing an icon representing the packaged software.
The �le may be in either GIF or XPM format, although XPM is preferred. In either case,
the background of the icon should be transparent.

Icon: foo.xpm

See also: Section 13.2.2, page 169

The vendor Tag

The vendor tag is used to de�ne the name of the entity that is responsible for packaging
the software.

Vendor: White Socks Software, Inc.

See also: Section 13.2.2, page 170

The url Tag

The url tag is used to de�ne a Uniform Resource Locator that can be used to obtain
additional information about the packaged software.

URL: http://www.gnomovision.com/cdplayer.html

See also: Section 13.2.2, page 170

The group Tag

The group tag is used to group packages together by the types of functionality they provide.

Group: Applications/Editors

See also: Section 13.2.2, page 170

400 Concise Spec File Reference

The packager Tag

The packager tag is used to hold the name and contact information for the person or
persons who built the package.

Packager: Fred Foonly <fred@gnomovision.com>

See also: Section 13.2.2, page 171

E.2.3 Dependency Tags

The provides Tag

The provides tag is used to specify a \virtual package" that the packaged software makes
available when it is installed.

Provides: module-info

See also: Section 13.2.3, page 171

The requires Tag

The requires tag is used to alert RPM to the fact that the package needs to have certain
capabilities available in order to operate properly.

Requires: playmidi

A version may be speci�ed, following the package speci�cation. The following comparison
operators may be placed between the package and version:

<, >, =, >=, or <=

Requires: playmidi >= 2.3

If the Requires tag needs to perform a comparison against a serial numbered de�ned with
the serial tag, then the proper format would be:

Requires: playmidi =S 4

See also: Section 13.2.3, page 171

The serial Tag

The serial tag is used to de�ne a serial number for a package. This is only necessary if
RPM is unable to determine the ordering of a package's version numbers.

Serial: 4

See also: Section 13.2.3, page 172

E.2 The Preamble 401

The conflicts Tag

The conflicts tag is used to alert RPM to the fact that the package is not compatible
with other packages.

Conflicts: playmidi

A version may be speci�ed, following the package speci�cation. The following comparison
operators may be placed between the package and version:

<, >, =, >=, or <=

Conflicts: playmidi >= 2.3

If the conflicts tag needs to perform a comparison against a serial numbered de�ned with
the serial tag, then the proper format would be:

Conflicts: playmidi =S 4

See also: Section 13.2.3, page 172

The autoreqprov Tag

The autoreqprov tag is used to control the automatic dependency processing performed
when the package is being built. To disable automatic dependency processing, add the
following line:

AutoReqProv: no

(The number 0 may be used instead of no) Although RPM defaults to performing automatic
dependency processing, the e�ect of the autoreqprov tag can be reversed by changing no

to yes. (The number 1 may be used instead of yes)

See also: Section 13.2.3, page 173

E.2.4 Architecture- and Operating System-Speci�c Tags

The excludearch Tag

The excludearch tag is used to direct RPM to ensure that the package does not attempt
to build on the excluded architecture(s).

ExcludeArch: sparc alpha

See also: Section 13.2.4, page 174

The exclusivearch Tag

The exclusivearch tag is used to direct RPM to ensure the package is only built on the
speci�ed architecture(s).

ExclusiveArch: sparc alpha

402 Concise Spec File Reference

See also: Section 13.2.4, page 175

The excludeos Tag

The excludeos tag is used to direct RPM to ensure that the package does not attempt to
build on the excluded operating system(s).

ExcludeOS: linux irix

See also: Section 13.2.4, page 175

The exclusiveos Tag

The exclusiveos tag is used to denote which operating system(s) should only be be per-
mitted to build the package.

ExclusiveOS: linux

See also: Section 13.2.4, page 175

E.2.5 Directory-related Tags

The prefix Tag

The prefix tag is used to de�ne part of the path RPM will use when installing the package's
�les. The pre�x can be rede�ned by the user when the package is installed, thereby changing
where the package is installed.

Prefix: /opt

See also: Section 13.2.5, page 176

The buildroot Tag

The buildroot tag is used to de�ne an alternate build root, where the software will be
installed during the build process.

BuildRoot: /tmp/cdplayer

See also: Section 13.2.5, page 176

E.2.6 Source and Patch Tags

The source Tag

The source tag is used to de�ne the �lename of the sources to be packaged. When there
is more than one source tag in a spec �le, each one must be numbered so they are unique,
starting with the number 0. When there is only one tag, it does not need to be numbered.

E.3 Scripts 403

By convention, the source �lename is usually preceded by a URL pointing to the location
of the original sources, but RPM does not require this.

Source0: ftp://ftp.gnomovision.com/pub/cdplayer-1.0.tgz

Source1: foo.tgz

See also: Section 13.2.6, page 177

The nosource Tag

The nosource tag is used to alert RPM to the fact that one or more source �les should be
excluded from the source package �le. The tag is followed by one or more numbers. The
numbers correspond to the numbers following the source tags that are to be excluded from
packaging.

NoSource: 0, 3

See also: Section 13.2.6, page 177

The patch Tag

The patch tag is used to de�ne the name of a patch �le to be applied to the package's
sources. When there is more than one patch tag in a spec �le, each one must be numbered
so they are unique, starting with the number 0. When there is only one tag, it does not
need to be numbered.

Patch: cdp-0.33-fsstnd.patch

See also: Section 13.2.6, page 178

The nopatch Tag

The nopatch tag is used to alert RPM to the fact that one or more patch �les should be
excluded from the source package �le. The tag is followed by one or more numbers. The
numbers correspond to the numbers following the patch tags that are to be excluded from
packaging.

NoPatch: 2 3

See also: Section 13.2.6, page 179

E.3 Scripts

E.3.1 Build-time Scripts

Every build-time script has the following environment variables de�ned:

� RPM SOURCE DIR

404 Concise Spec File Reference

� RPM BUILD DIR

� RPM DOC DIR

� RPM OPT FLAGS

� RPM ARCH

� RPM OS

� RPM ROOT DIR

� RPM BUILD ROOT

� RPM PACKAGE NAME

� RPM PACKAGE VERSION

� RPM PACKAGE RELEASE

For more information on these environment variables, and build-time scripts in general,
please see section 13.3.1 on page 180.

The %prep Script

The %prep script is the �rst script RPM executes during a build. As the name implies, it is
normally used to prepare the sources for building. The commands in the script can be any
valid sh commands.

%prep

See also: Section 13.3.1, page 182

The %build Script

The %build script is the second script RPM executes during a build. As the name implies,
it is normally used to build the software. The commands in the script can be any valid sh

commands.

%build

See also: Section 13.3.1, page 182

The %install Script

The %install script is the third script RPM executes during a build. As the name implies,
it is normally used to install the software. The commands in the script can be any valid sh

commands.

%install

See also: Section 13.3.1, page 183

E.3 Scripts 405

The %clean Script

The %clean script, as the name implies, is used to clean up the software's build directory
tree. RPM will normally do this for you, but in certain cases (most notably in those packages
that use a build root) you'll need to include a %clean script. The commands in the script
can be any valid sh commands.

%clean

See also: Section 13.3.1, page 183

E.3.2 Install-/Erase-time Scripts

These scripts are executed whenever the package is installed or erased. Each script can
consist of any valid sh commands.

Note: Each of the following scripts can be made speci�c to a particular subpackage by
adding the subpackage name, and optionally, the -n option:

%post bar

%preun -n bar

The subpackage name and usage of the -n option must match those de�ned with the
%package directive.

Each script has the following environment variable de�ned:

� RPM INSTALL PREFIX

For more information on this environment variable please see section 183 on page 183.

The %pre Script

The %pre script executes just before the package is to be installed.

%pre

See also: Section 13.3.2, page 185

The %post Script

The %post script executes just after the package is to be installed.

%post

See also: Section 13.3.2, page 185

The %preun Script

The %preun script executes just before the package is to be erased.

406 Concise Spec File Reference

%preun

See also: Section 13.3.2, page 185

The %postun Script

The %postun script executes just after the package is to be erased.

%postun

See also: Section 13.3.2, page 185

E.3.3 Veri�cation Script

The %verifyscript Script

The %verifyscript script executes whenever the package is veri�ed using RPM's -V option.
The script can consist of any valid sh commands.

See also: Section 13.3.3, page 185

E.4 Macros

E.4.1 The %setup Macro

The %setup macro is used to unpack the original sources in preparation for the build. It is
used in the %prep script:

%prep

%setup

See also: Section 13.4.1, page 186

The -n <name> Option

The -n option is used to set the name of the software's build directory. This is necessary only
when the source archive unpacks into a directory named other than <name>-<version>.

%setup -n cd-player

See also: Section 13.4.1, page 187

The -c Option

The -c option is used to direct %setup to create the top-level build directory before un-
packing the sources.

%setup -c

E.4 Macros 407

See also: Section 13.4.1, page 188

The -D Option

The -D option is used to direct %setup to not delete the build directory prior to unpacking
the sources. This option is used when more than one source archive is to be unpacked into
the build directory, normally with the -b or -a options.

%setup -D -T -b 3

See also: Section 13.4.1, page 189

The -T Option

The -T option is used to direct %setup to not perform the default unpacking of the source
archive speci�ed by the �rst source tag. It is used with the -a or -b options.

%setup -D -T -a 1

See also: Section 13.4.1, page 189

The -b <n> Option

The -b option is used to direct %setup to unpack the source archive speci�ed on the nth
source tag line before changing directory into the build directory.

%setup -D -T -b 2

See also: Section 13.4.1, page 189

The -a <n> Option

The -a option is used to direct %setup to unpack the source archive speci�ed on the nth
source tag line after changing directory into the build directory.

%setup -D -T -a 5

See also: Section 13.4.1, page 190

E.4.2 The %patch Macro

The %patch macro, as its name implies, is used to apply patches to the unpacked sources.
With no additional options speci�ed, it will apply the patch �le speci�ed by the patch (or
patch0) tag.

%patch

When there is more than one patch tag line in a spec �le, they can be speci�ed by appending
the number of the patch tag to the %patch macro name itself.

408 Concise Spec File Reference

%patch2

See also: Section 13.4.2, page 195

The -P <n> Option

The -P option is another method of applying a speci�c patch. The number from the patch
tag follows the -P option. The following %patch macros both apply the patch speci�ed on
the patch2 tag line:

%patch -P 2

%patch2

See also: Section 13.4.2, page 196

The -p<#> Option

The -p option is sent directly to the patch command. It is followed by a number which
speci�es the number of leading slashes (and the directories in between) to strip from any
�lenames present in the patch �le.

%patch -p2

See also: Section 13.4.2, page 196

The -b <name> Option

When the patch command is used to apply a patch, unmodi�ed copies of the �les patched
are renamed to end with the extension .orig. The -b option is used to change the extension
used by patch.

%patch -b .fsstnd

See also: Section 13.4.2, page 196

The %patch -E Option

The -E option is sent directly to the patch command. It is used to direct patch to remove
any empty �les after the patches have been applied.

See also: Section 13.4.2, page 196

E.5 The %files List

The %files list indicates which �les on the build system are to be packaged. The list
consists of one �le per line. If a directory is speci�ed, by default all �les and subdirectories
will be packaged.

%files

E.6 Directives For the %files list 409

/etc/foo.conf

/sbin/foo

/usr/bin/foocmd

The %files list can be made speci�c to a particular subpackage by adding the subpackage
name, and optionally, the -n option:

%files bar

%files -n bar

The subpackage name and usage of the -n option must match those de�ned with the
%package directive.

The %files list can also use the contents of a �le as the list of �les to be packaged. This is
done by using the -f option, which is then followed by a �lename:

%files -f files.list

See also: Section 13.5, page 198

E.6 Directives For the %files list

E.6.1 File-related Directives

The %doc Directive

The %doc directive ags the �lename(s) that follow as being documentation.

%doc README

See also: Section 13.6.1, page 199

The %config Directive

The %config directive is used to ag the speci�ed �le as being a con�guration �le.

%config /etc/fstab

See also: Section 13.6.1, page 199

The %attr Directive

The %attr directive is used to permit RPM to directly control a �le's permissions and
ownership. It is normally used when non-root users build packages. The %attr directive
has the following format:

%attr(<mode>, <user>, <group>) file

The user and group identi�ers must be non-numeric. Attributes that do not need to be set
by %attr may be replaced with a dash:

%attr(755, root, -) foo.bar

410 Concise Spec File Reference

See also: Section 13.6.1, page 200

The %verify Directive

The %verify directive is used to control which of nine di�erent �le attributes are to be
veri�ed by RPM. The attributes are:

1. owner | The �le's owner.

2. group | The �le's group.

3. mode | The �le's mode.

4. md5 | The �le's MD5 checksum.

5. size | The �le's size.

6. maj | The �le's major number.

7. min | The �le's minor number.

8. symlink | The �le's symbolic link string.

9. mtime | The �le's modi�cation time.

If the keyword not precedes the list, every attribute except those listed will be veri�ed.

%verify(mode md5 size maj min symlink mtime) /dev/ttyS0

See also: Section 13.6.1, page 200

E.6.2 Directory-related Directives

The %docdir Directive

The %docdir directive is used to add the speci�ed directory to RPM's internal list of direc-
tories containing documentation. When a directory is added to this list, every �le packaged
in this directory (and any subdirectories) will automatically be marked as documentation.

See also: Section 13.6.2, page 201

The %dir Directive

The %dir directive is used to direct RPM to package only the directory itself, regardless of
what �les may reside in the directory at the time the package is created.

%dir /usr/blather

See also: Section 13.6.2, page 203

E.7 The %package Directive 411

E.7 The %package Directive

The %package directive is used to control the creation of subpackages. The subpackage
name is derived from the �rst name tag in the spec �le, followed by the name speci�ed after
the %package directive. Therefore, if the �rst name tag is:

Name: foo

and a subpackage is de�ned with the following %package directive:

%package bar

the subpackage name will be foo-bar.

See also: Section 13.7, page 204

E.7.1 The %package -n Option

The -n option is used to change how RPM derives the subpackage name. When the -n option
is used, the name following the %package directive becomes the complete subpackage name.
Therefore, if a subpackage is de�ned with the following %package directive:

%package -n bar

the subpackage name will be bar.

See also: Section 13.7.1, page 205

E.8 Conditionals

The %ifxxx conditionals are used to begin a section of the spec �le that is speci�c to a
particular architecture or operating system. They are followed by one or more architecture
or operating system speci�ers, each separated by commas or whitespace.

Conditionals may be nested within other conditionals, provided that the inner conditional
is completely enclosed by the outer conditional.

The %ifarch Conditional

If the build system's architecture is speci�ed, the part of the spec �le following the %ifarch,
but before a %else or %endif will be used during the build.

%ifarch i386 sparc

See also: Section 13.8, page 206

The %ifnarch Conditional

If the build system's architecture is speci�ed, the part of the spec �le following the %ifarch
but before a %else or %endif will not be used during the build.

412 Concise Spec File Reference

%ifnarch i386 sparc

See also: Section 13.8, page 207

The %ifos Conditional

If the build system is running one of the speci�ed operating systems, the part of the spec
�le following the %ifos but before a %else or %endif will be used during the build.

%ifos linux

See also: Section 13.8, page 207

The %ifnos Conditional

If the build system is running one of the speci�ed operating systems, the part of the spec
�le following the %ifnos but before a %else or %endif will not be used during the build.

%ifnos linux

See also: Section 13.8, page 207

The %else Conditional

The %else conditional is placed between a %if conditional of some persuasion, and an
%endif. It is used to create two blocks of spec �le statements, only one of which will be
used in any given case.

%ifarch alpha

make RPM_OPT_FLAGS="$RPM_OPT_FLAGS -I ."

%else

make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"

%endif

See also: Section 13.8, page 207

The %endif Conditional

An %endif is used to end a conditional block of spec �le statements. The %endif is always
needed after a conditional, otherwise, the build will fail.

%ifarch i386

make INTELFLAG=-DINTEL

%endif

See also: Section 13.8, page 208

Appendix F

RPM-related Resources

There are a number of resources available to help you with RPM, over and above the RPM
man page, and this book. Here are some pointers to them.

F.1 Where to Get RPM

Perhaps before asking, Where can I get RPM? it might be better to see if RPM is already
installed on your system. If you have Red Hat Linux on your system, it's there already. But
be sure to check on other systems { people are porting RPM to di�erent systems every day,
and it just might be there waiting for you.

Here's a quick way to see if RPM is installed on your system:

% rpm - -version

RPM version 2.3

%

If this command doesn't work, it might be that your path doesn't include the directory
where RPM resides. Check the usual \binary" directories before declaring RPM a no-show!

F.1.1 FTP Sites

If you can't �nd RPM on your system, you'll have to grab a copy by FTP. RPM can
be found practically anywhere Red Hat Linux is available. While the most obvious site,
ftp.redhat.com, is certainly an option, it might not be your best choice. For one, it can
be very busy. For another, unless your link to the Internet is near Red Hat's sprawling
development campus in Durham, North Carolina, there's probably an FTP site that is
closer to you.

Here is a list of sites that mirror Red Hat Software's main FTP site. Be aware that this list

414 RPM-related Resources

changes frequently, so don't be surprised if a particular site no longer mirrors Red Hat, or
has moved it from the paths listed below:1

FTP Site Directory

======== =========

sunsite.doc.ic.ac.uk /packages/linux/redhat

ftp.mpi-sb.mpg.de /pub/linux/mirror/ftp.redhat.com

ftp.jate.u-szeged.hu /pub/linux/redhat

ftp.ibp.fr /pub/linux/distributions/redhat

ftp.gwdg.de /pub/linux/install/redhat

ftp.msu.ru /pub/Linux/RedHat

ftp.sgg.ru /mirror/redhat

sunsite.mff.cuni.cz /OS/Linux/Distributions/Redhat

ftp.ton.tut.fi /pub/Linux/RedHat

ftp.funet.fi /pub/Linux/images/RedHat

sunsite.icm.edu.pl /pub/Linux/redhat

ftp.arch.pwr.proc.pl /mirror/linux/redhat

ftp.rhi.hi.is /pub/linux/RedHat

ftp.nvg.unit.no /pub/linux/redhat

ftp.pk.edu.pl /pub/linux/redhat

ftp.nluug.nl /pub/os/Linux/distr/RedHat

dutepp0.et.tudelft.nl /pub/Unix/Linux/Distributions/redhat

ftp.iol.ie /pub/Unix/Linux/distributions/RedHat

sunsite.auc.dk /pub/os/linux/redhat

ftp.tku.edu.tw /Unix/Linux/RedHat

ftp.cs.us.es /pub/Linux/redhat

ftp.is.co.za /linux/distributions/redhat

ftp.dstc.edu.au /pub/linux-redhat

ftp.lab.kdd.co.jp /OS/Linux/packages/redhat

sunsite.ust.hk /pub/Linux/distributions/redhat

ftp.sunsite.dcc.uchile.cl /pub/OS/linux/redhat

ftp.interpath.net /pub/linux/redhat

schlitz.cae.wisc.edu /pub/Linux/RedHat

ftp.wownet.net /LINUX/redhat

ftp.engr.uark.edu /pub/linux/redhat

ftp.infomagic.com /pub/mirrors/linux/RedHat

ftp.wgs.com /pub/linux/redhat

ftp.drcdrom.com /pub/linux-redhat

ftp.hkstar.com /pub/Linux/redhat

1An up-to-date copy of the list of mirror sites is always available on ftp.redhat.com, in the �le MIRRORS.

F.1 Where to Get RPM 415

ftp.pht.com /pub/linux/redhat

linux.ucs.indiana.edu /pub/linux/redhat

ftp.uoknor.edu /linux/redhat

ftp.cc.gatech.edu /pub/linux/distributions/redhat

uiarchive.cso.uiuc.edu /pub/systems/linux/distributions/redhat

ftp.caldera.com /pub/mirrors/redhat

ftp.cms.uncwil.edu /linux/redhat

ftp.wilmington.net /linux/redhat

sunsite.unc.edu /pub/Linux/distributions/redhat

gatekeeper.dec.com /pub/linux/redhat

ftp.rge.com /pub/systems/linux/redhat

linuxwww.db.erau.edu /pub/linux/distrib/redhat

ftp.eit.com /pub/mirrors/redhat

ftp.real-time.com /pub/redhat

F.1.2 What Do I Need?

Once you �nd a nearby site with RPM, and have found the directory where it's kept, you'll
notice a variety of �les, all starting with \rpm". What are they? Which ones do you need?
Here's a representative list, along with the ways in which each �le would be used:

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.

total 2689

drwxr-xr-x 6 root 97 2048 Jul 18 10:04 .

drwxr-xr-x 6 root 97 1024 Aug 2 10:09 ..

lrwxrwxrwx 1 root root 23 Jan 22 1996 RPM-HOWTO.ps ->

../../docs/RPM-HOWTO.ps

lrwxrwxrwx 1 root root 24 Jan 22 1996 RPM-HOWTO.txt ->

../../docs/RPM-HOWTO.txt

-rw-rw-r-- 1 root 97 59239 Jan 20 1996 paper.ps.gz

-rw-r--r-- 1 root 97 365319 Jul 18 06:05 rpm-2.2.2-1.axp.rpm

-rw-rw-r-- 1 root 97 278620 Jul 18 06:05 rpm-2.2.2-1.i386.cpio.gz

-rw-r--r-- 1 root 97 282015 Jul 18 06:05 rpm-2.2.2-1.i386.rpm

-rw-r--r-- 1 root 97 279855 Jul 18 06:05 rpm-2.2.2-1.sparc.rpm

-rw-r--r-- 1 root 97 359354 Jul 18 06:05 rpm-2.2.2-1.src.rpm

-rw-rw-r-- 1 root 97 356943 Jul 18 06:05 rpm-2.2.2.tar.gz

-rw-r--r-- 1 root 97 122157 Jul 18 06:05 rpm-devel-2.2.2-1.axp.rpm

-rw-r--r-- 1 root 97 51132 Jul 18 06:05 rpm-devel-2.2.2-1.i386.rpm

-rw-r--r-- 1 root 97 54470 Jul 18 06:05 rpm-devel-2.2.2-1.sparc.rpm

-rw-r--r-- 1 root 97 35504 May 1 04:28 rpmbuild.ps.gz

226 Transfer complete.

ftp>

416 RPM-related Resources

Although the version numbers may change, the types of �les kept in this directory will not.
The �les RPM-HOWTO, paper.ps.gz, and rpmbuild.ps.gz contain a variety of information
concerning RPM. As such they are valuable sources of supplemental information. The
remaining �les contain RPM, packaged for various architectures, and in source form. We'll
look at them, grouped according to their contents. Here's the �rst group of �les:

-rw-r--r-- 1 root 97 365319 Jul 18 06:05 rpm-2.2.2-1.axp.rpm

-rw-r--r-- 1 root 97 282015 Jul 18 06:05 rpm-2.2.2-1.i386.rpm

-rw-r--r-- 1 root 97 279855 Jul 18 06:05 rpm-2.2.2-1.sparc.rpm

The �les above are the binary package �les for RPM version 2.2.2, release 1, on the Digital
Alpha, the Intel 386/486/Pentium, and the Sun SPARC. Note that the version number will
change in time, but the other parts of the �le naming convention won't. As binary package
�les, they must be installed using RPM. So if you don't have RPM yet, they won't do you
much good.2 Let's look at the next �le:

-rw-r--r-- 1 root 97 359354 Jul 18 06:05 rpm-2.2.2-1.src.rpm

This is the source package �le for RPM version 2.2.2, release 1. Like the binary packages,
the source package requires RPM to install { therefore, it cannot be used to perform an
initial install of RPM. Let's see what else there is here:

-rw-r--r-- 1 root 97 122157 Jul 18 06:05 rpm-devel-2.2.2-1.axp.rpm

-rw-r--r-- 1 root 97 51132 Jul 18 06:05 rpm-devel-2.2.2-1.i386.rpm

-rw-r--r-- 1 root 97 54470 Jul 18 06:05 rpm-devel-2.2.2-1.sparc.rpm

The �les above are binary package �les that contain the rpm-devel subpackage. The
rpm-devel package contains header �les and the RPM library, and is used for develop-
ing programs that can perform RPM-related functions. These �les cannot be used to get
RPM running. That leaves two �les left:

-rw-rw-r-- 1 root 97 278620 Jul 18 06:05 rpm-2.2.2-1.i386.cpio.gz

-rw-rw-r-- 1 root 97 356943 Jul 18 06:05 rpm-2.2.2.tar.gz

The �rst �le is a gzipped cpio archive of the �les comprising RPM. After uncompressing the
�le, cpio can be used to extract the �les and place them on your system. Note, however,
that there is a cpio archive for the i386 architecture only. To extract the �les, issue the
following command:

zcat file.cpio.gz | (cd / ; cpio --extract)

2If your goal is to install RPM on one of these systems, it might be a good idea to copy the appropriate
binary package. That way, once you have RPM running, you can reinstall it with the - -force option to
ensure that RPM is properly installed and con�gured.

F.2 Where to Talk About RPM 417

(When actually issuing the command, file.cpio.gz should be replaced with the actual
name of the cpio archive.)

Note that the archive should be extracted using GNU cpio version 2.4.1 or greater. It may
also be necessary to issue the following command prior to using RPM:

mkdir /var/lib/rpm

The last �le, rpm-2.2.2.tar.gz, contains the sources for RPM. Using it, you can build
RPM from scratch. This is the most involved option, but it is the only choice for people
interested in porting RPM to a new architecture. See chapter 8 on page 101 for an example
of RPM being built from the sources.

F.2 Where to Talk About RPM

As much as we've tried to make this book a comprehensive reference for RPM, there are
going to be times when you'll need additional help. The best way to connect with other
that use RPM is to try one of the following mailing lists.

F.2.1 The rpm-list Mailing List

Red Hat Software, Inc. maintains a mailing list speci�cally for RPM. In order to subscribe
to the list, it's necessary to send a mail message to:

rpm-list-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should
receive an automated response with general information about the mailing list.

To send messages to the list, address them to:

rpm-list@redhat.com

As with other on-line forums, it's advisable to \lurk" for a while before sending anything to
the list. That way, you'll be able to see what types of questions are acceptable for the list.
Let the list's name be your guide; if the message you want to send doesn't have anything to
do with RPM, you shouldn't send it to rpm-list!

In general, the avor of rpm-list is a bit biased towards RPM's development, building
packages, and issues surrounding the porting of RPM to other systems. If your question is
more along the lines of, How do I use RPM to install new software? consider reviewing the
�rst half of this book and lurking on rpm-list a while �rst.

418 RPM-related Resources

F.2.2 The redhat-list Mailing List

The redhat-list mailing list is meant to serve as a forum for users of Red Hat Software's
Linux operating system. If your questions concerns the use of RPM on Red Hat Linux, then
the redhat-list is a good place to start. To subscribe, send a message to:

redhat-list-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should
receive an automated response with general information about the mailing list. As with
rpm-list, it's best to lurk for a while before posting to the list

To send messages to the list, address them to:

redhat-list@redhat.com

F.2.3 The redhat-digest Mailing List

Some people might �nd the number of messages on redhat-listmore than they can handle.
However, there is a digest version of the list available. Each digest consists of one or more
messages sent to redhat-list. The digest is sent out when the collected messages reach a
certain size. Therefore, a digest might have one very long message, or twenty smaller ones.
In either case, you'll have the collected knowledge of the Red Hat Software development
team and their many customers delivered in one message.

To subscribe to redhat-digest, send a message to:

redhat-digest-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should
receive an automated response with general information about the mailing list.

To send messages to the list, address them to:

redhat-list@redhat.com

As always, observe proper \netiquette" { lurk before you leap!

F.3 RPM On the World Wide Web

Up-to-date information on RPM can always be found at Red Hat Software's web site:

http://www.redhat.com/

F.4 RPM's License 419

The site's content changes frequently, so it's impossible to specify an exact URL for RPM
information. However, the site is very well run, and always has a comprehensive table of
contents as well as a search engine. Either should make �nding information on RPM easy.

F.4 RPM's License

RPM is licensed under the GNU General Public License, or as it's more commonly called,
the GPL. If you're not familiar with the GPL, it would be worthwhile to spend a few minutes
looking it over. The purpose behind the GPL is to ensure that GPL'ed software remains
freely available.

\Freely available" doesn't necessarily mean \at no cost," although GPL'ed software is often
available by anonymous FTP. The idea behind the GPL is to make it impossible for anyone
to take GPL'ed code, and make it proprietary. But enough preliminaries! The best way to
understand the GPL is to read it:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright c 1989, 1991
Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

F.4.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software { to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,

420 RPM-related Resources

receive or can get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps:

1. copyright the software, and

2. o�er you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author's protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modi�ed by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
e�ect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

F.4.2 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The \Program", below, refers to any such program or work, and a
\work based on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modi�cations and/or translated into another language. (Hereinafter,
translation is included without limitation in the term \modi�cation".) Each licensee
is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option o�er warranty protection in exchange for a fee.

F.4 RPM's License 421

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modi�cations or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modi�ed �les to carry prominent notices stating that you
changed the �les and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

(c) If the modi�ed program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(b) Accompany it with a written o�er, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

422 RPM-related Resources

(c) Accompany it with the information you received as to the o�er to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
i�cations to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface de�nition �les, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from
a designated place, then o�ering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

F.4 RPM's License 423

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a
version number of this License which applies to it and \any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are di�erent, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHTHOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
\AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF

424 RPM-related Resources

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

F.4.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source �le to most e�ectively convey the exclusion of warranty; and each �le
should have at least the \copyright" line and a pointer to where the full notice is found.

<one line to give the program name and a brief idea of what it does.>

Copyright c 19yy <name of author>

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

F.4 RPM's License 425

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright c 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type

"show w". This is free software, and you are welcome to

redistribute it under certain conditions; type "show c" for

details.

The hypothetical commands \show w" and \show c" should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something other
than \show w" and \show c"; they could even be mouse-clicks or menu items { whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomo-
vision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

426 RPM-related Resources

Appendix G

An Introduction to PGP

Assuming you're not the curious type and haven't ipped your way back here, you are
probably here looking for some information on the program known as Pretty Good Privacy,
or PGP.

G.1 PGP - Privacy for Regular People

PGP, or \Pretty Good Privacy", is a program that is intended to help make electronic mail
more secure. It does this by using sophisticated techniques known as public key encryption.

If you �nd yourself wondering what electronic mail and making information unreadable by
spies has to do with RPM, you have a good point. However, although PGP's claim to fame
is the handling of e-mail in total privacy, it has some other tricks up its sleeve.

G.1.1 Keys your Locksmith Wouldn't Understand

As we mentioned above, PGP uses public key encryption to do some of its magic. You
might guess from the name that this type of encryption involves keys of some sort. But, as
you might imagine, these are not keys that you can copy down at the local hardware store.
They are numbers | really large numbers. Here's what a key might look like1:

- - - - -BEGIN PGP PUBLIC KEY BLOCK-- - - -

Version: 2.6.2

mQCNAzEpXjUAAAEEAKG4/V9oUSiDc9wIge6Bmg6erDGCLzmFyioAho8kDIJSrcmi

F9qTdPq+fj726pgW1iSb0Y7syZn9Y2lgQm5HkPODfNi8eWyTFSxbr8ygosLRClTP

xqHVhtInGrfZNLoSpv1LdWOme0yOpOQJnghdOMzKXpgf5g84vaUg6PHLopv5AAUR

tCpSZWQgSGF0IFNvZnR3YXJlLCBJbmMuIDxyZWRoYXRAcmVkaGF0LmNvbT6JAFUD

1When we say that keys are numbers, we aren't lying even though the example key doesn't look like a
number. It has been processed so that it can be concisely displayed using only printable characters.

428 An Introduction to PGP

BRAxc0xcKO2uixUx6ZEBAQOfAfsGwmueeH3WcjngsAoZyremvyV3Q8C1YmY1EZC9

SWkQxdRKe7n2PY/WiA82Mvc+op1XGTkmqByvxM9Ax/dXh+peiQCVAwUQMXL7xiIS

axFDcvLNAQH5PAP/TdAOyVcuDkXfOPjN/TIjqKRPRt7k6Fm/ameRvzSqB0fMVHEE

5iZKi55Ep1AkBJ3wX257hvduZ/9juKSJjQNuW/FxcHazPU+7yLZmf27xIq7E0ihW

8zz9JNFWSA9+8vlCMBYwdP1a+DzVdwjbJcnOu3/Z/aCY2lYi9U45PzmtU8iJAJUD

BRAxU9GUGXO+IyM0cSUBAbWfA/9+lVfqcpFYkJIV4HuV5niVv7LW4ywxW/SftqCM

lXDXdJdoDbrvLtVYIGWeGwJ6bES6CoQiQjiW7/WaC3BY9ZITQE4hWOPQADzOnZPQ

fdkIIxuIUAUnU/YarasqvxCs5v/TygfWUTPLPSP+MqGqJcDF2UHXCiNAHrItse9M

h7etkYkAdQMFEDEp61/Nq6IpInoskQEB538C+wSIaCNNDOGxlxS5E2tClXRwMYf0

ymuKXs/srvIUjOO7xuIH4K7qcSSdI4eUwuXy6w5tWWR3xZ/XiygcLtKMi2IZIq0j

wmFq7MEk+Xp8MN7Icawkqj1/1p0p4EwKKkIU64kAlQMFEDEp6pZEcVNogr/H7QEB

jp4D/iblfiCzVTA5QhGeWOj1rRxWzohMvnngn29IJgdnN3zuQXB1/lbVV3zYciRH

NyvpynfcTcgORHNpAIxXDaZ7sd48/v7hHLarcR5kxuY0T75XOTGOKTOlFvb4XmcY

HZR2wSWSBteKezB5uK47A6uhwtvPokV0Owk9xPmBV+LPXkW4

=pnqV

- - - - -END PGP PUBLIC KEY BLOCK-- - - -

PGP uses two di�erent types of keys: public and private. The public key, as its name
suggests, can be shared with anyone. The key shown above is, in fact, a public key. The
private key, as its name suggests, should be kept a secret. PGP creates keys in pairs | one
private and one public. A key pair must remain a pair; if one is lost, the other by itself is
useless. Why? Because the two keys have an interesting property that can be exploited in
two ways:

� A message encrypted by a given public key can only be decrypted with the correspond-
ing private key.

� A message encrypted by a given private key can only be decrypted with the corre-
sponding public key.

In the case of sending messages in total privacy, the key pairs are used in the �rst manner. It
allows two people to exchange private messages without �rst exchanging any \secret codes".
The only requirement is that each know the other's public key.

However, for RPM, the second method is the important one. Let's say a company needs
to send you a document, and you'd like to make sure it really did come from them. If the
company �rst encrypted the �le with their private key and sent it to you, you would have
an encrypted �le you couldn't read.

Or could you? If you have the company's public key, you should be able to decrypt it. In
fact, if you can't, you can be sure that the message you received did not come from them2!

It is this feature that is used by RPM. By using PGP's public key encryption, it is possible
to not only prove that a package �le came from a certain person or persons, but also that
it was not changed somewhere along the line.

2Or at least that it didn't make it to you unchanged.

G.1 PGP - Privacy for Regular People 429

G.1.2 Are RPM Packages Encrypted?

In a word, no. Rather than being encrypted, RPM package �les possess a digital signature.
This is a way of using encryption to attach a signature (again, basically a large number) to
some information, such that:

� The signature cannot be separated from the information. Any attempt to verify the
signature against any other information will fail.

� The signature can only be produced by one private key.

In the case of RPM, the information being signed is the contents of the .rpm �le itself.

A digital signature is just like a regular signature. It doesn't obscure the contents of the
document being signed, it just provides a method of determining the authenticity of a
document. Here is an example of a digital signature turned into printable text:

- - - - -BEGIN PGP SIGNATURE-- - - -

Version: 2.6.3a

Charset: noconv

iQCVAwUBMXVGMFIa2NdXHZJZAQFe4AQAz0FZrHdH8o+zkIvcI/4ABg4gfE7cG0xE

Z2J9GVWD2zi4tG+s1+IWEY6Ae17kx925JKrzF4Ti2upAwTN2Pnb/x0G8WJQVKQzP

mZcD+XNnAaYCqFz8iIuAFVLchYeWj1Pqxxq0weGCtjQIrpzrmGxV7xXzK0jus+6V

rML3TxQSwdA=

=T9Mc

- - - - -END PGP SIGNATURE-- - - -

G.1.3 Do All RPM Packages Have Digital Signatures?

Again, no. In a perfect world, every .rpm �le would be signed. However, RPM has no
formal requirement that this be the case. There is also no requirement that you do anything
special with a signed .rpm �le. Think of it as an extra feature that you can take advantage
of, or not | it's strictly your choice.

G.1.4 So Much to Cover, So Little Time

PGP has a wealth of features, 99% of which we will not cover in this book. For more
information on the basics of encryption, Applied Cryptography, by Bruce Schneier, contains
a wealth of information on the subject. For more details on PGP speci�cally, O'Reilly's
PGP: Pretty Good Privacy by Simson Gar�nkel is an excellent reference.

If you'd rather surf the 'Net, use your favorite World Wide Web index to hunt for \crypto"
or \PGP", and you'll be in business.

430 An Introduction to PGP

G.2 Installing PGP for RPM's Use

To use RPM's PGP-related capabilities, you'll need to have PGP installed on your system.
If it's installed already, you should be able to ip to the chapters on verifying package
signatures and signing packages and be in business in a matter of minutes. Otherwise, read
on for a thumbnail sketch of what's required to install PGP.

G.2.1 Obtaining PGP

The �rst step in being able to verify .rpm �les is to get a copy of PGP. Unfortunately, this
is not quite as simple as it might sound. The reason is that PGP is very controversial stu�.

Why the controversy? It centers on PGP's primary mission | to provide a means of
communicating with others in complete privacy. As we've discussed, PGP uses encryption
to provide this privacy. Good encryption. Very good encryption. Encryption so good, it
appears some of the world's governments consider PGP a threat to their national security.

Know Your Laws! Various countries have di�ering stances on the use of \strong encryp-
tion" products such as PGP. In some countries, possession of encryption software is strictly
forbidden. Other countries attempt to control the ow of encryption technology into (or out
of) their country. It is vital you know your country's laws, lest you �nd yourself in prison,
or possibly in front of a �ring squad!

Patent/Licensing Issues Surrounding PGP Over and above PGP's legal status, there
are other aspects to PGP that people living in the U.S. and Canada should keep in mind:

� PGP is free | for non-commercial use only. If you are going to use PGP for business
purposes, you should look into getting a commercial copy. PGP is marketed in the
United States by:

Pretty Good Privacy, Inc.
2121 S. El Camino Real
Suite 902
San Mateo, CA 94403
Main: (415) 572-0430
Fax: (415) 572-1932
http://www.pgp.com/

� Part of the software that comprises PGP is protected by several United States patents.
Versions of PGP approved for use in the U.S. contain a licensed version of this software,
known as RSAREF. RSAREF includes a patent license that allows the use of the
software in noncommercial settings only. Commercial use of the technology contained
in RSAREF requires a separate license. This is one reason why there are restrictions
on the commercial use of PGP in the United States and Canada.

While people outside the U.S. and Canada can use RSAREF-based PGP, they will
probably choose the so-called \international" version. This version replaces RSAREF

G.2 Installing PGP for RPM's Use 431

with software known as MPILIB. MPILIB is, in general, faster than RSAREF, but it
cannot legally be used in the United States or Canada.

To summarize, if you are using PGP for commercial purposes in the U.S. or Canada, you'll
need to purchase it. Otherwise, people living in the U.S. or Canada should use a version of
PGP incorporating RSAREF. People in other countries can use any version of PGP they
desire, though they'll probably choose the MPILIB-based \international" version3.

Getting RSAREF-based PGP The o�cial source for the latest version of PGP based
on RSAREF is the Massachusetts Institute of Technology. Due to the restrictions on the
export of encryption technology, the process is somewhat convoluted. The easiest way to
obtain PGP from the o�cial MIT archive is to use the World Wide Web. Point your web
browser at:

http://web.mit.edu/network/pgp.html

Simply follow the steps, and you'll have the necessary software on your system in no time.

There is a more cumbersome method that doesn't use the Web. It involves �rst using
anonymous ftp to obtain several �les of instructions and license agreements. You will then
be directed to use telnet to obtain the name of a temporary ftp directory containing the
PGP software. Finally, you can use anonymous ftp to retrieve the software. To start this
process, ftp to:

net-dist.mit.edu

Then change directory to:

/pub/PGP

Obtain a copy of the �le README and follow the instructions in it exactly.

If all this seems like too much trouble, there is another alternative. You can �nd copies of
PGP on just about any BBS, FTP, or Web site advertising freely available software. Be
aware, however, that \Floyd's Storm Door and BBS Company" may not be as trustworthy
a place as MIT to obtain encryption software. It's really a question of how paranoid you
are.

Outside the United States and Canada For people living in other countries, it is
much easier to �nd PGP (depending on the legality of encryption software, of course). Try
any of the places you'd normally look for free software. Keep in mind, however, that you
shouldn't download PGP from any sites in the U.S. Doing so is considered an \export" of

3Note that there are no commercial restrictions regarding PGP in countries other than the U.S. and
Canada.

432 An Introduction to PGP

munitions, and can get the people responsible for the site in deep trouble. Wherever you
eventually get PGP from, since the patents that complicate matters for the U.S. do not
apply abroad, you'll probably end up with the \international" versions of PGP.

G.2.2 Building PGP

Building PGP is mostly a matter of following instructions. However, users of ELF-based
Linux distributions (Such as Red Hat Linux) will �nd that PGP will not build. The problem,
according to the PGP FAQ, is that two �les do not properly handle the C preprocessor
directives that a�ect support for ELF. The changes are to two �les: 80386.S and zmatch.S.
Near the beginning of each, you'll �nd either a #ifndef or a #ifdef for SYSV. If you �nd:

#ifndef SYSV

It should be changed to read:

#if !defined(SYSV) && !defined(ELF)

If you �nd:

#ifdef SYSV

It should be changed to read:

#if defined(SYSV) || defined(ELF)

After making these changes, PGP should build with no problems.

G.2.3 Ready to Go!

After building and installing PGP, you're ready to start using RPM's package signature
capabilities. If your primary interest is in checking the signatures on packages built by
someone else, chapter 7 will tell you everything you need to know.

On the other hand, if you are a package builder and would like to start signing packages,
chapter 17 will have you signing packages in no time.

Index

-a option, 54, 85
acknowledgements, xxii{xxiii
adding dependencies, see dependencies, adding
- -addsign option, 248{250

limitations to, 249{250
architecture, see multi-platform package

building, see RPM, philosophy
behind, multi-architecture

architectures, support for multiple, 11
archive, see format, RPM �le, parts of,

archive
area, build, see build area
arguments, see scripts, install/erase-time,

arguments in
%attr directive, 200, 409
attributes, �le, see �le attributes veri�ed,

see �le attributes, specifying
automatic dependencies, see dependencies,

automatic
autoreqprov tag, 173, 213, 401

book, sections of, xxii
%build script, 182, 404
build area

alternate, 234{237
building in, 235{237
creating, 234{235
using, 235

build roots
danger using, 234
de�ning, 230{234
issues surrounding, 233{234

- -buildarch option, 151{152
building packages, see rpm -b

- -buildos option, 152{153
- -buildroot option, 156{159

warning, 158{159
buildroot tag, 176, 402

-c option, 61{62
- -clean option, 155{156
%clean script, 183, 405
command options, see the option itself
conditionals, see platform-dependent, con-

ditionals, see the conditional it-
self

seespec �le, conditionals in, xix
%config directive, 199{200, 409
con�g �les, 3, 6, 9, 16, 19, 25, 28, 35, 40,

44, 61, 62, 66, 71, 75, 83, 118,
222, 225

con�guration �les, see con�g �les
conflicts tag, 172, 215, 401
copyright tag, 169, 398

-d option, 62
database, rebuilding RPM, see - -rebuilddb

option, see RPM, command ref-
erence, rebuild database mode

- -dbpath option, 32, 40, 75, 90
dependencies

autoreqprov tag, 213
conflicts tag, 215
provides tag, 215{216
requires tag, 213{215
adding, 209{217
automatically added, 210{213
example of, 212{213

basic concepts, 209{210
manually added, 213{216
scripts related to, 210{213
find-provides, 211
find-requires, 211

serial numbers, using, 214{215
version requirements, adding, 214{215
virtual packages, 216

%description tag, 168, 398

434 INDEX

%dir directive, 203{204, 410
directives, see spec �le, see the directive

itself
distribution tag, 169, 399
%doc directive, 199, 409
%docdir directive, 201{203, 410
Doug Ho�man, see Ho�man, Doug
- -dump option, 65{66

%else conditional, 207, 412
%endif conditional, 208, 412
environment variables, see scripts, build-

time, environment variables in,
see scripts, install/erase-time, en-
vironment variables in

erasing packages, see rpm -e

Ewing, Marc, xxiii, 9, 10, 14
examples building packages, see package

building
excludearch tag, 174, 275, 401
- -excludedocs, 63
- -excludedocs option, 28{29
excludeos tag, 175, 275, 402
exclusivearch tag, 175, 275{276, 401
exclusiveos tag, 175, 275{276, 402

-f option, 54{56, 85
hint when using, 55{56

Faith, Rik, 8
�le attributes veri�ed, see rpm -V, attributes

veri�ed
�le attributes, specifying, 237{239
�le, spec, see spec �le
�les, con�guration, see con�g �les
find-provides script, 211
find-requires script, 211
- -force option, 28, 48
format, package �le, see format, RPM �le
format, RPM �le, 347{362

file() command,identifying with, 361{
362

caveats, 348
naming convention, 347{348
parts of, 348{349
archive, 359
header, 356{359
header structure, 351{353

header, analysis of, 356{359
header, tags used in, 357{359
lead, 349{350
lead, reduced use of, 351
signature, 353{356
signature, analysis of, 354{356

tools for studying, 360{361
FTP

package speci�cation using, 17{18
specifying non-standard port with, 18
specifying username and password with,

18
- -ftpport option, 33
- -ftpproxy option, 33

-g option, 57{58, 86
General Public License, see GPL
GNU General Public License, see GPL
GPL, 419{425
group tag, 170, 399

-h option, 20
header, see format, RPM �le, parts of,

header
- -help option, 104
history, Linux and RPM, xxi{xxii
Ho�man, Doug, 8

-i option, 59{60
icon tag, 169, 399
%ifarch conditional, 206, 278, 411
%ifnarch conditional, 207, 278, 411
%ifnos conditional, 207, 278, 412
%ifos conditional, 207, 278, 412
- -ignorearch option, 33
- -ignoreos option, 34
- -includedocs option, 29{30
information

package-wide, 13
per-�le, 13

- -initdb option, 102{103
%install script, 183, 404
installing packages, see rpm -i

-l option, 60
label, package, see package label
lead, see format, RPM �le, parts of, lead

INDEX 435

library functions, RPM, see rpmlib
Linux and RPM history, xxi{xxii

Marc Ewing, see Ewing, Marc
multi-platform package building, 269{278

features supporting, 270{271
hints, 278
platform detection, 271{274
reasons for, 269{270

name tag, 167, 397
- -nodeps option, 27{28, 38{39, 86{87
- -nofiles option, 88
nopatch tag, 179, 403
- -nopgp option, 99
- -noscripts option, 31, 39, 48{49, 87{88
nosource tag, 177, 403
numbers, serial, see dependencies, serial

numbers, using, see spec �le, tags
in, serial

- -oldpackage option, 47{48
- -replacepkgs option, 48
options, command, see the option itself

-p option, 56{57, 86
package

advantages of, 5
building anywhere, 229{239
contents of, 12{13
labels, 12{13
labels vs. names, 13
management of
how to, 6{7
introduction, 3{14
reasons for, 5{6

reasons for, 3{4
relocatable, see relocatable packages
virtual, see dependencies, virtual pack-

ages
what is it, 4{5

%package directive, 204{205, 253{254, 411
-n option, 205, 253{254, 411

package building
real-world example, 279{312
%files list, adding, 289{290
%files list, �nalizing, 297{303

build area, creating, 280{281
building with RPM, 292{294
building, initial, 285{293
directives, adding, 299{303
initial build, 280{284
initial build, installing, 283{284
initial build, performing, 281{283
installing with RPM, 293{294
overview, 279{280
package �les, creating, 294{297
packages, testing, 303{304
patches, applying w/RPM, 291{292
patches, generating, 285{287
scripts, adding built-time, 289
scripts, creating, 304{310
sources, unpacking w/RPM, 290{
291

spec �le, �rst-cut, 287{289
testing after build, 294

simple example, 125{138
%files list, creating, 131
build directory, creating, 125{126
package, building, 132{136
scripts, %clean, 132
scripts, install/uninstall, 131{132
sources, obtaining, 126
spec �le, %build section, 130
spec �le, %files list, 130{131
spec �le, %install section, 130
spec �le, %prep section, 129{130
spec �le, creating, 126{132
spec �le, preamble, 126{129
troubleshooting, 136{138

package �le format, see format, RPM �le
package label, 52{54, 84
package-wide information, see information,

package-wide
packager tag, 171, 400
packages

building, see rpm -b

erasing, see rpm -e

�les, verifying, see rpm -K

getting information about, see rpm -q

installing, see rpm -i

querying, see rpm -q

removing, see rpm -e

436 INDEX

uninstalling, see rpm -e

upgrading, see rpm -U

verifying installed, see rpm -V

%patch macro, 195{198, 407
-E option, 196
-P option, 196
-b option, 196
-p option, 196
compressed patches, 197{198
example of, 197{198
options to, 408

patch tag, 178, 403
per-�le information, see information, per-

�le
- -percent option, 31{32
PGP

building, 432
getting more information on, 429
introduction to, 427{432
legal, patent issues, 430{431
obtaining, 430{432
\international" version, 431{432
RSAREF-based version, 431

overview of, 427{428
RPM's use of, 429
setting up for RPM's use, 430{432
signatures
adding, 241{250
con�guring RPM for, 244
key pair generation, 242{244
reasons for, 241
signing packages, 244{250

platform information, overriding at build-
time, 273{274

platform information, overriding at install-
time, 274

platform-dependent
rpmrc �le entries, 271{273
arch canon, 272
arch compat, 273
buildarch translate, 272{273
buildos translate, 272{273
optflags, 274
os canon, 272
os compat, 273

conditionals, 276{278

%ifarch, 278
%ifnarch, 278
%ifnos, 278
%ifos, 278
features of, 276{277
nesting, 277

tags, 274{276
excludearch, 275
excludeos, 275
exclusivearch, 275{276
exclusiveos, 275{276

PM, see RPM, ancestors of, PM
PMS, see RPM, ancestors of, PMS
%post script, 185, 405
%postun script, 185, 406
%pre script, 185, 405
- -prefix option, 30{31
prefix tag, 176, 220{221, 253, 402
%prep script, 182, 404
Pretty Good Privacy, see PGP
%preun script, 185, 405
- -provides option, 63{64
provides tag, 171, 215{216, 400

- -queryformat option, 67{74
carriage control in, 68{69
example, 30
literal text in, 68
tags for, 69{73, 385{396
ARCHIVESIZE, 393
ARCH, 389
AUTOREQPROV, 395
BUILDHOST, 386
BUILDROOT, 394
BUILDTIME, 386
CHANGELOG, 388
CONFLICTFLAGS, 394
CONFLICTNAME, 394
CONFLICTVERSION, 394
COPYRIGHT, 387
DEFAULTPREFIX, 394
DESCRIPTION, 386
DISTRIBUTION, 387
EXCLUDEARCH, 395
EXCLUDEOS, 395
EXCLUDE, 392
EXCLUSIVEARCH, 395

INDEX 437

EXCLUSIVEOS, 395
EXCLUSIVE, 392
FILEFLAGS, 391
FILEGIDS, 390
FILEGROUPNAME, 392
FILELINKTOS, 391
FILEMD5S, 391
FILEMODES, 390
FILEMTIMES, 391
FILENAMES, 389
FILERDEVS, 391
FILESIZES, 390
FILESTATES, 390
FILEUIDS, 390
FILEUSERNAME, 392
FILEVERIFYFLAGS, 392
GIF, 387
GROUP, 388
ICON, 392
INSTALLPREFIX, 395
INSTALLTIME, 387
NAME, 385
NOPATCH, 394
NOSOURCE, 393
OS, 388
PACKAGER, 388
PATCH, 388
POSTIN, 389
POSTUN, 389
PREIN, 389
PREUN, 389
PROVIDES, 393
RELEASE, 386
REQUIREFLAGS, 393
REQUIRENAME, 393
REQUIREVERSION, 393
ROOT, 391
RPMVERSION, 396
SERIAL, 386
SIZE, 387
SOURCERPM, 392
SOURCE, 388
SUMMARY, 386
TRIGGERFLAGS, 396
TRIGGERINDEX, 396
TRIGGERNAME, 396

TRIGGERSCRIPTS, 396
TRIGGERVERSION, 396
URL, 388
VENDOR, 387
VERIFYSCRIPT, 396
VERSION, 386
XPM, 387

tags, array iterators, 71{73
tags, iterating single-entry, 72{73
tags, listing available, 73{74
tags, modi�ers, 70{71
tags, width and justi�cation, 69{70

querying packages, see rpm -q

- -quiet option, 103{104, 161

- -rcfile option, 32, 39, 75, 90, 100, 161,
368

- -rebuild option, 163{164
- -rebuilddb option, 101{102
- -recompile option, 162{163
recursion, see recursion
release tag, 167, 398
relocatable packages, 219{228

%files list restrictions, 221{222
prefix tag, 220{221
building, 223{225
reasons for, 219{220
requirements, 221{223
software requirements, 222{223
testing, 226{228

removing packages, see rpm -e

- -replacefiles option, 23{24, 28, 48
interaction with con�g �les, 25{26
problems from using, 26{27

- -replacepkgs option, 22{23, 28, 48
- -requires option, 64{65
requires tag, 171, 213{215, 400
- -resign option, 247{248

limitations to, 247{248
Rik Faith, see Faith Rik
- -root option, 32, 40, 74, 90
root, build, see build roots
RPM

ancestors of, 7{10
PM, 8
PMS, 8
RPM version 1, 9{10

438 INDEX

RPM version 2, 10
RPP, 7{8

basics of developing with, 119{123
command reference, 377{384
add signature mode, 383
build mode, 381{382
check signature mode, 383
erase mode, 381
global options, 377
informational options, 377
initialize database mode, 384
install mode, 379{380
query mode, 378{379
rebuild database mode, 384
rebuild mode, 382
recompile mode, 382{383
resign mode, 383
upgrade mode, 380{381
verify mode, 379

creating patches for, 120
design goals of, 10{11
inputs to, 119{122
patches, 119{120
sources, 119
spec �le, 120{122

library functions, see rpmlib
license, 419{425
mailing list
redhat-digest, 418
redhat-list, 418
rpm-list, 417

obtaining, 413{417
�les to download, 415{417
FTP sites carrying, 413{415

outputs from, 122{123
binary package, 123
source package, 122{123

philosophy behind, 115{118
ease of use, 117{118
easy builds, 116{117
multi-architecture, 117
multi-operating system, 117
pristine sources, 115{116

resources related to, 413{425
spec �le
%build section of, 121

%files list, 122
%install section of, 121
%prep section of, 121
preamble, 120
scripts, 121{122

support, information for, 417{419
what it does, 122
WWW resources, 418

rpm -b, 139{164
build stages of, 140{149
a, 145{146
b, 144{145
c, 142
i, 143{144
l, 146{149
p, 140{141

options, 149{161
related commands, 162{164
what it does, 139{140

rpm -e, 35{41
basic command, 36
con�g �le handling, 40{41
options, 36{40
problems using, 41
what it does, 35{36

rpm -i, 15{34
options, 19{34
overview, 16{17
performing, 17{19
warning message, 19

rpm -K, 93{100
additional software used by, 94
basic use, 94{96
con�guring PGP for use by, 94
example of failed veri�cation, 97{99
options, 96, 99{100
output when missing public key, 97
output when package unsigned, 96{

97
what it does, 93{94

rpm -q, 51{78
examples using, 75{78
�nding con�g �les with, 75
�nding documentation with, 76{77
�nding largest packages with, 78
�nding recently installed packages with,

INDEX 439

77{78
�nding similar packages with, 77
information selection options, 58{74
options, 52{75
package selection options, 52{58
querying uninstalled packages with,

75{76
what it does, 52

rpm -U, 43{49
as replacement for rpm -i, 47
basic command, 47
con�g �le handling, 44{46
options, 47{49
what it does, 44

rpm -V, 79{91
attributes veri�ed, 81{82
�le group, 81
�le mode, 81
�le ownership, 81
�le size, 82
major number, 82
MD5 checksum, 81{82
minor number, 82
modi�cation time, 82
symbolic link, 82

options, 84{90
output of, 82{84
veri�cation, control of, 90{91
what it does, 79{82
what it veri�es, 80{82

RPM database, rebuilding, see - -rebuilddb
option, see RPM, command ref-
erence, rebuild database mode

RPM �le format, see format, RPM �le
RPM version 1, see RPM, ancestors of,

RPM version 1
RPM version 2, see RPM, ancestors of,

RPM version 2
rpm2cpio

use of, 105{107
extracting �les in package, 106{107
listing �les in package, 106

what it does, 105{106
rpmlib, 10

examples using, 337{345
functions

rpmrc-related, 317{318
dependency processing, 328{330
error handling, 314
header entry manipulation, 334{336
header iterator, 336{337
header manipulation, 332{334
output control, 330{331
package information, 314{316
package manipulation, 324{326
package/�le veri�cation, 327
RPM database manipulation, 318{
319

RPM database search, 320{323
RPM database traversal, 320
signature veri�cation, 331{332
variable manipulation, 316

guide to using, 313{345
overview, 313

rpmlib functions, list of, 314{337
dbiFreeIndexRecord(), 321
headerAddEntry(), 335
headerCopy(), 333
headerDump(), 334
headerFree(), 334
headerFreeIterator(), 337
headerGetEntry(), 335
headerInitIterator(), 336
headerIsEntry(), 336
headerNew(), 334
headerNextIterator(), 336
headerRead(), 333
headerSizeof(), 333
headerWrite(), 333
rpmArchScore(), 318
rpmErrorCode(), 314
rpmErrorSetCallback(), 314
rpmErrorString(), 314
rpmFreeSignature(), 332
rpmGetArchName(), 317
rpmGetBooleanVar(), 316
rpmGetOsName(), 317
rpmGetVar(), 316
rpmGetVerbosity(), 331
rpmIncreaseVerbosity(), 330
rpmInstallPackage(), 324
rpmInstallSourcePackage(), 324

440 INDEX

rpmIsDebug(), 331
rpmIsVerbose(), 331
rpmNotifyFunction(), 326
rpmOsScore(), 318
rpmReadConfigFiles(), 317
rpmReadPackageHeader(), 315
rpmReadPackageInfo(), 315
rpmRemovePackage(), 326
rpmSetVar(), 316
rpmSetVerbosity(), 331
rpmShowRC(), 318
rpmVerifyFile(), 327
rpmVerifyScript(), 327
rpmVerifySignature(), 332
rpmdbClose(), 319
rpmdbFindByConflicts(), 323
rpmdbFindByFile(), 321
rpmdbFindByGroup(), 322
rpmdbFindByProvides(), 322
rpmdbFindByRequiredBy(), 323
rpmdbFindPackage(), 322
rpmdbFirstRecNum(), 320
rpmdbGetRecord(), 320
rpmdbInit(), 319
rpmdbNextRecNum(), 320
rpmdbOpen(), 318
rpmdbRebuild(), 319
rpmdepAddPackage(), 328
rpmdepAvailablePackage(), 329
rpmdepCheck(), 329
rpmdepDependencies(), 328
rpmdepDone(), 330
rpmdepFreeConflicts(), 330
rpmdepRemovePackage(), 329
rpmdepUpgradePackage(), 329

rpmrc �le, 363{376
entries, 368{376
arch canon, 272, 369
arch compat, 273, 370
buildarch translate, 272{273
buildarchtranslate, 369
builddir, 371
buildos translate, 272{273
buildostranslate, 370
buildroot, 371
cpiobin, 371

dbpath, 371
defaultdocdir, 371
distribution, 371
excludedocs, 29, 372
ftpport, 372
ftpproxy, 372
messagelevel, 372
netsharedpath, 63, 372
optflags, 373
os canon, 272, 369
os compat, 273, 370
packager, 373
pgp name, 373
pgp path, 374
require distribution, 374
require icon, 374
require vendor, 374
rpmdir, 374
signature, 375
sourcedir, 375
specdir, 375
srcrpmdir, 375
timecheck, 376
tmppath, 376
topdir, 376
vendor, 376

locations of, 364{368
/etc/rpmrc, 368
/usr/lib/rpmrc, 365{367
~/.rpmrc, 368

syntax of, 368
RPP, see RPM, ancestors of, RPP

-s option, 62{63
scripts, see RPM, spec �le, scripts, see the

script itself
build-time, 180{183
environment variables in, 181{182

install/erase-time, 183{185
arguments in, 183{184
environment variables in, 183

veri�cation-time, 185{186
- -scripts option, 66{67
sections of book, xxii
serial tag, 172, 400
serial numbers, see dependencies, serial

numbers, using, see spec �le, tags

INDEX 441

in, serial
%setup macro, 186{195, 406

-D option, 189
-T option, 189
-a option, 190{191
-b option, 189{190
-c option, 188
-n option, 187{188
options to, 406{407
use in multi-source spec �les, 191{195

- -short-circuit option, 149{151
- -showrc, 363{364
- -sign option, 153, 245{247

using with multiple builds, 246{247
signature, see format, RPM �le, parts of,

signature, see PGP, signatures,
see RPM, command reference, add
signature mode, see RPM, com-
mand reference, check signature
mode

source tag, 177, 402
source package �les

installing, 109{110
use of, 108{110

spec �le
%files list directives, 198{204
%files list in, 198, 408{409
-f option, 204

comments in, 165, 397
conditionals in, 205{208
%else, 412
%endif, 412
%ifarch, 411
%ifnarch, 411
%ifnos, 412
%ifos, 412

contents of, 165{208, 397{412
directives in
%attr, 409
%config, 409
%dir, 410
%docdir, 410
%doc, 409
%package, options to, 411
%verify, 410

macros in, 186{198

%patch, 407
%patch, options to, 408
%setup, 406
%setup, options to, 406{407

scripts in, 180{186
%build, 404
%clean, 405
%install, 404
%postun, 406
%post, 405
%prep, 404
%preun, 405
%pre, 405
%verifyscript, 406

tags in, 166{179
%description, 398
autoreqprov, 401
buildroot, 402
conflicts, 401
copyright, 398
distribution, 399
excludearch, 401
excludeos, 402
exclusivearch, 401
exclusiveos, 402
group, 399
icon, 399
name, 397
nosource, 403
packager, 400
prefix, 402
provides, 400
release, 398
requires, 400
serial, 400
source, 402
summary, 398
url, 399
vendor, 399
version, 397

subpackages, 251{268
%files list changes, 257{258
%package directive, 253{254
-n option, 253{254

build-time scripts, unchanged, 261{
262

442 INDEX

building, 263{265
de�nition of, 251
example requirements, 252
script changes, 260
scripts, testing, 267{268
spec �le changes, 253{263
tags required by, 255{256
testing, 265{268
why needed, 251{252

summary tag, 169, 398

tags
%description, 168
autoreqprov, 173
buildroot, 176
conflicts, 172
copyright, 169
distribution, 169
excludearch, 174
excludeos, 175
exclusivearch, 175
exclusiveos, 175
group, 170
icon, 169
name, 167
nopatch, 179
nosource, 177
packager, 171
patch, 178
prefix, 176
provides, 171
release, 167
requires, 171
serial, 172
source, 177
summary, 169
url, 170
vendor, 170
version, 167

tags, - -queryformat, see - -queryformat
option, tags for

tags, dependency-related, see dependen-
cies

- -test option, 21{22, 37{38, 154{155
- -timecheck option, 159{160
Troan, Erik, xxiii, 9, 10, 14

uninstalling packages, see rpm -e

upgrading packages, see rpm -U

URL, 17, 33, 57, 170, 177, 179
package speci�cation using, 17{18
specifying non-standard port with, 18
specifying username and password with,

18
url tag, 170, 399

-v option, 19{20, 61, 88{89, 96
variables, environment, see scripts, build-

time, environment variables in,
see scripts, install/erase-time, en-
vironment variables in

vendor tag, 170, 399
%verify directive, 200{201, 410
verifying installed packages, see rpm -V

verifying package �les, see rpm -K

%verifyscript script, 185, 406
- -version option, 105
version tag, 167, 397
virtual packages, see dependencies, virtual

packages
-vv option, 21, 36{37, 74, 89{90, 99{100,

160{161

- -whatprovides option, 58
- -whatrequires option, 58

	toc:

