
Linux Manual Pages
Last updated on May 9, 1999.

NOTE: These are the man pages written by the Linux Documentation Project. Man pages for
applications are not yet included here.

● Section 1

● Section 2

● Section 3

● Section 4

● Section 5

● Section 6

● Section 7

● Section 8

● Section 9

I

Linux Manual Pages

http://linuxsavvy.com/resources/linux/man/ [14/09/1999 09:41:01]

Linux Man Pages Section 1
● chgrp.1

● chmod.1

● chown.1

● cp.1

● dd.1

● df.1

● diff.1

● dircolors.1

● du.1

● install.1

● intro.1

● ln.1

● ls.1

● mkdir.1

● mkfifo.1

● mknod.1

● mv.1

● rm.1

● rmdir.1

● touch.1

Linux Man Pages Section 1

http://linuxsavvy.com/resources/linux/man/man1/ [14/09/1999 09:41:04]

NAME

 chgrp - change group ownership of files

SYNOPSIS

 chgrp [options] group file...

 POSIX options: [-R]

 GNU options (shortest form): [-cfvR] [--help] [--version]
 [--]

DESCRIPTION

 chgrp changes the group ownership of each given file to
 group, which can be either a group name or a numeric group
 ID.

POSIX OPTIONS

 -R Recursively change the group ownership of directories
 and their contents. (And continue even when errors are
 encountered.)

http://linuxsavvy.com/resources/linux/man/man1/chgrp.1.html (1 of 4) [14/09/1999 09:41:06]

GNU OPTIONS

 -c, --changes
 Verbosely describe the action for each file whose group
 actually changes.

 -f, --silent, --quiet
 Do not print error messages about files whose group
 cannot be changed.

 -h, --no-dereference
 Act on symbolic links themselves instead of what they
 point to. Only available if the lchown system call is
 provided.

 -v, --verbose
 Verbosely describe the action or non-action taken for
 every file.

 -R, --recursive
 Recursively change the group ownership of directories
 and their contents.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

http://linuxsavvy.com/resources/linux/man/man1/chgrp.1.html (2 of 4) [14/09/1999 09:41:06]

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2 only requires the -R option. Use of other
 options may not be portable.

NOTES

 This page describes chgrp as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl, aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org. Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/chgrp.1.html (3 of 4) [14/09/1999 09:41:06]

http://linuxsavvy.com/resources/linux/man/man1/chgrp.1.html (4 of 4) [14/09/1999 09:41:06]

NAME

 chmod - change access permissions of files

SYNOPSIS

 chmod [options] mode file...

 POSIX options: [-R]

 GNU options (shortest form): [-cfvR] [--help] [--version]
 [--]

DESCRIPTION

 chmod changes the permissions of each given file according
 to mode, which can be either a symbolic representation of
 changes to make, or an octal number representing the bit
 pattern for the new permissions.

 The format of a symbolic mode change argument is
 `[ugoa...][[+-=][rwxXstugo...]...][,...]'.

 Such an argument is a list of symbolic mode change commands,
 separated by commas. Each symbolic mode change command
 starts with zero or more of the letters `ugoa'; these con-
 trol which users' access to the file will be changed: the
 user who owns it (u), other users in the file's group (g),
 other users not in the file's group (o), or all users (a).
 Thus, `a' is here equivalent to `ugo'. If none of these are
 given, the effect is as if `a' were given, but bits that are
 set in the umask are not affected.

 The operator `+' causes the permissions selected to be added

http://linuxsavvy.com/resources/linux/man/man1/chmod.1.html (1 of 5) [14/09/1999 09:41:09]

 to the existing permissions of each file; `-' causes them to
 be removed; and `=' causes them to be the only permissions
 that the file has.

 The letters `rwxXstugo' select the new permissions for the
 affected users: read (r), write (w), execute (or access for
 directories) (x), execute only if the file is a directory or
 already has execute permission for some user (X), set user
 or group ID on execution (s), sticky bit (t), the permis-
 sions that the user who owns the file currently has for it
 (u), the permissions that other users in the file's group
 have for it (g), and the permissions that other users not in
 the file's group have for it (o). (Thus, `chmod g-s file'
 removes the set-group-ID (sgid) bit, `chmod ug+s file' sets
 both the suid and sgid bits, while `chmod o+s file' does
 nothing.)

 The `sticky bit' is not described by POSIX. The name
 derives from the original meaning: keep program text on
 swap device. These days, when set for a directory, it means
 that only the owner of the file and the owner of that
 directory may remove the file from that directory. (This is
 commonly used on directories like /tmp that have general
 write permission.)

 A numeric mode is from one to four octal digits (0-7),
 derived by adding up the bits with values 4, 2, and 1. Any
 omitted digits are assumed to be leading zeros. The first
 digit selects the set user ID (4) and set group ID (2) and
 save text image (1) attributes. The second digit selects
 permissions for the user who owns the file: read (4), write
 (2), and execute (1); the third selects permissions for
 other users in the file's group, with the same values; and
 the fourth for other users not in the file's group, with the
 same values.

 chmod never changes the permissions of symbolic links, since
 the chmod system call cannot change their permissions. This
 is not a problem since the permissions of symbolic links are
 never used. However, for each symbolic link listed on the
 command line, chmod changes the permissions of the pointed-
 to file. In contrast, chmod ignores symbolic links encoun-
 tered during recursive directory traversals.

http://linuxsavvy.com/resources/linux/man/man1/chmod.1.html (2 of 5) [14/09/1999 09:41:09]

POSIX OPTIONS

 -R Recursively change permissions of directories and their
 contents.

GNU OPTIONS

 -c, --changes
 Verbosely describe the action for each file whose per-
 missions actually changes.

 -f, --silent, --quiet
 Do not print error messages about files whose permis-
 sions cannot bechanged.

 -v, --verbose
 Verbosely describe the action or non-action taken for
 every file.

 -R, --recursive
 Recursively change permissions of directories and their
 contents.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

http://linuxsavvy.com/resources/linux/man/man1/chmod.1.html (3 of 5) [14/09/1999 09:41:09]

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2 only requires the -R option. Use of other
 options may not be portable. This standard does not describe
 the 't' permission bit. This standard does not specify
 whether chmod must preserve consistency by clearing or
 refusing to set the suid and sgid bits, e.g., when all exe-
 cute bits are cleared, or whether chmod honors the `s' bit
 at all.

NONSTANDARD MODES

 Above we described the use of the `t' bit on directories.
 Various systems attach special meanings to otherwise mean-
 ingless combinations of mode bits. In particular, Linux,
 following System V (see System V Interface Definition (SVID)
 Version 3), lets the sgid bit for files without group exe-
 cute permission mark the file for mandatory locking. For
 more details, see the file
 /usr/src/linux/Documentation/mandatory.txt.

NOTES

 This page describes chmod as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl, aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org. Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/chmod.1.html (4 of 5) [14/09/1999 09:41:09]

http://linuxsavvy.com/resources/linux/man/man1/chmod.1.html (5 of 5) [14/09/1999 09:41:09]

NAME

 chown - change file owner and group

SYNOPSIS

 chown [options] user[:group

 POSIX options: [-R]

 GNU options (shortest form): [-cfhvR] [--help] [--version]
 [--]

DESCRIPTION

 chown changes the user and/or group ownership of each given
 file as specified by the first non-option argument as fol-
 lows: if only a user name (or numeric user ID) is given,
 that user is made the owner of each given file, and the
 files' group is not changed. If the user name is followed
 by a colon and a group name (or numeric group ID), with no
 spaces between them, the group ownership of the files is
 changed as well.

GNU DETAILS

 The GNU version allows a dot instead of a colon (following
 BSD). [This was not allowed by POSIX since a dot is a valid
 character in a user name.] If a colon or dot but no group
 name follows the user name, that user is made the owner of

http://linuxsavvy.com/resources/linux/man/man1/chown.1.html (1 of 4) [14/09/1999 09:41:12]

 the files and the group of the files is changed to that
 user's login group. If the colon or dot and group are
 given, but the user name is omitted, only the group of the
 files is changed; in this case, chown performs the same
 function as chgrp.

POSIX OPTIONS

 -R Recursively change ownership of directories and their
 contents.

GNU OPTIONS

 -c, --changes
 Verbosely describe the action for each file whose own-
 ership actually changes.

 -f, --silent, --quiet
 Do not print error messages about files whose ownership
 cannot be changed.

 -h, --no-dereference
 Act on symbolic links themselves instead of what they
 point to. Only available if the lchown system call is
 provided.

 -v, --verbose
 Verbosely describe the action (or non-action) taken for
 every file.

 -R, --recursive
 Recursively change ownership of directories and their
 contents.

http://linuxsavvy.com/resources/linux/man/man1/chown.1.html (2 of 4) [14/09/1999 09:41:12]

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2 does not allow use of the dot as separator
 between user name and group name.

NOTES

 This page describes chown as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/chown.1.html (3 of 4) [14/09/1999 09:41:12]

http://linuxsavvy.com/resources/linux/man/man1/chown.1.html (4 of 4) [14/09/1999 09:41:12]

NAME

 cp - copy files and directories

SYNOPSIS

 cp [options] file path
 cp [options] file... directory

 POSIX options: [-fipRr]

 GNU options (shortest form): [-abdfilprsuvxPR] [-S SUFFIX]
 [-V {numbered,existing,simple}] [--sparse=WHEN] [--help]
 [--version] [--]

DESCRIPTION

 cp copies files (or, optionally, directories). You can
 either copy one file to a given destination, or copy arbi-
 trarily many files to a destination directory.

 If the last argument names an existing directory, cp copies
 each source file into that directory (retaining the same
 name). Otherwise, if only two files are given, it copies
 the first onto the second. It is an error if the last argu-
 ment is not a directory and more than two non-option argu-
 ments are given.

 (Thus, `cp -r /a /b' will copy /a to /b/a and /a/x to /b/a/x
 in case /b exists already, but it will copy /a to /b and
 /a/x to /b/x if there was no /b beforehand.)

 The modes of the files and directories created will be the
 same as those of the original files, ANDed by 0777, and

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (1 of 7) [14/09/1999 09:41:16]

 modified by the user's umask (unless the -p option was
 specified). (But during the recursive copy of directories,
 newly created directories will temporarily get their final
 mode ORed with S_IRWXU (0700), so as to allow the process to
 read, write and search the newly created directory.)

 Nothing is done when copying a file to itself (except possi-
 bly producing an error message). When copying to a dif-
 ferent existing file, it is opened using `open(path,
 O_WRONLY | O_TRUNC)'. When copying to a new file it is
 created using `open(path, O_WRONLY | O_CREAT, mode)'. If
 this fails, the file existed, and the -f option was given,
 cp tries to delete (unlink) the existing file, and if this
 succeeds proceeds as for a new file.

POSIX OPTIONS

 POSIX recognizes four options and a half:

 -f Remove existing destination files if required. (See
 above.)

 -i Prompt whether to overwrite existing regular destina-
 tion files. (Write a question on stderr, and read the
 answer from stdin. Only copy upon an affirmative
 answer.)

 -p Preserve the original files' owner, group, permissions
 (including the setuid and setgid bits), time of last
 modification and time of last access. In case duplica-
 tion of owner or group fails, the setuid and setgid
 bits are cleared. (Note that afterwards source and
 copy may well have different times of last access,
 since the copy operation is an access to the source
 file.)

 -R Copy directories recursively, and do the right thing
 when objects other than ordinary files or directories
 are encountered. (Thus, the copy of a FIFO or special
 file is a FIFO or special file.)

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (2 of 7) [14/09/1999 09:41:16]

 -r Copy directories recursively, and do something unspeci-
 fied with objects other than ordinary files or direc-
 tories. (Thus, it is allowed, in fact encouraged, to
 have the -r option a synonym for -R. However, silly
 behaviour, like that of the present GNU version of cp
 (see below) is not forbidden.)

GNU DETAILS

 Generally, files are written just as they are read. For
 exceptions, see the --sparse option below.

 By default, `cp' does not copy directories (see -r below).

 cp generally refuses to copy a file onto itself, with the
 following exception: if --force --backup is specified with
 source and dest identical, and referring to a regular file,
 cp will make a backup file, either regular or numbered, as
 specified in the usual ways. This is useful when you simply
 want to make a backup of an existing file before changing
 it.

GNU OPTIONS

 -a, --archive
 Preserve as much as possible of the structure and
 attributes of the original files in the copy (but do
 not preserve directory structure). Equivalent to -dpR.

 -d, --no-dereference
 Copy symbolic links as symbolic links rather than copy-
 ing the files that they point to, and preserve hard
 links between source files in the copies.

 -f, --force
 Remove existing destination files.

 -i, --interactive

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (3 of 7) [14/09/1999 09:41:16]

 Prompt whether to overwrite existing regular destina-
 tion files.

 -l, --link
 Make hard links instead of copies of non-directories.

 -p, --preserve
 Preserve the original files' owner, group, permissions,
 and timestamps.

 -P, --parents
 Form the name of each destination file by appending to
 the target directory a slash and the specified name of
 the source file. The last argument given to cp must be
 the name of an existing directory. For example, the
 command:
 cp --parents a/b/c existing_dir
 copies the file `a/b/c' to `existing_dir/a/b/c', creat-
 ing any missing intermediate directories.

 -r Copy directories recursively, copying any non-
 directories and non-symbolic links (that is, FIFOs and
 special files) as if they were regular files. This
 means trying to read the data in each source file and
 writing it to the destination. Thus, with this option,
 `cp' may well hang indefinitely reading a FIFO or
 /dev/tty. (This is a bug. It means that you have to
 avoid -r and use -R if you don't know what is in the
 tree you are copying. Opening an unknown device file,
 say a scanner, has unknown effects on the hardware.)

 -R, --recursive
 Copy directories recursively, preserving non-
 directories (see -r just above).

 --sparse=WHEN
 A `sparse file' contains `holes' - sequences of zero
 bytes that do not occupy any physical disk blocks; the
 `read' system call reads these as zeroes. This can
 both save considerable disk space and increase speed,
 since many binary files contain lots of consecutive
 zero bytes. By default, `cp' detects holes in input
 source files via a crude heuristic and makes the
 corresponding output file sparse as well.

 The WHEN value can be one of the following:

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (4 of 7) [14/09/1999 09:41:16]

 auto The default behavior: the output file is sparse if
 the input file is sparse.

 always
 Always make the output file sparse. This is use-
 ful when the input file resides on a filesystem
 that does not support sparse files, but the output
 file is on a filesystem that does.

 never
 Never make the output file sparse. If you find an
 application for this option, let us know.

 -s, --symbolic-link
 Make symbolic links instead of copies of non-
 directories. All source file names must be absolute
 (starting with `/') unless the destination files are in
 the current directory. This option merely results in
 an error message on systems that do not support sym-
 bolic links.

 -u, --update
 Do not copy a nondirectory that has an existing desti-
 nation with the same or newer modification time.

 -v, --verbose
 Print the name of each file before copying it.

 -x, --one-file-system
 Skip subdirectories that are on different filesystems
 from the one that the copy started on.

GNU BACKUP OPTIONS

 The GNU versions of programs like cp, mv, ln, install and
 patch will make a backup of files about to be overwritten,
 changed or destroyed if that is desired. That backup files
 are desired is indicated by the -b option. How they should
 be named is specified by the -V option. In case the name of
 the backup file is given by the name of the file extended by
 a suffix, this suffix is specified by the -S option.

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (5 of 7) [14/09/1999 09:41:16]

 -b, --backup
 Make backups of files that are about to be overwritten
 or removed.

 -S SUFFIX, --suffix=SUFFIX
 Append SUFFIX to each backup file made. If this option
 is not specified, the value of the SIMPLE_BACKUP_SUFFIX
 environment variable is used. And if
 SIMPLE_BACKUP_SUFFIX is not set, the default is `~'.

 -V METHOD, --version-control=METHOD
 Specify how backup files are named. The METHOD argument
 can be `numbered' (or `t'), `existing' (or `nil'), or
 `never' (or `simple'). If this option is not
 specified, the value of the VERSION_CONTROL environment
 variable is used. And if VERSION_CONTROL is not set,
 the default backup type is `existing'.

 This option corresponds to the Emacs variable
 `version-control'. The valid METHODs are (unique
 abbreviations are accepted):

 t, numbered
 Always make numbered backups.

 nil, existing
 Make numbered backups of files that already have
 them, simple backups of the others.

 never, simple
 Always make simple backups.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (6 of 7) [14/09/1999 09:41:16]

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE and
 LC_MESSAGES have the usual meaning. For the GNU version, the
 variables SIMPLE_BACKUP_SUFFIX and VERSION_CONTROL control
 backup file naming, as described above.

CONFORMING TO

 POSIX 1003.2

NOTES

 This page describes cp as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/cp.1.html (7 of 7) [14/09/1999 09:41:16]

NAME

 dd - convert and copy a file

SYNOPSIS

 dd [--help] [--version] [if=file] [of=file] [ibs=bytes]
 [obs=bytes] [bs=bytes] [cbs=bytes] [skip=blocks]
 [seek=blocks] [count=blocks] [conv={ascii, ebcdic, ibm,
 block, unblock, lcase, ucase, swab, noerror, notrunc, sync}]

DESCRIPTION

 dd copies a file (from standard input to standard output, by
 default) using specific input and output blocksizes, while
 optionally performing conversions on it.

 It reads the input one block at a time, using the specified
 input block size (the default is 512 bytes). If the
 bs=bytes option was given, and no conversion other than
 sync, noerror, or notrunc was specified, it writes the
 amount of data read (which could be smaller than what was
 requested) in a separate output block. This output block has
 precisely the same length as was read unless the sync
 conversion was specified, in which case the data is padded
 with NULs (or spaces, see below).

 Otherwise, the input, read one block at a time, is processed
 and the resulting output is collected and written in blocks
 of the specified output block size. The final output block
 may be shorter.

 The numeric-valued options below (bytes and blocks) can be
 followed by a multiplier: `k'=1024, `b'=512, `w'=2, `c'=1

http://linuxsavvy.com/resources/linux/man/man1/dd.1.html (1 of 5) [14/09/1999 09:41:19]

 (`w' and `c' are GNU extensions; `w' should never be used -
 it means 2 in System V and 4 in 4.2BSD). Two or more of
 such numeric expressions can be multiplied by putting `x' in
 between.

OPTIONS

 if=file
 Read from file instead of standard input.

 of=file
 Write to file instead of standard output. Unless
 conv=notrunc is given, dd truncates file to zero bytes
 (or the size specified with seek=).

 ibs=bytes
 Read bytes bytes at a time. The default is 512.

 obs=bytes
 Write bytes bytes at a time. The default is 512.

 bs=bytes
 Both read and write bytes bytes at a time. This over-
 rides ibs and obs. (And setting bs is not equivalent
 with setting both ibs and obs to this same value, at
 least when no conversion other than sync, noerror and
 notrunc is specified, since it stipulates that each
 input block shall be copied to the output as a single
 block without aggregating short blocks.)

 cbs=bytes
 Specify the conversion block size for block and
 unblock.

 skip=blocks
 Skip blocks ibs-byte blocks in the input file before
 copying.

 seek=blocks
 Skip blocks obs-byte blocks in the output file before
 copying.

http://linuxsavvy.com/resources/linux/man/man1/dd.1.html (2 of 5) [14/09/1999 09:41:19]

 count=blocks
 Copy blocks ibs-byte blocks from the input file,
 instead of everything until the end of the file.

 conv=CONVERSION[,CONVERSION]...
 Convert the file as specified by the CONVERSION
 argument(s). (No spaces around any comma(s).)

 Conversions:

 ascii
 Convert EBCDIC to ASCII.

 ebcdic
 Convert ASCII to EBCDIC.

 ibm Convert ASCII to alternate EBCDIC.

 block
 For each line in the input, output cbs bytes,
 replacing the input newline with a space and pad-
 ding with spaces as necessary.

 unblock
 Replace trailing spaces in each cbs-sized input
 block with a newline.

 lcase
 Change uppercase letters to lowercase.

 ucase
 Change lowercase letters to uppercase.

 swab Swap every pair of input bytes. GNU dd, unlike
 others, works when an odd number of bytes are read
 - the last byte is simply copied (since there is
 nothing to swap it with).

 noerror
 Continue after read errors.

 notrunc
 Do not truncate the output file.

 sync Pad every input block to size of ibs with trailing
 zero bytes.

http://linuxsavvy.com/resources/linux/man/man1/dd.1.html (3 of 5) [14/09/1999 09:41:19]

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2

NOTES

 This page describes dd as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/dd.1.html (4 of 5) [14/09/1999 09:41:19]

http://linuxsavvy.com/resources/linux/man/man1/dd.1.html (5 of 5) [14/09/1999 09:41:19]

NAME

 df - report filesystem disk space usage

SYNOPSIS

 df [options] [file...]

 POSIX options: [-kP]

 GNU options (shortest form): [-ahikmPv] [-t fstype] [-x
 fstype] [--print-type] [--no-sync] [--sync] [--help] [--ver-
 sion] [--]

DESCRIPTION

 df reports the amount of disk space used and available on
 filesystems.

 With no arguments, df reports the space used and available
 on all currently mounted filesystems (of all types). Other-
 wise, df reports on the filesystem containing each argument
 file.

POSIX DETAILS

 The output is in 512-byte units by default, but in 1024-byte
 units when the -k option is given. The output format is
 undefined, unless the -P option is given. If file is not a
 regular file, a directory or a FIFO, the result is unspeci-

http://linuxsavvy.com/resources/linux/man/man1/df.1.html (1 of 5) [14/09/1999 09:41:21]

 fied.

GNU DETAILS

 The output is in 1024-byte units (when no units are speci-
 fied by options), unless the environment variable
 POSIXLY_CORRECT is set, in which case POSIX is followed.

 If an argument file is a disk device file containing a
 mounted filesystem, df shows the space available on that
 filesystem rather than on the filesystem containing the dev-
 ice node.

POSIX OPTIONS

 -k Use 1024-byte units instead of the default 512-byte
 units.

 -P Output in six columns, with heading `Filesystem N-
 blocks Used Available Capacity Mounted on' (with N=512,
 but N=1024 when the -k option is given).

GNU OPTIONS

 -a, --all
 Include in the listing filesystems that have a size of
 0 blocks, which are omitted by default. Such filesys-
 tems are typically special-purpose pseudo-filesystems,
 such as automounter entries. Also, filesystems of type
 "ignore" or "auto", supported by some operating sys-
 tems, are only included if this option is specified.

 -h, --human-readable
 Append a size letter such as M for megabytes to each
 size.

http://linuxsavvy.com/resources/linux/man/man1/df.1.html (2 of 5) [14/09/1999 09:41:21]

 -i, --inodes
 List inode usage information instead of block usage.
 An inode (short for index node) is contains information
 about a file such as its owner, permissions, times-
 tamps, and location on the disk.

 -k, --kilobytes
 Print sizes in 1024-byte blocks.

 -m, --megabytes
 Print sizes in megabyte (that's 1,048,576 bytes)
 blocks.

 --no-sync
 Do not invoke the sync system call before getting any
 usage data. This may make df run significantly faster,
 but on some systems (notably SunOS) the results may be
 slightly out of date. This is the default.

 -P, --portability
 Use the POSIX output format. This is like the default
 format except that the information about each filesys-
 tem is always printed on exactly one line; a mount dev-
 ice is never put on a line by itself. This means that
 if the mount device name is more than 20 characters
 long (e.g., for some network mounts), the columns are
 misaligned.

 --sync
 Invoke the sync system call before getting any usage
 data. On some systems (notably SunOS), doing this
 yields more up to date results, but in general this
 option makes df much slower, especially when there are
 many or very busy filesystems.

 -t fstype, --type=fstype
 Limit the listing to filesystems of type fstype. Multi-
 ple filesystem types can be specified by giving multi-
 ple -t options. By default, nothing is omitted.

 -T, --print-type
 Print each filesystem's type. The types given are
 those reported by the system (and are found in a
 system-dependent way, for example by reading
 /etc/mtab). See also mount(8).

http://linuxsavvy.com/resources/linux/man/man1/df.1.html (3 of 5) [14/09/1999 09:41:21]

 -x fstype, --exclude-type=fstype
 Limit the listing to filesystems not of type fstype.
 Multiple filesystem types can be eliminated by giving
 multiple -x options. By default, no filesystem types
 are omitted.

 -v Ignored; for compatibility with System V versions of
 df.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variable POSIXLY_CORRECT determines the choice of unit.
 If it is not set, and the variable BLOCKSIZE has a value
 starting with `HUMAN', then behaviour is as for the -h
 option, unless overridden by -k or -m options. The vari-
 ables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have the usual
 meaning.

CONFORMING TO

 POSIX 1003.2

http://linuxsavvy.com/resources/linux/man/man1/df.1.html (4 of 5) [14/09/1999 09:41:21]

SEE ALSO

 mount(8)

NOTES

 This page describes df as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/df.1.html (5 of 5) [14/09/1999 09:41:21]

NAME

 diff - find differences between two files

SYNOPSIS

 diff [options] from-file to-file

DESCRIPTION

 In the simplest case, diff compares the contents of the two
 files from-file and to-file. A file name of - stands for
 text read from the standard input. As a special case, diff
 - - compares a copy of standard input to itself.

 If from-file is a directory and to-file is not, diff com-
 pares the file in from-file whose file name is that of to-
 file, and vice versa. The non-directory file must not be -.

 If both from-file and to-file are directories, diff compares
 corresponding files in both directories, in alphabetical
 order; this comparison is not recursive unless the -r or
 --recursive option is given. diff never compares the actual
 contents of a directory as if it were a file. The file that
 is fully specified may not be standard input, because stan-
 dard input is nameless and the notion of ``file with the
 same name'' does not apply.

 diff options begin with -, so normally from-file and to-file
 may not begin with -. However, -- as an argument by itself
 treats the remaining arguments as file names even if they
 begin with -.

 Options

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (1 of 8) [14/09/1999 09:41:27]

 Below is a summary of all of the options that GNU diff
 accepts. Most options have two equivalent names, one of
 which is a single letter preceded by -, and the other of
 which is a long name preceded by --. Multiple single letter
 options (unless they take an argument) can be combined into
 a single command line word: -ac is equivalent to -a -c.
 Long named options can be abbreviated to any unique prefix
 of their name. Brackets ([and]) indicate that an option
 takes an optional argument.

 -lines
 Show lines (an integer) lines of context. This option
 does not specify an output format by itself; it has no
 effect unless it is combined with -c or -u. This
 option is obsolete. For proper operation, patch typi-
 cally needs at least two lines of context.

 -a Treat all files as text and compare them line-by-line,
 even if they do not seem to be text.

 -b Ignore changes in amount of white space.
 -B Ignore changes that just insert or delete blank lines.

 --brief
 Report only whether the files differ, not the details
 of the differences.

 -c Use the context output format.

 -C lines
 --context[=lines]
 Use the context output format, showing lines (an
 integer) lines of context, or three if lines is not
 given. For proper operation, patch typically needs at
 least two lines of context.

 --changed-group-format=format
 Use format to output a line group containing differing
 lines from both files in if-then-else format.

 -d Change the algorithm to perhaps find a smaller set of
 changes. This makes diff slower (sometimes much
 slower).

 -D name
 Make merged if-then-else format output, conditional on

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (2 of 8) [14/09/1999 09:41:27]

 the preprocessor macro name.

 -e
 --ed Make output that is a valid ed script.

 --exclude=pattern
 When comparing directories, ignore files and subdirec-
 tories whose basenames match pattern.

 --exclude-from=file
 When comparing directories, ignore files and subdirec-
 tories whose basenames match any pattern contained in
 file.

 --expand-tabs
 Expand tabs to spaces in the output, to preserve the
 alignment of tabs in the input files.

 -f Make output that looks vaguely like an ed script but
 has changes in the order they appear in the file.

 -F regexp
 In context and unified format, for each hunk of differ-
 ences, show some of the last preceding line that
 matches regexp.

 --forward-ed
 Make output that looks vaguely like an ed script but
 has changes in the order they appear in the file.

 -h This option currently has no effect; it is present for
 Unix compatibility.

 -H Use heuristics to speed handling of large files that
 have numerous scattered small changes.

 --horizon-lines=lines
 Do not discard the last lines lines of the common pre-
 fix and the first lines lines of the common suffix.

 -i Ignore changes in case; consider upper- and lower-case
 letters equivalent.

 -I regexp
 Ignore changes that just insert or delete lines that
 match regexp.

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (3 of 8) [14/09/1999 09:41:27]

 --ifdef=name
 Make merged if-then-else format output, conditional on
 the preprocessor macro name.

 --ignore-all-space
 Ignore white space when comparing lines.

 --ignore-blank-lines
 Ignore changes that just insert or delete blank lines.

 --ignore-case
 Ignore changes in case; consider upper- and lower-case
 to be the same.

 --ignore-matching-lines=regexp
 Ignore changes that just insert or delete lines that
 match regexp.

 --ignore-space-change
 Ignore changes in amount of white space.

 --initial-tab
 Output a tab rather than a space before the text of a
 line in normal or context format. This causes the
 alignment of tabs in the line to look normal.

 -l Pass the output through pr to paginate it.

 -L label
 --label=label
 Use label instead of the file name in the context for-
 mat and unified format headers.

 --left-column
 Print only the left column of two common lines in side
 by side format.

 --line-format=format
 Use format to output all input lines in in-then-else
 format.

 --minimal
 Change the algorithm to perhaps find a smaller set of
 changes. This makes diff slower (sometimes much
 slower).

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (4 of 8) [14/09/1999 09:41:27]

 -n Output RCS-format diffs; like -f except that each com-
 mand specifies the number of lines affected.

 -N
 --new-file
 In directory comparison, if a file is found in only one
 directory, treat it as present but empty in the other
 directory.

 --new-group-format=format
 Use format to output a group of lines taken from just
 the second file in if-then-else format.

 --new-line-format=format
 Use format to output a line taken from just the second
 file in if-then-else format.

 --old-group-format=format
 Use format to output a group of lines taken from just
 the first file in if-then-else format.

 --old-line-format=format
 Use format to output a line taken from just the first
 file in if-then-else format.

 -p Show which C function each change is in.

 -P When comparing directories, if a file appears only in
 the second directory of the two, treat it as present
 but empty in the other.

 --paginate
 Pass the output through pr to paginate it.

 -q Report only whether the files differ, not the details
 of the differences.

 -r When comparing directories, recursively compare any
 subdirectories found.

 --rcs
 Output RCS-format diffs; like -f except that each com-
 mand specifies the number of lines affected.

 --recursive

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (5 of 8) [14/09/1999 09:41:27]

 When comparing directories, recursively compare any
 subdirectories found.

 --report-identical-files
 -s Report when two files are the same.

 -S file
 When comparing directories, start with the file file.
 This is used for resuming an aborted comparison.

 --sdiff-merge-assist
 Print extra information to help sdiff. sdiff uses this
 option when it runs diff. This option is not intended
 for users to use directly.

 --show-c-function
 Show which C function each change is in.

 --show-function-line=regexp
 In context and unified format, for each hunk of differ-
 ences, show some of the last preceding line that
 matches regexp.

 --side-by-side
 Use the side by side output format.

 --speed-large-files
 Use heuristics to speed handling of large files that
 have numerous scattered small changes.

 --starting-file=file
 When comparing directories, start with the file file.
 This is used for resuming an aborted comparison.

 --suppress-common-lines
 Do not print common lines in side by side format.

 -t Expand tabs to spaces in the output, to preserve the
 alignment of tabs in the input files.

 -T Output a tab rather than a space before the text of a
 line in normal or context format. This causes the
 alignment of tabs in the line to look normal.

 --text
 Treat all files as text and compare them line-by-line,

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (6 of 8) [14/09/1999 09:41:27]

 even if they do not appear to be text.

 -u Use the unified output format.

 --unchanged-group-format=format
 Use format to output a group of common lines taken from
 both files in if-then-else format.

 --unchanged-line-format=format
 Use format to output a line common to both files in
 if-then-else format.

 --unidirectional-new-file
 When comparing directories, if a file appears only in
 the second directory of the two, treat it as present
 but empty in the other.

 -U lines
 --unified[=lines]
 Use the unified output format, showing lines (an
 integer) lines of context, or three if lines is not
 given. For proper operation, patch typically needs at
 least two lines of context.

 -v
 --version
 Output the version number of diff.

 -w Ignore white space when comparing lines.

 -W columns
 --width=columns
 Use an output width of columns in side by side format.

 -x pattern
 When comparing directories, ignore files and subdirec-
 tories whose basenames match pattern.

 -X file
 When comparing directories, ignore files and subdirec-
 tories whose basenames match any pattern contained in
 file.

 -y Use the side by side output format.

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (7 of 8) [14/09/1999 09:41:27]

SEE ALSO

 cmp(1), comm(1), diff3(1), ed(1), patch(1), pr(1), sdiff(1).

DIAGNOSTICS

 An exit status of 0 means no differences were found, 1 means
 some differences were found, and 2 means trouble.

http://linuxsavvy.com/resources/linux/man/man1/diff.1.html (8 of 8) [14/09/1999 09:41:27]

NAME

 dircolors - color setup for `ls'

SYNOPSIS

 dircolors [-b] [--sh] [--bourne-shell] [-c] [--csh]
 [--c-shell] [-p] [--print-database] [--help] [--version]
 [FILE]

DESCRIPTION

 dircolors outputs a sequence of shell commands to define the
 desired color output from ls (and dir, etc.). Typical
 usage:
 eval `dircolors [OPTION]... [FILE]`

 If FILE is specified, dircolors reads it to determine which
 colors to use for which file types and extensions. Other-
 wise, a precompiled database is used. For details on the
 format of these files, run `dircolors --print-database'.

 The output is a shell command to set the LS_COLORS environ-
 ment variable. You can specify the shell syntax to use on
 the command line, or dircolors will guess it from the value
 of the SHELL environment variable.

 After execution of this command, `ls --color' (which one
 might alias to ls) will list files in the desired colors.

http://linuxsavvy.com/resources/linux/man/man1/dircolors.1.html (1 of 4) [14/09/1999 09:41:29]

OPTIONS

 -b, --sh, --bourne-shell
 Output Bourne shell commands. This is the default if
 the SHELL environment variable is set and does not end
 with csh or tcsh.

 -c, --csh, --c-shell
 Output C shell commands. This is the default if SHELL
 ends with csh or tcsh.

 -p, --print-database
 Print the (compiled-in) default color configuration
 database. This output is itself a valid configuration
 file, and is fairly descriptive of the possibilities.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables SHELL and TERM are used to find the proper
 form of the shell command. The variables LANG, LC_ALL,
 LC_CTYPE and LC_MESSAGES have the usual meaning. The vari-
 able LS_COLORS is used to transfer information to ls.

http://linuxsavvy.com/resources/linux/man/man1/dircolors.1.html (2 of 4) [14/09/1999 09:41:29]

CONFORMING TO

 Coloured output for ls(1) is a GNU extension.

SEE ALSO

 ls(1)

NOTES

 This page describes dircolors as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/dircolors.1.html (3 of 4) [14/09/1999 09:41:29]

http://linuxsavvy.com/resources/linux/man/man1/dircolors.1.html (4 of 4) [14/09/1999 09:41:29]

NAME

 du - estimate file space usage

SYNOPSIS

 du [options] [file...]

 POSIX options: [-askx]

 GNU options (shortest form): [-abchklmsxDLS] [--help]
 [--version] [--]

DESCRIPTION

 du reports the amount of disk space used by the specified
 files, and by each directory in the hierarchies rooted at
 the specified files. Here `disk space used' means space
 used for the entire file hierarchy below the specified file.

 With no arguments, du reports the disk space for the current
 directory.

POSIX DETAILS

 The output is in 512-byte units by default, but in 1024-byte
 units when the -k option is given.

http://linuxsavvy.com/resources/linux/man/man1/du.1.html (1 of 5) [14/09/1999 09:41:31]

GNU DETAILS

 The output is in 1024-byte units (when no units are speci-
 fied by options), unless the environment variable
 POSIXLY_CORRECT is set, in which case POSIX is followed.

POSIX OPTIONS

 -a Show counts for all files encountered, not just direc-
 tories.

 -k Use 1024-byte units instead of the default 512-byte
 units.

 -s Only output space usage for the actual arguments given,
 not for their subdirectories.

 -x Only count space on the same device as the argument
 given.

GNU OPTIONS

 -a, --all
 Show counts for all files, not just directories.

 -b, --bytes
 Print sizes in bytes, instead of kilobytes.

 -c, --total
 Print a grand total of all arguments after all argu-
 ments have been processed. This can be used to find
 out the total disk usage of a given set of files or
 directories.

 -D, --dereference-args
 Dereference symbolic links that are command line argu-
 ments. Does not affect other symbolic links. This is

http://linuxsavvy.com/resources/linux/man/man1/du.1.html (2 of 5) [14/09/1999 09:41:31]

 helpful for finding out the disk usage of directories,
 such as /usr/tmp, which are often symbolic links.

 -h, --human-readable
 Append a size letter, such as M for megabytes, to each
 size.

 -k, --kilobytes
 Print sizes in kilobytes.

 -l, --count-links
 Count the size of all files, even if they have appeared
 already (as a hard link).

 -L, --dereference
 Dereference symbolic links (show the disk space used by
 the file or directory that the link points to instead
 of the space used by the link).

 -m, --megabytes
 Print sizes in megabyte (that 1,048,576 bytes) blocks.

 -s, --summarize
 Display only a total for each argument.

 -S, --separate-dirs
 Report the size of each directory separately, not
 including the sizes of subdirectories.

 -x, --one-file-system
 Skip directories that are on different filesystems from
 the one that the argument being processed is on.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

http://linuxsavvy.com/resources/linux/man/man1/du.1.html (3 of 5) [14/09/1999 09:41:31]

 -- Terminate option list.

BUGS

 On BSD systems, du reports sizes that are half the correct
 values for files that are NFS-mounted from HP-UX systems.
 On HP-UX systems, it reports sizes that are twice the
 correct values for files that are NFS-mounted from BSD sys-
 tems. This is due to a flaw in HP-UX; it also affects the
 HP-UX du program.

ENVIRONMENT

 The variable POSIXLY_CORRECT determines the choice of unit.
 If it is not set, and the variable BLOCKSIZE has a value
 starting with `HUMAN', then behaviour is as for the -h
 option, unless overridden by -k or -m options. The vari-
 ables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have the usual
 meaning.

CONFORMING TO

 POSIX 1003.2

NOTES

 This page describes du as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to

http://linuxsavvy.com/resources/linux/man/man1/du.1.html (4 of 5) [14/09/1999 09:41:31]

 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/du.1.html (5 of 5) [14/09/1999 09:41:31]

NAME

 install - copy files and set attributes

SYNOPSIS

 install [options] [-s] [--strip] source dest
 install [options] [-s] [--strip] source... directory
 install [options] [-d,--directory] directory...

 Options (shortest form):
 [-b] [-c] [-g group] [-m mode] [-o owner] [-S SUFFIX] [-V
 {numbered,existing,simple}] [--help] [--version] [--]

DESCRIPTION

 install copies files while setting their permission modes
 and, if possible, their owner and group.

 In the first of these invocation forms, the source file is
 copied to the dest target file. In the second, each of the
 source files are copied to the destination directory. In
 the last, each directory (and any missing parent direc-
 tories) is created.

 install is similar to cp, but allows you to control the
 attributes of destination files. It is typically used in
 Makefiles to copy programs into their destination direc-
 tories. It refuses to copy files onto themselves.

http://linuxsavvy.com/resources/linux/man/man1/install.1.html (1 of 5) [14/09/1999 09:41:34]

OPTIONS

 -c Ignored; for compatibility with old Unix versions of
 install.

 -d, --directory
 Create each given directory and any missing parent
 directories, setting the owner, group and mode as given
 on the command line or to the defaults. It also gives
 any parent directories it creates those attributes.
 (This is different from the SunOS 4.x install, which
 gives directories that it creates the default attri-
 butes.)

 -g group, --group=group
 Set the group ownership of installed files or direc-
 tories to group. The default is the process's current
 group. group may be either a group name or a numeric
 group id.

 -m mode, --mode=mode
 Set the permissions for the installed file or directory
 to mode, which can be either an octal number, or a sym-
 bolic mode as in chmod, with 0 as the point of depar-
 ture. The default mode is 0755 - read, write, and exe-
 cute for the owner, and read and execute for group and
 other.

 -o owner, --owner=owner
 If install has appropriate privileges (is run as root),
 set the ownership of installed files or directories to
 owner. The default is `root'. owner may be either a
 user name or a numeric user ID.

 -s, --strip
 Strip the symbol tables from installed binary execut-
 ables.

http://linuxsavvy.com/resources/linux/man/man1/install.1.html (2 of 5) [14/09/1999 09:41:34]

GNU BACKUP OPTIONS

 The GNU versions of programs like cp, mv, ln, install and
 patch will make a backup of files about to be overwritten,
 changed or destroyed if that is desired. That backup files
 are desired is indicated by the -b option. How they should
 be named is specified by the -V option. In case the name of
 the backup file is given by the name of the file extended by
 a suffix, this suffix is specified by the -S option.

 -b, --backup
 Make backups of files that are about to be overwritten
 or removed.

 -S SUFFIX, --suffix=SUFFIX
 Append SUFFIX to each backup file made. If this option
 is not specified, the value of the SIMPLE_BACKUP_SUFFIX
 environment variable is used. And if
 SIMPLE_BACKUP_SUFFIX is not set, the default is `~'.

 -V METHOD, --version-control=METHOD
 Specify how backup files are named. The METHOD argument
 can be `numbered' (or `t'), `existing' (or `nil'), or
 `never' (or `simple'). If this option is not speci-
 fied, the value of the VERSION_CONTROL environment
 variable is used. And if VERSION_CONTROL is not set,
 the default backup type is `existing'.

 This option corresponds to the Emacs variable
 `version-control'. The valid METHODs are (unique
 abbreviations are accepted):

 t, numbered
 Always make numbered backups.

 nil, existing
 Make numbered backups of files that already have
 them, simple backups of the others.

 never, simple
 Always make simple backups.

http://linuxsavvy.com/resources/linux/man/man1/install.1.html (3 of 5) [14/09/1999 09:41:34]

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning. For the GNU version, the variables
 SIMPLE_BACKUP_SUFFIX and VERSION_CONTROL control backup file
 naming, as described above.

CONFORMING TO

 BSD 4.2 (which had the -c, -m, -o, -g and -s options).

NOTES

 This page describes install as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/install.1.html (4 of 5) [14/09/1999 09:41:34]

http://linuxsavvy.com/resources/linux/man/man1/install.1.html (5 of 5) [14/09/1999 09:41:34]

NAME

 intro - Introduction to user commands

DESCRIPTION

 This chapter describes user commands.

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man1/intro.1.html (1 of 2) [14/09/1999 09:41:35]

http://linuxsavvy.com/resources/linux/man/man1/intro.1.html (2 of 2) [14/09/1999 09:41:35]

NAME

 ln - make links between files

SYNOPSIS

 ln [options] source [dest]
 ln [options] source... directory

 POSIX options: [-f]

 GNU options (shortest form): [-bdfinsvF] [-S backup-suffix]
 [-V {numbered,existing,simple}] [--help] [--version] [--]

DESCRIPTION

 There are two concepts of `link' in Unix, usually called
 hard link and soft link. A hard link is just a name for a
 file. (And a file can have several names. It is deleted
 from disk only when the last name is removed. The number of
 names is given by ls(1). There is no such thing as an `ori-
 ginal' name: all names have the same status. Usually, but
 not necessarily, all names of a file are found in the
 filesystem that also contains its data.)

 A soft link (or symbolic link, or symlink) is an entirely
 different animal: it is a small special file that contains a
 pathname. Thus, soft links can point at files on different
 filesystems (possibly NFS mounted from different machines),
 and need not point to actually existing files. When
 accessed (with the open(2) or stat(2) system calls), a
 reference to a symlink is replaced by the operating system
 kernel with a reference to the file named by the path name.
 (However, with rm(1) and unlink(2) the link itself is

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (1 of 6) [14/09/1999 09:41:40]

 removed, not the file it points to. There are special sys-
 tem calls lstat(2) and readlink(2) that read the status of a
 symlink and the filename it points to. For various other
 system calls there is some uncertainty and variation between
 operating systems as to whether the operation acts on the
 symlink itself, or on the file pointed to.)

 ln makes links between files. By default, it makes hard
 links; with the -s option, it makes symbolic (or `soft')
 links.

 If only one file is given, it links that file into the
 current directory, that is, creates a link to that file in
 the current directory, with name equal to (the last com-
 ponent of) the name of that file. (This is a GNU extension.)
 Otherwise, if the last argument names an existing directory,
 ln will create links to each mentioned source file in that
 directory, with a name equal to (the last component of) the
 name of that source file. (But see the description of the
 --no-dereference option below.) Otherwise, if only two files
 are given, it creates a link named dest to the file source.
 It is an error if the last argument is not a directory and
 more than two files are given.

 By default, ln does not remove existing files or existing
 symbolic links. (Thus, it can be used for locking purposes:
 it will succeed only if dest did not exist already.) But it
 can be forced to do so with the option -f.

 On existing implementations, if it is at all possible to
 make a hard link to a directory, this may be done by the
 superuser only. POSIX forbids the system call link(2) and
 the utility ln to make hard links to directories (but does
 not forbid hard links to cross filesystem boundaries).

POSIX OPTIONS

 -f Remove existing destination files.

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (2 of 6) [14/09/1999 09:41:40]

GNU OPTIONS

 -d, -F, --directory
 Allow the super-user to make hard links to directories.

 -f, --force
 Remove existing destination files.

 -i, --interactive
 Prompt whether to remove existing destination files.

 -n, --no-dereference
 When given an explicit destination that is a symlink to
 a directory, treat that destination as if it were a
 normal file.
 When the destination is an actual directory (not a sym-
 link to one), there is no ambiguity. The link is
 created in that directory. But when the specified des-
 tination is a symlink to a directory, there are two
 ways to treat the user's request. ln can treat the
 destination just as it would a normal directory and
 create the link in it. On the other hand, the destina-
 tion can be viewed as a non-directory - as the symlink
 itself. In that case, ln must delete or backup that
 symlink before creating the new link. The default is
 to treat a destination that is a symlink to a directory
 just like a directory.

 -s, --symbolic
 Make symbolic links instead of hard links. This option
 merely produces an error message on systems that do not
 support symbolic links.

 -v, --verbose
 Print the name of each file before linking it.

GNU BACKUP OPTIONS

 The GNU versions of programs like cp, mv, ln, install and
 patch will make a backup of files about to be overwritten,

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (3 of 6) [14/09/1999 09:41:40]

 changed or destroyed if that is desired. That backup files
 are desired is indicated by the -b option. How they should
 be named is specified by the -V option. In case the name of
 the backup file is given by the name of the file extended by
 a suffix, this suffix is specified by the -S option.

 -b, --backup
 Make backups of files that are about to be overwritten
 or removed.

 -S SUFFIX, --suffix=SUFFIX
 Append SUFFIX to each backup file made. If this option
 is not specified, the value of the SIMPLE_BACKUP_SUFFIX
 environment variable is used. And if
 SIMPLE_BACKUP_SUFFIX is not set, the default is `~'.

 -V METHOD, --version-control=METHOD
 Specify how backup files are named. The METHOD argument
 can be `numbered' (or `t'), `existing' (or `nil'), or
 `never' (or `simple'). If this option is not speci-
 fied, the value of the VERSION_CONTROL environment
 variable is used. And if VERSION_CONTROL is not set,
 the default backup type is `existing'.

 This option corresponds to the Emacs variable
 `version-control'. The valid METHODs are (unique
 abbreviations are accepted):

 t, numbered
 Always make numbered backups.

 nil, existing
 Make numbered backups of files that already have
 them, simple backups of the others.

 never, simple
 Always make simple backups.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (4 of 6) [14/09/1999 09:41:40]

 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2. However, POSIX 1003.2 (1996) does not discuss
 soft links. Soft links were introduced by BSD, and do not
 occur in System V release 3 (and older) systems.

SEE ALSO

 ls(1), rm(1), link(2), lstat(2), open(2), readlink(2),
 stat(2), unlink(2)

NOTES

 This page describes ln as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (5 of 6) [14/09/1999 09:41:40]

http://linuxsavvy.com/resources/linux/man/man1/ln.1.html (6 of 6) [14/09/1999 09:41:40]

NAME

 ls, dir, vdir - list directory contents

SYNOPSIS

 ls [options] [file...]

 POSIX options: [-CFRacdilqrtu1]

 GNU options (shortest form): [-1abcdfgiklmnopqrstux-
 ABCDFGLNQRSUX] [-w cols] [-T cols] [-I pattern]
 [--full-time]
 [--format={long,verbose,commas,across,vertical,single-column}]
 [--sort={none,time,size,extension}]
 [--time={atime,access,use,ctime,status}]
 [--color[={none,auto,always}]] [--help] [--version] [--]

DESCRIPTION

 The program ls lists first its non-directory file arguments,
 and then for each directory argument all listable files con-
 tained within that directory. If no non-option arguments are
 present, a default argument `.' (the current directory) is
 assumed. The -d option causes directories to be treated as
 non-directory arguments. A file is listable when either its
 name does not start with `.', or the -a option is given.

 Each of the lists of files (that of non-directory files, and
 for each directory the list of files inside) is sorted
 separately according to the collating sequence in the
 current locale. When the -l option is given, each list is
 preceded by a summary line giving the total size of all
 files in the list, measured in semi-kilobytes (512 B).

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (1 of 11) [14/09/1999 09:41:47]

 The output is to stdout, one entry per line, unless mul-
 ticolumn output is requested by the -C option. However, for
 output to a terminal, it is undefined whether the output
 will be single-column or multi-column. The options -1 and -C
 can be used to force single-column and multi-column output,
 respectively.

POSIX OPTIONS

 -C List files in columns, sorted vertically.

 -F Suffix each directory name with `/', each FIFO name
 with `|', and each name of an executable with `*'.

 -R Recursively list subdirectories encountered.

 -a Include files with a name starting with `.' in the
 listing.

 -c Use the status change time instead of the modification
 time for sorting (with -t) or listing (with -l).

 -d List names of directories like other files, rather than
 listing their contents.

 -i Precede the output for the file by the file serial
 number (i-node number).

 -l Write (in single-column format) the file mode, the
 number of links to the file, the owner name, the group
 name, the size of the file (in bytes), the timestamp,
 and the filename. By default, the timestamp shown is
 that of the last modification; the options -c and
8 select the other two timestamps. For device special
 files the size field is commonly replaced by the major
 and minor device numbers.

 -q Output nonprintable characters in a filename as ques-
 tion marks. (This is permitted to be the default for
 output to a terminal.)

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (2 of 11) [14/09/1999 09:41:47]

 -r Reverse the order of the sort.

 -t Sort by the timestamp shown.

 -u Use the time of last access instead of the modification
 time for sorting (with -t) or listing (with -l).

 -1 For single-column output.

GNU DETAILS

 If standard output is a terminal, the output is in columns
 (sorted vertically).

 dir (also installed as d) is equivalent to `ls -C'; that is,
 files are by default listed in columns, sorted vertically.
 vdir (also installed as v) is equivalent to `ls -l'; that
 is, files are by default listed in long format.

GNU OPTIONS

 -1, --format=single-column
 List one file per line. This is the default for when
 standard output is not a terminal.

 -a, --all
 List all files in directories, including all files that
 start with `.'.

 -b, --escape
 Quote nongraphic characters in file names using alpha-
 betic and octal backslash sequences like those used in
 C.

 -c, --time=ctime, --time=status
 Sort directory contents according to the files' status
 change time (the `ctime' in the inode). If the long
 listing format is being used (-l) print the status

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (3 of 11) [14/09/1999 09:41:47]

 change time instead of the modification time.

 -d, --directory
 List names of directories like other files, rather than
 listing their contents.

 -f Do not sort directory contents; list them in whatever
 order they are stored on the disk. Also enables -a and
 disables -l, --color, and -s if they were specified
 before the -f.

 -g Ignored; for Unix compatibility.

 -i, --inode
 Print the inode number (also called the file serial
 number and index number) of each file to the left of
 the file name. (This number uniquely identifies each
 file within a particular filesystem)

 -k, --kilobytes
 If file sizes are being listed, print them in kilo-
 bytes.

 -l, --format=long, --format=verbose
 In addition to the name of each file, print the file
 type, permissions, number of hard links, owner name,
 group name, size in bytes, and timestamp (the modifica-
 tion time unless other times are selected). For files
 with a time that is more than 6 months old or more than
 1 hour into the future, the timestamp contains the year
 instead of the time of day.

 For each directory that is listed, preface the files
 with a line `total blocks', where blocks is the total
 disk space used by all files in that directory. By
 default, 1024-byte blocks are used; if the environment
 variable POSIXLY_CORRECT is set, 512-byte blocks are
 used (unless the -k option is given). The blocks com-
 puted counts each hard link separately; this is argu-
 ably a deficiency.

 The permissions listed are similar to symbolic mode
 specifications but ls combines multiple bits into the
 third character of each set of permissions

 s If the setuid or setgid bit and the corresponding

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (4 of 11) [14/09/1999 09:41:47]

 executable bit are both set.

 S If the setuid or setgid bit is set but the
 corresponding executable bit is not set.

 t If the sticky bit and the other-executable bit are
 both set.

 T If the sticky bit is set but the other-executable
 bit is not set.

 x If the executable bit is set and none of the above
 apply.

 - Otherwise.

 -m, --format=commas
 List files horizontally, with as many as will fit on
 each line, each separated by a comma and a space.

 -n, --numeric-uid-gid
 List the numeric UID and GID instead of the names.

 -o Produce long format directory listings, but don't
 display group information. It is equivalent to using
 --format=long --no-group. This option is provided for
 compatibility with other versions of ls.

 -p Append a character to each file name indicating the
 file type. This is like -F except that executables
 aren't marked.

 -q, --hide-control-chars
 Print question marks instead of nongraphic characters
 in file names. This is the default.

 -r, --reverse
 Sort directory contents in reverse order.

 -s, --size
 Print the size of each file in 1024-byte blocks to the
 left of the file name. If the environment variable
 POSIXLY_CORRECT is set, 512-byte blocks are used
 instead, unless the -k option is given.

 -t, --sort=time

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (5 of 11) [14/09/1999 09:41:47]

 Sort by modification time (the `mtime' in the inode)
 instead of alphabetically, with the newest files listed
 first.

 -u, --time=atime, --time=access, --time=use
 Sort directory contents according to the files' last
 access time instead of the modification time (the
 `atime' in the inode). If the long listing format is
 being used, print the last access time instead of the
 modification time.

 -w, --width cols
 Assume the screen is cols columns wide. The default is
 taken from the terminal driver if possible; otherwise
 the environment variable COLUMNS is used if it is set;
 otherwise the default is 80.

 -x, --format=across, --format=horizontal
 List the files in columns, sorted horizontally.

 -A, --almost-all
 List all files in directories, except for `.' and `..'.

 -B, --ignore-backups
 Do not list files that end with `~', unless they are
 given on the command line.

 -C, --format=vertical
 List files in columns, sorted vertically. This is the
 default if standard output is a terminal. It is always
 the default for dir and d.

 -D, --dired
 With the long listing (-l) format, print an additional
 line after the main output:
 //DIRED// BEG1 END1 BEG2 END2 ...

 The BEGn and ENDn are unsigned integers which record
 the byte position of the beginning and end of each file
 name in the output. This makes it easy for Emacs to
 find the names, even when they contain unusual charac-
 ters such as space or newline, without fancy searching.

 If directories are being listed recursively (-R), out-
 put a similar line after each subdirectory:
 //SUBDIRED// BEG1 END1 ...

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (6 of 11) [14/09/1999 09:41:47]

 -F, --classify, --file-type
 Append a character to each file name indicating the
 file type. For regular files that are executable,
 append a `*'. The file type indicators are `/' for
 directories, `@' for symbolic links, `|' for FIFOs, `='
 for sockets, and nothing for regular files.

 -G, --no-group
 Inhibit display of group information in a long format
 directory listing.

 -I, --ignorepattern
 Do not list files whose names match the shell pattern
 pattern (not regular expression) unless they are given
 on the command line. As in the shell, an initial `.'
 in a filename does not match a wildcard at the start of
 pattern.

 -L, --dereference
 List the file information corresponding to the refer-
 rents of symbolic links rather for the links them-
 selves.

 -N, --literal
 Do not quote file names.

 -Q, --quote-name
 Enclose file names in double quotes and quote non-
 graphic characters as in C.

 -R, --recursive
 List the contents of all directories recursively.

 -S, --sort=size
 Sort directory contents by file size instead of alpha-
 betically, with the largest files listed first.

 -T, --tabsize cols
 Assume that each tabstop is cols columns wide. The
 default is 8. ls uses tabs where possible in the out-
 put, for efficiency. If cols is zero, do not use tabs
 at all.

 -U, --sort=none
 Do not sort directory contents; list them in whatever

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (7 of 11) [14/09/1999 09:41:47]

 order they are stored on the disk. (The difference
 between -Uand-f is that the later doesn't disable or
 enable options). This is especially useful when listing
 very large directories, since not doing any sorting can
 be noticeably faster.

 -X, --sort=extension
 Sort directory contents alphabetically by file exten-
 sion (characters after the last `.'); files with no
 extension are sorted first.

 --color[=when]
 Specify whether to use color for distinguishing file
 types. Colors are specified using the LS_COLORS
 environment variable. For information on how to set
 this variable, see dircolors(1). when may be omitted,
 or one of:

 none Do not use color at all. This is the default.

 auto Only use color if standard output is a terminal.
 always
 Always use color. Specifying --color and no when
 is equivalent to --color=always.

 --full-time
 List times in full, rather than using the standard
 abbreviation heuristics. The format is the same as
 date(1)'s default; it's not possible to change this,
 but you can extract out the date string with cut(1) and
 then pass the result to `date -d'.

 This is most useful because the time output includes
 the seconds. (Unix filesystems store file timestamps
 only to the nearest second, so this option shows all
 the information there is.) For example, this can help
 when you have a Makefile that is not regenerating files
 properly.

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (8 of 11) [14/09/1999 09:41:47]

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variable POSIXLY_CORRECT determines the choice of unit.
 If it is not set, then the variable TABSIZE determines the
 number of chars per tab stop. The variable COLUMNS (when it
 contains the representation of a decimal integer) determines
 the output column width (for use with the -C option).
 Filenames must not be truncated to make them fit a multi-
 column output. The variables LANG, LC_ALL, LC_COLLATE,
 LC_CTYPE, LC_MESSAGES and LC_TIME have the usual meaning.
 The variable TZ gives the time zone for time strings written
 by ls. The variable LS_COLORS is used to specify the colors
 used.

BUGS

 On BSD systems, the -s option reports sizes that are half
 the correct values for files that are NFS-mounted from HP-UX
 systems. On HP-UX systems, ls reports sizes that are twice
 the correct values for files that are NFS-mounted from BSD
 systems. This is due to a flaw in HP-UX; it also affects the
 HP-UX ls program.

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (9 of 11) [14/09/1999 09:41:47]

CONFORMING TO

 POSIX 1003.2

SEE ALSO

 dircolors(1)

NOTES

 This page describes ls as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (10 of 11) [14/09/1999 09:41:47]

http://linuxsavvy.com/resources/linux/man/man1/ls.1.html (11 of 11) [14/09/1999 09:41:47]

NAME

 mkdir - make directories

SYNOPSIS

 mkdir [options] directory...

 POSIX options: [-p] [-m mode]

 GNU options (shortest form): [-p] [-m mode] [--verbose]
 [--help] [--version] [--]

DESCRIPTION

 mkdir creates directories with the specified names.

 By default, the mode of created directories is 0777
 (`a+rwx') minus the bits set in the umask.

OPTIONS

 -m mode, --mode=mode
 Set the mode of created directories to mode, which may
 be symbolic as in chmod(1) and then uses the default
 mode as the point of departure.

 -p, --parents
 Make any missing parent directories for each directory
 argument. The mode for parent directories is set to

http://linuxsavvy.com/resources/linux/man/man1/mkdir.1.html (1 of 4) [14/09/1999 09:41:49]

 the umask modified by `u+wx'. Ignore arguments
 corresponding to existing directories. (Thus, if a
 directory /a exists, then `mkdir /a' is an error, but
 `mkdir -p /a' is not.)

 --verbose
 Print a message for each created directory. This is
 most useful with --parents.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2

http://linuxsavvy.com/resources/linux/man/man1/mkdir.1.html (2 of 4) [14/09/1999 09:41:49]

NOTES

 This page describes mkdir as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/mkdir.1.html (3 of 4) [14/09/1999 09:41:49]

http://linuxsavvy.com/resources/linux/man/man1/mkdir.1.html (4 of 4) [14/09/1999 09:41:49]

NAME

 mkfifo - make FIFOs (named pipes)

SYNOPSIS

 mkfifo [options] file...

 POSIX options: [-m mode]

 GNU options (shortest form): [-m mode] [--help] [--version]
 [--]

DESCRIPTION

 mkfifo creates FIFOs (also called "named pipes") with the
 specified filenames.

 A "FIFO" is a special file type that permits independent
 processes to communicate. One process opens the FIFO file
 for writing, and another for reading, after which data can
 flow as with the usual anonymous pipe in shells or else-
 where.

 By default, the mode of created FIFOs is 0666 (`a+rw') minus
 the bits set in the umask.

http://linuxsavvy.com/resources/linux/man/man1/mkfifo.1.html (1 of 4) [14/09/1999 09:41:51]

OPTIONS

 -m mode, --mode=mode
 Set the mode of created FIFOs to mode, which is sym-
 bolic as in chmod(1) and uses the default mode as the
 point of departure.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2

http://linuxsavvy.com/resources/linux/man/man1/mkfifo.1.html (2 of 4) [14/09/1999 09:41:51]

NOTES

 This page describes mkfifo as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/mkfifo.1.html (3 of 4) [14/09/1999 09:41:51]

http://linuxsavvy.com/resources/linux/man/man1/mkfifo.1.html (4 of 4) [14/09/1999 09:41:51]

NAME

 mknod - make block or character special files

SYNOPSIS

 mknod [options] name {bc} major minor
 mknod [options] name p

 GNU options (shortest form): [-m mode] [--help] [--version]
 [--]

DESCRIPTION

 mknod creates a FIFO (named pipe), character special file,
 or block special file with the specified name.

 A special file is a triple (boolean, integer, integer)
 stored in the filesystem. The boolean chooses between char-
 acter special file and block special file. The two integers
 are the major and minor device number.

 Thus, a special file takes almost no place on disk, and is
 used only for communication with the operating system, not
 for data storage. Often special files refer to hardware dev-
 ices (disk, tape, tty, printer) or to operating system ser-
 vices (/dev/null, /dev/random).

 Block special files usually are disk-like devices (where
 data can be accessed given a block number, and e.g. it is
 meaningful to have a block cache). All other devices are
 character special devices. (Long ago the distinction was a
 different one: I/O to a character special file would be
 unbuffered, to a block special file buffered.)

http://linuxsavvy.com/resources/linux/man/man1/mknod.1.html (1 of 4) [14/09/1999 09:41:53]

 The mknod command is what creates files of this type.

 The argument following name specifies the type of file to
 make:

 p for a FIFO

 b for a block (buffered) special file

 c for a character (unbuffered) special file

 The GNU version of mknod allows u (`unbuffered') as a
 synonym for c.

 When making a block or character special file, the major and
 minor device numbers must be given after the file type (in
 decimal, or in octal with leading 0; the GNU version also
 allows hexadecimal with leading 0x). By default, the mode
 of created files is 0666 (`a+rw') minus the bits set in the
 umask.

OPTIONS

 -m mode, --mode=mode
 Set the mode of created directories to mode, which can
 be symbolic as in chmod(1) and then uses the default
 mode as the point of departure.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

http://linuxsavvy.com/resources/linux/man/man1/mknod.1.html (2 of 4) [14/09/1999 09:41:53]

 -- Terminate option list.

CONFORMING TO

 POSIX does not describe this command as it is nonportable,
 and recommends using mkfifo(1) to make FIFOs. SVID has a
 command /etc/mknod with the above syntax, but without the
 mode option.

NOTES

 On a Linux system (version 1.3.22 or newer) the file
 /usr/src/linux/Documentation/devices.tex contains a list of
 devices with device name, type, major and minor number.

 The present page describes mknod as found in the fileutils-
 3.16 package; other versions may differ slightly. Mail
 corrections and additions to aeb@cwi.nl and
 aw@mail1.bet1.puv.fi and ragnar@lightside.ddns.org . Report
 bugs in the program to fileutils-bugs@gnu.ai.mit.edu.

SEE ALSO

 chmod(1), mkfifo(1), mknod(2)

http://linuxsavvy.com/resources/linux/man/man1/mknod.1.html (3 of 4) [14/09/1999 09:41:53]

http://linuxsavvy.com/resources/linux/man/man1/mknod.1.html (4 of 4) [14/09/1999 09:41:53]

NAME

 mv - move (rename) files

SYNOPSIS

 mv [option...] source target
 mv [option...] source... target

 POSIX options: [-fi]

 GNU options (shortest form): [-bfiuv] [-S suffix] [-V
 {numbered,existing,simple}] [--help] [--version] [--]

DESCRIPTION

 mv moves or renames files or directories.

 If the last argument names an existing directory, mv moves
 each other given file into a file with the same name in that
 directory. Otherwise, if only two files are given, it
 renames the first as the second. It is an error if the last
 argument is not a directory and more than two files are
 given.

 Thus, `mv /a/x/y /b' will rename the file /a/x/y into /b/y
 if /b was an existing directory, and into /b otherwise.

 Let us call the file a given file is going to be moved into
 its destination. If destination exists, and either the -i
 option is given, or destination is unwritable, standard
 input is a terminal, and the -f option is not given, mv
 prompts the user for whether to replace the file, writing a
 question to stderr and reading an answer from stdin. If the

http://linuxsavvy.com/resources/linux/man/man1/mv.1.html (1 of 5) [14/09/1999 09:41:56]

 response is not affirmative, the file is skipped.

 When both source and destination are on the same filesystem,
 they are the same file (just the name is changed; owner,
 mode, timestamps remain unchanged). When they are on dif-
 ferent filesystems, the source file is copied and then
 deleted. mv will copy modification time, access time, user
 and group ID, and mode if possible. When copying user and/or
 group ID fails, the setuid and setgid bits are cleared in
 the copy.

POSIX OPTIONS

 -f Do not prompt for confirmation.

 -i Prompt for confirmation when destination exists. (In
 case both -f and -i are given, the last one given takes
 effect.)

GNU DETAILS

 The GNU implementation (in fileutils-3.16) is broken in the
 sense that mv can move only regular files across
 filesystems.

GNU OPTIONS

 -f, --force
 Remove existing destination files and never prompt the
 user.

 -i, --interactive
 Prompt whether to overwrite existing regular destina-
 tion files. If the response does not begin with `y' or
 `Y', the file is skipped.

http://linuxsavvy.com/resources/linux/man/man1/mv.1.html (2 of 5) [14/09/1999 09:41:56]

 -u, --update
 Do not move a nondirectory that has an existing desti-
 nation with the same or newer modification time.

 -v, --verbose
 Print the name of each file before moving it.

GNU BACKUP OPTIONS

 The GNU versions of programs like cp, mv, ln, install and
 patch will make a backup of files about to be overwritten,
 changed or destroyed if that is desired. That backup files
 are desired is indicated by the -b option. How they should
 be named is specified by the -V option. In case the name of
 the backup file is given by the name of the file extended by
 a suffix, this suffix is specified by the -S option.

 -b, --backup
 Make backups of files that are about to be overwritten
 or removed.

 -S SUFFIX, --suffix=SUFFIX
 Append SUFFIX to each backup file made. If this option
 is not specified, the value of the SIMPLE_BACKUP_SUFFIX
 environment variable is used. And if
 SIMPLE_BACKUP_SUFFIX is not set, the default is `~'.

 -V METHOD, --version-control=METHOD
 Specify how backup files are named. The METHOD argument
 can be `numbered' (or `t'), `existing' (or `nil'), or
 `never' (or `simple'). If this option is not speci-
 fied, the value of the VERSION_CONTROL environment
 variable is used. And if VERSION_CONTROL is not set,
 the default backup type is `existing'.

 This option corresponds to the Emacs variable
 `version-control'. The valid METHODs are (unique
 abbreviations are accepted):

 t, numbered
 Always make numbered backups.

http://linuxsavvy.com/resources/linux/man/man1/mv.1.html (3 of 5) [14/09/1999 09:41:56]

 nil, existing
 Make numbered backups of files that already have
 them, simple backups of the others.

 never, simple
 Always make simple backups.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE and
 LC_MESSAGES have the usual meaning. For the GNU version, the
 variables SIMPLE_BACKUP_SUFFIX and VERSION_CONTROL control
 backup file naming, as described above.

CONFORMING TO

 POSIX 1003.2, except that directory hierarchies cannot be
 moved across filesystems.

http://linuxsavvy.com/resources/linux/man/man1/mv.1.html (4 of 5) [14/09/1999 09:41:56]

NOTES

 This page describes mv as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/mv.1.html (5 of 5) [14/09/1999 09:41:56]

NAME

 rm - remove files or directories

SYNOPSIS

 rm [options] file...

 POSIX options: [-fiRr]

 GNU options (shortest form): [-dfirvR] [--help] [--version]
 [--]

DESCRIPTION

 rm removes each given file. By default, it does not remove
 directories. But when the -r or -R option is given, the
 entire directory tree below the specified directory is
 removed (and there are no limitations on the depth of direc-
 tory trees that can be removed by `rm -r'). It is an error
 when the last path component of file is either . or .. (so
 as to avoid unpleasant surprises with `rm -r .*' or so).

 If the -i option is given, or if a file is unwritable, stan-
 dard input is a terminal, and the -f option is not given, rm
 prompts the user for whether to remove the file, writing a
 question to stderr and reading an answer from stdin. If the
 response is not affirmative, the file is skipped.

http://linuxsavvy.com/resources/linux/man/man1/rm.1.html (1 of 4) [14/09/1999 09:41:58]

POSIX OPTIONS

 -f Do not prompt for confirmation. Do not write diagnostic
 messages. Do not produce an error return status if the
 only errors were nonexisting files.

 -i Prompt for confirmation. (In case both -f and -i are
 given, the last one given takes effect.)

 -r or -R
 Recursively remove directory trees.

SVID DETAILS

 The System V Interface Definition forbids removal of the
 last link to an executable binary file that is being exe-
 cuted.

GNU DETAILS

 The GNU implementation (in fileutils-3.16) is broken in the
 sense that there is an upper limit to the depth of hierar-
 chies that can be removed. (If necessary, a utility `del-
 tree' can be used to remove very deep trees.)

GNU OPTIONS

 -d, --directory
 Remove directories with unlink(2) instead of rmdir(2),
 and don't require a directory to be empty before trying
 to unlink it. Only works if you have appropriate
 privileges. Because unlinking a directory causes any
 files in the deleted directory to become unreferenced,

http://linuxsavvy.com/resources/linux/man/man1/rm.1.html (2 of 4) [14/09/1999 09:41:58]

 it is wise to fsck(8) the filesystem after doing this.

 -f, --force
 Ignore nonexistent files and never prompt the user.

 -i, --interactive
 Prompt whether to remove each file. If the response
 does not begin with `y' or `Y', the file is skipped.

 -r, -R, --recursive
 Remove the contents of directories recursively.

 -v, --verbose
 Print the name of each file before removing it.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE and
 LC_MESSAGES have the usual meaning.

http://linuxsavvy.com/resources/linux/man/man1/rm.1.html (3 of 4) [14/09/1999 09:41:58]

CONFORMING TO

 POSIX 1003.2, except for the limitation on file hierarchy
 depth.

NOTES

 This page describes rm as found in the fileutils-3.16 pack-
 age; other versions may differ slightly. Mail corrections
 and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi and
 ragnar@lightside.ddns.org . Report bugs in the program to
 fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/rm.1.html (4 of 4) [14/09/1999 09:41:58]

NAME

 rmdir - remove empty directories

SYNOPSIS

 rmdir [options] directory...

 POSIX options: [-p]

 GNU options (shortest form): [-p] [--help] [--version] [--]

DESCRIPTION

 rmdir removes empty directories.

 If any directory argument does not refer to an existing
 empty directory, it is an error.

POSIX OPTIONS

 -p If directory includes more than one pathname component,
 remove it, then strip the last component and remove the
 resulting directory, etc., until all components have
 been removed. Thus, `rmdir -p a/b/c' is equivalent to
 `rmdir a/b/c; rmdir a/b; rmdir a'.

http://linuxsavvy.com/resources/linux/man/man1/rmdir.1.html (1 of 4) [14/09/1999 09:42:00]

GNU OPTIONS

 -p, --parents
 As above.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2

EXAMPLE OF USE

 The command `rmdir foo' will remove the directory foo if it

http://linuxsavvy.com/resources/linux/man/man1/rmdir.1.html (2 of 4) [14/09/1999 09:42:00]

 is empty. To remove a nonempty directory, together with
 everything below, use `rm -r foo'.

NOTES

 This page describes rmdir as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/rmdir.1.html (3 of 4) [14/09/1999 09:42:00]

http://linuxsavvy.com/resources/linux/man/man1/rmdir.1.html (4 of 4) [14/09/1999 09:42:00]

NAME

 touch - change file timestamps

SYNOPSIS

 touch [-acm][-r ref_file|-t time] file...

 Obsolescent version:
 touch [-acm][ugly_time] file...

 GNU version:
 touch [-acfm] [-r file] [-t decimtime] [-d time]
 [--time={atime,access,use,mtime,modify}] [--date=time]
 [--reference=file] [--no-create] [--help] [--version] [--]
 file...

DESCRIPTION

 touch changes the access and/or modification timestamps of
 each specified file. These timestamps are changed to the
 current time, unless the -r option is specified, in which
 case they are changed to the corresponding timestamps of the
 file ref_file, or the -t option is specified, in which case
 they are changed to the specified time. Both times are
 changed when neither or both of the -a and -m options are
 given. Only the access or only the modification time is
 changed when one of the options -a and -m is given. If the
 file did not exist yet, it is created (as an empty file with
 mode 0666, modified by the umask), unless the -c option is
 given.

http://linuxsavvy.com/resources/linux/man/man1/touch.1.html (1 of 5) [14/09/1999 09:42:03]

POSIX OPTIONS

 -a Change the access time of file.

 -c Do not create file.

 -m Change the modification time of file.

 -r ref_file
 Use the corresponding timestamp of ref_file as the new
 value for the changed timestamp(s).

 -t time
 Use the specified time as the new value for the changed
 timestamp(s). The argument is a decimal number of the
 form
 [[CC]YY]MMDDhhmm[.SS]
 with the obvious meaning. If CC is not specified, the
 year CCYY is taken to be in the range 1969-2068. If SS
 is not specified, it is taken to be 0. It may be speci-
 fied in the range 0-61 so that it is possible to refer
 to leap seconds. The resulting time is taken as a time
 for the time zone specified by the environment variable
 TZ. It is an error if the resulting time precedes 1
 January 1970.

POSIX DETAILS

 The second form of invocation has the disadvantage that
 there is some ambiguity as to whether ugly_time is a time or
 a file argument. It is taken to be a time when no -r or -t
 option is present, there are at least two arguments, and the
 first argument is an eight- or ten-digit decimal integer.
 The format of ugly_time is MMDDhhmm[yy], where an yy in the
 range 69-99 denotes a year in the range 1969-1999, and an
 unspecified yy denotes the current year. This form is
 obsolete.

http://linuxsavvy.com/resources/linux/man/man1/touch.1.html (2 of 5) [14/09/1999 09:42:03]

GNU DETAILS

 If the first file would be a valid argument to the -t option
 and no timestamp is given with any of the -d, -r or -t
 options and the `--' argument is not given, that argument is
 interpreted as the time for the other files instead of as a
 file name.

 If changing both the access and modification times to the
 current time, touch can change the timestamps for files that
 the user running it does not own but has write permission
 for. Otherwise, the user must own the files.

GNU OPTIONS

 -a, --time=atime, --time=access, --time=use
 Change the access time only.

 -c, --no-create
 Do not create files that do not exist.

 -d, --date=time
 Use time instead of the current time. It can contain
 month names, timezones, `am' and `pm', etc.

 -f Ignored; for compatibility with BSD versions of
 touch(1).

 -m, --time=mtime, --time=modify
 Change the modification time only.

 -r file, --reference=file
 Use the times of the reference file instead of the
 current time.

 -t decimtime
 Here decimtime has the format MMDDhhmm[[CC]YY][.ss] Use
 the argument (months, days, hours, minutes, optional
 century and years, optional seconds) instead of the
 current time. Note that this format violates the POSIX

http://linuxsavvy.com/resources/linux/man/man1/touch.1.html (3 of 5) [14/09/1999 09:42:03]

 specification.

GNU STANDARD OPTIONS

 --help
 Print a usage message on standard output and exit suc-
 cessfully.

 --version
 Print version information on standard output, then exit
 successfully.

 -- Terminate option list.

ENVIRONMENT

 The variable TZ is used to interpret explicitly given times.
 The variables LANG, LC_ALL, LC_CTYPE and LC_MESSAGES have
 the usual meaning.

CONFORMING TO

 POSIX 1003.2 describes a syntax for the argument of the -t
 option that differs from that used by the GNU implementa-
 tion.

EXAMPLE OF USE

 The command `touch foo' will create the file foo if it
 didn't exist, and change the time of last modification to
 now. It is often used to guide the actions of make.

http://linuxsavvy.com/resources/linux/man/man1/touch.1.html (4 of 5) [14/09/1999 09:42:03]

NOTES

 This page describes touch as found in the fileutils-3.16
 package; other versions may differ slightly. Mail correc-
 tions and additions to aeb@cwi.nl and aw@mail1.bet1.puv.fi
 and ragnar@lightside.ddns.org . Report bugs in the program
 to fileutils-bugs@gnu.ai.mit.edu.

http://linuxsavvy.com/resources/linux/man/man1/touch.1.html (5 of 5) [14/09/1999 09:42:03]

Linux Man Pages Section 2
● _exit.2

● _llseek.2

● _newselect.2

● _sysctl.2

● accept.2

● access.2

● acct.2

● adjtimex.2

● afs_syscall.2

● alarm.2

● bdflush.2

● bind.2

● break.2

● brk.2

● cacheflush.2

● chdir.2

● chmod.2

● chown.2

● chroot.2

● clone.2

● close.2

● connect.2

● creat.2

● dup.2

● dup2.2

● execve.2

● exit.2

● fchdir.2

● fchmod.2

● fchown.2

● fcntl.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (1 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/_llseek.2.html
http://linuxsavvy.com/resources/linux/man/man2/_newselect.2.html
http://linuxsavvy.com/resources/linux/man/man2/_sysctl.2.html
http://linuxsavvy.com/resources/linux/man/man2/afs_syscall.2.html
http://linuxsavvy.com/resources/linux/man/man2/break.2.html
http://linuxsavvy.com/resources/linux/man/man2/creat.2.html
http://linuxsavvy.com/resources/linux/man/man2/dup2.2.html
http://linuxsavvy.com/resources/linux/man/man2/exit.2.html
http://linuxsavvy.com/resources/linux/man/man2/fchdir.2.html
http://linuxsavvy.com/resources/linux/man/man2/fchmod.2.html
http://linuxsavvy.com/resources/linux/man/man2/fchown.2.html

● fdatasync.2

● flock.2

● fork.2

● fstat.2

● fstatfs.2

● fsync.2

● ftruncate.2

● getdents.2

● getdomainname.2

● getdtablesize.2

● getegid.2

● geteuid.2

● getgid.2

● getgroups.2

● gethostid.2

● gethostname.2

● getitimer.2

● getpagesize.2

● getpeername.2

● getpgid.2

● getpgrp.2

● getpid.2

● getppid.2

● getpriority.2

● getresgid.2

● getresuid.2

● getrlimit.2

● getrusage.2

● getsid.2

● getsockname.2

● getsockopt.2

● gettimeofday.2

● getuid.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (2 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/fstat.2.html
http://linuxsavvy.com/resources/linux/man/man2/fstatfs.2.html
http://linuxsavvy.com/resources/linux/man/man2/ftruncate.2.html
http://linuxsavvy.com/resources/linux/man/man2/getegid.2.html
http://linuxsavvy.com/resources/linux/man/man2/geteuid.2.html
http://linuxsavvy.com/resources/linux/man/man2/getpgid.2.html
http://linuxsavvy.com/resources/linux/man/man2/getpgrp.2.html
http://linuxsavvy.com/resources/linux/man/man2/getppid.2.html
http://linuxsavvy.com/resources/linux/man/man2/getresgid.2.html
http://linuxsavvy.com/resources/linux/man/man2/getrusage.2.html

● gtty.2

● idle.2

● intro.2

● ioctl.2

● ioctl_list.2

● ioperm.2

● iopl.2

● ipc.2

● kill.2

● killpg.2

● lchown.2

● link.2

● listen.2

● llseek.2

● lock.2

● lseek.2

● lstat.2

● mkdir.2

● mknod.2

● mlock.2

● mlockall.2

● mmap.2

● modify_ldt.2

● mount.2

● mprotect.2

● mpx.2

● mremap.2

● msgctl.2

● msgget.2

● msgop.2

● msgrcv.2

● msgsnd.2

● msync.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (3 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/gtty.2.html
http://linuxsavvy.com/resources/linux/man/man2/lchown.2.html
http://linuxsavvy.com/resources/linux/man/man2/lock.2.html
http://linuxsavvy.com/resources/linux/man/man2/lstat.2.html
http://linuxsavvy.com/resources/linux/man/man2/mpx.2.html
http://linuxsavvy.com/resources/linux/man/man2/msgrcv.2.html
http://linuxsavvy.com/resources/linux/man/man2/msgsnd.2.html

● munlock.2

● munlockall.2

● munmap.2

● nanosleep.2

● nfsservctl.2

● nice.2

● obsolete.2

● oldfstat.2

● oldlstat.2

● oldolduname.2

● oldstat.2

● olduname.2

● open.2

● outb.2

● pause.2

● personality.2

● pipe.2

● poll.2

● prctl.2

● prof.2

● ptrace.2

● quotactl.2

● read.2

● readdir.2

● readlink.2

● readv.2

● reboot.2

● recv.2

● recvfrom.2

● recvmsg.2

● rename.2

● rmdir.2

● sbrk.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (4 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/munmap.2.html
http://linuxsavvy.com/resources/linux/man/man2/oldfstat.2.html
http://linuxsavvy.com/resources/linux/man/man2/oldlstat.2.html
http://linuxsavvy.com/resources/linux/man/man2/oldolduname.2.html
http://linuxsavvy.com/resources/linux/man/man2/oldstat.2.html
http://linuxsavvy.com/resources/linux/man/man2/olduname.2.html
http://linuxsavvy.com/resources/linux/man/man2/prof.2.html
http://linuxsavvy.com/resources/linux/man/man2/recvfrom.2.html
http://linuxsavvy.com/resources/linux/man/man2/recvmsg.2.html
http://linuxsavvy.com/resources/linux/man/man2/sbrk.2.html

● sched_get_priority_max.2

● sched_get_priority_min.2

● sched_getparam.2

● sched_getscheduler.2

● sched_rr_get_interval.2

● sched_setparam.2

● sched_setscheduler.2

● sched_yield.2

● select.2

● semctl.2

● semget.2

● semop.2

● send.2

● sendmsg.2

● sendto.2

● setdomainname.2

● setegid.2

● seteuid.2

● setfsgid.2

● setfsuid.2

● setgid.2

● setgroups.2

● sethostid.2

● sethostname.2

● setitimer.2

● setpgid.2

● setpgrp.2

● setpriority.2

● setregid.2

● setresgid.2

● setresuid.2

● setreuid.2

● setrlimit.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (5 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/sched_get_priority_min.2.html
http://linuxsavvy.com/resources/linux/man/man2/sched_getparam.2.html
http://linuxsavvy.com/resources/linux/man/man2/sched_getscheduler.2.html
http://linuxsavvy.com/resources/linux/man/man2/sendmsg.2.html
http://linuxsavvy.com/resources/linux/man/man2/sendto.2.html
http://linuxsavvy.com/resources/linux/man/man2/setdomainname.2.html
http://linuxsavvy.com/resources/linux/man/man2/setegid.2.html
http://linuxsavvy.com/resources/linux/man/man2/seteuid.2.html
http://linuxsavvy.com/resources/linux/man/man2/setgroups.2.html
http://linuxsavvy.com/resources/linux/man/man2/sethostid.2.html
http://linuxsavvy.com/resources/linux/man/man2/sethostname.2.html
http://linuxsavvy.com/resources/linux/man/man2/setitimer.2.html
http://linuxsavvy.com/resources/linux/man/man2/setpgrp.2.html
http://linuxsavvy.com/resources/linux/man/man2/setpriority.2.html
http://linuxsavvy.com/resources/linux/man/man2/setresgid.2.html
http://linuxsavvy.com/resources/linux/man/man2/setrlimit.2.html

● setsid.2

● setsockopt.2

● settimeofday.2

● setuid.2

● setup.2

● sgetmask.2

● shmat.2

● shmctl.2

● shmdt.2

● shmget.2

● shmop.2

● shutdown.2

● sigaction.2

● sigblock.2

● siggetmask.2

● sigmask.2

● signal.2

● sigpause.2

● sigpending.2

● sigprocmask.2

● sigreturn.2

● sigsetmask.2

● sigsuspend.2

● sigvec.2

● socket.2

● socketcall.2

● socketpair.2

● ssetmask.2

● stat.2

● statfs.2

● stime.2

● stty.2

● swapoff.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (6 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/setsockopt.2.html
http://linuxsavvy.com/resources/linux/man/man2/settimeofday.2.html
http://linuxsavvy.com/resources/linux/man/man2/sgetmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/shmat.2.html
http://linuxsavvy.com/resources/linux/man/man2/shmdt.2.html
http://linuxsavvy.com/resources/linux/man/man2/siggetmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/sigmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/sigpending.2.html
http://linuxsavvy.com/resources/linux/man/man2/sigprocmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/sigsetmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/sigsuspend.2.html
http://linuxsavvy.com/resources/linux/man/man2/ssetmask.2.html
http://linuxsavvy.com/resources/linux/man/man2/stty.2.html
http://linuxsavvy.com/resources/linux/man/man2/swapoff.2.html

● swapon.2

● symlink.2

● sync.2

● syscalls.2

● sysctl.2

● sysfs.2

● sysinfo.2

● syslog.2

● time.2

● times.2

● truncate.2

● umask.2

● umount.2

● uname.2

● undocumented.2

● unimplemented.2

● unlink.2

● uselib.2

● ustat.2

● utime.2

● utimes.2

● vfork.2

● vhangup.2

● vm86.2

● wait.2

● wait3.2

● wait4.2

● waitpid.2

● write.2

● writev.2

Linux Man Pages Section 2

http://linuxsavvy.com/resources/linux/man/man2/ (7 of 7) [14/09/1999 09:42:10]

http://linuxsavvy.com/resources/linux/man/man2/umount.2.html
http://linuxsavvy.com/resources/linux/man/man2/utimes.2.html
http://linuxsavvy.com/resources/linux/man/man2/vfork.2.html
http://linuxsavvy.com/resources/linux/man/man2/wait3.2.html
http://linuxsavvy.com/resources/linux/man/man2/waitpid.2.html
http://linuxsavvy.com/resources/linux/man/man2/writev.2.html

NAME

 _exit - terminate the current process

SYNOPSIS

 #include <unistd.h>

 void _exit(int status));

DESCRIPTION

 _exit terminates the calling process immediately. Any open
 file descriptors belonging to the process are closed; any
 children of the process are inherited by process 1, init,
 and the process's parent is sent a SIGCHLD signal.

 status is returned to the parent process as the process's
 exit status, and can be collected using one of the wait fam-
 ily of calls.

RETURN VALUE

 _exit never returns.

http://linuxsavvy.com/resources/linux/man/man2/_exit.2.html (1 of 2) [14/09/1999 09:42:12]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

NOTES

 _exit does not call any functions registered with the ANSI C
 atexit function and does not flush standard I/O buffers. To
 do these things, use exit(3).

SEE ALSO

 fork(2), execve(2), waitpid(2), wait(2), exit(3)

http://linuxsavvy.com/resources/linux/man/man2/_exit.2.html (2 of 2) [14/09/1999 09:42:12]

NAME

 accept - accept a connection on a socket

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 int accept(int s, struct sockaddr *addr, int *addrlen

DESCRIPTION

 The argument s is a socket that has been created with
 socket(2), bound to an address with bind(2), and is listen-
 ing for connections after a listen(2). The accept function
 extracts the first connection request on the queue of pend-
 ing connections, creates a new socket with the same proper-
 ties of s and allocates a new file descriptor for the
 socket. If no pending connections are present on the queue,
 and the socket is not marked as non-blocking, accept blocks
 the caller until a connection is present. If the socket is
 marked non-blocking and no pending connections are present
 on the queue, accept returns an error as described below.
 The accepted socket may not be used to accept more connec-
 tions. The original socket s remains open.

 The argument addr is a result parameter that is filled in
 with the address of the connecting entity, as known to the
 communications layer. The exact format of the addr parame-
 ter is determined by the domain in which the communication
 is occurring. The addrlen is a value-result parameter; it
 should initially contain the amount of space pointed to by

http://linuxsavvy.com/resources/linux/man/man2/accept.2.html (1 of 4) [14/09/1999 09:42:18]

 addr; on return it will contain the actual length (in bytes)
 of the address returned. This call is used with
 connection-based socket types, currently with SOCK_STREAM.

 It is possible to select(2) a socket for the purposes of
 doing an accept by selecting it for read.

 For certain protocols which require an explicit confirma-
 tion, such as ISO or DATAKIT, accept can be thought of as
 merely dequeuing the next connection request and not imply-
 ing confirmation. Confirmation can be implied by a normal
 read or write on the new file descriptor, and rejection can
 be implied by closing the new socket.

 One can obtain user connection request data without confirm-
 ing the connection by issuing a recvmsg(2) call with an
 msg_iovlen of 0 and a non-zero msg_controllen, or by issuing
 a getsockopt(2) request. Similarly, one can provide user
 connection rejection information by issuing a sendmsg(2)
 call with providing only the control information, or by cal-
 ling setsockopt(2).

RETURN VALUES

 The call returns -1 on error. If it succeeds, it returns a
 non-negative integer that is a descriptor for the accepted
 socket.

ERRORS

 The BSD man page documents five possible error returns.

 EBADF
 The descriptor is invalid.

 ENOTSOCK
 The descriptor references a file, not a socket.

http://linuxsavvy.com/resources/linux/man/man2/accept.2.html (2 of 4) [14/09/1999 09:42:18]

 EOPNOTSUPP
 The referenced socket is not of type SOCK_STREAM.

 EFAULT
 The addr parameter is not in a writable part of the
 user address space.

 EWOULDBLOCK
 The socket is marked non-blocking and no connections
 are present to be accepted.

 Various Linux kernels can return various other errors such
 as EMFILE, EINVAL, ENOSR, ENOBUFS, EAGAIN, EPERM, ECONNA-
 BORTED, ESOCKTNOSUPPORT, EPROTONOSUPPORT, ETIMEDOUT, ERES-
 TARTSYS.

CONFORMING TO

 SVr4, 4.4BSD (the accept function first appeared in BSD
 4.2). IRIX documents additional errors EMFILE and ENFILE.
 Solaris documents additional errors EINTR, ENODEV, ENOMEM,
 ENOSR and EPROTO.

SEE ALSO

 bind(2), connect(2), listen(2),

http://linuxsavvy.com/resources/linux/man/man2/accept.2.html (3 of 4) [14/09/1999 09:42:18]

http://linuxsavvy.com/resources/linux/man/man2/accept.2.html (4 of 4) [14/09/1999 09:42:18]

NAME

 access - check user's permissions for a file

SYNOPSIS

 #include <unistd.h>

 int access(const char *pathname, int mode));

DESCRIPTION

 access checks whether the process would be allowed to read,
 write or test for existence of the file (or other file sys-
 tem object) whose name is pathname. If pathname is a sym-
 bolic link permissions of the file referred to by this sym-
 bolic link are tested.

 mode is a mask consisting of one or more of R_OK, W_OK, X_OK
 and

 R_OK, W_OK and X_OK request checking whether the file exists
 and has read, write and execute permissions, respectively.
 F_OK just requests checking for the existence of the file.

 The tests depend on the permissions of the directories
 occurring in the path to the file, as given in pathname, and
 on the permissions of directories and files referred to by
 symbolic links encountered on the way.

 The check is done with the process's real uid and gid,
 rather than with the effective ids as is done when actually
 attempting an operation. This is to allow set-UID programs
 to easily determine the invoking user's authority.

http://linuxsavvy.com/resources/linux/man/man2/access.2.html (1 of 4) [14/09/1999 09:42:20]

 Only access bits are checked, not the file type or contents.
 Therefore, if a directory is found to be "writable," it
 probably means that files can be created in the directory,
 and not that the directory can be written as a file. Simi-
 larly, a DOS file may be found to be "executable," but the
 execve(2) call will still fail.

RETURN VALUE

 On success (all requested permissions granted), zero is
 returned. On error (at least one bit in mode asked for a
 permission that is denied, or some other error occurred), -1
 is returned, and errno is set appropriately.

ERRORS

 EACCES The requested access would be denied to the file or
 search permission is denied to one of the direc-
 tories in pathname.

 EROFS Write permission was requested for a file on a
 read-only filesystem.

 EFAULT pathname points outside your accessible address
 space.

 EINVAL mode was incorrectly specified.

 ENAMETOOLONG
 pathname is too long.

 ENOENT A directory component in pathname would have been
 accessible but does not exist or was a dangling sym-
 bolic link.

 ENOTDIR A component used as a directory in pathname is not,
 in fact, a directory.

http://linuxsavvy.com/resources/linux/man/man2/access.2.html (2 of 4) [14/09/1999 09:42:20]

 ENOMEM Insufficient kernel memory was available.

 ELOOP Too many symbolic links were encountered in resolv-
 ing pathname.

 EIO An I/O error occurred.

RESTRICTIONS

 access returns an error if any of the access types in the
 requested call fails, even if other types might be success-
 ful.

 access may not work correctly on NFS file systems with UID
 mapping enabled, because UID mapping is done on the server
 and hidden from the client, which checks permissions.

 Using access to check if a user is authorized to e.g. open a
 file before actually doing so using open(2) creates a secu-
 rity hole, because the user might exploit the short time
 interval between checking and opening the file to manipulate
 it.

CONFORMING TO

 SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO

 stat(2), open(2), chmod(2), setuid(2), setgid(2).

http://linuxsavvy.com/resources/linux/man/man2/access.2.html (3 of 4) [14/09/1999 09:42:20]

http://linuxsavvy.com/resources/linux/man/man2/access.2.html (4 of 4) [14/09/1999 09:42:20]

NAME

 acct - switch process accounting on or off

SYNOPSIS

 #include <unistd.h>

 int acct(const char *filename));

DESCRIPTION

 When called with the name of an existing file as argument,
 accounting is turned on, records for each terminating pro-
 cess are appended to filename as it terminates. An argument
 of NULL causes accounting to be turned off.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 ENOSYS BSD process accounting has not been enabled when the
 operating system kernel was compiled. The kernel

http://linuxsavvy.com/resources/linux/man/man2/acct.2.html (1 of 2) [14/09/1999 09:42:22]

 configuration parameter controlling this feature is
 CONFIG_BSD_PROCESS_ACCT.

 ENOMEM Out of memory.

 EPERM The calling process has no permission to enable pro-
 cess accounting.

 EACCESS The argument filename is not a regular file.

 EIO Error writing to the file filename.

 EUSERS There are no more free file structures or we run out
 of memory.

CONFORMING TO

 SVr4 (but not POSIX). SVr4 documents EACCES, EBUSY, EFAULT,
 ELOOP, ENAMETOOLONG, ENOTDIR, ENOENT, EPERM and EROFS error
 conditions, but no ENOSYS.

NOTES

 No accounting is produced for programs running when a crash
 occurs. In particular, nonterminating processes are never
 accounted for.

http://linuxsavvy.com/resources/linux/man/man2/acct.2.html (2 of 2) [14/09/1999 09:42:22]

NAME

 adjtimex - tune kernel clock

SYNOPSIS

 #include <sys/timex.h>

 int adjtimex(struct timex *buf));

DESCRIPTION

 Linux uses David L. Mills' clock adjustment algorithm.
 adjtimex reads and optionally sets adjustment parameters for
 this algorithm.

 adjtimex takes a pointer to a timex structure, updates ker-
 nel parameters from field values, and returns the same
 structure with current kernel values. This structure is
 declared as follows:

 struct timex
 {
 int modes; /* mode selector */
 long offset; /* time offset (usec) */
 long freq; /* frequency offset (scaled ppm) */
 long maxerror; /* maximum error (usec) */
 long esterror; /* estimated error (usec) */
 int status; /* clock command/status */
 long constant; /* pll time constant */
 long precision; /* clock precision (usec) (read only) */
 long tolerance; /* clock frequency tolerance (ppm)
 (read only) */
 struct timeval time; /* current time (read only) */
 long tick; /* usecs between clock ticks */
 };

http://linuxsavvy.com/resources/linux/man/man2/adjtimex.2.html (1 of 3) [14/09/1999 09:42:24]

 The modes field determines which parameters, if any, to set.
 It may contain a bitwise-or combination of zero or more of
 the following bits:

 #define ADJ_OFFSET 0x0001 /* time offset */
 #define ADJ_FREQUENCY 0x0002 /* frequency offset */
 #define ADJ_MAXERROR 0x0004 /* maximum time error */
 #define ADJ_ESTERROR 0x0008 /* estimated time error */
 #define ADJ_STATUS 0x0010 /* clock status */
 #define ADJ_TIMECONST 0x0020 /* pll time constant */
 #define ADJ_TICK 0x4000 /* tick value */
 #define ADJ_OFFSET_SINGLESHOT 0x8001 /* old-fashioned adjtime */

 Ordinary users are restricted to a zero value for mode.
 Only the superuser may set any parameters.

RETURN VALUE

 On success, adjtimex returns the clock state:

 #define TIME_OK 0 /* clock synchronized */
 #define TIME_INS 1 /* insert leap second */
 #define TIME_DEL 2 /* delete leap second */
 #define TIME_OOP 3 /* leap second in progress */
 #define TIME_WAIT 4 /* leap second has occurred */
 #define TIME_BAD 5 /* clock not synchronized */

 On failure, adjtimex returns -1 and sets errno.

ERRORS

 EFAULT
 buf does not point to writeable memory.

 EPERM
 buf.mode is non-zero and the user is not super-user.

 EINVAL
 An attempt is made to set buf.offset to a value outside

http://linuxsavvy.com/resources/linux/man/man2/adjtimex.2.html (2 of 3) [14/09/1999 09:42:24]

 the range -131071 to +131071, or to set buf.status to a
 value other than those listed above, or to set buf.tick
 to a value outside the range 900000/HZ to 1100000/HZ,
 where HZ is the system timer interrupt frequency.

CONFORMING TO

 adjtimex is Linux specific and should not be used in pro-
 grams intended to be portable. There is a similar but less
 general call adjtime in SVr4.

SEE ALSO

 settimeofday(2).

http://linuxsavvy.com/resources/linux/man/man2/adjtimex.2.html (3 of 3) [14/09/1999 09:42:24]

NAME

 alarm - set an alarm clock for delivery of a signal

SYNOPSIS

 #include <unistd.h>

 unsigned int alarm(unsigned int seconds));

DESCRIPTION

 alarm arranges for a SIGALRM signal to be delivered to the
 process in seconds seconds.

 If seconds is zero, no new alarm is scheduled.

 In any event any previously set alarm is cancelled.

RETURN VALUE

 alarm returns the number of seconds remaining until any pre-
 viously scheduled alarm was due to be delivered, or zero if
 there was no previously scheduled alarm.

http://linuxsavvy.com/resources/linux/man/man2/alarm.2.html (1 of 2) [14/09/1999 09:42:27]

NOTES

 alarm and setitimer share the same timer; calls to one will
 interfere with use of the other.

 Scheduling delays can, as ever, cause the execution of the
 process to be delayed by an arbitrary amount of time.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

SEE ALSO

 setitimer(2), signal(2), sigaction(2), gettimeofday(2),
 select(2), pause(2),

http://linuxsavvy.com/resources/linux/man/man2/alarm.2.html (2 of 2) [14/09/1999 09:42:27]

NAME

 bdflush - start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS

 int bdflush(int func, long *address);
 int bdflush(int func, long data);

DESCRIPTION

 bdflush starts, flushes, or tunes the buffer-dirty-flush
 daemon. Only the super-user may call bdflush.

 If func is negative or 0, and no daemon has been started,
 then bdflush enters the daemon code and never returns.

 If func is 1, some dirty buffers are written to disk.

 If func is 2 or more and is even (low bit is 0), then
 address is the address of a long word, and the tuning param-
 eter numbered (func-2)/2 is returned to the caller in that
 address.

 If func is 3 or more and is odd (low bit is 1), then data is
 a long word, and the kernel sets tuning parameter numbered
 (func-3)/2 to that value.

 The set of parameters, their values, and their legal ranges
 are defined in the kernel source file fs/buffer.c.

http://linuxsavvy.com/resources/linux/man/man2/bdflush.2.html (1 of 4) [14/09/1999 09:42:29]

RETURN VALUE

 If func is negative or 0 and the daemon successfully starts,
 bdflush never returns. Otherwise, the return value is 0 on
 success and -1 on failure, with errno set to indicate the
 error.

ERRORS

 EPERM Caller is not super-user.

 EFAULT address points outside your accessible address
 space.

 EBUSY An attempt was made to enter the daemon code after
 another process has already entered.

 EINVAL An attempt was made to read or write an invalid
 parameter number, or to write an invalid value to a
 parameter.

CONFORMING TO

 bdflush is Linux specific and should not be used in programs
 intended to be portable.

SEE ALSO

 fsync(2), sync(2), update(8), sync(8).

http://linuxsavvy.com/resources/linux/man/man2/bdflush.2.html (2 of 4) [14/09/1999 09:42:29]

http://linuxsavvy.com/resources/linux/man/man2/bdflush.2.html (3 of 4) [14/09/1999 09:42:29]

http://linuxsavvy.com/resources/linux/man/man2/bdflush.2.html (4 of 4) [14/09/1999 09:42:29]

NAME

 bind - bind a name to a socket

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int bind(int sockfd, struct sockaddr *my_addr, int addrlen

DESCRIPTION

 bind gives the socket, sockfd, the local address my_addr.
 my_addr is addrlen bytes long. Traditionally, this is
 called "assigning a name to a socket" (when a socket is
 created with socket(2), it exists in a name space (address
 family) but has no name assigned.)

NOTES

 Binding a name in the UNIX domain creates a socket in the
 file system that must be deleted by the caller when it is no
 longer needed (using unlink(2)).

 The rules used in name binding vary between communication
 domains. Consult the manual entries in section 4 for
 detailed information.

http://linuxsavvy.com/resources/linux/man/man2/bind.2.html (1 of 4) [14/09/1999 09:42:32]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF sockfd is not a valid descriptor.

 EINVAL The socket is already bound to an address. This may
 change in the future: see linux/unix/sock.c for
 details.

 EACCES The address is protected, and the user is not the
 super-user.

 ENOTSOCK
 Argument is a descriptor for a file, not a socket.

 The following errors are specific to UNIX domain (AF_UNIX)
 sockets:

 EINVAL The addr_len was wrong, or the socket was not in the
 AF_UNIX family.

 EROFS The socket inode would reside on a read-only file
 system.

 EFAULT my_addr points outside your accessible address
 space.

 ENAMETOOLONG
 my_addr is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of the path prefix is not a directory.

http://linuxsavvy.com/resources/linux/man/man2/bind.2.html (2 of 4) [14/09/1999 09:42:32]

 EACCES Search permission is denied on a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in resolv-
 ing my_addr.

CONFORMING TO

 SVr4, 4.4BSD (the bind function first appeared in BSD 4.2).
 SVr4 documents additional EADDRNOTAVAIL, EADDRINUSE, ENOSR
 general error conditions, and additional EIO, EISDIR and
 EROFS Unix-domain error conditions.

SEE ALSO

 accept(2), connect(2), listen(2), socket(2), getsockname(2)

http://linuxsavvy.com/resources/linux/man/man2/bind.2.html (3 of 4) [14/09/1999 09:42:32]

http://linuxsavvy.com/resources/linux/man/man2/bind.2.html (4 of 4) [14/09/1999 09:42:32]

NAME

 brk, sbrk - change data segment size

SYNOPSIS

 #include <unistd.h>

 int brk(void *end_data_segment));

 void *sbrk(ptrdiff_t increment));

DESCRIPTION

 brk sets the end of the data segment to the value specified
 by end_data_segment. end_datasegment must be greater than
 end of the text segment and it must be 16kB before the end
 of the stack.

 sbrk increments the program's data space by increment bytes.
 sbrk isn't a system call, it is just a C library wrapper.

RETURN VALUE

 On success, brk returns zero, and sbrk returns a pointer to
 the start of the new area. On error, -1 is returned, and
 errno is set to ENOMEM.

http://linuxsavvy.com/resources/linux/man/man2/brk.2.html (1 of 2) [14/09/1999 09:42:35]

CONFORMING TO

 BSD 4.3

 brk and sbrk are not defined in the C Standard and are deli-
 berately excluded from the POSIX.1 standard (see paragraphs
 B.1.1.1.3 and B.8.3.3).

SEE ALSO

 execve(2), getrlimit(2), malloc(3)

http://linuxsavvy.com/resources/linux/man/man2/brk.2.html (2 of 2) [14/09/1999 09:42:35]

NAME

 cacheflush - flush contents of instruction and/or data cache

SYNOPSIS

 #include <asm/cachectl.h>

 int cacheflush(char *addr, int nbytes, int cache

DESCRIPTION

 cacheflush flushes contents of indicated cache(s) for user
 addresses in the range addr to (addr+nbytes-1). Cache may be
 one of:

 ICACHE
 Flush the instruction cache.

 DCACHE
 Write back to memory and invalidate the affected valid
 cache lines.

 BCACHE
 Same as (ICACHE|DCACHE).

RETURN VALUE

 cacheflush returns 0 on success or -1 on error. If errors
 are detected, errno will indicate the error.

http://linuxsavvy.com/resources/linux/man/man2/cacheflush.2.html (1 of 2) [14/09/1999 09:42:36]

ERRORS

 EINVAL
 cache parameter is not one of ICACHE, DCACHE, or
 BCACHE.

 EFAULT
 Some or all of the address range addr to (addr+nbytes-
 1) is not accessible.

BUGS

 The current implementation ignores the addr and nbytes
 parameters. Therefore always the whole cache is flushed.

NOTE

 This system call is only available on MIPS based systems.
 It should not be used in programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/cacheflush.2.html (2 of 2) [14/09/1999 09:42:36]

NAME

 chdir, fchdir - change working directory

SYNOPSIS

 #include <unistd.h>

 int chdir(const char *path));
 int fchdir(int fd));

DESCRIPTION

 chdir changes the current directory to that specified in
 path.

 fchdir is identical to chdir, only that the directory is
 given as an open file descriptor.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/chdir.2.html (1 of 4) [14/09/1999 09:42:38]

ERRORS

 Depending on the file system, other errors can be returned.
 The more general errors for chdir are listed below:

 EFAULT path points outside your accessible address space.

 ENAMETOOLONG
 path is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of path is not a directory.

 EACCES Search permission is denied on a component of path.

 ELOOP Too many symbolic links were encountered in resolv-
 ing path.

 EIO An I/O error occurred.

 The general errors for fchdir are listed below:

 EBADF fd is not a valid file descriptor. EACCES Search
 permission was denied on the directory open on fd.

CONFORMING TO

 The chdir call is compatible with SVr4, SVID, POSIX, X/OPEN,
 4.4BSD. SVr4 documents additional EINTR, ENOLINK, and EMUL-
 TIHOP error conditions but has no ENOMEM. POSIX.1 does not
 have ENOMEM or ELOOP error conditions. X/OPEN does not have
 EFAULT, ENOMEM or EIO error conditions.

 The fchdir call is compatible with SVr4, 4.4BSD and X/OPEN.
 SVr4 documents additional EIO, EINTR, and ENOLINK error con-
 ditions. X/OPEN documents additional EINTR and EIO error
 conditions.

http://linuxsavvy.com/resources/linux/man/man2/chdir.2.html (2 of 4) [14/09/1999 09:42:38]

SEE ALSO

 getcwd(3), chroot(2)

http://linuxsavvy.com/resources/linux/man/man2/chdir.2.html (3 of 4) [14/09/1999 09:42:38]

http://linuxsavvy.com/resources/linux/man/man2/chdir.2.html (4 of 4) [14/09/1999 09:42:38]

NAME

 chmod, fchmod - change permissions of a file

SYNOPSIS

 #include <sys/types.h>
 #include <sys/stat.h>

 int chmod(const char *path, mode_t mode));
 int fchmod(int fildes, mode_t mode));

DESCRIPTION

 The mode of the file given by path or referenced by fildes
 is changed.

 Modes are specified by or'ing the following:

 S_ISUID 04000 set user ID on execution

 S_ISGID 02000 set group ID on execution

 S_ISVTX 01000 sticky bit

 S_IRUSR (S_IREAD)
 00400 read by owner

 S_IWUSR (S_IWRITE)
 00200 write by owner

 S_IXUSR (S_IEXEC)
 00100 execute/search by owner

http://linuxsavvy.com/resources/linux/man/man2/chmod.2.html (1 of 5) [14/09/1999 09:42:41]

 S_IRGRP 00040 read by group

 S_IWGRP 00020 write by group

 S_IXGRP 00010 execute/search by group

 S_IROTH 00004 read by others

 S_IWOTH 00002 write by others

 S_IXOTH 00001 execute/search by others

 The effective UID of the process must be zero or must match
 the owner of the file.

 If the effective UID of the process is not zero and the
 group of the file does not match the effective group ID of
 the process or one of its supplementary group IDs, the
 S_ISGID bit will be turned off, but this will not cause an
 error to be returned.

 Depending on the file system, set user ID and set group ID
 execution bits may be turned off if a file is written. On
 some file systems, only the super-user can set the sticky
 bit, which may have a special meaning (e.g., for direc-
 tories, a file can only be deleted by the owner or the
 super-user).

 On NFS file systems, restricting the permissions will
 immediately influence already open files, because the access
 control is done on the server, but open files are maintained
 by the client. Widening the permissions may be delayed for
 other clients if attribute caching is enabled on them.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/chmod.2.html (2 of 5) [14/09/1999 09:42:41]

ERRORS

 Depending on the file system, other errors can be returned.
 The more general errors for chmod are listed below:

 EPERM The effective UID does not match the owner of the
 file, and is not zero.

 EROFS The named file resides on a read-only file system.

 EFAULT path points outside your accessible address space.

 ENAMETOOLONG
 path is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of the path prefix is not a directory.

 EACCES Search permission is denied on a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in resolv-
 ing path.

 EIO An I/O error occurred.

 The general errors for fchmod are listed below:

 EBADF The file descriptor fildes is not valid.

 EROFS See above.

 EPERM See above.

 EIO See above.

http://linuxsavvy.com/resources/linux/man/man2/chmod.2.html (3 of 5) [14/09/1999 09:42:41]

CONFORMING TO

 The chmod call conforms to SVr4, SVID, POSIX, X/OPEN,
 4.4BSD. SVr4 documents EINTR, ENOLINK and EMULTIHOP
 returns, but no ENOMEM. POSIX.1 does not document EFAULT,
 ENOMEM, ELOOP or EIO error conditions, or the macros
 S_IREAD, S_IWRITE and S_IEXEC.

 The fchmod call conforms to 4.4BSD and SVr4. SVr4 documents
 additional EINTR and ENOLINK error conditions. POSIX
 requires the fchmod function if at least one of
 _POSIX_MAPPED_FILES and _POSIX_SHARED_MEMORY_OBJECTS is
 defined, and documents additional ENOSYS and EINVAL error
 conditions, but does not document EIO.

 POSIX and X/OPEN do not document the sticky bit.

SEE ALSO

 open(2), chown(2), stat(2)

http://linuxsavvy.com/resources/linux/man/man2/chmod.2.html (4 of 5) [14/09/1999 09:42:41]

http://linuxsavvy.com/resources/linux/man/man2/chmod.2.html (5 of 5) [14/09/1999 09:42:41]

NAME

 chown, fchown, lchown - change ownership of a file

SYNOPSIS

 #include <sys/types.h>
 #include <unistd.h>

 int chown(const char *path, uid_t owner, gid_t group
 int fchown(int fd, uid_t owner, gid_t group
 int lchown(const char *path, uid_t owner, gid_t group

DESCRIPTION

 The owner of the file specified by path or by fd is changed.
 Only the super-user may change the owner of a file. The
 owner of a file may change the group of the file to any
 group of which that owner is a member. The super-user may
 change the group arbitrarily.

 If the owner or group is specified as -1, then that ID is
 not changed.

 When the owner or group of an executable file are changed by
 a non-super-user, the S_ISUID and S_ISGID mode bits are
 cleared. POSIX does not specify whether this also should
 happen when root does the chown; the Linux behaviour depends
 on the kernel version. In case of a non-group-executable
 file (with clear S_IXGRP bit) the S_ISGID bit indicates man-
 datory locking, and is not cleared by a chown.

http://linuxsavvy.com/resources/linux/man/man2/chown.2.html (1 of 5) [14/09/1999 09:42:43]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 Depending on the file system, other errors can be returned.
 The more general errors for chown are listed below:

 EPERM The effective UID does not match the owner of the
 file, and is not zero; or the owner or group were
 specified incorrectly.

 EROFS The named file resides on a read-only file system.

 EFAULT path points outside your accessible address space.

 ENAMETOOLONG
 path is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of the path prefix is not a directory.

 EACCES Search permission is denied on a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in resolv-
 ing path.

 The general errors for fchown are listed below:

 EBADF The descriptor is not valid.

 ENOENT See above.

http://linuxsavvy.com/resources/linux/man/man2/chown.2.html (2 of 5) [14/09/1999 09:42:43]

 EPERM See above.

 EROFS See above.

 EIO A low-level I/O error occurred while modifying the
 inode.

NOTES

 In versions of Linux prior to 2.1.81 (and distinct from
 2.1.46), chown did not follow symbolic links. Since Linux
 2.1.81, chown does follow symbolic links, and there is a new
 system call lchown that does not follow symbolic links.
 Since Linux 2.1.86, this new call (that has the same seman-
 tics as the old chown) has got the same syscall number, and
 chown got the newly introduced number.

 The prototype for fchown is only available if __USE_BSD is
 defined.

CONFORMING TO

 The chown call conforms to SVr4, SVID, POSIX, X/OPEN. The
 4.4BSD version can only be used by the superuser (that is,
 ordinary users cannot give away files). SVr4 documents EIN-
 VAL, EINTR, ENOLINK and EMULTIHOP returns, but no ENOMEM.
 POSIX.1 does not document ENOMEM or ELOOP error conditions.

 The fchown call conforms to 4.4BSD and SVr4. SVr4 documents
 additional EINVAL, EIO, EINTR, and ENOLINK error conditions.

RESTRICTIONS

 The chown() semantics are deliberately violated on NFS file
 systems which have UID mapping enabled. Additionally, the

http://linuxsavvy.com/resources/linux/man/man2/chown.2.html (3 of 5) [14/09/1999 09:42:43]

 semantics of all system calls which access the file contents
 are violated, because chown() may cause immediate access
 revocation on already open files. Client side caching may
 lead to a delay between the time where ownership have been
 changed to allow access for a user and the time where the
 file can actually be accessed by the user on other clients.

SEE ALSO

 chmod(2), flock(2)

http://linuxsavvy.com/resources/linux/man/man2/chown.2.html (4 of 5) [14/09/1999 09:42:43]

http://linuxsavvy.com/resources/linux/man/man2/chown.2.html (5 of 5) [14/09/1999 09:42:43]

NAME

 chroot - change root directory

SYNOPSIS

 #include <unistd.h>

 int chroot(const char *path));

DESCRIPTION

 chroot changes the root directory to that specified in path.
 This directory will be used for path names beginning with /.
 The root directory is inherited by all children of the
 current process.

 Only the super-user may change the root directory.

 Note that this call does not change the current working
 directory, so that `.' can be outside the tree rooted at
 `/'.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/chroot.2.html (1 of 4) [14/09/1999 09:42:45]

ERRORS

 Depending on the file system, other errors can be returned.
 The more general errors are listed below:

 EPERM The effective UID is not zero.

 EFAULT path points outside your accessible address space.

 ENAMETOOLONG
 path is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of path is not a directory.

 EACCES Search permission is denied on a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in resolv-
 ing path.

 EIO An I/O error occurred.

CONFORMING TO

 SVr4, SVID, 4.4BSD, X/OPEN. This function is not part of
 POSIX.1. SVr4 documents additional EINTR, ENOLINK and EMUL-
 TIHOP error conditions. X/OPEN does not document EIO,
 ENOMEM or EFAULT error conditions. This interface is marked
 as legacy by X/OPEN.

http://linuxsavvy.com/resources/linux/man/man2/chroot.2.html (2 of 4) [14/09/1999 09:42:45]

SEE ALSO

 chdir(2)

http://linuxsavvy.com/resources/linux/man/man2/chroot.2.html (3 of 4) [14/09/1999 09:42:45]

http://linuxsavvy.com/resources/linux/man/man2/chroot.2.html (4 of 4) [14/09/1999 09:42:45]

NAME

 __clone - create a child process

SYNOPSIS

 #include <sched.h>

 int __clone(int (*fn)) (void *arg)), void *child_stack

DESCRIPTION

 __clone creates a new process like fork(2) does. Unlike
 fork(2), __clone allows the child process to share parts of
 its execution context with its parent process, such as the
 memory space, the table of file descriptors, and the table
 of signal handlers. The main use of __clone is to implement
 threads: multiple threads of control in a program that run
 concurrently in a shared memory space.

 When the child process is created, it executes the function
 application fn(arg). The fn argument is a pointer to a
 function that is called by the child process at the begin-
 ning of its execution. The arg argument is passed back to
 the fn function.

 When the fn(arg) function application returns, the child
 process terminates. The integer returned by fn is the exit
 code for the child process. The child process may also ter-
 minate explicitely by calling exit(1) or after receiving a
 fatal signal.

 The child_stack argument specifies the location of the stack

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (1 of 6) [14/09/1999 09:42:49]

 used by the child process. Since the child and parent
 processes may share memory, it is not possible in general
 for the child process to execute in the same stack as the
 parent process. The parent process must therefore set up
 memory space for the child stack and pass a pointer to this
 space to __clone. Stacks grow downwards on all processors
 that run Linux (except the HP PA processors), so child_stack
 usually points to the topmost address of the memory space
 set up for the child stack.

 The low byte of flags contains the number of the signal sent
 to the parent when the child dies. flags may also be
 bitwise-or'ed with one or several of the following con-
 stants, in order to specify what is shared between the
 parent and child processes:

 CLONE_VM
 If CLONE_VM is set, the parent and the child processes
 run in the same memory space. In particular, memory
 writes performed by the parent process or by the child
 process are also visible in the other process. More-
 over, any memory mapping or unmapping performed with
 mmap(2) or munmap(2) by the child or parent process
 also affects the other process.

 If CLONE_VM is not set, the child process runs in a
 separate copy of the memory space of the parent at the
 time of __clone. Memory writes or file
 mapping/unmapping performed by one of the processes
 does not affect the other, as in the case of fork(2).

 CLONE_FS
 If CLONE_FS is set, the parent and the child processes
 share the same file system information. This includes
 the root of the file system, the current working direc-
 tory, and the umask. Any call to chroot(2), chdir(2),
 or umask(2) performed by the parent or child process
 also takes effect in the other process.

 If CLONE_FS is not set, the child process works on a
 copy of the file system information of the parent at
 the time of __clone. Calls to
 chroot(2),chdir(2),umask(2) performed later by one of
 the processes does not affect the other.

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (2 of 6) [14/09/1999 09:42:49]

 CLONE_FILES
 If CLONE_FILES is set, the parent and the child
 processes share the same file descriptor table. File
 descriptors always refer to the same files in the
 parent and in the child process. Any file descriptor
 created by the parent process or by the child process
 is also valid in the other process. Similarly, if one
 of the processes closes a file descriptor, or changes
 its associated flags, the other process is also
 affected.

 If CLONE_FILES is not set, the child process inherits a
 copy of all file descriptors opened in the parent pro-
 cess at the time of __clone. Operations on file
 descriptors performed later by one of the parent or
 child processes do not affect the other.

 CLONE_SIGHAND
 If CLONE_SIGHAND is set, the parent and the child
 processes share the same table of signal handlers. If
 the parent or child process calls sigaction(2) to
 change the behavior associated with a signal, the
 behavior is also changed in the other process as well.
 However, the parent and child processes still have
 distinct signal masks and sets of pending signals. So,
 one of them may block or unblock some signals using
 sigprocmask(2) without affecting the other process.

 If CLONE_SIGHAND is not set, the child process inherits
 a copy of the signal handlers of its parent at the time
 __clone is called. Calls to sigaction(2) performed
 later by one of the processes have no effect on the
 other process.

 CLONE_PID
 If CLONE_PID is set, the child process is created with
 the same process ID as its parent process.

 If CLONE_PID is not set, the child process possesses a
 unique process ID, distinct from that of its parent.

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (3 of 6) [14/09/1999 09:42:49]

RETURN VALUE

 On success, the PID of the child process is returned in the
 parent's thread of execution. On failure, a -1 will be
 returned in the parent's context, no child process will be
 created, and errno will be set appropriately.

ERRORS

 EAGAIN
 Too many processes are already running.

 ENOMEM
 __clone cannot allocate sufficient memory to allocate a
 task structure for the child, or to copy those parts of
 the parent's context that need to be copied.

BUGS

 As of version 2.1.97 of the kernel, the CLONE_PID flag
 should not be used, since other parts of the kernel and most
 system software still assume that process IDs are unique.

 There is no entry for __clone in libc version 5. libc 6
 (a.k.a. glibc 2) provides __clone as described in this
 manual page.

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (4 of 6) [14/09/1999 09:42:49]

CONFORMING TO

 The __clone call is Linux-specific and should not be used in
 programs intended to be portable. For programming threaded
 applications (multiple threads of control in the same memory
 space), it is better to use a library implementing the POSIX
 1003.1c thread API, such as the LinuxThreads library. See
 pthread_create(3thr).

 This manual page corresponds to kernels 2.0.x and 2.1.x, and
 to glibc 2.0.x.

SEE ALSO

 fork(2), pthread_create(3thr).

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (5 of 6) [14/09/1999 09:42:49]

http://linuxsavvy.com/resources/linux/man/man2/clone.2.html (6 of 6) [14/09/1999 09:42:49]

NAME

 close - close a file descriptor

SYNOPSIS

 #include <unistd.h>

 int close(int fd));

DESCRIPTION

 close closes a file descriptor, so that it no longer refers
 to any file and may be reused. Any locks held on the file it
 was associated with, and owned by the process, are removed
 (regardless of the file descriptor that was used to obtain
 the lock).

 If fd is the last copy of a particular file descriptor the
 resources associated with it are freed; if the descriptor
 was the last reference to a file which has been removed
 using unlink the file is deleted.

RETURN VALUE

 close returns zero on success, or -1 if an error occurred.

http://linuxsavvy.com/resources/linux/man/man2/close.2.html (1 of 2) [14/09/1999 09:42:51]

ERRORS

 EBADF
 fd isn't a valid open file descriptor.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3. SVr4 documents an addi-
 tional ENOLINK error condition.

NOTES

 Not checking the return value of close is a common but
 nevertheless serious programming error. File system imple-
 mentations which use techniques as ``write-behind'' to
 increase performance may lead to write(2) succeeding,
 although the data has not been written yet. The error
 status may be reported at a later write operation, but it is
 guaranteed to be reported on closing the file. Not checking
 the return value when closing the file may lead to silent
 loss of data. This can especially be observed with NFS and
 disk quotas.

SEE ALSO

 open(2), fcntl(2), shutdown(2), unlink(2), fclose(3).

http://linuxsavvy.com/resources/linux/man/man2/close.2.html (2 of 2) [14/09/1999 09:42:51]

NAME

 connect - initiate a connection on a socket

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int connect(int sockfd, struct sockaddr *serv_addr, int
 addrlen);

DESCRIPTION

 The parameter sockfd is a socket. If it is of type
 SOCK_DGRAM, this call specifies the peer with which the
 socket is to be associated; this address is that to which
 datagrams are to be sent, and the only address from which
 datagrams are to be received. If the socket is of type
 SOCK_STREAM , this call attempts to make a connection to
 another socket. The other socket is specified by serv_addr,
 which is an address in the communications space of the
 socket. Each communications space interprets the serv_addr,
 parameter in its own way. Generally, stream sockets may
 successfully connect only once; datagram sockets may use
 connect multiple times to change their association.
 Datagram sockets may dissolve the association by connecting
 to an invalid address, such as a null address.

http://linuxsavvy.com/resources/linux/man/man2/connect.2.html (1 of 4) [14/09/1999 09:42:54]

RETURN VALUE

 If the connection or binding succeeds, zero is returned. On
 error, -1 is returned, and errno is set appropriately.

ERRORS

 The following are general socket errors only. There may be
 other domain-specific error codes.

 EBADF Bad descriptor.

 EFAULT The socket structure address is outside your address
 space.

 ENOTSOCK
 The descriptor is not associated with a socket.

 EISCONN The socket is already connected.

 ECONNREFUSED
 Connection refused at server.

 ETIMEDOUT
 Timeout while attempting connection.

 ENETUNREACH
 Network is unreachable.

 EADDRINUSE
 Address is already in use.

 EINPROGRESS
 The socket is non-blocking and the connection cannot
 be completed immediately. It is possible to
 select(2) for completion by selecting the socket for
 writing. After select indicates writability, use
 getsockopt(2) to read the SO_ERROR option at level
 SOL_SOCKET to determine whether connect completed
 successfully (SO_ERROR is zero) or unsuccessfully

http://linuxsavvy.com/resources/linux/man/man2/connect.2.html (2 of 4) [14/09/1999 09:42:54]

 (SO_ERROR is one of the usual error codes listed
 above, explaining the reason for the failure).

 EALREADY
 The socket is non-blocking and a previous connection
 attempt has not yet been completed.

CONFORMING TO

 SVr4, 4.4BSD (the connect function first appeared in BSD
 4.2). SVr4 documents additional general error codes EAD-
 DRNOTAVAIL, EINVAL, EAFNOSUPPORT, EALREADY, EINTR, EPROTO-
 TYPE, ENOSR. It also documents many additional error condi-
 tions not described here.

SEE ALSO

 accept(2), bind(2), listen(2), socket(2), getsockname(2)

http://linuxsavvy.com/resources/linux/man/man2/connect.2.html (3 of 4) [14/09/1999 09:42:54]

http://linuxsavvy.com/resources/linux/man/man2/connect.2.html (4 of 4) [14/09/1999 09:42:54]

NAME

 dup, dup2 - duplicate a file descriptor

SYNOPSIS

 #include <unistd.h>

 int dup(int oldfd));
 int dup2(int oldfd, int newfd));

DESCRIPTION

 dup and dup2 create a copy of the file descriptor oldfd.

 The old and new descriptors may be used interchangeably.
 They share locks, file position pointers and flags; for
 example, if the file position is modified by using lseek on
 one of the descriptors, the position is also changed for the
 other.

 The two descriptors do not share the close-on-exec flag,
 however.

 dup uses the lowest-numbered unused descriptor for the new
 descriptor.

 dup2 makes newfd be the copy of oldfd, closing newfd first
 if necessary.

http://linuxsavvy.com/resources/linux/man/man2/dup.2.html (1 of 3) [14/09/1999 09:42:57]

RETURN VALUE

 dup and dup2 return the new descriptor, or -1 if an error
 occurred (in which case, errno is set appropriately).

ERRORS

 EBADF
 oldfd isn't an open file descriptor, or newfd is out of
 the allowed range for file descriptors.

 EMFILE
 The process already has the maximum number of file
 descriptors open and tried to open a new one.

WARNING

 The error returned by dup2 is different to that returned by
 fcntl(...,F_DUPFD,...) when newfd is out of range. On some
 systems dup2 also sometimes returns EINVAL like F_DUPFD.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3. SVr4 documents addi-
 tional EINTR and ENOLINK error conditions. POSIX.1 adds
 EINTR.

http://linuxsavvy.com/resources/linux/man/man2/dup.2.html (2 of 3) [14/09/1999 09:42:57]

SEE ALSO

 fcntl (2), open (2), close (2).

http://linuxsavvy.com/resources/linux/man/man2/dup.2.html (3 of 3) [14/09/1999 09:42:57]

NAME

 execve - execute program

SYNOPSIS

 #include <unistd.h>

 int execve (const char *filename, char *const argv [], char
 *const envp[]);

DESCRIPTION

 execve() executes the program pointed to by filename.
 filename must be either a binary executable, or a script
 starting with a line of the form "#! interpreter [arg]". In
 the latter case, the interpreter must be a valid pathname
 for an executable which is not itself a script, which will
 be invoked as interpreter [arg] filename.

 execve() does not return on success, and the text, data,
 bss, and stack of the calling process are overwritten by
 that of the program loaded. The program invoked inherits
 the calling process's PID, and any open file descriptors
 that are not set to close on exec. Signals pending on the
 parent process are cleared. Any signals set to be caught by
 the calling process are reset to their default behaviour.

 If the current program is being ptraced, a SIGTRAP is sent
 to it after a successful execve().

 If the executable is an a.out dynamically-linked binary exe-
 cutable containing shared-library stubs, the Linux dynamic
 linker ld.so(8) is called at the start of execution to bring

http://linuxsavvy.com/resources/linux/man/man2/execve.2.html (1 of 5) [14/09/1999 09:43:01]

 needed shared libraries into core and link the executable
 with them.

 If the executable is a dynamically-linked ELF executable,
 the interpreter named in the PT_INTERP segment is used to
 load the needed shared libraries. This interpreter is typi-
 cally /lib/ld-linux.so.1 for binaries linked with the Linux
 libc version 5, or /lib/ld-linux.so.2 for binaries linked
 with the GNU libc version 2.

RETURN VALUE

 On success, execve() does not return, on error -1 is
 returned, and errno is set appropriately.

ERRORS

 EACCES The file or a script interpreter is not a regular
 file.

 EACCES Execute permission is denied for the file or a
 script interpreter.

 EACCES The file system is mounted noexec.

 EPERM The file system is mounted nosuid, the user is not
 the superuser, and the file has an SUID or SGID bit
 set.

 EPERM The process is being traced, the user is not the
 superuser and the file has an SUID or SGID bit set.

 E2BIG The argument list is too big.

 ENOEXEC An executable is not in a recognised format, is for
 the wrong architecture, or has some other format
 error that means it cannot be executed.

http://linuxsavvy.com/resources/linux/man/man2/execve.2.html (2 of 5) [14/09/1999 09:43:01]

 EFAULT filename points outside your accessible address
 space.

 ENAMETOOLONG
 filename is too long.

 ENOENT The file filename or a script or ELF interpreter
 does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR A component of the path prefix of filename or a
 script or ELF interpreter is not a directory.

 EACCES Search permission is denied on a component of the
 path prefix of filename or the name of a script
 interpreter.

 ELOOP Too many symbolic links were encountered in resolv-
 ing filename or the name of a script or ELF inter-
 preter.

 ETXTBUSY
 Executable was open for writing by one or more
 processes.

 EIO An I/O error occurred.

 ENFILE The limit on the total number of files open on the
 system has been reached.

 EMFILE The process has the maximum number of files open.

 EINVAL An ELF executable had more than one PT_INTERP seg-
 ment (i.e., tried to name more than one inter-
 preter).

 EISDIR An ELF interpreter was a directory.

 ELIBBAD An ELF interpreter was not in a recognised format.

http://linuxsavvy.com/resources/linux/man/man2/execve.2.html (3 of 5) [14/09/1999 09:43:01]

CONFORMING TO

 SVr4, SVID, X/OPEN, BSD 4.3. POSIX does not document the #!
 behavior but is otherwise compatible. SVr4 documents addi-
 tional error conditions EAGAIN, EINTR, ELIBACC, ENOLINK,
 EMULTIHOP; POSIX does not document ETXTBSY, EPERM, EFAULT,
 ELOOP, EIO, ENFILE, EMFILE, EINVAL, EISDIR or ELIBBAD error
 conditions.

NOTES

 SUID and SGID processes can not be ptrace()d SUID or SGID.

 A maximum line length of 127 characters is allowed for the
 first line in a #! executable shell script.

 Linux ignores the SUID and SGID bits on scripts.

SEE ALSO

 ld.so(8), execl(3), fork(2)

http://linuxsavvy.com/resources/linux/man/man2/execve.2.html (4 of 5) [14/09/1999 09:43:01]

http://linuxsavvy.com/resources/linux/man/man2/execve.2.html (5 of 5) [14/09/1999 09:43:01]

NAME

 fcntl - manipulate file descriptor

SYNOPSIS

 #include <unistd.h>
 #include <fcntl.h>

 int fcntl(int fd, int cmd));
 int fcntl(int fd, int cmd, long arg

DESCRIPTION

 fcntl performs one of various miscellaneous operations on
 fd. The operation in question is determined by cmd:

 F_DUPFD Makes arg be a copy of fd, closing fd first if
 necessary.

 The same functionality can be more easily achieved
 by using dup2(2).

 The old and new descriptors may be used inter-
 changeably. They share locks, file position
 pointers and flags; for example, if the file posi-
 tion is modified by using lseek on one of the
 descriptors, the position is also changed for the
 other.

 The two descriptors do not share the close-on-exec
 flag, however. The close-on-exec flag of the copy
 is off, meaning that it will be closed on exec.

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (1 of 6) [14/09/1999 09:43:10]

 On success, the new descriptor is returned.

 F_GETFD Read the close-on-exec flag. If the low-order bit
 is 0, the file will remain open across exec, other-
 wise it will be closed.

 F_SETFD Set the close-on-exec flag to the value specified
 by arg (only the least significant bit is used).

 F_GETFL Read the descriptor's flags (all flags (as set by
 open(2)) are returned).

 F_SETFL Set the descriptor's flags to the value specified
 by arg. Only O_APPEND and O_NONBLOCK may be set.

 The flags are shared between copies (made with dup
 etc.) of the same file descriptor.

 The flags and their semantics are described in
 open(2).

 F_GETLK, F_SETLK and F_SETLKW
 Manage discretionary file locks. The third argu-
 ment arg is a pointer to a struct flock (that may
 be overwritten by this call).

 F_GETLK Return the flock structure that prevents us from
 obtaining the lock, or set the l_type field of the
 lock to F_UNLCK if there is no obstruction.

 F_SETLK The lock is set (when l_type is F_RDLCK or F_WRLCK)
 or cleared (when it is F_UNLCK). If the lock is
 held by someone else, this call returns -1 and sets
 errno to EACCES or EAGAIN.

 F_SETLKW Like F_SETLK, but instead of returning an error we
 wait for the lock to be released. If a signal that
 is to be caught is received while fcntl() is wait-
 ing, it is interrupted and returns immediately
 (with return value -1 and errno set to EINTR).

 F_GETOWN Get the process ID or process group currently
 receiving SIGIO and SIGURG signals for events on
 file descriptor fd. Process groups are returned as
 negative values.

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (2 of 6) [14/09/1999 09:43:10]

 F_SETOWN Set the process ID or process group that will
 receive SIGIO and SIGURG signals for events on file
 descriptor fd. Process groups are specified using
 negative values.

 If you set the O_ASYNC status flag on a file
 descriptor (either by providing this flag with the
 open call, or by using the F_SETFL command of
 fcntl), a SIGIO signal is sent whenever input or
 output becomes possible on that file descriptor.
 The process or process group to receive the signal
 can be selected by using the F_SETOWN command to
 the fcntl function. If the file descriptor is a
 socket, this also selects the recipient of SIGURG
 signals that are delivered when out-of-band data
 arrives on that socket. (SIGURG is sent in any
 situation where select would report the socket as
 having an "exceptional condition".) If the file
 descriptor corresponds to a terminal device, then
 SIGIO signals are sent to the foreground process
 group of the terminal.

 The use of O_ASYNC, F_GETOWN, F_SETOWN is BSD-
 specific. POSIX has asynchronous I/O and the
 aio_sigevent structure to achieve similar things.

RETURN VALUE

 For a successful call, the return value depends on the
 operation:

 F_DUPFD The new descriptor.

 F_GETFD Value of flag.

 F_GETFL Value of flags.

 F_GETOWN Value of descriptor owner.

 F_SETFD, F_SETFL, F_GETLK, F_SETLK, F_SETLKW Some value dif-

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (3 of 6) [14/09/1999 09:43:10]

 ferent from -1.

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES Operation is prohibited by locks held by other
 processes.

 EAGAIN Operation is prohibited because the file has been
 memory-mapped by another process.

 EDEADLK It was detected that the specified F_SETLKW command
 would cause a deadlock.

 EBADF fd is not an open file descriptor.

 EINTR The F_SETLKW command was interrupted by a signal.

 EINVAL For F_DUPFD, arg is negative or is greater than the
 maximum allowable value.

 EMFILE For F_DUPFD, the process already has the maximum
 number of file descriptors open.

 ENOLCK Too many segment locks open, lock table is full.

NOTES

 The errors returned by dup2 are different from those
 returned by F_DUPFD.

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (4 of 6) [14/09/1999 09:43:10]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3. Only the operations
 F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL, F_GETLK,
 F_SETLK and F_SETLKW are specified in POSIX.1; F_GETOWN and
 F_SETOWN are BSDisms not supported in SVr4. The flags legal
 for F_GETFL/F_SETFL are those supported by open(2) and vary
 between these systems; O_APPEND, O_NONBLOCK, O_RDONLY, and
 O_RDWR are specified in POSIX.1. SVr4 supports several
 other options and flags not documented here.
 POSIX.1 documents an additional EINTR condition. SVr4 docu-
 ments additional EFAULT, EINTR, EIO, ENOLINK and EOVERFLOW
 error conditions.

SEE ALSO

 dup2(2), open(2), socket(2), flock(2)

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (5 of 6) [14/09/1999 09:43:10]

http://linuxsavvy.com/resources/linux/man/man2/fcntl.2.html (6 of 6) [14/09/1999 09:43:10]

NAME

 fdatasync - synchronize a file's in-core data with that on
 disk

SYNOPSIS

 #include <unistd.h>

 #ifdef _POSIX_SYNCHRONIZED_IO

 int fdatasync(int fd));

 #endif

DESCRIPTION

 fdatasync flushes all data buffers of a file to disk (before
 the system call returns). It resembles fsync but is not
 required to update the metadata such as access time.

 Applications that access databases or log files often write
 a tiny data fragment (e.g., one line in a log file) and then
 call fsync immediately in order to ensure that the written
 data is physically stored on the harddisk. Unfortunately,
 fsync will always initiate two write operations: one for the
 newly written data and another one in order to update the
 modification time stored in the inode. If the modification
 time is not a part of the transaction concept fdatasync can
 be used to avoid unnecessary inode disk write operations.

http://linuxsavvy.com/resources/linux/man/man2/fdatasync.2.html (1 of 2) [14/09/1999 09:43:12]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF fd is not a valid file descriptor open for writing.

 EROFS, EINVAL
 fd is bound to a special file which does not support
 synchronization.

 EIO An error occurred during synchronization.

BUGS

 Currently (Linux 2.0.23) fdatasync is equivalent to fsync.

CONFORMING TO

 POSIX1b (formerly POSIX.4)

SEE ALSO

 fsync(2), B.O. Gallmeister, POSIX.4, O'Reilly, pp. 220-223
 and 343.

http://linuxsavvy.com/resources/linux/man/man2/fdatasync.2.html (2 of 2) [14/09/1999 09:43:12]

NAME

 flock - apply or remove an advisory lock on an open file

SYNOPSIS

 #include <sys/file.h>

 int flock(int fd, int operation)

DESCRIPTION

 Apply or remove an advisory lock on an open file. The file
 is specified by fd. Valid operations are given below:

 LOCK_SH Shared lock. More than one process may hold
 a shared lock for a given file at a given
 time.

 LOCK_EX Exclusive lock. Only one process may hold an
 exclusive lock for a given file at a given
 time.

 LOCK_UN Unlock.

 LOCK_NB Don't block when locking. May be specified
 (by or'ing) along with one of the other
 operations.

 A single file may not simultaneously have both shared and
 exclusive locks.

http://linuxsavvy.com/resources/linux/man/man2/flock.2.html (1 of 2) [14/09/1999 09:43:14]

 A file is locked (i.e., the inode), not the file descriptor.
 So, dup(2) and fork(2) do not create multiple instances of a
 lock.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EWOULDBLOCK
 The file is locked and the LOCK_NB flag was selected.

CONFORMING TO

 4.4BSD (the flock(2) call first appeared in 4.2BSD).

SEE ALSO

 open(2), close(2), dup(2), execve(2), fcntl(2), fork(2).
 There are also locks.txt and mandatory.txt in
 /usr/src/linux/Documentation.

http://linuxsavvy.com/resources/linux/man/man2/flock.2.html (2 of 2) [14/09/1999 09:43:14]

NAME

 fork, vfork - create a child process

SYNOPSIS

 #include <unistd.h>

 pid_t fork(void);
 pid_t vfork(void);

DESCRIPTION

 fork creates a child process that differs from the parent
 process only in its PID and PPID, and in the fact that
 resource utilizations are set to 0. File locks and pending
 signals are not inherited.

 Under Linux, fork is implemented using copy-on-write pages,
 so the only penalty incurred by fork is the time and memory
 required to duplicate the parent's page tables, and to
 create a unique task structure for the child.

RETURN VALUE

 On success, the PID of the child process is returned in the
 parent's thread of execution, and a 0 is returned in the
 child's thread of execution. On failure, a -1 will be
 returned in the parent's context, no child process will be
 created, and errno will be set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/fork.2.html (1 of 2) [14/09/1999 09:43:16]

ERRORS

 EAGAIN
 fork cannot allocate sufficient memory to copy the
 parent's page tables and allocate a task structure for
 the child.

 ENOMEM
 fork failed to allocate the necessary kernel structures
 because memory is tight.

BUGS

 Under Linux, vfork is merely an alias for fork.

CONFORMING TO

 The fork call conforms to SVr4, SVID, POSIX, X/OPEN, BSD
 4.3.

SEE ALSO

 clone(2), execve(2), wait(2)

http://linuxsavvy.com/resources/linux/man/man2/fork.2.html (2 of 2) [14/09/1999 09:43:16]

NAME

 fsync - synchronize a file's complete in-core state with
 that on disk

SYNOPSIS

 #include <unistd.h>

 int fsync(int fd));

DESCRIPTION

 fsync copies all in-core parts of a file to disk.

 In some applications, fdatasync is a more efficient alterna-
 tive to fsync.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF fd is not a valid file descriptor open for writing.

http://linuxsavvy.com/resources/linux/man/man2/fsync.2.html (1 of 2) [14/09/1999 09:43:20]

 EROFS, EINVAL
 fd is bound to a special file which does not support
 synchronization.

 EIO An error occurred during synchronization.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

SEE ALSO

 bdflush(2), fdatasync(2), sync(2), update(8), sync(8)

http://linuxsavvy.com/resources/linux/man/man2/fsync.2.html (2 of 2) [14/09/1999 09:43:20]

NAME

 getdents - get directory entries

SYNOPSIS

 #include <unistd.h>
 #include <linux/dirent.h>
 #include <linux/unistd.h>

 _syscall3(int, getdents, uint, fd, struct dirent

 int getdents(unsigned int fd, struct dirent *dirp, unsigned int count

DESCRIPTION

 getdents reads several dirent structures from the directory
 pointed at by fd into the memory area pointed to by dirp.
 The parameter count is the size of the memory area.

 The dirent structure is declared as follows:

 struct dirent
 {
 long d_ino; /* inode number */
 off_t d_off; /* offset to next dirent */
 unsigned short d_reclen; /* length of this dirent */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */
 }

 d_ino is an inode number. d_off is the distance from the
 start of the directory to the start of the next dirent.
 d_reclen is the size of this entire dirent. d_name is a
 null-terminated file name.

 This call supersedes readdir(2).

http://linuxsavvy.com/resources/linux/man/man2/getdents.2.html (1 of 3) [14/09/1999 09:43:23]

RETURN VALUE

 On success, the number of bytes read is returned. On end of
 directory, 0 is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF Invalid file descriptor fd.

 EFAULT Argument points outside the calling process's
 address space.

 EINVAL Result buffer is too small.

 ENOENT No such directory.

 ENOTDIR File descriptor does not refer to a directory.

CONFORMING TO

 SVr4, SVID. SVr4 documents additional ENOLINK, EIO error
 conditions.

SEE ALSO

 readdir(2), readdir(3)

http://linuxsavvy.com/resources/linux/man/man2/getdents.2.html (2 of 3) [14/09/1999 09:43:23]

http://linuxsavvy.com/resources/linux/man/man2/getdents.2.html (3 of 3) [14/09/1999 09:43:23]

NAME

 getdomainname, setdomainname - get/set domain name

SYNOPSIS

 #include <unistd.h>

 int getdomainname(char *name, size_t len));
 int setdomainname(const char *name, size_t len));

DESCRIPTION

 These functions are used to access or to change the domain
 name of the current processor.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 For getdomainname, name points to NULL or name is
 longer than len.

http://linuxsavvy.com/resources/linux/man/man2/getdomainname.2.html (1 of 3) [14/09/1999 09:43:25]

 EPERM
 For setdomainname, the caller was not the superuser.

 EINVAL
 For setdomainname, len was too long.

CONFORMING TO

 POSIX does not specify these calls.

BUGS

 getdomainname is not compliant with other implementations,
 since they always return len bytes, even if name is longer.
 Linux, however, returns EINVAL in this case (as of DLL 4.4.1
 libraries).

NOTES

 Under Linux, getdomainname is implemented at the library
 level by calling uname(2).

SEE ALSO

 gethostname(2), sethostname(2), uname(2)

http://linuxsavvy.com/resources/linux/man/man2/getdomainname.2.html (2 of 3) [14/09/1999 09:43:25]

http://linuxsavvy.com/resources/linux/man/man2/getdomainname.2.html (3 of 3) [14/09/1999 09:43:25]

NAME

 getdtablesize - get descriptor table size

SYNOPSIS

 #include <unistd.h>

 int getdtablesize(void);

DESCRIPTION

 getdtablesize returns the maximum number of files a process
 can have open.

NOTES

 getdtablesize is implemented as a library function in DLL
 4.4.1. This function returns OPEN_MAX (set to 256 in Linux
 2.0.23) if OPEN_MAX was defined when the library was com-
 piled. Otherwise, -1 is returned, and errno is set to
 ENOSYS.

CONFORMING TO

 SVr4, 4.4BSD (the getdtablesize function first appeared in

http://linuxsavvy.com/resources/linux/man/man2/getdtablesize.2.html (1 of 2) [14/09/1999 09:43:26]

 BSD 4.2).

SEE ALSO

 close(2), dup(2), open(2)

http://linuxsavvy.com/resources/linux/man/man2/getdtablesize.2.html (2 of 2) [14/09/1999 09:43:26]

NAME

 getgid, getegid - get group identity

SYNOPSIS

 #include <unistd.h>
 #include <sys/types.h>

 gid_t getgid(void);
 gid_t getegid(void);

DESCRIPTION

 getgid returns the real group ID of the current process.

 getegid returns the effective group ID of the current pro-
 cess.

 The real ID corresponds to the ID of the calling process.
 The effective ID corresponds to the set ID bit on the file
 being executed.

ERRORS

 These functions are always successful.

http://linuxsavvy.com/resources/linux/man/man2/getgid.2.html (1 of 2) [14/09/1999 09:43:31]

CONFORMING TO

 POSIX, BSD 4.3

SEE ALSO

 setregid(2), setgid(2)

http://linuxsavvy.com/resources/linux/man/man2/getgid.2.html (2 of 2) [14/09/1999 09:43:31]

NAME

 getgroups, setgroups - get/set list of supplementary group
 IDs

SYNOPSIS

 #include <unistd.h>

 int getgroups(int size, gid_t list[]);

 #define __USE_BSD
 #include <grp.h>

 int setgroups(size_t size, const gid_t *list));

DESCRIPTION

 getgroups
 Up to size supplementary groups are returned in list.
 If size is zero, list is not modified, but the total
 number of supplementary groups for the process is
 returned.

 setgroups
 Sets the supplementary groups for the process. Only
 the super-user may use this function.

http://linuxsavvy.com/resources/linux/man/man2/getgroups.2.html (1 of 4) [14/09/1999 09:43:33]

RETURN VALUE

 getgroups
 On success, the number of supplementary group IDs is
 returned. On error, -1 is returned, and errno is set
 appropriately.

 setgroups
 On success, zero is returned. On error, -1 is
 returned, and errno is set appropriately.

ERRORS

 EFAULT
 list has an invalid address.

 EPERM
 For setgroups, the user is not the super-user.

 EINVAL
 For setgroups, size is greater than NGROUPS (32 for
 Linux 2.0.32). For getgroups, size is less than the
 number of supplementary group IDs, but is not zero.

CONFORMING TO

 SVr4, SVID (issue 4 only; these calls were not present in
 SVr3), X/OPEN, 4.3BSD. The getgroups function is in
 POSIX.1. Since setgroups requires privilege, it is not
 covered by POSIX.1.

http://linuxsavvy.com/resources/linux/man/man2/getgroups.2.html (2 of 4) [14/09/1999 09:43:33]

BUGS

 The __USE_BSD flag probably shouldn't be required for set-
 groups.

SEE ALSO

 initgroups(3), getgid(2), setgid(2)

http://linuxsavvy.com/resources/linux/man/man2/getgroups.2.html (3 of 4) [14/09/1999 09:43:33]

http://linuxsavvy.com/resources/linux/man/man2/getgroups.2.html (4 of 4) [14/09/1999 09:43:33]

NAME

 gethostid, sethostid - get or set the unique identifier of
 the current host

SYNOPSIS

 #include <unistd.h>

 long int gethostid(void);
 int sethostid(long int hostid));

DESCRIPTION

 Get or set a unique 32-bit identifier for the current
 machine. The 32-bit identifier is intended to be unique
 among all UNIX systems in existence. This normally resembles
 the Internet address for the local machine, as returned by
 gethostbyname(3), and thus usually never needs to be set.

 The sethostid call is restricted to the superuser.

 The hostid argument is stored in the file /etc/hostid.

RETURN VALUES

 gethostid returns the 32-bit identifier for the current host
 as set by sethostid(2).

http://linuxsavvy.com/resources/linux/man/man2/gethostid.2.html (1 of 2) [14/09/1999 09:43:34]

CONFORMING TO

 4.2BSD. These functions were dropped in 4.4BSD. POSIX.1
 does not define these functions, but ISO/IEC 9945-1:1990
 mentions them in B.4.4.1. SVr4 includes gethostid but not
 sethostid.

FILES

 /etc/hostid

SEE ALSO

 hostid(1), gethostbyname(3)

http://linuxsavvy.com/resources/linux/man/man2/gethostid.2.html (2 of 2) [14/09/1999 09:43:34]

NAME

 gethostname, sethostname - get/set host name

SYNOPSIS

 #include <unistd.h>

 int gethostname(char *name, size_t len));
 int sethostname(const char *name, size_t len));

DESCRIPTION

 These functions are used to access or to change the host
 name of the current processor.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 len is negative or, for sethostname, len is larger than
 the maximum allowed size, or, for gethostname on

http://linuxsavvy.com/resources/linux/man/man2/gethostname.2.html (1 of 3) [14/09/1999 09:43:36]

 Linux/i386, len is smaller than the actual size.

 EPERM
 For sethostname, the caller was not the superuser.

 EFAULT
 name is an invalid address.

CONFORMING TO

 SVr4, 4.4BSD (this function first appeared in 4.2BSD).
 POSIX.1 does not define these functions, but ISO/IEC 9945-
 1:1990 mentions them in B.4.4.1.

BUGS

 Some other implementations of gethostname successfully
 return len bytes even if name is longer. Linux/Alpha com-
 plies with this behaviour. Linux/i386, however, returns
 EINVAL in this case (as of DLL 4.6.27 libraries).

NOTES

 Under Linux/Alpha, gethostname is a system call. Under
 Linux/i386, gethostname is implemented at the library level
 by calling uname(2).

SEE ALSO

 getdomainname(2), setdomainname(2), uname(2)

http://linuxsavvy.com/resources/linux/man/man2/gethostname.2.html (2 of 3) [14/09/1999 09:43:36]

http://linuxsavvy.com/resources/linux/man/man2/gethostname.2.html (3 of 3) [14/09/1999 09:43:36]

NAME

 getitimer, setitimer - get or set value of an interval timer

SYNOPSIS

 #include <sys/time.h>

 int getitimer(int which, struct itimerval *value));
 int setitimer(int which, const struct itimerval *value,
 struct itimerval *ovalue));

DESCRIPTION

 The system provides each process with three interval timers,
 each decrementing in a distinct time domain. When any timer
 expires, a signal is sent to the process, and the timer
 (potentially) restarts.

 ITIMER_REAL decrements in real time, and delivers SIGALRM
 upon expiration.

 ITIMER_VIRTUAL decrements only when the process is execut-
 ing, and delivers SIGVTALRM upon expiration.

 ITIMER_PROF decrements both when the process executes and
 when the system is executing on behalf of the
 process. Coupled with ITIMER_VIRTUAL, this
 timer is usually used to profile the time
 spent by the application in user and kernel
 space. SIGPROF is delivered upon expiration.

 Timer values are defined by the following structures:
 struct itimerval {

http://linuxsavvy.com/resources/linux/man/man2/getitimer.2.html (1 of 4) [14/09/1999 09:43:39]

 struct timeval it_interval; /* next value */
 struct timeval it_value; /* current value */
 };
 struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

 Getitimer(2) fills the structure indicated by value with the
 current setting for the timer indicated by which (one of
 ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF). The element
 it_value is set to the amount of time remaining on the
 timer, or zero if the timer is disabled. Similarly,
 it_interval is set to the reset value. Setitimer(2) sets
 the indicated timer to the value in value. If ovalue is
 nonzero, the old value of the timer is stored there.

 Timers decrement from it_value to zero, generate a signal,
 and reset to it_interval. A timer which is set to zero
 (it_value is zero or the timer expires and it_interval is
 zero) stops.
 Both tv_sec and tv_usec are significant in determining the
 duration of a timer.

 Timers will never expire before the requested time, instead
 expiring some short, constant time afterwards, dependent on
 the system timer resolution (currently 10ms). Upon expira-
 tion, a signal will be generated and the timer reset. If
 the timer expires while the process is active (always true
 for ITIMER_VIRT) the signal will be delivered immediately
 when generated. Otherwise the delivery will be offset by a
 small time dependent on the system loading.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/getitimer.2.html (2 of 4) [14/09/1999 09:43:39]

ERRORS

 EFAULT value or ovalue are not valid pointers.

 EINVAL which is not one of ITIMER_REAL, ITIMER_VIRT, or
 ITIMER_PROF.

CONFORMING TO

 SVr4, 4.4BSD (This call first appeared in 4.2BSD).

SEE ALSO

 gettimeofday(2), sigaction(2), signal(2).

BUGS

 Under Linux, the generation and delivery of a signal are
 distinct, and there each signal is permitted only one out-
 standing event. It's therefore conceivable that under
 pathologically heavy loading, ITIMER_REAL will expire before
 the signal from a previous expiration has been delivered.
 The second signal in such an event will be lost.

http://linuxsavvy.com/resources/linux/man/man2/getitimer.2.html (3 of 4) [14/09/1999 09:43:39]

http://linuxsavvy.com/resources/linux/man/man2/getitimer.2.html (4 of 4) [14/09/1999 09:43:39]

NAME

 getpagesize - get system page size

SYNOPSIS

 #include <unistd.h>

 size_t getpagesize(void);

DESCRIPTION

 Return the number of bytes in a page. This is the system's
 page size, which is not necessarily the same as the hardware
 page size.

NOTES

 getpagesize is implemented as a library function in DLL
 4.4.1. Depending on what is defined when the library is
 compiled, this function returns EXEC_PAGESIZE (set to 4096
 in Linux 0.99.11), NBPG (set to 4096 in Linux 0.99.11), or
 NBPC (not defined in Linux 0.99.11 or DLL 4.4.1 libraries).

http://linuxsavvy.com/resources/linux/man/man2/getpagesize.2.html (1 of 2) [14/09/1999 09:43:40]

CONFORMING TO

 SVr4, 4.4BSD (this call first appeared in 4.2BSD).

SEE ALSO

 sbrk(2)

http://linuxsavvy.com/resources/linux/man/man2/getpagesize.2.html (2 of 2) [14/09/1999 09:43:40]

NAME

 getpeername - get name of connected peer

SYNOPSIS

 #include <sys/socket.h>

 int getpeername(int s, struct sockaddr *name, int *namelen

DESCRIPTION

 Getpeername returns the name of the peer connected to socket
 s. The namelen parameter should be initialized to indicate
 the amount of space pointed to by name. On return it con-
 tains the actual size of the name returned (in bytes). The
 name is truncated if the buffer provided is too small.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF The argument s is not a valid descriptor.

http://linuxsavvy.com/resources/linux/man/man2/getpeername.2.html (1 of 2) [14/09/1999 09:43:42]

 ENOTSOCK
 The argument s is a file, not a socket.

 ENOTCONN
 The socket is not connected.

 ENOBUFS Insufficient resources were available in the system
 to perform the operation.

 EFAULT The name parameter points to memory not in a valid
 part of the process address space.

CONFORMING TO

 SVr4, 4.4BSD (the getpeername function call first appeared
 in 4.2BSD).

SEE ALSO

 accept(2), bind(2), getsockname(2)

http://linuxsavvy.com/resources/linux/man/man2/getpeername.2.html (2 of 2) [14/09/1999 09:43:42]

NAME

 getpid, getppid - get process identification

SYNOPSIS

 #include <unistd.h>

 pid_t getpid(void);
 pid_t getppid(void);

DESCRIPTION

 getpid returns the process ID of the current process. (This
 is often used by routines that generate unique temporary
 file names.)

 getppid returns the process ID of the parent of the current
 process.

CONFORMING TO

 POSIX, BSD 4.3, SVID

http://linuxsavvy.com/resources/linux/man/man2/getpid.2.html (1 of 2) [14/09/1999 09:43:47]

SEE ALSO

 exec(3), fork(2), kill(2), mkstemp(3), tmpnam(3), temp-
 nam(3), tmpfile(3)

http://linuxsavvy.com/resources/linux/man/man2/getpid.2.html (2 of 2) [14/09/1999 09:43:47]

NAME

 getpriority, setpriority - get/set program scheduling prior-
 ity

SYNOPSIS

 #include <sys/time.h>
 #include <sys/resource.h>

 int getpriority(int which, int who));
 int setpriority(int which, int who, int prio

DESCRIPTION

 The scheduling priority of the process, process group, or
 user, as indicated by which and who is obtained with the
 getpriority call and set with the setpriority call. Which
 is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is
 interpreted relative to which (a process identifier for
 PRIO_PROCESS, process group identifier for PRIO_PGRP, and a
 user ID for PRIO_USER). A zero value of who denotes the
 current process, process group, or user. Prio is a value in
 the range -20 to 20. The default priority is 0; lower
 priorities cause more favorable scheduling.

 The getpriority call returns the highest priority (lowest
 numerical value) enjoyed by any of the specified processes.
 The setpriority call sets the priorities of all of the
 specified processes to the specified value. Only the
 super-user may lower priorities.

http://linuxsavvy.com/resources/linux/man/man2/getpriority.2.html (1 of 4) [14/09/1999 09:43:50]

RETURN VALUES

 Since getpriority can legitimately return the value -1, it
 is necessary to clear the external variable errno prior to
 the call, then check it afterwards to determine if a -1 is
 an error or a legitimate value. The setpriority call
 returns 0 if there is no error, or -1 if there is.

ERRORS

 ESRCH No process was located using the which and who
 values specified.

 EINVAL Which was not one of PRIO_PROCESS, PRIO_PGRP, or
 PRIO_USER.

 In addition to the errors indicated above, setpriority will
 fail if:

 EPERM
 A process was located, but neither its effective nor
 real user ID matched the effective user ID of the
 caller.

 EACCES
 A non super-user attempted to lower a process priority.

CONFORMING TO

 SVr4, 4.4BSD (these function calls first appeared in
 4.2BSD).

http://linuxsavvy.com/resources/linux/man/man2/getpriority.2.html (2 of 4) [14/09/1999 09:43:50]

SEE ALSO

 nice(1), fork(2), renice(8)

http://linuxsavvy.com/resources/linux/man/man2/getpriority.2.html (3 of 4) [14/09/1999 09:43:50]

http://linuxsavvy.com/resources/linux/man/man2/getpriority.2.html (4 of 4) [14/09/1999 09:43:50]

NAME

 getresuid, getresgid - get real, effective and saved user or
 group ID

SYNOPSIS

 #include <unistd.h>

 int getresuid(uid_t *ruid, uid_t *euid, uid_t *suid
 int getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid

DESCRIPTION

 getresuid and getresgid (both introduced in Linux 2.1.44)
 get the real, effective and saved user ID's (resp. group
 ID's) of the current process.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/getresuid.2.html (1 of 2) [14/09/1999 09:43:53]

ERRORS

 EFAULT
 One of the arguments specified an address outside the
 calling program's address space.

CONFORMING TO

 This call is Linux-specific.

SEE ALSO

 getuid(2), setuid(2), getreuid(2), setreuid(2), setresuid(2)

http://linuxsavvy.com/resources/linux/man/man2/getresuid.2.html (2 of 2) [14/09/1999 09:43:53]

NAME

 getrlimit, getrusage, setrlimit - get/set resource limits
 and usage

SYNOPSIS

 #include <sys/time.h>
 #include <sys/resource.h>
 #include <unistd.h>

 int getrlimit (int resource, struct rlimit *rlim));
 int getrusage (int who, struct rusage *usage));
 int setrlimit (int resource, const struct rlimit *rlim));

DESCRIPTION

 getrlimit and setrlimit get and set resource limits respec-
 tively. resource should be one of:

 RLIMIT_CPU /* CPU time in seconds */
 RLIMIT_FSIZE /* Maximum filesize */
 RLIMIT_DATA /* max data size */
 RLIMIT_STACK /* max stack size */
 RLIMIT_CORE /* max core file size */
 RLIMIT_RSS /* max resident set size */
 RLIMIT_NPROC /* max number of processes */
 RLIMIT_NOFILE /* max number of open files */
 RLIMIT_MEMLOCK /* max locked-in-memory address space*/

 A resource may unlimited if you set the limit to
 RLIM_INFINITY. RLIMIT_OFILE is the BSD name for
 RLIMIT_NOFILE.

 The rlimit structure is defined as follows :

http://linuxsavvy.com/resources/linux/man/man2/getrlimit.2.html (1 of 3) [14/09/1999 09:43:56]

 struct rlimit
 {
 int rlim_cur;
 int rlim_max;
 };

 getrusage returns the current resource usages, for a who of
 either RUSAGE_SELF or RUSAGE_CHILDREN.

 struct rusage
 {
 struct timeval ru_utime; /* user time used */
 struct timeval ru_stime; /* system time used */
 long ru_maxrss; /* maximum resident set size */
 long ru_ixrss; /* integral shared memory size */
 long ru_idrss; /* integral unshared data size */
 long ru_isrss; /* integral unshared stack size */
 long ru_minflt; /* page reclaims */
 long ru_majflt; /* page faults */
 long ru_nswap; /* swaps */
 long ru_inblock; /* block input operations */
 long ru_oublock; /* block output operations */
 long ru_msgsnd; /* messages sent */
 long ru_msgrcv; /* messages received */
 long ru_nsignals; /* signals received */
 long ru_nvcsw; /* voluntary context switches */
 long ru_nivcsw; /* involuntary context switches */
 };

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EFAULT
 rlim or usage points outside the accessible address
 space.

 EINVAL

http://linuxsavvy.com/resources/linux/man/man2/getrlimit.2.html (2 of 3) [14/09/1999 09:43:56]

 getrlimit or setrlimit is called with a bad resource,
 or getrusage is called with a bad who.

 EPERM
 A non-superuser tries to use setrlimit() to increase
 the soft or hard limit above the current hard limit, or
 a superuser tries to increase RLIMIT_NOFILE above the
 current kernel maximum.

CONFORMING TO

 SVr4, BSD 4.3

SEE ALSO

 ulimit(2), quotactl(2)

http://linuxsavvy.com/resources/linux/man/man2/getrlimit.2.html (3 of 3) [14/09/1999 09:43:56]

NAME

 getsid - get session ID

SYNOPSIS

 #include <unistd.h>

 pid_t getsid(pid_t pid));

DESCRIPTION

 getsid(0) returns the session ID of the calling process.
 getsid(p) returns the session ID of the process with process
 ID p.

ERRORS

 On error, -1 will be returned. The only error which can
 happen is ESRCH, when no process with process ID p was
 found.

CONFORMING TO

 SVr4, which documents an additional EPERM error condition.

http://linuxsavvy.com/resources/linux/man/man2/getsid.2.html (1 of 2) [14/09/1999 09:43:59]

SEE ALSO

 setsid(2).

http://linuxsavvy.com/resources/linux/man/man2/getsid.2.html (2 of 2) [14/09/1999 09:43:59]

NAME

 getsockname - get socket name

SYNOPSIS

 #include <sys/socket.h>

 int getsockname(int s , struct sockaddr * name , int *
 namelen

DESCRIPTION

 Getsockname returns the current name for the specified
 socket. The namelen parameter should be initialized to
 indicate the amount of space pointed to by name. On return
 it contains the actual size of the name returned (in bytes).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately. A 0 is returned if the call
 succeeds, -1 if it fails.

http://linuxsavvy.com/resources/linux/man/man2/getsockname.2.html (1 of 2) [14/09/1999 09:44:01]

ERRORS

 EBADF The argument s is not a valid descriptor.

 ENOTSOCK
 The argument s is a file, not a socket.

 ENOBUFS Insufficient resources were available in the system
 to perform the operation.

 EFAULT The name parameter points to memory not in a valid
 part of the process address space.

CONFORMING TO

 SVr4, 4.4BSD (the getsockname function call appeared in
 4.2BSD). SVr4 documents additional ENOMEM and ENOSR error
 codes.

SEE ALSO

 bind(2), socket(2)

http://linuxsavvy.com/resources/linux/man/man2/getsockname.2.html (2 of 2) [14/09/1999 09:44:01]

NAME

 getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int getsockopt(int s, int level, int optname void *optval,
 int *optlen));

 int setsockopt(int s, int level, int optname const void
 *optval, int optlen));

DESCRIPTION

 Getsockopt and setsockopt manipulate the options associated
 with a socket. Options may exist at multiple protocol lev-
 els; they are always present at the uppermost socket level.

 When manipulating socket options the level at which the
 option resides and the name of the option must be specified.
 To manipulate options at the socket level, level is speci-
 fied as SOL_SOCKET. To manipulate options at any other
 level the protocol number of the appropriate protocol con-
 trolling the option is supplied. For example, to indicate
 that an option is to be interpreted by the TCP protocol,
 level should be set to the protocol number of TCP; see get-
 protoent(3).

 The parameters optval and optlen are used to access option
 values for setsockopt. For getsockopt they identify a

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (1 of 7) [14/09/1999 09:44:05]

 buffer in which the value for the requested option(s) are to
 be returned. For getsockopt, optlen is a value-result
 parameter, initially containing the size of the buffer
 pointed to by optval, and modified on return to indicate the
 actual size of the value returned. If no option value is to
 be supplied or returned, optval may be NULL.

 Optname and any specified options are passed uninterpreted
 to the appropriate protocol module for interpretation. The
 include file <sys/socket.h> contains definitions for socket
 level options, described below. Options at other protocol
 levels vary in format and name; consult the appropriate
 entries in section 4 of the manual.

 Most socket-level options utilize an int parameter for
 optval. For setsockopt, the parameter should be non-zero to
 enable a boolean option, or zero if the option is to be dis-
 abled. SO_LINGER uses a struct linger parameter, defined in
 <linux/socket.h>, which specifies the desired state of the
 option and the linger interval (see below). SO_SNDTIMEO and
 SO_RCVTIMEO use a struct timeval parameter, defined in
 <sys/time.h>.

 The following options are recognized at the socket level.
 Except as noted, each may be examined with getsockopt and
 set with setsockopt.

 SO_DEBUG
 enables recording of debugging information

 SO_REUSEADDR
 enables local address reuse

 SO_KEEPALIVE
 enables keep connections alive

 SO_DONTROUTE
 enables routing bypass for outgoing messages

 SO_LINGER
 linger on close if data present

 SO_BROADCAST
 enables permission to transmit broadcast messages

 SO_OOBINLINE

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (2 of 7) [14/09/1999 09:44:05]

 enables reception of out-of-band data in band

 SO_SNDBUF
 set buffer size for output

 SO_RCVBUF
 set buffer size for input

 SO_SNDLOWAT
 set minimum count for output

 SO_RCVLOWAT
 set minimum count for input

 SO_SNDTIMEO
 get timeout value for output (get only)

 SO_RCVTIMEO
 get timeout value for input (get only)

 SO_TYPE get the type of the socket (get only)

 SO_ERROR
 get and clear error on the socket (get only)

 SO_DEBUG enables debugging in the underlying protocol
 modules. SO_REUSEADDR indicates that the rules used in
 validating addresses supplied in a bind(2) call should allow
 reuse of local addresses. SO_KEEPALIVE enables the periodic
 transmission of messages on a connected socket. Should the
 connected party fail to respond to these messages, the con-
 nection is considered broken and processes using the socket
 are notified via a SIGPIPE signal when attempting to send
 data. SO_DONTROUTE indicates that outgoing messages should
 bypass the standard routing facilities. Instead, messages
 are directed to the appropriate network interface according
 to the network portion of the destination address.

 SO_LINGER controls the action taken when unsent messages are
 queued on socket and a close(2) is performed. If the socket
 promises reliable delivery of data and SO_LINGER is set, the
 system will block the process on the close attempt until it
 is able to transmit the data or until it decides it is
 unable to deliver the information (a timeout period, termed
 the linger interval, is specified in the setsockopt call
 when SO_LINGER is requested). If SO_LINGER is disabled and a

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (3 of 7) [14/09/1999 09:44:05]

 close is issued, the system will process the close in a
 manner that allows the process to continue as quickly as
 possible.

 The linger structure is defined in <linux/socket.h> as fol-
 lows:

 struct linger {
 int l_onoff; /* Linger active */
 int l_linger; /* How long to linger for */
 };

 l_onoff indicates wether to linger or not. If it is set to 1
 then l_linger contains the time in hundredths of seconds how
 long the process should linger to complete the close. If
 l_onoff is set to zero the process returns immediately.

 The option SO_BROADCAST requests permission to send broad-
 cast datagrams on the socket. Broadcast was a privileged
 operation in earlier versions of the system. With protocols
 that support out-of-band data, the SO_OOBINLINE option
 requests that out-of-band data be placed in the normal data
 input queue as received; it will then be accessible with
 recv or read calls without the MSG_OOB flag. Some protocols
 always behave as if this option is set. SO_SNDBUF and
 SO_RCVBUF are options to adjust the normal buffer sizes
 allocated for output and input buffers, respectively. The
 buffer size may be increased for high-volume connections, or
 may be decreased to limit the possible backlog of incoming
 data. The system places an absolute limit on these values.

 SO_SNDLOWAT is an option to set the minimum count for output
 operations. Most output operations process all of the data
 supplied by the call, delivering data to the protocol for
 transmission and blocking as necessary for flow control.
 Nonblocking output operations will process as much data as
 permitted subject to flow control without blocking, but will
 process no data if flow control does not allow the smaller
 of the low water mark value or the entire request to be pro-
 cessed. A select(2) operation testing the ability to write
 to a socket will return true only if the low water mark
 amount could be processed. The default value for
 SO_SNDLOWAT is set to a convenient size for network effi-
 ciency, often 1024.

 SO_RCVLOWAT is an option to set the minimum count for input

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (4 of 7) [14/09/1999 09:44:05]

 operations. In general, receive calls will block until any
 (non-zero) amount of data is received, then return with
 smaller of the amount available or the amount requested.
 The default value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is
 set to a larger value, blocking receive calls normally wait
 until they have received the smaller of the low water mark
 value or the requested amount. Receive calls may still
 return less than the low water mark if an error occurs, a
 signal is caught, or the type of data next in the receive
 queue is different than that returned.

 SO_SNDTIMEO is an option to get the timeout value for output
 operations. (It can be used with getsockopt only). It
 returns a struct timeval parameter with the number of
 seconds and microseconds used to limit waits for output
 operations to complete. If a send operation has blocked for
 this much time, it returns with a partial count or with the
 error EWOULDBLOCK if no data were sent. In the current
 implementation, this timer is restarted each time additional
 data are delivered to the protocol, implying that the limit
 applies to output portions ranging in size from the low
 water mark to the high water mark for output. SO_RCVTIMEO
 is an option to get the timeout value for input operations.
 (It can be used with getsockopt only). It returns a struct
 timeval parameter with the number of seconds and
 microseconds used to limit waits for input operations to
 complete. In the current implementation, this timer is res-
 tarted each time additional data are received by the proto-
 col, and thus the limit is in effect an inactivity timer.
 If a receive operation has been blocked for this much time
 without receiving additional data, it returns with a short
 count or with the error EWOULDBLOCK if no data were
 received.

 Finally, also SO_TYPE and SO_ERROR are options used only
 with getsockopt. SO_TYPE returns the type of the socket,
 such as SOCK_STREAM; it is useful for servers that inherit
 sockets on startup. SO_ERROR returns any pending error on
 the socket and clears the error status. It may be used to
 check for asynchronous errors on connected datagram sockets
 or for other asynchronous errors.

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (5 of 7) [14/09/1999 09:44:05]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF The argument s is not a valid descriptor.

 ENOTSOCK
 The argument s is a file, not a socket.

 ENOPROTOOPT
 The option is unknown at the level indicated.

 EFAULT The address pointed to by optval is not in a valid
 part of the process address space. For getsockopt,
 this error may also be returned if optlen is not in
 a valid part of the process address space.

CONFORMING TO

 SVr4, 4.4BSD (these system calls first appeared in 4.2BSD).
 SVr4 documents additional ENOMEM and ENOSR error codes, but
 does not document the SO_SNDLOWAT, SO_RCVLOWAT, SO_SNDTIMEO,
 options

BUGS

 Several of the socket options should be handled at lower
 levels of the system.

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (6 of 7) [14/09/1999 09:44:06]

SEE ALSO

 ioctl(2), socket(2), getprotoent(3),

http://linuxsavvy.com/resources/linux/man/man2/getsockopt.2.html (7 of 7) [14/09/1999 09:44:06]

NAME

 gettimeofday, settimeofday - get / set time

SYNOPSIS

 #include <sys/time.h>
 #include <unistd.h>

 int gettimeofday(struct timeval *tv, struct timezone *tz));
 int settimeofday(const struct timeval *tv , const struct
 timezone *tz));

DESCRIPTION

 gettimeofday and settimeofday can set the time as well as a
 timezone. tv is a timeval struct, as specified in
 /usr/include/sys/time.h:

 struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

 and tz is a timezone :

 struct timezone {
 int tz_minuteswest; /* minutes W of Greenwich */
 int tz_dsttime; /* type of dst correction */
 };

 The use of the timezone struct is obsolete; the tz_dsttime
 field has never been used under Linux - it has not been and
 will not be supported by libc or glibc. Each and every

http://linuxsavvy.com/resources/linux/man/man2/gettimeofday.2.html (1 of 5) [14/09/1999 09:44:08]

 occurrence of this field in the kernel source (other than
 the declaration) is a bug. Thus, the following is purely of
 historic interest.

 The field tz_dsttime contains a symbolic constant (values
 are given below) that indicates in which part of the year
 Daylight Saving Time is in force. (Note: its value is con-
 stant throughout the year - it does not indicate that DST is
 in force, it just selects an algorithm.) The daylight sav-
 ing time algorithms defined are as follows :

 DST_NONE /* not on dst */
 DST_USA /* USA style dst */
 DST_AUST /* Australian style dst */
 DST_WET /* Western European dst */
 DST_MET /* Middle European dst */
 DST_EET /* Eastern European dst */
 DST_CAN /* Canada */
 DST_GB /* Great Britain and Eire */
 DST_RUM /* Rumania */
 DST_TUR /* Turkey */
 DST_AUSTALT /* Australian style with shift in 1986 */

 Of course it turned out that the period in which Daylight
 Saving Time is in force cannot be given by a simple algo-
 rithm, one per country; indeed, this period is determined by
 unpredictable political decisions. So this method of
 representing time zones has been abandoned. Under Linux, in
 a call to settimeofday the tz_dsttime field should be zero.

 Under Linux there is some peculiar `warp clock' semantics
 associated to the settimeofday system call if on the very
 first call (after booting) that has a non-NULL tz argument,
 the tv argument is NULL and the tz_minuteswest field is
 nonzero. In such a case it is assumed that the CMOS clock is
 on local time, and that it has to be incremented by this
 amount to get UTC system time. No doubt it is a bad idea to
 use this feature.

 The following macros are defined to operate on a struct
 timeval :
 #define timerisset(tvp)\
 ((tvp)->tv_sec || (tvp)->tv_usec)
 #define timercmp(tvp, uvp, cmp)\
 ((tvp)->tv_sec cmp (uvp)->tv_sec ||\
 (tvp)->tv_sec == (uvp)->tv_sec &&\

http://linuxsavvy.com/resources/linux/man/man2/gettimeofday.2.html (2 of 5) [14/09/1999 09:44:08]

 (tvp)->tv_usec cmp (uvp)->tv_usec)
 #define timerclear(tvp)\
 ((tvp)->tv_sec = (tvp)->tv_usec = 0)

 If either tv or tz is null, the corresponding structure is
 not set or returned.

 Only the super user may use settimeofday.

RETURN VALUES

 gettimeofday and settimeofday return 0 for success, or -1
 for failure (in which case errno is set appropriately).

ERRORS

 EPERM
 settimeofday is called by someone other than the
 superuser.

 EINVAL
 Timezone (or something else) is invalid.

 EFAULT
 One of tv or tz pointed outside your accessible address
 space.

CONFORMING TO

 SVr4, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man2/gettimeofday.2.html (3 of 5) [14/09/1999 09:44:08]

SEE ALSO

 date(1), adjtimex(2), time(2),

http://linuxsavvy.com/resources/linux/man/man2/gettimeofday.2.html (4 of 5) [14/09/1999 09:44:08]

http://linuxsavvy.com/resources/linux/man/man2/gettimeofday.2.html (5 of 5) [14/09/1999 09:44:08]

NAME

 getuid, geteuid - get user identity

SYNOPSIS

 #include <unistd.h>
 #include <sys/types.h>

 uid_t getuid(void);
 uid_t geteuid(void);

DESCRIPTION

 getuid returns the real user ID of the current process.

 geteuid returns the effective user ID of the current pro-
 cess.

 The real ID corresponds to the ID of the calling process.
 The effective ID corresponds to the set ID bit on the file
 being executed.

ERRORS

 These functions are always successful.

http://linuxsavvy.com/resources/linux/man/man2/getuid.2.html (1 of 2) [14/09/1999 09:44:09]

CONFORMING TO

 POSIX, BSD 4.3.

SEE ALSO

 setreuid(2), setuid(2)

http://linuxsavvy.com/resources/linux/man/man2/getuid.2.html (2 of 2) [14/09/1999 09:44:09]

NAME

 idle - make process 0 idle

SYNOPSIS

 #include <unistd.h>

 void idle(void);

DESCRIPTION

 idle is an internal system call used during bootstrap. It
 marks the process's pages as swappable, lowers its priority,
 and enters the main scheduling loop. idle never returns.

 Only process 0 may call idle. Any user process, even a pro-
 cess with super-user permission, will receive EPERM.

RETURN VALUE

 idle never returns for process 0, and always returns -1 for
 a user process.

http://linuxsavvy.com/resources/linux/man/man2/idle.2.html (1 of 2) [14/09/1999 09:44:12]

ERRORS

 EPERM Always, for a user process.

CONFORMING TO

 This function is Linux-specific, and should not be used in
 programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/idle.2.html (2 of 2) [14/09/1999 09:44:12]

NAME

 intro - Introduction to system calls

DESCRIPTION

 This chapter describes the Linux system calls. For a list
 of the 164 syscalls present in Linux 2.0, see syscalls(2).

 Calling Directly
 In most cases, it is unnecessary to invoke a system call
 directly, but there are times when the Standard C library
 does not implement a nice function call for you.

 Synopsis
 #include <linux/unistd.h>

 A _syscall macro

 desired system call

 Setup
 The important thing to know about a system call is its pro-
 totype. You need to know how many arguments, their types,
 and the function return type. There are six macros that
 make the actual call into the system easier. They have the
 form:

 _syscallX(type,name

 where X is 05, which are the number of arguments
 taken by the system call

 type is the return type of the system call

 name is the name of the system call

 typeN is the Nth argument's type

http://linuxsavvy.com/resources/linux/man/man2/intro.2.html (1 of 5) [14/09/1999 09:44:15]

 argN is the name of the Nth argument

 These macros create a function called name with the argu-
 ments you specify. Once you include the _syscall() in your
 source file, you call the system call by name.

EXAMPLE

 #include <stdio.h>
 #include <linux/unistd.h> /* for _syscallX macros/related stuff */
 #include <linux/kernel.h> /* for struct sysinfo */

 _syscall1(int, sysinfo, struct sysinfo *, info);

 /* Note: if you copy directly from the nroff source, remember to
 REMOVE the extra backslashes in the printf statement. */

 int main(void)
 {
 struct sysinfo s_info;
 int error;

 error = sysinfo(&s_info);
 printf("code error = %d\n", error);
 printf("Uptime = %ds\nLoad: 1 min %d / 5 min %d / 15 min %d\n"
 "RAM: total %d / free %d / shared %d\n"
 "Memory in buffers = %d\nSwap: total %d / free %d\n"
 "Number of processes = %d\n",
 s_info.uptime, s_info.loads[0],
 s_info.loads[1], s_info.loads[2],
 s_info.totalram, s_info.freeram,
 s_info.sharedram, s_info.bufferram,
 s_info.totalswap, s_info.freeswap,
 s_info.procs);
 return(0);
 }

Sample Output

 code error = 0
 uptime = 502034s

http://linuxsavvy.com/resources/linux/man/man2/intro.2.html (2 of 5) [14/09/1999 09:44:15]

 Load: 1 min 13376 / 5 min 5504 / 15 min 1152
 RAM: total 15343616 / free 827392 / shared 8237056
 Memory in buffers = 5066752
 Swap: total 27881472 / free 24698880
 Number of processes = 40

NOTES

 The _syscall() macros DO NOT produce a prototype. You may
 have to create one, especially for C++ users.

 System calls are not required to return only positive or
 negative error codes. You need to read the source to be
 sure how it will return errors. Usually, it is the negative
 of a standard error code, e.g., -EPERM. The _syscall() mac-
 ros will return the result r of the system call when r is
 nonnegative, but will return -1 and set the variable errno
 to -r when r is negative.

 Some system calls, such as mmap, require more than five
 arguments. These are handled by pushing the arguments on
 the stack and passing a pointer to the block of arguments.

 When defining a system call, the argument types MUST be
 passed by-value or by-pointer (for aggregates like structs).

CONFORMING TO

 Certain codes are used to indicate Unix variants and
 standards to which calls in the section conform. These are:

 SVr4 System V Release 4 Unix, as described in the
 "Programmer's Reference Manual: Operating System API
 (Intel processors)" (Prentice-Hall 1992, ISBN 0-13-
 951294-2)

 SVID System V Interface Definition, as described in "The
 System V Interface Definition, Fourth Edition", avail-
 able at ftp://ftp.fpk.novell.com/pub/unix-
 standards/svid in Postscript files.

http://linuxsavvy.com/resources/linux/man/man2/intro.2.html (3 of 5) [14/09/1999 09:44:15]

 POSIX.1
 IEEE 1003.1-1990 part 1, aka ISO/IEC 9945-1:1990s, aka
 "IEEE Portable Operating System Interface for Computing
 Environments", as elucidated in Donald Lewine's "POSIX
 Programmer's Guide" (O'Reilly & Associates, Inc., 1991,
 ISBN 0-937175-73-0.

 POSIX.1b
 IEEE Std 1003.1b-1993 (POSIX.1b standard) describing
 real-time facilities for portable operating systems,
 aka ISO/IEC 9945-1:1996, as elucidated in "Programming
 for the real world - POSIX.4" by Bill O. Gallmeister
 (O'Reilly & Associates, Inc. ISBN 1-56592-074-0).

 4.3BSD/4.4BSD
 The 4.3 and 4.4 distributions of Berkeley Unix. 4.4BSD
 was upward-compatible from 4.3.

 V7 Version 7, the ancestral Unix from Bell Labs.

FILES

 /usr/include/linux/unistd.h

AUTHORS

 Look at the source header of the manual page for the
 author(s) and copyright conditions. Note that these can be
 different from page to page!

http://linuxsavvy.com/resources/linux/man/man2/intro.2.html (4 of 5) [14/09/1999 09:44:15]

http://linuxsavvy.com/resources/linux/man/man2/intro.2.html (5 of 5) [14/09/1999 09:44:15]

NAME

 ioctl - control device

SYNOPSIS

 #include <sys/ioctl.h>

 int ioctl(int d, int request, ...)

 [The "third" argument is traditionally char *argp, and will
 be so named for this discussion.]

DESCRIPTION

 The ioctl function manipulates the underlying device parame-
 ters of special files. In particular, many operating
 characteristics of character special files (e.g. terminals)
 may be controlled with ioctl requests. The argument d must
 be an open file descriptor.

 An ioctl request has encoded in it whether the argument is
 an in parameter or out parameter, and the size of the argu-
 ment argp in bytes. Macros and defines used in specifying
 an ioctl request are located in the file <sys/ioctl.h>.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/ioctl.2.html (1 of 2) [14/09/1999 09:44:17]

ERRORS

 EBADF d is not a valid descriptor.

 ENOTTY d is not associated with a character special device.

 ENOTTY The specified request does not apply to the kind of
 object that the descriptor d references.

 EINVAL Request or argp is not valid.

CONFORMING TO

 No single standard. Arguments, returns, and semantics of
 ioctl(2) vary according to the device driver in question
 (the call is used as a catch-all for operations that don't
 cleanly fit the Unix stream I/O model). See ioctl_list(2)
 for a list of many of the known ioctl calls. The ioctl
 function call appeared in Version 7 AT&T Unix.

SEE ALSO

 execve(2), fcntl(2), mt(4),

http://linuxsavvy.com/resources/linux/man/man2/ioctl.2.html (2 of 2) [14/09/1999 09:44:17]

An argument type of 'const struct foo *' means the argument is input
to the kernel. 'struct foo *' means the kernel outputs the argument.
If the kernel uses the argument for both input and output, this is
marked with // I-O.

Some ioctls take more arguments or return more values than a single
structure. These are marked // MORE and documented further in a
separate section.

This list is incomplete. It does not include:

 -- Ioctls defined internal to the kernel ('scsi_ioctl.h').
 -- Ioctls defined in modules distributed separately from the kernel.

And, of course, I may have errors and omissions.

Please e-mail changes and comments to <mec@duracef.shout.net>. I am
particularly interested in loadable modules which define their own
ioctls. If you know of such a module, tell me where I can ftp it, and
I'll include its ioctls in my next release.

// Main table.

// <include/asm-i386/socket.h>
0x00008901 FIOSETOWN const int *
0x00008902 SIOCSPGRP const int *
0x00008903 FIOGETOWN int *
0x00008904 SIOCGPGRP int *
0x00008905 SIOCATMARK int *
0x00008906 SIOCGSTAMP timeval *

// <include/asm-i386/termios.h>
0x00005401 TCGETS struct termios *
0x00005402 TCSETS const struct termios *
0x00005403 TCSETSW const struct termios *
0x00005404 TCSETSF const struct termios *
0x00005405 TCGETA struct termio *
0x00005406 TCSETA const struct termio *
0x00005407 TCSETAW const struct termio *
0x00005408 TCSETAF const struct termio *
0x00005409 TCSBRK int
0x0000540A TCXONC int
0x0000540B TCFLSH int
0x0000540C TIOCEXCL void
0x0000540D TIOCNXCL void
0x0000540E TIOCSCTTY int
0x0000540F TIOCGPGRP pid_t *

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (1 of 10) [14/09/1999 09:44:26]

0x00005410 TIOCSPGRP const pid_t *
0x00005411 TIOCOUTQ int *
0x0000541F TIOCSSERIAL const struct serial_struct *
0x00005420 TIOCPKT const int *
0x00005421 FIONBIO const int *
0x00005422 TIOCNOTTY void
0x00005423 TIOCSETD const int *
0x00005424 TIOCGETD int *
0x00005425 TCSBRKP int
0x00005426 TIOCTTYGSTRUCT struct tty_struct *
0x00005450 FIONCLEX void
0x00005451 FIOCLEX void
0x00005452 FIOASYNC const int *
0x00005453 TIOCSERCONFIG void
0x00005454 TIOCSERGWILD int *
0x00005455 TIOCSERSWILD const int *
0x00005456 TIOCGLCKTRMIOS struct termios *
0x00005457 TIOCSLCKTRMIOS const struct temios *
0x00005458 TIOCSERGSTRUCT struct async_struct *
0x00005459 TIOCSERGETLSR int *
0x0000545A TIOCSERGETMULTI struct serial_multiport_struct *
0x0000545B TIOCSERSETMULTI const struct serial_multiport_struct *

// <include/linux/ax25.h>
0x000089E0 SIOCAX25GETUID const struct sockaddr_ax25 *
0x000089E1 SIOCAX25ADDUID const struct sockaddr_ax25 *
0x000089E2 SIOCAX25DELUID const struct sockaddr_ax25 *
0x000089E3 SIOCAX25NOUID const int *
0x000089E4 SIOCAX25DIGCTL const int *
0x000089E5 SIOCAX25GETPARMS struct ax25_parms_struct * // I-O
0x000089E6 SIOCAX25SETPARMS const struct ax25_parms-struct *

// <include/linux/cdk.h>
0x00007314 STL_BINTR void
0x00007315 STL_BSTART void
0x00007316 STL_BSTOP void
0x00007317 STL_BRESET void

// <include/linux/cdrom.h>
0x00005301 CDROMPAUSE void
0x00005302 CDROMRESUME void
0x00005303 CDROMPLAYMSF const struct cdrom_msf *
0x00005304 CDROMPLAYTRKIND const struct cdrom_ti *
0x00005305 CDROMREADTOCHDR struct cdrom_tochdr *
0x00005306 CDROMREADTOCENTRY struct cdrom_tocentry * // I-O
0x00005307 CDROMSTOP void
0x00005308 CDROMSTART void
0x00005309 CDROMEJECT void
0x0000530A CDROMVOLCTRL const struct cdrom_volctrl *
0x0000530B CDROMSUBCHNL struct cdrom_subchnl * // I-O
0x0000530C CDROMREADMODE2 const struct cdrom_msf * // MORE

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (2 of 10) [14/09/1999 09:44:26]

0x0000530D CDROMREADMODE1 const struct cdrom_msf * // MORE
0x0000530E CDROMREADAUDIO const struct cdrom_read_audio * // MORE
0x0000530F CDROMEJECT_SW int
0x00435902 CYGETTHRESH int *
0x00435903 CYSETTHRESH int
0x00435904 CYGETDEFTHRESH int *
0x00435905 CYSETDEFTHRESH int
0x00435906 CYGETTIMEOUT int *
0x00435907 CYSETTIMEOUT int
0x00435908 CYGETDEFTIMEOUT int *
0x00435909 CYSETDEFTIMEOUT int

// <include/linux/ext2_fs.h>
0x80046601 EXT2_IOC_GETFLAGS int *
0x40046602 EXT2_IOC_SETFLAGS const int *
0x80047601 EXT2_IOC_GETVERSION int *
0x40047602 EXT2_IOC_SETVERSION const int *

// <include/linux/fd.h>
0x00000000 FDCLRPRM void
0x00000001 FDSETPRM const struct floppy_struct *
0x00000002 FDDEFPRM const struct floppy_struct *
0x00000003 FDGETPRM struct floppy_struct *
0x00000004 FDMSGON void
0x00000005 FDMSGOFF void
0x00000006 FDFMTBEG void
0x00000007 FDFMTTRK const struct format_descr *
0x00000008 FDFMTEND void
0x0000000A FDSETEMSGTRESH int
0x0000000B FDFLUSH void
0x0000000C FDSETMAXERRS const struct floppy_max_errors *
0x0000000E FDGETMAXERRS struct floppy_max_errors *
0x00000010 FDGETDRVTYP struct { char [16]; } *
0x00000014 FDSETDRVPRM const struct floppy_drive_params *
0x00000015 FDGETDRVPRM struct floppy_drive_params *
0x00000016 FDGETDRVSTAT struct floppy_drive_struct *
0x00000017 FDPOLLDRVSTAT struct floppy_drive_struct *
0x00000018 FDRESET int
0x00000019 FDGETFDCSTAT struct floppy_fdc_state *
0x0000001B FDWERRORCLR void
0x0000001C FDWERRORGET struct floppy_write_errors *
0x0000001E FDRAWCMD struct floppy_raw_cmd * // MORE // I-O
0x00000028 FDTWADDLE void

// <include/linux/fs.h>
0x0000125D BLKROSET const int *
0x0000125E BLKROGET int *
0x0000125F BLKRRPART void
0x00001260 BLKGETSIZE int *
0x00001261 BLKFLSBUF void
0x00001262 BLKRASET int

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (3 of 10) [14/09/1999 09:44:26]

0x00001263 BLKRAGET int *
0x00000001 FIBMAP int * // I-O
0x00000002 FIGETBSZ int *

0x00000325 HDIO_SET_NOWERR int
0x00000326 HDIO_SET_DMA int

// <include/linux/if_eql.h>
0x000089F0 EQL_ENSLAVE struct ifreq * // MORE // I-O
0x000089F1 EQL_EMANCIPATE struct ifreq * // MORE // I-O
0x000089F2 EQL_GETSLAVECFG struct ifreq * // MORE // I-O
0x000089F3 EQL_SETSLAVECFG struct ifreq * // MORE // I-O
0x000089F4 EQL_GETMASTRCFG struct ifreq * // MORE // I-O
0x000089F5 EQL_SETMASTRCFG struct ifreq * // MORE // I-O

// <include/linux/if_plip.h>
0x000089F0 SIOCDEVPLIP struct ifreq * // I-O

// <include/linux/if_ppp.h>
0x00005490 PPPIOCGFLAGS int *
0x00005491 PPPIOCSFLAGS const int *
0x00005492 PPPIOCGASYNCMAP int *
0x00005493 PPPIOCSASYNCMAP const int *
0x00005494 PPPIOCGUNIT int *
0x00005495 PPPIOCSINPSIG const int *
0x00005497 PPPIOCSDEBUG const int *
0x00005498 PPPIOCGDEBUG int *
0x00005499 PPPIOCGSTAT struct ppp_stats *
0x0000549A PPPIOCGTIME struct ppp_ddinfo *
0x0000549B PPPIOCGXASYNCMAP struct { int [8]; } *
0x0000549C PPPIOCSXASYNCMAP const struct { int [8]; } *
0x0000549D PPPIOCSMRU const int *
0x0000549E PPPIOCRASYNCMAP const int *
0x0000549F PPPIOCSMAXCID const int *

// <include/linux/ipx.h>
0x000089E0 SIOCAIPXITFCRT const char *
0x000089E1 SIOCAIPXPRISLT const char *
0x000089E2 SIOCIPXCFGDATA struct ipx_config_data *

// <include/linux/kd.h>
0x00004B60 GIO_FONT struct { char [8192]; } *
0x00004B61 PIO_FONT const struct { char [8192]; } *
0x00004B6B GIO_FONTX struct console_font_desc * // MORE I-O
0x00004B6C PIO_FONTX const struct console_font_desc * //MORE
0x00004B70 GIO_CMAP struct { char [48]; } *
0x00004B71 PIO_CMAP const struct { char [48]; }
0x00004B2F KIOCSOUND int
0x00004B30 KDMKTONE int
0x00004B31 KDGETLED char *
0x00004B32 KDSETLED int

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (4 of 10) [14/09/1999 09:44:26]

0x00004B33 KDGKBTYPE char *
0x00004B34 KDADDIO int // MORE
0x00004B35 KDDELIO int // MORE
0x00004B36 KDENABIO void // MORE
0x00004B37 KDDISABIO void // MORE
0x00004B63 KDSKBMETA int
0x00004B64 KDGKBLED int *
0x00004B65 KDSKBLED int
0x00004B46 KDGKBENT struct kbentry * // I-O
0x00004B47 KDSKBENT const struct kbentry *
0x00004B48 KDGKBSENT struct kbsentry * // I-O
0x00004B49 KDSKBSENT const struct kbsentry *
0x00004B4A KDGKBDIACR struct kbdiacrs *
0x00004B4B KDSKBDIACR const struct kbdiacrs *
0x00004B4C KDGETKEYCODE struct kbkeycode * // I-O
0x00004B4D KDSETKEYCODE const struct kbkeycode *
0x00004B4E KDSIGACCEPT int

// <include/linux/lp.h>
0x00000601 LPCHAR int
0x00000602 LPTIME int
0x00000604 LPABORT int
0x00000605 LPSETIRQ int
0x00000606 LPGETIRQ int *
0x00000608 LPWAIT int
0x00000609 LPCAREFUL int
0x0000060A LPABORTOPEN int
0x0000060B LPGETSTATUS int *
0x0000060C LPRESET void
0x0000060D LPGETSTATS struct lp_stats *

// <include/linux/mroute.h>
0x000089E0 SIOCGETVIFCNT struct sioc_vif_req * // I-O
0x000089E1 SIOCGETSGCNT struct sioc_sg_req * // I-O

// <include/linux/mtio.h>
0x40086D01 MTIOCTOP const struct mtop *
0x801C6D02 MTIOCGET struct mtget *
0x80046D03 MTIOCPOS struct mtpos *
0x80206D04 MTIOCGETCONFIG struct mtconfiginfo *
0x40206D05 MTIOCSETCONFIG const struct mtconfiginfo *

// <include/linux/netrom.h>
0x000089E0 SIOCNRGETPARMS struct nr_parms_struct * // I-O
0x000089E1 SIOCNRSETPARMS const struct nr_parms_struct *
0x000089E2 SIOCNRDECOBS void
0x000089E3 SIOCNRRTCTL const int *

// <include/linux/sbpcd.h>
0x00009000 DDIOCSDBG const int *
0x00005382 CDROMAUDIOBUFSIZ int

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (5 of 10) [14/09/1999 09:44:26]

// <include/linux/scc.h>
0x00005470 TIOCSCCINI void
0x00005471 TIOCCHANINI const struct scc_modem *
0x00005472 TIOCGKISS struct ioctl_command * // I-O
0x00005473 TIOCSKISS const struct ioctl_command *
0x00008910 SIOCGIFNAME char []
0x00008911 SIOCSIFLINK void
0x00008912 SIOCGIFCONF struct ifconf * // MORE // I-O
0x00008913 SIOCGIFFLAGS struct ifreq * // I-O
0x00008914 SIOCSIFFLAGS const struct ifreq *
0x00008915 SIOCGIFADDR struct ifreq * // I-O
0x00008916 SIOCSIFADDR const struct ifreq *
0x00008917 SIOCGIFDSTADDR struct ifreq * // I-O
0x00008918 SIOCSIFDSTADDR const struct ifreq *
0x00008919 SIOCGIFBRDADDR struct ifreq * // I-O
0x0000891A SIOCSIFBRDADDR const struct ifreq *
0x0000891B SIOCGIFNETMASK struct ifreq * // I-O
0x0000891C SIOCSIFNETMASK const struct ifreq *
0x0000891D SIOCGIFMETRIC struct ifreq * // I-O
0x0000891E SIOCSIFMETRIC const struct ifreq *
0x0000891F SIOCGIFMEM struct ifreq * // I-O
0x00008920 SIOCSIFMEM const struct ifreq *
0x00008921 SIOCGIFMTU struct ifreq * // I-O
0x00008922 SIOCSIFMTU const struct ifreq *
0x00008923 OLD_SIOCGIFHWADDR struct ifreq * // I-O
0x00008924 SIOCSIFHWADDR const struct ifreq * // MORE
0x00008925 SIOCGIFENCAP int *
0x00008926 SIOCSIFENCAP const int *
0x00008927 SIOCGIFHWADDR struct ifreq * // I-O
0x00008929 SIOCGIFSLAVE void
0x00008930 SIOCSIFSLAVE void
0x00008931 SIOCADDMULTI const struct ifreq *
0x00008932 SIOCDELMULTI const struct ifreq *
0x00008940 SIOCADDRTOLD void
0x00008941 SIOCDELRTOLD void
0x00008950 SIOCDARP const struct arpreq *
0x00008951 SIOCGARP struct arpreq * // I-O
0x00008952 SIOCSARP const struct arpreq *
0x00008960 SIOCDRARP const struct arpreq *
0x00008961 SIOCGRARP struct arpreq * // I-O
0x00008962 SIOCSRARP const struct arpreq *
0x00008970 SIOCGIFMAP struct ifreq * // I-O
0x00008971 SIOCSIFMAP const struct ifreq *

// <include/linux/soundcard.h>
0x00005100 SNDCTL_SEQ_RESET void
0x00005101 SNDCTL_SEQ_SYNC void
0xC08C5102 SNDCTL_SYNTH_INFO struct synth_info * // I-O
0xC0045103 SNDCTL_SEQ_CTRLRATE int * // I-O
0x80045104 SNDCTL_SEQ_GETOUTCOUNT int *

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (6 of 10) [14/09/1999 09:44:26]

0x80045105 SNDCTL_SEQ_GETINCOUNT int *
0x40045106 SNDCTL_SEQ_PERCMODE void
0x40285107 SNDCTL_FM_LOAD_INSTR const struct sbi_instrument *
0x40045108 SNDCTL_SEQ_TESTMIDI const int *
0x40045109 SNDCTL_SEQ_RESETSAMPLES const int *
0x8004510A SNDCTL_SEQ_NRSYNTHS int *
0x8004510B SNDCTL_SEQ_NRMIDIS int *
0x40045408 SNDCTL_TMR_SELECT int * // I-O
0xCFB85001 SNDCTL_PMGR_IFACE struct patmgr_info * // I-O
0xC0046D00 SNDCTL_MIDI_PRETIME int * // I-O
0xC0046D01 SNDCTL_MIDI_MPUMODE const int *
0xC0216D02 SNDCTL_MIDI_MPUCMD struct mpu_command_rec * // I-O
0x00005000 SNDCTL_DSP_RESET void
0x00005001 SNDCTL_DSP_SYNC void
0xC0045002 SNDCTL_DSP_SPEED int * // I-O
0xC0045003 SNDCTL_DSP_STEREO int * // I-O
0xC0045004 SNDCTL_DSP_GETBLKSIZE int * // I-O
0xC0045006 SOUND_PCM_WRITE_CHANNELS int * // I-O
0xC0045007 SOUND_PCM_WRITE_FILTER int * // I-O
0x00005008 SNDCTL_DSP_POST void
0xC0045009 SNDCTL_DSP_SUBDIVIDE int * // I-O
0xC004500A SNDCTL_DSP_SETFRAGMENT int * // I-O
0x8004500B SNDCTL_DSP_GETFMTS int *
0xC0045005 SNDCTL_DSP_SETFMT int * // I-O
0x800C500C SNDCTL_DSP_GETOSPACE struct audio_buf_info *
0x800C500D SNDCTL_DSP_GETISPACE struct audio_buf_info *
0x0000500E SNDCTL_DSP_NONBLOCK void
0x80045002 SOUND_PCM_READ_RATE int *
0x80045006 SOUND_PCM_READ_CHANNELS int *
0x80045005 SOUND_PCM_READ_BITS int *
0x80045007 SOUND_PCM_READ_FILTER int *
0x00004300 SNDCTL_COPR_RESET void
0xCFB04301 SNDCTL_COPR_LOAD const struct copr_buffer *
0xC0144302 SNDCTL_COPR_RDATA struct copr_debug_buf * // I-O
0xC0144303 SNDCTL_COPR_RCODE struct copr_debug_buf * // I-O
0x40144304 SNDCTL_COPR_WDATA const struct copr_debug_buf *
0x40144305 SNDCTL_COPR_WCODE const struct copr_debug_buf *
0xC0144306 SNDCTL_COPR_RUN struct copr_debug_buf * // I-O
0xC0144307 SNDCTL_COPR_HALT struct copr_debug_buf * // I-O
0x4FA44308 SNDCTL_COPR_SENDMSG const struct copr_msg *
0x8FA44309 SNDCTL_COPR_RCVMSG struct copr_msg *
0x80044D00 SOUND_MIXER_READ_VOLUME int *
0x80044D01 SOUND_MIXER_READ_BASS int *
0x80044D02 SOUND_MIXER_READ_TREBLE int *
0x80044D03 SOUND_MIXER_READ_SYNTH int *
0x80044D04 SOUND_MIXER_READ_PCM int *
0x80044D05 SOUND_MIXER_READ_SPEAKER int *
0x80044D06 SOUND_MIXER_READ_LINE int *
0x80044D07 SOUND_MIXER_READ_MIC int *
0x80044D08 SOUND_MIXER_READ_CD int *
0x80044D09 SOUND_MIXER_READ_IMIX int *

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (7 of 10) [14/09/1999 09:44:26]

0x80044D0A SOUND_MIXER_READ_ALTPCM int *
0x80044D0B SOUND_MIXER_READ_RECLEV int *
0x80044D0C SOUND_MIXER_READ_IGAIN int *
0x80044D0D SOUND_MIXER_READ_OGAIN int *
0x80044D0E SOUND_MIXER_READ_LINE1 int *
0x80044D0F SOUND_MIXER_READ_LINE2 int *
0x80044D10 SOUND_MIXER_READ_LINE3 int *
0x80044D1C SOUND_MIXER_READ_MUTE int *
0xC0044D07 SOUND_MIXER_WRITE_MIC int * // I-O
0xC0044D08 SOUND_MIXER_WRITE_CD int * // I-O
0xC0044D09 SOUND_MIXER_WRITE_IMIX int * // I-O
0xC0044D0A SOUND_MIXER_WRITE_ALTPCM int * // I-O
0xC0044D0B SOUND_MIXER_WRITE_RECLEV int * // I-O
0xC0044D0C SOUND_MIXER_WRITE_IGAIN int * // I-O
0xC0044D0D SOUND_MIXER_WRITE_OGAIN int * // I-O
0xC0044D0E SOUND_MIXER_WRITE_LINE1 int * // I-O
0xC0044D0F SOUND_MIXER_WRITE_LINE2 int * // I-O
0xC0044D10 SOUND_MIXER_WRITE_LINE3 int * // I-O
0xC0044D1C SOUND_MIXER_WRITE_MUTE int * // I-O
0xC0044D1D SOUND_MIXER_WRITE_ENHANCE int * // I-O
0xC0044D1E SOUND_MIXER_WRITE_LOUD int * // I-O
0xC0044DFF SOUND_MIXER_WRITE_RECSRC int * // I-O

// <include/linux/umsdos_fs.h>
0x000004D2 UMSDOS_READDIR_DOS struct umsdos_ioctl * // I-O
0x000004D3 UMSDOS_UNLINK_DOS const struct umsdos_ioctl *
0x000004D4 UMSDOS_RMDIR_DOS const struct umsdos_ioctl *
0x000004D5 UMSDOS_STAT_DOS struct umsdos_ioctl * // I-O
0x000004D6 UMSDOS_CREAT_EMD const struct umsdos_ioctl *
0x000004D7 UMSDOS_UNLINK_EMD const struct umsdos_ioctl *
0x000004D8 UMSDOS_READDIR_EMD struct umsdos_ioctl * // I-O
0x000004D9 UMSDOS_GETVERSION struct umsdos_ioctl *
0x000004DA UMSDOS_INIT_EMD void
0x000004DB UMSDOS_DOS_SETUP const struct umsdos_ioctl *
0x000004DC UMSDOS_RENAME_DOS const struct umsdos_ioctl *

// <include/linux/vt.h>
0x00005600 VT_OPENQRY int *
0x00005601 VT_GETMODE struct vt_mode *
0x00005602 VT_SETMODE const struct vt_mode *
0x00005603 VT_GETSTATE struct vt_stat *
0x00005604 VT_SENDSIG void
0x00005605 VT_RELDISP int
0x00005606 VT_ACTIVATE int
0x00005607 VT_WAITACTIVE int
0x00005608 VT_DISALLOCATE int
0x00005609 VT_RESIZE const struct vt_sizes *
0x0000560A VT_RESIZEX const struct vt_consize *

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (8 of 10) [14/09/1999 09:44:26]

// More arguments.

Some ioctl's take a pointer to a structure which contains additional
pointers. These are documented here in alphabetical order.

CDROMREADAUDIO takes an input pointer 'const struct cdrom_read_audio *'.
The 'buf' field points to an output buffer of length

CDROMREADCOOKED, CDROMREADMODE1, CDROMREADMODE2, and CDROMREADRAW take

 EQL_ENSLAVE const struct slaving_request *
 EQL_EMANCIPATE const struct slaving_request *
 EQL_GETSLAVECFG struct slave_config * // I-O
 EQL_SETSLAVECFG const struct slave_config *
 EQL_GETMASTERCFG struct master_config *
 EQL_SETMASTERCFG const struct master_config *

FDRAWCMD takes a 'struct floppy raw_cmd *'. If 'flags & FD_RAW_WRITE'
is non-zero, then 'data' points to an input buffer of length 'length'.
If 'flags & FD_RAW_READ' is non-zero, then 'data' points to an output
buffer of length 'length'.

GIO_FONTX and PIO_FONTX take a 'struct console_font_desc *' or a
a buffer of 'char [charcount]'. This is an output buffer for GIO_FONTX
and an input buffer for PIO_FONTX.

GIO_UNIMAP and PIO_UNIMAP take a 'struct unimapdesc *' or a
of 'struct unipair [entry_ct]'. This is an output buffer for GIO_UNIMAP
and an input buffer for PIO_UNIMAP.

KDADDIO, KDDELIO, KDDISABIO, and KDENABIO enable or disable access to
I/O ports. They are essentially alternate interfaces to 'ioperm'.

KDMAPDISP and KDUNMAPDISP enable or disable memory mappings or I/O port
access. They are not implemented in the kernel.

SCSI_IOCTL_PROBE_HOST takes an input pointer 'const int *', which is a
length. It uses the same pointer as an output pointer to a 'char []'
buffer of this length.

SIOCADDRT and SIOCDELRT take an input pointer whose type depends on
the protocol:

 Most protocols const struct rtentry *
 AX.25 const struct ax25_route *
 NET/ROM const struct nr_route_struct *

SIOCGIFCONF takes a 'struct ifconf *'. The 'ifc_buf' field points to a
buffer of length 'ifc_len' bytes, into which the kernel writes a list of
type 'struct ifreq []'.

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (9 of 10) [14/09/1999 09:44:26]

SIOCSIFHWADDR takes an input pointer whose type depends on the protocol:

 Most protocols const struct ifreq *
 AX.25 const char [AX25_ADDR_LEN]

TIOCLINUX takes a 'const char *'. It uses this to distinguish several
independent sub-cases. In the table below, 'N + foo' means 'foo' after
an N-byte pad. 'struct selection' is implicitly defined in

 TIOCLINUX-2 1 + const struct selection *

SIOCPROTOPRIVATE.

0x00000001 FDSETPRM FIBMAP
0x00000002 FDDEFPRM FIGETBSZ
0x00005382 CDROMAUDIOBUFSIZ SCSI_IOCTL_GET_IDLUN
0x00005402 SNDCTL_TMR_START TCSETS
0x00005403 SNDCTL_TMR_STOP TCSETSW
0x00005404 SNDCTL_TMR_CONTINUE TCSETSF

http://linuxsavvy.com/resources/linux/man/man2/ioctl_list.2.html (10 of 10) [14/09/1999 09:44:26]

NAME

 ioperm - set port input/output permissions

SYNOPSIS

 #include <unistd.h>

 int ioperm(unsigned long from, unsigned long num, int
 turn_on

DESCRIPTION

 Ioperm sets the port access permission bits for the process
 for num bytes starting from port address from to the value
 turn_on. The use of ioperm requires root privileges.

 Only the first 0x3ff I/O ports can be specified in this
 manner. For more ports, the iopl function must be used.
 Permissions are not inherited on fork, but on exec they are.
 This is useful for giving port access permissions to non-
 privileged tasks.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/ioperm.2.html (1 of 2) [14/09/1999 09:44:27]

CONFORMING TO

 ioperm is Linux specific and should not be used in programs
 intended to be portable.

SEE ALSO

 iopl(2)

http://linuxsavvy.com/resources/linux/man/man2/ioperm.2.html (2 of 2) [14/09/1999 09:44:27]

NAME

 iopl - change I/O privilege level

SYNOPSIS

 #include <unistd.h>

 int iopl(int level));

DESCRIPTION

 iopl changes the I/O privilege level of the current process,
 as specified in level.

 This call is necessary to allow 8514-compatible X servers to
 run under Linux. Since these X servers require access to
 all 65536 I/O ports, the ioperm call is not sufficient.

 In addition to granting unrestricted I/O port access, run-
 ning at a higher I/O privilege level also allows the process
 to disable interrupts. This will probably crash the system,
 and is not recommended.

 Permissions are inherited by fork and exec.

 The I/O privilege level for a normal process is 0.

http://linuxsavvy.com/resources/linux/man/man2/iopl.2.html (1 of 3) [14/09/1999 09:44:29]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL level is greater than 3.

 EPERM The current user is not the super-user.

GLIBC NOTE

 Under libc5, the prototype for iopl() is given in
 <unistd.h>, but glibc2 has this prototype in <sys/io.h>.

NOTES FROM THE KERNEL SOURCE

 iopl has to be used when you want to access the I/O ports
 beyond the 0x3ff range: to get the full 65536 ports bit-
 mapped you'd need 8kB of bitmaps/process, which is a bit
 excessive.

CONFORMING TO

 iopl is Linux specific and should not be used in processes
 intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/iopl.2.html (2 of 3) [14/09/1999 09:44:29]

SEE ALSO

 ioperm(2)

http://linuxsavvy.com/resources/linux/man/man2/iopl.2.html (3 of 3) [14/09/1999 09:44:29]

NAME

 ipc - System V IPC system calls

SYNOPSIS

 int ipc(unsigned int call, int first, int second, int third,
 void *ptr, long fifth);

DESCRIPTION

 ipc is a common kernel entry point for the System V IPC
 calls for messages, semaphores, and shared memory. call
 determines which IPC function to invoke; the other arguments
 are passed through to the appropriate call.

 User programs should call the appropriate functions by their
 usual names. Only standard library implementors and kernel
 hackers need to know about ipc.

CONFORMING TO

 ipc is Linux specific, and should not be used in programs
 intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/ipc.2.html (1 of 2) [14/09/1999 09:44:31]

SEE ALSO

 msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2),
 semget(2), semop(2), shmat(2), shmctl(2), shmdt(2),
 shmget(2)

http://linuxsavvy.com/resources/linux/man/man2/ipc.2.html (2 of 2) [14/09/1999 09:44:31]

NAME

 kill - send signal to a process

SYNOPSIS

 #include <sys/types.h>
 #include <signal.h>

 int kill(pid_t pid, int sig));

DESCRIPTION

 The kill system call can be used to send any signal to any
 process group or process.

 If pid is positive, then signal sig is sent to pid.

 If pid equals 0, then sig is sent to every process in the
 process group of the current process.

 If pid equals -1, then sig is sent to every process except
 for the first one, from higher numbers in the process table
 to lower.

 If pid is less than -1, then sig is sent to every process in
 the process group -pid.

 If sig is 0, then no signal is sent, but error checking is
 still performed.

http://linuxsavvy.com/resources/linux/man/man2/kill.2.html (1 of 4) [14/09/1999 09:44:33]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 An invalid signal was specified.

 ESRCH
 The pid or process group does not exist. Note that an
 existing process might be a zombie, a process which
 already committed termination, but has not yet been
 wait()ed for.

 EPERM
 The process does not have permission to send the signal
 to any of the receiving processes. For a process to
 have permission to send a signal to process pid it must
 either have root privileges, or the real or effective
 user ID of the sending process must equal the real or
 saved set-user-ID of the receiving process.

BUGS

 It is impossible to send a signal to task number one, the
 init process, for which it has not installed a signal
 handler. This is done to assure the system is not brought
 down accidentally.

http://linuxsavvy.com/resources/linux/man/man2/kill.2.html (2 of 4) [14/09/1999 09:44:33]

CONFORMING TO

 SVr4, SVID, POSIX.1, X/OPEN, BSD 4.3

SEE ALSO

 _exit(2), exit(3), signal(2),

http://linuxsavvy.com/resources/linux/man/man2/kill.2.html (3 of 4) [14/09/1999 09:44:33]

http://linuxsavvy.com/resources/linux/man/man2/kill.2.html (4 of 4) [14/09/1999 09:44:33]

NAME

 killpg - send signal to a process group

SYNOPSIS

 #include <signal.h>

 int killpg(int pgrp, int sig));

DESCRIPTION

 Killpg sends the signal sig to the process group pgrp. See
 sigaction(2) for a list of signals. If pgrp is 0, killpg
 sends the signal to the sending process's process group.

 The sending process and members of the process group must
 have the same effective user ID, or the sender must be the
 super-user. As a single special case the continue signal
 SIGCONT may be sent to any process that is a descendant of
 the current process.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/killpg.2.html (1 of 2) [14/09/1999 09:44:35]

ERRORS

 EINVAL
 Sig is not a valid signal number.

 ESRCH
 No process can be found in the process group specified
 by pgrp.

 ESRCH
 The process group was given as 0 but the sending pro-
 cess does not have a process group.

 EPERM
 The sending process is not the super-user and one or
 more of the target processes has an effective user ID
 different from that of the sending process.

CONFORMING TO

 SVr4, 4.4BSD (The killpg function call first appeared in
 4.0BSD).

SEE ALSO

 kill(2), getpgrp(2), signal(2)

http://linuxsavvy.com/resources/linux/man/man2/killpg.2.html (2 of 2) [14/09/1999 09:44:35]

NAME

 link - make a new name for a file

SYNOPSIS

 #include <unistd.h>

 int link(const char *oldpath, const char *newpath));

DESCRIPTION

 link creates a new link (also known as a hard link) to an
 existing file.

 If newpath exists it will not be overwritten.

 This new name may be used exactly as the old one for any
 operation; both names refer to the same file (and so have
 the same permissions and ownership) and it is impossible to
 tell which name was the `original'.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/link.2.html (1 of 4) [14/09/1999 09:44:38]

ERRORS

 EXDEV oldpath and newpath are not on the same filesystem.

 EPERM The filesystem containing oldpath and newpath does
 not support the creation of hard links.

 EFAULT oldpath or newpath points outside your accessible
 address space.

 EACCES Write access to the directory containing newpath is
 not allowed for the process's effective uid, or one
 of the directories in oldpath or newpath did not
 allow search (execute) permission.

 ENAMETOOLONG
 oldpath or newpath was too long.

 ENOENT A directory component in oldpath or newpath does not
 exist or is a dangling symbolic link.

 ENOTDIR A component used as a directory in oldpath or
 newpath is not, in fact, a directory.

 ENOMEM Insufficient kernel memory was available.

 EROFS The file is on a read-only filesystem.

 EEXIST newpath already exists.

 EMLINK The file referred to by oldpath already has the max-
 imum number of links to it.

 ELOOP Too many symbolic links were encountered in resolv-
 ing oldpath or newpath.

 ENOSPC The device containing the file has no room for the
 new directory entry.

 EPERM oldpath is a directory.

 EIO An I/O error occurred.

http://linuxsavvy.com/resources/linux/man/man2/link.2.html (2 of 4) [14/09/1999 09:44:38]

NOTES

 Hard links, as created by link, cannot span filesystems. Use
 symlink if this is required.

CONFORMING TO

 SVr4, SVID, POSIX, BSD 4.3, X/OPEN. SVr4 documents addi-
 tional ENOLINK and EMULTIHOP error conditions; POSIX.1 does
 not document ELOOP. X/OPEN does not document EFAULT, ENOMEM
 or EIO.

BUGS

 On NFS file systems, the return code may be wrong in case
 the NFS server performs the link creation and dies before it
 can say so. Use stat(2) to find out if the link got
 created.

SEE ALSO

 symlink(2), unlink(2), rename(2), open(2), stat(2), ln(1)

http://linuxsavvy.com/resources/linux/man/man2/link.2.html (3 of 4) [14/09/1999 09:44:39]

http://linuxsavvy.com/resources/linux/man/man2/link.2.html (4 of 4) [14/09/1999 09:44:39]

NAME

 listen - listen for connections on a socket

SYNOPSIS

 #include <sys/socket.h>

 int listen(int s, int backlog));

DESCRIPTION

 To accept connections, a socket is first created with
 socket(2), a willingness to accept incoming connections and
 a queue limit for incoming connections are specified with
 listen, and then the connections are accepted with
 accept(2). The listen call applies only to sockets of type
 SOCK_STREAM or SOCK_SEQPACKET.

 The backlog parameter defines the maximum length the queue
 of pending connections may grow to. If a connection request
 arrives with the queue full the client may receive an error
 with an indication of ECONNREFUSED, or, if the underlying
 protocol supports retransmission, the request may be ignored
 so that retries may succeed.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/listen.2.html (1 of 2) [14/09/1999 09:44:42]

ERRORS

 EBADF The argument s is not a valid descriptor.

 ENOTSOCK
 The argument s is not a socket.

 EOPNOTSUPP
 The socket is not of a type that supports the opera-
 tion listen.

CONFORMING TO

 SVr4, 4.4BSD (the listen function call first appeared in
 4.2BSD).

BUGS

 If the socket is of type af_inet, and the backlog argument
 is greater than the constant SO_MAXCONN (128 in 2.0.23), it
 is silently truncated to SO_MAXCONN. For portable applica-
 tions don't rely on this value since BSD (and at least some
 BSD derived systems) limit the backlog to 5.

SEE ALSO

 accept(2), connect(2), socket(2)

http://linuxsavvy.com/resources/linux/man/man2/listen.2.html (2 of 2) [14/09/1999 09:44:42]

NAME

 _llseek - reposition read/write file offset

SYNOPSIS

 #include <unistd.h>

 #include <linux/unistd.h>

 _syscall5(int, _llseek, uint, fd, ulong, hi,

 int _llseek(unsigned int fd, unsigned long offset_high,
 unsigned long offset_low

DESCRIPTION

 The _llseek function repositions the offset of the file
 descriptor fd to (offset_high<<32) | offset_low bytes rela-
 tive to the beginning of the file, the current position in
 the file, or the end of the file, depending on whether
 whence is SEEK_SET, SEEK_CUR, or SEEK_END, respectively. It
 returns the resulting file position in the argument result.

RETURN VALUES

 Upon successful completion, _llseek returns 0. Otherwise, a
 value of -1 is returned and errno is set to indicate the
 error.

http://linuxsavvy.com/resources/linux/man/man2/llseek.2.html (1 of 2) [14/09/1999 09:44:44]

ERRORS

 EBADF
 fd is not an open file descriptor.

 EINVAL
 whence is invalid.

CONFORMING TO

 This function is Linux-specific, and should not be used in
 programs intended to be portable.

BUGS

 The ext2 filesystem does not support files with a size of
 2GB or more.

SEE ALSO

 lseek(2)

http://linuxsavvy.com/resources/linux/man/man2/llseek.2.html (2 of 2) [14/09/1999 09:44:44]

NAME

 lseek - reposition read/write file offset

SYNOPSIS

 #include <sys/types.h>
 #include <unistd.h>

 off_t lseek(int fildes, off_t offset, int whence

DESCRIPTION

 The lseek function repositions the offset of the file
 descriptor fildes to the argument offset according to the
 directive whence as follows:

 SEEK_SET
 The offset is set to offset bytes.

 SEEK_CUR
 The offset is set to its current location plus offset
 bytes.

 SEEK_END
 The offset is set to the size of the file plus offset
 bytes.

 The lseek function allows the file offset to be set beyond
 the end of the existing end-of-file of the file. If data is
 later written at this point, subsequent reads of the data in
 the gap return bytes of zeros (until data is actually writ-
 ten into the gap).

http://linuxsavvy.com/resources/linux/man/man2/lseek.2.html (1 of 4) [14/09/1999 09:44:47]

RETURN VALUES

 Upon successful completion, lseek returns the resulting
 offset location as measured in bytes from the beginning of
 the file. Otherwise, a value of (off_t)-1 is returned and
 errno is set to indicate the error.

ERRORS

 EBADF
 Fildes is not an open file descriptor.

 ESPIPE
 Fildes is associated with a pipe, socket, or FIFO.

 EINVAL
 Whence is not a proper value.

CONFORMING TO

 SVr4, POSIX, BSD 4.3

RESTRICTIONS

 Some devices are incapable of seeking and POSIX does not
 specify which devices must support it.

 Linux specific restrictions: using lseek on a tty device
 returns ESPIPE. Other systems return the number of written
 characters, using SEEK_SET to set the counter. Some dev-
 ices, e.g. /dev/null do not cause the error ESPIPE, but

http://linuxsavvy.com/resources/linux/man/man2/lseek.2.html (2 of 4) [14/09/1999 09:44:47]

 return a pointer which value is undefined.

NOTES

 This document's use of whence is incorrect English, but
 maintained for historical reasons.

 When converting old code, substitute values for whence with
 the following macros:

 c c l l. old new 0 SEEK_SET 1 SEEK_CUR 2 SEEK_END
 L_SET SEEK_SET L_INCR SEEK_CUR L_XTND SEEK_END

 SVR1-3 returns long instead of off_t, BSD returns int.

SEE ALSO

 dup(2), open(2), fseek(3)

http://linuxsavvy.com/resources/linux/man/man2/lseek.2.html (3 of 4) [14/09/1999 09:44:47]

http://linuxsavvy.com/resources/linux/man/man2/lseek.2.html (4 of 4) [14/09/1999 09:44:47]

NAME

 mkdir - create a directory

SYNOPSIS

 #include <sys/stat.h>
 #include <sys/types.h>
 #include <fcntl.h>
 #include <unistd.h>

 int mkdir(const char *pathname, mode_t mode));

DESCRIPTION

 mkdir attempts to create a directory named pathname.

 mode specifies the permissions to use. It is modified by the
 process's umask in the usual way: the permissions of the
 created file are (mode & ~umask).

 The newly created directory will be owned by the effective
 uid of the process. If the directory containing the file
 has the set group id bit set, or if the filesystem is
 mounted with BSD group semantics, the new directory will
 inherit the group ownership from its parent; otherwise it
 will be owned by the effective gid of the process.

 If the parent directory has the set group id bit set then so
 will the newly created directory.

http://linuxsavvy.com/resources/linux/man/man2/mkdir.2.html (1 of 4) [14/09/1999 09:44:50]

RETURN VALUE

 mkdir returns zero on success, or -1 if an error occurred
 (in which case, errno is set appropriately).

ERRORS

 EEXIST pathname already exists (not necessarily as a direc-
 tory).

 EFAULT pathname points outside your accessible address
 space.

 EACCES The parent directory does not allow write permission
 to the process, or one of the directories in path-
 name did not allow search (execute) permission.

 ENAMETOOLONG
 pathname was too long.

 ENOENT A directory component in pathname does not exist or
 is a dangling symbolic link.

 ENOTDIR A component used as a directory in pathname is not,
 in fact, a directory.

 ENOMEM Insufficient kernel memory was available.

 EROFS pathname refers to a file on a read-only filesystem.

 ELOOP Too many symbolic links were encountered in resolv-
 ing pathname.

 ENOSPC The device containing pathname has no room for the
 new directory.

 ENOSPC The new directory cannot be created because the
 user's disk quota is exhausted.

http://linuxsavvy.com/resources/linux/man/man2/mkdir.2.html (2 of 4) [14/09/1999 09:44:50]

CONFORMING TO

 SVr4, POSIX, BSD, SYSV, X/OPEN. SVr4 documents additional
 EIO, EMULTIHOP and ENOLINK error conditions; POSIX.1 omits
 ELOOP.

 There are many infelicities in the protocol underlying NFS.
 Some of these affect mkdir.

SEE ALSO

 read(2), write(2), fcntl(2), unlink(2), open(2), mknod(2),
 mount(2), socket(2), socket(2),

http://linuxsavvy.com/resources/linux/man/man2/mkdir.2.html (3 of 4) [14/09/1999 09:44:50]

http://linuxsavvy.com/resources/linux/man/man2/mkdir.2.html (4 of 4) [14/09/1999 09:44:50]

NAME

 mknod - create a directory or special or ordinary file

SYNOPSIS

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <unistd.h>

 int mknod(const char *pathname, mode_t mode, dev_t dev

DESCRIPTION

 mknod attempts to create a filesystem node (file, device
 special file or named pipe) named pathname, specified by
 mode and dev.

 mode specifies both the permissions to use and the type of
 node to be created.

 It should be a combination (using bitwise OR) of one of the
 file types listed below and the permissions for the new
 node.

 The permissions are modified by the process's umask in the
 usual way: the permissions of the created node are (mode &
 ~umask).

 The file type should be one of S_IFREG, S_IFCHR, S_IFBLK and
 to specify a normal file (which will be created empty),
 character special file, block special file or FIFO (named
 pipe), respectively, or zero, which will create a normal

http://linuxsavvy.com/resources/linux/man/man2/mknod.2.html (1 of 5) [14/09/1999 09:44:53]

 file.

 If the file type is S_IFCHR or S_IFBLK then dev specifies
 the major and minor numbers of the newly created device spe-
 cial file; otherwise it is ignored.

 The newly created node will be owned by the effective uid of
 the process. If the directory containing the node has the
 set group id bit set, or if the filesystem is mounted with
 BSD group semantics, the new node will inherit the group
 ownership from its parent directory; otherwise it will be
 owned by the effective gid of the process.

RETURN VALUE

 mknod returns zero on success, or -1 if an error occurred
 (in which case, errno is set appropriately).

ERRORS

 EPERM
 mode requested creation of something other than a FIFO
 (named pipe), and the caller is not the superuser; also
 returned if the filesystem containing pathname does not
 support the type of node requested.

 EINVAL
 mode requested creation of something other than a nor-
 mal file, device special file or FIFO.

 EEXIST
 pathname already exists.

 EFAULT
 pathname points outside your accessible address space.

 EACCES
 The parent directory does not allow write permission to

http://linuxsavvy.com/resources/linux/man/man2/mknod.2.html (2 of 5) [14/09/1999 09:44:53]

 the process, or one of the directories in pathname did
 not allow search (execute) permission.

 ENAMETOOLONG
 pathname was too long.

 ENOENT
 A directory component in pathname does not exist or is
 a dangling symbolic link.

 ENOTDIR
 A component used as a directory in pathname is not, in
 fact, a directory.

 ENOMEM
 Insufficient kernel memory was available.

 EROFS
 pathname refers to a file on a read-only filesystem.

 ELOOP
 Too many symbolic links were encountered in resolving
 pathname.

 ENOSPC
 The device containing pathname has no room for the new
 node.

CONFORMING TO

 SVr4 (but the call requires privilege and is thus not in
 POSIX), 4.4BSD. The Linux version differs from the SVr4
 version in that it does not require root permission to
 create pipes, also in that no EMULTIHOP, ENOLINK, or EINTR
 error is documented.

http://linuxsavvy.com/resources/linux/man/man2/mknod.2.html (3 of 5) [14/09/1999 09:44:53]

BUGS

 The mknod call cannot be used to create directories or
 socket files, and cannot be used to create normal files by
 users other than the superuser.

 There are many infelicities in the protocol underlying NFS.
 Some of these affect mknod.

SEE ALSO

 read(2), write(2), fcntl(2), unlink(2), open(2), mkdir(2),
 mount(2), socket(2), fopen(3).

http://linuxsavvy.com/resources/linux/man/man2/mknod.2.html (4 of 5) [14/09/1999 09:44:53]

http://linuxsavvy.com/resources/linux/man/man2/mknod.2.html (5 of 5) [14/09/1999 09:44:53]

NAME

 mlock - disable paging for some parts of memory

SYNOPSIS

 #include <sys/mman.h>

 int mlock(const void *addr, size_t len));

DESCRIPTION

 mlock disables paging for the memory in the range starting
 at addr with length len bytes. All pages which contain a
 part of the specified memory range are guaranteed be
 resident in RAM when the mlock system call returns success-
 fully and they are guaranteed to stay in RAM until the pages
 are unlocked by munlock or munlockall, or until the process
 terminates or starts another program with exec. Child
 processes do not inherit page locks across a fork.

 Memory locking has two main applications: real-time algo-
 rithms and high-security data processing. Real-time applica-
 tions require deterministic timing, and, like scheduling,
 paging is one major cause of unexpected program execution
 delays. Real-time applications will usually also switch to a
 real-time scheduler with sched_setscheduler. Cryptographic
 security software often handles critical bytes like pass-
 words or secret keys as data structures. As a result of pag-
 ing, these secrets could be transfered onto a persistent
 swap store medium, where they might be accessible to the
 enemy long after the security software has erased the
 secrets in RAM and terminated.

http://linuxsavvy.com/resources/linux/man/man2/mlock.2.html (1 of 4) [14/09/1999 09:44:55]

 Memory locks do not stack, i.e., pages which have been
 locked several times by calls to mlock or mlockall will be
 unlocked by a single call to munlock for the corresponding
 range or by munlockall. Pages which are mapped to several
 locations or by several processes stay locked into RAM as
 long as they are locked at least at one location or by at
 least one process.

 On POSIX systems on which mlock and munlock are available,
 _POSIX_MEMLOCK_RANGE is defined in <unistd.h> and the value
 PAGESIZE from <limits.h> indicates the number of bytes per
 page.

RETURN VALUE

 On success, mlock returns zero. On error, -1 is returned,
 errno is set appropriately, and no changes are made to any
 locks in the address space of the process.

ERRORS

 ENOMEM Some of the specified address range does not
 correspond to mapped pages in the address space of
 the process or the process tried to exceed the max-
 imum number of allowed locked pages.

 EPERM The calling process does not have appropriate
 privileges. Only root processes are allowed to lock
 pages.

 EINVAL len was not a positive number.

http://linuxsavvy.com/resources/linux/man/man2/mlock.2.html (2 of 4) [14/09/1999 09:44:55]

CONFORMING TO

 POSIX.1b, SVr4. SVr4 documents an additional EAGAIN error
 code.

SEE ALSO

 munlock(2), mlockall(2), and munlockall(2).

http://linuxsavvy.com/resources/linux/man/man2/mlock.2.html (3 of 4) [14/09/1999 09:44:55]

http://linuxsavvy.com/resources/linux/man/man2/mlock.2.html (4 of 4) [14/09/1999 09:44:55]

NAME

 mlockall - disable paging for calling process

SYNOPSIS

 #include <sys/mman.h>

 int mlockall(int flags));

DESCRIPTION

 mlockall disables paging for all pages mapped into the
 address space of the calling process. This includes the
 pages of the code, data and stack segment, as well as shared
 libraries, user space kernel data, shared memory and memory
 mapped files. All mapped pages are guaranteed to be resident
 in RAM when the mlockall system call returns successfully
 and they are guaranteed to stay in RAM until the pages are
 unlocked again by munlock or munlockall or until the process
 terminates or starts another program with exec. Child
 processes do not inherit page locks across a fork.

 Memory locking has two main applications: real-time algo-
 rithms and high-security data processing. Real-time applica-
 tions require deterministic timing, and, like scheduling,
 paging is one major cause of unexpected program execution
 delays. Real-time applications will usually also switch to a
 real-time scheduler with sched_setscheduler. Cryptographic
 security software often handles critical bytes like pass-
 words or secret keys as data structures. As a result of pag-
 ing, these secrets could be transfered onto a persistent
 swap store medium, where they might be accessible to the
 enemy long after the security software has erased the

http://linuxsavvy.com/resources/linux/man/man2/mlockall.2.html (1 of 4) [14/09/1999 09:44:57]

 secrets in RAM and terminated. For security applications,
 only small parts of memory have to be locked, for which
 mlock is available.

 The flags parameter can be constructed from the logical OR
 of the following constants:

 MCL_CURRENT Lock all pages which are currently mapped into
 the address space of the process.

 MCL_FUTURE Lock all pages which will become mapped into the
 address space of the process in the future.
 These could be for instance new pages required
 by a growing heap and stack as well as new
 memory mapped files or shared memory regions.

 If MCL_FUTURE has been specified and the number of locked
 pages exceeds the upper limit of allowed locked pages, then
 the system call which caused the new mapping will fail with
 ENOMEM. If these new pages have been mapped by the the
 growing stack, then the kernel will deny stack expansion and
 send a SIGSEGV.

 Real-time processes should reserve enough locked stack pages
 before entering the time-critical section, so that no page
 fault can be caused by function calls. This can be achieved
 by calling a function which has a sufficiently large
 automatic variable and which writes to the memory occupied
 by this large array in order to touch these stack pages.
 This way, enough pages will be mapped for the stack and can
 be locked into RAM. The dummy writes ensure that not even
 copy-on-write page faults can occur in the critical section.

 Memory locks do not stack, i.e., pages which have been
 locked several times by calls to mlockall or mlock will be
 unlocked by a single call to munlockall. Pages which are
 mapped to several locations or by several processes stay
 locked into RAM as long as they are locked at least at one
 location or by at least one process.

 On POSIX systems on which mlockall and munlockall are avail-
 able, _POSIX_MEMLOCK is defined in <unistd.h>.

http://linuxsavvy.com/resources/linux/man/man2/mlockall.2.html (2 of 4) [14/09/1999 09:44:57]

RETURN VALUE

 On success, mlockall returns zero. On error, -1 is
 returned, errno is set appropriately.

ERRORS

 ENOMEM
 The process tried to exceed the maximum number of
 allowed locked pages.

 EPERM
 The calling process does not have appropriate
 privileges. Only root processes are allowed to lock
 pages.

 EINVAL
 Unknown flags were specified.

CONFORMING TO

 POSIX.1b, SVr4. SVr4 documents an additional EAGAIN error
 code.

SEE ALSO

 munlockall(2), mlock(2), and munlock(2).

http://linuxsavvy.com/resources/linux/man/man2/mlockall.2.html (3 of 4) [14/09/1999 09:44:57]

http://linuxsavvy.com/resources/linux/man/man2/mlockall.2.html (4 of 4) [14/09/1999 09:44:57]

NAME

 mmap, munmap - map or unmap files or devices into memory

SYNOPSIS

 #include <unistd.h>
 #include <sys/mman.h>

 #ifdef _POSIX_MAPPED_FILES

 void * mmap(void *start, size_t length, int prot , int
 flags, int fd, off_t offset

 int munmap(void *start, size_t length));

 #endif

DESCRIPTION

 The mmap function asks to map length bytes starting at
 offset offset from the file (or other object) specified by
 fd into memory, preferably at address start. This latter
 address is a hint only, and is usually specified as 0. The
 actual place where the object is mapped is returned by mmap.
 The prot argument describes the desired memory protection.
 It has bits

 PROT_EXEC Pages may be executed.

 PROT_READ Pages may be read.

 PROT_WRITE Pages may be written.

http://linuxsavvy.com/resources/linux/man/man2/mmap.2.html (1 of 4) [14/09/1999 09:44:59]

 PROT_NONE Pages may not be accessed.

 The flags parameter specifies the type of the mapped object,
 mapping options and whether modifications made to the mapped
 copy of the page are private to the process or are to be
 shared with other references. It has bits

 MAP_FIXED Do not select a different address than the one
 specified. If the specified address cannot be
 used, mmap will fail. If MAP_FIXED is specified,
 start must be a multiple of the pagesize. Use of
 this option is discouraged.

 MAP_SHARED Share this mapping with all other processes that
 map this object

 MAP_PRIVATE
 Create a private copy-on-write mapping.

 You must specify exactly one of MAP_SHARED and MAP_PRIVATE.

 The above three flags are described in POSIX.1b (formerly
 POSIX.4). Linux also knows about MAP_DENYWRITE,
 MAP_EXECUTABLE and MAP_ANON(YMOUS).

 The munmap system call deletes the mappings for the speci-
 fied address range, and causes further references to
 addresses within the range to generate invalid memory refer-
 ences.

RETURN VALUE

 On success, mmap returns a pointer to the mapped area. On
 error, MAP_FAILED (-1) is returned, and errno is set
 appropriately. On success, munmap returns 0, on failure -1,
 and errno is set (probably to EINVAL).

http://linuxsavvy.com/resources/linux/man/man2/mmap.2.html (2 of 4) [14/09/1999 09:44:59]

ERRORS

 EBADF
 fd is not a valid file descriptor (and MAP_ANONYMOUS
 was not set).

 EACCES
 MAP_PRIVATE was asked, but fd is not open for reading.
 Or MAP_SHARED was asked and PROT_WRITE is set, fd is
 not open for writing.

 EINVAL
 We don't like start or length or offset. (E.g., they
 are too large, or not aligned on a PAGESIZE boundary.)

 ETXTBUSY
 MAP_DENYWRITE was set but the object specified by fd is
 open for writing.

 EAGAIN
 The file has been locked, or too much memory has been
 locked.

 ENOMEM
 No memory is available.

CONFORMING TO

 SVr4, POSIX.1b (formerly POSIX.4), 4.4BSD. Svr4 documents
 additional error codes ENXIO and ENODEV.

SEE ALSO

 getpagesize(2), msync(2), shm_open(2), B.O. Gallmeister,
 POSIX.4, O'Reilly, pp. 128-129 and 389-391.

http://linuxsavvy.com/resources/linux/man/man2/mmap.2.html (3 of 4) [14/09/1999 09:44:59]

http://linuxsavvy.com/resources/linux/man/man2/mmap.2.html (4 of 4) [14/09/1999 09:44:59]

NAME

 modify_ldt - get or set ldt

SYNOPSIS

 #include <linux/ldt.h>
 #include <linux/unistd.h>

 _syscall3(int, modify_ldt, int, func, void

 int modify_ldt(int func, void *ptr, unsigned long bytecount

DESCRIPTION

 modify_ldt reads or writes the local descriptor table (ldt)
 for a process. The ldt is a per-process memory management
 table used by the i386 processor. For more information on
 this table, see an Intel 386 processor handbook.

 When func is 0, modify_ldt reads the ldt into the memory
 pointed to by ptr. The number of bytes read is the smaller
 of bytecount and the actual size of the ldt.

 When func is 1, modify_ldt modifies one ldt entry. ptr
 points to a modify_ldt_ldt_s structure and bytecount must
 equal the size of this structure.

http://linuxsavvy.com/resources/linux/man/man2/modify_ldt.2.html (1 of 2) [14/09/1999 09:45:01]

RETURN VALUE

 On success, modify_ldt returns either the actual number of
 bytes read (for reading) or 0 (for writing). On failure,
 modify_ldt returns -1 and sets errno.

ERRORS

 ENOSYS
 func is neither 0 nor 1.

 EINVAL
 ptr is 0, or func is 1 and bytecount is not equal to
 the size of the structure modify_ldt_ldt_s, or func is
 1 and the new ldt entry has illegal values.

 EFAULT
 ptr points outside the address space.

CONFORMING TO

 This call in Linux-specfic and should not be used in pro-
 grams intended to be portable.

SEE ALSO

 vm86(2)

http://linuxsavvy.com/resources/linux/man/man2/modify_ldt.2.html (2 of 2) [14/09/1999 09:45:01]

NAME

 mount, umount - mount and unmount filesystems.

SYNOPSIS

 #include <sys/mount.h>
 #include <linux/fs.h> /* very unwise */

 int mount(const char *specialfile, const char * dir , const
 char * filesystemtype, unsigned long rwflag , const void *
 data));

 int umount(const char *specialfile));

 int umount(const char *dir));

DESCRIPTION

 mount attaches the filesystem specified by specialfile
 (which is often a device name) to the directory specified by
 dir.

 umount removes the attachment of the filesystem specified by
 specialfile or dir.

 Only the super-user may mount and unmount filesystems.

 The filesystemtype argument may take one of the values
 listed in /proc/filesystems (like "minix", "ext2", "msdos",
 "proc", "nfs", "iso9660" etc.).

 The rwflag argument has the magic number 0xC0ED in the top
 16 bits, and various mount flags (as defined in
 <linux/fs.h>) in the low order 16 bits:

http://linuxsavvy.com/resources/linux/man/man2/mount.2.html (1 of 5) [14/09/1999 09:45:04]

 #define MS_RDONLY 1 /* mount read-only */
 #define MS_NOSUID 2 /* ignore suid and sgid bits */
 #define MS_NODEV 4 /* disallow access to device special files */
 #define MS_NOEXEC 8 /* disallow program execution */
 #define MS_SYNC 16 /* writes are synced at once */
 #define MS_REMOUNT 32 /* alter flags of a mounted FS */
 #define MS_MGC_VAL 0xC0ED0000
 If the magic number is absent, then the last two arguments
 are not used.

 The data argument is interpreted by the different file sys-
 tems.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 The error values given below result from filesystem type
 independent errors. Each filesystem type may have its own
 special errors and its own special behavior. See the kernel
 source code for details.

 EPERM The user is not the super-user.

 ENODEV Filesystemtype not configured in the kernel.

 ENOTBLK Specialfile is not a block device (if a device was
 required).

 EBUSY Specialfile is already mounted. Or, it cannot be
 remounted read-only, because it still holds files
 open for writing. Or, it cannot be mounted on dir
 because dir is still busy (it is the working direc-
 tory of some task, the mount point of another dev-
 ice, has open files, etc.).

http://linuxsavvy.com/resources/linux/man/man2/mount.2.html (2 of 5) [14/09/1999 09:45:04]

 EINVAL Specialfile had an invalid superblock. Or, a
 remount was attempted, while specialfile was not
 already mounted on dir. Or, an umount was
 attempted, while dir was not a mount point.

 EFAULT One of the pointer arguments points outside the user
 address space.

 ENOMEM The kernel could not allocate a free page to copy
 filenames or data into.

 ENAMETOOLONG
 A pathname was longer than MAXPATHLEN.

 ENOENT A pathname was empty or had a nonexistent component.

 ENOTDIR The second argument, or a prefix of the first argu-
 ment, is not a directory.

 EACCES A component of a path was not searchable.
 Or, mounting a read-only filesystem was attempted
 without giving the MS_RDONLY flag.
 Or, the block device Specialfile is located on a
 filesystem mounted with the MS_NODEV option.

 ENXIO The major number of the block device specialfile is
 out of range.

 EMFILE (In case no block device is required:) Table of
 dummy devices is full.

CONFORMING TO

 These functions are Linux-specific and should not be used in
 programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/mount.2.html (3 of 5) [14/09/1999 09:45:04]

SEE ALSO

 mount(8), umount(8)

http://linuxsavvy.com/resources/linux/man/man2/mount.2.html (4 of 5) [14/09/1999 09:45:04]

http://linuxsavvy.com/resources/linux/man/man2/mount.2.html (5 of 5) [14/09/1999 09:45:04]

NAME

 mprotect - control allowable accesses to a region of memory

SYNOPSIS

 #include <sys/mman.h>

 int mprotect(const void *addr, size_t len, int prot));

DESCRIPTION

 mprotect controls how a section of memory may be accessed.
 If an access is disallowed by the protection given it, the
 program receives a SIGSEGV.

 prot is a bitwise-or of the following values:

 PROT_NONE The memory cannot be accessed at all.

 PROT_READ The memory can be read.

 PROT_WRITE The memory can be written to.

 PROT_EXEC The memory can contain executing code.

 The new protection replaces any existing protection. For
 example, if the memory had previously been marked PROT_READ,
 and mprotect is then called with prot PROT_WRITE, it will no
 longer be readable.

http://linuxsavvy.com/resources/linux/man/man2/mprotect.2.html (1 of 3) [14/09/1999 09:45:06]

RETURN VALUE

 On success, mprotect returns zero. On error, -1 is
 returned, and errno is set appropriately.

ERRORS

 EINVAL addr is not a valid pointer, or not a multiple of
 PAGESIZE.

 EFAULT The memory cannot be accessed.

 EACCES The memory cannot be given the specified access.
 This can happen, for example, if you mmap(2) a file
 to which you have read-only access, then ask mpro-
 tect to mark it PROT_WRITE.

 ENOMEM Internal kernel structures could not be allocated.

EXAMPLE

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/mman.h>

 #include <limits.h> /* for PAGESIZE */
 #ifndef PAGESIZE
 #define PAGESIZE 4096
 #endif

 int
 main(void)
 {
 char *p;
 char c;

 /* Allocate a buffer; it will have the default
 protection of PROT_READ|PROT_WRITE. */
 p = malloc(1024+PAGESIZE-1);

http://linuxsavvy.com/resources/linux/man/man2/mprotect.2.html (2 of 3) [14/09/1999 09:45:06]

 if (!p) {
 perror("Couldn't malloc(1024)");
 exit(errno);
 }

 /* Align to a multiple of PAGESIZE, assumed to be a power of two */
 p = (char *)(((int) p + PAGESIZE-1) & ~(PAGESIZE-1));

 c = p[666]; /* Read; ok */
 p[666] = 42; /* Write; ok */

 /* Mark the buffer read-only. */
 if (mprotect(p, 1024, PROT_READ)) {
 perror("Couldn't mprotect");
 exit(errno);
 }

 c = p[666]; /* Read; ok */
 p[666] = 42; /* Write; program dies on SIGSEGV */

 exit(0);
 }

CONFORMING TO

 SVr4, POSIX.1b (formerly POSIX.4). SVr4 defines an addi-
 tional error code EAGAIN. The SVr4 error conditions don't
 map neatly onto Linux's. POSIX.1b says that mprotect can be
 used only on regions of memory obtained from mmap(2).

SEE ALSO

 mmap(2)

http://linuxsavvy.com/resources/linux/man/man2/mprotect.2.html (3 of 3) [14/09/1999 09:45:06]

NAME

 mremap - re-map a virtual memory address

SYNOPSIS

 #include <unistd.h>
 #include <sys/mman.h>

 void * mremap(void * old_address, size_t old_size , size_t
 new_size, unsigned long flags));

DESCRIPTION

 mremap expands (or shrinks) an existing memory mapping,
 potentially moving it at the same time (controlled by the
 flags argument and the available virtual address space).

 old_address is the old address of the virtual memory block
 that you want to expand (or shrink). Note that old_address
 has to be page aligned. old_size is the old size of the vir-
 tual memory block. new_size is the requested size of the
 virtual memory block after the resize.

 The flags argument is a bitmap of flags.

 In Linux the memory is divided into pages. A user process
 has (one or) several linear virtual memory segments. Each
 virtual memory segment has one or more mappings to real
 memory pages (in the page table). Each virtual memory seg-
 ment has its own protection (access rights), which may cause
 a segmentation violation if the memory is accessed
 incorrectly (e.g., writing to a read-only segment). Access-
 ing virtual memory outside of the segments will also cause a

http://linuxsavvy.com/resources/linux/man/man2/mremap.2.html (1 of 4) [14/09/1999 09:45:09]

 segmentation violation.

 mremap uses the Linux page table scheme. mremap changes the
 mapping between virtual addresses and memory pages. This
 can be used to implement a very efficient realloc.

FLAGS

 MREMAP_MAYMOVE
 indicates if the operation should fail, or change the
 virtual address if the resize cannot be done at the
 current virtual address.

RETURN VALUE

 On success mremap returns a pointer to the new virtual
 memory area. On error, -1 is returned, and errno is set
 appropriately.

ERRORS

 EINVAL
 An invalid argument was given. Most likely old_address
 was not page aligned.

 EFAULT
 "Segmentation fault." Some address in the range
 old_address to old_address+old_size is an invalid vir-
 tual memory address for this process. You can also get
 EFAULT even if there exist mappings that cover the
 whole address space requested, but those mappings are

http://linuxsavvy.com/resources/linux/man/man2/mremap.2.html (2 of 4) [14/09/1999 09:45:09]

 of different types.

 EAGAIN
 The memory segment is locked and cannot be re-mapped.

 ENOMEM
 The memory area cannot be expanded at the current vir-
 tual address, and the MREMAP_MAYMOVE flag is not set in
 flags. Or, there is not enough (virtual) memory avail-
 able.

CONFORMING TO

 This call is Linux-specific, and should not be used in pro-
 grams intended to be portable. 4.2BSD had a (never actually
 implemented) mremap(2) call with completely different seman-
 tics.

SEE ALSO

 getpagesize(2), realloc(3), malloc(3), brk(2), sbrk(2),
 mmap(2)

 Your favorite OS text book for more information on paged
 memory. (Modern Operating Systems by Andrew S. Tannenbaum,
 Inside Linux by Randolf Bentson, The Design of the UNIX
 Operating System by Maurice J. Bach.)

http://linuxsavvy.com/resources/linux/man/man2/mremap.2.html (3 of 4) [14/09/1999 09:45:09]

http://linuxsavvy.com/resources/linux/man/man2/mremap.2.html (4 of 4) [14/09/1999 09:45:09]

NAME

 msgctl - message control operations

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/msg.h>

 int msgctl (int msqid, int cmd, struct msqid_ds *buf)

DESCRIPTION

 The function performs the control operation specified by cmd
 on the message queue with identifier msqid. Legal values
 for cmd are:

 IPC_STAT Copy info from the message queue data structure
 into the structure pointed to by buf. The user
 must have read access privileges on the message
 queue.

 IPC_SET Write the values of some members of the msqid_ds
 structure pointed to by buf to the message queue
 data structure, updating also its msg_ctime
 member. Considered members from the user sup-
 plied struct msqid_ds pointed to by buf are

 msg_perm.uid
 msg_perm.gid
 msg_perm.mode /* only lowest 9-bits */
 msg_qbytes

http://linuxsavvy.com/resources/linux/man/man2/msgctl.2.html (1 of 4) [14/09/1999 09:45:12]

 The calling process effective user-ID must be
 one among super-user, creator or owner of the
 message queue. Only the super-user can raise
 the msg_qbytes value beyond the system parameter
 MSGMNB.

 IPC_RMID Remove immediately the message queue and its
 data structures awakening all waiting reader and
 writer processes (with an error return and errno
 set to EIDRM). The calling process effective
 user-ID must be one among super-user, creator or
 owner of the message queue.

RETURN VALUE

 If successful, the return value will be 0, otherwise -1 with
 errno indicating the error.

ERRORS

 For a failing return, errno will be set to one among the
 following values:

 EACCES The argument cmd is equal to IPC_STAT but the
 calling process has no read access permissions on
 the message queue msqid.

 EFAULT The argument cmd has value IPC_SET or IPC_STAT
 but the address pointed to by buf isn't accessi-
 ble.

 EIDRM The message queue was removed.

 EINVAL Invalid value for cmd or msqid.

 EPERM The argument cmd has value IPC_SET or IPC_RMID
 but the calling process effective user-ID has
 insufficient privileges to execute the command.

http://linuxsavvy.com/resources/linux/man/man2/msgctl.2.html (2 of 4) [14/09/1999 09:45:12]

 Note this is also the case of a non super-user
 process trying to increase the msg_qbytes value
 beyond the value specified by the system parame-
 ter MSGMNB.

NOTES

 The IPC_INFO, MSG_STAT and MSG_INFO control calls are used
 by the ipcs(8) program to provide information on allocated
 resources. In the future these can be modified as needed or
 moved to a proc file system interface.

CONFORMING TO

 SVr4, SVID. SVID dies not document the EIDRM error condi-
 tion.

SEE ALSO

 ipc(5), msgget(2), msgsnd(2), msgrcv(2).

http://linuxsavvy.com/resources/linux/man/man2/msgctl.2.html (3 of 4) [14/09/1999 09:45:12]

http://linuxsavvy.com/resources/linux/man/man2/msgctl.2.html (4 of 4) [14/09/1999 09:45:12]

NAME

 msgget - get a message queue identifier

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/msg.h>

 int msgget (key_t key, int msgflg)

DESCRIPTION

 The function returns the message queue identifier associated
 to the value of the key argument. A new message queue is
 created if key has value IPC_PRIVATE or key isn't
 IPC_PRIVATE, no existing message queue is associated to key,
 and IPC_CREAT is asserted in msgflg (i.e. msgflg&IPC_CREAT
 is nonzero). The presence in msgflg of the fields IPC_CREAT
 and IPC_EXCL plays the same role, with respect to the
 existence of the message queue, as the presence of O_CREAT
 and O_EXCL in the mode argument of the open(2) system call:
 i.e. the msgget function fails if msgflg asserts both
 IPC_CREAT and IPC_EXCL and a message queue already exists
 for key.

 Upon creation, the lower 9 bits of the argument msgflg
 define the access permissions of the message queue. These
 permission bits have the same format and semantics as the
 access permissions parameter in open(2) or creat(2) system
 calls. (The execute permissions are not used.)

 Furthermore, while creating, the system call initializes the

http://linuxsavvy.com/resources/linux/man/man2/msgget.2.html (1 of 5) [14/09/1999 09:45:15]

 system message queue data structure msqid_ds as follows:

 msg_perm.cuid and msg_perm.uid are set to the effective
 user-ID of the calling process.

 msg_perm.cgid and msg_perm.gid are set to the effective
 group-ID of the calling process.

 The lowest order 9 bits of msg_perm.mode are set to the
 lowest order 9 bit of msgflg.

 msg_qnum, msg_lspid, msg_lrpid, msg_stime and msg_rtime
 are set to 0.

 msg_ctime is set to the current time.

 msg_qbytes is set to the system limit MSGMNB.

 If the message queue already exists the access permissions
 are verified, and a check is made to see if it is marked for
 destruction.

RETURN VALUE

 If successful, the return value will be the message queue
 identifier (a nonnegative integer), otherwise -1 with errno
 indicating the error.

ERRORS

 For a failing return, errno will be set to one among the
 following values:

 EACCES A message queue exists for key, but the calling
 process has no access permissions to the queue.

 EEXIST A message queue exists for key and msgflg was
 asserting both IPC_CREAT and IPC_EXCL.

http://linuxsavvy.com/resources/linux/man/man2/msgget.2.html (2 of 5) [14/09/1999 09:45:15]

 EIDRM The message queue is marked for removal.

 ENOENT No message queue exists for key and msgflg wasn't
 asserting IPC_CREAT.

 ENOMEM A message queue has to be created but the system
 has not enough memory for the new data structure.

 ENOSPC A message queue has to be created but the system
 limit for the maximum number of message queues
 (MSGMNI) would be exceeded.

NOTES

 IPC_PRIVATE isn't a flag field but a key_t type. If this
 special value is used for key, the system call ignores
 everything but the lowest order 9 bits of msgflg and creates
 a new message queue (on success).

 The following is a system limit on message queue resources
 affecting a msgget call:

 MSGMNI System wide maximum number of message queues:
 policy dependent.

BUGS

 Use of IPC_PRIVATE does not actually prohibit other
 processes from getting access to the allocated message
 queue.

 As for the files, there is currently no intrinsic way for a
 process to ensure exclusive access to a message queue.
 Asserting both IPC_CREAT and IPC_EXCL in msgflg only ensures
 (on success) that a new message queue will be created, it
 doesn't imply exclusive access to the message queue.

http://linuxsavvy.com/resources/linux/man/man2/msgget.2.html (3 of 5) [14/09/1999 09:45:15]

CONFORMING TO

 SVr4, SVID. SVr4 does not document the EIDRM error code.

SEE ALSO

 ftok(3), ipc(5), msgctl(2), msgsnd(2), msgrcv(2).

http://linuxsavvy.com/resources/linux/man/man2/msgget.2.html (4 of 5) [14/09/1999 09:45:15]

http://linuxsavvy.com/resources/linux/man/man2/msgget.2.html (5 of 5) [14/09/1999 09:45:15]

NAME

 msgop - message operations

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/msg.h>

 int msgsnd (int msqid, struct msgbuf *msgp, int msgsz, int
 msgflg)

 int msgrcv (int msqid, struct msgbuf *msgp, int msgsz, long
 msgtyp, int msgflg)

DESCRIPTION

 To send or receive a message, the calling process allocates
 a structure that looks like the following

 struct msgbuf {
 long mtype; /* message type, must be > 0 */
 char mtext[1]; /* message data */
 };

 but with an array mtext of size msgsz, a non-negative
 integer value. The structure member mtype must have a
 strictly positive integer value that can be used by the
 receiving process for message selection (see the section
 about msgrcv).

 The calling process must have write access permissions to
 send and read access permissions to receive a message on the

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (1 of 6) [14/09/1999 09:45:19]

 queue.

 The msgsnd system call enqueue a copy of the message pointed
 to by the msgp argument on the message queue whose identif-
 ier is specified by the value of the msqid argument.

 The argument msgflg specifies the system call behaviour if
 enqueuing the new message will require more than msg_qbytes
 in the queue. Asserting IPC_NOWAIT the message will not be
 sent and the system call fails returning with errno set to
 EAGAIN. Otherwise the process is suspended until the condi-
 tion for the suspension no longer exists (in which case the
 message is sent and the system call succeeds), or the queue
 is removed (in which case the system call fails with errno
 set to EIDRM), or the process receives a signal that has to
 be caught (in which case the system call fails with errno
 set to EINTR).

 Upon successful completion the message queue data structure
 is updated as follows:

 msg_lspid is set to the process-ID of the calling pro-
 cess.

 msg_qnum is incremented by 1.

 msg_stime is set to the current time.

 The system call msgrcv reads a message from the message
 queue specified by msqid into the msgbuf pointed to by the
 msgp argument removing from the queue, on success, the read
 message.

 The argument msgsz specifies the maximum size in bytes for
 the member mtext of the structure pointed to by the msgp
 argument. If the message text has length greater than
 msgsz, then if the msgflg argument asserts MSG_NOERROR, the
 message text will be truncated (and the truncated part will
 be lost), otherwise the message isn't removed from the queue
 and the system call fails returning with errno set to E2BIG.

 The argument msgtyp specifies the type of message requested
 as follows:

 If msgtyp is 0, then the message on the queue's front
 is read.

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (2 of 6) [14/09/1999 09:45:19]

 If msgtyp is greater than 0, then the first message on
 the queue of type msgtyp is read if MSG_EXCEPT isn't
 asserted by the msgflg argument, otherwise the first
 message on the queue of type not equal to msgtyp will
 be read.

 If msgtyp is less than 0, then the first message on the
 queue with the lowest type less than or equal to the
 absolute value of msgtyp will be read.

 The msgflg argument asserts none, one or more (or-ing them)
 among the following flags:

 IPC_NOWAIT For immediate return if no message of the
 requested type is on the queue. The system call fails
 with errno set to ENOMSG.

 MSG_EXCEPT Used with msgtyp greater than 0 to read the
 first message on the queue with message type that
 differs from msgtyp.

 MSG_NOERROR To truncate the message text if longer than
 msgsz bytes.

 If no message of the requested type is available and
 IPC_NOWAIT isn't asserted in msgflg, the calling process is
 blocked until one of the following conditions occurs:

 A message of the desired type is placed on the queue.

 The message queue is removed from the system. In such
 a case the system call fails with errno set to EIDRM.

 The calling process receives a signal that has to be
 caught. In such a case the system call fails with
 errno set to EINTR.

 Upon successful completion the message queue data structure
 is updated as follows:

 msg_lrpid is set to the process-ID of the calling pro-
 cess.

 msg_qnum is decremented by 1.

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (3 of 6) [14/09/1999 09:45:19]

 msg_rtime is set to the current time.

RETURN VALUE

 On a failure both functions return -1 with errno indicating
 the error, otherwise msgsnd returns 0 and msgrvc returns the
 number of bytes actually copied into the mtext array.

ERRORS

 When msgsnd fails, at return errno will be set to one among
 the following values:

 EAGAIN The message can't be sent due to the msg_qbytes
 limit for the queue and IPC_NOWAIT was asserted
 in mgsflg.

 EACCES The calling process has no write access permis-
 sions on the message queue.

 EFAULT The address pointed to by msgp isn't accessible.

 EIDRM The message queue was removed.

 EINTR Sleeping on a full message queue condition, the
 process received a signal that had to be caught.

 EINVAL Invalid msqid value, or nonpositive mtype value,
 or invalid msgsz value (less than 0 or greater
 than the system value MSGMAX).

 ENOMEM The system has not enough memory to make a copy
 of the supplied msgbuf.

 When msgrcv fails, at return errno will be set to one among
 the following values:

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (4 of 6) [14/09/1999 09:45:19]

 E2BIG The message text length is greater than msgsz and
 MSG_NOERROR isn't asserted in msgflg.

 EACCES The calling process has no read access permis-
 sions on the message queue.

 EFAULT The address pointed to by msgp isn't accessible.

 EIDRM While the process was sleeping to receive a mes-
 sage, the message queue was removed.

 EINTR While the process was sleeping to receive a mes-
 sage, the process received a signal that had to
 be caught.

 EINVAL Illegal msgqid value, or msgsz less than 0.

 ENOMSG IPC_NOWAIT was asserted in msgflg and no message
 of the requested type existed on the message
 queue.

NOTES

 The followings are system limits affecting a msgsnd system
 call:

 MSGMAX Maximum size for a message text: the implementa-
 tion set this value to 4080 bytes.

 MSGMNB Default maximum size in bytes of a message queue:
 policy dependent. The super-user can increase
 the size of a message queue beyond MSGMNB by a
 msgctl system call.

 The implementation has no intrinsic limits for the system
 wide maximum number of message headers (MSGTQL) and for the
 system wide maximum size in bytes of the message pool
 (MSGPOOL).

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (5 of 6) [14/09/1999 09:45:19]

CONFORMING TO

 SVr4, SVID.

SEE ALSO

 ipc(5), msgctl(2), msgget(2), msgrcv(2), msgsnd(2).

http://linuxsavvy.com/resources/linux/man/man2/msgop.2.html (6 of 6) [14/09/1999 09:45:19]

NAME

 msync - synchronize a file with a memory map

SYNOPSIS

 #include <unistd.h>
 #include <sys/mman.h>

 #ifdef _POSIX_MAPPED_FILES
 #ifdef _POSIX_SYNCHRONIZED_IO

 int msync(const void *start, size_t length, int flags

 #endif
 #endif

DESCRIPTION

 msync flushes changes made to the in-core copy of a file
 that was mapped into memory using mmap(2) back to disk.
 Without use of this call there is no guarantee that changes
 are written back before munmap(2) is called. To be more
 precise, the part of the file that corresponds to the memory
 area starting at start and having length length is updated.
 The flags argument may have the bits MS_ASYNC, MS_SYNC and
 MS_INVALIDATE set, but not both MS_ASYNC and MS_SYNC.
 MS_ASYNC specifies that an update be scheduled, but the call
 returns immediately. MS_SYNC asks for an update and waits
 for it to complete. MS_INVALIDATE asks to invalidate other
 mappings of the same file (so that they can be updated with
 the fresh values just written).

http://linuxsavvy.com/resources/linux/man/man2/msync.2.html (1 of 2) [14/09/1999 09:45:24]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 start is not a multiple of PAGESIZE, or any bit other
 than MS_ASYNC | MS_INVALIDATE | MS_SYNC is set in
 flags.

 EFAULT
 The indicated memory (or part of it) was not mapped.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

SEE ALSO

 mmap(2), B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128-129
 and 389-391.

http://linuxsavvy.com/resources/linux/man/man2/msync.2.html (2 of 2) [14/09/1999 09:45:24]

NAME

 munlock - reenable paging for some parts of memory

SYNOPSIS

 #include <sys/mman.h>

 int munlock(const void *addr, size_t len));

DESCRIPTION

 munlock reenables paging for the memory in the range start-
 ing at addr with length len bytes. All pages which contain a
 part of the specified memory range can after calling munlock
 be moved to external swap space again by the kernel.

 Memory locks do not stack, i.e., pages which have been
 locked several times by calls to mlock or mlockall will be
 unlocked by a single call to munlock for the corresponding
 range or by munlockall. Pages which are mapped to several
 locations or by several processes stay locked into RAM as
 long as they are locked at least at one location or by at
 least one process.

 On POSIX systems on which mlock and munlock are available,
 _POSIX_MEMLOCK_RANGE is defined in <unistd.h> and the value
 PAGESIZE from <limits.h> indicates the number of bytes per
 page.

http://linuxsavvy.com/resources/linux/man/man2/munlock.2.html (1 of 2) [14/09/1999 09:45:26]

RETURN VALUE

 On success, munlock returns zero. On error, -1 is returned,
 errno is set appropriately, and no changes are made to any
 locks in the address space of the process.

ERRORS

 ENOMEM Some of the specified address range does not
 correspond to mapped pages in the address space of
 the process.

 EINVAL len was not a positive number.

CONFORMING TO

 POSIX.1b, SVr4

SEE ALSO

 mlock(2), mlockall(2), and munlockall(2).

http://linuxsavvy.com/resources/linux/man/man2/munlock.2.html (2 of 2) [14/09/1999 09:45:26]

NAME

 munlockall - reenable paging for calling process

SYNOPSIS

 #include <sys/mman.h>

 int munlockall(void);

DESCRIPTION

 munlockall reenables paging for all pages mapped into the
 address space of the calling process.

 Memory locks do not stack, i.e., pages which have been
 locked several times by calls to mlock or mlockall will be
 unlocked by a single call to munlockall. Pages which are
 mapped to several locations or by several processes stay
 locked into RAM as long as they are locked at least at one
 location or by at least one process.

 On POSIX systems on which mlockall and munlockall are avail-
 able, _POSIX_MEMLOCK is defined in <unistd.h> .

RETURN VALUE

 On success, munlockall returns zero. On error, -1 is
 returned and errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/munlockall.2.html (1 of 2) [14/09/1999 09:45:28]

CONFORMING TO

 POSIX.1b, SVr4

SEE ALSO

 mlockall(2), mlock(2), and munlock(2).

http://linuxsavvy.com/resources/linux/man/man2/munlockall.2.html (2 of 2) [14/09/1999 09:45:28]

NAME

 nanosleep - pause execution for a specified time

SYNOPSIS

 #include <time.h>

 int nanosleep(const struct timespec *req, struct timespec
 *rem));

DESCRIPTION

 nanosleep delays the execution of the program for at least
 the time specified in *req. The function can return earlier
 if a signal has been delivered to the process. In this case,
 it returns -1, sets errno to EINTR, and writes the remaining
 time into the structure pointed to by rem unless rem is
 NULL. The value of *rem can then be used to call nanosleep
 again and complete the specified pause.

 The structure timespec is used to specify intervals of time
 with nanosecond precision. It is specified in <time.h> and
 has the form

 struct timespec
 {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

 The value of the nanoseconds field must be in the range 0 to
 999 999 999.

http://linuxsavvy.com/resources/linux/man/man2/nanosleep.2.html (1 of 4) [14/09/1999 09:45:31]

 Compared to sleep(3) and usleep(3), nanosleep has the advan-
 tage of not affecting any signals, it is standardized by
 POSIX, it provides higher timing resolution, and it allows
 to continue a sleep that has been interrupted by a signal
 more easily.

ERRORS

 In case of an error or exception, the nanosleep system call
 returns -1 instead of 0 and sets errno to one of the follow-
 ing values:

 EINTR The pause has been interrupted by a non-blocked sig-
 nal that was delivered to the process. The remaining
 sleep time has been written into *rem so that the
 process can easily call nanosleep again and continue
 with the pause.

 EINVAL The value in the tv_nsec field was not in the range
 0 to 999 999 999 or tv_sec was negative.

BUGS

 The current implementation of nanosleep is based on the nor-
 mal kernel timer mechanism, which has a resolution of 1/HZ s
 (i.e, 10 ms on Linux/i386 and 1 ms on Linux/Alpha). There-
 fore, nanosleep pauses always for at least the specified
 time, however it can take up to 10 ms longer than specified
 until the process becomes runnable again. For the same rea-
 son, the value returned in case of a delivered signal in
 *rem is usually rounded to the next larger multiple of
 1/HZ s.

 As some applications require much more precise pauses (e.g.,
 in order to control some time-critical hardware), nanosleep
 is also capable of short high-precision pauses. If the pro-
 cess is scheduled under a real-time policy like SCHED_FIFO

http://linuxsavvy.com/resources/linux/man/man2/nanosleep.2.html (2 of 4) [14/09/1999 09:45:31]

 or SCHED_RR, then pauses of up to 2 ms will be performed as
 busy waits with microsecond precision.

CONFORMING TO

 POSIX.1b (formerly POSIX.4).

SEE ALSO

 sleep(3), usleep(3), sched_setscheduler(2), and
 timer_create(2).

http://linuxsavvy.com/resources/linux/man/man2/nanosleep.2.html (3 of 4) [14/09/1999 09:45:31]

http://linuxsavvy.com/resources/linux/man/man2/nanosleep.2.html (4 of 4) [14/09/1999 09:45:31]

NAME

 nfsservctl - syscall interface to kernel nfs daemon

SYNOPSIS

 #include <linux/nfsd/syscall.h>

 nfsservctl(int cmd, struct nfsctl_arg *argp, union
 nfsctl_res *resp

DESCRIPTION

 /*
 * These are the commands understood by nfsctl().
 */
 #define NFSCTL_SVC 0 /* This is a server process. */
 #define NFSCTL_ADDCLIENT 1 /* Add an NFS client. */
 #define NFSCTL_DELCLIENT 2 /* Remove an NFS client. */
 #define NFSCTL_EXPORT 3 /* export a file system. */
 #define NFSCTL_UNEXPORT 4 /* unexport a file system. */
 #define NFSCTL_UGIDUPDATE 5 /* update a client's uid/gid map. */
 #define NFSCTL_GETFH 6 /* get an fh (used by mountd) */

 struct nfsctl_arg {
 int ca_version; /* safeguard */
 union {
 struct nfsctl_svc u_svc;
 struct nfsctl_client u_client;
 struct nfsctl_export u_export;
 struct nfsctl_uidmap u_umap;
 struct nfsctl_fhparm u_getfh;
 unsigned int u_debug;
 } u;
 }

 union nfsctl_res {
 struct knfs_fh cr_getfh;
 unsigned int cr_debug;
 };

http://linuxsavvy.com/resources/linux/man/man2/nfsservctl.2.html (1 of 2) [14/09/1999 09:45:34]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

CONFORMING TO

 This call is Linux-specific.

http://linuxsavvy.com/resources/linux/man/man2/nfsservctl.2.html (2 of 2) [14/09/1999 09:45:34]

NAME

 nice - change process priority

SYNOPSIS

 #include <unistd.h>

 int nice(int inc));

DESCRIPTION

 nice adds inc to the priority for the calling pid. Only the
 superuser may specify a negative increment, or priority
 increase.

 Note that internally, a higher number is a higher priority.
 Do not confuse this with the priority scheme as used by the
 nice interface.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/nice.2.html (1 of 2) [14/09/1999 09:45:35]

ERRORS

 EPERM A non-super user attempts to do a priority increase,
 a numerical decrease, by supplying a negative inc.

CONFORMING TO

 SVr4, SVID EXT, AT&T, X/OPEN, BSD 4.3. SVr4 documents an
 additional EINVAL error code.

SEE ALSO

 nice(1), setpriority(2), fork(2),

http://linuxsavvy.com/resources/linux/man/man2/nice.2.html (2 of 2) [14/09/1999 09:45:36]

NAME

 oldfstat, oldlstat, oldstat, oldolduname, olduname -
 obsolete system calls

SYNOPSIS

 Obsolete system calls.

DESCRIPTION

 The Linux 2.0 kernel implements these calls to support old
 executables. These calls return structures which have grown
 since their first implementation, but old executables must
 continue to receive old smaller structures.

 Current executables should be linked with current libraries
 and never use these calls.

CONFORMING TO

 These calls are unique to Linux and should not be used at
 all in new programs.

http://linuxsavvy.com/resources/linux/man/man2/obsolete.2.html (1 of 2) [14/09/1999 09:45:37]

SEE ALSO

 fstat(2), lstat(2), stat(2), uname(2), undocumented(2),
 unimplemented(2)

http://linuxsavvy.com/resources/linux/man/man2/obsolete.2.html (2 of 2) [14/09/1999 09:45:37]

NAME

 open, creat - open and possibly create a file or device

SYNOPSIS

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>

 int open(const char *pathname, int flags));
 int open(const char *pathname, int flags, mode_t mode
 int creat(const char *pathname, mode_t mode));

DESCRIPTION

 open attempts to open a file and return a file descriptor (a
 small, non-negative integer for use in read, write, etc.)

 flags is one of O_RDONLY, O_WRONLY or O_RDWR which request
 opening the file read-only, write-only or read/write,
 respectively.

 flags may also be bitwise-or'd with one or more of the fol-
 lowing:

 O_CREAT If the file does not exist it will be created.

 O_EXCL When used with O_CREAT, if the file already exists
 it is an error and the open will fail. O_EXCL is
 broken on NFS file systems, programs which rely on
 it for performing locking tasks will contain a race
 condition. The solution for performing atomic file
 locking using a lockfile is to create a unique file

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (1 of 6) [14/09/1999 09:45:48]

 on the same fs (e.g., incorporating hostname and
 pid), use link(2) to make a link to the lockfile and
 use stat(2) on the unique file to check if its link
 count has increased to 2. Do not use the return
 value of the link() call.

 O_NOCTTY
 If pathname refers to a terminal device - see tty(4)
 - it will not become the process's controlling ter-
 minal even if the process does not have one.

 O_TRUNC If the file already exists it will be truncated.

 O_APPEND
 The file is opened in append mode. Initially, and
 before each write, the file pointer is positioned at
 the end of the file, as if with lseek. O_APPEND may
 lead to corrupted files on NFS file systems if more
 than one process appends data to a file at once.
 This is because NFS does not support appending to a
 file, so the client kernel has to simulate it, which
 can't be done without a race condition.

 O_NONBLOCK or O_NDELAY
 The file is opened in non-blocking mode. Neither the
 open nor any subsequent operations on the file
 descriptor which is returned will cause the calling
 process to wait.

 O_SYNC The file is opened for synchronous I/O. Any writes
 on the resulting file descriptor will block the cal-
 ling process until the data has been physically
 written to the underlying hardware. See RESTRIC-
 TIONS below, though.

 Some of these optional flags can be altered using fcntl
 after the file has been opened.

 mode specifies the permissions to use if a new file is
 created. It is modified by the process's umask in the usual
 way: the permissions of the created file are (mode &
 ~umask).

 The following symbolic constants are provided for mode:

 S_IRWXU

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (2 of 6) [14/09/1999 09:45:48]

 00700 user (file owner) has read, write and execute
 permission

 S_IRUSR (S_IREAD)
 00400 user has read permission

 S_IWUSR (S_IWRITE)
 00200 user has write permission

 S_IXUSR (S_IEXEC)
 00100 user has execute permission

 S_IRWXG
 00070 group has read, write and execute permission

 S_IRGRP
 00040 group has read permission

 S_IWGRP
 00020 group has write permission

 S_IXGRP
 00010 group has execute permission

 S_IRWXO
 00007 others have read, write and execute permission

 S_IROTH
 00004 others have read permission

 S_IWOTH
 00002 others have write permisson

 S_IXOTH
 00001 others have execute permission

 mode should always be specified when O_CREAT is in the
 flags, and is ignored otherwise.

 creat is equivalent to open with flags equal to
 O_CREAT|O_WRONLY|O_TRUNC.

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (3 of 6) [14/09/1999 09:45:48]

RETURN VALUE

 open and creat return the new file descriptor, or -1 if an
 error occurred (in which case, errno is set appropriately).
 Note that open can open device special files, but creat can-
 not create them - use mknod(2) instead.

 On NFS file systems with UID mapping enabled, open may
 return a file descriptor but e.g. read(2) requests are
 denied with EACCES. This is because the client performs
 open by checking the permissions, but UID mapping is per-
 formed by the server upon read and write requests.

ERRORS

 EEXIST pathname already exists and O_CREAT and O_EXCL were
 used.

 EISDIR pathname refers to a directory and the access
 requested involved writing.

 ETXTBSY pathname refers to an executable image which is
 currently being executed and write access was
 requested.

 EFAULT pathname points outside your accessible address
 space.

 EACCES The requested access to the file is not allowed, or
 one of the directories in pathname did not allow
 search (execute) permission.

 ENAMETOOLONG
 pathname was too long.

 ENOENT A directory component in pathname does not exist or
 is a dangling symbolic link.

 ENOTDIR A component used as a directory in pathname is not,
 in fact, a directory.

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (4 of 6) [14/09/1999 09:45:48]

 EMFILE The process already has the maximum number of files
 open.

 ENFILE The limit on the total number of files open on the
 system has been reached.

 ENOMEM Insufficient kernel memory was available.

 EROFS pathname refers to a file on a read-only filesystem
 and write access was requested.

 ELOOP Too many symbolic links were encountered in resolv-
 ing pathname.

 ENOSPC pathname was to be created but the device containing
 pathname has no room for the new file.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

RESTRICTIONS

 There are many infelicities in the protocol underlying NFS,
 affecting amongst others O_SYNC and O_NDELAY.

SEE ALSO

 read(2), write(2), fcntl(2), unlink(2), mknod(2), stat(2),
 mount(2), socket(2), socket(2), link(2).

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (5 of 6) [14/09/1999 09:45:48]

http://linuxsavvy.com/resources/linux/man/man2/open.2.html (6 of 6) [14/09/1999 09:45:48]

NAME

 outb, outw, outl, outsb, outsw, outsl - port output
 inb, inw, inl, insb, insw, insl - port input
 outb_p, outw_p, outl_p, inb_p, inw_p, inl_p - paused I/O

DESCRIPTION

 This family of functions is used to do low level port input
 and output. They are primarily designed for internal kernel
 use, but can be used from user space, given the following
 information in addition to that given in outb(9)

 You compile with -O or -O2 or similar. The functions are
 defined as inline macros, and will not be substituted in
 without optimization enabled, causing unresolved references
 at link time.

 You use ioperm(2) or alternatively iopl(2) to tell the ker-
 nel to allow the user space application to access the I/O
 ports in question. Failure to do this will cause the appli-
 cation to receive a segmentation fault.

CONFORMING TO

 outb and friends are hardware specific. The port and value
 arguments are in the opposite order to most DOS implementa-
 tions.

http://linuxsavvy.com/resources/linux/man/man2/outb.2.html (1 of 2) [14/09/1999 09:45:51]

SEE ALSO

 outb(9), ioperm(2), iopl(2)

http://linuxsavvy.com/resources/linux/man/man2/outb.2.html (2 of 2) [14/09/1999 09:45:51]

NAME

 pause - wait for signal

SYNOPSIS

 #include <unistd.h>

 int pause(void);

DESCRIPTION

 The pause system call causes the invoking process to sleep
 until a signal is received.

RETURN VALUE

 pause always returns -1, and errno is set to ERESTARTNOHAND.

ERRORS

 EINTR
 signal was received.

http://linuxsavvy.com/resources/linux/man/man2/pause.2.html (1 of 2) [14/09/1999 09:45:52]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

SEE ALSO

 kill(2), select(2), signal(2)

http://linuxsavvy.com/resources/linux/man/man2/pause.2.html (2 of 2) [14/09/1999 09:45:52]

NAME

 personality - set the process execution domain

SYNOPSIS

 int personality(unsigned long persona));

DESCRIPTION

 Linux supports different execution domains, or personali-
 ties, for each process. Among other things, execution
 domains tell Linux how to map signal numbers into signal
 actions. The execution domain system allows Linux to provide
 limited support for binaries compiled under other Unix-like
 operating systems.

 personality will make the execution domain referenced by
 persona the new execution domain of the current process.

RETURN VALUE

 On success, persona is made the new execution domain and the
 previous persona is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/personality.2.html (1 of 2) [14/09/1999 09:45:53]

ERRORS

 EINVAL persona does not refer to a valid execution domain.

FILES

 /usr/include/linux/personality.h

CONFORMING TO

 personality is Linux-specific and should not be used in pro-
 grams intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/personality.2.html (2 of 2) [14/09/1999 09:45:53]

NAME

 pipe - create pipe

SYNOPSIS

 #include <unistd.h>

 int pipe(int filedes[2]);

DESCRIPTION

 pipe creates a pair of file descriptors, pointing to a pipe
 inode, and places them in the array pointed to by filedes.
 filedes[0] is for reading, filedes[1] is for writing.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EMFILE Too many file descriptors are in use by the process.

 ENFILE The system file table is full.

http://linuxsavvy.com/resources/linux/man/man2/pipe.2.html (1 of 2) [14/09/1999 09:45:55]

 EFAULT filedes is not valid.

CONFORMING TO

 SVr4, SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO

 read(2), write(2), fork(2),

http://linuxsavvy.com/resources/linux/man/man2/pipe.2.html (2 of 2) [14/09/1999 09:45:55]

NAME

 poll - wait for some event on a file descriptor

SYNOPSIS

 #include <sys/poll.h>

 int poll(struct pollfd *ufds, unsigned int nfds, int timeout

DESCRIPTION

 poll is a variation on the theme of select. It specifies an
 array of nfds structures of type
 struct pollfd {
 int fd; /* file descriptor */
 short events; /* requested events */
 short revents; /* returned events */
 };
 and a timeout in milliseconds. A negative value means infin-
 ite timeout. The field fd contains a file descriptor for an
 open file. The field events is an input parameter, a bit-
 mask specifying the events the application is interested in.
 The field revents is an output parameter, filled by the ker-
 nel with the events that actually occurred, either of the
 type requested, or of one of the types POLLERR or POLLHUP or
 POLLNVAL. (These three bits are meaningless in the events
 field, and will be set in the revents field whenever the
 corresponding condition is true.) If none of the events
 requested (and no error) has occurred for any of the file
 descriptors, the kernel waits for timeout milliseconds for
 one of these events to occur. The following possible bits
 in these masks are defined in <sys/poll.h>
 #define POLLIN 0x0001 /* There is data to read */
 #define POLLPRI 0x0002 /* There is urgent data to read */

http://linuxsavvy.com/resources/linux/man/man2/poll.2.html (1 of 4) [14/09/1999 09:45:57]

 #define POLLOUT 0x0004 /* Writing now will not block */
 #define POLLERR 0x0008 /* Error condition */
 #define POLLHUP 0x0010 /* Hung up */
 #define POLLNVAL 0x0020 /* Invalid request: fd not open */
 In <asm/poll.h> also the values POLLRDNORM, POLLRDBAND,
 POLLWRNORM, POLLWRBAND and POLLMSG are defined.

RETURN VALUE

 On success, a positive number is returned, where the number
 returned is the number of structures which have non-zero
 revents fields (in other words, those descriptors with
 events or errors reported). A value of 0 indicates that the
 call timed out and no file descriptors have been selected.
 On error, -1 is returned, and errno is set appropriately.

ERRORS

 ENOMEM
 There was no space to allocate file descriptor tables.

 EFAULT
 The array given as argument was not contained in the
 calling program's address space.

 EINTR
 A signal occurred before any requested event.

CONFORMING TO

 XPG4-UNIX.

http://linuxsavvy.com/resources/linux/man/man2/poll.2.html (2 of 4) [14/09/1999 09:45:57]

AVAILABILITY

 The poll() systemcall was introduced in Linux 2.1.23. The
 poll() library call was introduced in libc 5.4.28 (and pro-
 vides emulation using select if your kernel does not have a
 poll syscall).

SEE ALSO

 select(2)

http://linuxsavvy.com/resources/linux/man/man2/poll.2.html (3 of 4) [14/09/1999 09:45:57]

http://linuxsavvy.com/resources/linux/man/man2/poll.2.html (4 of 4) [14/09/1999 09:45:57]

NAME

 prctl - operations on a process

SYNOPSIS

 #include <linux/prctl.h>

 int prctl(int option, unsigned long arg2, unsigned long arg3
 , unsigned long arg4, unsigned long arg5));

DESCRIPTION

 prctl is called with a first argument describing what to do
 (with values defined in <linux/prctl.h>), and further param-
 eters with a significance depending on the first one. At
 present the only option value defined is PR_SET_PDEATHSIG,
 and the corresponding call sets the parent process death
 signal of the current process to arg2 (either a signal value
 in the range 1..maxsig, or 0 to clear). This is the signal
 that the current process will get when its parent dies. This
 value is cleared upon a fork().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/prctl.2.html (1 of 2) [14/09/1999 09:45:59]

ERRORS

 EINVAL
 The value of option is not recognized, or it is
 PR_SET_PDEATHSIG and arg2 is not zero or a signal
 number.

CONFORMING TO

 This call is Linux-specific. IRIX has a ptctl system call
 (also introduced in Linux 2.1.44 as irix_prctl on the MIPS
 architecture), with prototype

 ptrdiff_t prctl(int option, int arg2, int arg3

 and options to get the maximum number of processes per user,
 get the maximum number of processors the calling process can
 use, find out whether a specified process is currently
 blocked, get or set the maximum stack size, etc., etc.

AVAILABILITY

 The ptctl() systemcall was introduced in Linux 2.1.57.
 There is no ptctl() library call as yet.

SEE ALSO

 signal(2)

http://linuxsavvy.com/resources/linux/man/man2/prctl.2.html (2 of 2) [14/09/1999 09:45:59]

NAME

 ptrace - process trace

SYNOPSIS

 #include <sys/ptrace.h>

 int ptrace(int request, int pid, int addr

DESCRIPTION

 Ptrace provides a means by which a parent process may con-
 trol the execution of a child process, and examine and
 change its core image. Its primary use is for the implemen-
 tation of breakpoint debugging. A traced process runs until
 a signal occurs. Then it stops and the parent will be noti-
 fied with wait(2). When the process is in the stopped
 state, its memory can be read and written. The parent can
 also cause the child to continue execution, with optional
 ignoring the signal which caused stopping.

 The value of the request argument determines the precise
 action of the system call:

 PTRACE_TRACEME
 This process is to be traced by its parent. The parent
 should be expecting to trace the child.

 PTRACE_PEEKTEXT, PTRACE_PEEKDATA
 Read word at location addr.

 PTRACE_PEEKUSR
 Read word at location addr in the USER area.

http://linuxsavvy.com/resources/linux/man/man2/ptrace.2.html (1 of 4) [14/09/1999 09:46:02]

 PTRACE_POKETEXT, PTRACE_POKEDATA
 Write word at location addr.

 PTRACE_POKEUSR
 Write word at location addr in the USER area.

 PTRACE_SYSCALL, PTRACE_CONT
 Restart after signal.

 PTRACE_KILL
 Send the child a SIGKILL to make it exit.

 PTRACE_SINGLESTEP
 Set the trap flag for single stepping.

 PTRACE_ATTACH
 Attach to the process specified in pid.

 PTRACE_DETACH
 Detach a process that was previously attached.

NOTES

 init, the process with process ID 1, may not use this func-
 tion.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/ptrace.2.html (2 of 4) [14/09/1999 09:46:02]

ERRORS

 EPERM The specified process (i.e., init), cannot be
 traced, or is already being traced.

 ESRCH The specified process does not exist.

 EIO Request is not valid.

CONFORMING TO

 SVr4, SVID EXT, AT&T, X/OPEN, BSD 4.3

SEE ALSO

 gdb(1), exec(3), signal(2), wait(2)

http://linuxsavvy.com/resources/linux/man/man2/ptrace.2.html (3 of 4) [14/09/1999 09:46:02]

http://linuxsavvy.com/resources/linux/man/man2/ptrace.2.html (4 of 4) [14/09/1999 09:46:02]

NAME

 quotactl - manipulate disk quotas

SYNOPSIS

 #include <sys/types.h>
 #include <sys/quota.h>

 int quotactl (int cmd, const char *special, int id , caddr_t
 addr));

 #include <linux/unistd.h>

 _syscall4(int, quotactl, int, cmd, const char *, special ,
 int, id, caddr_t, addr));

DESCRIPTION

 The quota system defines for each user and/or group a soft
 limit and a hard limit bounding the amount of disk space
 that can be used on a given file system. The hard limit
 cannot be crossed. The soft limit can be crossed, but warn-
 ings will ensue. Moreover, the user cannot be above the soft
 limit for more than one week (by default) at a time: after
 this week the soft limit counts as hard limit.

 The quotactl system call manipulates these quota. Its first
 argument is of the form QCMD(subcmd,type) where type is
 either USRQUOTA or GRPQUOTA (for user quota and group quota,
 respectively), and subcmd is described below.

 The second argument special is the block special device
 these quota apply to. It must be mounted.

http://linuxsavvy.com/resources/linux/man/man2/quotactl.2.html (1 of 4) [14/09/1999 09:46:05]

 The third argument id is the user or group id these quota
 apply to (when relevant).

 The fourth argument addr is the address of a data structure,
 depending on the command.

 The subcmd is one of

 Q_QUOTAON Enable quotas. The addr argument is the pathname
 of the file containing the quotas for the
 filesystem.

 Q_QUOTAOFF Disable quotas.

 Q_GETQUOTA Get limits and current usage of disk space. The
 addr argument is a pointer to a dqblk structure
 (defined in <sys/quota.h>).

 Q_SETQUOTA Set limits and current usage; addr is as before.

 Q_SETQLIM Set limits; addr is as before.

 Q_SETUSE Set usage.

 Q_SYNC Sync disk copy of a filesystems quotas.

 Q_GETSTATS Get collected stats.

RETURN VALUE

 On success, quotactl returns 0. On error, -1 is returned,
 and errno is set appropriately.

ERRORS

 ENOPKG The kernel was compiled without quota support.

http://linuxsavvy.com/resources/linux/man/man2/quotactl.2.html (2 of 4) [14/09/1999 09:46:05]

 EFAULT Bad addr value.

 EINVAL type is not a known quota type. Or, special could
 not be found.

 ENOTBLK special is not a block special device.

 ENODEV special cannot be found in the mount table.

 EACCES The quota file is not an ordinary file.

 EIO Cannot read or write the quota file.

 EMFILE Too many open files: cannot open quota file.

 EBUSY Q_QUOTAON was asked, but quota were enabled
 already.

 ESRCH Q_GETQUOTA or Q_SETQUOTA or Q_SETUSE or Q_SETQLIM
 was asked for a file system that didn't have quota
 enabled.

 EPERM The process was not root (for the file system), and
 Q_GETQUOTA was asked for another id than that of
 the process itself, or anything other than
 Q_GETSTATS or Q_SYNC was asked.

CONFORMING TO

 BSD

SEE ALSO

 quota(1), getrlimit(2), setrlimit(2), ulimit(2), quota-
 check(8), quotaon(8)

http://linuxsavvy.com/resources/linux/man/man2/quotactl.2.html (3 of 4) [14/09/1999 09:46:05]

http://linuxsavvy.com/resources/linux/man/man2/quotactl.2.html (4 of 4) [14/09/1999 09:46:05]

NAME

 read - read from a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count

DESCRIPTION

 read() attempts to read up to count bytes from file descrip-
 tor fd into the buffer starting at buf.

 If count is zero, read() returns zero and has no other
 results. If count is greater than SSIZE_MAX, the result is
 unspecified.

RETURN VALUE

 On success, the number of bytes read is returned (zero indi-
 cates end of file), and the file position is advanced by
 this number. It is not an error if this number is smaller
 than the number of bytes requested; this may happen for
 example because fewer bytes are actually available right now
 (maybe because we were close to end-of-file, or because we
 are reading from a pipe, or from a terminal), or because
 read() was interrupted by a signal. On error, -1 is
 returned, and errno is set appropriately. In this case it is

http://linuxsavvy.com/resources/linux/man/man2/read.2.html (1 of 4) [14/09/1999 09:46:07]

 left unspecified whether the file position (if any) changes.

ERRORS

 EINTR The call was interrupted by a signal before any data
 was read.

 EAGAIN Non-blocking I/O has been selected using O_NONBLOCK
 and no data was immediately available for reading.

 EIO I/O error. This will happen for example when the
 process is in a background process group, tries to
 read from its controlling tty, and either it is
 ignoring or blocking SIGTTIN or its process group is
 orphaned. It may also occur when there is a low-
 level I/O error while reading from a disk or tape.

 EISDIR fd refers to a directory.

 EBADF fd is not a valid file descriptor or is not open for
 reading.

 EINVAL fd is attached to an object which is unsuitable for
 reading.

 EFAULT buf is outside your accessible address space.

 Other errors may occur, depending on the object connected to
 fd. POSIX allows a read that is interrupted after reading
 some data to return -1 (with errno set to EINTR) or to
 return the number of bytes already read.

CONFORMING TO

 SVr4, SVID, AT&T, POSIX, X/OPEN, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man2/read.2.html (2 of 4) [14/09/1999 09:46:07]

RESTRICTIONS

 On NFS file systems, reading small amounts of data will only
 update the time stamp the first time, subsequent calls may
 not do so. This is caused by client side attribute caching,
 because most if not all NFS clients leave atime updates to
 the server and client side reads satisfied from the client's
 cache will not cause atime updates on the server as there
 are no server side reads. UNIX semantics can be obtained by
 disabling client side attribute caching, but in most situa-
 tions this will substantially increase server load and
 decrease performance.

SEE ALSO

 readdir(2), write(2), write(2), lseek(2), select(2),
 readlink(2), ioctl(2),

http://linuxsavvy.com/resources/linux/man/man2/read.2.html (3 of 4) [14/09/1999 09:46:07]

http://linuxsavvy.com/resources/linux/man/man2/read.2.html (4 of 4) [14/09/1999 09:46:07]

NAME

 readdir - read directory entry

SYNOPSIS

 #include <unistd.h>
 #include <linux/dirent.h>
 #include <linux/unistd.h>

 _syscall3(int, readdir, uint, fd, struct dirent

 int readdir(unsigned int fd, struct dirent *dirp, unsigned int count

DESCRIPTION

 This is not the function you are interested in. Look at
 readdir(3) for the POSIX conforming C library interface.
 This page documents the bare kernel system call interface,
 which can change, and which is superseded by getdents(2).

 readdir reads one dirent structure from the directory
 pointed at by fd into the memory area pointed to by dirp.
 The parameter count is ignored; at most one dirent structure
 is read.

 The dirent structure is declared as follows:

 struct dirent
 {
 long d_ino; /* inode number */
 off_t d_off; /* offset to this dirent */
 unsigned short d_reclen; /* length of this d_name */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */
 }

 d_ino is an inode number. d_off is the distance from the

http://linuxsavvy.com/resources/linux/man/man2/readdir.2.html (1 of 3) [14/09/1999 09:46:10]

 start of the directory to this dirent. d_reclen is the size
 of d_name, not counting the null terminator. d_name is a
 null-terminated file name.

RETURN VALUE

 On success, 1 is returned. On end of directory, 0 is
 returned. On error, -1 is returned, and errno is set
 appropriately.

ERRORS

 EBADF
 Invalid file descriptor fd.

 EFAULT
 Argument points outside the calling process's address
 space.

 EINVAL
 Result buffer is too small.

 ENOENT
 No such directory.

 ENOTDIR
 File descriptor does not refer to a directory.

CONFORMING TO

 This system call is Linux specific.

http://linuxsavvy.com/resources/linux/man/man2/readdir.2.html (2 of 3) [14/09/1999 09:46:10]

SEE ALSO

 getdents(2), readdir(3)

http://linuxsavvy.com/resources/linux/man/man2/readdir.2.html (3 of 3) [14/09/1999 09:46:10]

NAME

 readlink - read value of a symbolic link

SYNOPSIS

 #include <unistd.h>

 int readlink(const char *path, char *buf, size_t bufsiz

DESCRIPTION

 readlink places the contents of the symbolic link path in
 the buffer buf, which has size bufsiz. readlink does not
 append a NUL character to buf. It will truncate the con-
 tents (to a length of bufsiz characters), in case the buffer
 is too small to hold all of the contents.

RETURN VALUES

 The call returns the count of characters placed in the
 buffer if it succeeds, or a -1 if an error occurs, placing
 the error code in errno.

http://linuxsavvy.com/resources/linux/man/man2/readlink.2.html (1 of 4) [14/09/1999 09:46:12]

ERRORS

 ENOTDIR A component of the path prefix is not a directory.

 EINVAL bufsiz is not positive.

 ENAMETOOLONG
 A pathname, or a component of a pathname, was too
 long.

 ENOENT The named file does not exist.

 EACCES Search permission is denied for a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in
 translating the pathname.

 EINVAL The named file is not a symbolic link.

 EIO An I/O error occurred while reading from the file
 system.

 EFAULT buf extends outside the process's allocated address
 space.

 ENOMEM Insufficient kernel memory was available.

CONFORMING TO

 X/OPEN, 4.4BSD (the readlink function call appeared in
 4.2BSD).

http://linuxsavvy.com/resources/linux/man/man2/readlink.2.html (2 of 4) [14/09/1999 09:46:12]

SEE ALSO

 stat(2), lstat(2), symlink(2)

http://linuxsavvy.com/resources/linux/man/man2/readlink.2.html (3 of 4) [14/09/1999 09:46:12]

http://linuxsavvy.com/resources/linux/man/man2/readlink.2.html (4 of 4) [14/09/1999 09:46:12]

NAME

 readv, writev - read or write a vector

SYNOPSIS

 #include <sys/uio.h>

 int readv(int fd, const struct iovec * vector, size_t count

 int writev(int fd, const struct iovec * vector, size_t count

 struct iovec {
 __ptr_t iov_base; /* Starting address. */
 size_t iov_len; /* Length in bytes. */
 };

DESCRIPTION

 readv reads data from file descriptor fd, and puts the
 result in the buffers described by vector. The number of
 buffers is specified by count. The buffers are filled in the
 order specified. Operates just like read except that data
 is put in vector instead of a contiguous buffer.

 writev writes data to file descriptor fd, and from the
 buffers described by vector. The number of buffers is speci-
 fied by count. The buffers are used in the order specified.
 Operates just like write except that data is taken from vec-
 tor instead of a contiguous buffer.

http://linuxsavvy.com/resources/linux/man/man2/readv.2.html (1 of 4) [14/09/1999 09:46:14]

RETURN VALUE

 On success readv returns the number of bytes read. On suc-
 cess writev returns the number of bytes written. On error,
 -1 is returned, and errno is set appropriately.

ERRORS

 EINVAL An invalid argument was given. For instance count
 might be greater than MAX_IOVEC, or zero. fd could
 also be attached to an object which is unsuitable
 for reading (for readv) or writing (for writev).

 EFAULT "Segmentation fault." Most likely vector or some of
 the iov_base pointers points to memory that is not
 properly allocated.

 EBADF The file descriptor fd is not valid.

 EINTR The call was interrupted by a signal before any data
 was read/written.

 EAGAIN Non-blocking I/O has been selected using O_NONBLOCK
 and no data was immediately available for reading.
 (Or the file descriptor fd is for an object that is
 locked.)

 EISDIR fd refers to a directory.

 EOPNOTSUP
 fd refers to a socket or device that does not sup-
 port reading/writing.

 Other errors may occur, depending on the object connected to
 fd.

http://linuxsavvy.com/resources/linux/man/man2/readv.2.html (2 of 4) [14/09/1999 09:46:14]

CONFORMING TO

 4.4BSD (the readv and writev functions first appeared in BSD
 4.2).

SEE ALSO

 read(2), write(2), fprintf(3), fscanf(3)

http://linuxsavvy.com/resources/linux/man/man2/readv.2.html (3 of 4) [14/09/1999 09:46:14]

http://linuxsavvy.com/resources/linux/man/man2/readv.2.html (4 of 4) [14/09/1999 09:46:14]

NAME

 reboot - reboot or enable/disable Ctrl-Alt-Del

SYNOPSIS

 For libc4 and libc5 the library call and the system call are
 identical, and since kernel version 2.1.30 there are sym-
 bolic names LINUX_REBOOT_* for the constants and a fourth
 argument to the call:

 #include <unistd.h>
 #include <linux/reboot.h>

 int reboot (int magic, int magic2, int flag

 Under glibc some of the constants involved have gotten sym-
 bolic names RB_*, and the library call is a 1-argument
 wrapper around the 3-argument system call:

 #include <unistd.h>
 #include <sys/reboot.h>

 int reboot (int flag));

DESCRIPTION

 The reboot call reboots the system, or enables/disables the
 reboot keystroke (abbreviated CAD, since the default is
 Ctrl-Alt-Delete; it can be changed using loadkeys(1)).

 This system call will fail (with EINVAL) unless magic equals
 LINUX_REBOOT_MAGIC1 (that is, 0xfee1dead) and magic2 equals
 LINUX_REBOOT_MAGIC2 (that is, 672274793). However, since

http://linuxsavvy.com/resources/linux/man/man2/reboot.2.html (1 of 3) [14/09/1999 09:46:17]

 2.1.17 also LINUX_REBOOT_MAGIC2A (that is, 85072278) and
 since 2.1.97 also LINUX_REBOOT_MAGIC2B (that is, 369367448)
 are permitted as value for magic2. (The hexadecimal values
 of these constants are meaningful.) The flag argument can
 have the following values:

 LINUX_REBOOT_CMD_RESTART
 (RB_AUTOBOOT, 0x1234567). The message `Restarting sys-
 tem.' is printed, and a default restart is performed
 immediately. If not preceded by a sync(2), data will
 be lost.

 LINUX_REBOOT_CMD_HALT
 (RB_HALT_SYSTEM, 0xcdef0123; since 1.1.76). The mes-
 sage `System halted.' is printed, and the system is
 halted. Control is given to the ROM monitor, if there
 is one. If not preceded by a sync(2), data will be
 lost.

 LINUX_REBOOT_CMD_POWER_OFF
 (0x4321fedc; since 2.1.30). The message `Power down.'
 is printed, the system is stopped, and all power is
 removed from the system, if possible. If not preceded
 by a sync(2), data will be lost.

 LINUX_REBOOT_CMD_RESTART2
 (0xa1b2c3d4; since 2.1.30). The message `Restarting
 system with command '%s'' is printed, and a restart
 (using the command string given in arg) is performed
 immediately. If not preceded by a sync(2), data will
 be lost.

 LINUX_REBOOT_CMD_CAD_ON
 (RB_ENABLE_CAD, 0x89abcdef). CAD is enabled. This
 means that the CAD keystroke will immediately cause the
 action associated to LINUX_REBOOT_CMD_RESTART.

 LINUX_REBOOT_CMD_CAD_OFF
 (RB_DISABLE_CAD, 0). CAD is disabled. This means that
 the CAD keystroke will cause a SIGINT signal to be sent
 to init (process 1), whereupon this process may decide
 upon a proper action (maybe: kill all processes, sync,
 reboot).

 Only the super-user may use this function.

http://linuxsavvy.com/resources/linux/man/man2/reboot.2.html (2 of 3) [14/09/1999 09:46:17]

 The precise effect of the above actions depends on the
 architecture. For the i386 architecture, the additional
 argument does not do anything at present (2.1.122), but the
 type of reboot can be determined by kernel command line
 arguments (`reboot=...') to be either warm or cold, and
 either hard or through the BIOS.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 Bad magic numbers or flag.

 EPERM
 A non-root user attempts to call reboot.

CONFORMING TO

 reboot is Linux specific, and should not be used in programs
 intended to be portable.

SEE ALSO

 sync(2), bootparam(7), ctrlaltdel(8), halt(8), reboot(8)

http://linuxsavvy.com/resources/linux/man/man2/reboot.2.html (3 of 3) [14/09/1999 09:46:17]

NAME

 recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int recv(int s, void *buf, int len

 int recvfrom(int s, void *buf, int len struct sockaddr
 *from, int *fromlen));

 int recvmsg(int s, struct msghdr *msg, unsigned int flags

DESCRIPTION

 The recvfrom and recvmsg are used to receive messages from a
 socket, and may be used to receive data on a socket whether
 or not it is connection-oriented.

 If from is non-nil, and the socket is not connection-
 oriented, the source address of the message is filled in.
 Fromlen is a value-result parameter, initialized to the size
 of the buffer associated with from, and modified on return
 to indicate the actual size of the address stored there.

 The recv call is normally used only on a connected socket
 (see connect(2)) and is identical to recvfrom with a nil
 from parameter. As it is redundant, it may not be supported
 in future releases.

 All three routines return the length of the message on suc-
 cessful completion. If a message is too long to fit in the
 supplied buffer, excess bytes may be discarded depending on

http://linuxsavvy.com/resources/linux/man/man2/recv.2.html (1 of 4) [14/09/1999 09:46:21]

 the type of socket the message is received from (see
 socket(2)).

 If no messages are available at the socket, the receive call
 waits for a message to arrive, unless the socket is non-
 blocking (see fcntl(2)) in which case the value -1 is
 returned and the external variable errno set to EWOULDBLOCK.
 The receive calls normally return any data available, up to
 the requested amount, rather than waiting for receipt of the
 full amount requested; this behavior is affected by the
 socket-level options SO_RCVLOWAT and SO_RCVTIMEO described
 in getsockopt(2).

 The select(2) call may be used to determine when more data
 arrive.

 The flags argument to a recv call is formed by or'ing one or
 more of the values:
 The MSG_OOB flag requests receipt of out-of-band
 data that would not be received in the normal data
 stream. Some protocols place expedited data at the
 head of the normal data queue, and thus this flag
 cannot be used with such protocols. The MSG_PEEK
 flag causes the receive operation to return data
 from the beginning of the receive queue without
 removing that data from the queue. Thus, a subse-
 quent receive call will return the same data. The
 MSG_WAITALL flag requests that the operation block
 until the full request is satisfied. However, the
 call may still return less data than requested if a
 signal is caught, an error or disconnect occurs, or
 the next data to be received is of a different type
 than that returned.

 The recvmsg call uses a msghdr structure to minimize
 the number of directly supplied parameters. This
 structure has the following form, as defined in
 sys/socket.h:

 struct msghdr {
 caddr_t msg_name; /* optional address */
 u_int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 u_int msg_iovlen; /* # elements in msg_iov */
 caddr_t msg_control; /* ancillary data, see below */
 u_int msg_controllen; /* ancillary data buffer len */
 int msg_flags; /* flags on received message */
 };

http://linuxsavvy.com/resources/linux/man/man2/recv.2.html (2 of 4) [14/09/1999 09:46:21]

 Here msg_name and msg_namelen specify the destination
 address if the socket is unconnected; msg_name may be given
 as a null pointer if no names are desired or required.
 Msg_iov and msg_iovlen describe scatter gather locations, as
 discussed in readv(2). Msg_control, which has length
 msg_controllen, points to a buffer for other protocol con-
 trol related messages or other miscellaneous ancillary data.
 The messages are of the form:

 struct cmsghdr {
 u_int cmsg_len; /* data byte count, including hdr */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by
 u_char cmsg_data[]; */
 };

 As an example, one could use this to learn of changes in the
 data-stream in XNS/SPP, or in ISO, to obtain user-
 connection-request data by requesting a recvmsg with no data
 buffer provided immediately after an accept call.
 Open file descriptors are now passed as ancillary data for
 AF_UNIX domain sockets, with cmsg_level set to SOL_SOCKET
 and cmsg_type set to SCM_RIGHTS.

 The msg_flags field is set on return according to the mes-
 sage received. MSG_EOR indicates end-of-record; the data
 returned completed a record (generally used with sockets of
 type SOCK_SEQPACKET). MSG_TRUNC indicates that the trailing
 portion of a datagram was discarded because the datagram was
 larger than the buffer supplied. MSG_CTRUNC indicates that
 some control data were discarded due to lack of space in the
 buffer for ancillary data. MSG_OOB is returned to indicate
 that expedited or out-of-band data were received.

RETURN VALUES

 These calls return the number of bytes received, or -1 if an
 error occurred.

http://linuxsavvy.com/resources/linux/man/man2/recv.2.html (3 of 4) [14/09/1999 09:46:21]

ERRORS

 EBADF The argument s is an invalid descriptor.

 ENOTCONN
 The socket is associated with a connection-oriented
 protocol and has not been connected (see connect(2)
 and accept(2)).

 ENOTSOCK
 The argument s does not refer to a socket.

 EWOULDBLOCK
 The socket is marked non-blocking, and the receive
 operation would block, or a receive timeout had been
 set, and the timeout expired before data were
 received.

 EINTR The receive was interrupted by delivery of a signal
 before any data were available.

 EFAULT The receive buffer pointer(s) point outside the
 process's address space.

CONFORMING TO

 4.4BSD (these function calls first appeared in 4.2BSD).

SEE ALSO

 fcntl(2), read(2), select(2),

http://linuxsavvy.com/resources/linux/man/man2/recv.2.html (4 of 4) [14/09/1999 09:46:21]

NAME

 rename - change the name or location of a file

SYNOPSIS

 #include <stdio.h>

 int rename(const char *oldpath, const char *newpath));

DESCRIPTION

 rename renames a file, moving it between directories if
 required.

 Any other hard links to the file (as created using link) are
 unaffected.

 If newpath already exists it will be atomically replaced
 (subject to a few conditions - see ERRORS below), so that
 there is no point at which another process attempting to
 access newpath will find it missing.

 If newpath exists but the operation fails for some reason or
 the system crashes rename guarantees to leave an instance of
 newpath in place.

 However, when overwriting there will probably be a window in
 which both oldpath and newpath refer to the file being
 renamed.

 If oldpath refers to a symbolic link the link is renamed; if
 newpath refers to a symbolic link the link will be overwrit-
 ten.

http://linuxsavvy.com/resources/linux/man/man2/rename.2.html (1 of 5) [14/09/1999 09:46:26]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EISDIR newpath is an existing directory, but oldpath is not
 a directory.

 EXDEV oldpath and newpath are not on the same filesystem.

 ENOTEMPTY
 newpath is a non-empty directory.

 EBUSY newpath exists and is the current working directory
 or root directory of some process.

 EEXIST The new pathname contained a path prefix of the old.

 EINVAL An attempt was made to make a directory a subdirec-
 tory of itself.

 EMLINK oldpath already has the maximum number of links to
 it, or it was a directory and the directory contain-
 ing newpath has the maximum number of links.

 ENOTDIR A component used as a directory in oldpath or
 newpath is not, in fact, a directory.

 EFAULT oldpath or newpath points outside your accessible
 address space.

 EACCES Write access to the directory containing oldpath or
 newpath is not allowed for the process's effective
 uid, or one of the directories in oldpath or newpath
 did not allow search (execute) permission, or old-

http://linuxsavvy.com/resources/linux/man/man2/rename.2.html (2 of 5) [14/09/1999 09:46:26]

 path was a directory and did not allow write permis-
 sion (needed to update the .. entry).

 EPERM The directory containing oldpath has the sticky bit
 set and the process's effective uid is neither the
 uid of the file to be deleted nor that of the direc-
 tory containing it, or the filesystem containing
 pathname does not support renaming of the type
 requested.

 ENAMETOOLONG
 oldpath or newpath was too long.

 ENOENT A directory component in oldpath or newpath does
 not exist or is a dangling symbolic link.

 ENOMEM Insufficient kernel memory was available.

 EROFS The file is on a read-only filesystem.

 ELOOP Too many symbolic links were encountered in resolv-
 ing oldpath or newpath.

 ENOSPC The device containing the file has no room for the
 new directory entry.

CONFORMING TO

 POSIX, 4.3BSD, ANSI C

BUGS

 On NFS filesystems, you can not assume that if the operation
 failed the file was not renamed. If the server does the
 rename operation and then crashes, the retransmitted RPC
 which will be processed when the server is up again causes a
 failure. The application is expected to deal with this.
 See link(2) for a similar problem.

http://linuxsavvy.com/resources/linux/man/man2/rename.2.html (3 of 5) [14/09/1999 09:46:26]

SEE ALSO

 link(2), unlink(2), symlink(2), mv(1)

http://linuxsavvy.com/resources/linux/man/man2/rename.2.html (4 of 5) [14/09/1999 09:46:26]

http://linuxsavvy.com/resources/linux/man/man2/rename.2.html (5 of 5) [14/09/1999 09:46:26]

NAME

 rmdir - delete a directory

SYNOPSIS

 #include <unistd.h>

 int rmdir(const char *pathname));

DESCRIPTION

 rmdir deletes a directory, which must be empty.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM The filesystem containing pathname does not support
 the removal of directories.

 EFAULT pathname points outside your accessible address
 space.

http://linuxsavvy.com/resources/linux/man/man2/rmdir.2.html (1 of 4) [14/09/1999 09:46:28]

 EACCES Write access to the directory containing pathname
 was not allowed for the process's effective uid, or
 one of the directories in pathname did not allow
 search (execute) permission.

 EPERM The directory containing pathname has the sticky-bit
 (S_ISVTX) set and the process's effective uid is
 neither the uid of the file to be deleted nor that
 of the directory containing it.

 ENAMETOOLONG
 pathname was too long.

 ENOENT A directory component in pathname does not exist or
 is a dangling symbolic link.

 ENOTDIR pathname, or a component used as a directory in
 pathname, is not, in fact, a directory.

 ENOTEMPTY
 pathname contains entries other than . and .. .

 EBUSY pathname is the current working directory or root
 directory of some process.

 ENOMEM Insufficient kernel memory was available.

 EROFS pathname refers to a file on a read-only filesystem.

 ELOOP Too many symbolic links were encountered in
 resolving pathname.

CONFORMING TO

 SVr4, SVID, POSIX, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man2/rmdir.2.html (2 of 4) [14/09/1999 09:46:28]

BUGS

 Infelicities in the protocol underlying NFS can cause the
 unexpected disappearance of directories which are still
 being used.

SEE ALSO

 rename(2), mkdir(2), chdir(2), rmdir(1), rm(1)

http://linuxsavvy.com/resources/linux/man/man2/rmdir.2.html (3 of 4) [14/09/1999 09:46:28]

http://linuxsavvy.com/resources/linux/man/man2/rmdir.2.html (4 of 4) [14/09/1999 09:46:28]

NAME

 sched_get_priority_max, sched_get_priority_min - get static
 priority range

SYNOPSIS

 #include <sched.h>

 int sched_get_priority_max(int policy));

 int sched_get_priority_min(int policy));

DESCRIPTION

 sched_get_priority_max returns the maximum priority value
 that can be used with the scheduling algorithm identified by
 policy. sched_get_priority_min returns the minimum priority
 value that can be used with the scheduling algorithm identi-
 fied by policy. Supported policy values are SCHED_FIFO,
 SCHED_RR, and SCHED_OTHER.

 Processes with numerically higher priority values are
 scheduled before processes with numerically lower priority
 values. Thus, the value returned by sched_get_priority_max
 will be greater than the value returned by
 sched_get_priority_min.

 Linux allows the static priority value range 1 to 99 for
 SCHED_FIFO and SCHED_RR and the priority 0 for SCHED_OTHER.
 Scheduling priority ranges for the various policies are not
 alterable.

 The range of scheduling priorities may vary on other POSIX

http://linuxsavvy.com/resources/linux/man/man2/sched_get_priority_max.2.html (1 of 3) [14/09/1999 09:46:31]

 systems, thus it is a good idea for portable applications to
 use a virtual priority range and map it to the interval
 given by sched_get_priority_max and sched_get_priority_min.
 POSIX.1b requires a spread of at least 32 between the max-
 imum and the minimum values for SCHED_FIFO and SCHED_RR.

 POSIX systems on which sched_get_priority_max and
 sched_get_priority_min are available define
 _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE

 On success, sched_get_priority_max and
 sched_get_priority_min return the maximum/minimum priority
 value for the named scheduling policy. On error, -1 is
 returned, errno is set appropriately.

ERRORS

 EINVAL The parameter policy does not identify a defined
 scheduling policy.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

SEE ALSO

 sched_setscheduler(2), sched_getscheduler(2),
 sched_setparam(2), sched_getparam(2).

http://linuxsavvy.com/resources/linux/man/man2/sched_get_priority_max.2.html (2 of 3) [14/09/1999 09:46:31]

 sched_setscheduler(2) has a description of the Linux
 scheduling scheme.

 Programming for the real world - by Bill O. Gallmeister,
 O'Reilly & Associates, Inc., ISBN 1-56592-074-0
 IEEE Std 1003.1b-1993 (POSIX.1b standard)
 ISO/IEC 9945-1:1996

http://linuxsavvy.com/resources/linux/man/man2/sched_get_priority_max.2.html (3 of 3) [14/09/1999 09:46:31]

NAME

 sched_rr_get_interval - get the SCHED_RR interval for the
 named process

SYNOPSIS

 #include <sched.h>

 int sched_rr_get_interval(pid_t pid, struct timespec *tp));

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

DESCRIPTION

 sched_rr_get_interval writes into the timespec structure
 pointed to by tp the round robin time quantum for the pro-
 cess identified by pid. If pid is zero, the time quantum for
 the calling process is written into *tp. The identified pro-
 cess should be running under the SCHED_RR scheduling policy.

 The round robin time quantum value is not alterable under
 Linux 1.3.81.

 POSIX systems on which sched_rr_get_interval is available
 define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

http://linuxsavvy.com/resources/linux/man/man2/sched_rr_get_interval.2.html (1 of 4) [14/09/1999 09:46:37]

RETURN VALUE

 On success, sched_rr_get_interval returns 0. On error, -1
 is returned, and errno is set appropriately.

ERRORS

 ESRCH The process whose ID is pid could not be found.

 ENOSYS The system call is not yet implemented.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

BUGS

 As of Linux 1.3.81 sched_rr_get_interval returns with error
 ENOSYS, because SCHED_RR has not yet been fully implemented
 and tested properly.

SEE ALSO

 sched_setscheduler(2) has a description of the Linux
 scheduling scheme.

 Programming for the real world - by Bill O. Gallmeister,
 O'Reilly & Associates, Inc., ISBN 1-56592-074-0
 IEEE Std 1003.1b-1993 (POSIX.1b standard, formerly POSIX.4)

http://linuxsavvy.com/resources/linux/man/man2/sched_rr_get_interval.2.html (2 of 4) [14/09/1999 09:46:37]

 ISO/IEC 9945-1:1996

http://linuxsavvy.com/resources/linux/man/man2/sched_rr_get_interval.2.html (3 of 4) [14/09/1999 09:46:37]

http://linuxsavvy.com/resources/linux/man/man2/sched_rr_get_interval.2.html (4 of 4) [14/09/1999 09:46:37]

NAME

 sched_setparam, sched_getparam - set and get scheduling
 parameters

SYNOPSIS

 #include <sched.h>

 int sched_setparam(pid_t pid, const struct sched_param *p);

 int sched_getparam(pid_t pid, struct sched_param *p);

 struct sched_param {
 ...
 int sched_priority;
 ...
 };

DESCRIPTION

 sched_setparam sets the scheduling parameters associated
 with the scheduling policy for the process identified by
 pid. If pid is zero, then the parameters of the current pro-
 cess are set. The interpretation of the parameter p depends
 on the selected policy. Currently, the following three
 scheduling policies are supported under Linux: SCHED_FIFO,
 SCHED_RR, and SCHED_OTHER.

 sched_getparam retrieves the scheduling parameters for the
 process identified by pid. If pid is zero, then the parame-
 ters of the current process are retrieved.

 sched_setparam checks the validity of p for the scheduling

http://linuxsavvy.com/resources/linux/man/man2/sched_setparam.2.html (1 of 4) [14/09/1999 09:46:39]

 policy of the process. The parameter p->sched_priority must
 lie within the range given by sched_get_priority_min and
 sched_get_priority_max.

 POSIX systems on which sched_setparam and sched_getparam are
 available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE

 On success, sched_setparam and sched_getparam return 0. On
 error, -1 is returned, errno is set appropriately.

ERRORS

 ESRCH The process whose ID is pid could not be found.

 EPERM The calling process does not have appropriate
 privileges. The process calling sched_setparam needs
 an effective uid equal to the euid or uid of the
 process identified by pid, or it must be a superuser
 process.

 EINVAL The parameter p does not make sense for the current
 scheduling policy.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

http://linuxsavvy.com/resources/linux/man/man2/sched_setparam.2.html (2 of 4) [14/09/1999 09:46:39]

SEE ALSO

 sched_setscheduler(2), sched_getscheduler(2),
 sched_get_priority_max(2), sched_get_priority_min(2),
 nice(2), setpriority(2), getpriority(2),

 sched_setscheduler(2) has a description of the Linux
 scheduling scheme.

 Programming for the real world - by Bill O. Gallmeister,
 O'Reilly & Associates, Inc., ISBN 1-56592-074-0
 IEEE Std 1003.1b-1993 (POSIX.1b standard)
 ISO/IEC 9945-1:1996

http://linuxsavvy.com/resources/linux/man/man2/sched_setparam.2.html (3 of 4) [14/09/1999 09:46:39]

http://linuxsavvy.com/resources/linux/man/man2/sched_setparam.2.html (4 of 4) [14/09/1999 09:46:39]

NAME

 sched_setscheduler, sched_getscheduler - set and get
 scheduling algorithm/parameters

SYNOPSIS

 #include <sched.h>

 int sched_setscheduler(pid_t pid, int policy, const struct
 sched_param *p);

 int sched_getscheduler(pid_t pid));

 struct sched_param {
 ...
 int sched_priority;
 ...
 };

DESCRIPTION

 sched_setscheduler sets both the scheduling policy and the
 associated parameters for the process identified by pid. If
 pid equals zero, the scheduler of the calling process will
 be set. The interpretation of the parameter p depends on the
 selected policy. Currently, the following three scheduling
 policies are supported under Linux: SCHED_FIFO, SCHED_RR,
 and SCHED_OTHER; their respective semantics is described
 below.

 sched_getscheduler queries the scheduling policy currently
 applied to the process identified by pid. If pid equals
 zero, the policy of the calling process will be retrieved.

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (1 of 6) [14/09/1999 09:46:45]

 Scheduling Policies
 The scheduler is the kernel part that decides which runnable
 process will be executed by the CPU next. The Linux
 scheduler offers three different scheduling policies, one
 for normal processes and two for real-time applications. A
 static priority value sched_priority is assigned to each
 process and this value can be changed only via system calls.
 Conceptually, the scheduler maintains a list of runnable
 processes for each possible sched_priority value, and
 sched_priority can have a value in the range 0 to 99. In
 order to determine the process that runs next, the Linux
 scheduler looks for the non-empty list with the highest
 static priority and takes the process at the head of this
 list. The scheduling policy determines for each process,
 where it will be inserted into the list of processes with
 equal static priority and how it will move inside this list.

 SCHED_OTHER is the default universal time-sharing scheduler
 policy used by most processes, SCHED_FIFO and SCHED_RR are
 intended for special time-critical applications that need
 precise control over the way in which runnable processes are
 selected for execution. Processes scheduled with SCHED_OTHER
 must be assigned the static priority 0, processes scheduled
 under SCHED_FIFO or SCHED_RR can have a static priority in
 the range 1 to 99. Only processes with superuser privileges
 can get a static priority higher than 0 and can therefore be
 scheduled under SCHED_FIFO or SCHED_RR. The system calls
 sched_get_priority_min and sched_get_priority_max can be
 used to to find out the valid priority range for a schedul-
 ing policy in a portable way on all POSIX.1b conforming sys-
 tems.

 All scheduling is preemptive: If a process with a higher
 static priority gets ready to run, the current process will
 be preempted and returned into its wait list. The scheduling
 policy only determines the ordering within the list of runn-
 able processes with equal static priority.

 SCHED_FIFO: First In-First out scheduling
 SCHED_FIFO can only be used with static priorities higher
 than 0, that means that when a SCHED_FIFO processes becomes
 runnable, it will always preempt immediately any currently

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (2 of 6) [14/09/1999 09:46:45]

 running normal SCHED_OTHER process. SCHED_FIFO is a simple
 scheduling algorithm without time slicing. For processes
 scheduled under the SCHED_FIFO policy, the following rules
 are applied: A SCHED_FIFO process that has been preempted by
 another process of higher priority will stay at the head of
 the list for its priority and will resume execution as soon
 as all processes of higher priority are blocked again. When
 a SCHED_FIFO process becomes runnable, it will be inserted
 at the end of the list for its priority. A call to
 sched_setscheduler or sched_setparam will put the SCHED_FIFO
 process identified by pid at the end of the list if it was
 runnable. A process calling sched_yield will be put at the
 end of the list. No other events will move a process
 scheduled under the SCHED_FIFO policy in the wait list of
 runnable processes with equal static priority. A SCHED_FIFO
 process runs until either it is blocked by an I/O request,
 it is preempted by a higher priority process, or it calls
 sched_yield.

 SCHED_RR: Round Robin scheduling
 SCHED_RR is a simple enhancement of SCHED_FIFO. Everything
 described above for SCHED_FIFO also applies to SCHED_RR,
 except that each process is only allowed to run for a max-
 imum time quantum. If a SCHED_RR process has been running
 for a time period equal to or longer than the time quantum,
 it will be put at the end of the list for its priority. A
 SCHED_RR process that has been preempted by a higher prior-
 ity process and subsequently resumes execution as a running
 process will complete the unexpired portion of its round
 robin time quantum. The length of the time quantum can be
 retrieved by sched_rr_get_interval.

 SCHED_OTHER: Default Linux time-sharing scheduling
 SCHED_OTHER can only be used at static priority 0.
 SCHED_OTHER is the standard Linux time-sharing scheduler
 that is intended for all processes that do not require spe-
 cial static priority real-time mechanisms. The process to
 run is chosen from the static priority 0 list based on a
 dynamic priority that is determined only inside this list.
 The dynamic priority is based on the nice level (set by the
 nice or setpriority system call) and increased for each time
 quantum the process is ready to run, but denied to run by
 the scheduler. This ensures fair progress among all

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (3 of 6) [14/09/1999 09:46:45]

 SCHED_OTHER processes.

 Response time
 A blocked high priority process waiting for the I/O has a
 certain response time before it is scheduled again. The dev-
 ice driver writer can greatly reduce this response time by
 using a "slow interrupt" interrupt handler as described in
 request_irq(9).

 Miscellaneous
 Child processes inherit the scheduling algorithm and parame-
 ters across a fork.

 Memory locking is usually needed for real-time processes to
 avoid paging delays, this can be done with mlock or mlock-
 all.

 As a non-blocking end-less loop in a process scheduled under
 SCHED_FIFO or SCHED_RR will block all processes with lower
 priority forever, a software developer should always keep
 available on the console a shell scheduled under a higher
 static priority than the tested application. This will allow
 an emergency kill of tested real-time applications that do
 not block or terminate as expected. As SCHED_FIFO and
 SCHED_RR processes can preempt other processes forever, only
 root processes are allowed to activate these policies under
 Linux.

 POSIX systems on which sched_setscheduler and
 sched_getscheduler are available define
 _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE

 On success, sched_setscheduler returns zero. On success,
 sched_getscheduler returns the policy for the process (a
 non-negative integer). On error, -1 is returned, errno is
 set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (4 of 6) [14/09/1999 09:46:45]

ERRORS

 ESRCH The process whose ID is pid could not be found.

 EPERM The calling process does not have appropriate
 privileges. Only root processes are allowed to
 activate the SCHED_FIFO and SCHED_RR policies. The
 process calling sched_setscheduler needs an effec-
 tive uid equal to the euid or uid of the process
 identified by pid, or it must be a superuser pro-
 cess.

 EINVAL The scheduling policy is not one of the recognized
 policies, or the parameter p does not make sense for
 the policy.

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

BUGS

 As of linux-1.3.81, SCHED_RR has not yet been tested care-
 fully and might not behave exactly as described or required
 by POSIX.1b.

SEE ALSO

 sched_setparam(2), sched_getparam(2), sched_yield(2),
 sched_get_priority_max(2), sched_get_priority_min(2),
 nice(2), setpriority(2), getpriority(2), mlockall(2), mun-
 lockall(2), mlock(2), munlock(2).

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (5 of 6) [14/09/1999 09:46:45]

 Programming for the real world - by Bill O. Gallmeister,
 O'Reilly & Associates, Inc., ISBN 1-56592-074-0
 IEEE Std 1003.1b-1993 (POSIX.1b standard)
 ISO/IEC 9945-1:1996 - This is the new 1996 revision of
 POSIX.1 which contains in one single standard POSIX.1(1990),
 POSIX.1b(1993), POSIX.1c(1995), and POSIX.1i(1995).

http://linuxsavvy.com/resources/linux/man/man2/sched_setscheduler.2.html (6 of 6) [14/09/1999 09:46:45]

NAME

 sched_yield - yield the processor

SYNOPSIS

 #include <sched.h>

 int sched_yield(void);

DESCRIPTION

 A process can relinquish the processor voluntarily without
 blocking by calling sched_yield. The process will then be
 moved to the end of the queue for its static priority and a
 new process gets to run.

 Note: If the current process is the only process in the
 highest priority list at that time, this process will con-
 tinue to run after a call to sched_yield.

 POSIX systems on which sched_yield is available define
 _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE

 On success, sched_yield returns 0. On error, -1 is
 returned, and errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/sched_yield.2.html (1 of 2) [14/09/1999 09:46:46]

CONFORMING TO

 POSIX.1b (formerly POSIX.4)

SEE ALSO

 sched_setscheduler(2) for a description of Linux scheduling.

 Programming for the real world - by Bill O. Gallmeister,
 O'Reilly & Associates, Inc., ISBN 1-56592-074-0
 IEEE Std 1003.1b-1993 (POSIX.1b standard)
 ISO/IEC 9945-1:1996

http://linuxsavvy.com/resources/linux/man/man2/sched_yield.2.html (2 of 2) [14/09/1999 09:46:46]

NAME

 select, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - synchronous I/O
 multiplexing

SYNOPSIS

 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>

 int select(int n, fd_set *readfds, fd_set *writefds, fd_set
 *exceptfds, struct timeval *timeout));

 FD_CLR(int fd, fd_set *set));
 FD_ISSET(int fd, fd_set *set));
 FD_SET(int fd, fd_set *set));
 FD_ZERO(fd_set *set));

DESCRIPTION

 select waits for a number of file descriptors to change
 status.

 Three independent sets of descriptors are watched. Those
 listed in readfds will be watched to see if characters
 become available for reading, those in writefds will be
 watched to see if it is ok to immediately write on them, and
 those in exceptfds will be watched for exceptions. On exit,
 the sets are modified in place to indicate which descriptors
 actually changed status.

 Four macros are provided to manipulate the sets. FD_ZERO
 will clear a set. FD_SET and FD_CLR add or remove a given

http://linuxsavvy.com/resources/linux/man/man2/select.2.html (1 of 5) [14/09/1999 09:46:48]

 descriptor from a set. FD_ISSET tests to see if a descrip-
 tor is part of the set; this is useful after select returns.

 n is the highest-numbered descriptor in any of the three
 sets, plus 1.

 timeout is an upper bound on the amount of time elapsed
 before select returns. It may be zero, causing select to
 return immediately. If timeout is NULL (no timeout), select
 can block indefinitely.

RETURN VALUE

 On success, select returns the number of descriptors con-
 tained in the descriptor sets, which may be zero if the
 timeout expires before anything interesting happens. On
 error, -1 is returned, and errno is set appropriately; the
 sets and timeout become undefined, so do not rely on their
 contents after an error.

ERRORS

 EBADF An invalid file descriptor was given in one of the
 sets.

 EINTR A non blocked signal was caught.

 EINVAL n is negative.

 ENOMEM select was unable to allocate memory for internal
 tables.

http://linuxsavvy.com/resources/linux/man/man2/select.2.html (2 of 5) [14/09/1999 09:46:48]

NOTES

 Some code calls select with all three sets empty, n zero,
 and a non-null timeout as a fairly portable way to sleep
 with subsecond precision.

 On Linux, timeout is modified to reflect the amount of time
 not slept; most other implementations do not do this. This
 causes problems both when Linux code which reads timeout is
 ported to other operating systems, and when code is ported
 to Linux that reuses a struct timeval for multiple selects
 in a loop without reinitializing it. Consider timeout to be
 undefined after select returns.

EXAMPLE

 #include <stdio.h>
 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>

 int
 main(void)
 {
 fd_set rfds;
 struct timeval tv;
 int retval;

 /* Watch stdin (fd 0) to see when it has input. */
 FD_ZERO(&rfds);
 FD_SET(0, &rfds);
 /* Wait up to five seconds. */
 tv.tv_sec = 5;
 tv.tv_usec = 0;

 retval = select(1, &rfds, NULL, NULL, &tv);
 /* Don't rely on the value of tv now! */

 if (retval)
 printf("Data is available now.\n");

http://linuxsavvy.com/resources/linux/man/man2/select.2.html (3 of 5) [14/09/1999 09:46:48]

 /* FD_ISSET(0, &rfds) will be true. */
 else
 printf("No data within five seconds.\n");

 exit(0);

 }

CONFORMING TO

 4.4BSD (the select function first appeared in 4.2BSD). Gen-
 erally portable to/from non-BSD systems supporting clones of
 the BSD socket layer (including System V variants). How-
 ever, note that the System V variant typically sets the
 timeout variable before exit, but the BSD variant does not.

SEE ALSO

 accept(2), connect(2), read(2), recv(2), send(2), write(2)

http://linuxsavvy.com/resources/linux/man/man2/select.2.html (4 of 5) [14/09/1999 09:46:48]

http://linuxsavvy.com/resources/linux/man/man2/select.2.html (5 of 5) [14/09/1999 09:46:48]

NAME

 semctl - semaphore control operations

SYNOPSIS

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
 /* union semun is defined by including <sys/sem.h> */
 #else
 /* according to X/OPEN we have to define it ourselves */
 union semun {
 int val; /* value for SETVAL */
 struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
 unsigned short int *array; /* array for GETALL, SETALL */
 struct seminfo *__buf; /* buffer for IPC_INFO */
 };
 #endif

 int semctl (int semid, int semnum, int cmd, union semun arg))

DESCRIPTION

 The function performs the control operation specified by cmd
 on the semaphore set (or on the semnum-th semaphore of the
 set) identified by semid. The first semaphore of the set is
 indicated by a value 0 for semnum.

 Legal values for cmd are

 IPC_STAT Copy info from the semaphore set data structure
 into the structure pointed to by arg.buf. The
 argument semnum is ignored. The calling process
 must have read access privileges on the sema-

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (1 of 6) [14/09/1999 09:46:52]

 phore set.

 IPC_SET Write the values of some members of the semid_ds
 structure pointed to by arg.buf to the semaphore
 set data structure, updating also its sem_ctime
 member. Considered members from the user sup-
 plied struct semid_ds pointed to by arg.buf are

 sem_perm.uid
 sem_perm.gid
 sem_perm.mode /* only lowest 9-bits */

 The calling process effective user-ID must be
 one among super-user, creator or owner of the
 semaphore set. The argument semnum is ignored.

 IPC_RMID Remove immediately the semaphore set and its
 data structures awakening all waiting processes
 (with an error return and errno set to EIDRM).
 The calling process effective user-ID must be
 one among super-user, creator or owner of the
 semaphore set. The argument semnum is ignored.

 GETALL Return semval for all semaphores of the set into
 arg.array. The argument semnum is ignored. The
 calling process must have read access privileges
 on the semaphore set.

 GETNCNT The system call returns the value of semncnt for
 the semnum-th semaphore of the set (i.e. the
 number of processes waiting for an increase of
 semval for the semnum-th semaphore of the set).
 The calling process must have read access
 privileges on the semaphore set.

 GETPID The system call returns the value of sempid for
 the semnum-th semaphore of the set (i.e. the pid
 of the process that executed the last semop call
 for the semnum-th semaphore of the set). The
 calling process must have read access privileges
 on the semaphore set.

 GETVAL The system call returns the value of semval for
 the semnum-th semaphore of the set. The calling
 process must have read access privileges on the
 semaphore set.

 GETZCNT The system call returns the value of semzcnt for

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (2 of 6) [14/09/1999 09:46:52]

 the semnum-th semaphore of the set (i.e. the
 number of processes waiting for semval of the
 semnum-th semaphore of the set to become 0).
 The calling process must have read access
 privileges on the semaphore set.

 SETALL Set semval for all semaphores of the set using
 arg.array, updating also the sem_ctime member of
 the semid_ds structure associated to the set.
 Undo entries are cleared for altered semaphores
 in all processes. Processes sleeping on the
 wait queue are awakened if some semval becomes 0
 or increases. The argument semnum is ignored.
 The calling process must have alter access
 privileges on the semaphore set.

 SETVAL Set the value of semval to arg.val for the
 semnum-th semaphore of the set, updating also
 the sem_ctime member of the semid_ds structure
 associated to the set. Undo entry is cleared
 for altered semaphore in all processes.
 Processes sleeping on the wait queue are
 awakened if semval becomes 0 or increases. The
 calling process must have alter access
 privileges on the semaphore set.

RETURN VALUE

 On fail the system call returns -1 with errno indicating the
 error. Otherwise the system call returns a nonnegative
 value depending on cmd as follows:

 GETNCNT the value of semncnt.

 GETPID the value of sempid.

 GETVAL the value of semval.

 GETZCNT the value of semzcnt.

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (3 of 6) [14/09/1999 09:46:52]

ERRORS

 For a failing return, errno will be set to one among the
 following values:

 EACCES The calling process has no access permissions
 needed to execute cmd.

 EFAULT The address pointed to by arg.buf or arg.array
 isn't accessible.

 EIDRM The semaphore set was removed.

 EINVAL Invalid value for cmd or semid.

 EPERM The argument cmd has value IPC_SET or IPC_RMID
 but the calling process effective user-ID has
 insufficient privileges to execute the command.

 ERANGE The argument cmd has value SETALL or SETVAL and
 the value to which semval has to be set (for some
 semaphore of the set) is less than 0 or greater
 than the implementation value SEMVMX.

NOTES

 The IPC_INFO, SEM_STAT and SEM_INFO control calls are used
 by the ipcs(8) program to provide information on allocated
 resources. In the future these can be modified as needed or
 moved to a proc file system interface.

 The following system limit on semaphore sets affects a
 semctl call:

 SEMVMX Maximum value for semval: implementation depen-
 dent (32767).

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (4 of 6) [14/09/1999 09:46:52]

CONFORMING TO

 SVr4, SVID. SVr4 documents more error conditions EINVAL and
 EOVERFLOW.

SEE ALSO

 ipc(5), shmget(2), shmat(2), shmdt(2).

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (5 of 6) [14/09/1999 09:46:52]

http://linuxsavvy.com/resources/linux/man/man2/semctl.2.html (6 of 6) [14/09/1999 09:46:52]

NAME

 semget - get a semaphore set identifier

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/sem.h>

 int semget (key_t key, int nsems, int semflg)

DESCRIPTION

 The function returns the semaphore set identifier associated
 to the value of the argument key. A new set of nsems sema-
 phores is created if key has value IPC_PRIVATE or key isn't
 IPC_PRIVATE, no existing message queue is associated to key,
 and IPC_CREAT is asserted in semflg (i.e. semflg&IPC_CREAT
 isn't zero). The presence in semflg of the fields IPC_CREAT
 and IPC_EXCL plays the same role, with respect to the
 existence of the semaphore set, as the presence of O_CREAT
 and O_EXCL in the mode argument of the open(2) system call:
 i.e. the msgget function fails if semflg asserts both
 IPC_CREAT and IPC_EXCL and a semaphore set already exists
 for key.

 Upon creation, the lower 9 bits of the argument semflg
 define the access permissions (for owner, group and others)
 to the semaphore set in the same format, and with the same
 meaning, as for the access permissions parameter in the
 open(2) or creat(2) system calls (though the execute permis-
 sions are not used by the system, and write permissions, for
 a semaphore set, effectively means alter permissions).

http://linuxsavvy.com/resources/linux/man/man2/semget.2.html (1 of 5) [14/09/1999 09:46:55]

 Furthermore, while creating, the system call initializes the
 system semaphore set data structure semid_ds as follows:

 sem_perm.cuid and sem_perm.uid are set to the effective
 user-ID of the calling process.

 sem_perm.cgid and sem_perm.gid are set to the effective
 group-ID of the calling process.

 The lowest order 9 bits of sem_perm.mode are set to the
 lowest order 9 bit of semflg.

 sem_nsems is set to the value of nsems.

 sem_otime is set to 0.

 sem_ctime is set to the current time.

 The argument nsems can be 0 (a don't care) when the system
 call isn't a create one. Otherwise nsems must be greater
 than 0 and less or equal to the maximum number of semaphores
 per semid, (SEMMSL).

 If the semaphore set already exists, the access permissions
 are verified, and a check is made to see if it is marked for
 destruction.

RETURN VALUE

 If successful, the return value will be the semaphore set
 identifier (a positive integer), otherwise -1 with errno
 indicating the error.

ERRORS

 For a failing return, errno will be set to one among the
 following values:

http://linuxsavvy.com/resources/linux/man/man2/semget.2.html (2 of 5) [14/09/1999 09:46:55]

 EACCES A semaphore set exists for key, but the calling
 process has no access permissions to the set.

 EEXIST A semaphore set exists for key and semflg was
 asserting both IPC_CREAT and IPC_EXCL.

 EIDRM The semaphore set is marked as to be deleted.

 ENOENT No semaphore set exists for key and semflg wasn't
 asserting IPC_CREAT.

 ENOMEM A semaphore set has to be created but the system
 has not enough memory for the new data structure.

 ENOSPC A semaphore set has to be created but the system
 limit for the maximum number of semaphore sets
 (SEMMNI), or the system wide maximum number of
 semaphores (SEMMNS), would be exceeded.

NOTES

 IPC_PRIVATE isn't a flag field but a key_t type. If this
 special value is used for key, the system call ignores
 everything but the lowest order 9 bits of semflg and creates
 a new semaphore set (on success).

 The followings are limits on semaphore set resources affect-
 ing a semget call:

 SEMMNI System wide maximum number of semaphore sets:
 policy dependent.

 SEMMSL Maximum number of semaphores per semid: implemen-
 tation dependent (500 currently).

 SEMMNS System wide maximum number of semaphores: policy
 dependent. Values greater than SEMMSL * SEMMNI
 makes it irrelevant.

http://linuxsavvy.com/resources/linux/man/man2/semget.2.html (3 of 5) [14/09/1999 09:46:55]

BUGS

 Use of IPC_PRIVATE doesn't inhibit to other processes the
 access to the allocated semaphore set.

 As for the files, there is currently no intrinsic way for a
 process to ensure exclusive access to a semaphore set.
 Asserting both IPC_CREAT and IPC_EXCL in semflg only ensures
 (on success) that a new semaphore set will be created, it
 doesn't imply exclusive access to the semaphore set.

 The data structure associated with each semaphore in the set
 isn't initialized by the system call. In order to initial-
 ize those data structures, one has to execute a subsequent
 call to semctl(2) to perform a SETVAL or a SETALL command on
 the semaphore set.

CONFORMING TO

 SVr4, SVID. SVr4 documents additional error conditions EIN-
 VAL, EFBIG, E2BIG, EAGAIN, ERANGE, EFAULT.

SEE ALSO

 ftok(3), ipc(5), semctl(2), semop(2).

http://linuxsavvy.com/resources/linux/man/man2/semget.2.html (4 of 5) [14/09/1999 09:46:55]

http://linuxsavvy.com/resources/linux/man/man2/semget.2.html (5 of 5) [14/09/1999 09:46:55]

NAME

 semop - semaphore operations

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/sem.h>

 int semop (int semid, struct sembuf *sops, unsigned nsops)

DESCRIPTION

 The function performs operations on selected members of the
 semaphore set indicated by semid. Each of the nsops ele-
 ments in the array pointed to by sops specify an operation
 to be performed on a semaphore by a struct sembuf including
 the following members:

 short sem_num; /* semaphore number: 0 = first */
 short sem_op; /* semaphore operation */
 short sem_flg; /* operation flags */

 Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If
 an operation asserts SEM_UNDO, it will be undone when the
 process exits.

 The system call semantic assures that the operations will be
 performed if and only if all of them will succeed. Each
 operation is performed on the sem_num-th semaphore of the
 semaphore set - where the first semaphore of the set is
 semaphore 0 - and is one among the following three.

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (1 of 6) [14/09/1999 09:46:59]

 If sem_op is a positive integer, the operation adds this
 value to semval. Furthermore, if SEM_UNDO is asserted for
 this operation, the system updates the process undo count
 for this semaphore. The operation always goes through, so
 no process sleeping can happen. The calling process must
 have alter permissions on the semaphore set.

 If sem_op is zero, the process must have read access permis-
 sions on the semaphore set. If semval is zero, the opera-
 tion goes through. Otherwise, if IPC_NOWAIT is asserted in
 sem_flg, the system call fails (undoing all previous actions
 performed) with errno set to EAGAIN. Otherwise semzcnt is
 incremented by one and the process sleeps until one of the
 following occurs:

 o semval becomes 0, at which time the value of
 semzcnt is decremented.

 o The semaphore set is removed: the system call
 fails with errno set to EIDRM.

 o The calling process receives a signal that has to
 be caught: the value of semzcnt is decremented
 and the system call fails with errno set to EINTR.

 If sem_op is less than zero, the process must have alter
 permissions on the semaphore set. If semval is greater than
 or equal to the absolute value of sem_op, the absolute value
 of sem_op is subtracted by semval. Furthermore, if SEM_UNDO
 is asserted for this operation, the system updates the pro-
 cess undo count for this semaphore. Then the operation goes
 through. Otherwise, if IPC_NOWAIT is asserted in sem_flg,
 the system call fails (undoing all previous actions per-
 formed) with errno set to EAGAIN. Otherwise semncnt is
 incremented by one and the process sleeps until one of the
 following occurs:

 o semval becomes greater or equal to the absolute
 value of sem_op, at which time the value of
 semncnt is decremented, the absolute value of
 sem_op is subtracted from semval and, if SEM_UNDO
 is asserted for this operation, the system updates

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (2 of 6) [14/09/1999 09:46:59]

 the process undo count for this semaphore.

 o The semaphore set is removed from the system: the
 system call fails with errno set to EIDRM.

 o The calling process receives a signal that has to
 be caught: the value of semncnt is decremented
 and the system call fails with errno set to EINTR.

 In case of success, the sempid member of the structure sem
 for each semaphore specified in the array pointed to by sops
 is set to the process-ID of the calling process. Further-
 more both sem_otime and sem_ctime are set to the current
 time.

RETURN VALUE

 If successful the system call returns 0, otherwise it
 returns -1 with errno indicating the error.

ERRORS

 For a failing return, errno will be set to one among the
 following values:

 E2BIG The argument nsops is greater than SEMOPM, the
 maximum number of operations allowed per system
 call.

 EACCES The calling process has no access permissions on
 the semaphore set as required by one of the
 specified operations.

 EAGAIN An operation could not go through and IPC_NOWAIT
 was asserted in its sem_flg.

 EFAULT The address pointed to by sops isn't accessible.

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (3 of 6) [14/09/1999 09:46:59]

 EFBIG For some operation the value of sem_num is less
 than 0 or greater than or equal to the number of
 semaphores in the set.

 EIDRM The semaphore set was removed.

 EINTR Sleeping on a wait queue, the process received a
 signal that had to be caught.

 EINVAL The semaphore set doesn't exist, or semid is less
 than zero, or nsops has a non-positive value.

 ENOMEM The sem_flg of some operation asserted SEM_UNDO
 and the system has not enough memory to allocate
 the undo structure.

 ERANGE For some operation semop+semval is greater than
 SEMVMX, the implementation dependent maximum
 value for semval.

NOTES

 The sem_undo structures of a process aren't inherited by its
 child on execution of a fork(2) system call. They are
 instead inherited by the substituting process resulting by
 the execution of the execve(2) system call.

 The followings are limits on semaphore set resources affect-
 ing a semop call:

 SEMOPM Maximum number of operations allowed for one
 semop call: policy dependent.

 SEMVMX Maximum allowable value for semval: implementa-
 tion dependent (32767).

 The implementation has no intrinsic limits for the adjust on
 exit maximum value (SEMAEM), the system wide maximum number
 of undo structures (SEMMNU) and the per process maximum
 number of undo entries system parameters.

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (4 of 6) [14/09/1999 09:46:59]

BUGS

 The system maintains a per process sem_undo structure for
 each semaphore altered by the process with undo requests.
 Those structures are free at process exit. One major cause
 for unhappiness with the undo mechanism is that it does not
 fit in with the notion of having an atomic set of operations
 an array of semaphores. The undo requests for an array and
 each semaphore therein may have been accumulated over many
 semopt calls. Should the process sleep when exiting, or
 should all undo operations be applied with the IPC_NOWAIT
 flag in effect? Currently those undo operations which go
 through immediately are applied, and those that require a
 wait are ignored silently. Thus harmless undo usage is
 guaranteed with private semaphores only.

CONFORMING TO

 SVr4, SVID. SVr4 documents additional error conditions EIN-
 VAL, EFBIG, ENOSPC.

SEE ALSO

 ipc(5), semctl(2), semget(2).

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (5 of 6) [14/09/1999 09:46:59]

http://linuxsavvy.com/resources/linux/man/man2/semop.2.html (6 of 6) [14/09/1999 09:46:59]

NAME

 send, sendto, sendmsg - send a message from a socket

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int send(int s, const void *msg, int len unsigned int
 flags));

 int sendto(int s, const void *msg, int len unsigned int
 flags, const struct sockaddr *to, int tolen

 int sendmsg(int s, const struct msghdr *msg, unsigned int
 flags));

DESCRIPTION

 WARNING: This is a BSD man page. As of Linux 0.99.11,
 sendmsg was not implemented.

 Send, sendto, and sendmsg are used to transmit a message to
 another socket. Send may be used only when the socket is in
 a connected state, while sendto and sendmsg may be used at
 any time.

 The address of the target is given by to with tolen specify-
 ing its size. The length of the message is given by len.
 If the message is too long to pass atomically through the
 underlying protocol, the error EMSGSIZE is returned, and the
 message is not transmitted.

 No indication of failure to deliver is implicit in a send.
 Locally detected errors are indicated by a return value of
 -1.

 If no messages space is available at the socket to hold the
 message to be transmitted, then send normally blocks, unless

http://linuxsavvy.com/resources/linux/man/man2/send.2.html (1 of 3) [14/09/1999 09:47:02]

 the socket has been placed in non-blocking I/O mode. The
 select(2) call may be used to determine when it is possible
 to send more data.

 The flags parameter may include one or more of the follow-
 ing:

 #define MSG_OOB 0x1 /* process out-of-band data */
 #define MSG_DONTROUTE 0x4 /* bypass routing, use direct interface */

 The flag MSG_OOB is used to send out-of-band data on sockets
 that support this notion (e.g. SOCK_STREAM); the underlying
 protocol must also support out-of-band data. MSG_DONTROUTE
 is usually used only by diagnostic or routing programs.
 See recv(2) for a description of the msghdr structure.

RETURN VALUES

 The call returns the number of characters sent, or -1 if an
 error occurred.

ERRORS

 EBADF An invalid descriptor was specified.

 ENOTSOCK
 The argument s is not a socket.

 EFAULT An invalid user space address was specified for a
 parameter.

 EMSGSIZE
 The socket requires that message be sent atomically,
 and the size of the message to be sent made this
 impossible.

 EWOULDBLOCK
 The socket is marked non-blocking and the requested
 operation would block.

 ENOBUFS The system was unable to allocate an internal
 buffer. The operation may succeed when buffers
 become available.

 ENOBUFS The output queue for a network interface was full.
 This generally indicates that the interface has

http://linuxsavvy.com/resources/linux/man/man2/send.2.html (2 of 3) [14/09/1999 09:47:02]

 stopped sending, but may be caused by transient
 congestion.

CONFORMING TO

 4.4BSD, SVr4 (these function calls appeared in 4.2BSD). The
 SVr4 versions docoment additional error conditions EINVAL,
 EINTR, EMSGSIZE, ENOSR, ENOMEM.

SEE ALSO

 fcntl(2), recv(2), select(2), socket(2), write(2)

http://linuxsavvy.com/resources/linux/man/man2/send.2.html (3 of 3) [14/09/1999 09:47:02]

NAME

 setfsgid - set group identity used for file system checks

SYNOPSIS

 int setfsgid(uid_t fsgid))

DESCRIPTION

 setfsgid sets the group ID that the Linux kernel uses to
 check for all accesses to the file system. Normally, the
 value of fsgid will shadow the value of the effective group
 ID. In fact, whenever the effective group ID is changed,
 fsgid will also be changed to new value of effective group
 ID.

 An explicit call to setfsgid is usually only used by pro-
 grams such as the Linux NFS server that need to change what
 group ID is used for file access without a corresponding
 change in the real and effective group IDs. A change in the
 normal group IDs for a program such as the NFS server is a
 security hole that can expose it to unwanted signals from
 other group IDs.

 setfsgid will only succeed if the caller is the superuser or
 if fsgid matches either the real group ID, effective group
 ID, saved group ID, or the current value of fsgid.

http://linuxsavvy.com/resources/linux/man/man2/setfsgid.2.html (1 of 2) [14/09/1999 09:47:10]

RETURN VALUE

 On success, the previous value of fsgid is returned. On
 error, the current value of fsgid is returned.

CONFORMING TO

 setfsgid is Linux specific and should not be used in pro-
 grams intended to be portable.

BUGS

 No error messages of any kind are returned to the caller. At
 the very least, EPERM should be returned when the call
 fails.

SEE ALSO

 setfsuid(2)

http://linuxsavvy.com/resources/linux/man/man2/setfsgid.2.html (2 of 2) [14/09/1999 09:47:10]

NAME

 setfsuid - set user identity used for file system checks

SYNOPSIS

 int setfsuid(uid_t fsuid))

DESCRIPTION

 setfsuid sets the user ID that the Linux kernel uses to
 check for all accesses to the file system. Normally, the
 value of fsuid will shadow the value of the effective user
 ID. In fact, whenever the effective user ID is changed,
 fsuid will also be changed to new value of effective user
 ID.

 An explict call to setfsuid is usually only used by programs
 such as the Linux NFS server that need to change what user
 ID is used for file access without a corresponding change in
 the real and effective user IDs. A change in the normal user
 IDs for a program such as the NFS server is a security hole
 that can expose it to unwanted signals from other user IDs.

 setfsuid will only succeed if the caller is the superuser or
 if fsuid matches either the real user ID, effective user ID,
 saved user ID, or the current value of fsuid.

http://linuxsavvy.com/resources/linux/man/man2/setfsuid.2.html (1 of 2) [14/09/1999 09:47:11]

RETURN VALUE

 On success, the previous value of fsuid is returned. On
 error, the current value of fsuid is returned.

CONFORMING TO

 setfsuid is Linux specific and should not be used in pro-
 grams intended to be portable.

BUGS

 No error messages of any kind are returned to the caller. At
 the very least, EPERM should be returned when the call
 fails.

SEE ALSO

 setfsgid(2)

http://linuxsavvy.com/resources/linux/man/man2/setfsuid.2.html (2 of 2) [14/09/1999 09:47:11]

NAME

 setgid - set group identity

SYNOPSIS

 #include <unistd.h>

 int setgid(gid_t gid))

DESCRIPTION

 setgid sets the effective group ID of the current process.
 If the caller is the superuser, the real and saved group
 ID's are also set.

 Under Linux, setgid is implemented like the POSIX version
 with the _POSIX_SAVED_IDS feature. This allows a setgid
 (other than root) program to drop all of its group
 privileges, do some un-privileged work, and then re-engage
 the original effective group ID in a secure manner.

 If the user is root or the program is setgid root, special
 care must be taken. The setgid function checks the effective
 gid of the caller and if it is the superuser, all process
 related group ID's are set to gid. After this has occurred,
 it is impossible for the program to regain root privileges.

 Thus, a setgid-root program wishing to temporarily drop root
 privileges, assume the identity of a non-root group, and
 then regain root privileges afterwards cannot use setgid.
 You can accomplish this with the (non-POSIX, BSD) call
 setegid.

http://linuxsavvy.com/resources/linux/man/man2/setgid.2.html (1 of 2) [14/09/1999 09:47:13]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM The user is not the super-user, and gid does not
 match the effective or saved group ID of the calling
 process.

CONFORMING TO

 SVr4, SVID.

SEE ALSO

 getgid(2), setregid(2), setegid(2)

http://linuxsavvy.com/resources/linux/man/man2/setgid.2.html (2 of 2) [14/09/1999 09:47:13]

NAME

 setpgid, getpgid, setpgrp, getpgrp - set/get process group

SYNOPSIS

 #include <unistd.h>

 int setpgid(pid_t pid, pid_t pgid));
 pid_t getpgid(pid_t pid));
 int setpgrp(void);
 pid_t getpgrp(void);

DESCRIPTION

 setpgid sets the process group ID of the process specified
 by pid to pgid. If pid is zero, the process ID of the
 current process is used. If pgid is zero, the process ID of
 the process specified by pid is used.

 getpgid returns the process group ID of the process speci-
 fied by pid. If pid is zero, the process ID of the current
 process is used.

 In the Linux DLL 4.4.1 library, setpgrp simply calls
 setpgid(0,0).

 getpgrp is equivalent to getpgid(0).

 Process groups are used for distribution of signals, and by
 terminals to arbitrate requests for their input: processes
 that have the same process group as the terminal are fore-
 ground and may read, while others will block with a signal
 if they attempt to read.

http://linuxsavvy.com/resources/linux/man/man2/setpgid.2.html (1 of 4) [14/09/1999 09:47:20]

 These calls are thus used by programs such as csh(1) to
 create process groups in implementing job control. The
 TIOCGPGRP and TIOCSPGRP calls described in termios(4) are
 used to get/set the process group of the control terminal.

RETURN VALUE

 On success, setpgid and setpgrp return zero. On error, -1
 is returned, and errno is set appropriately.

 getpgid returns a process group on success. On error, -1 is
 returned, and errno is set appropriately.

 getpgrp always returns the current process group.

ERRORS

 EINVAL pgid is less than 0.

 EPERM Various permission violations.

 ESRCH pid does not match any process.

CONFORMING TO

 SVr4, POSIX, 4.4BSD.

http://linuxsavvy.com/resources/linux/man/man2/setpgid.2.html (2 of 4) [14/09/1999 09:47:20]

CONFORMING TO

 The functions setpgid and getpgrp conform to POSIX.1. The
 function setpgrp is from BSD 4.2. The function getpgid con-
 forms to SVr4.

SEE ALSO

 getuid(2), setsid(2), tcsetpgrp(3), termios(4)

http://linuxsavvy.com/resources/linux/man/man2/setpgid.2.html (3 of 4) [14/09/1999 09:47:20]

http://linuxsavvy.com/resources/linux/man/man2/setpgid.2.html (4 of 4) [14/09/1999 09:47:20]

NAME

 setregid, setegid - set real and / or effective group ID

SYNOPSIS

 #include <unistd.h>

 int setregid(gid_t rgid, gid_t egid));
 int setegid(gid_t egid));

DESCRIPTION

 setregid sets real and effective group ID's of the current
 process. Un-privileged users may change the real group ID
 to the effective group ID and vice-versa.

 Prior to Linux 1.1.38, the saved ID paradigm, when used with
 setregid or setegid was broken. Starting at 1.1.38, it is
 also possible to set the effective group ID from the saved
 group ID.

 Only the super-user may make other changes.

 Supplying a value of -1 for either the real or effective
 group ID forces the system to leave that ID unchanged.

 Currently (libc-4.x.x), setegid(egid)) is functionally
 equivalent to setregid(-1, egid)).

 If the real group ID is changed or the effective group ID is
 set to a value not equal to the previous real group ID, the
 saved group ID will be set to the new effective group ID.

http://linuxsavvy.com/resources/linux/man/man2/setregid.2.html (1 of 2) [14/09/1999 09:47:25]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 BSD 4.3 (the setregid function call first appeared in
 4.2BSD).

SEE ALSO

 getgid(2), setgid(2)

http://linuxsavvy.com/resources/linux/man/man2/setregid.2.html (2 of 2) [14/09/1999 09:47:25]

NAME

 setresuid, setresgid - set real, effective and saved user or
 group ID

SYNOPSIS

 #include <unistd.h>

 int setresuid(uid_t ruid, uid_t euid, uid_t suid
 int setresgid(gid_t rgid, gid_t egid, gid_t sgid

DESCRIPTION

 setresuid (introduced in Linux 2.1.44) sets the real, effec-
 tive and saved user ID's of the current process.

 Unprivileged user processes (i.e., processes with each of
 real, effective and saved user ID nonzero) may change the
 real, effective and saved user ID, each to one of: the
 current uid, the current effective uid or the current saved
 uid.

 The super-user may set real, effective and saved user ID to
 arbitrary values.

 If one of the parameters equals -1, the corresponding value
 is not changed.

 Completely analogously, setresgid sets the real, effective
 and saved group ID's of the current process, with the same
 restrictions for processes with each of real, effective and
 saved user ID nonzero.

http://linuxsavvy.com/resources/linux/man/man2/setresuid.2.html (1 of 2) [14/09/1999 09:47:28]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM
 The current process was not privileged and tried to
 change the IDs is a not allowed way.

CONFORMING TO

 This call is Linux-specific.

SEE ALSO

 getuid(2), setuid(2), getreuid(2), setreuid(2), getresuid(2)

http://linuxsavvy.com/resources/linux/man/man2/setresuid.2.html (2 of 2) [14/09/1999 09:47:28]

NAME

 setreuid, seteuid - set real and / or effective user ID

SYNOPSIS

 #include <unistd.h>

 int setreuid(uid_t ruid, uid_t euid));
 int seteuid(uid_t euid));

DESCRIPTION

 setreuid sets real and effective user ID's of the current
 process. Un-privileged users may change the real user ID to
 the effective user ID and vice-versa.

 Prior to Linux 1.1.37, the saved ID paradigm, when used with
 setreuid or seteuid was broken.

 Starting at 1.1.37, it is also possible to set the effective
 user ID from the saved user ID.

 Only the super-user may make other changes.

 Supplying a value of -1 for either the real or effective
 user ID forces the system to leave that ID unchanged.

 Currently seteuid(euid)) is functionally equivalent to
 setreuid(-1, euid)).

 If the real user ID is changed or the effective user ID is
 set to a value not equal to the previous real user ID, the
 saved user ID will be set to the new effective user ID.

http://linuxsavvy.com/resources/linux/man/man2/setreuid.2.html (1 of 2) [14/09/1999 09:47:30]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM
 The current process is not the super-user and changes
 other than (i) swapping the effective user ID with the
 real user ID or (ii) setting one to the value of the
 other or (iii) setting the effective user ID to the
 value of the saved user ID was specified.

CONFORMING TO

 BSD 4.3 (the setreuid function call first appeared in
 4.2BSD.)

SEE ALSO

 getuid(2), setuid(2)

http://linuxsavvy.com/resources/linux/man/man2/setreuid.2.html (2 of 2) [14/09/1999 09:47:30]

NAME

 setsid - creates a session and sets the process group ID

SYNOPSIS

 #include <unistd.h>

 pid_t setsid(void);

DESCRIPTION

 setsid() creates a new session if the calling process is not
 a process group leader. The calling process is the leader
 of the new session, the process group leader of the new pro-
 cess group, and has no controlling tty. The process group
 ID and session ID of the calling process are set to the PID
 of the calling process. The calling process will be the
 only process in this new process group and in this new ses-
 sion.

RETURN VALUE

 The session ID of the calling process.

http://linuxsavvy.com/resources/linux/man/man2/setsid.2.html (1 of 3) [14/09/1999 09:47:33]

ERRORS

 On error, -1 will be returned. The only error which can
 happen is EPERM. It is returned when the process group ID of
 any process equals the PID of the calling process. Thus, in
 particular, setsid fails if the calling process is already a
 process group leader.

NOTES

 A process group leader is a process with process group ID
 equal to its PID. In order to be sure that setsid will
 succeed, fork and exit, and have the child do setsid().

CONFORMING TO

 POSIX, SVr4.

SEE ALSO

 setpgid(2), setpgrp(2)

http://linuxsavvy.com/resources/linux/man/man2/setsid.2.html (2 of 3) [14/09/1999 09:47:33]

http://linuxsavvy.com/resources/linux/man/man2/setsid.2.html (3 of 3) [14/09/1999 09:47:33]

NAME

 setuid - set user identity

SYNOPSIS

 #include <unistd.h>

 int setuid(uid_t uid))

DESCRIPTION

 setuid sets the effective user ID of the current process.
 If the effective userid of the caller is root, the real and
 saved user ID's are also set.

 Under Linux, setuid is implemented like the POSIX version
 with the _POSIX_SAVED_IDS feature. This allows a setuid
 (other than root) program to drop all of its user
 privileges, do some un-privileged work, and then re-engage
 the original effective user ID in a secure manner.

 If the user is root or the program is setuid root, special
 care must be taken. The setuid function checks the effective
 uid of the caller and if it is the superuser, all process
 related user ID's are set to uid. After this has occurred,
 it is impossible for the program to regain root privileges.

 Thus, a setuid-root program wishing to temporarily drop root
 privileges, assume the identity of a non-root user, and then
 regain root privileges afterwards cannot use setuid. You
 can accomplish this with the (non-POSIX, BSD) call seteuid.

http://linuxsavvy.com/resources/linux/man/man2/setuid.2.html (1 of 4) [14/09/1999 09:47:38]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM
 The user is not the super-user, and uid does not match
 the effective or saved user ID of the calling process.

CONFORMING TO

 SVr4, SVID, POSIX.1. Not quite compatible with the 4.4BSD
 call, which sets all of the real, saved, and effective user
 IDs. SVr4 documents an additional EINVAL error condition.

LINUX-SPECIFIC REMARKS

 Linux has the concept of filesystem user ID, normally equal
 to the effective user ID. The setuid call also sets the
 filesystem user ID of the current process. See setfsuid(2).

 If uid is different from the old effective uid, the process
 will be forbidden from leaving core dumps.

SEE ALSO

 getuid(2), setreuid(2), seteuid(2), setfsuid(2)

http://linuxsavvy.com/resources/linux/man/man2/setuid.2.html (2 of 4) [14/09/1999 09:47:38]

http://linuxsavvy.com/resources/linux/man/man2/setuid.2.html (3 of 4) [14/09/1999 09:47:38]

http://linuxsavvy.com/resources/linux/man/man2/setuid.2.html (4 of 4) [14/09/1999 09:47:38]

NAME

 setup - setup devices and file systems, mount root file sys-
 tem

SYNOPSIS

 #include <unistd.h>

 _syscall0(int, setup);

 int setup(void);

DESCRIPTION

 setup is called once from within linux/init/main.c. It
 calls initialization functions for devices and file systems
 configured into the kernel and then mounts the root file
 system.

 No user process may call setup. Any user process, even a
 process with super-user permission, will receive EPERM.

RETURN VALUE

 setup always returns -1 for a user process.

http://linuxsavvy.com/resources/linux/man/man2/setup.2.html (1 of 2) [14/09/1999 09:47:39]

ERRORS

 EPERM
 Always, for a user process.

CONFORMING TO

 This function is Linux specific, and should not be used in
 programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/setup.2.html (2 of 2) [14/09/1999 09:47:39]

NAME

 shmctl - shared memory control

SYNOPSIS

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmctl(int shmid, int cmd, struct shmid_ds *buf

DESCRIPTION

 shmctl() allows the user to receive information on a shared
 memory segment, set the owner, group, and permissions of a
 shared memory segment, or destroy a segment. The information
 about the segment identified by shmid is returned in a
 shmid_ds structure:

 struct shmid_ds {
 struct ipc_perm shm_perm; /* operation perms */
 int shm_segsz; /* size of segment (bytes) */
 time_t shm_atime; /* last attach time */
 time_t shm_dtime; /* last detach time */
 time_t shm_ctime; /* last change time */
 unsigned short shm_cpid; /* pid of creator */
 unsigned short shm_lpid; /* pid of last operator */
 short shm_nattch; /* no. of current attaches */
 /* the following are private */
 unsigned short shm_npages; /* size of segment (pages) */
 unsigned long *shm_pages;
 struct shm_desc *attaches; /* descriptors for attaches */
 };

 The fields in the member shm_perm can be set:

http://linuxsavvy.com/resources/linux/man/man2/shmctl.2.html (1 of 4) [14/09/1999 09:47:45]

 struct ipc_perm
 {
 key_t key;
 ushort uid; /* owner euid and egid */
 ushort gid;
 ushort cuid; /* creator euid and egid */
 ushort cgid;
 ushort mode; /* lower 9 bits of access modes */
 ushort seq; /* sequence number */
 };

 The following cmds are available:

 IPC_STAT is used to copy the information about the shared
 memory segment into the buffer buf. The user
 must have read access to the shared memory seg-
 ment.

 IPC_SET is used to apply the changes the user has made
 to the uid, gid, or mode members of the
 shm_perms field. Only the lowest 9 bits of mode
 are used. The shm_ctime member is also updated.
 The user must be the owner, creator, or the
 super-user.

 IPC_RMID is used to mark the segment as destroyed. It
 will actually be destroyed after the last
 detach. (I.e., when the shm_nattch member of
 the associated structure shmid_ds is zero.) The
 user must be the owner, creator, or the super-
 user.

 The user must ensure that a segment is eventually destroyed;
 otherwise its pages that were faulted in will remain in
 memory or swap.

 In addition, the super-user can prevent or allow swapping of
 a shared memory segment with the following cmds: (Linux
 only)

 SHM_LOCK prevents swapping of a shared memory segment.
 The user must fault in any pages that are
 required to be present after locking is enabled.

 SHM_UNLOCK allows the shared memory segment to be swapped
 out.

 The IPC_INFO, SHM_STAT and SHM_INFO control calls are used

http://linuxsavvy.com/resources/linux/man/man2/shmctl.2.html (2 of 4) [14/09/1999 09:47:45]

 by the ipcs(8) program to provide information on allocated
 resources. In the future, these man be modified as needed
 or moved to a proc file system interface.

SYSTEM CALLS

 fork()
 After a fork() the child inherits the attached shared
 memory segments.

 exec()
 After an exec() all attached shared memory segments are
 detached (not destroyed).

 exit()
 Upon exit() all attached shared memory segments are
 detached (not destroyed).

RETURN VALUE

 0 is returned on success, -1 on error.

ERRORS

 On error, errno will be set to one of the following:
 EACCES is returned if IPC_STAT is requested and
 shm_perm.modes does not allow read access for
 msqid.

 EFAULT The argument cmd has value IPC_SET or IPC_STAT
 but the address pointed to by buf isn't accessi-
 ble.

 EINVAL is returned if shmid is not a valid identifier,
 or cmd is not a valid command.

 EIDRM is returned if shmid points to a removed iden-
 tifier.

http://linuxsavvy.com/resources/linux/man/man2/shmctl.2.html (3 of 4) [14/09/1999 09:47:45]

 EPERM is returned if IPC_SET or IPC_RMID is attempted,
 and the user is not the creator, the owner, or
 the super-user, and the user does not have per-
 mission granted to their group or to the world.

CONFORMING TO

 SVr4, SVID. SVr4 documents additional error conditions EIN-
 VAL, ENOENT, ENOSPC, ENOMEM, EEXIST. Neither SVr4 nor SVID
 documents an EIDRM error condition.

SEE ALSO

 shmget(2), shmop(2)

http://linuxsavvy.com/resources/linux/man/man2/shmctl.2.html (4 of 4) [14/09/1999 09:47:45]

NAME

 shmget - allocates a shared memory segment

SYNOPSIS

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmget(key_t key, int size, int shmflg

DESCRIPTION

 shmget() returns the identifier of the shared memory segment
 associated to the value of the argument key. A new shared
 memory segment, with size equal to the round up of size to a
 multiple of PAGE_SIZE, is created if key has value
 IPC_PRIVATE or key isn't IPC_PRIVATE, no shared memory seg-
 ment is associated to key, and IPC_CREAT is asserted in
 shmflg (i.e. shmflg&IPC_CREAT isn't zero). The presence in

 shmflg is composed of:

 IPC_CREAT to create a new segment. If this flag is not
 used, then shmget() will find the segment asso-
 ciated with key, check to see if the user has
 permission to receive the shmid associated with
 the segment, and ensure the segment is not
 marked for destruction.

 IPC_EXCL used with IPC_CREAT to ensure failure if the
 segment exists.

 mode_flags (lowest 9 bits)
 specifying the permissions granted to the owner,

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (1 of 6) [14/09/1999 09:47:51]

 group, and world. Presently, the execute per-
 missions are not used by the system.

 If a new segment is created, the access permissions from
 shmflg are copied into the shm_perm member of the shmid_ds
 structure that defines the segment. The shmid_ds structure:

 struct shmid_ds {
 struct ipc_perm shm_perm; /* operation perms */
 int shm_segsz; /* size of segment (bytes) */
 time_t shm_atime; /* last attach time */
 time_t shm_dtime; /* last detach time */
 time_t shm_ctime; /* last change time */
 unsigned short shm_cpid; /* pid of creator */
 unsigned short shm_lpid; /* pid of last operator */
 short shm_nattch; /* no. of current attaches */
 };

 struct ipc_perm
 {
 key_t key;
 ushort uid; /* owner euid and egid */
 ushort gid;
 ushort cuid; /* creator euid and egid */
 ushort cgid;
 ushort mode; /* lower 9 bits of shmflg */
 ushort seq; /* sequence number */
 };

 Furthermore, while creating, the system call initializes the
 system shared memory segment data structure shmid_ds as fol-
 lows:

 shm_perm.cuid and shm_perm.uid are set to the effective
 user-ID of the calling process.

 shm_perm.cgid and shm_perm.gid are set to the effective
 group-ID of the calling process.

 The lowest order 9 bits of shm_perm.mode are set to the
 lowest order 9 bit of shmflg.

 shm_segsz is set to the value of size.

 shm_lpid, shm_nattch, shm_atime and shm_dtime are set
 to 0.

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (2 of 6) [14/09/1999 09:47:51]

 shm_ctime is set to the current time.

 If the shared memory segment already exists, the access per-
 missions are verified, and a check is made to see if it is
 marked for destruction.

SYSTEM CALLS

 fork() After a fork() the child inherits the attached
 shared memory segments.

 exec() After an exec() all attached shared memory segments
 are detached (not destroyed).

 exit() Upon exit() all attached shared memory segments are
 detached (not destroyed).

RETURN VALUE

 A valid segment identifier, shmid, is returned on success,
 -1 on error.

ERRORS

 On failure, errno is set to one of the following:

 EINVAL is returned if SHMMIN > size or size > SHMMAX,
 or size is greater than size of segment.

 EEXIST is returned if IPC_CREAT | IPC_EXCL was speci-
 fied and the segment exists.

 EIDRM is returned if the segment is marked as des-
 troyed, or was removed.

 ENOSPC is returned if all possible shared memory id's
 have been taken or if allocating a segment of

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (3 of 6) [14/09/1999 09:47:51]

 the requested size would cause the system to
 exceed the system-wide limit on shared memory

 ENOENT is returned if no segment exists for the given
 key, and IPC_CREAT was not specified.

 EACCES is returned if the user does not have permission
 to access the shared memory segment.

 ENOMEM is returned if no memory could be allocated for
 segment overhead.

NOTES

 IPC_PRIVATE isn't a flag field but a key_t type. If this
 special value is used for key, the system call ignores
 everything but the lowest order 9 bits of shmflg and creates
 a new shared memory segment (on success).

 The followings are limits on shared memory segment resources
 affecting a shmget call:

 SHMALL System wide maximum of shared memory pages: pol-
 icy dependent.

 SHMMAX Maximum size in bytes for a shared memory seg-
 ment: implementation dependent (currently 4M).

 SHMMIN Minimum size in bytes for a shared memory seg-
 ment: implementation dependent (currently 1 byte,
 though PAGE_SIZE is the effective minimum size).

 SHMMNI System wide maximum number of shared memory seg-
 ments: implementation dependent (currently 4096).

 The implementation has no specific limits for the per pro-
 cess maximum number of shared memory segments (SHMSEG).

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (4 of 6) [14/09/1999 09:47:51]

BUGS

 Use of IPC_PRIVATE doesn't inhibit to other processes the
 access to the allocated shared memory segment.

 As for the files, there is currently no intrinsic way for a
 process to ensure exclusive access to a shared memory seg-
 ment. Asserting both IPC_CREAT and IPC_EXCL in shmflg only
 ensures (on success) that a new shared memory segment will
 be created, it doesn't imply exclusive access to the seg-
 ment.

CONFORMING TO

 SVr4, SVID. SVr4 documents an additional error condition
 EEXIST. Neither SVr4 nor SVID documents an EIDRM condition.

SEE ALSO

 ftok(3), ipc(5), shmctl(2), shmat(2), shmdt(2).

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (5 of 6) [14/09/1999 09:47:51]

http://linuxsavvy.com/resources/linux/man/man2/shmget.2.html (6 of 6) [14/09/1999 09:47:51]

NAME

 shmop - shared memory operations

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/shm.h>

 char *shmat (int shmid, char *shmaddr, int shmflg)

 int shmdt (char *shmaddr))

DESCRIPTION

 The function shmat attaches the shared memory segment iden-
 tified by shmid to the data segment of the calling process.
 The attaching address is specified by shmaddr with one of
 the following criteria:

 If shmaddr is 0, the system tries to find an unmapped
 region in the range 1 - 1.5G starting from the upper
 value and coming down from there.

 If shmaddr isn't 0 and SHM_RND is asserted in shmflg,
 the attach occurs at address equal to the rounding down
 of shmaddr to a multiple of SHMLBA. Otherwise shmaddr
 must be a page aligned address at which the attach
 occurs.

 If SHM_RDONLY is asserted in shmflg, the segment is attached
 for reading and the process must have read access permis-
 sions to the segment. Otherwise the segment is attached for

http://linuxsavvy.com/resources/linux/man/man2/shmop.2.html (1 of 5) [14/09/1999 09:47:53]

 read and write and the process must have read and write
 access permissions to the segment. There is no notion of
 write-only shared memory segment.

 The brk value of the calling process is not altered by the
 attach. The segment will automatically detached at process
 exit. The same segment may be attached as a read and as a
 read-write one, and more than once, in the process's address
 space.

 On a successful shmat call the system updates the members of
 the structure shmid_ds associated to the shared memory seg-
 ment as follows:

 shm_atime is set to the current time.

 shm_lpid is set to the process-ID of the calling pro-
 cess.

 shm_nattch is incremented by one.

 Note that the attach succeeds also if the shared memory seg-
 ment is marked as to be deleted.

 The function shmdt detaches from the calling process's data
 segment the shared memory segment located at the address
 specified by shmaddr. The detaching shared memory segment
 must be one among the currently attached ones (to the
 process's address space) with shmaddr equal to the value
 returned by the its attaching shat call.

 On a successful shmdt call the system updates the members of
 the structure shmid_ds associated to the shared memory seg-
 ment as follows:

 shm_dtime is set to the current time.

 shm_lpid is set to the process-ID of the calling pro-
 cess.

 shm_nattch is decremented by one. If it becomes 0 and
 the segment is marked for deletion, the segment is
 deleted.

 The occupied region in the user space of the calling process
 is unmapped.

http://linuxsavvy.com/resources/linux/man/man2/shmop.2.html (2 of 5) [14/09/1999 09:47:53]

SYSTEM CALLS

 fork()
 After a fork() the child inherits the attached shared
 memory segments.

 exec()
 After an exec() all attached shared memory segments are
 detached (not destroyed).

 exit()
 Upon exit() all attached shared memory segments are
 detached (not destroyed).

RETURN VALUE

 On a failure both functions return -1 with errno indicating
 the error, otherwise shmat returns the address of the
 attached shared memory segment, and shmdt returns 0.

ERRORS

 When shmat fails, at return errno will be set to one among
 the following values:

 EACCES The calling process has no access permissions for
 the requested attach type.

 EINVAL Invalid shmid value, unaligned (i.e., not page-
 aligned and SHM_RND was not specified) or invalid
 shmaddr value, or failing attach at brk.

 ENOMEM Could not allocate memory for the descriptor or
 for the page tables.

http://linuxsavvy.com/resources/linux/man/man2/shmop.2.html (3 of 5) [14/09/1999 09:47:53]

 The function shmdt can fails only if there is no shared
 memory segment attached at shmaddr, in such a case at return
 errno will be set to EINVAL.

NOTES

 On executing a fork(2) system call, the child inherits all
 the attached shared memory segments.

 The shared memory segments attached to a process executing
 an execve(2) system call will not be attached to the result-
 ing process.

 The following is a system parameter affecting a shmat system
 call:

 SHMLBA Segment low boundary address multiple. Must be
 page aligned. For the current implementation the
 SHMBLA value is PAGE_SIZE.

 The implementation has no intrinsic limit to the per process
 maximum number of shared memory segments (SHMSEG)

CONFORMING TO

 SVr4, SVID. SVr4 documents an additional error condition
 EMFILE.

SEE ALSO

 ipc(5), shmctl(2), shmget(2).

http://linuxsavvy.com/resources/linux/man/man2/shmop.2.html (4 of 5) [14/09/1999 09:47:53]

http://linuxsavvy.com/resources/linux/man/man2/shmop.2.html (5 of 5) [14/09/1999 09:47:53]

NAME

 shutdown - shut down part of a full-duplex connection

SYNOPSIS

 #include <sys/socket.h>

 int shutdown(int s, int how));

DESCRIPTION

 The shutdown call causes all or part of a full-duplex con-
 nection on the socket associated with s to be shut down. If
 how is 0, further receives will be disallowed. If how is 1,
 further sends will be disallowed. If how is 2, further
 sends and receives will be disallowed.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF s is not a valid descriptor.

http://linuxsavvy.com/resources/linux/man/man2/shutdown.2.html (1 of 2) [14/09/1999 09:47:55]

 ENOTSOCK
 s is a file, not a socket.

 ENOTCONN
 The specified socket is not connected.

CONFORMING TO

 4.4BSD (the shutdown function call first appeared in
 4.2BSD).

SEE ALSO

 connect(2), socket(2)

http://linuxsavvy.com/resources/linux/man/man2/shutdown.2.html (2 of 2) [14/09/1999 09:47:55]

NAME

 sigaction, sigprocmask, sigpending, sigsuspend - POSIX sig-
 nal handling functions.

SYNOPSIS

 #include <signal.h>

 int sigaction(int signum, const struct sigaction *act,
 struct sigaction *oldact));

 int sigprocmask(int how, const sigset_t *set, sigset_t *old-
 set));

 int sigpending(sigset_t *set));

 int sigsuspend(const sigset_t *mask));

DESCRIPTION

 The sigaction system call is used to change the action taken
 by a process on receipt of a specific signal.

 signum specifies the signal and can be any valid signal
 except SIGKILL and SIGSTOP.

 If act is non-null, the new action for signal signum is
 installed from act. If oldact is non-null, the previous
 action is saved in oldact.

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (1 of 6) [14/09/1999 09:47:57]

 The sigaction structure is defined as

 struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_restorer)(void);
 }

 sa_handler specifies the action to be associated with signum
 and may be SIG_DFL for the default action, SIG_IGN to ignore
 this signal, or a pointer to a signal handling function.

 sa_mask gives a mask of signals which should be blocked dur-
 ing execution of the signal handler. In addition, the sig-
 nal which triggered the handler will be blocked, unless the
 SA_NODEFER or SA_NOMASK flags are used.

 sa_flags specifies a set of flags which modify the behaviour
 of the signal handling process. It is formed by the bitwise
 OR of zero or more of the following:
 SA_NOCLDSTOP
 If signum is SIGCHLD, do not receive notification
 when child processes stop (i.e., when child
 processes receive one of SIGSTOP, SIGTSTP, SIGTTIN
 or SIGTTOU).

 SA_ONESHOT or SA_RESETHAND
 Restore the signal action to the default state
 once the signal handler has been called. (This is
 the default behavior of the signal(2) system
 call.)

 SA_RESTART
 Provide behaviour compatible with BSD signal
 semantics by making certain system calls restart-
 able across signals.

 SA_NOMASK or SA_NODEFER
 Do not prevent the signal from being received from
 within its own signal handler.

 The sa_restorer element is obsolete and should not be used.

 The sigprocmask call is used to change the list of currently
 blocked signals. The behaviour of the call is dependent on

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (2 of 6) [14/09/1999 09:47:57]

 the value of how, as follows.

 SIG_BLOCK
 The set of blocked signals is the union of the
 current set and the set argument.

 SIG_UNBLOCK
 The signals in set are removed from the current
 set of blocked signals. It is legal to attempt to
 unblock a signal which is not blocked.

 SIG_SETMASK
 The set of blocked signals is set to the argument
 set.

 If oldset is non-null, the previous value of the signal mask
 is stored in oldset.

 The sigpending call allows the examination of pending sig-
 nals (ones which have been raised while blocked). The sig-
 nal mask of pending signals is stored in set.

 The sigsuspend call temporarily replaces the signal mask for
 the process with that given by mask and then suspends the
 process until a signal is received.

RETURN VALUES

 sigaction, sigprocmask, sigpending and sigsuspend return 0
 on success and -1 on error.

ERRORS

 EINVAL
 An invalid signal was specified. This will also be
 generated if an attempt is made to change the action

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (3 of 6) [14/09/1999 09:47:57]

 for SIGKILL or SIGSTOP, which cannot be caught.

 EFAULT
 act, oldact, set or oldset point to memory which is not
 a valid part of the process address space.

 EINTR
 System call was interrupted.

NOTES

 It is not possible to block SIGKILL or SIGSTOP with the sig-
 procmask call. Attempts to do so will be silently ignored.

 According to POSIX, the behaviour of a process is undefined
 after it ignores a SIGFPE, SIGILL, or SIGSEGV signal that
 was not generated by the kill() or the raise() functions.
 Integer division by zero has undefined result. On some
 architectures it will generate a SIGFPE signal. (Also
 dividing the most negative integer by -1 may generate
 SIGFPE.) Ignoring this signal might lead to an endless
 loop.

 POSIX (B.3.3.1.3) disallows setting the action for SIGCHLD
 to SIG_IGN. The BSD and SYSV behaviours differ, causing BSD
 software that sets the action for SIGCHLD to SIG_IGN to fail
 on Linux.

 The POSIX spec only defines SA_NOCLDSTOP. Use of other
 sa_flags is non-portable.

 The SA_RESETHAND flag is compatible with the SVr4 flag of
 the same name.

 The SA_NODEFER flag is compatible with the SVr4 flag of the
 same name under kernels 1.3.9 and newer. On older kernels
 the Linux implementation allowed the receipt of any signal,
 not just the one we are installing (effectively overriding
 any sa_mask settings).

 The SA_RESETHAND and SA_NODEFER names for SVr4 compatibility

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (4 of 6) [14/09/1999 09:47:57]

 are present only in library versions 3.0.9 and greater.

 sigaction can be called with a null second argument to query
 the current signal handler. It can also be used to check
 whether a given signal is valid for the current machine by
 calling it with null second and third arguments.

 See sigsetops(3) for details on manipulating signal sets.

CONFORMING TO

 POSIX, SVr4. SVr4 does not document the EINTR condition.

SEE ALSO

 kill(1), kill(2), killpg(2), siginterrupt(3), signal(2),
 signal(7), sigvec(2)

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (5 of 6) [14/09/1999 09:47:57]

http://linuxsavvy.com/resources/linux/man/man2/sigaction.2.html (6 of 6) [14/09/1999 09:47:57]

NAME

 sigblock, siggetmask, sigsetmask, sigmask - manipulate the
 signal mask

SYNOPSIS

 #include <signal.h>

 int sigblock(int mask));

 int siggetmask(void);

 int sigsetmask(int mask));

 int sigmask(int signum));

DESCRIPTION

 This interface is made obsolete by sigprocmask(2).

 The sigblock system call adds the signals specified in mask
 to the set of signals currently being blocked from delivery.

 The sigsetmask system call replaces the set of blocked sig-
 nals totally with a new set specified in mask. Signals are
 blocked if the corresponding bit in mask is a 1.

 The current set of blocked signals can be obtained using
 siggetmask.

 The sigmask macro is provided to construct the mask for a
 given signum.

http://linuxsavvy.com/resources/linux/man/man2/sigblock.2.html (1 of 3) [14/09/1999 09:48:00]

RETURN VALUES

 siggetmask returns the current set of masked signals.

 sigsetmask and sigblock return the previous set of masked
 signals.

NOTES

 Prototypes for these functions are only available if
 __USE_BSD is defined before <signal.h> is included.

 It is not possible to block SIGKILL or SIGSTOP - this res-
 triction is silently imposed by the system.

CONFORMING TO

 4.4BSD. These function calls appeared in BSD 4.3 and are
 deprecated. Use the POSIX signal facilities for new pro-
 grams.

SEE ALSO

 kill(2), sigprocmask(2), signal(7)

http://linuxsavvy.com/resources/linux/man/man2/sigblock.2.html (2 of 3) [14/09/1999 09:48:00]

http://linuxsavvy.com/resources/linux/man/man2/sigblock.2.html (3 of 3) [14/09/1999 09:48:00]

NAME

 signal - ANSI C signal handling

SYNOPSIS

 #include <signal.h>

 void (*signal(int signum, void (*handler))(int)))(int);

DESCRIPTION

 The signal system call installs a new signal handler for the
 signal with number signum. The signal handler is set to
 handler which may be a user specified function, or one of
 the following:

 SIG_IGN
 Ignore the signal.

 SIG_DFL
 Reset the signal to its default behavior.

 The integer argument that is handed over to the signal
 handler routine is the signal number. This makes it possible
 to use one signal handler for several signals.

http://linuxsavvy.com/resources/linux/man/man2/signal.2.html (1 of 4) [14/09/1999 09:48:05]

RETURN VALUE

 signal returns the previous value of the signal handler, or
 SIG_ERR on error.

NOTES

 Signal handlers cannot be set for SIGKILL or SIGSTOP.

 Unlike on BSD systems, signals under Linux are reset to
 their default behavior when raised. However, if you include
 <bsd/signal.h> instead of <signal.h> then signal is rede-
 fined as __bsd_signal and signal has the BSD semantics.
 Both versions of signal are library routines built on top of
 sigaction(2).

 If you're confused by the prototype at the top of this man-
 page, it may help to see it separated out thus:

 typedef void (*sighandler_t)(int);
 sighandler_t signal(int signum, sighandler_t handler));

 According to POSIX, the behaviour of a process is undefined
 after it ignores a SIGFPE, SIGILL, or SIGSEGV signal that
 was not generated by the kill() or the raise() functions.
 Integer division by zero has undefined result. On some
 architectures it will generate a SIGFPE signal. (Also
 dividing the most negative integer by -1 may generate
 SIGFPE.) Ignoring this signal might lead to an endless
 loop.

 According to POSIX (B.3.3.1.3) you must not set the action
 for SIGCHLD to SIG_IGN. Here the BSD and SYSV behaviours
 differ, causing BSD software that sets the action for
 SIGCHLD to SIG_IGN to fail on Linux.

http://linuxsavvy.com/resources/linux/man/man2/signal.2.html (2 of 4) [14/09/1999 09:48:05]

CONFORMING TO

 ANSI C

SEE ALSO

 kill(1), kill(2), killpg(2), sigaction(2), signal(7), sig-
 setops(3), alarm(2).

http://linuxsavvy.com/resources/linux/man/man2/signal.2.html (3 of 4) [14/09/1999 09:48:05]

http://linuxsavvy.com/resources/linux/man/man2/signal.2.html (4 of 4) [14/09/1999 09:48:05]

NAME

 sigpause - atomically release blocked signals and wait for
 interrupt

SYNOPSIS

 #include <signal.h>

 int sigpause(int sigmask));

DESCRIPTION

 This interface is made obsolete by sigsuspend(2).

 sigpause assigns sigmask to the set of masked signals and
 then waits for a signal to arrive; on return the set of
 masked signals is restored.

 sigmask is usually 0 to indicate that no signals are to be
 blocked. sigpause always terminates by being interrupted,
 returning -1 with errno set to EINTR.

CONFORMING TO

 4.4BSD. The sigpause function call appeared in 4.3BSD and
 is deprecated.

http://linuxsavvy.com/resources/linux/man/man2/sigpause.2.html (1 of 2) [14/09/1999 09:48:07]

SEE ALSO

 sigsuspend(2), kill(2), sigaction(2), sigblock(2), sigvec(2)

http://linuxsavvy.com/resources/linux/man/man2/sigpause.2.html (2 of 2) [14/09/1999 09:48:07]

NAME

 sigreturn - return from signal handler and cleanup stack
 frame

SYNOPSIS

 int sigreturn(unsigned long __unused));

DESCRIPTION

 When the Linux kernel creates the stack frame for a signal
 handler, a call to sigreturn is inserted into the stack
 frame so that the the signal handler will call sigreturn
 upon return. This inserted call to sigreturn cleans up the
 stack so that the process can restart from where it was
 interrupted by the signal.

RETURN VALUE

 sigreturn never returns.

WARNING

 The sigreturn call is used by the kernel to implement signal
 handlers. It should never be called directly. Better yet,

http://linuxsavvy.com/resources/linux/man/man2/sigreturn.2.html (1 of 2) [14/09/1999 09:48:12]

 the specific use of the __unused argument varies depending
 on the architecture.

CONFORMING TO

 sigreturn is specific to Linux and should not be used in
 programs intended to be portable.

FILES

 /usr/src/linux/arch/i386/kernel/signal.c
 /usr/src/linux/arch/alpha/kernel/entry.S

SEE ALSO

 kill(2), signal(2), signal(7)

http://linuxsavvy.com/resources/linux/man/man2/sigreturn.2.html (2 of 2) [14/09/1999 09:48:12]

NAME

 sigvec - BSD software signal facilities

SYNOPSIS

 #include <bsd/signal.h>

 int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec

DESCRIPTION

 This interface is made obsolete by sigaction(2).

 Under Linux sigvec is #define'd to sigaction, and provides
 at best a rough approximation of the BSD sigvec interface.

CONFORMING TO

 BSD, SVr4

SEE ALSO

 sigaction(2), signal(2)

http://linuxsavvy.com/resources/linux/man/man2/sigvec.2.html (1 of 2) [14/09/1999 09:48:17]

http://linuxsavvy.com/resources/linux/man/man2/sigvec.2.html (2 of 2) [14/09/1999 09:48:17]

NAME

 socket - create an endpoint for communication

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int socket(int domain, int type, int protocol

DESCRIPTION

 Socket creates an endpoint for communication and returns a
 descriptor.

 The domain parameter specifies a communications domain
 within which communication will take place; this selects the
 protocol family which should be used. These families are
 defined in the include file sys/socket.h. The currently
 understood formats are

 AF_UNIX (UNIX internal protocols)

 AF_INET (ARPA Internet protocols)

 AF_ISO (ISO protocols)

 AF_NS (Xerox Network Systems protocols)

 AF_IMPLINK
 (IMP "host at IMP" link layer)

http://linuxsavvy.com/resources/linux/man/man2/socket.2.html (1 of 5) [14/09/1999 09:48:19]

 The socket has the indicated type, which specifies the
 semantics of communication. Currently defined types are:

 SOCK_STREAM
 SOCK_DGRAM
 SOCK_RAW
 SOCK_SEQPACKET
 SOCK_RDM

 A SOCK_STREAM type provides sequenced, reliable, two-way
 connection based byte streams. An out-of-band data
 transmission mechanism may be supported. A SOCK_DGRAM
 socket supports datagrams (connectionless, unreliable mes-
 sages of a fixed (typically small) maximum length). A
 SOCK_SEQPACKET socket may provide a sequenced, reliable,
 two-way connection-based data transmission path for
 datagrams of fixed maximum length; a consumer may be
 required to read an entire packet with each read system
 call. This facility is protocol specific, and presently
 implemented only for AF_NS. SOCK_RAW sockets provide access
 to internal network protocols and interfaces. The types
 SOCK_RAW, which is available only to the super-user, and
 SOCK_RDM, which is planned, but not yet implemented, are not
 described here.

 The protocol specifies a particular protocol to be used with
 the socket. Normally only a single protocol exists to sup-
 port a particular socket type within a given protocol fam-
 ily. However, it is possible that many protocols may exist,
 in which case a particular protocol must be specified in
 this manner. The protocol number to use is particular to
 the "communication domain" in which communication is to take
 place; see protocols(5).

 Sockets of type SOCK_STREAM are full-duplex byte streams,
 similar to pipes. A stream socket must be in a connected
 state before any data may be sent or received on it. A con-
 nection to another socket is created with a connect(2) call.
 Once connected, data may be transferred using read(2) and
 write(2) calls or some variant of the send(2) and recv(2)
 calls. When a session has been completed a close(2) may be
 performed. Out-of-band data may also be transmitted as
 described in send(2) and received as described in recv(2).

 The communications protocols used to implement a SOCK_STREAM
 insure that data is not lost or duplicated. If a piece of

http://linuxsavvy.com/resources/linux/man/man2/socket.2.html (2 of 5) [14/09/1999 09:48:19]

 data for which the peer protocol has buffer space cannot be
 successfully transmitted within a reasonable length of time,
 then the connection is considered broken and calls will
 indicate an error with -1 returns and with ETIMEDOUT as the
 specific code in the global variable errno. The protocols
 optionally keep sockets warm by forcing transmissions
 roughly every minute in the absence of other activity. An
 error is then indicated if no response can be elicited on an
 otherwise idle connection for a extended period (e.g. 5
 minutes). A SIGPIPE signal is raised if a process sends on
 a broken stream; this causes naive processes, which do not
 handle the signal, to exit.

 SOCK_SEQPACKET sockets employ the same system calls as
 SOCK_STREAM sockets. The only difference is that read(2)
 calls will return only the amount of data requested, and any
 remaining in the arriving packet will be discarded.

 SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams
 to correspondents named in send(2) calls. Datagrams are
 generally received with recvfrom(2), which returns the next
 datagram with its return address.

 An fcntl(2) call can be used to specify a process group to
 receive a SIGURG signal when the out-of-band data arrives.
 It may also enable non-blocking I/O and asynchronous notifi-
 cation of I/O events via SIGIO.
 The operation of sockets is controlled by socket level
 options. These options are defined in the file
 sys/socket.h. Setsockopt(2) and getsockopt(2) are used to
 set and get options, respectively.

RETURN VALUES

 A -1 is returned if an error occurs, otherwise the return
 value is a descriptor referencing the socket.

http://linuxsavvy.com/resources/linux/man/man2/socket.2.html (3 of 5) [14/09/1999 09:48:19]

ERRORS

 EPROTONOSUPPORT
 The protocol type or the specified protocol is not
 supported within this domain.

 EMFILE The per-process descriptor table is full.

 ENFILE The system file table is full.

 EACCES Permission to create a socket of the specified type
 and/or protocol is denied.

 ENOBUFS Insufficient buffer space is available. The socket
 cannot be created until sufficient resources are
 freed.

CONFORMING TO

 4.4BSD (the socket function call appeared in 4.2BSD). Gen-
 erally portable to/from non-BSD systems supporting clones of
 the BSD socket layer (including System V variants).

SEE ALSO

 accept(2), bind(2), connect(2), getsockname(2), get-
 sockopt(2), ioctl(2), read(2), recv(2), select(2), socket-
 pair(2), write(2)

 "An Introductory 4.3 BSD Interprocess Communication
 Tutorial" is reprinted in UNIX Programmer's Supplementary
 Documents Volume 1

 "BSD Interprocess Communication Tutorial" is reprinted in
 UNIX Programmer's Supplementary Documents Volume 1

http://linuxsavvy.com/resources/linux/man/man2/socket.2.html (4 of 5) [14/09/1999 09:48:19]

http://linuxsavvy.com/resources/linux/man/man2/socket.2.html (5 of 5) [14/09/1999 09:48:19]

NAME

 socketcall - socket system calls

SYNOPSIS

 int socketcall(int call, unsigned long *args);

DESCRIPTION

 socketcall is a common kernel entry point for the socket
 system calls. call determines which socket function to
 invoke. args points to a block containing the actual argu-
 ments, which are passed through to the appropriate call.

 User programs should call the appropriate functions by their
 usual names. Only standard library implementors and kernel
 hackers need to know about socketcall.

CONFORMING TO

 This call is specific to Linux, and should not be used in
 programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/socketcall.2.html (1 of 2) [14/09/1999 09:48:22]

SEE ALSO

 accept(2), bind(2), connect(2), getpeername(2), getsock-
 name(2), getsockopt(2), listen(2), recv(2), recvfrom(2),
 send(2), sendto(2), setsockopt(2), shutdown(2), socket(2),
 socketpair(2)

http://linuxsavvy.com/resources/linux/man/man2/socketcall.2.html (2 of 2) [14/09/1999 09:48:22]

NAME

 socketpair - create a pair of connected sockets

SYNOPSIS

 #include <sys/types.h>
 #include <sys/socket.h>

 int socketpair(int d, int type, int protocol

DESCRIPTION

 The call creates an unnamed pair of connected sockets in the
 specified domain d, of the specified type, and using the
 optionally specified protocol. The descriptors used in
 referencing the new sockets are returned in sv[0] and sv[1].
 The two sockets are indistinguishable.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/socketpair.2.html (1 of 2) [14/09/1999 09:48:24]

ERRORS

 EMFILE Too many descriptors are in use by this process.

 EAFNOSUPPORT
 The specified address family is not supported on
 this machine.

 EPROTONOSUPPORT
 The specified protocol is not supported on this
 machine.

 EOPNOSUPPORT
 The specified protocol does not support creation of
 socket pairs.

 EFAULT The address sv does not specify a valid part of the
 process address space.

CONFORMING TO

 4.4BSD (the socketpair function call appeared in 4.2BSD).
 Generally portable to/from non-BSD systems supporting clones
 of the BSD socket layer (including System V variants).

SEE ALSO

 read(2), write(2), pipe(2)

http://linuxsavvy.com/resources/linux/man/man2/socketpair.2.html (2 of 2) [14/09/1999 09:48:24]

NAME

 stat, fstat, lstat - get file status

SYNOPSIS

 #include <sys/stat.h>
 #include <unistd.h>

 int stat(const char *file_name, struct stat *buf));
 int fstat(int filedes, struct stat *buf));
 int lstat(const char *file_name, struct stat *buf));

DESCRIPTION

 These functions return information about the specified file.
 You do not need any access rights to the file to get this
 information but you need search rights to all directories
 named in the path leading to the file.

 stat stats the file pointed to by file_name and fills in
 buf.

 lstat is identical to stat, only the link itself is stated,
 not the file that is obtained by tracing the links.

 fstat is identical to stat, only the open file pointed to by
 filedes (as returned by open(2)) is stated in place of
 file_name.

 They all return a stat structure, which contains the follow-
 ing fields:

 struct stat
 {
 dev_t st_dev; /* device */

http://linuxsavvy.com/resources/linux/man/man2/stat.2.html (1 of 5) [14/09/1999 09:48:28]

 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
 };

 Note that st_blocks may not always be in terms of blocks of
 size st_blksize, and that st_blksize may instead provide a
 notion of the "preferred" blocksize for efficient file sys-
 tem I/O.
 Not all of the Linux filesystems implement all of the time
 fields. Traditionally, st_atime is changed by mknod(2),
 utime(2), read(2),

 Traditionally, st_mtime is changed by mknod(2), utime(2),
 and write(2). The st_mtime is not changed for changes in
 owner, group, hard link count, or mode.

 Traditionally, st_ctime is changed by writing or by setting
 inode information (i.e., owner, group, link count, mode,
 etc.).

 The following POSIX macros are defined to check the file
 type:

 S_ISLNK(m) is it a symbolic link?

 S_ISREG(m) regular file?

 S_ISDIR(m) directory?

 S_ISCHR(m) character device?

 S_ISBLK(m) block device?

 S_ISFIFO(m) fifo?

 S_ISSOCK(m) socket?

 The following flags are defined for the st_mode field:

http://linuxsavvy.com/resources/linux/man/man2/stat.2.html (2 of 5) [14/09/1999 09:48:28]

 S_IFMT 00170000 bitmask for the file type bitfields
 (not POSIX)

 S_IFSOCK 0140000 socket (not POSIX)

 S_IFLNK 0120000 symbolic link (not POSIX)

 S_IFREG 0100000 regular file (not POSIX)

 S_IFBLK 0060000 block device (not POSIX)

 S_IFDIR 0040000 directory (not POSIX)

 S_IFCHR 0020000 character device (not POSIX)

 S_IFIFO 0010000 fifo (not POSIX)

 S_ISUID 0004000 set UID bit

 S_ISGID 0002000 set GID bit

 S_ISVTX 0001000 sticky bit (not POSIX)

 S_IRWXU 00700 user (file owner) has read, write and
 execute permission

 S_IRUSR 00400 user has read permission (same as
 S_IREAD, which is not POSIX)

 S_IWUSR 00200 user has write permission (same as
 S_IWRITE, which is not POSIX)

 S_IXUSR 00100 user has execute permission (same as
 S_IEXEC, which is not POSIX)

 S_IRWXG 00070 group has read, write and execute per-
 mission

 S_IRGRP 00040 group has read permission

 S_IWGRP 00020 group has write permission

 S_IXGRP 00010 group has execute permission

 S_IRWXO 00007 others have read, write and execute per-
 mission

 S_IROTH 00004 others have read permission

http://linuxsavvy.com/resources/linux/man/man2/stat.2.html (3 of 5) [14/09/1999 09:48:28]

 S_IWOTH 00002 others have write permisson

 S_IXOTH 00001 others have execute permission

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EBADF
 filedes is bad.

 ENOENT
 A component of the path file_name does not exist, or
 the path is an empty string.

 ENOTDIR
 A component of the path is not a directory.

 ELOOP
 Too many symbolic links encountered while traversing
 the path.

 EFAULT
 Bad address.

 EACCES
 Permission denied.

 ENOMEM
 Out of memory (i.e. kernel memory).

 ENAMETOOLONG
 File name too long.

http://linuxsavvy.com/resources/linux/man/man2/stat.2.html (4 of 5) [14/09/1999 09:48:28]

CONFORMING TO

 The stat and fstat calls conform to SVr4, SVID, POSIX,
 X/OPEN, BSD 4.3. The lstat call conforms to 4.3BSD and
 SVr4. SVr4 documents additional fstat error conditions
 EINTR, ENOLINK, and EOVERFLOW. SVr4 documents additional
 stat and lstat error conditions EACCES, EINTR, EMULTIHOP,
 ENOLINK, and EOVERFLOW.

SEE ALSO

 chmod(2), chown(2), readlink(2), utime (2)

http://linuxsavvy.com/resources/linux/man/man2/stat.2.html (5 of 5) [14/09/1999 09:48:28]

NAME

 statfs, fstatfs - get file system statistics

SYNOPSIS

 #include <sys/vfs.h>

 int statfs(const char *path, struct statfs *buf));
 int fstatfs(int fd, struct statfs *buf));

DESCRIPTION

 statfs returns information about a mounted file system.
 path is the path name of any file within the mounted
 filesystem. buf is a pointer to a statfs structure defined
 as follows:

 struct statfs {
 long f_type; /* type of filesystem (see below) */
 long f_bsize; /* optimal transfer block size */
 long f_blocks; /* total data blocks in file system */
 long f_bfree; /* free blocks in fs */
 long f_bavail; /* free blocks avail to non-superuser */
 long f_files; /* total file nodes in file system */
 long f_ffree; /* free file nodes in fs */
 fsid_t f_fsid; /* file system id */
 long f_namelen; /* maximum length of filenames */
 long f_spare[6]; /* spare for later */
 };

 File system types:

 linux/affs_fs.h:
 AFFS_SUPER_MAGIC 0xADFF

http://linuxsavvy.com/resources/linux/man/man2/statfs.2.html (1 of 5) [14/09/1999 09:48:30]

 linux/ext_fs.h:
 EXT_SUPER_MAGIC 0x137D
 linux/ext2_fs.h:
 EXT2_OLD_SUPER_MAGIC 0xEF51
 EXT2_SUPER_MAGIC 0xEF53
 linux/hpfs_fs.h:
 HPFS_SUPER_MAGIC 0xF995E849
 linux/iso_fs.h:
 ISOFS_SUPER_MAGIC 0x9660
 linux/minix_fs.h:
 MINIX_SUPER_MAGIC 0x137F /* orig. minix */
 MINIX_SUPER_MAGIC2 0x138F /* 30 char minix */
 MINIX2_SUPER_MAGIC 0x2468 /* minix V2 */
 MINIX2_SUPER_MAGIC2 0x2478 /* minix V2, 30 char names */
 linux/msdos_fs.h:
 MSDOS_SUPER_MAGIC 0x4d44
 linux/ncp_fs.h:
 NCP_SUPER_MAGIC 0x564c
 linux/nfs_fs.h:
 NFS_SUPER_MAGIC 0x6969

 linux/proc_fs.h:
 PROC_SUPER_MAGIC 0x9fa0
 linux/smb_fs.h:
 SMB_SUPER_MAGIC 0x517B
 linux/sysv_fs.h:
 XENIX_SUPER_MAGIC 0x012FF7B4
 SYSV4_SUPER_MAGIC 0x012FF7B5
 SYSV2_SUPER_MAGIC 0x012FF7B6
 COH_SUPER_MAGIC 0x012FF7B7
 linux/ufs_fs.h:
 UFS_MAGIC 0x00011954
 linux/xia_fs.h:
 _XIAFS_SUPER_MAGIC 0x012FD16D

 Fields that are undefined for a particular file system are
 set to -1. fstatfs returns the same information about an
 open file referenced by descriptor fd.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/statfs.2.html (2 of 5) [14/09/1999 09:48:30]

ERRORS

 For statfs:

 ENOTDIR A component of the path prefix of path is not a
 directory.

 ENAMETOOLONG
 path is too long.

 ENOENT The file referred to by path does not exist.

 EACCES Search permission is denied for a component of the
 path prefix of path.

 ELOOP Too many symbolic links were encountered in
 translating path.

 EFAULT Buf or path points to an invalid address.

 EIO An I/O error occurred while reading from or writing
 to the file system.

 ENOMEM Insufficient kernel memory was available.

 ENOSYS The filesystem path is on does not support statfs.

 For fstatfs:

 EBADF fd is not a valid open file descriptor.

 EFAULT buf points to an invalid address.

 EIO An I/O error occurred while reading from or writing
 to the file system.

 ENOSYS The filesystem fd is open on does not support
 statfs.

http://linuxsavvy.com/resources/linux/man/man2/statfs.2.html (3 of 5) [14/09/1999 09:48:30]

CONFORMING TO

 4.4BSD.

SEE ALSO

 stat(2)

http://linuxsavvy.com/resources/linux/man/man2/statfs.2.html (4 of 5) [14/09/1999 09:48:30]

http://linuxsavvy.com/resources/linux/man/man2/statfs.2.html (5 of 5) [14/09/1999 09:48:30]

NAME

 stime - set time

SYNOPSIS

 #include <time.h>

 int stime(time_t *t);

DESCRIPTION

 stime sets the system's idea of the time and date. Time,
 pointed to by t, is measured in seconds from 00:00:00 GMT
 January 1, 1970. stime() may only be executed by the super
 user.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM The caller is not the super-user.

http://linuxsavvy.com/resources/linux/man/man2/stime.2.html (1 of 2) [14/09/1999 09:48:33]

CONFORMING TO

 SVr4, SVID, X/OPEN

SEE ALSO

 date(1)

http://linuxsavvy.com/resources/linux/man/man2/stime.2.html (2 of 2) [14/09/1999 09:48:33]

NAME

 swapon, swapoff - start/stop swapping to file/device

SYNOPSIS

 #include <unistd.h>
 #include <asm/page.h> /* to find PAGE_SIZE
 #include <sys/swap.h>

 int swapon(const char *path, int swapflags));
 int swapoff(const char *path));

DESCRIPTION

 swapon sets the swap area to the file or block device speci-
 fied by path. swapoff stops swapping to the file or block
 device specified by path.

 swapon takes a swapflags argument. If swapflags has the
 SWAP_FLAG_PREFER bit turned on, the new swap area will have
 a higher priority than default. The priority is encoded as:

 (prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK

 These functions may only be used by the super-user.

http://linuxsavvy.com/resources/linux/man/man2/swapon.2.html (1 of 4) [14/09/1999 09:48:40]

PRIORITY

 Each swap area has a priority, either high or low. The
 default priority is low. Within the low-priority areas,
 newer areas are even lower priority than older areas.

 All priorities set with swapflags are high-priority, higher
 than default. They may have any non-negative value chosen
 by the caller. Higher numbers mean higher priority.

 Swap pages are allocated from areas in priority order,
 highest priority first. For areas with different priori-
 ties, a higher-priority area is exhausted before using a
 lower-priority area. If two or more areas have the same
 priority, and it is the highest priority available, pages
 are allocated on a round-robin basis between them.

 As of Linux 1.3.6, the kernel usually follows these rules,
 but there are exceptions.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 Many other errors can occur if path is not valid.

 EPERM The user is not the super-user, or more than
 MAX_SWAPFILES (defined to be 8 in Linux 1.3.6) are
 in use.

 EINVAL is returned if path exists, but is neither a regular
 path nor a block device.

http://linuxsavvy.com/resources/linux/man/man2/swapon.2.html (2 of 4) [14/09/1999 09:48:40]

 ENOENT is returned if path does not exist.

 ENOMEM is returned if there is insufficient memory to start
 swapping.

CONFORMING TO

 These functions are Linux specific and should not be used in
 programs intended to be portable. The second `swapflags'
 argument was introduced in Linux 1.3.2.

NOTES

 The partition or path must be prepared with mkswap(8).

SEE ALSO

 mkswap(8), swapon(8), swapoff(8)

http://linuxsavvy.com/resources/linux/man/man2/swapon.2.html (3 of 4) [14/09/1999 09:48:40]

http://linuxsavvy.com/resources/linux/man/man2/swapon.2.html (4 of 4) [14/09/1999 09:48:40]

NAME

 symlink - make a new name for a file

SYNOPSIS

 #include <unistd.h>

 int symlink(const char *oldpath, const char *newpath));

DESCRIPTION

 symlink creates a symbolic link named newpath which contains
 the string oldpath.

 Symbolic links are interpreted at run-time as if the con-
 tents of the link had been substituted into the path being
 followed to find a file or directory.

 Symbolic links may contain .. path components, which (if
 used at the start of the link) refer to the parent direc-
 tories of that in which the link resides.

 A symbolic link (also known as a soft link) may point to an
 existing file or to a nonexistent one; the latter case is
 known as a dangling link.

 The permissions of a symbolic link are irrelevant; the own-
 ership is ignored when following the link, but is checked
 when removal or renaming of the link is requested and the
 link is in a directory with the sticky bit set.

 If newpath exists it will not be overwritten.

http://linuxsavvy.com/resources/linux/man/man2/symlink.2.html (1 of 4) [14/09/1999 09:48:42]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM The filesystem containing newpath does not support
 the creation of symbolic links.

 EFAULT oldpath or newpath points outside your accessible
 address space.

 EACCES Write access to the directory containing newpath is
 not allowed for the process's effective uid, or one
 of the directories in newpath did not allow search
 (execute) permission.

 ENAMETOOLONG
 oldpath or newpath was too long.

 ENOENT A directory component in newpath does not exist or
 is a dangling symbolic link, or oldpath is the empty
 string.

 ENOTDIR A component used as a directory in newpath is not,
 in fact, a directory.

 ENOMEM Insufficient kernel memory was available.

 EROFS newpath is on a read-only filesystem.

 EEXIST newpath already exists.

 ELOOP Too many symbolic links were encountered in resolv-
 ing newpath.

 ENOSPC The device containing the file has no room for the

http://linuxsavvy.com/resources/linux/man/man2/symlink.2.html (2 of 4) [14/09/1999 09:48:42]

 new directory entry.

 EIO An I/O error occurred.

NOTES

 No checking of oldpath is done.

 Deleting the name referred to by a symlink will actually
 delete the file (unless it also has other hard links). If
 this behaviour is not desired, use link.

CONFORMING TO

 SVr4, SVID, POSIX, BSD 4.3. SVr4 documents additional error
 codes SVr4, SVID, BSD 4.3, X/OPEN. SVr4 documents addi-
 tional error codes EDQUOT and ENOSYS. See open(2) re multi-
 ple files with the same name, and NFS.

SEE ALSO

 readlink(2), link(2), unlink(2), rename(2), open(2),
 lstat(2), ln(1)

http://linuxsavvy.com/resources/linux/man/man2/symlink.2.html (3 of 4) [14/09/1999 09:48:42]

http://linuxsavvy.com/resources/linux/man/man2/symlink.2.html (4 of 4) [14/09/1999 09:48:42]

NAME

 sync - commit buffer cache to disk.

SYNOPSIS

 #include <unistd.h>

 int sync(void);

DESCRIPTION

 sync first commits inodes to buffers, and then buffers to
 disk.

RETURN VALUE

 sync always returns 0.

CONFORMING TO

 SVr4, SVID, X/OPEN, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man2/sync.2.html (1 of 2) [14/09/1999 09:48:43]

BUGS

 According to the standard specification (e.g., SVID), sync()
 schedules the writes, but may return before the actual writ-
 ing is done. However, since version 1.3.20 Linux does actu-
 ally wait. (This still does not guarantee data integrity:
 modern disks have large caches.)

SEE ALSO

 bdflush(2), fsync(2), fdatasync(2),

http://linuxsavvy.com/resources/linux/man/man2/sync.2.html (2 of 2) [14/09/1999 09:48:43]

NAME

 none - list of all system calls

SYNOPSIS

 Linux 2.0 system calls.

DESCRIPTION

 As of Linux 2.0.34, there are 164 system calls listed in
 /usr/include/asm/unistd.h. This man page lists them (pro-
 viding hyperlinks if you read this with a browser).

 _llseek(2), _newselect(2), _sysctl(2), access(2), acct(2),
 adjtimex(2), afs_syscall, alarm(2), bdflush(2), break,
 brk(2), chdir(2), chmod(2), chown(2), chroot(2), clone(2),
 close(2), creat(2), create_module(2), delete_module(2),
 dup(2), dup2(2), execve(2), exit(2), fchdir(2), fchmod(2),
 fchown(2), fcntl(2), fdatasync(2), flock(2), fork(2),
 fstat(2), fstatfs(2), fsync(2), ftime, ftruncate(2), get-
 _kernel_syms(2), getdents(2), getegid(2), geteuid(2), get-
 gid(2), getgroups(2), getitimer(2), getpgid(2), getpgrp(2),
 getpid(2), getppid(2), getpriority(2), getrlimit(2), get-
 rusage(2), getsid(2), gettimeofday(2), getuid(2), gtty,
 idle(2), init_module(2), ioctl(2), ioperm(2), iopl(2),
 ipc(2), kill(2), link(2), lock, lseek(2), lstat(2),
 mkdir(2), mknod(2), mlock(2), mlockall(2), mmap(2),
 modify_ldt(2), mount(2), mprotect(2), mpx, mremap(2),
 msync(2), munlock(2), munlockall(2), munmap(2),
 nanosleep(2), nice(2), oldfstat, oldlstat, oldolduname,
 oldstat, olduname, open(2), pause(2), personality(2), phys,
 pipe(2), prof, profil, ptrace(2), quotactl(2), read(2),
 readdir(2), readlink(2), readv(2), reboot(2), rename(2),

http://linuxsavvy.com/resources/linux/man/man2/syscalls.2.html (1 of 3) [14/09/1999 09:48:46]

 rmdir(2), sched_get_priority_max(2), sched_get_-
 priority_min(2), sched_getparam(2), sched_getscheduler(2),
 sched_rr_get_interval(2), sched_setparam(2), sched_set-
 scheduler(2), sched_yield(2), select(2), setdomainname(2),
 setfsgid(2), setfsuid(2), setgid(2), setgroups(2), set-
 hostname(2), setitimer(2), setpgid(2), setpriority(2), set-
 regid(2), setreuid(2), setrlimit(2), setsid(2), set-
 timeofday(2), setuid(2), setup(2), sgetmask(2), sigac-
 tion(2), signal(2), sigpending(2), sigprocmask(2), sigre-
 turn(2), sigsuspend(2), socketcall(2), ssetmask(2), stat(2),
 statfs(2), stime(2), stty, swapoff(2), swapon(2), sym-
 link(2), sync(2), sysfs(2), sysinfo(2), syslog(2), time(2),
 times(2), truncate(2), ulimit, umask(2), umount(2),
 uname(2), unlink(2), uselib(2), ustat(2), utime(2),
 vhangup(2), vm86(2), wait4(2), waitpid(2), write(2), wri-
 tev(2).

 Of the above, 5 are obsolete, namely oldfstat, oldlstat,
 oldolduname, oldstat and olduname (see also obsolete(2)),
 and 11 are unimplemented, namely afs_syscall, break, ftime,
 gtty, lock, mpx, phys, prof, profil, stty and ulimit (see
 also unimplemented(2)). However, ftime(3), profil(3) and
 ulimit(3) exist as library routines. The slot for phys is
 in use since 2.1.116 for umount2; phys will never be imple-
 mented.

 Roughly speaking, the code belonging to the system call with
 number __NR_xxx defined in /usr/include/asm/unistd.h can be
 found in the kernel source in the routine sys_xxx(). (The
 dispatch table for i386 can be found in
 /usr/src/linux/arch/i386/kernel/entry.S.) There are many
 exceptions, however, mostly because older system calls were
 superseded by newer ones, and this has been treated somewhat
 unsystematically. Below the details for Linux 2.0.34.

 The defines __NR_oldstat and __NR_stat refer to the routines
 sys_stat() and sys_newstat(), and similarly for fstat and
 lstat. Similarly, the defines __NR_oldolduname,
 __NR_olduname and __NR_uname refer to the routines
 sys_olduname(), sys_uname() and sys_newuname(). Thus,
 __NR_stat and __NR_uname have always referred to the latest
 version of the system call, and the older ones are for back-
 ward compatibility.

 It is different with select and mmap. These use five or
 more parameters, and caused problems the way parameter pass-

http://linuxsavvy.com/resources/linux/man/man2/syscalls.2.html (2 of 3) [14/09/1999 09:48:46]

 ing on the i386 used to be set up. Thus, while other archi-
 tectures have sys_select() ans sys_mmap() corresponding to
 __NR_select and __NR_mmap, on i386 one finds old_select()
 and old_mmap() (routines that use a pointer to a parameter
 block) instead. These days passing five parameters is not a
 problem anymore, and there is a __NR__newselect (used by
 libc 6) that corresponds directly to sys_select().

 Two other system call numbers, __NR__llseek and __NR__sysctl
 have an additional underscore absent in sys_llseek() and
 sys_sysctl().

 Then there is __NR_readdir corresponding to old_readdir(),
 which will read at most one directory entry at a time, and
 is superseded by sys_getdents().

 Finally, the system call 166, with entry point sys_vm86()
 does not have a symbolic number at all. This version super-
 sedes sys_vm86old() with number __NR_vm86.

http://linuxsavvy.com/resources/linux/man/man2/syscalls.2.html (3 of 3) [14/09/1999 09:48:46]

NAME

 sysctl - read/write system parameters

SYNOPSIS

 #include <unistd.h>

 #include <linux/unistd.h>

 #include <linux/sysctl.h>

 _syscall1(int, _sysctl, struct __sysctl_args *, args);

 int _sysctl(struct __sysctl_args *args));

DESCRIPTION

 The _sysctl call reads and/or writes kernel parameters. For
 example, the hostname, or the maximum number of open files.
 The argument has the form

 struct __sysctl_args {
 int *name; /* integer vector describing variable */
 int nlen; /* length of this vector */
 void *oldval; /* 0 or address where to store old value */
 size_t *oldlenp; /* available room for old value,
 overwritten by actual size of old value */
 void *newval; /* 0 or address of new value */
 size_t newlen; /* size of new value */
 };

 This call does a search in a tree structure, possibly resem-
 bling a directory tree under /proc/sys, and if the requested
 item is found calls some appropriate routine to read or
 modify the value.

http://linuxsavvy.com/resources/linux/man/man2/sysctl.2.html (1 of 3) [14/09/1999 09:48:49]

EXAMPLE

 #include <linux/unistd.h>
 #include <linux/types.h>
 #include <linux/sysctl.h>

 _syscall1(int, _sysctl, struct __sysctl_args *, args);
 int sysctl(int *name, int nlen, void *oldval, size_t *oldlenp,
 void *newval, size_t newlen)
 {
 struct __sysctl_args args={name,nlen,oldval,oldlenp,newval,newlen};
 return _sysctl(&args);
 }

 #define SIZE(x) sizeof(x)/sizeof(x[0])
 #define OSNAMESZ 100

 char osname[OSNAMESZ];
 int osnamelth;
 int name[] = { CTL_KERN, KERN_OSTYPE };

 main(){
 osnamelth = SIZE(osname);
 if (sysctl(name, SIZE(name), osname, &osnamelth, 0, 0))
 perror("sysctl");
 else
 printf("This machine is running %*s\n", osnamelth, osname);
 return 0;
 }

RETURN VALUES

 Upon successful completion, _sysctl returns 0. Otherwise, a
 value of -1 is returned and errno is set to indicate the
 error.

ERRORS

 ENOTDIR name was not found.

 EPERM No search permission for one of the encountered
 `directories', or no read permission where oldval

http://linuxsavvy.com/resources/linux/man/man2/sysctl.2.html (2 of 3) [14/09/1999 09:48:49]

 was nonzero, or no write permission where newval was
 nonzero.

 EFAULT The invocation asked for the previous value by set-
 ting oldval non-NULL, but allowed zero room in
 oldlenp.

CONFORMING TO

 This call is Linux-specific, and should not be used in pro-
 grams intended to be portable. A sysctl call has been
 present in Linux since version 1.3.57. It originated in
 4.4BSD. Only Linux has the /proc/sys mirror, and the object
 naming schemes differ between Linux and BSD 4.4, but the
 declaration of the sysctl(2) function is the same in both.

BUGS

 The object names vary between kernel versions. THIS MAKES
 THIS SYSTEM CALL WORTHLESS FOR APPLICATIONS. Use the
 /proc/sys interface instead.
 Not all available objects are properly documented.
 It is not yet possible to change operating system by writing
 to /proc/sys/kernel/ostype.

SEE ALSO

 proc(5).

http://linuxsavvy.com/resources/linux/man/man2/sysctl.2.html (3 of 3) [14/09/1999 09:48:49]

NAME

 sysfs - get file system type information

SYNOPSIS

 int sysfs(int option, const char * fsname));

 int sysfs(int option, unsigned int fs_index, char * buf

 int sysfs(int option));

DESCRIPTION

 sysfs returns information about the file system types
 currently present in the kernel. The specific form of the
 sysfs call and the information returned depends on the
 option in effect:

 1 Translate the file-system identifier string fsname into
 a file-system type index.

 2 Translate the file-system type index fs_index into a
 null-terminated file-system identifier string. This
 string will be written to the buffer pointed to by buf.
 Make sure that buf has enough space to accept the
 string.

 3 Return the total number of file system types currently
 present in the kernel.

 The numbering of the file-system type indexes begins with

http://linuxsavvy.com/resources/linux/man/man2/sysfs.2.html (1 of 2) [14/09/1999 09:48:51]

 zero.

RETURN VALUE

 On success, sysfs returns the file-system index for option
 1, zero for option 2, and the number of currently configured
 file systems for option 3. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EINVAL
 fsname is not a valid file-system type identifier;
 fs_index is out-of-bounds; option is invalid.

 EFAULT
 Either fsname or buf is outside your accessible address
 space.

CONFORMING TO

 SVr4.

http://linuxsavvy.com/resources/linux/man/man2/sysfs.2.html (2 of 2) [14/09/1999 09:48:51]

NAME

 sysinfo - returns information on overall system statistics

SYNOPSIS

 #include <linux/kernel.h>
 #include <linux/sys.h>

 int sysinfo(struct sysinfo *info));

DESCRIPTION

 sysinfo returns information in the following structure:

 struct sysinfo {
 long uptime; /* Seconds since boot */
 unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
 unsigned long totalram; /* Total usable main memory size */
 unsigned long freeram; /* Available memory size */
 unsigned long sharedram; /* Amount of shared memory */
 unsigned long bufferram; /* Memory used by buffers */
 unsigned long totalswap; /* Total swap space size */
 unsigned long freeswap; /* swap space still available */
 unsigned short procs; /* Number of current processes */
 char _f[22]; /* Pads structure to 64 bytes */
 };

 sysinfo provides a simple way of getting overall system
 statistics. This is more portable than reading /dev/kmem.
 For an example of its use, see intro(2).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/sysinfo.2.html (1 of 2) [14/09/1999 09:48:54]

ERRORS

 EFAULT pointer to struct sysinfo is invalid

CONFORMING TO

 This function is Linux-specific, and should not be used in
 programs intended to be portable.

 The Linux kernel has a sysinfo system call since 0.98.pl6.
 Linux libc contains a sysinfo() routine since 5.3.5, and
 glibc has one since 1.90.

http://linuxsavvy.com/resources/linux/man/man2/sysinfo.2.html (2 of 2) [14/09/1999 09:48:54]

NAME

 syslog - read and/or clear kernel message ring buffer; set
 console_loglevel

SYNOPSIS

 #include <unistd.h>

 #include <linux/unistd.h>

 _syscall3(int, syslog, int, type, char *,

 int syslog(int type, char *bufp, int len

DESCRIPTION

 This is probably not the function you are interested in.
 Look at syslog(3) for the C library interface. This page
 only documents the bare kernel system call interface.

 The type argument determines the action taken by syslog.

 Quoting from kernel/printk.c:
 /*
 * Commands to sys_syslog:
 *
 * 0 -- Close the log. Currently a NOP.
 * 1 -- Open the log. Currently a NOP.
 * 2 -- Read from the log.
 * 3 -- Read up to the last 4k of messages in the ring buffer.
 * 4 -- Read and clear last 4k of messages in the ring buffer
 * 5 -- Clear ring buffer.
 * 6 -- Disable printk's to console
 * 7 -- Enable printk's to console

http://linuxsavvy.com/resources/linux/man/man2/syslog.2.html (1 of 5) [14/09/1999 09:48:56]

 * 8 -- Set level of messages printed to console
 */

 Only function 3 is allowed to non-root processes.

 The kernel log buffer
 The kernel has a cyclic buffer of length LOG_BUF_LEN (4096,
 since 1.3.54: 8192, since 2.1.113: 16384) in which messages
 given as argument to the kernel function printk() are stored
 (regardless of their loglevel).

 The call syslog (2,buf,len) waits until this kernel log
 buffer is nonempty, and then reads at most len bytes into
 the buffer buf. It returns the number of bytes read. Bytes
 read from the log disappear from the log buffer: the infor-
 mation can only be read once. This is the function executed
 by the kernel when a user program reads /proc/kmsg.

 The call syslog (3,buf,len) will read the last len bytes
 from the log buffer (nondestructively), but will not read
 more than was written into the buffer since the last `clear
 ring buffer' command (which does not clear the buffer at
 all). It returns the number of bytes read.

 The call syslog (4,buf,len) does precisely the same, but
 also executes the `clear ring buffer' command.

 The call syslog (5,dummy,idummy) only executes the `clear
 ring buffer' command.

 The loglevel
 The kernel routine printk() will only print a message on the
 console, if it has a loglevel less than the value of the
 variable console_loglevel (initially
 DEFAULT_CONSOLE_LOGLEVEL (7), but set to 10 if the kernel
 commandline contains the word `debug', and to 15 in case of
 a kernel fault - the 10 and 15 are just silly, and
 equivalent to 8). This variable is set (to a value in the
 range 1-8) by the call syslog (8,dummy,value). The calls
 syslog (type,dummy,idummy with type equal to 6 or 7, set it
 to 1 (kernel panics only) or 7 (all except debugging mes-
 sages), respectively.

 Every text line in a message has its own loglevel. This
 level is DEFAULT_MESSAGE_LOGLEVEL - 1 (6) unless the line
 starts with <d> where d is a digit in the range 1-7, in

http://linuxsavvy.com/resources/linux/man/man2/syslog.2.html (2 of 5) [14/09/1999 09:48:56]

 which case the level is d. The conventional meaning of the
 loglevel is defined in <linux/kernel.h> as follows:

 #define KERN_EMERG "<0>" /* system is unusable */
 #define KERN_ALERT "<1>" /* action must be taken immediately */
 #define KERN_CRIT "<2>" /* critical conditions */
 #define KERN_ERR "<3>" /* error conditions */
 #define KERN_WARNING "<4>" /* warning conditions */
 #define KERN_NOTICE "<5>" /* normal but significant condition */
 #define KERN_INFO "<6>" /* informational */
 #define KERN_DEBUG "<7>" /* debug-level messages */

RETURN VALUE

 In case of error, -1 is returned, and errno is set. Other-
 wise, for type equal to 2, 3 or 4, syslog() returns the
 number of bytes read, and otherwise 0.

ERRORS

 EPERM
 An attempt was made to change console_loglevel or clear
 the kernel message ring buffer by a process without
 root permissions.

 EINVAL
 Bad parameters.

 ERESTARTSYS
 System call was interrupted by a signal - nothing was
 read.

http://linuxsavvy.com/resources/linux/man/man2/syslog.2.html (3 of 5) [14/09/1999 09:48:56]

CONFORMING TO

 This system call is Linux specific and should not be used in
 programs intended to be portable.

SEE ALSO

 syslog(3)

http://linuxsavvy.com/resources/linux/man/man2/syslog.2.html (4 of 5) [14/09/1999 09:48:56]

http://linuxsavvy.com/resources/linux/man/man2/syslog.2.html (5 of 5) [14/09/1999 09:48:56]

http://linuxsavvy.com/resources/linux/man/man2/time.2.html [14/09/1999 09:48:58]

NAME

 times - get process times

SYNOPSIS

 #include <sys/times.h>

 clock_t times(struct tms *buf));

DESCRIPTION

 times stores the current process times in buf.

 struct tms is as defined in /usr/include/sys/times.h:

 struct tms {
 clock_t tms_utime; /* user time */
 clock_t tms_stime; /* system time */
 clock_t tms_cutime; /* user time of children */
 clock_t tms_cstime; /* system time of children */
 };

 times returns the number of clock ticks that have elapsed
 since the system has been up.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man2/times.2.html (1 of 2) [14/09/1999 09:49:00]

SEE ALSO

 time(1), getrusage(2), wait(2)

http://linuxsavvy.com/resources/linux/man/man2/times.2.html (2 of 2) [14/09/1999 09:49:00]

NAME

 truncate, ftruncate - truncate a file to a specified length

SYNOPSIS

 #include <unistd.h>

 int truncate(const char *path, size_t length));
 int ftruncate(int fd, size_t length));

DESCRIPTION

 Truncate causes the file named by path or referenced by fd
 to be truncated to at most length bytes in size. If the
 file previously was larger than this size, the extra data is
 lost. With ftruncate, the file must be open for writing.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 For truncate:

http://linuxsavvy.com/resources/linux/man/man2/truncate.2.html (1 of 4) [14/09/1999 09:49:02]

 ENOTDIR A component of the path prefix is not a directory.

 EINVAL The pathname contains a character with the high-
 order bit set.

 ENAMETOOLONG
 A component of a pathname exceeded 255 characters,
 or an entire path name exceeded 1023 characters.

 ENOENT The named file does not exist.

 EACCES Search permission is denied for a component of the
 path prefix.

 EACCES The named file is not writable by the user.

 ELOOP Too many symbolic links were encountered in
 translating the pathname.

 EISDIR The named file is a directory.

 EROFS The named file resides on a read-only file system.

 ETXTBSY The file is a pure procedure (shared text) file that
 is being executed.

 EIO An I/O error occurred updating the inode.

 EFAULT Path points outside the process's allocated address
 space.

 For Ftruncate:

 EBADF The fd is not a valid descriptor.

 EINVAL The fd references a socket, not a file.

 EINVAL The fd is not open for writing.

http://linuxsavvy.com/resources/linux/man/man2/truncate.2.html (2 of 4) [14/09/1999 09:49:02]

CONFORMING TO

 4.4BSD, SVr4 (these function calls first appeared in BSD
 4.2). SVr4 documents additional truncate error conditions
 EINTR, EMFILE, EMULTIHP, ENAMETOOLONG, ENFILE, ENOLINK,
 ENOTDIR. SVr4 ftruncate documents additional EAGAIN and
 EINTR error conditions.

BUGS

 These calls should be generalized to allow ranges of bytes
 in a file to be discarded.

SEE ALSO

 open(2)

http://linuxsavvy.com/resources/linux/man/man2/truncate.2.html (3 of 4) [14/09/1999 09:49:02]

http://linuxsavvy.com/resources/linux/man/man2/truncate.2.html (4 of 4) [14/09/1999 09:49:02]

NAME

 umask - set file creation mask

SYNOPSIS

 #include <sys/types.h>
 #include <sys/stat.h>

 mode_t umask(mode_t mask));

DESCRIPTION

 umask sets the umask to mask & 0777.

 The umask is used by open(2) to set initial file permissions
 on a newly-created file. Specifically, permissions in the
 umask are turned off from the mode argument to open(2) (so,
 for example, the common umask default value of 022 results
 in new files being created with permissions 0666 & ~022 =
 0644 = rw-r--r-- in the usual case where the mode is speci-
 fied as 0666).

RETURN VALUE

 This system call always succeeds and the previous value of
 the mask is returned.

http://linuxsavvy.com/resources/linux/man/man2/umask.2.html (1 of 2) [14/09/1999 09:49:03]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, BSD 4.3

SEE ALSO

 creat(2), open(2)

http://linuxsavvy.com/resources/linux/man/man2/umask.2.html (2 of 2) [14/09/1999 09:49:03]

NAME

 uname - get name and information about current kernel

SYNOPSIS

 #include <sys/utsname.h>

 int uname(struct utsname *buf));

DESCRIPTION

 uname returns system information in buf. The utsname struct
 is as defined in <sys/utsname.h>:
 struct utsname {
 char sysname[SYS_NMLN];
 char nodename[SYS_NMLN];
 char release[SYS_NMLN];
 char version[SYS_NMLN];
 char machine[SYS_NMLN];
 char domainname[SYS_NMLN];
 };

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/uname.2.html (1 of 2) [14/09/1999 09:49:06]

ERRORS

 EFAULT buf is not valid.

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN

SEE ALSO

 uname(1), getdomainname(2), gethostname(2)

http://linuxsavvy.com/resources/linux/man/man2/uname.2.html (2 of 2) [14/09/1999 09:49:06]

NAME

 none - undocumented system calls

SYNOPSIS

 Undocumented system calls.

DESCRIPTION

 As of Linux 2.0.34, there are 164 system calls listed in
 /usr/include/asm/unistd.h. This man page mentions those
 calls which are implemented in the kernel but not yet docu-
 mented in man pages. Some of these calls do not yet have
 prototypes in the libc include files.

SOLICITATION

 If you have information about these system calls, please
 look in the kernel source code, write a man page (using a
 style similar to that of the other Linux section 2 man
 pages), and send it to aeb@cwi.nl for inclusion in the next
 man page release from the Linux Documentation Project.

http://linuxsavvy.com/resources/linux/man/man2/undocumented.2.html (1 of 2) [14/09/1999 09:49:08]

STATUS

 There are presently no undocumented system calls.

SEE ALSO

 obsolete(2), unimplemented(2)

http://linuxsavvy.com/resources/linux/man/man2/undocumented.2.html (2 of 2) [14/09/1999 09:49:08]

NAME

 afs_syscall, break, ftime, gtty, lock, mpx, phys, prof, pro-
 fil, stty, ulimit - unimplemented system calls

SYNOPSIS

 Unimplemented system calls.

DESCRIPTION

 These system calls are not implemented in the Linux 2.0 ker-
 nel.

RETURN VALUE

 These system calls always return -1 and set errno to ENOSYS.

NOTES

 Note that ftime(3), profil(3) and ulimit(3) are implemented
 as library functions.

 Some system calls, like ioperm(2), iopl(2), ptrace(2) and
 vm86(2) only exist on certain architectures.

http://linuxsavvy.com/resources/linux/man/man2/unimplemented.2.html (1 of 2) [14/09/1999 09:49:09]

 Some system calls, like ipc(2) and
 {create,init,delete}_module(2) only exist when the Linux
 kernel was built with support for them.

SEE ALSO

 obsolete(2), undocumented(2).

http://linuxsavvy.com/resources/linux/man/man2/unimplemented.2.html (2 of 2) [14/09/1999 09:49:09]

NAME

 unlink - delete a name and possibly the file it refers to

SYNOPSIS

 #include <unistd.h>

 int unlink(const char *pathname));

DESCRIPTION

 unlink deletes a name from the filesystem. If that name was
 the last link to a file and no processes have the file open
 the file is deleted and the space it was using is made
 available for reuse.

 If the name was the last link to a file but any processes
 still have the file open the file will remain in existence
 until the last file descriptor referring to it is closed.

 If the name referred to a symbolic link the link is removed.

 If the name referred to a socket, fifo or device the name
 for it is removed but processes which have the object open
 may continue to use it.

http://linuxsavvy.com/resources/linux/man/man2/unlink.2.html (1 of 4) [14/09/1999 09:49:12]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EFAULT pathname points outside your accessible address
 space.

 EACCES Write access to the directory containing pathname is
 not allowed for the process's effective uid, or one
 of the directories in pathname did not allow search
 (execute) permission.

 EPERM The directory containing pathname has the sticky-bit
 (S_ISVTX) set and the process's effective uid is
 neither the uid of the file to be deleted nor that
 of the directory containing it, or pathname is a
 directory.

 ENAMETOOLONG
 pathname was too long.

 ENOENT A directory component in pathname does not exist or
 is a dangling symbolic link.

 ENOTDIR A component used as a directory in pathname is not,
 in fact, a directory.

 EISDIR pathname refers to a directory.

 ENOMEM Insufficient kernel memory was available.

 EROFS pathname refers to a file on a read-only filesystem.

 ELOOP Too many symbolic links were encountered in
 translating pathname.

 EIO An I/O error occurred.

http://linuxsavvy.com/resources/linux/man/man2/unlink.2.html (2 of 4) [14/09/1999 09:49:12]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, 4.3BSD. SVr4 documents addi-
 tional error conditions EBUSY, EINTR, EMULTIHOP, ETXTBUSY,
 ENOLINK.

BUGS

 Infelicities in the protocol underlying NFS can cause the
 unexpected disappearance of files which are still being
 used.

SEE ALSO

 link(2), rename(2), open(2), rmdir(2), mknod(2), mkfifo(3),
 remove(3), rm(1)

http://linuxsavvy.com/resources/linux/man/man2/unlink.2.html (3 of 4) [14/09/1999 09:49:12]

http://linuxsavvy.com/resources/linux/man/man2/unlink.2.html (4 of 4) [14/09/1999 09:49:12]

NAME

 uselib - select shared library

SYNOPSIS

 #include <unistd.h>

 int uselib(const char *library));

DESCRIPTION

 uselib selects the shared library binary that will be used
 by this processes.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 In addition to all of the error codes returned by open(2)
 and mmap(2), the following may also be returned:

http://linuxsavvy.com/resources/linux/man/man2/uselib.2.html (1 of 2) [14/09/1999 09:49:14]

 ENOEXEC
 The file specified by library is not executable, or
 does not have the correct magic numbers.

 EACCES
 The library specified by library is not readable.

CONFORMING TO

 uselib() is Linux specific, and should not be used in pro-
 grams intended to be portable.

SEE ALSO

 open(2), mmap(2), ldd(1),

http://linuxsavvy.com/resources/linux/man/man2/uselib.2.html (2 of 2) [14/09/1999 09:49:14]

NAME

 ustat - get file system statistics

SYNOPSIS

 #include <sys/types.h>

 int ustat(dev_t dev, struct ustat * ubuf));

DESCRIPTION

 ustat returns information about a mounted file system. dev
 is a device number identifying a device containing a mounted
 file system. ubuf is a pointer to a ustat structure that
 contains the following members:

 daddr_t f_tfree; /* Total free blocks */
 ino_t f_tinode; /* Number of free inodes */
 char f_fname[6]; /* Filsys name */
 char f_fpack[6]; /* Filsys pack name */

 The last two fields, f_fname and f_fpack, are not imple-
 mented and will always be filled with null characters.

RETURN VALUE

 On success, zero is returned and the ustat structure pointed
 to by ubuf will be filled in. On error, -1 is returned, and

http://linuxsavvy.com/resources/linux/man/man2/ustat.2.html (1 of 4) [14/09/1999 09:49:15]

 errno is set appropriately.

ERRORS

 EINVAL
 dev does not refer to a device containing a mounted
 file system.

 EFAULT
 ubuf points outside of your accessible address space.

 ENOSYS
 The mounted file system referenced by dev does not sup-
 port this operation, or any version of Linux before
 1.3.16.

NOTES

 ustat has only been provided for compatibility. All new pro-
 grams should use statfs(2) instead.

CONFORMING TO

 SVr4. SVr4 documents additional error conditions ENOLINK,
 ECOMM, and EINTR but has no ENOSYS condition.

SEE ALSO

 statfs(2), stat(2)

http://linuxsavvy.com/resources/linux/man/man2/ustat.2.html (2 of 4) [14/09/1999 09:49:15]

http://linuxsavvy.com/resources/linux/man/man2/ustat.2.html (3 of 4) [14/09/1999 09:49:15]

http://linuxsavvy.com/resources/linux/man/man2/ustat.2.html (4 of 4) [14/09/1999 09:49:15]

NAME

 utime, utimes - change access and/or modification times of
 an inode

SYNOPSIS

 #include <sys/types.h>
 #include <utime.h>

 int utime(const char *filename, struct utimbuf *buf));

 #include <sys/time.h>

 int utimes(char *filename, struct timeval *tvp));

DESCRIPTION

 utime changes the access and modification times of the inode
 specified by filename to the actime and modtime fields of
 buf respectively. If buf is NULL, then the access and
 modification times of the file are set to the current time.
 The utimbuf structure is:

 struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
 };

 In the Linux DLL 4.4.1 libraries, utimes is just a wrapper
 for utime: tvp[0].tv_sec is actime, and tvp[1].tv_sec is
 modtime. The timeval structure is:

http://linuxsavvy.com/resources/linux/man/man2/utime.2.html (1 of 3) [14/09/1999 09:49:17]

 struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 Other errors may occur.

 EACCES Permission to write the file is denied.

 ENOENT filename does not exist.

CONFORMING TO

 utime: SVr4, SVID, POSIX. SVr4 documents additional error
 conditions EFAULT, EINTR, ELOOP, EMULTIHOP, ENAMETOOLONG,
 ENOLINK, ENOTDIR, ENOLINK, ENOTDIR, EPERM, EROFS.
 utimes: BSD 4.3

SEE ALSO

 stat(2)

http://linuxsavvy.com/resources/linux/man/man2/utime.2.html (2 of 3) [14/09/1999 09:49:17]

http://linuxsavvy.com/resources/linux/man/man2/utime.2.html (3 of 3) [14/09/1999 09:49:17]

NAME

 vhangup - virtually hangup the current tty

SYNOPSIS

 #include <unistd.h>

 int vhangup(void);

DESCRIPTION

 vhangup simulates a hangup on the current terminal. This
 call arranges for other users to have a "clean" tty at login
 time.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EPERM The user is not the super-user.

http://linuxsavvy.com/resources/linux/man/man2/vhangup.2.html (1 of 2) [14/09/1999 09:49:22]

CONFORMING TO

 This call is Linux-specific, and should not be used in pro-
 grams intended to be portable.

SEE ALSO

 init(8)

http://linuxsavvy.com/resources/linux/man/man2/vhangup.2.html (2 of 2) [14/09/1999 09:49:22]

NAME

 vm86old, vm86 - enter virtual 8086 mode

SYNOPSIS

 #include <sys/vm86.h>

 int vm86old(struct vm86_struct * info));

 int vm86(unsigned long fn, struct vm86plus_struct * v86));

DESCRIPTION

 The system call vm86 was introduced in Linux 0.97p2. In
 Linux 2.1.15 and 2.0.28 it was renamed to vm86old, and a new
 vm86 was introduced. The definition of `struct vm86_struct'
 was changed in 1.1.8 and 1.1.9.

 These calls cause the process to enter VM86 mode, and are
 used by dosemu.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man2/vm86.2.html (1 of 2) [14/09/1999 09:49:23]

ERRORS

 (for vm86old)

 EPERM Saved kernel stack exists. (This is a kernel sanity
 check; the saved stack should only exist within vm86
 mode itself.)

CONFORMING TO

 This call is specific to Linux on Intel processors, and
 should not be used in programs intended to be portable.

http://linuxsavvy.com/resources/linux/man/man2/vm86.2.html (2 of 2) [14/09/1999 09:49:23]

NAME

 wait, waitpid - wait for process termination

SYNOPSIS

 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *status))
 pid_t waitpid(pid_t pid, int *status, int options

DESCRIPTION

 The wait function suspends execution of the current process
 until a child has exited, or until a signal is delivered
 whose action is to terminate the current process or to call
 a signal handling function. If a child has already exited
 by the time of the call (a so-called "zombie" process), the
 function returns immediately. Any system resources used by
 the child are freed.

 The waitpid function suspends execution of the current pro-
 cess until a child as specified by the pid argument has
 exited, or until a signal is delivered whose action is to
 terminate the current process or to call a signal handling
 function. If a child as requested by pid has already exited
 by the time of the call (a so-called "zombie" process), the
 function returns immediately. Any system resources used by
 the child are freed.

 The value of pid can be one of:

 < -1 which means to wait for any child process whose process

http://linuxsavvy.com/resources/linux/man/man2/wait.2.html (1 of 5) [14/09/1999 09:49:26]

 group ID is equal to the absolute value of pid.

 -1 which means to wait for any child process; this is the
 same behaviour which wait exhibits.

 0 which means to wait for any child process whose process
 group ID is equal to that of the calling process.

 > 0 which means to wait for the child whose process ID is
 equal to the value of pid.

 The value of options is an OR of zero or more of the follow-
 ing constants:

 WNOHANG which means to return immediately if no child has
 exited.

 WUNTRACED
 which means to also return for children which are
 stopped, and whose status has not been reported.

 If status is not NULL, wait or waitpid store status informa-
 tion in the location pointed to by status.

 This status can be evaluated with the following macros
 (these macros take the stat buffer (an int) as an argument -
 not a pointer to the buffer!):

 WIFEXITED(status))
 is non-zero if the child exited normally.

 WEXITSTATUS(status))
 evaluates to the least significant eight bits of the
 return code of the child which terminated, which may
 have been set as the argument to a call to exit() or
 as the argument for a return statement in the main
 program. This macro can only be evaluated if WIFEX-
 ITED returned non-zero.

 WIFSIGNALED(status))
 returns true if the child process exited because of
 a signal which was not caught.

 WTERMSIG(status))
 returns the number of the signal that caused the
 child process to terminate. This macro can only be

http://linuxsavvy.com/resources/linux/man/man2/wait.2.html (2 of 5) [14/09/1999 09:49:26]

 evaluated if WIFSIGNALED returned non-zero.

 WIFSTOPPED(status))
 returns true if the child process which caused the
 return is currently stopped; this is only possible
 if the call was done using WUNTRACED.

 WSTOPSIG(status))
 returns the number of the signal which caused the
 child to stop. This macro can only be evaluated if
 WIFSTOPPED returned non-zero.

RETURN VALUE

 The process ID of the child which exited, -1 on error or
 zero if WNOHANG was used and no child was available (in
 which case, errno is set to an appropriate value).

ERRORS

 ECHILD if the process specified in pid does not exist or is
 not a child of the calling process. (This can hap-
 pen for one's own child if the action for SIGCHLD is
 set to SIG_IGN.)

 EINVAL if the options argument was invalid.

 ERESTARTSYS
 if WNOHANG was not set and an unblocked signal or a
 SIGCHLD was caught. This error is returned by the
 system call. The library interface is not allowed
 to return ERESTARTSYS, but will return EINTR.

http://linuxsavvy.com/resources/linux/man/man2/wait.2.html (3 of 5) [14/09/1999 09:49:26]

NOTES

 The Single Unix Specification describes a flag SA_NOCLDWAIT
 (not present under Linux) such that if either this flag is
 set, or the action for SIGCHLD is set to SIG_IGN (which, by
 the way, is not allowed by POSIX), then children that exit
 do not become zombies and a call to wait() or waitpid() will
 block until all children have exited, and then fail with
 errno set to ECHILD.

CONFORMING TO

 SVr4, POSIX.1

SEE ALSO

 signal(2), wait4(2), signal(7)

http://linuxsavvy.com/resources/linux/man/man2/wait.2.html (4 of 5) [14/09/1999 09:49:26]

http://linuxsavvy.com/resources/linux/man/man2/wait.2.html (5 of 5) [14/09/1999 09:49:26]

NAME

 wait3, wait4 - wait for process termination, BSD style

SYNOPSIS

 #define _USE_BSD
 #include <sys/types.h>
 #include <sys/resource.h>
 #include <sys/wait.h>

 pid_t wait3(int *status, int options,
 struct rusage *rusage))

 pid_t wait4(pid_t pid, int *status, int options
 struct rusage *rusage))

DESCRIPTION

 The wait3 function suspends execution of the current process
 until a child has exited, or until a signal is delivered
 whose action is to terminate the current process or to call
 a signal handling function. If a child has already exited
 by the time of the call (a so-called "zombie" process), the
 function returns immediately. Any system resources used by
 the child are freed.

 The wait4 function suspends execution of the current process
 until a child as specified by the pid argument has exited,
 or until a signal is delivered whose action is to terminate
 the current process or to call a signal handling function.
 If a child as requested by pid has already exited by the
 time of the call (a so-called "zombie" process), the func-

http://linuxsavvy.com/resources/linux/man/man2/wait4.2.html (1 of 5) [14/09/1999 09:49:30]

 tion returns immediately. Any system resources used by the
 child are freed.

 The value of pid can be one of:

 < -1 which means to wait for any child process whose process
 group ID is equal to the absolute value of pid.

 -1 which means to wait for any child process; this is
 equivalent to calling wait3.

 0 which means to wait for any child process whose process
 group ID is equal to that of the calling process.

 > 0 which means to wait for the child whose process ID is
 equal to the value of pid.

 The value of options is a bitwise OR of zero or more of the
 following constants:

 WNOHANG which means to return immediately if no child is
 there to be waited for.

 WUNTRACED
 which means to also return for children which are
 stopped, and whose status has not been reported.

 If status is not NULL, wait3 or wait4 store status informa-
 tion in the location pointed to by status.

 This status can be evaluated with the following macros
 (these macros take the stat buffer (an int) as an argument -
 not a pointer to the buffer!):

 WIFEXITED(status))
 is non-zero if the child exited normally.

 WEXITSTATUS(status))
 evaluates to the least significant eight bits of the
 return code of the child which terminated, which may
 have been set as the argument to a call to exit() or
 as the argument for a return statement in the main
 program. This macro can only be evaluated if WIFEX-
 ITED returned non-zero.

 WIFSIGNALED(status))

http://linuxsavvy.com/resources/linux/man/man2/wait4.2.html (2 of 5) [14/09/1999 09:49:30]

 returns true if the child process exited because of
 a signal which was not caught.

 WTERMSIG(status))
 returns the number of the signal that caused the
 child process to terminate. This macro can only be
 evaluated if WIFSIGNALED returned non-zero.

 WIFSTOPPED(status))
 returns true if the child process which caused the
 return is currently stopped; this is only possible
 if the call was done using WUNTRACED.

 WSTOPSIG(status))
 returns the number of the signal which caused the
 child to stop. This macro can only be evaluated if
 WIFSTOPPED returned non-zero.

 If rusage is not NULL, the struct rusage as defined
 in <sys/resource.h> it points to will be filled with
 accounting information. See getrusage(2) for
 details.

RETURN VALUE

 The process ID of the child which exited, -1 on error (in
 particular, when no unwaited-for child processes of the
 specified kind exist) or zero if WNOHANG was used and no
 child was available yet. In the latter two cases errno will
 be set appropriately.

ERRORS

 ECHILD
 No unwaited-for child process as specified does exist.

 ERESTARTSYS
 if WNOHANG was not set and an unblocked signal or a

http://linuxsavvy.com/resources/linux/man/man2/wait4.2.html (3 of 5) [14/09/1999 09:49:30]

 SIGCHLD was caught. This error is returned by the sys-
 tem call. The library interface is not allowed to
 return ERESTARTSYS, but will return EINTR.

CONFORMING TO

 SVr4, POSIX.1

SEE ALSO

 signal(2), getrusage(2), wait(2),

http://linuxsavvy.com/resources/linux/man/man2/wait4.2.html (4 of 5) [14/09/1999 09:49:30]

http://linuxsavvy.com/resources/linux/man/man2/wait4.2.html (5 of 5) [14/09/1999 09:49:30]

NAME

 write - write to a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count

DESCRIPTION

 write writes up to count bytes to the file referenced by the
 file descriptor fd from the buffer starting at buf. POSIX
 requires that a read() which can be proved to occur after a
 write() has returned returns the new data. Note that not
 all file systems are POSIX conforming.

RETURN VALUE

 On success, the number of bytes written are returned (zero
 indicates nothing was written). On error, -1 is returned,
 and errno is set appropriately. If count is zero and the
 file descriptor refers to a regular file, 0 will be returned
 without causing any other effect. For a special file, the
 results are not portable.

http://linuxsavvy.com/resources/linux/man/man2/write.2.html (1 of 4) [14/09/1999 09:49:34]

ERRORS

 EBADF
 fd is not a valid file descriptor or is not open for
 writing.

 EINVAL
 fd is attached to an object which is unsuitable for
 writing.

 EFAULT
 buf is outside your accessible address space.

 EPIPE
 fd is connected to a pipe or socket whose reading end
 is closed. When this happens the writing process will
 receive a SIGPIPE signal; if it catches, blocks or
 ignores this the error EPIPE is returned.

 EAGAIN
 Non-blocking I/O has been selected using O_NONBLOCK and
 there was no room in the pipe or socket connected to fd
 to write the data immediately.

 EINTR
 The call was interrupted by a signal before any data
 was written.

 ENOSPC
 The device containing the file referred to by fd has no
 room for the data.

 EIO A low-level I/O error occurred while modifying the
 inode.

 Other errors may occur, depending on the object connected to
 fd.

http://linuxsavvy.com/resources/linux/man/man2/write.2.html (2 of 4) [14/09/1999 09:49:34]

CONFORMING TO

 SVr4, SVID, POSIX, X/OPEN, 4.3BSD. SVr4 documents addi-
 tional error conditions EDEADLK, EFBIG, ENOLCK, ENOLNK,
 ENOSR, ENXIO, EPIPE, or ERANGE. Under SVr4 a write may be
 interrupted and return EINTR at any point, not just before
 any data is written.

SEE ALSO

 open(2), read(2), fcntl(2), close(2), lseek(2), select(2),
 ioctl(2), fsync(2), fwrite(3).

http://linuxsavvy.com/resources/linux/man/man2/write.2.html (3 of 4) [14/09/1999 09:49:34]

http://linuxsavvy.com/resources/linux/man/man2/write.2.html (4 of 4) [14/09/1999 09:49:34]

Linux Man Pages Section 3
● __setfpucw.3

● abort.3

● abs.3

● acos.3

● acosh.3

● addmntent.3

● alloca.3

● alphasort.3

● asctime.3

● asin.3

● asinh.3

● assert.3

● atan.3

● atan2.3

● atanh.3

● atexit.3

● atof.3

● atoi.3

● atol.3

● bcmp.3

● bcopy.3

● bsearch.3

● bstring.3

● byteorder.3

● bzero.3

● calloc.3

● catclose.3

● catgets.3

● catopen.3

● cbrt.3

● ceil.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (1 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/addmntent.3.html
http://linuxsavvy.com/resources/linux/man/man3/alphasort.3.html
http://linuxsavvy.com/resources/linux/man/man3/asctime.3.html
http://linuxsavvy.com/resources/linux/man/man3/calloc.3.html
http://linuxsavvy.com/resources/linux/man/man3/catclose.3.html

● cfgetispeed.3

● cfgetospeed.3

● cfmakeraw.3

● cfsetispeed.3

● cfsetospeed.3

● clearerr.3

● clock.3

● closedir.3

● closelog.3

● confstr.3

● copysign.3

● cos.3

● cosh.3

● crypt.3

● ctermid.3

● ctime.3

● cuserid.3

● difftime.3

● div.3

● dn_comp.3

● dn_expand.3

● drand48.3

● drem.3

● ecvt.3

● endgrent.3

● endhostent.3

● endmntent.3

● endnetent.3

● endprotoent.3

● endpwent.3

● endservent.3

● endusershell.3

● endutent.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (2 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/cfgetispeed.3.html
http://linuxsavvy.com/resources/linux/man/man3/cfgetospeed.3.html
http://linuxsavvy.com/resources/linux/man/man3/cfmakeraw.3.html
http://linuxsavvy.com/resources/linux/man/man3/cfsetispeed.3.html
http://linuxsavvy.com/resources/linux/man/man3/cfsetospeed.3.html
http://linuxsavvy.com/resources/linux/man/man3/clearerr.3.html
http://linuxsavvy.com/resources/linux/man/man3/closelog.3.html
http://linuxsavvy.com/resources/linux/man/man3/cuserid.3.html
http://linuxsavvy.com/resources/linux/man/man3/dn_comp.3.html
http://linuxsavvy.com/resources/linux/man/man3/dn_expand.3.html
http://linuxsavvy.com/resources/linux/man/man3/endgrent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endhostent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endmntent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endnetent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endprotoent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endpwent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endservent.3.html
http://linuxsavvy.com/resources/linux/man/man3/endusershell.3.html
http://linuxsavvy.com/resources/linux/man/man3/endutent.3.html

● erand48.3

● erf.3

● erfc.3

● errno.3

● exec.3

● execl.3

● execle.3

● execlp.3

● execv.3

● execvp.3

● exit.3

● exp.3

● expm1.3

● fabs.3

● fclose.3

● fcvt.3

● fdopen.3

● feof.3

● ferror.3

● fflush.3

● ffs.3

● fgetc.3

● fgetgrent.3

● fgetpos.3

● fgetpwent.3

● fgets.3

● fileno.3

● finite.3

● floor.3

● fmod.3

● fnmatch.3

● fopen.3

● fpathconf.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (3 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/erand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/erfc.3.html
http://linuxsavvy.com/resources/linux/man/man3/execl.3.html
http://linuxsavvy.com/resources/linux/man/man3/execle.3.html
http://linuxsavvy.com/resources/linux/man/man3/execlp.3.html
http://linuxsavvy.com/resources/linux/man/man3/execv.3.html
http://linuxsavvy.com/resources/linux/man/man3/execvp.3.html
http://linuxsavvy.com/resources/linux/man/man3/fcvt.3.html
http://linuxsavvy.com/resources/linux/man/man3/fdopen.3.html
http://linuxsavvy.com/resources/linux/man/man3/feof.3.html
http://linuxsavvy.com/resources/linux/man/man3/fgetc.3.html
http://linuxsavvy.com/resources/linux/man/man3/fgetpos.3.html
http://linuxsavvy.com/resources/linux/man/man3/fgets.3.html
http://linuxsavvy.com/resources/linux/man/man3/fileno.3.html
http://linuxsavvy.com/resources/linux/man/man3/finite.3.html

● fprintf.3

● fpurge.3

● fputc.3

● fputs.3

● fread.3

● free.3

● freopen.3

● frexp.3

● fscanf.3

● fseek.3

● fsetpos.3

● ftell.3

● ftime.3

● ftok.3

● ftw.3

● fwrite.3

● gcvt.3

● get_current_dir_name.3

● getc.3

● getchar.3

● getcwd.3

● getdirentries.3

● getenv.3

● getgrent.3

● getgrgid.3

● getgrnam.3

● gethostbyaddr.3

● gethostbyname.3

● getlogin.3

● getmntent.3

● getnetbyaddr.3

● getnetbyname.3

● getnetent.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (4 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/fprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/fpurge.3.html
http://linuxsavvy.com/resources/linux/man/man3/fputc.3.html
http://linuxsavvy.com/resources/linux/man/man3/fputs.3.html
http://linuxsavvy.com/resources/linux/man/man3/free.3.html
http://linuxsavvy.com/resources/linux/man/man3/freopen.3.html
http://linuxsavvy.com/resources/linux/man/man3/fscanf.3.html
http://linuxsavvy.com/resources/linux/man/man3/fsetpos.3.html
http://linuxsavvy.com/resources/linux/man/man3/ftell.3.html
http://linuxsavvy.com/resources/linux/man/man3/fwrite.3.html
http://linuxsavvy.com/resources/linux/man/man3/get_current_dir_name.3.html
http://linuxsavvy.com/resources/linux/man/man3/getc.3.html
http://linuxsavvy.com/resources/linux/man/man3/getchar.3.html
http://linuxsavvy.com/resources/linux/man/man3/getgrgid.3.html
http://linuxsavvy.com/resources/linux/man/man3/gethostbyaddr.3.html
http://linuxsavvy.com/resources/linux/man/man3/getnetbyaddr.3.html
http://linuxsavvy.com/resources/linux/man/man3/getnetbyname.3.html

● getopt.3

● getopt_long.3

● getopt_long_only.3

● getpass.3

● getprotobyname.3

● getprotobynumber.3

● getprotoent.3

● getpw.3

● getpwent.3

● getpwnam.3

● getpwuid.3

● gets.3

● getservbyname.3

● getservbyport.3

● getservent.3

● getusershell.3

● getutent.3

● getutid.3

● getutline.3

● getw.3

● getwd.3

● glob.3

● globfree.3

● gmtime.3

● hasmntopt.3

● hcreate.3

● hdestroy.3

● herror.3

● hsearch.3

● htonl.3

● htons.3

● hypot.3

● index.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (5 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/getopt_long.3.html
http://linuxsavvy.com/resources/linux/man/man3/getopt_long_only.3.html
http://linuxsavvy.com/resources/linux/man/man3/getprotobyname.3.html
http://linuxsavvy.com/resources/linux/man/man3/getprotobynumber.3.html
http://linuxsavvy.com/resources/linux/man/man3/getpwuid.3.html
http://linuxsavvy.com/resources/linux/man/man3/getservbyname.3.html
http://linuxsavvy.com/resources/linux/man/man3/getservbyport.3.html
http://linuxsavvy.com/resources/linux/man/man3/getutid.3.html
http://linuxsavvy.com/resources/linux/man/man3/getutline.3.html
http://linuxsavvy.com/resources/linux/man/man3/getwd.3.html
http://linuxsavvy.com/resources/linux/man/man3/globfree.3.html
http://linuxsavvy.com/resources/linux/man/man3/gmtime.3.html
http://linuxsavvy.com/resources/linux/man/man3/hasmntopt.3.html
http://linuxsavvy.com/resources/linux/man/man3/hcreate.3.html
http://linuxsavvy.com/resources/linux/man/man3/hdestroy.3.html
http://linuxsavvy.com/resources/linux/man/man3/herror.3.html
http://linuxsavvy.com/resources/linux/man/man3/htonl.3.html
http://linuxsavvy.com/resources/linux/man/man3/htons.3.html

● inet.3

● inet_addr.3

● inet_aton.3

● inet_lnaof.3

● inet_makeaddr.3

● inet_netof.3

● inet_network.3

● inet_ntoa.3

● infnan.3

● initgroups.3

● initstate.3

● insque.3

● intro.3

● iruserok.3

● isalnum.3

● isalpha.3

● isascii.3

● isatty.3

● isblank.3

● iscntrl.3

● isdigit.3

● isgraph.3

● isinf.3

● islower.3

● isnan.3

● isprint.3

● ispunct.3

● isspace.3

● isupper.3

● isxdigit.3

● j0.3

● j1.3

● jn.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (6 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/inet_addr.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_aton.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_lnaof.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_makeaddr.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_netof.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_network.3.html
http://linuxsavvy.com/resources/linux/man/man3/inet_ntoa.3.html
http://linuxsavvy.com/resources/linux/man/man3/initstate.3.html
http://linuxsavvy.com/resources/linux/man/man3/iruserok.3.html
http://linuxsavvy.com/resources/linux/man/man3/isalnum.3.html
http://linuxsavvy.com/resources/linux/man/man3/isascii.3.html
http://linuxsavvy.com/resources/linux/man/man3/isblank.3.html
http://linuxsavvy.com/resources/linux/man/man3/iscntrl.3.html
http://linuxsavvy.com/resources/linux/man/man3/isdigit.3.html
http://linuxsavvy.com/resources/linux/man/man3/isgraph.3.html
http://linuxsavvy.com/resources/linux/man/man3/islower.3.html
http://linuxsavvy.com/resources/linux/man/man3/isnan.3.html
http://linuxsavvy.com/resources/linux/man/man3/isprint.3.html
http://linuxsavvy.com/resources/linux/man/man3/ispunct.3.html
http://linuxsavvy.com/resources/linux/man/man3/isspace.3.html
http://linuxsavvy.com/resources/linux/man/man3/isupper.3.html
http://linuxsavvy.com/resources/linux/man/man3/isxdigit.3.html
http://linuxsavvy.com/resources/linux/man/man3/j1.3.html
http://linuxsavvy.com/resources/linux/man/man3/jn.3.html

● jrand48.3

● killpg.3

● labs.3

● lcong48.3

● ldexp.3

● ldiv.3

● lfind.3

● lgamma.3

● localeconv.3

● localtime.3

● log.3

● log10.3

● log1p.3

● logwtmp.3

● longjmp.3

● lrand48.3

● lsearch.3

● malloc.3

● mblen.3

● mbstowcs.3

● mbtowc.3

● memccpy.3

● memchr.3

● memcmp.3

● memcpy.3

● memfrob.3

● memmem.3

● memmove.3

● memset.3

● mkfifo.3

● mkstemp.3

● mktemp.3

● mktime.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (7 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/jrand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/lcong48.3.html
http://linuxsavvy.com/resources/linux/man/man3/lfind.3.html
http://linuxsavvy.com/resources/linux/man/man3/localtime.3.html
http://linuxsavvy.com/resources/linux/man/man3/log.3.html
http://linuxsavvy.com/resources/linux/man/man3/log10.3.html
http://linuxsavvy.com/resources/linux/man/man3/log1p.3.html
http://linuxsavvy.com/resources/linux/man/man3/logwtmp.3.html
http://linuxsavvy.com/resources/linux/man/man3/lrand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/mktime.3.html

● modf.3

● mrand48.3

● nrand48.3

● ntohl.3

● ntohs.3

● on_exit.3

● opendir.3

● openlog.3

● pathconf.3

● pclose.3

● perror.3

● popen.3

● pow.3

● printf.3

● profil.3

● psignal.3

● putc.3

● putchar.3

● putenv.3

● putpwent.3

● puts.3

● pututline.3

● putw.3

● qsort.3

● raise.3

● rand.3

● random.3

● rcmd.3

● re_comp.3

● re_exec.3

● readdir.3

● readv.3

● realloc.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (8 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/mrand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/nrand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/ntohl.3.html
http://linuxsavvy.com/resources/linux/man/man3/ntohs.3.html
http://linuxsavvy.com/resources/linux/man/man3/openlog.3.html
http://linuxsavvy.com/resources/linux/man/man3/pathconf.3.html
http://linuxsavvy.com/resources/linux/man/man3/pclose.3.html
http://linuxsavvy.com/resources/linux/man/man3/pow.3.html
http://linuxsavvy.com/resources/linux/man/man3/putc.3.html
http://linuxsavvy.com/resources/linux/man/man3/putchar.3.html
http://linuxsavvy.com/resources/linux/man/man3/pututline.3.html
http://linuxsavvy.com/resources/linux/man/man3/putw.3.html
http://linuxsavvy.com/resources/linux/man/man3/re_exec.3.html
http://linuxsavvy.com/resources/linux/man/man3/realloc.3.html

● realpath.3

● regcomp.3

● regerror.3

● regex.3

● regexec.3

● regfree.3

● remove.3

● remque.3

● res_init.3

● res_mkquery.3

● res_query.3

● res_querydomain.3

● res_search.3

● res_send.3

● resolver.3

● rewind.3

● rewinddir.3

● rindex.3

● rint.3

● rresvport.3

● ruserok.3

● scandir.3

● scanf.3

● seed48.3

● seekdir.3

● setbuf.3

● setbuffer.3

● setenv.3

● setgrent.3

● sethostent.3

● setjmp.3

● setlinebuf.3

● setlocale.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (9 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/regcomp.3.html
http://linuxsavvy.com/resources/linux/man/man3/regerror.3.html
http://linuxsavvy.com/resources/linux/man/man3/regexec.3.html
http://linuxsavvy.com/resources/linux/man/man3/regfree.3.html
http://linuxsavvy.com/resources/linux/man/man3/remque.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_init.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_mkquery.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_query.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_querydomain.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_search.3.html
http://linuxsavvy.com/resources/linux/man/man3/res_send.3.html
http://linuxsavvy.com/resources/linux/man/man3/rewind.3.html
http://linuxsavvy.com/resources/linux/man/man3/rindex.3.html
http://linuxsavvy.com/resources/linux/man/man3/rresvport.3.html
http://linuxsavvy.com/resources/linux/man/man3/ruserok.3.html
http://linuxsavvy.com/resources/linux/man/man3/seed48.3.html
http://linuxsavvy.com/resources/linux/man/man3/setbuffer.3.html
http://linuxsavvy.com/resources/linux/man/man3/setgrent.3.html
http://linuxsavvy.com/resources/linux/man/man3/sethostent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setlinebuf.3.html

● setmntent.3

● setnetent.3

● setprotoent.3

● setpwent.3

● setservent.3

● setstate.3

● setusershell.3

● setutent.3

● setvbuf.3

● sigaddset.3

● sigdelset.3

● sigemptyset.3

● sigfillset.3

● siginterrupt.3

● sigismember.3

● siglongjmp.3

● sigsetjmp.3

● sigsetops.3

● sin.3

● sinh.3

● sleep.3

● snprintf.3

● sprintf.3

● sqrt.3

● srand.3

● srand48.3

● srandom.3

● sscanf.3

● stdarg.3

● stderr.3

● stdin.3

● stdio.3

● stdout.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (10 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/setmntent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setnetent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setprotoent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setpwent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setservent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setstate.3.html
http://linuxsavvy.com/resources/linux/man/man3/setusershell.3.html
http://linuxsavvy.com/resources/linux/man/man3/setutent.3.html
http://linuxsavvy.com/resources/linux/man/man3/setvbuf.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigaddset.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigdelset.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigemptyset.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigfillset.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigismember.3.html
http://linuxsavvy.com/resources/linux/man/man3/siglongjmp.3.html
http://linuxsavvy.com/resources/linux/man/man3/sigsetjmp.3.html
http://linuxsavvy.com/resources/linux/man/man3/sprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/srand.3.html
http://linuxsavvy.com/resources/linux/man/man3/srand48.3.html
http://linuxsavvy.com/resources/linux/man/man3/srandom.3.html
http://linuxsavvy.com/resources/linux/man/man3/sscanf.3.html
http://linuxsavvy.com/resources/linux/man/man3/stderr.3.html
http://linuxsavvy.com/resources/linux/man/man3/stdout.3.html

● stpcpy.3

● strcasecmp.3

● strcat.3

● strchr.3

● strcmp.3

● strcoll.3

● strcpy.3

● strcspn.3

● strdup.3

● strerror.3

● strfry.3

● strftime.3

● string.3

● strlen.3

● strncasecmp.3

● strncat.3

● strncmp.3

● strncpy.3

● strpbrk.3

● strptime.3

● strrchr.3

● strsep.3

● strsignal.3

● strspn.3

● strstr.3

● strtod.3

● strtok.3

● strtol.3

● strtoul.3

● strxfrm.3

● swab.3

● sysconf.3

● syslog.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (11 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/strcspn.3.html
http://linuxsavvy.com/resources/linux/man/man3/strncasecmp.3.html
http://linuxsavvy.com/resources/linux/man/man3/strncat.3.html
http://linuxsavvy.com/resources/linux/man/man3/strncmp.3.html
http://linuxsavvy.com/resources/linux/man/man3/strncpy.3.html
http://linuxsavvy.com/resources/linux/man/man3/strrchr.3.html

● system.3

● tan.3

● tanh.3

● tcdrain.3

● tcflow.3

● tcflush.3

● tcgetattr.3

● tcgetpgrp.3

● tcsendbreak.3

● tcsetattr.3

● tcsetpgrp.3

● tdelete.3

● telldir.3

● tempnam.3

● termios.3

● tfind.3

● tmpfile.3

● tmpnam.3

● toascii.3

● tolower.3

● toupper.3

● tsearch.3

● ttyname.3

● twalk.3

● tzset.3

● ulimit.3

● undocumented.3

● ungetc.3

● unsetenv.3

● updwtmp.3

● usleep.3

● utmpname.3

● va_arg.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (12 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/tcdrain.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcflow.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcflush.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcgetattr.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcgetpgrp.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcsendbreak.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcsetattr.3.html
http://linuxsavvy.com/resources/linux/man/man3/tcsetpgrp.3.html
http://linuxsavvy.com/resources/linux/man/man3/tdelete.3.html
http://linuxsavvy.com/resources/linux/man/man3/tfind.3.html
http://linuxsavvy.com/resources/linux/man/man3/tolower.3.html
http://linuxsavvy.com/resources/linux/man/man3/twalk.3.html
http://linuxsavvy.com/resources/linux/man/man3/ungetc.3.html
http://linuxsavvy.com/resources/linux/man/man3/unsetenv.3.html
http://linuxsavvy.com/resources/linux/man/man3/utmpname.3.html
http://linuxsavvy.com/resources/linux/man/man3/va_arg.3.html

● va_end.3

● va_start.3

● vfprintf.3

● vfscanf.3

● vprintf.3

● vscanf.3

● vsnprintf.3

● vsprintf.3

● vsscanf.3

● wcstombs.3

● wctomb.3

● writev.3

● y0.3

● y1.3

● yn.3

Linux Man Pages Section 3

http://linuxsavvy.com/resources/linux/man/man3/ (13 of 13) [14/09/1999 09:49:47]

http://linuxsavvy.com/resources/linux/man/man3/va_end.3.html
http://linuxsavvy.com/resources/linux/man/man3/va_start.3.html
http://linuxsavvy.com/resources/linux/man/man3/vfprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vfscanf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vscanf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vsnprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vsprintf.3.html
http://linuxsavvy.com/resources/linux/man/man3/vsscanf.3.html
http://linuxsavvy.com/resources/linux/man/man3/writev.3.html
http://linuxsavvy.com/resources/linux/man/man3/y0.3.html
http://linuxsavvy.com/resources/linux/man/man3/y1.3.html
http://linuxsavvy.com/resources/linux/man/man3/yn.3.html

NAME

 __setfpucw - set fpu control word on i386 architecture

SYNOPSIS

 #include <i386/fpu_control.h>

 void __setfpucw((unsigned short) control_word));

DESCRIPTION

 __setfpucw transfer control_word to the registers of the fpu
 (floating point unit) on i386 architecture. This can be used
 to control floating point precision, rounding and floating
 point exceptions.

EXAMPLE

 __setfpucw(0x1372)

 Set fpu control word on i386 architecture to
 - extended precision
 - rounding to nearest
 - exceptions on overflow, zero divide and NaN

http://linuxsavvy.com/resources/linux/man/man3/__setfpucw.3.html (1 of 2) [14/09/1999 09:49:49]

SEE ALSO

 /usr/include/i386/fpu_control.h

http://linuxsavvy.com/resources/linux/man/man3/__setfpucw.3.html (2 of 2) [14/09/1999 09:49:49]

NAME

 abort - cause abnormal program termination

SYNOPSIS

 #include <stdlib.h>

 void abort(void);

DESCRIPTION

 The abort() function causes abnormal program termination
 unless the signal SIGABORT is caught and the signal handler
 does not return. If the abort() function causes program
 termination, all open streams are closed and flushed.

 If the SIGABORT function is blocked or ignored, the abort()
 function will still override it.

RETURN VALUE

 The abort() function never returns.

http://linuxsavvy.com/resources/linux/man/man3/abort.3.html (1 of 2) [14/09/1999 09:49:52]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 sigaction(2), exit(3)

http://linuxsavvy.com/resources/linux/man/man3/abort.3.html (2 of 2) [14/09/1999 09:49:52]

NAME

 abs - computes the absolute value of an integer.

SYNOPSIS

 #include <stdlib.h>

 int abs(int j);

DESCRIPTION

 The abs() function computes the absolute value of the
 integer argument j.

RETURN VALUE

 Returns the absolute value of the integer argument.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/abs.3.html (1 of 2) [14/09/1999 09:49:54]

NOTES

 Trying to take the absolute value of the most negative
 integer is not defined.

SEE ALSO

 ceil(3), floor(3), fabs(3),

http://linuxsavvy.com/resources/linux/man/man3/abs.3.html (2 of 2) [14/09/1999 09:49:54]

NAME

 acos - arc cosine function

SYNOPSIS

 #include <math.h>

 double acos(double x);

DESCRIPTION

 The acos() function calculates the arc cosine of x; that is
 the value whose cosine is x. If x falls outside the range
 -1 to 1, acos() fails and errno is set.

RETURN VALUE

 The acos() function returns the arc cosine in radians and
 the value is mathematically defined to be between 0 and PI
 (inclusive).

ERRORS

 EDOM x is out of range.

http://linuxsavvy.com/resources/linux/man/man3/acos.3.html (1 of 2) [14/09/1999 09:49:56]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 asin(3), atan(3), atan2(3),

http://linuxsavvy.com/resources/linux/man/man3/acos.3.html (2 of 2) [14/09/1999 09:49:56]

NAME

 acosh - inverse hyperbolic cosine function

SYNOPSIS

 #include <math.h>

 double acosh(double x);

DESCRIPTION

 The acosh() function calculates the inverse hyperbolic
 cosine of x; that is the value whose hyperbolic cosine is x.
 If x is less than 1.0, acosh() returns not-a-number (NaN)
 and errno is set.

ERRORS

 EDOM x is out of range.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/acosh.3.html (1 of 2) [14/09/1999 09:49:57]

SEE ALSO

 asinh(3), atanh(3), cosh(3),

http://linuxsavvy.com/resources/linux/man/man3/acosh.3.html (2 of 2) [14/09/1999 09:49:57]

NAME

 alloca - memory allocator

SYNOPSIS

 #include <stdlib.h>

 void *alloca(size_t size));

DESCRIPTION

 The alloca function allocates size bytes of space in the
 stack frame of the caller. This temporary space is automat-
 ically freed on return.

RETURN VALUES

 The alloca function returns a pointer to the beginning of
 the allocated space. If the allocation failed, a NULL
 pointer is returned.

CONFORMING TO

 There is evidence that the alloca function appeared in 32v,
 pwb, pwb.2, 3bsd, and 4bsd. There is a man page for it in

http://linuxsavvy.com/resources/linux/man/man3/alloca.3.html (1 of 2) [14/09/1999 09:49:59]

 BSD 4.3. Linux uses the GNU version.

BUGS

 The alloca function is machine dependent.

SEE ALSO

 brk(2), pagesize(2), calloc(3),

http://linuxsavvy.com/resources/linux/man/man3/alloca.3.html (2 of 2) [14/09/1999 09:49:59]

NAME

 asin - arc sine function

SYNOPSIS

 #include <math.h>

 double asin(double x);

DESCRIPTION

 The asin() function calculates the arc sine of x; that is
 the value whose sine is x. If x falls outside the range -1
 to 1, asin() fails and errno is set.

RETURN VALUE

 The asin() function returns the arc sine in radians and the
 value is mathematically defined to be between -PI/2 and PI/2
 (inclusive).

ERRORS

 EDOM x is out of range.

http://linuxsavvy.com/resources/linux/man/man3/asin.3.html (1 of 2) [14/09/1999 09:50:04]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acos(3), atan(3), atan2(3),

http://linuxsavvy.com/resources/linux/man/man3/asin.3.html (2 of 2) [14/09/1999 09:50:04]

NAME

 asinh - inverse hyperbolic sine function

SYNOPSIS

 #include <math.h>

 double asinh(double x);

DESCRIPTION

 The asinh() function calculates the inverse hyperbolic sine
 of x; that is the value whose hyperbolic sine is x.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acosh(3), atanh(3), cosh(3),

http://linuxsavvy.com/resources/linux/man/man3/asinh.3.html (1 of 2) [14/09/1999 09:50:05]

http://linuxsavvy.com/resources/linux/man/man3/asinh.3.html (2 of 2) [14/09/1999 09:50:05]

NAME

 assert - Abort the program if assertion is false.

SYNOPSIS

 #include <assert.h>

 void assert (int expression));

DESCRIPTION

 assert() prints an error message to standard output and ter-
 minates the program by calling abort() if expression is
 false (i.e., compares equal to zero). This only happens
 when the macro NDEBUG is undefined.

RETURN VALUE

 No value is returned.

CONFORMING TO

 ISO9899 (ANSI C)

http://linuxsavvy.com/resources/linux/man/man3/assert.3.html (1 of 2) [14/09/1999 09:50:07]

BUGS

 assert() is implemented as a macro; if the expression tested
 has side - effects, program behaviour will be different
 depending on whether NDEBUG is defined. This may create
 Heisenbugs which go away when debugging is turned on.

SEE ALSO

 exit(3), abort(3)

http://linuxsavvy.com/resources/linux/man/man3/assert.3.html (2 of 2) [14/09/1999 09:50:07]

NAME

 atan - arc tangent function

SYNOPSIS

 #include <math.h>

 double atan(double x);

DESCRIPTION

 The atan() function calculates the arc tangent of x; that is
 the value whose tangent is x.

RETURN VALUE

 The atan() function returns the arc tangent in radians and
 the value is mathematically defined to be between -PI/2 and
 PI/2 (inclusive).

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/atan.3.html (1 of 2) [14/09/1999 09:50:09]

SEE ALSO

 acos(3), asin(3), atan2(3),

http://linuxsavvy.com/resources/linux/man/man3/atan.3.html (2 of 2) [14/09/1999 09:50:09]

NAME

 atan2 - arc tangent function of two variables

SYNOPSIS

 #include <math.h>

 double atan2(double y, double x);

DESCRIPTION

 The atan2() function calculates the arc tangent of the two
 variables x and y. It is similar to calculating the arc
 tangent of y / x, except that the signs of both arguments
 are used to determine the quadrant of the result.

RETURN VALUE

 The atan2() function returns the result in radians, which is
 between -PI and PI (inclusive).

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/atan2.3.html (1 of 2) [14/09/1999 09:50:10]

SEE ALSO

 acos(3), asin(3), atan(3),

http://linuxsavvy.com/resources/linux/man/man3/atan2.3.html (2 of 2) [14/09/1999 09:50:10]

NAME

 atanh - inverse hyperbolic tangent function

SYNOPSIS

 #include <math.h>

 double atanh(double x);

DESCRIPTION

 The atanh() function calculates the inverse hyperbolic
 tangent of x; that is the value whose hyperbolic tangent is
 x. If the absolute value of x is greater than 1.0, acosh()
 returns not-a-number (NaN) and errno is set.

ERRORS

 EDOM x is out of range.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/atanh.3.html (1 of 2) [14/09/1999 09:50:12]

SEE ALSO

 asinh(3), acosh(3), cosh(3),

http://linuxsavvy.com/resources/linux/man/man3/atanh.3.html (2 of 2) [14/09/1999 09:50:12]

NAME

 atexit - register a function to be called at normal program
 termination.

SYNOPSIS

 #include <stdlib.h>

 int atexit(void (*function))(void));

DESCRIPTION

 The atexit() function registers the given function to be
 called at normal program termination, whether via exit(3) or
 via return from the program's main. Functions so registered
 are called in the reverse order of their registration; no
 arguments are passed.

RETURN VALUE

 The atexit() function returns the value 0 if successful;
 otherwise the value -1 is returned; errno is not set.

http://linuxsavvy.com/resources/linux/man/man3/atexit.3.html (1 of 2) [14/09/1999 09:50:14]

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 exit(3), on_exit(3)

http://linuxsavvy.com/resources/linux/man/man3/atexit.3.html (2 of 2) [14/09/1999 09:50:14]

NAME

 atof - convert a string to a double.

SYNOPSIS

 #include <stdlib.h>

 double atof(const char *nptr));

DESCRIPTION

 The atof() function converts the initial portion of the
 string pointed to by nptr to double. The behaviour is the
 same as

 strtod(nptr, (char **)NULL);

 except that atof() does not detect errors.

RETURN VALUE

 The converted value.

http://linuxsavvy.com/resources/linux/man/man3/atof.3.html (1 of 2) [14/09/1999 09:50:15]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 atoi(3), atol(3), strtod(3),

http://linuxsavvy.com/resources/linux/man/man3/atof.3.html (2 of 2) [14/09/1999 09:50:15]

NAME

 atoi - convert a string to an integer.

SYNOPSIS

 #include <stdlib.h>

 int atoi(const char *nptr));

DESCRIPTION

 The atoi() function converts the initial portion of the
 string pointed to by nptr to int. The behaviour is the same
 as

 strtol(nptr, (char **)NULL, 10);

 except that atoi() does not detect errors.

RETURN VALUE

 The converted value.

http://linuxsavvy.com/resources/linux/man/man3/atoi.3.html (1 of 2) [14/09/1999 09:50:18]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 atof(3), atol(3), strtod(3),

http://linuxsavvy.com/resources/linux/man/man3/atoi.3.html (2 of 2) [14/09/1999 09:50:18]

NAME

 atol - convert a string to a long integer.

SYNOPSIS

 #include <stdlib.h>

 long atol(const char *nptr));

DESCRIPTION

 The atol() function converts the initial portion of the
 string pointed to by nptr to long. The behaviour is the
 same as

 strtol(nptr, (char **)NULL, 10);

 except that atol() does not detect errors.

RETURN VALUE

 The converted value.

http://linuxsavvy.com/resources/linux/man/man3/atol.3.html (1 of 2) [14/09/1999 09:50:19]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 atof(3), atoi(3), strtod(3),

http://linuxsavvy.com/resources/linux/man/man3/atol.3.html (2 of 2) [14/09/1999 09:50:19]

NAME

 bcmp - compare byte strings

SYNOPSIS

 #include <string.h>

 int bcmp(const void *s1, const void *s2, int n

DESCRIPTION

 The bcmp() function compares the first n bytes of the
 strings s1 and s2. If the two strings are equal, bcmp()
 returns 0, otherwise it returns a non-zero result. If n is
 zero, the two strings are assumed to be equal.

RETURN VALUE

 The bcmp() function returns 0 if the strings are equal, oth-
 erwise a non-zero result is returned.

CONFORMING TO

 4.3BSD. This function is deprecated -- use memcmp in new
 programs.

http://linuxsavvy.com/resources/linux/man/man3/bcmp.3.html (1 of 2) [14/09/1999 09:50:21]

SEE ALSO

 memcmp(3), strcasecmp(3), strcmp(3), strcoll(3), strncmp(3),
 strncasecmp(3)

http://linuxsavvy.com/resources/linux/man/man3/bcmp.3.html (2 of 2) [14/09/1999 09:50:21]

NAME

 bcopy - copy byte strings

SYNOPSIS

 #include <string.h>

 void bcopy (const void *src, void *dest, int n

DESCRIPTION

 The bcopy() function copies the first n bytes of the source
 string src to the destination string dest. If n is zero, no
 bytes are copied.

RETURN VALUE

 The bcopy() function returns no value.

CONFORMING TO

 4.3BSD. This function is deprecated -- use memcpy in new
 programs.

http://linuxsavvy.com/resources/linux/man/man3/bcopy.3.html (1 of 2) [14/09/1999 09:50:23]

SEE ALSO

 memccpy(3), memcpy(3), memmove(3),

http://linuxsavvy.com/resources/linux/man/man3/bcopy.3.html (2 of 2) [14/09/1999 09:50:23]

NAME

 bsearch - binary search of a sorted array.

SYNOPSIS

 #include <stdlib.h>

 void *bsearch(const void *key, const void *base, size_t nmemb
 size_t size, int (*compar))(const void *, const void *));

DESCRIPTION

 The bsearch() function searches an array of nmemb objects,
 the initial member of which is pointed to by base, for a
 member that matches the object pointed to by key. The size
 of each member of the array is specified by size.

 The contents of the array should be in ascending sorted
 order according to the comparison function referenced by
 compar. The compar routine is expected to have two argu-
 ments which point to the key object and to an array member,
 in that order, and should return an integer less than, equal
 to, or greater than zero if the key object is found, respec-
 tively, to be less than, to match, or be greater than the
 array member.

http://linuxsavvy.com/resources/linux/man/man3/bsearch.3.html (1 of 2) [14/09/1999 09:50:25]

RETURN VALUE

 The bsearch() function returns a pointer to a matching
 member of the array, or NULL if no match is found. If there
 are multiple elements that match the key, the element
 returned is unspecified.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 qsort(3)

http://linuxsavvy.com/resources/linux/man/man3/bsearch.3.html (2 of 2) [14/09/1999 09:50:25]

NAME

 bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, mem-
 frob, memmem, memmove, memset - byte string operations

SYNOPSIS

 #include <string.h>

 int bcmp(const void *s1, const void *s2, int n

 void bcopy(const void *src, void *dest, int n

 void bzero(void *s, int n);

 void *memccpy(void *dest, const void *src, int c

 void *memchr(const void *s, int c, size_t n

 int memcmp(const void *s1, const void *s2, size_t n

 void *memcpy(void *dest, const void *src, size_t n

 void *memfrob(void *s, size_t n);

 void *memmem(const void *needle, size_t needlelen,
 const void *haystack, size_t haystacklen));

 void *memmove(void *dest, const void *src, size_t n

 void *memset(void *s, int c, size_t n

http://linuxsavvy.com/resources/linux/man/man3/bstring.3.html (1 of 2) [14/09/1999 09:50:27]

DESCRIPTION

 The byte string functions perform operations on strings that
 are not NULL-terminated. See the individual man pages for
 descriptions of each function.

SEE ALSO

 bcmp(3), bcopy(3), bzero(3), memcmp(3), memcpy(3), mem-
 frob(3), memmove(3), memset(3)

http://linuxsavvy.com/resources/linux/man/man3/bstring.3.html (2 of 2) [14/09/1999 09:50:27]

NAME

 htonl, htons, ntohl, ntohs - convert values between host and
 network byte order

SYNOPSIS

 #include <netinet/in.h>

 unsigned long int htonl(unsigned long int hostlong));

 unsigned short int htons(unsigned short int hostshort));

 unsigned long int ntohl(unsigned long int netlong));

 unsigned short int ntohs(unsigned short int netshort));

DESCRIPTION

 The htonl() function converts the long integer hostlong from
 host byte order to network byte order.

 The htons() function converts the short integer hostshort
 from host byte order to network byte order.

 The ntohl() function converts the long integer netlong from
 network byte order to host byte order.

 The ntohs() function converts the short integer netshort
 from network byte order to host byte order.

 On the i80x86 the host byte order is Least Significant Byte
 first, whereas the network byte order, as used on the Inter-
 net, is Most Significant Byte first.

http://linuxsavvy.com/resources/linux/man/man3/byteorder.3.html (1 of 2) [14/09/1999 09:50:29]

CONFORMING TO

 BSD 4.3

SEE ALSO

 gethostbyname(3), getservent(3)

http://linuxsavvy.com/resources/linux/man/man3/byteorder.3.html (2 of 2) [14/09/1999 09:50:29]

NAME

 bzero - write zeros to a byte string

SYNOPSIS

 #include <string.h>

 void bzero(void *s, int n);

DESCRIPTION

 The bzero() function sets the first n bytes of the byte
 string s to zero.

RETURN VALUE

 The bzero() function returns no value.

CONFORMING TO

 4.3BSD. This function is deprecated -- use memset in new
 programs.

http://linuxsavvy.com/resources/linux/man/man3/bzero.3.html (1 of 2) [14/09/1999 09:50:31]

SEE ALSO

 memset(3), swab(3)

http://linuxsavvy.com/resources/linux/man/man3/bzero.3.html (2 of 2) [14/09/1999 09:50:31]

NAME

 catgets - get message from a message catalog

SYNOPSIS

 #include <nl_types.h>

 char *catgets(nl_catd catalog, int set_number, int
 message_number, const char *message));

DESCRIPTION

 catgets() reads the message message_number, in set
 set_number, from the message catalog identified by catalog,
 where catalog is a catalog descriptor returned from an ear-
 lier call to catopen(3). The fourth argument message points
 to a default message string which will be returned by cat-
 gets() if the identified message catalog is not currently
 available. The message-text is contained in an internal
 buffer area and should be copied by the application if it is
 to be saved or modified. The return string is always ter-
 minated with a null byte.

RETURN VALUES

 On success, catgets() returns a pointer to an internal
 buffer area containing the null-terminated message string.
 On failure, catgets() returns the value message.

http://linuxsavvy.com/resources/linux/man/man3/catgets.3.html (1 of 2) [14/09/1999 09:50:36]

NOTES

 These functions are only available in libc.so.4.4.4c and
 above. The Jan 1987 X/Open Portability Guide specifies a
 more subtle error return: message is returned if the mes-
 sage catalog specified by catalog is not available, while an
 empty string is returned when the message catalog is avail-
 able but does not contain the specified message. These two
 possible error returns seem to be discarded in XPG4.2 in
 favour of always returning message.

CONFORMING TO

 XPG4.2

SEE ALSO

 catopen(3), setlocale(3)

http://linuxsavvy.com/resources/linux/man/man3/catgets.3.html (2 of 2) [14/09/1999 09:50:36]

NAME

 catopen, catclose - open/close a message catalog

SYNOPSIS

 #include <features.h>
 #include <nl_types.h>

 nl_catd catopen(name, flag)
 char *name;
 int flag;

 void catclose(catalog)
 nl_catd catalog;

DESCRIPTION

 catopen() opens a message catalog and returns a catalog
 descriptor. name specifies the name of the message catalog
 to be opened. If name specifies and absolute path, (i.e.
 contains a `/') then name specifies a pathname for the mes-
 sage catalog. Otherwise, the environment variable NLSPATH
 is used with name substituted for %N (see locale(7)). If
 NLSPATH does not exist in the environment, or if a message
 catalog cannot be opened in any of the paths specified by
 NLSPATH, then the following paths are searched in order

 /etc/locale/LC_MESSAGES
 /usr/lib/locale/LC_MESSAGES
 /usr/lib/locale/name/LC_MESSAGES

 In all cases LC_MESSAGES stands for the current setting of
 the LC_MESSAGES category of locale from a previous call to

http://linuxsavvy.com/resources/linux/man/man3/catopen.3.html (1 of 3) [14/09/1999 09:50:38]

 setlocale() and defaults to the "C" locale. In the last
 search path name refers to the catalog name.

 The flag argument to catopen is used to indicate the type of
 loading desired. This should be either MCLoadBySet or
 MCLoadAll. The former value indicates that only the
 required set from the catalog is loaded into memory when
 needed, whereas the latter causes the initial call to cato-
 pen() to load the entire catalog into memory.

 catclose() closes the message catalog identified by catalog.
 It invalidates any subsequent references to the message
 catalog defined by catalog.

RETURN VALUES

 catopen() returns a message catalog descriptor of type
 nl_catd on success. On failure, it returns -1.

 catclose() returns 0 on success, or -1 on failure.

NOTES

 These functions are only available in libc.so.4.4.4c and
 above. In the case of linux, the catalog descriptor nl_catd
 is actually a mmap()'ed area of memory and not a file
 descriptor, thus allowing catalogs to be shared.

SEE ALSO

 catgets(3), setlocale(3)

http://linuxsavvy.com/resources/linux/man/man3/catopen.3.html (2 of 3) [14/09/1999 09:50:38]

http://linuxsavvy.com/resources/linux/man/man3/catopen.3.html (3 of 3) [14/09/1999 09:50:38]

NAME

 cbrt - cube root function

SYNOPSIS

 #include <math.h>

 double cbrt (double x);

DESCRIPTION

 The cbrt() function returns the cube root of x. This func-
 tion cannot fail; every representable real value has a
 representable real cube root.

CONFORMING TO

 cbrt is a GNU extension.

SEE ALSO

 sqrt(3), pow(3)

http://linuxsavvy.com/resources/linux/man/man3/cbrt.3.html (1 of 2) [14/09/1999 09:50:40]

http://linuxsavvy.com/resources/linux/man/man3/cbrt.3.html (2 of 2) [14/09/1999 09:50:40]

NAME

 ceil - smallest integral value not less than x

SYNOPSIS

 #include <math.h>

 double ceil (double x);

DESCRIPTION

 The ceil() function rounds x upwards to the nearest integer,
 returning that value as a double.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 abs(3), fabs(3), floor(3),

http://linuxsavvy.com/resources/linux/man/man3/ceil.3.html (1 of 2) [14/09/1999 09:50:43]

http://linuxsavvy.com/resources/linux/man/man3/ceil.3.html (2 of 2) [14/09/1999 09:50:43]

NAME

 clock - Determine processor time

SYNOPSIS

 #include <time.h>

 clock_t clock(void);

DESCRIPTION

 The clock() function returns an approximation of processor
 time used by the program.

RETURN VALUE

 The value returned is the CPU time used so far as a clock_t;
 to get the number of seconds used, divide by CLOCKS_PER_SEC.

CONFORMING TO

 ANSI C

http://linuxsavvy.com/resources/linux/man/man3/clock.3.html (1 of 2) [14/09/1999 09:50:54]

BUGS

 The C standard allows for arbitrary values at the start of
 the program; take the difference between the value returned
 from a call to clock() at the start of the program and the
 end to get maximum portability.

 The times() function call returns more information.

SEE ALSO

 times(2)

http://linuxsavvy.com/resources/linux/man/man3/clock.3.html (2 of 2) [14/09/1999 09:50:54]

NAME

 closedir - close a directory

SYNOPSIS

 #include <sys/types.h>

 #include <dirent.h>

 int closedir(DIR *dir));

DESCRIPTION

 The closedir() function closes the directory stream associ-
 ated with dir. The directory stream descriptor dir is not
 available after this call.

RETURN VALUE

 The closedir() function returns 0 on success or -1 on
 failure.

ERRORS

 EBADF

http://linuxsavvy.com/resources/linux/man/man3/closedir.3.html (1 of 2) [14/09/1999 09:50:56]

 Invalid directory stream descriptor dir.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 close(2), opendir(3), readdir(3), seekdir(3), telldir(3),
 scandir(3)

http://linuxsavvy.com/resources/linux/man/man3/closedir.3.html (2 of 2) [14/09/1999 09:50:56]

NAME

 confstr - get configuration dependent string variables

SYNOPSIS

 #define __USE_POSIX_2
 #include <unistd.h>

 size_t confstr(int name, char *buf, size_t len

DESCRIPTION

 confstr() gets the value of configuration - dependent string
 variables.

 The name argument is the system variable to be queried. The
 following variables are supported:

 _CS_PATH
 A value for the PATH variable which indicates where all
 the POSIX.2 standard utilities can be found.

 If buf is not NULL, and len is not zero, confstr() copies
 the value of the string to buf truncated to len - 1 charac-
 ters if necessary, with a null character as termination.
 This can be detected by comparing the return value of
 confstr() against len.

 If len is zero and buf is NULL, confstr() just returns the
 value as defined below.

http://linuxsavvy.com/resources/linux/man/man3/confstr.3.html (1 of 4) [14/09/1999 09:50:59]

RETURN VALUE

 If name does not correspond to a valid configuration vari-
 able, confstr() returns 0.

EXAMPLES

 The following code fragment determines the path where to
 find the POSIX.2 system utilities:

 char *pathbuf; size_t n;

 n = confstr(_CS_PATH,NULL,(size_t)0);
 if ((pathbuf = malloc(n)) == NULL) abort();
 confstr(_CS_PATH, pathbuf, n);

ERRORS

 If the value of name is invalid, errno is set to EINVAL.

CONFORMING TO

 proposed POSIX.2

BUGS

 POSIX.2 is not yet an approved standard; the information in
 this manpage is subject to change.

http://linuxsavvy.com/resources/linux/man/man3/confstr.3.html (2 of 4) [14/09/1999 09:50:59]

SEE ALSO

 sh(1), exec(3), system(3)

http://linuxsavvy.com/resources/linux/man/man3/confstr.3.html (3 of 4) [14/09/1999 09:50:59]

http://linuxsavvy.com/resources/linux/man/man3/confstr.3.html (4 of 4) [14/09/1999 09:50:59]

NAME

 copysign - copy sign of a number

SYNOPSIS

 #include <math.h>

 double copysign(double x, double y);

DESCRIPTION

 The copysign() function returns a value whose absolute value
 matches x, but whose sign matches that of y.

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/copysign.3.html (1 of 2) [14/09/1999 09:51:01]

http://linuxsavvy.com/resources/linux/man/man3/copysign.3.html (2 of 2) [14/09/1999 09:51:01]

NAME

 cos - cosine function

SYNOPSIS

 #include <math.h>

 double cos(double x);

DESCRIPTION

 The cos() function returns the cosine of x, where x is given
 in radians.

RETURN VALUE

 The cos() function returns a value between -1 and 1.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/cos.3.html (1 of 2) [14/09/1999 09:51:03]

SEE ALSO

 acos(3), asin(3), atan(3),

http://linuxsavvy.com/resources/linux/man/man3/cos.3.html (2 of 2) [14/09/1999 09:51:03]

NAME

 cosh - hyperbolic cosine function

SYNOPSIS

 #include <math.h>

 double cosh(double x);

DESCRIPTION

 The cosh() function returns the hyperbolic cosine of x,
 which is defined mathematically as (exp(x) + exp(-x)) / 2.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acosh(3), asinh(3), atanh(3),

http://linuxsavvy.com/resources/linux/man/man3/cosh.3.html (1 of 2) [14/09/1999 09:51:05]

http://linuxsavvy.com/resources/linux/man/man3/cosh.3.html (2 of 2) [14/09/1999 09:51:05]

NAME

 crypt - password and data encryption

SYNOPSIS

 #define _XOPEN_SOURCE
 #include <unistd.h>

 char *crypt(const char *key, const char *salt));

DESCRIPTION

 crypt is the password encryption function. It is based on
 the Data Encryption Standard algorithm with variations
 intended (among other things) to discourage use of hardware
 implementations of a key search.

 key is a user's typed password.

 salt is a two-character string chosen from the set
 [azAZ09./]. This string is used to perturb the algorithm in
 one of 4096 different ways.

 By taking the lowest 7 bit of each character of the key, a
 56-bit key is obtained. This 56-bit key is used to encrypt
 repeatedly a constant string (usually a string consisting of
 all zeros). The returned value points to the encrypted
 password, a series of 13 printable ASCII characters (the
 first two characters represent the salt itself). The return
 value points to static data whose content is overwritten by
 each call.

 Warning: The key space consists of 2**56 equal 7.2e16 possi-

http://linuxsavvy.com/resources/linux/man/man3/crypt.3.html (1 of 2) [14/09/1999 09:51:08]

 ble values. Exhaustive searches of this key space are pos-
 sible using massively parallel computers. Software, such as
 crack(1), is available which will search the portion of this
 key space that is generally used by humans for passwords.
 Hence, password selection should, at minimum, avoid common
 words and names. The use of a passwd(1) program that checks
 for crackable passwords during the selection process is
 recommended.

 The DES algorithm itself has a few quirks which make the use
 of the crypt(3) interface a very poor choice for anything
 other than password authentication. If you are planning on
 using the crypt(3) interface for a cryptography project,
 don't do it: get a good book on encryption and one of the
 widely available DES libraries.

CONFORMING TO

 SVID, X/OPEN, BSD 4.3

SEE ALSO

 login(1), passwd(1), encrypt(3),

http://linuxsavvy.com/resources/linux/man/man3/crypt.3.html (2 of 2) [14/09/1999 09:51:08]

NAME

 ctermid - get controlling terminal name

SYNOPSIS

 #include <stdio.h>

 char *ctermid(char *s);

DESCRIPTION

 ctermid() returns a string which is the pathname for the
 current controlling terminal for this process. If s is NULL,
 a static buffer is used, otherwise s points to a buffer used
 to hold the terminal pathname. The symbolic constant
 L_ctermid is the maximum number of characters in the
 returned pathname.

RETURN VALUE

 The pointer to the pathname.

CONFORMING TO

 POSIX.1

http://linuxsavvy.com/resources/linux/man/man3/ctermid.3.html (1 of 2) [14/09/1999 09:51:09]

BUGS

 The path returned may not uniquely identify the controlling
 terminal; it may, for example, be /dev/tty.

 It is not assured that the program can open the terminal.

SEE ALSO

 ttyname(3)

http://linuxsavvy.com/resources/linux/man/man3/ctermid.3.html (2 of 2) [14/09/1999 09:51:09]

NAME

 asctime, ctime, gmtime, localtime, mktime - transform binary
 date and time to ASCII

SYNOPSIS

 #include <time.h>

 char *asctime(const struct tm *timeptr));

 char *ctime(const time_t *timep));

 struct tm *gmtime(const time_t *timep));

 struct tm *localtime(const time_t *timep));

 time_t mktime(struct tm *timeptr));

 extern char *tzname[2];
 long int timezone;
 extern int daylight;

DESCRIPTION

 The ctime(), gmtime() and localtime() functions all take an
 argument of data type time_t which represents calendar time.
 When interpreted as an absolute time value, it represents
 the number of seconds elapsed since 00:00:00 on January 1,
 1970, Coordinated Universal Time (UTC).

 The asctime() and mktime() functions both take an argument
 representing broken-down time which is a binary representa-
 tion separated into year, month, day, etc. Broken-down time

http://linuxsavvy.com/resources/linux/man/man3/ctime.3.html (1 of 4) [14/09/1999 09:51:12]

 is stored in the structure tm which is defined in <time.h>
 as follows:

 struct tm
 {
 int tm_sec; /* seconds */
 int tm_min; /* minutes */
 int tm_hour; /* hours */
 int tm_mday; /* day of the month */
 int tm_mon; /* month */
 int tm_year; /* year */
 int tm_wday; /* day of the week */
 int tm_yday; /* day in the year */
 int tm_isdst; /* daylight saving time */
 };

 The members of the tm structure are:

 tm_sec
 The number of seconds after the minute, normally in the
 range 0 to 59, but can be up to 61 to allow for leap
 seconds.

 tm_min
 The number of minutes after the hour, in the range 0 to
 59.

 tm_hour
 The number of hours past midnight, in the range 0 to
 23.

 tm_mday
 The day of the month, in the range 1 to 31.

 tm_mon
 The number of months since January, in the range 0 to
 11.

 tm_year
 The number of years since 1900.

 tm_wday
 The number of days since Sunday, in the range 0 to 6.

 tm_yday
 The number of days since January 1, in the range 0 to

http://linuxsavvy.com/resources/linux/man/man3/ctime.3.html (2 of 4) [14/09/1999 09:51:12]

 365.

 tm_isdst
 A flag that indicates whether daylight saving time is
 in effect at the time described. The value is positive
 if daylight saving time is in effect, zero if it is
 not, and negative if the information is not available.

 The ctime() function converts the calendar time timep into a
 string of the form

 "Wed Jun 30 21:49:08 1993\n"

 The abbreviations for the days of the week are `Sun', `Mon',
 `Tue', `Wed', `Thu', `Fri', and `Sat'. The abbreviations
 for the months are `Jan', `Feb', `Mar', `Apr', `May', `Jun',
 `Jul', `Aug', `Sep', `Oct', `Nov', and `Dec'. The return
 value points to a statically allocated string which might be
 overwritten by subsequent calls to any of the date and time
 functions. The function also sets the external variable
 tzname with information about the current time zone.

 The gmtime() function converts the calendar time timep to
 broken-down time representation, expressed in Coordinated
 Universal Time (UTC).

 The localtime() function converts the calendar time timep to
 broken-time representation, expressed relative to the user's
 specified time zone. The function sets the external vari-
 ables tzname with information about the current time zone,
 timezone with the difference between Coordinated Universal
 Time (UTC) and local standard time in seconds, and daylight
 to a non-zero value if standard US daylight savings time
 rules apply.

 The asctime() function converts the broken-down time value
 timeptr into a string with the same format as ctime(). The
 return value points to a statically allocated string which
 might be overwritten by subsequent calls to any of the date
 and time functions.

 The mktime() function converts a broken-down time structure,
 expressed as local time, to calendar time representation.
 The function ignores the specified contents of the structure
 members tm_wday and tm_yday and recomputes them from the

http://linuxsavvy.com/resources/linux/man/man3/ctime.3.html (3 of 4) [14/09/1999 09:51:12]

 other information in the broken-down time structure. Cal-
 ling mktime() also sets the external variable tzname with
 information about the current time zone. If the specified
 broken-down time cannot be represented as calendar time,
 mktime() returns a value of (time_t)(-1) and does not alter
 the tm_wday and tm_yday members of the broken-down time
 structure.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 date(1), gettimeofday(2), time(2), difftime(3), strftime(3),
 newctime(3).

http://linuxsavvy.com/resources/linux/man/man3/ctime.3.html (4 of 4) [14/09/1999 09:51:12]

NAME

 difftime - calculate time difference

SYNOPSIS

 #include <time.h>

 double difftime(time_t time1, time_t time0));

DESCRIPTION

 The difftime() function returns the number of seconds
 elapsed between time time1 and time time0. The two times
 are specified in calendar time, which represents the time
 elapsed since 00:00:00 on January 1, 1970, Coordinated
 Universal Time (UTC).

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 date(1), gettimeofday(2), time(2), ctime(3), gmtime(3),
 localtime(3)

http://linuxsavvy.com/resources/linux/man/man3/difftime.3.html (1 of 2) [14/09/1999 09:51:16]

http://linuxsavvy.com/resources/linux/man/man3/difftime.3.html (2 of 2) [14/09/1999 09:51:16]

NAME

 div - computes the quotient and remainder of integer divi-
 sion

SYNOPSIS

 #include <stdlib.h>

 div_t div(int numer, int denom));

DESCRIPTION

 The div() function computes the value numer/denom and
 returns the quotient and remainder in a structure named
 div_t that contains two integer members named quot and rem.

RETURN VALUE

 The div_t structure.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/div.3.html (1 of 2) [14/09/1999 09:51:18]

SEE ALSO

 ldiv(3)

http://linuxsavvy.com/resources/linux/man/man3/div.3.html (2 of 2) [14/09/1999 09:51:18]

NAME

 drand48, erand48, lrand48, nrand48, mrand48, jrand48,
 srand48, seed48, lcong48 - generate uniformly distributed
 pseudo-random numbers

SYNOPSIS

 #include <stdlib.h>

 double drand48(void);

 double erand48(unsigned short int xsubi[3]);

 long int lrand48(void);

 long int nrand48(unsigned short int xsubi[3]);

 long int mrand48(void);

 long int jrand48(unsigned short int xsubi[3]);

 void srand48(long int seedval));

 unsigned short int *seed48(unsignedshortint seed16v [3]);

 void lcong48(unsigned short int param[7]);

DESCRIPTION

 These functions generate pseudo-random numbers using the
 linear congruential algorithm and 48-bit integer arithmetic.

 The drand48() and erand48() functions return non-negative

http://linuxsavvy.com/resources/linux/man/man3/drand48.3.html (1 of 3) [14/09/1999 09:51:25]

 double-precision floating-point values uniformly distributed
 between [0.0, 1.0).

 The lrand48() and nrand48() functions return non-negative
 long integers uniformly distributed between 0 and 2^31.

 The mrand48() and jrand48() functions return signed long
 integers uniformly distributed between -2^31 and 2^31.

 The srand48(), seed48() and lcong48() functions are initial-
 ization functions, one of which should be called before
 using drand48(), lrand48() or mrand49(). The functions
 erand48(), nrand48() and jrand48() do not require an ini-
 tialization function to be called first.

 All the functions work by generating a sequence of 48-bit
 integers, Xi, according to the linear congruential formula:

 Xn+1 = (aXn + c) mod

 The parameter m = 2^48, hence 48-bit integer arithmetic is
 performed. Unless lcong48() is called, a and c are given
 by:

 a = 0x5DEECE66D
 c = 0xB

 The value returned by any of the functions drand48(),
 erand48(), lrand48(), nrand48(), mrand48() or jrand48() is
 computed by first generating the next 48-bit Xi in the
 sequence. Then the appropriate number of bits, according to
 the type of data item to be returned, is copied from the
 high-order bits of Xi and transformed into the returned
 value.

 The functions drand48(), lrand48() and mrand48() store the
 last 48-bit Xi generated in an internal buffer. The func-
 tions erand48(), nrand48() and jrand48() require the calling
 program to provide storage for the successive Xi values in
 the array argument xsubi. The functions are initialized by
 placing the initial value of Xi into the array before cal-
 ling the function for the first time.

 The initializer function srand48() sets the high order 32-
 bits of Xi to the argument seedval. The low order 16-bits
 are set to the arbitrary value 0x330E.

http://linuxsavvy.com/resources/linux/man/man3/drand48.3.html (2 of 3) [14/09/1999 09:51:25]

 The initializer function seed48() sets the value of Xi to
 the 48-bit value specified in the array argument seed16v.
 The previous value of Xi is copied into an internal buffer
 and a pointer to this buffer is returned by seed48().

 The initialization function lcong48() allows the user to
 specify initial values for Xi, a and c. Array argument ele-
 ments param[0-2] specify Xi, param[3-5] specify a, and
 param[6] specifies c. After lcong48() has been called, a
 subsequent call to either srand48() or seed48() will restore
 the standard values of a and c.

CONFORMING TO

 SVID 3

NOTES

 These functions are declared obsolete by SVID 3, which
 states that rand(3) should be used instead.

SEE ALSO

 rand(3), random(3)

http://linuxsavvy.com/resources/linux/man/man3/drand48.3.html (3 of 3) [14/09/1999 09:51:25]

NAME

 drem - floating-point remainder function

SYNOPSIS

 #include <math.h>

 double drem(double x, double y);

DESCRIPTION

 The drem() function computes the remainder of dividing x by
 y. The return value is x - n * y, where n is the quotient
 of x / y, rounded to the nearest integer. If the quotient
 is 1/2, it is rounded to the even number.

RETURN VALUE

 The drem() function returns the remainder, unless y is zero,
 when the function fails and errno is set.

ERRORS

 EDOM The denominator y is zero.

http://linuxsavvy.com/resources/linux/man/man3/drem.3.html (1 of 2) [14/09/1999 09:51:26]

CONFORMING TO

 BSD 4.3

SEE ALSO

 fmod(3)

http://linuxsavvy.com/resources/linux/man/man3/drem.3.html (2 of 2) [14/09/1999 09:51:26]

NAME

 ecvt, fcvt - convert a floating-point number to a string.

SYNOPSIS

 #include <stdlib.h>

 char *ecvt(double number, size_t ndigits, int *decpt int
 *sign));

 char *fcvt(double number, size_t ndigits, int *decpt int
 *sign));

DESCRIPTION

 The ecvt() function converts number to a NULL terminated
 string of ndigits digits, and returns a pointer to the
 string. The string itself does not contain a decimal point;
 however, the position of the decimal point relative to the
 start of the string is stored in decpt. A negative value
 for decpt means that the decimal point is to the left of the
 start of the string. If the sign of number is negative,
 sign is set to a non-zero value, otherwise it's set to 0.

 The fcvt() function is identical to ecvt(), except that ndi-
 gits specifies the number of digits after the decimal point.

http://linuxsavvy.com/resources/linux/man/man3/ecvt.3.html (1 of 2) [14/09/1999 09:51:28]

RETURN VALUE

 Both the ecvt() and fcvt() functions return a pointer to a
 static string containing the ASCII representation of number.
 The static string is overwritten by each call to ecvt() or
 fcvt().

SEE ALSO

 gcvt(3), sprintf(3)

http://linuxsavvy.com/resources/linux/man/man3/ecvt.3.html (2 of 2) [14/09/1999 09:51:28]

NAME

 erf, erfc - error function and complementary error function

SYNOPSIS

 #include <math.h>

 double erf(double x);

 double erfc (double x);

DESCRIPTION

 The erf() function returns the error function of x; defined
 as

 erf(x) = 2/sqrt(pi)* integral from 0 to x of exp(-t*t) dt

 The erfc() function returns the complementary error function
 of x, that is 1.0 - erf(x).

CONFORMING TO

 SVID 3, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/erf.3.html (1 of 2) [14/09/1999 09:51:47]

SEE ALSO

 exp(3)

http://linuxsavvy.com/resources/linux/man/man3/erf.3.html (2 of 2) [14/09/1999 09:51:47]

NAME

 errno - number of last error

SYNOPSIS

 #include <errno.h>

 extern int errno;

DESCRIPTION

 The integer errno is set by system calls (and some library
 functions) to indicate what went wrong. Its value is signi-
 ficant only when the call returned an error (usually -1),
 and a library function that does succeed is allowed to
 change errno.

 Sometimes, when -1 is also a legal return value one has to
 zero errno before the call in order to detect possible
 errors.

 errno is defined by the ISO C standard to be a modifiable
 lvalue of type int, and must not be explicitly declared;
 errno may be a macro. errno is thread-local; setting it in
 one thread does not affect its value in any other thread.

 Valid error numbers are all non-zero; errno is never set to
 zero by any library function. All the error names specified
 by POSIX.1 must have distinct values.

 POSIX.1 (1996 edition) lists the following symbolic error
 names. Of these, EDOM and ERANGE are in the ISO C standard.
 ISO C Amendment 1 defines the additional error number EILSEQ

http://linuxsavvy.com/resources/linux/man/man3/errno.3.html (1 of 5) [14/09/1999 09:51:50]

 for coding errors in multibyte or wide characters.

 E2BIG
 Arg list too long

 EACCES
 Permission denied

 EAGAIN
 Resource temporarily unavailable

 EBADF
 Bad file descriptor

 EBADMSG
 Bad message

 EBUSY
 Resource busy

 ECANCELED
 Operation canceled

 ECHILD
 No child processes

 EDEADLK
 Resource deadlock avoided

 EDOM Domain error

 EEXIST
 File exists

 EFAULT
 Bad address

 EFBIG
 File too large

 EINPROGRESS
 Operation in progress

 EINTR
 Interrupted function call

http://linuxsavvy.com/resources/linux/man/man3/errno.3.html (2 of 5) [14/09/1999 09:51:50]

 EINVAL
 Invalid argument

 EIO Input/output error

 EISDIR
 Is a directory

 EMFILE
 Too many open files

 EMLINK
 Too many links

 EMSGSIZE
 Inappropriate message buffer length

 ENAMETOOLONG
 Filename too long

 ENFILE
 Too many open files in system

 ENODEV
 No such device

 ENOENT
 No such file or directory

 ENOEXEC
 Exec format error

 ENOLCK
 No locks available

 ENOMEM
 Not enough space

 ENOSPC
 No space left on device

 ENOSYS
 Function not implemented

 ENOTDIR

http://linuxsavvy.com/resources/linux/man/man3/errno.3.html (3 of 5) [14/09/1999 09:51:50]

 Not a directory

 ENOTEMPTY
 Directory not empty

 ENOTSUP
 Not supported

 ENOTTY
 Inappropriate I/O control operation

 ENXIO
 No such device or address

 EPERM
 Operation not permitted

 EPIPE
 Broken pipe

 ERANGE
 Result too large

 EROFS
 Read-only file system

 ESPIPE
 Invalid seek

 ESRCH
 No such process

 ETIMEDOUT
 Operation timed out

 EXDEV
 Improper link

 Many other error numbers are returned by various Unix
 implementations. System V returns ETXTBSY (Text file
 busy) if one tries to exec() a file that is currently
 open for writing. Linux also returns this error if one
 tries to have a file both memory mapped with
 VM_DENYWRITE and open for writing.

http://linuxsavvy.com/resources/linux/man/man3/errno.3.html (4 of 5) [14/09/1999 09:51:50]

SEE ALSO

 perror(3), strerror(3)

http://linuxsavvy.com/resources/linux/man/man3/errno.3.html (5 of 5) [14/09/1999 09:51:50]

NAME

 execl, execlp, execle, execv, execvp - execute a file

SYNOPSIS

 #include <unistd.h>

 extern char **environ;

 int execl(const char *path, const char *arg, ...);
 int execlp(const char *file, const char *arg, ...);
 int execle(const char *path, const char *arg , ..., char *
 const envp[]);
 int execv(const char *path, char *const argv[]);
 int execvp(const char *file, char *const argv[]);

DESCRIPTION

 The exec family of functions replaces the current process
 image with a new process image. The functions described in
 this manual page are front-ends for the function execve(2).
 (See the manual page for execve for detailed information
 about the replacement of the current process.)

 The initial argument for these functions is the pathname of
 a file which is to be executed.

 The const char *arg and subsequent ellipses in the execl,
 execlp, and execle functions can be thought of as arg0,
 arg1, ..., argn. Together they describe a list of one or
 more pointers to null-terminated strings that represent the
 argument list available to the executed program. The first
 argument, by convention, should point to the file name asso-

http://linuxsavvy.com/resources/linux/man/man3/exec.3.html (1 of 5) [14/09/1999 09:51:55]

 ciated with the file being executed. The list of arguments
 must be terminated by a NULL pointer.

 The execv and execvp functions provide an array of pointers
 to null-terminated strings that represent the argument list
 available to the new program. The first argument, by con-
 vention, should point to the file name associated with the
 file begin executed. The array of pointers must be ter-
 minated by a NULL pointer.

 The execle function also specifies the environment of the
 executed process by following the NULL pointer that ter-
 minates the list of arguments in the parameter list or the
 pointer to the argv array with an additional parameter.
 This additional parameter is an array of pointers to null-
 terminated strings and must be terminated by a NULL pointer.
 The other functions take the environment for the new process
 image from the external variable environ in the current pro-
 cess.

 Some of these functions have special semantics.

 The functions execlp and execvp will duplicate the actions
 of the shell in searching for an executable file if the
 specified file name does not contain a slash (/) character.
 The search path is the path specified in the environment by
 the PATH variable. If this variable isn't specified, the
 default path ``:/bin:/usr/bin'' is used. In addition, cer-
 tain errors are treated specially.

 If permission is denied for a file (the attempted execve
 returned EACCES), these functions will continue searching
 the rest of the search path. If no other file is found,
 however, they will return with the global variable errno set
 to EACCES.

 If the header of a file isn't recognized (the attempted
 execve returned ENOEXEC), these functions will execute the
 shell with the path of the file as its first argument. (If
 this attempt fails, no further searching is done.)

http://linuxsavvy.com/resources/linux/man/man3/exec.3.html (2 of 5) [14/09/1999 09:51:55]

RETURN VALUES

 If any of the exec functions returns, an error will have
 occurred. The return value is -1, and the global variable
 errno will be set to indicate the error.

FILES

 /bin/sh

ERRORS

 All of these functions may fail and set errno for any of the
 errors specified for the library function execve(2).

SEE ALSO

 sh(1), execve(2), fork(2), environ(5), ptrace(2)

COMPATIBILITY

 On some other systems the default PATH has the current work-
 ing directory listed after /bin and /usr/bin, as an anti-
 Trojan-horse measure. As of libc 5.4.7, Linux still uses the
 traditional "current directory first" default PATH.

 The behavior of execlp and execvp when errors occur while
 attempting to execute the file is historic practice, but has
 not traditionally been documented and is not specified by

http://linuxsavvy.com/resources/linux/man/man3/exec.3.html (3 of 5) [14/09/1999 09:51:55]

 the POSIX standard. BSD (and possibly other systems) do an
 automatic sleep and retry if ETXTBSY is encountered. Linux
 treats it as a hard error and returns immediately.

 Traditionally, the functions execlp and execvp ignored all
 errors except for the ones described above and ENOMEM and
 E2BIG, upon which they returned. They now return if any
 error other than the ones described above occurs.

STANDARDS

 Execl, execv, execle, execlp and execvp conform to IEEE
 Std1003.1-88 (``POSIX.1'').

http://linuxsavvy.com/resources/linux/man/man3/exec.3.html (4 of 5) [14/09/1999 09:51:55]

http://linuxsavvy.com/resources/linux/man/man3/exec.3.html (5 of 5) [14/09/1999 09:51:55]

NAME

 exit - cause normal program termination

SYNOPSIS

 #include <stdlib.h>

 void exit(int status));

DESCRIPTION

 The exit() function causes normal program termination and
 the value of status is returned to the parent. All func-
 tions registered with atexit() and on_exit() are called in
 the reverse order of their registration, and all open
 streams are flushed and closed.

RETURN VALUE

 The exit() function does not return.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/exit.3.html (1 of 2) [14/09/1999 09:52:04]

SEE ALSO

 _exit(2), atexit(3), on_exit(3)

http://linuxsavvy.com/resources/linux/man/man3/exit.3.html (2 of 2) [14/09/1999 09:52:04]

NAME

 exp, log, log10, pow - exponential, logarithmic and power
 functions

SYNOPSIS

 #include <math.h>

 double exp(double x);

 double log(double x);

 double log10(double x);

 double pow(double x, double y);

DESCRIPTION

 The exp() function returns the value of e (the base of
 natural logarithms) raised to the power of x.

 The log() function returns the natural logarithm of x.

 The log10() function returns the base-10 logarithm of x.

 The pow() function returns the value of x raised to the
 power of y.

http://linuxsavvy.com/resources/linux/man/man3/exp.3.html (1 of 2) [14/09/1999 09:52:06]

ERRORS

 The log() and log10() functions can return the following
 errors:

 EDOM The argument x is negative.

 ERANGE
 The argument x is zero. The log of zero is not
 defined.

 The pow() function can return the following error:

 EDOM The argument x is negative and y is not an integral
 value. This would result in a complex number.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 sqrt(3), cbrt(3)

http://linuxsavvy.com/resources/linux/man/man3/exp.3.html (2 of 2) [14/09/1999 09:52:06]

NAME

 expm1, log1p - exponential minus 1, logarithm of 1 plus
 argument

SYNOPSIS

 #include <math.h>

 double expm1 (double x);

 double log1p (double x);

DESCRIPTION

 expm1(x) returns a value equivalent to `exp (x) - 1'. It is
 computed in a way that is accurate even if the value of x is
 near zero--a case where `exp (x) - 1' would be inaccurate
 due to subtraction of two numbers that are nearly equal.

 log1p(x) returns a value equivalent to `log (1 + x)'. It is
 computed in a way that is accurate even if the value of x is
 near zero.

CONFORMING TO

 BSD

http://linuxsavvy.com/resources/linux/man/man3/expm1.3.html (1 of 2) [14/09/1999 09:52:09]

SEE ALSO

 exp(3), log(3)

http://linuxsavvy.com/resources/linux/man/man3/expm1.3.html (2 of 2) [14/09/1999 09:52:09]

NAME

 fabs - absolute value of floating-point number

SYNOPSIS

 #include <math.h>

 double fabs(double x);

DESCRIPTION

 The fabs() function returns the absolute value of the
 floating-point number x.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 abs(3), ceil(3), floor(3),

http://linuxsavvy.com/resources/linux/man/man3/fabs.3.html (1 of 2) [14/09/1999 09:52:11]

http://linuxsavvy.com/resources/linux/man/man3/fabs.3.html (2 of 2) [14/09/1999 09:52:11]

NAME

 fclose - close a stream

SYNOPSIS

 #include <stdio.h>

 int fclose(FILE *stream));

DESCRIPTION

 The fclose function dissociates the named stream from its
 underlying file or set of functions. If the stream was
 being used for output, any buffered data is written first,
 using fflush(3).

RETURN VALUES

 Upon successful completion 0 is returned. Otherwise, EOF is
 returned and the global variable errno is set to indicate
 the error. In either case any further access (including
 another call to fclose()) to the stream results in undefined
 behaviour.

http://linuxsavvy.com/resources/linux/man/man3/fclose.3.html (1 of 2) [14/09/1999 09:52:12]

ERRORS

 EBADF
 The argument stream is not an open stream.

 The fclose function may also fail and set errno for any of
 the errors specified for the routines close(2) or fflush(3).

SEE ALSO

 close(2), fflush(3), fopen(3),

STANDARDS

 The fclose function conforms to ANSI C3.159-1989 (``ANSI
 C'').

http://linuxsavvy.com/resources/linux/man/man3/fclose.3.html (2 of 2) [14/09/1999 09:52:12]

NAME

 clearerr, feof, ferror, fileno - check and reset stream
 status

SYNOPSIS

 #include <stdio.h>

 void clearerr(FILE *stream));
 int feof(FILE *stream));
 int ferror(FILE *stream));
 int fileno(FILE *stream));

DESCRIPTION

 The function clearerr clears the end-of-file and error indi-
 cators for the stream pointed to by stream.

 The function feof tests the end-of-file indicator for the
 stream pointed to by stream, returning non-zero if it is
 set. The end-of-file indicator can only be cleared by the
 function clearerr.

 The function ferror tests the error indicator for the stream
 pointed to by stream, returning non-zero if it is set. The
 error indicator can only be reset by the clearerr function.

 The function fileno examines the argument stream and returns
 its integer descriptor.

http://linuxsavvy.com/resources/linux/man/man3/ferror.3.html (1 of 2) [14/09/1999 09:52:20]

ERRORS

 These functions should not fail and do not set the external
 variable errno.

SEE ALSO

 open(2), stdio(3)

STANDARDS

 The functions clearerr, feof, and ferror conform to C3.159-
 1989 (``ANSI C'').

http://linuxsavvy.com/resources/linux/man/man3/ferror.3.html (2 of 2) [14/09/1999 09:52:20]

NAME

 fflush - flush a stream

SYNOPSIS

 #include <stdio.h>

 int fflush(FILE *stream));

DESCRIPTION

 The function fflush forces a write of all buffered data for
 the given output or update stream via the stream's underly-
 ing write function. The open status of the stream is unaf-
 fected.

 If the stream argument is NULL, fflush flushes all open out-
 put streams.

RETURN VALUES

 Upon successful completion 0 is returned. Otherwise, EOF is
 returned and the global variable errno is set to indicate
 the error.

http://linuxsavvy.com/resources/linux/man/man3/fflush.3.html (1 of 2) [14/09/1999 09:52:22]

ERRORS

 EBADF
 Stream is not an open stream, or is not open for writ-
 ing.

 The function fflush may also fail and set errno for any of
 the errors specified for the routine write(2).

SEE ALSO

 write(2), fopen(3), fclose(3),

CONFORMING TO

 The fflush function conforms to ANSI C3.159-1989 (``ANSI
 C'').

http://linuxsavvy.com/resources/linux/man/man3/fflush.3.html (2 of 2) [14/09/1999 09:52:22]

NAME

 ffs - find first bit set in a word

SYNOPSIS

 #include <string.h>

 int ffs(int i);

DESCRIPTION

 The ffs() function returns the position of the first bit set
 in the word i. The least significant bit is position 1 and
 the most significant position 32.

RETURN VALUE

 The ffs() function returns the position of the first bit
 set, or NULL if no bits are set.

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/ffs.3.html (1 of 2) [14/09/1999 09:52:24]

http://linuxsavvy.com/resources/linux/man/man3/ffs.3.html (2 of 2) [14/09/1999 09:52:24]

NAME

 fgetgrent - get group file entry

SYNOPSIS

 #include <grp.h>
 #include <stdio.h>
 #include <sys/types.h>

 struct group *fgetgrent(FILE *stream));

DESCRIPTION

 The fgetgrent() function returns a pointer to a structure
 containing the group information from the file stream. The
 first time it is called it returns the first entry;
 thereafter, it returns successive entries. The file stream
 must have the same format as /etc/group.

 The group structure is defined in <grp.h> as follows:

 struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */
 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */
 };

http://linuxsavvy.com/resources/linux/man/man3/fgetgrent.3.html (1 of 2) [14/09/1999 09:52:28]

RETURN VALUE

 The fgetgrent() function returns the group information
 structure, or NULL if there are no more entries or an error
 occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate group information
 structure.

CONFORMING TO

 SVID 3

SEE ALSO

 getgrnam(3), getgrgid(3), getgrent(3), setgrent(3),
 endgrent(3)

http://linuxsavvy.com/resources/linux/man/man3/fgetgrent.3.html (2 of 2) [14/09/1999 09:52:28]

NAME

 fgetpwent - get password file entry

SYNOPSIS

 #include <pwd.h>
 #include <stdio.h>
 #include <sys/types.h>

 struct passwd *fgetpwent(FILE *stream));

DESCRIPTION

 The fgetpwent() function returns a pointer to a structure
 containing the broken out fields of a line in the file
 stream. The first time it is called it returns the first
 entry; thereafter, it returns successive entries. The file
 stream must have the same format as /etc/passwd.

 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

http://linuxsavvy.com/resources/linux/man/man3/fgetpwent.3.html (1 of 2) [14/09/1999 09:52:31]

RETURN VALUE

 The fgetpwent() function returns the passwd structure, or
 NULL if there are no more entries or an error occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate passwd structure.

FILES

 /etc/passwd
 password database file

CONFORMING TO

 SVID 3

SEE ALSO

 getpwnam(3), getpwuid(3), getpwent(3), endpwent(3),
 getpw(3), putpwent(3), passwd(5).

http://linuxsavvy.com/resources/linux/man/man3/fgetpwent.3.html (2 of 2) [14/09/1999 09:52:31]

NAME

 floor - largest integral value not greater than x

SYNOPSIS

 #include <math.h>

 double floor(double x);

DESCRIPTION

 The floor() function rounds x downwards to the nearest
 integer, returning that value as a double.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 abs(3), fabs(3), ceil(3),

http://linuxsavvy.com/resources/linux/man/man3/floor.3.html (1 of 2) [14/09/1999 09:52:39]

http://linuxsavvy.com/resources/linux/man/man3/floor.3.html (2 of 2) [14/09/1999 09:52:39]

NAME

 fmod - floating-point remainder function

SYNOPSIS

 #include <math.h>

 double fmod(double x, double y);

DESCRIPTION

 The fmod() function computes the remainder of dividing x by
 y. The return value is x - n * y, where n is the quotient
 of x / y, rounded towards zero to an integer.

RETURN VALUE

 The fmod() function returns the remainder, unless y is zero,
 when the function fails and errno is set.

ERRORS

 EDOM The denominator y is zero.

http://linuxsavvy.com/resources/linux/man/man3/fmod.3.html (1 of 2) [14/09/1999 09:52:42]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 drem(3)

http://linuxsavvy.com/resources/linux/man/man3/fmod.3.html (2 of 2) [14/09/1999 09:52:42]

NAME

 fnmatch - match filename or pathname

SYNOPSIS

 #include <fnmatch.h>

 int fnmatch(const char *pattern, const char *string, int flags

DESCRIPTION

 The fnmatch() function checks whether the string argument
 matches the pattern argument, which is a shell wildcard pat-
 tern.

 The flags argument modifies the behaviour; it is the bitwise
 OR of zero or more of the following flags:

 FNM_NOESCAPE
 If this flag is set, treat backslash as an ordinary
 character, instead of an escape character.

 FNM_PATHNAME
 If this flag is set, match a slash in string only with
 a slash in pattern and not, for example, with a [] -
 sequence containing a slash.

 FNM_PERIOD
 If this flag is set, a leading period in string has to
 be matched exactly by a period in pattern. A period is
 considered to be leading if it is the first character
 in string, or if both FNM_PATHNAME is set and the
 period immediately follows a slash.

http://linuxsavvy.com/resources/linux/man/man3/fnmatch.3.html (1 of 3) [14/09/1999 09:52:45]

 FNM_FILE_NAME
 This is a GNU synonym for FNM_PATHNAME.

 FNM_LEADING_DIR
 If this flag (a GNU extension) is set, the pattern is
 considered to be matched if it matches an initial seg-
 ment of string which is followed by a slash.

 FNM_CASEFOLD
 If this flag (a GNU extension) is set, the pattern is
 matched case-insensitively.

RETURN VALUE

 Zero if string matches pattern, FNM_NOMATCH if there is no
 match or another non-zero value if there is an error.

CONFORMING TO

 ISO/IEC 9945-2: 1993 (POSIX.2). The FNM_FILE_NAME,
 FNM_LEADING_DIR, and FNM_CASEFOLD flags are GNU extensions.

SEE ALSO

 sh(1), glob(3), glob(7)

http://linuxsavvy.com/resources/linux/man/man3/fnmatch.3.html (2 of 3) [14/09/1999 09:52:45]

http://linuxsavvy.com/resources/linux/man/man3/fnmatch.3.html (3 of 3) [14/09/1999 09:52:45]

NAME

 fopen, fdopen, freopen - stream open functions

SYNOPSIS

 #include <stdio.h>

 FILE *fopen (const char *path, const char *mode));
 FILE *fdopen (int fildes, const char *mode));
 FILE *freopen (const char *path, const char *mode, FILE
 *stream

DESCRIPTION

 The fopen function opens the file whose name is the string
 pointed to by path and associates a stream with it.

 The argument mode points to a string beginning with one of
 the following sequences (Additional characters may follow
 these sequences.):

 r Open text file for reading. The stream is positioned
 at the beginning of the file.

 r+ Open for reading and writing. The stream is positioned
 at the beginning of the file.

 w Truncate file to zero length or create text file for
 writing. The stream is positioned at the beginning of
 the file.

 w+ Open for reading and writing. The file is created if
 it does not exist, otherwise it is truncated. The

http://linuxsavvy.com/resources/linux/man/man3/fopen.3.html (1 of 5) [14/09/1999 09:52:47]

 stream is positioned at the beginning of the file.

 a Open for writing. The file is created if it does not
 exist. The stream is positioned at the end of the
 file.

 a+ Open for reading and writing. The file is created if
 it does not exist. The stream is positioned at the end
 of the file.

 The mode string can also include the letter ``b'' either as
 a third character or as a character between the characters
 in any of the two-character strings described above. This
 is strictly for compatibility with ANSI C3.159-1989 (``ANSI
 C'') and has no effect; the ``b'' is ignored.

 Any created files will have mode S_IRUSR|S_IWUSR|S_IRGRP|
 (0666), as modified by the process' umask value (see
 umask(2).

 Reads and writes may be intermixed on read/write streams in
 any order. Note that ANSI C requires that a file position-
 ing function intervene between output and input, unless an
 input operation encounters end-of-file. (If this condition
 is not met, then a read is allowed to return the result of
 writes other than the most recent.) Therefore it is good
 practice (and indeed sometimes necessary under Linux) to put
 an fseek or fgetpos operation between write and read opera-
 tions on such a stream. This operation may be an apparent
 no-op (as in fseek(..., 0L, SEEK_CUR) called for its syn-
 chronizing side effect.

 The fdopen function associates a stream with the existing
 file descriptor, fildes. The mode of the stream (one of the
 values "r", "r+", "w", "w+", "a", "a+") must be compatible
 with the mode of the file descriptor. The file position
 indicator of the new stream is set to that belonging to
 fildes, and the error and end-of-file indicators are
 cleared. Modes "w" or "w+" do not cause truncation of the
 file. The file descriptor is not dup'ed. The result of
 applying fdopen to a shared memory object is undefined.

 The freopen function opens the file whose name is the string
 pointed to by path and associates the stream pointed to by
 stream with it. The original stream (if it exists) is

http://linuxsavvy.com/resources/linux/man/man3/fopen.3.html (2 of 5) [14/09/1999 09:52:47]

 closed. The mode argument is used just as in the fopen
 function. The primary use of the freopen function is to
 change the file associated with a standard text stream

RETURN VALUES

 Upon successful completion fopen, fdopen and freopen return
 a FILE pointer. Otherwise, NULL is returned and the global
 variable errno is set to indicate the error.

ERRORS

 EINVAL
 The mode provided to fopen, fdopen, or freopen was
 invalid.

 The fopen, fdopen and freopen functions may also fail and
 set errno for any of the errors specified for the routine
 malloc(3).

 The fopen function may also fail and set errno for any of
 the errors specified for the routine open(2).

 The fdopen function may also fail and set errno for any of
 the errors specified for the routine fcntl(2).

 The freopen function may also fail and set errno for any of
 the errors specified for the routines open(2), fclose(3) and
 fflush(3).

SEE ALSO

 open(2), fclose(3)

http://linuxsavvy.com/resources/linux/man/man3/fopen.3.html (3 of 5) [14/09/1999 09:52:47]

STANDARDS

 The fopen and freopen functions conform to ANSI C3.159-1989
 (``ANSI C''). The fdopen function conforms to IEEE
 Std1003.1-1988 (``POSIX.1'').

http://linuxsavvy.com/resources/linux/man/man3/fopen.3.html (4 of 5) [14/09/1999 09:52:47]

http://linuxsavvy.com/resources/linux/man/man3/fopen.3.html (5 of 5) [14/09/1999 09:52:47]

NAME

 fpathconf, pathconf - get configuration values for files

SYNOPSIS

 #include <unistd.h>

 long fpathconf(int filedes, int name));
 long pathconf(char *path, int name));

DESCRIPTION

 fpathconf() gets a value for the configuration option name
 for the open file descriptor filedes.

 pathconf() gets a value for configuration option name for
 the file name path.

 The corresponding macros defined in <unistd.h> are minimum
 values; if an application wants to take advantage of values
 which may change, a call to fpathconf() or pathconf() can be
 made, which may yield more liberal results.

 Setting name equal to one of the following constants returns
 the following configuration options:

 _PC_LINK_MAX
 returns the maximum number of links to the file. If
 filedes or path refer to a directory, then the value
 applies to the whole directory. The corresponding
 macro is _POSIX_LINK_MAX.

 _PC_MAX_CANON

http://linuxsavvy.com/resources/linux/man/man3/fpathconf.3.html (1 of 4) [14/09/1999 09:52:50]

 returns the maximum length of a formatted input line,
 where filedes or path must refer to a terminal. The
 corresponding macro is _POSIX_MAX_CANON.

 _PC_MAX_INPUT
 returns the maximum length of an input line, where
 filedes or path must refer to a terminal. The
 corresponding macro is _POSIX_MAX_INPUT.

 _PC_NAME_MAX
 returns the maximum length of a filename in the direc-
 tory path or filedes. the process is allowed to
 create. The corresponding macro is _POSIX_NAME_MAX.

 _PC_PATH_MAX
 returns the maximum length of a relative pathname when
 path or filedes is the current working directory. The
 corresponding macro is _POSIX_PATH_MAX.

 _PC_PIPE_BUF
 returns the size of the pipe buffer, where filedes must
 refer to a pipe or FIFO and path must refer to a FIFO.
 The corresponding macro is _POSIX_PIPE_BUF.

 _PC_CHOWN_RESTRICTED
 returns nonzero if the chown(2) call may not be used on
 this file. If filedes or path refer to a directory,
 then this applies to all files in that directory. The
 corresponding macro is _POSIX_CHOWN_RESTRICTED.

 _PC_NO_TRUNC
 returns nonzero if accessing filenames longer than
 _POSIX_NAME_MAX generates an error. The corresponding
 macro is _POSIX_NO_TRUNC.

 _PC_VDISABLE
 returns nonzero if special character processing can be
 disabled, where filedes or path must refer to a termi-
 nal.

http://linuxsavvy.com/resources/linux/man/man3/fpathconf.3.html (2 of 4) [14/09/1999 09:52:50]

RETURN VALUE

 The limit is returned, if one exists. If the system does
 not have a limit for the requested resource, -1 is returned,
 and errno is unchanged. If there is an error, -1 is
 returned, and errno is set to reflect the nature of the
 error.

CONFORMING TO

 POSIX.1

NOTES

 Files with name lengths longer than the value returned for
 name equal to _PC_NAME_MAX may exist in the given directory.

 Some returned values may be huge; they are not suitable for
 allocating memory.

SEE ALSO

 getconf(1), statfs(2), open(2),

http://linuxsavvy.com/resources/linux/man/man3/fpathconf.3.html (3 of 4) [14/09/1999 09:52:50]

http://linuxsavvy.com/resources/linux/man/man3/fpathconf.3.html (4 of 4) [14/09/1999 09:52:50]

NAME

 fread, fwrite - binary stream input/output

SYNOPSIS

 #include <stdio.h>

 size_t fread(void *ptr, size_t size, size_t nmemb FILE
 *stream));

 size_t fwrite(const void *ptr, size_t size, size_t nmemb
 FILE *stream));

DESCRIPTION

 The function fread reads nmemb elements of data, each size
 bytes long, from the stream pointed to by stream, storing
 them at the location given by ptr.

 The function fwrite writes nmemb elements of data, each size
 bytes long, to the stream pointed to by stream, obtaining
 them from the location given by ptr.

RETURN VALUES

 fread and fwrite return the number of items successfully
 read or written (i.e., not the number of characters). If an
 error occurs, or the end-of-file is reached, the return
 value is a short item count (or zero).

http://linuxsavvy.com/resources/linux/man/man3/fread.3.html (1 of 2) [14/09/1999 09:52:58]

 fread does not distinguish between end-of-file and error,
 and callers must use feof(3) and ferror(3) to determine
 which occurred.

SEE ALSO

 feof(3), ferror(3), read(2),

STANDARDS

 The functions fread and fwrite conform to ANSI C3.159-1989
 (``ANSI C'').

http://linuxsavvy.com/resources/linux/man/man3/fread.3.html (2 of 2) [14/09/1999 09:52:58]

NAME

 frexp - convert floating-point number to fractional and
 integral components

SYNOPSIS

 #include <math.h>

 double frexp(double x, int *exp));

DESCRIPTION

 The frexp() function is used to split the number x into a
 normalized fraction and an exponent which is stored in exp.

RETURN VALUE

 The frexp() function returns the normalized fraction. If
 the argument x is not zero, the normalized fraction is x
 times a power of two, and is always in the range 1/2
 (inclusive) to 1 (exclusive). If x is zero, then the nor-
 malized fraction is zero and zero is stored in exp.

http://linuxsavvy.com/resources/linux/man/man3/frexp.3.html (1 of 2) [14/09/1999 09:53:02]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 ldexp(3), modf(3)

http://linuxsavvy.com/resources/linux/man/man3/frexp.3.html (2 of 2) [14/09/1999 09:53:02]

NAME

 fgetpos, fseek, fsetpos, ftell, rewind - reposition a stream

SYNOPSIS

 #include <stdio.h>

 int fseek(FILE *stream, long offset, int whence
 long ftell(FILE *stream));
 void rewind(FILE *stream));
 int fgetpos(FILE *stream, fpos_t *pos));
 int fsetpos(FILE *stream, fpos_t *pos));

DESCRIPTION

 The fseek function sets the file position indicator for the
 stream pointed to by stream. The new position, measured in
 bytes, is obtained by adding offset bytes to the position
 specified by whence. If whence is set to SEEK_SET,
 SEEK_CUR, or SEEK_END, the offset is relative to the start
 of the file, the current position indicator, or end-of-file,
 respectively. A successful call to the fseek function
 clears the end-of-file indicator for the stream and undoes
 any effects of the ungetc(3) function on the same stream.

 The ftell function obtains the current value of the file
 position indicator for the stream pointed to by stream.

 The rewind function sets the file position indicator for the
 stream pointed to by stream to the beginning of the file.
 It is equivalent to:

 (void)fseek(stream, 0L, SEEK_SET)

http://linuxsavvy.com/resources/linux/man/man3/fseek.3.html (1 of 4) [14/09/1999 09:53:08]

 except that the error indicator for the stream is also
 cleared (see clearerr(3)).

 The fgetpos and fsetpos functions are alternate interfaces
 equivalent to ftell and fseek (with whence set to SEEK_SET),
 setting and storing the current value of the file offset
 into or from the object referenced by pos. On some non-UNIX
 systems an fpos_t object may be a complex object and these
 routines may be the only way to portably reposition a text
 stream.

RETURN VALUES

 The rewind function returns no value. Upon successful com-
 pletion, fgetpos, fseek, fsetpos return 0, and ftell returns
 the current offset. Otherwise, -1 is returned and the glo-
 bal variable errno is set to indicate the error.

ERRORS

 EBADF
 The stream specified is not a seekable stream.

 EINVAL
 The whence argument to fseek was not SEEK_SET,
 SEEK_END, or SEEK_CUR.

 The function fgetpos, fseek, fsetpos, and ftell may also
 fail and set errno for any of the errors specified for the
 routines fflush(3), fstat(2), lseek(2), and malloc(3).

http://linuxsavvy.com/resources/linux/man/man3/fseek.3.html (2 of 4) [14/09/1999 09:53:08]

SEE ALSO

 lseek(2)

STANDARDS

 The fgetpos, fsetpos, fseek, ftell, and rewind functions
 conform to ANSI C3.159-1989 (``ANSI C'').

http://linuxsavvy.com/resources/linux/man/man3/fseek.3.html (3 of 4) [14/09/1999 09:53:08]

http://linuxsavvy.com/resources/linux/man/man3/fseek.3.html (4 of 4) [14/09/1999 09:53:08]

NAME

 ftime - return date and time

SYNOPSIS

 #include <sys/timeb.h>

 int ftime(struct timeb *tp));

DESCRIPTION

 Return current date and time in tp, which is declared as
 following:

 struct timeb {
 time_t time;
 unsigned short millitm;
 short timezone;
 short dstflag;
 };

 The structure contains the time since the epoch in seconds,
 up to 1000 milliseconds of more-precise interval, the local
 time zone (measured in minutes of time westward from
 Greenwich), and a flag that, if nonzero, indicates that Day-
 light Saving time applies locally during the appropriate
 part of the year.

http://linuxsavvy.com/resources/linux/man/man3/ftime.3.html (1 of 2) [14/09/1999 09:53:12]

RETURN VALUE

 This function always returns 0.

HISTORY

 The ftime function appeared in 4.2BSD.

CONFORMING TO

 BSD 4.2
 Under BSD 4.3, this call is obsoleted by gettimeofday(2).

SEE ALSO

 time(2)

http://linuxsavvy.com/resources/linux/man/man3/ftime.3.html (2 of 2) [14/09/1999 09:53:12]

NAME

 ftok - convert a pathname and a project identifier to a Sys-
 tem V IPC key

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>

 key_t ftok (char *pathname, char proj)

DESCRIPTION

 The function converts the pathname of an existing accessible
 file and a project identifier into a key_t type System V IPC
 key.

RETURN VALUE

 On success the return value will be the converted key_t
 value, otherwise -1 with errno indicating the error as for
 the stat(2) system call.

http://linuxsavvy.com/resources/linux/man/man3/ftok.3.html (1 of 2) [14/09/1999 09:53:14]

BUGS

 The generated key_t value is obtained stat-ing the disk file
 corresponding to pathname in order to get its i-node number
 and the minor device number of the filesystem on which the
 disk file resides, then by combining the 8 bit proj value
 along with the lower 16 bits of the i-node number, along
 with the 8 bits of the minor device number. The algorithm
 does not guarantee a unique key value. In fact

 o Two different names linking to the same file produce
 same key values.

 o Using the lower 16 bits of the i-node number, gives
 some chance (also usually small) to have same key
 values for file names referring to different i-nodes.

 o Not discriminating among major device numbers, gives
 some chance of collision (also usually small) for sys-
 tems with multiple disk controllers.

SEE ALSO

 ipc(5), msgget(2), semget(2), shmget(2), stat(2).

http://linuxsavvy.com/resources/linux/man/man3/ftok.3.html (2 of 2) [14/09/1999 09:53:14]

NAME

 ftw - file tree walk

SYNOPSIS

 #include <ftw.h>

 int ftw(const char *directory, int (*funcptr)(const char
 *file, struct stat *sb, int flag

DESCRIPTION

 ftw() walks through the directory tree starting from the
 indicated directory. For each found entry in the tree, it
 calls funcptr with the full pathname of the entry relative
 to directory, a pointer to a the second argument is a
 pointer to the stat(2) structure for the entry and an int,
 which value will be one of the following:
 FTW_F Item is a normal file
 FTW_D Item is a directory
 FTW_NS The stat failed on the item
 FTW_DNR Item is a directory which can't be read
 Warning: Anything other than directories, like symbolic
 links, gets the FTW_F tag.

 ftw() recursively calls itself for traversing found direc-
 tories. To avoid using up all a program's file descriptors,
 the depth specifies the number of simultaneous open direc-
 tories. When the depth is exceeded, ftw() will become
 slower because directories have to be closed and reopened.

 To stop the tree walk, funcptr returns a non-zero value;
 this value will become the return value of ftw(). Other-

http://linuxsavvy.com/resources/linux/man/man3/ftw.3.html (1 of 2) [14/09/1999 09:53:17]

 wise, ftw() will continue until it has traversed the entire
 tree, in which case it will return zero, or until it hits an
 error such as a malloc(3) failure, in which case it will
 return -1.

 Because ftw() uses dynamic data structures, the only safe
 way to exit out of a tree walk is to return a non-zero
 value. To handle interrupts, for example, mark that the
 interrupt occurred and return a non-zero value-don't use
 longjmp(3) unless the program is going to terminate.

CONFORMING TO

 AES, SVID2, SVID3, XPG2, XPG3, XPG4

SEE ALSO

 stat(2)

http://linuxsavvy.com/resources/linux/man/man3/ftw.3.html (2 of 2) [14/09/1999 09:53:17]

NAME

 gcvt - convert a floating-point number to a string.

SYNOPSIS

 #include <stdlib.h>

 char *gcvt(double number, size_t ndigit, char *buf

DESCRIPTION

 The gcvt() function converts number to a minimal length NULL
 terminated ASCII string and stores the result in buf. It
 produces ndigit significant digits in either printf() F for-
 mat or E format.

RETURN VALUE

 The gcvt() function returns the address of the string
 pointed to by buf.

SEE ALSO

 ecvt(3), fcvt(3), sprintf(3)

http://linuxsavvy.com/resources/linux/man/man3/gcvt.3.html (1 of 2) [14/09/1999 09:53:20]

http://linuxsavvy.com/resources/linux/man/man3/gcvt.3.html (2 of 2) [14/09/1999 09:53:20]

NAME

 getcwd, get_current_dir_name, getwd - Get current working
 directory

SYNOPSIS

 #include <unistd.h>

 char *getcwd(char *buf, size_t size));
 char *get_current_working_dir_name(void);
 char *getwd(char *buf));

DESCRIPTION

 The getcwd() function copies the absolute pathname of the
 current working directory to the array pointed to by buf,
 which is of length size.

 If the current absolute path name would require a buffer
 longer than size elements, NULL is returned, and errno is
 set to ERANGE; an application should check for this error,
 and allocate a larger buffer if necessary.

 As an extension to the POSIX.1 standard, getcwd() allocates
 the buffer dynamically using malloc() if buf is NULL on
 call. In this case, the allocated buffer has the length
 size unless size is less than zero, when buf is allocated as
 big as necessary. It is possible (and, indeed, advisable)
 to free() the buffers if they have been obtained this way.

 get_current_dir_name, which is only prototyped if __USE_GNU
 is defined, will malloc(3) an array big enough to hold the
 current directory name. If the environment variable PWD is

http://linuxsavvy.com/resources/linux/man/man3/getcwd.3.html (1 of 2) [14/09/1999 09:53:26]

 set, and its value is correct, then that value will be
 returned.

 getwd, which is only prototyped if __USE_BSD is defined,
 will not malloc(3) any memory. The buf argument should be a
 pointer to an array at least PATH_MAX bytes long. getwd
 does only return the first PATH_MAX bytes of the actual
 pathname.

RETURN VALUE

 NULL on failure (for example, if the current directory is
 not readable), with errno set accordingly, and buf on suc-
 cess.

CONFORMING TO

 POSIX.1

SEE ALSO

 chdir(2), free(3), malloc(3).

http://linuxsavvy.com/resources/linux/man/man3/getcwd.3.html (2 of 2) [14/09/1999 09:53:26]

NAME

 getdirentries - get directory entries in a filesystem
 independent format

SYNOPSIS

 #define __USE_BSD or #define __USE_MISC
 #include <dirent.h>

 ssize_t getdirentries(int fd, char *buf, size_t nbytes ,
 off_t *basep));

DESCRIPTION

 Read directory entries from the directory specified by fd
 into buf. At most nbytes are read. Reading starts at
 offset *basep, and *basep is updated with the new position
 after reading.

RETURN VALUE

 getdirentries returns the number of bytes read or zero when
 at the end of the directory. If an error occurs, -1 is
 returned, and errno is set appropriately.

http://linuxsavvy.com/resources/linux/man/man3/getdirentries.3.html (1 of 2) [14/09/1999 09:53:27]

ERRORS

 See the Linux library source code for details.

SEE ALSO

 open(2), lseek(2)

http://linuxsavvy.com/resources/linux/man/man3/getdirentries.3.html (2 of 2) [14/09/1999 09:53:27]

NAME

 getenv - get an environment variable

SYNOPSIS

 #include <stdlib.h>

 char *getenv(const char *name));

DESCRIPTION

 The getenv() function searches the environment list for a
 string that matches the string pointed to by name. The
 strings are of the form name = value.

RETURN VALUE

 The getenv() function returns a pointer to the value in the
 environment, or NULL if there is no match.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/getenv.3.html (1 of 2) [14/09/1999 09:53:29]

SEE ALSO

 putenv(3), setenv(3), unsetenv(3), environ(5)

http://linuxsavvy.com/resources/linux/man/man3/getenv.3.html (2 of 2) [14/09/1999 09:53:29]

NAME

 getgrent, setgrent, endgrent - get group file entry

SYNOPSIS

 #include <grp.h>
 #include <sys/types.h>

 struct group *getgrent(void);

 void setgrent(void);

 void endgrent(void);

DESCRIPTION

 The getgrent() function returns a pointer to a structure
 containing the group information from /etc/group. The first
 time it is called it returns the first entry; thereafter, it
 returns successive entries.

 The setgrent() function rewinds the file pointer to the
 beginning of the /etc/group file.

 The endgrent() function closes the /etc/group file.

 The group structure is defined in <grp.h> as follows:

 struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */
 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */

http://linuxsavvy.com/resources/linux/man/man3/getgrent.3.html (1 of 2) [14/09/1999 09:53:31]

 };

RETURN VALUE

 The getgrent() function returns the group information struc-
 ture, or NULL if there are no more entries or an error
 occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate group information
 structure.

FILES

 /etc/group
 group database file

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 fgetgrent(3), getgrnam(3), getgrgid(3)

http://linuxsavvy.com/resources/linux/man/man3/getgrent.3.html (2 of 2) [14/09/1999 09:53:31]

NAME

 getgrnam, getgrgid - get group file entry

SYNOPSIS

 #include <grp.h>
 #include <sys/types.h>

 struct group *getgrnam(const char *name));

 struct group *getgrgid(gid_t gid));

DESCRIPTION

 The getgrnam() function returns a pointer to a structure
 containing the group information from /etc/group for the
 entry that matches the group name name.

 The getgrgid() function returns a pointer to a structure
 containing the group information from /etc/group for the
 entry that matches the group gid gid.

 The group structure is defined in <grp.h> as follows:

 struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */
 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */
 };

http://linuxsavvy.com/resources/linux/man/man3/getgrnam.3.html (1 of 2) [14/09/1999 09:53:34]

RETURN VALUE

 The getgrnam() and getgrgid() functions return the group
 information structure, or NULL if the matching entry is not
 found or an error occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate group information
 structure.

FILES

 /etc/group
 Group database file

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 fgetgrent(3), getgrent(3), setgrent(3), endgrent(3)

http://linuxsavvy.com/resources/linux/man/man3/getgrnam.3.html (2 of 2) [14/09/1999 09:53:34]

NAME

 gethostbyname, gethostbyaddr, sethostent, endhostent, herror
 - get network host entry

SYNOPSIS

 #include <netdb.h>
 extern int h_errno;

 struct hostent *gethostbyname(const char *name));

 #include <sys/socket.h> /* for AF_INET
 struct hostent *gethostbyaddr(const char *addr, int len, int type

 void sethostent(int stayopen));

 void endhostent(void);

 void herror(const char *s);

DESCRIPTION

 The gethostbyname() function returns a structure of type
 hostent for the given host name. Here name is either a host
 name, or an IPv4 address in standard dot notation, or an
 IPv6 address in colon (and possibly dot) notation. (See RFC
 1884 for the description of IPv6 addresses.) If name is an
 IPv4 or IPv6 address, no lookup is performed and gethost-
 byname() simply copies name into the h_name field and its
 struct in_addr equivalent into the h_addr_list[0] field of
 the returned hostent structure. If name doesn't end in a
 dot and the environment variable HOSTALIASES is set, the
 alias file pointed to by HOSTALIASES will first be searched
 for name. (See hostname(7) for the file format.) The
 current domain and its parents are searched unless name ends

http://linuxsavvy.com/resources/linux/man/man3/gethostbyname.3.html (1 of 5) [14/09/1999 09:53:38]

 in a dot.

 The gethostbyaddr() function returns a structure of type
 hostent for the given host address addr of length len and
 address type type. The only valid address type is currently
 AF_INET.

 The sethostent() function specifies, if stayopen is true
 (1), that a connected TCP socket should be used for the name
 server queries and that the connection should remain open
 during successive queries. Otherwise, name server queries
 will use UDP datagrams.

 The endhostent() function ends the use of a TCP connection
 for name server queries.

 The herror() function prints the error message associated
 with the current value of h_errno on stderr.

 The domain name queries carried out by gethostbyname() and
 gethostbyaddr() use a combination of any or all of the name
 server named(8), a broken out line from /etc/hosts, and the
 Network Information Service (NIS or YP), depending upon the
 contents of the order line in /etc/host.conf. (See
 resolv+(8)). The default action is to query named(8), fol-
 lowed by /etc/hosts.

 The hostent structure is defined in <netdb.h> as follows:

 struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses */
 }
 #define h_addr h_addr_list[0] /* for backward compatibility */

 The members of the hostent structure are:

 h_name
 The official name of the host.

 h_aliases
 A zero-terminated array of alternative names for the
 host.

 h_addrtype

http://linuxsavvy.com/resources/linux/man/man3/gethostbyname.3.html (2 of 5) [14/09/1999 09:53:38]

 The type of address; always AF_INET at present.

 h_length
 The length of the address in bytes.

 h_addr_list
 A zero-terminated array of network addresses for the
 host in network byte order.

 h_addr
 The first address in h_addr_list for backward compati-
 bility.

RETURN VALUE

 The gethostbyname() and gethostbyaddr() functions return the
 hostent structure or a NULL pointer if an error occurs. On
 error, the h_errno variable holds an error number.

ERRORS

 The variable h_errno can have the following values:

 HOST_NOT_FOUND
 The specified host is unknown.

 NO_ADDRESS
 The requested name is valid but does not have an IP
 address.

 NO_RECOVERY
 A non-recoverable name server error occurred.

 TRY_AGAIN
 A temporary error occurred on an authoritative name
 server. Try again later.

http://linuxsavvy.com/resources/linux/man/man3/gethostbyname.3.html (3 of 5) [14/09/1999 09:53:38]

FILES

 /etc/host.conf
 resolver configuration file

 /etc/hosts
 host database file

CONFORMING TO

 BSD 4.3

SEE ALSO

 resolver(3), hosts(5), hostname(7), resolv+(8), named(8)

http://linuxsavvy.com/resources/linux/man/man3/gethostbyname.3.html (4 of 5) [14/09/1999 09:53:38]

http://linuxsavvy.com/resources/linux/man/man3/gethostbyname.3.html (5 of 5) [14/09/1999 09:53:38]

NAME

 getlogin, cuserid - get user name

SYNOPSIS

 #include <unistd.h>

 char * getlogin (void);

 #include <stdio.h>

 char * cuserid (char *string);

DESCRIPTION

 getlogin returns a pointer to a string containing the name
 of the user logged in on the controlling terminal of the
 process, or a null pointer if this information cannot be
 determined. The string is statically allocated and might be
 overwritten on subsequent calls to this function or to
 cuserid.

 cuserid returns a pointer to a string containing a user name
 associated with the effective user ID of the process. If
 string is not a null pointer, it should be an array that can
 hold at least L_cuserid characters; the string is returned
 in this array. Otherwise, a pointer to a string in a static
 area is returned. This string is statically allocated and
 might be overwritten on subsequent calls to this function or
 to getlogin.

 The macro L_cuserid is an integer constant that indicates
 how long an array you might need to store a user name.

http://linuxsavvy.com/resources/linux/man/man3/getlogin.3.html (1 of 4) [14/09/1999 09:53:41]

 L_cuserid is declared in stdio.h.

 These functions let your program identify positively the
 user who is running (cuserid) or the user who logged in this
 session (getlogin). (These can differ when setuid programs
 are involved.) The user cannot do anything to fool these
 functions.

 For most purposes, it is more useful to use the environment
 variable LOGNAME to find out who the user is. This is more
 flexible precisely because the user can set LOGNAME arbi-
 trarily.

ERRORS

 ENOMEM
 Insufficient memory to allocate passwd structure.

FILES

 /etc/passwd password database file
 /etc/utmp (or /var/adm/utmp, or wherever your utmp file
 lives these days - the proper location depends on your libc
 version)

CONFORMING TO

 POSIX.1. System V has a cuserid function which uses the
 real user ID rather than the effective user ID. The cuserid
 function was included in the 1988 version of POSIX, but
 removed from the 1990 version.

http://linuxsavvy.com/resources/linux/man/man3/getlogin.3.html (2 of 4) [14/09/1999 09:53:41]

BUGS

 Unfortunately, it is often rather easy to fool getlogin().
 Sometimes it does not work at all, because some program
 messed up the utmp file. Often, it gives only the first 8
 characters of the login name. The user currently logged in
 on the controlling tty of our program need not be the user
 who started it.

 Nobody knows precisely what cuserid() does - avoid it in
 portable programs - avoid it altogether - use
 getpwuid(geteuid()) instead, if that is what you meant. DO
 NOT USE cuserid().

SEE ALSO

 geteuid(2), getuid(2)

http://linuxsavvy.com/resources/linux/man/man3/getlogin.3.html (3 of 4) [14/09/1999 09:53:41]

http://linuxsavvy.com/resources/linux/man/man3/getlogin.3.html (4 of 4) [14/09/1999 09:53:41]

NAME

 getmntent, setmntent, addmntent, endmntent, hasmntopt - get
 file system descriptor file entry

SYNOPSIS

 #include <stdio.h>
 #include <mntent.h>

 FILE *setmntent(const char *filename, const char *type));

 struct mntent *getmntent(FILE *filep));

 int addmntent(FILE *filep, const struct mntent *mnt));

 int endmntent(FILE *filep));

 char *hasmntopt(const struct mntent *mnt, const char *opt));

DESCRIPTION

 These routines are used to access the file system descrip-
 tion file /etc/fstab and the mounted file system description
 file /etc/mtab.

 The setmntent() function opens the file system description
 file filep and returns a file pointer which can be used by
 getmntent(). The argument type is the type of access
 required and can take the same values as the mode argument
 of fopen(3).

 The getmntent() function reads the next line from the file
 system description file filep and returns a pointer to a
 structure containing the broken out fields from a line in
 the file. The pointer points to a static area of memory
 which is overwritten by subsequent calls to getmntent().

http://linuxsavvy.com/resources/linux/man/man3/getmntent.3.html (1 of 3) [14/09/1999 09:53:43]

 The addmntent() function adds the mntent structure mnt to
 the end of the open file filep.

 The endmntent() function closes the file system description
 file filep.

 The hasmntopt() function scans the mnt_opts field (see
 below) of the mntent structure mnt for a substring that
 matches opt. See <mntent.h> for valid mount options.

 The mntent structure is defined in <mntent.h> as follows:

 struct mntent {
 char *mnt_fsname; /* name of mounted file system */
 char *mnt_dir; /* file system path prefix */
 char *mnt_type; /* mount type (see mntent.h) */
 char *mnt_opts; /* mount options (see mntent.h) */
 int mnt_freq; /* dump frequency in days */
 int mnt_passno; /* pass number on parallel fsck */
 };

RETURN VALUE

 The getmntent() function returns a pointer to the mntent
 structure or NULL on failure.

 The addmntent() function returns 0 on success and 1 on
 failure.

 The endmntent() function always returns 1.

 The hasmntopt() function returns the address of the sub-
 string if a match is found and NULL otherwise.

http://linuxsavvy.com/resources/linux/man/man3/getmntent.3.html (2 of 3) [14/09/1999 09:53:43]

FILES

 /etc/fstab file system description file
 /etc/mtab mounted file system description file

CONFORMING TO

 BSD 4.3

SEE ALSO

 fopen(3), fstab(5)

http://linuxsavvy.com/resources/linux/man/man3/getmntent.3.html (3 of 3) [14/09/1999 09:53:43]

NAME

 getnetent, getnetbyname, getnetbyaddr, setnetent, endnetent
 - get network entry

SYNOPSIS

 #include <netdb.h>

 struct netent *getnetent(void);

 struct netent *getnetbyname(const char *name));

 struct netent *getnetbyaddr(long net, int type));

 void setnetent(int stayopen));

 void endnetent(void);

DESCRIPTION

 The getnetent() function reads the next line from the file
 /etc/networks and returns a structure netent containing the
 broken out fields from the line. The /etc/networks file is
 opened if necessary.

 The getnetbyname() function returns a netent structure for
 the line from /etc/networks that matches the network name.

 The getnetbyaddr() function returns a netent structure for
 the line that matches the network number net of type type.

 The setnetent() function opens and rewinds the /etc/networks
 file. If stayopen is true (1), then the file will not be

http://linuxsavvy.com/resources/linux/man/man3/getnetent.3.html (1 of 3) [14/09/1999 09:53:48]

 closed between calls to getnetbyname() and getnetbyaddr().

 The endservent() function closes /etc/networks.

 The netent structure is defined in <netdb.h> as follows:

 struct netent {
 char *n_name; /* official network name */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net address type */
 unsigned long int n_net; /* network number */
 }

 The members of the netent structure are:

 n_name
 The official name of the network.

 n_aliases
 A zero terminated list of alternative names for the
 network.

 n_addrtype
 The type of the network number; always AF_INET.

 n_net
 The network number in host byte order.

RETURN VALUE

 The getnetent(), getnetbyname() and getnetbyaddr() functions
 return the netent structure, or a NULL pointer if an error
 occurs or the end of the file is reached.

FILES

 /etc/networks networks database file

http://linuxsavvy.com/resources/linux/man/man3/getnetent.3.html (2 of 3) [14/09/1999 09:53:48]

CONFORMING TO

 BSD 4.3

SEE ALSO

 getprotoent(3), getservent(3), networks(5)
 RFC 1101

http://linuxsavvy.com/resources/linux/man/man3/getnetent.3.html (3 of 3) [14/09/1999 09:53:48]

NAME

 getopt - Parse command line options

SYNOPSIS

 #include <unistd.h>

 int getopt(int argc, char * const argv[],
 const char *optstring));

 extern char *optarg;
 extern int optind, opterr, optopt

 #include <getopt.h>

 int getopt_long(int argc, char * const argv[],
 const char *optstring,
 const struct option *longopts, int *longindex));

 int getopt_long_only(int argc, char * const argv[],
 const char *optstring,
 const struct option *longopts, int *longindex));

DESCRIPTION

 The getopt() function parses the command line arguments.
 Its arguments argc and argv are the argument count and array
 as passed to the main() function on program invocation. An
 element of argv that starts with `-' (and is not exactly "-"
 or "--") is an option element. The characters of this ele-
 ment (aside from the initial `-') are option characters. If
 getopt() is called repeatedly, it returns successively each
 of the option characters from each of the option elements.

 If getopt() finds another option character, it returns that
 character, updating the external variable optind and a

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (1 of 7) [14/09/1999 09:53:53]

 static variable nextchar so that the next call to getopt()
 can resume the scan with the following option character or
 argv-element.

 If there are no more option characters, getopt() returns
 EOF. Then optind is the index in argv of the first argv-
 element that is not an option.

 optstring is a string containing the legitimate option char-
 acters. If such a character is followed by a colon, the
 option requires an argument, so getopt places a pointer to
 the following text in the same argv-element, or the text of
 the following argv-element, in optarg. Two colons mean an
 option takes an optional arg; if there is text in the
 current argv-element, it is returned in optarg, otherwise
 optarg is set to zero. This is a GNU extension. If opt-
 string contains W followed by a semicolon, then -W foo is
 treated as the long option --foo. (The -W option is
 reserved by POSIX.2 for implementation extensions.) This
 behaviour is a GNU extension, not available with libraries
 before GNU libc 2.

 By default, getopt() permutes the contents of argv as it
 scans, so that eventually all the non-options are at the
 end. Two other modes are also implemented. If the first
 character of optstring is `+' or the environment variable
 POSIXLY_CORRECT is set, then option processing stops as soon
 as a non-option argument is encountered. If the first char-
 acter of optstring is `-', then each non-option argv-element
 is handled as if it were the argument of an option with
 character code 1. (This is used by programs that were writ-
 ten to expect options and other argv-elements in any order
 and that care about the ordering of the two.) The special
 argument `--' forces an end of option-scanning regardless of
 the scanning mode.

 If getopt() does not recognize an option character, it
 prints an error message to stderr, stores the character in
 optopt, and returns `?'. The calling program may prevent
 the error message by setting opterr to 0.

 The getopt_long() function works like getopt() except that
 it also accepts long options, started out by two dashes.
 Long option names may be abbreviated if the abbreviation is
 unique or is an exact match for some defined option. A long
 option may take a parameter, of the form --arg=param or --
 arg param.

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (2 of 7) [14/09/1999 09:53:53]

 longopts is a pointer to the first element of an array of
 struct option declared in <getopt.h> as

 struct option {
 const char *name;
 int has_arg;
 int *flag;
 int val;
 };

 The meanings of the different fields are:

 name is the name of the long option.

 has_arg
 is: no_argument (or 0) if the option does not take an
 argument, required_argument (or 1) if the option
 requires an argument, or optional_argument (or 2) if
 the option takes an optional argument.

 flag specifies how results are returned for a long option.
 If flag is NULL, then getopt_long() returns val. (For
 example, the calling program may set val to the
 equivalent short option character.) Otherwise,
 getopt_long() returns 0, and flag points to a variable
 which is set to val if the option is found, but left
 unchanged if the option is not found.

 val is the value to return, or to load into the variable
 pointed to by flag.

 The last element of the array has to be filled with zeroes.

 If longindex is not NULL, it points to a variable which is
 set to the index of the long option relative to longopts.

 getopt_long_only() is like getopt_long(), but `-' as well as
 `--' can indicate a long option. If an option that starts
 with `-' (not `--') doesn't match a long option, but does
 match a short option, it is parsed as a short option
 instead.

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (3 of 7) [14/09/1999 09:53:53]

RETURN VALUE

 The getopt() function returns the option character if the
 option was found successfully, `:' if there was a missing
 parameter for one of the options, `?' for an unknown option
 character, or EOF for the end of the option list.

 getopt_long() and getopt_long_only() also return the option
 character when a short option is recognized. For a long
 option, they return val if flag is NULL, and 0 otherwise.
 Error and EOF returns are the same as for getopt(), plus `?'
 for an ambiguous match or an extraneous parameter.

ENVIRONMENT VARIABLES

 POSIXLY_CORRECT
 If this is set, then option processing stops as soon as
 a non-option argument is encountered.

 _<PID>_GNU_nonoption_argv_flags_
 This variable was used by bash 2.0 to communicate to
 GNU libc which arguments are the results of wildcard
 expansion and so should not be considered as options.
 This behaviour was removed in bash version 2.01, but
 the support remains in GNU libc.

EXAMPLE

 The following example program, from the source code, illus-
 trates the use of getopt_long() with most of its features.

 #include <stdio.h>

 int
 main (argc, argv)
 int argc;
 char **argv;
 {
 int c;
 int digit_optind = 0;

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (4 of 7) [14/09/1999 09:53:53]

 while (1)
 {
 int this_option_optind = optind ? optind : 1;
 int option_index = 0;
 static struct option long_options[] =
 {
 {"add", 1, 0, 0},
 {"append", 0, 0, 0},
 {"delete", 1, 0, 0},
 {"verbose", 0, 0, 0},
 {"create", 1, 0, 'c'},
 {"file", 1, 0, 0},
 {0, 0, 0, 0}
 };

 c = getopt_long (argc, argv, "abc:d:012",
 long_options, &option_index);
 if (c == -1)
 break;

 switch (c)
 {
 case 0:
 printf ("option %s", long_options[option_index].name);
 if (optarg)
 printf (" with arg %s", optarg);
 printf ("\n");
 break;

 case '0':
 case '1':
 case '2':
 if (digit_optind != 0 && digit_optind != this_option_optind)
 printf ("digits occur in two different argv-elements.\n");
 digit_optind = this_option_optind;
 printf ("option %c\n", c);
 break;

 case 'a':
 printf ("option a\n");
 break;

 case 'b':
 printf ("option b\n");
 break;

 case 'c':

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (5 of 7) [14/09/1999 09:53:53]

 printf ("option c with value `%s'\n", optarg);
 break;

 case 'd':
 printf ("option d with value `%s'\n", optarg);
 break;

 case '?':
 break;

 default:
 printf ("?? getopt returned character code 0%o ??\n", c);
 }
 }

 if (optind < argc)
 {
 printf ("non-option ARGV-elements: ");
 while (optind < argc)
 printf ("%s ", argv[optind++]);
 printf ("\n");
 }

 exit (0);
 }

BUGS

 This manpage is confusing.

 The POSIX.2 specification of getopt() has a technical error
 described in POSIX.2 Interpretation 150. The GNU implemen-
 tation (and probably all other implementations) implements
 the correct behaviour rather than that specified.

CONFORMING TO

 getopt():
 POSIX.2, provided the environment variable
 POSIXLY_CORRECT is set. Otherwise, the elements of
 argv aren't really const, because we permute them. We

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (6 of 7) [14/09/1999 09:53:53]

 pretend they're const in the prototype to be compatible
 with other systems.

http://linuxsavvy.com/resources/linux/man/man3/getopt.3.html (7 of 7) [14/09/1999 09:53:53]

NAME

 getpass - get a password

SYNOPSIS

 #include <pwd.h>

 char *getpass(const char * prompt);

DESCRIPTION

 The getpass function displays a prompt to the standard error
 output, and reads in a password from /dev/tty. If this file
 is not accessible, getpass reads from the standard input.

 The password may be up to 128 characters in length, includ-
 ing a trailing NUL. Any additional characters and the ter-
 minating newline character are discarded.

 Getpass turns off character echoing and disables the genera-
 tion of signals by tty special characters (interrupt by
 control-C, suspend by control-Z, etc.) while reading the
 password.

RETURN VALUES

 Getpass returns a pointer to the null terminated password.

http://linuxsavvy.com/resources/linux/man/man3/getpass.3.html (1 of 2) [14/09/1999 09:53:57]

FILES

 /dev/tty

SEE ALSO

 crypt(3)

HISTORY

 A getpass function appeared in Version 7 AT&T UNIX.

BUGS

 The getpass function leaves its result in an internal static
 object and returns a pointer to that object. Subsequent
 calls to getpass will modify the same object.

 The calling process should zero the password as soon as pos-
 sible to avoid leaving the cleartext password visible in the
 process's address space.

http://linuxsavvy.com/resources/linux/man/man3/getpass.3.html (2 of 2) [14/09/1999 09:53:57]

NAME

 getprotoent, getprotobyname, getprotobynumber, setprotoent,
 endprotoent - get protocol entry

SYNOPSIS

 #include <netdb.h>

 struct protoent *getprotoent(void);

 struct protoent *getprotobyname(const char *name));

 struct protoent *getprotobynumber(int proto));

 void setprotoent(int stayopen));

 void endprotoent(void);

DESCRIPTION

 The getprotoent() function reads the next line from the file
 /etc/protocols and returns a structure protoent containing
 the broken out fields from the line. The /etc/protocols
 file is opened if necessary.

 The getprotobyname() function returns a protoent structure
 for the line from /etc/protocols that matches the protocol
 name name.

 The getprotobynumber() function returns a protoent structure
 for the line that matches the protocol number number.

 The setprotoent() function opens and rewinds the

http://linuxsavvy.com/resources/linux/man/man3/getprotoent.3.html (1 of 3) [14/09/1999 09:54:02]

 /etc/protocols file. If stayopen is true (1), then the file
 will not be closed between calls to getprotobyname() or get-
 protobynumber().

 The endprotoent() function closes /etc/protocols.

 The protoent structure is defined in <netdb.h> as follows:

 struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
 }

 The members of the protoent structure are:

 p_name
 The official name of the protocol.

 p_aliases
 A zero terminated list of alternative names for the
 protocol.

 p_proto
 The protocol number.

RETURN VALUE

 The getprotoent(), getprotobyname() and getprotobynumber()
 functions return the protoent structure, or a NULL pointer
 if an error occurs or the end of the file is reached.

FILES

 /etc/protocols
 protocol database file

http://linuxsavvy.com/resources/linux/man/man3/getprotoent.3.html (2 of 3) [14/09/1999 09:54:02]

CONFORMING TO

 BSD 4.3

SEE ALSO

 getservent(3), getnetent(3), protocols(5)

http://linuxsavvy.com/resources/linux/man/man3/getprotoent.3.html (3 of 3) [14/09/1999 09:54:02]

NAME

 getpw - Re-construct password line entry

SYNOPSIS

 #include <pwd.h>
 #include <sys/types.h>

 int getpw(uid_t uid, char *buf));

DESCRIPTION

 The getpw() function re-constructs the password line entry
 for the given user uid uid in the buffer buf. The returned
 buffer contains a line of format

 name:passwd:uid:gid:gecos:dir:shell

 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

http://linuxsavvy.com/resources/linux/man/man3/getpw.3.html (1 of 2) [14/09/1999 09:54:05]

RETURN VALUE

 The getpw() function returns 0 on success, or -1 if an error
 occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate passwd structure.

FILES

 /etc/passwd
 password database file

SEE ALSO

 fgetpwent(3), getpwent(3), setpwent(3), getpwnam(3),
 getpwuid(3), putpwent(3), passwd(5).

http://linuxsavvy.com/resources/linux/man/man3/getpw.3.html (2 of 2) [14/09/1999 09:54:05]

NAME

 getpwent, setpwent, endpwent - get password file entry

SYNOPSIS

 #include <pwd.h>
 #include <sys/types.h>

 struct passwd *getpwent(void);

 void setpwent(void);

 void endpwent(void);

DESCRIPTION

 The getpwent() function returns a pointer to a structure
 containing the broken out fields of a line from /etc/passwd.
 The first time it is called it returns the first entry;
 thereafter, it returns successive entries.

 The setpwent() function rewinds the file pointer to the
 beginning of the /etc/passwd file.

 The endpwent() function closes the /etc/passwd file.

 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */

http://linuxsavvy.com/resources/linux/man/man3/getpwent.3.html (1 of 4) [14/09/1999 09:54:10]

 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

RETURN VALUE

 The getpwent() function returns the passwd structure, or
 NULL if there are no more entries or an error occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate passwd structure.

FILES

 /etc/passwd
 password database file

CONFORMING TO

 SVID 3, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/getpwent.3.html (2 of 4) [14/09/1999 09:54:10]

SEE ALSO

 fgetpwent(3), getpwnam(3), getpwuid(3), putpwent(3),
 passwd(5).

http://linuxsavvy.com/resources/linux/man/man3/getpwent.3.html (3 of 4) [14/09/1999 09:54:10]

http://linuxsavvy.com/resources/linux/man/man3/getpwent.3.html (4 of 4) [14/09/1999 09:54:10]

NAME

 getpwnam, getpwuid - get password file entry

SYNOPSIS

 #include <pwd.h>
 #include <sys/types.h>

 struct passwd *getpwnam(const char * name));

 struct passwd *getpwuid(uid_t uid));

DESCRIPTION

 The getpwnam() function returns a pointer to a structure
 containing the broken out fields of a line from /etc/passwd
 for the entry that matches the user name name.

 The getpwuid() function returns a pointer to a structure
 containing the broken out fields of a line from /etc/passwd
 for the entry that matches the user uid uid.

 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

http://linuxsavvy.com/resources/linux/man/man3/getpwnam.3.html (1 of 2) [14/09/1999 09:54:14]

RETURN VALUE

 The getpwnam() and getpwuid() functions return the passwd
 structure, or NULL if the matching entry is not found or an
 error occurs.

ERRORS

 ENOMEM
 Insufficient memory to allocate passwd structure.

FILES

 /etc/passwd
 password database file

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 fgetpwent(3), getpwent(3), setpwent(3), getpw(3),
 putpwent(3), passwd(5).

http://linuxsavvy.com/resources/linux/man/man3/getpwnam.3.html (2 of 2) [14/09/1999 09:54:14]

NAME

 fgetc, fgets, getc, getchar, gets, ungetc - input of charac-
 ters and strings

SYNOPSIS

 #include <stdio.h>

 int fgetc(FILE *stream));
 char *fgets(char *s, int size, FILE *stream
 int getc(FILE *stream));
 int getchar(void);
 char *gets(char *s);
 int ungetc(int c, FILE *stream));

DESCRIPTION

 fgetc() reads the next character from stream and returns it
 as an unsigned char cast to an int, or EOF on end of file or
 error.

 getc() is equivalent to fgetc() except that it may be imple-
 mented as a macro which evaluates stream more than once.

 getchar() is equivalent to getc(stdin)).

 gets() reads a line from stdin into the buffer pointed to by
 s until either a terminating newline or EOF, which it
 replaces with '\0'. No check for buffer overrun is per-
 formed (see BUGS below).

 fgets() reads in at most one less than size characters from
 stream and stores them into the buffer pointed to by s.

http://linuxsavvy.com/resources/linux/man/man3/gets.3.html (1 of 3) [14/09/1999 09:54:20]

 Reading stops after an EOF or a newline. If a newline is
 read, it is stored into the buffer. A '\0' is stored after
 the last character in the buffer.

 ungetc() pushes c back to stream, cast to unsigned char,
 where it is available for subsequent read operations.
 Pushed - back characters will be returned in reverse order;
 only one pushback is guaranteed.

 Calls to the functions described here can be mixed with each
 other and with calls to other input functions from the stdio
 library for the same input stream.

RETURN VALUES

 fgetc(), getc() and getchar() return the character read as
 an unsigned char cast to an int or EOF on end of file or
 error.

 gets() and fgets() return s on success, and NULL on error or
 when end of file occurs while no characters have been read.

 ungetc() returns c on success, or EOF on error.

CONFORMING TO

 ANSI - C, POSIX.1

BUGS

 Because it is impossible to tell without knowing the data in
 advance how many characters gets() will read, and because
 gets() will continue to store characters past the end of the
 buffer, it is extremely dangerous to use. It has been used
 to break computer security. Use fgets() instead.

http://linuxsavvy.com/resources/linux/man/man3/gets.3.html (2 of 3) [14/09/1999 09:54:20]

 It is not advisable to mix calls to input functions from the
 stdio library with low - level calls to read() for the file
 descriptor associated with the input stream; the results
 will be undefined and very probably not what you want.

SEE ALSO

 read(2), write(2), fopen(3), scanf(3), puts(3), fseek(3),

http://linuxsavvy.com/resources/linux/man/man3/gets.3.html (3 of 3) [14/09/1999 09:54:20]

NAME

 getservent, getservbyname, getservbyport, setservent,
 endservent - get service entry

SYNOPSIS

 #include <netdb.h>

 struct servent *getservent(void);

 struct servent *getservbyname(const char *name, const char *proto));

 struct servent *getservbyport(int port, const char *proto));

 void setservent(int stayopen));

 void endservent(void);

DESCRIPTION

 The getservent() function reads the next line from the file
 /etc/services and returns a structure servent containing the
 broken out fields from the line. The /etc/services file is
 opened if necessary.

 The getservbyname() function returns a servent structure for
 the line from /etc/services that matches the service name
 using protocol proto.

 The getservbyport() function returns a servent structure for
 the line that matches the port port given in network byte
 order using protocol proto.

 The setservent() function opens and rewinds the

http://linuxsavvy.com/resources/linux/man/man3/getservent.3.html (1 of 4) [14/09/1999 09:54:27]

 /etc/services file. If stayopen is true (1), then the file
 will not be closed between calls to getservbyname() and get-
 servbyport().

 The endservent() function closes /etc/services.

 The servent structure is defined in <netdb.h> as follows:

 struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use */
 }

 The members of the servent structure are:

 s_name
 The official name of the service.

 s_aliases
 A zero terminated list of alternative names for the
 service.

 s_port
 The port number for the service given in network byte
 order.

 s_proto
 The name of the protocol to use with this service.

RETURN VALUE

 The getservent(), getservbyname() and getservbyport() func-
 tions return the servent structure, or a NULL pointer if an
 error occurs or the end of the file is reached.

http://linuxsavvy.com/resources/linux/man/man3/getservent.3.html (2 of 4) [14/09/1999 09:54:27]

FILES

 /etc/services
 services database file

CONFORMING TO

 BSD 4.3

SEE ALSO

 getprotoent(3), getnetent(3), services(5)

http://linuxsavvy.com/resources/linux/man/man3/getservent.3.html (3 of 4) [14/09/1999 09:54:27]

http://linuxsavvy.com/resources/linux/man/man3/getservent.3.html (4 of 4) [14/09/1999 09:54:27]

NAME

 getusershell, setusershell, endusershell - get legal user
 shells

SYNOPSIS

 #include <unistd.h>

 char *getusershell(void);

 void setusershell(void);

 void endusershell(void);

DESCRIPTION

 The getusershell() function returns the next line from the
 file /etc/shells, opening the file if necessary. The line
 should contain the pathname of a valid user shell. If
 /etc/shells does not exist or is unreadable, getusershell()
 behaves as if /bin/sh and /bin/csh were listed in the file.

 The setusershell() function rewinds /etc/shells.

 The endusershell() function closes /etc/shells.

http://linuxsavvy.com/resources/linux/man/man3/getusershell.3.html (1 of 2) [14/09/1999 09:54:29]

RETURN VALUE

 The getusershell() function returns a NULL pointer on end-
 of-file.

FILES

 /etc/shells

CONFORMING TO

 BSD 4.3

SEE ALSO

 shells(5)

http://linuxsavvy.com/resources/linux/man/man3/getusershell.3.html (2 of 2) [14/09/1999 09:54:29]

NAME

 getutent, getutid, getutline, pututline, setutent, endutent,
 utmpname - access utmp file entries

SYNOPSIS

 #include <utmp.h>

 struct utmp *getutent(void);
 struct utmp *getutid(struct utmp *ut));
 struct utmp *getutline(struct utmp *ut));

 void pututline(struct utmp *ut));

 void setutent(void);
 void endutent(void);

 void utmpname(const char *file));

DESCRIPTION

 utmpname() sets the name of the utmp-format file for the
 other utmp functions to access. If utmpname() is not used
 to set the filename before the other functions are used,
 they assume _PATH_UTMP, as defined in <paths.h>.

 setutent() rewinds the file pointer to the beginning of the
 utmp file. It is generally a Good Idea to call it before
 any of the other functions.

 endutent() closes the utmp file. It should be called when
 the user code is done accessing the file with the other
 functions.

http://linuxsavvy.com/resources/linux/man/man3/getutent.3.html (1 of 5) [14/09/1999 09:54:35]

 getutent() reads a line from the current file position in
 the utmp file. It returns a pointer to a structure contain-
 ing the fields of the line.

 getutid() searches forward from the current file position in
 the utmp file based upon ut. If ut->ut_type is RUN_LVL,
 BOOT_TIME, NEW_TIME, or OLD_TIME, getutid() will find the
 first entry whose ut_type field matches ut->ut_type. If
 ut->ut_type is one of INIT_PROCESS, LOGIN_PROCESS,
 USER_PROCESS, or DEAD_PROCESS, getutid() will find the first
 entry whose ut_id field matches ut->ut_id.

 getutline() searches forward from the current file position
 in the utmp file. It scans entries whose ut_type is
 USER_PROCESS or LOGIN_PROCESS and returns the first one
 whose ut_line field matches ut->ut_line.

 pututline() writes the utmp structure ut into the utmp file.
 It uses getutid() to search for the proper place in the file
 to insert the new entry. If it cannot find an appropriate
 slot for ut, pututline() will append the new entry to the
 end of the file.

RETURN VALUE

 getutent(), getutid(), and getutline() return a pointer to a
 static struct utmp.

ERRORS

 On error, (struct utmp*)0 will be returned.

http://linuxsavvy.com/resources/linux/man/man3/getutent.3.html (2 of 5) [14/09/1999 09:54:35]

EXAMPLE

 The following example adds and removes a utmp record, assum-
 ing it is run from within a pseudo terminal. For usage in a
 real application, you should check the return values of
 getpwuid() and ttyname().

 #include <string.h>
 #include <stdlib.h>
 #include <pwd.h>
 #include <unistd.h>
 #include <utmp.h>

 int main(int argc, char *argv[])
 {
 struct utmp entry;

 system("echo before adding entry:;who");

 entry.ut_type=USER_PROCESS;
 entry.ut_pid=getpid();
 strcpy(entry.ut_line,ttyname(0)+strlen("/dev/"));
 /* only correct for ptys named /dev/tty[pqr][0-9a-z] */
 strcpy(entry.ut_id,ttyname(0)+strlen("/dev/tty"));
 time(&entry.ut_time);
 strcpy(entry.ut_user,getpwuid(getuid())->pw_name);
 memset(entry.ut_host,0,UT_HOSTSIZE);
 entry.ut_addr=0;
 setutent();
 pututline(&entry);

 system("echo after adding entry:;who");

 entry.ut_type=DEAD_PROCESS;
 memset(entry.ut_line,0,UT_LINESIZE);
 entry.ut_time=0;
 memset(entry.ut_user,0,UT_NAMESIZE);
 setutent();
 pututline(&entry);

 system("echo after removing entry:;who");

 endutent();
 return 0;

http://linuxsavvy.com/resources/linux/man/man3/getutent.3.html (3 of 5) [14/09/1999 09:54:35]

 }

FILES

 /var/run/utmp database of currently logged-in users
 /var/log/wtmp database of past user logins

CONFORMING TO

 XPG 2, SVID 2, Linux FSSTND 1.2

SEE ALSO

 utmp(5)

http://linuxsavvy.com/resources/linux/man/man3/getutent.3.html (4 of 5) [14/09/1999 09:54:35]

http://linuxsavvy.com/resources/linux/man/man3/getutent.3.html (5 of 5) [14/09/1999 09:54:35]

NAME

 getw, putw - input and output of words (ints)

SYNOPSIS

 #include <stdio.h>

 int getw(FILE *stream));
 int putw(int w, FILE *stream));

DESCRIPTION

 getw reads a word (that is, an int) from stream. It's pro-
 vided for compatibility with SVID. We recommend you use
 fread(3) instead.

 putw writes the word w (that is, an int) to stream. It is
 provided for compatibility with SVID, but we recommend you
 use fwrite(3) instead.

RETURN VALUES

 Normally, getw returns the word read, and putw returns the
 word written. On error, they return EOF.

http://linuxsavvy.com/resources/linux/man/man3/getw.3.html (1 of 2) [14/09/1999 09:54:40]

BUGS

 The value returned on error is also a legitimate data value.
 ferror(3) can be used to distinguish between the two cases.

CONFORMING TO

 SVID

SEE ALSO

 fread(3), fwrite(3), ferror(3),

http://linuxsavvy.com/resources/linux/man/man3/getw.3.html (2 of 2) [14/09/1999 09:54:40]

NAME

 glob, globfree - find pathnames matching a pattern, free
 memory from glob()

SYNOPSIS

 #include <glob.h>

 int glob(const char *pattern, int flags,
 int errfunc(const char * epath, int eerrno
 glob_t *pglob));
 void globfree(glob_t *pglob));

DESCRIPTION

 The glob() function searches for all the pathnames matching
 pattern according to the rules used by the shell (see
 glob(7)). No tilde expansion or parameter substitution is
 done; if you want these, use wordexp(3).

 The globfree() function frees the dynamically allocated
 storage from an earlier call to glob().

 The results of a glob() call are stored in the structure
 pointed to by pglob, which is a glob_t which is declared in
 <glob.h> and includes the following elements defined by
 POSIX.2 (more may be present as a GNU extension):

 typedef struct
 {
 int gl_pathc; /* Count of paths matched so far */
 char **gl_pathv; /* List of matched pathnames. */
 int gl_offs; /* Slots to reserve in `gl_pathv'. */
 } glob_t;

 Results are stored in dynamically allocated storage.

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (1 of 6) [14/09/1999 09:54:48]

 The parameter flags is made up of bitwise OR of zero or more
 the following symbolic constants, which modify the of
 behaviour of glob():

 GLOB_ERR
 which means to return upon read error (because a direc-
 tory does not have read permission, for example),

 GLOB_MARK
 which means to append a slash to each path which
 corresponds to a directory,

 GLOB_NOSORT
 which means don't sort the returned pathnames (they are
 by default),

 GLOB_DOOFS
 which means that pglob->gl_offs slots will be reserved
 at the beginning of the list of strings in pglob-
 >pathv,

 GLOB_NOCHECK
 which means that, if no pattern matches, to return the
 original pattern,

 GLOB_APPEND
 which means to append to the results of a previous
 call. Do not set this flag on the first invocation of
 glob().

 GLOB_NOESCAPE
 which means that meta characters cannot be quoted by
 backslashes.

 The flags may also include some of the following, which are
 GNU extensions and not defined by POSIX.2:

 GLOB_PERIOD
 which means that a leading period can be matched by
 meta characters,

 GLOB_ALTDIRFUNC
 which means that alternative functions pglob-
 >gl_closedir, pglob->gl_readdir, pglob->gl_opendir,
 pglob->gl_lstat, and pglob->gl_stat are used for file
 system access instead of the normal library functions,

 GLOB_BRACE

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (2 of 6) [14/09/1999 09:54:48]

 which means that csh(1) style brace expresions {a,b}
 are expanded,

 GLOB_NOMAGIC
 which means that the pattern is returned if it contains
 no metacharacters,

 GLOB_TILDE
 which means that tilde expansion is carried out, and

 GLOB_ONLYDIR
 which means that only directories are matched.

 If errfunc is not NULL, it will be called in case of an
 error with the arguments epath, a pointer to the path which
 failed, and eerrno, the value of errno as returned from one
 of the calls to opendir(), readdir(), or stat(). If errfunc
 returns non-zero, or if GLOB_ERR is set, glob() will ter-
 minate after the call to errfunc.

 Upon successful return, pglob->gl_pathc contains the number
 of matched pathnames and pglob->gl_pathv a pointer to the
 list of matched pathnames. The first pointer after the last
 pathname is NULL.

 It is possible to call glob() several times. In that case,
 the GLOB_APPEND flag has to be set in flags on the second
 and later invocations.

 As a GNU extension, pglob->gl_flags is set to the flags
 specified, ored with GLOB_MAGCHAR if any metacharacters were
 found.

RETURN VALUES

 On successful completion, glob() returns zero. Other possi-
 ble returns are:

 GLOB_NOSPACE
 for running out of memory,

 GLOB_ABORTED
 for a read error, and

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (3 of 6) [14/09/1999 09:54:48]

 GLOB_NOMATCH
 for no found matches.

EXAMPLES

 One example of use is the following code, which simulates
 typing ls -l *.c ../*.c in the shell.

 glob_t globbuf;

 globbuf.gl_offs = 2;
 glob("*.c", GLOB_DOOFS, NULL, &globbuf);
 glob("../*.c", GLOB_DOOFS | GLOB_APPEND, NULL, &globbuf);
 globbuf.gl_pathv[0] = "ls";
 globbuf.gl_pathv[1] = "-l";
 execvp("ls", &globbuf.gl_pathv[0]);

CONFORMING TO

 POSIX.2

BUGS

 The glob() function may fail due to failure of underlying
 function calls, such as malloc() or opendir(). These will
 store their error code in errno.

 The structure elements gl_pathc and gl_offs should be
 declared as size_t, according to POSIX.2, but are declared
 as int.

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (4 of 6) [14/09/1999 09:54:48]

SEE ALSO

 ls(1), sh(1), stat(2), exec(3), malloc(3), opendir(3), read-
 dir(3), wordexp(3), glob(7)

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (5 of 6) [14/09/1999 09:54:48]

http://linuxsavvy.com/resources/linux/man/man3/glob.3.html (6 of 6) [14/09/1999 09:54:48]

NAME

 hcreate, hdestroy, hsearch - hash table management

SYNOPSIS

 #include <search.h>

 ENTRY *hsearch(ENTRY item, ACTION action));

 int hcreate(unsigned nel));

 void hdestroy(void);

DESCRIPTION

 These three functions allow the user to create a hash table
 which associates a key with any data.

 First the table must be created with the function hcreate().
 nel is an estimate of the number of entries in the table.
 hcreate() may adjust this value upward to improve the per-
 formance of the resulting hash table. The GNU implementa-
 tion of hsearch() will also enlarge the table if it gets
 nearly full. malloc(3) is used to allocate space for the
 table.

 The corresponding function hdestroy() frees the memory occu-
 pied by the hash table so that a new table can be con-
 structed.

 item is of type ENTRY, which is a typedef defined in
 <search.h> and includes these elements:

 typedef struct entry
 {
 char *key;

http://linuxsavvy.com/resources/linux/man/man3/hsearch.3.html (1 of 5) [14/09/1999 09:54:59]

 char *data;
 } ENTRY;

 key points to the zero-terminated ASCII string which is the
 search key. data points to the data associated with that
 key. (A pointer to a type other than character should be
 cast to pointer-to-character.) hsearch() searches the hash
 table for an item with the same key as item, and if success-
 ful returns a pointer to it. action determines what
 hsearch() does after an unsuccessful search. A value of
 ENTER instructs it to insert the new item, while a value of
 FIND means to return NULL.

RETURN VALUE

 hcreate() returns NULL if the hash table cannot be success-
 fully installed.

 hsearch() returns NULL if action is ENTER and there is
 insufficient memory to expand the hash table, or action is
 FIND and item cannot be found in the hash table.

CONFORMS TO

 SVID, except that in SysV, the hash table cannot grow.

BUGS

 The implementation can manage only one hash table at a time.
 Individual hash table entries can be added, but not deleted.

http://linuxsavvy.com/resources/linux/man/man3/hsearch.3.html (2 of 5) [14/09/1999 09:54:59]

EXAMPLE

 The following program inserts 24 items in to a hash table,
 then prints some of them.

 #include <stdio.h>
 #include <search.h>

 char *data[]={ "alpha", "bravo", "charley", "delta",
 "echo", "foxtrot", "golf", "hotel", "india", "juliette",
 "kilo", "lima", "mike", "november", "oscar", "papa",
 "quebec", "romeo", "sierra", "tango", "uniform",
 "victor", "whiskey", "x-ray", "yankee", "zulu"
 };

 int main()
 {
 ENTRY e, *ep;
 int i;

 /* start with small table, and let it grow */
 hcreate(3);
 for (i = 0; i < 24; i++)
 {
 e.key = data[i];
 /* data is just an integer, instead of a pointer
 to something */
 e.data = (char *)i;
 ep = hsearch(e, ENTER);
 /* there should be no failures */
 if(ep == NULL) {fprintf(stderr, "entry failed\n"); exit(1);}
 }
 for (i = 22; i < 26; i++)
 /* print two entries from the table, and show that
 two are not in the table */
 {
 e.key = data[i];
 ep = hsearch(e, FIND);
 printf("%9.9s -> %9.9s:%d\n", e.key, ep?ep->key:"NULL",
 ep?(int)(ep->data):0);
 }
 return 0;

 }

http://linuxsavvy.com/resources/linux/man/man3/hsearch.3.html (3 of 5) [14/09/1999 09:54:59]

SEE ALSO

 bsearch(3), lsearch(3), tsearch(3),

http://linuxsavvy.com/resources/linux/man/man3/hsearch.3.html (4 of 5) [14/09/1999 09:54:59]

http://linuxsavvy.com/resources/linux/man/man3/hsearch.3.html (5 of 5) [14/09/1999 09:54:59]

NAME

 hypot - Euclidean distance function

SYNOPSIS

 #include <math.h>

 double hypot(double x, double y);

DESCRIPTION

 The hypot() function returns the sqrt(x*x + y*y). This is
 the length of the hypotenuse of a right-angle triangle with
 sides of length x and y, or the distance of the point (x, y)
 from the origin.

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 sqrt(3)

http://linuxsavvy.com/resources/linux/man/man3/hypot.3.html (1 of 2) [14/09/1999 09:55:04]

http://linuxsavvy.com/resources/linux/man/man3/hypot.3.html (2 of 2) [14/09/1999 09:55:04]

NAME

 index, rindex - locate character in string

SYNOPSIS

 #include <string.h>

 char *index(const char *s, int c);

 char *rindex(const char *s, int c);

DESCRIPTION

 The index() function returns a pointer to the first
 occurrence of the character c in the string s.

 The rindex() function returns a pointer to the last
 occurrence of the character c in the string s.

 The terminating NULL character is considered to be a part of
 the strings.

RETURN VALUE

 The index() and rindex() functions return a pointer to the
 matched character or NULL if the character is not found.

http://linuxsavvy.com/resources/linux/man/man3/index.3.html (1 of 2) [14/09/1999 09:55:06]

CONFORMING TO

 BSD 4.3

SEE ALSO

 memchr(3), strchr(3), strpbrk(3), strsep(3), strspn(3),
 strstr(3),

http://linuxsavvy.com/resources/linux/man/man3/index.3.html (2 of 2) [14/09/1999 09:55:06]

NAME

 inet_aton, inet_addr, inet_network, inet_ntoa,
 inet_makeaddr, inet_lnaof, inet_netof - Internet address
 manipulation routines

SYNOPSIS

 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 int inet_aton(const char *cp, struct in_addr *inp));

 unsigned long int inet_addr(const char *cp));

 unsigned long int inet_network(const char *cp));

 char *inet_ntoa(struct in_addr in));

 struct in_addr inet_makeaddr(int net, int host));

 unsigned long int inet_lnaof(struct in_addr in));

 unsigned long int inet_netof(struct in_addr in));

DESCRIPTION

 inet_aton() converts the Internet host address cp from the
 standard numbers-and-dots notation into binary data and
 stores it in the structure that inp points to. inet_aton
 returns nonzero if the address is valid, zero if not.

 The inet_addr() function converts the Internet host address

http://linuxsavvy.com/resources/linux/man/man3/inet.3.html (1 of 3) [14/09/1999 09:55:09]

 cp from numbers-and-dots notation into binary data in net-
 work byte order. If the input is invalid, -1 is returned.
 This is an obsolete interface to inet_aton, described
 immediately above; it is obsolete because -1 is a valid
 address (255.255.255.255), and inet_aton provides a cleaner
 way to indicate error return.

 The inet_network() function extracts the network number in
 host byte order from the address cp in numbers-and-dots
 notation. If the input is invalid, -1 is returned.

 The inet_ntoa() function converts the Internet host address
 in given in network byte order to a string in standard
 numbers-and-dots notation. The string is returned in a
 statically allocated buffer, which subsequent calls will
 overwrite.

 The inet_makeaddr() function makes an Internet host address
 in network byte order by combining the network number net
 with the local address host in network net, both in local
 host byte order.
 The inet_lnaof() function returns the local host address
 part of the Internet address in. The local host address is
 returned in local host byte order.

 The inet_netof() function returns the network number part of
 the Internet Address in. The network number is returned in
 local host byte order.

 The structure in_addr as used in inet_ntoa(),
 inet_makeaddr(), inet_lnoaf() and inet_netof() is defined in
 netinet/in.h as:

 struct in_addr {
 unsigned long int s_addr;
 }

 Note that on the i80x86 the host byte order is Least Signi-
 ficant Byte first, whereas the network byte order, as used
 on the Internet, is Most Significant Byte first.

http://linuxsavvy.com/resources/linux/man/man3/inet.3.html (2 of 3) [14/09/1999 09:55:09]

CONFORMING TO

 BSD 4.3

SEE ALSO

 gethostbyname(3), getnetent(3), hosts(5),

http://linuxsavvy.com/resources/linux/man/man3/inet.3.html (3 of 3) [14/09/1999 09:55:09]

NAME

 infnan - deal with infinite or not-a-number (NaN) result

SYNOPSIS

 #include <math.h>

 double infnan(int error));

DESCRIPTION

 The infnan() function returns a suitable value for infinity
 and "not-a-number" (NaN) results. The value of error can be
 ERANGE to represent infinity or anything else to represent
 NaN. errno is also set.

RETURN VALUE

 If error is ERANGE (Infinity), HUGE_VAL is returned.

 If error is -ERANGE (-Infinity), -HUGE_VAL is returned.

 If error is anything else, NAN is returned.

http://linuxsavvy.com/resources/linux/man/man3/infnan.3.html (1 of 2) [14/09/1999 09:55:20]

ERRORS

 ERANGE
 The value of error is positive or negative infinity.

 EDOM The value of error is "not-a-number" (NaN).

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/infnan.3.html (2 of 2) [14/09/1999 09:55:20]

NAME

 initgroups - initialize the supplementary group access list

SYNOPSIS

 #include <grp.h>
 #include <sys/types.h>

 int initgroups(const char *user, gid_t group));

DESCRIPTION

 The initgroups() function initializes the group access list
 by reading the group database /etc/group and using all
 groups of which user is a member. The additional group
 group is also added to the list.

RETURN VALUE

 The initgroups() function returns 0 on success, or -1 if an
 error occurs.

ERRORS

 EPERM

http://linuxsavvy.com/resources/linux/man/man3/initgroups.3.html (1 of 2) [14/09/1999 09:55:22]

 The calling process does not have sufficient
 privileges.

 ENOMEM
 Insufficient memory to allocate group information
 structure.

FILES

 /etc/group group database file

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 getgroups(2), setgroups(2)

http://linuxsavvy.com/resources/linux/man/man3/initgroups.3.html (2 of 2) [14/09/1999 09:55:22]

NAME

 insque, remque - insert/remove an item from a queue

SYNOPSIS

 #include <stdlib.h>

 void insque(struct qelem *elem, struct qelem *prev));
 void remque(struct qelem *elem));

DESCRIPTION

 insque() and remque() are functions for manipulating queues
 made from doubly-linked lists. Each element in this list is
 of type struct qelem

 The qelem structure is defined as

 struct qelem {
 struct qelem *q_forw;
 struct qelem *q_back;
 char q_data[1];
 };

 insque() inserts the element pointed to by elem immediately
 after the element pointed to by prev, which must NOT be
 NULL.

 remque() removes the element pointed to by elem from the
 doubly-linked list.

http://linuxsavvy.com/resources/linux/man/man3/insque.3.html (1 of 2) [14/09/1999 09:55:26]

CONFORMING TO

 SVR4

BUGS

 The q_data field is sometimes defined to be type char *, and
 under solaris 2.x, it doesn't appear to exist at all.

 The location of the prototypes for these functions differ
 among several versions of UNIX. Some systems place them in
 <search.h>, others in <string.h>. Linux places them in
 <stdlib.h> since that seems to make the most sense.

 Some versions of UNIX (like HP-UX 10.x) do not define a
 struct qelem but rather have the arguments to insque() and
 remque() be of type void *.

http://linuxsavvy.com/resources/linux/man/man3/insque.3.html (2 of 2) [14/09/1999 09:55:26]

NAME

 intro - Introduction to library functions

DESCRIPTION

 This chapter describes all library functions excluding the
 library functions described in chapter 2, which implement
 system calls. There are various function groups which can
 be identified by a letter which is appended to the chapter
 number:

 (3C) These functions, the functions from chapter 2 and from
 chapter 3S are contained in the C standard library
 libc, which will be used by cc(1) by default.

 (3S) These functions are parts of the stdio(3S) library.
 They are contained in the standard C library libc.

 (3M) These functions are contained in the arithmetic library
 libm. They are used by the f77(1) FORTRAN compiler by
 default, but not by the cc(1) C compiler, which needs
 the option -lm.

 (3F) These functions are part of the FORTRAN library libF77.
 There are no special compiler flags needed to use these
 functions.

 (3X) Various special libraries. The manual pages document-
 ing their functions specify the library names.

http://linuxsavvy.com/resources/linux/man/man3/intro.3.html (1 of 2) [14/09/1999 09:55:28]

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man3/intro.3.html (2 of 2) [14/09/1999 09:55:28]

NAME

 isalnum, isalpha, isascii, isblank, iscntrl, isdigit,
 isgraph, islower, isprint, ispunct, isspace, isupper, isxdi-
 git - character classification routines

SYNOPSIS

 #include <ctype.h>

 int isalnum (int c);
 int isalpha (int c);
 int isascii (int c);
 int isblank (int c);
 int iscntrl (int c);
 int isdigit (int c);
 int isgraph (int c);
 int islower (int c);
 int isprint (int c);
 int ispunct (int c);
 int isspace (int c);
 int isupper (int c);
 int isxdigit (int c);

DESCRIPTION

 These functions check whether c, which must have the value
 of an unsigned char or EOF, falls into a certain character
 class according to the current locale.

 isalnum()
 checks for an alphanumeric character; it is equivalent
 to (isalpha(c) || isdigit(c)).

http://linuxsavvy.com/resources/linux/man/man3/isalpha.3.html (1 of 4) [14/09/1999 09:55:34]

 isalpha()
 checks for an alphabetic character; in the standard "C"
 locale, it is equivalent to (isupper(c) || islower(c)).
 In some locales, there may be additional characters for
 which isalpha() is true--letters which are neither
 upper case nor lower case.

 isascii()
 checks whether c is a 7-bit unsigned char value that
 fits into the ASCII character set. This function is a
 BSD extension and is also an SVID extension.

 isblank()
 checks for a blank character; that is, a space or a
 tab. This function is a GNU extension.

 iscntrl()
 checks for a control character.

 isdigit()
 checks for a digit (0 through 9).

 isgraph()
 checks for any printable character except space.

 islower()
 checks for a lower - case character.

 isprint()
 checks for any printable character including space.

 ispunct()
 checks for any printable character which is not a space
 or an alphanumeric character.

 isspace()
 checks for white - space characters. In the "" "C" and
 "" "POSIX" locales, these are: space, form-feed ('\f'),
 newline ('\n'), carriage return ('\r'), horizontal tab
 ('\t'), and vertical tab ('\v').

 isupper()
 checks for an uppercase letter.

 isxdigit()
 checks for a hexadecimal digits, i.e. one of 0 1 2 3 4

http://linuxsavvy.com/resources/linux/man/man3/isalpha.3.html (2 of 4) [14/09/1999 09:55:34]

 5 6 7 8 9 a b c d e f A B C D E F.

RETURN VALUE

 The values returned are nonzero if the character c falls
 into the tested class, and a zero value if not.

CONFORMING TO

 ANSI - C, BSD 4.3. isascii() is a BSD extension and is also
 an SVID extension. isblank() is a GNU extension.

NOTE

 The details of what characters belong into which class
 depend on the current locale. For example, isupper() will
 not recognize an A - umlaut as an uppercase letter in the
 default C locale.

SEE ALSO

 tolower(3), toupper(3), setlocale(3),

http://linuxsavvy.com/resources/linux/man/man3/isalpha.3.html (3 of 4) [14/09/1999 09:55:34]

http://linuxsavvy.com/resources/linux/man/man3/isalpha.3.html (4 of 4) [14/09/1999 09:55:34]

NAME

 isatty - does this descriptor refer to a terminal

SYNOPSIS

 #include <unistd.h>

 int isatty (int desc);

DESCRIPTION

 returns 1 if desc is an open descriptor connected to a ter-
 minal and 0 else.

CONFORMING TO

 SVID, AT&T, X/OPEN, BSD 4.3

SEE ALSO

 fstat(2), ttyname(3)

http://linuxsavvy.com/resources/linux/man/man3/isatty.3.html (1 of 2) [14/09/1999 09:55:37]

http://linuxsavvy.com/resources/linux/man/man3/isatty.3.html (2 of 2) [14/09/1999 09:55:37]

NAME

 isinf, isnan, finite - test for infinity or not-a-number
 (NaN)

SYNOPSIS

 #include <math.h>

 int isinf(double value));

 int isnan(double value));

 int finite(double value));

DESCRIPTION

 The isinf() function returns -1 if value represents negative
 infinity, 1 if value represents positive infinity, and 0
 otherwise.

 The isnan() function returns a non-zero value if value is
 "not-a-number" (NaN), and 0 otherwise.

 The finite() function returns a non-zero value if value is
 neither infinite nor a "not-a-number" (NaN) value, and 0
 otherwise.

http://linuxsavvy.com/resources/linux/man/man3/isinf.3.html (1 of 2) [14/09/1999 09:55:44]

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/isinf.3.html (2 of 2) [14/09/1999 09:55:44]

NAME

 j0, j1, jn, y0, y1, yn - Bessel functions

SYNOPSIS

 #include <math.h>

 double j0(double x);

 double j1(double x);

 double jn(int n, double x);

 double y0(double x);

 double y1(double x);

 double yn(int n, double x);

DESCRIPTION

 The j0() and j1() functions return Bessel functions of x of
 the first kind of orders 0 and 1, respectively. The jn()
 function returns the Bessel function of x of the first kind
 of order n.

 The y0() and y1() functions return Bessel functions of x of
 the second kind of orders 0 and 1, respectively. The yn()
 function returns the Bessel function of x of the second kind
 of order n.

 For the functions y0(), y1() and yn(), the value of x must
 be positive. For negative values of x, these functions

http://linuxsavvy.com/resources/linux/man/man3/j0.3.html (1 of 2) [14/09/1999 09:55:56]

 return -HUGE_VAL.

CONFORMING TO

 SVID 3, BSD 4.3

BUGS

 There are errors of up to 2e-16 in the values returned by
 j0(), j1() and jn() for values of x between -8 and 8.

http://linuxsavvy.com/resources/linux/man/man3/j0.3.html (2 of 2) [14/09/1999 09:55:56]

NAME

 killpg - send signal to all members of a process group.

SYNOPSIS

 #include <signal.h>

 int killpg(pid_t pidgrp, int signal));

DESCRIPTION

 The killpg() function causes signal signal to be sent to all
 the processes in the process group pidgrp or to the
 processes' own process group if pidgrp is equal to zero.

 It is equivalent to

 kill(-pidgrp,signal));

RETURN VALUE

 The value returned is -1 on error, or 0 for success.

http://linuxsavvy.com/resources/linux/man/man3/killpg.3.html (1 of 2) [14/09/1999 09:56:02]

ERRORS

 Errors are returned in errno and can be one of the follow-
 ing:

 EINVAL
 for an invalid signal,

 ESRCH
 for a process group which does not exist, and

 EPERM
 if the userid of the calling process is not equal to
 that of the process the signal is sent to, and the
 userid is not that of the superuser.

CONFORMING TO

 ???

SEE ALSO

 kill(2), signal(2), signal(7)

http://linuxsavvy.com/resources/linux/man/man3/killpg.3.html (2 of 2) [14/09/1999 09:56:02]

NAME

 labs - computes the absolute value of a long integer.

SYNOPSIS

 #include <stdlib.h>

 long int labs(long int j);

DESCRIPTION

 The labs() function computes the absolute value of the long
 integer argument j.

RETURN VALUE

 Returns the absolute value of the long integer argument.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/labs.3.html (1 of 2) [14/09/1999 09:56:04]

NOTES

 Trying to take the absolute value of the most negative
 integer is not defined.

SEE ALSO

 abs(3), ceil(3), floor(3),

http://linuxsavvy.com/resources/linux/man/man3/labs.3.html (2 of 2) [14/09/1999 09:56:04]

NAME

 ldexp - multiply floating-point number by integral power of
 2

SYNOPSIS

 #include <math.h>

 double ldexp(double x, int exp));

DESCRIPTION

 The ldexp() function returns the result of multiplying the
 floating-point number x by 2 raised to the power exp.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 frexp(3), modf(3)

http://linuxsavvy.com/resources/linux/man/man3/ldexp.3.html (1 of 2) [14/09/1999 09:56:07]

http://linuxsavvy.com/resources/linux/man/man3/ldexp.3.html (2 of 2) [14/09/1999 09:56:07]

NAME

 ldiv - computes the quotient and remainder of long integer
 division.

SYNOPSIS

 #include <stdlib.h>

 ldiv_t ldiv(long int numer, long int denom));

DESCRIPTION

 The ldiv() function computes the value numer/denom and
 returns the quotient and remainder in a structure named
 ldiv_t that contains two long integer members named quot and
 rem.

RETURN VALUE

 The ldiv_t structure.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/ldiv.3.html (1 of 2) [14/09/1999 09:56:09]

SEE ALSO

 div(3)

http://linuxsavvy.com/resources/linux/man/man3/ldiv.3.html (2 of 2) [14/09/1999 09:56:09]

NAME

 lgamma - log gamma function

SYNOPSIS

 #include <math.h>

 double lgamma(double x);

DESCRIPTION

 The lgamma() function returns the log of the absolute value
 of the Gamma function. The sign of the Gamma function is
 returned in the external integer signgam.

 For negative integer values of x, lgamma() returns HUGE_VAL
 and errno is set to ERANGE.

ERRORS

 ERANGE
 Invalid argument - negative integer value of x.

http://linuxsavvy.com/resources/linux/man/man3/lgamma.3.html (1 of 2) [14/09/1999 09:56:12]

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 infnan(3)

http://linuxsavvy.com/resources/linux/man/man3/lgamma.3.html (2 of 2) [14/09/1999 09:56:12]

NAME

 localeconv - get numeric formatting information

SYNOPSIS

 #include <locale.h>

 struct lconv *localeconv(void);

DESCRIPTION

 The localeconv() function returns a pointer to a struct
 lconv for the current locale. This structure is defined in
 the header-file locale.h and contains all values associated
 with the locale categories LC_NUMERIC and LC_MONETARY. Pro-
 grams may also use the functions printf() and strfmom() that
 behave according the the actual locale in use.

CONFORMING TO

 ANSI C, POSIX.1

BUGS

 The printf() family of functions may or may not honor the

http://linuxsavvy.com/resources/linux/man/man3/localeconv.3.html (1 of 2) [14/09/1999 09:56:14]

 current locale.

SEE ALSO

 locale(1), localedef(1), strcoll(3), setlocale(3),
 strftime(3), locale(7)

http://linuxsavvy.com/resources/linux/man/man3/localeconv.3.html (2 of 2) [14/09/1999 09:56:14]

NAME

 longjmp, siglongjmp - non-local jump to a saved stack con-
 text

SYNOPSIS

 #include <setjmp.h>

 void longjmp(jmp_buf env, int val));
 void siglongjmp(sigjmp_buf env, int val));

DESCRIPTION

 longjmp() and setjmp() are useful for dealing with errors
 and interrupts encountered in a low-level subroutine of a
 program. longjmp() restores the environment saved by the
 last call of setjmp() with the corresponding env argument.
 After longjmp() is completed, program execution continues as
 if the corresponding call of setjmp() had just returned the
 value val. longjmp() cannot cause 0 to be returned. If
 longjmp is invoked with a second argument of 0, 1 will be
 returned instead.

 siglongjmp() is similar to longjmp() except for the type of
 its env argument. If the sigsetjmp() call that set this env
 used a nonzero savesigs flag, siglongjmp() also restores the
 set of blocked signals.

http://linuxsavvy.com/resources/linux/man/man3/longjmp.3.html (1 of 2) [14/09/1999 09:56:23]

RETURN VALUE

 These functions never return.

CONFORMING TO

 POSIX

NOTES

 POSIX does not specify whether longjmp will restore the sig-
 nal context. If you want to save and restore signal masks,
 use siglongjmp.

 longjmp() and siglongjmp() make programs hard to understand
 and maintain. If possible an alternative should be used.

SEE ALSO

 setjmp(3), sigsetjmp(3)

http://linuxsavvy.com/resources/linux/man/man3/longjmp.3.html (2 of 2) [14/09/1999 09:56:23]

NAME

 lfind, lsearch - linear search of an array.

SYNOPSIS

 #include <stdlib.h>

 void *lfind(const void *key, const void *base, size_t *nmemb
 size_t size, int (*compar))(const void *, const void *));

 void *lsearch(const void *key, const void *base, size_t *nmemb
 size_t size, int (*compar))(const void *, const void *));

DESCRIPTION

 lfind() and lsearch() perform a linear search for key in the
 array base which has *nmemb elements of size bytes each.
 The comparison function referenced by compar is expected to
 have two arguments which point to the key object and to an
 array member, in that order, and which returns zero if the
 key object matches the array member, and non-zero otherwise.

 If lsearch() does not find a matching element, then the key
 object is inserted at the end of the table, and *nmemb is
 incremented.

http://linuxsavvy.com/resources/linux/man/man3/lsearch.3.html (1 of 2) [14/09/1999 09:56:26]

RETURN VALUE

 lfind() returns a pointer to a matching member of the array,
 or NULL if no match is found. lsearch() returns a pointer
 to a matching member of the array, or to the newly added
 member if no match is found.

SEE ALSO

 bsearch(3), hsearch(3), tsearch(3)

http://linuxsavvy.com/resources/linux/man/man3/lsearch.3.html (2 of 2) [14/09/1999 09:56:26]

NAME

 calloc, malloc, free, realloc - Allocate and free dynamic
 memory

SYNOPSIS

 #include <stdlib.h>

 void *calloc(size_t nmemb, size_t size));
 void *malloc(size_t size));
 void free(void *ptr));
 void *realloc(void *ptr, size_t size));

DESCRIPTION

 calloc() allocates memory for an array of nmemb elements of
 size bytes each and returns a pointer to the allocated
 memory. The memory is set to zero.

 malloc() allocates size bytes and returns a pointer to the
 allocated memory. The memory is not cleared.

 free() frees the memory space pointed to by ptr, which must
 have been returned by a previous call to malloc(), calloc()
 or realloc(). Otherwise, or if free(ptr)) has already been
 called before, undefined behaviour occurs. If ptr is NULL,
 no operation is performed.

 realloc() changes the size of the memory block pointed to by
 ptr to size bytes. The contents will be unchanged to the
 minimum of the old and new sizes; newly allocated memory
 will be uninitialized. If ptr is NULL, the call is
 equivalent to malloc(size); if size is equal to zero, the

http://linuxsavvy.com/resources/linux/man/man3/malloc.3.html (1 of 3) [14/09/1999 09:56:29]

 call is equivalent to free(ptr)). Unless ptr is NULL, it
 must have been returned by an earlier call to malloc(), cal-
 loc() or realloc().

RETURN VALUES

 For calloc() and malloc(), the value returned is a pointer
 to the allocated memory, which is suitably aligned for any
 kind of variable, or NULL if the request fails.

 free() returns no value.

 realloc() returns a pointer to the newly allocated memory,
 which is suitably aligned for any kind of variable and may
 be different from ptr, or NULL if the request fails or if
 size was equal to 0. If realloc() fails the original block
 is left untouched - it is not freed or moved.

CONFORMING TO

 ANSI-C

SEE ALSO

 brk(2)

NOTES

 The Unix98 standard requires malloc(), calloc(), and real-
 loc() to set errno to ENOMEM upon failure. Glibc assumes

http://linuxsavvy.com/resources/linux/man/man3/malloc.3.html (2 of 3) [14/09/1999 09:56:29]

 that this is done (and the glibc versions of these routines
 do this); if you use a private malloc implementation that
 does not set errno, then certain library routines may fail
 without having a reason in errno.

 Crashes in malloc(), free() or realloc() are almost always
 related to heap corruption, such as overflowing an allocated
 chunk or freeing the same pointer twice.

 Recent versions of Linux libc (later than 5.4.23) and GNU
 libc (2.x) include a malloc implementation which is tunable
 via environment variables. When MALLOC_CHECK_ is set, a
 special (less efficient) implementation is used which is
 designed to be tolerant against simple errors, such as dou-
 ble calls of free() with the same argument, or overruns of a
 single byte (off-by-one bugs). Not all such errors can be
 proteced against, however, and memory leaks can result. If
 MALLOC_CHECK_ is set to 0, any detected heap corruption is
 silently ignored; if set to 1, a diagnostic is printed on
 stderr; if set to 2, abort() is called immediately. This
 can be useful because otherwise a crash may happen much
 later, and the true cause for the problem is then very hard
 to track down.

http://linuxsavvy.com/resources/linux/man/man3/malloc.3.html (3 of 3) [14/09/1999 09:56:29]

NAME

 mblen - determine the number of bytes in a character

SYNOPSIS

 #include <stdlib.h>

 int mblen(const char *s, size_t n);

DESCRIPTION

 The mblen() function scans the first n bytes of the string s
 and returns the number of bytes in a character. The mblen()
 function is equivalent to

 mbtowc((wchat_t *)0, s, n);

 except that the shift state of the mbtowc() function is not
 affected.

RETURN VALUE

 The mblen() returns the number of bytes in a character or -1
 if the character is invalid or 0 if s is a NULL string.

http://linuxsavvy.com/resources/linux/man/man3/mblen.3.html (1 of 2) [14/09/1999 09:56:31]

CONFORMING TO

 SVID 3, ISO 9899

SEE ALSO

 mbstowcs(3), mbtowc(3), wcstombs(3),

http://linuxsavvy.com/resources/linux/man/man3/mblen.3.html (2 of 2) [14/09/1999 09:56:31]

NAME

 mbstowcs - convert a multibyte string to a wide character
 string.

SYNOPSIS

 #include <stdlib.h>

 size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n

DESCRIPTION

 The mbstowcs() function converts a sequence of multibyte
 characters from the array s into a sequence of wide charac-
 ters and stores up to n wide characters in the array pwcs.

RETURN VALUE

 mbstowcs() returns the number of wide characters stored or
 -1 if s contains an invalid multibyte character.

CONFORMING TO

 SVID 3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/mbstowcs.3.html (1 of 2) [14/09/1999 09:56:33]

SEE ALSO

 mblen(3), mbtowc(3), wcstombs(3),

http://linuxsavvy.com/resources/linux/man/man3/mbstowcs.3.html (2 of 2) [14/09/1999 09:56:33]

NAME

 mbtowc - convert a multibyte character to a wide character.

SYNOPSIS

 #include <stdlib.h>

 int mbtowc(wchar_t *pwc, const char *s, size_t n

DESCRIPTION

 The mbtowc() function converts a multibyte character s,
 which is no longer than n bytes, into a wide character and,
 if pwc is not NULL, stores the wide character in pwc.

RETURN VALUE

 mbtowc() returns the number of bytes in the multibyte char-
 acter or -1 if the multibyte character is not valid.

CONFORMING TO

 SVID 3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/mbtowc.3.html (1 of 2) [14/09/1999 09:56:34]

SEE ALSO

 mblen(3), mbstowcs(3), wcstombs(3),

http://linuxsavvy.com/resources/linux/man/man3/mbtowc.3.html (2 of 2) [14/09/1999 09:56:34]

NAME

 memccpy - copy memory area

SYNOPSIS

 #include <string.h>

 void *memccpy(void *dest, const void *src, int c

DESCRIPTION

 The memccpy() function copies no more than n bytes from
 memory area src to memory area dest, stopping when the char-
 acter c is found.

RETURN VALUE

 The memccpy() function returns a pointer to the next charac-
 ter in dest after c, or NULL if c was not found in the first
 n characters of src.

CONFORMING TO

 SVID 3, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/memccpy.3.html (1 of 2) [14/09/1999 09:56:37]

SEE ALSO

 bcopy(3), memcpy(3), memmove(3),

http://linuxsavvy.com/resources/linux/man/man3/memccpy.3.html (2 of 2) [14/09/1999 09:56:37]

NAME

 memchr - scan memory for a character

SYNOPSIS

 #include <string.h>

 void *memchr(const void *s, int c, size_t n

DESCRIPTION

 The memchr() function scans the first n bytes of the memory
 area pointed to by s for the character c. The first byte to
 match c (interpreted as an unsigned character) stops the
 operation.

RETURN VALUE

 The memchr() function returns a pointer to the matching byte
 or NULL if the character does not occur in the given memory
 area.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/memchr.3.html (1 of 2) [14/09/1999 09:56:39]

SEE ALSO

 index(3), rindex(3), strchr(3), strrchr(3), strsep(3),
 strspn(3),

http://linuxsavvy.com/resources/linux/man/man3/memchr.3.html (2 of 2) [14/09/1999 09:56:39]

NAME

 memcmp - compare memory areas

SYNOPSIS

 #include <string.h>

 int memcmp(const void *s1, const void *s2, size_t n

DESCRIPTION

 The memcmp() function compares the first n bytes of the
 memory areas s1 and s2. It returns an integer less than,
 equal to, or greater than zero if s1 is found, respectively,
 to be less than, to match, or be greater than s2.

RETURN VALUE

 The memcmp() function returns an integer less than, equal
 to, or greater than zero if the first n bytes of s1 is
 found, respectively, to be less than, to match, or be
 greater than the first n bytes of s2.

http://linuxsavvy.com/resources/linux/man/man3/memcmp.3.html (1 of 2) [14/09/1999 09:56:40]

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 bcmp(3), strcasecmp(3), strcmp(3), strncmp(3),
 strncasecmp(3)

http://linuxsavvy.com/resources/linux/man/man3/memcmp.3.html (2 of 2) [14/09/1999 09:56:40]

NAME

 memcpy - copy memory area

SYNOPSIS

 #include <string.h>

 void *memcpy(void *dest, const void *src, size_t n

DESCRIPTION

 The memcpy() function copies n bytes from memory area src to
 memory area dest. The memory areas may not overlap. Use
 memmove(3) if the memory areas do overlap.

RETURN VALUE

 The memcpy() function returns a pointer to dest.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/memcpy.3.html (1 of 2) [14/09/1999 09:56:41]

SEE ALSO

 bcopy(3), memccpy(3), memmove(3),

http://linuxsavvy.com/resources/linux/man/man3/memcpy.3.html (2 of 2) [14/09/1999 09:56:41]

NAME

 memfrob - frobnicate (encrypt) a memory area

SYNOPSIS

 #include <string.h>

 void *memfrob(void *s, size_t n);

DESCRIPTION

 The memfrob() function encrypts the first n bytes of the
 memory area s by exclusive-ORing each character with the
 number 42. The effect can be reversed by using memfrob() on
 the encrypted memory area.

 Note that this function is not a proper encryption routine
 as the XOR constant is fixed, and is only suitable for hid-
 ing strings.

RETURN VALUE

 The memfrob() function returns a pointer to the encrypted
 memory area.

http://linuxsavvy.com/resources/linux/man/man3/memfrob.3.html (1 of 2) [14/09/1999 09:56:43]

CONFORMING TO

 The memfrob() function is unique to the Linux C Library and
 GNU C Library.

SEE ALSO

 strfry(3)

http://linuxsavvy.com/resources/linux/man/man3/memfrob.3.html (2 of 2) [14/09/1999 09:56:43]

NAME

 memmem - locate a substring

SYNOPSIS

 #include <string.h>

 void *memmem(const void *haystack, size_t haystacklen,
 const void *needle, size_t needlelen));

DESCRIPTION

 The memmem() function finds the start of the first
 occurrence of the substring needle of length needlelen in
 the memory area haystack of length haystacklen.

RETURN VALUE

 The memmem() function returns a pointer to the beginning of
 the substring, or NULL if the substring is not found.

CONFORMING TO

 This function is a GNU extension.

http://linuxsavvy.com/resources/linux/man/man3/memmem.3.html (1 of 2) [14/09/1999 09:56:46]

BUGS

 This function was broken in Linux libraries up to and
 including libc 5.0.9; there the `needle' and `haystack'
 arguments were interchanged, and a pointer to the end of the
 first occurrence of needle was returned. Since libc 5.0.9
 is still widely used, this is a dangerous function to use.
 Both old and new libc's have the bug that if needle is empty
 haystack-1 (instead of haystack) is returned. And glibc
 (2.0.5) makes it worse, and returns a pointer to the last
 byte of `haystack'. Hopefully this will be fixed. For the
 time being, memmem() should not be used with an empty `nee-
 dle'.

SEE ALSO

 strstr(3)

http://linuxsavvy.com/resources/linux/man/man3/memmem.3.html (2 of 2) [14/09/1999 09:56:46]

NAME

 memmove - copy memory area

SYNOPSIS

 #include <string.h>

 void *memmove(void *dest, const void *src, size_t n

DESCRIPTION

 The memmove() function copies n bytes from memory area src
 to memory area dest. The memory areas may overlap.

RETURN VALUE

 The memmove() function returns a pointer to dest.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/memmove.3.html (1 of 2) [14/09/1999 09:56:48]

SEE ALSO

 bcopy(3), memccpy(3), memcpy(3),

http://linuxsavvy.com/resources/linux/man/man3/memmove.3.html (2 of 2) [14/09/1999 09:56:48]

NAME

 memset - fill memory with a constant byte

SYNOPSIS

 #include <string.h>

 void *memset(void *s, int c, size_t n

DESCRIPTION

 The memset() function fills the first n bytes of the memory
 area pointed to by s with the constant byte c.

RETURN VALUE

 The memset() function returns a pointer to the memory area
 s.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/memset.3.html (1 of 2) [14/09/1999 09:56:49]

SEE ALSO

 bzero(3), swab(3)

http://linuxsavvy.com/resources/linux/man/man3/memset.3.html (2 of 2) [14/09/1999 09:56:49]

NAME

 mkfifo - make a FIFO special file (a named pipe)

SYNOPSIS

 #include <sys/types.h>
 #include <sys/stat.h>

 int mkfifo (const char *pathname, mode_t mode);

DESCRIPTION

 mkfifo makes a FIFO special file with name pathname. mode
 specifies the FIFO's permissions. It is modified by the
 process's umask in the usual way: the permissions of the
 created file are (mode & ~umask).

 A FIFO special file is similar to a pipe, except that it is
 created in a different way. Instead of being an anonymous
 communications channel, a FIFO special file is entered into
 the file system by calling mkfifo.

 Once you have created a FIFO special file in this way, any
 process can open it for reading or writing, in the same way
 as an ordinary file. However, it has to be open at both
 ends simultaneously before you can proceed to do any input
 or output operations on it. Opening a FIFO for reading nor-
 mally blocks until some other process opens the same FIFO
 for writing, and vice versa.

http://linuxsavvy.com/resources/linux/man/man3/mkfifo.3.html (1 of 4) [14/09/1999 09:56:51]

RETURN VALUE

 The normal, successful return value from mkfifo is 0. In
 the case of an error, -1 is returned (in which case, errno
 is set appropriately).

ERRORS

 EACCES
 One of the directories in pathname did not allow search
 (execute) permission.

 EEXIST
 pathname already exists.

 ENAMETOOLONG
 Either the total length of pathname is greater than
 PATH_MAX, or an individual file name component has a
 length greater than NAME_MAX. In the GNU system, there
 is no imposed limit on overall file name length, but
 some file systems may place limits on the length of a
 component.

 ENOENT
 A directory component in pathname does not exist or is
 a dangling symbolic link.

 ENOSPC
 The directory or filesystem has no room for the new
 file.

 ENOTDIR
 A component used as a directory in pathname is not, in
 fact, a directory.

 EROFS
 pathname refers to a read-only filesystem.

http://linuxsavvy.com/resources/linux/man/man3/mkfifo.3.html (2 of 4) [14/09/1999 09:56:51]

CONFORMING TO

 POSIX.1

SEE ALSO

 mkfifo(1), read(2), write(2), close(2), stat(2), umask(2).

http://linuxsavvy.com/resources/linux/man/man3/mkfifo.3.html (3 of 4) [14/09/1999 09:56:51]

http://linuxsavvy.com/resources/linux/man/man3/mkfifo.3.html (4 of 4) [14/09/1999 09:56:51]

NAME

 mkstemp - create a unique temporary file

SYNOPSIS

 #include <unistd.h>

 int mkstemp(char *template));

DESCRIPTION

 The mkstemp() function generates a unique temporary file
 name from template. The last six characters of template
 must be XXXXXX and these are replaced with a string that
 makes the filename unique. The file is then created with
 mode read/write and permissions 0666 (glibc 2.0.6 and ear-
 lier), 0600 (glibc 2.0.7 and later).

RETURN VALUE

 The mkstemp() function returns the file descriptor fd of the
 temporary file.

http://linuxsavvy.com/resources/linux/man/man3/mkstemp.3.html (1 of 3) [14/09/1999 09:56:53]

ERRORS

 EINVAL
 The last six characters of template were not XXXXXX.

 EEXIST
 The temporary file is not unique.

BUGS

 The old behaviour (creating a file with mode 0666) may be a
 security risk, especially since other Unix flavours use
 0600, and somebody might overlook this detail when porting
 programs.

CONFORMING TO

 BSD 4.3

SEE ALSO

 mktemp(3), tmpnam(3), tempnam(3),

http://linuxsavvy.com/resources/linux/man/man3/mkstemp.3.html (2 of 3) [14/09/1999 09:56:53]

http://linuxsavvy.com/resources/linux/man/man3/mkstemp.3.html (3 of 3) [14/09/1999 09:56:53]

NAME

 mktemp - make a unique temporary file name

SYNOPSIS

 #include <unistd.h>

 char *mktemp(char *template));

DESCRIPTION

 The mktemp() function generates a unique temporary file name
 from template. The last six characters of template must be
 XXXXXX and these are replaced with a string that makes the
 filename unique.

RETURN VALUE

 The mktemp() function returns a pointer to template on suc-
 cess, and NULL on failure.

ERRORS

 EINVAL
 The last six characters of template were not XXXXXX.

http://linuxsavvy.com/resources/linux/man/man3/mktemp.3.html (1 of 2) [14/09/1999 09:56:54]

CONFORMING TO

 BSD 4.3. POSIX dictates tmpnam().

SEE ALSO

 mkstemp(3), tmpnam(3), tempnam(3),

http://linuxsavvy.com/resources/linux/man/man3/mktemp.3.html (2 of 2) [14/09/1999 09:56:54]

NAME

 modf - extract signed integral and fractional values from
 floating-point number

SYNOPSIS

 #include <math.h>

 double modf(double x, double *iptr));

DESCRIPTION

 The modf() function breaks the argument x into an integral
 part and a fractional part, each of which has the same sign
 as x. The integral part is stored in iptr.

RETURN VALUE

 The modf() function returns the fractional part of x.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/modf.3.html (1 of 2) [14/09/1999 09:56:56]

SEE ALSO

 frexp(3), ldexp(3)

http://linuxsavvy.com/resources/linux/man/man3/modf.3.html (2 of 2) [14/09/1999 09:56:56]

NAME

 on_exit - register a function to be called at normal program
 termination.

SYNOPSIS

 #include <stdlib.h>

 int on_exit(void (*function))(int , void *), void *arg));

DESCRIPTION

 The on_exit() function registers the given function to be
 called at normal program termination, whether via exit(3) or
 via return from the program's main. The function is passed
 the argument to exit(3) and the arg argument from on_exit().

RETURN VALUE

 The on_exit() function returns the value 0 if successful;
 otherwise the value -1 is returned.

SEE ALSO

 exit(3), atexit(3)

http://linuxsavvy.com/resources/linux/man/man3/on_exit.3.html (1 of 2) [14/09/1999 09:57:00]

http://linuxsavvy.com/resources/linux/man/man3/on_exit.3.html (2 of 2) [14/09/1999 09:57:00]

NAME

 opendir - open a directory

SYNOPSIS

 #include <sys/types.h>

 #include <dirent.h>

 DIR *opendir(const char *name));

DESCRIPTION

 The opendir() function opens a directory stream correspond-
 ing to the directory name, and returns a pointer to the
 directory stream. The stream is positioned at the first
 entry in the directory.

RETURN VALUE

 The opendir() function returns a pointer to the directory
 stream or NULL if an error occurred.

http://linuxsavvy.com/resources/linux/man/man3/opendir.3.html (1 of 2) [14/09/1999 09:57:01]

ERRORS

 EACCES
 Permission denied.

 EMFILE
 Too many file descriptors in use by process.

 ENFILE
 Too many files are currently open in the system.

 ENOENT
 Directory does not exist, or name is an empty string.

 ENOMEM
 Insufficient memory to complete the operation.

 ENOTDIR
 name is not a directory.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 open(2), readdir(3), closedir(3), seekdir(3), telldir(3),
 scandir(3)

http://linuxsavvy.com/resources/linux/man/man3/opendir.3.html (2 of 2) [14/09/1999 09:57:01]

NAME

 perror - print a system error message

SYNOPSIS

 #include <stdio.h>

 void perror(const char *s);

 #include <errno.h>

 const char *sys_errlist[];
 int sys_nerr;

DESCRIPTION

 The routine perror() produces a message on the standard
 error output, describing the last error encountered during a
 call to a system or library function. The argument string s
 is printed first, then a colon and a blank, then the message
 and a new-line. To be of most use, the argument string
 should include the name of the function that incurred the
 error. The error number is taken from the external variable
 errno, which is set when errors occur but not cleared when
 non-erroneous calls are made.

 The global error list sys_errlist[] indexed by errno can be
 used to obtain the error message without the newline. The
 largest message number provided in the table is sys_nerr -1.
 Be careful when directly accessing this list because new
 error values may not have been added to sys_errlist[].

 When a system call fails, it usually returns -1 and sets the

http://linuxsavvy.com/resources/linux/man/man3/perror.3.html (1 of 2) [14/09/1999 09:57:05]

 variable errno to a value describing what went wrong. (These
 values can be found in <errno.h>.) Many library functions
 do likewise. The function perror() serves to translate this
 error code into human-readable form. Note that errno is
 undefined after a successful library call: this call may
 well change this variable, even though it succeeds, for
 example because it internally used some other library func-
 tion that failed. Thus, if a failing call is not immedi-
 ately followed by a call to perror, the value of errno
 should be saved.

CONFORMING TO

 ANSI C, BSD 4.3, POSIX, X/OPEN

SEE ALSO

 strerror(3)

http://linuxsavvy.com/resources/linux/man/man3/perror.3.html (2 of 2) [14/09/1999 09:57:05]

NAME

 popen, pclose - process I/O

SYNOPSIS

 #include <stdio.h>

 FILE *popen(const char *command, const char *type));

 int pclose(FILE *stream));

DESCRIPTION

 The popen() function opens a process by creating a pipe,
 forking, and invoking the shell. Since a pipe is by defini-
 tion unidirectional, the type argument may specify only
 reading or writing, not both; the resulting stream is
 correspondingly read-only or write-only.

 The command argument is a pointer to a null-terminated
 string containing a shell command line. This command is
 passed to /bin/sh using the -c flag; interpretation, if any,
 is performed by the shell. The mode argument is a pointer
 to a null-terminated string which must be either `r' for
 reading or `w' for writing.

 The return value from popen() is a normal standard I/O
 stream in all respects save that it must be closed with
 pclose() rather than fclose(). Writing to such a stream
 writes to the standard input of the command; the command's
 standard output is the same as that of the process that
 called popen(), unless this is altered by the command
 itself. Conversely, reading from a ``popened'' stream reads

http://linuxsavvy.com/resources/linux/man/man3/popen.3.html (1 of 4) [14/09/1999 09:57:07]

 the command's standard output, and the command's standard
 input is the same as that of the process that called popen.

 Note that output popen streams are fully buffered by
 default.

 The pclose function waits for the associated process to ter-
 minate and returns the exit status of the command as
 returned by wait4.

RETURN VALUE

 The popen function returns NULL if the fork(2) or pipe(2)
 calls fail, or if it cannot allocate memory.

 The pclose function returns -1 if wait4 returns an error, or
 some other error is detected.

ERRORS

 The popen function does not set errno if memory allocation
 fails. If the underlying fork() or pipe() fails, errno is
 set appropriately. If the mode argument is invalid, and
 this condition is detected, errno is set to EINVAL.

 If pclose() cannot obtain the child status, errno is set to
 ECHILD.

CONFORMING TO

 POSIX.2

http://linuxsavvy.com/resources/linux/man/man3/popen.3.html (2 of 4) [14/09/1999 09:57:07]

BUGS

 Since the standard input of a command opened for reading
 shares its seek offset with the process that called popen(),
 if the original process has done a buffered read, the
 command's input position may not be as expected. Similarly,
 the output from a command opened for writing may become
 intermingled with that of the original process. The latter
 can be avoided by calling fflush(3) before popen.

 Failure to execute the shell is indistinguishable from the
 shell's failure to execute command, or an immediate exit of
 the command. The only hint is an exit status of 127.

HISTORY

 A popen() and a pclose() function appeared in Version 7 AT&T
 UNIX.

SEE ALSO

 fork(2), sh(1), pipe(2), wait4(2), fflush(3), fclose(3),
 fopen(3), stdio(3), system(3).

http://linuxsavvy.com/resources/linux/man/man3/popen.3.html (3 of 4) [14/09/1999 09:57:07]

http://linuxsavvy.com/resources/linux/man/man3/popen.3.html (4 of 4) [14/09/1999 09:57:07]

NAME

 printf, fprintf, sprintf, snprintf, vprintf, vfprintf,
 vsprintf, vsnprintf - formatted output conversion

SYNOPSIS

 #include <stdio.h>

 int printf(const char *format, ...);
 int fprintf(FILE *stream, const char *format, ...);
 int sprintf(char *str, const char *format, ...);
 int snprintf(char *str, size_t size, const char *format

 #include <stdarg.h>

 int vprintf(const char *format, va_list ap));
 int vfprintf(FILE *stream, const char *format, va_list ap
 int vsprintf(char *str, const char *format, va_list ap
 int vsnprintf(char *str, size_t size, const char *format

DESCRIPTION

 The printf family of functions produces output according to
 a format as described below. The functions printf and
 vprintf write output to stdout, the standard output stream;
 fprintf and vfprintf write output to the given output
 stream; sprintf, snprintf, vsprintf and vsnprintf write to
 the character string str.

 These functions write the output under the control of a for-
 mat string that specifies how subsequent arguments (or argu-
 ments accessed via the variable-length argument facilities
 of stdarg(3)) are converted for output.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (1 of 8) [14/09/1999 09:57:12]

 These functions return the number of characters printed (not
 including the trailing `\0' used to end output to strings).
 snprintf and vsnprintf do not write more than size bytes
 (including the trailing '\0'), and return -1 if the output
 was truncated due to this limit.

 The format string is composed of zero or more directives:
 ordinary characters (not %), which are copied unchanged to
 the output stream; and conversion specifications, each of
 which results in fetching zero or more subsequent arguments.
 Each conversion specification is introduced by the character
 %. The arguments must correspond properly (after type pro-
 motion) with the conversion specifier. After the %, the
 following appear in sequence:

 o Zero or more of the following flags:

 # specifying that the value should be converted to
 an ``alternate form''. For c, d, i, n, p, s, and
 u conversions, this option has no effect. For o
 conversions, the precision of the number is
 increased to force the first character of the out-
 put string to a zero (except if a zero value is
 printed with an explicit precision of zero). For
 x and X conversions, a non-zero result has the
 string `0x' (or `0X' for X conversions) prepended
 to it. For e, E, f, g, and G conversions, the
 result will always contain a decimal point, even
 if no digits follow it (normally, a decimal point
 appears in the results of those conversions only
 if a digit follows). For g and G conversions,
 trailing zeros are not removed from the result as
 they would otherwise be.

 0 specifying zero padding. For all conversions
 except n, the converted value is padded on the
 left with zeros rather than blanks. If a preci-
 sion is given with a numeric conversion i, o, u,
 i, x, and X), the 0 flag is ignored.

 - (a negative field width flag) indicates the con-
 verted value is to be left adjusted on the field
 boundary. Except for n conversions, the converted
 value is padded on the right with blanks, rather
 than on the left with blanks or zeros. A - over-

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (2 of 8) [14/09/1999 09:57:12]

 rides a 0 if both are given.

 ' ' (a space) specifying that a blank should be left
 before a positive number produced by a signed
 conversion e, E, f, g, G, or i).

 + specifying that a sign always be placed before a
 number produced by a signed conversion. A + over-
 rides a space if both are used.

 ' specifying that in a numerical argument the output
 is to be grouped if the locale information indi-
 cates any. Note that many versions of gcc cannot
 parse this option and will issue a warning.

 o An optional decimal digit string specifying a minimum
 field width. If the converted value has fewer charac-
 ters than the field width, it will be padded with
 spaces on the left (or right, if the left-adjustment
 flag has been given) to fill out the field width.

 o An optional precision, in the form of a period (`.')
 followed by an optional digit string. If the digit
 string is omitted, the precision is taken as zero.
 This gives the minimum number of digits to appear for
 d, i, o, u, x, and X conversions, the number of digits
 to appear after the decimal-point for e, E, and f
 conversions, the maximum number of significant digits
 for g and G conversions, or the maximum number of char-
 acters to be printed from a string for s conversions.

 o The optional character h, specifying that a following
 d, i, o, u, x, or X conversion corresponds to a short
 int or unsigned short int argument, or that a following
 n conversion corresponds to a pointer to a short int
 argument.

 o The optional character l (ell) specifying that a fol-
 lowing d, i, o, u, x, or X conversion applies to a
 pointer to a long int or unsigned long int argument, or
 that a following n conversion corresponds to a pointer
 to a long int argument. Linux provides a non ANSI com-
 pliant use of two l flags as a synonym to q or L. Thus
 ll can be used in combination with float conversions.
 This usage is, however, strongly discouraged.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (3 of 8) [14/09/1999 09:57:12]

 o The character L specifying that a following e, E, f, g,
 or G conversion corresponds to a long double argument,
 or a following d, i, o, u, x, or X conversion
 corresponds to a long long argument. Note that long
 long is not specified in ANSI C and therefore not port-
 able to all architectures.

 o The optional character q. This is equivalent to L.
 See the STANDARDS and BUGS sections for comments on the
 use of ll, L, and q.

 o A Z character specifying that the following integer i,
 o, u, x, or X) conversion corresponds to a size_t argu-
 ment.

 o A character that specifies the type of conversion to be
 applied.

 A field width or precision, or both, may be indicated by an
 asterisk `*' instead of a digit string. In this case, an
 int argument supplies the field width or precision. A nega-
 tive field width is treated as a left adjustment flag fol-
 lowed by a positive field width; a negative precision is
 treated as though it were missing.

 The conversion specifiers and their meanings are:

 diouxX
 The int (or appropriate variant) argument is converted
 to signed decimal and i), unsigned octal unsigned
 decimal or unsigned hexadecimal and X) notation. The
 letters abcdef are used for x conversions; the letters
 ABCDEF are used for X conversions. The precision, if
 any, gives the minimum number of digits that must
 appear; if the converted value requires fewer digits,
 it is padded on the left with zeros.

 eE The double argument is rounded and converted in the
 style where there is one digit before the decimal-
 point character and the number of digits after it is
 equal to the precision; if the precision is missing, it
 is taken as 6; if the precision is zero, no decimal-
 point character appears. An E conversion uses the
 letter E (rather than e) to introduce the exponent.
 The exponent always contains at least two digits; if
 the value is zero, the exponent is 00.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (4 of 8) [14/09/1999 09:57:12]

 f The double argument is rounded and converted to decimal
 notation in the style where the number of digits after
 the decimal-point character is equal to the precision
 specification. If the precision is missing, it is
 taken as 6; if the precision is explicitly zero, no
 decimal-point character appears. If a decimal point
 appears, at least one digit appears before it.

 g The double argument is converted in style f or e (or E
 for G conversions). The precision specifies the number
 of significant digits. If the precision is missing, 6
 digits are given; if the precision is zero, it is
 treated as 1. Style e is used if the exponent from its
 conversion is less than -4 or greater than or equal to
 the precision. Trailing zeros are removed from the
 fractional part of the result; a decimal point appears
 only if it is followed by at least one digit.

 c The int argument is converted to an unsigned char, and
 the resulting character is written.

 s The argument is expected to be a pointer to an array
 of character type (pointer to a string). Characters
 from the array are written up to (but not including) a
 terminating NUL character; if a precision is specified,
 no more than the number specified are written. If a
 precision is given, no null character need be present;
 if the precision is not specified, or is greater than
 the size of the array, the array must contain a ter-
 minating NUL character.

 p The pointer argument is printed in hexadecimal (as if
 by %#x or %#lx).

 n The number of characters written so far is stored into
 the integer indicated by the (or variant) pointer
 argument. No argument is converted.

 % A `%' is written. No argument is converted. The com-
 plete conversion specification is `%%'.

 In no case does a non-existent or small field width cause
 truncation of a field; if the result of a conversion is
 wider than the field width, the field is expanded to contain
 the conversion result.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (5 of 8) [14/09/1999 09:57:12]

EXAMPLES

 To print a date and time in the form `Sunday, July 3,
 10:02', where weekday and month are pointers to strings:
 #include <stdio.h>
 fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
 weekday, month, day, hour, min);

 To print to five decimal places:
 #include <math.h>
 #include <stdio.h>
 fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

 To allocate a 128 byte string and print into it:
 #include <stdio.h>
 #include <stdlib.h>
 #include <stdarg.h>
 char *newfmt(const char *fmt, ...)
 {
 char *p;
 va_list ap;
 if ((p = malloc(128)) == NULL)
 return (NULL);
 va_start(ap, fmt);
 (void) vsnprintf(p, 128, fmt, ap);
 va_end(ap);
 return (p);
 }

SEE ALSO

 printf(1), scanf(3)

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (6 of 8) [14/09/1999 09:57:12]

STANDARDS

 The fprintf, printf, sprintf, vprintf, vfprintf, and
 vsprintf functions conform to ANSI C3.159-1989 (``ANSI C'').

 The q flag is the BSD 4.4 notation for long long, while ll
 or the usage of L in integer conversions is the GNU nota-
 tion.

 The Linux version of these functions is based on the GNU
 libio library. Take a look at the info documentation of GNU
 libc (glibc-1.08) for a more concise description.

BUGS

 Some floating point conversions under Linux cause memory
 leaks.

 All functions are fully ANSI C3.159-1989 conformant, but
 provide the additional flags q, Z and ' as well as an addi-
 tional behaviour of the L and l flags. The latter may be
 considered to be a bug, as it changes the behaviour of flags
 defined in ANSI C3.159-1989.

 The effect of padding the %p format with zeros (either by
 the 0 flag or by specifying a precision), and the benign
 effect (i.e., none) of the # flag on %n and %p conversions,
 as well as nonsensical combinations such as are not stan-
 dard; such combinations should be avoided.

 Some combinations of flags defined by ANSI C are not making
 sense (e.g. %Ld). While they may have a well-defined
 behaviour on Linux, this need not to be so on other archi-
 tectures. Therefore it usually is better not to use flags
 that are not defined by ANSI C at all, i.e. use q instead of
 L in combination with diouxX conversions or ll.

 The usage of q is not the same as on BSD 4.4, as it may be
 used in float conversions equivalently to L.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (7 of 8) [14/09/1999 09:57:12]

 Because sprintf and vsprintf assume an infinitely long
 string, callers must be careful not to overflow the actual
 space; this is often impossible to assure.

http://linuxsavvy.com/resources/linux/man/man3/printf.3.html (8 of 8) [14/09/1999 09:57:12]

NAME

 profil - execution time profile

SYNOPSIS

 #include <unistd.h>

 int profil(u_short *buf, size_t bufsiz, size_t offset

DESCRIPTION

 This routine provides a means to find out in what areas your
 program spends most of its time. The argument buf points to
 bufsiz bytes of core. Every virtual 10 milliseconds, the
 user's program counter (PC) is examined: offset is sub-
 tracted and the result is multiplied by scale and divided by
 65536. If the resulting value is less than bufsiz, then the
 corresponding entry in buf is incremented. If buf is NULL,
 profiling is disabled.

RETURN VALUE

 Zero is always returned.

http://linuxsavvy.com/resources/linux/man/man3/profil.3.html (1 of 2) [14/09/1999 09:57:14]

BUGS

 profil cannot be used on a program that also uses
 ITIMER_PROF itimers.

 True kernel profiling provides more accurate results. Libc
 4.4 contained a kernel patch providing a system call profil.

CONFORMING TO

 Similar to a call in SVr4 (but not POSIX.1).

SEE ALSO

 gprof(1), setitimer(2), signal(2),

http://linuxsavvy.com/resources/linux/man/man3/profil.3.html (2 of 2) [14/09/1999 09:57:14]

NAME

 psignal - print signal message

SYNOPSIS

 #include <signal.h>

 void psignal(int sig, const char *s);

 extern const char *const sys_siglist[]

DESCRIPTION

 The psignal() function displays a message on stderr consist-
 ing of the string s, a colon, a space, and a string describ-
 ing the signal number sig. If sig is invalid, the message
 displayed will indicate an unknown signal.

 The array sys_siglist holds the signal description strings
 indexed by signal number.

RETURN VALUE

 The psignal() function returns no value.

http://linuxsavvy.com/resources/linux/man/man3/psignal.3.html (1 of 2) [14/09/1999 09:57:15]

CONFORMING TO

 BSD 4.3

SEE ALSO

 perror(3), strsignal(3)

http://linuxsavvy.com/resources/linux/man/man3/psignal.3.html (2 of 2) [14/09/1999 09:57:15]

NAME

 putenv - change or add an environment variable

SYNOPSIS

 #include <stdlib.h>

 int putenv(const char *string));

DESCRIPTION

 The putenv() function adds or changes the value of environ-
 ment variables. The argument string is of the form
 name=value. If name does not already exist in the environ-
 ment, then string is added to the environment. If name does
 exist, then the value of name in the environment is changed
 to value.

RETURN VALUE

 The putenv() function returns zero on success, or -1 if an
 error occurs.

http://linuxsavvy.com/resources/linux/man/man3/putenv.3.html (1 of 2) [14/09/1999 09:57:18]

ERRORS

 ENOMEM
 Insufficient space to allocate new environment.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 getenv(3), setenv(3), unsetenv(3), environ(5)

http://linuxsavvy.com/resources/linux/man/man3/putenv.3.html (2 of 2) [14/09/1999 09:57:18]

NAME

 putpwent - write a password file entry

SYNOPSIS

 #include <pwd.h>
 #include <stdio.h>
 #include <sys/types.h>

 int putpwent(const struct passwd *p, FILE *stream));

DESCRIPTION

 The putpwent() function writes a password entry from the
 structure p in the file associated with stream.

 The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

http://linuxsavvy.com/resources/linux/man/man3/putpwent.3.html (1 of 2) [14/09/1999 09:57:20]

RETURN VALUE

 The putpwent() function returns 0 on success, or -1 if an
 error occurs.

ERRORS

 EINVAL
 Invalid (NULL) argument given.

CONFORMING TO

 SVID 3

SEE ALSO

 fgetpwent(3), getpwent(3), setpwent(3), endpwent(3),
 getpwnam(3), getpwuid(3),

http://linuxsavvy.com/resources/linux/man/man3/putpwent.3.html (2 of 2) [14/09/1999 09:57:20]

NAME

 fputc, fputs, putc, putchar, puts - output of characters and
 strings

SYNOPSIS

 #include <stdio.h>

 int fputc(int c, FILE *stream));
 int fputs(const char *s, FILE *stream));
 int putc(int c, FILE *stream));
 int putchar(int c);
 int puts(const char *s);
 int ungetc(int c, FILE *stream));

DESCRIPTION

 fputc() writes the character c, cast to an unsigned char, to
 stream.

 fputs() writes the string s to stream, without its trailing
 '\0'.

 putc() is equivalent to fputc() except that it may be imple-
 mented as a macro which evaluates stream more than once.

 putchar(c); is equivalent to putc(c,stdout)).

 puts() writes the string s and a trailing newline to stdout.

 Calls to the functions described here can be mixed with each
 other and with calls to other output functions from the
 stdio library for the same output stream.

http://linuxsavvy.com/resources/linux/man/man3/puts.3.html (1 of 2) [14/09/1999 09:57:21]

RETURN VALUES

 fputc(), putc() and putchar() return the character written
 as an unsigned char cast to an int or EOF on error.

 puts() and fputs() return a non - negative number on suc-
 cess, or EOF on error.

CONFORMING TO

 ANSI - C, POSIX.1

BUGS

 It is not advisable to mix calls to output functions from
 the stdio library with low - level calls to write() for the
 file descriptor associated with the same output stream; the
 results will be undefined and very probably not what you
 want.

SEE ALSO

 write(2), fopen(3), fwrite(3), gets(3), fseek(3), ferror(3)

http://linuxsavvy.com/resources/linux/man/man3/puts.3.html (2 of 2) [14/09/1999 09:57:21]

NAME

 qsort - sorts an array

SYNOPSIS

 #include <stdlib.h>

 void qsort(void *base, size_t nmemb, size_t size
 int (*compar))(const void *, const void *))

DESCRIPTION

 The qsort() function sorts an array with nmemb elements of
 size size. The base argument points to the start of the
 array.

 The contents of the array are sorted in ascending order
 according to a comparison function pointed to by compar,
 which is called with two arguments that point to the objects
 being compared.

 The comparison function must return an integer less than,
 equal to, or greater than zero if the first argument is con-
 sidered to be respectively less than, equal to, or greater
 than the second. If two members compare as equal, their
 order in the sorted array is undefined.

http://linuxsavvy.com/resources/linux/man/man3/qsort.3.html (1 of 2) [14/09/1999 09:57:25]

RETURN VALUE

 The qsort() function returns no value.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 sort(1)

http://linuxsavvy.com/resources/linux/man/man3/qsort.3.html (2 of 2) [14/09/1999 09:57:25]

NAME

 raise - send a signal to the current process

SYNOPSIS

 #include <signal.h>

 int raise (int sig));

DESCRIPTION

 The raise function sends a signal to the current process.
 It is equivalent to

 kill(getpid(),sig))

RETURN VALUE

 0 on success, nonzero for failure.

CONFORMING TO

 ANSI-C

http://linuxsavvy.com/resources/linux/man/man3/raise.3.html (1 of 2) [14/09/1999 09:57:27]

SEE ALSO

 kill(2), signal(2), getpid(2)

http://linuxsavvy.com/resources/linux/man/man3/raise.3.html (2 of 2) [14/09/1999 09:57:27]

NAME

 rand, srand - random number generator.

SYNOPSIS

 #include <stdlib.h>

 int rand(void);

 void srand(unsigned int seed));

DESCRIPTION

 The rand() function returns a pseudo-random integer between
 0 and RAND_MAX.

 The srand() function sets its argument as the seed for a new
 sequence of pseudo-random integers to be returned by rand().
 These sequences are repeatable by calling srand() with the
 same seed value.

 If no seed value is provided, the rand() function is
 automatically seeded with a value of 1.

RETURN VALUE

 The rand() function returns a value between 0 and RAND_MAX.
 The srand() returns no value.

http://linuxsavvy.com/resources/linux/man/man3/rand.3.html (1 of 4) [14/09/1999 09:57:29]

NOTES

 The versions of rand() and srand() in the Linux C Library
 use the same random number generator as random() and sran-
 dom(), so the lower-order bits should be as random as the
 higher-order bits. However, on older rand() implementa-
 tions, the lower-order bits are much less random than the
 higher-order bits.

 In Numerical Recipes in C: The Art (William H. Press, Brian
 P. Flannery, Saul A. Teukolsky, William T. Vetterling; New
 York: Cambridge University Press, 1990 (1st ed, p. 207)),
 the following comments are made:
 "If you want to generate a random integer between 1 and
 10, you should always do it by

 j=1+(int) (10.0*rand()/(RAND_MAX+1.0));

 and never by anything resembling

 j=1+((int) (1000000.0*rand()) % 10);

 (which uses lower-order bits)."

 Random-number generation is a complex topic. The Numerical
 Recipes in C book (see reference above) provides an excel-
 lent discussion of practical random-number generation issues
 in Chapter 7 (Random Numbers).

 For a more theoretical discussion which also covers many
 practical issues in depth, please see Chapter 3 (Random
 Numbers) in Donald E. Knuth's The Art of Computer Program-
 ming, volume 2 (Seminumerical Algorithms), 2nd ed.; Reading,
 Massachusetts: Addison-Wesley Publishing Company, 1981.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/rand.3.html (2 of 4) [14/09/1999 09:57:29]

SEE ALSO

 random(3), srandom(3), initstate(3),

http://linuxsavvy.com/resources/linux/man/man3/rand.3.html (3 of 4) [14/09/1999 09:57:29]

http://linuxsavvy.com/resources/linux/man/man3/rand.3.html (4 of 4) [14/09/1999 09:57:29]

NAME

 random, srandom, initstate, setstate - random number genera-
 tor.

SYNOPSIS

 #include <stdlib.h>

 long int random(void);
 void srandom(unsigned int seed));
 char *initstate(unsigned int seed, char *state, int n
 char *setstate(char *state));

DESCRIPTION

 The random() function uses a non-linear additive feedback
 random number generator employing a default table of size 31
 long integers to return successive pseudo-random numbers in
 the range from 0 to RAND_MAX. The period of this random
 number generator is very large, approximately
 16*((2**31)-1).

 The srandom() function sets its argument as the seed for a
 new sequence of pseudo-random integers to be returned by
 random(). These sequences are repeatable by calling sran-
 dom() with the same seed value. If no seed value is pro-
 vided, the random() function is automatically seeded with a
 value of 1.

 The initstate() function allows a state array state to be
 initialized for use by random(). The size of the state
 array n is used by initstate() to decide how sophisticated a
 random number generator it should use - the larger the state

http://linuxsavvy.com/resources/linux/man/man3/random.3.html (1 of 4) [14/09/1999 09:57:31]

 array, the better the random numbers will be. seed is the
 seed for the initialization, which specifies a starting
 point for the random number sequence, and provides for res-
 tarting at the same point.

 The setstate() function changes the state array used by the
 random() function. The state array state is used for random
 number generation until the next call to initstate() or set-
 state(). state must first have been initialized using init-
 state().

RETURN VALUE

 The random() function returns a value between 0 and
 RAND_MAX. The srandom() function returns no value. The
 initstate() and setstate() functions return a pointer to the
 previous state array.

ERRORS

 EINVAL
 A state array of less than 8 bytes was specified to
 initstate().

NOTES

 Current "optimal" values for the size of the state array n
 are 8, 32, 64, 128, and 256 bytes; other amounts will be
 rounded down to the nearest known amount. Using less than 8
 bytes will cause an error.

http://linuxsavvy.com/resources/linux/man/man3/random.3.html (2 of 4) [14/09/1999 09:57:31]

CONFORMING TO

 BSD 4.3

SEE ALSO

 rand(3), srand(3)

http://linuxsavvy.com/resources/linux/man/man3/random.3.html (3 of 4) [14/09/1999 09:57:31]

http://linuxsavvy.com/resources/linux/man/man3/random.3.html (4 of 4) [14/09/1999 09:57:31]

returning -1 if the host does not exist. Otherwise is set to the
standard name of the host and a connection is established to a
server residing at the well-known Internet port If the connection
succeeds, a socket in the Internet domain of type is returned to
the caller, and given to the remote command as and If is non-
zero, then an auxiliary channel to a control process will be set
up, and a descriptor for it will be placed in The control process
will return diagnostic output from the command (unit 2) on this
channel, and will also accept bytes on this channel as being sig-
nal numbers, to be forwarded to the process group of the command.
If is 0, then the (unit 2 of the remote command) will be made the
same as the and no provision is made for sending arbitrary sig-
nals to the remote process, although you may be able to get its
attention by using out-of-band data. The protocol is described
in detail in The function is used to obtain a socket with a
privileged address bound to it. This socket is suitable for use
by and several other functions. Privileged Internet ports are
those in the range 0 to 1023. Only the super-user is allowed to
bind an address of this sort to a socket. The and functions take
a remote host's IP address or name, respectively, two user names
and a flag indicating whether the local user's name is that of
the super-user. Then, if the user is the super-user, it checks
the file. If that lookup is not done, or is unsuccessful, the in
the local user's home directory is checked to see if the request
for service is allowed. If this file does not exist, is not a
regular file, is owned by anyone other than the user or the
super-user, or is writeable by anyone other than the owner, the
check automatically fails. Zero is returned if the machine name
is listed in the file, or the host and remote user name are found
in the file; otherwise and return -1. If the local domain (as
obtained from is the same as the remote domain, only the machine
name need be specified. If the IP address of the remote host is
known, should be used in preference to as it does not require
trusting the DNS server for the remote host's domain. The func-
tion returns a valid socket descriptor on success. It returns -1
on error and prints a diagnostic message on the standard error.
The function returns a valid, bound socket descriptor on success.
It returns -1 on error with the global value set according to the
reason for failure. The error code is overloaded to mean ``All
network ports in use.'' These functions appeared in

http://linuxsavvy.com/resources/linux/man/man3/rcmd.3.html [14/09/1999 09:57:32]

NAME

 re_comp, re_exec - BSD regex functions

SYNOPSIS

 #include <regex.h>

 char *re_comp(char *regex));
 int re_exec(char *string));

DESCRIPTION

 re_comp is used to compile the null-terminated regular
 expression pointed to by regex. The compiled pattern occu-
 pies a static area, the pattern buffer, which is overwritten
 by subsequent use of re_comp. If regex is NULL, no opera-
 tion is performed and the pattern buffer's contents are not
 altered.

 re_exec is used to assess whether the null-terminated string
 pointed to by string matches the previously compiled regex.

RETURN VALUE

 re_comp returns NULL on successful compilation of regex oth-
 erwise it returns a pointer to an appropriate error message.

 re_exec returns 1 for a successful match, zero for failure.

http://linuxsavvy.com/resources/linux/man/man3/re_comp.3.html (1 of 2) [14/09/1999 09:57:33]

CONFORMING TO

 BSD 4.3

SEE ALSO

 regex(7), GNU regex manual

http://linuxsavvy.com/resources/linux/man/man3/re_comp.3.html (2 of 2) [14/09/1999 09:57:33]

NAME

 readdir - read a directory

SYNOPSIS

 #include <sys/types.h>

 #include <dirent.h>

 struct dirent *readdir(DIR *dir));

DESCRIPTION

 The readdir() function returns a pointer to a dirent struc-
 ture representing the next directory entry in the directory
 stream pointed to be dir. It returns NULL on reaching the
 end-of-file or if an error occurred.

 The data returned by readdir() is overwritten by subsequent
 calls to readdir() for the same directory stream.

 According to POSIX, the dirent structure contains a field
 char d_name[] of unspecified size, with at most NAME_MAX
 characters preceding the terminating null character. Use of
 other fields will harm the portability of your programs.

http://linuxsavvy.com/resources/linux/man/man3/readdir.3.html (1 of 2) [14/09/1999 09:57:36]

RETURN VALUE

 The readdir() function returns a pointer to a dirent struc-
 ture, or NULL if an error occurs or end-of-file is reached.

ERRORS

 EBADF
 Invalid directory stream descriptor dir.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 read(2), opendir(3), closedir(3), seekdir(3), telldir(3),
 scandir(3)

http://linuxsavvy.com/resources/linux/man/man3/readdir.3.html (2 of 2) [14/09/1999 09:57:36]

NAME

 readv, writev - read or write data into multiple buffers

SYNOPSIS

 #include <sys/uio.h>

 int readv(int filedes, const struct iovec *vector,
 size_t count));

 int writev(int filedes, const struct iovec *vector,
 size_t count));

DESCRIPTION

 The readv() function reads count blocks from the file asso-
 ciated with the file descriptor filedes into the multiple
 buffers described by vector.

 The writev() function writes at most count blocks described
 by vector to the file associated with the file descriptor
 filedes.

 The pointer vector points to a struct iovec defined in
 <sys/uio.h> as

 struct iovect
 {
 void *iovbase; /* Starting address */
 size_t iov_len; /* Number of bytes */
 } ;

 Buffers are processed in the order vector[0], vector[1], ...

http://linuxsavvy.com/resources/linux/man/man3/readv.3.html (1 of 4) [14/09/1999 09:57:38]

 vector[count].

 The readv() function works just like read(2) except that
 multiple buffers are filled.

 The writev() function works just like write(2) except that
 multiple buffers are written out.

RETURN VALUES

 The readv() function returns the number of bytes or -1 on
 error; the writev() function returns the number of bytes
 written.

ERRORS

 The readv() and writev() functions can fail and set errno to
 the following values:

 EBADF
 fd is not a valid file descriptor.

 EINVAL
 fd is unsuitable for reading (for readv()) or writing
 (for writev()).

 EFAULT
 buf is outside the processes' address space.

 EAGAIN
 Non-blocking I/O had been selected in the open() call,
 and reading or writing could not be done immediately.

 EINTR
 Reading or writing was interrupted before any data was
 transferred.

http://linuxsavvy.com/resources/linux/man/man3/readv.3.html (2 of 4) [14/09/1999 09:57:38]

CONFORMING TO

 unknown

BUGS

 It is not advisable to mix calls to functions like readv()
 or writev(), which operate on file descriptors, with the
 functions from the stdio library; the results will be unde-
 fined and probably not what you want.

SEE ALSO

 read(2), write(2)

http://linuxsavvy.com/resources/linux/man/man3/readv.3.html (3 of 4) [14/09/1999 09:57:38]

http://linuxsavvy.com/resources/linux/man/man3/readv.3.html (4 of 4) [14/09/1999 09:57:38]

NAME

 realpath - returns the canonicalized absolute pathname.

SYNOPSIS

 #include <sys/param.h>
 #include <unistd.h>

 char *realpath(char *path, char resolved_path[]);

DESCRIPTION

 realpath expands all symbolic links and resolves references
 to '/./', '/../' and extra '/' characters in the null ter-
 minated string named by path and stores the canonicalized
 absolute pathname in the buffer of size MAXPATHLEN named by
 resolved_path. The resulting path will have no symbolic
 link, '/./' or '/../' components.

RETURN VALUE

 If there is no error, it returns a pointer to the
 resolved_path.

 Otherwise it returns a NULL pointer and places in
 resolved_path the absolute pathname of the path component
 which could not be resolved. The global variable errno is
 set to indicate the error.

http://linuxsavvy.com/resources/linux/man/man3/realpath.3.html (1 of 2) [14/09/1999 09:57:40]

ERRORS

 ENOTDIR A component of the path prefix is not a directory.

 EINVAL The pathname contains a character with the high-
 order bit set.

 ENAMETOOLONG
 A component of a pathname exceeded MAXNAMLEN charac-
 ters, or an entire path name exceeded MAXPATHLEN
 characters.

 ENOENT The named file does not exist.

 EACCES Search permission is denied for a component of the
 path prefix.

 ELOOP Too many symbolic links were encountered in
 translating the pathname.

 EIO An I/O error occurred while reading from the file
 system.

SEE ALSO

 readlink(2), getcwd(3)

http://linuxsavvy.com/resources/linux/man/man3/realpath.3.html (2 of 2) [14/09/1999 09:57:40]

NAME

 regcomp, regexec, regerror, regfree - POSIX regex functions

SYNOPSIS

 #include <regex.h>

 int regcomp(regex_t *preg, const char *regex, int cflags));
 int regexec(const regex_t *preg, const char *string, size_t
 nmatch, regmatch_t pmatch[], int eflags));
 size_t regerror(int errcode, const regex_t *preg, char
 *errbuf, size_t errbuf_size));
 void regfree(regex_t *preg));

POSIX REGEX COMPILING

 regcomp is used to compile a regular expression into a form
 that is suitable for subsequent regexec searches.

 regcomp is supplied with preg, a pointer to a pattern buffer
 storage area; regex, a pointer to the null-terminated string
 and cflags, flags used to determine the type of compilation.

 All regular expression searching must be done via a compiled
 pattern buffer, thus regexec must always be supplied with
 the address of a regcomp initialised pattern buffer.

 cflags may be the bitwise-or of one or more of the follow-
 ing:

 REG_EXTENDED
 Use POSIX Extended Regular Expression syntax when
 interpreting regex. If not set, POSIX Basic Regular

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (1 of 6) [14/09/1999 09:57:44]

 Expression syntax is used.

 REG_ICASE
 Do not differentiate case. Subsequent regexec searches
 using this pattern buffer will be case insensitive.

 REG_NOSUB
 Support for substring addressing of matches is not
 required. The nmatch and pmatch parameters to regexec
 are ignored if the pattern buffer supplied was compiled
 with this flag set.

 REG_NEWLINE
 Match-any-character operators don't match a newline.

 A non-matching list ([^...]) not containing a newline
 does not match a newline.

 Match-beginning-of-line operator (^) matches the empty
 string immediately after a newline, regardless of
 whether eflags, the execution flags of regexec,
 contains REG_NOTBOL.

 Match-end-of-line operator ($) matches the empty string
 immediately before a newline, regardless of whether
 eflags contains REG_NOTEOL.

POSIX REGEX MATCHING

 regexec is used to match a null-terminated string against
 the precompiled pattern buffer, preg. nmatch and pmatch are
 used to provide information regarding the location of any
 matches. eflags may be the bitwise-or of one or both of
 REG_NOTBOL and REG_NOTEOL which cause changes in matching
 behaviour described below.

 REG_NOTBOL
 The match-beginning-of-line operator always fails to
 match (but see the compilation flag REG_NEWLINE above)
 This flag may be used when different portions of a
 string are passed to regexec and the beginning of the
 string should not be interpreted as the beginning of

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (2 of 6) [14/09/1999 09:57:44]

 the line.

 REG_NOTEOL
 The match-end-of-line operator always fails to match
 (but see the compilation flag REG_NEWLINE above)

 BYTE OFFSETS
 Unless REG_NOSUB was set for the compilation of the pattern
 buffer, it is possible to obtain substring match addressing
 information. pmatch must be dimensioned to have at least
 nmatch elements. These are filled in by regexec with sub-
 string match addresses. Any unused structure elements will
 contain the value -1.

 The regmatch_t structure which is the type of pmatch is
 defined in regex.h.

 typedef struct
 {
 regoff_t rm_so;
 regoff_t rm_eo;
 } regmatch_t;

 Each rm_so element that is not -1 indicates the start offset
 of the next largest substring match within the string. The
 relative rm_eo element indicates the end offset of the
 match.

POSIX ERROR REPORTING

 regerror is used to turn the error codes that can be
 returned by both regcomp and regexec into error message
 strings.
 regerror is passed the error code, errcode, the pattern
 buffer, preg, a pointer to a character string buffer,
 errbuf, and the size of the string buffer, errbuf_size. It
 returns the size of the errbuf required to contain the
 null-terminated error message string. If both errbuf and
 errbuf_size are non-zero, errbuf is filled in with the first
 errbuf_size - 1 characters of the error message and a ter-
 minating null.

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (3 of 6) [14/09/1999 09:57:44]

POSIX PATTERN BUFFER FREEING

 Supplying regfree with a precompiled pattern buffer, preg
 will free the memory allocated to the pattern buffer by the
 compiling process, regcomp.

RETURN VALUE

 regcomp returns zero for a successful compilation or an
 error code for failure.

 regexec returns zero for a successful match or REG_NOMATCH
 for failure.

ERRORS

 The following errors can be returned by regcomp:

 REG_BADRPT
 Invalid use of repetition operators such as using `*'
 as the first character.

 REG_BADBR
 Invalid use of back reference operator.

 REG_EBRACE
 Un-matched brace interval operators.

 REG_EBRACK
 Un-matched bracket list operators.

 REG_ERANGE
 Invalid use of the range operator, eg. the ending point
 of the range occurs prior to the starting point.

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (4 of 6) [14/09/1999 09:57:44]

 REG_ECTYPE
 Unknown character class name.

 REG_ECOLLATE
 Invalid collating element.

 REG_EPAREN
 Un-matched parenthesis group operators.

 REG_ESUBREG
 Invalid back reference to a subexpression.

 REG_EEND
 Non specific error. This is not defined by POSIX.2.

 REG_EESCAPE
 Trailing backslash.

 REG_BADPAT
 Invalid use of pattern operators such as group or list.

 REG_ESIZE
 Compiled regular expression requires a pattern buffer
 larger than 64Kb. This is not defined by POSIX.2.

 REG_ESPACE
 The regex routines ran out of memory.

CONFORMING TO

 POSIX.2

BUGS

 Currently (GNU libc snapshot 980503), GNU libc does not sup-
 port collating elements in regular expressions.

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (5 of 6) [14/09/1999 09:57:44]

SEE ALSO

 regex(7), GNU regex manual

http://linuxsavvy.com/resources/linux/man/man3/regex.3.html (6 of 6) [14/09/1999 09:57:44]

NAME

 remove - delete a name and possibly the file it refers to

SYNOPSIS

 #include <stdio.h>

 int remove(const char *pathname));

DESCRIPTION

 remove deletes a name from the filesystem. If that name was
 the last link to a file and no processes have the file open
 the file is deleted and the space it was using is made
 available for reuse.

 If the name was the last link to a file but any processes
 still have the file open the file will remain in existence
 until the last file descriptor referring to it is closed.

 If the name referred to a symbolic link the link is removed.

 If the name referred to a socket, fifo or device the name
 for it is removed but processes which have the object open
 may continue to use it.

http://linuxsavvy.com/resources/linux/man/man3/remove.3.html (1 of 4) [14/09/1999 09:57:47]

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and
 errno is set appropriately.

ERRORS

 EFAULT pathname points outside your accessible address
 space.

 EACCES Write access to the directory containing pathname is
 not allowed for the process's effective uid, or one
 of the directories in pathname did not allow search
 (execute) permission.

 EPERM The directory containing pathname has the sticky-bit
 (S_ISVTX) set and the process's effective uid is
 neither the uid of the file to be deleted nor that
 of the directory containing it.

 ENAMETOOLONG
 pathname was too long.

 ENOENT A directory component in pathname does not exist or
 is a dangling symbolic link.

 ENOTDIR A component used as a directory in pathname is not,
 in fact, a directory.

 EISDIR pathname refers to a directory.
 ENOMEM Insufficient kernel memory was available.

 EROFS pathname refers to a file on a read-only filesystem.

http://linuxsavvy.com/resources/linux/man/man3/remove.3.html (2 of 4) [14/09/1999 09:57:47]

CONFORMING TO

 ANSI C, SVID, AT&T, POSIX, X/OPEN, BSD 4.3

BUGS

 In-felicities in the protocol underlying NFS can cause the
 unexpected disappearance of files which are still being
 used.

SEE ALSO

 unlink(2), rename(2), open(2), mknod(2), mkfifo(3), link(2),

http://linuxsavvy.com/resources/linux/man/man3/remove.3.html (3 of 4) [14/09/1999 09:57:47]

http://linuxsavvy.com/resources/linux/man/man3/remove.3.html (4 of 4) [14/09/1999 09:57:47]

NAME

 res_init, res_query, res_search, res_querydomain,
 res_mkquery, res_send, dn_comp, dn_expand - resolver rou-
 tines

SYNOPSIS

 #include <netinet/in.h>
 #include <arpa/nameser.h>
 #include <resolv.h>
 extern struct state _res;

 int res_init(void);

 int res_query(const char *dname, int class, int type
 unsigned char *answer, int anslen));

 int res_search(const char *dname, int class, int type
 unsigned char *answer, int anslen));

 int res_querydomain(const char *name, const char *domain,
 int class, int type, unsigned char *answer
 int anslen));

 int res_mkquery(int op, const char *dname, int class
 int type, char *data, int datalen
 char *buf, int buflen));

 int res_send(const char *msg, int msglen, char *answer
 int anslen));

 int dn_comp(unsigned char *exp_dn, unsigned char *comp_dn,
 int length, unsigned char **dnptrs, unsigned char *exp_dn
 unsigned char **lastdnptr));

 int dn_expand(unsigned char *msg, unsigned char *eomorig,

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (1 of 6) [14/09/1999 09:57:55]

 unsigned char *comp_dn, unsigned char *exp_dn,
 int length));

DESCRIPTION

 These functions make queries to and interpret the responses
 from Internet domain name servers.

 The res_init() function reads the configuration files (see
 resolv+(8)) to get the default domain name, search order and
 name server address(es). If no server is given, the local
 host is tried. If no domain is given, that associated with
 the local host is used. It can be overridden with the
 environment variable LOCALDOMAIN. res_init() is normally
 executed by the first call to one of the other functions.

 The res_query() function queries the name server for the
 fully-qualified domain name name of specified type and
 class. The reply is left in the buffer answer of length
 anslen supplied by the caller.

 The res_search() function makes a query and waits for the
 response like res_query(), but in addition implements the
 default and search rules controlled by RES_DEFNAMES and
 RES_DNSRCH (see description of _res options below).

 The res_querydomain() function makes a query using
 res_query() on the concatenation of name and domain.

 The following functions are lower-level routines used by
 res_query().

 The res_mkquery() function constructs a query message in buf
 of length buflen for the domain name dname. The query type
 op is usually QUERY, but can be any of the types defined in
 <arpa/nameser.h>. newrr is currently unused.

 The res_send() function sends a pre-formatted query given in
 msg of length msglen and returns the answer in answer which
 is of length anslen. It will call res_init(), if it has not
 already been called.

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (2 of 6) [14/09/1999 09:57:55]

 The dn_comp() function compresses the domain name exp_dn and
 stores it in the buffer comp_dn of length length. The
 compression uses an array of pointers dnptrs to previously
 compressed names in the current message. The first pointer
 points to the beginning of the message and the list ends
 with NULL. The limit of the array is specified by
 lastdnptr. if dnptr is NULL, domain names are not
 compressed. If lastdnptr is NULL, the list of labels is not
 updated.

 The dn_expand() function expands the compressed domain name
 comp_dn to a full domain name, which is placed in the buffer
 exp_dn of size length. The compressed name is contained in
 a query or reply message, and msg points to the beginning of
 the message.

 The resolver routines use global configuration and state
 information contained in the structure _res, which is
 defined in <resolv.h>. The only field that is normally
 manipulated by the user is _res.options. This field can
 contain the bitwise ``or'' of the following options:

 RES_INIT
 True if res_init() has been called.

 RES_DEBUG
 Print debugging messages.

 RES_AAONLY
 Accept authoritative answers only. res_send() contin-
 ues until it fins an authoritative answer or returns an
 error. [Not currently implemented].

 RES_USEVC
 Use TCP connections for queries rather than UDP
 datagrams.

 RES_PRIMARY
 Query primary domain name server only.

 RES_IGNTC
 Ignore truncation errors. Don't retry with TCP. [Not
 currently implemented].

 RES_RECURSE

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (3 of 6) [14/09/1999 09:57:55]

 Set the recursion desired bit in queries. Recursion is
 carried out by the domain name server, not by
 res_send(). [Enabled by default].

 RES_DEFNAMES
 If set, res_search() will append the default domain
 name to single component names, ie. those that do not
 contain a dot. [Enabled by default].

 RES_STAYOPEN
 Used with RES_USEVC to keep the TCP connection open
 between queries.

 RES_DNSRCH
 If set, res_search() will search for host names in the
 current domain and in parent domains. This option is
 used by gethostbyname(3). [Enabled by default].

RETURN VALUE

 The res_init() function returns 0 on success, or -1 if an
 error occurs.

 The res_query(), res_search(), res_querydomain(),
 res_mkquery() and res_send() functions return the length of
 the response, or -1 if an error occurs.

 The dn_comp() and dn_expand() functions return the length of
 the compressed name, or -1 if an error occurs.

FILES

 /etc/resolv.conf resolver configuration file
 /etc/host.conf resolver configuration file

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (4 of 6) [14/09/1999 09:57:55]

CONFORMING TO

 BSD 4.3

SEE ALSO

 gethostbyname(3), hostname(7), named(8),

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (5 of 6) [14/09/1999 09:57:55]

http://linuxsavvy.com/resources/linux/man/man3/resolver.3.html (6 of 6) [14/09/1999 09:57:55]

NAME

 rewinddir - reset directory stream

SYNOPSIS

 #include <sys/types.h>

 #include <dirent.h>

 void rewinddir(DIR *dir));

DESCRIPTION

 The rewinddir() function resets the position of the direc-
 tory stream dir to the beginning of the directory.

RETURN VALUE

 The rewinddir() function returns no value.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/rewinddir.3.html (1 of 2) [14/09/1999 09:57:57]

SEE ALSO

 opendir(3), readdir(3), closedir(3), telldir(3), scandir(3)

http://linuxsavvy.com/resources/linux/man/man3/rewinddir.3.html (2 of 2) [14/09/1999 09:57:57]

NAME

 rint - round to closest integer

SYNOPSIS

 #include <math.h>

 double rint(double x);

DESCRIPTION

 The rint() function rounds x to an integer value according
 to the prevalent rounding mode. The default rounding mode
 is to round to the nearest integer.

RETURN VALUE

 The rint() function returns the integer value as a
 floating-point number.

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/rint.3.html (1 of 2) [14/09/1999 09:57:59]

SEE ALSO

 abs(3), ceil(3), fabs(3),

http://linuxsavvy.com/resources/linux/man/man3/rint.3.html (2 of 2) [14/09/1999 09:57:59]

NAME

 scandir, alphasort - scan a directory for matching entries

SYNOPSIS

 #include <dirent.h>

 int scandir(const char *dir, struct dirent ***namelist,
 int (*select))(const struct dirent *),
 int (*compar))(const struct dirent **, const struct dirent **));

 int alphasort(const struct dirent **a, const struct dirent **b);

DESCRIPTION

 The scandir() function scans the directory dir, calling
 select() on each directory entry. Entries for which
 select() returns non-zero are stored in strings allocated
 via malloc(), sorted using qsort() with the comparison func-
 tion compar(), and collected in array namelist which is
 allocated via malloc(). If select is NULL, all entries are
 selected.

 The alphasort() function can be used as the comparison func-
 tion for the scandir() function to sort the directory
 entries into alphabetical order. Its parameters are the two
 directory entries, a and b, to compare.

RETURN VALUE

 The scandir() function returns the number of directory

http://linuxsavvy.com/resources/linux/man/man3/scandir.3.html (1 of 4) [14/09/1999 09:58:02]

 entries selected or -1 if an error occurs.

 The alphasort() function returns an integer less than, equal
 to, or greater than zero if the first argument is considered
 to be respectively less than, equal to, or greater than the
 second.

ERRORS

 ENOMEM
 Insufficient memory to complete the operation.

CONFORMING TO

 BSD 4.3

EXAMPLE

 /* print files in current directory in reverse order */
 #include <dirent.h>
 main(){
 struct dirent **namelist;
 int n;

 n = scandir(".", &namelist, 0, alphasort);
 if (n < 0)
 perror("scandir");

 else
 while(n--) printf("%s\n", namelist[n]->d_name);
 }

http://linuxsavvy.com/resources/linux/man/man3/scandir.3.html (2 of 4) [14/09/1999 09:58:02]

SEE ALSO

 opendir(3), readdir(3), closedir(3), rewinddir(3),
 telldir(3), seekdir(3).

http://linuxsavvy.com/resources/linux/man/man3/scandir.3.html (3 of 4) [14/09/1999 09:58:02]

http://linuxsavvy.com/resources/linux/man/man3/scandir.3.html (4 of 4) [14/09/1999 09:58:02]

NAME

 scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf - input for-
 mat conversion

SYNOPSIS

 #include <stdio.h>
 int scanf(const char *format, ...);
 int fscanf(FILE *stream, const char *format, ...);
 int sscanf(const char *str, const char *format, ...);

 #include <stdarg.h>
 int vscanf(const char *format, va_list ap));
 int vsscanf(const char *str, const char *format, va_list ap
 int vfscanf(FILE *stream, const char *format, va_list ap

DESCRIPTION

 The scanf family of functions scans input according to a
 format as described below. This format may contain conver-
 sion specifiers; the results from such conversions, if any,
 are stored through the pointer arguments. The scanf func-
 tion reads input from the standard input stream stdin,
 fscanf reads input from the stream pointer stream, and
 sscanf reads its input from the character string pointed to
 by str.

 The vfscanf function is analogous to vfprintf(3) and reads
 input from the stream pointer stream using a variable argu-
 ment list of pointers (see stdarg(3). The vscanf function
 scans a variable argument list from the standard input and
 the vsscanf function scans it from a string; these are
 analogous to the vprintf and vsprintf functions respec-

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (1 of 7) [14/09/1999 09:58:06]

 tively.

 Each successive pointer argument must correspond properly
 with each successive conversion specifier (but see `suppres-
 sion' below). All conversions are introduced by the % (per-
 cent sign) character. The format string may also contain
 other characters. White space (such as blanks, tabs, or
 newlines) in the format string match any amount of white
 space, including none, in the input. Everything else
 matches only itself. Scanning stops when an input character
 does not match such a format character. Scanning also stops
 when an input conversion cannot be made (see below).

CONVERSIONS

 Following the % character introducing a conversion there may
 be a number of flag characters, as follows:

 * Suppresses assignment. The conversion that follows
 occurs as usual, but no pointer is used; the result of
 the conversion is simply discarded.

 a Indicates that the conversion will be s, the needed
 memory space for the string will be malloc'ed and the
 pointer to it will be assigned to the char pointer
 variable, which does not have to be initialised before.
 This flag does not exist in ANSI C.

 h Indicates that the conversion will be one of dioux or n
 and the next pointer is a pointer to a short int
 (rather than int).

 l Indicates either that the conversion will be one of
 dioux or n and the next pointer is a pointer to a long
 int (rather than int), or that the conversion will be
 one of efg and the next pointer is a pointer to double
 (rather than float). Specifying two l flags is
 equivalent to the L flag.

 L Indicates that the conversion will be either efg and
 the next pointer is a pointer to long double or the
 conversion will be dioux and the next pointer is a

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (2 of 7) [14/09/1999 09:58:06]

 pointer to long long. (Note that long long is not an
 ANSI C type. Any program using this will not be port-
 able to all architectures).

 q equivalent to L. This flag does not exist in ANSI C.

 In addition to these flags, there may be an optional maximum
 field width, expressed as a decimal integer, between the %
 and the conversion. If no width is given, a default of
 `infinity' is used (with one exception, below); otherwise at
 most this many characters are scanned in processing the
 conversion. Before conversion begins, most conversions skip
 white space; this white space is not counted against the
 field width.

 The following conversions are available:

 % Matches a literal `%'. That is, `%%' in the format
 string matches a single input `%' character. No
 conversion is done, and assignment does not occur.

 d Matches an optionally signed decimal integer; the next
 pointer must be a pointer to int.

 D Equivalent to ld; this exists only for backwards compa-
 tibility. (Note: thus only in libc4. In libc5 and
 glibc the %D is silently ignored, causing old programs
 to fail mysteriously.)

 i Matches an optionally signed integer; the next pointer
 must be a pointer to int. The integer is read in base
 16 if it begins with `0x' or `0X', in base 8 if it
 begins with `0', and in base 10 otherwise. Only char-
 acters that correspond to the base are used.

 o Matches an unsigned octal integer; the next pointer
 must be a pointer to unsigned int.

 u Matches an unsigned decimal integer; the next pointer
 must be a pointer to unsigned int.

 x Matches an unsigned hexadecimal integer; the next
 pointer must be a pointer to unsigned int.

 X Equivalent to x

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (3 of 7) [14/09/1999 09:58:06]

 f Matches an optionally signed floating-point number; the
 next pointer must be a pointer to float.

 e Equivalent to f.

 g Equivalent to f.

 E Equivalent to f

 s Matches a sequence of non-white-space characters; the
 next pointer must be a pointer to char, and the array
 must be large enough to accept all the sequence and the
 terminating NUL character. The input string stops at
 white space or at the maximum field width, whichever
 occurs first.

 c Matches a sequence of width count characters (default
 1); the next pointer must be a pointer to char, and
 there must be enough room for all the characters (no
 terminating NUL is added). The usual skip of leading
 white space is suppressed. To skip white space first,
 use an explicit space in the format.

 [Matches a nonempty sequence of characters from the
 specified set of accepted characters; the next pointer
 must be a pointer to char, and there must be enough
 room for all the characters in the string, plus a ter-
 minating NUL character. The usual skip of leading
 white space is suppressed. The string is to be made up
 of characters in (or not in) a particular set; the set
 is defined by the characters between the open bracket [
 character and a close bracket] character. The set
 excludes those characters if the first character after
 the open bracket is a circumflex ^. To include a close
 bracket in the set, make it the first character after
 the open bracket or the circumflex; any other position
 will end the set. The hyphen character - is also spe-
 cial; when placed between two other characters, it adds
 all intervening characters to the set. To include a
 hyphen, make it the last character before the final
 close bracket. For instance, `[^]0-9-]' means the set
 `everything except close bracket, zero through nine,
 and hyphen'. The string ends with the appearance of a
 character not in the (or, with a circumflex, in) set or
 when the field width runs out.

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (4 of 7) [14/09/1999 09:58:06]

 p Matches a pointer value (as printed by `%p' in
 printf(3); the next pointer must be a pointer to void.

 n Nothing is expected; instead, the number of characters
 consumed thus far from the input is stored through the
 next pointer, which must be a pointer to int. This is
 not a conversion, although it can be suppressed with
 the * flag. The C standard says: `Execution of a %n
 directive does not increment the assignment count
 returned at the completion of execution' but the Corri-
 gendum seems to contradict this. Probably it is wise
 not to make any assumptions on the effect of %n conver-
 sions on the return value.

RETURN VALUES

 These functions return the number of input items assigned,
 which can be fewer than provided for, or even zero, in the
 event of a matching failure. Zero indicates that, while
 there was input available, no conversions were assigned;
 typically this is due to an invalid input character, such as
 an alphabetic character for a `%d' conversion. The value
 EOF is returned if an input failure occurs before any
 conversion such as an end-of-file occurs. If an error or
 end-of-file occurs after conversion has begun, the number of
 conversions which were successfully completed is returned.

SEE ALSO

 strtol(3), strtoul(3), strtod(3),

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (5 of 7) [14/09/1999 09:58:06]

STANDARDS

 The functions fscanf, scanf, and sscanf conform to ANSI
 C3.159-1989 (``ANSI C'').

 The q flag is the BSD 4.4 notation for long long, while ll
 or the usage of L in integer conversions is the GNU nota-
 tion.

 The Linux version of these functions is based on the GNU
 libio library. Take a look at the info documentation of GNU
 libc (glibc-1.08) for a more concise description.

BUGS

 All functions are fully ANSI C3.159-1989 conformant, but
 provide the additional flags q and a as well as an addi-
 tional behaviour of the L and l flags. The latter may be
 considered to be a bug, as it changes the behaviour of flags
 defined in ANSI C3.159-1989.

 Some combinations of flags defined by ANSI C are not making
 sense in ANSI C (e.g. %Ld). While they may have a well-
 defined behaviour on Linux, this need not to be so on other
 architectures. Therefore it usually is better to use flags
 that are not defined by ANSI C at all, i.e. use q instead of
 L in combination with diouxX conversions or ll.

 The usage of q is not the same as on BSD 4.4, as it may be
 used in float conversions equivalently to L.

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (6 of 7) [14/09/1999 09:58:06]

http://linuxsavvy.com/resources/linux/man/man3/scanf.3.html (7 of 7) [14/09/1999 09:58:06]

NAME

 seekdir - set the position of the next readdir() call in the
 directory stream.

SYNOPSIS

 #include <dirent.h>

 void seekdir(DIR *dir, off_t offset));

DESCRIPTION

 The seekdir() function sets the location in the directory
 stream from which the next readdir() call will start. seek-
 dir() should be used with an offset returned by telldir().

RETURN VALUE

 The seekdir() function returns no value.

CONFORMING TO

 BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/seekdir.3.html (1 of 2) [14/09/1999 09:58:08]

SEE ALSO

 lseek(2), opendir(3), readdir(3), rewinddir(3), telldir (3),
 scandir (3)

http://linuxsavvy.com/resources/linux/man/man3/seekdir.3.html (2 of 2) [14/09/1999 09:58:08]

NAME

 setbuf, setbuffer, setlinebuf, setvbuf - stream buffering
 operations

SYNOPSIS

 #include <stdio.h>

 int setbuf(FILE *stream, char *buf));
 int setbuffer(FILE *stream, char *buf, size_tsize
 int setlinebuf(FILE *stream));
 int setvbuf(FILE *stream, char *buf, int mode , size_t
 size));

DESCRIPTION

 The three types of buffering available are unbuffered, block
 buffered, and line buffered. When an output stream is
 unbuffered, information appears on the destination file or
 terminal as soon as written; when it is block buffered many
 characters are saved up and written as a block; when it is
 line buffered characters are saved up until a newline is
 output or input is read from any stream attached to a termi-
 nal device (typically stdin). The function fflush(3) may be
 used to force the block out early. (See fclose(3).) Nor-
 mally all files are block buffered. When the first I/O
 operation occurs on a file, malloc(3) is called, and a
 buffer is obtained. If a stream refers to a terminal (as
 stdout normally does) it is line buffered. The standard
 error stream stderr is always unbuffered by default.

 The setvbuf function may be used at any time on any open
 stream to change its buffer. The mode parameter must be one

http://linuxsavvy.com/resources/linux/man/man3/setbuf.3.html (1 of 3) [14/09/1999 09:58:11]

 of the following three macros:

 _IONBF
 unbuffered

 _IOLBF
 line buffered

 _IOFBF
 fully buffered

 Except for unbuffered files, the buf argument should point
 to a buffer at least size bytes long; this buffer will be
 used instead of the current buffer. If the argument buf is
 NULL, only the mode is affected; a new buffer will be allo-
 cated on the next read or write operation. The setvbuf
 function may be used at any time, but can only change the
 mode of a stream when it is not ``active'': that is, before
 any I/O, or immediately after a call to fflush.

 The other three calls are, in effect, simply aliases for
 calls to setvbuf. The setbuf function is exactly equivalent
 to the call

 setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

 The setbuffer function is the same, except that the size of
 the buffer is up to the caller, rather than being determined
 by the default BUFSIZ. The setlinebuf function is exactly
 equivalent to the call:

 setvbuf(stream, (char *)NULL, _IOLBF, 0);

SEE ALSO

 fopen(3), fclose(3), fflush(3), puts(3), printf(3)

http://linuxsavvy.com/resources/linux/man/man3/setbuf.3.html (2 of 3) [14/09/1999 09:58:11]

STANDARDS

 The setbuf and setvbuf functions conform to ANSI C3.159-1989
 (``ANSI C'').

BUGS

 The setbuffer and setlinebuf functions are not portable to
 versions of BSD before 4.2BSD, and may not be available
 under Linux. On 4.2BSD and 4.3BSD systems, setbuf always
 uses a suboptimal buffer size and should be avoided.

 You must make sure that both buf and the space it points to
 still exist by the time stream is closed, which also happens
 at program termination.

 For example, the following is illegal:

 #include <stdio.h>
 int main()
 {
 char buf[BUFSIZ];
 setbuf(stdin, buf);
 printf("Hello, world!\n");
 return 0;
 }

http://linuxsavvy.com/resources/linux/man/man3/setbuf.3.html (3 of 3) [14/09/1999 09:58:11]

NAME

 setenv - change or add an environment variable

SYNOPSIS

 #include <stdlib.h>

 int setenv(const char *name, const char *value, int overwrite

 void unsetenv(const char *name));

DESCRIPTION

 The setenv() function adds the variable name to the environ-
 ment with the value value, if name does not already exist.
 If name does exist in the environment, then its value is
 changed to value if overwrite is non-zero; if overwrite is
 zero, then the value of name is not changed.

 The unsetenv() function deletes the variable name from the
 environment.

RETURN VALUE

 The setenv() function returns zero on success, or -1 if
 there was insufficient space in the environment.

http://linuxsavvy.com/resources/linux/man/man3/setenv.3.html (1 of 2) [14/09/1999 09:58:13]

CONFORMING TO

 BSD 4.3

SEE ALSO

 getenv(3), putenv(3), environ(5)

http://linuxsavvy.com/resources/linux/man/man3/setenv.3.html (2 of 2) [14/09/1999 09:58:13]

NAME

 setjmp, sigsetjmp - save stack context for non-local goto

SYNOPSIS

 #include <setjmp.h>

 int setjmp(jmp_buf env));
 int sigsetjmp(sigjmp_buf env, int savesigs));

DESCRIPTION

 setjmp() and longjmp() are useful for dealing with errors
 and interrupts encountered in a low-level subroutine of a
 program. setjmp() saves the stack context/environment in
 env for later use by longjmp(). The stack context will be
 invalidated if the function which called setjmp() returns.

 sigsetjmp() is similar to setjmp(). If savesigs is nonzero,
 the set of blocked signals is saved in env and will be
 restored if a siglongjmp() is later performed with this env.

RETURN VALUE

 setjmp() and sigsetjmp() return 0 if returning directly, and
 non-zero when returning from longjmp() using the saved con-
 text.

http://linuxsavvy.com/resources/linux/man/man3/setjmp.3.html (1 of 2) [14/09/1999 09:58:16]

CONFORMING TO

 POSIX

NOTES

 POSIX does not specify whether setjmp will save the signal
 context. If you want to save signal masks, use sigsetjmp.

 setjmp() and sigsetjmp make programs hard to understand and
 maintain. If possible an alternative should be used.

SEE ALSO

 longjmp(3), siglongjmp(3)

http://linuxsavvy.com/resources/linux/man/man3/setjmp.3.html (2 of 2) [14/09/1999 09:58:16]

NAME

 setlocale - set the current locale.

SYNOPSIS

 #include <locale.h>

 char *setlocale(int category, const char * locale));

DESCRIPTION

 The setlocale() function is used to set or query the
 program's current locale. If locale is the current locale
 is set to the portable locale.

 If locale is the locale is set to the default locale which
 is selected from the environment variable LANG.

 On startup of the main program, the portable "" "C" locale
 is selected as default.

 The argument category determines which functions are influ-
 enced by the new locale:

 LC_ALL
 for all of the locale.

 LC_COLLATE
 for the functions strcoll() and strxfrm().

 LC_CTYPE
 for the character classification and conversion rou-
 tines.

http://linuxsavvy.com/resources/linux/man/man3/setlocale.3.html (1 of 3) [14/09/1999 09:58:18]

 LC_MONETARY
 for localeconv().

 LC_NUMERIC
 for the decimal character.

 LC_TIME
 for strftime().

 A program may be made portable to all locales by calling
 setlocale(LC_ALL, "") after program initialization, by
 using the values returned from a localeconv() call for
 locale - dependent information and by using strcoll() or
 strxfrm() to compare strings.

RETURN VALUE

 A successful call to setlocale() returns a string that
 corresponds to the locale set. This string may be allocated
 in static storage. The string returned is such that a sub-
 sequent call with that string and its associated category
 will restore that part of the process's locale. The return
 value is NULL if the request cannot be honored.

CONFORMING TO

 ANSI C, POSIX.1

 Linux (that is, libc) supports the portable locales In the
 good old days there used to be support for the European
 Latin-1 "" "ISO-8859-1" locale (e.g. in libc-4.5.21 and
 libc-4.6.27), and the Russian "" "KOI-8" (more precisely,
 "koi-8r") locale (e.g. in libc-4.6.27), so that having an
 environment variable LC_CTYPE=ISO-8859-1 sufficed to make
 isprint() return the right answer. These days non-English
 speaking Europeans have to work a bit harder, and must
 install actual locale files.

http://linuxsavvy.com/resources/linux/man/man3/setlocale.3.html (2 of 3) [14/09/1999 09:58:18]

 The printf() family of functions may or may not honor the
 current locale.

SEE ALSO

 locale(1), localedef(1), strcoll(3), localeconv(3),
 strftime(3), locale(7)

http://linuxsavvy.com/resources/linux/man/man3/setlocale.3.html (3 of 3) [14/09/1999 09:58:18]

NAME

 siginterrupt - allow signals to interrupt system calls

SYNOPSIS

 #include <signal.h>

 int siginterrupt(int sig, int flag));

DESCRIPTION

 The siginterrupt() function changes the restart behaviour
 when a system call is interrupted by the signal sig. If the
 flag argument is false (0), then system calls will be res-
 tarted if interrupted by the specified signal sig. This is
 the default behaviour in Linux. However, when a new signal
 handler is specified with the signal(2) function, the system
 call is interrupted by default.

 If the flags argument is true (1) and no data has been
 transferred, then a system call interrupted by the signal
 sig will return -1 and the global variable errno will be set
 to EINTR.

 If the flags argument is true (1) and data transfer has
 started, then the system call will be interrupted and will
 return the actual amount of data transferred.

http://linuxsavvy.com/resources/linux/man/man3/siginterrupt.3.html (1 of 2) [14/09/1999 09:58:28]

RETURN VALUE

 The siginterrupt() function returns 0 on success, or -1 if
 the signal number sig is invalid.

ERRORS

 EINVAL
 The specified signal number is invalid.

CONFORMING TO

 BSD 4.3

SEE ALSO

 signal(2)

http://linuxsavvy.com/resources/linux/man/man3/siginterrupt.3.html (2 of 2) [14/09/1999 09:58:28]

NAME

 sigemptyset, sigfillset, sigaddset, sigdelset, sigismember -
 POSIX signal set operations.

SYNOPSIS

 #include <signal.h>

 int sigemptyset(sigset_t *set));

 int sigfillset(sigset_t *set));

 int sigaddset(sigset_t *set, int signum));

 int sigdelset(sigset_t *set, int signum));

 int sigismember(const sigset_t *set, int signum));

DESCRIPTION

 The sigsetops(3) functions allow the manipulation of POSIX
 signal sets.

 sigemptyset initializes the signal set given by set to
 empty, with all signals excluded from the set.

 sigfillset initializes set to full, including all signals.

 sigaddset and sigdelset add and delete respectively signal
 signum from set.

http://linuxsavvy.com/resources/linux/man/man3/sigsetops.3.html (1 of 3) [14/09/1999 09:58:32]

 sigismember tests whether signum is a member of set.

RETURN VALUES

 sigemptyset, sigfullset, sigaddset and sigdelset return 0 on
 success and -1 on error.

 sigismember returns 1 if signum is a member of set, 0 if
 signum is not a member, and -1 on error.

ERRORS

 EINVAL
 sig is not a valid signal.

CONFORMING TO

 POSIX

SEE ALSO

 sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

http://linuxsavvy.com/resources/linux/man/man3/sigsetops.3.html (2 of 3) [14/09/1999 09:58:32]

http://linuxsavvy.com/resources/linux/man/man3/sigsetops.3.html (3 of 3) [14/09/1999 09:58:32]

NAME

 sin - sine function

SYNOPSIS

 #include <math.h>

 double sin(double x);

DESCRIPTION

 The sin() function returns the sine of x, where x is given
 in radians.

RETURN VALUE

 The sin() function returns a value between -1 and 1.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/sin.3.html (1 of 2) [14/09/1999 09:58:33]

SEE ALSO

 acos(3), asin(3), atan(3),

http://linuxsavvy.com/resources/linux/man/man3/sin.3.html (2 of 2) [14/09/1999 09:58:33]

NAME

 sinh - hyperbolic sine function

SYNOPSIS

 #include <math.h>

 double sinh(double x);

DESCRIPTION

 The sinh() function returns the hyperbolic sine of x, which
 is defined mathematically as (exp(x) - exp(-x)) / 2.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acosh(3), asinh(3), atanh(3),

http://linuxsavvy.com/resources/linux/man/man3/sinh.3.html (1 of 2) [14/09/1999 09:58:35]

http://linuxsavvy.com/resources/linux/man/man3/sinh.3.html (2 of 2) [14/09/1999 09:58:35]

NAME

 sleep - Sleep for the specified number of seconds

SYNOPSIS

 #include <unistd.h>

 unsigned int sleep(unsigned int seconds));

DESCRIPTION

 sleep() makes the current process sleep until seconds
 seconds have elapsed or a signal arrives which is not
 ignored.

RETURN VALUE

 Zero if the requested time has elapsed, or the number of
 seconds left to sleep.

CONFORMING TO

 POSIX.1

http://linuxsavvy.com/resources/linux/man/man3/sleep.3.html (1 of 2) [14/09/1999 09:58:36]

BUGS

 sleep() may be implemented using SIGALRM; mixing calls to
 alarm() and sleep() is a bad idea.

 Using longjmp() from a signal handler or modifying the han-
 dling of SIGALRM while sleeping will cause undefined
 results.

SEE ALSO

 signal(2), alarm(2)

http://linuxsavvy.com/resources/linux/man/man3/sleep.3.html (2 of 2) [14/09/1999 09:58:36]

NAME

 snprintf, vsnprintf - formatted output conversion

SYNOPSIS

 #define _GNU_SOURCE
 #include <stdio.h>

 int snprintf (char *str, size_t n,
 const char *format, ...);

 #include <stdarg.h>

 int vsnprintf (char *str, size_t n,
 const char *format, va_list ap);

DESCRIPTION

 snprintf writes output to the string str, under control of
 the format string that specifies how subsequent arguments
 are converted for output. It is similar to sprintf(3),
 except that n specifies the maximum number of characters to
 produce. The trailing null character is counted towards
 this limit, so you should allocate at least n characters for
 the string str.

 vsnprintf is the equivalent of snprintf with the variable
 argument list specified directly as for vprintf.

http://linuxsavvy.com/resources/linux/man/man3/snprintf.3.html (1 of 4) [14/09/1999 09:58:38]

RETURN VALUE

 If the output was truncated, the return value is -1, other-
 wise it is the number of characters stored, not including
 the terminating null.

EXAMPLES

 Here is an example program which dynamically enlarges its
 output buffer.

 /* Construct a message describing the value of a
 variable whose name is NAME and whose value is
 VALUE. */
 char *
 make_message (char *name, char *value)
 {
 /* Guess we need no more than 100 chars of space. */
 int size = 100;
 char *buffer = (char *) xmalloc (size);
 while (1)
 {
 /* Try to print in the allocated space. */
 int nchars = snprintf (buffer, size,
 "value of %s is %s", name, value);
 /* If that worked, return the string. */
 if (nchars > -1)
 return buffer;
 /* Else try again with twice as much space. */
 size *= 2;
 buffer = (char *) xrealloc (buffer, size);
 }
 }

http://linuxsavvy.com/resources/linux/man/man3/snprintf.3.html (2 of 4) [14/09/1999 09:58:38]

CONFORMING TO

 These are GNU extensions.

SEE ALSO

 printf(3), sprintf(3), vsprintf(3),

http://linuxsavvy.com/resources/linux/man/man3/snprintf.3.html (3 of 4) [14/09/1999 09:58:38]

http://linuxsavvy.com/resources/linux/man/man3/snprintf.3.html (4 of 4) [14/09/1999 09:58:38]

NAME

 sqrt - square root function

SYNOPSIS

 #include <math.h>

 double sqrt(double x);

DESCRIPTION

 The sqrt() function returns the non-negative square root of
 x. It fails and sets errno to EDOM, if x is negative.

ERRORS

 EDOM x is negative.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/sqrt.3.html (1 of 2) [14/09/1999 09:58:39]

SEE ALSO

 hypot(3)

http://linuxsavvy.com/resources/linux/man/man3/sqrt.3.html (2 of 2) [14/09/1999 09:58:39]

NAME

 stdarg - variable argument lists

SYNOPSIS

 #include <stdarg.h>

 void va_start(va_list ap, last));

 void va_end(va_list ap));

DESCRIPTION

 A function may be called with a varying number of arguments
 of varying types. The include file stdarg.h declares a type
 va_list and defines three macros for stepping through a list
 of arguments whose number and types are not known to the
 called function.

 The called function must declare an object of type va_list
 which is used by the macros va_start, va_arg, and va_end.

 The va_start macro initializes ap for subsequent use by
 va_arg and va_end, and must be called first.

 The parameter last is the name of the last parameter before
 the variable argument list, i.e., the last parameter of
 which the calling function knows the type.

 Because the address of this parameter is used in the
 va_start macro, it should not be declared as a register
 variable, or as a function or an array type.

http://linuxsavvy.com/resources/linux/man/man3/stdarg.3.html (1 of 3) [14/09/1999 09:58:44]

 The va_start macro returns no value.

 The va_arg macro expands to an expression that has the type
 and value of the next argument in the call. The parameter
 ap is the va_list ap initialized by va_start. Each call to
 va_arg modifies ap so that the next call returns the next
 argument. The parameter type is a type name specified so
 that the type of a pointer to an object that has the speci-
 fied type can be obtained simply by adding a * to type.

 If there is no next argument, or if type is not compatible
 with the type of the actual next argument (as promoted
 according to the default argument promotions), random errors
 will occur.

 The first use of the va_arg macro after that of the va_start
 macro returns the argument after last. Successive invoca-
 tions return the values of the remaining arguments.

 The va_end macro handles a normal return from the function
 whose variable argument list was initialized by va_start.
 The va_end macro returns no value.

EXAMPLES

 The function foo takes a string of format characters and
 prints out the argument associated with each format charac-
 ter based on the type.
 void foo(char *fmt, ...)
 {
 va_list ap;
 int d;
 char c, *p, *s;

 va_start(ap, fmt);
 while (*fmt)
 switch(*fmt++) {
 case 's': /* string */
 s = va_arg(ap, char *);
 printf("string %s\n", s);
 break;
 case 'd': /* int */

http://linuxsavvy.com/resources/linux/man/man3/stdarg.3.html (2 of 3) [14/09/1999 09:58:44]

 d = va_arg(ap, int);
 printf("int %d\n", d);
 break;
 case 'c': /* char */
 c = va_arg(ap, char);
 printf("char %c\n", c);
 break;
 }
 va_end(ap);
 }

STANDARDS

 The va_start, va_arg, and va_end macros conform to ANSI
 C3.159-1989 (``ANSI C'').

COMPATIBILITY

 These macros are not compatible with the historic macros
 they replace. A backward compatible version can be found in
 the include file varargs.h.

BUGS

 Unlike the varargs macros, the stdarg macros do not permit
 programmers to code a function with no fixed arguments.
 This problem generates work mainly when converting varargs
 code to stdarg code, but it also creates difficulties for
 variadic functions that wish to pass all of their arguments
 on to a function that takes a va_list argument, such as
 vfprintf(3).

http://linuxsavvy.com/resources/linux/man/man3/stdarg.3.html (3 of 3) [14/09/1999 09:58:44]

stream is referred to as ``standard output''; and the error
stream is referred to as ``standard error''. These terms are
abbreviated to form the symbols used to refer to these files,
namely and Each of these symbols is a macro of type pointer to
FILE, and can be used with functions like or Since FILEs are a
buffering wrapper around Unix file descriptors, the same underly-
ing files may also be accessed using the raw Unix file interface,
that is, the functions like and The integer file descriptors
associated with the streams and are 0, 1, and 2, respectively.
The preprocessor symbols STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO are defined with these values in <unistd.h>. Note
that mixing use of FILEs and raw file descriptors can produce
unexpected results and should generally be avoided. (For the
masochistic among you: POSIX.1, section 8.2.3, describes in
detail how this interaction is supposed to work.) A general rule
is that file descriptors are handled in the kernel, while stdio
is just a library. This means for example, that after an exec,
the child inherits all open file descriptors, but all old streams
have become inaccessible. Since the symbols and are specified to
be macros, assigning to them is non-portable. The standard
streams can be made to refer to different files with help of the
library function specially introduced to make it possible to
reassign and The standard streams are closed by a call to and by
normal program termination. The stream is unbuffered. The stream
is line-buffered when it points to a terminal. Partial lines will
not appear until or is called, or a newline is printed. This can
produce unexpected results, especially with debugging output.
The buffering mode of the standard streams (or any other stream)
can be changed using the or call. Note that in case is associ-
ated with a terminal, there may also be input buffering in the
terminal driver, entirely unrelated to stdio buffering. (Indeed,
normally terminal input is line buffered in the kernel.) This
kernel input handling can be modified using calls like see also
and The and macros conform to and this standard also stipulates
that these three streams shall be open at program startup.

http://linuxsavvy.com/resources/linux/man/man3/stdin.3.html [14/09/1999 09:58:46]

NAME

 stdio - standard input/output library functions

SYNOPSIS

 #include <stdio.h>

 FILE *stdin;
 FILE *stdout;
 FILE *stderr;

DESCRIPTION

 The standard I/O library provides a simple and efficient
 buffered stream I/O interface. Input and output is mapped
 into logical data streams and the physical I/O characteris-
 tics are concealed. The functions and macros are listed
 below; more information is available from the individual man
 pages.

 A stream is associated with an external file (which may be a
 physical device) by opening a file, which may involve creat-
 ing a new file. Creating an existing file causes its former
 contents to be discarded. If a file can support positioning
 requests (such as a disk file, as opposed to a terminal)
 then a file position indicator associated with the stream is
 positioned at the start of the file (byte zero), unless the
 file is opened with append mode. If append mode is used, the
 position indicator will be placed the end-of-file. The
 position indicator is maintained by subsequent reads, writes
 and positioning requests. All input occurs as if the charac-
 ters were read by successive calls to the fgetc(3) function;
 all output takes place as if all characters were read by

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (1 of 8) [14/09/1999 09:58:49]

 successive calls to the fputc(3) function.

 A file is disassociated from a stream by closing the file.
 Output streams are flushed (any unwritten buffer contents
 are transferred to the host environment) before the stream
 is disassociated from the file. The value of a pointer to a
 FILE object is indeterminate after a file is closed (gar-
 bage).

 A file may be subsequently reopened, by the same or another
 program execution, and its contents reclaimed or modified
 (if it can be repositioned at the start). If the main func-
 tion returns to its original caller, or the exit(3) function
 is called, all open files are closed (hence all output
 streams are flushed) before program termination. Other
 methods of program termination, such as abort(3) do not
 bother about closing files properly.

 At program startup, three text streams are predefined and
 need not be opened explicitly - standard input (for reading
 conventional input), - standard output (for writing
 conventional input), and standard error (for writing diag-
 nostic output). These streams are abbreviated stdin,stdout
 and stderr. When opened, the standard error stream is not
 fully buffered; the standard input and output streams are
 fully buffered if and only if the streams do not to refer to
 an interactive device.

 Output streams that refer to terminal devices are always
 line buffered by default; pending output to such streams is
 written automatically whenever an input stream that refers
 to a terminal device is read. In cases where a large amount
 of computation is done after printing part of a line on an
 output terminal, it is necessary to fflush(3) the standard
 output before going off and computing so that the output
 will appear.

 The stdio library is a part of the library libc and routines
 are automatically loaded as needed by the compilers cc(1)
 and pc(1). The SYNOPSIS sections of the following manual
 pages indicate which include files are to be used, what the
 compiler declaration for the function looks like and which
 external variables are of interest.

 The following are defined as macros; these names may not be
 re-used without first removing their current definitions

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (2 of 8) [14/09/1999 09:58:49]

 with #undef: BUFSIZ, EOF, FILENAME_MAX, FOPEN_MAX,
 L_cuserid, L_ctermid, L_tmpnam, NULL, SEEK_END, SEEK_SET,
 SEE_CUR, TMP_MAX, clearerr, feof, ferror, fileno, fropen,
 fwopen, getc, getchar, putc, putchar, stderr, stdin, stdout.
 Function versions of the macro functions feof, ferror,
 clearerr, fileno, getc, getchar, putc, and putchar exist and
 will be used if the macros definitions are explicitly
 removed.

SEE ALSO

 open(2), close(2), read(2), write(2), stdout(3)

BUGS

 The standard buffered functions do not interact well with
 certain other library and system functions, especially vfork
 and abort. This may not be the case under Linux.

STANDARDS

 The stdio library conforms to ANSI C3.159-1989 (``ANSI C'').

LIST OF FUNCTIONS

 Function
 Description

 clearerr
 check and reset stream status

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (3 of 8) [14/09/1999 09:58:49]

 fclose
 close a stream

 fdopen
 stream open functions

 feof check and reset stream status

 ferror
 check and reset stream status

 fflush
 flush a stream

 fgetc
 get next character or word from input stream

 fgetline
 get a line from a stream

 fgetpos
 reposition a stream

 fgets
 get a line from a stream

 fileno
 check and reset stream status

 fopen
 stream open functions

 fprintf
 formatted output conversion

 fpurge
 flush a stream

 fputc
 output a character or word to a stream

 fputs
 output a line to a stream

 fread
 binary stream input/output

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (4 of 8) [14/09/1999 09:58:49]

 freopen
 stream open functions

 fropen
 open a stream

 fscanf
 input format conversion

 fseek
 reposition a stream

 fsetpos
 reposition a stream

 ftell
 reposition a stream

 fwrite
 binary stream input/output

 getc get next character or word from input stream

 getchar
 get next character or word from input stream

 gets get a line from a stream

 getw get next character or word from input stream

 mktemp
 make temporary file name (unique)

 perror
 system error messages

 printf
 formatted output conversion

 putc output a character or word to a stream

 putchar
 output a character or word to a stream

 puts output a line to a stream

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (5 of 8) [14/09/1999 09:58:49]

 putw output a character or word to a stream

 remove
 remove directory entry

 rewind
 reposition a stream

 scanf
 input format conversion

 setbuf
 stream buffering operations

 setbuffer
 stream buffering operations

 setlinebuf
 stream buffering operations

 setvbuf
 stream buffering operations

 sprintf
 formatted output conversion

 sscanf
 input format conversion

 strerror
 system error messages

 sys_errlist
 system error messages

 sys_nerr
 system error messages

 tempnam
 temporary file routines

 tmpfile
 temporary file routines

 tmpnam

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (6 of 8) [14/09/1999 09:58:49]

 temporary file routines

 ungetc
 un-get character from input stream

 vfprintf
 formatted output conversion

 vfscanf
 input format conversion

 vprintf
 formatted output conversion

 vscanf
 input format conversion

 vsprintf
 formatted output conversion

 vsscanf
 input format conversion

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (7 of 8) [14/09/1999 09:58:49]

http://linuxsavvy.com/resources/linux/man/man3/stdio.3.html (8 of 8) [14/09/1999 09:58:49]

NAME

 stpcpy - copy a string returning a pointer to its end

SYNOPSIS

 #include <string.h>

 char *stpcpy(char *dest, const char *src));

DESCRIPTION

 The stpcpy() function copies the string pointed to by src
 (including the terminating `\0' character) to the array
 pointed to by dest. The strings may not overlap, and the
 destination string dest must be large enough to receive the
 copy.

RETURN VALUE

 stpcpy() returns a pointer to the end of the string dest
 (that is, the address of the terminating null character)
 rather than the beginning.

http://linuxsavvy.com/resources/linux/man/man3/stpcpy.3.html (1 of 2) [14/09/1999 09:58:51]

EXAMPLE

 For example, this program uses stpcpy to concatenate foo and
 bar to produce foobar, which it then prints.

 #include <string.h>

 int
 main (void)
 {
 char *to = buffer;
 to = stpcpy (to, "foo");
 to = stpcpy (to, "bar");
 printf ("%s\n", buffer);
 }

CONFORMING TO

 This function is not part of the ANSI or POSIX standards,
 and is not customary on Unix systems, but is not a GNU
 invention either. Perhaps it comes from MS-DOS.

SEE ALSO

 strcpy(3), bcopy(3), memccpy(3),

http://linuxsavvy.com/resources/linux/man/man3/stpcpy.3.html (2 of 2) [14/09/1999 09:58:51]

NAME

 strcasecmp, strncasecmp - compare two strings ignoring case

SYNOPSIS

 #include <string.h>

 int strcasecmp(const char *s1, const char *s2));

 int strncasecmp(const char *s1, const char *s2, size_t n

DESCRIPTION

 The strcasecmp() function compares the two strings s1 and
 s2, ignoring the case of the characters. It returns an
 integer less than, equal to, or greater than zero if s1 is
 found, respectively, to be less than, to match, or be
 greater than s2.

 The strncasecmp() function is similar, except it only com-
 pares the first n characters of s1.

RETURN VALUE

 The strcasecmp() and strncasecmp() functions return an
 integer less than, equal to, or greater than zero if s1 (or
 the first n bytes thereof) is found, respectively, to be
 less than, to match, or be greater than s2.

http://linuxsavvy.com/resources/linux/man/man3/strcasecmp.3.html (1 of 2) [14/09/1999 09:58:52]

CONFORMING TO

 BSD 4.3

SEE ALSO

 bcmp(3), memcmp(3), strcmp(3),

http://linuxsavvy.com/resources/linux/man/man3/strcasecmp.3.html (2 of 2) [14/09/1999 09:58:52]

NAME

 strcat, strncat - concatenate two strings

SYNOPSIS

 #include <string.h>

 char *strcat(char *dest, const char *src));

 char *strncat(char *dest, const char *src, size_t n

DESCRIPTION

 The strcat() function appends the src string to the dest
 string overwriting the `\0' character at the end of dest,
 and then adds a terminating `\0' character. The strings may
 not overlap, and the dest string must have enough space for
 the result.

 The strncat() function is similar, except that only the
 first n characters of src are appended to dest.

RETURN VALUE

 The strcat() and strncat() functions return a pointer to the
 resulting string dest.

http://linuxsavvy.com/resources/linux/man/man3/strcat.3.html (1 of 2) [14/09/1999 09:58:54]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 bcopy(3), memccpy(3), memcpy(3),

http://linuxsavvy.com/resources/linux/man/man3/strcat.3.html (2 of 2) [14/09/1999 09:58:54]

NAME

 strchr, strrchr - locate character in string

SYNOPSIS

 #include <string.h>

 char *strchr(const char *s, int c);

 char *strrchr(const char *s, int c);

DESCRIPTION

 The strchr() function returns a pointer to the first
 occurrence of the character c in the string s.

 The strrchr() function returns a pointer to the last
 occurrence of the character c in the string s.

RETURN VALUE

 The strchr() and strrchr() functions return a pointer to the
 matched character or NULL if the character is not found.

http://linuxsavvy.com/resources/linux/man/man3/strchr.3.html (1 of 2) [14/09/1999 09:58:55]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 index(3), memchr(3), rindex(3), strsep(3), strspn(3),
 strstr(3),

http://linuxsavvy.com/resources/linux/man/man3/strchr.3.html (2 of 2) [14/09/1999 09:58:55]

NAME

 strcmp, strncmp - compare two strings

SYNOPSIS

 #include <string.h>

 int strcmp(const char *s1, const char *s2));

 int strncmp(const char *s1, const char *s2, size_t n

DESCRIPTION

 The strcmp() function compares the two strings s1 and s2.
 It returns an integer less than, equal to, or greater than
 zero if s1 is found, respectively, to be less than, to
 match, or be greater than s2.

 The strncmp() function is similar, except it only compares
 the first n characters of s1.

RETURN VALUE

 The strcmp() and strncmp() functions return an integer less
 than, equal to, or greater than zero if s1 (or the first n
 bytes thereof) is found, respectively, to be less than, to
 match, or be greater than s2.

http://linuxsavvy.com/resources/linux/man/man3/strcmp.3.html (1 of 2) [14/09/1999 09:58:56]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 bcmp(3), memcmp(3), strcasecmp(3), strcoll(3)

http://linuxsavvy.com/resources/linux/man/man3/strcmp.3.html (2 of 2) [14/09/1999 09:58:56]

NAME

 strcoll - compare two strings using the current locale

SYNOPSIS

 #include <string.h>

 int strcoll(const char *s1, const char *s2));

DESCRIPTION

 The strcoll() function compares the two strings s1 and s2.
 It returns an integer less than, equal to, or greater than
 zero if s1 is found, respectively, to be less than, to
 match, or be greater than s2. The comparison is based on
 strings interpreted as appropriate for the program's current
 locale for category LC_COLLATE. (See setlocale(3)).

RETURN VALUE

 The strcoll() function returns an integer less than, equal
 to, or greater than zero if s1 is found, respectively, to be
 less than, to match, or be greater than s2, when both are
 interpreted as appropriate for the current locale.

http://linuxsavvy.com/resources/linux/man/man3/strcoll.3.html (1 of 2) [14/09/1999 09:58:58]

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

NOTES

 In the "POSIX" or "C" locales strcoll() is equivalent to
 strcmp().

SEE ALSO

 bcmp(3), memcmp(3), strcasecmp(3), strxfrm(3), setlocale(3)

http://linuxsavvy.com/resources/linux/man/man3/strcoll.3.html (2 of 2) [14/09/1999 09:58:58]

NAME

 strcpy, strncpy - copy a string

SYNOPSIS

 #include <string.h>

 char *strcpy(char *dest, const char *src));

 char *strncpy(char *dest, const char *src, size_t n

DESCRIPTION

 The strcpy() function copies the string pointed to be src
 (including the terminating `\0' character) to the array
 pointed to by dest. The strings may not overlap, and the
 destination string dest must be large enough to receive the
 copy.

 The strncpy() function is similar, except that not more than
 n bytes of src are copied. Thus, if there is no null byte
 among the first n bytes of src, the result wil not be null-
 terminated.

 In the case where the length of src is less than that of n,
 the remainder of dest will be padded with nulls.

http://linuxsavvy.com/resources/linux/man/man3/strcpy.3.html (1 of 2) [14/09/1999 09:58:59]

RETURN VALUE

 The strcpy() and strncpy() functions return a pointer to the
 destination string dest.

BUGS

 If the destination string of a strcpy() is not large enough
 (that is, if the programmer was stupid/lazy, and failed to
 check the size before copying) then anything might happen.
 Overflowing fixed length strings is a favourite cracker
 technique.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 bcopy(3), memccpy(3), memcpy(3),

http://linuxsavvy.com/resources/linux/man/man3/strcpy.3.html (2 of 2) [14/09/1999 09:58:59]

NAME

 strdup - duplicate a string

SYNOPSIS

 #include <string.h>

 char *strdup(const char *s);

DESCRIPTION

 The strdup() function returns a pointer to a new string
 which is a duplicate of the string s. Memory for the new
 string is obtained with malloc(3), and can be freed with
 free(3).

RETURN VALUE

 The strdup() function returns a pointer to the duplicated
 string, or NULL if insufficient memory was available.

ERRORS

 ENOMEM
 Insufficient memory available to allocate duplicate

http://linuxsavvy.com/resources/linux/man/man3/strdup.3.html (1 of 2) [14/09/1999 09:59:01]

 string.

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 calloc(3), malloc(3), realloc(3),

http://linuxsavvy.com/resources/linux/man/man3/strdup.3.html (2 of 2) [14/09/1999 09:59:01]

NAME

 strerror - return string describing error code

SYNOPSIS

 #include <string.h>

 char *strerror(int errnum));

DESCRIPTION

 The strerror() function returns a string describing the
 error code passed in the argument errnum. The string can
 only be used until the next call to strerror().

RETURN VALUE

 The strerror() function returns the appropriate description
 string, or an unknown error message if the error code is
 unknown.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/strerror.3.html (1 of 2) [14/09/1999 09:59:02]

SEE ALSO

 errno(3), perror(3), strsignal(3)

http://linuxsavvy.com/resources/linux/man/man3/strerror.3.html (2 of 2) [14/09/1999 09:59:02]

NAME

 strfry - randomize a string

SYNOPSIS

 #include <string.h>

 char *strfry(char *string));

DESCRIPTION

 The strfry() function randomizes the contents of string by
 using rand(3) to randomly swap characters in the string.
 The result is an anagram of string.

RETURN VALUE

 The strfry() functions returns a pointer to the randomized
 string.

CONFORMING TO

 The strfry() function is unique to the Linux C Library and
 GNU C Library.

http://linuxsavvy.com/resources/linux/man/man3/strfry.3.html (1 of 2) [14/09/1999 09:59:03]

SEE ALSO

 memfrob(3)

http://linuxsavvy.com/resources/linux/man/man3/strfry.3.html (2 of 2) [14/09/1999 09:59:03]

NAME

 strftime - format date and time

SYNOPSIS

 #include <time.h>

 size_t strftime(char *s, size_t max, const char *format
 const struct tm *tm));

DESCRIPTION

 The strftime() function formats the broken-down time tm
 according to the format specification format and places the
 result in the character array s of size max.

 Ordinary characters placed in the format string are copied
 to s without conversion. Conversion specifiers are intro-
 duced by a `%' character, and are replaced in s as follows:

 %a The abbreviated weekday name according to the current
 locale.

 %A The full weekday name according to the current locale.

 %b The abbreviated month name according to the current
 locale.

 %B The full month name according to the current locale.

 %c The preferred date and time representation for the
 current locale.

http://linuxsavvy.com/resources/linux/man/man3/strftime.3.html (1 of 5) [14/09/1999 09:59:05]

 %d The day of the month as a decimal number (range 01 to
 31).

 %H The hour as a decimal number using a 24-hour clock
 (range 00 to 23).

 %I The hour as a decimal number using a 12-hour clock
 (range 01 to 12).

 %j The day of the year as a decimal number (range 001 to
 366).

 %m The month as a decimal number (range 01 to 12).

 %M The minute as a decimal number.

 %p Either `am' or `pm' according to the given time value,
 or the corresponding strings for the current locale.

 %S The second as a decimal number.

 %U The week number of the current year as a decimal
 number, starting with the first Sunday as the first day
 of the first week.

 %W The week number of the current year as a decimal
 number, starting with the first Monday as the first day
 of the first week.

 %w The day of the week as a decimal, Sunday being 0.

 %x The preferred date representation for the current
 locale without the time.

 %X The preferred time representation for the current
 locale without the date.

 %y The year as a decimal number without a century (range
 00 to 99).

 %Y The year as a decimal number including the century.

 %Z The time zone or name or abbreviation.

 %% A literal `%' character.

http://linuxsavvy.com/resources/linux/man/man3/strftime.3.html (2 of 5) [14/09/1999 09:59:05]

 The broken-down time structure tm is defined in <time.h> as
 follows:

 struct tm
 {
 int tm_sec; /* seconds */
 int tm_min; /* minutes */
 int tm_hour; /* hours */
 int tm_mday; /* day of the month */
 int tm_mon; /* month */
 int tm_year; /* year */
 int tm_wday; /* day of the week */
 int tm_yday; /* day in the year */
 int tm_isdst; /* daylight saving time */
 };

 The members of the tm structure are:

 tm_sec
 The number of seconds after the minute, normally in the
 range 0 to 59, but can be up to 61 to allow for leap
 seconds.

 tm_min
 The number of minutes after the hour, in the range 0 to
 59.

 tm_hour
 The number of hours past midnight, in the range 0 to
 23.

 tm_mday
 The day of the month, in the range 1 to 31.

 tm_mon
 The number of months since January, in the range 0 to
 11.

 tm_year
 The number of years since 1900.

 tm_wday
 The number of days since Sunday, in the range 0 to 6.

 tm_yday
 The number of days since January 1, in the range 0 to

http://linuxsavvy.com/resources/linux/man/man3/strftime.3.html (3 of 5) [14/09/1999 09:59:05]

 365.

 tm_isdst
 A flag that indicates whether daylight saving time is
 in effect at the time described. The value is positive
 if daylight saving time is in effect, zero if it is
 not, and negative if the information is not available.

RETURN VALUE

 The strftime() function returns the number of characters
 placed in the array s, not including the terminating NULL
 character, provided the string, including the terminating
 NULL, fits. Otherwise, it returns 0, and the contents of
 the array is undefined. (Thus at least since libc 4.4.4;
 very old versions of libc, such as libc 4.4.1, would return
 max if the array was too small.)

 Note that the return value 0 does not necessarily indicate
 an error; for example, in many locales %p yields an empty
 string.

CONFORMING TO

 ANSI C, SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 date(1), time(2), ctime(3),

http://linuxsavvy.com/resources/linux/man/man3/strftime.3.html (4 of 5) [14/09/1999 09:59:05]

http://linuxsavvy.com/resources/linux/man/man3/strftime.3.html (5 of 5) [14/09/1999 09:59:05]

NAME

 strcasecmp, strcat, strchr, strcmp, strcoll, strcpy,
 strcspn, strdup, strfry, strlen, strncat, strncmp, strncpy,
 strncasecmp, strpbrk, strrchr, strsep, strspn, strstr,
 strtok, strxfrm, index, rindex - string operations

SYNOPSIS

 #include <string.h>

 int strcasecmp(const char *s1, const char *s2));

 char *strcat(char *dest, const char *src));

 char *strchr(const char *s, int c);

 int strcmp(const char *s1, const char *s2));

 int strcoll(const char *s1, const char *s2));

 char *strcpy(char *dest, const char *src));

 size_t strcspn(const char *s, const char *reject));

 char *strdup(const char *s);

 char *strfry(char *string));

 size_t strlen(const char *s);

 char *strncat(char *dest, const char *src, size_t n

 int strncmp(const char *s1, const char *s2, size_t n

 char *strncpy(char *dest, const char *src, size_t n

http://linuxsavvy.com/resources/linux/man/man3/string.3.html (1 of 3) [14/09/1999 09:59:09]

 int strncasecmp(const char *s1, const char *s2, size_t n

 char *strpbrk(const char *s, const char *accept));

 char *strrchr(const char *s, int c);

 char *strsep(char **stringp, const char *delim));

 size_t strspn(const char *s, const char *accept));

 char *strstr(const char *haystack, const char *needle));

 char *strtok(char *s, const char *delim));

 size_t strxfrm(char *dest, const char *src, size_t n

 char *index(const char *s, int c);
 char *rindex(const char *s, int c);

DESCRIPTION

 The string functions perform string operations on NULL-
 terminated strings. See the individual man pages for
 descriptions of each function.

SEE ALSO

 index(3), rindex(3), strcasecmp(3), strchr(3), strcmp(3),
 strcoll(3), strcspn(3), strdup(3), strfry(3), strncat(3),
 strncmp(3), strncpy(3), strpbrk(3), strrchr(3), strsep(3),
 strstr(3), strtok(3), strxfrm(3)

http://linuxsavvy.com/resources/linux/man/man3/string.3.html (2 of 3) [14/09/1999 09:59:09]

http://linuxsavvy.com/resources/linux/man/man3/string.3.html (3 of 3) [14/09/1999 09:59:09]

NAME

 strlen - calculate the length of a string

SYNOPSIS

 #include <string.h>

 size_t strlen(const char *s);

DESCRIPTION

 The strlen() function calculates the length of the string s,
 not including the terminating `\0' character.

RETURN VALUE

 The strlen() function returns the number of characters in s.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/strlen.3.html (1 of 2) [14/09/1999 09:59:13]

SEE ALSO

 string(3)

http://linuxsavvy.com/resources/linux/man/man3/strlen.3.html (2 of 2) [14/09/1999 09:59:13]

NAME

 strpbrk - search a string for any of a set of characters

SYNOPSIS

 #include <string.h>

 char *strpbrk(const char *s, const char *accept));

DESCRIPTION

 The strpbrk() function locates the first occurrence in the
 string s of any of the characters in the string accept.

RETURN VALUE

 The strpbrk() function returns a pointer to the character in
 s that matches one of the characters in accept.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/strpbrk.3.html (1 of 2) [14/09/1999 09:59:22]

SEE ALSO

 index(3), memchr(3), rindex(3), strsep(3), strspn(3),
 strstr(3),

http://linuxsavvy.com/resources/linux/man/man3/strpbrk.3.html (2 of 2) [14/09/1999 09:59:22]

NAME

 strptime - convert a string representation of time to a time
 tm structure

SYNOPSIS

 #include <time.h>

 char *strptime(char *buf, const char *format, const struct
 tm *tm));

DESCRIPTION

 strptime() is the complementary function to strftime() and
 converts the character string pointed to by buf to a time
 value, which is stored in the tm structure pointed to by tm,
 using the format specified by format. format is a character
 string that consists of field descriptors and text charac-
 ters, reminiscent of scanf(3). Each field descriptor con-
 sists of a % character followd by another character that
 specifies the replacement for the field descriptor. All
 other characters are copied from format into the result.
 The following field descriptors are supported:

 %% same as %

 %a
 %A day of week, using locale's weekday names; either
 the abbreviated or full name may be specified

 %b
 %B
 %h month, using locale's month names; either the

http://linuxsavvy.com/resources/linux/man/man3/strptime.3.html (1 of 5) [14/09/1999 09:59:28]

 abbreviated or full name may be specified

 %c date and time as %x %X

 %C date and time, in locale's long-format date and
 time representation

 %d
 %e day of month (1-31; leading zeroes are permitted
 but not required)

 %D date as %m/%d/%y

 %H
 %k hour (0-23; leading zeroes are permitted but not
 required)

 %I
 %l hour (0-12; leading zeroes are permitted but not
 required)

 %j day number of year (001-366)

 %m month number (1-12; leading zeroes are permitted
 but not required)

 %M minute (0-59; leading zeroes are permitted but not
 required)

 %p locale's equivalent of AM or PM

 %r time as %I:%M:%S %p

 %R time as %H:%M

 %S seconds (0-61; leading zeroes are permitted but
 not required. Extra second allowed for leap years)

 %T time as %H:%M:%S

 %w weekday number (0-6) with Sunday as the first day
 of the week

 %x date, using locale's date format

 %X time, using locale's time format

http://linuxsavvy.com/resources/linux/man/man3/strptime.3.html (2 of 5) [14/09/1999 09:59:28]

 %y year within century (0-99; leading zeroes are per-
 mitted but not required. Unfortunately this makes
 the assumption that we are stuck in the 20th cen-
 tury as 1900 is automatically added onto this
 number for the tm_year field)

 %Y year, including century (for example, 1988)

 Case is ignored when matching items such as month or weekday
 names.

 The broken-down time structure tm is defined in <time.h> as
 follows:

 struct tm
 {
 int tm_sec; /* seconds */
 int tm_min; /* minutes */
 int tm_hour; /* hours */
 int tm_mday; /* day of the month */
 int tm_mon; /* month */
 int tm_year; /* year */
 int tm_wday; /* day of the week */
 int tm_yday; /* day in the year */
 int tm_isdst; /* daylight saving time */
 };

RETURN VALUE

 The strptime() function returns a pointer to the character
 following the last character in the string pointed to by buf

SEE ALSO

 strftime(3), time(2), setlocale(3),

http://linuxsavvy.com/resources/linux/man/man3/strptime.3.html (3 of 5) [14/09/1999 09:59:28]

BUGS

 The return values point to static data, whose contents are
 overwritten by each call.

NOTES

 This function is only available in libraries newer than ver-
 sion 4.6.5

 The function supports only those locales specified in
 locale(7)

http://linuxsavvy.com/resources/linux/man/man3/strptime.3.html (4 of 5) [14/09/1999 09:59:28]

http://linuxsavvy.com/resources/linux/man/man3/strptime.3.html (5 of 5) [14/09/1999 09:59:28]

NAME

 strsep - extract token from string

SYNOPSIS

 #include <string.h>

 char *strsep(char **stringp, const char *delim));

DESCRIPTION

 The strsep() function returns the next token from the string
 stringp which is delimited by delim. The token is ter-
 minated with a `\0' character and stringp is updated to
 point past the token.

RETURN VALUE

 The strsep() function returns a pointer to the token, or
 NULL if delim is not found in stringp.

NOTES

 The strsep() function was introduced as a replacement for
 strtok(), since the latter cannot handle empty fields.

http://linuxsavvy.com/resources/linux/man/man3/strsep.3.html (1 of 2) [14/09/1999 09:59:33]

 (However, strtok() conforms to ANSI-C and hence is more
 portable.)

CONFORMING TO

 BSD 4.4

SEE ALSO

 index(3), memchr(3), rindex(3), strpbrk(3), strspn(3),
 strstr(3),

http://linuxsavvy.com/resources/linux/man/man3/strsep.3.html (2 of 2) [14/09/1999 09:59:33]

NAME

 strsignal - return string describing signal

SYNOPSIS

 #include <string.h>

 char *strsignal(int sig));

 extern const char * const sys_siglist[];

DESCRIPTION

 The strsignal() function returns a string describing the
 signal number passed in the argument sig. The string can
 only be used until the next call to strsignal().

 The array sys_siglist holds the signal description strings
 indexed by signal number.

RETURN VALUE

 The strsignal() function returns the appropriate description
 string, or an unknown signal message if the signal number is
 invalid.

http://linuxsavvy.com/resources/linux/man/man3/strsignal.3.html (1 of 2) [14/09/1999 09:59:34]

SEE ALSO

 psignal(3), strerror(3)

http://linuxsavvy.com/resources/linux/man/man3/strsignal.3.html (2 of 2) [14/09/1999 09:59:34]

NAME

 strspn, strcspn - search a string for a set of characters

SYNOPSIS

 #include <string.h>

 size_t strspn(const char *s, const char *accept));

 size_t strcspn(const char *s, const char *reject));

DESCRIPTION

 The strspn() function calculates the length of the initial
 segment of s which consists entirely of characters in
 accept.

 The strcspn() function calculates the length of the initial
 segment of s which consists entirely of characters not in
 reject.

RETURN VALUE

 The strspn() function returns the number of characters in
 the initial segment of s which consist only of characters
 from accept.

 The strcspn() function returns the number of characters in
 the initial segment of s which are not in the string reject.

http://linuxsavvy.com/resources/linux/man/man3/strspn.3.html (1 of 2) [14/09/1999 09:59:36]

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 index(3), memchr(3), rindex(3), strpbrk(3), strsep(3),
 strstr(3),

http://linuxsavvy.com/resources/linux/man/man3/strspn.3.html (2 of 2) [14/09/1999 09:59:36]

NAME

 strstr - locate a substring

SYNOPSIS

 #include <string.h>

 char *strstr(const char *haystack, const char *needle));

DESCRIPTION

 The strstr() function finds the first occurrence of the sub-
 string needle in the string haystack. The terminating `\0'
 characters are not compared.

RETURN VALUE

 The strstr() function returns a pointer to the beginning of
 the substring, or NULL if the substring is not found.

BUGS

 Early versions of Linux libc (like 4.5.26) would not allow
 an empty argument. Later versions (like 4.6.27) work
 correctly, and return haystack when needle is empty.

http://linuxsavvy.com/resources/linux/man/man3/strstr.3.html (1 of 2) [14/09/1999 09:59:37]

SEE ALSO

 index(3), memchr(3), rindex(3), strpbrk(3), strsep(3),
 strspn(3),

http://linuxsavvy.com/resources/linux/man/man3/strstr.3.html (2 of 2) [14/09/1999 09:59:37]

NAME

 strtod - convert ASCII string to double

SYNOPSIS

 #include <stdlib.h>

 double strtod(const char *nptr, char **endptr));

DESCRIPTION

 The strtod() function converts the initial portion of the
 string pointed to by nptr to double representation.

 The expected form of the string is optional leading white
 space as checked by isspace(3), an optional plus (``+'') or
 minus sign (``-'') followed by a sequence of digits option-
 ally containing a decimal-point character, optionally fol-
 lowed by an exponent. An exponent consists of an ``E'' or
 ``e'', followed by an optional plus or minus sign, followed
 by a non-empty sequence of digits. If the locale is not "C"
 or "POSIX", different formats may be used.

RETURN VALUES

 The strtod function returns the converted value, if any.

 If endptr is not NULL, a pointer to the character after the
 last character used in the conversion is stored in the loca-

http://linuxsavvy.com/resources/linux/man/man3/strtod.3.html (1 of 2) [14/09/1999 09:59:39]

 tion referenced by endptr.

 If no conversion is performed, zero is returned and the
 value of nptr is stored in the location referenced by
 endptr.

 If the correct value would cause overflow, plus or minus
 HUGE_VAL is returned (according to the sign of the value),
 and ERANGE is stored in errno. If the correct value would
 cause underflow, zero is returned and ERANGE is stored in
 errno.

ERRORS

 ERANGE
 Overflow or underflow occurred.

CONFORMING TO

 ANSI C

SEE ALSO

 atof(3), atoi(3), atol(3), strtol(3), strtoul(3)

http://linuxsavvy.com/resources/linux/man/man3/strtod.3.html (2 of 2) [14/09/1999 09:59:39]

NAME

 strtok - extract token from string

SYNOPSIS

 #include <string.h>

 char *strtok(char *s, const char *delim));

DESCRIPTION

 A `token' is a nonempty string of characters not occurring
 in the string delim, followed by \0 or by a character occur-
 ring in delim.

 The strtok() function can be used to parse the string s into
 tokens. The first call to strtok() should have s as its
 first argument. Subsequent calls should have the first argu-
 ment set to NULL. Each call returns a pointer to the next
 token, or NULL when no more tokens are found.

 If a token ends with a delimiter, this delimiting character
 is overwritten with a \0 and a pointer to the next character
 is saved for the next call to strtok. The delimiter string
 delim may be different for each call.

http://linuxsavvy.com/resources/linux/man/man3/strtok.3.html (1 of 2) [14/09/1999 09:59:40]

BUGS

 Never use this function. This function modifies its first
 argument. The identity of the delimiting character is lost.
 This function cannot be used on constant strings.

RETURN VALUE

 The strtok() function returns a pointer to the next token,
 or NULL if there are no more tokens.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 index(3), memchr(3), rindex(3), strpbrk(3), strsep(3),
 strspn(3),

http://linuxsavvy.com/resources/linux/man/man3/strtok.3.html (2 of 2) [14/09/1999 09:59:40]

NAME

 strtol - convert a string to a long integer.

SYNOPSIS

 #include <stdlib.h>

 long int strtol(const char *nptr, char **endptr, int base

DESCRIPTION

 The strtol() function converts the string in nptr to a long
 integer value according to the given base, which must be
 between 2 and 36 inclusive, or be the special value 0.

 The string must begin with an arbitrary amount of white
 space (as determined by isspace(3)) followed by a single
 optional `+' or `-' sign. If base is zero or 16, the string
 may then include a `0x' prefix, and the number will be read
 in base 16; otherwise, a zero base is taken as 10 (decimal)
 unless the next character is `0', in which case it is taken
 as 8 (octal).

 The remainder of the string is converted to a long int value
 in the obvious manner, stopping at the first character which
 is not a valid digit in the given base. (In bases above 10,
 the letter `A' in either upper or lower case represents 10,
 `B' represents 11, and so forth, with `Z' representing 35.)

 If endptr is not NULL, strtol() stores the address of the
 first invalid character in *endptr. If there were no digits
 at all, strtol() stores the original value of nptr in
 *endptr. (Thus, if *nptr is not `\0' but **endptr is `\0'

http://linuxsavvy.com/resources/linux/man/man3/strtol.3.html (1 of 4) [14/09/1999 09:59:42]

 on return, the entire string is valid.)

RETURN VALUE

 The strtol() function returns the result of the conversion,
 unless the value would underflow or overflow. If an under-
 flow occurs, strtol() returns LONG_MIN. If an overflow
 occurs, strtol() returns LONG_MAX. In both cases, errno is
 set to ERANGE.

ERRORS

 ERANGE
 The given string was out of range; the value converted
 has been clamped.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 atof(3), atoi(3), atol(3),

http://linuxsavvy.com/resources/linux/man/man3/strtol.3.html (2 of 4) [14/09/1999 09:59:42]

BUGS

 Ignores the current locale.

http://linuxsavvy.com/resources/linux/man/man3/strtol.3.html (3 of 4) [14/09/1999 09:59:42]

http://linuxsavvy.com/resources/linux/man/man3/strtol.3.html (4 of 4) [14/09/1999 09:59:42]

NAME

 strtoul - convert a string to an unsigned long integer.

SYNOPSIS

 #include <stdlib.h>

 unsigned long int strtoul(const char *nptr, char **endptr,
 int base)

DESCRIPTION

 The strtoul() function converts the string in nptr to an
 unsigned long integer value according to the given base,
 which must be between 2 and 36 inclusive, or be the special
 value 0.

 The string must begin with an arbitrary amount of white
 space (as determined by isspace(3)) followed by a single
 optional `+' or `-' sign. If base is zero or 16, the string
 may then include a `0x' prefix, and the number will be read
 in base 16; otherwise, a zero base is taken as 10 (decimal)
 unless the next character is `0', in which case it is taken
 as 8 (octal).

 The remainder of the string is converted to an unsigned long
 int value in the obvious manner, stopping at the first char-
 acter which is not a valid digit in the given base. (In
 bases above 10, the letter `A' in either upper or lower case
 represents 10, `B' represents 11, and so forth, with `Z'
 representing 35.)

 If endptr is not NULL, strtoul() stores the address of the

http://linuxsavvy.com/resources/linux/man/man3/strtoul.3.html (1 of 4) [14/09/1999 09:59:44]

 first invalid character in *endptr. If there were no digits
 at all, strtoul() stores the original value of nptr in
 *endptr. (Thus, if *nptr is not `\0' but **endptr is `\0'
 on return, the entire string is valid.)

RETURN VALUE

 The strtoul() function returns either the result of the
 conversion or, if there was a leading minus sign, the nega-
 tion of the result of the conversion, unless the original
 (non-negated) value would overflow; in the latter case,
 strtoul() returns ULONG_MAX and sets the global variable
 errno to ERANGE.

ERRORS

 ERANGE
 The given string was out of range; the value converted
 has been clamped.

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

SEE ALSO

 atof(3), atoi(3), atol(3),

http://linuxsavvy.com/resources/linux/man/man3/strtoul.3.html (2 of 4) [14/09/1999 09:59:44]

BUGS

 Ignores the current locale.

http://linuxsavvy.com/resources/linux/man/man3/strtoul.3.html (3 of 4) [14/09/1999 09:59:44]

http://linuxsavvy.com/resources/linux/man/man3/strtoul.3.html (4 of 4) [14/09/1999 09:59:44]

NAME

 strxfrm - string transformation

SYNOPSIS

 #include <string.h>

 size_t strxfrm(char *dest, const char *src, size_t n

DESCRIPTION

 The strxfrm() function transforms the src string into a form
 such that the result of strcmp() on two strings that have
 been transformed with strxfrm() is the same as the result of
 strcoll() on the two strings before their transformation.
 The first n characters of the transformed string are placed
 in dest. The transformation is based on the program's
 current locale for category LC_COLLATE. (See setlocale(3)).

RETURN VALUE

 The strxfrm() function returns the number of bytes required
 to store the transformed string in dest excluding the ter-
 minating `\0' character. If the value returned is n or
 more, the contents of dest are indeterminate.

http://linuxsavvy.com/resources/linux/man/man3/strxfrm.3.html (1 of 2) [14/09/1999 09:59:45]

CONFORMING TO

 SVID 3, BSD 4.3, ISO 9899

NOTES

 In the "POSIX" or "C" locales strxfrm() is equivalent to
 copying the string with strncpy().

SEE ALSO

 bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), setlocale(3)

http://linuxsavvy.com/resources/linux/man/man3/strxfrm.3.html (2 of 2) [14/09/1999 09:59:45]

NAME

 swab - swap adjacent bytes

SYNOPSIS

 #include <string.h>

 void swab(const void *from, void *to, size_t n

DESCRIPTION

 The swab() function copies n bytes from the array pointed to
 by from to the array pointed to by to, exchanging adjacent
 even and odd bytes. This function is used to exchange data
 between machines that have different low/high byte ordering.

RETURN VALUE

 The swab() function returns no value.

CONFORMING TO

 SVID 3, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/swab.3.html (1 of 2) [14/09/1999 09:59:46]

SEE ALSO

 bstring(3)

http://linuxsavvy.com/resources/linux/man/man3/swab.3.html (2 of 2) [14/09/1999 09:59:46]

NAME

 sysconf - Get configuration information at runtime

SYNOPSIS

 #include <unistd.h>

 long sysconf(int name));

DESCRIPTION

 sysconf() provides a way for the application to determine
 values for system limits or options at runtime.

 The equivalent macros defined in <unistd.h> can only give
 conservative values; if an application wants to take advan-
 tage of values which may change, a call to sysconf() can be
 made, which may yield more liberal results.

 For getting information about a particular file, see fpath-
 conf() or pathconf().

 The following values are supported for name. First, the
 POSIX.1 compatible values:

 _SC_ARG_MAX
 The maximum length of the arguments to the exec() fam-
 ily of functions; the corresponding macro is ARG_MAX.

 _SC_CHILD_MAX
 The number of simultaneous processes per user id, the
 corresponding macro is _POSIX_CHILD_MAX.

http://linuxsavvy.com/resources/linux/man/man3/sysconf.3.html (1 of 5) [14/09/1999 09:59:49]

 _SC_CLK_TCK
 The number of clock ticks per second; the corresponding
 macro is CLK_TCK.

 _SC_STREAM_MAX
 The maximum number of streams that a process can have
 open at any time. The corresponding POSIX macro is
 STREAM_MAX, the corresponding standard C macro is
 FOPEN_MAX.

 _SC_TZNAME_MAX
 The maximum number of bytes in a timezone name, the
 corresponding macro is TZNAME_MAX.

 _SC_OPEN_MAX
 The maximum number of files that a process can have
 open at any time, the corresponding macro is
 _POSIX_OPEN_MAX.

 _SC_JOB_CONTROL
 This indicates whether POSIX - style job control is
 supported, the corresponding macro is
 _POSIX_JOB_CONTROL.

 _SC_SAVED_IDS
 This indicates whether a process has a saved set-user-
 ID and a saved set-group-ID; the corresponding macro is
 _POSIX_SAVED_IDS.

 _SC_VERSION
 indicates the year and month the POSIX.1 standard was
 approved in the format YYYYMML;the value 199009L indi-
 cates the most recent revision, 1990.

 Next, the POSIX.2 values:

 _SC_BC_BASE_MAX
 indicates the maximum obase value accepted by the bc(1)
 utility; the corresponding macro is BC_BASE_MAX.

 _SC_BC_DIM_MAX
 indicates the maximum value of elements permitted in an
 array by bc(1); the corresponding macro is BC_DIM_MAX.

 _SC_BC_SCALE_MAX
 indicates the maximum scale value allowed by bc(1); the

http://linuxsavvy.com/resources/linux/man/man3/sysconf.3.html (2 of 5) [14/09/1999 09:59:49]

 corresponding macro is BC_SCALE_MAX.

 _SC_BC_STRING_MAX
 indicates the maximum length of a string accepted by
 bc(1); the corresponding macro is BC_STRING_MAX.

 _SC_COLL_WEIGHTS_MAX
 indicates the maximum numbers of weights that can be
 assigned to an entry of the LC_COLLATE order keyword in
 the locale definition file; the corresponding macro is
 COLL_WEIGHTS_MAX.

 _SC_EXPR_NEST_MAX
 is the maximum number of expressions which can be
 nested within parentheses by expr(1). The correspond-
 ing macro is EXPR_NEST_MAX.

 _SC_LINE_MAX
 The maximum length of a utility's input line length,
 either from standard input or from a file. This
 includes length for a trailing newline. The
 corresponding macro is LINE_MAX.

 _SC_RE_DUP_MAX
 The maximum number of repeated occurrences of a regular
 expression when the interval notation \{m,n\} is used.
 The value of the corresponding macro is RE_DUP_MAX.

 _SC_2_VERSION
 indicates the version of the POSIX.2 standard in the
 format of YYYYMML. The corresponding macro is
 POSIX2_VERSION.

 _SC_2_DEV
 indicates whether the POSIX.2 C language development
 facilities are supported. The corresponding macro is
 POSIX2_C_DEV.

 _SC_2_FORT_DEV
 indicates whether the POSIX.2 FORTRAN development util-
 ities are supported. The corresponding macro is
 POSIX2_FORT_RUN.

 _SC_2_FORT_RUN
 indicates whether the POSIX.2 FORTRAN runtime utilities
 are supported. The corresponding macro is

http://linuxsavvy.com/resources/linux/man/man3/sysconf.3.html (3 of 5) [14/09/1999 09:59:49]

 POSIX2_FORT_RUN.

 _SC_2_LOCALEDEF
 indicates whether the POSIX.2 creation of locates via
 localedef(1) is supported. The corresponding macro is
 _POSIX2_LOCALEDEF.

 _SC_2_SW_DEV
 indicates whether the POSIX.2 software development
 utilities option is supported. The corresponding macro
 is POSIX2_SW_DEV.

RETURN VALUE

 The value returned is the value of the system resource, 1 if
 a queried option is available, 0 if it is not, or -1 on
 error. The variable errno is not set.

CONFORMING TO

 POSIX.1, proposed POSIX.2

BUGS

 It is difficult to use ARG_MAX because it is not specified
 how much of the argument space for exec() is consumed by the
 user's environment variables.

 Some returned values may be huge; they are not suitable for
 allocating memory.

 POSIX.2 is not yet an approved standard; the information in
 this manpage is subject to change.

http://linuxsavvy.com/resources/linux/man/man3/sysconf.3.html (4 of 5) [14/09/1999 09:59:49]

SEE ALSO

 bc(1), expr(1), locale(1),

http://linuxsavvy.com/resources/linux/man/man3/sysconf.3.html (5 of 5) [14/09/1999 09:59:49]

NAME

 closelog, openlog, syslog - send messages to the system
 logger

SYNOPSIS

 #include <syslog.h>

 void openlog(char *ident, int option, int facility

 void syslog(int priority, char *format, ...)

 void closelog(void)

DESCRIPTION

 closelog() closes the descriptor being used to write to the
 system logger. The use of closelog() is optional.

 openlog() opens a connection to the system logger for a pro-
 gram. The string pointed to by ident is added to each mes-
 sage, and is typically set to the program name. Values for
 option and facility are given in the next section. The use
 of openlog() is optional; It will automatically be called by
 syslog() if necessary, in which case ident will default to
 NULL.

 syslog() generates a log message, which will be distributed
 by syslogd(8). priority is a combination of the facility
 and the level, values for which are given in the next sec-
 tion. The remaining arguments are a format, as in printf(3)
 and any arguments required by the format, except that the

http://linuxsavvy.com/resources/linux/man/man3/syslog.3.html (1 of 5) [14/09/1999 09:59:51]

 two character %m will be replaced by the error message
 string (strerror) corresponding to the present value of
 errno.

PARAMETERS

 This section lists the parameters used to set the values of
 option, facility, and priority.

 option
 The option argument to openlog() is an OR of any of these:

 LOG_CONS
 write directly to system console if there is an error
 while sending to system logger

 LOG_NDELAY
 open the connection immediately (normally, the connec-
 tion is opened when the first message is logged)

 LOG_PERROR
 print to stderr as well

 LOG_PID
 include PID with each message

 facility
 The facility argument is used to specify what type of pro-
 gram is logging the message. This lets the configuration
 file specify that messages from different facilities will be
 handled differently.

 LOG_AUTH
 security/authorization messages (DEPRECATED Use
 LOG_AUTHPRIV instead)

 LOG_AUTHPRIV
 security/authorization messages (private)

 LOG_CRON
 clock daemon (cron and at)

http://linuxsavvy.com/resources/linux/man/man3/syslog.3.html (2 of 5) [14/09/1999 09:59:51]

 LOG_DAEMON
 other system daemons

 LOG_KERN
 kernel messages

 LOG_LOCAL0 through LOG_LOCAL7
 reserved for local use

 LOG_LPR
 line printer subsystem

 LOG_MAIL
 mail subsystem

 LOG_NEWS
 USENET news subsystem

 LOG_SYSLOG
 messages generated internally by syslogd

 LOG_USER(default)
 generic user-level messages

 LOG_UUCP
 UUCP subsystem

 level
 This determines the importance of the message. The levels
 are, in order of decreasing importance:
 LOG_EMERG
 system is unusable

 LOG_ALERT
 action must be taken immediately

 LOG_CRIT
 critical conditions

 LOG_ERR
 error conditions

 LOG_WARNING
 warning conditions

http://linuxsavvy.com/resources/linux/man/man3/syslog.3.html (3 of 5) [14/09/1999 09:59:51]

 LOG_NOTICE
 normal, but significant, condition

 LOG_INFO
 informational message

 LOG_DEBUG
 debug-level message

HISTORY

 A syslog function call appeared in BSD 4.2.

SEE ALSO

 logger(1), syslog.conf(5), syslogd(8)

http://linuxsavvy.com/resources/linux/man/man3/syslog.3.html (4 of 5) [14/09/1999 09:59:51]

http://linuxsavvy.com/resources/linux/man/man3/syslog.3.html (5 of 5) [14/09/1999 09:59:51]

NAME

 system - execute a shell command

SYNOPSIS

 #include <stdlib.h>

 int system (const char * string));

DESCRIPTION

 system() executes a command specified in string by calling
 /bin/sh -c string, and returns after the command has been
 completed. During execution of the command, SIGCHLD will be
 blocked, and SIGINT and SIGQUIT will be ignored.

RETURN VALUE

 The value returned is 127 if the execve() call for /bin/sh
 fails, -1 if there was another error and the return code of
 the command otherwise.

 If the value of string is NULL, system() returns nonzero if
 the shell is available, and zero if not.

 system() does not affect the wait status of any other chil-
 dren.

http://linuxsavvy.com/resources/linux/man/man3/system.3.html (1 of 3) [14/09/1999 09:59:53]

CONFORMING TO

 ANSI C, POSIX.2, BSD 4.3

BUGS

 It is extremely unfortunate that the libc version of sys-
 tem() ignores interrupts. This makes programs that call it
 from a loop uninterruptable. This means that for such pur-
 poses one should not use system() but a private version like
 (warning: untested code!)

 int my_system (const char *command) {
 int pid, status;

 if (command == 0)
 return 1;
 pid = fork();
 if (pid == -1)
 return -1;
 if (pid == 0) {
 char *argv[4];
 argv[0] = "sh";
 argv[1] = "-c";
 argv[2] = command;
 argv[3] = 0;
 execve("/bin/sh", argv, environ);
 exit(127);
 }
 do {
 if (waitpid(pid, &status, 0) == -1) {
 if (errno != EINTR)
 return -1;
 } else
 return status;
 } while(1);
 }

 Do not use system() from a program with suid or sgid
 privileges, because strange values for some environment

http://linuxsavvy.com/resources/linux/man/man3/system.3.html (2 of 3) [14/09/1999 09:59:53]

 variables might be used to subvert system integrity. Use
 the exec(3) family of functions instead, but not execlp(3)
 or execvp(3). system() will not, in fact, work properly
 from programs with suid or sgid privileges on systems on
 which /bin/sh is bash version 2, since bash 2 drops
 privileges on startup. (Debian uses a modified bash which
 does not do this when invoked as sh.)

 The check for the availability of /bin/sh is not actually
 performed; it is always assumed to be available. ISO C
 specifies the check, but POSIX.2 specifies that the return
 shall always be non-zero, since a system without the shell
 is not conforming, and it is this that is implemented.

 It is possible for the shell command to return 127, so that
 code is not a sure indication that the execve() call failed;
 check errno to make sure.

SEE ALSO

 sh(1), signal(2), exec(3)

http://linuxsavvy.com/resources/linux/man/man3/system.3.html (3 of 3) [14/09/1999 09:59:53]

NAME

 tan - tangent function

SYNOPSIS

 #include <math.h>

 double tan(double x);

DESCRIPTION

 The tan() function returns the tangent of x, where x is
 given in radians.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acos(3), asin(3), atan(3),

http://linuxsavvy.com/resources/linux/man/man3/tan.3.html (1 of 2) [14/09/1999 09:59:55]

http://linuxsavvy.com/resources/linux/man/man3/tan.3.html (2 of 2) [14/09/1999 09:59:55]

NAME

 tanh - hyperbolic tangent function

SYNOPSIS

 #include <math.h>

 double tanh(double x);

DESCRIPTION

 The tanh() function returns the hyperbolic tangent of x,
 which is defined mathematically as sinh(x) / cosh(x).

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 acosh(3), asinh(3), atanh(3),

http://linuxsavvy.com/resources/linux/man/man3/tanh.3.html (1 of 2) [14/09/1999 09:59:56]

http://linuxsavvy.com/resources/linux/man/man3/tanh.3.html (2 of 2) [14/09/1999 09:59:56]

NAME

 telldir - return current location in directory stream.

SYNOPSIS

 #include <dirent.h>

 off_t telldir(DIR *dir));

DESCRIPTION

 The telldir() function returns the current location associ-
 ated with the directory stream dir.

RETURN VALUE

 The telldir() function returns the current location in the
 directory stream or -1 if an error occurs.

ERRORS

 EBADF
 Invalid directory stream descriptor dir.

http://linuxsavvy.com/resources/linux/man/man3/telldir.3.html (1 of 2) [14/09/1999 10:00:03]

CONFORMING TO

 BSD 4.3

SEE ALSO

 opendir(3), readdir(3), closedir(3), seekdir(3), scandir(3)

http://linuxsavvy.com/resources/linux/man/man3/telldir.3.html (2 of 2) [14/09/1999 10:00:03]

NAME

 tempnam - create a name for a temporary file

SYNOPSIS

 #include <stdio.h>

 char *tempnam(const char *dir, const char *pfx));

DESCRIPTION

 The tempnam() function generates a unique temporary filename
 using up to five characters of pfx, if it is not NULL. The
 directory to place the file is searched for in the following
 order:-

 a) The directory specified by the environment vari-
 able TMPDIR, if it is writable.

 b) The directory specified by the argument dir, if it
 is not NULL.

 c) The directory specified by P_tmpdir.

 d) The directory /tmp.

 The storage for the filename is allocated by malloc(), and
 so can be free'd by the function free().

http://linuxsavvy.com/resources/linux/man/man3/tempnam.3.html (1 of 2) [14/09/1999 10:00:04]

RETURN VALUE

 The tempnam() function returns a pointer to the unique tem-
 porary filename, or NULL if a unique filename cannot be gen-
 erated.

ERRORS

 EEXIST
 Unable to generate a unique filename.

CONFORMING TO

 SVID 3, BSD 4.3

SEE ALSO

 mktemp(3), mkstemp(3), tmpnam(3),

http://linuxsavvy.com/resources/linux/man/man3/tempnam.3.html (2 of 2) [14/09/1999 10:00:04]

NAME

 termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain,
 tcflush, tcflow, cfmakeraw, cfgetospeed, cfgetispeed,
 cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp - get and set
 terminal attributes, line control, get and set baud rate,
 get and set terminal foreground process group ID

SYNOPSIS

 #include <termios.h>
 #include <unistd.h>

 int tcgetattr (int fd, struct termios *termios_p);

 int tcsetattr (int fd, int optional_actions, struct termios
 *termios_p

 int tcsendbreak (int fd, int duration);

 int tcdrain (int fd);

 int tcflush (int fd, int queue_selector);

 int tcflow (int fd, int action);

 int cfmakeraw (struct termios *termios_p);

 speed_t cfgetospeed (struct termios *termios_p);

 int cfsetospeed (struct termios *termios_p, speed_t speed
);

 speed_t cfgetispeed (struct termios *termios_p);

 int cfsetispeed (struct termios *termios_p, speed_t speed
);

 pid_t tcgetpgrp (int fd);

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (1 of 11) [14/09/1999 10:00:10]

 int tcsetpgrp (int fd, pid_t pgrpid);

DESCRIPTION

 The termios functions describe a general terminal interface
 that is provided to control asynchronous communications
 ports.

 Many of the functions described here have a termios_p argu-
 ment that is a pointer to a termios structure. This struc-

 ture contains the following members:

 tcflag_t c_iflag; /* input modes */
 tcflag_t c_oflag; /* output modes */
 tcflag_t c_cflag; /* control modes */
 tcflag_t c_lflag; /* local modes */
 cc_t c_cc[NCCS]; /* control chars */

 c_iflag flag constants:

 IGNBRK
 ignore BREAK condition on input

 BRKINT
 If IGNBRK is not set, generate SIGINT on BREAK condi-
 tion, else read BREAK as character \0.

 IGNPAR
 ignore framing errors and parity errors.

 PARMRK
 if IGNPAR is not set, prefix a character with a parity
 error or framing error with \377 \0. If neither IGNPAR
 nor PARMRK is set, read a character with a parity error
 or framing error as \0.

 INPCK

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (2 of 11) [14/09/1999 10:00:10]

 enable input parity checking

 ISTRIP
 strip off eighth bit

 INLCR
 translate NL to CR on input

 IGNCR
 ignore carriage return on input

 ICRNL
 translate carriage return to newline on input (unless
 IGNCR is set)

 IUCLC
 map uppercase characters to lowercase on input

 IXON enable XON/XOFF flow control on output

 IXANY
 enable any character to restart output

 IXOFF
 enable XON/XOFF flow control on input

 IMAXBEL
 ring bell when input queue is full

 c_oflag flag constants:

 OPOST
 enable implementation-defined output processing

 OLCUC
 map lowercase characters to uppercase on output

 ONLCR
 map NL to CR-NL on output

 OCRNL
 map CR to NL on output

 ONOCR
 don't output CR at column 0

 ONLRET

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (3 of 11) [14/09/1999 10:00:10]

 don't output CR

 OFILL
 send fill characters for a delay, rather than using a
 timed delay

 OFDEL
 fill character is ASCII DEL. If unset, fill character
 is ASCII NUL

 NLDLY
 newline delay mask. Values are NL0 and NL1.

 CRDLY
 carriage return delay mask. Values are CR0, CR1, CR2,
 or CR3.

 TABDLY
 horizontal tab delay mask. Values are TAB0, TAB1,
 TAB2, TAB3, or XTABS. A value of XTABS expands tabs to
 spaces (with tab stops every eight columns).

 BSDLY
 backspace delay mask. Values are BS0 or BS1.

 VTDLY
 vertical tab delay mask. Values are VT0 or VT1.

 FFDLY
 form feed delay mask. Values are FF0 or FF1.

 c_cflag flag constants:

 CSIZE
 character size mask. Values are CS5, CS6, CS7, or CS8.

 CSTOPB
 set two stop bits, rather than one.

 CREAD
 enable receiver.

 PARENB
 enable parity generation on output and parity checking
 for input.

 PARODD

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (4 of 11) [14/09/1999 10:00:10]

 parity for input and output is odd.

 HUPCL
 lower modem control lines after last process closes the
 device (hang up).

 CLOCAL
 ignore modem control lines

 CIBAUD
 mask for input speeds (not used).

 CRTSCTS
 flow control.

 c_lflag flag constants:

 ISIG when any of the characters INTR, QUIT, SUSP, or DSUSP
 are received, generate the corresponding signal.

 ICANON
 enable canonical mode. This enables the special char-
 acters EOF, EOL, EOL2, ERASE, KILL, REPRINT, STATUS,
 and WERASE, and buffers by lines.

 XCASE
 if ICANON is also set, terminal is uppercase only.
 Input is converted to lowercase, except for characters
 preceded by \. On output, uppercase characters are
 preceded by \ and lowercase characters are converted to
 uppercase.

 ECHO echo input characters.

 ECHOE
 if ICANON is also set, the ERASE character erases the
 preceding input character, and WERASE erases the
 preceding word.

 ECHOK
 if ICANON is also set, the KILL character erases the
 current line.

 ECHONL
 if ICANON is also set, echo the NL character even if
 ECHO is not set.

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (5 of 11) [14/09/1999 10:00:10]

 ECHOCTL
 if ECHO is also set, ASCII control signals other than
 TAB, NL, START, and STOP are echoed as ^X, where X is
 the character with ASCII code 0x40 greater than the
 control signal. For example, character 0x08 (BS) is
 echoed as ^H.

 ECHOPRT
 if ICANON and IECHO are also set, characters are
 printed as they are being erased.

 ECHOKE
 if ICANON is also set, KILL is echoed by erasing each
 character on the line, as specified by ECHOE and
 ECHOPRT.

 FLUSHO
 output is being flushed. This flag is toggled by typ-
 ing the DISCARD character.

 NOFLSH
 disable flushing the input and output queues when gen-
 erating the SIGINT and SIGQUIT signals, and flushing
 the input queue when generating the SIGSUSP signal.

 TOSTOP
 send the SIGTTOU signal to the process group of a back-
 ground process which tries to write to its controlling
 terminal.

 PENDIN
 all characters in the input queue are reprinted when
 the next character is read. (bash handles typeahead
 this way.)

 IEXTEN
 enable implementation-defined input processing.

 tcgetattr() gets the parameters associated with the object
 referred by fd and stores them in the termios structure
 referenced by termios_p. This function may be invoked from
 a background process; however, the terminal attributes may
 be subsequently changed by a foreground process.

 tcsetattr() sets the parameters associated with the terminal
 (unless support is required from the underlying hardware

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (6 of 11) [14/09/1999 10:00:10]

 that is not available) from the termios structure referred
 to by termios_p. optional_actions specifies when the changes
 take effect:

 TCSANOW
 the change occurs immediately.

 TCSADRAIN
 the change occurs after all output written to fd has
 been transmitted. This function should be used when
 changing parameters that affect output.

 TCSAFLUSH
 the change occurs after all output written to the
 object referred by fd has been transmitted, and all
 input that has been received but not read will be dis-
 carded before the change is made.

 tcsendbreak() transmits a continuous stream of zero-valued
 bits for a specific duration, if the terminal is using asyn-
 chronous serial data transmission. If duration is zero, it
 transmits zero-valued bits for at least 0.25 seconds, and
 not more that 0.5 seconds. If duration is not zero, it
 sends zero-valued bits for duration*N seconds, where N is at
 least 0.25, and not more than 0.5.

 If the terminal is not using asynchronous serial data
 transmission, tcsendbreak() returns without taking any
 action.

 tcdrain() waits until all output written to the object
 referred to by fd has been transmitted.

 tcflush() discards data written to the object referred to by
 fd but not transmitted, or data received but not read,
 depending on the value of queue_selector:

 TCIFLUSH
 flushes data received but not read.

 TCOFLUSH
 flushes data written but not transmitted.

 TCIOFLUSH
 flushes both data received but not read, and data writ-
 ten but not transmitted.

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (7 of 11) [14/09/1999 10:00:10]

 tcflow() suspends transmission or reception of data on the
 object referred to by fd, depending on the value of action:

 TCOOFF
 suspends output.

 TCOON
 restarts suspended output.

 TCIOFF
 transmits a STOP character, which stops the terminal
 device from transmitting data to the system.

 TCION
 transmits a START character, which starts the terminal
 device transmitting data to the system.

 The default on open of a terminal file is that neither its
 input nor its output is suspended.

 The baud rate functions are provided for getting and setting
 the values of the input and output baud rates in the termios
 structure. The new values do not take effect until
 tcsetattr() is successfully called.

 Setting the speed to B0 instructs the modem to "hang up".
 The actual bit rate corresponding to B38400 may be altered
 with setserial(8).

 The input and output baud rates are stored in the termios
 structure.

 cfmakeraw sets the terminal attributes as follows:
 termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
 |INLCR|IGNCR|ICRNL|IXON);
 termios_p->c_oflag &= ~OPOST;
 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
 termios_p->c_cflag &= ~(CSIZE|PARENB);
 termios_p->c_cflag |= CS8;

 cfgetospeed() returns the output baud rate stored in the
 termios structure pointed to by termios_p.

 cfsetospeed() sets the output baud rate stored in the ter-
 mios structure pointed to by termios_p to speed, which must
 be one of these constants:
 B0

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (8 of 11) [14/09/1999 10:00:10]

 B50
 B75
 B110
 B134
 B150
 B200
 B300
 B600
 B1200
 B1800
 B2400
 B4800
 B9600
 B19200
 B38400
 B57600
 B115200
 B230400
 The zero baud rate, B0, is used to terminate the connection.
 If B0 is specified, the modem control lines shall no longer
 be asserted. Normally, this will disconnect the line.
 CBAUDEX is a mask for the speeds beyond those defined in
 POSIX.1 (57600 and above). Thus, B57600 & CBAUDEX is
 nonzero.

 cfgetispeed() returns the input baud rate stored in the ter-
 mios structure.

 cfsetispeed() sets the input baud rate stored in the termios
 structure to speed. If the input baud rate is set to zero,
 the input baud rate will be equal to the output baud rate.

 tcgetpgrp() returns process group ID of foreground process-
 ing group, or -1 on error.

 tcsetpgrp() sets process group ID to pgrpid. pgrpid must be
 the ID of a process group in the same session.

RETURN VALUES

 cfgetispeed() returns the input baud rate stored in the ter-
 mios structure.

 cfgetospeed() returns the output baud rate stored in the

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (9 of 11) [14/09/1999 10:00:10]

 termios structure.

 tcgetpgrp() returns process group ID of foreground process-
 ing group, or -1 on error.

 All other functions return:

 0 on success.

 -1 on failure and set errno to indicate the error.

SEE ALSO

 setserial(8)

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (10 of 11) [14/09/1999 10:00:10]

http://linuxsavvy.com/resources/linux/man/man3/termios.3.html (11 of 11) [14/09/1999 10:00:10]

NAME

 tmpfile - create a temporary file

SYNOPSIS

 #include <stdio.h>

 FILE *tmpfile (void);

DESCRIPTION

 The tmpfile() function generates a unique temporary filename
 using the path prefix P_tmpdir defined in <stdio.h>. The
 temporary file is then opened in binary read/write (w+b)
 mode. The file will be automatically deleted when it is
 closed or the program terminates.

RETURN VALUE

 The tmpfile() function returns a stream descriptor, or NULL
 if a unique filename cannot be generated or the unique file
 cannot be opened.

http://linuxsavvy.com/resources/linux/man/man3/tmpfile.3.html (1 of 2) [14/09/1999 10:00:13]

ERRORS

 EACCES
 Search permission denied for directory in file's path
 prefix.

 EEXIST
 Unable to generate a unique filename.

 EMFILE
 Too many file descriptors in use by process.

 ENFILE
 Too many files open in system.

 EROFS
 Read-only filesystem.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 mktemp(3), mkstemp(3), tmpnam(3),

http://linuxsavvy.com/resources/linux/man/man3/tmpfile.3.html (2 of 2) [14/09/1999 10:00:13]

NAME

 tmpnam - create a name for a temporary file

SYNOPSIS

 #include <stdio.h>

 char *tmpnam(char *s);

DESCRIPTION

 The tmpnam() function generates a unique temporary filename
 using the path prefix P_tmpdir defined in <stdio.h>. If the
 argument s is NULL, tmpnam() returns the address of an
 internal static area which holds the filename, which is
 overwritten by subsequent calls to tmpnam(). If s is not
 NULL, the filename is returned in s.

RETURN VALUE

 The tmpnam() function returns a pointer to the unique tem-
 porary filename, or NULL if a unique name cannot be gen-
 erated.

http://linuxsavvy.com/resources/linux/man/man3/tmpnam.3.html (1 of 2) [14/09/1999 10:00:14]

ERRORS

 EEXIST
 Unable to generate a unique filename.

CONFORMING TO

 SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO

 mktemp(3), mkstemp(3), tempnam(3),

http://linuxsavvy.com/resources/linux/man/man3/tmpnam.3.html (2 of 2) [14/09/1999 10:00:14]

NAME

 toascii - convert character to ASCII

SYNOPSIS

 #include <ctype.h>

 int toascii (int c);

DESCRIPTION

 toascii() converts c to a 7-bit unsigned char value that
 fits into the ASCII character set, by clearing the high-
 order bits.

RETURN VALUE

 The value returned is that of the converted character.

CONFORMING TO

 SVID, BSD

http://linuxsavvy.com/resources/linux/man/man3/toascii.3.html (1 of 2) [14/09/1999 10:00:15]

BUGS

 Many people will be unhappy if you use this function. This
 function will convert accented letters into random charac-
 ters.

SEE ALSO

 isascii(3), toupper(3), tolower(3)

http://linuxsavvy.com/resources/linux/man/man3/toascii.3.html (2 of 2) [14/09/1999 10:00:15]

NAME

 toupper, tolower - convert letter to upper or lower case

SYNOPSIS

 #include <ctype.h>

 int toupper (int c);
 int tolower (int c);

DESCRIPTION

 toupper() converts the letter c to upper case, if possible.

 tolower() converts the letter c to lower case, if possible.

RETURN VALUE

 The value returned is that of the converted letter, or c if
 the conversion was not possible.

CONFORMING TO

 ANSI - C, BSD 4.3

http://linuxsavvy.com/resources/linux/man/man3/toupper.3.html (1 of 2) [14/09/1999 10:00:17]

BUGS

 The details of what constitutes an uppercase or lowercase
 letter depend on the current locale. For example, the
 default "" "C" locale does not know about umlauts, so no
 conversion is done for them.

 In some non - English locales, there are lowercase letters
 with no corresponding uppercase equivalent; the German sharp
 s is one example.

SEE ALSO

 isalpha(3), setlocale(3), locale(7)

http://linuxsavvy.com/resources/linux/man/man3/toupper.3.html (2 of 2) [14/09/1999 10:00:17]

NAME

 tsearch, tfind, tdelete, twalk - manage a binary tree

SYNOPSIS

 #include <search.h>

 void *tsearch (const void *key, void **rootp,
 int (*compar))(const void *, const void *));

 void *tfind (const void *key, const void **rootp,
 int (*compar))(const void *, const void *));

 void *tdelete (const void *key, void **rootp,
 int (*compar))(const void *, const void *));

 void twalk (const void *root, void (*action)) (const void *nodep
 const VISIT which,
 const int depth)));

DESCRIPTION

 tsearch, tfind, twalk, and tdelete manage a binary tree.
 They are generalized from Knuth (6.2.2) Algorithm T. The
 first field in each node of the tree is a pointer to the
 corresponding data item. (The calling program must store
 the actual data.) compar points to a comparison routine,
 which takes pointers to two items. It should return an
 integer which is negative, zero, or positive, depending on
 whether the first item is less than, equal to, or greater
 than the second.

 tsearch searches the tree for an item. key points to the
 item to be searched for. rootp points to a variable which
 points to the root of the tree. If the tree is empty, then

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (1 of 6) [14/09/1999 10:00:20]

 the variable that rootp points to should be set to NULL. If
 the item is found in the tree, then tsearch returns a
 pointer to it. If it is not found, then tsearch adds it,
 and returns a pointer to the newly added item.

 tfind is like tsearch, except that if the item is not found,
 then tfind returns NULL.

 tdelete deletes an item from the tree. Its arguments are
 the same as for tsearch.

 twalk performs depth-first, left-to-right traversal of a
 binary tree. root points to the starting node for the
 traversal. If that node is not the root, then only part of
 the tree will be visited. twalk calls the user function
 action each time a node is visited (that is, three times for
 an internal node, and once for a leaf). action, in turn,
 takes three arguments. The first is a pointer to the node
 being visited. The second is an integer which takes on the
 values preorder, postorder, and endorder depending on
 whether this is the first, second, or third visit to the
 internal node, or leaf if it is the single visit to a leaf
 node. (These symbols are defined in <search.h>.) The third
 argument is the depth of the node, with zero being the root.

RETURN VALUE

 tsearch returns a pointer to a matching item in the tree, or
 to the newly added item, or NULL if there was insufficient
 memory to add the item. tfind returns a pointer to the
 item, or NULL if no match is found. If there are multiple
 elements that match the key, the element returned is
 unspecified.

 tdelete returns a pointer to the parent of the item deleted,
 or NULL if the item was not found.

 tsearch, tfind, and tdelete also return NULL if rootp was
 NULL on entry.

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (2 of 6) [14/09/1999 10:00:20]

WARNINGS

 twalk takes a pointer to the root, while the other functions
 take a pointer to a variable which points to the root.

 twalk uses postorder to mean "after the left subtree, but
 before the right subtree". Some authorities would call this
 "inorder", and reserve "postorder" to mean "after both sub-
 trees".

 tdelete frees the memory required for the node in the tree.
 The user is responsible for freeing the memory for the
 corresponding data.

 The example program depends on the fact that twalk makes no
 further reference to a node after calling the user function
 with argument "endorder" or "leaf". This works with the GNU
 library implementation, but is not in the SysV documenta-
 tion.

EXAMPLE

 The following program inserts twelve random numbers into a
 binary tree, then prints the numbers in order. The numbers
 are removed from the tree and their storage freed during the
 traversal.

 #include <search.h>
 #include <stdlib.h>
 #include <stdio.h>

 void *root=NULL;

 void *xmalloc(unsigned n)
 {
 void *p;
 p = malloc(n);
 if(p) return p;
 fprintf(stderr, "insufficient memory\n");
 exit(1);
 }

 int compare(const void *pa, const void *pb)

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (3 of 6) [14/09/1999 10:00:20]

 {
 if(*(int *)pa < *(int *)pb) return -1;
 if(*(int *)pa > *(int *)pb) return 1;
 return 0;
 }

 void action(const void *nodep, const VISIT which, const int depth)
 {
 int *datap;
 void *val;

 switch(which)
 {
 case preorder:
 break;
 case postorder:
 datap = *(int **)nodep;
 printf("%6d\n", *datap);
 break;
 case endorder:
 datap = *(int **)nodep;
 (void)tdelete(datap, &root, compare);
 free(datap);
 break;
 case leaf:
 datap = *(int **)nodep;
 printf("%6d\n", *datap);
 val = tdelete(datap, &root, compare);
 free(datap);
 break;
 }
 return;
 }

 int main()
 {
 int i, *ptr;
 void *val;

 for (i = 0; i < 12; i++)
 {
 ptr = (int *)xmalloc(sizeof(int));
 *ptr = rand()&0xff;
 val = tsearch((void *)ptr, &root, compare);
 if(val == NULL) exit(1);
 }
 twalk(root, action);
 return 0;

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (4 of 6) [14/09/1999 10:00:20]

 }

CONFORMING TO

 SVID

SEE ALSO

 qsort(3), bsearch(3), hsearch(3),

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (5 of 6) [14/09/1999 10:00:20]

http://linuxsavvy.com/resources/linux/man/man3/tsearch.3.html (6 of 6) [14/09/1999 10:00:20]

NAME

 ttyname - return name of a terminal

SYNOPSIS

 #include <unistd.h>

 char *ttyname (int desc);

DESCRIPTION

 Returns a pointer to the pathname of the terminal device
 that is open on the file descriptor desc, or NULL on error
 (for example, if desc is not connected to a terminal).

CONFORMING TO

 POSIX.1

SEE ALSO

 fstat(2), isatty(3)

http://linuxsavvy.com/resources/linux/man/man3/ttyname.3.html (1 of 2) [14/09/1999 10:00:21]

http://linuxsavvy.com/resources/linux/man/man3/ttyname.3.html (2 of 2) [14/09/1999 10:00:21]

NAME

 tzset - initialize time conversion information

SYNOPSIS

 #include <time.h>

 void tzset (void);

 extern char *tzname[2]

DESCRIPTION

 The tzset() function initializes the tzname variable from
 the TZ environment variable. This function is automatically
 called by the other time conversion functions that depend on
 the time zone.

 If the TZ variable does not appear in the environment, the
 tzname variable is initialized with the best approximation
 of local wall clock time, as specified by the tzfile(5)-
 format file /usr/lib/zoneinfo/localtime.

 If the TZ variable does appear in the environment but its
 value is NULL or its value cannot be interpreted using any
 of the formats specified below, Coordinated Universal Time
 (UTC) is used.

 The value of TZ can be one of three formats. The first for-
 mat is used when there is no daylight saving time in the
 local time zone:

 std offset

http://linuxsavvy.com/resources/linux/man/man3/tzset.3.html (1 of 3) [14/09/1999 10:00:24]

 The std string specifies the name of the time zone and must
 be three or more alphabetic characters. The offset string
 immediately follows std and specifies the time value to be
 added to the local time to get Coordinated Universal Time
 (UTC). The offset is positive if the local time zone is
 west of the Prime Meridian and negative if it is east. The
 hour must be between 0 and 24, and the minutes and seconds 0
 and 59.

 The second format is used when there is daylight saving
 time:

 std offset dst [offset],start[/time],end[/time]

 There are no spaces in the specification. The initial std
 and offset specify the standard time zone, as described
 above. The dst string and offset specify the name and
 offset for the corresponding daylight savings time zone. If
 the offset is omitted, it defaults to one hour ahead of
 standard time.
 The start field specifies when daylight savings time goes
 into effect and the end field specifies when the change is
 made back to standard time. These fields may have the fol-
 lowing formats:

 Jn This specifies the Julian day with n between 1 and 365.
 February 29 is never counted even in leap years.

 n This specifies the Julian day with n between 1 and 365.
 February 29 is counted in leap years.

 Mm.w.d
 This specifies day d (0 <= d <= 6) of week w (1 <= w <=
 5) of month m (1 <= m <= 12). Week 1 is the first week
 in which day d occurs and week 5 is the last week in
 which day d occurs. Day 0 is a Sunday.

 The time fields specify when, in the local time currently in
 effect, the change to the other time occurs. If omitted,
 the default is 02:00:00.

 The third format specifies that the time zone information
 should be read from a file:

 :[filespec]

http://linuxsavvy.com/resources/linux/man/man3/tzset.3.html (2 of 3) [14/09/1999 10:00:24]

 If the file specification filespec is omitted, the time zone
 information is read from /usr/lib/zoneinfo/localtime which
 is in tzfile(5) format. If filespec is given, it specifies
 another tzfile(5)-format file to read the time zone informa-
 tion from. If filespec does not begin with a `/', the file
 specification is relative to the system time conversion
 information directory /usr/lib/zoneinfo.

FILES

 /usr/lib/zoneinfo system time zone directory
 /usr/lib/zoneinfo/localtime local time zone file
 /usr/lib/zoneinfo/posixrules rules for POSIX-style TZ's

CONFORMING TO

 SVID 3, POSIX, BSD 4.3

SEE ALSO

 date(1), gettimeofday(2), time(2), getenv(3), tzfile(5)

http://linuxsavvy.com/resources/linux/man/man3/tzset.3.html (3 of 3) [14/09/1999 10:00:24]

NAME

 ulimit - get and set user limits

SYNOPSIS

 #include <ulimit.h>

 long ulimit(int cmd, long newlimit));

DESCRIPTION

 Warning: This routine is obsolete. The include file is no
 longer provided by glibc. Use getrlimit(2), setrlimit(2)
 and sysconf(3) instead. For the shell command ulimit, see
 bash(1).

 The ulimit call will get or set some limit for the current
 process. The cmd argument can have one of the following
 values.

 UL_GETFSIZE
 Return the limit on the size of a file, in units of 512
 bytes.

 UL_SETFSIZE
 Set the limit on the size of a file.

 3 (Not implemented for Linux.) Return the maximum possi-
 ble address of the data segment.

 4 (Implemented but no symbolic constant provided.)
 Return the maximum number of files that the calling
 process can open.

http://linuxsavvy.com/resources/linux/man/man3/ulimit.3.html (1 of 2) [14/09/1999 10:00:25]

RETURN VALUE

 On success, ulimit returns a nonnegative value. On error,
 -1 is returned, and errno is set appropriately.

ERRORS

 EPERM
 A non-root process tried to increase a limit.

CONFORMING TO

 SVID.

SEE ALSO

 bash(1), getrlimit(2), setrlimit(2), sysconf(3)

http://linuxsavvy.com/resources/linux/man/man3/ulimit.3.html (2 of 2) [14/09/1999 10:00:25]

NAME

 none - undocumented library functions

SYNOPSIS

 Undocumented library functions

DESCRIPTION

 This man page mentions those library functions which are
 implemented in the standard libraries but not yet documented
 in man pages.

SOLICITATION

 If you have information about these functions, please look
 in the source code, write a man page (using a style similar
 to that of the other Linux section 3 man pages), and send it
 to aeb@cwi.nl for inclusion in the next man page release.

THE LIST

 des_setparity dn_skipname ecb_crypt encrypt endnetgrent
 endrpcent endutent fcrypt fp_nquery fp_query fp_resstat
 get_myaddress getnetgrent getnetname getpublickey

http://linuxsavvy.com/resources/linux/man/man3/undocumented.3.html (1 of 3) [14/09/1999 10:00:27]

 getrpcbyname getrpcbynumber getrpcent getrpcport getsecret-
 key h_errlist host2netname hostalias inet_nsap_addr
 inet_nsap_ntoa init_des innetgr key_decryptsession
 key_encryptsession key_gendes key_setsecret libc_nls_init
 lockf mcheck memalign mstats mtrace netname2host
 netname2user nlist obstack_free p_cdname p_cdnname p_class
 p_fqname p_option p_query p_rr p_time p_type passwd2des
 pmap_getmaps pmap_getport pmap_rmtcall pmap_set pmap_unset
 putlong putshort rcmd re_compile_fastmap re_compile_pattern
 re_match re_match_2 re_rx_search re_search re_search_2
 re_set_registers re_set_syntax registerrpc res_send_setqhook
 res_send_setrhook rexec rresvport rtime ruserok ruserpass
 setfileno sethostfile setkey setlogmask setnetgrent setrp-
 cent svc_exit svc_getreq svc_getreqset svc_register svc_run
 svc_sendreply svc_unregister svcerr_auth svcerr_decode
 svcerr_noproc svcerr_noprog svcerr_progvers svcerr_systemerr
 svcerr_weakauth svcfd_create svcraw_create svctcp_create
 svcudp_bufcreate svcudp_create svcudp_enablecache syscall
 tell timegm tr_break tzsetwall ufc_dofinalperm ufc_doit
 user2netname valloc vsyslog xdecrypt xdr_accepted_reply
 xdr_array xdr_authdes_cred xdr_authdes_verf
 xdr_authunix_parms xdr_bool xdr_bytes xdr_callhdr
 xdr_callmsg xdr_char xdr_cryptkeyarg xdr_cryptkeyres
 xdr_datum xdr_des_block xdr_domainname xdr_double xdr_enum
 xdr_float xdr_free xdr_getcredres xdr_int xdr_keybuf
 xdr_keystatus xdr_long xdr_mapname xdr_netnamestr xdr_netobj
 xdr_opaque xdr_opaque_auth xdr_passwd xdr_peername xdr_pmap
 xdr_pmaplist xdr_pointer xdr_reference xdr_rejected_reply
 xdr_replymsg xdr_rmtcall_args xdr_rmtcallres xdr_short
 xdr_string xdr_u_char xdr_u_int xdr_u_long xdr_u_short
 xdr_union xdr_unixcred xdr_vector xdr_void xdr_wrapstring
 xdr_yp_buf xdr_yp_inaddr xdr_ypbind_binding xdr_ypbind_resp
 xdr_ypbind_resptype xdr_ypbind_setdom xdr_ypdelete_args
 xdr_ypmaplist xdr_ypmaplist_str xdr_yppasswd xdr_ypreq_key
 xdr_ypreq_nokey xdr_ypresp_all xdr_ypresp_all_seq
 xdr_ypresp_key_val xdr_ypresp_maplist xdr_ypresp_master
 xdr_ypresp_order xdr_ypresp_val xdr_ypstat xdr_ypupdate_args
 xdrmem_create xdrrec_create xdrrec_endofrecord xdrrec_eof
 xdrrec_skiprecord xdrstdio_create xencrypt xprt_register
 xprt_unregister yp_all yp_bind yp_first
 yp_get_default_domain yp_maplist yp_master yp_match yp_next
 yp_order yp_unbind yp_update yperr_string ypprot_err

http://linuxsavvy.com/resources/linux/man/man3/undocumented.3.html (2 of 3) [14/09/1999 10:00:27]

http://linuxsavvy.com/resources/linux/man/man3/undocumented.3.html (3 of 3) [14/09/1999 10:00:27]

NAME

 updwtmp, logwtmp - append an entry to the wtmp file

SYNOPSIS

 #include <utmp.h>

 void updwtmp(const char *wtmp_file, const struct utmp *ut));
 void logwtmp(const char *line, const char *name, const char *host

DESCRIPTION

 updwtmp() appends the utmp structure ut to the wtmp file.

 logwtmp() constructs an utmp structure using line, name,
 host, current time and current process id. Then it calls
 updwtmp() to append the structure to the utmp file.

AVAILABILITY

 Both functions are available under glibc2, but not under
 glibc1 or libc. However, logwtmp() occurs in the old
 libbsd.

http://linuxsavvy.com/resources/linux/man/man3/updwtmp.3.html (1 of 2) [14/09/1999 10:00:30]

FILES

 /var/log/wtmp database of past user logins

SEE ALSO

 utmp(5)

http://linuxsavvy.com/resources/linux/man/man3/updwtmp.3.html (2 of 2) [14/09/1999 10:00:30]

NAME

 usleep - suspend execution for interval of microseconds

SYNOPSIS

 #include <unistd.h>

 void usleep(unsigned long usec));

DESCRIPTION

 The usleep() function suspends execution of the calling pro-
 cess for usec microseconds. The sleep may be lengthened
 slightly by any system activity or by the time spent pro-
 cessing the call.

CONFORMING TO

 BSD 4.3

SEE ALSO

 setitimer(2), getitimer(2), sleep(3), alarm(2), select(2)

http://linuxsavvy.com/resources/linux/man/man3/usleep.3.html (1 of 2) [14/09/1999 10:00:31]

http://linuxsavvy.com/resources/linux/man/man3/usleep.3.html (2 of 2) [14/09/1999 10:00:31]

NAME

 wcstombs - convert a wide character string to a multibyte
 character string.

SYNOPSIS

 #include <stdlib.h>

 size_t wcstombs(char *s, const wchar_t *pwcs, size_t n

DESCRIPTION

 The wcstombs() function converts a sequence of wide charac-
 ters from the array pwcs into a sequence of multibyte char-
 acters and stores up to n bytes of multibyte characters in
 the array s.

RETURN VALUE

 wcstombs() returns the number of bytes stored in s or -1 if
 s contains an invalid wide character.

CONFORMING TO

 SVID 3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/wcstombs.3.html (1 of 2) [14/09/1999 10:00:39]

SEE ALSO

 mblen(3), mbtowc(3), mbstowcs(3),

http://linuxsavvy.com/resources/linux/man/man3/wcstombs.3.html (2 of 2) [14/09/1999 10:00:39]

NAME

 wctomb - convert a wide character to a multibyte character.

SYNOPSIS

 #include <stdlib.h>

 int wctomb(char *s, wchar_t wchar));

DESCRIPTION

 The wctomb() function converts a wide character wchar into a
 multibyte character and, if s is not NULL, stores the multi-
 byte character representation in s.

RETURN VALUE

 wctomb() returns the number of bytes in the multibyte char-
 acter or -1 if the wide character is not valid.

CONFORMING TO

 SVID 3, ISO 9899

http://linuxsavvy.com/resources/linux/man/man3/wctomb.3.html (1 of 2) [14/09/1999 10:00:41]

SEE ALSO

 mblen(3), mbstowcs(3), mbtowc(3),

http://linuxsavvy.com/resources/linux/man/man3/wctomb.3.html (2 of 2) [14/09/1999 10:00:41]

Linux Man Pages Section 4
● charsets.4

● console.4

● console_codes.4

● console_ioctl.4

● fd.4

● full.4

● hd.4

● initrd.4

● intro.4

● kmem.4

● lp.4

● mem.4

● mouse.4

● null.4

● port.4

● ram.4

● random.4

● sd.4

● st.4

● tty.4

● ttys.4

● vcs.4

● vcsa.4

● wavelan.4

● zero.4

Linux Man Pages Section 4

http://linuxsavvy.com/resources/linux/man/man4/ [14/09/1999 10:00:46]

http://linuxsavvy.com/resources/linux/man/man4/kmem.4.html
http://linuxsavvy.com/resources/linux/man/man4/port.4.html
http://linuxsavvy.com/resources/linux/man/man4/vcsa.4.html
http://linuxsavvy.com/resources/linux/man/man4/zero.4.html

NAME

 charsets - programmer's view of character sets and interna-
 tionalization

DESCRIPTION

 Linux is an international operating system. Various of its
 utilities and device drivers (including the console driver)
 support multilingual character sets including Latin-alphabet
 letters with diacritical marks, accents, ligatures, and
 entire non-Latin alphabets including Greek, Cyrillic, Ara-
 bic, and Hebrew.

 This manual page presents a programmer's-eye view of dif-
 ferent character-set standards and how they fit together on
 Linux. Standards discussed include ASCII, ISO 8859, KOI8-R,
 Unicode, ISO 2022 and ISO 4873.

ASCII

 ASCII (American Standard Code For Information) is the origi-
 nal 7-bit character set, originally designed for American
 English. It is currently described by the ECMA-6 standard.

 An ASCII variant replacing the American
 crosshatch/octothorpe/hash pound symbol with the British
 pound-sterling symbol is used in Great Britain; when needed,
 the American and British variants may be distinguished as
 "US ASCII" and "UK ASCII".

 As Linux was written for hardware designed in the US, it
 natively supports US ASCII.

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (1 of 7) [14/09/1999 10:00:49]

ISO 8859

 ISO 8859 is a series of 10 8-bit character sets all of which
 have US ASCII in their low (7-bit) half, invisible control
 characters in positions 128 to 159, and 96 fixed-width
 graphics in positions 160-255.

 Of these, the most important is ISO 8859-1 (Latin-1). It is
 natively supported in the Linux console driver, fairly well
 supported in X11R6, and is the base character set of HTML.

 Console support for the other 8859 character sets is avail-
 able under Linux through user-mode utilities (such as set-
 font(8)) that modify keyboard bindings and the EGA graphics
 table and employ the "user mapping" font table in the con-
 sole driver.

 Here are brief descriptions of each set:

 8859-1 (Latin-1)
 Latin-1 covers most Western European languages such as
 Albanian, Catalan, Danish, Dutch, English, Faroese,
 Finnish, French, German, Galician, Irish, Icelandic,
 Italian, Norwegian, Portuguese, Spanish, and Swedish.
 The lack of the ligatures Dutch ij, French oe and old-
 style ,,German`` quotation marks is tolerable.

 8859-2 (Latin-2)
 Latin-2 supports most Latin-written Slavic and Central
 European languages: Czech, German, Hungarian, Polish,
 Rumanian, Croatian, Slovak, and Slovene.

 8859-3 (Latin-3)
 Latin-3 is popular with authors of Esperanto, Galician,
 Maltese, and Turkish.

 8859-4 (Latin-4)
 Latin-4 introduced letters for Estonian, Latvian, and
 Lithuanian. It is essentially obsolete; see 8859-10
 (Latin-6).

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (2 of 7) [14/09/1999 10:00:49]

 8859-5
 Cyrillic letters supporting Bulgarian, Byelorussian,
 Macedonian, Russian, Serbian and Ukrainian. Ukrainians
 read the letter `ghe' with downstroke as `heh' and
 would need a ghe with upstroke to write a correct ghe.
 See the discussion of KOI8-R below.

 8859-6
 Supports Arabic. The 8859-6 glyph table is a fixed
 font of separate letter forms, but a proper display
 engine should combine these using the proper initial,
 medial, and final forms.

 8859-7
 Supports Modern Greek.

 8859-8
 Supports Hebrew.

 8859-9 (Latin-5)
 This is a variant of Latin-1 that replaces rarely-used
 Icelandic letters with Turkish ones.

 8859-10 (Latin-6)
 Latin 6 adds the last Inuit (Greenlandic) and Sami
 (Lappish) letters that were missing in Latin 4 to cover
 the entire Nordic area. RFC 1345 listed a preliminary
 and different `latin6'. Skolt Sami still needs a few
 more accents than these.

KOI8-R

 KOI8-R is a non-ISO character set popular in Russia. The
 lower half is US ASCII; the upper is a Cyrillic character
 set somewhat better designed than ISO 8859-5.

 Console support for KOI8-R is available under Linux through
 user-mode utilities that modify keyboard bindings and the
 EGA graphics table, and employ the "user mapping" font table
 in the console driver.

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (3 of 7) [14/09/1999 10:00:49]

UNICODE

 Unicode (ISO 10646) is a standard which aims to unambigu-
 ously represent every known glyph in every human language.
 Unicode's native encoding is 32-bit (older versions used 16
 bits). Information on Unicode is available at
 <http://www.unicode.com>.

 Linux represents Unicode using the 8-bit Unicode Transfer
 Format (UTF-8). UTF-8 is a variable length encoding of
 Unicode. It uses 1 byte to code 7 bits, 2 bytes for 11
 bits, 3 bytes for 16 bits, 4 bytes for 21 bits, 5 bytes for
 26 bits, 6 bytes for 31 bits.

 Let 0,1,x stand for a zero, one, or arbitrary bit. A byte
 0xxxxxxx stands for the Unicode 00000000 0xxxxxxx which
 codes the same symbol as the ASCII 0xxxxxxx. Thus, ASCII
 goes unchanged into UTF-8, and people using only ASCII do
 not notice any change: not in code, and not in file size.

 A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx
 10yyyyyy is assembled into 00000xxx xxyyyyyy. A byte
 1110xxxx is the start of a 3-byte code, and 1110xxxx
 10yyyyyy 10zzzzzz is assembled into xxxxyyyy yyzzzzzz.
 (When UTF-8 is used to code the 31-bit ISO 10646 then this
 progression continues up to 6-byte codes.)

 For ISO-8859-1 users this means that the characters with
 high bit set now are coded with two bytes. This tends to
 expand ordinary text files by one or two percent. There are
 no conversion problems, however, since the Unicode value of
 ISO-8859-1 symbols equals their ISO-8859-1 value (extended
 by eight leading zero bits). For Japanese users this means
 that the 16-bit codes now in common use will take three
 bytes, and extensive mapping tables are required. Many
 Japanese therefore prefer ISO 2022.

 Note that UTF-8 is self-synchronizing: 10xxxxxx is a tail,
 any other byte is the head of a code. Note that the only
 way ASCII bytes occur in a UTF-8 stream, is as themselves.
 In particular, there are no embedded NULs or '/'s that form

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (4 of 7) [14/09/1999 10:00:49]

 part of some larger code.

 Since ASCII, and, in particular, NUL and '/', are unchanged,
 the kernel does not notice that UTF-8 is being used. It does
 not care at all what the bytes it is handling stand for.

 Rendering of Unicode data streams is typically handled
 through `subfont' tables which map a subset of Unicode to
 glyphs. Internally the kernel uses Unicode to describe the
 subfont loaded in video RAM. This means that in UTF-8 mode
 one can use a character set with 512 different symbols.
 This is not enough for Japanese, Chinese and Korean, but it
 is enough for most other purposes.

ISO 2022 AND ISO 4873

 The ISO 2022 and 4873 standards describe a font-control
 model based on VT100 practice. This model is (partially)
 supported by the Linux kernel and by xterm(1). It is popu-
 lar in Japan and Korea.

 There are 4 graphic character sets, called G0, G1, G2 and
 G3, and one of them is the current character set for codes
 with high bit zero (initially G0), and one of them is the
 current character set for codes with high bit one (initially
 G1). Each graphic character set has 94 or 96 characters,
 and is essentially a 7-bit character set. It uses codes
 either 040-0177 (041-0176) or 0240-0377 (0241-0376). G0
 always has size 94 and uses codes 041-0176.

 Switching between character sets is done using the shift
 functions ^N (SO or LS1), ^O (SI or LS0), ESC n (LS2), ESC o
 (LS3), ESC N (SS2), ESC O (SS3), ESC ~ (LS1R), ESC } (LS2R),
 ESC | (LS3R). The function LSn makes character set Gn the
 current one for codes with high bit zero. The function LSnR
 makes character set Gn the current one for codes with high
 bit one. The function SSn makes character set Gn (n=2 or 3)
 the current one for the next character only (regardless of
 the value of its high order bit).

 A 94-character set is designated as Gn character set by an

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (5 of 7) [14/09/1999 10:00:49]

 escape sequence ESC (xx (for G0), ESC) xx (for G1), ESC *
 xx (for G2), ESC + xx (for G3), where xx is a symbol or a
 pair of symbols found in the ISO 2375 International Register
 of Coded Character Sets. For example, ESC (@ selects the
 ISO 646 character set as G0, ESC (A selects the UK standard
 character set (with pound instead of number sign), ESC (B
 selects ASCII (with dollar instead of currency sign), ESC (
 M selects a character set for African languages, ESC (! A
 selects the Cuban character set, etc. etc.

 A 96-character set is designated as Gn character set by an
 escape sequence ESC - xx (for G1), ESC . xx (for G2) or ESC
 / xx (for G3). For example, ESC - G selects the Hebrew
 alphabet as G1.

 A multibyte character set is designated as Gn character set
 by an escape sequence ESC $ xx or ESC $ (xx (for G0), ESC $
) xx (for G1), ESC $ * xx (for G2), ESC $ + xx (for G3).
 For example, ESC $ (C selects the Korean character set for
 G0. The Japanese character set selected by ESC $ B has a
 more recent version selected by ESC & @ ESC $ B.

 ISO 4873 stipulates a narrower use of character sets, where
 G0 is fixed (always ASCII), so that G1, G2 and G3 can only
 be invoked for codes with the high order bit set. In par-
 ticular, ^N and ^O are not used anymore, ESC (xx can be
 used only with xx=B, and ESC) xx, ESC * xx, ESC + xx are
 equivalent to ESC - xx, ESC . xx, ESC / xx, respectively.

SEE ALSO

 console(4), console_ioctl(4), console_codes(4)

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (6 of 7) [14/09/1999 10:00:49]

http://linuxsavvy.com/resources/linux/man/man4/charsets.4.html (7 of 7) [14/09/1999 10:00:49]

NAME

 console - console terminal and virtual consoles

DESCRIPTION

 A Linux system has up to 63 virtual consoles (character dev-
 ices with major number 4 and minor number 1 to 63), usually
 called /dev/ttyn with 1 < n < 63. The current console is
 also addressed by /dev/console or /dev/tty0, the character
 device with major number 4 and minor number 0. The device
 files /dev/* are usually created using the script MAKEDEV,
 or using mknod(1), usually with mode 0622 and owner
 root.tty.

 Before kernel version 1.1.54 the number of virtual consoles
 was compiled into the kernel (in tty.h: #define NR_CONSOLES
 8) and could be changed by editing and recompiling. Since
 version 1.1.54 virtual consoles are created on the fly, as
 soon as they are needed.

 Common ways to start a process on a console are: (a) tell
 init(8) (in inittab(5)) to start a getty(8) on the console;
 (b) ask open(1) to start a process on the console; (c) start
 X - it will find the first unused console, and display its
 output there. (There is also the ancient doshell(8).)

 Common ways to switch consoles are: (a) use Alt+Fn or
 Ctrl+Alt+Fn to switch to console n; AltGr+Fn might bring you
 to console n+12 [here Alt and AltGr refer to the left and
 right Alt keys, respectively]; (b) use Alt+RightArrow or
 Alt+LeftArrow to cycle through the presently allocated con-
 soles; (c) use the program chvt(1). (The key mapping is
 user settable, see loadkeys(1); the above mentioned key com-
 binations are according to the default settings.)

 The command deallocvt(1) (formerly disalloc) will free the

http://linuxsavvy.com/resources/linux/man/man4/console.4.html (1 of 3) [14/09/1999 10:00:51]

 memory taken by the screen buffers for consoles that no
 longer have any associated process.

PROPERTIES

 Consoles carry a lot of state. I hope to document that some
 other time. The most important fact is that the consoles
 simulate vt100 terminals. In particular, a console is reset
 to the initial state by printing the two characters ESC c.
 All escape sequences can be found in console_codes(4).

FILES

 /dev/console
 /dev/tty*

SEE ALSO

 charsets(4), console_codes(4), console_ioctl(4), mknod(1),
 tty(4), ttys(4), getty(8), init(8), chvt(1), open(1), deal-
 locvt(1), loadkeys(1), resizecons(8), setfont(8), mapscrn(8)

http://linuxsavvy.com/resources/linux/man/man4/console.4.html (2 of 3) [14/09/1999 10:00:51]

http://linuxsavvy.com/resources/linux/man/man4/console.4.html (3 of 3) [14/09/1999 10:00:51]

NAME

 console_codes - Linux console escape and control sequences

DESCRIPTION

 The Linux console implements a large subset of the VT102 and
 ECMA-48/ISO 6429/ANSI X3.64 terminal controls, plus certain
 private-mode sequences for changing the color palette,
 character-set mapping, etc. In the tabular descriptions
 below, the second column gives ECMA-48 or DEC mnemonics (the
 latter if prefixed with DEC) for the given function.
 Sequences without a mnemonic are neither ECMA-48 nor VT102.

 After all the normal output processing has been done, and a
 stream of characters arrives at the console driver for
 actual printing, the first thing that happens is a transla-
 tion from the code used for processing to the code used for
 printing.

 If the console is in UTF-8 mode, then the incoming bytes are
 first assembled into 16-bit Unicode codes. Otherwise each
 byte is transformed according to the current mapping table
 (which translates it to a Unicode value). See the CHARACTER
 SETS section below for discussion.

 In the normal case, the Unicode value is converted to a font
 index, and this is stored in video memory, so that the
 corresponding glyph (as found in video ROM) appears on the
 screen. Note that the use of Unicode (and the design of the
 PC hardware) allows us to use 512 different glyphs simul-
 taneously.

 If the current Unicode value is a control character, or we
 are currently processing an escape sequence, the value will
 treated specially. Instead of being turned into a font
 index and rendered as a glyph, it may trigger cursor move-

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (1 of 12) [14/09/1999 10:00:57]

 ment or other control functions. See the LINUX CONSOLE CON-
 TROLS section below for discussion.

 It is generally not good practice to hard-wire terminal con-
 trols into programs. Linux supports a terminfo(5) database
 of terminal capabilities. Rather than emitting console
 escape sequences by hand, you will almost always want to use
 a terminfo-aware screen library or utility such as
 ncurses(3), tput(1), or reset(1).

LINUX CONSOLE CONTROLS

 This section describes all the control characters and escape
 sequences that invoke special functions (i.e. anything other
 than writing a glyph at the current cursor location) on the
 Linux console.

 Control characters
 A character is a control character if (before transformation
 according to the mapping table) it has one of the 14 codes
 00 (NUL), 07 (BEL), 08 (BS), 09 (HT), 0a (LF), 0b (VT), 0c
 (FF), 0d (CR), 0e (SO), 0f (SI), 18 (CAN), 1a (SUB), 1b
 (ESC), 7f (DEL). One can set a `display control characters'
 mode (see below), and allow 07, 09, 0b, 18, 1a, 7f to be
 displayed as glyphs. On the other hand, in UTF-8 mode all
 codes 00-1f are regarded as control characters, regardless
 of any `display control characters' mode.

 If we have a control character, it is acted upon immediately
 and then discarded (even in the middle of an escape
 sequence) and the escape sequence continues with the next
 character. (However, ESC starts a new escape sequence, pos-
 sibly aborting a previous unfinished one, and CAN and SUB
 abort any escape sequence.) The recognized control charac-
 ters are BEL, BS, HT, LF, VT, FF, CR, SO, SI, CAN, SUB, ESC,
 DEL, CSI. They do what one would expect:

 BEL (0x07, ^G) beeps;

 BS (0x08, ^H) backspaces one column (but not past the begin-
 ning of the line);

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (2 of 12) [14/09/1999 10:00:57]

 HT (0x09, ^I) goes to the next tab stop or to the end of the
 line if there is no earlier tab stop;

 LF (0x0A, ^J), VT (0x0B, ^K) and FF (0x0C, ^L) all give a
 linefeed;

 CR (0x0D, ^M) gives a carriage return;

 SO (0x0E, ^N) activates the G1 character set, and if LF/NL
 (new line mode) is set also a carriage return;

 SI (0x0F, ^O) activates the G0 character set;

 CAN (0x18, ^X) and SUB (0x1A, ^Z) interrupt escape
 sequences;

 ESC (0x1B, ^[) starts an escape sequence;

 DEL (0x7F) is ignored;

 CSI (0x9B) is equivalent to ESC [.

 ESC- but not CSI-sequences
 l l l. ESC c RIS Reset. ESC D IND Linefeed. ESC
 E NEL Newline. ESC H HTS Set tab stop at current
 column. ESC M RI Reverse linefeed. ESC
 Z DECID DEC private identification. The kernel
 returns the string ESC [? 6 c, claiming
 that it is a VT102. ESC 7 DECSC Save
 current state (cursor coordinates, attributes,
 character sets). ESC 8 DECRC Restore most recently
 saved state. ESC [CSI Control sequence introducer ESC
 % Start sequence selecting character set ESC %
 @ Select default (ISO 646 / ISO 8859-1) ESC %
 G Select UTF-8 ESC % 8 Select UTF-8
 (obsolete) ESC # 8 DECALN DEC screen alignment test -
 fill screen with E's. ESC (Start sequence defin-
 ing G0 character set ESC (B Select default (ISO
 8859-1 mapping) ESC (0 Select vt100 graphics map-
 ping ESC (U Select null mapping - straight to
 character ROM ESC (K Select user mapping - the
 map that is loaded by the utility mapscrn(8).
 ESC) Start sequence defining G1 (fol-
 lowed by one of B, 0, U, K, as above). ESC
 > DECPNM Set numeric keypad mode ESC

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (3 of 12) [14/09/1999 10:00:57]

 = DECPAM Set application keypad mode ESC
] OSC (Should be: Operating system command)
 ESC] P nrrggbb: set palette, with parameter
 given in 7 hexadecimal digits after the final P
 :-(. Here n is the color (0-16), and rrggbb indi-
 cates the red/green/blue values (0-255).
 ESC] R: reset palette

 ECMA-48 CSI sequences
 CSI (or ESC [) is followed by a sequence of parameters, at
 most NPAR (16), that are decimal numbers separated by semi-
 colons. An empty or absent parameter is taken to be 0. The
 sequence of parameters may be preceded by a single question
 mark.

 However, after CSI [(or ESC [[) a single character is read
 and this entire sequence is ignored. (The idea is to ignore
 an echoed function key.)

 The action of a CSI sequence is determined by its final
 character.

 l l l. @ ICH Insert the indicated # of blank charac-
 ters. A CUU Move cursor up the indicated # of rows.
 B CUD Move cursor down the indicated # of rows.
 C CUF Move cursor right the indicated # of columns.
 D CUB Move cursor left the indicated # of columns.
 E CNL Move cursor down the indicated # of rows, to
 column 1. F CPL Move cursor up the indicated # of rows,
 to column 1. G CHA Move cursor to indicated column in
 current row. H CUP Move cursor to the indicated row,
 column (origin at 1,1). J ED Erase display (default:
 from cursor to end of display). ESC [1 J: erase
 from start to cursor. ESC [2 J: erase whole
 display. K EL Erase line (default: from cursor to end
 of line). ESC [1 K: erase from start of line to
 cursor. ESC [2 K: erase whole line.
 L IL Insert the indicated # of blank lines.
 M DL Delete the indicated # of lines. P DCH Delete
 the indicated # of characters on the current line.
 X ECH Erase the indicated # of characters on the current
 line. a HPR Move cursor right the indicated # of
 columns. c DA Answer ESC [? 6 c: `I am a VT102'.
 d VPA Move cursor to the indicated row, current column.
 e VPR Move cursor down the indicated # of rows.
 f HVP Move cursor to the indicated row, column.

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (4 of 12) [14/09/1999 10:00:57]

 g TBC Without parameter: clear tab stop at the current
 position. ESC [3 g: delete all tab stops.
 h SM Set Mode (see below). l RM Reset Mode (see
 below). m SGR Set attributes (see below).
 n DSR Status report (see below). q DECLL Set
 keyboard LEDs. ESC [0 q: clear all LEDs
 ESC [1 q: set Scroll Lock LED ESC [2
 q: set Num Lock LED ESC [3 q: set Caps Lock LED
 r DECSTBM Set scrolling region; parameters are top and
 bottom row. s ? Save cursor location.
 u ? Restore cursor location. ` HPA Move cursor to
 indicated column in current row.

 ECMA-48 Set Graphics Rendition
 The ECMA-48 SGR sequence ESC [<parameters> m sets display
 attributes. Several attributes can be set in the same
 sequence.

 l l. par result 0 reset all attributes to their
 defaults 1 set bold 2 set half-bright (simulated with
 color on a color display) 4 set underscore (simulated
 with color on a color display) (the colors used to
 simulate dim or underline are set using ESC] ...)
 5 set blink 7 set reverse video 10 reset selected
 mapping, display control flag, and toggle meta flag.
 11 select null mapping, set display control flag,
 reset toggle meta flag. 12 select null mapping, set
 display control flag, set toggle meta flag. (The toggle
 meta flag causes the high bit of a byte to be toggled
 before the mapping table translation is done.)
 21 set normal intensity (this is not compatible with
 ECMA-48) 22 set normal intensity 24 underline off
 25 blink off 27 reverse video off 30 set black fore-
 ground 31 set red foreground 32 set green foreground
 33 set brown foreground 34 set blue foreground 35 set
 magenta foreground 36 set cyan foreground 37 set white
 foreground 38 set underscore on, set default foreground
 color 39 set underscore off, set default foreground color
 40 set black background 41 set red background 42 set
 green background 43 set brown background 44 set blue
 background 45 set magenta background 46 set cyan back-
 ground 47 set white background 49 set default background
 color

 ECMA-48 Mode Switches
 ESC [3 h

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (5 of 12) [14/09/1999 10:00:57]

 DECCRM (default off): Display control chars.

 ESC [4 h
 DECIM (default off): Set insert mode.

 ESC [20 h
 LF/NL (default off): Automatically follow echo of LF,
 VT or FF with CR.

 ECMA-48 Status Report Commands
 ESC [5 n
 Device status report (DSR): Answer is ESC [0 n (Termi-
 nal OK).

 ESC [6 n
 Cursor position report (CPR): Answer is ESC [y ; x R,
 where x,y is the cursor location.

 DEC Private Mode (DECSET/DECRST) sequences.
 These are not described in ECMA-48. We list the Set Mode
 sequences; the Reset Mode sequences are obtained by replac-
 ing the final `h' by `l'.

 ESC [? 1 h
 DECCKM (default off): When set, the cursor keys send an
 ESC O prefix, rather than ESC [.

 ESC [? 3 h
 DECCOLM (default off = 80 columns): 80/132 col mode
 switch. The driver sources note that this alone does
 not suffice; some user-mode utility such as resize-
 cons(8) has to change the hardware registers on the
 console video card.

 ESC [? 5 h
 DECSCNM (default off): Set reverse-video mode.

 ESC [? 6 h
 DECOM (default off): When set, cursor addressing is
 relative to the upper left corner of the scrolling
 region.

 ESC [? 7 h
 DECAWM (default on): Set autowrap on. In this mode, a
 graphic character emitted after column 80 (or column

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (6 of 12) [14/09/1999 10:00:57]

 132 of DECCOLM is on) forces a wrap to the beginning of
 the following line first.

 ESC [? 8 h
 DECARM (default on): Set keyboard autorepreat on.

 ESC [? 9 h
 X10 Mouse Reporting (default off): Set reporting mode
 to 1 (or reset to 0) - see below.

 ESC [? 25 h
 DECCM (default on): Make cursor visible.

 ESC [? 1000 h
 X11 Mouse Reporting (default off): Set reporting mode
 to 2 (or reset to 0) - see below.

 Linux Console Private CSI Sequences
 The following sequences are neither ECMA-48 nor native
 VT102. They are native to the Linux console driver. Colors
 are in SGR parameters: 0 = black, 1 = red, 2 = green, 3 =
 brown, 4 = blue, 5 = magenta, 6 = cyan, 7 = white.

 l l. ESC [1 ; n] Set color n as the underline color ESC
 [2 ; n] Set color n as the dim color ESC [8]
 Make the current color pair the default attributes. ESC
 [9 ; n] Set screen blank timeout to n minutes. ESC [10
 ; n] Set bell frequency in Hz. ESC [11 ; n] Set bell
 duration in msec. ESC [12 ; n] Bring specified console to
 the front. ESC [13] Unblank the screen. ESC [
 14 ; n] Set the VESA powerdown interval in minutes.

CHARACTER SETS

 The kernel knows about 4 translations of bytes into
 console-screen symbols. The four tables are: a) Latin1 ->
 PC, b) VT100 graphics -> PC, c) PC -> PC, d) user-defined.

 There are two character sets, called G0 and G1, and one of
 them is the current character set. (Initially G0.) Typing

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (7 of 12) [14/09/1999 10:00:57]

 ^N causes G1 to become current, ^O causes G0 to become
 current.

 These variables G0 and G1 point at a translation table, and
 can be changed by the user. Initially they point at tables
 a) and b), respectively. The sequences ESC (B and ESC (0
 and ESC (U and ESC (K cause G0 to point at translation
 table a), b), c) and d), respectively. The sequences ESC)
 B and ESC) 0 and ESC) U and ESC) K cause G1 to point at
 translation table a), b), c) and d), respectively.

 The sequence ESC c causes a terminal reset, which is what
 you want if the screen is all garbled. The oft-advised "echo
 ^V^O" will only make G0 current, but there is no guarantee
 that G0 points at table a). In some distributions there is
 a program reset(1) that just does "echo ^[c". If your ter-
 minfo entry for the console is correct (and has an entry
 rs1=\Ec), then "tput reset" will also work.

 The user-defined mapping table can be set using mapscrn(8).
 The result of the mapping is that if a symbol c is printed,
 the symbol s = map[c] is sent to the video memory. The bit-
 map that corresponds to s is found in the character ROM, and
 can be changed using setfont(8).

MOUSE TRACKING

 The mouse tracking facility is intended to return xterm-
 compatible mouse status reports. Because the console driver
 has no way to know the device or type of the mouse, these
 reports are returned in the console input stream only when
 the virtual terminal driver receives a mouse update ioctl.
 These ioctls must be generated by a mouse-aware user-mode
 application such as the gpm(8) daemon.

 Parameters for all mouse tracking escape sequences generated
 by xterm encode numeric parameters in a single character as
 value+040. For example, `!' is 1. The screen coordinate
 system is 1-based.

 The X10 compatibility mode sends an escape sequence on but-

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (8 of 12) [14/09/1999 10:00:57]

 ton press encoding the location and the mouse button
 pressed. It is enabled by sending ESC [? 9 h and disabled
 with ESC [? 9 l. On button press, xterm sends ESC [M bxy
 (6 characters). Here b is button-1, and x and y are the x
 and y coordinates of the mouse when the button was pressed.
 This is the same code the kernel also produces.

 Normal tracking mode (not implemented in Linux 2.0.24) sends
 an escape sequence on both button press and release. Modif-
 ier information is also sent. It is enabled by sending ESC
 [? 1000 h and disabled with ESC [1000 l. On button press
 or release, xterm sends ESC [M bxy. The low two bits of b
 encode button information: 0=MB1 pressed, 1=MB2 pressed,
 2=MB3 pressed, 3=release. The upper bits encode what modif-
 iers were down when the button was pressed and are added
 together: 4=Shift, 8=Meta, 16=Control. Again x and y are
 the x and y coordinates of the mouse event. The upper left
 corner is (1,1).

COMPARISONS WITH OTHER TERMINALS

 Many different terminal types are described, like the Linux
 console, as being `VT100-compatible'. Here we discuss
 differences vbetween the Linux console an the two most
 important others, the DEC VT102 and xterm(1).

 Control-character handling
 The vt102 also recognized the following control characters:

 NUL (0x00) was ignored;

 ENQ (0x05) triggered an answerback message;

 DC1 (0x11, ^Q, XON) resumed transmission;

 DC3 (0x13, ^S, XOFF) caused vt100 to ignore (and stop
 transmitting) all codes except XOFF and XON.

 VT100-like DC1/DC3 processing may be enabled by the tty
 driver.

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (9 of 12) [14/09/1999 10:00:57]

 The xterm program (in vt100 mode) recognizes the control
 characters BEL, BS, HT, LF, VT, FF, CR, SO, SI, ESC.

 Escape sequences
 VT100 console sequences not implemented on the Linux con-
 sole:

 l l l. ESC N SS2 Single shift 2. (Select G2 character
 set for the next character only.) ESC
 O SS3 Single shift 3. (Select G3 character set for the
 next character only.) ESC P DCS Device con-
 trol string (ended by ESC \) ESC X SOS Start of string.
 ESC ^ PM Privacy message (ended by ESC \) ESC
 \ ST String terminator ESC * ... Designate G2
 character set ESC + ... Designate G3 character set

 The program xterm (in vt100 mode) recognizes ESC c, ESC # 8,
 ESC >, ESC =, ESC D, ESC E, ESC H, ESC M, ESC N, ESC O, ESC
 P ... ESC , ESC Z (it answers ESC [? 1 ; 2 c, `I am a vt100
 with advanced video option') and ESC ^ ... ESC with the
 same meanings as indicated above. It accepts ESC (, ESC),
 ESC *, ESC + followed by 0, A, B for the DEC special char-
 acter and line drawing set, UK, and USASCII, respectively.
 It accepts ESC] for the setting of certain resources:

 l l. ESC] 0 ; txt BEL Set icon name and window title to
 txt. ESC] 1 ; txt BEL Set icon name to txt. ESC] 2 ;
 txt BEL Set window title to txt. ESC] 4 6 ; name
 BEL Change log file to name (normally disabled by a
 compile-time option) ESC] 5 0 ; fn BEL Set font to fn.

 It recognizes the following with slightly modified meaning:

 l l l. ESC 7 DECSC Save cursor ESC 8 DECRC Restore
 cursor

 It also recognizes

 l l l. ESC F Cursor to lower left corner of screen
 (if enabled by the hpLowerleftBugCompat resource)
 ESC l Memory lock (per HP terminals).
 Locks memory above the cursor. ESC
 m Memory unlock (per HP terminals). ESC
 n LS2 Invoke the G2 character set. ESC

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (10 of 12) [14/09/1999 10:00:57]

 o LS3 Invoke the G3 character set. ESC
 | LS3R Invoke the G3 character set as GR. Has
 no visible effect in xterm. ESC } LS2R Invoke the G2
 character set as GR. Has no visible effect in
 xterm. ESC ~ LS1R Invoke the G1 character set as GR.
 Has no visible effect in xterm.

 It does not recognize ESC % ...

 CSI Sequences
 The xterm program (as of XFree86 3.1.2G) does not recognize
 the blink or invisible-mode SGRs. Stock X11R6 versions do
 not recognize the color-setting SGRs. All other ECMA-48 CSI
 sequences recognized by Linux are also recognized by xterm,
 and vice-versa.

 The xterm program will recognize all of the DEC Private Mode
 sequences listed above, but none of the Linux private-mode
 sequences. For discussion of xterm's own private-mode
 sequences, refer to the Xterm Control Sequences document by
 Edward Moy and Stephen Gildea, available with the X distri-
 bution.

BUGS

 In 2.0.23, CSI is broken, and NUL is not ignored inside
 escape sequences.

SEE ALSO

 console(4), console_ioctl(4), charsets(4)

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (11 of 12) [14/09/1999 10:00:57]

http://linuxsavvy.com/resources/linux/man/man4/console_codes.4.html (12 of 12) [14/09/1999 10:00:57]

NAME

 console ioctl - ioctl's for console terminal and virtual
 consoles

DESCRIPTION

 WARNING: If you use the following information you are going
 to burn yourself.

 WARNING: ioctl's are undocumented Linux internals, liable to
 be changed without warning. Use POSIX functions.

 The following Linux-peculiar ioctl() requests are supported.
 Each requires a third argument, assumed here to be argp.

 KDGETLED
 Get state of LEDs. argp points to a long int. The
 lower three bits of *argp are set to the state of the
 LEDs, as follows:

 LED_CAP 0x04 caps lock led
 LEC_NUM 0x02 num lock led
 LED_SCR 0x01 scroll lock led

 KDSETLED
 Set the LEDs. The LEDs are set to correspond to the
 lower three bits of argp. However, if a higher order
 bit is set, the LEDs revert to normal: displaying the
 state of the keyboard functions of caps lock, num lock,
 and scroll lock.

 Before 1.1.54, the LEDs just reflected the state of the
 corresponding keyboard flags, and KDGETLED/KDSETLED would
 also change the keyboard flags. Since 1.1.54 the leds can be
 made to display arbitrary information, but by default they
 display the keyboard flags. The following two ioctl's are
 used to access the keyboard flags.

 KDGKBLED
 Get keyboard flags CapsLock, NumLock, ScrollLock (not
 lights). argp points to a char which is set to the
 flag state. The low order three bits (mask 0x7) get
 the current flag state, and the low order bits of the
 next nibble (mask 0x70) get the default flag state.

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (1 of 12) [14/09/1999 10:01:03]

 (Since 1.1.54.)

 KDSKBLED
 Set keyboard flags CapsLock, NumLock, ScrollLock (not
 lights). argp has the desired flag state. The low
 order three bits (mask 0x7) have the flag state, and
 the low order bits of the next nibble (mask 0x70) have
 the default flag state. (Since 1.1.54.)

 KDGKBTYPE
 Get keyboard type. This returns the value KB_101,
 defined as 0x02.

 KDADDIO
 Add I/O port as valid. Equivalent to ioperm(arg,1,1).

 KDDELIO
 Delete I/O port as valid. Equivalent to
 ioperm(arg,1,0).

 KDENABIO
 Enable I/O to video board. Equivalent to ioperm(0x3b4,
 0x3df-0x3b4+1, 1).

 KDDISABIO
 Disable I/O to video board. Equivalent to ioperm(0x3b4,
 0x3df-0x3b4+1, 0).

 KDSETMODE
 Set text/graphics mode. argp is one of these:

 KD_TEXT 0x00
 KD_GRAPHICS 0x01

 KDGETMODE
 Get text/graphics mode. argp points to a long which is
 set to one of the above values.

 KDMKTONE
 Generate tone of specified length. The lower 16 bits of
 argp specify the period in clock cycles, and the upper
 16 bits give the duration in msec. If the duration is
 zero, the sound is turned off. Control returns immedi-
 ately. For example, argp = (125<<16) + 0x637 would
 specify the beep normally associated with a ctrl-G.
 (Thus since 0.99pl1; broken in 2.1.49-50.)

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (2 of 12) [14/09/1999 10:01:03]

 KIOCSOUND
 Start or stop sound generation. The lower 16 bits of
 argp specify the period in clock cycles (that is, argp
 = 1193180/frequency). argp = 0 turns sound off. In
 either case, control returns immediately.

 GIO_CMAP
 Get the current default colour map from kernel. argp
 points to a 48-byte array. (Since 1.3.3.)

 PIO_CMAP
 Change the default text-mode colour map. argp points
 to a 48-byte array which contains, in order, the Red,
 Green, and Blue values for the 16 available screen
 colours: 0 is off, and 255 is full intensity. The
 default colours are, in order: black, dark red, dark
 green, brown, dark blue, dark purple, dark cyan, light
 grey, dark grey, bright red, bright green, yellow,
 bright blue, bright purple, bright cyan and white.
 (Since 1.3.3.)

 GIO_FONT
 Gets 256-character screen font in expanded form. argp
 points to an 8192 byte array. Fails with error code
 EINVAL if the currently loaded font is a 512-character
 font, or if the console is not in text mode.

 GIO_FONTX
 Gets screen font and associated information. argp
 points to a struct consolefontdesc (see PIO_FONTX). On
 call, the charcount field should be set to the maximum
 number of characters that would fit in the buffer
 pointed to by chardata. On return, the charcount and
 charheight are filled with the respective data for the
 currently loaded font, and the chardata array contains
 the font data if the initial value of charcount indi-
 cated enough space was available; otherwise the buffer
 is untouched and errno is set to ENOMEM. (Since
 1.3.1.)

 PIO_FONT
 Sets 256-character screen font. Load font into the
 EGA/VGA character generator. argp points to a 8192
 byte map, with 32 bytes per character. Only first N of
 them are used for an 8xN font (0 < N <= 32). This call
 also invalidates the Unicode mapping.

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (3 of 12) [14/09/1999 10:01:03]

 PIO_FONTX
 Sets screen font and associated rendering information.
 argp points to a

 struct consolefontdesc {
 u_short charcount; /* characters in font (256 or 512) */
 u_short charheight; /* scan lines per character (1-32) */
 char *chardata; /* font data in expanded form */
 };

 If necessary, the screen will be appropriately resized,
 and SIGWINCH sent to the appropriate processes. This
 call also invalidates the Unicode mapping. (Since
 1.3.1.)

 PIO_FONTRESET
 Resets the screen font, size and Unicode mapping to the
 bootup defaults. argp is unused, but should be set to
 NULL to ensure compatibility with future versions of
 Linux. (Since 1.3.28.)

 GIO_SCRNMAP
 Get screen mapping from kernel. argp points to an area
 of size E_TABSZ, which is loaded with the font posi-
 tions used to display each character. This call is
 likely to return useless information if the currently
 loaded font is more than 256 characters.

 GIO_UNISCRNMAP
 Get full Unicode screen mapping from kernel. argp
 points to an area of size E_TABSZ*sizeof(unsigned
 short), which is loaded with the Unicodes each charac-
 ter represent. A special set of Unicodes, starting at
 U+F000, are used to represent ``direct to font'' map-
 pings. (Since 1.3.1.)

 PIO_SCRNMAP
 Loads the ``user definable'' (fourth) table in the ker-
 nel which maps bytes into console screen symbols. argp
 points to an area of size E_TABSZ.

 PIO_UNISCRNMAP
 Loads the ``user definable'' (fourth) table in the ker-
 nel which maps bytes into Unicodes, which are then
 translated into screen symbols according to the
 currently loaded Unicode-to-font map. Special Unicodes
 starting at U+F000 can be used to map directly to the
 font symbols. (Since 1.3.1.)

 GIO_UNIMAP

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (4 of 12) [14/09/1999 10:01:03]

 Get Unicode-to-font mapping from kernel. argp points
 to a

 struct unimapdesc {
 u_short entry_ct;
 struct unipair *entries;
 };

 where entries points to an array of

 struct unipair {
 u_short unicode;
 u_short fontpos;
 };

 (Since 1.1.92.)

 PIO_UNIMAP
 Put unicode-to-font mapping in kernel. argp points to
 a struct unimapdesc. (Since 1.1.92)

 PIO_UNIMAPCLR
 Clear table, possibly advise hash algorithm. argp
 points to a

 struct unimapinit {
 u_short advised_hashsize; /* 0 if no opinion */
 u_short advised_hashstep; /* 0 if no opinion */
 u_short advised_hashlevel; /* 0 if no opinion */
 };

 (Since 1.1.92.)

 KDGKBMODE
 Gets current keyboard mode. argp points to a long
 which is set to one of these:

 K_RAW 0x00
 K_XLATE 0x01
 K_MEDIUMRAW 0x02
 K_UNICODE 0x03

 KDSKBMODE
 Sets current keyboard mode. argp is a long equal to
 one of the above values.

 KDGKBMETA
 Gets meta key handling mode. argp points to a long
 which is set to one of these:

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (5 of 12) [14/09/1999 10:01:04]

 K_METABIT 0x03 set high order bit
 K_ESCPREFIX 0x04 escape prefix

 KDSKBMETA
 Sets meta key handling mode. argp is a long equal to
 one of the above values.

 KDGKBENT
 Gets one entry in key translation table (keycode to
 action code). argp points to a

 struct kbentry {
 u_char kb_table;
 u_char kb_index;
 u_short kb_value;
 };

 with the first two members filled in: kb_table selects
 the key table (0 <= kb_table < MAX_NR_KEYMAPS), and
 kb_index is the keycode (0 <= kb_index < NR_KEYS).
 kb_value is set to the corresponding action code, or
 K_HOLE if there is no such key, or K_NOSUCHMAP if
 kb_table is invalid.

 KDSKBENT
 Sets one entry in translation table. argp points to a
 struct kbentry.

 KDGKBSENT
 Gets one function key string. argp points to a

 struct kbsentry {
 u_char kb_func;
 u_char kb_string[512];
 };

 kb_string is set to the (NULL terminated) string
 corresponding to the kb_functh function key action
 code.

 KDSKBSENT
 Sets one function key string entry. argp points to a
 struct kbsentry.

 KDGKBDIACR
 Read kernel accent table. argp points to a

 struct kbdiacrs {
 unsigned int kb_cnt;
 struct kbdiacr kbdiacr[256];

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (6 of 12) [14/09/1999 10:01:04]

 };

 where kb_cnt is the number of entries in the array,
 each of which is a

 struct kbdiacr { u_char diacr, base, result; };

 KDGETKEYCODE
 Read kernel keycode table entry (scan code to keycode).
 argp points to a

 struct kbkeycode { unsigned int scancode, keycode; };

 keycode is set to correspond to the given scancode.
 (89 <= scancode <= 255 only. For 1 <= scancode <= 88,
 keycode==scancode.) (Since 1.1.63.)

 KDSETKEYCODE
 Write kernel keycode table entry. argp points to
 struct kbkeycode. (Since 1.1.63.)

 KDSIGACCEPT
 The calling process indicates its willingness to accept
 the signal argp when it is generated by pressing an
 appropriate key combination. (1 <= argp <= NSIG). (See
 spawn_console() in linux/drivers/char/keyboard.c.)

 VT_OPENQRY
 Returns the first available (non-opened) console. argp
 points to an int which is set to the number of the vt
 (1 <= *argp <= MAX_NR_CONSOLES).

 VT_GETMODE
 Get mode of active vt. argp points to a

 struct vt_mode {
 char mode; /* vt mode */
 char waitv; /* if set, hang on writes if not active */
 short relsig; /* signal to raise on release req */
 short acqsig; /* signal to raise on acquisition */
 short frsig; /* unused (set to 0) */

 };

 mode is set to one of these values:

 VT_AUTO auto vt switching
 VT_PROCESS process controls switching
 VT_ACKACQ acknowledge switch

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (7 of 12) [14/09/1999 10:01:04]

 VT_SETMODE
 Set mode of active vt. argp points to a struct
 vt_mode.

 VT_GETSTATE
 Get global vt state info. argp points to a

 struct vt_stat {
 ushort v_active; /* active vt */
 ushort v_signal; /* signal to send */
 ushort v_state; /* vt bitmask */
 };

 For each vt in use, the corresponding bit in the
 v_state member is set. (Kernels 1.0 through 1.1.92.)

 VT_RELDISP
 Release a display.

 VT_ACTIVATE
 Switch to vt argp (1 <= argp <= MAX_NR_CONSOLES).

 VT_WAITACTIVE
 Wait until vt argp has been activated.

 VT_DISALLOCATE
 Deallocate the memory associated with vt argp. (Since
 1.1.54.)

 VT_RESIZE
 Set the kernel's idea of screensize. argp points to a

 struct vt_sizes {
 ushort v_rows; /* # rows */
 ushort v_cols; /* # columns */
 ushort v_scrollsize; /* no longer used */
 };
 Note that this does not change the videomode. See
 resizecons(8). (Since 1.1.54.)

 VT_RESIZEX
 Set the kernel's idea of various screen parameters.
 argp points to a

 struct vt_consize {
 ushort v_rows; /* number of rows */
 ushort v_cols; /* number of columns */

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (8 of 12) [14/09/1999 10:01:04]

 ushort v_vlin; /* number of pixel rows on screen */
 ushort v_clin; /* number of pixel rows per character */
 ushort v_vcol; /* number of pixel columns on screen */
 ushort v_ccol; /* number of pixel columns per character */
 };

 Any parameter may be set to zero, indicating ``no
 change'', but if multiple parameters are set, they must
 be self-consistent. Note that this does not change the
 videomode. See resizecons(8). (Since 1.3.3.)

 The action of the following ioctls depends on the first byte
 in the struct pointed to by argp, referred to here as the
 subcode. These are legal only for the superuser or the
 owner of the current tty.

 TIOCLINUX, subcode=0
 Dump the screen. Disappeared in 1.1.92. (With kernel
 1.1.92 or later, read from /dev/vcsN or /dev/vcsaN
 instead.)

 TIOCLINUX, subcode=1
 Get task information. Disappeared in 1.1.92.

 TIOCLINUX, subcode=2
 Set selection. argp points to a

 struct {char subcode;
 short xs, ys, xe, ye;
 short sel_mode;
 }

 xs and ys are the starting column and row. xe and ye
 are the ending column and row. (Upper left corner is
 row=column=1.) sel_mode is 0 for character-by-
 character selection, 1 for word-by-word selection, or 2
 for line-by-line selection. The indicated screen char-
 acters are highlighted and saved in the static array
 sel_buffer in devices/char/console.c.

 TIOCLINUX, subcode=3
 Paste selection. The characters in the selection
 buffer are written to fd.

 TIOCLINUX, subcode=4
 Unblank the screen.

 TIOCLINUX, subcode=5
 Sets contents of a 256-bit look up table defining char-

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (9 of 12) [14/09/1999 10:01:04]

 acters in a "word", for word-by-word selection. (Since
 1.1.32.)

 TIOCLINUX, subcode=6
 argp points to a char which is set to the value of the
 kernel variable shift_state. (Since 1.1.32.)

 TIOCLINUX, subcode=7
 argp points to a char which is set to the value of the
 kernel variable report_mouse. (Since 1.1.33.)

 TIOCLINUX, subcode=8
 Dump screen width and height, cursor position, and all
 the character-attribute pairs. (Kernels 1.1.67 through
 1.1.91 only. With kernel 1.1.92 or later, read from
 /dev/vcsa* instead.)

 TIOCLINUX, subcode=9
 Restore screen width and height, cursor position, and
 all the character-attribute pairs. (Kernels 1.1.67
 through 1.1.91 only. With kernel 1.1.92 or later, write
 to /dev/vcsa* instead.)

 TIOCLINUX, subcode=10
 Handles the Power Saving feature of the new generation
 of monitors. VESA screen blanking mode is set to
 argp[1], which governs what screen blanking does:

 0: Screen blanking is disabled.

 1: The current video adapter register settings are
 saved, then the controller is programmed to turn off
 the vertical synchronization pulses. This puts the
 monitor into "standby" mode. If your monitor has an
 Off_Mode timer, then it will eventually power down by
 itself.

 2: The current settings are saved, then both the
 vertical and horizontal synchronization pulses are
 turned off. This puts the monitor into "off" mode. If
 your monitor has no Off_Mode timer, or if you want your
 monitor to power down immediately when the blank_timer
 times out, then you choose this option. (Caution:
 Powering down frequently will damage the monitor.)

 (Since 1.1.76.)

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (10 of 12) [14/09/1999 10:01:04]

RETURN VALUES

 -1 for error, and errno is set.

ERRORS

 errno may take on these values:

 EBADF
 file descriptor is invalid.

 ENOTTY
 file descriptor is not associated with a character spe-
 cial device, or the specified request does not apply to
 it.

 EINVAL
 file descriptor or argp is invalid.

 EPERM
 permission violation.

WARNING

 Do not regard this man page as documentation of the Linux
 console ioctl's. This is provided for the curious only, as
 an alternative to reading the source. Ioctl's are undocu-
 mented Linux internals, liable to be changed without warn-
 ing. (And indeed, this page more or less describes the
 situation as of kernel version 1.1.94; there are many minor
 and not-so-minor differences with earlier versions.)

 Very often, ioctl's are introduced for communication between
 the kernel and one particular well-known program (fdisk,
 hdparm, setserial, tunelp, loadkeys, selection, setfont,
 etc.), and their behavior will be changed when required by
 this particular program.

 Programs using these ioctl's will not be portable to other
 versions of Unix, will not work on older versions of Linux,
 and will not work on future versions of Linux.

 Use POSIX functions.

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (11 of 12) [14/09/1999 10:01:04]

SEE ALSO

 kbd_mode(1), loadkeys(1), dumpkeys(1), mknod(1), setleds(1),
 setmetamode(1), ioperm(2), termios(2), execve(2), fcntl(2),
 charsets(4), console(4), console_codes(4), mt(4), sd(4),
 tty(4), ttys(4), vcs(4), vcsa(4), mapscrn(8), setfont(8),
 resizecons(8), /usr/include/linux/kd.h,
 /usr/include/linux/vt.h

http://linuxsavvy.com/resources/linux/man/man4/console_ioctl.4.html (12 of 12) [14/09/1999 10:01:04]

NAME

 fd - floppy disk device

CONFIGURATION

 Floppy drives are block devices with major number 2. Typi-
 cally they are owned by root.floppy (i.e., user root, group
 floppy) and have either mode 0660 (access checking via group
 membership) or mode 0666 (everybody has access). The minor
 numbers encode the device type, drive number, and controller
 number. For each device type (that is, combination of den-
 sity and track count) there is a base minor number. To this
 base number, add the drive's number on its controller and
 128 if the drive is on the secondary controller. In the fol-
 lowing device tables, n represents the drive number

 Warning: If you use formats with more tracks than supported
 by your drive, you may cause it mechanical damage. Trying
 once if more tracks than the usual 40/80 are supported
 should not damage it, but no warranty is given for that.
 Don't create device entries for those formats to prevent
 their usage if you are not sure.

 Drive independent device files which automatically detect
 the media format and capacity:

 l l. Name Base minor # _ fdn 0

 5.25 inch double density device files:

 lw(1i) l l l l l.
 Name Capac. Cyl. Sect. Heads Base minor # _
 fdnd360 360K 40 9 2 4

 5.25 inch high density device files:

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (1 of 6) [14/09/1999 10:01:07]

 lw(1i) l l l l l.
 Name Capac. Cyl. Sect. Heads Base minor # _
 fdnh360 360K 40 9 2 20
 fdnh410 410K 41 10 2 48
 fdnh420 420K 42 10 2 64
 fdnh720 720K 80 9 2 24
 fdnh880 880K 80 11 2 80
 fdnh1200 1200K 80 15 2 8
 fdnh1440 1440K 80 18 2 40
 fdnh1476 1476K 82 18 2 56
 fdnh1494 1494K 83 18 2 72
 fdnh1600 1600K 80 20 2 92

 3.5 inch double density device files:

 lw(1i) l l l l l.
 Name Capac. Cyl. Sect. Heads Base minor # _
 fdnD360 360K 80 9 1 12
 fdnD720 720K 80 9 2 16
 fdnD800 800K 80 10 2 120
 fdnD1040 1040K 80 13 2 84
 fdnD1120 1120K 80 14 2 88

 3.5 inch high density device files:

 lw(1i) l l l l l.
 Name Capac. Cyl. Sect. Heads Base minor # _
 fdnH360 360K 40 9 2 12
 fdnH720 720K 80 9 2 16
 fdnH820 820K 82 10 2 52
 fdnH830 830K 83 10 2 68
 fdnH1440 1440K 80 18 2 28
 fdnH1600 1600K 80 20 2 124
 fdnH1680 1680K 80 21 2 44
 fdnH1722 1722K 82 21 2 60
 fdnH1743 1743K 83 21 2 76
 fdnH1760 1760K 80 22 2 96
 fdnH1840 1840K 80 23 2 116
 fdnH1920 1920K 80 24 2 100

 3.5 inch extra density device files:

 lw(1i) l l l l l.
 Name Capac. Cyl. Sect. Heads Base minor # _
 fdnE2880 2880K 80 36 2 32
 fdnCompaQ 2880K 80 36 2 36

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (2 of 6) [14/09/1999 10:01:07]

 fdnE3200 3200K 80 40 2 104
 fdnE3520 3520K 80 44 2 108
 fdnE3840 3840K 80 48 2 112

DESCRIPTION

 fd special files access the floppy disk drives in raw mode.
 The following ioctl(2) calls are supported by fd devices:

 FDCLRPRM
 clears the media information of a drive (geometry of
 disk in drive).

 FDSETPRM
 sets the media information of a drive. The media infor-
 mation will be lost when the media is changed.

 FDDEFPRM
 sets the media information of a drive (geometry of disk
 in drive). The media information will not be lost when
 the media is changed. This will disable autodetection.
 In order to re-enable autodetection, you have to issue
 an FDCLRPRM .

 FDGETDRVTYP
 returns the type of a drive (name parameter). For for-
 mats which work in several drive types, FDGETDRVTYP
 returns a name which is appropriate for the oldest
 drive type which supports this format.

 FDFLUSH
 invalidates the buffer cache for the given drive.

 FDSETMAXERRS
 sets the error thresholds for reporting errors, abort-
 ing the operation, recalibrating, resetting, and read-
 ing sector by sector.

 FDSETMAXERRS
 gets the current error thresholds.

 FDGETDRVTYP

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (3 of 6) [14/09/1999 10:01:07]

 gets the internal name of the drive.

 FDWERRORCLR
 clears the write error statistics.

 FDWERRORGET
 reads the write error statistics. These include the
 total number of write errors, the location and disk of
 the first write error, and the location and disk of the
 last write error. Disks are identified by a generation
 number which is incremented at (almost) each disk
 change.

 FDTWADDLE
 Switch the drive motor off for a few microseconds. This
 might be needed in order to access a disk whose sectors
 are too close together.

 FDSETDRVPRM
 sets various drive parameters.

 FDGETDRVPRM
 reads these parameters back.

 FDGETDRVSTAT
 gets the cached drive state (disk changed, write pro-
 tected et al.)

 FDPOLLDRVSTAT
 polls the drive and return its state.

 FDGETFDCSTAT
 gets the floppy controller state.

 FDRESET
 resets the floppy controller under certain conditions.

 FDRAWCMD
 sends a raw command to the floppy controller.

 For more precise information, consult also the <linux/fd.h>
 and <linux/fdreg.h> include files, as well as the manual
 page for floppycontrol.

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (4 of 6) [14/09/1999 10:01:07]

NOTES

 The various formats allow to read and write many types of
 disks. However, if a floppy is formatted with a too small
 inter sector gap, performance may drop, up to needing a few
 seconds to access an entire track. To prevent this, use
 interleaved formats. It is not possible to read floppies
 which are formatted using GCR (group code recording), which
 is used by Apple II and Macintosh computers (800k disks).
 Reading floppies which are hard sectored (one hole per sec-
 tor, with the index hole being a little skewed) is not sup-
 ported. This used to be common with older 8 inch floppies.

FILES

 /dev/fd*

AUTHORS

 Alain Knaff (Alain.Knaff@imag.fr), David Niemi
 (niemidc@clark.net), Bill Broadhurst (bbroad@netcom.com).

SEE ALSO

 floppycontrol(1), mknod(1), chown(1), getfdprm(1), superfor-
 mat(1), mount(8), setfdprm(8)

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (5 of 6) [14/09/1999 10:01:07]

http://linuxsavvy.com/resources/linux/man/man4/fd.4.html (6 of 6) [14/09/1999 10:01:07]

NAME

 full - always full device

DESCRIPTION

 File /dev/full has major device number 1 and minor device
 number 7.

 Writes to the /dev/full device will fail with an ENOSPC
 error.

 Reads from the /dev/full device will return \0 characters.

 Seeks on /dev/full will always succeed.

CONFIGURING

 If your system does not have /dev/full created already, it
 can be created with the following commands:

 mknod -m 666 /dev/full c 1 7
 chown root.root /dev/full

FILES

 /dev/full

http://linuxsavvy.com/resources/linux/man/man4/full.4.html (1 of 2) [14/09/1999 10:01:08]

SEE ALSO

 mknod(1), null(4), zero(4)

http://linuxsavvy.com/resources/linux/man/man4/full.4.html (2 of 2) [14/09/1999 10:01:08]

NAME

 hd - MFM/IDE hard disk devices

DESCRIPTION

 Hd* are block devices to access MFM/IDE hard disk drives in
 raw mode. The master drive on the primary IDE controller
 (major device number 3) is hda; the slave drive is hdb. The
 master drive of the second controller (major device number
 22) is hdc and the slave hdd.

 General IDE block device names have the form hdX, or hdXP,
 where X is a letter denoting the physical drive, and P is a
 number denoting the partition on that physical drive. The
 first form, hdX, is used to address the whole drive. Parti-
 tion numbers are assigned in the order the partitions are
 discovered, and only non-empty, non-extended partitions get
 a number. However, partition numbers 1-4 are given to the
 four partitions described in the MBR (the `primary' parti-
 tions), regardless of whether they are unused or extended.
 Thus, the first logical partition will be hdX5. Both DOS-
 type partitioning and BSD-disklabel partitioning are sup-
 ported. You can have at most 63 partitions on an IDE disk.

 For example, /dev/hda refers to all of the first IDE drive
 in the system; and /dev/hdb3 refers to the third DOS `pri-
 mary' partition on the second one.

 They are typically created by:

 mknod -m 660 /dev/hda b 3 0
 mknod -m 660 /dev/hda1 b 3 1
 mknod -m 660 /dev/hda2 b 3 2
 ...
 mknod -m 660 /dev/hda8 b 3 8
 mknod -m 660 /dev/hdb b 3 64

http://linuxsavvy.com/resources/linux/man/man4/hd.4.html (1 of 2) [14/09/1999 10:01:10]

 mknod -m 660 /dev/hdb1 b 3 65
 mknod -m 660 /dev/hdb2 b 3 66
 ...
 mknod -m 660 /dev/hdb8 b 3 72
 chown root.disk /dev/hd*

FILES

 /dev/hd*

SEE ALSO

 mknod(1), chown(1), mount(8),

http://linuxsavvy.com/resources/linux/man/man4/hd.4.html (2 of 2) [14/09/1999 10:01:10]

NAME

 initrd - boot loader initialized RAM disk

DESCRIPTION

 The special file /dev/initrd is a read-only block device.
 Device /dev/initrd is a RAM disk that is initialized (e.g.
 loaded) by the boot loader before the kernel is started.
 The kernel then can use the the block device /dev/initrd's
 contents for a two phased system boot-up.

 In the first boot-up phase, the kernel starts up and mounts
 an initial root file-system from the contents of /dev/initrd
 (e.g. RAM disk initialized by the boot loader). In the
 second phase, additional drivers or other modules are loaded
 from the initial root device's contents. After loading the
 additional modules, a new root file system (i.e. the normal
 root file system) is mounted from a different device.

BOOT-UP OPERATION

 When booting up with initrd, the system boots as follows:

 1. The boot loader loads the kernel program and
 /dev/initrd's contents into memory.

 2. On kernel startup, the kernel uncompresses and copies
 the contents of the device /dev/initrd onto device
 /dev/ram0 and then frees the memory used by /dev/initrd.

 3. The kernel then read-write mounts device /dev/ram0 as
 the initial root file system.

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (1 of 7) [14/09/1999 10:01:14]

 4. If the indicated normal root file system is also the
 initial root file-system (e.g. /dev/ram0) then the kernel
 skips to the last step for the usual boot sequence.

 5. If the executable file /linuxrc is present in the ini-
 tial root file-system, /linuxrc is executed with uid 0.
 (The file /linuxrc must have executable permission. The
 file /linuxrc can be any valid executable, including a
 shell script.)

 6. If /linuxrc is not executed or when /linuxrc ter-
 minates, the normal root file system is mounted. (If
 /linuxrc exits with any file-systems mounted on the ini-
 tial root file-system, then the behavior of the kernel is
 UNSPECIFIED. See the NOTES section for the current kernel
 behavior.)

 7. If the normal root file has directory /initrd, device
 /dev/ram0 is moved from / to /initrd. Otherwise if direc-
 tory /initrd does not exist device /dev/ram0 is unmounted.
 (When moved from / to /initrd, /dev/ram0 is not unmounted
 and therefore processes can remain running from /dev/ram0.
 If directory /initrd does not exist on the normal root
 file-system and any processes remain running from
 /dev/ram0 when /linuxrc exits, the behavior of the kernel
 is UNSPECIFIED. See the NOTES section for the current
 kernel behavior.)

 8. The usual boot sequence (e.g. invocation of /sbin/init)
 is performed on the normal root file system.

OPTIONS

 The following boot loader options when used with initrd,
 affect the kernel's boot-up operation:

 initrd=filename
 Specifies the file to load as the contents of
 /dev/initrd. For LOADLIN this is a command line
 option. For LILO you have to use this command in the
 LILO configuration file /etc/lilo.config. The filename
 specified with this option will typically be a gzipped

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (2 of 7) [14/09/1999 10:01:14]

 file-system image.

 noinitrd
 This boot time option disables the two phase boot-up
 operation. The kernel performs the usual boot sequence
 as if /dev/initrd was not initialized. With this
 option, any contents of /dev/initrd loaded into memory
 by the boot loader contents are preserved. This option
 permits the contents of /dev/initrd to be any data and
 need not be limited to a file system image. However,
 device /dev/initrd is read-only and can be read only
 one time after system startup.

 root=device-name
 Specifies the device to be used as the normal root file
 system. For LOADLIN this is a command line option. For
 LILO this is a boot time option or can be used as an
 option line in the LILO configuration file
 /etc/lilo.config. The device specified by the this
 option must be a mountable device having a suitable
 root file-system.

CHANGING THE NORMAL ROOT FILE SYSTEM

 By default, the kernel's settings (e.g. set in the kernel
 file with rdev or compiled into the kernel file), or the
 boot loader option setting is used for the normal root file
 systems. For a NFS-mounted normal root file system, one has
 to use the nfs_root_name and nfs_root_addrs boot options to
 give the NFS settings. For more information on NSF-mounted
 root see the kernel documentation file nfsroot.txt. For
 more information on setting the root file system also see
 the LILO and LOADLIN documentation.
 It is also possible for the /linuxrc executable to change
 the normal root device. For /linuxrc to change the normal
 root device, /proc must be mounted. After mounting /proc,
 /linuxrc changes the normal root device by writing into the
 proc files /proc/sys/kernel/real-root-dev,
 /proc/sys/kernel/nfs-root-name, and /proc/sys/kernel/nfs-
 root-addrs. For a physical root device, the root device is
 changed by having /linuxrc write the new root file system
 device number into /proc/sys/kernel/real-root-dev. For a

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (3 of 7) [14/09/1999 10:01:14]

 NSF root file system, the root device is changed by having
 /linuxrc write the NSF setting into files
 /proc/sys/kernel/nfs-root-name and /proc/sys/kernel/nfs-
 root-addrs and then writing 0xff (e.g. the pseudo-NFS-device
 number) into file /proc/sys/kernel/real-root-dev. For exam-
 ple, the following shell command line would change the nor-
 mal root device to /dev/hdb1:
 echo 0x365 >/proc/sys/kernel/real-root-dev
 For a NSF example, the following shell command lines would
 change the normal root device to the NSF directory
 /var/nfsroot on a local networked NSF server with IP number
 193.8.232.7 for a system with IP number 193.8.232.7 and
 named 'idefix':
 echo /var/nfsroot >/proc/sys/kernel/nfs-root-name
 echo 193.8.232.2:193.8.232.7::255.255.255.0:idefix \
 >/proc/sys/kernel/nfs-root-addrs
 echo 255 >/proc/sys/kernel/real-root-dev

USAGE

 The main motivation for implementing initrd was to allow for
 modular kernel configuration at system installation.

 A possible system installation scenario is as follows:

 1. The loader program boots from floppy or other media
 with a minimal kernel (e.g. support for /dev/ram,
 /dev/initrd, and the ext2 file-system) and loads
 /dev/initrd with a gzipped version of the initial file-
 system.

 2. The executable /linuxrc determines what is needed to
 (1) mount the normal root file-system (i.e. device type,
 device drivers, file system) and (2) the distribution
 media (e.g. CD-ROM, network, tape, ...). This can be done
 by asking the user, by auto-probing, or by using a hybrid
 approach.

 3. The executable /linuxrc loads the necessary modules
 from the initial root file-system.

 4. The executable /linuxrc creates and populates the root

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (4 of 7) [14/09/1999 10:01:14]

 file system. (At this stage the normal root file system
 does not have to be a completed system yet.)
 5. The executable /linuxrc sets /proc/sys/kernel/real-
 root-dev, unmount /proc, the normal root file system and
 any other file systems it has mounted, and then ter-
 minates.

 6. The kernel then mounts the normal root file system.

 7. Now that the file system is accessible and intact, the
 boot loader can be installed.

 8. The boot loader is configured to load into /dev/initrd
 a file system with the set of modules that was used to
 bring up the system. (e.g. Device /dev/ram0 can be modi-
 fied, then unmounted, and finally, the image is written
 from /dev/ram0 to a file.)

 9. The system is now bootable and additional installation
 tasks can be performed.

 The key role of /dev/initrd in the above is to re-use the
 configuration data during normal system operation without
 requiring initial kernel selection, a large generic kernel
 or, recompiling the kernel.

 A second scenario is for installations where Linux runs on
 systems with different hardware configurations in a single
 administrative network. In such cases, it may be desirable
 to use only a small set of kernels (ideally only one) and to
 keep the system-specific part of configuration information
 as small as possible. In this case, create a common file
 with all needed modules. Then, only the the /linuxrc file or
 a file executed by /linuxrc would be different.

 A third scenario is more convenient recovery disks. Because
 information like the location of the root file-system parti-
 tion is not needed at boot time, the system loaded from
 /dev/initrd can use a dialog and/or auto-detection followed
 by a possible sanity check.

 Last but not least, Linux distributions on CD-ROM may use
 initrd for easy installation from the CD-ROM. The distribu-
 tion can use LOADLIN to directly load /dev/initrd from CD-
 ROM without the need of any floppies. The distribution
 could also use a LILO boot floppy and then bootstrap a

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (5 of 7) [14/09/1999 10:01:14]

 bigger ram disk via /dev/initrd from the CD-ROM.

CONFIGURATION

 The /dev/initrd is a read-only block device assigned major
 number 1 and minor number 250. Typically /dev/initrd is
 owned by root.disk with mode 0400 (read access by root
 only). If the Linux system does not have /dev/initrd
 already created, it can be created with the following
 commands:

 mknod -m 400 /dev/initrd b 1 250
 chown root.disk /dev/initrd

 Also, support for both "RAM disk" and "Initial RAM disk"
 (e.g. CONFIG_BLK_DEV_RAM=y and CONFIG_BLK_DEV_INITRD=y)
 support must be compiled directly into the Linux kernel to
 use /dev/initrd. When using /dev/initrd, the RAM disk
 driver cannot be loaded as a module.

FILES

 /dev/initrd
 /dev/ram0
 /linuxrc
 /initrd

SEE ALSO

 chown(1), mknod(1), /dev/ram(4), freeramdisk(8), rdev(8),
 The documentation file initrd.txt in the kernel source pack-
 age, the LILO documentation, the LOADLIN documentation, the
 SYSLINUX documentation.

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (6 of 7) [14/09/1999 10:01:14]

NOTES

 1. With the current kernel, any file systems that remain
 mounted when /dev/ram0 is moved from / to /initrd continue
 to be accessible. However, the /proc/mounts entries are not
 updated.

 2. With the current kernel, if directory /initrd does not
 exist, then /dev/ram0 will NOT be fully unmounted if
 /dev/ram0 is used by any process or has any file-system
 mounted on it. If /dev/ram0 is NOT fully unmounted, then
 /dev/ram0 will remain in memory.

 3. Users of /dev/initrd should not depend on the behavior
 give in the above notes. The behavior may change in future
 versions of the Linux kernel.

AUTHOR

 The kernel code for device initrd was written by Werner
 Almesberger <almesber@lrc.epfl.ch> and Hans Lermen
 <lermen@elserv.ffm.fgan.de>. The code for initrd was added
 to the baseline Linux kernel in development version 1.3.73.

http://linuxsavvy.com/resources/linux/man/man4/initrd.4.html (7 of 7) [14/09/1999 10:01:14]

NAME

 intro - Introduction to special files

DESCRIPTION

 This chapter describes special files.

FILES

 /dev/* - device files

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man4/intro.4.html (1 of 2) [14/09/1999 10:01:15]

http://linuxsavvy.com/resources/linux/man/man4/intro.4.html (2 of 2) [14/09/1999 10:01:15]

NAME

 lp - line printer devices

SYNOPSIS

 #include <linux/lp.h>

CONFIGURATION

 lp[02] are character devices for the parallel line printers;
 they have major number 6 and minor number 02. The minor
 numbers correspond to the printer port base addresses
 0x03bc, 0x0378 and 0x0278. Usually they have mode 220 and
 are owned by root and group lp. You can use printer ports
 either with polling or with interrupts. Interrupts are
 recommended when high traffic is expected, e.g. for laser
 printers. For usual dot matrix printers polling will usu-
 ally be enough. The default is polling.

DESCRIPTION

 The following ioctl(2) calls are supported:

 int ioctl(int fd, LPTIME, int arg))
 Sets the amount of time that the driver sleeps before
 rechecking the printer when the printer's buffer
 appears to be filled to arg. If you have a fast
 printer, decrease this number; if you have a slow
 printer then increase it. This is in hundredths of a

http://linuxsavvy.com/resources/linux/man/man4/lp.4.html (1 of 3) [14/09/1999 10:01:18]

 second, the default 2 being 0.02 seconds. It only
 influences the polling driver.

 int ioctl(int fd, LPCHAR, int arg))
 Sets the maximum number of busy-wait iterations which
 the polling driver does while waiting for the printer
 to get ready for receiving a character to arg. If
 printing is too slow, increase this number; if the sys-
 tem gets too slow, decrease this number. The default
 is 1000. It only influences the polling driver.

 int ioctl(int fd, LPABORT, int arg))
 If arg is 0, the printer driver will retry on errors,
 otherwise it will abort. The default is 0.

 int ioctl(int fd, LPABORTOPEN, int arg))
 If arg is 0, open(2) will be aborted on error, other-
 wise error will be ignored. The default is to ignore
 it.

 int ioctl(int fd, LPCAREFUL, int arg))
 If arg is 0, then the out-of-paper, offline and error
 signals are required to be false on all writes, other-
 wise they are ignored. The default is to ignore them.

 int ioctl(int fd, LPWAIT, int arg))
 Sets the number of busy waiting iterations to wait
 before strobing the printer to accept a just-written
 character, and the number of iterations to wait before
 turning the strobe off again, to arg. The specifica-
 tion says this time should be 0.5 microseconds, but
 experience has shown the delay caused by the code is
 already enough. For that reason, the default value is
 0. This is used for both the polling and the interrupt
 driver.

 int ioctl(int fd, LPSETIRQ, int arg))
 This ioctl() requires superuser privileges. It takes
 an int containing the new IRQ as argument. As a side
 effect, the printer will be reset. When arg is 0, the
 polling driver will be used, which is also default.

 int ioctl(int fd, LPGETIRQ, int *arg))
 Stores the currently used IRQ in arg.

 int ioctl(int fd, LPGETSTATUS, int *arg))

http://linuxsavvy.com/resources/linux/man/man4/lp.4.html (2 of 3) [14/09/1999 10:01:18]

 Stores the value of the status port in arg. The bits
 have the following meaning:

 l l. LP_PBUSY inverted busy input, active high
 LP_PACK unchanged acknowledge input, active low
 LP_POUTPA unchanged out-of-paper input, active high
 LP_PSELECD unchanged selected input, active high
 LP_PERRORP unchanged error input, active low

 Refer to your printer manual for the meaning of the
 signals. Note that undocumented bits may also be set,
 depending on your printer.

 int ioctl(int fd, LPRESET)
 Resets the printer. No argument is used.

FILES

 /dev/lp*

AUTHORS

 The printer driver was originally written by Jim Weigand and
 Linus Torvalds. It was further improved by Michael K. John-
 son. The interrupt code was written by Nigel Gamble. Alan
 Cox modularised it. LPCAREFUL, LPABORT, LPGETSTATUS were
 added by Chris Metcalf.

SEE ALSO

 mknod(1), chown(1), chmod(1),

http://linuxsavvy.com/resources/linux/man/man4/lp.4.html (3 of 3) [14/09/1999 10:01:18]

NAME

 mem, kmem, port - system memory, kernel memory and system
 ports

DESCRIPTION

 Mem is a character device file that is an image of the main
 memory of the computer. It may be used, for example, to
 examine (and even patch) the system.

 Byte addresses in mem are interpreted as physical memory
 addresses. References to non-existent locations cause
 errors to be returned.

 Examining and patching is likely to lead to unexpected
 results when read-only or write-only bits are present.

 It is typically created by:

 mknod -m 660 /dev/mem c 1 1
 chown root.mem /dev/mem

 The file kmem is the same as mem, except that the kernel
 virtual memory rather than physical memory is accessed.

 It is typically created by:

 mknod -m 640 /dev/kmem c 1 2
 chown root.mem /dev/kmem

 Port is similar to mem, but the IO ports are accessed.

 It is typically created by:

http://linuxsavvy.com/resources/linux/man/man4/mem.4.html (1 of 2) [14/09/1999 10:01:19]

 mknod -m 660 /dev/port c 1 4
 chown root.mem /dev/port

FILES

 /dev/mem
 /dev/kmem
 /dev/port

SEE ALSO

 mknod(1), chown(1), ioperm(2)

http://linuxsavvy.com/resources/linux/man/man4/mem.4.html (2 of 2) [14/09/1999 10:01:19]

NAME

 mouse - serial mouse interface

CONFIG

 Serial mice are connected to a serial RS232/V24 dialout
 line, see cua(4) for a description.

DESCRIPTION

 Introduction
 The pinout of the usual 9 pin plug as used for serial mice
 is:

 center; r c l. pin name used for 2 RX Data
 3 TX -12 V, Imax = 10 mA 4 DTR +12 V, Imax = 10 mA
 7 RTS +12 V, Imax = 10 mA 5 GND Ground

 This is the specification, in fact 9 V suffices with most
 mice.

 The mouse driver can recognize a mouse by dropping RTS to
 low and raising it again. About 14 ms later the mouse will
 send 0x4D ('M') on the data line. After a further 63 ms, a
 Microsoft-compatible 3-button mouse will send 0x33 ('3').

 The relative mouse movement is sent as dx (positive means
 right) and dy (positive means down). Various mice can
 operate at different speeds. To select speeds, cycle
 through the speeds 9600, 4800, 2400 and 1200 bit/s, each
 time writing the two characters from the table below and
 waiting 0.1 seconds. The following table shows available
 speeds and the strings that select them:

http://linuxsavvy.com/resources/linux/man/man4/mouse.4.html (1 of 5) [14/09/1999 10:01:21]

 center; l l. bit/s string 9600 *q 4800 *p 2400 *o
 1200 *n

 The first byte of a data packet can be used to synchronisa-
 tion purposes.

 Microsoft protocol
 The Microsoft protocol uses 1 start bit, 7 data bits, no
 parity and one stop bit at the speed of 1200 bits/sec. Data
 is sent to RxD in 3-byte packets. The dx and dy movements
 are sent as two's-complement, lb (rb) are set when the left
 (right) button is pressed:

 center; r c c c c c c c.
 byte d6 d5 d4 d3 d2 d1 d0
 1 1 lb rb dy7 dy6 dx7 dx6
 2 0 dx5 dx4 dx3 dx2 dx1 dx0
 3 0 dy5 dy4 dy3 dy2 dy1 dy0

 3-button Microsoft protocol
 Original Microsoft mice only have two buttons. However,
 there are some three button mice which also use the Micro-
 soft protocol. Pressing or releasing the middle button is
 reported by sending a packet with zero movement and no but-
 tons pressed. (Thus, unlike for the other two buttons, the
 status of the middle button is not reported in each packet.)

 Logitech protocol
 Logitech serial 3-button mice use a different extension of
 the Microsoft protocol: when the middle button is up, the
 above 3-byte packet is sent. When the middle button is down
 a 4-byte packet is sent, where the 4th byte has value 0x20
 (or at least has the 0x20 bit set). In particular, a press
 of the middle button is reported as 0,0,0,0x20 when no other
 buttons are down.

 Mousesystems protocol
 The Mousesystems protocol uses 1 start bit, 8 data bits, no
 parity and two stop bits at the speed of 1200 bits/sec.
 Data is sent to RxD in 5-byte packets. dx is sent as the
 sum of the two two's-complement values, dy is send as
 negated sum of the two two's-complement values. lb (mb, rb)
 are cleared when the left (middle, right) button is pressed:

http://linuxsavvy.com/resources/linux/man/man4/mouse.4.html (2 of 5) [14/09/1999 10:01:21]

 center; r c c c c c c c c.
 byte d7 d6 d5 d4 d3 d2 d1 d0
 1 1 0 0 0 0 lb mb rb
 2 0 dxa6 dxa5 dxa4 dxa3 dxa2 dxa1 dxa0
 3 0 dya6 dya5 dya4 dya3 dya2 dya1 dya0
 4 0 dxb6 dxb5 dxb4 dxb3 dxb2 dxb1 dxb0
 5 0 dyb6 dyb5 dyb4 dyb3 dyb2 dyb1 dyb0

 Bytes 4 and 5 describe the change that occurred since bytes
 2 and 3 were transmitted.

 Sun protocol
 The Sun protocol is the 3-byte version of the above 5-byte
 Mousesystems protocol: the last two bytes are not sent.

 MM protocol
 The MM protocol uses 1 start bit, 8 data bits, odd parity
 and one stop bit at the speed of 1200 bits/sec. Data is
 sent to RxD in 3-byte packets. dx and dy are sent as single
 signed values, the sign bit indicating a negative value. lb
 (mb, rb) are set when the left (middle, right) button is
 pressed:

 center; r c c c c c c c c.
 byte d7 d6 d5 d4 d3 d2 d1 d0
 1 1 0 0 dxs dys lb mb rb
 2 0 dx6 dx5 dx4 dx3 dx2 dx1 dx0
 3 0 dy6 dy5 dy4 dy3 dy2 dy1 dy0

FILES

 /dev/mouse a commonly used symlink pointing to a mouse
 device

http://linuxsavvy.com/resources/linux/man/man4/mouse.4.html (3 of 5) [14/09/1999 10:01:21]

SEE ALSO

 cua(4), bm(4)

http://linuxsavvy.com/resources/linux/man/man4/mouse.4.html (4 of 5) [14/09/1999 10:01:21]

http://linuxsavvy.com/resources/linux/man/man4/mouse.4.html (5 of 5) [14/09/1999 10:01:21]

NAME

 null, zero - data sink

DESCRIPTION

 Data written on a null or zero special file is discarded.

 Reads from the null special file always return end of file,
 whereas reads from zero always return \0 characters.

 null and zero are typically created by:

 mknod -m 666 /dev/null c 1 3
 mknod -m 666 /dev/zero c 1 5
 chown root.mem /dev/null /dev/zero

NOTES

 If these devices are not writable and readable for all
 users, many programs will act strange.

FILES

 /dev/null
 /dev/zero

http://linuxsavvy.com/resources/linux/man/man4/null.4.html (1 of 2) [14/09/1999 10:01:23]

SEE ALSO

 mknod(1), chown(1)

http://linuxsavvy.com/resources/linux/man/man4/null.4.html (2 of 2) [14/09/1999 10:01:23]

NAME

 ram - ram disk device

DESCRIPTION

 Ram is a block device to access the ram disk in raw mode.

 It is typically created by:

 mknod -m 660 /dev/ram b 1 1
 chown root.disk /dev/ram

FILES

 /dev/ram

SEE ALSO

 mknod(1), chown(1), mount(8)

http://linuxsavvy.com/resources/linux/man/man4/ram.4.html (1 of 2) [14/09/1999 10:01:24]

http://linuxsavvy.com/resources/linux/man/man4/ram.4.html (2 of 2) [14/09/1999 10:01:24]

NAME

 random, urandom - kernel random number source devices

DESCRIPTION

 The character special files /dev/random and /dev/urandom
 (present since Linux 1.3.30) provide an interface to the
 kernel's random number generator. File /dev/random has major
 device number 1 and minor device number 8. File
 /dev/urandom has major device number 1 and minor device
 number 9.

 The random number generator gathers environmental noise from
 device drivers and other sources into an entropy pool. The
 generator also keeps an estimate of the number of bit of the
 noise in the entropy pool. From this entropy pool random
 numbers are created.

 When read, the /dev/random device will only return random
 bytes within the estimated number of bits of noise in the
 entropy pool. /dev/random should be suitable for uses that
 need very high quality randomness such as one-time pad or
 key generation. When the entropy pool is empty, reads to
 /dev/random will block until additional environmental noise
 is gathered.

 When read, /dev/urandom device will return as many bytes as
 are requested. As a result, if there is not sufficient
 entropy in the entropy pool, the returned values are
 theoretically vulnerable to a cryptographic attack on the
 algorithms used by the driver. Knowledge of how to do this
 is not available in the current non-classified literature,
 but it is theoretically possible that such an attack may
 exist. If this is a concern in your application, use
 /dev/random instead.

http://linuxsavvy.com/resources/linux/man/man4/random.4.html (1 of 3) [14/09/1999 10:01:26]

CONFIGURING

 If your system does not have /dev/random and /dev/urandom
 created already, they can be created with the following com-
 mands:

 mknod -m 644 /dev/random c 1 8
 mknod -m 644 /dev/urandom c 1 9
 chown root.root /dev/random /dev/urandom

 When a Linux system starts up without much operator interac-
 tion, the entropy pool may be in a fairly predictable state.
 This reduces the actual amount of noise in the entropy pool
 below the estimate. In order to counteract this effect, it
 helps to carry entropy pool information across shut-downs
 and start-ups. To do this, add the following lines to an
 appropriate script which is run during the Linux system
 start-up sequence:
 echo "Initializing kernel random number generator..."
 # Initialize kernel random number generator with random seed
 # from last shut-down (or start-up) to this start-up. Load and
 # then save 512 bytes, which is the size of the entropy pool.
 if [-f /var/random-seed]; then
 cat /var/random-seed >/dev/urandom
 fi
 dd if=/dev/urandom of=/var/random-seed count=1

 Also, add the following lines in an appropriate script which
 is run during the Linux system shutdown:

 # Carry a random seed from shut-down to start-up for the random
 # number generator. Save 512 bytes, which is the size of the
 # random number generator's entropy pool.
 echo "Saving random seed..."
 dd if=/dev/urandom of=/var/random-seed count=1

FILES

 /dev/random
 /dev/urandom

http://linuxsavvy.com/resources/linux/man/man4/random.4.html (2 of 3) [14/09/1999 10:01:26]

AUTHOR

 The kernel's random number generator was written by Theodore
 Ts'o (tytso@athena.mit.edu).

SEE ALSO

 mknod (1)
 RFC 1750, "Randomness Recommendations for Security"

http://linuxsavvy.com/resources/linux/man/man4/random.4.html (3 of 3) [14/09/1999 10:01:26]

NAME

 sd - Driver for SCSI Disk Drives

SYNOPSIS

 #include <linux/hdreg.h>

CONFIG

 The block device name has the following form: sdlp, where l
 is a letter denoting the physical drive, and p is a number
 denoting the partition on that physical drive. Often, the
 partition number, p, will be left off when the device
 corresponds to the whole drive.

 SCSI disks have a major device number of 8, and a minor dev-
 ice number of the form (16 * drive_number) +
 partition_number, where drive_number is the number of the
 physical drive in order of detection, and partition_number
 is as follows:

 partition 0 is the whole drive
 partitions 1-4 are the DOS "primary" partitions
 partitions 5-8 are the DOS "extended" (or "logical") parti-
 tions

 For example, /dev/sda will have major 8, minor 0, and will
 refer to all of the first SCSI drive in the system; and
 /dev/sdb3 will have major 8, minor 19, and will refer to the
 third DOS "primary" partition on the second SCSI drive in
 the system.

 At this time, only block devices are provided. Raw devices

http://linuxsavvy.com/resources/linux/man/man4/sd.4.html (1 of 3) [14/09/1999 10:01:28]

 have not yet been implemented.

DESCRIPTION

 The following ioctl's are provided:

 HDIO_REQ
 Returns the BIOS disk parameters in the following
 structure:
 struct hd_geometry {
 unsigned char heads;
 unsigned char sectors;
 unsigned short cylinders;
 unsigned long start;
 };

 A pointer to this structure is passed as the ioctl(2)
 parameter.

 The information returned in the parameter is the disk
 geometry of the drive as understood by DOS! This
 geometry is not the physical geometry of the drive. It
 is used when constructing the drive's partition table,
 however, and is needed for convenient operation of
 fdisk(1),efdisk(1), and lilo(1). If the geometry
 information is not available, zero will be returned for
 all of the parameters.

 BLKGETSIZE
 Returns the device size in sectors. The ioctl(2)
 parameter should be a pointer to a long.

 BLKRRPART
 Forces a re-read of the SCSI disk partition tables. No
 parameter is needed.

 The scsi(4) ioctls are also supported. If the ioctl(2)
 parameter is required, and it is NULL, then ioctl(2)
 will return -EINVAL.

http://linuxsavvy.com/resources/linux/man/man4/sd.4.html (2 of 3) [14/09/1999 10:01:28]

FILES

 /dev/sd[a-h]: the whole device
 /dev/sd[a-h][0-8]: individual block partitions

SEE ALSO

 scsi(4)

http://linuxsavvy.com/resources/linux/man/man4/sd.4.html (3 of 3) [14/09/1999 10:01:28]

NAME

 st - SCSI tape device

SYNOPSIS

 #include <sys/mtio.h>

 int ioctl(int fd, int request [, (void *)arg3
 int ioctl(int fd, MTIOCTOP, (struct mtop *)mt_cmd))
 int ioctl(int fd, MTIOCGET, (struct mtget *)mt_status))
 int ioctl(int fd, MTIOCPOS, (struct mtpos *)mt_pos))

DESCRIPTION

 The st driver provides the interface to a variety of SCSI
 tape devices. Currently, the driver takes control of all
 detected devices of type sequential-access. The st driver
 uses major device number 9.

 Each device uses two minor device numbers: a principal
 minor device number, n, assigned sequentially in order of
 detection, and a no-rewind device number, Devices opened
 using the principal device number will be sent a REWIND com-
 mand when they are closed. Devices opened using the no-
 rewind device number will not. Options such as density or
 block size are not coded in the minor device number. These
 options must be set by explicit ioctl() calls and remain in
 effect when the device is closed and reopened.

 Devices are typically created by:
 mknod -m 660 /dev/st0 c 9 0
 mknod -m 660 /dev/st1 c 9 1
 mknod -m 660 /dev/nst0 c 9 128

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (1 of 9) [14/09/1999 10:01:39]

 mknod -m 660 /dev/nst1 c 9 129

 There is no corresponding block device. The character dev-
 ice provides buffering and read-ahead by default and sup-
 ports reads and writes of arbitrary size (limited by the
 drivers internal buffer size, which defaults to 32768 bytes,
 but can be changed either by using a kernel startup option
 or by changing a compile-time constant).

 Device /dev/tape is usually created as a hard or soft link
 to the default tape device on the system.

IOCTLS

 The driver supports three ioctl requests. Requests not
 recognized by the st driver are passed to the scsi driver.
 The definitions below are from <linux/mtio.h>:

 MTIOCTOP - Perform a tape operation
 This request takes an argument of type (struct mtop *). Not
 all drives support all operations. The driver returns an
 EIO error if the drive rejects an operation.
 /* Structure for MTIOCTOP - mag tape op command: */
 struct mtop {
 short mt_op; /* operations defined below */
 int mt_count; /* how many of them */
 };

 Magnetic Tape operations:
 MTBSF Backward space over mt_count filemarks.
 MTBSFM Backward space over mt_count filemarks. Repo-
 sition the tape to the EOT side of the last
 filemark.
 MTBSR Backward space over mt_count records (tape
 blocks).
 MTBSS Backward space over mt_count setmarks.
 MTEOM Go to the end of the recorded media (for
 appending files).
 MTERASE Erase tape.
 MTFSF Forward space over mt_count filemarks.
 MTFSFM Forward space over mt_count filemarks. Repo-
 sition the tape to the BOT side of the last

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (2 of 9) [14/09/1999 10:01:39]

 filemark.
 MTFSR Forward space over mt_count records (tape
 blocks).
 MTFSS Forward space over mt_count setmarks.
 MTNOP No op - flushes the drivers buffer as a side
 effect. Should be used before reading status
 with MTIOCGET.
 MTOFFL Rewind and put the drive off line.
 MTRESET Reset drive.
 MTRETEN Retension tape.
 MTREW Rewind.
 MTSEEK Seek to the tape block number specified in
 mt_count. This operation requires either a
 SCSI-2 drive that supports the LOCATE command
 (device-specific address) or a Tandberg-
 compatible SCSI-1 drive (Tandberg, Archive
 Viper, Wangtek, ...). The block number
 should be one that was previously returned by
 MTIOCPOS because the number is device-
 specific.
 MTSETBLK Set the drives block length to the value
 specified in mt_count. A block length of zero
 sets the drive to variable block size mode.
 MTSETDENSITY Set the tape density to the code in mt_count.
 Some useful density codes are:
 0x00 Implicit 0x11 QIC-525
 0x04 QIC-11 0x12 QIC-1350
 0x05 QIC-24 0x13 DDS
 0x0F QIC-120 0x14 Exabyte EXB-8200
 0x10 QIC-150 0x15 Exabyte EXB-8500
 MTWEOF Write mt_count filemarks.
 MTWSM Write mt_count setmarks.
 MTSETDRVBUFFER
 Set various drive and driver options according to
 bits encoded in mt_count. These consist of the
 drives buffering mode, 6 Boolean driver options and
 the buffer write threshold. These parameters are
 initialized only when the device is first detected.
 The settings persist when the device is closed and
 reopened. A single operation can affect (a) just
 the buffering mode, (b) just the Boolean options, or
 (c) just the write threshold.

 A value having zeros in the high-order 4 bits will
 be used to set the drives buffering mode. The
 buffering modes are:

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (3 of 9) [14/09/1999 10:01:39]

 0 The drive will not report GOOD status on
 write commands until the data blocks are
 actually written to the medium.
 1 The drive may report GOOD status on write
 commands as soon as all the data has been
 transferred to the drives internal buffer.
 2 The drive may report GOOD status on write
 commands as soon as (a) all the data has
 been transferred to the drives internal
 buffer, and (b) all buffered data from dif-
 ferent initiators has been successfully
 written to the medium.

 To control the write threshold the value in mt_count
 must include the constant MT_ST_WRITE_THRESHOLD log-
 ically ORed with a block count in the low 28 bits.
 The block count refers to 1024-byte blocks, not the
 physical block size on the tape. The threshold can-
 not exceed the drivers internal buffer size (see
 DESCRIPTION, above).

 To set and clear the Boolean options the value in
 mt_count must include the constant MT_ST_BOOLEANS
 logically ORed with whatever combination of the fol-
 lowing options is desired. Any options not speci-
 fied will be set false. The Boolean options are:

 MT_ST_BUFFER_WRITES (Default: true)
 Buffer all write operations. If this option is
 false and the drive uses a fixed block size,
 then all write operations must be for a multi-
 ple of the block size. This option must be set
 false to write reliable multi-volume archives.
 MT_ST_ASYNC_WRITES (Default: true)
 When this options is true write operations
 return immediately without waiting for the data
 to be transferred to the drive if the data fits
 into the drivers buffer. The write threshold
 determines how full the buffer must be before a
 new SCSI write command is issued. Any errors
 reported by the drive will be held until the
 next operation. This option must be set false
 to write reliable multi-volume archives.
 MT_ST_READ_AHEAD (Default: true)

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (4 of 9) [14/09/1999 10:01:39]

 This option causes the driver to provide read
 buffering and read-ahead. If this option is
 false and the drive uses a fixed block size,
 then all read operations must be for a multiple
 of the block size.
 MT_ST_TWO_FM (Default: false)
 This option modifies the driver behavior when a
 file is closed. The normal action is to write
 a single filemark. If the option is true the
 driver will write two filemarks and backspace
 over the second one.

 Note: This option should not be set true for
 QIC tape drives since they are unable to
 overwrite a filemark. These drives detect the
 end of recorded data by testing for blank tape
 rather than two consecutive filemarks.

 MT_ST_DEBUGGING (Default: false)
 This option turns on various debugging messages
 from the driver (effective only if the driver
 was compiled with DEBUG defined).
 MT_ST_FAST_EOM (Default: false)
 This option causes the MTEOM operation to be
 sent directly to the drive, potentially speed-
 ing up the operation but causing the driver to
 lose track of the current file number normally
 returned by the MTIOCGET request. If
 MT_ST_FAST_EOM is false the driver will respond
 to an MTEOM request by forward spacing over
 files.
 EXAMPLE
 struct mtop mt_cmd;
 mt_cmd.mt_op = MTSETDRVBUFFER;
 mt_cmd.mt_count = MT_ST_BOOLEANS |
 MT_ST_BUFFER_WRITES |
 MT_ST_ASYNC_WRITES;
 ioctl(fd, MTIOCTOP, &mt_cmd));

 MTIOCGET - Get status
 This request takes an argument of type (struct mtget *).
 The driver returns an EIO error if the drive rejects an
 operation.

 /* structure for MTIOCGET - mag tape get status command */
 struct mtget {

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (5 of 9) [14/09/1999 10:01:39]

 long mt_type;
 long mt_resid;
 /* the following registers are device dependent */
 long mt_dsreg;
 long mt_gstat;
 long mt_erreg;
 /* The next two fields are not always used */
 daddr_t mt_fileno;
 daddr_t mt_blkno;
 };

 mt_type The header file defines many values for mt_type,
 but the current driver reports only the generic
 types MT_ISSCSI1 (Generic SCSI-1 tape) and
 MT_ISSCSI2 (Generic SCSI-2 tape).
 mt_resid is always zero. (Not implemented for SCSI tape
 drives.)
 mt_dsreg reports the drives current settings for block
 size (in the low 24 bits) and density (in the
 high 8 bits). These fields are defined by
 MT_ST_BLKSIZE_SHIFT, MT_ST_BLKSIZE_MASK,
 MT_ST_DENSITY_SHIFT, and MT_ST_DENSITY_MASK.
 mt_gstat reports generic (device independent) status
 information. The header file defines macros for
 testing these status bits:
 GMT_EOF(x): The tape is positioned just after a
 filemark (always false after an MTSEEK opera-
 tion).
 GMT_BOT(x): The tape is positioned at the begin-
 ning of the first file (always false after an
 MTSEEK operation).
 GMT_EOT(x): A tape operation has reached the
 physical End Of Tape.
 GMT_SM(x): The tape is currently positioned at a
 setmark (always false after an MTSEEK opera-
 tion).
 GMT_EOD(x): The tape is positioned at the end of
 recorded data.
 GMT_WR_PROT(x): The drive is write-protected.
 For some drives this can also mean that the
 drive does not support writing on the current
 medium type.
 GMT_ONLINE(x): The last open() found the drive
 with a tape in place and ready for operation.
 GMT_D_6250(x), GMT_D_1600(x), GMT_D_800(x): This
 generic status information reports the

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (6 of 9) [14/09/1999 10:01:39]

 current density setting for 9-track 1/2" tape
 drives only.
 GMT_DR_OPEN(x): The drive does not have a tape
 in place.

 GMT_IM_REP_EN(x): Immediate report mode (not
 supported).
 mt_erreg The only field defined in mt_erreg is the
 recovered error count in the low 16 bits (as
 defined by MT_ST_SOFTERR_SHIFT and
 MT_ST_SOFTERR_MASK). Due to inconsistencies in
 the way drives report recovered errors, this
 count is often not maintained.
 mt_fileno reports the current file number (zero-based).
 This value is set to -1 when the file number is
 unknown (e.g., after MTBSS or MTSEEK).
 mt_blkno reports the block number (zero-based) within the
 current file. This value is set to -1 when the
 block number is unknown (e.g., after MTBSF,
 MTBSS, or MTSEEK).

 MTIOCPOS - Get tape position
 This request takes an argument of type (struct mtpos *) and
 reports the drives notion of the current tape block number,
 which is not the same as mt_blkno returned by MTIOCGET.
 This drive must be a SCSI-2 drive that supports the READ
 POSITION command (device-specific address) or a Tandberg-
 compatible SCSI-1 drive (Tandberg, Archive Viper, Wangtek,
 ...).

 /* structure for MTIOCPOS - mag tape get position command */
 struct mtpos {
 long mt_blkno; /* current block number */
 };

RETURN VALUE

 EIO The requested operation could not be com-
 pleted.

 ENOSPC A write operation could not be completed

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (7 of 9) [14/09/1999 10:01:39]

 because the tape reached end-of-medium.

 EACCES An attempt was made to write or erase a
 write-protected tape. (This error is not
 detected during open().)

 ENXIO During opening, the tape device does not
 exist.

 EBUSY The device is already in use or the driver was
 unable to allocate a buffer.

 EOVERFLOW An attempt was made to read or write a
 variable-length block that is larger than the
 drivers internal buffer.

 EINVAL An ioctl() had an illegal argument, or a
 requested block size was illegal.

 ENOSYS Unknown ioctl().

COPYRIGHT

 Copyright 8c9 1995 Robert K. Nichols.

 Permission is granted to make and distribute verbatim copies
 of this manual provided the copyright notice and this per-
 mission notice are preserved on all copies. Additional per-
 missions are contained in the header of the source file.

SEE ALSO

 mt(1)

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (8 of 9) [14/09/1999 10:01:39]

http://linuxsavvy.com/resources/linux/man/man4/st.4.html (9 of 9) [14/09/1999 10:01:39]

NAME

 tty - controlling terminal

DESCRIPTION

 The file /dev/tty is a character file with major number 5
 and minor number 0, usually of mode 0666 and owner.group
 root.tty. It is a synonym for the controlling terminal of a
 process, if any.

 In addition to the ioctl() requests supported by the device
 that tty refers to, the following ioctl() request is sup-
 ported:

 TIOCNOTTY
 Detach the current process from its controlling termi-
 nal, and remove it from its current process group,
 without attaching it to a new process group (that is,
 set its process group ID to zero). This ioctl() call
 only works on file descriptors connected to /dev/tty;
 this is used by daemon processes when they are invoked
 by a user at a terminal. The process attempts to open
 /dev/tty; if the open succeeds, it detaches itself from
 the terminal by using TIOCNOTTY, while if the open
 fails, it is obviously not attached to a terminal and
 does not need to detach itself.

FILES

 /dev/tty

http://linuxsavvy.com/resources/linux/man/man4/tty.4.html (1 of 2) [14/09/1999 10:01:44]

SEE ALSO

 mknod(1), chown(1), getty(1), console(4), ttys(4)

http://linuxsavvy.com/resources/linux/man/man4/tty.4.html (2 of 2) [14/09/1999 10:01:44]

NAME

 ttys - serial terminal lines

DESCRIPTION

 ttyS[0-3] are character devices for the serial terminal
 lines.

 They are typically created by:

 mknod -m 660 /dev/ttyS0 c 4 64 # base address 0x03f8
 mknod -m 660 /dev/ttyS1 c 4 65 # base address 0x02f8
 mknod -m 660 /dev/ttyS2 c 4 66 # base address 0x03e8
 mknod -m 660 /dev/ttyS3 c 4 67 # base address 0x02e8
 chown root.tty /dev/ttyS[0-3]

FILES

 /dev/ttyS[0-3]

SEE ALSO

 mknod(1), chown(1), getty(1),

http://linuxsavvy.com/resources/linux/man/man4/ttys.4.html (1 of 2) [14/09/1999 10:01:47]

http://linuxsavvy.com/resources/linux/man/man4/ttys.4.html (2 of 2) [14/09/1999 10:01:47]

NAME

 vcs, vcsa - virtual console memory

DESCRIPTION

 /dev/vcs0 is a character device with major number 7 and
 minor number 0, usually of mode 0644 and owner root.tty. It
 refers to the memory of the currently displayed virtual con-
 sole terminal.

 /dev/vcs[1-63] are character devices for virtual console
 terminals, they have major number 7 and minor number 1 to
 63, usually mode 0644 and owner root.tty. /dev/vcsa[0-63]
 are the same, but including attributes, and prefixed with
 four bytes giving the screen dimensions and cursor position:
 lines, columns, x, y. (x = y = 0 at the top left corner of
 the screen.)

 These replace the screendump ioctls of console(4), so the
 system administrator can control access using file system
 permissions.

 The devices for the first eight virtual consoles may be
 created by:

 for x in 0 1 2 3 4 5 6 7 8; do
 mknod -m 644 /dev/vcs$x c 7 $x;
 mknod -m 644 /dev/vcsa$x c 7 $[$x+128];
 done
 chown root.tty /dev/vcs*

 No ioctl() requests are supported.

http://linuxsavvy.com/resources/linux/man/man4/vcs.4.html (1 of 4) [14/09/1999 10:01:53]

EXAMPLES

 You may do a screendump on vt3 by switching to vt1 and typ-
 ing cat /dev/vcs3 >foo. Note that the output does not con-
 tain newline characters, so some processing may be required,
 like in fold -w 81 /dev/vcs3 | lpr or (horrors) setterm
 -dump 3 -file /proc/self/fd/1.

 This program displays the character and screen attributes
 under the cursor of the second virtual console, then changes
 the background color there:

 #include <unistd.h>
 #include <stdio.h>
 #include <fcntl.h>

 void main()
 { int fd;
 struct {char lines, cols, x, y;} scrn;
 char ch, attrib;

 fd = open("/dev/vcsa2", O_RDWR);
 (void)read(fd, &scrn, 4);
 (void)lseek(fd, 4 + 2*(scrn.y*scrn.cols + scrn.x), 0);
 (void)read(fd, &ch, 1);
 (void)read(fd, &attrib, 1);
 printf("ch='%c' attrib=0x%02x\n", ch, attrib);
 attrib ^= 0x10;
 (void)lseek(fd, -1, 1);
 (void)write(fd, &attrib, 1);
 }

FILES

 /dev/vcs[0-63]
 /dev/vcsa[0-63]

http://linuxsavvy.com/resources/linux/man/man4/vcs.4.html (2 of 4) [14/09/1999 10:01:53]

AUTHOR

 Andries Brouwer <aeb@cwi.nl>

HISTORY

 Introduced with version 1.1.92 of the Linux kernel.

SEE ALSO

 console(4), tty(4), ttys(4),

http://linuxsavvy.com/resources/linux/man/man4/vcs.4.html (3 of 4) [14/09/1999 10:01:53]

http://linuxsavvy.com/resources/linux/man/man4/vcs.4.html (4 of 4) [14/09/1999 10:01:53]

NAME

 wavelan - AT&T GIS WaveLAN ISA device driver

SYNOPSIS

 insmod wavelan_cs.o [io=B,B..] [irq=I,I..] [name=N,N..

DESCRIPTION

 wavelan is the low-level device driver for the NCR / AT&T /
 Lucent WaveLAN ISA and Digital (DEC) RoamAbout DS wireless
 ethernet adapter. This driver is available as a module or
 might be compiled in the kernel. This driver supports multi-
 ple cards in both forms (up to 4) and allocates the next
 available ethernet device (eth0..eth#) for each card found,
 unless a device name is explicitely specified (see below).
 This device name will be reported in the kernel log file
 with the MAC address, NWID and frequency used by the card.

PARAMETERS

 This section apply to the module form (parameters passed on
 the insmod(8) command line). If the driver is included in
 the kernel, use the ether=IRQ,IO,NAME syntax on the kernel
 command line.

 io Specify the list of base address where to search for
 wavelan cards (setting by dip switch on the card). If
 you don't specify any io address, the driver will scan

http://linuxsavvy.com/resources/linux/man/man4/wavelan.4.html (1 of 4) [14/09/1999 10:02:00]

 0x390 and 0x3E0 addresses, which might conflict with
 other hardware...

 irq Set the list of irq that each wavelan card should use
 (the value is saved in permanent storage for future
 use).

 name Set the list of name to be used for each wavelan cards
 device (name used by ifconfig(8)).

WIRELESS EXTENSIONS

 Use iwconfig(8) to manipulate wireless extensions.

 NWID (or domain)
 Set the network ID [0 to FFFF] or disable it [off]. As the
 NWID is stored in the card Permanent Storage Area, it will
 be reuse at any further invocation of the driver.

 Frequency & channels
 For the 2.4GHz 2.00 Hardware, you are able to set the fre-
 quency by specifying one of the 10 defined channels (2.412,
 2.422, 2.425, 2.4305, 2.432, 2.442, 2.452, or 2.484) or
 directly by its value. The frequency is changed immediately
 and permanentely. Frequency availability depend on the regu-
 lations...

 Statistics spy
 Set a list of MAC addresses in the driver (up to 8) and get
 the last quality of link for each of those (see iwspy(8)).

 /proc/net/wireless
 status is the status reported by the modem. Link quality
 reports the quality of the modulation on the air (direct
 sequence spread spectrum) [max = 16]. Level and Noise refer
 to the signal level and noise level [max = 64]. The crypt
 discarded packet and misc discarded packet counters are not
 implemented.

http://linuxsavvy.com/resources/linux/man/man4/wavelan.4.html (2 of 4) [14/09/1999 10:02:00]

PRIVATE IOCTL

 You may use iwpriv(8) to manipulate private ioctls.

 Quality and Level threshold
 Enable you the define the quality and level threshold used
 by the modem (packet below that level are discarded).

 Histogram
 This functionality allow to set a number of signal level
 intervals and to count the number of packets received in
 each of those defined intervals. This distribution might be
 used to calculate the mean value and standard deviation of
 the signal level.

SPECIFIC NOTES

 This driver will fail to detect some non NCR/ATT&T/Lucent
 Wavelan cards. If it's your case, you must look in the
 source code on how to add your card to the detection rou-
 tine.

 Some of the mentioned features are optional. You may enable
 to disable them by changing flags in the driver header and
 recompile.

AUTHOR

 Bruce Janson - bruce@cs.usyd.edu.au
 Jean Tourrilhes - jt@hplb.hpl.hp.com
 (+ others - see source code for details)

http://linuxsavvy.com/resources/linux/man/man4/wavelan.4.html (3 of 4) [14/09/1999 10:02:00]

SEE ALSO

 wavelan_cs(4), ifconfig(8), insmod(8), iwconfig(8),
 iwspy(8), iwpriv(8).

http://linuxsavvy.com/resources/linux/man/man4/wavelan.4.html (4 of 4) [14/09/1999 10:02:00]

Linux Man Pages Section 5
● charmap.5

● environ.5

● fs.5

● group.5

● intro.5

● ipc.5

● issue.5

● lilo.conf

● locale.5

● motd.5

● nologin.5

● nsswitch.5

● passwd.5

● proc.5

● protocols.5

● securetty.5

● services.5

● shells.5

● termcap.5

● ttytype.5

● utmp.5

● wtmp.5

Linux Man Pages Section 5

http://linuxsavvy.com/resources/linux/man/man5/ [14/09/1999 10:02:03]

http://linuxsavvy.com/resources/linux/man/man5/wtmp.5.html

NAME

 charmap - character symbols to define character encodings

DESCRIPTION

 A character set description (charmap) defines a characterset
 of available characters and their encodings. All supported
 character sets should have the portable character set as a
 proper subset. The portable character set is defined in the
 file /usr/lib/nls/charmap/POSIX for reference purposes.

SYNTAX

 The charmap file starts with a header, that may consist of
 the following keywords:

 <codeset>
 is followed by the name of the codeset.

 <mb_cur_max>
 is followed by the max number of bytes for a
 multibyte-character. Multibyte characters are
 currently not supported. The default value is 1.

 <mb_cur_min>
 is followed by the min number of bytes for a character.
 This value must be less or equal than mb_cur_max. If
 not specified, it defaults to mb_cur_max.

 <escape_char>
 is followed by a character that should be used as the
 escape-character for the rest of the file to mark char-
 acters that should be interpreted in a special way. It

http://linuxsavvy.com/resources/linux/man/man5/charmap.5.html (1 of 4) [14/09/1999 10:02:04]

 defaults to the backslash (\).

 <comment_char>
 is followed by a character that will be used as the
 comment-character for the rest of the file. It defaults
 to the number sign (#).

 The charmap-definition itself starts with the keyword CHAR-
 MAP in column 1.

 The following lines may have one of the two following forms
 to define the character-encodings:

 <symbolic-name> <encoding> <comments>
 This for defines exactly one character and its encod-
 ing.

 <symbolic-name>...<symbolic-name> <encoding> <comments>
 This form defines a couple of characters. This is only
 useful for mutlibyte-characters, which are currently
 not implemented.

 The last line in a charmap-definition file must contain END
 CHARMAP.

SYMBOLIC NAMES

 A symbolic name for a character contains only characters of
 the portable character set. The name itself isenclosed
 between angle brackets. Characters following the
 <escape_char> are interpreted as itself; for example, the
 sequence '<\\\>>' represents the symbolic name '\>' enclosed
 in angle brackets.

http://linuxsavvy.com/resources/linux/man/man5/charmap.5.html (2 of 4) [14/09/1999 10:02:04]

CHARACTER ENCODING

 The encoding may be in each of the following three forms:

 <escape_char>d<number>
 with a decimal number

 <escape_char>x<number>
 with a hexadecimal number

 <escape_char><number>
 with an octal number.

FILES

 /usr/lib/nls/charmap/*

AUTHOR

 Jochen Hein (jochen.hein@delphi.central.de)

CONFORMING TO

 POSIX.2

http://linuxsavvy.com/resources/linux/man/man5/charmap.5.html (3 of 4) [14/09/1999 10:02:04]

SEE ALSO

 setlocale(3), localeconv(3), locale(1), locale(5),
 localedef(1),

http://linuxsavvy.com/resources/linux/man/man5/charmap.5.html (4 of 4) [14/09/1999 10:02:04]

NAME

 environ - user environment

SYNOPSIS

 extern char **environ;

DESCRIPTION

 The variable environ points to an array of strings called
 the `environment'. (This variable must be declared in the
 user program, but is declared in the header file unistd.h in
 case the header files came from libc4 or libc5, and in case
 they came from glibc and _GNU_SOURCE was defined.) This
 array of strings is made available to the process by the
 exec(2) call that started the process. By convention these
 strings have the form `name=value'. Common examples are:

 USER The name of the logged-in user (used by some BSD-
 derived programs).

 LOGNAME
 The name of the logged-in user (used by some System-V
 derived programs).

 HOME A user's login directory, set by login(1) from the
 password file passwd(5).

 LANG The name of a locale to use for locale categories when
 not overridden by LC_ALL or more specific environment
 variables.

 PATH The sequence of directory prefixes that sh(1) and many

http://linuxsavvy.com/resources/linux/man/man5/environ.5.html (1 of 3) [14/09/1999 10:02:06]

 other programs apply in searching for a file known by
 an incomplete path name. The prefixes are separated by
 `:'. (Similarly one has CDPATH used by some shells to
 find the target of a change directory command, MANPATH
 used by man(1) to find manual pages, etc.)

 PWD The current working directory. Set by some shells.

 SHELL
 The file name of the user's login shell.

 TERM The terminal type for which output is to be prepared.

 Further names may be placed in the environment by the export
 command and `name=value' in sh(1), or by the setenv command
 if you use csh(1). Arguments may also be placed in the
 environment at the point of an exec(2). A C program can
 manipulate its environment using the functions getenv(),
 putenv(), setenv() and unsetenv().

 Note that the behaviour of many programs and library
 routines is influenced by the presence or value of certain
 environment variables. A random collection:

 The variables LANG, LANGUAGE, NLSPATH, LOCPATH, LC_ALL,
 LC_MESSAGES etc. influence locale handling.

 TMPDIR influences the path prefix of names created by
 tmpnam() and other routines, the temporary directory used by
 sort(1) and other programs, etc.

 LD_LIBRARY_PATH, LD_PRELOAD and other LD_* variables influ-
 ence the behaviour of the dynamic loader/linker.

 POSIXLY_CORRECT makes certain programs and library routines
 follow the prescriptions of POSIX.

 The behaviour of malloc() is influenced by MALLOC_* vari-
 ables.

 The variable HOSTALIASES gives the name of a file containing
 aliases to be used with gethostbyname().

 TZ and TZDIR give time zone information.

 TERMCAP gives information on how to address a given terminal

http://linuxsavvy.com/resources/linux/man/man5/environ.5.html (2 of 3) [14/09/1999 10:02:06]

 (or gives the name of a file containing such information).

 Etc. etc.

 Clearly there is a security risk here. Many a system command
 has been tricked into mischief by a user who specified
 unusual values for IFS or LD_LIBRARY_PATH.

SEE ALSO

 login(1), sh(1), bash(1), csh(1), tcsh(1), exec(2),
 getenv(3), putenv(3), setenv(3), unsetenv(3).

http://linuxsavvy.com/resources/linux/man/man5/environ.5.html (3 of 3) [14/09/1999 10:02:06]

NAME

 filesystems - Linux filesystem types: minix, ext, ext2, xia,
 msdos, umsdos, vfat, proc, nfs, iso9660, hpfs, sysv, smb,
 ncpfs

DESCRIPTION

 In the file /proc/filesystems you can find which filesystems
 your kernel currently supports. (If you need a currently
 unsupported one, insert the corresponding module or
 recompile the kernel.)

 Below a description of the various filesystems.

 minix
 is the filesystem used in the Minix operating system,
 the first to run under Linux. It has a number of
 shortcomings: a 64MB partition size limit, short
 filenames, a single time stamp, etc.

 It remains useful for floppies and RAM disks.

 ext is an elaborate extension of the minix filesystem. It
 has been completely superseded by the second version of
 the extended filesystem (ext2) and will eventually be
 removed from the kernel.

 ext2 is the high performance disk filesystem used by Linux
 for fixed disks as well as removable media.

 The second extended filesystem was designed as an
 extension of the extended file system (ext). ext2
 offers the best performance (in terms of speed and CPU
 usage) of the filesystems supported under Linux.

http://linuxsavvy.com/resources/linux/man/man5/fs.5.html (1 of 4) [14/09/1999 10:02:08]

 xiafs
 was designed and implemented to be a stable, safe
 filesystem by extending the Minix filesystem code. It
 provides the basic most requested features without
 undue complexity.

 The xia filesystem is no longer actively developed or
 maintained. It is used infrequently.

 msdos
 is the filesystem used by DOS, Windows, and some OS/2
 computers. msdos filenames can be no longer than an 8
 character name followed by an optional period and 3
 character extension.

 umsdos
 is an extended DOS filesystem used by Linux. It adds
 capability for long filenames, UID/GID, POSIX
 permissions, and special files (devices, named pipes,
 etc.) under the DOS filesystem, without sacrificing
 compatibility with DOS.

 vfat is extended DOS filesystem used by Microsoft Windows95
 and Windows NT. VFAT adds capability for long
 filenames under the MSDOS filesystem.

 proc is a pseudo-filesystem which is used as an interface to
 kernel data structures rather than reading and
 interpreting /dev/kmem. In particular, its files do
 not take disk space. See proc(5).

 iso9660
 is a CD-ROM filesystem type conforming to the ISO 9660
 standard.

 High Sierra
 Linux supports High Sierra, the precursor to the
 ISO 9660 standard for CD-ROM filesystems. It is
 automatically recognized within the iso9660
 filesystem support under Linux.

 Rock Ridge
 Linux also supports the System Use Sharing
 Protocol records specified by the Rock Ridge
 Interchange Protocol. They are used to further
 describe the files in the iso9660 filesystem to a

http://linuxsavvy.com/resources/linux/man/man5/fs.5.html (2 of 4) [14/09/1999 10:02:08]

 UNIX host, and provides information such as long
 filenames, UID/GID, POSIX permissions, and
 devices. It is automatically recognized within
 the iso9660 filesystem support under Linux.

 hpfs is the High Performance Filesystem, used in OS/2. This
 filesystem is read-only under Linux due to the lack of
 available documentation.

 sysv is an implementation of the SystemV/Coherent filesystem
 for Linux. It implements all of Xenix FS, SystemV/386
 FS, and Coherent FS.

 nfs is the network filesystem used to access disks located
 on remote computers.

 smb is a network filesystem that supports the SMB protocol,
 used by Windows for Workgroups, Windows NT, and Lan
 Manager.

 To use smb fs, you need a special mount program, which
 can be found in the ksmbfs package, found at
 ftp://sunsite.unc.edu/pub/Linux/system/Filesystems/smbfs.

 ncpfs
 is a network filesystem that supports the NCP protocol,
 used by Novell NetWare.

 To use ncpfs, you need special programs, which can be
 found at ftp://linux01.gwdg.de/pub/ncpfs.

SEE ALSO

 proc(5), fsck(8), mkfs(8), mount(8).

http://linuxsavvy.com/resources/linux/man/man5/fs.5.html (3 of 4) [14/09/1999 10:02:08]

http://linuxsavvy.com/resources/linux/man/man5/fs.5.html (4 of 4) [14/09/1999 10:02:08]

NAME

 group - user group file

DESCRIPTION

 /etc/group is an ASCII file which defines the groups to
 which users belong. There is one entry per line, and each
 line has the format:

 group_name:passwd:GID:user_list

 The field descriptions are:

 group_name
 the name of the group.

 password
 the (encrypted) group password. If this field is
 empty, no password is needed.

 GID the numerical group ID.

 user_list
 all the group member's user names, separated by commas.

FILES

 /etc/group

http://linuxsavvy.com/resources/linux/man/man5/group.5.html (1 of 2) [14/09/1999 10:02:09]

SEE ALSO

 login(1), newgrp(1), passwd(5)

http://linuxsavvy.com/resources/linux/man/man5/group.5.html (2 of 2) [14/09/1999 10:02:09]

NAME

 intro - Introduction to file formats

DESCRIPTION

 This chapter describes various file formats and protocols,
 and the used C structures, if any.

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man5/intro.5.html (1 of 2) [14/09/1999 10:02:10]

http://linuxsavvy.com/resources/linux/man/man5/intro.5.html (2 of 2) [14/09/1999 10:02:10]

NAME

 ipc - System V interprocess communication mechanisms

SYNOPSIS

 # include <sys/types.h>
 # include <sys/ipc.h>
 # include <sys/msg.h>
 # include <sys/sem.h>
 # include <sys/shm.h>

DESCRIPTION

 The manual page refers to the Linux implementation of the
 System V interprocess communication mechanisms: message
 queues, semaphore sets and shared memory segments. In the
 following, the word resource means an instantiation of one
 among such mechanisms.

 Resource Access Permissions
 For each resource the system uses a common structure of type
 struct ipc_perm to store information needed in determining
 permissions to perform an ipc operation. The ipc_perm
 structure, defined by the <sys/ipc.h> system header file,
 includes the following members:

 ushort cuid; /* creator user id */
 ushort cgid; /* creator group id */
 ushort uid; /* owner user id */
 ushort gid; /* owner group id */
 ushort mode; /* r/w permissions */

 The mode member of the ipc_perm structure defines, with its

http://linuxsavvy.com/resources/linux/man/man5/ipc.5.html (1 of 5) [14/09/1999 10:02:12]

 lower 9 bits, the access permissions to the resource for a
 process executing an ipc system call. The permissions are
 interpreted as follows:

 0400 Read by user.
 0200 Write by user.
9 0040 Read by group.
 0020 Write by group.
9 0004 Read by others.
 0002 Write by others.

 Bits 0100, 0010 and 0001 (the execute bits) are unused by
 the system. Furthermore "write" effectively means "alter"
 for a semaphore set.

 The same system header file defines also the following sym-
 bolic constants:

 IPC_CREAT Create entry if key doesn't exists.

 IPC_NOWAIT Error if request must wait.

 IPC_PRIVATE Private key.

 IPC_RMID Remove resource.

 IPC_SET Set resource options.

 IPC_STAT Get resource options.

 Note that IPC_PRIVATE is a key_t type, while all the others
 symbolic constants are flag fields or-able into an int type
 variable.

 Message Queues
 A message queue is uniquely identified by a positive integer
 (its msqid) and has an associated data structure of type
 struct msquid_ds, defined in <sys/msg.h>, containing the
 following members:

 struct ipc_perm msg_perm;
 ushort msg_qnum; /* no of messages on queue */
 ushort msg_qbytes; /* bytes max on a queue */
 ushort msg_lspid; /* pid of last msgsnd call */

http://linuxsavvy.com/resources/linux/man/man5/ipc.5.html (2 of 5) [14/09/1999 10:02:12]

 ushort msg_lrpid; /* pid of last msgrcv call */
 time_t msg_stime; /* last msgsnd time */
 time_t msg_rtime; /* last msgrcv time */
 time_t msg_ctime; /* last change time */

 msg_perm ipc_perm structure that specifies the access per-
 missions on the message queue.

 msg_qnum Number of messages currently on the message
 queue.

 msg_qbytes Maximum number of bytes of message text allowed
 on the message queue.

 msg_lspid ID of the process that performed the last msgsnd
 system call.

 msg_lrpid ID of the process that performed the last msgrcv
 system call.

 msg_stime Time of the last msgsnd system call.

 msg_rtime Time of the last msgcv system call.

 msg_ctime Time of the last system call that changed a
 member of the msqid_ds structure.

 A semaphore set is uniquely identified by a positive integer
 (its semid) and has an associated data structure of type
 struct semid_ds, defined in <sys/sem.h>, containing the fol-
 lowing members:

 struct ipc_perm sem_perm;
 time_t sem_otime; /* last operation time */
 time_t sem_ctime; /* last change time */
 ushort sem_nsems; /* count of sems in set */

 sem_perm ipc_perm structure that specifies the access per-
 missions on the semaphore set.

 sem_otime Time of last semop system call.

 sem_ctime Time of last semctl system call that changed a
 member of the above structure or of one semaphore
 belonging to the set.

http://linuxsavvy.com/resources/linux/man/man5/ipc.5.html (3 of 5) [14/09/1999 10:02:12]

 sem_nsems Number of semaphores in the set. Each semaphore
 of the set is referenced by a non-negative
 integer ranging from 0 to sem_nsems-1.

 A semaphore is a data structure of type struct sem contain-
 ing the following members:

 ushort semval; /* semaphore value */
 short sempid; /* pid for last operation */
 ushort semncnt; /* no. of awaiting semval to
 increase */
 ushort semzcnt; /* no. of awaiting semval = 0 */

 semval Semaphore value: a non-negative integer.

 sempid ID of the last process that performed a semaphore
 operation on this semaphore.

 semncnt Number of processes suspended awaiting for semval
 to increase.

 semznt Number of processes suspended awaiting for semval
 to become zero.

 Shared Memory Segments
 A shared memory segment is uniquely identified by a positive
 integer (its shmid) and has an associated data structure of
 type struct shmid_ds, defined in <sys/shm.h>, containing the
 following members:

 struct ipc_perm shm_perm;
 int shm_segsz; /* size of segment */

 ushort shm_lpid; /* pid, last operation */
 short shm_nattch; /* no. of current attaches */
 time_t shm_atime; /* time of last attach */
 time_t shm_dtime; /* time of last detach */
 time_t shm_ctime; /* time of last change */

 shm_perm ipc_perm structure that specifies the access per-
 missions on the shared memory segment.

 shm_segsz Size in bytes of the shared memory segment.

 shm_cpid ID of the process that created the shared memory
 segment.

http://linuxsavvy.com/resources/linux/man/man5/ipc.5.html (4 of 5) [14/09/1999 10:02:12]

 shm_lpid ID of the last process that executed a shmat or
 shmdt system call.

 shm_nattch Number of current alive attaches for this shared
 memory segment.

 shm_atime Time of the last shmat system call.

 shm_dtime Time of the last shmdt system call.

 shm_ctime Time of the last shmctl system call that changed
 shmid_ds.

SEE ALSO

 ftok(3), msgctl(2), msgget(2), msgrcv(2), msgsnd(2),
 semctl(2), semget(2), semop(2), shmat(2), shmctl(2),
 shmget(2), shmdt (2).

http://linuxsavvy.com/resources/linux/man/man5/ipc.5.html (5 of 5) [14/09/1999 10:02:12]

NAME

 issue - pre-login message and identification file

DESCRIPTION

 The file /etc/issue is an text file which contains a message
 or system identification to be printed before the login
 prompt. It may contain various @char and \char sequences,
 if supported by getty(1).

FILES

 /etc/issue

SEE ALSO

 getty(1), motd(5)

http://linuxsavvy.com/resources/linux/man/man5/issue.5.html (1 of 2) [14/09/1999 10:02:13]

http://linuxsavvy.com/resources/linux/man/man5/issue.5.html (2 of 2) [14/09/1999 10:02:13]

NAME

 lilo.conf - configuration file for lilo

DESCRIPTION

 This file, by default /etc/lilo.conf, is read by the boot
 loader installer lilo (see lilo(8)).

 It might look as follows:

 boot = /dev/hda
 delay = 40
 compact
 vga = normal
 root = /dev/hda1
 read-only
 image = /zImage-1.5.99
 label = try
 image = /zImage-1.0.9
 label = 1.0.9
 image = /tamu/vmlinuz
 label = tamu
 root = /dev/hdb2
 vga = ask
 other = /dev/hda3
 label = dos
 table = /dev/hda

 This configuration file specifies that lilo uses the Master
 Boot Record on /dev/hda. (For a discussion of the various
 ways to use lilo, and the interaction with other operating
 systems, see user.tex from the lilo documentation.)

 When booting, the boot loader will wait four seconds (40
 deciseconds) for you to press Shift. If you don't, then the

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (1 of 10) [14/09/1999 10:02:17]

 first kernel image mentioned (/zImage-1.5.99, that you prob-
 ably installed just five minutes ago) will be booted. If
 you do, the boot loader will ask you which image to boot.
 In case you forgot the possible choices, press [TAB] (or
 [?], if you have a US keyboard), and you will be presented
 with a menu. You now have the choice of booting this brand-
 new kernel, or an old trusted kernel, or a kernel on another
 root file system (just in case you did something stupid on
 your usual rootfs), or booting a different operating system.
 There can be up to 16 images mentioned in lilo.conf.

 As can be seen above, a configuration file starts with a
 number of global options (the top 6 lines in the example),
 followed by descriptions of the options for the various
 images. An option in an image description will override a
 global option.

GLOBAL OPTIONS

 There are many possible keywords. The description below is
 almost literally from user.tex (just slightly abbreviated).

 backup=backup-file
 Copy the original boot sector to backup-file (which may
 also be a device, e.g. /dev/null) instead of
 /boot/boot.NNNN.

 boot=boot-device
 Sets the name of the device (e.g. a hard disk parti-
 tion) that contains the boot sector. If this keyword is
 omitted, the boot sector is read from (and possibly
 written to) the device that is currently mounted as
 root.

 compact
 Tries to merge read requests for adjacent sectors into
 a single read request. This drastically reduces load
 time and keeps the map smaller. Using `compact' is
 especially recommended when booting from a floppy disk.

 default=name
 Uses the specified image as the default boot image. If

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (2 of 10) [14/09/1999 10:02:17]

 `default' is omitted, the image appearing first in the
 configuration file is used.

 delay=tsecs
 Specifies the number of tenths of a second the boot
 loader should wait before booting the first image. This
 is useful on systems that immediately boot from the
 hard disk after enabling the keyboard. The boot loader
 doesn't wait if `delay' is omitted or is set to zero.

 disk=device-name
 Defines non-standard parameters for the specified disk.
 See section "Disk geometry" of user.tex for details.

 disktab=disktab-file
 Specifies the name of the disk parameter table. The
 map installer looks for /etc/disktab if `disktab' is
 omitted. The use of disktabs is discouraged.

 fix-table
 This allows lilo to adjust 3D addresses in partition
 tables. Each partition entry contains a 3D
 (sector/head/cylinder) and a linear address of the
 first and the last sector of the partition. If a parti-
 tion is not track-aligned and if certain other operat-
 ing systems (e.g. PC/MS-DOS or OS/2) are using the same
 disk, they may change the 3D address. lilo can store
 its boot sector only on partitions where both address
 types correspond. lilo re-adjusts incorrect 3D start
 addresses if `fix-table' is set.

 WARNING: This does not guarantee that other operating
 systems may not attempt to reset the address later. It
 is also possible that this change has other, unexpected
 side-effects. The correct fix is to re-partition the
 drive with a program that does align partitions to
 tracks. Also, with some disks (e.g. some large EIDE
 disks with address translation enabled), under some
 circumstances, it may even be unavoidable to have con-
 flicting partition table entries.

 force-backup=backup-file
 Like `backup', but overwrite an old backup copy if it
 exists.

 ignore-table

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (3 of 10) [14/09/1999 10:02:17]

 tells lilo to ignore corrupt partition tables.

 install=boot-sector
 Install the specified file as the new boot sector. If
 `install' is omitted, /boot/boot.b is used as the
 default.

 linear
 Generate linear sector addresses instead of
 sector/head/cylinder addresses. Linear addresses are
 translated at run time and do not depend on disk
 geometry. Note that boot disks may not be portable if
 `linear' is used, because the BIOS service to determine
 the disk geometry does not work reliably for floppy
 disks. When using `linear' with large disks, /sbin/lilo
 may generate references to inaccessible disk areas,
 because 3D sector addresses are not known before boot
 time.

 lock Enables automatic recording of boot command lines as
 the defaults for the following boots. This way, lilo
 "locks" on a choice until it is manually overridden.

 map=map-file
 Specifies the location of the map file. If `map' is
 omitted, the file /boot/map is used.

 message=message-file
 specifies a file containing a message that is displayed
 before the boot prompt. No message is displayed while
 waiting for a shifting key after printing "LILO ". In
 the message, the FF character ([Ctrl L]) clears the
 local screen. The size of the message file is limited
 to 65535 bytes. The map file has to be rebuilt if the
 message file is changed or moved.

 nowarn
 Disables warnings about possible future dangers.

 optional
 The per-image option `optional' (see below) applies to
 all images.

 password=password
 The per-image option `password=...' (see below) applies
 to all images.

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (4 of 10) [14/09/1999 10:02:17]

 prompt
 forces entering the boot prompt without expecting any
 prior key-presses. Unattended reboots are impossible if
 `prompt' is set and `timeout' isn't.

 restricted
 The per-image option `restricted' (see below) applies
 to all images.

 serial=parameters
 enables control from a serial line. The specified
 serial port is initialized and the boot loader is
 accepting input from it and from the PC's keyboard.
 Sending a break on the serial line corresponds to
 pressing a shift key on the console in order to get the
 boot loader's attention. All boot images should be
 password-protected if the serial access is less secure
 than access to the console, e.g. if the line is con-
 nected to a modem. The parameter string has the follow-
 ing syntax:

 <port>[,<bps>[<parity>[<bits>]]]

 <port>: the number of the serial port, zero-based. 0
 corresponds to COM1 alias /dev/ttyS0, etc. All four
 ports can be used (if present).

 <bps>: the baud rate of the serial port. The following
 baud rates are supported: 110, 150, 300, 600, 1200,
 2400, 4800 and 9600 bps. Default is 2400 bps.

 <parity>: the parity used on the serial line. The boot
 loader ignores input parity and strips the 8th bit. The
 following (upper or lower case) characters are used to
 describe the parity: n for no parity, e for even
 parity and o for odd parity.

 <bits>: the number of bits in a character. Only 7 and
 8 bits are supported. Default is 8 if parity is "none",
 7 if parity is "even" or "odd".

 If `serial' is set, the value of `delay' is automati-
 cally raised to 20.

 Example: serial=0,2400n8 initializes COM1 with the

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (5 of 10) [14/09/1999 10:02:17]

 default parameters.

 timeout=tsecs
 sets a timeout (in tenths of a second) for keyboard
 input. If no key is pressed for the specified time, the
 first image is automatically booted. Similarly, pass-
 word input is aborted if the user is idle for too long.
 The default timeout is infinite.

 verbose=level
 Turns on lots of progress reporting. Higher numbers
 give more verbose output. If -v is additionally
 specified on the lilo command line, the level is
 increased accordingly. The maximum verbosity level is
 5.

 Additionally, the kernel configuration parameters append,
 ramdisk, read-only, and vga can be set in the global options
 section. They are used as defaults if they aren't specified
 in the configuration sections of the respective kernel
 images.

PER-IMAGE SECTION

 A per-image section starts with either a line

 image=pathname

 (to indicate a file or device containing the boot image of a
 Linux kernel), or a line

 other=pathname

 to indicate an arbitrary system to boot.

 In the former case, if an image line specifies booting from
 a device, then one has to indicate the range of sectors to
 be mapped using

 range=start-end

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (6 of 10) [14/09/1999 10:02:17]

 In the latter case (booting another system) there are the
 three options

 loader=chain-loader
 This specifies the chain loader that should be used.
 By default /boot/chain.b is used. The chain loader must
 be specified if booting from a device other than the
 first hard or floppy disk.

 table=device
 This specifies the device that contains the partition
 table. The boot loader will not pass partition informa-
 tion to the booted operating system if this variable is
 omitted. (Some operating systems have other means to
 determine from which partition they have been booted.
 E.g., MS-DOS usually stores the geometry of the boot
 disk or partition in its boot sector.) Note that
 /sbin/lilo must be re-run if a partition table mapped
 referenced with `table' is modified.

 unsafe
 Do not access the boot sector at map creation time.
 This disables some sanity checks, including a partition
 table check. If the boot sector is on a fixed-format
 floppy disk device, using UNSAFE avoids the need to put
 a readable disk into the drive when running the map
 installer. `unsafe' and `table' are mutually incompati-
 ble.

 In both cases the following options apply.

 label=name
 The boot loader uses the main file name (without its
 path) of each image specification to identify that
 image. A different name can be used by setting the
 variable `label'.

 alias=name
 A second name for the same entry can be used by speci-
 fying an alias.

 lock (See above.)

 optional
 Omit the image if it is not available at map creation

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (7 of 10) [14/09/1999 10:02:17]

 time. This is useful to specify test kernels that are
 not always present.

 password=password
 Protect the image by a password.

 restricted
 A password is only required to boot the image if param-
 eters are specified on the command line (e.g. single).

KERNEL OPTIONS

 If the booted image is a Linux kernel, then one may pass
 command line parameters to this kernel.

 append=string
 Appends the options specified to the parameter line
 passed to the kernel. This is typically used to
 specify parameters of hardware that can't be entirely
 auto-detected or for which probing may be dangerous.
 Example:

 append = "hd=64,32,202"

 literal=string
 Like `append', but removes all other options (e.g. set-
 ting of the root device). Because vital options can be
 removed unintentionally with `literal', this option
 cannot be set in the global options section.

 ramdisk=size
 This specifies the size of the optional RAM disk. A
 value of zero indicates that no RAM disk should be
 created. If this variable is omitted, the RAM disk size
 configured into the boot image is used.

 read-only
 This specifies that the root file system should be
 mounted read-only. Typically, the system startup pro-
 cedure re-mounts the root file system read-write later

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (8 of 10) [14/09/1999 10:02:17]

 (e.g. after fsck'ing it).

 read-write
 This specifies that the root file system should be
 mounted read-write.

 root=root-device
 This specifies the device that should be mounted as
 root. If the special name current is used, the root
 device is set to the device on which the root file sys-
 tem is currently mounted. If the root has been changed
 with -r , the respective device is used. If the vari-
 able `root' is omitted, the root device setting con-
 tained in the kernel image is used. (And that is set
 at compile time using the ROOT_DEV variable in the ker-
 nel Makefile, and can later be changed with the rdev(8)
 program.)

 vga=mode
 This specifies the VGA text mode that should be
 selected when booting. The following values are recog-
 nized (case is ignored):
 normal: select normal 80x25 text mode.

 extended (or ext): select 80x50 text mode.

 ask: stop and ask for user input (at boot time).

 <number>: use the corresponding text mode. A list of
 available modes can be obtained by booting with
 vga=ask and pressing [Enter].

 If this variable is omitted, the VGA mode setting con-
 tained in the kernel image is used. (And that is set at
 compile time using the SVGA_MODE variable in the kernel
 Makefile, and can later be changed with the rdev(8)
 program.)

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (9 of 10) [14/09/1999 10:02:17]

SEE ALSO

 lilo(8), rdev(8).
 The lilo distribution comes with very extensive documenta-
 tion of which the above is an extract.

http://linuxsavvy.com/resources/linux/man/man5/lilo.conf.5.html (10 of 10) [14/09/1999 10:02:17]

NAME

 locale - Describes a locale definition file

 DESCRIPTION The locale definition files contains all the
 information that the localedef(1) command needs to convert
 it into the binary locale database.

 The definition files consist of sections which each describe
 a locale category in detail.

SYNTAX

 The locale definition file starts with a header, that may
 consist of the following keywords:

 <escape_char>
 is followed by a character that should be used as the
 escape-character for the rest of the file to mark char-
 acters that should be interpreted in a special way. It
 defaults to the backslash (\).

 <comment_char>
 is followed by a character that will be used as the
 comment-character for the rest of the file. It defaults
 to the number sign (#).

 The locale definitions is divided it one part for each
 locale category. Each part can be copied from another exist-
 ing locale or can be defined from scratch. If the category
 should be copied, the only valid keyword in the definition
 is copy followed by the name of the locale which should be
 copied.

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (1 of 10) [14/09/1999 10:02:21]

 LC_CTYPE
 LC_CTYPE category starts with the string LC_CTYPE in the
 first column.

 There are the following keywords allowed:

 upper
 followed by a list of uppercase letters. The letters A
 trough Z are included automatically. Characters also
 specified as cntrl, digit, punct, or space are not
 allowed.

 lower
 followed by a list of lowercase letters. The letters a
 trough z are included automatically. Characters also
 specified as cntrl, digit, punct, or space are not
 allowed.

 alpha
 followed by a list of letters. All character specified
 as either upper or lower are automatically included.
 Characters also specified as cntrl, digit, punct, or
 space are not allowed.

 digit
 followed by the characters classified as numeric
 digits. Only the digits 0 trough 9 are allowed. They
 are included by default in this class.

 space
 followed by a list of characters defined as white-space
 characters. Characters also specified as upper, lower,
 alpha, digit, graph, or xdigit are not allowed. The
 characters <space>, <form-feed>, <newline>, <carriage-
 return>, <tab>, and <vertical-tab> are automatically
 included.

 cntrl
 followed by a list of control characters. Characters
 also specified as upper, lower, alpha, digit, punct,

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (2 of 10) [14/09/1999 10:02:21]

 graph, or xdigit are not allowed.

 punct
 followed by a list of punctuation characters. Charac-
 ters also specified as upper, lower, alpha, digit,
 cntrl, xdigit or the <space> character are not allowed.

 graph
 followed by a list of printable characters, not includ-
 ing the <space> character. The characters defined as
 upper, lower, alpha, digit, xdigit and punct are
 automatically included. Characters also specified as
 cntrl are not allowed.

 print
 followed by a list of printable characters, including
 the <space> character. The characters defined as upper,
 lower, alpha, digit, xdigit, punct and the <space>
 character are automatically included. Characters also
 specified as cntrl are not allowed.

 xdigit
 followed by a list of characters classified as hexade-
 cimal digits. The decimal digits must be included fol-
 lowed by one or more set of six characters in ascending
 order. The following characters are included by
 default: 0 trough 9, a trough f, A trough F.

 blank
 followed by a list of characters classified as blank.
 The characters <space> and <tab> are automatically
 included.

 toupper
 followed by a list of mappings from lowercase to upper-
 case letters. Each mapping is a pair of a lowercase and
 an uppercase letter separated with a , and enclosed in
 parentheses. The members of the list are separated with
 semicolons.

 tolower
 followed by a list of mappings from uppercase to lower-

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (3 of 10) [14/09/1999 10:02:21]

 case letters. If the keyword tolower is not present,
 the reverse of the toupper list is used.

 The LC_CTYPE definition ends with the string END LC_CYTPE.

 LC_COLLATE
 The LC_COLLATE category defines the rules for collating
 characters. Due to limitations of libc not all POSIX-options
 are implemented.

 The definition starts with the string LC_COLLATE in the
 first column.

 There are the following keywords allowed:

 collating-element

 collating-symbol

 The order-definition starts with a line:

 order_start

 followed by a list of keywords out of forward, backward or
 position. The order definition consists of lines that
 describe the order and is terminated with the keyword

 order_end.

 For more details see the sources in /usr/lib/nls/src notably
 the examples POSIX, Example and Example2

 The LC_COLLATE definition ends with the string END
 LC_COLLATE.

 LC_MONETARY
 The definition starts with the string LC_MONETARY in the
 first column.

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (4 of 10) [14/09/1999 10:02:21]

 There are the following keywords allowed:

 int_curr_symbol
 followed by the international currency symbol. This
 must be a four character string containing the interna-
 tional currency symbol as defined by the ISO 4217 stan-
 dard (three characters) followed by a separator.

 currency_symbol
 followed by the local currency symbol.

 mon_decimal_point
 followed by the string that will be used as the decimal
 delimiter when formatting monetary quantities.

 mon_thousands_sep
 followed by the string that will be used as a group
 separator when formatting monetary quantities.

 mon_grouping
 followed by a string that describes the formatting of
 numeric quantities.

 positive_sign
 followed by a string that is used to indicate a posi-
 tive sign for monetary quantities.

 negative_sign
 followed by a string that is used to indicate a nega-
 tive sign for monetary quantities.

 int_frac_digits
 followed by the number of fractional digits that should
 be used when formatting with the int_curr_symbol.

 frac_digits
 followed by the number of fractional digits that should
 be used when formatting with the currency_symbol.

 p_cs_precedes
 followed by an integer set to 1 if the currency_symbol
 or int_curr_symbol
 should precede the formatted monetary quantity or set
 to 0 if the symbol succeeds the value.

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (5 of 10) [14/09/1999 10:02:21]

 p_sep_by_space
 followed by an integer.

 0 means that no space should be printed between the
 symbol and the value.

 1 means that a space should be printed between the
 symbol and the value.

 2 means that a space should be printed between the
 symbol and the sign string, if adjacent.

 n_cs_precedes

 0 - the symbol succeeds the value

 1 - the symbol precedes the value

 n_sep_by_space
 An integer set to 0 if no space separates the
 currency_symbol or int_curr_symbol from the value for a
 negative monetary quantity, set to 1 if a space
 separates the symbol from the value and set to 2 if a
 space separates the symbol and the sign string, if
 adjacent.

 p_sign_posn

 0 Parentheses enclose the quantity and the
 currency_symbol or int_curr_symbol.

 1 The sign string precedes the quantity and the
 currency_symbol or the int_curr_symbol.

 2 The sign string succeeds the quantity and the
 currency_symbol or the int_curr_symbol.

 3 The sign string precedes the currency_symbol or
 the int_curr_symbol.

 4 The sign string succeeds the currency_symbol or
 the int_curr_symbol.

 n_sign_posn

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (6 of 10) [14/09/1999 10:02:21]

 0 Parentheses enclose the quantity and the
 currency_symbol or int_curr_symbol.

 1 The sign string precedes the quantity and the
 currency_symbol or the int_curr_symbol.

 2 The sign string succeeds the quantity and the
 currency_symbol or the int_curr_symbol.

 3 The sign string precedes the currency_symbol or
 the int_curr_symbol.

 4 The sign string succeeds the currency_symbol or
 the int_curr_symbol.

 The LC_MONETARY definition ends with the string END
 LC_MONETARY.

 LC_NUMERIC
 The definition starts with the string LC_NUMERIC in the
 first column.

 There are the following keywords allowed:

 decimal_point
 followed by the string that will be used as the decimal
 delimiter when formatting numeric quantities.

 thousands_sep
 followed by the string that will be used as a group
 separator when formatting numeric quantities.

 grouping
 followed by a string that describes the formatting of
 numeric quantities.

 The LC_NUMERIC definition ends with the string END
 LC_NUMERIC.

 LC_TIME
 The definition starts with the string LC_TIME in the first
 column.

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (7 of 10) [14/09/1999 10:02:21]

 There are the following keywords allowed:
 abday
 followed by a list of abbreviated weekday names. The
 list starts with the Sunday or it's translation.

 day followed by a list of weekday names. The list starts
 with the Sunday.

 abmon
 followed by a list of abbreviated month names.

 mon followed by a list of month names.

 am_pm
 The appropriate representation of the am and pm
 strings.

 d_t_fmt
 The appropriate date and time format.

 d_fmt
 The appropriate date format.

 t_fmt
 The appropriate time format.

 t_fmt_ampm
 The appropriate time format when using 12h clock for-
 mat.

 The LC_TIME definition ends with the string END LC_TIME.

 LC_MESSAGES
 The definition starts with the string LC_MESSAGES in the
 first column.

 There are the following keywords allowed:

 yesexpr
 followed by a regular expression that describes possi-
 ble yes-responses.

 noexpr
 followed by a regular expression that describes possi-

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (8 of 10) [14/09/1999 10:02:21]

 ble no-responses.

 The LC_MESSAGES definition ends with the string END
 LC_MESSAGES.

 See the POSIX.2 standard for details.

FILES

 /usr/lib/locale/ - database for the current locale setting
 of that category /usr/lib/nls/charmap/* - charmap-files

BUGS

 The manpage isn't complete.

AUTHOR

 Jochen Hein (Hein@Student.TU-Clausthal.de)

CONFORMING TO

 POSIX.2

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (9 of 10) [14/09/1999 10:02:21]

SEE ALSO

 setlocale(3), localeconv(3), charmap(5), locale(1),
 localedef(1)

http://linuxsavvy.com/resources/linux/man/man5/locale.5.html (10 of 10) [14/09/1999 10:02:21]

NAME

 motd - message of the day

DESCRIPTION

 The contents of /etc/motd are displayed by login(1) after a
 successful login but just before it executes the login
 shell.

 The "motd" stands for "message of the day", and this file
 has been traditionally been used for exactly that (it
 requires much less disk space than mail to all users).

FILES

 /etc/motd

SEE ALSO

 login(1) issue(5)

http://linuxsavvy.com/resources/linux/man/man5/motd.5.html (1 of 2) [14/09/1999 10:02:22]

http://linuxsavvy.com/resources/linux/man/man5/motd.5.html (2 of 2) [14/09/1999 10:02:22]

NAME

 nologin - prevent non-root users from log into the system

DESCRIPTION

 If the file /etc/nologin exists, login(1) will allow access
 only to root. Other users will be shown the contents of this
 file and their logins refused.

FILES

 /etc/nologin

SEE ALSO

 login(1), shutdown(8)

http://linuxsavvy.com/resources/linux/man/man5/nologin.5.html (1 of 2) [14/09/1999 10:02:23]

http://linuxsavvy.com/resources/linux/man/man5/nologin.5.html (2 of 2) [14/09/1999 10:02:23]

NAME

 nsswitch.conf - System Databases and Name Service Switch
 configuration file

DESCRIPTION

 Various functions in the C Library need to be configured to
 work correctly in the local environment. Traditionally,
 this was done by using files (e.g., `/etc/passwd'), but
 other nameservices (like the Network Information Service
 (NIS) and the Domain Name Service (DNS)) became popular, and
 were hacked into the C library, usually with a fixed search
 order.

 The Linux libc5 with NYS support and the GNU C Library 2.x
 (libc.so.6) contain a cleaner solution of this problem. It
 is designed after a method used by Sun Microsystems in the C
 library of Solaris 2. We follow their name and call this
 scheme "Name Service Switch" (NSS). The sources for the
 "databases" and their lookup order are specified in the
 /etc/nsswitch.conf file.

 The following databases are available in the NSS:

 aliases
 Mail aliases, used by sendmail(8)

 ethers
 Ethernet numbers

 group
 Groups of users, used by getgrent(3) functions.

 hosts
 Host names and numbers, used by gethostbyname(3) and
 similar functions.

http://linuxsavvy.com/resources/linux/man/man5/nsswitch.5.html (1 of 5) [14/09/1999 10:02:25]

 netgroup
 Network wide list of hosts and users, used for access
 rules

 network
 Network names and numbers, used by getnetent(3) func-
 tions.

 passwd
 User passwords, used by getpwent(3) functions.

 protocols
 Network protocols, used by getprotoent(3) functions.

 publickey
 Public and secret keys for secure_rpc used by NIS+ and
 NFS.

 rpc Remote procedure call names and numbers, used by
 getrpcbyname(3) and similar functions.

 services
 Network services, used by getservent(3) functions.

 shadow
 Shadow user passwords, used by getspnam(3)

 An example /etc/nsswitch.conf file could be look like (This
 is also the default if /etc/nsswitch.conf is missing):
9 passwd: compat
 group: compat
 shadow: compat
9 hosts: dns [!UNAVAIL=return] files
 networks: nis [NOTFOUND=return] files
 ethers: nis [NOTFOUND=return] files
 protocols: nis [NOTFOUND=return] files
 rpc: nis [NOTFOUND=return] files
 services: nis [NOTFOUND=return] files

 The first column is the database as you can guess from the
 table above. The rest of the line specifies how the lookup
 process works. You can specify the way it works for each
 database individually.

 The configuration specification for each database can con-

http://linuxsavvy.com/resources/linux/man/man5/nsswitch.5.html (2 of 5) [14/09/1999 10:02:25]

 tain two different items:
 * The service specification like `files', `db', or `nis'.
 * The reaction on lookup result like `[NOTFOUND=return]'.

 For libc5 with NYS, the allowed service specifications are
 `files', `nis' and `nisplus'. For hosts, you could specify
 `dns' as extra service, for passwd and group `compat', but
 not for shadow.

 For GNU C Library, you must have a file called
 /lib/libnss_SERVICE.so.1 for every SERVICE you are using. On
 a standard installation, you could use `files', `db', `nis'
 and `nisplus'. For hosts, you could specify `dns' as extra
 service, for passwd, group and shadow `compat'. This Ser-
 vices will not be used by libc5 with NYS.

 The second item in the specification gives the user much
 finer control on the lookup process. Action items are
 placed between two service names and are written within
 brackets. The general form is

 where
9 STATUS => success | notfound | unavail | tryagain
 ACTION => return | continue

 The case of the keywords is insignificant. The STATUS values
 are the results of a call to a lookup function of a specific
 service. They mean:

 success
 No error occurred and the wanted entry is returned. The
 default action for this is `return'.

 notfound
 The lookup process works ok but the needed value was
 not found. The default action is `continue'.

 unavail
 The service is permanently unavailable. This can
 either mean the needed file is not available, or, for
 DNS, the server is not available or does not allow
 queries. The default action is `continue'.

http://linuxsavvy.com/resources/linux/man/man5/nsswitch.5.html (3 of 5) [14/09/1999 10:02:25]

 tryagain
 The service is temporarily unavailable. This could
 mean a file is locked or a server currently cannot
 accept more connections. The default action is `con-
 tinue'.

 Interaction with +/- syntax (compat mode)
 Linux libc5 without NYS does not has the name service switch
 but does allow the user some policy control. In /etc/passwd
 you could have entries of the form +user or +@netgroup
 (include the specified user from the NIS passwd map), -user
 or -@netgroup (exclude the specified user) and + (include
 every user, except the excluded ones, from the NIS passwd
 map). Since most people only put a + at the end of
 /etc/passwd to include everything from NIS, the switch pro-
 vides a faster alternative for this case (`passwd: files
 nis') which doesn't require the single + entry in
 /etc/passwd, /etc/group and /etc/shadow. If this is not
 sufficient, the NSS `compat' service provides full +/-
 semantics. By default, the source is `nis', but this may be
 overriden by specifying `nisplus' as source for the pseudo-
 databases passwd_compat, group_compat and shadow_compat.
 This pseudo-databases are only available in GNU C Library.

FILES

 A service named SERVICE is implemented by a shared object
 library named libnss_SERVICE.so.1 that resides in /lib.
9

 C Library 2.x
 /lib/libnss_db.so.1 implements `db' source for GNU C
 Library 2.x
 /lib/libnss_dns.so.1 implements `dns' source for GNU C
 Library 2.x
 /lib/libnss_files.so.1 implements `files' source for GNU C
 Library 2.x
 /lib/libnss_hesoid.so.1 implements `hesoid' source for GNU
 C Library 2.x
 /lib/libnss_nis.so.1 implements `nis' source for GNU C
 Library 2.x
 /lib/libnss_nisplus.so.1 implements `nisplus' source for GNU

http://linuxsavvy.com/resources/linux/man/man5/nsswitch.5.html (4 of 5) [14/09/1999 10:02:25]

 C Library 2.x

NOTES

 Within each process that uses nsswitch.conf, the entire file
 is read only once; if the file is later changed, the process
 will continue using the old configuration.
 With Solaris, is isn't possible to link programs using the
 NSS Service statically. With Linux, this is no problem.

http://linuxsavvy.com/resources/linux/man/man5/nsswitch.5.html (5 of 5) [14/09/1999 10:02:25]

NAME

 passwd - password file

DESCRIPTION

 Passwd is a text file, that contains a list of the system's
 accounts, giving for each account some useful information
 like user ID, group ID, home directory, shell, etc. Often
 it also contains the encrypted passwords for each account.
 It should have general read permission (many utilities, like
 ls(1) use it to map user IDs to user names), but write
 access only for the superuser.

 In the good old days there was no great problem with this
 general read permission. Everybody could read the encrypted
 passwords, but the hardware was too slow to crack a well-
 chosen password, and moreover, the basic assumption used to
 be that of a friendly user-community. These days many peo-
 ple run some version of the shadow password suite, where
 /etc/passwd has *'s instead of encrypted passwords, and the
 encrypted passwords are in /etc/shadow which is readable by
 the superuser only.

 Regardless of whether shadow passwords are used, many sysad-
 mins use a star in the encrypted password field to make sure
 that this user can not authenticate him- or herself using a
 password. (But see the Notes below.)

 If you create a new login, first put a star in the password
 field, then use passwd(1) to set it.

 There is one entry per line, and each line has the format:

 account:password:UID:GID:GECOS:directory:shell

 The field descriptions are:

http://linuxsavvy.com/resources/linux/man/man5/passwd.5.html (1 of 3) [14/09/1999 10:02:27]

 account the name of the user on the system. It
 should not contain capital letters.

 password the encrypted user password or a star.

 UID the numerical user ID.

 GID the numerical primary group ID for this user.

 GECOS This field is optional and only used for
 informational purposes. Usually, it contains
 the full user name. GECOS means General
 Electric Comprehensive Operating System,
 which has been renamed to GCOS when GE's
 large systems division was sold to Honeywell.
 Dennis Ritchie has reported: "Sometimes we
 sent printer output or batch jobs to the GCOS
 machine. The gcos field in the password file
 was a place to stash the information for the
 $IDENTcard. Not elegant."

 directory the user's $HOME directory.

 shell the program to run at login (if empty, use
 /bin/sh). If set to a non-existing execut-
 able, the user will be unable to login
 through login(1).

NOTE

 If you want to create user groups, their GIDs must be equal
 and there must be an entry in /etc/group, or no group will
 exist.

 If the encrypted password is set to a star, the user will be
 unable to login using login(1), but may still login using
 rlogin(1), run existing processes and initiate new ones
 through rsh(1) or cron(1) or at(1) or mail filters etc.
 Trying to lock an account by simply changing the shell field
 yields the same result and additionally allows the use of

http://linuxsavvy.com/resources/linux/man/man5/passwd.5.html (2 of 3) [14/09/1999 10:02:27]

 su(1).

FILES

 /etc/passwd

SEE ALSO

 passwd(1), login(1), su(1), group(5), shadow(5)

http://linuxsavvy.com/resources/linux/man/man5/passwd.5.html (3 of 3) [14/09/1999 10:02:27]

NAME

 proc - process information pseudo-filesystem

DESCRIPTION

 /proc is a pseudo-filesystem which is used as an interface
 to kernel data structures rather than reading and interpret-
 ing /dev/kmem. Most of it is read-only, but some files
 allow kernel variables to be changed.

 The following outline gives a quick tour through the /proc
 hierarchy.

 [number]
 There is a numerical subdirectory for each running
 process; the subdirectory is named by the process ID.
 Each contains the following pseudo-files and
 directories.

 cmdline
 This holds the complete command line for the
 process, unless the whole process has been swapped
 out, or unless the process is a zombie. In either
 of these later cases, there is nothing in this
 file: i.e. a read on this file will return as
 having read 0 characters. This file is null-
 terminated, but not newline-terminated.

 cwd This is a link to the current working directory of
 the process. To find out the cwd of process 20,
 for instance, you can do this:
 cd /proc/20/cwd; /bin/pwd

 Note that the pwd command is often a shell builtin, and
 might not work properly in this context.

 environ
 This file contains the environment for the

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (1 of 15) [14/09/1999 10:02:33]

 process. The entries are separated by null
 characters, and there may be a null character at
 the end. Thus, to print out the environment of
 process 1, you would do:
 (cat /proc/1/environ; echo) | tr "\000" "\n"

 (For a reason why one should want to do this, see
 lilo(8).)

 exe a pointer to the binary which was executed, and
 appears as a symbolic link. readlink(2) on the
 exe special file returns a string in the format:

 [device]:inode

 For example, [0301]:1502 would be inode 1502 on
 device major 03 (IDE, MFM, etc. drives) minor 01
 (first partition on the first drive).

 Also, the symbolic link can be dereferenced
 normally - attempting to open "exe" will open the
 executable. You can even type /proc/[number]/exe
 to run another copy of the same process as
 [number].

 find(1) with the -inum option can be used to
 locate the file.

 fd This is a subdirectory containing one entry for
 each file which the process has open, named by its
 file descriptor, and which is a symbolic link to
 the actual file (as the exe entry does). Thus, 0
 is standard input, 1 standard output, 2 standard
 error, etc.

 Programs that will take a filename, but will not
 take the standard input, and which write to a
 file, but will not send their output to standard
 output, can be effectively foiled this way,
 assuming that -i is the flag designating an input
 file and -o is the flag designating an output
 file:
 foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...
 and you have a working filter. Note that this
 will not work for programs that seek on their
 files, as the files in the fd directory are not
 seekable.

 /proc/self/fd/N is approximately the same as
 /dev/fd/N in some UNIX and UNIX-like systems.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (2 of 15) [14/09/1999 10:02:33]

 Most Linux MAKEDEV scripts symbolically link
 /dev/fd to /proc/self/fd, in fact.

 maps A file containing the currently mapped memory
 regions and their access permissions.

 The format is:
 address perms offset dev inode
 00000000-0002f000 r-x-- 00000400 03:03 1401
 0002f000-00032000 rwx-p 0002f400 03:03 1401
 00032000-0005b000 rwx-p 00000000 00:00 0
 60000000-60098000 rwx-p 00000400 03:03 215
 60098000-600c7000 rwx-p 00000000 00:00 0
 bfffa000-c0000000 rwx-p 00000000 00:00 0

 where address is the address space in the process that
 it occupies, perms is a set of permissions:
 r = read
 w = write
 x = execute
 s = shared
 p = private (copy on write)

 offset is the offset into the file/whatever, dev is the
 device (major:minor), and inode is the inode on that
 device. 0 indicates that no inode is associated with
 the memory region, as the case would be with bss.

 mem This is not the same as the mem (1,1) device,
 despite the fact that it has the same device
 numbers. The /dev/mem device is the physical
 memory before any address translation is done, but
 the mem file here is the memory of the process
 that accesses it. This cannot be mmap(2)'ed
 currently, and will not be until a general mmap(2)
 is added to the kernel. (This might have happened
 by the time you read this.)

 mmap Directory of maps by mmap(2) which are symbolic
 links like exe, fd/*, etc. Note that maps
 includes a superset of this information, so
 /proc/*/mmap should be considered obsolete.

 "0" is usually libc.so.4.

 /proc/*/mmap was removed in Linux kernel version
 1.1.40. (It really was obsolete!)

 root Unix and linux support the idea of a per-process
 root of the filesystem, set by the chroot(2)

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (3 of 15) [14/09/1999 10:02:33]

 system call. Root points to the file system root,
 and behaves as exe, fd/*, etc. do.

 stat Status information about the process. This is
 used by ps(1).

 The fields, in order, with their proper scanf(3)
 format specifiers, are:

 pid %d
 The process id.

 comm %s
 The filename of the executable, in
 parentheses. This is visible whether or not
 the executable is swapped out.

 state %c
 One character from the string "RSDZT" where R
 is running, S is sleeping in an interruptible
 wait, D is sleeping in an uninterruptible
 wait or swapping, Z is zombie, and T is
 traced or stopped (on a signal).

 ppid %d
 The PID of the parent.

 pgrp %d
 The process group ID of the process.

 session %d
 The session ID of the process.

 tty %d
 The tty the process uses.

 tpgid %d
 The process group ID of the process which
 currently owns the tty that the process is
 connected to.

 flags %u
 The flags of the process. Currently, every
 flag has the math bit set, because crt0.s
 checks for math emulation, so this is not
 included in the output. This is probably a
 bug, as not every process is a compiled C
 program. The math bit should be a decimal 4,
 and the traced bit is decimal 10.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (4 of 15) [14/09/1999 10:02:33]

 minflt %u
 The number of minor faults the process has
 made, those which have not required loading a
 memory page from disk.

 cminflt %u
 The number of minor faults that the process
 and its children have made.

 majflt %u
 The number of major faults the process has
 made, those which have required loading a
 memory page from disk.

 cmajflt %u
 The number of major faults that the process
 and its children have made.

 utime %d
 The number of jiffies that this process has
 been scheduled in user mode.

 stime %d
 The number of jiffies that this process has
 been scheduled in kernel mode.

 cutime %d
 The number of jiffies that this process and
 its children have been scheduled in user
 mode.

 cstime %d
 The number of jiffies that this process and
 its children have been scheduled in kernel
 mode.

 counter %d
 The current maximum size in jiffies of the
 process's next timeslice, or what is
 currently left of its current timeslice, if
 it is the currently running process.

 priority %d
 The standard nice value, plus fifteen. The
 value is never negative in the kernel.

 timeout %u
 The time in jiffies of the process's next
 timeout.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (5 of 15) [14/09/1999 10:02:33]

 itrealvalue %u
 The time (in jiffies) before the next SIGALRM
 is sent to the process due to an interval
 timer.

 system
 starttime %d Time the process started in jiffies after
 boot.

 vsize %u
 Virtual memory size

 rss %u
 Resident Set Size: number of pages the
 process has in real memory, minus 3 for
 administrative purposes. This is just the
 pages which count towards text, data, or
 stack space. This does not include pages
 which have not been demand-loaded in, or
 which are swapped out.

 rlim %u
 Current limit in bytes on the rss of the
 process (usually 2,147,483,647).

 startcode %u
 The address above which program text can run.

 endcode %u
 The address below which program text can run.

 startstack %u
 The address of the start of the stack.

 kstkesp %u
 The current value of esp (32-bit stack
 pointer), as found in the kernel stack page
 for the process.

 kstkeip %u
 The current EIP (32-bit instruction pointer).

 signal %d
 The bitmap of pending signals (usually 0).

 blocked %d
 The bitmap of blocked signals (usually 0, 2
 for shells).

 sigignore %d

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (6 of 15) [14/09/1999 10:02:33]

 The bitmap of ignored signals.

 sigcatch %d
 The bitmap of catched signals.

 wchan %u
 This is the "channel" in which the process is
 waiting. This is the address of a system
 call, and can be looked up in a namelist if
 you need a textual name. (If you have an
 up-to-date /etc/psdatabase, then try ps -l to
 see the WCHAN field in action)

 cpuinfo
 This is a collection of CPU and system architecture
 dependent items, for each supported architecture a
 different list. The only two common entries are cpu
 which is (guess what) the CPU currently in use and
 BogoMIPS a system constant which is calculated during
 kernel initialization.

 devices
 Text listing of major numbers and device groups. This
 can be used by MAKEDEV scripts for consistency with the
 kernel.

 dma This is a list of the registered ISA DMA (direct memory
 access) channels in use.

 filesystems
 A text listing of the filesystems which were compiled
 into the kernel. Incidentally, this is used by
 mount(1) to cycle through different filesystems when
 none is specified.

 interrupts
 This is used to record the number of interrupts per
 each IRQ on (at least) the i386 architechure. Very
 easy to read formatting, done in ASCII.

 ioports
 This is a list of currently registered Input-Output
 port regions that are in use.

 kcore
 This file represents the physical memory of the system
 and is stored in the core file format. With this
 pseudo-file, and an unstripped kernel
 (/usr/src/linux/tools/zSystem) binary, GDB can be used

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (7 of 15) [14/09/1999 10:02:33]

 to examine the current state of any kernel data
 structures.

 The total length of the file is the size of physical
 memory (RAM) plus 4KB.

 kmsg This file can be used instead of the syslog(2) system
 call to log kernel messages. A process must have
 superuser privileges to read this file, and only one
 process should read this file. This file should not be
 read if a syslog process is running which uses the
 syslog(2) system call facility to log kernel messages.

 Information in this file is retrieved with the dmesg(8)
 program).

 ksyms
 This holds the kernel exported symbol definitions used
 by the modules(X) tools to dynamically link and bind
 loadable modules.

 loadavg
 The load average numbers give the number of jobs in the
 run queue averaged over 1, 5 and 15 minutes. They are
 the same as the load average numbers given by uptime(1)
 and other programs.

 malloc
 This file is only present if CONFIGDEBUGMALLOC was
 defined during compilation.

 meminfo
 This is used by free(1) to report the amount of free
 and used memory (both physical and swap) on the system
 as well as the shared memory and buffers used by the
 kernel.

 It is in the same format as free(1), except in bytes
 rather than KB.

 modules
 A text list of the modules that have been loaded by the
 system.

 net various net pseudo-files, all of which give the status
 of some part of the networking layer. These files
 contain ASCII structures, and are therefore readable
 with cat. However, the standard netstat(8) suite
 provides much cleaner access to these files.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (8 of 15) [14/09/1999 10:02:33]

 arp This holds an ASCII readable dump of the kernel
 ARP table used for address resolutions. It will
 show both dynamically learned and pre-programmed
 ARP entries. The format is:
 IP address HW type Flags HW address
 10.11.100.129 0x1 0x6 00:20:8A:00:0C:5A
 10.11.100.5 0x1 0x2 00:C0:EA:00:00:4E
 44.131.10.6 0x3 0x2 GW4PTS

 Where 'IP address' is the IPv4 address of the machine,
 the 'HW type' is the hardware type of the address from
 RFC 826. The flags are the internal flags of the ARP
 structure (as defined in /usr/include/linux/if_arp.h)
 and the 'HW address' is the physical layer mapping for
 that IP address if it is known.

 dev The dev pseudo-file contains network device status
 information. This gives the number of received and
 sent packets, the number of errors and collisions
 and other basic statistics. These are used by the
 ifconfig(8) program to report device status. The
 format is:
 Inter-| Receive | Transmit
 face |packets errs drop fifo frame|packets errs drop fifo colls carrier
 lo: 0 0 0 0 0 2353 0 0 0 0 0
 eth0: 644324 1 0 0 1 563770 0 0 0 581 0

 ipx No information.

 ipx_route
 No information.

 rarp This file uses the same format as the arp file and
 contains the current reverse mapping database used
 to provide rarp(8) reverse address lookup
 services. If RARP is not configured into the
 kernel this file will not be present.

 raw Holds a dump of the RAW socket table. Much of the
 information is not of use apart from debugging.
 The 'sl' value is the kernel hash slot for the
 socket, the 'local address' is the local address
 and protocol number pair."St" is the internal
 status of the socket. The "tx_queue" and
 "rx_queue" are the outgoing and incoming data
 queue in terms of kernel memory usage. The "tr",
 "tm->when" and "rexmits" fields are not used by
 RAW. The uid field holds the creator euid of the
 socket.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (9 of 15) [14/09/1999 10:02:33]

 route
 No information, but looks similar to route(8)

 snmp This file holds the ASCII data needed for the IP,
 ICMP, TCP and UDP management information bases for
 an snmp agent. As of writing the TCP mib is
 incomplete. It is hoped to have it completed by
 1.2.0.

 tcp Holds a dump of the TCP socket table. Much of the
 information is not of use apart from debugging.
 The "sl" value is the kernel hash slot for the
 socket, the "local address" is the local address
 and port number pair. The "remote address" is the
 remote address and port number pair (if
 connected). 'St' is the internal status of the
 socket. The 'tx_queue' and 'rx_queue' are the
 outgoing and incoming data queue in terms of
 kernel memory usage. The "tr", "tm->when" and
 "rexmits" fields hold internal information of the
 kernel socket state and are only useful for
 debugging. The uid field holds the creator euid of
 the socket.

 udp Holds a dump of the UDP socket table. Much of the
 information is not of use apart from debugging.
 The "sl" value is the kernel hash slot for the
 socket, the "local address" is the local address
 and port number pair. The "remote address" is the
 remote address and port number pair (if
 connected). "St" is the internal status of the
 socket. The "tx_queue" and "rx_queue" are the
 outgoing and incoming data queue in terms of
 kernel memory usage. The "tr", "tm->when" and
 "rexmits" fields are not used by UDP. The uid
 field holds the creator euid of the socket. The
 format is:
sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid
 1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0
 1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0
 1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

 unix Lists the UNIX domain sockets present within the
 system and their status. The format is:
9 Num RefCount Protocol Flags Type St Path
 0: 00000002 00000000 00000000 0001 03
 1: 00000001 00000000 00010000 0001 01 /dev/printer
9
 Where 'Num' is the kernel table slot number, 'RefCount'
 is the number of users of the socket, 'Protocol' is

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (10 of 15) [14/09/1999 10:02:33]

 currently always 0, 'Flags' represent the internal
 kernel flags holding the status of the socket. Type is
 always '1' currently (Unix domain datagram sockets are
 not yet supported in the kernel). 'St' is the internal
 state of the socket and Path is the bound path (if any)
 of the socket.

 pci This is a listing of all PCI devices found during
 kernel initialization and their configuration.

 scsi A directory with the scsi midlevel pseudo-file and
 various SCSI lowlevel driver directories, which contain
 a file for each SCSI host in this system, all of which
 give the status of some part of the SCSI IO subsystem.
 These files contain ASCII structures, and are therefore
 readable with cat.

 You can also write to some of the files to reconfigure
 the subsystem or switch certain features on or off.

 scsi This is a listing of all SCSI devices known to the
 kernel. The listing is similar to the one seen
 during bootup. scsi currently supports only the
 singledevice command which allows root to add a
 hotplugged device to the list of known devices.

 An echo 'scsi singledevice 1 0 5 will cause host
 scsi1 to scan on SCSI channel 0 for a device on ID
 5 LUN 0. If there is already a device known on
 this address or the address is invalid an error

 drivername
 drivername can currently be: NCR53c7xx, aha152x,
 aha1542, aha1740, aic7xxx, buslogic, eata_dma,
 eata_pio, fdomain, in2000, pas16, qlogic,
 scsi_debug, seagate, t128, u15-24f, ultrastore or
 wd7000. These directories show up for all drivers
 which registered at least one SCSI HBA. Every
 directory contains one file per registered host.
 Every host-file is named after the number the host
 got assigned during initilization.

 Reading these files will usually show driver and
 host configuration, statistics etc.

 Writing to these files allows different things on
 different hosts. For example with the latency and
 nolatency commands root can switch on and off
 command latency measurement code in the eata_dma

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (11 of 15) [14/09/1999 10:02:33]

 driver. With the lockup and unlock commands root
 can control bus lockups simulated by the
 scsi_debug driver.

 self This directory refers to the process accessing the
 /proc filesystem, and is identical to the /proc
 directory named by the process ID of the same process.

 stat kernel/system statistics

 cpu 3357 0 4313 1362393
 The number of jiffies (1/100ths of a second) that
 the system spent in user mode, user mode with low
 priority (nice), system mode, and the idle task,
 respectively. The last value should be 100 times
 the second entry in the uptime pseudo-file.

 disk 0 0 0 0
 The four disk entries are not implemented at this
 time. I'm not even sure what this should be,
 since kernel statistics on other machines usually
 track both transfer rate and I/Os per second and
 this only allows for one field per drive.

 page 5741 1808
 The number of pages the system paged in and the
 number that were paged out (from disk).

 swap 1 0
 The number of swap pages that have been brought in
 and out.

 The number of interrupts received from the system
 boot.

 ctxt 115315
 The number of context switches that the system
 underwent.

 btime 769041601
 boot time, in seconds since the epoch (January 1,
 1970).

 sys This directory (present since 1.3.57) contains a number
 of files and subdirectories corresponding to kernel
 variables. These variables can be read and sometimes
 modified using the proc file system, and using the
 sysctl(2) system call. Presently, there are
 subdirectories kernel, net, vm that each contain more

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (12 of 15) [14/09/1999 10:02:33]

 files and subdirectories.

 kernel
 This contains files domainname, file-max, file-nr,
 inode-max, inode-nr, osrelease, panic, real-root-
 dev, securelevel, with function fairly clear from
 the name.

 The (read-only) file file-nr gives the number of files
 presently opened.

 The file file-max gives the maximum number of open
 files the kernel is willing to handle. If 1024 is not
 enough for you, try
 echo 4096 > /proc/sys/kernel/file-max

 Similarly, the files inode-nr and inode-max indicate
 the present and the maximum number of inodes.

 The files ostype, osrelease, version give substrings of
 /proc/version.

 The file panic gives r/w access to the kernel variable
 panic_timeout. If this is zero, the kernel will loop
 on a panic; if nonzero it indicates that the kernel
 should autoreboot after this number of seconds.

 The file securelevel seems rather meaningless at
 present - root is just too powerful.

 uptime
 This file contains two numbers: the uptime of the
 system (seconds), and the amount of time spent in idle
 process (seconds).

 This strings identifies the kernel version that is
 currently running. For instance:
 Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

SEE ALSO

 cat(1), find(1), free(1), mount(1), ps(1), tr(1), uptime(1),
 readlink(2), mmap(2), chroot(2), syslog(2), hier(7), arp(8),
 dmesg(8), netstat(8), route(8), ifconfig(8), procinfo(8) and
 much more

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (13 of 15) [14/09/1999 10:02:33]

CONFORMS TO

 This roughly conforms to a Linux 1.3.11 kernel. Please
 update this as necessary!

 Last updated for Linux 1.3.11.

CAVEATS

 Note that many strings (i.e., the environment and command
 line) are in the internal format, with sub-fields terminated
 by NUL bytes, so you may find that things are more readable
 if you use od -c or tr "\000" "\n" to read them.

 This manual page is incomplete, possibly inaccurate, and is
 the kind of thing that needs to be updated very often.

BUGS

 The /proc file system may introduce security holes into
 processes running with chroot(2). For example, if /proc is
 mounted in the chroot hierarchy, a chdir(2) to /proc/1/root
 will return to the original root of the file system. This
 may be considered a feature instead of a bug, since Linux
 does not yet support the fchroot(2) call.

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (14 of 15) [14/09/1999 10:02:33]

http://linuxsavvy.com/resources/linux/man/man5/proc.5.html (15 of 15) [14/09/1999 10:02:33]

NAME

 protocols - the protocols definition file

DESCRIPTION

 This file is a plain ASCII file, describing the various
 DARPA internet protocols that are available from the TCP/IP
 subsystem. It should be consulted instead of using the
 numbers in the ARPA include files, or, even worse, just
 guessing them. These numbers will occur in the protocol
 field of any ip header.

 Keep this file untouched since changes would result in
 incorrect ip packages. Protocol numbers and names are speci-
 fied by the DDN Network Information Center.

 Each line is of the following format:

 protocol number aliases ...

 where the fields are delimited by spaces or tabs. Empty
 lines and lines starting with a hash mark (#) are ignored.
 Remainder of lines are also ignored from the occurrence of a
 hash mark.

 The field descriptions are:

 protocol
 the native name for the protocol. For example ip, tcp
 or udp.

 number
 the official number for this protocol as it will appear
 within the ip header.

http://linuxsavvy.com/resources/linux/man/man5/protocols.5.html (1 of 3) [14/09/1999 10:02:35]

 aliases
 optional aliases for the protocol.

 This file might be distributed over a network using a net-
 workwide naming service like Yellow Pages/NIS or
 BIND/Hesoid.

FILES

 /etc/protocols
 The protocols definition file.

SEE ALSO

 getprotoent(3)

 Guide to Yellow Pages Service

 Guide to BIND/Hesiod Service

http://linuxsavvy.com/resources/linux/man/man5/protocols.5.html (2 of 3) [14/09/1999 10:02:35]

http://linuxsavvy.com/resources/linux/man/man5/protocols.5.html (3 of 3) [14/09/1999 10:02:35]

NAME

 securetty - file which lists ttys from which root can log in

DESCRIPTION

 /etc/securetty is used by login(1); the file contains the
 device names of tty lines (one per line, without leading
 /dev/) on which root is allowed to login.

FILES

 /etc/securetty

SEE ALSO

 login(1)

http://linuxsavvy.com/resources/linux/man/man5/securetty.5.html (1 of 2) [14/09/1999 10:02:36]

http://linuxsavvy.com/resources/linux/man/man5/securetty.5.html (2 of 2) [14/09/1999 10:02:36]

NAME

 services - Internet network services list

DESCRIPTION

 services is a plain ASCII file providing a mapping between
 friendly textual names for internet services, and their
 underlying assigned port numbers and protocol types. Every
 networking program should look into this file to get the
 port number (and protocol) for its service. The C library
 routines getservent(3), getservbyname(3), getservbyport(3),
 setservent(3), and endservent(3) support querying this file
 from programs.

 Port numbers are assigned by the IANA (Internet Assigned
 Numbers Authority), and their current policy is to assign
 both TCP and UDP protocols when assigning a port number.
 Therefore, most entries will have two entries, even for TCP
 only services.

 Port numbers below 1024 (so-called 'low numbered' ports) can
 only be bound to by root (see bind(2), tcp(7), and udp(7).)
 This is so that clients connecting to low numbered ports can
 trust that the service running on the port is the standard
 implementation, and not a rogue service run by a user of the
 machine. Well-known port numbers specified by the IANA are
 normally located in this root only space.

 The presence of an entry for a service in the services file
 does not necessarily mean that the service is currently run-
 ning on the machine. See inetd.conf(5) for the configuration
 of Internet services offered. Note that not all networking
 services are started by inetd(8), and so won't appear in
 inetd.conf(5). In particular, news (NNTP) and mail (SMTP)
 servers are often initialised from the system boot scripts.

http://linuxsavvy.com/resources/linux/man/man5/services.5.html (1 of 4) [14/09/1999 10:02:39]

 The location of the services file is defined by
 _PATH_SERVICES in /usr/include/netdb.h. This is usually set
 to /etc/services.

 Each line describes one service, and is of the form:

 service-name port/protocol [aliases ...]

 where:

 service-name
 is the friendly name the service is known by and
 looked up under. It is case sensitive. Often, the
 client program is named after the service-name.

 port is the port number (in decimal) to use for this
 service.

 protocol is the type of protocol to be used. This field
 should match an entry in the protocols(5) file.
 Typical values include tcp and udp.

 aliases is an optional space or tab separated list of
 other names for this service (but see the BUGS
 section below). Again, the names are case sensi-
 tive.

 Either spaces or tabs may be used to separate the fields.

 Comments are started by the hash sign (#) and continue until
 the end of the line. Blank lines are skipped.

 The service-name should begin in the first column of the
 file, since leading spaces are not stripped. service-names
 can be any printable characters excluding space and tab,
 however, a conservative choice of characters should be used
 to minimise inter-operability problems. Eg: a-z, 0-9, and
 hyphen (-) would seem a sensible choice.

 Lines not matching this format should not be present in the
 file. (Currently, they are silently skipped by getser-
 vent(3), getservbyname(3), and getservbyport(3). However,
 this behaviour should not be relied on.)

 As a backwards compatibility feature, the slash (/) between
 the port number and protocol name can in fact be either a

http://linuxsavvy.com/resources/linux/man/man5/services.5.html (2 of 4) [14/09/1999 10:02:39]

 slash or a comma (,). Use of the comma in modern installa-
 tions is depreciated.

 This file might be distributed over a network using a
 network-wide naming service like Yellow Pages/NIS or
 BIND/Hesiod.

 A sample services file might look like this:

 netstat 15/tcp
 qotd 17/tcp quote
 msp 18/tcp # message send protocol
 msp 18/udp # message send protocol
 chargen 19/tcp ttytst source
 chargen 19/udp ttytst source
 ftp 21/tcp
 # 22 - unassigned
 telnet 23/tcp

BUGS

 There is a maximum of 35 aliases, due to the way the getser-
 vent(3) code is written.

 Lines longer than BUFSIZ (currently 1024) characters will be
 ignored by getservent(3), getservbyname(3), and get-
 servbyport(3). However, this will also cause the next line
 to be mis-parsed.

FILES

 /etc/services
 The Internet network services list

 /usr/include/netdb.h
 Definition of _PATH_SERVICES

http://linuxsavvy.com/resources/linux/man/man5/services.5.html (3 of 4) [14/09/1999 10:02:39]

SEE ALSO

 getservent(3), getservbyname(3), getservbyport(3), setser-
 vent(3), endservent(3), protocols(5), listen(2),
 inetd.conf(5), inetd(8).

 Assigned Numbers RFC, most recently RFC 1700, (AKA STD0002)

 Guide to Yellow Pages Service

 Guide to BIND/Hesiod Service

http://linuxsavvy.com/resources/linux/man/man5/services.5.html (4 of 4) [14/09/1999 10:02:39]

NAME

 shells - pathnames of valid login shells

DESCRIPTION

 /etc/shells is a text file which contains the full pathnames
 of valid login shells. This file is consulted by chsh(1)
 and available to be queried by other programs.

EXAMPLES

 /etc/shells may contain the following paths:

 /bin/sh
 /bin/csh

FILES

 /etc/shells

SEE ALSO

 chsh(1)

http://linuxsavvy.com/resources/linux/man/man5/shells.5.html (1 of 2) [14/09/1999 10:02:40]

http://linuxsavvy.com/resources/linux/man/man5/shells.5.html (2 of 2) [14/09/1999 10:02:40]

NAME

 termcap - terminal capability database

DESCRIPTION

 The termcap database is an obsolete facility for describing
 the capabilities of character-cell terminals and printers.
 It is retained only for capability with old programs; new
 ones should use the terminfo(5) database and associated
 libraries.

 /etc/termcap is an ASCII file (the database master) that
 lists the capabilities of many different types of terminal.
 Programs can read termcap to find the particular escape
 codes needed to control the visual attributes of the termi-
 nal actually in use. (Other aspects of the terminal are
 handled by stty.) The termcap database is indexed on the
 TERM environment variable.

 Termcap entries must be defined on a single logical line,
 with `\' used to suppress the newline. Fields are separated
 by `:'. The first field of each entry starts at the left-
 hand margin, and contains a list of names for the terminal,
 separated by '|'.

 The first subfield may (in BSD termcap entries from versions
 4.3 and prior) contain a short name consisting of two char-
 acters. This short name may consist of capital or small
 letters. In 4.4BSD termcap entries this field is omitted.

 The second subfield (first, in the newer 4.4BSD format) con-
 tains the name used by the environment variable TERM. It
 should be spelled in lowercase letters. Selectable hardware
 capabilities should be marked by appending a hyphen and a
 suffix to this name. See below for an example. Usual suf-
 fixes are w (more than 80 characters wide), am (automatic
 margins), nam (no automatic margins) and rv (reverse video
 display). The third subfield contains a long and descrip-
 tive name for this termcap entry.

 Subsequent fields contain the terminal capabilities; any
 continued capability lines must be indented one tab from the
 left margin.

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (1 of 10) [14/09/1999 10:02:43]

 Although there is no defined order, it is suggested to write
 first boolean, then numeric and at last string capabilities,
 each sorted alphabetically without looking at lower or upper
 spelling. Capabilities of similar functions can be written
 in one line.

 Example for:

 Head line: vt|vt101|DEC VT 101 terminal in 80 character mode:\
 Head line: Vt|vt101-w|DEC VT 101 terminal in (wide) 132 character mode:\
 Boolean: :bs:\
 Numeric: :co#80:\
 String: :sr=\E[H:\

 Boolean Capabilities
 5i Printer will not echo on screen
 am Automatic margins which means automatic line wrap
 bs Control-H (8 dec.) performs a backspace
 bw Backspace on left margin wraps to previous line and right margin
 da Display retained above screen
 db Display retained below screen
 eo A space erases all characters at cursor position
 es Escape sequences and special characters work in status line
 gn Generic device
 hc This is a hardcopy terminal
 HC The cursor is hard to see when not on bottom line
 hs Has a status line
 hz Hazeltine bug, the terminal can not print tilde characters
 in Terminal inserts nulls, not spaces, to fill whitespace
 km Terminal has a meta key
 mi Cursor movement works in insert mode
 ms Cursor movement works in standout/underline mode
 NP No pad character
 NR ti does not reverse te
 nx No padding, must use XON/XOFF
 os Terminal can overstrike
 ul Terminal underlines although it can not overstrike
 xb Beehive glitch, f1 sends ESCAPE, f2 sends ^C
 xn Newline/wraparound glitch
 xo Terminal uses xon/xoff protocol
 xs Text typed over standout text will be displayed in standout
 xt Teleray glitch, destructive tabs and odd standout mode

 Numeric Capabilities
 co Number of columns
 dB Delay in milliseconds for backspace on hardcopy terminals
 dC Delay in milliseconds for carriage return on hardcopy terminals
 dF Delay in milliseconds for form feed on hardcopy terminals
 dN Delay in milliseconds for new line on hardcopy terminals
 dT Delay in milliseconds for tabulator stop on hardcopy terminals
 dV Delay in milliseconds for vertical tabulator stop on hardcopy terminals

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (2 of 10) [14/09/1999 10:02:43]

 it Difference between tab positions
 lh Height of soft labels
 lm Lines of memory
 lw Width of soft labels
 li Number of lines
 Nl Number of soft labels
 pb Lowest baud rate which needs padding
 sg Standout glitch
 ug Underline glitch
 vt virtual terminal number
 ws Width of status line if different from screen width

 String Capabilities
 !1 shifted save key
 !2 shifted suspend key
 !3 shifted undo key
 #1 shifted help key
 #2 shifted home key
 #3 shifted input key
 #4 shifted cursor left key
 %0 redo key
 %1 help key
 %2 mark key
 %3 message key
 %4 move key
 %5 next-object key
 %6 open key
 %7 options key
 %8 previous-object key
 %9 print key
 %a shifted message key
 %b shifted move key
 %c shifted next key
 %d shifted options key
 %e shifted previous key
 %f shifted print key
 %g shifted redo key
 %h shifted replace key
 %i shifted cusor right key
 %j shifted resume key
 &0 shifted cancel key
 &1 reference key
 &2 refresh key
 &3 replace key
 &4 restart key
 &5 resume key
 &6 save key
 &7 suspend key
 &8 undo key
 &9 shifted begin key
 *0 shifted find key
 *1 shifted command key

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (3 of 10) [14/09/1999 10:02:43]

 *2 shifted copy key
 *3 shifted create key
 *4 shifted delete character
 *5 shifted delete line
 *6 select key
 *7 shifted end key
 *8 shifted clear line key
 *9 shifted exit key
 @0 find key
 @1 begin key
 @2 cancel key
 @3 close key
 @4 command key
 @5 copy key
 @6 create key
 @7 end key
 @8 enter/send key
 @9 exit key
 al Insert one line
 AL Indert %1 lines
 ac Pairs of block grafic characters to map alternate character set
 ae End alternative character set
 as Start alternative character set for block grafic characters
 bc Backspace, if not ^H
 bl Audio bell
 bt Move to previous tab stop
 cb Clear from beginning of line to cursor
 cc Dummy command character
 cd Clear to end of screen
 ce Clear to end of line
 ch Move cursor horizontally only to column %1
 cl Clear screen and cursor home
 cm Cursor move to row %1 and column %2 (on screen)
 CM Move cursor to row %1 and column %2 (in memory)
 cr Carriage return
 cs Scroll region from line %1 to %2
 ct Clear tabs
 cv Move cursor vertically only to line %1
 dc Delete one character
 DC Delete %1 characters
 dl Delete one line
 DL Delete %1 lines
 dm Begin delete mode
 do Cursor down one line
 DO Cursor down #1 lines
 ds Disable status line
 eA Enable alternate character set
 ec Erase %1 characters starting at cursor
 ed End delete mode
 ei End insert mode
 ff Formfeed character on hardcopy terminals
 fs Return character to its position before going to status line

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (4 of 10) [14/09/1999 10:02:43]

 F1 The string sent by function key f11
 F2 The string sent by function key f12
 F3 The string sent by function key f13

 F9 The string sent by function key f19
 FA The string sent by function key f20
 FB The string sent by function key f21

 FZ The string sent by function key f45
 Fa The string sent by function key f46
 Fb The string sent by function key f47

 Fr The string sent by function key f63
 hd Move cursor a half line down
 ho Cursor home
 hu Move cursor a half line up
 i1 Initialization string 1 at login
 i3 Initialization string 3 at login
 is Initialization string 2 at login
 ic Insert one character
 IC Insert %1 characters
 if Initialization file
 im Begin insert mode
 ip Insert pad time and needed special characters after insert
 iP Initialization program
 K1 upper left key on keypad
 K2 center key on keypad
 K3 upper right key on keypad
 K4 bottom left key on keypad
 K5 bottom right key on keypad
 k0 Function key 0
 k1 Function key 1
 k2 Function key 2
 k3 Function key 3
 k4 Function key 4
 k5 Function key 5
 k6 Function key 6
 k7 Function key 7
 k8 Function key 8
 k9 Function key 9
 k; Function key 10
 ka Clear all tabs key
 kA Insert line key
 kb Backspace key
 kB Back tab stop
 kC Clear screen key
 kd Cursor down key
 kD Key for delete character under cursor
 ke turn keypad off
 kE Key for clear to end of line
 kF Key for scolling forward/down
 kh Cursor home key

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (5 of 10) [14/09/1999 10:02:43]

 kH Cursor hown down key
 kI Insert character/Insert mode key
 kl Cursor left key
 kL Key for delete line
 kM Key for exit insert mode
 kN Key for next page
 kP Key for previous page
 kr Cursor right key
 kR Key for scolling backward/up
 ks Turn keypad on
 kS Clear to end of screen key
 kt Clear this tab key
 kT Set tab here key
 ku Cursor up key
 l0 Label of zeroth function key, if not f0
 l1 Label of first function key, if not f1
 l2 Label of first function key, if not f2

 la Label of tenth function key, if not f10
 le Cursor left one character
 ll Move cursor to lower left corner
 LE Cursor left %1 characters
 LF Turn soft labels off
 LO Turn soft labels on
 mb Start blinking
 MC Clear soft margins
 md Start bold mode
 me End all mode like so, us, mb, md and mr
 mh Start half bright mode
 mk Dark mode (Characters invisible)
 ML Set left soft margin
 mm Put terminal in meta mode
 mo Put terminal out of meta mode
 mp Turn on protected attribute
 mr Start reverse mode
 MR Set right soft margin
 nd Cursor right one character
 nw Carriage return command
 pc Padding character
 pf Turn printer off
 pk Program key %1 to send string %2 as if typed by user
 pl Program key %1 to execute string %2 in local mode
 pn Program soft label %1 to to show string %2
 po Turn the printer on
 pO Turn the printer on for %1 (<256) bytes
 ps Print screen contents on printer
 px Program key %1 to send string %2 to computer
 r1 Reset string 1 to set terminal to sane modes
 r2 Reset string 2 to set terminal to sane modes
 r3 Reset string 3 to set terminal to sane modes
 RA disable automatic margins
 rc Restore saved cursor position

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (6 of 10) [14/09/1999 10:02:43]

 rf Reset string file name
 RF Request for input from terminal
 RI Cursor right %1 characters
 rp Repeat character %1 for %2 times
 rP Padding after character sent in replace mode
 rs Reset string
 RX Turn off XON/XOFF flow control
 sa Set %1 %2 %3 %4 %5 %6 %7 %8 %9 attributes
 SA enable automatic margins
 sc Save cursor position
 se End standout mode
 sf Normal scroll one line
 SF Normal scroll %1 lines
 so Start standout mode
 sr Reverse scroll
 SR scroll back %1 lines
 st Set tabulator stop in all rows at current column
 SX Turn on XON/XOFF flow control
 ta move to next hardware tab
 tc Read in terminal description from another entry
 te End program that uses cursor motion
 ti Begin program that uses cursor motion
 ts Move cursor to column %1 of status line
 uc Underline character under cursor and move cursor right
 ue End underlining
 up Cursor up one line
 UP Cursor up %1 lines
 us Start underlining
 vb Visible bell
 ve Normal cursor visible
 vi Cursor unvisible
 vs Standout cursor
 wi Set window from line %1 to %2 and column %3 to %4
 XF XOFF character if not ^S

 There are several ways of defining the control codes for
 string capabilities:

 Normal Characters except '^','\' and '%' repesent themself.

 A '^x' means Control-x. Control-A equals 1 decimal.

 \x means a special code. x can be one of the following
 charaters:
 E Escape (27)
 n Linefeed (10)
 r Carriage return (13)
 t Tabulation (9)
 b Backspace (8)
 f Form feed (12)
 0 Null character. A \xxx specifies the octal character
 xxx.

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (7 of 10) [14/09/1999 10:02:43]

 i Increments paramters by one.

 r Single parameter capability

 + Add value of next character to this parameter and do
 binary output

 2 Do ASCII output of this parameter with a field with of
 2

 d Do ASCII output of this parameter with a field with of
 3

 % Print a '%'

 If you use binary output, then you should avoid the null
 character because it terminates the string. You should
 reset tabulator expansion if a tabulator can be the binary
 output of a parameter.

 Warning:
 The above metacharacters for parameters may be wrong,
 they document Minix termcap which may not be compatible
 with Linux termcap.

 The block grafic characters can be specified by three string
 capabilities:

 as start the alternative charset

 ae end it

 ac pairs of characters. The first character is the name
 of the block grafic symbol and the second characters is
 its definition.

 The following names are available:

 + right arrow (>)
 , left arrow (<)
 . down arrow (v)
 0 full square (#)
 I latern (#)
 - upper arrow (^)
 ' rhombus (+)
 a chess board (:)
 f degree (')
 g plus-minus (#)
 h square (#)
 j right bottom corner (+)
 k right upper corner (+)

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (8 of 10) [14/09/1999 10:02:43]

 l left upper corner (+)
 m left bottom corner (+)
 n cross (+)
 o upper horizontal line (-)
 q middle horizontal line (-)
 s bottom horizontal line (_)
 t left tee (+)
 u right tee (+)
 v bottom tee (+)
 w normal tee (+)
 x vertical line (|)
 ~ paragraph (???)

 The values in parentheses are suggested defaults which are
 used by curses, if the capabilities are missing.

SEE ALSO

 termcap(3), curses(3), terminfo(5)

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (9 of 10) [14/09/1999 10:02:43]

http://linuxsavvy.com/resources/linux/man/man5/termcap.5.html (10 of 10) [14/09/1999 10:02:43]

NAME

 ttytype - terminal device to default terminal type mapping

DESCRIPTION

 The /etc/ttytype file associates termcap/terminfo terminal
 type names with tty lines. Each line consists of a terminal
 type, followed by whitespace, followed by a tty name (a dev-
 ice name without the /dev/) prefix.

 This association is used by the program tset(1) to set the
 environment variable TERM to the default terminal name for
 the user's current tty.

 This facility was designed for a traditional time-sharing
 environment featuring character-cell terminals hardwired to
 a Unix minicomputer. It is little used on modern worksta-
 tion and personal Unixes.

EXAMPLE

 A typical /etc/ttytype is:

 con80x25 tty1
 vt320 ttys0

http://linuxsavvy.com/resources/linux/man/man5/ttytype.5.html (1 of 2) [14/09/1999 10:02:44]

FILES

 /etc/ttytype
 the tty definitions file.

SEE ALSO

 getty(1), terminfo(5), termcap(5)

http://linuxsavvy.com/resources/linux/man/man5/ttytype.5.html (2 of 2) [14/09/1999 10:02:44]

NAME

 utmp, wtmp - login records

SYNOPSIS

 #include <utmp.h>

DESCRIPTION

 The utmp file allows one to discover information about who
 is currently using the system. There may be more users
 currently using the system, because not all programs use
 utmp logging.

 Warning: utmp must not be writable, because many system pro-
 grams (foolishly) depend on its integrity. You risk faked
 system logfiles and modifications of system files if you
 leave utmp writable to any user.

 The file is a sequence of entries with the following struc-
 ture declared in the include file (note that this is only
 one of several definitions around; details depend on the
 version of libc):

 #define UT_UNKNOWN 0
 #define RUN_LVL 1
 #define BOOT_TIME 2
 #define NEW_TIME 3
 #define OLD_TIME 4
 #define INIT_PROCESS 5
 #define LOGIN_PROCESS 6
 #define USER_PROCESS 7
 #define DEAD_PROCESS 8
 #define ACCOUNTING 9

 #define UT_LINESIZE 12

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (1 of 6) [14/09/1999 10:02:47]

 #define UT_NAMESIZE 32
 #define UT_HOSTSIZE 256

 struct exit_status {
 short int e_termination; /* process termination status. */
 short int e_exit; /* process exit status. */
 };

 struct utmp {
 short ut_type; /* type of login */
 pid_t ut_pid; /* pid of login process */
 char ut_line[UT_LINESIZE]; /* device name of tty - "/dev/" */
 char ut_id[4]; /* init id or abbrev. ttyname */
 char ut_user[UT_NAMESIZE]; /* user name */
 char ut_host[UT_HOSTSIZE]; /* hostname for remote login */
 struct exit_status ut_exit; /* The exit status of a process
 marked as DEAD_PROCESS. */
 long ut_session; /* session ID, used for windowing*/
 struct timeval ut_tv; /* time entry was made. */
 int32_t ut_addr_v6[4]; /* IP address of remote host. */
 char pad[20]; /* Reserved for future use. */
 };

 /* Backwards compatibility hacks. */
 #define ut_name ut_user
 #ifndef _NO_UT_TIME
 #define ut_time ut_tv.tv_sec
 #endif
 #define ut_xtime ut_tv.tv_sec
 #define ut_addr ut_addr_v6[0]

 This structure gives the name of the special file associated
 with the user's terminal, the user's login name, and the
 time of login in the form of time(2). String fields are
 terminated by '\0' if they are shorter than the size of the
 field.

 The first entries ever created result from init(8) process-
 ing inittab(5). Before an entry is processed, though,
 init(8) cleans up utmp by setting ut_type to DEAD_PROCESS,
 clearing ut_user, ut_host and ut_time with null bytes for
 each record which ut_type is not DEAD_PROCESS or RUN_LVL and
 where no process with PID ut_pid exists. If no empty record
 with the needed ut_id can be found, init creates a new one.
 It sets ut_id from the inittab, ut_pid and ut_time to the
 current values and ut_type to INIT_PROCESS.

 getty(8) locates the entry by the pid, changes ut_type to

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (2 of 6) [14/09/1999 10:02:47]

 LOGIN_PROCESS, changes ut_time, sets ut_line and waits for
 connection to be established. login(8), after a user has
 been authenticated, changes ut_type to USER_PROCESS, changes
 ut_time and sets ut_host and ut_addr. Depending on getty(8)
 and login(8), records may be located by ut_line instead of
 the preferable ut_pid.

 When init(8) finds that a process has exited, it locates its
 utmp entry by ut_pid, sets ut_type to DEAD_PROCESS and
 clears ut_user, ut_host and ut_time with null bytes.

 xterm(1) and other terminal emulators directly create a
 USER_PROCESS record and generate the ut_id by using the last
 two letters of /dev/ttyp%c or by using p%d for /dev/pts/%d.
 If they find a DEAD_PROCESS for this id, they recycle it,
 otherwise they create a new entry. If they can, they will
 mark it as DEAD_PROCESS on exiting and it is advised that
 they null ut_line, ut_time, ut_user and ut_host as well.

 xdm(8) should not create an utmp record, because there is no
 assigned terminal. Letting it create one will result in
 trouble like: finger: can not stat /dev/machine.dom. It
 should create wtmp entries, though, just like ftpd(8) does.

 telnetd(8) sets up a LOGIN_PROCESS entry and leaves the rest
 to login(8) as usual. After the telnet session ends, tel-
 netd(8) cleans up utmp in the described way.

 The wtmp file records all logins and logouts. Its format is
 exactly like utmp except that a null user name indicates a
 logout on the associated terminal. Furthermore, the termi-
 nal name "~" with user name "shutdown" or "reboot" indicates
 a system shutdown or reboot and the pair of terminal names
 "|"/"}" logs the old/new system time when date(1) changes
 it. wtmp is maintained by login(1), and init(1) and some
 versions of getty(1). Neither of these programs creates the
 file, so if it is removed record-keeping is turned off.

FILES

 /var/run/utmp
 /var/log/wtmp

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (3 of 6) [14/09/1999 10:02:47]

CONFORMING TO

 Linux utmp entries conform neither to v7/BSD nor to SYSV:
 They are a mix of the two. v7/BSD has fewer fields; most
 importantly it lacks ut_type, which causes native v7/BSD-
 like programs to display (for example) dead or login
 entries. Further there is no configuration file which allo-
 cates slots to sessions. BSD does so, because it lacks
 ut_id fields. In Linux (as in SYSV), the ut_id field of a
 record will never change once it has been set, which
 reserves that slot without needing a configuration file.
 Clearing ut_id may result in race conditions leading to cor-
 rupted utmp entries and and potential security holes.
 Clearing the above mentioned fields by filling them with
 null bytes is not required by SYSV semantics, but it allows
 to run many programs which assume BSD semantics and which do
 not modify utmp. Linux uses the BSD conventions for line
 contents, as documented above.

 SYSV only uses the type field to mark them and logs informa-
 tive messages such as e.g. "new time" in the line field.
 UT_UNKNOWN seems to be a Linux invention. SYSV has no
 ut_host or ut_addr_v6 fields.

 Unlike various other systems, where utmp logging can be dis-
 abled by removing the file, utmp must always exist on Linux.
 If you want to disable who(1) then do not make utmp world
 readable.

 Note that the utmp struct from libc5 has changed in libc6.
 Because of this, binaries using the old libc5 struct will
 corrupt /var/run/utmp and/or /var/log/wtmp. Debian systems
 include a patched libc5 which uses the new utmp format. The
 problem still exists with wtmp since it's accessed directly
 in libc5.

RESTRICTIONS

 The file format is machine dependent, so it is recommended
 that it be processed only on the machine architecture where
 it got created.

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (4 of 6) [14/09/1999 10:02:47]

BUGS

 This manpage is based on the libc5 one, things may work dif-
 ferently now.

SEE ALSO

 ac(1), date(1), getutent(3), init(8), last(1), login(1),
 updwtmp(3), who(1)

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (5 of 6) [14/09/1999 10:02:47]

http://linuxsavvy.com/resources/linux/man/man5/utmp.5.html (6 of 6) [14/09/1999 10:02:47]

Linux Man Pages Section 6
● intro.6

Linux Man Pages Section 6

http://linuxsavvy.com/resources/linux/man/man6/ [14/09/1999 10:02:49]

NAME

 intro - Introduction to games

DESCRIPTION

 This chapter describes all the games and funny little pro-
 grams available on the system.

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man6/intro.6.html (1 of 2) [14/09/1999 10:02:50]

http://linuxsavvy.com/resources/linux/man/man6/intro.6.html (2 of 2) [14/09/1999 10:02:50]

Linux Man Pages Section 7
● ascii.7

● bootparam.7

● glob.7

● hier.7

● intro.7

● iso_8859_1.7

● latin1.7

● locale.7

● mailaddr.7

● man.7

● regex.7

● signal.7

● suffixes.7

● unicode.7

● utf-8.7

Linux Man Pages Section 7

http://linuxsavvy.com/resources/linux/man/man7/ [14/09/1999 10:02:51]

http://linuxsavvy.com/resources/linux/man/man7/latin1.7.html

NAME

 ascii - the ASCII character set encoded in octal, decimal,
 and hexadecimal

DESCRIPTION

 ASCII is the American Standard Code for Information Inter-
 change. It is a 7-bit code. Many 8-bit codes (such as ISO
 8859-1, the Linux default character set) contain ASCII as
 their lower half. The international counterpart of ASCII is
 known as ISO 646.

 The following table contains the 128 ASCII characters.

 C program '\X' escapes are noted.

 l l l l l l l l l.
 Oct Dec Hex Char Oct Dec Hex Char _
 000 0 00 NUL '\0' 100 64 40 @
 001 1 01 SOH 101 65 41 A
 002 2 02 STX 102 66 42 B
 003 3 03 ETX 103 67 43 C
 004 4 04 EOT 104 68 44 D
 005 5 05 ENQ 105 69 45 E
 006 6 06 ACK 106 70 46 F 007 7 07 BEL
 '\a' 107 71 47 G 010 8 08 BS
 '\b' 110 72 48 H 011 9 09 HT
 '\t' 111 73 49 I 012 10 0A LF
 '\n' 112 74 4A J 013 11 0B VT
 '\v' 113 75 4B K 014 12 0C FF
 '\f' 114 76 4C L 015 13 0D CR
 '\r' 115 77 4D M
 016 14 0E SO 116 78 4E N
 017 15 0F SI 117 79 4F O
 020 16 10 DLE 120 80 50 P
 021 17 11 DC1 121 81 51 Q

http://linuxsavvy.com/resources/linux/man/man7/ascii.7.html (1 of 3) [14/09/1999 10:02:53]

 022 18 12 DC2 122 82 52 R
 023 19 13 DC3 123 83 53 S
 024 20 14 DC4 124 84 54 T
 025 21 15 NAK 125 85 55 U
 026 22 16 SYN 126 86 56 V
 027 23 17 ETB 127 87 57 W
 030 24 18 CAN 130 88 58 X
 031 25 19 EM 131 89 59 Y
 032 26 1A SUB 132 90 5A Z
 033 27 1B ESC 133 91 5B [
 034 28 1C FS 134 92 5C \ '\\'
 035 29 1D GS 135 93 5D]
 036 30 1E RS 136 94 5E ^
 037 31 1F US 137 95 5F _
 040 32 20 SPACE 140 96 60 `
 041 33 21 ! 141 97 61 a
 042 34 22 " 142 98 62 b
 043 35 23 # 143 99 63 c
 044 36 24 $ 144 100 64 d
 045 37 25 % 145 101 65 e
 046 38 26 & 146 102 66 f
 047 39 27 ' 147 103 67 g
 050 40 28 (150 104 68 h
 051 41 29) 151 105 69 i
 052 42 2A * 152 106 6A j
 053 43 2B + 153 107 6B k
 054 44 2C , 154 108 6C l
 055 45 2D - 155 109 6D m
 056 46 2E . 156 110 6E n
 057 47 2F / 157 111 6F o
 060 48 30 0 160 112 70 p
 061 49 31 1 161 113 71 q
 062 50 32 2 162 114 72 r
 063 51 33 3 163 115 73 s
 064 52 34 4 164 116 74 t
 065 53 35 5 165 117 75 u
 066 54 36 6 166 118 76 v
 067 55 37 7 167 119 77 w
 070 56 38 8 170 120 78 x
 071 57 39 9 171 121 79 y
 072 58 3A : 172 122 7A z
 073 59 3B ; 173 123 7B {
 074 60 3C < 174 124 7C | 075 61 3D =
 175 125 7D }
 076 62 3E > 176 126 7E ~
 077 63 3F ? 177 127 7F DEL

http://linuxsavvy.com/resources/linux/man/man7/ascii.7.html (2 of 3) [14/09/1999 10:02:53]

HISTORY

 An ascii manual page appeared in Version 7 AT&T UNIX.

 On older terminals, the underscore code is displayed as a
 left arrow, called backarrow, the caret is displayed as an
 up-arrow and the vertical bar has a hole in the middle.

 The ASCII standard was published by the United States of
 America Standards Institute (USASI) in 1968.

SEE ALSO

 iso_8859_1(7)

http://linuxsavvy.com/resources/linux/man/man7/ascii.7.html (3 of 3) [14/09/1999 10:02:53]

NAME

 bootparam - Introduction to boot time parameters of the
 Linux kernel

DESCRIPTION

 The Linux kernel accepts certain `command line options' or
 `boot time parameters' at the moment it is started. In gen-
 eral this is used to supply the kernel with information
 about hardware parameters that the kernel would not be able
 to determine on its own, or to avoid/override the values
 that the kernel would otherwise detect.

 When the kernel is booted directly by the BIOS (say from a
 floppy to which you copied a kernel using `cp zImage
 /dev/fd0'), you have no opportunity to specify any parame-
 ters. So, in order to take advantage of this possibility
 you have to use software that is able to pass parameters,
 like LILO or loadlin. For a few parameters one can also
 modify the kernel image itself, using rdev, see rdev(8) for
 further details.

 The LILO program (LInux LOader) written by Werner Almes-
 berger is the most commonly used. It has the ability to boot
 various kernels, and stores the configuration information in
 a plain text file. (See lilo(8) and lilo.conf(5).) LILO can
 boot DOS, OS/2, Linux, FreeBSD, UnixWare, etc., and is quite
 flexible.

 The other commonly used Linux loader is `LoadLin' which is a
 DOS program that has the capability to launch a Linux kernel
 from the DOS prompt (with boot-args) assuming that certain
 resources are available. This is good for people that want
 to launch Linux from DOS.

 It is also very useful if you have certain hardware which

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (1 of 30) [14/09/1999 10:03:03]

 relies on the supplied DOS driver to put the hardware into a
 known state. A common example is `SoundBlaster Compatible'
 sound cards that require the DOS driver to twiddle a few
 mystical registers to put the card into a SB compatible
 mode. Booting DOS with the supplied driver, and then loading
 Linux from the DOS prompt with loadlin avoids the reset of
 the card that happens if one rebooted instead.

THE ARGUMENT LIST

 The kernel command line is parsed into a list of strings
 (boot arguments) separated by spaces. Most of the boot args
 take the form of:

 name[=value_1][,value_2]...[,value_10]

 where `name' is a unique keyword that is used to identify
 what part of the kernel the associated values (if any) are
 to be given to. Note the limit of 10 is real, as the
 present code only handles 10 comma separated parameters per
 keyword. (However, you can re-use the same keyword with up
 to an additional 10 parameters in unusually complicated
 situations, assuming the setup function supports it.)

 Most of the sorting goes on in linux/init/main.c. First,
 the kernel checks to see if the argument is any of the spe-
 cial arguments `root=', `nfsroot=', `nfsaddrs=', `ro', `rw',
 `debug' or `init'. The meaning of these special arguments
 is described below.

 Then it walks a list of setup functions (contained in the
 bootsetups array) to see if the specified argument string
 (such as `foo') has been associated with a setup function
 (`foo_setup()') for a particular device or part of the ker-
 nel. If you passed the kernel the line foo=3,4,5,6 then the
 kernel would search the bootsetups array to see if `foo' was
 registered. If it was, then it would call the setup function
 associated with `foo' (foo_setup()) and hand it the argu-
 ments 3, 4, 5 and 6 as given on the kernel command line.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (2 of 30) [14/09/1999 10:03:03]

 Anything of the form `foo=bar' that is not accepted as a
 setup funtion as described above is then interpreted as an
 environment variable to be set. A (useless?) example would
 be to use `TERM=vt100' as a boot argument.

 Any remaining arguments that were not picked up by the ker-
 nel and were not interpreted as environment variables are
 then passed onto process one, which is usually the init pro-
 gram. The most common argument that is passed to the init
 process is the word `single' which instructs init to boot
 the computer in single user mode, and not launch all the
 usual daemons. Check the manual page for the version of init
 installed on your system to see what arguments it accepts.

GENERAL NON-DEVICE SPECIFIC BOOT ARGS

 `init=...'
 This sets the initial command to be executed by the kernel.
 If this is not set, or cannot be found, the kernel will try
 /etc/init, then /bin/init, then /sbin/init, then /bin/sh and
 panic if all of this fails.

 `nfsaddrs=...'
 This sets the nfs boot address to the given string. This
 boot address is used in case of a net boot.

 `nfsroot=...'
 This sets the nfs root name to the given string. If this
 string does not begin with '/' or ',' or a digit, then it is
 prefixed by `/tftpboot/'. This root name is used in case of
 a net boot.

 `no387'
 (Only when CONFIG_BUGi386 is defined.) Some i387 coproces-
 sor chips have bugs that show up when used in 32 bit pro-
 tected mode. For example, some of the early ULSI-387 chips
 would cause solid lockups while performing floating point
 calculations. Using the `no387' boot arg causes Linux to

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (3 of 30) [14/09/1999 10:03:03]

 ignore the maths coprocessor even if you have one. Of course
 you must then have your kernel compiled with math emulation
 support!

 `no-hlt'
 (Only when CONFIG_BUGi386 is defined.) Some of the early
 i486DX-100 chips have a problem with the `hlt' instruction,
 in that they can't reliably return to operating mode after
 this instruction is used. Using the `no-hlt' instruction
 tells Linux to just run an infinite loop when there is noth-
 ing else to do, and to not halt the CPU. This allows people
 with these broken chips to use Linux.

 `root=...'
 This argument tells the kernel what device is to be used as
 the root filesystem while booting. The default of this set-
 ting is determined at compile time, and usually is the value
 of the root device of the system that the kernel was built
 on. To override this value, and select the second floppy
 drive as the root device, one would use `root=/dev/fd1'.
 (The root device can also be set using rdev(8).)

 The root device can be specified symbolically or numeri-
 cally. A symbolic specification has the form /dev/XXYN,
 where XX designates the device type (`hd' for ST-506 compa-
 tible hard disk, with Y in `a'-`d'; `sd' for SCSI compatible
 disk, with Y in `a'-`e'; `ad' for Atari ACSI disk, with Y in
 `a'-`e', `ez' for a Syquest EZ135 parallel port removable
 drive, with Y=`a', `xd' for XT compatible disk, with Y
 either `a' or `b'; `fd' for floppy disk, with Y the floppy
 drive number - fd0 would be the DOS `A:' drive, and fd1
 would be `B:'), Y the driver letter or number, and N the
 number (in decimal) of the partition on this device (absent
 in the case of floppies). Recent kernels allow many other
 types, mostly for CD-ROMs: nfs, ram, scd, mcd, cdu535,
 aztcd, cm206cd, gscd, sbpcd, sonycd, bpcd. (The type nfs
 specifies a net boot; ram refers to a ram disk.)
 Note that this has nothing to do with the designation of
 these devices on your file system. The `/dev/' part is
 purely conventional.

 The more awkward and less portable numeric specification of
 the above possible root devices in major/minor format is
 also accepted. (E.g., /dev/sda3 is major 8, minor 3, so you

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (4 of 30) [14/09/1999 10:03:03]

 could use `root=0x803' as an alternative.)

 `ro' and `rw'
 The `ro' option tells the kernel to mount the root filesys-
 tem as `readonly' so that filesystem consistency check pro-
 grams (fsck) can do their work on a quiescent file system.
 No processes can write to files on the filesystem in ques-
 tion until it is `remounted' as read/write capable, e.g., by
 `mount -w -n -o remount /'. (See also mount(8).)

 The `rw' option tells the kernel to mount the root filesys-
 tem read/write. This is the default.

 The choice between read-only and read/write can also be set
 using rdev(8).

 `reserve=...'
 This is used to protect I/O port regions from probes. The
 form of the command is:

 reserve=iobase,extent[,iobase,extent]...

 In some machines it may be necessary to prevent device
 drivers from checking for devices (auto-probing) in a
 specific region. This may be because of hardware that reacts
 badly to the probing, or hardware that would be mistakenly
 identified, or merely hardware you don't want the kernel to
 initialize.

 The reserve boot-time argument specifies an I/O port region
 that shouldn't be probed. A device driver will not probe a
 reserved region, unless another boot argument explicitly
 specifies that it do so.

 For example, the boot line

 reserve=0x300,32 blah=0x300

 keeps all device drivers except the driver for `blah' from
 probing 0x300-0x31f.

 `mem=...'

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (5 of 30) [14/09/1999 10:03:03]

 The BIOS call defined in the PC specification that returns
 the amount of installed memory was only designed to be able
 to report up to 64MB. Linux uses this BIOS call at boot to
 determine how much memory is installed. If you have more
 than 64MB of RAM installed, you can use this boot arg to
 tell Linux how much memory you have. The value is in
 decimal or hexadecimal (prefix 0x), and the suffixes `k'
 (times 1024) or `M' (times 1048576) can be used. Here is a
 quote from Linus on usage of the `mem=' parameter.

 ``The kernel will accept any `mem=xx' parameter you give it,
 and if it turns out that you lied to it, it will crash hor-
 ribly sooner or later. The parameter indicates the highest
 addressable RAM address, so `mem=0x1000000' means you have
 16MB of memory, for example. For a 96MB machine this would
 be `mem=0x6000000'.

 NOTE NOTE NOTE: some machines might use the top of memory
 for BIOS cacheing or whatever, so you might not actually
 have up to the full 96MB addressable. The reverse is also
 true: some chipsets will map the physical memory that is
 covered by the BIOS area into the area just past the top of
 memory, so the top-of-mem might actually be 96MB + 384kB for
 example. If you tell linux that it has more memory than it
 actually does have, bad things will happen: maybe not at
 once, but surely eventually.''

 `panic=N'
 By default the kernel will not reboot after a panic, but
 this option will cause a kernel reboot after N seconds (if N
 > 0). This panic timeout can also be set by "echo N >
 /proc/sys/kernel/panic".

 `reboot=[warm|cold][,[bios|hard]]'
 (Only when CONFIG_BUGi386 is defined.) Since 2.0.22 a
 reboot is by default a cold reboot. One asks for the old
 default with `reboot=warm'. (A cold reboot may be required
 to reset certain hardware, but might destroy not yet written
 data in a disk cache. A warm reboot may be faster.) By
 default a reboot is hard, by asking the keyboard controller
 to pulse the reset line low, but there is at least one type
 of motherboard where that doesn't work. The option
 `reboot=bios' will instead jump through the BIOS.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (6 of 30) [14/09/1999 10:03:03]

 `nosmp' and `maxcpus=N'
 (Only when __SMP__ is defined.) A command-line option of
 `nosmp' or `maxcpus=0' will disable SMP activation entirely;
 an option `maxcpus=N' limits the maximum number of CPUs
 activated in SMP mode to N.

BOOT ARGUMENTS FOR USE BY KERNEL
DEVELOPERS

 `debug'
 Kernel messages are handed off to the kernel log daemon
 klogd so that they may be logged to disk. Messages with a
 priority above console_loglevel are also printed on the con-
 sole. (For these levels, see <linux/kernel.h>.) By default
 this variable is set to log anything more important than
 debug messages. This boot argument will cause the kernel to
 also print the messages of DEBUG priority. The console
 loglevel can also be set at run time via an option to klogd.
 See klogd(8).

 `profile=N'
 It is possible to enable a kernel profiling function, if one
 wishes to find out where the kernel is spending its CPU
 cycles. Profiling is enabled by setting the variable
 prof_shift to a nonzero value. This is done either by speci-
 fying CONFIG_PROFILE at compile time, or by giving the `pro-
 file=' option. Now the value that prof_shift gets will be
 N, when given, or CONFIG_PROFILE_SHIFT, when that is given,
 or 2, the default. The significance of this variable is that
 it gives the granularity of the profiling: each clock tick,
 if the system was executing kernel code, a counter is incre-
 mented:

 profile[address >> prof_shift]++;

 The raw profiling information can be read from
 /proc/profile. Probably you'll want to use a tool such as

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (7 of 30) [14/09/1999 10:03:04]

 readprofile.c to digest it. Writing to /proc/profile will
 clear the counters.

 `swap=N1,N2,N3,N4,N5,N6,N7,N8'
 Set the eight parameters max_page_age, page_advance,
 page_decline, page_initial_age, age_cluster_fract,
 age_cluster_min, pageout_weight, bufferout_weight that con-
 trol the kernel swap algorithm. For kernel tuners only.

 `buff=N1,N2,N3,N4,N5,N6'
 Set the six parameters max_buff_age, buff_advance,
 buff_decline, buff_initial_age, bufferout_weight,
 buffermem_grace that control kernel buffer memory manage-
 ment. For kernel tuners only.

BOOT ARGUMENTS FOR RAMDISK USE

 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM.)
 In general it is a bad idea to use a ramdisk under Linux -
 the system will use available memory more efficiently
 itself. But while booting (or while constructing boot flop-
 pies) it is often useful to load the floppy contents into a
 ramdisk. One might also have a system in which first some
 modules (for filesystem or hardware) must be loaded before
 the main disk can be accessed.

 In Linux 1.3.48, ramdisk handling was changed drastically.
 Earlier, the memory was allocated statically, and there was
 a `ramdisk=N' parameter to tell its size. (This could also
 be set in the kernel image at compile time, or by use of
 rdev(8).) These days ram disks use the buffer cache, and
 grow dynamically. For a lot of information (e.g., how to
 use rdev(8) in conjunction with the new ramdisk setup), see
 /usr/src/linux/Documentation/ramdisk.txt.

 There are four parameters, two boolean and two integral.

 `load_ramdisk=N'

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (8 of 30) [14/09/1999 10:03:04]

 If N=1, do load a ramdisk. If N=0, do not load a ramdisk.
 (This is the default.)

 `prompt_ramdisk=N'
 If N=1, do prompt for insertion of the floppy. (This is the
 default.) If N=0, do not prompt. (Thus, this parameter is
 never needed.)

 `ramdisk_size=N' or (obsolete) `ramdisk=N'
 Set the maximal size of the ramdisk(s) to N kB. The default
 is 4096 (4 MB).

 `ramdisk_start=N'
 Sets the starting block number (the offset on the floppy
 where the ramdisk starts) to N. This is needed in case the
 ramdisk follows a kernel image.

 `noinitrd'
 (Only if the kernel was compiled with CONFIG_BLK_DEV_RAM and
 CONFIG_BLK_DEV_INITRD.) These days it is possible to com-
 pile the kernel to use initrd. When this feature is
 enabled, the boot process will load the kernel and an ini-
 tial ramdisk; then the kernel converts initrd into a "nor-
 mal" ramdisk, which is mounted read-write as root device;
 then /linuxrc is executed; afterwards the "real" root file
 system is mounted, and the initrd filesystem is moved over
 to /initrd; finally the usual boot sequence (e.g. invocation
 of /sbin/init) is performed.

 For a detailed description of the initrd feature, see
 /usr/src/linux/Documentation/initrd.txt.

 The `noinitrd' option tells the kernel that although it was
 compiled for operation with initrd, it should not go through
 the above steps, but leave the initrd data under
 /dev/initrd. (This device can be used only once - the data
 is freed as soon as the last process that used it has closed
 /dev/initrd.)

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (9 of 30) [14/09/1999 10:03:04]

BOOT ARGUMENTS FOR SCSI DEVICES

 General notation for this section:

 iobase -- the first I/O port that the SCSI host occupies.
 These are specified in hexidecimal notation, and usually lie
 in the range from 0x200 to 0x3ff.

 irq -- the hardware interrupt that the card is configured to
 use. Valid values will be dependent on the card in ques-
 tion, but will usually be 5, 7, 9, 10, 11, 12, and 15. The
 other values are usually used for common peripherals like
 IDE hard disks, floppies, serial ports, etc.

 scsi-id -- the ID that the host adapter uses to identify
 itself on the SCSI bus. Only some host adapters allow you to
 change this value, as most have it permanently specified
 internally. The usual default value is 7, but the Seagate
 and Future Domain TMC-950 boards use 6.

 parity -- whether the SCSI host adapter expects the attached
 devices to supply a parity value with all information
 exchanges. Specifying a one indicates parity checking is
 enabled, and a zero disables parity checking. Again, not all
 adapters will support selection of parity behaviour as a
 boot argument.

 `max_scsi_luns=...'
 A SCSI device can have a number of `sub-devices' contained
 within itself. The most common example is one of the new
 SCSI CD-ROMs that handle more than one disk at a time. Each
 CD is addressed as a `Logical Unit Number' (LUN) of that
 particular device. But most devices, such as hard disks,
 tape drives and such are only one device, and will be
 assigned to LUN zero.

 Some poorly designed SCSI devices cannot handle being probed
 for LUNs not equal to zero. Therefore, if the compile time
 flag CONFIG_SCSI_MULTI_LUN is not set, newer kernels will by
 default only probe LUN zero.

 To specify the number of probed LUNs at boot, one enters
 `max_scsi_luns=n' as a boot arg, where n is a number between

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (10 of 30) [14/09/1999 10:03:04]

 one and eight. To avoid problems as described above, one
 would use n=1 to avoid upsetting such broken devices.

 SCSI tape configuration
 Some boot time configuration of the SCSI tape driver can be
 achieved by using the following:

 st=buf_size[,write_threshold[,max_bufs]]

 The first two numbers are specified in units of kB. The
 default buf_size is 32kB, and the maximum size that can be
 specified is a ridiculous 16384kB. The write_threshold is
 the value at which the buffer is committed to tape, with a
 default value of 30kB. The maximum number of buffers varies
 with the number of drives detected, and has a default of
 two. An example usage would be:

 st=32,30,2

 Full details can be found in the README.st file that is in
 the scsi directory of the kernel source tree.

 Adaptec aha151x, aha152x, aic6260, aic6360, SB16-SCSI confi-
 guration
 The aha numbers refer to cards and the aic numbers refer to
 the actual SCSI chip on these type of cards, including the
 Soundblaster-16 SCSI.

 The probe code for these SCSI hosts looks for an installed
 BIOS, and if none is present, the probe will not find your
 card. Then you will have to use a boot arg of the form:

 aha152x=iobase[,irq[,scsi-id[,reconnect[,parity]]]]

 If the driver was compiled with debugging enabled, a sixth
 value can be specified to set the debug level.

 All the parameters are as described at the top of this sec-
 tion, and the reconnect value will allow device
 disconnect/reconnect if a non-zero value is used. An example
 usage is as follows:

 aha152x=0x340,11,7,1

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (11 of 30) [14/09/1999 10:03:04]

 Note that the parameters must be specified in order, meaning
 that if you want to specify a parity setting, then you will
 have to specify an iobase, irq, scsi-id and reconnect value
 as well.

 Adaptec aha154x configuration
 The aha1542 series cards have an i82077 floppy controller
 onboard, while the aha1540 series cards do not. These are
 busmastering cards, and have parameters to set the ``fair-
 ness'' that is used to share the bus with other devices. The
 boot arg looks like the following.

 aha1542=iobase[,buson,busoff[,dmaspeed]]

 Valid iobase values are usually one of: 0x130, 0x134, 0x230,
 0x234, 0x330, 0x334. Clone cards may permit other values.

 The buson, busoff values refer to the number of microseconds
 that the card dominates the ISA bus. The defaults are 11us
 on, and 4us off, so that other cards (such as an ISA LANCE
 Ethernet card) have a chance to get access to the ISA bus.

 The dmaspeed value refers to the rate (in MB/s) at which the
 DMA (Direct Memory Access) transfers proceed. The default is
 5MB/s. Newer revision cards allow you to select this value
 as part of the soft-configuration, older cards use jumpers.
 You can use values up to 10MB/s assuming that your mother-
 board is capable of handling it. Experiment with caution if
 using values over 5MB/s.

 Adaptec aha274x, aha284x, aic7xxx configuration
 These boards can accept an argument of the form:

 aic7xxx=extended,no_reset

 The extended value, if non-zero, indicates that extended
 translation for large disks is enabled. The no_reset value,
 if non-zero, tells the driver not to reset the SCSI bus when
 setting up the host adaptor at boot.

 AdvanSys SCSI Hosts configuration (`advansys=')
 The AdvanSys driver can accept up to four i/o addresses that
 will be probed for an AdvanSys SCSI card. Note that these

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (12 of 30) [14/09/1999 10:03:04]

 values (if used) do not effect EISA or PCI probing in any
 way. They are only used for probing ISA and VLB cards. In
 addition, if the driver has been compiled with debugging
 enabled, the level of debugging output can be set by adding
 an 0xdeb[0-f] parameter. The 0-f allows setting the level of
 the debugging messages to any of 16 levels of verbosity.

 AM53C974
 AM53C974=host-scsi-id,target-scsi-id,max-rate,max-
 offset

 BusLogic SCSI Hosts configuration (`BusLogic=')
 BusLogic=N1,N2,N3,N4,N5,S1,S2,...

 For an extensive discussion of the BusLogic command line
 parameters, see /usr/src/linux/drivers/scsi/BusLogic.c
 (lines 3149-3270 in the kernel version I am looking at). The
 text below is a very much abbreviated extract.

 The parameters N1-N5 are integers. The parameters S1,... are
 strings. N1 is the I/O Address at which the Host Adapter is
 located. N2 is the Tagged Queue Depth to use for Target
 Devices that support Tagged Queuing. N3 is the Bus Settle
 Time in seconds. This is the amount of time to wait between
 a Host Adapter Hard Reset which initiates a SCSI Bus Reset
 and issuing any SCSI Commands. N4 is the Local Options (for
 one Host Adapter). N5 is the Global Options (for all Host
 Adapters).

 The string options are used to provide control over Tagged
 Queuing (TQ:Default, TQ:Enable, TQ:Disable, TQ:<Per-Target-
 Spec>), over Error Recovery (ER:Default, ER:HardReset,
 ER:BusDeviceReset, ER:None, ER:<Per-Target-Spec>), and over
 Host Adapter Probing (NoProbe, NoProbeISA, NoSortPCI).

 EATA/DMA configuration
 The default list of i/o ports to be probed can be changed by

 eata=iobase,iobase,....

 Future Domain TMC-16x0 configuration
 fdomain=iobase,irq[,adapter_id]

 Great Valley Products (GVP) SCSI controller configuration
 gvp11=dma_transfer_bitmask

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (13 of 30) [14/09/1999 10:03:04]

 Future Domain TMC-8xx, TMC-950 configuration
 tmc8xx=mem_base,irq

 The mem_base value is the value of the memory mapped I/O
 region that the card uses. This will usually be one of the
 following values: 0xc8000, 0xca000, 0xcc000, 0xce000,
 0xdc000, 0xde000.

 IN2000 configuration
 in2000=S

 where S is a comma-separated string of items
 keyword[:value]. Recognized keywords (possibly with value)
 are: ioport:addr, noreset, nosync:x, period:ns,
 disconnect:x, debug:x, proc:x. For the function of these
 parameters, see /usr/src/linux/drivers/scsi/in2000.c.

 NCR5380 and NCR53C400 configuration
 The boot arg is of the form

 ncr5380=iobase,irq,dma

 or

 ncr53c400=iobase,irq

 If the card doesn't use interrupts, then an IRQ value of 255
 (0xff) will disable interrupts. An IRQ value of 254 means to
 autoprobe. More details can be found in the file
 /usr/src/linux/drivers/scsi/README.g_NCR5380.

 NCR53C8xx configuration
 ncr53c8xx=S

 where S is a comma-separated string of items keyword:value.
 Recognized keywords are: mpar (master_parity), spar
 (scsi_parity), disc (disconnection), specf
 (special_features), ultra (ultra_scsi), fsn
 (force_sync_nego), tags (default_tags), sync (default_sync),
 verb (verbose), debug (debug), burst (burst_max). For the
 function of the assigned values, see
 /usr/src/linux/drivers/scsi/ncr53c8xx.c.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (14 of 30) [14/09/1999 10:03:04]

 NCR53c406a configuration
 ncr53c406a=iobase[,irq[,fastpio]]

 Specify irq = 0 for non-interrupt driven mode. Set fastpio
 = 1 for fast pio mode, 0 for slow mode.

 IOMEGA PPA3 configuration
 ppa=iobase[,speed_high[,speed_low[,nybble]]]

 Here iobase is the parallel port address (default 0x378),
 speed_high is the port delay in data phase in microseconds
 (default 1), speed_low is the port delay (in microseconds)
 otherwise (default 6), and nybble is a boolean `force nybble
 (4-bit) mode' (default 0=false). See also
 /usr/src/linux/drivers/scsi/README.ppa.

 Pro Audio Spectrum configuration
 The PAS16 uses a NC5380 SCSI chip, and newer models support
 jumperless configuration. The boot arg is of the form:

 pas16=iobase,irq

 The only difference is that you can specify an IRQ value of
 255, which will tell the driver to work without using inter-
 rupts, albeit at a performance loss. The iobase is usually
 0x388.

 Seagate ST-0x configuration
 If your card is not detected at boot time, you will then
 have to use a boot arg of the form:

 st0x=mem_base,irq

 The mem_base value is the value of the memory mapped I/O
 region that the card uses. This will usually be one of the
 following values: 0xc8000, 0xca000, 0xcc000, 0xce000,
 0xdc000, 0xde000.

 Trantor T128 configuration
 These cards are also based on the NCR5380 chip, and accept
 the following options:

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (15 of 30) [14/09/1999 10:03:04]

 t128=mem_base,irq

 The valid values for mem_base are as follows: 0xcc000,
 0xc8000, 0xdc000, 0xd8000.

 UltraStor 14F/34F configuration
 The default list of i/o ports to be probed can be changed by

 eata=iobase,iobase,....

 WD7000 configuration
 wd7000=irq,dma,iobase

 Commodore Amiga A2091/590 SCSI controller configuration
 wd33c93=S

 where S is a comma-separated string of options. Recognized
 options are nosync:bitmask, nodma:x, period:ns,
 disconnect:x, debug:x, clock:x, next. For details, see
 /usr/src/linux/drivers/scsi/wd33c93.c.

HARD DISKS

 IDE Disk/CD-ROM Driver Parameters
 The IDE driver accepts a number of parameters, which range
 from disk geometry specifications, to support for broken
 controller chips. Drive specific options are specified by
 using `hdX=' with X in `a'-`h'.

 Non-drive specific options are specified with the prefix
 `hd='. Note that using a drive specific prefix for a non-
 drive specific option will still work, and the option will
 just be applied as expected.

 Also note that `hd=' can be used to refer to the next
 unspecified drive in the (a, ..., h) sequence. For the fol-
 lowing discussions, the `hd=' option will be cited for brev-
 ity. See the file README.ide in linux/drivers/block for more

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (16 of 30) [14/09/1999 10:03:04]

 details.

 The `hd=cyls,heads,sects[,wpcom[,irq]]' options
 These options are used to specify the physical geometry of
 the disk. Only the first three values are required. The
 cylinder/head/sectors values will be those used by fdisk.
 The write precompensation value is ignored for IDE disks.
 The IRQ value specified will be the IRQ used for the inter-
 face that the drive resides on, and is not really a drive
 specific parameter.

 The `hd=serialize' option
 The dual IDE interface CMD-640 chip is broken as designed
 such that when drives on the secondary interface are used at
 the same time as drives on the primary interface, it will
 corrupt your data. Using this option tells the driver to
 make sure that both interfaces are never used at the same
 time.

 The `hd=dtc2278' option
 This option tells the driver that you have a DTC-2278D IDE
 interface. The driver then tries to do DTC specific opera-
 tions to enable the second interface and to enable faster
 transfer modes.

 The `hd=noprobe' option
 Do not probe for this drive. For example,

 hdb=noprobe hdb=1166,7,17

 would disable the probe, but still specify the drive
 geometry so that it would be registered as a valid block
 device, and hence useable.

 The `hd=nowerr' option
 Some drives apparently have the WRERR_STAT bit stuck on per-
 manently. This enables a work-around for these broken dev-
 ices.

 The `hd=cdrom' option

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (17 of 30) [14/09/1999 10:03:04]

 This tells the IDE driver that there is an ATAPI compatible
 CD-ROM attached in place of a normal IDE hard disk. In most
 cases the CD-ROM is identified automatically, but if it
 isn't then this may help.

 Standard ST-506 Disk Driver Options (`hd=')
 The standard disk driver can accept geometry arguments for
 the disks similar to the IDE driver. Note however that it
 only expects three values (C/H/S) -- any more or any less
 and it will silently ignore you. Also, it only accepts `hd='
 as an argument, i.e. `hda=' and so on are not valid here.
 The format is as follows:

 hd=cyls,heads,sects

 If there are two disks installed, the above is repeated with
 the geometry parameters of the second disk.

 XT Disk Driver Options (`xd=')
 If you are unfortunate enough to be using one of these old 8
 bit cards that move data at a whopping 125kB/s then here is
 the scoop. If the card is not recognised, you will have to
 use a boot arg of the form:

 xd=type,irq,iobase,dma_chan

 The type value specifies the particular manufacturer of the
 card, and are as follows: 0=generic; 1=DTC; 2,3,4=Western
 Digital, 5,6,7=Seagate; 8=OMTI. The only difference between
 multiple types from the same manufacturer is the BIOS string
 used for detection, which is not used if the type is speci-
 fied.

 The xd_setup() function does no checking on the values, and
 assumes that you entered all four values. Don't disappoint
 it. Here is an example usage for a WD1002 controller with
 the BIOS disabled/removed, using the `default' XT controller
 parameters:

 xd=2,5,0x320,3

 Syquest's EZ* removable disks
 ez=iobase[,irq[,rep[,nybble]]]

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (18 of 30) [14/09/1999 10:03:04]

IBM MCA BUS DEVICES

 See also /usr/src/linux/Documentation/mca.txt.

 PS/2 ESDI hard disks
 It is possible to specify the desired geometry at boot time:

 ed=cyls,heads,sectors.

 For a ThinkPad-720, add the option

 tp720=1.

 IBM Microchannel SCSI Subsystem configuration
 ibmmcascsi=N

 where N is the pun (SCSI ID) of the subsystem.

CD-ROMs (Non-SCSI/ATAPI/IDE)

 The Aztech Interface
 The syntax for this type of card is:

 aztcd=iobase[,magic_number]

 If you set the magic_number to 0x79 then the driver will try
 and run anyway in the event of an unknown firmware version.
 All other values are ignored.

 The MicroSolutions `backpack' CDrom
 Syntax:

 bpcd=iobase

 The CDU-31A and CDU-33A Sony Interface

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (19 of 30) [14/09/1999 10:03:04]

 This CD-ROM interface is found on some of the Pro Audio
 Spectrum sound cards, and other Sony supplied interface
 cards. The syntax is as follows:

 cdu31a=iobase,[irq[,is_pas_card]]

 Specifying an IRQ value of zero tells the driver that
 hardware interrupts aren't supported (as on some PAS cards).
 If your card supports interrupts, you should use them as it
 cuts down on the CPU usage of the driver.

 The is_pas_card should be entered as `PAS' if using a Pro
 Audio Spectrum card, and otherwise it should not be
 specified at all.

 The CDU-535 Sony Interface
 The syntax for this CD-ROM interface is:

 sonycd535=iobase[,irq]

 A zero can be used for the I/O base as a `placeholder' if
 one wishes to specify an IRQ value.

 The GoldStar Interface
 The syntax for this CD-ROM interface is:

 gscd=iobase

 The ISP16 CD-ROM Interface
 Syntax:

 isp16=[iobase[,irq[,dma[,type]]]]

 (three integers and a string). If the type is given as
 `noisp16', the interface will not be configured. Other
 recognized types are: `Sanyo", `Sony', `Panasonic' and
 `Mitsumi'.

 The Mitsumi Standard Interface
 The syntax for this CD-ROM interface is:

 mcd=iobase,[irq[,wait_value]]

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (20 of 30) [14/09/1999 10:03:04]

 The wait_value is used as an internal timeout value for peo-
 ple who are having problems with their drive, and may or may
 not be implemented depending on a compile time #define. The
 Mitsumi FX400 is an IDE/ATAPI CD-ROM player and does not use
 the mcd driver.

 The Mitsumi XA/MultiSession Interface
 This is for the same hardware as above, but the driver has
 extended features. Syntax:

 mcdx=iobase[,irq]

 The Optics Storage Interface
 The syntax for this type of card is:

 optcd=iobase

 The Phillips CM206 Interface
 The syntax for this type of card is:

 cm206=[iobase][,irq]

 The driver assumes numbers between 3 and 11 are IRQ values,
 and numbers between 0x300 and 0x370 are I/O ports, so you
 can specify one, or both numbers, in any order. It also
 accepts `cm206=auto' to enable autoprobing.

 The Sanyo Interface
 The syntax for this type of card is:

 sjcd=iobase[,irq[,dma_channel]]

 The SoundBlaster Pro Interface
 The syntax for this type of card is:

 sbpcd=iobase,type

 where type is one of the following (case sensitive) strings:
 `SoundBlaster', `LaserMate', or `SPEA'. The I/O base is
 that of the CD-ROM interface, and not that of the sound por-
 tion of the card.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (21 of 30) [14/09/1999 10:03:04]

ETHERNET DEVICES

 Different drivers make use of different parameters, but they
 all at least share having an IRQ, an I/O port base value,
 and a name. In its most generic form, it looks something
 like this:

 ether=irq,iobase[,param_1[,...param_8]],name

 The first non-numeric argument is taken as the name. The
 param_n values (if applicable) usually have different mean-
 ings for each different card/driver. Typical param_n values
 are used to specify things like shared memory address,
 interface selection, DMA channel and the like.

 The most common use of this parameter is to force probing
 for a second ethercard, as the default is to only probe for
 one. This can be accomplished with a simple:

 ether=0,0,eth1

 Note that the values of zero for the IRQ and I/O base in the
 above example tell the driver(s) to autoprobe.

 The Ethernet-HowTo has extensive documentation on using mul-
 tiple cards and on the card/driver specific implementation
 of the param_n values where used. Interested readers should
 refer to the section in that document on their particular
 card.

THE FLOPPY DISK DRIVER

 There are many floppy driver options, and they are all
 listed in README.fd in linux/drivers/block. This information
 is taken directly from that file.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (22 of 30) [14/09/1999 10:03:04]

 floppy=mask,allowed_drive_mask
 Sets the bitmask of allowed drives to mask. By default, only
 units 0 and 1 of each floppy controller are allowed. This is
 done because certain non-standard hardware (ASUS PCI mother-
 boards) mess up the keyboard when accessing units 2 or 3.
 This option is somewhat obsoleted by the cmos option.

 floppy=all_drives
 Sets the bitmask of allowed drives to all drives. Use this
 if you have more than two drives connected to a floppy con-
 troller.

 floppy=asus_pci
 Sets the bitmask to allow only units 0 and 1. (The default)

 floppy=daring
 Tells the floppy driver that you have a well behaved floppy
 controller. This allows more efficient and smoother opera-
 tion, but may fail on certain controllers. This may speed up
 certain operations.

 floppy=0,daring
 Tells the floppy driver that your floppy controller should
 be used with caution.

 floppy=one_fdc
 Tells the floppy driver that you have only floppy controller
 (default)

 floppy=two_fdc or floppy=address,two_fdc
 Tells the floppy driver that you have two floppy controll-
 ers. The second floppy controller is assumed to be at
 address. If address is not given, 0x370 is assumed.

 floppy=thinkpad
 Tells the floppy driver that you have a Thinkpad. Thinkpads
 use an inverted convention for the disk change line.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (23 of 30) [14/09/1999 10:03:04]

 floppy=0,thinkpad
 Tells the floppy driver that you don't have a Thinkpad.

 floppy=drive,type,cmos
 Sets the cmos type of drive to type. Additionally, this
 drive is allowed in the bitmask. This is useful if you have
 more than two floppy drives (only two can be described in
 the physical cmos), or if your BIOS uses non-standard CMOS
 types. Setting the CMOS to 0 for the first two drives
 (default) makes the floppy driver read the physical cmos for
 those drives.

 floppy=unexpected_interrupts
 Print a warning message when an unexpected interrupt is
 received (default behaviour)

 floppy=no_unexpected_interrupts or floppy=L40SX
 Don't print a message when an unexpected interrupt is
 received. This is needed on IBM L40SX laptops in certain
 video modes. (There seems to be an interaction between video
 and floppy. The unexpected interrupts only affect perfor-
 mance, and can safely be ignored.)

THE SOUND DRIVER

 The sound driver can also accept boot args to override the
 compiled in values. This is not recommended, as it is rather
 complex. It is described in the Readme.Linux file, in
 linux/drivers/sound. It accepts a boot arg of the form:

 sound=device1[,device2[,device3...[,device10]]]

 where each deviceN value is of the following format 0xTaaaId
 and the bytes are used as follows:

 T - device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16,
 7=SB16-MPU401

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (24 of 30) [14/09/1999 10:03:04]

 aaa - I/O address in hex.

 I - interrupt line in hex (i.e 10=a, 11=b, ...)

 d - DMA channel.

 As you can see it gets pretty messy, and you are better off
 to compile in your own personal values as recommended. Using
 a boot arg of `sound=0' will disable the sound driver
 entirely.

ISDN DRIVERS

 The ICN ISDN driver
 Syntax:

 icn=iobase,membase,icn_id1,icn_id2

 where icn_id1,icn_id2 are two strings used to identify the
 card in kernel messages.

 The PCBIT ISDN driver
 Syntax:

 pcbit=membase1,irq1[,membase2,irq2]

 where membaseN is the shared memory base of the N'th card,
 and irqN is the interrupt setting of the N'th card. The
 default is IRQ 5 and membase 0xD0000.

 The Teles ISDN driver
 Syntax:

 teles=iobase,irq,membase,protocol,teles_id

 where iobase is the i/o port address of the card, membase is
 the shared memory base address of the card, irq is the
 interrupt channel the card uses, and teles_id is the unique

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (25 of 30) [14/09/1999 10:03:04]

 ASCII string identifier.

SERIAL PORT DRIVERS

 The RISCom/8 Multiport Serial Driver (`riscom8=')
 Syntax:

 riscom=iobase1[,iobase2[,iobase3[,iobase4]]]

 More details can be found in
 /usr/src/linux/Documentation/riscom8.txt.

 The DigiBoard Driver (`digi=')
 If this option is used, it should have precisely six parame-
 ters. Syntax:

 digi=status,type,altpin,numports,iobase,membase

 The parameters maybe given as integers, or as strings. If
 strings are used, then iobase and membase should be given in
 hexadecimal. The integer arguments (fewer may be given) are
 in order: status (Enable(1) or Disable(0) this card), type
 (PC/Xi(0), PC/Xe(1), PC/Xeve(2), PC/Xem(3)), altpin
 (Enable(1) or Disable(0) alternate pin arrangement), num-
 ports (number of ports on this card), iobase (I/O Port where
 card is configured (in HEX)), membase (base of memory window
 (in HEX)). Thus, the following two boot prompt arguments
 are equivalent:

 digi=E,PC/Xi,D,16,200,D0000
 digi=1,0,0,16,0x200,851968

 More details can be found in
 /usr/src/linux/Documentation/digiboard.txt.

 The Baycom Serial/Parallel Radio Modem
 Syntax:

 baycom=iobase,irq,modem

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (26 of 30) [14/09/1999 10:03:04]

 There are precisely 3 parameters; for several cards, give
 several `baycom=' commands. The modem parameter is a string
 that can take one of the values ser12, ser12*, par96,
 par96*. Here the * denotes that software DCD is to be used,
 and ser12/par96 chooses between the supported modem types.
 For more details, see
 /usr/src/linux/drivers/net/README.baycom.

 Soundcard radio modem driver
 Syntax:

 soundmodem=iobase,irq,dma[,dma2[,serio[,pario]]],0,mode

 All parameters except the last are integers; the dummy 0 is
 required because of a bug in the setup code. The mode
 parameter is a string with syntax hw:modem, where hw is one
 of sbc, wss, wssfdx and modem is one of afsk1200, fsk9600.

THE LINE PRINTER DRIVER

 `lp='
 As of kernels newer than 1.3.75, you can tell the printer
 driver what ports to use and what ports not to use. The
 latter comes in handy if you don't want the printer driver
 to claim all available parallel ports, so that other drivers
 (e.g. PLIP, PPA) can use them instead.
 The format of the argument is multiple i/o, IRQ pairs. For
 example, lp=0x3bc,0,0x378,7 would use the port at 0x3bc in
 IRQ-less (polling) mode, and use IRQ 7 for the port at
 0x378. The port at 0x278 (if any) would not be probed, since
 autoprobing only takes place in the absence of a `lp=' argu-
 ment. To disable the printer driver entirely, one can use
 lp=0.

 WDT500/501 driver
 Syntax:

 wdt=io,irq

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (27 of 30) [14/09/1999 10:03:04]

MOUSE DRIVERS

 `bmouse=irq'
 The busmouse driver only accepts one parameter, that being
 the hardware IRQ value to be used.

 `msmouse=irq'
 And precisely the same is true for the msmouse driver.

 ATARI mouse setup
 atamouse=threshold[,y-threshold]

 If only one argument is given, it is used for both x-
 threshold and y-threshold. Otherwise, the first argu-
 ment is the x-threshold, and the second the y-
 threshold. These values must lie between 1 and 20
 (inclusive); the default is 2.

VIDEO HARDWARE

 `no-scroll'
 This option tells the console driver not to use hardware
 scroll (where a scroll is effected by moving the screen ori-
 gin in video memory, instead of moving the data). It is
 required by certain Braille machines.

AUTHORS

 Linus Torvalds (and many others)

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (28 of 30) [14/09/1999 10:03:04]

SEE ALSO

 klogd(8), lilo.conf(5), lilo(8), mount(8), rdev(8)

 Large parts of this man page have been derived from the Boot
 Parameter HOWTO (version 1.0.1) written by Paul Gortmaker.
 Slightly more information may be found in this (or a more
 recent) HOWTO.

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (29 of 30) [14/09/1999 10:03:04]

http://linuxsavvy.com/resources/linux/man/man7/bootparam.7.html (30 of 30) [14/09/1999 10:03:04]

NAME

 glob - Globbing pathnames

DESCRIPTION

 Long ago, in Unix V6, there was a program /etc/glob that
 would expand wildcard patterns. Soon afterwards this became
 a shell built-in.

 These days there is also a library routine glob(3) that will
 perform this function for a user program.

 The rules are as follows (POSIX 1003.2, 3.13).

WILDCARD MATCHING

 A string is a wildcard pattern if it contains one of the
 characters `?', `*' or `['. Globbing is the operation that
 expands a wildcard pattern into the list of pathnames match-
 ing the pattern. Matching is defined by:

 A `?' (not between brackets) matches any single character.

 A `*' (not between brackets) matches any string, including
 the empty string.

 Character classes
 An expression `[...]' where the first character after the
 leading `[' is not an `!' matches a single character, namely
 any of the characters enclosed by the brackets. The string
 enclosed by the brackets cannot be empty; therefore `]' can
 be allowed between the brackets, provided that it is the

http://linuxsavvy.com/resources/linux/man/man7/glob.7.html (1 of 3) [14/09/1999 10:03:06]

 first character. (Thus, `[][!]' matches the three characters
 `[', `]' and `!'.)

 Ranges
 There is one special convention: two characters separated
 by `-' denote a range. (Thus, `[A-Fa-f0-9]' is equivalent
 to `[ABCDEFabcdef0123456789]'.) One may include `-' in its
 literal meaning by making it the first or last character
 between the brackets. (Thus, `[]-]' matches just the two
 characters `]' and `-', and `[--/]' matches the three char-
 acters `-', `.', `/'.)

 Complementation
 An expression `[!...]' matches a single character, namely
 any character that is not matched by the expression obtained
 by removing the first `!' from it. (Thus, `[!]a-]' matches
 any single character except `]', `a' and `-'.)

 One can remove the special meaning of `?', `*' and `[' by
 preceding them by a backslash, or, in case this is part of a
 shell command line, enclosing them in quotes. Between
 brackets these characters stand for themselves. Thus,
 `[[?*\]' matches the four characters `[', `?', `*' and `\'.

PATHNAMES

 Globbing is applied on each of the components of a pathname
 separately. A `/' in a pathname cannot be matched by a `?'
 or `*' wildcard, or by a range like `[.-0]'. A range cannot
 contain an explicit `/' character; this would lead to a syn-
 tax error.

 If a filename starts with a `.', this character must be
 matched explicitly. (Thus, `rm *' will not remove .profile,
 and `tar c *' will not archive all your files; `tar c .' is
 better.)

http://linuxsavvy.com/resources/linux/man/man7/glob.7.html (2 of 3) [14/09/1999 10:03:06]

EMPTY LISTS

 The nice and simple rule given above: `expand a wildcard
 pattern into the list of matching pathnames' was the origi-
 nal Unix definition. It allowed one to have patterns that
 expand into an empty list, as in
 xv -wait 0 *.gif *.jpg
 where perhaps no *.gif files are present (and this is not an
 error). However, POSIX requires that a wildcard pattern is
 left unchanged when it is syntactically incorrect, or the
 list of matching pathnames is empty. With bash on

http://linuxsavvy.com/resources/linux/man/man7/glob.7.html (3 of 3) [14/09/1999 10:03:06]

NAME

 hier - Description of the file system hierarchy

DESCRIPTION

 A typical Linux system has, among others, the following
 directories:

 / This is the root directory. This is where the whole
 tree starts.

 /bin This directory contains executable programs which are
 are needed in single user mode and to bring the system
 up or repair it.

 /boot
 Contains static files for the boot loader. This direc-
 tory only holds the files which are needed during the
 boot process. The map installer and configuration
 files should go to /sbin and /etc.

 /dev Special or device files, which refer to physical dev-
 ices. See mknod(1).

 /dos If both MS-DOS and Linux are run on one computer, this
 is a typical place to mount a DOS file system.

 /etc Contains configuration files which are local to the
 machine. Some larger software packages, like X11, can
 have their own subdirectories below /etc. Site-wide
 configuration files may be placed here or in /usr/etc.
 Nevertheless, programs should always look for these
 files in /etc and you may have links for these files to
 /usr/etc.

 /etc/skel

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (1 of 8) [14/09/1999 10:03:09]

 When a new user account is created, files from this
 directory are usually copied into the user's home
 directory.

 /etc/X11
 Configuration files for the X11 window system.

 /home
 On machines with home directories for users, these are
 usually beneath this directory, directly or not. The
 structure of this directory depends on local adminins-
 tration decisions.

 /lib This directory should hold those shared libraries that
 are necessary to boot the system and to run the com-
 mands in the root filesystem.

 /mnt is a mount point for temporarily mounted filesystems

 /proc
 This is a mount point for the proc filesystem, which
 provides information about running processes and the
 kernel. This pseudo-file system is described in more
 detail in proc(5).

 /sbin
 Like /bin, this directory holds commands needed to boot
 the system, but which are usually not executed by nor-
 mal users.

 /tmp This directory contains temporary files which may be
 deleted with no notice, such as by a regular job or at
 system boot up.

 /usr This directory is usually mounted from a seperate par-
 tition. It should hold only sharable, read-only data,
 so that it can be mounted by various machines running
 Linux.

 /usr/X11R6
 The X-Window system, version 11 release 6.

 /usr/X11R6/bin
 Binaries which belong to the X-Windows system; often,
 there is a symbolic link from the more traditional
 /usr/bin/X11 to here.

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (2 of 8) [14/09/1999 10:03:09]

 /usr/X11R6/lib
 Data files associated with the X-Windows system.

 /usr/X11R6/lib/X11
 These contain miscellaneous files needed to run X;
 Often, there is a symbolic link from /usr/lib/X11 to
 this directory.

 /usr/X11R6/include/X11
 Contains include files needed for compiling programs
 using the X11 window system. Often, there is a sym-
 bolic link from /usr/inlcude/X11 to this directory.

 /usr/bin
 This is the primary directory for executable programs.
 Most programs executed by normal users which are not
 needed for booting or for repairing the system and
 which are not installed locally should be placed in
 this directory.

 /usr/bin/X11
 is the traditional place to look for X11 executables;
 on Linux, it usually is a symbolic link to
 /usr/X11R6/bin.

 /usr/dict
 This directory holds files containing word lists for
 spell checkers.

 /usr/etc
 Site-wide configuration files to be shared between
 several machines may be stored in this directory. How-
 ever, commands should always reference those files
 using the /etc directory. Links from files in /etc
 should point to the appropriate files in /usr/etc.

 /usr/include
 Include files for the C compiler.

 /usr/include/X11
 Include files for the C compiler and the X-Windows sys-
 tem. This is usually a symbolic link to
 /usr/X11R6/include/X11.

 /usr/include/asm

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (3 of 8) [14/09/1999 10:03:09]

 Include files which declare some assembler functions.
 This used to be a symbolic link to
 /usr/src/linux/include/asm, but this isn't the case in
 Debian or libc6 based systems.

 /usr/include/linux
 This contains information which may change from system
 release to system release and used to be a symbolic
 link to /usr/src/linux/include/linux to get at operat-
 ing system specific information. Debian systems don't
 do this and use headers from a known good kernel ver-
 sion, provided in the libc*-dev package.

 /usr/include/g++
 Include files to use with the GNU C++ compiler.

 /usr/lib
 Object libraries, including dynamic libraries, plus
 some executables which usually are not invoked
 directly. More complicated programs may have whole
 subdirectories there.

 /usr/lib/X11
 The usual place for data files associated with X pro-
 grams, and configuration files for the X system itself.
 On Linux, it usually is a symbolic link to
 /usr/X11R6/lib/X11.

 /usr/lib/gcc-lib
 contains executables and include files for the GNU C
 compiler, gcc(1).

 /usr/lib/groff
 Files for the GNU groff document formatting system.

 /usr/lib/uucp
 Files for uucp(1).

 /usr/lib/zoneinfo
 Files for timezone information.

 /usr/local
 This is where programs which are local to the site typ-
 ically go in.

 /usr/local/bin

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (4 of 8) [14/09/1999 10:03:09]

 Binaries for programs local to the site go there.

 /usr/local/doc
 Local documnetation

 /usr/local/etc
 Configuration files associated with locally installed
 programs go there.

 /usr/local/lib
 Files associated with locally installed programs go
 there.

 /usr/local/info
 Info pages associated with locally installed programs
 go there.

 /usr/local/man
 Manpages associated with locally installed programs go
 there.

 /usr/local/sbin
 Locally installed programs for system admininstration.

 /usr/local/src
 Source code for locally installed software.

 /usr/man
 Manpages go in there, into their subdirectories.

 /usr/man/<locale>/man[1-9]
 These directories contain manual pages which are in
 source code form. Systems which use a unique language
 and code set for all manual pages may omit the <locale>
 substring.

 /usr/sbin
 This directories contains program binaries for system
 admininstration which are not essentail for the boot
 process, for mounting /usr, or for system repair.

 /usr/src
 Source files for different parts of the system.

 /usr/src/linux
 This contains the sources for the kernel of the operat-

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (5 of 8) [14/09/1999 10:03:09]

 ing system itself.

 /usr/tmp
 An alternative place to store temporary files; This
 should be a link to /var/tmp. This link is present only
 for compatibility reasons and shouldn't be used.

 /var This directory contains files which may change in size,
 such as spool and log files.

 /var/adm
 This directory is superseded by /var/log and should be
 a symbolic link to /var/log.

 /var/backups
 This directory is used to save backup copies of impor-
 tant system files.

 /var/catman/cat[1-9]
 These directories contain preformatted manual pages
 according to their manpage section.

 /var/lock
 Lock files are plaed in this directory. The naming
 convention for device lock files is LCK..<device> where
 <device> is the device's name in the filesystem. The
 format used is that of HDU UUCP lock files, i.e. lock
 files contain a PID as a 10-byte ASCII decimal number,
 followed by a newline character.

 /var/log
 Miscelanous log files.

 /var/preserve
 This is where vi(1) saves edit sessions so they can be
 restored later.

 /var/run
 Run-time varaible files, like files holding process
 identifiers (PIDs) and logged user information (utmp).
 Files in this directory are usually cleared when the
 system boots.

 /var/spool
 Spooled (or queued) files for various programs.

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (6 of 8) [14/09/1999 10:03:09]

 /var/spool/at
 Spooled jobs for at(1).

 /var/spool/cron
 Spooled jobs for cron(1).

 /var/spool/lpd
 Spooled files for printing.

 /var/spool/mail
 User's mailboxes.

 /var/spool/smail
 Spooled files for the smail(1) mail delivery program.

 /var/spool/news
 Spool directory for the news subsystem.

 /var/spool/uucp
 Spooled files for uucp(1).

 /var/tmp
 Like /tmp, this directory holds temporary files stored
 for an unspecified duration.

CONFORMS TO

 The Linux filesystem standard, Release 1.2

BUGS

 This list is not exhaustive; different systems may be con-
 figured differently.

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (7 of 8) [14/09/1999 10:03:09]

SEE ALSO

 find(1), ln(1), mount(1), proc(5), The Linux Filesystem
 Standard

http://linuxsavvy.com/resources/linux/man/man7/hier.7.html (8 of 8) [14/09/1999 10:03:09]

NAME

 intro - Introduction to miscellany section

DESCRIPTION

 This chapter describes miscellaneous things such as nroff
 macro packages, tables, C header files, the file hierarchy,
 general concepts, and other things which don't fit anywhere
 else.

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man7/intro.7.html (1 of 2) [14/09/1999 10:03:10]

http://linuxsavvy.com/resources/linux/man/man7/intro.7.html (2 of 2) [14/09/1999 10:03:10]

NAME

 locale - Description of multi-language support

SYNOPSIS

 #include <locale.h>

DESCRIPTION

 A locale is a set of language and cultural rules. These
 cover aspects such as language for messages, different char-
 acter sets, lexigraphic conventions, etc. A program needs
 to be able to determine its locale and act accordingly to be
 portable to different cultures.

 The header <locale.h> declares data types, functions and
 macros which are useful in this task.

 The functions it declares are setlocale() to set the current
 locale, and localeconv() to get information about number
 formatting.

 There are different categories for local information a pro-
 gram might need; they are declared as macros. Using them as
 the first argument to the setlocale() function, it is possi-
 ble to set one of these to the desired locale:

 LC_COLLATE
 This is used to change the behaviour of the functions
 strcoll() and strxfrm(), which are used to compare
 strings in the local alphabet. For example, the German
 sharp s is sorted as "ss".

 LC_CTYPE
 This changes the behaviour of the character handling
 and classification functions, such as isupper() and
 toupper(), and the multi-byte character functions such
 as mblen() or wctomb().

http://linuxsavvy.com/resources/linux/man/man7/locale.7.html (1 of 4) [14/09/1999 10:03:14]

 LC_MONETARY
 changes the information returned by localeconv() which
 describes the way numbers are usually printed, with
 details such as decimal point versus decimal comma.
 This information is internally used by the functions
 strfmon() .

 LC_MESSAGES
 changes the language messages are displayed in and how
 an affirmative or negative answer looks like. The GNU
 C-library contains the rpmatch() function to ease the
 use of these information.

 LC_NUMERIC
 changes the informations used by the printf() and
 scanf() family of functions, when they are advised to
 use the locale-settings. This information can also be
 read with the localeconv() function.

 LC_TIME
 changes the behaviour of the strftime() function to
 display the current time in a locally acceptable form;
 for example, most of Europe uses a 24-hour clock vs.
 the US' 12-hour clock.

 LC_ALL
 All of the above.

 If the second argument to setlocale() is empty string, for
 the default locale, it is determined using the following
 steps:

 1. If there is a non-null environment variable LC_ALL, the
 value of LC_ALL is used.

 2. If an environment variable with the same name as one of
 the categories above exists and is non-null, its value
 is used for that category.

 3. If there is a non-null environment variable LANG, the
 value of LANG is used.

 Values about local numeric formatting is made available in a
 struct lconv returned by the localeconv() function, which
 has the following declaration:
 struct lconv
 {
 /* Numeric (non-monetary) information. */

 char *decimal_point; /* Decimal point character. */
 char *thousands_sep; /* Thousands separator. */
 /* Each element is the number of digits in each group;

http://linuxsavvy.com/resources/linux/man/man7/locale.7.html (2 of 4) [14/09/1999 10:03:14]

 elements with higher indices are farther left.
 An element with value CHAR_MAX means that no further grouping is done.
 An element with value 0 means that the previous element is used
 for all groups farther left. */
 char *grouping;

 /* Monetary information. */

 /* First three chars are a currency symbol from ISO 4217.
 Fourth char is the separator. Fifth char is ' '. */
 char *int_curr_symbol;
 char *currency_symbol; /* Local currency symbol. */
 char *mon_decimal_point; /* Decimal point character. */
 char *mon_thousands_sep; /* Thousands separator. */
 char *mon_grouping; /* Like `grouping' element (above). */
 char *positive_sign; /* Sign for positive values. */
 char *negative_sign; /* Sign for negative values. */
 char int_frac_digits; /* Int'l fractional digits. */
 char frac_digits; /* Local fractional digits. */
 /* 1 if currency_symbol precedes a positive value, 0 if succeeds. */
 char p_cs_precedes;
 /* 1 if a space separates currency_symbol from a positive value. */
 char p_sep_by_space;
 /* 1 if currency_symbol precedes a negative value, 0 if succeeds. */
 char n_cs_precedes;
 /* 1 if a space separates currency_symbol from a negative value. */
 char n_sep_by_space;
 /* Positive and negative sign positions:
 0 Parentheses surround the quantity and currency_symbol.
 1 The sign string precedes the quantity and currency_symbol.
 2 The sign string succeeds the quantity and currency_symbol.
 3 The sign string immediately precedes the currency_symbol.
 4 The sign string immediately succeeds the currency_symbol. */
 char p_sign_posn;
 char n_sign_posn;
 };

CONFORMS TO

 POSIX.1

SEE ALSO

 setlocale(3), localeconv(3), locale(1), rpmatch(3),

http://linuxsavvy.com/resources/linux/man/man7/locale.7.html (3 of 4) [14/09/1999 10:03:14]

 strfmon(3), strcoll(3), strftime(3)

http://linuxsavvy.com/resources/linux/man/man7/locale.7.html (4 of 4) [14/09/1999 10:03:14]

NAME

 mailaddr - mail addressing description

DESCRIPTION

 This manual page gives a brief introduction to SMTP mail
 addresses, as used on the Internet. These addresses are in
 the general format

 user@domain

 where a domain is a hierarchical dot separated list of sub-
 domains. For example, the addresses

 eric@monet.berkeley.edu
 Eric Allman <eric@monet.berkeley.edu>
 eric@monet.berkeley.edu (Eric Allman)

 are valid forms of the same address.

 The domain part (``monet.berkeley.edu'') may be the name of
 an internet host, or it may be a logical mail address. The
 domain part is not case sensitive.

 The local part (``eric'') is often a user name, but its
 meaning is defined by the local software. It can be case
 sensitive, but usually isn't. If you see a local-part that
 looks like garbage, it is usually because of a gateway
 between an internal e-mail system and the net, here are some
 examples:

 "surname/admd=telemail/c=us/o=hp/prmd=hp"@some.where
 USER%SOMETHING@some.where
 machine!machine!name@some.where
 I2461572@some.where

http://linuxsavvy.com/resources/linux/man/man7/mailaddr.7.html (1 of 3) [14/09/1999 10:03:15]

 (These are, respectively, an X.400 gateway, a gateway to an
 arbitrary inernal mail system that lacks proper internet
 support, an UUCP gateway, and the last one is just boring
 username policy.)

 The real-name part (``Eric Allman'') can either be placed
 first, outside <>, or last, inside (). (Strictly speaking
 the two aren't the same, but the difference is outside the
 scope of this page.) The name may have to be quoted using
 "" if it contains certain characters, most commonly ``.'':

 "Eric P. Allman" <eric@monet.berkeley.edu>

 Abbreviation.
 Many mail systems let users abbreviate the domain name. For
 instance, users at berkeley.edu may get away with
 ``eric@monet'' to send mail to Eric Allman. This behavior is
 deprecated.

 Route-addrs.
 Under some circumstances it may be necessary to route a mes-
 sage through several hosts to get it to the final destina-
 tion. Normally this happens automatically and invisibly,
 but sometimes not, particularly with old and broken
 software. Addresses which show these relays are termed
 ``route-addrs.'' These use the syntax:

 <@hosta,@hostb:user@hostc>

 This specifies that the message should be sent to hosta,
 from there to hostb, and finally to hostc. Some hosts
 disregard route-addrs and send directly to hostc.

 Route-addrs occur frequently on return addresses, since
 these are generally augmented by the software at each host.
 It is generally possible to ignore all but the
 ``user@hostc'' part of the address to determine the actual
 sender.

 Postmaster.
 Every site is required to have a user or user alias desig-
 nated ``postmaster'' to which problems with the mail system
 may be addressed. The ``postmaster'' address is not case
 sensitive.

 FREQUENTLY ASKED QUESTIONS

http://linuxsavvy.com/resources/linux/man/man7/mailaddr.7.html (2 of 3) [14/09/1999 10:03:15]

 rtfm.mit.edu and many mirrors store a collection of FAQs.
 Please find and use a nearby FAQ archive; there are dozens
 or hundreds around the world. mail/inter-network-guide
 explains how to send mail between many different networks.
 mail/country-codes lists the top level domains (e.g. ``no''
 is Norway and ``ea'' is Eritrea). mail/college-email/part*
 gives some useful tips on how to locate e-mail addresses.

FILES

 /etc/aliases
 ~/.forward

SEE ALSO

 binmail(1), mail(1), mconnect(1), forward(5), aliases(5),
 sendmail(8), vrfy(8), RFC822 (Standard for the Format of
 Arpa Internet Text Messages).

http://linuxsavvy.com/resources/linux/man/man7/mailaddr.7.html (3 of 3) [14/09/1999 10:03:15]

NAME

 man - macros to format man pages

SYNOPSIS

 groff -Tascii -man file ...

 groff -Tps -man file ...

 man [section] title

DESCRIPTION

 This manual page explains the groff tmac.an macro package.
 This macro package should be used by developers when writing
 or porting man pages for Linux. It is fairly compatible
 with other versions of this macro package, so porting man
 pages should not be a major problem (exceptions include the
 NET-2 BSD release, which uses a totally different macro
 package).

 Note that NET-2 BSD man pages can be used with groff simply
 by specifying the -mdoc option instead of the -man option.
 Using the -mandoc option is, however, recommended, since
 this will automatically detect which macro package is in
 use.

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (1 of 6) [14/09/1999 10:03:18]

PREAMBLE

 The first command in a man page should be

 .TH title section date source manual,

 where:

 title The title of the man page (e.g., MAN).

 section The section number the man page should be
 placed in (e.g., 7).

 date The date of the last revision-remember to
 change this every time a change is made to the
 man page, since this is the most general way of
 doing version control.

 source The source of the command.

 For binaries, use something like: GNU, NET-2,
 SLS Distribution,

 For system calls, use the version of the kernel
 that you are currently looking at: Linux
 0.99.11.

 For library calls, use the source of the
 function: GNU, BSD 4.3, Linux DLL 4.4.1.

 manual The title of the manual (e.g., Linux
 Programmer's Manual).

 The manual sections are traditionally defined as follows:

 1 Commands
 Those commands that can be executed by the user
 from within a shell.

 2 System calls
 Those functions which must be performed by the
 kernel.

 3 Library calls

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (2 of 6) [14/09/1999 10:03:18]

 Most of the libc functions, such as sort(3))

 4 Special files
 Files found in /dev)

 5 File formats and conventions
 The format for /etc/passwd and other human-
 readable files.

 6 Games

 7 Macro packages and conventions
 A description of the standard file system lay-
 out, this man page, and other things.

 8 System management commands
 Commands like mount(8), which only root can
 execute.

 9 Kernel routines
 This is a non-standard manual section and is
 included because the source code to the Linux
 kernel is freely available under the GNU Public
 License and many people are working on changes
 to the kernel)

FONTS

 Although there are many arbitrary conventions for man pages
 in the UNIX world, the existence of several hundred Linux-
 specific man pages defines our standards:

 For functions, the arguments are always specified using
 italics, even in the SYNOPSIS section, where the rest
 of the function is specified in bold:
 int myfunction(int argc, char **argv));

 Filenames are always in italics (e.g.,
 /usr/include/stdio.h), except in the SYNOPSIS section,
 where included files are in bold (e.g., #include
 <stdio.h>).

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (3 of 6) [14/09/1999 10:03:18]

 Special macros, which are usually in upper case, are in
 bold (e.g., MAXINT).

 When enumerating a list of error codes, the codes are
 in bold (this list usually uses the .TP macro).

 Any reference to another man page (or to the subject of
 the current man page) is in bold. If the manual sec-
 tion number is given, it is given in roman, without any
 spaces (e.g., man(7)).

 The commands to select the type face are given below:

 .B Bold

 .BI Bold alternating with italics

 .BR Bold alternating with Roman

 .I Italics

 .IB Italics alternating with bold

 .IR Italics alternating with Roman

 .RB Roman alternating with bold

 .RI Roman alternating with italics

 .SB Small alternating with bold

 .SM Small

 Traditionally, each command can have up to six arguments,
 but the GNU version seems to remove this limitation. Argu-
 ments are delimited by spaces. Double quotes can be used to
 specify an argument which contains spaces. All of the argu-
 ments will be printed next to each other without intervening
 spaces, so that the .BR command can be used to specify a
 word in bold followed by a mark of punctuation in Roman.

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (4 of 6) [14/09/1999 10:03:18]

SECTIONS

 Sections are started with .SH followed by the heading name.
 If the name contains spaces and appears on the same line as
 .SH, then place the heading in double quotes. Traditional
 headings include: NAME, SYNOPSIS, DESCRIPTION, OPTIONS,
 FILES, SEE ALSO, DIAGNOSTICS, BUGS, and AUTHOR. The only
 required heading is NAME, which should be followed on the
 next line by a one line description of the program:

 .SH NAME
 chess \- the game of chess

 It is extremely important that this format is followed, and
 that there is a backslash before the single dash which fol-
 lows the command name. This syntax is used by the
 makewhatis(8) program to create a database of short command
 descriptions for the whatis(1) and apropos(1) commands.

OTHER MACROS

 Other macros include the following:

 .DT Default tabs

 .HP Begin hanging indent

 .IP Begin paragraph with hanging tag. This is the same as
 .TP, except the tag is given on the same line, not on
 the following line.

 .LP Same as .PP

 .PD Set interparagraph distance to argument

 .PP Begin a new paragraph

 .RE End relative indent (indented paragraph)

 .RS Start relative indent (indented paragraph)

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (5 of 6) [14/09/1999 10:03:18]

 .SS Subheading (like .SH, but used for a subsection)

 .TP Begin paragraph with hanging tag. The tag is given on
 the next line. This command is similar to .IP

FILES

 /usr/local/lib/groff/tmac/tmac.an
 /usr/man/whatis

SEE ALSO

 groff(1), man(1), whatis(1), apropos(1), makewhatis(8)

http://linuxsavvy.com/resources/linux/man/man7/man.7.html (6 of 6) [14/09/1999 10:03:18]

NAME

 regex - POSIX 1003.2 regular expressions

DESCRIPTION

 Regular expressions (``RE''s), as defined in POSIX 1003.2,
 come in two forms: modern REs (roughly those of egrep;
 1003.2 calls these ``extended'' REs) and obsolete REs
 (roughly those of ed; 1003.2 ``basic'' REs). Obsolete REs
 mostly exist for backward compatibility in some old pro-
 grams; they will be discussed at the end. 1003.2 leaves
 some aspects of RE syntax and semantics open; `-' marks
 decisions on these aspects that may not be fully portable to
 other 1003.2 implementations.

 A (modern) RE is one- or more non-empty- branches, separated
 by `|'. It matches anything that matches one of the
 branches.

 A branch is one- or more pieces, concatenated. It matches a
 match for the first, followed by a match for the second,
 etc.

 A piece is an atom possibly followed by a single- `*', `+',
 `?', or bound. An atom followed by `*' matches a sequence
 of 0 or more matches of the atom. An atom followed by `+'
 matches a sequence of 1 or more matches of the atom. An
 atom followed by `?' matches a sequence of 0 or 1 matches of
 the atom.

 A bound is `{' followed by an unsigned decimal integer, pos-
 sibly followed by `,' possibly followed by another unsigned
 decimal integer, always followed by `}'. The integers must
 lie between 0 and RE_DUP_MAX (255-) inclusive, and if there
 are two of them, the first may not exceed the second. An
 atom followed by a bound containing one integer i and no

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (1 of 6) [14/09/1999 10:03:22]

 comma matches a sequence of exactly i matches of the atom.
 An atom followed by a bound containing one integer i and a
 comma matches a sequence of i or more matches of the atom.
 An atom followed by a bound containing two integers i and j
 matches a sequence of i through j (inclusive) matches of the
 atom.

 An atom is a regular expression enclosed in `()' (matching a
 match for the regular expression), an empty set of `()'
 (matching the null string)-, a bracket expression (see
 below), `.' (matching any single character), `^' (matching
 the null string at the beginning of a line), `$' (matching
 the null string at the end of a line), a `\' followed by one
 of the characters `^.[$()|*+?{\' (matching that character
 taken as an ordinary character), a `\' followed by any other
 character- (matching that character taken as an ordinary
 character, as if the `\' had not been present-), or a single
 character with no other significance (matching that charac-
 ter). A `{' followed by a character other than a digit is
 an ordinary character, not the beginning of a bound-. It is
 illegal to end an RE with `\'.

 A bracket expression is a list of characters enclosed in
 `[]'. It normally matches any single character from the
 list (but see below). If the list begins with `^', it
 matches any single character (but see below) not from the
 rest of the list. If two characters in the list are
 separated by `-', this is shorthand for the full range of
 characters between those two (inclusive) in the collating
 sequence, e.g. `[0-9]' in ASCII matches any decimal digit.
 It is illegal- for two ranges to share an endpoint, e.g.
 `a-c-e'. Ranges are very collating-sequence-dependent, and
 portable programs should avoid relying on them.

 To include a literal `]' in the list, make it the first
 character (following a possible `^'). To include a literal
 `-', make it the first or last character, or the second end-
 point of a range. To use a literal `-' as the first end-
 point of a range, enclose it in `[.' and `.]' to make it a
 collating element (see below). With the exception of these
 and some combinations using `[' (see next paragraphs), all
 other special characters, including `\', lose their special
 significance within a bracket expression.

 Within a bracket expression, a collating element (a charac-
 ter, a multi-character sequence that collates as if it were

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (2 of 6) [14/09/1999 10:03:22]

 a single character, or a collating-sequence name for either)
 enclosed in `[.' and `.]' stands for the sequence of charac-
 ters of that collating element. The sequence is a single
 element of the bracket expression's list. A bracket expres-
 sion containing a multi-character collating element can thus
 match more than one character, e.g. if the collating
 sequence includes a `ch' collating element, then the RE
 `[[.ch.]]*c' matches the first five characters of `chchcc'.

 Within a bracket expression, a collating element enclosed in
 `[=' and `=]' is an equivalence class, standing for the
 sequences of characters of all collating elements equivalent
 to that one, including itself. (If there are no other
 equivalent collating elements, the treatment is as if the
 enclosing delimiters were `[.' and `.]'.) For example, if o
 and ^ are the members of an equivalence class, then
 `[[=o=]]', `[[=^=]]', and `[o^]' are all synonymous. An
 equivalence class may not- be an endpoint of a range.

 Within a bracket expression, the name of a character class
 enclosed in `[:' and `:]' stands for the list of all charac-
 ters belonging to that class. Standard character class
 names are:
 alnum digit punct
 alpha graph space
 blank lower upper
 cntrl print xdigit

 These stand for the character classes defined in ctype(3).
 A locale may provide others. A character class may not be
 used as an endpoint of a range.

 There are two special cases- of bracket expressions: the
 bracket expressions `[[:<:]]' and `[[:>:]]' match the null
 string at the beginning and end of a word respectively. A
 word is defined as a sequence of word characters which is
 neither preceded nor followed by word characters. A word
 character is an alnum character (as defined by ctype(3)) or
 an underscore. This is an extension, compatible with but
 not specified by POSIX 1003.2, and should be used with cau-
 tion in software intended to be portable to other systems.

 In the event that an RE could match more than one substring
 of a given string, the RE matches the one starting earliest
 in the string. If the RE could match more than one sub-
 string starting at that point, it matches the longest.

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (3 of 6) [14/09/1999 10:03:22]

 Subexpressions also match the longest possible substrings,
 subject to the constraint that the whole match be as long as
 possible, with subexpressions starting earlier in the RE
 taking priority over ones starting later. Note that
 higher-level subexpressions thus take priority over their
 lower-level component subexpressions.

 Match lengths are measured in characters, not collating ele-
 ments. A null string is considered longer than no match at
 all. For example, `bb*' matches the three middle characters
 of `abbbc', `(wee|week)(knights|nights)' matches all ten
 characters of `weeknights', when `(.*).*' is matched against
 `abc' the parenthesized subexpression matches all three
 characters, and when `(a*)*' is matched against `bc' both
 the whole RE and the parenthesized subexpression match the
 null string.

 If case-independent matching is specified, the effect is
 much as if all case distinctions had vanished from the
 alphabet. When an alphabetic that exists in multiple cases
 appears as an ordinary character outside a bracket expres-
 sion, it is effectively transformed into a bracket expres-
 sion containing both cases, e.g. `x' becomes `[xX]'. When
 it appears inside a bracket expression, all case counter-
 parts of it are added to the bracket expression, so that
 (e.g.) `[x]' becomes `[xX]' and `[^x]' becomes `[^xX]'.

 No particular limit is imposed on the length of REs-. Pro-
 grams intended to be portable should not employ REs longer
 than 256 bytes, as an implementation can refuse to accept
 such REs and remain POSIX-compliant.

 Obsolete (``basic'') regular expressions differ in several
 respects. `|', `+', and `?' are ordinary characters and
 there is no equivalent for their functionality. The delim-
 iters for bounds are `\{' and `\}', with `{' and `}' by
 themselves ordinary characters. The parentheses for nested
 subexpressions are `\(' and `\)', with `(' and `)' by them-
 selves ordinary characters. `^' is an ordinary character
 except at the beginning of the RE or- the beginning of a
 parenthesized subexpression, `$' is an ordinary character
 except at the end of the RE or- the end of a parenthesized
 subexpression, and `*' is an ordinary character if it
 appears at the beginning of the RE or the beginning of a
 parenthesized subexpression (after a possible leading `^').
 Finally, there is one new type of atom, a back reference:

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (4 of 6) [14/09/1999 10:03:22]

 `\' followed by a non-zero decimal digit d matches the same
 sequence of characters matched by the dth parenthesized
 subexpression (numbering subexpressions by the positions of
 their opening parentheses, left to right), so that (e.g.)
 `\([bc]\)\1' matches `bb' or `cc' but not `bc'.

SEE ALSO

 regex(3)

 POSIX 1003.2, section 2.8 (Regular Expression Notation).

BUGS

 Having two kinds of REs is a botch.

 The current 1003.2 spec says that `)' is an ordinary charac-
 ter in the absence of an unmatched `('; this was an uninten-
 tional result of a wording error, and change is likely.
 Avoid relying on it.

 Back references are a dreadful botch, posing major problems
 for efficient implementations. They are also somewhat
 vaguely defined (does `a\(\(b\)*\2\)*d' match `abbbd'?).
 Avoid using them.

 1003.2's specification of case-independent matching is
 vague. The ``one case implies all cases'' definition given
 above is current consensus among implementors as to the
 right interpretation.

 The syntax for word boundaries is incredibly ugly.

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (5 of 6) [14/09/1999 10:03:22]

AUTHOR

 This page was taken from Henry Spencer's regex package.

http://linuxsavvy.com/resources/linux/man/man7/regex.7.html (6 of 6) [14/09/1999 10:03:22]

NAME

 signal - list of available signals

DESCRIPTION

 Linux supports the signals listed below. Several signal
 numbers are architecture dependent. First the signals
 described in POSIX.1.

 l c c l ____ lB c c l.
 Signal Value Action Comment
 SIGHUP 1 A Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 A Interrupt from keyboard
 SIGQUIT 3 A Quit from keyboard
 SIGILL 4 A Illegal Instruction
 SIGABRT 6 C Abort signal from abort(3)
 SIGFPE 8 C Floating point exception
 SIGKILL 9 AEF Kill signal SIGSEGV 11 C Invalid
 memory reference SIGPIPE 13 A Broken pipe: write to
 pipe with no readers SIGALRM 14 A Timer signal from
 alarm(2) SIGTERM 15 A Termination signal
 SIGUSR1 30,10,16 A User-defined signal 1
 SIGUSR2 31,12,17 A User-defined signal 2
 SIGCHLD 20,17,18 B Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 DEF Stop process
 SIGTSTP 18,20,24 D Stop typed at tty
 SIGTTIN 21,21,26 D tty input for background process
 SIGTTOU 22,22,27 D tty output for background process

 Next various other signals.

 l c c l ____ lB c c l.

http://linuxsavvy.com/resources/linux/man/man7/signal.7.html (1 of 3) [14/09/1999 10:03:24]

 Signal Value Action Comment
 SIGTRAP 5 CG Trace/breakpoint trap
 SIGIOT 6 CG IOT trap. A synonym for SIGABRT
 SIGEMT 7,-,7 G SIGBUS 10,7,10 AG Bus error
 SIGSYS 12,-,12 G Bad argument to routine (SVID)
 SIGSTKFLT -,16,- AG Stack fault on coprocessor
 SIGURG 16,23,21 BG Urgent condition on socket (4.2
 BSD) SIGIO 23,29,22 AG I/O now possible (4.2 BSD)
 SIGPOLL AG A synonym for SIGIO (System V)
 SIGCLD -,-,18 G A synonym for SIGCHLD
 SIGXCPU 24,24,30 AG CPU time limit exceeded (4.2 BSD)
 SIGXFSZ 25,25,31 AG File size limit exceeded (4.2 BSD)
 SIGVTALRM 26,26,28 AG Virtual alarm clock (4.2 BSD)
 SIGPROF 27,27,29 AG Profile alarm clock
 SIGPWR 29,30,19 AG Power failure (System V)
 SIGINFO 29,-,- G A synonym for SIGPWR
 SIGLOST -,-,- AG File lock lost
 SIGWINCH 28,28,20 BG Window resize signal (4.3 BSD, Sun)
 SIGUNUSED -,31,- AG Unused signal (Here - denotes that
 a signal is absent; there where three values are given, the
 first one is usually valid for alpha and sparc, the middle
 one for i386 and ppc, the last one for mips. Signal 29 is
 SIGINFO / SIGPWR on an alpha but SIGLOST on a sparc.)

 The letters in the "Action" column have the following mean-
 ings:

 A Default action is to terminate the process.

 B Default action is to ignore the signal.

 C Default action is to dump core.

 D Default action is to stop the process.

 E Signal cannot be caught.

 F Signal cannot be ignored.

 G Not a POSIX.1 conformant signal.

http://linuxsavvy.com/resources/linux/man/man7/signal.7.html (2 of 3) [14/09/1999 10:03:24]

CONFORMING TO

 POSIX.1

BUGS

 SIGIO and SIGLOST have the same value. The latter is com-
 mented out in the kernel source, but the build process of
 some software still thinks that signal 29 is SIGLOST.

SEE ALSO

 kill(1), kill(2), setitimer(2)

http://linuxsavvy.com/resources/linux/man/man7/signal.7.html (3 of 3) [14/09/1999 10:03:24]

NAME

 suffixes - list of file suffixes

DESCRIPTION

 It is customary to indicate the contents of a file with the
 file suffix, which consists of a period, followed by one or
 more letters. Many standard utilities, such as compilers,
 use this to recognize the type of file they are dealing
 with. The make(1) utility is driven by rules based on file
 suffix.

 Following is a list of suffixes which are likely to be found
 on a Linux system.

 l | l _ | _ lI | l . Suffix File type
 ,v files for RCS (Revision Control System)
 - backup file
 .C C++ source code
 .F Fortran source with cpp(1) directives or file
 compressed using freeze
 .S assembler source with cpp(1) directives
 .Y file compressed using yabba
 .Z file compressed using compress(1)
 .[0-9]+gf TeX generic font files
 .[0-9]+pk TeX packed font files
 .[1-9] manual page for the corresponding section
 .[1-9][a-z] manual page for section plus subsection
 .a static object code library
 .ad X application default resource file
 .afm PostScript font metrics
 .al Perl autoload file
 .am automake(1) input file
 .arc arc(1) archive
 .arj arj(1) archive
 .asc PGP ASCII-armoured data

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (1 of 7) [14/09/1999 10:03:27]

 .asm (GNU) assember source file
 .au Audio sound file
 .aux LaTeX auxiliary file
 .avi (msvideo) movie
 .awk AWK language program
 .b LILO boot loader image
 .bak backup file
 .bash bash(1) shell script
 .bb basic block list data produced by gcc -ftest-coverage
 .bbg basic block graph data produced by gcc -ftest-
 coverage
 .bbl BibTeX output
 .bdf X font file
 .bib TeX bibliographic database, BibTeX input
 .bm bitmap source
 .bmp bitmap
 .c C source
 .cat message catalog files
 .cc C++ source
 .cf configuration file
 .cfg configuration file
 .cgi WWW content generating script or program
 .class Java compiled byte-code
 .conf configuration file
 .config configuration file
 .cpp equivalent to .cc
 .csh csh(1) shell script
 .cxx equivalent to .cc
 .dat data file
 .deb Debian software package
 .def Modula-2 source for definition modules
 .def other definition files
 .desc initial part of mail message unpacked with munpack
 .diff file differences (diff(1) command output)
 .dir dbm data base directory file
 .doc documentation file
 .dtx LaTeX package source file
 .dvi TeX's device independent output
 .el Emacs-Lisp source
 .elc compiled Emacs-Lisp source
 .eps encapsulated PostScript
 .f Fortran source
 .fas pre-compiled Common-Lisp
 .fi Fortran include files
 .fig FIG image file (used by xfig(1))
 .fmt TeX format file

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (2 of 7) [14/09/1999 10:03:27]

 .gif Compuserve Graphics Image File format
 .gmo GNU format message catalog
 .gsf Ghostscript fonts
 .gz file compressed using gzip(1)
 .h C or C++ header files
 .help help file
 .hf equivalent to .help
 .hlp equivalent to .help
 .htm poor man's .html
 .html HTML document used with the World Wide Web
 .hqx 7-bit encoded Macintosh file
 .i C source after preprocessing
 .icon bitmap source
 .idx reference or datum-index file for hypertext or
 database system
 .image bitmap source
 .in configuration template, especially for GNU Autoconf
 .info files for the Emacs info browser
 .info-[0-9]+ splitted info files
 .ins LaTeX package install file for docstrip
 .java a Java source file
 .jpeg Joint Photographic Experts Group format
 .jpg poor man's .jpeg
 .l equivalent to .lex or .lisp
 .lex lex(1) or flex(1) files
 .lha lharc archive
 .lib Common-Lisp library
 .lisp Lisp source
 .ln files for use with lint(1)
 .log log file, in particular produced by TeX
 .lsm Linux Software Map entry
 .lsp Common-Lisp source
 .lzh lharc archive
 .m4 m4(1) source
 .mac macro files for various programs
 .man manual page (usually source rather than formatted)
 .map map files for various programs
 .me Nroff source using the me macro package
 .mf Metafont (font generator for TeX) source
 .mm sources for groff(1) in mm - format
 .mo Message catalog binary file
 .mod Modula-2 source for implementation modules
 .mov (quicktime) movie
 .mp Metapost source
 .mpeg movie file
 .o object file

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (3 of 7) [14/09/1999 10:03:27]

 .old old or backup file
 .orig backup (original) version of a file, from patch(1)
 .out output file, often executable program (a.out)
 .p Pascal source
 .pag dbm data base data file
 .patch file differences for patch(1)
 .pbm portable bitmap format
 .pcf X11 font files
 .pdf Adobe Portable Data Format (use Acrobat/acroread
 or xpdf)
 .perl Perl source
 .pfa PostScript font definition files, ASCII format
 .pfb PostScript font definition files, binary format
 .pgm portable greymap format
 .pgp PGP binary data
 .ph Perl header file
 .pid File to store daemon pid (e.g. crond.pid)
 .pl TeX property list file or Perl library file
 .pm Perl module
 .png Portable Network Graphics file
 .po Message catalog source
 .pod perldoc(1) file
 .ppm portable pixmap format
 .pr bitmap source
 .ps PostScript file
 .py Python source
 .pyc compiled python
 .qt quicktime movie
 .r RATFOR source (obsolete)
 .rej patches that patch(1) couldn't apply
 .rpm RedHat software package
 .rtf Rich Text Format file
 .rules rules for something
 .s assembler source
 .sa stub libraries for a.out shared libraries
 .sc sc(1) spreadsheed commands
 .sgml SGML source file
 .sh sh(1) scripts
 .shar archive created by the shar(1) utility
 .so Shared library or dynamically loadable object
 .sql SQL source
 .sqml SQML schema or query program
 .sty LaTeX style files
 .sym Modula-2 compiled definition modules
 .tar archive created by the tar(1) utility
 .tar.Z tar(1) archive compressed with compress(1)

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (4 of 7) [14/09/1999 10:03:27]

 .tar.gz tar(1) archive compressed with gzip(1)
 .taz tar(1) archive compressed with compress(1)
 .tex TeX or LaTeX source
 .texi equivalent to .texinfo
 .texinfo Texinfo documentation source
 .text text file
 .tfm TeX font metric file
 .tgz tar archive compressed with gzip(1)
 .tif poor man's .tiff
 .tiff Tagged Image File Format
 .tk tcl/tk script
 .tmp temporary file
 .tmpl template files
 .txt equivalent to .text
 .uu equivalent to .uue
 .uue binary file encoded with uuencode(1)
 .vf TeX virtual font file
 .vpl TeX virtual property list file
 .w Silvio Levi's CWEB
 .wav wave sound file
 .web Donald Knuth's WEB
 .xbm X11 bitmap source
 .xpm X11 pixmap source
 .xs Perl xsub file produced by h2xs
 .y yacc(1) or bison(1) (parser generator) files
 .z File compressed using pack(1) (or an old gzip(1))
 .zip zip(1) archive
 .zoo zoo(1) archive
 ~ Emacs or patch(1) backup file
 rc startup (`run control') file, e.g. .newsrc

CONFORMS TO

 General UNIX conventions.

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (5 of 7) [14/09/1999 10:03:27]

BUGS

 This list is not exhaustive.

SEE ALSO

 file(1), make(1)

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (6 of 7) [14/09/1999 10:03:27]

http://linuxsavvy.com/resources/linux/man/man7/suffixes.7.html (7 of 7) [14/09/1999 10:03:27]

NAME

 Unicode - the unified 16-bit super character set

DESCRIPTION

 The international standard ISO 10646 defines the Universal
 Character Set (UCS). UCS contains all characters of all
 other character set standards. It also guarantees round-trip
 compatibility, i.e., conversion tables can be built such
 that no information is lost when a string is converted from
 any other encoding to UCS and back.

 UCS contains the characters required to represent almost all
 known languages. This includes apart from the many languages
 which use extensions of the Latin script also the following
 scripts and languages: Greek, Cyrillic, Hebrew, Arabic,
 Armenian, Gregorian, Japanese, Chinese, Hiragana, Katakana,
 Korean, Hangul, Devangari, Bengali, Gurmukhi, Gujarati,
 Oriya, Tamil, Telugu, Kannada, Malayam, Thai, Lao, Bopomofo,
 and a number of others. Work is going on to include further
 scripts like Tibetian, Khmer, Runic, Ethiopian, Hieroglyph-
 ics, various Indo-European languages, and many others. For
 most of these latter scripts, it was not yet clear how they
 can be encoded best when the standard was published in 1993.
 In addition to the characters required by these scripts,
 also a large number of graphical, typographical, mathemati-
 cal and scientific symbols like those provided by TeX,
 PostScript, MS-DOS, Macintosh, Videotext, OCR, and many word
 processing systems have been included, as well as special
 codes that guarantee round-trip compatibility to all other
 existing character set standards.

 The UCS standard (ISO 10646) describes a 31-bit character
 set architecture, however, today only the first 65534 code
 positions (0x0000 to 0xfffd), which are called the Basic
 Multilingual Plane (BMP), have been assigned characters, and

http://linuxsavvy.com/resources/linux/man/man7/unicode.7.html (1 of 5) [14/09/1999 10:03:30]

 it is expected that only very exotic characters (e.g. Hiero-
 glyphics) for special scientific purposes will ever get a
 place outside this 16-bit BMP.

 The UCS characters 0x0000 to 0x007f are identical to those
 of the classic US-ASCII character set and the characters in
 the range 0x0000 to 0x00ff are identical to those in the ISO
 8859-1 Latin-1 character set.

COMBINING CHARACTERS

 Some code points in UCS have been assigned to combining
 characters. These are similar to the non-spacing accent
 keys on a typewriter. A combining character just adds an
 accent to the previous character. The most important
 accented characters have codes of their own in UCS, however,
 the combining character mechanism allows to add accents and
 other diacritical marks to any character. The combining
 characters always follow the character which they modify.
 For example, the German character Umlaut-A ("Latin capital
 letter A with diaeresis") can either be represented by the
 precomposed UCS code 0x00c4, or alternatively as the combi-
 nation of a normal "Latin capital letter A" followed by a
 "combining diaeresis": 0x0041 0x0308.

IMPLEMENTATION LEVELS

 As not all systems are expected to support advanced mechan-
 isms like combining characters, ISO 10646 specifies the fol-
 lowing three implementation levels of UCS:

 Level 1 Combining characters and Hangul Jamo characters (a
 special, more complicated encoding of the Korean
 script, where Hangul syllables are coded as two or
 three subcharacters) are not supported.

 Level 2 Like level 1, however in some scripts, some combin-
 ing characters are now allowed (e.g. for Hebrew,

http://linuxsavvy.com/resources/linux/man/man7/unicode.7.html (2 of 5) [14/09/1999 10:03:30]

 Arabic, Devangari, Bengali, Gurmukhi, Gujarati,
 Oriya, Tamil, Telugo, Kannada, Malayalam, Thai and
 Lao).

 Level 3 All UCS characters are supported.

 The Unicode 1.1 standard published by the Unicode Consortium
 contains exactly the UCS Basic Multilingual Plane at imple-
 mentation level 3, as described in ISO 10646. Unicode 1.1
 also adds some semantical definitions for some characters to
 the definitions of ISO 10646.

UNICODE UNDER LINUX

 Under Linux, only the BMP at implementation level 1 should
 be used at the moment, in order to keep the implementation
 complexity of combining characters low. The higher implemen-
 tation levels are more suitable for special word processing
 formats, but not as a generic system character set. The C
 type wchar_t is on Linux an unsigned 16-bit integer type and
 its values are interpreted as UCS level 1 BMP codes.

 The locale setting specifies, whether the system character
 encoding is for example UTF-8 or ISO 8859-1. Library func-
 tions like wctomb, mbtowc, or wprintf can be used to
 transform the internal wchar_t characters and strings into
 the system character encoding and back.

PRIVATE AREA

 In the BMP, the range 0xe000 to 0xf8ff will never be
 assigned any characters by the standard and is reserved for
 private usage. For the Linux community, this private area
 has been subdivided further into the range 0xe000 to 0xefff
 which can be used individually by any end-user and the Linux
 zone in the range 0xf000 to 0xf8ff where extensions are
 coordinated among all Linux users. The registry of the char-
 acters assigned to the Linux zone is currently maintained by

http://linuxsavvy.com/resources/linux/man/man7/unicode.7.html (3 of 5) [14/09/1999 10:03:30]

 H. Peter Anvin <Peter.Anvin@linux.org>, Yggdrasil Computing,
 Inc. It contains some DEC VT100 graphics characters missing
 in Unicode, gives direct access to the characters in the
 console font buffer and contains the characters used by a
 few advanced scripts like Klingon.

LITERATURE

 * Information technology - Universal Multiple-Octet Coded
 Character Set (UCS) - Part 1: Architecture and Basic Mul-
 tilingual Plane. International Standard ISO 10646-1,
 International Organization for Standardization, Geneva,
 1993.

 This is the official specification of UCS. Pretty offi-
 cial, pretty thick, and pretty expensive. For ordering
 information, check www.iso.ch.

 * The Unicode Standard - Worldwide Character Encoding Ver-
 sion 1.0. The Unicode Consortium, Addison-Wesley, Read-
 ing, MA, 1991.

 There is already Unicode 1.1.4 available. The changes to
 the 1.0 book are available from ftp.unicode.org. Unicode
 2.0 will be published again as a book in 1996.

 * S. Harbison, G. Steele. C - A Reference Manual. Fourth
 edition, Prentice Hall, Englewood Cliffs, 1995, ISBN 0-
 13-326224-3.

 A good reference book about the C programming language.
 The fourth edition now covers also the 1994 Amendment 1 to
 the ISO C standard (ISO/IEC 9899:1990) which adds a large
 number of new C library functions for handling wide char-
 acter sets.

http://linuxsavvy.com/resources/linux/man/man7/unicode.7.html (4 of 5) [14/09/1999 10:03:30]

BUGS

 At the time when this man page was written, the Linux libc
 support for UCS was far from complete.

AUTHOR

 Markus Kuhn <mskuhn@cip.informatik.uni-erlangen.de>

SEE ALSO

 utf-8(7)

http://linuxsavvy.com/resources/linux/man/man7/unicode.7.html (5 of 5) [14/09/1999 10:03:30]

NAME

 UTF-8 - an ASCII compatible multibyte Unicode encoding

DESCRIPTION

 The Unicode character set occupies a 16-bit code space. The
 most obvious Unicode encoding (known as UCS-2) consists of a
 sequence of 16-bit words. Such strings can contain as parts
 of many 16-bit characters bytes like '\0' or '/' which have
 a special meaning in filenames and other C library function
 parameters. In addition, the majority of UNIX tools expects
 ASCII files and can't read 16-bit words as characters
 without major modifications. For these reasons, UCS-2 is not
 a suitable external encoding of Unicode in filenames, text
 files, environment variables, etc. The ISO 10646 Universal
 Character Set (UCS), a superset of Unicode, occupies even a
 31-bit code space and the obvious UCS-4 encoding for it (a
 sequence of 32-bit words) has the same problems.

 The UTF-8 encoding of Unicode and UCS does not have these
 problems and is the way to go for using the Unicode charac-
 ter set under Unix-style operating systems.

PROPERTIES

 The UTF-8 encoding has the following nice properties:

 * UCS characters 0x00000000 to 0x0000007f (the classical
 US-ASCII characters) are encoded simply as bytes 0x00 to
 0x7f (ASCII compatibility). This means that files and
 strings which contain only 7-bit ASCII characters have the
 same encoding under both ASCII and UTF-8.

http://linuxsavvy.com/resources/linux/man/man7/utf-8.7.html (1 of 4) [14/09/1999 10:03:32]

 * All UCS characters > 0x7f are encoded as a multibyte
 sequence consisting only of bytes in the range 0x80 to
 0xfd, so no ASCII byte can appear as part of another char-
 acter and there are no problems with e.g. '\0' or '/'.

 * The lexicographic sorting order of UCS-4 strings is
 preserved.

 * All possible 2^31 UCS codes can be encoded using UTF-8.

 * The bytes 0xfe and 0xff are never used in the UTF-8 encod-
 ing.

 * The first byte of a multibyte sequence which represents a
 single non-ASCII UCS character is always in the range 0xc0
 to 0xfd and indicates how long this multibyte sequence is.
 All further bytes in a multibyte sequence are in the range
 0x80 to 0xbf. This allows easy resynchronization and makes
 the encoding stateless and robust against missing bytes.

 * UTF-8 encoded UCS characters may be up to six bytes long,
 however Unicode characters can only be up to three bytes
 long. As Linux uses only the 16-bit Unicode subset of UCS,
 under Linux, UTF-8 multibyte sequences can only be one,
 two or three bytes long.

ENCODING

 The following byte sequences are used to represent a charac-
 ter. The sequence to be used depends on the UCS code number
 of the character:

 0x00000000 - 0x0000007F:
 0xxxxxxx

 0x00000080 - 0x000007FF:
 110xxxxx 10xxxxxx

 0x00000800 - 0x0000FFFF:
 1110xxxx 10xxxxxx 10xxxxxx

 0x00010000 - 0x001FFFFF:

http://linuxsavvy.com/resources/linux/man/man7/utf-8.7.html (2 of 4) [14/09/1999 10:03:32]

 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x00200000 - 0x03FFFFFF:
 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x04000000 - 0x7FFFFFFF:
 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 The xxx bit positions are filled with the bits of the char-
 acter code number in binary representation. Only the shor-
 test possible multibyte sequence which can represent the
 code number of the character can be used.

EXAMPLES

 The Unicode character 0xa9 = 1010 1001 (the copyright sign)
 is encoded in UTF-8 as

 11000010 10101001 = 0xc2 0xa9

 and character 0x2260 = 0010 0010 0110 0000 (the "not equal"
 symbol) is encoded as:

 11100010 10001001 10100000 = 0xe2 0x89 0xa0

STANDARDS

 ISO 10646, Unicode 1.1, XPG4, Plan 9.

AUTHOR

 Markus Kuhn <mskuhn@cip.informatik.uni-erlangen.de>

http://linuxsavvy.com/resources/linux/man/man7/utf-8.7.html (3 of 4) [14/09/1999 10:03:32]

SEE ALSO

 unicode(7)

http://linuxsavvy.com/resources/linux/man/man7/utf-8.7.html (4 of 4) [14/09/1999 10:03:32]

Linux Man Pages Section 8
● intro.8

● lilo.8

Linux Man Pages Section 8

http://linuxsavvy.com/resources/linux/man/man8/ [14/09/1999 10:03:34]

NAME

 intro - Introduction to administration and privileged com-
 mands

DESCRIPTION

 This chapter describes commands which either can be or are
 only used by the superuser, like daemons and machine or
 hardware related commands.

AUTHORS

 Look at the header of the manual page for the author(s) and
 copyright conditions. Note that these can be different from
 page to page!

http://linuxsavvy.com/resources/linux/man/man8/intro.8.html (1 of 2) [14/09/1999 10:03:35]

http://linuxsavvy.com/resources/linux/man/man8/intro.8.html (2 of 2) [14/09/1999 10:03:35]

NAME

 lilo - install boot loader

SYNOPSIS

 Main function:

 /sbin/lilo - install boot loader

 Auxiliary uses:

 /sbin/lilo -q - query map
 /sbin/lilo -R - set default command line for next reboot
 /sbin/lilo -I - inquire path name of current kernel
 /sbin/lilo {-u|-U} - uninstall lilo

DESCRIPTION

 lilo installs a boot loader that will be activated next time
 you boot. It has lots of options.

 -v Increase verbosity. Giving one or more -v options will
 make lilo more verbose.

 -q List the currently mapped files. lilo maintains a
 file, by default /boot/map, containing the name and
 location of the kernel(s) to boot. This option will
 list the names therein.

 -m map-file
 Use specified map file instead of the default.

 -C config-file

http://linuxsavvy.com/resources/linux/man/man8/lilo.8.html (1 of 4) [14/09/1999 10:03:37]

 lilo reads its instructions about what files to map
 from its config file, by default /etc/lilo.conf. This
 option can be used to specify a non-default config
 file.

 -d delay
 If you have specified several kernels, and press Shift
 at boot-time, the boot loader will present you with a
 choice of which system to boot. After a timeout period
 the first kernel in the list is booted. This option
 specifies the timeout delay in deciseconds.

 -D label
 Use the kernel with the given label, instead of the
 first one in the list, as the default kernel to boot.

 -r root-directory
 Before doing anything else, do a chroot to the indi-
 cated directory. Used for repairing a setup from a boot
 floppy.

 -t Test only. Do not really write a new boot sector or map
 file. Use together with -v to find out what lilo is
 about to do.

 -c Enable map compaction. This will merge read requests
 from adjacent sectors. Speeds up the booting (espe-
 cially from floppy).

 -f disk-tab
 Specify disk geometry parameter file. (The default is
 /etc/disktab.)

 -i boot-sector
 Specify a file to be used as the new boot sector. (The
 default is /boot/boot.b.)

 -l Generate linear sector addresses instead of
 sector/head/cylinder addresses.

 -P {fix|ignore}
 Fix (or ignore) `corrupt' partition tables, i.e., par-
 tition tables with linear and sector/head/cylinder
 addresses that do not correspond.

 -s save-file

http://linuxsavvy.com/resources/linux/man/man8/lilo.8.html (2 of 4) [14/09/1999 10:03:37]

 When lilo overwrites the boot sector, it preserves the
 old contents in a file, by default /boot/boot.NNNN
 where NNNN depends on the device. This option specifies
 an alternate save file for the boot sector. (Or,
 together with the -u option, specifies from where to
 restore the boot sector.)

 -S save-file
 Normally, lilo will not overwrite an existing save
 file. This options says that overwriting is allowed.

 -u device-name
 Uninstall lilo, by copying the saved boot sector back.
 A time-stamp is checked.

 -U device-name
 Idem, but do not check the time-stamp.

 -R command line
 This option sets the default command for the boot
 loader the next time it executes. The boot loader will
 then erase this line: this is a once-only command. It
 is typically used in reboot scripts, just before cal-
 ling `shutdown -r'.

 -I label
 The label of the running kernel can be found in the
 environment variable BOOT_IMAGE after startup. This
 command will print the corresponding path name on
 stdout.

 -V Print version number.

 The above command line options correspond to the key words
 in the config file indicated below.

 l l. -b bootdev boot=bootdev -c compact -d
 dsec delay=dsec -D label default=label -i
 bootsector install=bootsector -f file disktab=file
 -l linear -m mapfile map=mapfile -P fix fix-
 table -P ignore ignore-table -s file backup=file -S
 file force-backup=file -v verbose=level

http://linuxsavvy.com/resources/linux/man/man8/lilo.8.html (3 of 4) [14/09/1999 10:03:37]

SEE ALSO

 lilo.conf(5).
 The lilo distribution comes with very extensive documenta-
 tion.

AUTHOR

 Werner Almesberger (almesber@bernina.ethz.ch).

http://linuxsavvy.com/resources/linux/man/man8/lilo.8.html (4 of 4) [14/09/1999 10:03:37]

Linux Man Pages Section 9
● MAJOR.9

● MAP_NR.9

● MINOR.9

● MKDEV.9

● MOD_DEC_USE_COUNT.9

● MOD_INC_USE_COUNT.9

● __skb_dequeue.9

● __skb_insert.9

● __skb_queue_head.9

● __skb_queue_tail.9

● __skb_unlink.9

● atomic_add.9

● atomic_dec.9

● atomic_inc.9

● atomic_read.9

● atomic_set.9

● atomic_sub.9

● cli.9

● copy_from_user.9

● copy_to_user.9

● disable_bh.9

● free_irq.9

● get_user.9

● init_bh.9

● init_module.9

● intro.9

● kfree.9

● kmalloc.9

● mark_bh.9

● mem_map_reserve.9

● mem_map_unreserve.9

Linux Man Pages Section 9

http://linuxsavvy.com/resources/linux/man/man9/ (1 of 3) [14/09/1999 10:03:40]

http://linuxsavvy.com/resources/linux/man/man9/MINOR.9.html
http://linuxsavvy.com/resources/linux/man/man9/MKDEV.9.html
http://linuxsavvy.com/resources/linux/man/man9/MOD_DEC_USE_COUNT.9.html
http://linuxsavvy.com/resources/linux/man/man9/__skb_dequeue.9.html
http://linuxsavvy.com/resources/linux/man/man9/__skb_insert.9.html
http://linuxsavvy.com/resources/linux/man/man9/__skb_queue_head.9.html
http://linuxsavvy.com/resources/linux/man/man9/__skb_queue_tail.9.html
http://linuxsavvy.com/resources/linux/man/man9/__skb_unlink.9.html
http://linuxsavvy.com/resources/linux/man/man9/atomic_dec.9.html
http://linuxsavvy.com/resources/linux/man/man9/atomic_inc.9.html
http://linuxsavvy.com/resources/linux/man/man9/atomic_read.9.html
http://linuxsavvy.com/resources/linux/man/man9/atomic_set.9.html
http://linuxsavvy.com/resources/linux/man/man9/atomic_sub.9.html
http://linuxsavvy.com/resources/linux/man/man9/copy_from_user.9.html
http://linuxsavvy.com/resources/linux/man/man9/copy_to_user.9.html
http://linuxsavvy.com/resources/linux/man/man9/disable_bh.9.html
http://linuxsavvy.com/resources/linux/man/man9/free_irq.9.html
http://linuxsavvy.com/resources/linux/man/man9/kfree.9.html
http://linuxsavvy.com/resources/linux/man/man9/mark_bh.9.html
http://linuxsavvy.com/resources/linux/man/man9/mem_map_unreserve.9.html

● pcibios_find_class.9

● pcibios_find_device.9

● pcibios_present.9

● pcibios_read_config_byte.9

● pcibios_read_config_dword.9

● pcibios_read_config_word.9

● pcibios_strerror.9

● pcibios_write_config_byte.9

● pcibios_write_config_dword.9

● pcibios_write_config_word.9

● poll_wait.9

● printk.9

● probe_irq_off.9

● probe_irq_on.9

● proc_dir_entry.9

● proc_net_register.9

● proc_net_unregister.9

● proc_register.9

● proc_register_dynamic.9

● proc_scsi_register.9

● proc_scsi_unregister.9

● proc_unregister.9

● put_user.9

● register_chrdev.9

● register_console.9

● remove_bh.9

● request_irq.9

● save_flags.9

● skb_append.9

● skb_dequeue.9

● skb_insert.9

● skb_peek.9

● skb_queue_empty.9

Linux Man Pages Section 9

http://linuxsavvy.com/resources/linux/man/man9/ (2 of 3) [14/09/1999 10:03:40]

http://linuxsavvy.com/resources/linux/man/man9/pcibios_find_device.9.html
http://linuxsavvy.com/resources/linux/man/man9/probe_irq_off.9.html
http://linuxsavvy.com/resources/linux/man/man9/proc_net_unregister.9.html
http://linuxsavvy.com/resources/linux/man/man9/proc_register.9.html
http://linuxsavvy.com/resources/linux/man/man9/proc_register_dynamic.9.html
http://linuxsavvy.com/resources/linux/man/man9/proc_scsi_unregister.9.html
http://linuxsavvy.com/resources/linux/man/man9/proc_unregister.9.html
http://linuxsavvy.com/resources/linux/man/man9/put_user.9.html
http://linuxsavvy.com/resources/linux/man/man9/remove_bh.9.html
http://linuxsavvy.com/resources/linux/man/man9/skb_append.9.html

● skb_queue_head.9

● skb_queue_head_init.9

● skb_queue_len.9

● skb_queue_tail.9

● skb_unlink.9

● skel.9

● sleep_on.9

● sti.9

● wake_up.9

Linux Man Pages Section 9

http://linuxsavvy.com/resources/linux/man/man9/ (3 of 3) [14/09/1999 10:03:40]

http://linuxsavvy.com/resources/linux/man/man9/sti.9.html

NAME

 MAJOR, MINOR, MKDEV - macros to manipulate device
 major/minor numbers

SYNOPSIS

 #include <linux/fs.h>

 #define MAJOR(dev))
 #define MINOR(dev))
 #define MKDEV(major, minor))

DESCRIPTION

 The MAJOR and MINOR macros extract from a device id (of type
 dev_t) the major and minor numbers respectively. It is the
 combined device number that is found in the struct~file
 structure.

 The MKDEV macro assembles a device number from the supplied
 major and minor numbers.

RETURN VALUE

 Describe the return values. Enumerate all the distinct
 values and all the ranges.

http://linuxsavvy.com/resources/linux/man/man9/MAJOR.9.html (1 of 2) [14/09/1999 10:03:41]

AVAILABILITY

 Linux 0.0+

 In later kernels (Linux 2.1 and later) there is movement
 towards using 64bit device numbers. Although it is generally
 a good idea to not presume to know how device numbers are
 constructed, it is during this period of transition funda-
 mentally important that you ONLY use these functions to
 manipulate device numbers.

SEE ALSO

 mknod(1)

 Also list some source files for the kernel that implement
 the functions of the page.

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 These are macros, so parameters may be evaluated multiple
 times.

http://linuxsavvy.com/resources/linux/man/man9/MAJOR.9.html (2 of 2) [14/09/1999 10:03:41]

NAME

 MAP_NR - get memory map index for page in kernel memory

SYNOPSIS

 #include <linux/mm.h>

 #define MAP_NR(page))

DESCRIPTION

 This macro maps the page of kernel memory to an index into
 the mem_map array. The input page is kernel-space page
 addresses such as those that come from the get_free_page(9)
 function. The expression mem_map[MAP_NR(page)] returns a
 pointer to a mem_map_t for the page in question.

 Device drivers need access to the page structure if it is
 implimenting some special kind of memory segment, i.e. cache
 for a virtual frame buffer.

RETURN VALUE

 Returns an index into the mem_map array.

http://linuxsavvy.com/resources/linux/man/man9/MAP_NR.9.html (1 of 2) [14/09/1999 10:03:43]

AVAILABILITY

 Linux 2.0+

SEE ALSO

 get_free_pages(9)

 /usr/include/asm/page.h

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 There is no check that the page you are passing really is a
 valid page address.

http://linuxsavvy.com/resources/linux/man/man9/MAP_NR.9.html (2 of 2) [14/09/1999 10:03:43]

NAME

 MOD_INC_USE_COUNT, MOD_DEC_USE_COUNT - Support reference
 counting of modules

SYNOPSIS

 #include <linux/module.h>

 #define MOD_INC_USE_COUNT
 #define MOD_DEC_USE_COUNT

DESCRIPTION

 These macros support reference counting of modules during
 their lifetime. Each time MOD_INC_USE_COUNT(9) is invoked,
 the kernel increases the number of counted references to the
 module. The MOD_DEC_USE_COUNT(9) decreases the reference
 count.

 The reference count is used by the kernel to know when a
 module is no longer in use by the device or application
 software. A MOD_INC_USE_COUNT(9) is generally placed in the
 open entry for a driver, and a MOD_DEC_USE_COUNT(9) in the
 release for the driver, to count the number of times the
 device has been opened, and thus prevent the module being
 unloaded when in use. The device driver may increment the
 use count other times, such as when memory is mapped or the
 module must remain loaded for external events.

 If the device driver is not compiled as a module is not
 defined) then the macro reduces to no behavior.

http://linuxsavvy.com/resources/linux/man/man9/MOD_INC_USE_COUNT.9.html (1 of 2) [14/09/1999 10:03:46]

RETURN VALUE

 These macros take no parameters and return no result.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 /usr/include/linux/module.h

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

http://linuxsavvy.com/resources/linux/man/man9/MOD_INC_USE_COUNT.9.html (2 of 2) [14/09/1999 10:03:46]

NAME

 atomic_add, atomic_sub, atomic_inc, atomic_dec - thread/SMP
 safe arithmetic on atomic data

SYNOPSIS

 #include <asm/atomic.h>

 void atomic_add(int i, volatile atomic_t*v)
 void atomic_sub(int i, volatile atomic_t*v)
 void atomic_inc(volatile atomic_t*v)
 void atomic_dec(volatile atomic_t*v)
 int atomic_read(volatile atomic_t*v)
 void atomic_set(volatile atomic_t*v, int i)
 int atomic_dec_and_test(volatile atomic_t*v)

DESCRIPTION

 These functions manipulate variables of type atomic_t is SMP
 and interrupt safe ways. These variables can be used to hold
 spin locks or SMP-safe reference counters. These functions
 guarantee that the operation that they represent is per-
 formed correctly. If necessary, hardware bus locking is per-
 formed to protect the operation. Usually, the CPU has some
 sort of atomic instructions that allow these operations to
 be performed quickly and safely.

 The atomic_dec_and_test decrements the atomic variable, and
 returns true if the result is zero. This function is partic-
 ularly useful in implementing spin locks on SMP systems.

http://linuxsavvy.com/resources/linux/man/man9/atomic_add.9.html (1 of 2) [14/09/1999 10:03:51]

RETURN VALUE

 The atomic_read function returns the integer value of the
 atomic variable.

 The atomic_dec_and_test returns TRUE if the value becomes
 zero after the decrement.

AVAILABILITY

 Linux 2.0+

SEE ALSO

 intro(9)

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 The read and set operations generally have no special pro-
 tections.

http://linuxsavvy.com/resources/linux/man/man9/atomic_add.9.html (2 of 2) [14/09/1999 10:03:51]

NAME

 cli, sti - disable/enable interrupts

SYNOPSIS

 #include <asm/system.h>

 extern void cli()
 extern void sti()

DESCRIPTION

 The cli function causes interrupts to be blocked on the
 host, so that following critical code may run uninterrupted.
 The sti function enables interrupts again.

 Although it is possible to use cli/sti pairs to protect
 critical code, it is best to use cli with the save_flags
 macro. See save_flags (9).

RETURN VALUE

 none

http://linuxsavvy.com/resources/linux/man/man9/cli.9.html (1 of 3) [14/09/1999 10:03:56]

AVAILABILITY

 Linux 1.0+

SEE ALSO

 save_flags(9)

 include/asm-*/system.h

AUTHOR

 Stephen Williams (steve@icarus.com)

BUGS

 The i386 ancestry of the names can be slightly confusing.

http://linuxsavvy.com/resources/linux/man/man9/cli.9.html (2 of 3) [14/09/1999 10:03:56]

http://linuxsavvy.com/resources/linux/man/man9/cli.9.html (3 of 3) [14/09/1999 10:03:56]

NAME

 get_user, put_user, copy_from_user, copy_to_user - copy data
 between kernel space and user space

SYNOPSIS

 #include <asm/uaccess.h>

 err = get_user (x, addr);
 err = put_user (x, addr);

 bytes_left = copy_from_user(void*to, const void *from,
 unsigned long n);
 bytes_left = copy_to_user(void*to, const void *from,
 unsigned long n);

DESCRIPTION

 These macros transfer data between kernel space and user
 space. In the first example, the kernel variable x gets the
 value of the thing pointed to by addr (in user space). For
 put_user, the value of the variable x is written starting at
 the address addr. Note well that x is a variable, not a
 pointer. addr must be a properly typed pointer, since its
 type determines number of bytes that are copied.

 copy_from_user copies n bytes from address from in user
 space to address to in kernel space. copy_to_user copies in
 the opposite direction.

 None of these need the old verify_area() call, as they do
 all the area verification on their own using the paging unit
 in the CPU hardware. Less chance of missing address verifi-

http://linuxsavvy.com/resources/linux/man/man9/get_user.9.html (1 of 4) [14/09/1999 10:04:00]

 cation that way. Also, the new address verification is much
 faster than the old scheme was.

RETURN VALUE

 get_user and put_user return 0 for success and -EFAULT for
 bad access. copy_from_user and copy_to_user return the
 number of bytes they failed to copy (so again zero is a suc-
 cessful return).

EXAMPLES

 if (get_user(type, (char *)arg))
 return -EFAULT;
 switch (type) {
 ...

 b.maxwidth = 768;
 b.maxheight = 576;
 b.minwidth = 32;
 b.minheight = 32;
 if(copy_to_user(arg, &b, sizeof(b)))
 return -EFAULT;

 return 0;
 ...

AVAILABILITY

 Linux 2.1.4+

http://linuxsavvy.com/resources/linux/man/man9/get_user.9.html (2 of 4) [14/09/1999 10:04:00]

SEE ALSO

 verify_area(9)

AUTHOR

 Manual page by Jim Van Zandt <jrv@vanzandt.mv.com>

http://linuxsavvy.com/resources/linux/man/man9/get_user.9.html (3 of 4) [14/09/1999 10:04:00]

http://linuxsavvy.com/resources/linux/man/man9/get_user.9.html (4 of 4) [14/09/1999 10:04:00]

NAME

 init_bh, remove_bh, mark_bh, disable_bh, enable_bh - split-
 half interrupt handling

SYNOPSIS

 #include <linux/interrupt.h>

 void init_bh(int nr, void (*routine))(void));
 void remove_bh(int nr));
 void mark_bh(int nr));
 void disable_bh(int nr));
 void enable_bh(int nr));

DESCRIPTION

 Theory
 Split-half handling is a means of dividing an interrupt
 handler into two sections, one of which (known as the top
 half') is time-critical and one of which (the bottom half')
 is not.

 The top half (the handler registered with request_irq(9))
 normally moves data between the device and a memory buffer,
 ensures that the device is in a sane state, and little else.
 While the top half of a handler is running, the IRQ is ques-
 tion is blocked; if it is a fast interrupt handler (i.e., it
 has SA_INTERRUPT set), all interrupts are disabled.

 The bottom half does whatever remains to be done. Bottom
 halves run with interrupts enabled, although a locking
 mechanism ensures that only one bottom half will be running
 at a given time. Bottom halves are run by do_bottom_half(),

http://linuxsavvy.com/resources/linux/man/man9/init_bh.9.html (1 of 4) [14/09/1999 10:04:02]

 which is called from schedule() and ret_from_sys_call().

 Usage
 init_bh() installs routine() as bottom half number nr. It
 operates by adding an entry to the bh_base[] table, and set-
 ting the appropriate bit of the bh_mask vector. Rather than
 specifying a number explicitly, one should add an entry to
 the anonymous enum in include/linux/interrupt.h.

 remove_bh() removes bottom half number nr from the list of
 bottom halves. It removes the entry from bh_base[] and
 clears the appropriate bit of bh_mask.

 mark_bh() requests that the kernel run the specified bottom
 half at the first available opportunity. This function is
 normally called from the top half of an interrupt handler.
 It operates by setting the appropriate bit of the bh_active
 vector.

 disable_bh() disables bottom half number nr by clearing the
 appropriate bit of bh_mask. This function also increments
 bh_mask_count[nr], which is used to ensure that nested calls
 to disable_bh() must be matched by an equal number of calls
 to enable_bh().

 enable_bh() enables a bottom half previously disabled by
 disable_bh(). This function decrements bh_mask_count[nr].
 Then, if that value is zero, the specified bottom half is
 enabled by setting the appropriate bit of bh_mask.

RETURN VALUE

 No value is returned.

AVAILABILITY

 Linux 2.0+. init_bh() and remove_bh() were not present in
 older versions on Linux. Under those versions, bh_base[]

http://linuxsavvy.com/resources/linux/man/man9/init_bh.9.html (2 of 4) [14/09/1999 10:04:02]

 and bh_mask must be modified by hand.

SEE ALSO

 request_irq(9), queue_task(9)

 include/asm*/softirq.h, include/linux/interrupt.h,
 kernel/softirq.c

 Kernel Korner in issue 26 of The Linux Journal includes a
 discussion of split-half interrupts under Linux. An online
 copy of this article can be found at
 http://www.ssc.com/lj/issue26/interrupt.html.

AUTHOR

 Neil Moore <amethyst@maxwell.ml.org>

BUGS

 Only 32 bottom halves are allowed. Increasing this number
 requires changing the size of bh_base[] and bh_mask_count[]
 in kernel/softirq.c, and changing bh_active and bh_mask (in
 the same file) to a larger type. A better solution, how-
 ever, would be to consolidate multiple bottom halves into a
 single one by using task queues. See queue_task(9) for
 details.

http://linuxsavvy.com/resources/linux/man/man9/init_bh.9.html (3 of 4) [14/09/1999 10:04:02]

http://linuxsavvy.com/resources/linux/man/man9/init_bh.9.html (4 of 4) [14/09/1999 10:04:02]

NAME

 init_module, cleanup_module - module load and unload func-
 tions

SYNOPSIS

 #include <linux/module.h>
 #include <linux/modversions.h>

 int init_module(void);
 void cleanup_module(void);

DESCRIPTION

 These functions are not part of the kernel but entry points
 into loadable modules. These are the only symbols that must
 be externally defined in order to load a module into a run-
 ning kernel.

 When a module is loaded into a running kernel, the
 init_module(9) function within that object file is called to
 set up the module. The implementation of that function ini-
 tializes local features and uses functions such as
 register_chrdev(9) to attach itself to the kernel. It then
 returns zero(0) if it succeeds. If there is a problem or the
 module decides that it cannot be loaded, it returns instead
 an error code (i.e. -ENODEV) and the kernel releases the
 module again.

 Once loaded, the cleanup_module(9) function of a module is
 used by the kernel to remove the module again. The module
 detaches itself from the kernel and returns.

http://linuxsavvy.com/resources/linux/man/man9/init_module.9.html (1 of 2) [14/09/1999 10:04:04]

RETURN VALUE

 The init_module(9) function returns 0 on success, or an
 error code <0 if the module cannot be initialized.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 MOD_INC_USE_COUNT(9), insmod(1)

 Also list some source files for the kernel that implement
 the functions of the page.

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 It is entirely up to the driver to be sure it is detached
 from the kernel when unloaded. If a module makes an error in
 this regard, bad things may happen.

http://linuxsavvy.com/resources/linux/man/man9/init_module.9.html (2 of 2) [14/09/1999 10:04:04]

NAME

 intro - Introduction to kernel interface

SYNOPSIS

 #include <linux/version.h>

DESCRIPTION

 This section documents the functions available to device
 driver writers and kernel level modules. The functions are
 of interest mainly to device driver writers, although anyone
 considering running code in linux kernel mode may need to be
 familiar with these interfaces.

 Some of the functions of the DDI exist only in certain ver-
 sions of the kernel. Use the LINUX_VERSION_CODE macro to
 test for specific versions of the kernel. For example, to
 use a feature that is new to 2.1, say:

 #if LINUX_VERSION_CODE >= 0x020100
 ... use new stuff ...
 #else
 ... do it the old way ...
 #endif

 The following is a list of the man pages, divided roughly
 into function groups.

 Kernel Functions
 These are general kernel functions.

 MAJOR

http://linuxsavvy.com/resources/linux/man/man9/intro.9.html (1 of 5) [14/09/1999 10:04:06]

 MOD_INC_USE_COUNT

 cli

 get_user

 init_bh

 init_module

 kmalloc

 poll_wait

 printk

 probe_irq_on

 register_chrdev

 register_console

 request_irq

 save_flags

 sleep_on

 wake_up

 /proc functions
 These functions relate to manipulation of the /proc filesys-
 tem.

 proc_dir_entry

 proc_net_register

 proc_scsi_register

 BIOS32 functions
 These are specific to PCI (BIOS32) support.

 pcibios_find_class

http://linuxsavvy.com/resources/linux/man/man9/intro.9.html (2 of 5) [14/09/1999 10:04:06]

 pcibios_present

 pcibios_read_config_byte

 pcibios_read_config_dword

 pcibios_read_config_word

 pcibios_strerror

 pcibios_write_config_byte

 pcibios_write_config_dword

 pcibios_write_config_word

 VM functions
 These are functions that support manipulating the virtual
 memory subsystem.

 MAP_NR

 mem_map_reserve

 Network Functions
 skb_dequeue

 skb_insert

 skb_peek

 skb_queue_empty

 skb_queue_head

 skb_queue_head_init

 skb_queue_len

 skb_queue_tail

 skb_unlink

http://linuxsavvy.com/resources/linux/man/man9/intro.9.html (3 of 5) [14/09/1999 10:04:06]

AVAILABILITY

 Each man page attempts to list the kernel versions where the
 function is available. If the form of the function changes,
 this section tells when the described form applies.

SEE ALSO

 This section lists other man pages that may be of interest.
 Also, interesting source files in the linux kernel may be
 listed here.

AUTHORS

 Each man page has a section like this one that lists the
 author(s) who contributed significantly to that page. Other
 unnamed individuals may also have contributed corrections,
 editorial, etc.

 Major contributors are (in alphabetical order) Cyrus Durgin
 <cider@speakeasy.org>, Niel Moore <amethyst@maxwell.ml.org>,
 Keith Owens <kaos@ocs.com.au>, Kirk Petersen
 <kirk@speakeasy.org>, Jim Van Zandt <jrv@vanzandt.mv.com>,
 and Stephen Williams <steve@icarus.com>.

 Editorial, and this intro page, were done by Stephen Willi-
 ams <steve@icarus.com>.

BUGS

 The living linux kernel is a moving target, and the kernel
 functions are unique to linux. Therefore, although the edi-
 tor and contributers make a good effort to be as accurate as

http://linuxsavvy.com/resources/linux/man/man9/intro.9.html (4 of 5) [14/09/1999 10:04:06]

 possible, errors may exist. The source codes of the linux
 kernel are the ultimate authority on the behavior of any
 function and should be considered the final word.

http://linuxsavvy.com/resources/linux/man/man9/intro.9.html (5 of 5) [14/09/1999 10:04:06]

NAME

 kmalloc, kfree - allocate and free pieces of memory

SYNOPSIS

 #include <linux/malloc.h>

 void * kmalloc (size_t size, int priority));
 void kfree (void * __ptr));

DESCRIPTION

 The kmalloc function allocates a piece of memory.

 The parameter size is the number of bytes that will be allo-
 cated. The parameter priority indicates the importance and
 type of the memory request. Some possible values are
 GFP_DMA, GFP_ATOMIC, GFP_BUFFER, and GFP_NFS.

 The kfree function releases a piece of memory that is passed
 as the __ptr parameter.

RETURN VALUE

 On success, kmalloc returns a pointer to the newly allocated
 memory.

 If there is an error, NULL is returned instead.

http://linuxsavvy.com/resources/linux/man/man9/kmalloc.9.html (1 of 2) [14/09/1999 10:04:08]

AVAILABILITY

 Linux 2.0

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/kmalloc.9.html (2 of 2) [14/09/1999 10:04:08]

NAME

 mem_map_reserve, mem_map_unreserve - Manipulate flags of
 virtual memory pages.

SYNOPSIS

 #include <linux/mm.h>
 #include <linux/wrapper.h>

 #define mem_map_reserve(page_nr))
 #define mem_map_unreserve(page_nr))

DESCRIPTION

 These macros cause a page to become reserved/unreserved. A
 reserved page is reserved from any further consideration by
 the linux kernel, meaning it is not scanned as potentially
 pageable, or available for page allocation. The kernel
 treats reserved pages as memory-mapped hardware.

 It makes sense for a driver to mark a page reserved, for
 example, if the driver supports mmap(2) with dynamically
 allocated pages that the target device can access via DMA.

RETURN VALUE

 None

http://linuxsavvy.com/resources/linux/man/man9/mem_map_reserve.9.html (1 of 2) [14/09/1999 10:04:10]

AVAILABILITY

 Linux 2.0+

SEE ALSO

 MAP_NR(9), get_free_pages(9), mmap(2)

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 If a page is marked reserved, a call to free_page(9) will
 silenty ignore it. If the page was originally allocated by
 get_free_page, you must remember to unmark the page before
 releasing it to the system. Otherwise, the page is lost.

http://linuxsavvy.com/resources/linux/man/man9/mem_map_reserve.9.html (2 of 2) [14/09/1999 10:04:10]

NAME

 pcibios_find_class, pcibios_find_device - find a PCI class
 or device

SYNOPSIS

 #include <linux/bios32.h>

index, unsigned char* bus

 int pcibios_find_class(unsigned int class_code, unsigned short

unsigned short device_id , unsigned short

 int pcibios_find_device(unsigned short vendor,

DESCRIPTION

 The pcibios_find_class function searches for a certain class
 of device on the PCI bus. In this instance, class is used
 to represent a few different categories of devices. Some
 examples are storage, network, display, and memory classes.
 The classes are defined by the PCI Specification, and the
 class_code is matched with the dword in the configuration

http://linuxsavvy.com/resources/linux/man/man9/pcibios_find_class.9.html (1 of 4) [14/09/1999 10:04:12]

 space of the device at offset 0x08.

 The pcibios_find_device function finds a device on the PCI
 bus that has the matching device and vendor ids. The vendor
 ids are assigned to the PCI Sig to vendors, who in turn
 assign device ids to the devices they develop. The vendor
 and device ids are encoded in dword 0x00 of the configura-
 tion space.

 Both pcibios_find_class and pcibios_find_device include an
 extra index parameter, which is used to select the specific
 device if there are multiple matches. An index of 0 matches
 the firts located board, 1 the second, and so on.

 The bus and device_fn parameters are PCI specific cookies
 that are passed to other pcibios functions to access the
 configuration space of the located device.

RETURN VALUE

 On success, the functions return PCIBIOS_SUCCESSFUL. Other-
 wise, one of the following error codes is returned:

 PCIBIOS_DEVICE_NOT_FOUND
 There is no device that matches the search cri-
 teria,

 PCIBIOS_BAD_VENDOR_ID
 The vendor id is invalid. (0xffff is not a valid
 id.)

 PCIBIOS_FUNC_NOT_SUPPRTED
 The PCI subsystem is not available

AVAILABILITY

 Linux 1.0+

http://linuxsavvy.com/resources/linux/man/man9/pcibios_find_class.9.html (2 of 4) [14/09/1999 10:04:12]

SEE ALSO

 pcibios_present(9)

 /usr/include/linux/pci.h, /usr/include/linux/bios32.h

 PCI Local Bus Specification

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_find_class.9.html (3 of 4) [14/09/1999 10:04:12]

http://linuxsavvy.com/resources/linux/man/man9/pcibios_find_class.9.html (4 of 4) [14/09/1999 10:04:12]

NAME

 pcibios_present - determine whether a PCI bus is available

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_present(void);

DESCRIPTION

 The pcibios_present tests for the presence of PCI support on
 the local host. It returns true (!0) if PCI support exists,
 false otherwise.

RETURN VALUE

 Zero if PCI support is NOT present.

AVAILABILITY

 Linux 1.0+

http://linuxsavvy.com/resources/linux/man/man9/pcibios_present.9.html (1 of 2) [14/09/1999 10:04:14]

SEE ALSO

 /usr/include/linux/bios32.h,
 /usr/src/linux/arch/*/kernel/bios32.c

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

 Bugs?! This is way to trivial to have bugs.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_present.9.html (2 of 2) [14/09/1999 10:04:14]

NAME

 pcibios_read_config_byte - read one byte of data from the
 configuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_read_config_byte (unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned char * value);

DESCRIPTION

 The pcibios_read_config_byte function reads one byte from
 the configuration space of the PCI bus. The bus can be
 specified with the bus parameters. The device_fn paramter
 determines which ? to use. where is set to the ?. After
 the call is made, value points to the value that was read.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_byte.9.html (1 of 2) [14/09/1999 10:04:15]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_byte.9.html (2 of 2) [14/09/1999 10:04:15]

NAME

 pcibios_read_config_dword - read a double word of data from
 the configuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_read_config_dword (unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned int * value);

DESCRIPTION

 The pcibios_read_config_dword function reads a double word
 from the configuration space of the PCI bus. The bus can be
 specified with the bus parameters. The device_fn paramter
 determines which ? to use. where is set to the ?. After
 the call is made, value points to the value that was read.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_dword.9.html (1 of 2) [14/09/1999 10:04:16]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_dword.9.html (2 of 2) [14/09/1999 10:04:16]

NAME

 pcibios_read_config_word - read a word of data from the con-
 figuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_read_config_word (unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned short * value);

DESCRIPTION

 The pcibios_read_config_word function reads a word from the
 configuration space of the PCI bus. The bus can be speci-
 fied with the bus parameters. The device_fn paramter deter-
 mines which ? to use. where is set to the ?. After the
 call is made, value points to the value that was read.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_word.9.html (1 of 2) [14/09/1999 10:04:18]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_read_config_word.9.html (2 of 2) [14/09/1999 10:04:18]

NAME

 pcibios_strerror - Convert BIOS32 return codes to strings

SYNOPSIS

 #include <linux/bios32.h>

 const char* pcibios_strerror(int error));

DESCRIPTION

 The pcibios_strerror function converts a PCI BIOS32 error
 number into a human readable error message. The bios32 error
 codes are defined by the PCI standard.

RETURN VALUE

 The return value is a pointer to the error message.

SEE ALSO

 /usr/include/linux/bios32.h,
 /usr/src/linux/arch/*/kernel/bios32.c

 PCI Local Bus -- PCI BIOS SPECIFICATION

http://linuxsavvy.com/resources/linux/man/man9/pcibios_strerror.9.html (1 of 2) [14/09/1999 10:04:19]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

 The result may or may not be overwritten by a subsequent
 call to this function. it is best to assume it does.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_strerror.9.html (2 of 2) [14/09/1999 10:04:19]

NAME

 pcibios_write_config_byte - write one byte of data to the
 configuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_write_config_byte(unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned char value);

DESCRIPTION

 The pcibios_write_config_byte function writes one byte to
 the configuration space of the PCI bus. The bus can be
 specified with the bus parameters. The device_fn paramter
 determines which ? to use. where is set to the ?. The byte
 to be written to the configuration space is stored in the
 value parameter.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_byte.9.html (1 of 2) [14/09/1999 10:04:20]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_byte.9.html (2 of 2) [14/09/1999 10:04:20]

NAME

 pcibios_write_config_dword - write one double word of data
 to the configuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_write_config_dword (unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned int value);

DESCRIPTION

 The pcibios_write_config_dword function writes one double
 word to the configuration space of the PCI bus. The bus can
 be specified with the bus parameters. The device_fn
 paramter determines which ? to use. where is set to the ?.
 The word to be written to the configuration space is stored
 in the value parameter.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_dword.9.html (1 of 2) [14/09/1999 10:04:22]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_dword.9.html (2 of 2) [14/09/1999 10:04:22]

NAME

 pcibios_write_config_word - write one word of data to the
 configuration space of the PCI bus

SYNOPSIS

 #include <linux/bios32.h>

 int pcibios_write_config_word (unsigned char bus, unsigned
 char device_fn,unsigned char where, unsigned short value);

DESCRIPTION

 The pcibios_write_config_word function writes one word to
 the configuration space of the PCI bus. The bus can be
 specified with the bus parameters. The device_fn paramter
 determines which ? to use. where is set to the ?. The word
 to be written to the configuration space is stored in the
 value parameter.

RETURN VALUE

 The return value is taken from the PCI controller in a way
 that I'm not quite sure of.

 If the PCI system is unavailable, PCIBIOS_FUNC_NOT_SUPPORTED
 is returned.

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_word.9.html (1 of 2) [14/09/1999 10:04:23]

AVAILABILITY

 Linux 1.0?

AUTHOR

 Kirk Petersen (kirk@speakeasy.org)

BUGS

http://linuxsavvy.com/resources/linux/man/man9/pcibios_write_config_word.9.html (2 of 2) [14/09/1999 10:04:23]

NAME

 poll_wait - wait for selectable event to be ready

SYNOPSIS

 #include <linux/poll.h>

 void poll_wait(structwait_queue**sync, poll_table*pt))

DESCRIPTION

 This function is used in support of the poll device driver
 entry point. The intent is for a device driver to put sync
 into the poll table immediately upon entering the device
 poll routine, then return a bit mask of events that are
 currently ready. The kernel looks at the mask of events to
 see if something it needs is ready, and suspends the process
 if not.

 static unsigned int xxpoll(struct file*file, poll_table*pt)
 {
 poll_wait(&data_in_sync, pt);
 if (data_in.cnt > 0) return POLLIN | POLLRDNORM;
 else return 0;
 }

 This example shows the basic use of poll_wait(9) in a device
 driver poll function.

http://linuxsavvy.com/resources/linux/man/man9/poll_wait.9.html (1 of 2) [14/09/1999 10:04:25]

AVAILABILITY

 Linux kernel 2.1.34+

SEE ALSO

 intro(9)

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 To early to say.

http://linuxsavvy.com/resources/linux/man/man9/poll_wait.9.html (2 of 2) [14/09/1999 10:04:25]

NAME

 printk - print messages to console log

SYNOPSIS

 #include <linux/kernel.h>

 int printk(const char*fmt, ...)

DESCRIPTION

 Print a formatted message to the kernel console, much like
 the printf function of the stdio library. Normally, the mes-
 sage is written to the physical console device of the com-
 puter, although this behavior can be changed with the
 register_console function. Messages are also stored in a
 message log book.

 The generated string may also start with a message priority
 code, which sets the priority of the message. The priority
 code strings are of the form <n> where n is a number from 0
 - 7. The following macros are defined in the
 <linux/kernel.h> header file:

 KERN_EMERG
 System is unuseable

 KERN_ALERT
 Action must be taken immediately

 KERN_CRIT
 Critical conditions

http://linuxsavvy.com/resources/linux/man/man9/printk.9.html (1 of 4) [14/09/1999 10:04:27]

 KERN_ERR
 Error conditions

 KERN_WARNING
 Warning conditions

 KERN_NOTICE
 Normal but significant condition

 KERN_INFO
 Informational

 KERN_DEBUG
 Debug-level messages

 For example

 printk(KERN_NOTICE "Hello, world.\n");

 does the expected thing.

RETURN VALUE

 Returns the number of characters written to the log.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 register_console(9), syslog(2)

 kernel/printk.c

http://linuxsavvy.com/resources/linux/man/man9/printk.9.html (2 of 4) [14/09/1999 10:04:27]

AUTHOR

 Stephen Williams (steve@icarus.com)

BUGS

 float and double formats are not supported. Floats and dou-
 bles do not belong inside the kernel anyhow.

 The printk implementation protects itself from interruption,
 so in principle it can be used in interrupts handlers and
 critical sections. However, there are no guarantees about
 the console function that is registered.

http://linuxsavvy.com/resources/linux/man/man9/printk.9.html (3 of 4) [14/09/1999 10:04:27]

http://linuxsavvy.com/resources/linux/man/man9/printk.9.html (4 of 4) [14/09/1999 10:04:27]

NAME

 probe_irq_on, probe_irq_off - safe probing for IRQs

SYNOPSIS

 #include <linux/interrupt.h>

 unsigned long probe_irq_on(void)
 int probe_irq_off(unsigned long irqs));

DESCRIPTION

 Usage
 probe_irq_on() turns on IRQ detection. It operates by ena-
 bling all interrupts which have no handlers, while keeping
 the handlers for those interrupts NULL. The kernel's gen-
 eric interrupt handling routine will disable these IRQs when
 an interrupt is received on them. probe_irq_on() adds each
 of these IRQ numbers to a vector which it will return. It
 waits approximately 100ms for any spurious interrupts that
 may occur, and masks these from its vector; it then returns
 this vector to its caller.

 probe_irq_off() tests an internal list of enabled IRQs
 against its irqs parameter, which should be the value
 returned by the last probe_irq_on(). This function basi-
 cally detects which IRQs have been switched off, and thus
 which ones have received interrupts.

 Example
 This explanation may seem a bit confusing, so here is an
 example of code the mythical FUBAR 2000 driver could use to
 probe for IRQs:

http://linuxsavvy.com/resources/linux/man/man9/probe_irq_on.9.html (1 of 4) [14/09/1999 10:04:29]

 unsigned long irqs;
 int irq;

 irqs = probe_irq_on();

 outb(FB2K_GIVE_ME_AN_INTERRUPT_OR_GIVE_ME_DEATH,
 FB2K_CONTROL_PORT);
 /* the interrupt could take a while to occur */
 udelay(1000);

 irq = probe_irq_off(irqs);

 if (irq == 0) {
 printk("fb2k: could not detect IRQ.\n");
 printk("fb2k: Installation failed.\n");
 } else if (irq == -1) {
 printk("fb2k: multiple IRQs detected.\n");
 printk("fb2k: Installation failed.\n");
 } else {
 fb2k_dev->irq = irq;
 printk("fb2k: using probed IRQ %d.\n", irq);
 }

RETURN VALUE

 probe_irq_on() returns a bitmap of all unhandled IRQs
 (except those which are receiving spurious interrupts).
 This value should only be used as a parameter to the next
 call to probe_irq_off().

 probe_irq_off() returns the IRQ number of whichever unhan-
 dled interrupt has occurred since the last probe_irq_on().
 If no interrupts have occurred on any of the marked IRQs, 0
 is returned; if interrupts have occurred on more than one of
 these IRQs, -1 is returned.

http://linuxsavvy.com/resources/linux/man/man9/probe_irq_on.9.html (2 of 4) [14/09/1999 10:04:29]

AVAILABILITY

 Linux 1.2+. These functions are not available on m68k-based
 machines.

SEE ALSO

 request_irq(9)

 arch/*/kernel/irq.c

AUTHOR

 Neil Moore <amethyst@maxwell.ml.org>

BUGS

 As mentioned above, these functions are not available on
 m68k-based machines.

 This manpage is way too confusing.

http://linuxsavvy.com/resources/linux/man/man9/probe_irq_on.9.html (3 of 4) [14/09/1999 10:04:29]

http://linuxsavvy.com/resources/linux/man/man9/probe_irq_on.9.html (4 of 4) [14/09/1999 10:04:29]

NAME

 proc_dir_entry, proc_register, proc_register_dynamic,
 proc_unregister - register entries in the /proc filesystem.

SYNOPSIS

 #include <linux/proc_fs.h>

struct proc_dir_entry * child);

 int proc_register(struct proc_dir_entry * parent,

 int proc_unregister(struct proc_dir_entry * parent, int
 inode));

struct proc_dir_entry * child);

 int proc_register_dynamic(struct proc_dir_entry * parent,

DESCRIPTION

 The proc_register functions add file or directory entries to
 the /proc file system. They associate processing routines
 with each node of the /proc tree. The structure
 proc_dir_entry is defined as

http://linuxsavvy.com/resources/linux/man/man9/proc_dir_entry.9.html (1 of 5) [14/09/1999 10:04:32]

 struct proc_dir_entry {
 unsigned short low_ino;
 unsigned short namelen;
 const char *name;
 mode_t mode;
 nlink_t nlink;
 uid_t uid;
 gid_t gid;
 unsigned long size;
 struct inode_operations * ops;
 int (*get_info)(char *buffer, char **start,
 off_t offset, int length, int unused);
 void (*fill_inode)(struct inode *);
 struct proc_dir_entry *next, *parent, *subdir;
 void *data;
 };

 low_ino The inode number of this directory entry. For
 proc_register this number should be unique within
 the /proc filesystem, values are defined in
 <linux/proc_fs.h>. For proc_register_dynamic the
 inode number is dynamically assigned.

 namelen The length of the name, excluding the trailing null.

 name The name of this node.

 mode The node's type and permissions. Drawn from
 <linux/stat.h>.

 nlink Number of links to the node. Initialise to 2 if
 mode includes S_IFDIR, 1 otherwise.

 uid The uid that owns the node, normally 0.

 gid The gid that owns the node. normally 0.

 size Sets the size of the node, the value will appear as
 the inode size in listings and be returned by stat.
 Unless you really need a size, set this to zero.

 ops Defines the set of inode operations to perform for

http://linuxsavvy.com/resources/linux/man/man9/proc_dir_entry.9.html (2 of 5) [14/09/1999 10:04:32]

 your /proc node. For a directory node, use
 &proc_dir_inode_operations unless you have special
 requirements. For a leaf node, set to NULL unless
 you have special requirements.

 get_info
 If defined, this proc is called when the node is
 read. Should be NULL for directory nodes. NOTE: If
 you need to return large amounts of data, the proc
 must return the data in chunks and reposition itself
 on the next call, using the offset variable. See
 ip_masq_procinfo for example code with large output.

 fill_inode
 Dynamically fill in the inode characteristics during
 directory operations. Not normally required and set
 to NULL. See proc_pid_fill_inode for example code.

 next, parent, subdir
 Maintained by /proc routines. Initial value is
 irrelevant, set to NULL.

 data An opaque pointer which can be used by proc handlers
 to pass local data around. Set to whatever you like
 when calling proc_register, normally NULL. This
 pointer is copied into the inode u.ip_generic field
 (by proc_get_inode) so it is available to any proc
 routines that are passed an inode.

 proc_register adds the child as a node under the parent.

 proc_register_dynamic dynamically assigns an inode number
 then adds the child as a node under the parent.

 proc_unregister scans the inode list under the parent for
 the specified inode number and removes the matching entry.

RETURN VALUE

 proc_register always returns 0.

 proc_register_dynamic returns 0 for success or -EAGAIN if

http://linuxsavvy.com/resources/linux/man/man9/proc_dir_entry.9.html (3 of 5) [14/09/1999 10:04:32]

 there are no free dynamic inode numbers.

 proc_unregister returns 0 for success or -EINVAL if the node
 was not found.

SEE ALSO

 proc_net_register(9), proc_net_unregister(9),
 proc_scsi_register(9),

AUTHOR

 Keith Owens <kaos@ocs.com.au>

BUGS

 The uniqueness of /proc inode numbers is assumed, not
 enforced. It is possible to add two nodes with the same
 inode number.

http://linuxsavvy.com/resources/linux/man/man9/proc_dir_entry.9.html (4 of 5) [14/09/1999 10:04:32]

http://linuxsavvy.com/resources/linux/man/man9/proc_dir_entry.9.html (5 of 5) [14/09/1999 10:04:32]

NAME

 proc_net_register, proc_net_unregister - register network
 entries in the /proc filesystem

SYNOPSIS

 #include <linux/proc_fs.h>

 int proc_net_register(struct proc_dir_entry * child));

 int proc_net_unregister(int inode));

DESCRIPTION

 These are wrapper functions around proc_register and
 proc_unregister. They always use a parent of proc_net.

RETURN VALUE

 As for proc_register and proc_unregister.

SEE ALSO

 proc_register(9), proc_unregister(9)

http://linuxsavvy.com/resources/linux/man/man9/proc_net_register.9.html (1 of 2) [14/09/1999 10:04:33]

AUTHOR

 Keith Owens <kaos@ocs.com.au>

http://linuxsavvy.com/resources/linux/man/man9/proc_net_register.9.html (2 of 2) [14/09/1999 10:04:33]

NAME

 proc_scsi_register, proc_scsi_unregister - register SCSI
 entries in the /proc filesystem

SYNOPSIS

 #include <linux/proc_fs.h>

struct proc_dir_entry * child);

 int proc_scsi_register(struct proc_dir_entry * driver,

int inode);

 int proc_scsi_unregister(struct proc_dir_entry * driver,

DESCRIPTION

 These are wrapper functions around proc_register and
 proc_unregister.

 proc_scsi_register always sets the ops field of child to
 proc_scsi_inode_operations. If the child inode number is
 less than PROC_SCSI_FILE, the child is registered with a

http://linuxsavvy.com/resources/linux/man/man9/proc_scsi_register.9.html (1 of 2) [14/09/1999 10:04:37]

 parent of proc_scsi and driver is ignored. Otherwise the
 child is registered with a parent of driver.

 proc_scsi_unregister. If the child inode number is less
 than PROC_SCSI_FILE, the child is unregistered with a parent
 of proc_scsi and driver is ignored. Otherwise the child is
 unregistered with a parent of driver and scsi_init_free is
 called on the child.

RETURN VALUE

 As for proc_register and proc_unregister.

SEE ALSO

 proc_register(9), proc_unregister(9)

AUTHOR

 Keith Owens <kaos@ocs.com.au>

http://linuxsavvy.com/resources/linux/man/man9/proc_scsi_register.9.html (2 of 2) [14/09/1999 10:04:37]

NAME

 register_chrdev, unregister_chrdev - register a driver major
 number

SYNOPSIS

 #include <linux/fs.h>

 int register_chrdev(unsigned int major, const char*name,
 struct file_operations*ops));
 int unregister_chrdev(unsigned int major, const char *name));

DESCRIPTION

 The register_chrdev function associates a character major
 number with set of driver entry points. The file_operations
 structure contains pointers to functions that the the driver
 uses to implement the kernel interface to the driver.

 The paramter major is the character major number assigned to
 the device driver and to be mapped to the function table.
 The name parameter is a short name for the device and is
 displayed in the The /proc/devices list. It also must
 exactly match the name passed to unregister_chrdev function
 when releasing the functions.

 A device driver module may register as many different major
 numbers as it supports, though this is not typically done.

 The unregister_chrdev function releases the major number,
 and is normally called in the module_cleanup function to
 remove the driver from the kernel.

http://linuxsavvy.com/resources/linux/man/man9/register_chrdev.9.html (1 of 4) [14/09/1999 10:04:40]

RETURN VALUE

 On success, register_chrdev returns 0 if major is a number
 other then 0, otherwise Linux will choose a major number and
 return the chosen value.

 If there is an error, one of the following codes is returned
 instead:

 -EINVAL
 The specified number is not valid (> MAX_CHRDEV)

 -EBUSY
 The major number is busy

 The unregister_chrdev function will return 0 if successful,
 or -EINVAL if the major number is not registered with the
 matching name.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 register_blkdev(9) mknod(2)

AUTHOR

 Stephen Williams (steve@icarus.com)

http://linuxsavvy.com/resources/linux/man/man9/register_chrdev.9.html (2 of 4) [14/09/1999 10:04:40]

BUGS

http://linuxsavvy.com/resources/linux/man/man9/register_chrdev.9.html (3 of 4) [14/09/1999 10:04:40]

http://linuxsavvy.com/resources/linux/man/man9/register_chrdev.9.html (4 of 4) [14/09/1999 10:04:40]

NAME

 register_console - take on kernel console duties

SYNOPSIS

 extern void register_console(void(*proc))(const char*))

DESCRIPTION

 This function registers with the kernel a function to
 display all the kernel messages printed by the printk(9)
 function.

 This function is normally called once at boot time by the
 device driver for the console device, whatever that turns
 out to be for the machine. The console procedure is only
 called to print messages that are to be printed, the filter-
 ing for log level is done already.

RETURN VALUE

 None.

http://linuxsavvy.com/resources/linux/man/man9/register_console.9.html (1 of 3) [14/09/1999 10:04:41]

AVAILABILITY

 Linux 1.0+

SEE ALSO

 printk(9)

 /usr/src/linux/kernel/printk.c

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 Only one console can exist at a time, and there is no way to
 know if any other device has registered as a console.

http://linuxsavvy.com/resources/linux/man/man9/register_console.9.html (2 of 3) [14/09/1999 10:04:41]

http://linuxsavvy.com/resources/linux/man/man9/register_console.9.html (3 of 3) [14/09/1999 10:04:41]

NAME

 request_irq, free_irq - register an interrupt handler

SYNOPSIS

 #include <asm/irq.h>
 #include <linux/signal.h>
 #include <linux/sched.h>
 #include <linux/interrupt.h>

 int request_irq(unsigned int irq,
 void (*handler))(int, void *, struct pt_regs *),
 unsigned long irqflags, const char *devname,
 void *dev_id));
 void free_irq(unsigned int irq, void *dev_id));

DESCRIPTION

 Usage
 The request_irq() function requests that a specified func-
 tion (the handler) be called whenever the kernel receives a
 given interrupt. The handler may in turn register a bottom
 half, which is usually a slower part of the handler which
 does not need to be executed as soon as the interrupt is
 received. See init_bh(9) for more information on bottom
 halves.

 The irq parameter is the interrupt number you want to han-
 dle. It must be less than NR_IRQS (16 on Intel systems),
 and there may be additional limitations on the value. See
 arch/*/kernel/irq.c (intr.c on m68k machines) for more
 information.

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (1 of 6) [14/09/1999 10:04:45]

 handler is a pointer to the a pointer to the function that
 will handle the interrupt. The handler is passed the fol-
 lowing parameters:

 int irq
 The interrupt number. By testing the value of
 this parameter, it is possible for a single func-
 tion to handle multiple IRQs.

 void *dev_id
 The device ID of this handler (see below).

 struct pt_regs *regs
 The registers stored on the stack of the process
 that was interrupted. Normally, one shouldn't
 mess with these, although they can be read to
 determine, for example, whether the interrupted
 process was in kernel or user mode.

 irqflags is, as the name suggests, a bitmask of flags per-
 taining to this interrupt handler. Legal bits are:
 SA_INTERRUPT
 This bit indicates that you are registering a fast
 interrupt handler. The semantics of this are dis-
 cussed below.

 SA_SHIRQ
 This bit indicates that your handler supports
 sharing an IRQ with other handlers (see also
 *dev_id below).

 SA_SAMPLE_RANDOM
 This bit indicates that this IRQ may be used as an
 entropy source for /dev/random and /dev/urandom
 (see drivers/char/random.c).

 SA_PROBE
 This bit indicates that the IRQ is being probed
 and that the handler being installed is not a real
 one. It was intended that this value be used
 internally by probe_irq_on() (q.v.), but it is no
 longer used in 2.1.x kernels. In fact, even with
 2.0.x kernels, it is only used by the MIPS archi-
 tecture. You should not be using this value
 unless you know what you are doing.

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (2 of 6) [14/09/1999 10:04:45]

 SA_STATIC_ALLOC
 (Sparc/Sparc64 only) This bit requests that your
 struct irqaction (see below) be added to a stati-
 cally allocated array of four handlers, rather
 than the normal irq_action[] table. This is used
 for IRQs that must be requested early in the boot
 process, before kmalloc_init() has been called.

 The devname parameter is a short name for the device and is
 displayed in the /proc/interrupts list.

 The dev_id parameter is the device ID. This parameter is
 usually set to NULL, but should be non-null if you wish to
 do IRQ sharing. This doesn't matter when hooking the inter-
 rupt, but is required so that, when free_irq() is called,
 the correct driver is unhooked. Since this is a void *, it
 can point to anything (such as a device-specific structure,
 or even empty space), but make sure you pass the same
 pointer to free_irq().

 The free_irq() function releases an interrupt handler from
 operation. It takes as parameters the IRQ to unregister,
 and the device ID of the handler to be unregistered. You
 should pass the same values here as you did to
 request_irq(). You probably shouldn't unregister other
 people's interrupt handlers unless you know what you are
 doing.

 Operation
 For most architectures, request_irq() operates by allocating
 memory for a struct irqaction, filling out the fields
 thereof, and adding it to the irq_action[] table.
 enable_irq() is then called, which simply tells the kernel
 to start delivering interrupts to the installed handler.
 This process is vastly different on m68k machines, where it
 varies depending on what type of machine (Amiga, Atari,
 etc.) one is using. free_irq() simply removes the entries
 that request_irq() added. Note that some of these names
 differ depending on the architecture (for example, struct
 irqaction is known as struct irq_action on the Power PC).
 If you need to know more about the internal workings of
 these functions, you are best off reading the source, as
 some of this information may have changed by the time you
 read this (if so, tell me, so I can try to update this
 page).

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (3 of 6) [14/09/1999 10:04:45]

 Fast Interrupt Handlers

 A `fast' interrupt handler (one with SA_INTERRUPT set) has
 the following differences from normal `slow' interrupt
 handlers:

 On the ix86 and MIPS, the handler is called with inter-
 rupts disabled (they are enabled by default on these
 machines; on other machines, they are disabled by
 default).

 On the MIPS, a faster return is used.

 On the Alpha, MIPS, Sparc, and Sparc64, a fast and a
 slow handler may not share the same IRQ.

 On all architectures except the m68k and the ix86, a
 `+' is displayed between the interrupt count and the
 device name in /proc/interrupts.

 The slow-versus-fast interrupt distinction is slowly being
 phased out. For example, under 2.0.x on the ix86,
 SA_INTERRUPT enabled a fast return as it still does on the
 MIPS; this distiction was removed in 2.1.x.

RETURN VALUE

 On success, request_irq() returns 0 if everything goes as
 planned. Your interrupt handler will start receiving its
 interrupts immediately. On failure, request_irq() returns:

 -EINVAL
 The IRQ number you requested was either invalid or
 reserved, or your passed a NULL pointer for the
 handler() parameter.

 -ENOMEM
 request_irq() could not allocate enough memory for
 something (probably the struct irqaction).

 -EBUSY

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (4 of 6) [14/09/1999 10:04:45]

 The IRQ you requested is already being handled,
 and the IRQ cannot be shared. This can occur
 because either the handler being registered or the
 handler already present does not have SA_SHIRQ in
 its irqflags field. In addition, on most archi-
 tectures, all handlers sharing a single IRQ must
 be of the same speed; i.e., either all or none of
 them may have the SA_INTERRUPT flag set. Finally,
 it is possible that your architecture may not sup-
 port sharing of the IRQ you are attempting to use.

 -ENXIO
 The m68k returns this value for an invalid IRQ
 number.

 free_irq() does not return a value.

AVAILABILITY

 Linux 2.1+. The information on this page should work for
 2.0.x, but there may be subtle differences (for example, the
 semantics of SA_INTERRUPT on Intel-based machines). Ver-
 sions earlier than 2.0 had these functions, but the dev_id
 parameter was missing. If you want your code to work with
 versions both earlier and later than 2.0, you should protect
 your code with preprocessor macros using LINUX_VERSION_CODE.

SEE ALSO

 init_bh(9), probe_irq_on(9), arch/*/kernel/irq.c,
 arch/*/kernel/entry.S, include/linux/interrupt.h,
 include/asm*/signal.h.

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (5 of 6) [14/09/1999 10:04:45]

AUTHOR

 Neil Moore <amethyst@maxwell.ml.org>

BUGS

 It's not exactly a bug, but request_irq() on the m68k is
 very strange compared to the same function on the other sup-
 ported architectures. You should really read
 arch/m68k/kernel/ints.c, arch/m68k/atari/ataints.c,
 arch/m68k/amiga/amiints.c, and arch/m68k/amiga/cia.c if you
 plan on writing drivers for any of these systems.

http://linuxsavvy.com/resources/linux/man/man9/request_irq.9.html (6 of 6) [14/09/1999 10:04:45]

NAME

 save_flags, restore_flags - save/restore processor state and
 irq mask

SYNOPSIS

 #include <asm/system.h>

 unsigned long flags;
 void save_flags(flags))
 void restore_flags(flags))

DESCRIPTION

 The save_flags and restore_flags macros cooperate with the
 cli function to provide interrupt protection to critical
 sections of code. The save_flags function saves the current
 processor state, most specifically the interrupt priority
 level, in the flags value (which must be an l-value). The
 flags must be passed to a subsequent call to restore_flags
 to restore the processor state.

 The save_flags macro does not affect the processor state,
 but drivers may use the cli(9) and sti functions to disable
 and enable interrupts after saving the current flags. When
 the critical section of code is passed, the restore_flags
 returns the processor to its state at the point where the
 matching save_flags was called.

 Only values returned by save_flags can be passed to
 restore_flags. Any other values may cause unpredictable
 results, and are certainly not portable.

http://linuxsavvy.com/resources/linux/man/man9/save_flags.9.html (1 of 2) [14/09/1999 10:04:47]

RETURN VALUE

 The restore_flags macro saves the processor state in the
 flags parameter, which must be a non-const l-value.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 cli(9)

AUTHOR

 Stephen Williams (steve@icarus.com)

BUGS

 How does all this react with symmetric multiprocessor
 machines?

http://linuxsavvy.com/resources/linux/man/man9/save_flags.9.html (2 of 2) [14/09/1999 10:04:47]

NAME

 __skb_dequeue, skb_dequeue - remove an sk_buff from the head
 of a list

SYNOPSIS

 #include <linux/skbuff.h>

 struct sk_buff *__skb_dequeue(struct sk_buff_head *list));

 struct sk_buff *skb_dequeue(struct sk_buff_head *list));

DESCRIPTION

 The skb_dequeue function removes the head element of an
 sk_buff_head. It decrements the list qlen pointer, and
 cleanly detaches the head from the queue. This function
 should be used instead of performing this task manually, as
 it provides a clean, standardized way of manipulating an
 sk_buff_head, and provides interrupt disabling (see NOTES
 below.)

RETURN VALUE

 Returns a pointer to the head element of list, or NULL if
 list is empty.

http://linuxsavvy.com/resources/linux/man/man9/skb_dequeue.9.html (1 of 2) [14/09/1999 10:04:49]

NOTES

 It is important to note the difference between not only
 __skb_dequeue and skb_dequeue, but all the __skb_ functions
 and their skb_ counterparts. Essentially, the __skb_ func-
 tions are non-atomic, and should only be used with inter-
 rupts disabled. As a convenience, the skb_ functions are
 provided, which perform interrupt disable / enable wrapper
 functionality in addition to performing their specific
 tasks.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_unlink(9), skb_insert(9),

 /usr/src/linux/net/netlink.c
 /usr/src/linux/net/ax25/af_ax25.c
 /usr/src/linux/net/core/datagram.c
 /usr/src/linux/net/ipv4/ipmr.c /usr/src/linux/net/ipv4/tcp.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_dequeue.9.html (2 of 2) [14/09/1999 10:04:49]

NAME

 __skb_insert, skb_insert, skb_append - insert an sk_buff
 into a list

SYNOPSIS

 #include <linux/skbuff.h>

 void __skb_insert(struct sk_buff *newsk, struct sk_buff
 *prev, struct sk_buff *next

 void skb_insert(struct sk_buff *old, struct sk_buff *newsk))

 void skb_append(struct sk_buff *old, struct sk_buff *newsk))

DESCRIPTION

 skb_insert and skb_append are essentially wrapper functions
 for __skb_insert (see NOTES, below.) __skb_insert inserts
 newsk into list, and resets the appropriate next and prev
 pointers. prev and next are used to frame newsk in list.
 After setting the next and prev pointers in newsk,
 __skb_insert sets the prev pointer in next and the next
 pointer in prev, sets the list pointer in newsk, and incre-
 ments the qlen counter in list.

 skb_insert and skb_append should be used to add sk_buffs to
 a list rather than performing this task manually; in addi-
 tion to performing this task in a standardized way, these
 functions also provide for interrupt diasabling and prevent
 list mangling. Both of these functions use the list pointer
 in old to determine to which list newsk should be attached.

http://linuxsavvy.com/resources/linux/man/man9/skb_insert.9.html (1 of 4) [14/09/1999 10:04:50]

 The skb_insert function adds newsk to the list before old.

 The skb_append function adds newsk to the list after old.

RETURN VALUE

 None.

NOTES

 It is important to note the difference between not only
 skb_insert, skb_append and __skb_insert, but all the __skb_
 functions and their skb_ counterparts. Essentially, the
 __skb_ functions are non-atomic, and should only be used
 with interrupts disabled. As a convenience, the skb_ func-
 tions are provided, which perform interrupt disable / enable
 wrapper functionality in addition to performing their
 specific tasks.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_queue_head(9), skb_queue_tail(9)

 /usr/src/linux/net/ax25/af_ax25.c
 /usr/src/linux/net/core/skbuff.c
 /usr/src/linux/net/ipv4/tcp_input.c

http://linuxsavvy.com/resources/linux/man/man9/skb_insert.9.html (2 of 4) [14/09/1999 10:04:50]

 /usr/src/linux/net/netrom/nr_in.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_insert.9.html (3 of 4) [14/09/1999 10:04:50]

http://linuxsavvy.com/resources/linux/man/man9/skb_insert.9.html (4 of 4) [14/09/1999 10:04:50]

NAME

 skb_peek - peek an sk_buff

SYNOPSIS

 #include <linux/skbuff.h>

 struct sk_buff *skb_peek(struct sk_buff_head *list_);

DESCRIPTION

 The skb_peek function extracts the head element of list_,
 without modifying list_. It is important to note that this
 is not necessarily a safe operation, as list_ maintains the
 original sk_buff, and other operations on list_ may effect
 it. To be safe, either disable interrupts using cli(9),
 call skb_peek, copy the data necessary to continue, and re-
 enable interrupts using sti(9), or use skb_dequeue(9).

RETURN VALUE

 Returns a pointer to sk_buff if there is a next element on
 the list_. Otherwise, returns NULL.

http://linuxsavvy.com/resources/linux/man/man9/skb_peek.9.html (1 of 2) [14/09/1999 10:04:52]

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_unlink(9), skb_dequeue(9)

 /usr/src/linux/net/appletalk/ddp.c
 /usr/src/linux/net/core/datagram.c
 /usr/src/linux/net/ipv4/tcp.c /usr/src/linux/net/ipv4/udp.c
 /usr/src/linux/net/unix/af_unix.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_peek.9.html (2 of 2) [14/09/1999 10:04:52]

NAME

 skb_queue_empty - detect an empty skbuff queue

SYNOPSIS

 #include <linux/skbuff.h>

 int skb_queue_empty(struct sk_buff_head *list));

DESCRIPTION

 The skb_queue_empty function checks an skbuff queue for
 "emptiness". This function provides a quick and easy way to
 determine if there are any sk_buff elements on a given
 queue.

RETURN VALUE

 If there are any sk_buff elements on the list, then 0 is
 returned. Otherwise, 1 is returned to indicate that the
 list is empty.

AVAILABILITY

 Linux 1.0+

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_empty.9.html (1 of 2) [14/09/1999 10:04:53]

SEE ALSO

 intro(9), skb_queue_len(9)

 /usr/src/linux/net/core/datagram.c
 /usr/src/linux/net/core/dev.c /usr/src/linux/net/core/sock.c
 /usr/src/linux/net/ipv4/tcp.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_empty.9.html (2 of 2) [14/09/1999 10:04:53]

NAME

 skb_queue_head - insert an sk_buff at the head of a list

SYNOPSIS

 #include <linux/skbuff.h>

 void __skb_queue_head(struct sk_buff_head *list, struct
 sk_buff *newsk));

*newsk);

 void skb_queue_head(struct sk_buff_head *list, struct sk_buff

DESCRIPTION

 The skb_queue_head function adds newsk to the head of list.
 Specifically, it sets the list, next, and prev pointers in
 newsk, and increments the qlen element of list. It also
 rearranges the next and prev pointers in the existing head
 of list before returning.

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_head.9.html (1 of 3) [14/09/1999 10:04:55]

RETURN VALUE

 None.

NOTES

 It is important to note the difference between not only
 __skb_queue_head and skb_queue_head, but all the __skb_
 functions and their skb_ counterparts. Essentially, the
 __skb_ functions are non-atomic, and should only be used
 with interrupts disabled. As a convenience, the skb_ func-
 tions are provided, which perform interrupt disable / enable
 wrapper functionality in addition to performing their
 specific tasks.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_queue_tail(9), skb_insert(9)

 /usr/src/linux/net/ax25/af_ax25.c
 /usr/src/linux/net/core/skbuff.c
 /usr/src/linux/net/ipv4/tcp_input.c
 /usr/src/linux/net/netrom/nr_in.c

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_head.9.html (2 of 3) [14/09/1999 10:04:55]

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_head.9.html (3 of 3) [14/09/1999 10:04:55]

NAME

 skb_queue_head_init - prepare an sk_buff_head for use

SYNOPSIS

 #include <linux/skbuff.h>

 void skb_queue_head_init(struct sk_buff_head *list));

DESCRIPTION

 The skb_queue_head_init function prepares an sk_buff_head
 for use by the other skb_ functions, and should be called
 after declaring and allocating memory for any sk_buff_head
 elements. Specifically, skb_queue_head_init sets the prev
 and next pointers of the list to point back at the list
 itself, and sets the list length to 0. The use of
 sk_buff_head elements which have not been initialized with
 this function is undocumented and may produce irregular
 results.

RETURN VALUE

 None.

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_head_init.9.html (1 of 2) [14/09/1999 10:04:56]

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9)

 /usr/src/linux/net/netlink.c
 /usr/src/linux/net/appletalk/aarp.c
 /usr/src/linux/net/ipv4/af_inet.c
 /usr/src/linux/net/ipx/af_ipx.c
 /usr/src/linux/net/unix/af_unix.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_head_init.9.html (2 of 2) [14/09/1999 10:04:56]

NAME

 skb_queue_len - determine the length of an sk_buff_head

SYNOPSIS

 #include <linux/skbuff.h>

 __u32 skb_queue_len(struct sk_buff_head *list));

DESCRIPTION

 The skb_queue_len function determines the number of sk_buffs
 assigned to an sk_buff_head.

RETURN VALUE

 skb_queue_len returns the number of sk_buff elements
 attached to an sk_buff_head. If the sk_buff_head is empty,
 then 0 is returned.

AVAILABILITY

 Linux 1.0+

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_len.9.html (1 of 2) [14/09/1999 10:04:57]

SEE ALSO

 intro(9), skb_queue_head_init(9), skb_queue_head(9),

 /usr/src/linux/net/core/datagram.c

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_len.9.html (2 of 2) [14/09/1999 10:04:57]

NAME

 __skb_queue_tail, skb_queue_tail - insert an sk_buff at the
 tail of a list

SYNOPSIS

 #include <linux/skbuff.h>

 void __skb_queue_tail(struct sk_buff_head *list, struct
 sk_buff *newsk));

*newsk);

 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff

DESCRIPTION

 The skb_queue_tail function adds newsk to the tail of list.
 Specifically, it sets the list, next, and prev pointers in
 newsk, and increments the qlen element of list.

RETURN VALUE

 None.

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_tail.9.html (1 of 3) [14/09/1999 10:04:59]

NOTES

 It is important to note the difference between not only
 __skb_queue_tail and skb_queue_tail, but all the __skb_
 functions and their skb_ counterparts. Essentially, the
 __skb_ functions are non-atomic, and should only be used
 with interrupts disabled. As a convenience, the skb_ func-
 tions are provided, which perform interrupt disable / enable
 wrapper functionality in addition to performing their
 specific tasks.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_queue_head(9), skb_insert(9)

 /usr/src/linux/net/netlink.c
 /usr/src/linux/net/appletalk/aarp.c
 /usr/src/linux/net/core/skbuff.c
 /usr/src/linux/net/ipv4/arp.c
 /usr/src/linux/include/net/sock.h

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_tail.9.html (2 of 3) [14/09/1999 10:04:59]

http://linuxsavvy.com/resources/linux/man/man9/skb_queue_tail.9.html (3 of 3) [14/09/1999 10:04:59]

NAME

 __skb_unlink, skb_unlink - remove an sk_buff from its list

SYNOPSIS

 #include <linux/skbuff.h>

 void __skb_unlink(struct sk_buff *skb, struct sk_buff_head
 *list));

 void skb_unlink(struct sk_buff *skb));

DESCRIPTION

 The skb_unlink function is a wrapper for __skb_unlink.
 __skb_unlink removes skb from its sk_buff_head. It decre-
 ments the list qlen pointer, and cleanly detaches the
 sk_buff from its queue. This function should always be used
 instead of performing this task manually, as it provides a
 clean, standardized way of manipulating an sk_buff_head, and
 provides interrupt disabling (see NOTES below.) Most users
 will not call __skb_unlink directly, as it requires that two
 arguments be supplied and does not provide any interrupt
 handling. skb_unlink determines the list from which skb
 should be detached, and disables interrupts.

http://linuxsavvy.com/resources/linux/man/man9/skb_unlink.9.html (1 of 3) [14/09/1999 10:05:01]

RETURN VALUE

 None.

NOTES

 It is important to note the difference between not only
 __skb_unlink and skb_unlink, but all the __skb_ functions
 and their skb_ counterparts. Essentially, the __skb_ func-
 tions are non-atomic, and should only be used with inter-
 rupts disabled. As a convenience, the skb_ functions are
 provided, which perform interrupt disable / enable wrapper
 functionality in addition to performing their specific
 tasks.

AVAILABILITY

 Linux 1.0+

SEE ALSO

 intro(9), skb_dequeue(9), skb_insert(9),

 /usr/src/linux/net/core/skbuff.c
 /usr/src/linux/net/ipv4/af_inet.c
 /usr/src/linux/net/ipv4/ip_output.c
 /usr/src/linux/net/ipv4/tcp.c

http://linuxsavvy.com/resources/linux/man/man9/skb_unlink.9.html (2 of 3) [14/09/1999 10:05:01]

AUTHOR

 Cyrus Durgin <cider@speakeasy.org>

http://linuxsavvy.com/resources/linux/man/man9/skb_unlink.9.html (3 of 3) [14/09/1999 10:05:01]

NAME

 skel - skeleton man page for section 9 entries

SYNOPSIS

 #include <linux/linux.h>

DESCRIPTION

 Describe the function(s) and its parameters. This section
 should not be considered an introduction to kernel program-
 ming, just an english text description of the function at
 hand. It is OK to presume some basic knowledge of driver
 programming.

RETURN VALUE

 Describe the return values. Enumerate all the distinct
 values and all the ranges.

AVAILABILITY

 List kernel versions, and if restricted to certain architec-
 tures, say so.

http://linuxsavvy.com/resources/linux/man/man9/skel.9.html (1 of 2) [14/09/1999 10:05:02]

SEE ALSO

 man(1), man(7), intro(9)

 Also list some source files for the kernel that implement
 the functions of the page.

AUTHOR

 Who are you?

BUGS

 Describe any misfeatures or suprises that the use of these
 functions may lead to. The may not be errors, just unfor-
 tunate side effects.

http://linuxsavvy.com/resources/linux/man/man9/skel.9.html (2 of 2) [14/09/1999 10:05:02]

NAME

 sleep_on - synchronization using a condition variable

SYNOPSIS

 #include <linux/sched.h>

 void sleep_on(struct wait_queue**condition))

DESCRIPTION

 The sleep_on function provides a means for synchronizing
 between processes and with interrupt handlers. The condition
 parameter is a pointer to a pointer to the opaque wait_queue
 type. Initialize the condition variable to zero, then pass a
 pointer to it to the sleep_on function. The basic idea is as
 follows:

 struct wait_queue*con = 0;
 [...]
 sleep_on(&con);

 While a process is sleeping, it is fully interruptible, no
 matter what the cpu state when entering the function. The
 cpu state is restored on being awakened.

 If a null(0) is passed to sleep_on, it returns immediately,
 without sleeping. This is a no-op.

http://linuxsavvy.com/resources/linux/man/man9/sleep_on.9.html (1 of 4) [14/09/1999 10:05:04]

RETURN VALUE

 The sleep_on function only returns when explicitly awakened.

AVAILABILITY

 Linux 1+

SEE ALSO

 wake_up(9)

 /usr/src/linux/kernel/sched.c

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

 A call to sleep_on(0) seems like an interesting way to test
 for and momentarily allow interrupts, but that is not what
 happens.

 The sleep_on function cannot be called by interrupt
 handlers.

 The function is not atomic with the condition tests that the
 driver writer might include, so the code executing the

http://linuxsavvy.com/resources/linux/man/man9/sleep_on.9.html (2 of 4) [14/09/1999 10:05:04]

 sleep_on function is protected from interrupts. Failure to
 do so generally leads to race

http://linuxsavvy.com/resources/linux/man/man9/sleep_on.9.html (3 of 4) [14/09/1999 10:05:04]

http://linuxsavvy.com/resources/linux/man/man9/sleep_on.9.html (4 of 4) [14/09/1999 10:05:04]

NAME

 wake_up - wake up sleeping processes

SYNOPSIS

 #include <linux/sched.h>

 void wake_up(struct wait_queue**condition))

DESCRIPTION

 The wake_up function is the opposite of the sleep_on(9)
 function in that it awakens processes that have gone to
 sleep using the same condition variable. All the processes
 sleeping on the given condition are awakened. If there are
 no processes sleeping on the condition, then none are
 affected.

 Unlike the sleep_on(9) function, wake_up does not block and
 may be called by interrupt handlers. It is in fact the prin-
 ciple means of synchronizing with interrupt events.

 If the condition parameter is NULL, or there are no
 processes sleeping on condition, the call to wake_up is a
 no-op.

http://linuxsavvy.com/resources/linux/man/man9/wake_up.9.html (1 of 3) [14/09/1999 10:05:06]

RETURN VALUE

 None.

AVAILABILITY

 Linux 1+

SEE ALSO

 sleep_on(9)

 /usr/src/linux/kernel/sched.c

AUTHOR

 Stephen Williams <steve@icarus.com>

BUGS

http://linuxsavvy.com/resources/linux/man/man9/wake_up.9.html (2 of 3) [14/09/1999 10:05:06]

	toc:

