

AdvancED ActionScript
Components

Mastering the Flash Component Architecture

Antonio De Donatis

5939FM.qxd 1/25/06 12:28 PM Page i

Lead Editor
Chris Mills

Technical Reviewers
Sas Jacobs,

Paul Barnes-Hoggett

Editorial Board
Steve Anglin, Dan Appleman,

Ewan Buckingham, Gary Cornell,
Jason Gilmore, Jonathan Hassell,

James Huddleston, Chris Mills,
Matthew Moodie, Dominic Shakeshaft,

Jim Sumser, Matt Wade

Project Manager
Julie M. Smith

Copy Edit Manager
Nicole LeClerc

Copy Editors
Ami Knox, Marilyn Smith

Assistant Production Director
Kari Brooks-Copony

Production Editor
Laura Cheu

Compositor
Dina Quan

Proofreader
Christy Wagner

Indexer
Becky Hornyak

Cover Image Designer
Bruce Tang

Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

AdvancED ActionScript Components:
Mastering the Flash Component Architecture

Copyright © 2006 by Antonio De Donatis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission

of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-593-0

ISBN-10 (pbk): 1-59059-593-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of

infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any

loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

5939FM.qxd 1/25/06 12:28 PM Page ii

To JenFeng

5939FM.qxd 1/25/06 12:28 PM Page iii

iv

About the Author . xvii

About the Technical Reviewers . xviii

About the Cover Image Designer . xix

Acknowledgments . xx

Introduction . xxi

PART ONE INTRODUCING THE ARCHITECTURE 1

Chapter 1 OOP in Component Design . 3

Chapter 2 Core Classes and Component Design 33

Chapter 3 Exploring the UI Components . 59

Chapter 4 Building Component-based Applications 91

PART TWO EXPLOITING THE ARCHITECTURE 129

Chapter 5 Architecture-based Development 131

Chapter 6 XML for Defining User Interfaces 149

Chapter 7 Extending the Application Framework 171

Chapter 8 Making Your XML Life Easier . 201

Chapter 9 The Customization Process . 219

CONTENTS AT A GLANCE

5939FM.qxd 1/25/06 12:28 PM Page iv

PART THREE CUSTOMIZING THE COMPONENTS 251

Chapter 10 The Accordion Component . 253

Chapter 11 The Button Component . 275

Chapter 12 The CheckBox and RadioButton Components 295

Chapter 13 The List, ComboBox, and DataGrid Components 309

Chapter 14 The DateChooser and DateField Components 349

Chapter 15 The Loader, ScrollPane, and ProgressBar
Components . 371

Chapter 16 The Menu and MenuBar Components 395

Chapter 17 The NumericStepper Component 427

Chapter 18 The TextArea, TextInput, and Label Components 439

Chapter 19 The Tree Component . 459

Chapter 20 The Window and Alert Components 483

Chapter 21 Handling the Scrollbars . 507

PART FOUR APPENDIXES . 521

Appendix A Locating the Source Code of the Component
Architecture . 523

Appendix B Transitions and Easing Classes 529

Index . 535

v

5939FM.qxd 1/25/06 12:28 PM Page v

vi

About the Author . xvii

About the Technical Reviewers . xviii

About the Cover Image Designer . xix

Acknowledgments . xx

Introduction . xxi

PART ONE INTRODUCING THE ARCHITECTURE 1

Chapter 1 OOP in Component Design . 3

A very short history of the architecture . 4
Creating Flash components . 4
An apparently useless component . 5

Creating the Vogon component . 5
Adding a method . 7
Variables, properties, and metadata tags . 8

Implementing a property explicitly . 9
Implementing a property implicitly . 11
Properties in the authoring environment . 12

Inheritance . 14
A little help from Darwin . 15
Appreciating the benefits of inheritance . 17
ActionScript limit on multiple inheritance . 19

Events . 20
What is an event in component terms? . 21
Implementing a custom event . 21
Triggering a custom event . 21
Listening to a custom event . 23
Building the example . 23

Polymorphism . 26
And God took a rib from a Vogon . 26
A method’s signature . 29
Appreciating the benefits of polymorphism . 30

Summary . 31

CONTENTS

5939FM.qxd 1/25/06 12:28 PM Page vi

Chapter 2 Core Classes and Component Design 33

The legacy of the UIObject class . 36
Creating a component instance dynamically . 37

Overriding the symbolName property . 38
Overriding the symbolOwner property . 38
Overriding the className property . 38
The createClassObject method . 39
Our components join the architecture . 40

Inside the process of building a component instance 44
Step 1: Initialization . 44
Step 2: Creating the children . 45
Step 3: Drawing the component instance . 45

Refining our sample components . 46
The component framework . 51

The UIComponent class . 51
Accessibility/Keyboard use . 51
Other features of the UIComponent . 52

The View class . 53
The ScrollView class . 54
An ActionScript template for new components . 54

Summary . 57

Chapter 3 Exploring the UI Components . 59

The Reusability Card . 60
Frequency (of use) . 61
Complexity . 62
Stability . 62
Maturity . 63
Popularity . 64

Multitier applications . 64
UI components provided with Flash . 65

Button components . 65
Button component . 66
CheckBox component . 66
RadioButton component . 67

Text components . 67
Label component . 68
TextInput component . 68
TextArea component . 69

vii

5939FM.qxd 1/25/06 12:28 PM Page vii

Cell-structured components . 69
List component . 70
ComboBox component . 70
DataGrid component . 71
Tree component . 72

Container components . 72
ScrollPane component . 73
Loader component . 74
Window component . 74
Accordion component . 75

Peculiar components . 76
Alert component . 76
DateChooser component . 77
DateField component . 78
Menu component . 78
MenuBar component . 79
NumericStepper component . 80
ProgressBar component . 80
UIScrollBar component . 81

Using the UI components . 82
A first example of interaction . 82

Typical structure of a component . 85
The actions layer . 87
The assets layer . 87
The bounding box layer . 88

Summary . 88

Chapter 4 Building Component-based Applications 91

Screens . 92
Building an application using screens . 93
Content hierarchy in nested screens . 95
Reviewing the purpose of slides and forms . 96

Forms visibility . 98
Conclusion: should you use slides or forms? . 99

Screen hierarchies with external subtrees . 99
The complete path to an external screen . 101

Creating a slide presentation dynamically . 102
Building the example . 103

Importing the Slide class . 108
Creating the screen hierarchy dynamically . 108
Adding navigation in the master screen . 109
Implementing the buttons-based navigation . 110
Using Loader components in the child screens 111
Introducing the transitions . 111
Importing the transition classes . 112
Screen events and transition sequencing . 113
Working with forms . 114

CONTENTS

viii

5939FM.qxd 1/25/06 12:28 PM Page viii

Manager classes . 114
Managing depth . 115

MovieClip methods for handling depth . 115
A more flexible way of stacking objects . 116
Testing the DepthManager behavior . 118

Managing the keyboard focus . 120
Defining a focus schema . 121
Setting a default button . 123
Tab order in a browser . 123
Disabling the focus rect . 124

Managing windows . 124
A simple window-based system . 124
Creating a window instance . 126
Experimenting with modal windows . 127

Summary . 128

PART TWO EXPLOITING THE ARCHITECTURE 129

Chapter 5 Architecture-based Development 131

Exploiting the architecture . 132
Key benefits of a component architecture . 132
What is your job, really? . 133

Raising the bar . 134
Extend, expand, and alter . 134

Extending the architecture . 134
Expanding the architecture . 136
Altering the architecture . 137

From abstract ideas to a concrete example . 137
What is an XML layout engine? . 138

Benefits of an XML layout engine . 138
Further benefits in the Flash context . 140

XLEFF . 140
XLEFF main features . 144
Beyond generating user interfaces . 144
XLEFF internal architecture . 145

Summary . 146

Chapter 6 XML for Defining User Interfaces 149

Basics of the XML data structure . 150
The Color Names section . 151
The Styles section . 151

Class styles . 152
Predefined styles . 153
Nested styles . 153
Custom styles . 154

The Stage section . 155

CONTENTS

ix

5939FM.qxd 1/25/06 12:28 PM Page ix

XLEFF sampler . 158
How to use it . 159

Playing with the sampler . 161
Examining a more complex user interface . 164

User interface patterns . 165
A first look into the substructures . 166
Using custom classes . 167
Events to be handled . 169

Summary . 169

Chapter 7 Extending the Application Framework 171

Defining an FLA template . 172
Using scenes . 173

The Preloader scene . 174
The Dynamic Assets scene . 176
The Main scene . 178

Licensing issue . 179
Including the standard components source code 179
Progressive update of the template . 181

Analyzing the size report . 181
Moving the symbols after the first frame . 182
Moving the classes after the first frame . 183

Defining a folder structure . 183
The role of classpath . 185

Facilitating event-driven programming . 186
The Main class . 187
A concrete example . 188

Skeleton of the Main class . 189
Handling the user interface events . 190
Event handler naming convention . 194

Managing content . 194
Pushing the separation paradigm further . 196

The role of CDATA . 197
Summary . 198

Chapter 8 Making Your XML Life Easier . 201

Parsing XML in ActionScript . 202
Object models and trees . 204
The typical job of an XML developer . 207

Simplifying the parsing process . 209
Parsing an XML document . 210

Document root and other nodes . 211
Identifying a node name . 211
Identifying a node type . 212
Accessing the attributes of a node . 214
Browsing the structure of an XML document 215

A few notes on the use of XModel . 217
Summary . 217

CONTENTS

x

5939FM.qxd 1/25/06 12:28 PM Page x

Chapter 9 The Customization Process . 219

Working with styles . 220
Parameters controlled by styles . 221
The style lookup process . 221
Styles as properties of a component instance . 222
The styleName property . 223
Class-level styles . 225
Inheriting styles from a container . 226
Global styles . 227

Analyzing skins . 228
What is a skin? . 228
Handcrafted skins . 228
Mixed skins . 231
Purely coded skins . 234

Working with themes . 236
Changing skins and the mirage of code separation 236
Changing skins at authoring time . 237
Changing skins programmatically . 240
Skins that reflect styles . 243
In search of a unified approach: subclassing . 245
An alternative to subclassing . 249

Summary . 249

PART THREE CUSTOMIZING THE COMPONENTS 251

Chapter 10 The Accordion Component . 253

A minimal example . 254
Code-based version . 255
Codeless version . 256
XLEFF version . 257

The component structure . 257
Segment header . 258
Segment content area . 258

A richer example . 259
Codeless version . 259
Code-based version . 261

Supported styles . 262
Common styles . 263
Specific styles . 265

Skinnability . 265
The border . 265
The headers . 266

Solved mysteries . 268
Inheriting styles . 268
Creating header styles on a per-instance basis . 271

Reasons for subclassing . 273

CONTENTS

xi

5939FM.qxd 1/25/06 12:28 PM Page xi

Chapter 11 The Button Component . 275

Minimal example of the Button component . 276
A richer example . 277

Supported styles . 279
Common styles . 280
Specific styles . 281

Halo theme case . 281
Sample theme case . 282

Skinnability . 284
Replacing the purely coded skin . 285
The 32 skins of a button . 289

Implementing a toggle button . 289
Emphasizing a button instance . 289
Iconic buttons . 289

Solved mysteries . 290
A purely coded classic: the pill button . 290

Reasons for subclassing a Button component . 293

Chapter 12 The CheckBox and RadioButton Components 295

Minimal example of the CheckBox and the RadioButton components 296
XLEFF version . 297
Comparing the authoring parameters . 297

Supported styles . 298
Common styles . 298
Specific styles . 300

Skinnability . 302
Solved mysteries . 305

Where to find the RadioButtonGroup instance . 305
Reasons for subclassing the CheckBox and the RadioButton components 307

Chapter 13 The List, ComboBox, and DataGrid Components 309

Minimal example including the List, ComboBox, and DataGrid components 310
XLEFF version . 313

Richer examples . 314
Itemization . 315
Custom labels . 317
Scrolling . 320
Sorting . 323
Selection management . 327
Making it editable . 331

Supported styles . 333
Common styles . 336
DataGrid-specific styles . 336
List-specific styles . 337
ComboBox-specific styles . 337

CONTENTS

xii

5939FM.qxd 1/25/06 12:28 PM Page xii

Skinnability . 338
Solved mysteries . 339

Cell rendering . 339
Building a custom cell renderer . 343
DataGrid column headers . 345

The undefined item bug . 346
Reasons for subclassing the List, ComboBox, and DataGrid components 347

Chapter 14 The DateChooser and DateField Components 349

Minimal example of the DataChooser and DataField components 350
XLEFF version . 351

A richer example . 351
Code version . 353
How to retrieve and set a date . 353
Ranges definition . 355
The scroll event . 358

Supported styles . 360
Common styles . 360
Specific styles . 360

Skinnability . 363
Skinning the arrow buttons . 363
Skinning the DateField icon . 365

Solved mysteries . 366
Displaying the date in custom format . 367
A DateField bug . 367

Reasons for subclassing the DataChooser and DataField components 369

Chapter 15 The Loader, ScrollPane, and ProgressBar
Components . 371

Minimal examples . 372
A minimal example of the Loader component . 372
A minimal example of the ScrollPane component 375
A minimal example of the ProgressBar component 377

The ProgressBar’s animated behavior . 377
The indeterminate ProgressBar . 379

XLEFF versions . 381
Combined examples . 381

The ProgressBar communication modes . 382
Codeless interaction . 382

ProgressBar and Loader interaction . 382
ProgressBar and ScrollPane interaction . 384

Mediated interaction . 385
Supported styles . 387
Skinnability . 389
Solved mysteries . 392
Reasons for subclassing . 393

CONTENTS

xiii

5939FM.qxd 1/25/06 12:28 PM Page xiii

Chapter 16 The Menu and MenuBar Components 395

Minimal examples . 396
Minimal example of the Menu component . 396
Minimal example of the MenuBar component . 398

Richer examples . 399
Generating richer menus by coding . 399
Generating richer menus using XML . 405
XLEFF version . 408

Supported styles . 409
Stylizing the MenuBar (and its Menu instances) . 409

Common styles . 409
Specific styles . 410
Exploring the styles . 410

Skinnability . 414
Solved mysteries . 417

Further customization of a MenuBar skin . 417
Creating persistent Menu instances . 420

Reasons for subclassing the Menu and the MenuBar components 424

Chapter 17 The NumericStepper Component 427

Minimal example of the NumericStepper component 428
XLEFF version . 429
Retrieving the value . 429

Minor bug for Flash MX 2004 users . 431
Styles supported by the NumericStepper component 431
Skinning the NumericStepper component . 433
Solved mysteries . 435
Reasons for subclassing the NumericStepper component 437

Chapter 18 The TextArea, TextInput, and Label Components 439

Minimal example . 440
XLEFF version of the minimal example . 442
How the Label component resizes automatically 442
The text field inside . 445

Richer example of the TextInput and TextArea components 446
Handling the input process . 446

Supported styles . 448
Note on the skins . 450

Solved mysteries . 450
Hiding the background . 451
Handling the combination linefeed/CR . 453

Reasons for subclassing the Label, TextInput, and TextArea components 456

CONTENTS

xiv

5939FM.qxd 1/25/06 12:28 PM Page xiv

Chapter 19 The Tree Component . 459

Minimal example of the Tree component . 460
XLEFF version of the minimal example . 464

Supported styles . 465
Color styles . 466
Text styles . 466
Animation styles . 466
Icon styles . 467
Other component-specific styles . 467
A note on skins . 467
Stylizing the minimal example . 468

Solved mysteries . 470
Taking full control . 471
Implementing isBranch and other XML attributes 477

Reasons for subclassing the Tree component . 480

Chapter 20 The Window and Alert Components 483

Minimal example of the Window and Alert components 484
Dynamically creating windows . 487
Dynamically creating alerts . 489

Managing the content of a Window instance . 490
Supported styles . 495
Skinning the Window and Alert components . 499

Skin properties of the Window component . 499
Skin properties of the Alert component . 500
Adding skins to our previous stylized example . 500

Reasons for subclassing the Window and Alert components 505

Chapter 21 Handling the Scrollbars . 507

Minimal example of the UIScrollBar component . 508
Customizing the scrollbars inside a component . 510

Step 1: Building a stylized version of the DataGrid component 510
Step 2: Skinning the scrollbars . 512

Conclusion . 519

PART FOUR APPENDIXES . 521

Appendix A Locating the Source Code of the Component
Architecture . 523

If you are a Windows user . 524
If you are a Mac user . 525
FLA source files . 525
Link them . 526

CONTENTS

xv

5939FM.qxd 1/25/06 12:28 PM Page xv

Appendix B Transitions and Easing Classes 529

Parameters common to all of the transition types . 530
Easing classes . 531

Transition-specific parameters . 532
The Blinds transition . 532
The Fly transition . 532
The Iris transition . 532
The PixelDissolve transition . 532
The Rotate transition . 532
The Squeeze transition . 533
The Wipe transition . 533

Example of a transition parameters object . 533

Index . 535

CONTENTS

xvi

5939FM.qxd 1/25/06 12:28 PM Page xvi

Antonio De Donatis, who graduated in Computer Science from Pisa
University, has been designing and implementing object-oriented soft-
ware since 1989, seems like a lifetime, when the first OOP developing
tools appeared on the market. So far Antonio has managed, designed,
and in several cases single-handedly implemented numerous projects
for a variety of industries, ranging from media/communications to
pharmaceuticals.

Antonio has worked for both large corporations and leading new
media agencies, and currently trades under the name of Managed
Source Limited, based in Surrey, England, where he has lived since

1998 after moving from Italy, his native country.

His commercial experience with Flash goes back to the fourth version of the software, released in
1999. In recent years, the object-oriented evolution of ActionScript has allowed him to reuse knowl-
edge and techniques that he mastered when utilizing older programming languages such as C++
and Java.

Antonio is a specialist in the design of component-based architectures for the implementation of
knowledge and content management systems and is now working on several projects, including the
open source XML layout engine for Flash mentioned in this book, the latest version of which can be
downloaded from www.xleff.org.

Antonio considers programming a form of art and also enjoys chess, painting, and photography.

xvii

ABOUT THE AUTHOR

5939FM.qxd 1/25/06 12:28 PM Page xvii

xviii

Sas Jacobs is a web developer who loves working with Flash. She set up her business, Anything Is
Possible, in 1994, working in the areas of web development, IT training, and technical writing. The
business works with large and small clients building web applications with ASP.NET, Flash, XML, and
databases. Sas has spoken at such conferences as Flash Forward, MXDU, and FlashKit on topics
relating to XML and dynamic content in Flash. She is the author of the book Foundation XML for
Flash (friends of ED, 2005) and contributed two chapters to Object-Oriented ActionScript for Flash 8
(friends of ED, 2006).

After studying architecture for seven years, Paul Barnes-Hoggett changed his mind and decided to
spend his time designing the “intergoogle.” He spent time as a lead developer at boxnewmedia,
where he built award-winning sites for clients such as Select Model Management. (In his own words,
he admits, “It’s a tough job looking at pictures of beautiful people all day, but someone has to do
it.”) He set up Eyefodder in 2003, which specializes in building rich Internet applications for the
media industry, and has built solutions for clients including FHM, Adidas, Air Miles, and ITV.
When not pushing pixels, Paul likes to eat, drink, and be merry. To get in contact with him, visit
www.eyefodder.com.

ABOUT THE TECHNICAL REVIEWERS

5939FM.qxd 1/25/06 12:28 PM Page xviii

Bruce Tang is a freelance web designer, visual programmer, and author from Hong Kong. His main
creative interest is generating stunning visual effects using Flash or Processing.

Bruce has been an avid Flash user since Flash 4, when he began using Flash to create games, web-
sites, and other multimedia content. After several years of ActionScripting, he found himself
increasingly drawn toward visual programming and computational art. He likes to integrate math
and physics into his work, simulating 3D and other real-life experiences onscreen. His first Flash
book was published in October 2005. Bruce’s folio, featuring Flash and Processing pieces, can be
found at www.betaruce.com, and his blog at www.betaruce.com/blog.

The cover image uses a high-resolution Henon phase diagram generated by Bruce with Processing,
which he feels is an ideal tool for such experiments. Henon is a strange attractor created by iterat-
ing through some equations to calculate the coordinates of millions of points. The points are then
plotted with an assigned color.

xn+1 = xn cos(a) - (yn - xn
p) sin(a)

yn+1 = xn sin(a) + (yn - xn
p) cos(a)

xix

ABOUT THE COVER IMAGE DESIGNER

5939FM.qxd 1/25/06 12:28 PM Page xix

xx

I would like to thank every member of the team involved in this project—Chris Mills for sharing the
ambitious vision of this book since its inception; Julie Smith for her essential help in coordinating
and controlling the disparate processes that have made this book possible; Sam Robbins, Sas Jacobs,
and Paul Barnes-Hoggett for their constructive criticism that undoubtedly raised the quality of the
content; my warmest thanks also go to Ami Knox, Laura Cheu, and Marilyn Smith for ensuring that
my work was properly transferred in a professional format.

On a more personal note, I would like to thank my parents for their infinite love and support and
my special friend Rowena Jay, talented photographer, for my portrait utilized in this book.

Finally, I cannot end this section without mentioning my sister Angela, otherwise she will not talk to
me ever again.

ACKNOWLEDGMENTS

5939FM.qxd 1/25/06 12:28 PM Page xx

AdvancED ActionScript Components: Mastering the Flash Component Architecture is about exploit-
ing the Flash Component Architecture to rapidly produce powerful Flash applications by reusing the
many powerful components included in it, its underlying functionality, and the knowledge captured
in its source code.

In the world of software development, the concept of reusability is frequently met with skepticism
or even total disbelief. Here are the most common reasons:

Components are released most frequently in a compiled format, meaning that their
implementation cannot be modified or amended whenever needed.

Without proper guidance, the time required to learn how to reuse functionality can
become comparable with the time requested to implement it from scratch.

Experienced developers tend to trust their own code more than code written by some-
one else.

The first point in the previous list does not apply to the Flash Component Architecture since its
source code is available with the Flash authoring environment—a truly major benefit, because
developers can both learn from it and tweak it if necessary.

I wrote this book to address the second point by providing a concrete guide to teach you how to
reuse each component successfully, and in a fairly convenient amount of time.

Finally, experienced developers can trust this book since it provides information that can truly save
a lot of their valuable time. Being a developer myself, I know how disappointing it can be to deal
with incomplete information that leaves you with time-consuming problems to solve. That is why I
took particular care in providing complete examples that go beyond using the components to also
demonstrate how to fully customize them, and how to fix any bugs in their default implementation.

The structure
Component-based development can be very intimidating for the uninitiated. That’s why the content
has been organized into three parts:

Part One: Introducing the Architecture—A fast-paced exploration of how key object-oriented con-
cepts are applied to the design and implementation of the Flash Component Architecture. The first
four chapters show you how to build your own components based on the shared functionality made
available by the component architecture and how to efficiently reuse those components within the
framework of a component-based application.

xxi

INTRODUCTION

5939FM.qxd 1/25/06 12:28 PM Page xxi

Part Two: Exploiting the Architecture—Explains the most advanced programming techniques
in this topic area, with the help of XML as the ideal language for describing the structure of a
component-based user interface. By reading Chapters 5 to 9, you will gain the knowledge
required to master the processes of utilizing and customizing any component in the architec-
ture. This part also includes XLEFF, an XML layout engine for Flash, implemented by the author
and released under an open source license. XLEFF allows dynamic generation of user inter-
faces from XML definitions.

Part Three: Customizing the Components—This part of the book is the largest and provides
plenty of complete examples that show you how to use and customize each standard compo-
nent in the architecture. Chapters 10 to 21 allow you to rapidly learn how to use and cus-
tomize the components proficiently by grouping them according to their common purpose
and highlighting their shared functionality.

Intended audience
The Flash Component Architecture is a vast topic, and this book has been designed to offer
you a very efficient and effective path to learning it. However, in order to benefit from it, you
should have a good understanding of ActionScript and be familiar with XML and the Flash
authoring environment.

This book is also very valuable for developers who have worked with other OOP languages
such as Java or C++ and are now considering the Flash technology for building rich Internet
applications.

Version issues
Another major plus of this book is that its contents are compatible with both the Flash MX
2004 and Flash 8 authoring environments. What we call the Flash Component Architecture was
originally named the Macromedia Component Architecture Version 2 when first introduced in
Flash MX 2004. The same architecture, slightly improved by fixing a few bugs, has been
included in the recently released Flash 8.

The techniques illustrated in this book are based on ActionScript 2, the language supported by
both versions of the Flash authoring environment. All of the examples have been tested in
both Flash MX 2004 and Flash 8, and any differences in operation on the two versions have
been highlighted as they occur.

INTRODUCTION

xxii

5939FM.qxd 1/25/06 12:28 PM Page xxii

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout:

Important words or concepts are normally highlighted on the first appearance in
bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: ➥.

This is a very, very long section of code that should be written all on ➥

the same line without a break.

The complete source code
This book includes numerous complete examples that can be downloaded from the web by
visiting this book’s page at www.friendsofed.com.

You can also visit the website www.xleff.org to obtain the latest version of XLEFF, the open
source XML layout engine discussed in this book.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxiii

5939FM.qxd 1/25/06 12:28 PM Page xxiii

5939FM.qxd 1/25/06 12:28 PM Page xxiv

INTRODUCING THE ARCHITECTURE

Part One

5939CH01.qxd 1/25/06 12:29 PM Page 1

5939CH01.qxd 1/25/06 12:29 PM Page 2

3

Chapter 1

Wax on, wax off.
Mr. Kesuke Miyagi

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 3

Most modern software technologies descend from the object-oriented programming (OOP) method-
ology, and the Flash Component Architecture is no exception. The goal of this chapter is to expose
how the OOP paradigm influences the design and development of components and component-based
applications.

In the following pages, we will implement a component that will act as a vehicle for introducing and
demonstrating every OOP concept at work.

A very short history of the architecture
This book is based upon build 2.0.2.126 of the component architecture that is loosely defined as “ver-
sion 2.” This build of the component architecture was released with Flash 8.

If you are working with a different version of the architecture, you may find that some information has
changed.

As it has been implemented, the design of the architecture makes an extensive use of object-oriented
programming techniques and concepts, and the source code of the second version of the component
architecture is a full rewrite of the first version, so unfortunately the two versions are incompatible.
Such a high level of incompatibility between the two versions is due to the fact that some very essen-
tial OOP features were introduced at a later stage with the release of ActionScript 2 that were not
available when the architecture was first implemented.

The design and implementation of the first version was rather sloppy because the developers of the
component architecture had to work around the absence of fundamental mechanisms such as the
class construct.

The appearance of crucial OOP constructs in ActionScript 2 required sacrificing backward compatibil-
ity in order to achieve a much neater design and drop various clumsy aspects of the previous version.

The good news is that this technological tsunami is unlikely to happen again, and any incompatibility
introduced by future versions of ActionScript will have a very minor impact on the architecture, com-
pared to the paradigm shift between its first two versions.

Creating Flash components
The high relevance of the class construct in the component architecture will become clear once you
take into account that creating a Flash component is essentially a two-step process:

Create a movie clip symbol in the authoring environment.

Associate the symbol with an ActionScript class that implements the component behavior
and/or its look and feel.

The completed source code introduced in this chapter can be found in the package
src01.zip, downloadable from this book’s page at www.friendsofed.com.

4

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 4

Once the association between the symbol and the class is completed, the Library panel in the author-
ing environment will show that the symbol’s type is changed from “movie clip” to “component.”
Furthermore, a new icon shown alongside the symbol’s name in the Library panel will emphasize such
a change of status.

Component instances can be created by dragging the component symbol from the Library panel onto
the stage as you would have done with the more basic kind of symbols (such as movie clips, buttons,
or graphics).

Component instances can also be created dynamically by coding, as you will see in the next chapter.

In addition to providing properties and methods, as expected by such an object-oriented mechanism,
an ActionScript class can also include metadata tags that are a facility to control the features (usually
the properties) of a component instance via the Flash authoring environment.

So, without further ado, let us look at an example: in the upcoming section we will create a very sim-
ple and apparently useless component to start exploring Flash component design in more concrete
terms. The component will be expressly designed to be purposeless to avoid distracting your attention
from what the component does: this is the stage when you must learn what a component is.

An apparently useless component
Different components serve different purposes, and the design of a component is usually optimized
on the specific functionality provided.

We are going to create a component that will be useful by being useless. By not being optimized for a
specific purpose, our component will serve as a test vehicle for any concept that will be introduced
from now on. Furthermore, its isolated and abstract features will help you focus on the deep concep-
tual basis behind OOP and component design.

Our component will grow gradually from a very minimal version up to a complete example including
all of the essential features that are available to a component belonging to the component archi-
tecture.

Creating the Vogon component
Apply the following steps in order to create your first minimal component called Vogon:

1. Create a new Flash document and save it as vogon1.fla; we will enumerate some Flash docu-
ments progressively to keep track of our component’s versions. Define the document dimen-
sions as 800✕600 pixels.

2. Create a shape of approximately 100✕100 pixels. The shape is supposed to be ugly, so don’t
waste your time in improving its appearance. Aesthetic issues are not relevant in the first part
of this book.

3. Remove the border from the shape, if any, and define its fill color as #00FF00 (green).

4. Convert the shape into a symbol. Be sure that the selected symbol behavior is movie clip, and
define the name of the symbol as Vogon Component.

5

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 5

Once the previous procedure has been completed, the Library panel should display a movie clip sym-
bol named Vogon Component.

As mentioned earlier, to create a component, we need to associate a symbol with an ActionScript
class.

We have created the symbol, so let us create the ActionScript class.

5. While still in the Flash authoring environment, create an ActionScript file and save it as
Vogon.as; note that class filenames are case sensitive, so always pay attention to the name of
the file and the name of the ActionScript class: they must be identical (file extension excluded).

6. Insert the following code into the ActionScript file and save it:

class Vogon {

public function Vogon() {
trace("creating an instance of the Vogon Component");

}

}

The first incarnation of the Vogon class is very minimal and includes the class constructor only. A class
constructor is a special function sharing the same name as the class.

The Flash engine invokes constructors automatically each time a new component instance is created.
A constructor plays the important role of initializing the newly created component instance. It is a
good practice to include the constructor in the implementation of a class even when its body is empty:
its presence does not affect performance, and it is an important reminder of where to write initializ-
ing code, whenever needed.

Let us now complete the component creation process by associating the Vogon Component symbol
with the Vogon class.

Probably because of some legacy issue, associating a class with a symbol to create a component
requires two very similar actions:

Define the name of the associated ActionScript class in the Linkage Properties dialog box of
the movie clip.

Define the name of the associated ActionScript class again as Vogon in the Component
Definition dialog box of the movie clip.

Go back to the vogon.fla document where the component’s symbol is. The following steps detail
what you must do to complete the creation of your first Flash component:

7. Right-click the Vogon Component symbol in the Library window and select the Linkage…
command.

8. Check the Export for ActionScript option.

6

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 6

9. Fill the AS 2.0 Class field with the name of our component class: Vogon.

10. Click the OK button to confirm the settings.

11. Once again, right-click the Vogon Component symbol in the Library window, but this time
select the Component Definition… command.

12. Fill the AS 2.0 Class field with the name of our component class: Vogon.

13. Click the OK button to confirm the settings.

As you can see, the two procedures are almost identical, but only after
completing the second one can you see that both the icon of the Vogon
Component symbol and its description in the Library window have
changed to show that the symbol has indeed become a component (as
shown in Figure 1-1).

The document’s library contains the component symbol, but to actually
see the component at work, we must create at least one of its instances
on the stage:

14. Drag the Vogon Component symbol from the Library panel onto the stage to create one
instance of the component. Set the component position precisely by defining x = 200.0 and
y = 200.0 in the Properties panel.

You can now test the Flash movie and the first version of the Vogon component.

Testing the movie within the Flash authoring environment will affect two windows:

The SWF window will show a green shape, which is the same as the one you defined for your
component.

The constructor of the Vogon class is executed once automatically to initialize the only compo-
nent instance in the movie. As a result, the Output panel will open to show the following text:

creating an instance of the Vogon Component

Our first example shows us that the component mechanism provides a neat separation between code
and visual representation. Not only is the ActionScript code included in a separated file, but also no
ActionScript code is required inside the Flash document to execute the code in the component’s class.

Adding a method
Methods is an object-oriented term that refers to functions implementing the actions that an object
can take. In the case of the Vogon component, we imagine the component instances to be “creatures”
that love to read poems, and therefore we are going to provide the Vogon class with a readPoem
method.

1. Copy both files from the previous example (vogon1.fla and Vogon.as) into a new folder.

2. Rename vogon1.fla as vogon2.fla as a reminder that we are working with a new version of
the previous example.

7

OOP IN COMPONENT DESIGN

Figure 1-1. Our Vogon has become
a component.

5939CH01.qxd 1/25/06 12:29 PM Page 7

3. Open the Vogon.as file and replace the existing code with the following:

class Vogon {

public function Vogon() {
readPoem();

}

public function readPoem():Void {
trace("You do not really want to hear this..");

}

}

Testing the new example in the Flash authoring environment will produce the following outcome:

The SWF window will show the same
green shape as the component instance
present on the stage from the previous
example.

The constructor of the Vogon class is
executed once automatically to initialize
the only component instance in the
movie. In this case, the constructor
invokes the readPoem method, which in
turn prints some text in the Output
panel, as displayed in Figure 1-2.

What is the sense of this?

We are fleshing out a component step by step,
introducing all of its typical features one by
one. As the component grows larger, you will
see more significant techniques at work, and
thanks to this approach, you will be able to apply them to your own components or, per the scope of
this book, you will be able to recognize them when they are applied to components of the component
architecture.

Variables, properties, and metadata tags
Properties are used to store information about an object or even a class.

In our example, we will implement a myColor property to be able to assign different colors to the
objects created using the Vogon class.

8

CHAPTER 1

Figure 1-2. The Vogon component

5939CH01.qxd 1/25/06 12:29 PM Page 8

Component properties can be implemented in an ActionScript class in two different ways:

Explicitly, by using a variable definition: This is the simpler option. It requires far less pro-
gramming (one line of code), although it is not recommended by object-oriented purists.

Implicitly, by using get/set methods: This option is considered the best practice of the two
because it encapsulates the data and filters the access to it using two separate functions for
read/write access. Considering that you have to implement two functions for each property,
this option is certainly more demanding in programming terms. On the other hand, those two
functions are the best place to store any code that should process a property’s value before
reading/writing it.

We are going to add a myColor property to our component, the purpose of which is to enable the user
to change the color of a Vogon component instance. We will implement the myColor property both
explicitly and implicitly so that you can compare the differences between the two options.

Implementing a property explicitly
In the following example, we are going to add an explicit property to the Vogon component that
allows us to define its color.

1. Copy both files from the previous example (vogon2.fla and Vogon.as) into a new folder.

2. Rename vogon2.fla as vogon3.fla to remind you that we are working with a new version of
our component.

3. Drag the Vogon Component symbol from the Library panel onto the stage to create a second
instance of the component. Set the component position precisely by defining x = 400.0 and
y = 200.0 in the Info panel.

4. Select the first component instance and name it blueVogon using the Properties panel.

5. Select the second component instance and name it redVogon using the Properties panel.

6. Select the first (and only) frame on stage and add the following ActionScript code in the
Actions panel (Window ➤ Actions):

#include "test.as"

7. Open the Vogon.as file and replace the existing ActionScript code with the following:

class Vogon {

public var myColor:Number;

public function Vogon() {}

public function applyNewColor():Void {
var objColor:Color = new Color(this);
objColor.setRGB(myColor);

}

}

9

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 9

8. Create a new ActionScript file and save it as test.as.

9. Copy the following code into the new ActionScript file:

blueVogon.myColor = 0x0000ff;
blueVogon.applyNewColor();
redVogon.myColor = 0xff0000;
redVogon.applyNewColor();

The new Vogon class implements the myColor property via a public variable of the Number type:

public var myColor:Number;

However, to assign a color value to this variable is not sufficient to change the color of a component
instance; that’s why we have to provide a method:

public function applyNewColor():Void {

This method must be called after assigning a new value to the myColor property to set the RGB color
of the component instance accordingly. And that is what is done by our test code twice.

You can now test the movie in the authoring environment. There will not be any text printed in the
Output window this time, and the only outcome will be the following:

The SWF window will show two identical shapes, one for each component instance on the
stage, that have a different color (one shape is blue, the other red).

We implement the color attribute of our Vogon component for a very specific reason: ActionScript
does not allow you to change the color of a movie clip in one step.

As shown in the implementation of the cumbersome applyNewColor method, you first need to access
the color object of the movie clip associated with the instance:

var objColor:Color = new Color(this);

And then you can change it by using the numeric value stored in the myColor variable:

objColor.setRGB(myColor);

It would be nice if we could change the color of a component instance in a single step, avoiding the
need to call the applyNewColor method each time, like in the following test code:

blueVogon.myColor = 0x0000ff;
redVogon.myColor = 0xff0000;

The previous code cannot work if the myColor property is implemented explicitly. Could it work if the
property is implemented implicitly? Let us find out.

10

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 10

Implementing a property implicitly
To implement the myColor property implicitly, follow these steps:

1. Copy the files from the previous example (vogon3.fla, Vogon.as, and test.as) in a new
folder.

2. Rename vogon3.fla as vogon4.fla to remind you that we are working with a new version of
our component.

3. Open the Vogon.as file and replace the existing code with the following:

class Vogon {

public function Vogon() {}

public function get myColor():Number {
var objColor:Color = new Color(this);
return objColor.getRGB();

}

public function set myColor(aColor:Number):Void {
var objColor:Color = new Color(this);
objColor.setRGB(aColor);

}

}

4. Open the test.as file and replace the existing code with the following:

blueVogon.myColor = 0x0000ff;
redVogon.myColor = 0xff0000;

That’s all. You can test the movie and verify that the outcome is exactly the same as in the previous
example where the myColor property was implemented explicitly: the SWF window still shows the two
shapes that differ in color only (one is blue, the other red).

So we made it. Thanks to the implicit implementation of the myColor property, we can now set the
color of a component instance in a single statement, as shown in the new version of the testing code.
Let us examine how it works.

Properties are implemented explicitly via the use of two special kinds of methods:

The get method retrieves the current value of a property.

The set method stores a new value in a property.

The get and set methods have the same name of the property being implemented. Their declarations
differ because of the presence of the get/set keywords and in the parameters since the get method
returns the property’s value, while the set method expects a value to be assigned to the property.

11

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 11

The get method returns a number and has no input parameters:

public function get myColor():Number {

The set method expects an input parameter of type Number and doesn’t return any value:

public function set myColor(aColor:Number):Void {

The get/set methods usually store and retrieve the value of a property in a private variable of the
class, but that is not always the case. In fact, in the case of the myColor property, the value is stored in
and retrieved from the RGB color of the movie clip associated with the component instance, as can be
seen in the implementation of the get/set methods of myColor in this example.

It is an OOP best practice to implement properties implicitly via get/set methods because

They offer much finer control when accessing the property.

They separate the implementation of the property (how it is stored and retrieved) from its
access inside applications that use instances of a class, therefore eliminating inconvenient
dependencies.

While the benefits of this approach remain theoretical in some cases, they soon become evident
whenever some action is required when accessing the property, as in the case of the myColor property
that we have implemented for our component.

Properties in the authoring environment
Although the use of the Flash authoring environment is beyond the scope of this book, you should be
aware of certain coding features that have been expressly introduced to enhance the productivity of
the authoring environment.

In particular, it is possible to use metadata tags to expose the properties of a component instance at
design time, therefore empowering both designers and developers who create component instances
statically by dropping them on the Flash document stage.

There can be a design-time alternative to defining the myColor property of our component as we did
in these lines:

blueVogon.myColor = 0x0000ff;
redVogon.myColor = 0xff0000;

In fact, it is possible to make the myColor property accessible in a couple of panels in the authoring
environment:

In the Parameters tab of Properties panel, and

In the Parameters section of the Component Inspector panel

Let us modify the previous example to implement this:

1. Copy the files from the previous example (vogon4.fla, Vogon.as, and test.as) in a new folder.

2. Rename vogon4.fla as vogon5.fla to remind you that we are working with a new version of
our component.

12

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 12

3. Open the Vogon.as file and update the existing code by adding the metadata tag line just
before the declaration of the myColor set method, as shown in the following code:

class Vogon {

public function Vogon() {}

public function get myColor():Number {
var objColor:Color = new Color(this);
return objColor.getRGB();

}

[Inspectable(name="My Color", type="Color",
defaultValue="#00FF00")]

public function set myColor(aColor:Number):Void {
var objColor:Color = new Color(this);
objColor.setRGB(aColor);

}

}

Compile and test the movie once to force the authoring environment to re-read the definition of the
Vogon class that has now been extended with the metadata tag associated with the myColor property
and add it to the Properties panel:

[Inspectable(name="My Color", type="Color", defaultValue="#00FF00")]

The syntax of the Inspectable metadata tag is rather intuitive; it defines three parameters:

name: This parameter provides the name of the property as it will be shown in the panels of the
authoring environment.

type: This parameter specifies how the property should be handled by the panels in the
authoring interface. We know that the myColor property implemented in the Vogon class is of
type Number, but we also know that it represents the numeric value of a color. By telling the
authoring environment that the property type is Color, we will exploit a mechanism provided
by the authoring environment that allows us to set the numeric value by picking a color in a
pop-up palette.

defaultValue: This parameter allows us to specify a default value for the property. We know
that the default color of our component is green because that is the color we chose for the
component’s shape when we created it.

We can verify that the presence of this metadata tag in the definition of the Vogon class has indeed
influenced the authoring environment.

1. Close the SWF window in the authoring environment, if still open.

2. Select the blueVogon component instance on the stage.

3. Look in the Parameters tab of the Properties panel (or in the Parameters section of the
Component Inspector panel).

13

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 13

4. You will find that there is a row dedicated to the My Color parameter, corresponding to the
myColor property.

5. By double-clicking the swatch of the My Color parameter, you will access a color palette. Select
the blue color in it (#0000FF). The swatch color will change from green (the default color)
to blue.

6. Select the redVogon component instance on the stage and repeat the previous process to set
its My Color parameter to the color red (#FF0000).

7. Open the test.as file and replace the existing code with the following:

trace("the color of the component instances has now been set
at design time");

After testing the movie again, a message in the Output window will say the following:

the color of the component instances has now been set at design time

That message highlights that the blueVogon instance will be displayed in blue and the redVogon
instance in red.

Note that we have applied the Inspectable metadata tag to the implicit implementation of the
myColor component by postponing its inclusion until the declaration of the property’s set method.

It is also possible to apply the Inspectable metadata tag to properties that have been implemented
explicitly by postponing its inclusion until the variable declaration.

If you wish to modify our explicit option example, all you have to do is insert the metadata tag just
before the myColor variable declaration like so:

[Inspectable(name="My Color", type="Color", defaultValue="#00FF00")]
public var myColor:Number;

Inheritance
Inheritance is one feature of OOP that has made it one of the most powerful programming
approaches in existence—it refers to the ability of a class to inherit the features of another class.

The class providing such features is frequently called the base class, while the class inheriting them is
usually defined as the subclass.

"base class" -> "subclass"

In ActionScript, inheritance is implemented via the extends keyword.

14

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 14

A little help from Darwin
In the following very short example, the extends keyword informs ActionScript that the class Man
inherits from the class Animal:

class Man extends Animal {

public function Man() {}

}

Therefore, in our example, Animal is the base class, while Man is its subclass; you could say, quite
scientifically, “(the class) Man derives from (the class) Animal.”

Let us define the class Animal as follows:

class Animal {

public var species:String;

public function Animal() {}

public function breathe():Void{}

}

A direct consequence of such a definition is that any object created using the class Man will have a vari-
able species and a method breathe because the class Man inherits those features from the class
Animal.

Also, the Animal constructor will be called before the Man constructor, whenever creating an object of
the class Man.

Given that the constructor is a special function having the same name as the class, it is a good practice
to include it in the class definition even if it is initially empty. An empty constructor does not impact the
performance, and it reminds us where to include any initialization code that we may need in the future.

Inheritance introduces a new rule about what type of objects can be legally assigned to variables of a
certain type: we can assign an object to a variable only if their classes are the same or the object’s class
inherits from the variable’s class.

var a:Animal = new Man(); // legal
var m:Man = new Animal(); // illegal !!!

Executing the second line of this example in the authoring environment would generate the following
error at compilation time:

Line 2:
Type mismatch in assignment statement:
found Animal where Man is required.

which sounds almost like a joke!

15

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 15

Let us build an example to check inheritance at work in ActionScript.

1. Create a new Flash document and save it as manimal.fla in a new folder.

2. Select the first (and only) frame on stage and add the following ActionScript code to the
Actions panel:

#include "test.as"

3. Create three ActionScript files and save them in the same folder with the names Animal.as,
Man.as, and test.as. Remember that ActionScript filenames are case sensitive; therefore, you
must pay attention and define their names accurately.

4. Copy the following code into the Animal.as file and save it:

class Animal {

public var Species:String;

public function Animal() {
trace("creating an animal");

}

public function breathe():Void{
trace("I breathe");

}

}

5. Copy the following code into the Man.as file and save it:

class Man extends Animal {

public function Man() {
trace("creating a man");

}

}

6. Copy the following code into the test.as file and save it:

var m:Man = new Man();
m.breathe();

If you now test the Flash movie, you will notice that the following lines will be displayed in the Output
window:

creating an animal
creating a man
I breathe

16

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 16

The output produced by the code in the test.as file proves a few facts:

The creation of an instance of the Man class triggers the execution of the constructor of the
Animal class first; the constructor of the Man class runs just after that.

The last line (“I breathe”) demonstrates that an instance of the Man class inherits the breathe
method from the Animal class: such a method was not defined in the Man class!

Appreciating the benefits of inheritance
Although intuitive, the previous example was possibly too abstract to let you truly appreciate the ben-
efits of the inheritance mechanism, so let us apply inheritance to our Vogon component and see if we
can come out with something more useful.

In the last version of the component, we introduced the myColor property, which allows the user to
define the color of the component both programmatically and at design time in the Flash authoring
environment.

The goal of the next version of the component is to separate this feature (the color) from the Vogon
class and encapsulate it in another class, Colorable. The Vogon class will then inherit the myColor
property and its behavior from the Colorable class.

1. Copy the files vogon5.fla, Vogon.as, and test.as from last version of our component into a
new folder.

2. Rename vogon5.fla as vogon6.fla to remind you that we are working with a new version of
the component.

3. Create a new ActionScript file and save it as Colorable.as.

4. Add the following code to the new ActionScript file and save it:

class Colorable {

public function Colorable() {}

public function get myColor():Number {
var objColor:Color = new Color(this);
return objColor.getRGB();

}

[Inspectable(name="My Color", type="Color",
defaultValue="#00FF00")]

public function set myColor(aColor:Number):Void {
var objColor:Color = new Color(this);
objColor.setRGB(aColor);

}

}

17

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 17

5. Open the Vogon.as file and replace the existing code with the following:

class Vogon extends Colorable {

private var pBuffer:String;

public function Vogon() {}

public function readPoem():Void {
trace(myPoem);

}

public function get myPoem():String {
return pBuffer;

}

public function set myPoem(aPoem:String):Void {
pBuffer = aPoem;

}

}

You will notice a number of changes in the Vogon class:

The implementation of the myColor property disappeared from the code of the class.

The Vogon class is now a subclass of Colorable, suggesting that it will inherit the myColor prop-
erty from its base class.

A new method (readPoem) and the implicit implementation of a new property (myPoem) were
added for later use.

As you can see, the implementation of the myColor property disappeared from the definition
of the Vogon class.

Let us now change the code in the test.as file to test the new property and the new method.

6. Open the test.as file and replace the existing code with the following:

redVogon.myPoem =
"...Groop, I implore thee, my foonting turlingdromes...";

redVogon.readPoem();

After saving the new versions of Vogon.as and test.as, you are ready to test the movie.

The only difference with the outcome of the previous example is the new message in the Output
window:

...Groop, I implore thee, my foonting turlingdromes...

The SWF window still shows the blueVogon and redVogon instances with their expected colors, as we
set them at design time in the previous example.

18

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 18

In fact, if you check the Parameters tab of the Properties panel for both component instances, you will
find that the My Color property is still there, and it is defined as blue for the blueVogon and red for
the second instance of the stage.

However, quite a bit has happened behind the scenes. The myColor property is no longer imple-
mented in the Vogon class. Its implementation is provided via inheritance by a new class, Colorable,
created for this specific purpose.

So, why we did modify our component to introduce the Colorable class, and what are the benefits of
inheritance?

Well, let us consider the case of implementing another new component. We will start with an almost
empty class with only the constructor in it:

class MySecondComponent {

public function MySecondComponent() {}

}

Now, what if you wish to add a color property that behaves exactly like the one we implemented for
the Vogon component?

Without inheritance, you should first evaluate what the implementation of this property could be in
the context of the new component and, ultimately, reimplement its get/set methods.

However, using inheritance is going to cost you very little; indeed, all it requires is the addition of just
two words to your code:

class MySecondComponent extends Colorable {

public function MySecondComponent() {}

}

Almost magically, extends Colorable is all you need to add the myColor property to your new com-
ponent to make its instances “colorable”!

Apart from any hype associated with OOP, it should be evident by now what benefits inheritance can
produce when used properly: a neater design, a more robust implementation, and a higher level of
reusability.

ActionScript limit on multiple inheritance
Now that you have seen how powerful the inheritance mechanism can be, you are probably consider-
ing implementing any essential functionality you can think of into different classes to be able to create
new components in a snap by inheriting from a selection of those classes. That is what architecture
designers do, and their job is easier when new classes can inherit from more than one class at the

19

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 19

same time. The concept of inheriting from more than one class at the same time is called multiple
inheritance, and it would be nice if ActionScript had implemented it using something like the follow-
ing syntax:

class Vogon extends Colorable,MovieClip {
// NOTE: this is NOT valid ActionScript code

Unfortunately, the current version of ActionScript does not support multiple inheritance. When
designing OOP applications or components for Flash, we must keep in mind that an ActionScript class
can inherit directly (extends) from one class only.

However, there is a way to get around this.

In the case of the Vogon class, we wish it to inherit from both the Colorable and MovieClip classes in
order to add the features of both classes to the Vogon class. This is possible by implementing a chain
of inheritance—defining the Vogon class as a subclass of Colorable class, which in turn is defined as
a subclass of the MovieClip class.

In order to implement our first chain of inheritance, we need to modify only one line in the Colorable
class to define it as a subclass of the MovieClip class:

class Colorable extends MovieClip {

After this change, all the Vogon objects will have both the features defined in the Colorable class and
those defined in the MovieClip class by simply inheriting from the Colorable class through the imple-
mented chain of inheritance:

Vogon -> Colorable -> MovieClip

So, what’s the difference between multiple inheritance and a chain of inheritance?

In the first case, the Colorable class would not need to inherit from the MovieClip class and would
remain a smaller, neatly defined, class.

Some designs are better implemented by organizing the features in classes that are well separated via
multiple inheritance. Other designs are better implemented by adding features incrementally as in a
chain of inheritance.

At the time of writing, ActionScript provides the second option only.

Events
In addition to defining the properties and methods of its instances, an ActionScript class may also
implement further functionality to allow its objects to communicate among each other and with
objects that are instances of other classes.

In OOP, interobject communication is based on events.

20

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 20

What is an event in component terms?
Events play such a major role in modern software development that a new definition was forged to
refer to programs that are based on events: event-driven applications.

Flash applications have always been event-driven, which is why Flash applications can handle compo-
nents so well. Components, in fact, communicate among each other by triggering events or reacting
to them.

But what is an event in component terms?

An event is the abstraction of a specific action, such as the user clicking a component instance. When
the user clicks the instance of a component, implementing the click event, the component instance
acts as a source object. A source object creates an event object and dispatches it to all the other
objects that are waiting for it.

The objects waiting for an event to happen are called listeners, and they usually react to an event by
executing some code.

These concepts will become clearer after we have built up a concrete example.

Implementing a custom event
Continuing with the practical approach we have followed so far, we are going to implement a custom
event for our Vogon component.

To make a significant example, we need at the very least two component instances, one that can act
as the event source, and another that can act as the listener.

In our last example, we had a couple of instances (blueVogon and redVogon) on stage; therefore, we
can continue from where we left off and write some code that will allow the redVogon instance
to create and dispatch an event and some other code that will permit to the blueVogon instance to
receive the event and do something about it.

But what custom event could we possibly implement? The myPoem property that we added lately can
be useful to arrange a scenario. Let us assume that an instance of the Vogon class triggers an
onNewPoem event every time that the myPoem property is assigned a new value.

Another instance of the same component could then be interested in listening to such an event and
react accordingly.

Let us implement the first part of the example.

Triggering a custom event
The Flash engine and the classes provided with it trigger many system events.

Events created by the programmer for a specific purpose, such as the onNewPoem defined in our sce-
nario, are usually referred as custom events to underline the fact that they are user-defined.

21

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 21

Unlike properties and methods, events are not included in the syntax of the class construct, so we rely
on different ways of implementing events.

The technique introduced in this section is the most appropriate in the case of component-based
applications, since it utilizes a mix-in class included in the architecture for the specific purpose of
implementing events: the UIEventDispatcher class.

This class implements a communication protocol among objects and therefore is able to dispatch the
event created by a source object to all of its listeners.

Our Vogon class will use the UIEventDispatcher class to be able to trigger its own custom event and,
at the same time, to be able to listen to it, as we will see in the next step.

We will add the definition of three initially empty functions to our Vogon class:

public function dispatchEvent(eventObject:Object) {}
public function addEventListener(event:String, listener:Object) {}
public function removeEventListener(event:String, listener:Object) {}

Such functions are part of the communication protocol implemented by the UIEventDispatcher class.
In fact, by including the line

mx.events.UIEventDispatcher.initialize(this);

in the constructor of the Vogon class, we will ask the UIEventDispatcher class to provide the imple-
mentation of those three methods.

The dispatchEvent method allows triggering of a custom event. Only one parameter is expected by
this method: the event object.

Event objects are implemented as instances of the built-in Object class, which is a dynamic class. If an
object is based on a dynamic class, you are able to add properties to it at runtime, a feature that can
be very handy when implementing event objects.

An event object must have at least two properties:

target: A reference to the object that triggered the event

type: A string value containing the name of the custom event

In the Vogon class, we will implement the event object and dispatch it in the following way:

var eventObject:Object = {target:this, type:'onNewPoem'};
eventObject.poem = pBuffer;
dispatchEvent(eventObject);

As you can see, we initially create the event object with the two mandatory properties (type and
target) and then we add another property that stores information associated with the specific event
(the value of the myPoem property, which is stored in the pBuffer variable).

The name chosen for our custom event is onNewPoem, a choice that will make our code more readable
when implementing the listening part of the interaction in the next section.

22

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 22

Listening to a custom event
When a source object triggers a custom event via the dispatchEvent method, the method implemen-
tation provided by the UIEventDispatcher class dispatches the event object to all of its listeners.

But how can a component instance become a listener?

A component instance must register itself using the addEventListener method in order to become
the listener of a custom event. The listener role can also be dropped, as the component instance can
stop listening to an event by invoking removeEventListener.

In addition to registering itself as a listener of a specific event, a component instance must also have
a method that has the same name of that custom event.

Therefore, in order to enable instances of the Vogon class to react to the onNewPoem method, we must
implement a method in the Vogon class with the same name: onNewPoem.

That is the reason for choosing such a name for our custom event. Ultimately, the onNewPoem method
will be invoked whenever the value of the myPoem property changes and, therefore, “on (the creation
of a) new poem.”

Methods like onNewPoem are implemented for the specific purpose of reacting to a custom event, and
because of this are also known as event handlers.

Our event handler will be implemented by the following code:

public function onNewPoem(eventObject:Object):Void {
trace("I am " + this. _name);
trace("and I just received a new poem from " +

eventObject.target. _name);
trace('"' + eventObject.poem + '"');

}

In reaction to receiving the event, the Vogon component instance will print some useful information
in the output window. More specifically:

The first trace will show the name of the object listening to the event (the listener).

The second trace will show the name of the object that triggered the event (the source object).

The third trace will display the value of the myPoem property of the source object (the new
poem).

Building the example
The following example demonstrates the implementation of a custom event:

1. Copy the files vogon6.fla, Vogon.as, Colorable.as, and test.as from last version of our
component into a new folder.

2. Rename vogon6.fla as vogon7.fla to remind you that we are working with a new version of
the component.

23

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 23

3. If you have not done so already while working on the previous example, modify the Colorable
class to inherit from the MovieClip class. We will need it to access the name of the movie clip
associated with the component instance. The MovieClip class encapsulates all the features that
are available to a Flash movie clip and makes them available to other classes.

class Colorable extends MovieClip {

4. Open Vogon.as to implement the new version of the Vogon class. Replace the existing code the
with the following:

import mx.events.UIEventDispatcher;

class Vogon extends Colorable {

private var pBuffer:String;

public function Vogon() {
UIEventDispatcher.initialize(this);

}

public function dispatchEvent(eventObject:Object) {}
public function addEventListener(event:String,

listener:Object){}
public function removeEventListener(event:String,

listener:Object) {}

public function readPoem():Void {
trace(myPoem);

}

public function get myPoem():String {
return pBuffer;

}

public function set myPoem(aPoem:String):Void {
pBuffer = aPoem;
var eventObject:Object = {target:this, type:'onNewPoem'};
eventObject.poetry = pBuffer;
dispatchEvent(eventObject);

}

public function onNewPoem(eventObject:Object):Void {
trace("I am " + this. _name);
trace("and I just received a new poem from " +

eventObject.target._name);
trace('"' + eventObject.poetry + '"');

}

}

24

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 24

5. Open the test.as file and replace the existing code with the following:

redVogon.addEventListener("onNewPoem", blueVogon);
blueVogon.addEventListener("onNewPoem", redVogon);
redVogon.myPoem =

"...Groop, I implore thee, my foonting turlingdromes...";

Even if very simple, the testing code has been defined to prove almost any aspect related to the event
dispatching mechanism as it is implemented by the UIEventDispatcher class:

The first line registers the blueVogon instance as a listener of the onNewPoem event when
triggered by the redVogon instance.

The second line registers the redVogon instance as a listener of the onNewPoem event when
triggered by the blueVogon instance.

In the third line, the redVogon instance acts as the source object of the onNewPoem event
because its myPoem property is assigned a new value. Our custom event is triggered by the set
method of myPoem as a result of this statement.

In response to the source object (redVogon) triggering the event, the UIEventDispatcher class will
execute the onNewPoem method in the scope of the listener (blueVogon).

As a result of the execution of such method, the following lines will be displayed in the Output win-
dow when you test the movie in the authoring environment:

I am blueVogon
and I just received a new poem from redVogon
"...Groop, I implore thee, my foonting turlingdromes..."

Note that the line

blueVogon.addEventListener("onNewPoem", redVogon);

does not influence the outcome of the test because the myPoem property of the blueVogon does not
change, and, therefore, blueVogon never acts as source object in our example.

The line has been added to demonstrate that when an event (onNewPoem) is triggered, the
UIEventDispatcher delivers it only to the objects that have registered themselves as listeners of
the specific source object.

Basically, when the myPoem property of redVogon is assigned a new value, redVogon does not receive
the event object because it is listening to blueVogon but not listening to itself!

The redVogon instance could have been listening to itself if we had added the following line before
assigning a new value to the myPoem property:

redVogon.addEventListener("onNewPoem", redVogon);

Add this line to the test yourself, and see how the outcome changes.

25

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 25

Polymorphism
Polymorphism is a term associated with another fundamental OOP concept.

The word comes from the Greek, and its original meaning is “having multiple forms.”

Polymorphism can work in a number of subtle ways depending on how it is implemented in the
programming language of choice; in the most general case, polymorphism refers to the ability of
a programming language to connect a method call with a method implementation depending on the
runtime class of the object invoking the method.

Let us create an example of polymorphism at work within the scope of component design.

And God took a rib from a Vogon
At least two classes are needed to build an example of polymorphism.

Because of this, we are going to create a second component. This will not be a lengthy task, because
we are going to derive the class of the new component from the Vogon class. We are going to create
a Vogoness for the Vogon to socialize with.

The following example is also an opportunity to see how inheritance allows us to further specialize
existing components by creating new ones based on existing ones.

1. Copy the files vogon7.fla, Vogon.as, Colorable.as, and test.as from last version of our
component into a new folder.

2. Rename vogon7.fla as vogon8.fla to remind you that we are working with a new version of
the component.

3. Duplicate the Vogon component by right/CTRL-clicking it in the Library panel and choosing the
Duplicate option from the pop-up menu.

4. Define the new name of the component (as requested in the Duplicate Symbol dialog box) as
Vogoness and click the Advanced button to reveal additional options.

5. Check the Export for ActionScript option and in the AS 2.0 Class text field add Vogoness, the
name of the class that we are going to create.

6. Let us complete the association between the new component and its class by right/CTRL-
clicking the Vogoness component in the Library panel and selecting the Component
Definition… option. Once again, in the AS 2.0 Class text box add Vogoness.

7. We are now going to modify the shape of the Vogoness component to be able to distinguish
its instances from those of the Vogon component. Right/CTRL-click the Vogoness component in
the Library panel and select the Edit option. Alter the shape, but do not change the color.

8. After editing the component shape, go back to the main stage of the document and create an
instance of the Vogoness component by dragging its symbol from the Library panel to the stage.

9. Select the newly created instance on the stage and define its instance name as greenVogoness.
Move the greenVogoness to the location (x = 300.0, y = 350.0) by using the Info panel. Since
the Flash document was a copy of the one created in the previous example, we should now
have three instances on the stage that are named blueVogon, redVogon, and greenVogoness,
respectively.

26

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 26

10. You can now pass to the implementation of the Vogoness class by creating a new ActionScript
file and saving it with the name Vogoness.as after copying the following code into it:

class Vogoness extends Vogon {

private var txtPoetry:TextField;

public function Vogoness() {}

public function readPoem():Void {
createTextField("txtPoetry", getNextHighestDepth(), 0,

100, 250, 100);
txtPoetry.multiline = true;
txtPoetry.wordWrap = true;
txtPoetry.text = this.myPoem;
var tf:TextFormat = new TextFormat();
tf.align = "right";
txtPoetry.setTextFormat(tf);

}

}

The Vogoness class is a subclass of the Vogon class. The new class overrides the readPoem method by
providing a different implementation for it.

The readPoem implementation in the Vogon class is much simpler and shows the content of the myPoem
property in the Output window. The new implementation, in the Vogoness class, creates a TextField
instance in the component’s movie clip showing the content of the myPoem property.

We are now ready to change the test.as file and write the code that will show us how polymorphism
can work in a Flash application.

11. Open the test.as file and replace the existing code with the following:

greenVogoness.myPoem = "Uglier things than my husband have been
➥ spotted, but not by reliable witnesses.";
redVogon.myPoem = "The best way to get a drink out of blueVogon is
➥ to stick your finger down his throat.";
blueVogon.myPoem = "redVogon is not above corruption in
➥ the same way that the sea is not above the clouds.";

var objects = Array(greenVogoness, redVogon, blueVogon);

var o:Object;
for (var i:Number=0; i<objects.length; i++) {

o = objects[i];
o.readPoem();

}

27

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 27

The first three statements of this code define a different “poem” for each of the three objects that we
have on stage. Remember that two of those objects are instances of the Vogon component, blueVogon
and redVogon, while the third one, greenVogoness, is an instance of the Vogoness component.

The fourth statement creates an array that contains the three objects.

The following lines iterate through the newly created array to invoke the readPoem method of each
object for a total of three calls, since there are three objects in the array.

If you now test the Flash movie, you will notice that the Output window shows the two poems associ-
ated with the blueVogon and redVogon objects:

The best way to get a drink out of blueVogon is to stick your finger
down his throat.

redVogon is not above corruption in the same way that the sea is not
above the clouds.

On the other hand, the third “poem,” associated with the greenVogoness object, appears in the Flash
movie itself, underneath its shape, as shown in Figure 1-3.

Figure 1-3. Each component instance “reads” its own poem in its own way.

28

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 28

To understand what has happened, you need to realize that the Object class plays a vital part in this
example.

The Object class is at the root of the ActionScript class hierarchy; every other class in ActionScript
belongs to an inheritance chain that has the Object class at its root.

Basically, every ActionScript class is a subclass of the Object class; you do not need to use the extends
statement to explicitly declare it.

As a result of this, the Vogon and Vogoness classes inherit from the Object class as well.

It is then legal to assign both Vogon and Vogoness objects to a variable of the class Object, as we do
in our example in the following line:

o = objects[i];

Actually, the whole example would have worked without the o variable by directly accessing the
method, as in

objects[i].readPoem()

The example was made a couple of lines longer to explicitly illustrate the key role played by the
Object class. In fact, ActionScript implicitly considers objects[i] as an instance of the Object class at
compilation time. It is only at runtime that objects[i] will be an instance of the Vogoness class or of
the Vogon class, depending on the value of i.

The “magic” of polymorphism is that the Flash engine checks the actual class of an object at runtime
and calls the method’s implementation provided by that class.

In our example, what really happens is this:

i=0 => objects[i] is a Vogoness => Vogoness implementation of readPoem
i=1 => objects[i] is a Vogon => Vogon implementation of readPoem
i=2 => objects[i] is a Vogon => Vogon implementation of readPoem

Like most subtle OOP concepts, polymorphism initially seems like a way of complicating things unnec-
essarily. It is only with experience that we start appreciating its power and benefits and, consequently,
how to use it properly.

A method’s signature
In order to work, polymorphism requires that the method implementations that will be invoked share
the same “signature.”

The signature of a method can be found in the function declaration of the method and includes

The method’s name

The method’s number of parameters

The types of each of the method’s parameters

The type of the value returned by the method

29

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 29

The readPoem had a short signature, which was the same for both the Vogon and the Vogoness classes:

public function readPoem():Void {

A longer signature may have included two parameters, the first of type String and the second of type
Number, and return a value of type Object. So, for example, if the Vogon class would have defined a
readPoem method with a signature as follows:

public function readPoem2(param1:String, param2:Number):Object {

then in order to implement polymorphism, the signature of the readPoem method implemented in the
Vogoness class should have been something like

public function readPoem(p1:String, p2:Number):Object {

This is the same signature because the names of the parameters are not influential, but the following
two signatures are different:

public function readPoem(p1:String):Object {
public function readPoem(p1:Number, p2:String):Object {

The first is different because of the number of parameters (one instead of two); the second, because
of the order of the parameters’ types (Number and then String instead of String and then Number).

Appreciating the benefits of polymorphism
Polymorphism makes our applications highly scalable. Scalability is the quality of software to grace-
fully manage an increased number of objects or even objects of newly created types.

A concrete example of scalability can be found in some of the code presented earlier. Compare the
case of invoking the readPoem method sequentially by using the object instance names:

// sequential approach
greenVogoness.readPoem();
blueVogon.readPoem();
redVogon.readPoem();

to the code required by the iterative approach:

// iterative approach
var o:Object;
for (var i:Number=0; i<objects.length; i++) {

o = objects[i];
o.readPoem();

}

The iterative approach may well look overly complicated if we are dealing with three objects, but
imagine if you had to modify your application to handle a hundred objects.

30

CHAPTER 1

5939CH01.qxd 1/25/06 12:29 PM Page 30

The sequential approach would require one hundred lines of code, while the iterative approach would
require not only the same number of lines, but would also work without requiring any modification!
In fact, the code of the iterative approach would also work with a thousand objects or more without
undergoing any change!

Also, the iterative approach can even manage objects of any newly created class as long as the invoked
methods have the same signature!

That’s why a method’s signature is sometimes referred as a “contract” established when designing and
implementing an application.

By respecting such a contract, the objects of new classes created at a later stage will be processed by
the existing application seamlessly.

Summary
In this chapter, you have learned

What a Flash component is

How the most essential principles of OOP influence the design and implementation of
components

How to create Flash components

How to integrate a component in the authoring environment

The next step is to examine the core classes of the component architecture and learn how to use them
to create Flash components that belong to this architecture.

31

OOP IN COMPONENT DESIGN

5939CH01.qxd 1/25/06 12:29 PM Page 31

74c27830997b0236f48fc25d2b37ea47

5939CH02.qxd 1/25/06 10:25 AM Page 32

33

Chapter 2

A design is perfect when there is nothing left to take away.
Zen proverb

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 33

In the previous chapter, you created a couple of components (Vogon and Vogoness) using all of the
basic object-oriented features that a Flash component can have.

You also discovered the convenience of encapsulating functionality into a specific class (Colorable) to
make it reusable by different components.

It is now time for you to gain an understanding of what the component architecture is, how it works,
and the value that it can bring to your applications.

The component architecture is much more than a collection of components. In addition to providing
a powerful set of components, the component architecture features patterns that capture proven,
effective software design.

The main purpose of the architecture is to define general system rules that can be applied to every
component, thereby producing more robust applications and speeding development. Furthermore,
you will find in the architecture numerous reusable assets that can be used in conjunction with the
components.

However, the best assets of an architecture are abstract, and you must become familiar with them in
order to exploit their benefits. The assets of the component architecture can be roughly classified into
three categories:

1. The components

2. The component framework

3. The application framework

While components themselves represent a concrete, visible asset, the other two categories define
abstract functionality that plays a very important role in the development of a component-based
application.

As suggested by its name, a component framework is not a complete component, but only a skele-
ton that captures all the basic features that a component should have. Among those features are also
communication mechanisms that define how components interact among each other.

All of the components provided within the Flash component architecture are based upon the same
component framework. By learning to recognize the component framework when you come across it,
you will be able to learn to use different components much faster because they will likely have func-
tionality in common with components you already know.

Like the component framework, the application framework is an incomplete application embedded
with established design patterns and plenty of basic behaviors.

When developing a complete application, you just specialize some of those behaviors to fulfill your
requirements while reusing the rest of them as they are!

34

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 34

The component architecture takes advantage of the inheritance mechanism to implement its compo-
nent framework, as depicted in Figure 2-1. Basically, the architecture defines a few classes that pro-
gressively capture all the functionality of the component framework.

Figure 2-1. The component framework

Figure 2-1 emphasizes three aspects:

1. The hierarchical relationship: The ScrollView class extends the View class, which in turn
extends the UIComponent class, which in turn extends the UIObject class.

2. The functional containment relationship: The ScrollView class contains the functionality of
all the other classes, and so on.

3. The complexity relationship: The ScrollView class is the “bigger” class in terms of function-
ality, and so on.

Not every component inherits from the ScrollView class, as you see in Figure 2-2.

Figure 2-2. Inheritance examples

35

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 35

Figure 2-2 shows four components, each inheriting from a different class of the component frame-
work. The Label component, for example, does not inherit from the ScrollView component because it
doesn’t need to scroll its contents.

Note that the fact that UIObject is a much simpler class than the ScrollView class doesn’t necessarily
imply that components based upon the UIObject class are simpler than components based upon the
ScrollView class, even if that is most likely to be the case.

Later on in the book, you will find out that the component framework includes other classes in addi-
tion to those already listed here (UIObject, UIComponent, View, and ScrollView). In this chapter, how-
ever, we focus on these four classes because they are the most essential ones. They can be quite
appropriately referred to as “core classes” since they have been included in a package with that name
(core).

The UIObject class is the root of the component architecture. The information about each core class
included in the rest of this chapter will help you to do the following:

Make the right choice about which core class to pick as the base class whenever you create a
component from scratch.

Understand the influence of the core classes on the components already included in the archi-
tecture.

We will now proceed to examining the functionality implemented by each of the core classes starting
from the simplest and most essential one, which is the root of the component architecture: UIObject.

The legacy of the UIObject class
You may find it useful to look at the source code of the UIObject class while reading this section. (See
Appendix A to find the source code of the component architecture on your computer.)

The UIObject class is implemented as a subclass of MovieClip. In fact, the first line of its class decla-
ration is

class mx.core.UIObject extends MovieClip {

mx.core.UIObject is the fully qualified name of the UIObject class and, as such, includes its package
information. In the case of the UIObject class, the package information indicates that the class file can
be found in the core folder, which is a subfolder of the mx folder. Fully qualified names are frequently
used in the component architecture in order to reduce the chances of name collisions and to group
the classes by functional similarity.

After reading the previous chapter, you should not be too surprised to find out that the base class of
the UIObject class is MovieClip. We already saw that the MovieClip class is an ActionScript built-in

The completed source code introduced in this chapter can be found in the package
src02.zip, downloadable from this book’s page on www.friendsofed.com.

36

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 36

class that encapsulates all of the attributes and functions of a movie clip. A component instance is
essentially a movie clip associated with an ActionScript class; by defining the UIObject class as a
subclass of the MovieClip class, the architecture propagates the MovieClip features to all of its com-
ponents.

The UIObject class implements one of the most important features of the component framework: the
functionality to create component instances dynamically.

Creating a component instance dynamically
In the examples of the previous chapter, we statically included component instances in the Flash doc-
ument by dragging the component’s symbol from the library to the stage.

In many cases, it can be convenient to create component instances via ActionScript. Using ActionScript
to create component instances dynamically allows us to determine the number of instances to be
created at runtime in response to user input or as a result of the information provided by other
sources such as databases.

Another advantage of creating component instances dynamically is that such components can be
removed after they have completed their function, allowing us to optimize both the performance and
the memory requested by the Flash application.

Such components will not be visible on the Flash document’s stage because they do not exist until
the movie runs. When creating components dynamically, the component definition must include a
linkage identifier that can be referred to at runtime to create instances of that specific component.

If you right-click the example components in the Library panel and choose the Linkage... option, you
will find that these components already have a linkage identifier that is the same as the symbol’s
name: Vogon Component and Vogoness Component, respectively. The authoring environment automat-
ically defines the linkage identifier as the symbol name when creating a new component. However,
you are free to change it and use whatever naming convention you like when developing your own
components.

If you are indeed creating a new component, you must override some properties defined by the
UIObject class to enable functionality, such as making it dynamically creatable.

You may be thinking, Wait a second. Why should I do something? Didn’t the UIObject class implement
such functionality already?

The definition I gave earlier of what a component framework is provides the answer to this question.
Ultimately, a component framework is an incomplete component that you can complete in two dif-
ferent ways:

1. Adding further functionality to it in the form of new properties and/or new methods

2. Modifying the behavior predefined by the framework by overriding some properties or meth-
ods (i.e., by providing a new implementation of those properties or methods)

The next sections will show you which features of the UIObject class you must override when creating
a new component, thus explaining the role of each feature in the component framework.

37

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 37

Overriding the symbolName property
The UIObject class defines a symbolName property (implemented as a static variable) that is used dur-
ing the process of creating component instances dynamically.

This property must store the String value of the linkage identifier as we defined it earlier.

The UIObject class defines this property as

static var symbolName:String = "UIObject";

The component framework will not be able to create instances of our components unless we override
this property with the proper linkage identifiers, which is why the Vogon class must override this prop-
erty as follows:

static var symbolName:String = "Vogon Component";

Similarly, the Vogoness class will override this property by providing its own linkage identifier, as in

static var symbolName:String = "Vogoness Component";

Overriding the symbolOwner property
The UIObject class defines a second static property that affects the process of creating component
instances dynamically: symbolOwner.

This property stores an Object value that is the fully qualified name of component’s class. In the case
of our two components, the fully qualified names of both classes coincide with their short names
because we did not implement any package information.

The UIObject class defines this property as

static var symbolOwner:Object = UIObject;

Once again, the component framework will not be able to create instances of our components unless
we override this property with the proper class definitions, which is why the Vogon class must override
this property as follows:

static var symbolOwner:Object = Vogon;

Similarly, the Vogoness class will override this property by providing its own linkage identifier, as in

static var symbolOwner:Object = Vogoness;

Overriding the className property
Before looking at how to create components dynamically, we must pay attention to a third property,
introduced by the UIObject class, which should be redefined when creating new component’s class.
The name of this third property is className.

This property does not influence the dynamic creation process; however, it is a best practice to assign
it a proper value to make the new component class ready to be used by the component architecture.

38

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 38

Much later in the book, you will find out that this property plays a key role in the style functionality
implemented by the architecture.

The className property stores a String value that uniquely identifies the component class. Usually
such a value is the name of the component’s class itself.

The UIObject class defines this property without assigning any value to it:

var className:String;

Our two components will define the className property, assigning to it the following values respec-
tively:

var className:String = "Vogon";

and

var className:String = "Vogoness";

Now that you have learned about the three properties that must be overridden when creating a new
component class, we can move on and examine the method provided by the UIObject class that
allows us to create component instances dynamically.

The createClassObject method
The createClassObject is a method defined in the UIObject class to allow the dynamic creation of
components that belong to the component architecture.

newComponentInstance =
➥ anExistingUIObject.createClassObject(
➥ className, instanceName, depth, initObject);

The method expects four parameters:

1. className: An object indicating the class of the component instance being created

2. instanceName: A string indicating the name of the component instance being created

3. depth: A number indicating at what depth the component instance must be created

4. initObject: An object providing values to initialize some of the properties of the component
instance being created

The method returns a reference to the newly created component instance.

The createClassObject method uses both the symbolName and symbolOwner properties of the com-
ponent being created; therefore such properties must be properly overridden in the component’s
class, otherwise the method will fail and the component instance will not be created.

In order to create instances of the Vogon and Vogoness components dynamically, we are going to
extend their classes by integrating them with the component architecture.

39

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 39

Our components join the architecture
The components created earlier, although Flash components, do not belong to the component archi-
tecture since they do not inherit from the UIObject class and, therefore, they do not support nor
benefit from the component framework.

The following example will show you the basic steps for integrating Flash components in the compo-
nent architecture:

1. Copy the files vogon8.fla, Vogon.as, Vogoness.as, Colorable.as, and test.as from the last
version of our components into a new folder.

2. Rename vogon8.fla as vogon9.fla to keep track of the new version of our main Flash
document.

The createClassObject method comes with the apparent contradiction that you need a static
instance of a component in order to create a dynamic one. In fact, we need only one static instance of
a UIObject-based component on stage to be able to create any number of component instances
dynamically.

By making this single static instance act as a container of the dynamic instances being created, we will
also enjoy the benefits of good practice: encapsulating our newly created components into a con-
tainer object. Let us create such a container component in a very quick and simple way:

3. While in the vogon9.fla document, create a new empty symbol (Insert ➤ New Symbol) of the
movie clip kind.

4. Define the new symbol name as VContainer and its AS 2.0 class as mx.core.UIObject.
Remember that the AS2.0 field must be defined in both the Linkage... and Component
Definition... dialog boxes in order to associate the symbol with the class and create a
component.

We pulled quite a stunt in the last step. Instead of creating a new class for our new component, we
used the UIObject class straight away, avoiding creating a new class for our container just to access
the createClassObject.

5. Close the edit window of the VContainer symbol, if open, by selecting the main stage of the
document.

6. Drag the VContainer symbol from the Library panel onto the stage and define the instance
name of the newly created instance as container. Also, position this instance at the x:200.0,
y:200.0 location by using the Info panel.

7. Apart from the newly created instance, there are already three other instances on the stage,
created in the previous examples (blueVogon, redVogon, and greenVogoness). Delete all of
them: the purpose of this example is to create them dynamically via ActionScript.

We have prepared the stage for creating as many dynamic instances as we wish by using a static
instance of the VContainer class named as container.

Our intent is to reproduce the functionality of the last example in the previous chapter without hav-
ing any Vogon or Vogoness component instances on stage—we will create them dynamically instead.

40

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 40

You have learned previously in this chapter that our component classes must inherit from one of the
core classes of the architecture and override certain properties in order to be able to use the func-
tionality provided by the architecture, so let us modify the Vogon and Vogoness classes to integrate
both of our components in the architecture.

The chain of inheritance that we defined before will make our work even easier. The following hierar-
chy shows the inheritance relationships among the classes at the moment:

MovieClip -> Colorable -> Vogon -> Vogoness

Making the Colorable class a subclass of the UIObject class will do most of the porting! Note also that
the UIObject class is a subclass of the MovieClip class, therefore the new hierarchy will be fully com-
patible with the previous implementation that used some features of the MovieClip class. The new
hierarchy will be

MovieClip -> UIObject -> Colorable -> Vogon -> Vogoness

8. Open the Colorable.as class file and replace its code with the following:

import mx.core.UIObject;

class Colorable extends UIObject {

public function Colorable() {}

public function get myColor():Number {
var objColor:Color = new Color(this);
return objColor.getRGB();

}

[Inspectable(name="My Color", type="Color",
➥ defaultValue="#00FF00")]

public function set myColor(aColor:Number):Void {
var objColor:Color = new Color(this);
objColor.setRGB(aColor);

}

}

We are almost there. We just need to override the UIObject properties previously introduced in both
the Vogon and Vogoness classes:

9. Open the Vogoness.as file and implement the three properties symbolName, symbolOwner, and
className, as shown in the following:

class Vogoness extends Vogon {

private var txtPoetry:TextField;

static var symbolName:String = "Vogoness Component";
static var symbolOwner:Object = Vogoness;

41

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 41

var className:String = "Vogoness";

public function Vogoness() {}

public function readPoem():Void {
createTextField("txtPoetry", getNextHighestDepth(),

➥ 0, 100, 250, 100);
txtPoetry.multiline = true;
txtPoetry.wordWrap = true;
txtPoetry.text = this.myPoem;
var tf:TextFormat = new TextFormat();
tf.align = "right";
txtPoetry.setTextFormat(tf);

}

}

The className property is not required by the createClassObject method, but we are implementing
it for the sake of completeness.

10. Similarly to the previous step, you must now implement the three properties for the Vogon
class by adding the following code to the Vogon.as file:

static var symbolName:String = "Vogon Component";
static var symbolOwner:Object = Vogon;
var className:String = "Vogon";

The values assigned to such variables have been redefined to specify the Vogon component.

We did it! We implemented the minimal requirements needed to port both of our components into
the component architecture, and we can now start creating their instances dynamically.

11. Open the test.as file and add the following three lines at the very top of the file, while the
rest of the file remains unchanged:

var blueVogon = container.createClassObject(Vogon,
➥ "blueVogon", 1, {_x:0, _y:0, myColor:0x0000ff});
var redVogon = container.createClassObject(Vogon,
➥ "redVogon", 2, {_x:150, _y:0, myColor:0xff0000});
var greenVogoness = container.createClassObject(Vogoness,
➥ "greenVogoness", 3, {_x:300, _y:0});

That’s all we need to create our components dynamically. Now all that remains is to test our new
code. When testing the movie of this example, you should not notice any difference with the outcome
of the previous example (see Figure 2-3).

42

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 42

Figure 2-3. Instances are created dynamically now.

There will still be three shapes in the SWF window. As in the previous example, two of them are
instances of the Vogon component, while the third one is an instance of the Vogoness com-
ponent.

Inheritance and polymorphism will still be working as demonstrated by the presence of
the poems (two in the Output window, a third one in the SWF window, just underneath the
instance of the Vogoness component).

But this time the three component instances are not present on the stage of the Flash document.
Instead, they have been created dynamically using ActionScript, but they are still perfectly compatible
with any static counterparts created at design time.

It is also worth noting that the myColor property, implemented by our Colorable class, is now set at
runtime by including its value in the initialization object passed to the createClassObject method.

As well as for myColor, we can define programmatically the position of the component instances at
creation time by setting the _x and _y properties inherited from the MovieClip class. And, by using
the same initialization object, we could define additional properties of the instances. This greatly
empowers the developer and requires very little coding effort thanks to the many layers of logic
already implemented by the component architecture.

As shown by this latest example, your knowledge of the architecture must not be limited to the meth-
ods and properties that are available, but must also include the features of the architecture that you
should override to adapt their behavior to the requirements of the application, or component, that
you are developing.

The features that you can override to exploit the architecture’s functionality are not only properties,
as in the case we already saw, but also methods.

To override a method means that you provide your own implementation of the function associated
with it. It is time to learn why you may need to do so.

43

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 43

Inside the process of building a component instance
Essentially, every method in the component architecture falls into one of three kinds:

1. A concrete method implementing a fundamental feature of the architecture that, most proba-
bly, you will never need to override (like createClassObject, which allows you to create com-
ponent instances dynamically).

2. A concrete method that provides a basic implementation of a certain functionality that you
may wish to override to adapt it to your requirements (like the size method that we are going
to examine in a short while).

3. A placeholder method with an empty implementation that is invoked by some algorithm that
exploits polymorphism. You usually end up overriding this kind of method on a per-need basis
in order to influence some functionality provided by the component framework, as in the case
of the init method that we are going to examine next.

Whether to override a method or not is a matter of judgment and always depends on the require-
ments that you have at hand.

This book will help you by providing the knowledge of what methods you may need to override, start-
ing with those involved during the process of building a new component instance.

The UIObject class defines the process of building a component instance. For the sake of simplicity,
such a process can be summarized in three fundamental steps:

1. Initialize the component specific attributes.

2. Create the component’s children.

3. Draw the component instance.

While this sequence is the same for every component, components must provide an implementation
of each step whenever it is necessary.

By examining each step in greater detail, we will find certain methods that we may need to override
when implementing a new component or modifying the behavior of an existing one to fulfill our
requirements.

Step 1: Initialization
The first step in the process of building a new component instance executes the init method.

The following example shows the basic template for implementing such a method:

function init():Void {
➥ super.init();

// whatever...
}

The example indicates that the implementation of the init method is usually divided into two parts:

1. Invocation of the base class method to initialize the inherited features

2. Further code to initialize component-specific features

44

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 44

It is a good practice, when creating a new component, to implement the init method, even when
there are no component-specific features to be initialized.

We can now move our attention to the second step of the process of building a component instance:
creating its children.

Step 2: Creating the children
The process of dynamic creation can work in a cascade when a component is made of subcompo-
nents: in this case, in fact, each subcomponent must be created dynamically as well. Complex com-
ponents are made of various subcomponents that, in turn, can be components as well. The term
“children” generally indicates subcomponents that are components and subcomponents that are just
movie clips created dynamically via the linkage identifier associated with their symbols.

Simple components usually don’t have any subcomponents. However, if a component does have sub-
components, they should be created dynamically by overriding the createChildren method:

function createChildren(Void):Void {
// create the component's children here

}

The framework of the component architecture invokes the createdChildren method after the init
method, therefore creating the children whenever needed.

After initializing a component instance and creating its children (if any), only one more step remains
before the process of building a component instance is complete: drawing the instance.

Step 3: Drawing the component instance
Quite naturally, the UIObject class assigns the responsibility of drawing a component instance to the
following method:

function draw(Void):Void {
}

The UIObject class does not provide a default implementation for this method and, therefore, it is up
to the component developer to provide one whenever needed.

The UIObject class provides a default implementation of the size method that is invoked when the
size of a component instance is changed via setSize. However, the default implementation of the
size method simply resizes the movie clip of the component instance by changing its width and
height:

function size(Void):Void {
width = __width;

_height = __height;
}

45

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 45

If you are implementing a new component that has a particular layout including various subobjects,
you may well like to take control over the following:

How the layout is defined initially, by implementing the draw method

How the layout will look after resizing, by implementing the size method

Note that this information is quite relevant even if you are not developing new components but just
interested in using existing ones. In fact, each of the components provided with the component archi-
tecture implements its own draw method, and most of them override the size method as well.

When examining how those methods are implemented by the existing components, you should also
be aware of another important aspect of the drawing process: invalidation. Invalidation suggests
that the draw method should never be invoked directly when a component view must be refreshed.
Instead of calling the draw method, the framework code, and your own code, should call the
invalidate method.

The invalidate method annotates that the component view is no longer updated (valid) and, there-
fore, it must be refreshed.

As you may know, the Flash rendering system updates a movie only once per frame. Because of that,
multiple calls to the draw method within the same frame would be ineffective. Furthermore, a large
number of such calls may well affect the performance severely, causing flickering or even delays.

By using the invalidation approach, the architecture is able to redraw the invalidated component
instances only once per frame, optimizing the performance and avoiding redundant calls!

Refining our sample components
Earlier in this chapter we ported both of our components (Vogon and Vogoness) into the component
architecture by defining the Colorable class as a subclass of UIObject. This move created the follow-
ing inheritance chain:

UIObject -> Colorable -> Vogon -> Vogoness

Inheritance has ensured that both of our components now belong to the architecture and share the
features made available by the component framework.

You have now learned a lot about working with components and should understand that inheritance
alone is not a measure of how well a component is integrated within the architecture. By refining the
implementation of our components to raise their level of integration within the architecture, we will
see how applying the previous guidelines produces more robust code that is easier to maintain.

We will do this like so:

1. Copy the files vogon9.fla, Vogon.as, Vogoness.as, Colorable.as, and test.as from the last
version of our components into a new folder.

2. Rename vogon9.fla as vogon10.fla to keep track of the new version of our main Flash
document.

46

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 46

We are not going to change the behavior of our components. In fact, we want to keep the same
behavior while raising the integration level of both components by applying what you have just
learned. This objective will involve changes to the existing implementations of the Vogon and Vogoness
classes.

3. Open the Vogon.as file and replace the existing code with the following:

import mx.events.UIEventDispatcher;

class Vogon extends Colorable {

private var pBuffer:String;

static var symbolName:String = "Vogon Component";
static var symbolOwner:Object = Vogon;
var className:String = "Vogon";

function Vogon() {
UIEventDispatcher.initialize(this);

}

public function dispatchEvent(eventObject:Object) {};
public function addEventListener(event:String,

➥ listener:Object) {};
public function removeEventListener(event:String,

➥ listener:Object) {};

function init(Void):Void{
super.init();
pBuffer = "<No poem defined>";

}

function draw(Void):Void {
trace(myPoem);

}

public function get myPoem():String {
return pBuffer;

}

public function set myPoem(aPoem:String):Void {
pBuffer = aPoem;
var eventObject:Object = {target:this, type:'onNewPoem'};
eventObject.poetry = pBuffer;
dispatchEvent(eventObject);

}

47

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 47

public function onNewPoem(eventObject:Object):Void {
trace("I am " + this. _name);
trace("and I just received a new poem from " +

➥ eventObject.target. _name);
trace('"' + eventObject.poetry + '"');

}
}

4. Open the Vogoness.as file and replace the existing code with the following:

class Vogoness extends Vogon {

private var txtPoetry:TextField;

static var symbolName:String = "Vogoness Component";
static var symbolOwner:Object = Vogoness;
var className:String = "Vogoness";

public function Vogoness() {}

function init(Void):Void{
super.init();

}

function createChildren(Void):Void {
createTextField("txtPoetry", getNextHighestDepth(),

➥ 0, 100, 250, 100);
txtPoetry.multiline = true;
txtPoetry.wordWrap = true;
var tf:TextFormat = new TextFormat();
tf.align = "right";
txtPoetry.setTextFormat(tf);

}

function draw(Void):Void {
txtPoetry.text = this.myPoem;

}

}

5. Open the test.as file and remove all the lines after the definition of the myPoem properties.
The final code should look like this:

var blueVogon = container.createClassObject(Vogon,
➥ "blueVogon", 1, {_x:0, _y:0, myColor:0x0000ff});
var redVogon = container.createClassObject(Vogon,
➥ "redVogon", 2, {_x:150, _y:0, myColor:0xff0000});
var greenVogoness = container.createClassObject(Vogoness,
➥ "greenVogoness", 3, {_x:300, _y:0});

48

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 48

greenVogoness.myPoem = "Uglier things than my husband have been
spotted, but not by reliable witnesses.";
redVogon.myPoem = "The best way to get a drink out
➥ of blueVogon is to stick your finger down his throat.";
blueVogon.myPoem = "redVogon is not above corruption in the same way
➥ that the sea is not above the clouds.";

If you save the three modified ActionScript files and test the movie, you will notice no differences
from the previous behavior, regardless of the fact that we have stripped away a lot of code from the
test.as file.

You may find it quite surprising that the poems are still displayed in the Output window and in
the movie itself as they were before, since the code removed from the test.as file was invoking the
readPoem methods.

The explanation, of course, is in the code that we added to our component classes. Both the Vogon
and Vogoness classes do not provide a readPoem method anymore. To display a poem was an intended
visual behavior of the corresponding components and, therefore, that behavior has been encapsu-
lated into their draw methods:

// the Vogon way of reading a poem
function draw(Void):Void {

trace(myPoem);
}

// the Vogoness way of reading a poem
function draw(Void):Void {

txtPoetry.text = this.myPoem;
}

In our case, the integration step of implementing a draw method shows quite clearly what a time-saver
the component framework can be.

In fact, the draw method is invoked by the framework itself because each component instance is inval-
idated when created. That is the reason why we do not need those lines of code in the test.as file
anymore (nor the readPoem method for that matter). Basically, it would be correct to say that the old
readPoem methods have been replaced by the new draw methods.

You may have also noticed that the draw method of the Vogoness class contains far less code than its
old readPoem method:

// the Vogoness readPoem method as it was
public function readPoem():Void {

createTextField("txtPoetry", getNextHighestDepth(),
➥ 0, 100, 250, 100);

txtPoetry.multiline = true;
txtPoetry.wordWrap = true;
txtPoetry.text = this.myPoem;
var tf:TextFormat = new TextFormat();
tf.align = "right";

49

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 49

txtPoetry.setTextFormat(tf);
}

// the Vogoness draw method as it is
function draw(Void):Void {

txtPoetry.text = this.myPoem;
}

In fact, the draw method contains only one of the lines that were present in the readPoem method: the
line displaying the poem in the TextField instance in the movie. So what happened to the rest of
the code that was needed to create that TextField and to define its text formatting styles?

That missing code is still somewhere inside the Vogoness class implementation; it has just been moved
into a much better place: the createChildren method. No other method in fact could be better
suited to create the TextField instance. Such an instance is a subobject of the component and, there-
fore, it should be created by the createChildren method as suggested by the component framework.

Note that both the draw method and the createChildren method are never invoked by our code,
but the poems are displayed and the TextField instance is created. This provides good evidence that
both the draw and the createChildren methods are invoked by the component framework at just the
right time.

You should also note that the component framework induces us to write better software—our previ-
ous implementation was rather messy because it did create a TextField instance every time that
readPoem was called. By implementing the createChildren method, the component framework now
creates a single TextField instance for each component instance. Furthermore, the framework cre-
ates the TextField instance at the right time: during the component instance creation, so that it will
be available just after the component instance has been created.

As an additional step in the process of better integrating our components in the framework, we
include an implementation of the init method for each of our classes.

The Vogon implementation of the init method first invokes the init method of its base class and
then initializes its pBuffer variable, implementing the myPoem property.

// the Vogon init method
function init(Void):Void{

super.init();
pBuffer = "<No poem defined>";

}

The Vogoness implementation of the init method only invokes the init method of its base class
(Vogon), and it has been included to follow best practice.

// the Vogoness init method
function init(Void):Void{

super.init();
}

50

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 50

The component framework
The component architecture distributes the basic functionalities made available to new components
in four different classes: UIObject, UIComponent, View, and ScrollView. Those classes are related to
each other as shown in the following chain of inheritance:

UIObject -> UIComponent -> View -> ScrollView

While UIObject encapsulates the features that every component in the architecture must have, the
remaining three classes keep on adding further features that may not be required in a new com-
ponent.

Before examining what features are added from the remaining three core classes (UIComponent, View,
and ScrollView), it is useful to note how many of the components in the existing architecture are
derived directly from each of the four core classes.

With the exclusion of a few, almost all components are derived directly from the UIComponent class.
The exceptions are as follows:

Label and ProgressBar, derived directly from UIObject

Accordion and Loader, derived directly from View

ScrollPane, Window, and TextArea, derived directly from ScrollView

This shows that only the simplest components are derived directly from UIObject and that the fea-
tures added by the UIComponent class are almost as essential as those of its base class, since all the
components in the architecture except two have them.

The UIComponent class
Let’s examine the most relevant features provided by the UIComponent class that make it the usual
choice as a base class when creating a new component.

Accessibility/Keyboard use
Accessibility is a concept born from the increasing number of different devices that can access the
Internet and technologies that can allow people with disabilities to use the Internet.

Accessibility relies on, among other things, the possibility of navigating the interface of a web applica-
tion by using the keyboard only. Of course, apart from accessibility, there may well be other reasons
to require a logic layer that can handle the keyboard input. Providing such functionality is the major
responsibility of the UIComponent class.

The UIComponent class implements keyboard access by managing the keyboard focus. This focus
determines which component instance will receive the information typed in by the user. The
UIComponent class implements focus handling with the help of a manager class: the FocusManager.

51

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 51

A component that you want to benefit from the focus management features should override a couple
of event handlers and a drawing function:

function onSetFocus(oldFocus:Object):Void {
super.onSetFocus(oldFocus);
// your component's specific code goes here

}

function onKillFocus(newFocus:Object):Void {
super.onKillFocus(newFocus);
// your component's specific code goes here

}

function drawFocus(isFocused:Boolean):Void {
// your component's specific code goes here

}

The two event handlers onSetFocus and onKillFocus are invoked whenever a component instance
gets or loses the focus, respectively. Both functions expect a single object parameter that is a refer-
ence to the component instance that lost the focus (oldFocus) or is going to get it (newFocus).

The drawFocus function is invoked whenever a component instance receives or loses the focus, and it
is responsible for visually representing the component’s state. This function should be aware of styles
and themes, as you will further discover later on in this book.

Keyboard management and accessibility are the main reasons why UIComponent is so frequently cho-
sen as the base class of new components: almost every GUI component requires such functionalities.

Other features of the UIComponent
The UIComponent also provides another couple of features:

1. The ability to enable/disable a component instance

2. Independence from the UIObject resizing implementation

The first feature is implemented by the setEnabled method:

// to enable a component instance
aComponentInstance.setEnabled(true);

// to disable a component instance
aComponentInstance.setEnabled(false);

The overriding of the size method with a function that does nothing may look weird at first, but the
point is that the size method defined in the UIObject resizes a component instance by modifying its
scale factor. As a result of this, every subobject within the component will be resized accordingly. This
may not be the proper thing to do in a variety of cases, for example, if the size of certain subobjects
must remain constant even when the component instance is resized.

By overriding the size method with an empty function, the UIComponent class reassigns the responsi-
bility of implementing the size method to its subclasses.

52

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 52

In the end, when your component’s class inherits from UIComponent, you must remember to override
the size method to resize your component instances in accordance with their intended behavior.

The View class
The View class captures some visual aspects of a component that were not considered yet by its base
classes (UIObject and UIComponent).

A component’s class should be based on the View class if it has at least one of the following two
features:

1. A well-defined border, which surrounds the layout of the component instances and usually
emphasizes the visual status of a component instance when it gets or loses the keyboard focus

2. A children-based layout, in which the children are movie clips created to host instances of sym-
bols, subcomponents, or externally loaded content

Basically, if your component does not have a border and its layout does not include any child object,
then you should not consider the View class, instead picking either the UIObject or UIComponent class
as the base class.

If your component has a border that plays an active role in the component’s behavior, then you
should definitely consider inheriting the related skinning and stylizing logic implemented by the View
class. In fact, the View class implements the component’s border as part of component architecture,
enabling the definition of skins and styles for the border itself.

Simply inheriting from the View class is all the programming that is required to provide your compo-
nent with a border that is fully integrated in the component framework. Of course, you will have to
define your border’s skins and styles in a theme or individually using techniques that are common to
all the components—which will be explained in Chapter 9.

Apart from implementing the component’s border logic, the View class is really helpful when dealing
with components that have child objects in their layout.

By now, you should get used to how the architecture provides a fair number of features: it defines the
way things must be done and it implements the most generic aspects of it. It is up to the component
developer to provide the implementation of those features that are component specific. The View
class is no different from the other base classes, and it expects the component developer to provide
the implementation of the doLayout method:

function doLayout(Void):Void {
// your component's specific code goes here

hasBeenLayedOut = true;
}

Your doLayout implementation is supposed to define the position, size, and every other aspect of your
component’s children. Note that when doLayout is eventually called, the component’s children will
already exist, having been created by your implementation of the createChildren method that we
discussed earlier in this chapter.

53

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 53

When implementing the createChildren method, you can use the createChild method provided by
the View class instead of the createClassObject method:

function createChild(className, instanceName:String,
➥ initProps:Object):MovieClip {

The createChild method is a slightly more powerful way of creating subobjects dynamically than the
createClassObject method because it allows you to load an external resource as a child via
the className parameter. In addition to accepting the same values as in the createClassObject, the
className parameter of the createChild method can also be assigned a local path or an URL.

In some cases, you may need to initialize the state of your component before the execution of the
doLayout method. The best way to perform such initialization is by overriding the default implemen-
tation of the initLayout method, provided by the View class, as in the following example:

function initLayout():Void {
// your component's specific code goes here

super.initLayout();
}

The ScrollView class
The ScrollView class adds another layer of logic on top of the View class that turns out to be partic-
ularly useful whenever a component’s content must be scrolled.

Components based upon ScrollView are the most complex ones not only because they include all of
the four levels of logic implemented in the component framework (UIObject, UIComponent, View, and
ScrollView) but also because the last functionality added, scrolling, is by far the most complicated.

To analyze the implementation of the scrolling mechanism goes beyond the scope of this book and
would steal precious time that we could devote to our main objective of learning how to customize
existing components. The architecture provides three components (ScrollPane, TextArea, and Window)
that cover any scrolling requirement you may need to implement; therefore, we don’t need to go into
details of how it is actually implemented.

Of course, such components do have scrollbars that you may wish to customize both in appearance,
with skins and styles, or in the way they scroll (for example, the rate of scroll). See Chapter 21 for a
detailed description of the techniques required to customize this aspect of any component that sup-
ports scrolling.

An ActionScript template for new components
Even though the main focus of this book is on using and customizing the components that are already
built in the architecture, developers of component-based applications could not achieve a high level
of proficiency without being aware of how components are created.

The first two chapters of this book have been dedicated to introducing the most essential concepts of
component design in the scope of the component architecture.

54

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 54

Before moving on, we will define a sort of template, or skeleton, that can be reused to add a new
component to the architecture or, quite simply, to remind us of the key points of the component
framework that we discussed so far.

Create a ComponentSkeleton.as file and add the following code into it:

import mx.events.UIEventDispatcher;
// add one of the following depending on the base class you choose:
// import mx.core.UIObject
// import mx.core.UIComponent
// import mx.core.View
// import mx.core.ScrollView

// 1. redefine both the class name and the filename accordingly
// 2. change inheritance to extend from UIComponent
// or View or ScrollView, as appropriate for the new component
class ComponentSkeleton extends UIObject {

// Redefine assigning the linkage identifier
// of the actual component
static var symbolName:String = "Component Skeleton";
// Redefine assigning the fully qualified class name
// of the component
static var symbolOwner:Object = ComponentSkeleton;
// Redefine assigning the name of the actual component
var className:String = "Component Skeleton";

// CONSTRUCTOR - Rename it accordingly
function ComponentSkeleton() {

mx.events.UIEventDispatcher.initialize(this);
}

// Required if you need to implement custom events
// triggered by your component
public function dispatchEvent(eventObject:Object) {};
public function addEventListener(event:String, listener:Object) {};
public function removeEventListener(event:String,

➥ listener:Object){};

// get-set functions of a generic property to modify and reuse
public function get genericProperty():Number {

// retrieve the property value here
// and return it
return 1;

}
[Inspectable(name="Generic Property", type="Number",

➥ defaultValue="0")]
public function set genericProperty(aValue:Number):Void {

// store the property value here
}

55

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 55

function init(Void):Void{
super.init();
// add your component instance initialization code here

}

function createChildren(Void):Void {
// add the code to create your component children here

}

function draw(Void):Void {
// add your component's drawing code here

}

// ***
// if you inherit from UIObject you can remove the following
// ***

function onSetFocus(oldFocus:Object):Void {
super.onSetFocus(oldFocus);
// add the code to be executed when the component
// receive the focus

}

function onKillFocus(newFocus:Object):Void {
super.onKillFocus(newFocus);
// add the code to be executed when the component
// loses the focus

}

function drawFocus(isFocused:Boolean):Void {
// add the code to draw the current status of the component

}

function size():Void {
// add the code to handle resizing without scaling

}

// ***
// if you inherit from UIComponent you can remove the following
// ***

function initLayout():Void {
// add initialization code to be executed before doLayout()
super.initLayout();

}

56

CHAPTER 2

5939CH02.qxd 1/25/06 10:25 AM Page 56

function doLayout(Void):Void {
// draw the component layout, including its children
hasBeenLayedOut = true;

}

}

The component skeleton has been thoroughly commented, so you can follow along with the code
easily and delete what isn’t needed for any particular instance of component creation. The process for
using the skeleton is outlined here:

1. Rename the file with the actual class name of your component.

2. Remove the comment from the import related to the base class chosen for your component.

3. Redefine the class name and its related variables accordingly.

4. Rename the constructor accordingly.

5. Reuse and customize the genericProperty for each new property needed (most likely you will
also need to add variables to store/retrieve the properties’ values).

6. Add the initialization code to the init method, if needed.

7. Add the children creation code, if any, to the createChildren method.

8. Implement the draw method, if necessary.

9. If your class inherits from UIObject, you can strip away everything else after the draw method.
Otherwise, implement the methods inherited from the UIComponent class accordingly.

10. If your class inherits from UIComponent, you can strip away everything else after the size
method. Otherwise, implement the methods inherited from the View class accordingly.

The Vogon and Vogoness components we created in Chapter 1 show perfect examples of how to use
the component skeleton.

Summary
In this chapter, you have completed your knowledge of creating a Flash component by learning how
to integrate it with the framework provided by the component architecture.

You should have started to appreciate how much time you can save by inheriting features that are
already implemented or, at least, already well defined in the framework. Those features are made
available by a number of core components that can be used as base classes whenever creating a new
component.

The next chapter will introduce the components that are included in the architecture, grouping them
into functional categories.

57

CORE CLASSES AND COMPONENT DESIGN

5939CH02.qxd 1/25/06 10:25 AM Page 57

5939CH03.qxd 1/25/06 10:39 AM Page 58

59

Chapter 3

Future Perfect: A term which has been abandoned
since it was discovered not to be.

Douglas Adams

If the only tool you have is a hammer,
you treat everything like a nail.

Abraham Maslow

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 59

Component frameworks usually encompass thousands of lines of code, numerous classes grouped in
packages (or subsystems), various patterns, and many concepts. The Flash Component Architecture is
no exception, and its size is the main obstacle in learning how to use it proficiently in a reasonable
amount of time.

But the sheer magnitude of a component framework is not the only complication that developers
have to face when attempting to reuse its code. Any software can be expected to have a certain num-
ber of bugs, and large developments such as component architectures are often plagued with a high
number of quirks.

The component architecture again is no exception, but it is still a powerful tool for developing web
applications, even if it is far from being perfect. Knowing its limits without having to discover them at
the expense of lengthy trials is a definite advantage, and that’s (in part) what this book is here to help
you with!

In the last chapter, I briefly touched upon the component framework defined by the architecture and
then integrated some sample components into it. Now we are going to examine the rich collection of
components provided with the built-in component architecture, based on that same component
framework; this chapter will also group the components by functional similarity, and you will begin to
learn how to use them.

I will also introduce you to the concept of Reusability Cards, an abstract mechanism that represents a
simple way of capturing the strengths and weaknesses of each feature in the component framework.
By looking at the Reusability Card of a component (or a class) of the framework, you can quickly grasp
how reusable that feature is, allowing you to plan how to use it most effectively.

The Reusability Card
Although both activities are frequently compared metaphorically, playing with software components is
not exactly the same thing as playing with Lego blocks.

Lego blocks and component instances share a couple of significant similarities: both of them
are designed with a limited number of “connecting points” (the connecting point of a compo-
nent being its properties, methods, and events).

In both cases, their instances are put together to build a more complex object: an application
in the case of components.

However, to assemble component instances is rarely as simple as fitting together Lego blocks. The
Lego blocks, in fact, have perfect interfaces that merge into each other seamlessly with no internal
behavior. Ideally, software components would be as reliable as Lego blocks but, unfortunately, their
essence is far more complex and less stable; due to its much simpler nature, a Lego block is far more
reusable than a software component.

The completed source code introduced in this chapter can be found in the package
src03.zip, downloadable from this book’s page at www.friendsofed.com.

60

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 60

The goal of the Reusability Card is to capture a number of aspects that immediately communicate to
the developer how reusable a component is.

In order to become an effective tool, the Reusability
Card includes criteria common to all software com-
ponents that clearly address what makes them
reusable or not. As you can see in the example
shown in Figure 3-1, the main criteria are as follows:

Frequency (of use)

Complexity

Stability

Maturity

Popularity

The following sections explain the meaning of each
of these criteria and the values that they can have in
the approach described in this book.

Frequency (of use)
Frequency of use is the most intuitive among the criteria listed in the Reusability Card, and it is the
place to start for developers who are deciding what to learn first.

It is a quantitative criterion that indicates how frequently a certain feature appears in applications
based on the component architecture. Frequency is graded at three different levels:

Essential: Indicates a feature that is arguably used by every component-based application

Common: Indicates a feature that is used by the majority of the applications based on the
component architecture

Rare: Indicates a feature that is occasionally used by a component-based application

The main reason for the presence of this criterion is that, by looking at it, developers can better dis-
tribute their time when learning the component framework; it makes sense to start with the features
that are essential first and then to move on to the less common ones, leaving the study of the rare
ones to the end or when they are actually needed.

For example, in the Reusability Card associated with the mx.controls.Button class and the related
Button component, you will find that frequency is defined as follows:

Frequency: Common

In fact, buttons are arguably not an essential feature (you can build a component-based application
without using them), but they are frequently found in applications and, therefore, a grade of Rare for
their frequency would have made no sense.

61

EXPLORING THE UI COMPONENTS

Figure 3-1. The Button component,
implemented by the class

mx.controls.Button

5939CH03.qxd 1/25/06 10:39 AM Page 61

Complexity
Complexity of usage is a quantitative criterion that provides an estimate of how much additional
code, or work, must be produced by developers employing a certain feature of the component archi-
tecture.

Complexity is graded with three different levels:

Plug and Play: Indicates a component that does not require any coding. Most likely, it is suffi-
cient to drop an instance of the component on stage to add the component services and func-
tionalities to the application being developed. Unfortunately, this is a rare case.

Simple: Indicates a component that requires a minimal amount of coding. This is the most
common case and usually implies the definition of a few basic properties at runtime and/or the
implementation of an event handler.

Heavy: Indicates a component or class that can require more than a few lines of code due to
the particular nature of its features. This is mainly the case with components participating in a
complex interaction model and/or requiring some complex initialization.

This criterion gives developers an idea of the programming effort required when using a certain com-
ponent or class available in the framework.

For example, in the Reusability Card associated with the mx.controls.Button class and the related
Button component, you will find that complexity is defined as follows:

Complexity: Simple

There isn’t much extra code needed when adding buttons to an application. However, developers must
provide an event handler that will execute a specific action in response to the user clicking the button.

Stability
Stability is a qualitative criterion indicating the tendency of a particular feature to be error prone.
Software programs are error free in our dreams only. Errors are so common that they have given rise
to a specific programming mechanism (error handling) supported by many object-oriented languages,
including ActionScript.

However, some programs are more stable than others: they generate errors less frequently and most
of the time behave as expected.

Per the other criteria, we assess stability using three grades:

Defective: Indicates that the component does not work and cannot be used for its intended
purpose. In this case, developers are left with the choice of waiting for the next version of the
framework or replacing the defective component with their own implementation.

Quirky: Indicates a component that works, but in some cases its behavior can generate errors
or differ from what is expected. The main difference from the defective case is given by the
presence of a workaround that allows using the component proficiently.

Robust: Indicates a component that behaves as expected most of the time, generating errors
in exceptional cases only. The term “robust” was preferred to the idealistic “bug free” because
software cannot really be 100 percent free of errors.

62

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 62

Stability is the most important criterion, and developers should regard it highly enough to completely
avoid using defective features and use the quirky ones only when strictly necessary. Luckily, the com-
ponent architecture is pretty stable even if there are quite a few quirky features; developers will be
able to handle the quirky cases with patches and workarounds found throughout this book.

For example, in the Reusability Card associated with the mx.controls.Button class and the related
Button component, you will find that stability is defined as follows:

Stability: Robust

As you will see later in the book in Chapter 11, the implementation of this component is almost
flawless.

Maturity
Maturity is another quantitative criterion and, although it may be confused with the previous one,
maturity is not the same thing as stability. Maturity refers to the “age” of a certain feature within the
component framework; the fact that a certain feature is old indicates that it was already implemented
in previous versions of the architecture.

A mature feature is usually stable, but not necessarily so, if, for instance, new bugs have been intro-
duced in its latest version. Also, a brand-new feature may have gone through a lot of testing before its
release and, therefore, be stable since its first appearance. However, most of the time software that
has had many versions released is better than “younger” software because its features have had more
time to evolve and stabilize.

Following the same approach chosen for the other criteria, we rate maturity in three grades:

Novelty: A feature is considered a novelty if it appears in the component architecture for the
first time, indicating that it was not present in the previous version of the component frame-
work.

Pre-existing: A pre-existing feature refers to functionality already present in the previous
version of the component architecture.

Classic: When associated with a feature, the grade Classic indicates not only that the feature
existed in the previous version of the component architecture, but also that it was one of its
cornerstones.

Maturity is a significant criterion that offers a quick glimpse into the history of a particular feature in
the component framework while hinting at its chances to survive in future versions of the architec-
ture. For example, in the Reusability Card associated with the mx.controls.Button class and the
related Button component, you will find that maturity is defined as follows:

Maturity: Classic

It’s not really possible to imagine a component-based architecture for user interfaces without includ-
ing a Button component, is it?

63

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 63

Popularity
Popularity is qualitative criterion measuring the diffusion of a certain feature across different com-
ponent architectures.

Although this book focuses solely on the component architecture, developers are probably aware of
the existence of many other object-oriented programming languages (Java, C++, etc.) and of various
component frameworks developed on top of those technologies.

This criterion differentiates among three different degrees of popularity:

Innovation: Due to the evolutionary nature of complex system such as component architec-
tures, very rarely is a feature innovative. However, in our approach, we will mark a feature as
an Innovation if such functionality is uncommon in component frameworks.

Specific: There is a subtle difference between the use of Specific and Innovation to define the
popularity of a certain feature. As in the previous case, Specific indicates that a particular func-
tionality is uncommon but with a difference: the reason for being rare is due to the specific
object model more than to an innovative approach. For example, the movie clip entity is a cor-
nerstone of the Flash object model, but such an object is not found in other object models
because it is specific to this technology.

Widespread: This attribute refers to features that are common among component frameworks
and that can be found in almost any component architecture. A widespread function is basi-
cally a sort of “wheel” reinvented in the scope of a specific architecture, be it ActionScript,
Java, C++, etc.

For example, in the Reusability Card associated with the mx.controls.Button class and the related
Button component, you will find that popularity is defined as follows:

Popularity: Widespread

Even the inexperienced developer will recognize that buttons are a widespread feature among differ-
ent component frameworks: they are present in almost any Windows, Mac, or Linux GUI-driven appli-
cation, regardless of the technology used to develop them.

Multitier applications
Modern applications are based on a multitier model that assigns to each tier a well-defined role.

At its simplest, the multitiered model is made of three different tiers:

The user interface tier, dedicated to the interaction between the users and the software
application.

The business logic tier, implementing the business rules and any other business-related logic
defining the software application.

The data tier, providing a means for storing information used by the application, usually in a
database.

64

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 64

The component architecture has been designed to specifically address one of these tiers—the user
interface tier. In fact, the class at the root of the whole architecture, UIObject, owes its name to the
definition of User Interface object.

Although ActionScript can also be used to contribute to the implementation of the business logic and
data tiers, in this book we will focus primarily on the user interface tier, since it captures the truest
nature of the component architecture: designing and implementing rich user interfaces.

UI components provided with Flash
The component architecture provides a large set of components that can be used for designing and
implementing very effective user interfaces as Flash movies. Such user interfaces may represent the
front end of powerful web applications that can be accessed utilizing a browser such as Firefox or
Microsoft Internet Explorer.

The following categories are defined in a broad functional sense to provide a means for grouping
components that are related to each other by shared functionality and/or a common purpose:

Button: Button components are characterized by a simple user interaction that is limited to
the click of a button over the component’s area.

Text: Text components share the characteristic of managing text content, allowing the user to
edit or just display it.

Cell structured: The most complex UI components are characterized by the presence of a cell
structure. Such structures can significantly differ—for example, lists, grids, and even tree-like
structures all fall under this category. However, what they all have in common is that they are
built by replicating a similar conceptual unit: the cell.

Container: Container components provide an area that can be populated by developers with
some kind of content. Such content can be loaded externally and/or include child components.

Peculiar: This is basically a miscellaneous category for components that don’t fit comfortably
in another category.

The following sections introduce the UI components available in the component architecture,
grouped by their functional category and “rated” with a Reusability Card. Thanks to short and intuitive
descriptions, you should be able to quickly grasp the purpose of each component and refer to the
third part of this book for a detailed description of how to use and customize each of them.

Button components
The architecture’s component set includes three different kinds of buttons:

Button

CheckBox

RadioButton

65

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 65

Button component
The Button component, the Reusability Card for which was shown at the beginning of the chapter in
Figure 3-1, provides the most classic user interface element: a button that can be clicked by the user
to trigger a certain action.

Figure 3-2 shows an instance of the Button component.

Figure 3-2. Button example

The use and customization of this component are detailed in Chapter 11.

CheckBox component
The CheckBox component (shown in Figure 3-3) provides a button that changes its checked/unchecked
state when clicked. This type of button is typically utilized to implement the selection of a yes/no
option.

Figure 3-3. The CheckBox component, implemented
by the class mx.controls.CheckBox

Figure 3-4 shows a couple of instances of the CheckBox component.

Figure 3-4. CheckBox example

The use and customization of this component are detailed in Chapter 12.

66

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 66

RadioButton component
The RadioButton component (shown in Figure 3-5) is a button that, when clicked, always changes its
state to selected while unselecting any other RadioButton instances belonging to its same group.

Figure 3-5. The RadioButton component, implemented
by the class mx.controls.RadioButton

You can see an example of the RadioButton in Figure 3-6. Because of its nature, a RadioButton is never
used in isolation: two or more RadioButton instances are usually grouped to implement a mutually
exclusive choice. The CheckBox component is better suited for a single choice such as yes/no.

Figure 3-6. RadioButton example

The use and customization of this component are detailed in Chapter 12.

Text components
The architecture provides three different components that can satisfy almost any development need
that may arise when handling text content:

Label

TextInput

TextArea

67

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 67

Label component
The Label component (shown in Figure 3-7) is the simplest among all the UI components. It can han-
dle single-line or multiline text content that cannot be altered by the user interaction. However, the
text content of a label can be defined at runtime programmatically or, of course, at design time. You
can see an example of the Label component in Figure 3-8.

Figure 3-7. The Label component, implemented
by the class mx.controls.Label

Figure 3-8. Label example

The use and customization of this component are detailed in Chapter 18.

TextInput component
The TextInput component (shown in Figure 3-9) implements a text field that can be added to user
interfaces for retrieving a single line of text content. Unlike the other two components in the Text cat-
egory, the TextInput component does not support the HTML format for the text content. Figure 3-10
shows you an example of the TextInput component.

Figure 3-9. The TextInput component, implemented
by the class mx.controls.TextInput

68

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 68

Figure 3-10. TextInput example

The use and customization of this component are detailed in Chapter 18.

TextArea component
The TextArea component (shown in Figure 3-11) implements a text field that can be added to user inter-
faces for retrieving multiline text content. For an example of the TextArea component, see Figure 3-12.

Figure 3-11. The TextArea component, implemented
by the class mx.controls.TextArea

Figure 3-12. TextArea example

The use and customization of this component are detailed in Chapter 18.

Cell-structured components
The architecture provides four different components that can be used to arrange content in a cell-
based structure:

List

ComboBox

DataGrid

Tree

69

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 69

List component
The List component (shown in Figure 3-13) is the simplest among the cell-structured components, and
it provides a visual interface to a list of objects that, by default, are text objects. You can see an exam-
ple of the List component in Figure 3-14.

Figure 3-13. The List component, implemented
by the class mx.controls.List

Figure 3-14. List example

The use and customization of this component are detailed in Chapter 13.

ComboBox component
The ComboBox component (shown in Figure 3-15)
combines a List object with a TextInput object to
enhance the behavior of the List component by
adding a single editable text field and implementing
the list as a drop-down list, displayed only after click-
ing in the input area and hidden after selecting an
item in the list or after clicking the input area again.
You can see an example of the ComboBox element in
Figure 3-16.

70

CHAPTER 3

Figure 3-15. The ComboBox component,
implemented by the class mx.controls.ComboBox

5939CH03.qxd 1/25/06 10:39 AM Page 70

Figure 3-16. ComboBox example

The use and customization of this component are detailed in Chapter 13.

DataGrid component
The DataGrid component (shown in Figure 3-17) is arguably the most complex among the cell-
structured components. As the name suggests, the DataGrid component arranges its objects, which by
default are text objects, in a grid defined by rows and columns.

This component usually implements tables and, as with any other cell-structured component, it
implements the scrolling of its contents. You can see an example in Figure 3-18.

Figure 3-17. The DataGrid component, implemented
by the class mx.controls.DataGrid

Figure 3-18. DataGrid example

The use and customization of this component are detailed in Chapter 13.

71

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 71

Tree component
The Tree component (shown in Figure 3-19) challenges the DataGrid component for the top spot
among the most complex UI components. The Tree component implements a tree-like structure
where cells are nested in branches. This component enables you to implement hierarchical and inter-
active content. You can see an example of the Tree component in Figure 3-20.

Figure 3-19. The Tree component implemented
by the class mx.controls.Tree

Figure 3-20. Tree example

The use and customization of this component are detailed in Chapter 19.

Container components
Container components are not “complete” on their own. They are meant to act as hosts for various
types of content that may also include other component instances. Containers define a controlled
area where such content will be displayed.

72

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 72

The architecture provides four different container components:

ScrollPane

Loader

Window

Accordion

ScrollPane component
The ScrollPane component (shown in Figure 3-21)
can display scrollable content that can be internal to
the Flash document or loaded from an external
source. Internal content must be encapsulated in a
movie clip that has a linkage identifier, while external
content can be a JPG image or another Flash movie
(SWF). External content can reside locally or on the
Internet. You can see an example of the ScrollPane
component in Figure 3-22.

73

EXPLORING THE UI COMPONENTS

Figure 3-21. The ScrollPane component, implemented
by the class mx.containers.ScrollPane

Figure 3-22. ScrollPane example

The use and customization of this component are detailed in Chapter 15.

5939CH03.qxd 1/25/06 10:39 AM Page 73

Loader component
The Loader component (shown in Figure 3-23) can
display external content stored as a JPEG file or a
Flash movie (SWF). Unlike the ScrollPane compo-
nent, such content is not scrollable, but it is scaled
to fit into the component’s size or, alternatively, it is
the container’s area to be resized in order to accom-
modate the original size of the content. You can see
an example of the Loader component in Figure 3-24.

74

CHAPTER 3

Figure 3-23. The Loader component, implemented
by the class mx.controls.Loader

Figure 3-24. Loader example

The use and customization of this component are detailed in Chapter 15.

Window component
The Window component (shown in Figure 3-25)
can display internal and external content in the
same formats displayed by the ScrollPane compo-
nent. Unlike the ScrollPane component, the
Window component does not implement any
scrolling functionality.

Figure 3-25. The Window component, implemented
by the class mx.containers.Window

5939CH03.qxd 1/25/06 10:39 AM Page 74

Window instances can be dragged by the user and moved around on the
stage; the instances are usually created dynamically with the help of the
PopUpManager (see Chapter 4 for further details). Figure 3-26 shows an
example of the Window component.

The use and customization of this component are detailed in Chapter 20.

Accordion component
The Accordion component (shown in Figure 3-27) is arguably the most
complex of the containers. Unlike the other components in the same cat-
egory, the Accordion component can manage more than one content area
at the same time.

Figure 3-27. The Accordion component, implemented
by the class mx.containers.Accordion

The Accordion component shows one area at a time while providing headers
that the user can click to display the other areas. The number of areas, as well
as the labels of their headers, can be defined both at design time and at run-
time.

The Accordion’s areas can display internal content only, although its areas may
well contain an instance of the ScrollPane component, which will be able to
load external content eventually.

Following an official recommendation, each content area should host an
object that inherits from the View class or, at least, from the UIObject class.
However, the current version of the Accordion works pretty well even with
symbols that have a linkage identifier, with the sole exception of the tabbing
order, which requires at least a View class to be supported (see Figure 3-28).

The use and customization of this component are detailed in Chapter 10.

75

EXPLORING THE UI COMPONENTS

Figure 3-26.
Window example

Figure 3-28.
Accordion example

5939CH03.qxd 1/25/06 10:39 AM Page 75

Peculiar components
In the last category, Peculiar, I include all the components that, because of their particular features, do
not fit well in any of the previous categories.

These remaining components are as follows:

Alert

DateChooser

DateField

Menu

MenuBar

NumericStepper

ProgressBar

UIScrollBar

Alert component
Although it extends the Window component, the Alert component (shown in Figure 3-29) is not con-
sidered a true container in our classification. This component, in fact, is a simplified and specialized
version of a Window: its sole and intended purpose is to display a message to the user and, optionally,
allow him or her to make a choice by clicking a button. You can see an example of the Alert compo-
nent in Figure 3-30.

Figure 3-29. The Alert component, implemented
by the class mx.controls.Alert

Figure 3-30. Alert example

76

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 76

The use and customization of this component are detailed in Chapter 20.

DateChooser component
The DateChooser component (shown in Figure 3-31) implements an interactive calendar that the user
can navigate to select a date. You can see an example of this component in Figure 3-32.

Figure 3-31. The DateChooser component, implemented
by the class mx.controls.DateChooser

Figure 3-32. DateChooser example

The use and customization of this component are detailed in Chapter 14.

77

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 77

DateField component
Similar to how the ComboBox merges a TextInput object and a List object, the DateField compo-
nent (shown in Figure 3-33) merges a TextInput object and a DateChooser object, displaying the text
field only by default. The calendar object is displayed when the user clicks the drop-down icon on the
right side of the text field, and it disappears when the user selects a date or clicks over the text field.
You can see an example of the DateField component in Figure 3-34.

Figure 3-33. The DateField component, implemented
by the class mx.controls.DateField

Figure 3-34. DateField example

The use and customization of this component are detailed in Chapter 14.

Menu component
The Menu component (shown in Figure 3-35) is usually created dynamically by code in response to an
event such as, for example, the user clicking over a certain area. This component imitates the pop-up
menus seen in modern operating systems, and its actual nature would be more accurately described
by a name of PopUpMenu, rather than its generic Menu name. You can see an example of the Menu
component in Figure 3-36.

78

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 78

Figure 3-35. The Menu component, implemented
by the class mx.controls.Menu

Figure 3-36. Menu example

The use and customization of this component are detailed in Chapter 16.

MenuBar component
The MenuBar component (shown in Figure 3-37) imitates the traditional menu bar present in almost
any modern software application. This component usually creates pop-up menus dynamically when
the user clicks over one of the options available in the horizontal bar. You can see an example of this
component in Figure 3-38.

Figure 3-37. The MenuBar component, implemented
by the class mx.controls.MenuBar

79

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 79

Figure 3-38. MenuBar example

The use and customization of this component are detailed in Chapter 16.

NumericStepper component
The NumericStepper component (shown in Figure 3-39) is an input field specialized in retrieving a
numeric value chosen from a predefined series of numbers. You can see an example of the
NumericStepper component in Figure 3-40.

Figure 3-39. The NumericStepper component,
implemented by the class mx.controls.NumericStepper

Figure 3-40. NumericStepper example

The use and customization of this component are detailed in Chapter 17.

ProgressBar component
The ProgressBar component (shown in Figure 3-41) is used to graphically represent the progress of
loading external content. This component usually operates in conjunction with a container capable
of loading external content such as the ScrollPane or the Loader components. You can see an exam-
ple of the ProgressBar component in Figure 3-42.

80

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 80

Figure 3-41. The ProgressBar component, implemented
by the class mx.controls.ProgressBar

Figure 3-42. ProgressBar example

The use and customization of this component are detailed in Chapter 15.

UIScrollBar component
The UIScrollBar component (shown in Figure 3-43)
is a scrollbar that can be added to text fields. This
component is almost useless, since the TextArea
component already provides a fully functional and
scrollable Text component. Most likely, this compo-
nent will disappear in future versions of the archi-
tecture to be replaced by a scrollbar not limited to
text fields only. You can see an example of the
UIScrollBar component in Figure 3-44.

Figure 3-44. UIScrollBar example

The use and customization of this component are detailed in Chapter 21.

81

EXPLORING THE UI COMPONENTS

Figure 3-43. The UIScrollBar component,
implemented by the class mx.controls.UIScrollBar

5939CH03.qxd 1/25/06 10:39 AM Page 81

Using the UI components
As explained in the previous chapter, we have two radically different ways of creating component
instances:

Statically: By dragging a component to the stage and defining the property of its instance via
the panels in the authoring environment

Dynamically: By coding both the component’s creation and the definition of its properties

Although the static approach may appear simpler, it is more limited: ActionScript cannot remove static
instances from the stage. Furthermore, some components must be created dynamically to work as
expected. On the other hand, creating components at design time is easier because of the visual feed-
back about the actual size and position of the component instance. However, guide layers can help
developers to obtain the best of both worlds.

Any layer can be made a guide layer by right-clicking its name and choosing the Guide option.
Component instances added to a guide layer appear in the authoring environment but are not
included in the movie when published.

By using a guide layer, developers can design a component-based layout visually, check the values of
attributes such as size and position in the various panels available in the authoring environment, and
reuse those values in the ActionScript code creating the component instances at runtime.

A first example of interaction
In the following example, we dynamically create three component instances and implement some user
interaction. To keep the example pretty small, we are going to use three of the simplest components
in the architecture: Button, Alert, and Label.

1. Create a new Flash document and save it as example01.fla.

2. We are going to create a simple container component inheriting from the UIObject class like
we did in the previous chapter. Create an empty component named UIContainer and define its
class as mx.core.UIObject in both the Linkage and Component Definition dialog boxes.

3. Drag the UIContainer component from the document library to the stage and define its
instance name as container; move the instance into the top-left corner of the stage {x:0, y:0}.

4. Add the following code to the first (and only) frame of the main timeline:

#include "example01.as"

5. Create an ActionScript file and save it as example01.as.

6. Add the following code to the ActionScript file and save it:

import mx.controls.*;

var initObject:Object = {_x:250, _y:100, _width:300, _height:50};

82

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 82

function click(eventObject:Object) {
Alert.show("Click OK or cancel to close this Alert",

"Example", Alert.OK | Alert.CANCEL, this, responseHandler);
}

function responseHandler(eventObject:Object) {
container.destroyObject("myButton");
var myLabel:Label = container.createClassObject(Label,

"myLabel", container.getNextHighestDepth(), initObject);
switch (eventObject.detail) {

case Alert.OK:
myLabel.text = "you clicked the OK button";
break;

case Alert.CANCEL:
myLabel.text = "you clicked the CANCEL button";
break;

default:
myLabel.text = "this message should never appear";

}
}

var myButton:Button = container.createClassObject(Button,
"myButton", container.getNextHighestDepth(), initObject);

myButton.label = "Create an Alert instance";
myButton.addEventListener("click", this);

Important note: if you now open the document’s library, you will find that it is empty—but the library
must contain the Alert, Button, and Label symbols, otherwise ActionScript will not be able to create
them dynamically. The quickest way of adding these symbols to the document’s library is to create a
component instance on the stage for each of them and then delete it.

7. Drag the Alert component from the Components panel to the stage to create on Alert
instance, and then select the newly created instance and delete it.

8. Repeat the previous step twice (create an instance and then delete it) for the Button and Label
components as well.

9. Save the files created for this example.

When testing the movie, you will initially see only one button on the stage labeled Create an Alert
instance. The button is created dynamically by the following command:

var myButton:Button = container.createClassObject(Button,
"myButton", container.getNextHighestDepth(), initObject);

After defining the label of the newly created button instance, we register the _root object as a listener
of the button instance’s click event:

myButton.addEventListener("click", this);

83

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 83

A click function is implemented in the _root scope as the event handler of the click event. This
function is invoked when the user clicks over the button’s instance:

function click(eventObject:Object) {
Alert.show("Click OK or cancel to close this Alert",

"Example", Alert.OK | Alert.CANCEL, this, responseHandler);
}

Executing the click event handler will create an Alert instance. Once the Alert instance appears on
the stage, you can move it around by dragging its title bar. An Alert, in fact, inherits its behavior from
the Window component.

However, if you try to click over the Create an Alert instance button instance again, you will discover
that it is not responsive; the Alert instance has been created as a modal Window, stopping any inter-
action with other components present on the stage until it is removed. This is done by clicking one of
its buttons. Responding to the user action, the component framework will destroy the Alert instance
and invoke the callback that was specified in the call to the Alert.show method.

In our example, we specify a callback named responseHandler. The callback’s first action is to destroy
the myButton instance, demonstrating that we can remove component instances selectively, assuming
that they have been created dynamically:

container.destroyObject("myButton");

The next command creates a Label instance in the same place where the myButton instance once was,
reusing the initObject definition to define its size and position:

var myLabel:Label = container.createClassObject(Label,
"myLabel", container.getNextHighestDepth(), initObject);

After myLabel has been created, the switch statement examines the detail property of the
eventObject, dispatched by the application framework when the Alert instance was destroyed, to
determine which Alert button was clicked by the user and define the Label’s content accordingly.

switch (eventObject.detail) {
case Alert.OK:

myLabel.text = "you clicked the OK button";
break;

case Alert.CANCEL:
myLabel.text = "you clicked the CANCEL button";
break;

default:
myLabel.text = "this message should never appear";

}

84

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 84

Typical structure of a component
There is no mandatory rule for defining the structure of a movie clip that implements a component
belonging to the component architecture. However, an analysis of the file StandardComponents.fla
reveals that there is a common approach in defining the structure of a component’s main timeline.

The StandardComponents.fla file contains the source of every UI component of the component
architecture. The file is already stored in your hard disk if you have installed the authoring environ-
ment (see Appendix A for instructions on how to find it). Once opened, the file shows an empty stage.
If you open the document library, however, you will discover that it already includes many symbols; those
symbols were required to implement the UI components available in the component architecture.

Note that the StandardComponents.fla file is supposed to be a library and, as such, it should be
opened using the File ➤ Import ➤ Open External Library command instead of the more common
File ➤ Open command.

Let’s make a quick test to fully capture the importance of this library.

1. Close the StandardComponents.fla file whether you opened it as a document or as an external
library.

2. Create a new Flash document.

3. Add an instance of the Button component to the document, dragging it from the Components
panel to the stage.

4. Right/CTRL-click the Button instance on the stage. You will notice that the Edit command is
disabled.

Conclusion: developers cannot edit UI component instances created by dragging them from the
Components panel because they are compiled. Their source is not available. This is further demon-
strated when you open the new document’s library. There is only one symbol waiting in there: Button.
The Kind field of this symbol in the document’s Library does not say Component, as you may have
expected, but Compiled Clip. Developers cannot edit compiled clips nor see how they have been
implemented.

Let’s continue with our test.

5. Create another new Flash document.

6. Open the StandardComponents.fla file as an external library (File ➤ Import ➤ Open External
Library).

7. The StandardComponents.fla Library panel contains a folder named Flash UI Components 2
where you can find the source of all the UI components. Look at the Kind field of the Button
symbol, which is there: it says Component, not Compiled Clip.

8. Drag the Button symbol from the StandardComponents.fla library panel onto the stage of the
newly created document.

9. You may be slightly confused by seeing an empty box instead of a button—it is a noncompiled
button instance. Test the movie to verify that it works exactly as a compiled version.

85

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 85

10. Open the document library and take note of an important difference from the previous case.
The Library contains much more than a single Button symbol. It contains three folders (Base
Classes, Component Assets, and Themes) and various other symbols. All those symbols are
required by the Button implementation and represent its physical structure!

11. If you now right-click the Button instance on the stage or the Button symbol in the document’s
library, you will find that the Edit command is enabled. By selecting the Edit command, you will
be able to see the structure of the timeline of a Button component and examine its imple-
mentation.

Now that you have explored the implementation of the Button component, you can also inspect the
implementation of any other UI component in the component architecture.

If you do, you will notice that there is a certain common approach in defining the layers of a compo-
nent’s movie clip. In all the components, in fact, you will find one or more of the following layers:

actions

bounding Box

assets

In some cases, you may find two of those layers merged into one; you may also find components
where such layers have been not renamed or have been defined slightly differently. Such inconsistency
may well be confusing; however, the three layers listed here identify a specific approach that is
omnipresent in the architecture, an approach that will be explained by examining the purpose of each
of those layers.

Figure 3-45 shows the structure of the symbol implementing the Button component that follows the
typical approach described in this section.

Figure 3-45. Component structure example

86

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 86

The actions layer
ActionScript can be added to any layer of the timeline. It is good practice to have a topmost layer
named actions, dedicated to the code present in the timeline—all the code in the timeline should be
placed in the actions layer, and it should also be kept empty of any graphical assets.

The use of a layer such as this promotes a neat separation of the code and the content in the timeline,
resulting in a clearer Flash document, which is easier to maintain.

In the case of a component’s symbol main timeline, the actions layer contains one frame only; the
code attached to its first and only frame should be

stop();

The reason behind this code will be clear once we look at what is included in the assets layer.

The assets layer
The purpose of the assets layer (shown in Figure 3-46) is to ensure that every asset required by the
component is packaged with the component and, therefore, available in any context where the com-
ponent will be utilized.

Figure 3-46. The assets layer

However, the packaging of such assets should not influence the component’s performance at runtime.
To achieve this goal, the assets layer is built with two keyframes instead of a single frame.

87

EXPLORING THE UI COMPONENTS

5939CH03.qxd 1/25/06 10:39 AM Page 87

The first keyframe is always empty, while the second keyframe contains all the assets required by the
component: base classes, subcomponents, skins, etc.

Thanks to the stop action present in the first frame of the actions layer, the playhead never reaches
the second keyframe and, therefore, the assets never appear on the stage. Conclusion: their presence
in the component package does not influence the overall performance of the Flash application.

The bounding box layer
The bounding box layer contains a single frame hosting an instance of the BoundingBox movie clip.
The name of the instance is usually boundingBox_mc.

The bounding box is particularly useful in the case of components that create all of their assets at run-
time: its purpose is to avoid having instances of empty components at design time; therefore, the
bounding box plays an essential role in allowing resizing and live preview at design time. However,
although useful at design time, the bounding box will disrupt the visual representation of the compo-
nent instances and even their behavior at runtime, so it must be removed somehow at runtime.

Since, as we already know, a movie clip created statically cannot be removed from the stage via
ActionScript, developers have had to overcome this limitation by using the following code:

boundingBox_mc._visible = false;
boundingBox_mc._width = boundingBox_mc._height = 0;

The result is that the bounding box disappears at runtime but is still on the stage. Of course, there is
no need for a bounding box when there are static assets that can define a component’s bounding,
since those assets can be used for the same purpose as the bounding box.

Summary
After reading this chapter, you will be aware of which components have been included in the Flash
Component Architecture and what functionality they provide.

You have also found a tool (the Reusability Card) that will tell you at a glance how reusable a compo-
nent actually is.

You may well consult this chapter again when deciding what components to use in your next project.

In the next chapter, we are going to examine the many options offered by the architecture to effi-
ciently integrate different component instances into a robust component-based application.

88

CHAPTER 3

5939CH03.qxd 1/25/06 10:39 AM Page 88

5939CH03.qxd 1/25/06 10:39 AM Page 89

5939CH04.qxd 1/25/06 10:40 AM Page 90

91

Chapter 4

Divide et impera (Latin for divide and rule)
Macchiavelli

BUILDING COMPONENT-BASED
APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 91

In previous chapters, we examined the component framework, a skeleton of functionality shared by
each component in the architecture that can be used as a starting point when developing a new com-
ponent. Our focus now moves to building applications that are based on components.

At this point, you may be wondering whether there is something else in the architecture, apart from
the components and the component framework, to help you design applications.

The answer is yes: the component architecture offers more than a collection of components. It pro-
vides additional functionality that is implemented outside and around the components in order to
further speed up your work when developing a component-based application.

The application-oriented features provided by the architecture can be grouped into two major
categories:

Application frameworks: Similarly to a component framework, an application framework is a
skeleton to be fleshed in. In this case, however, we are dealing with the skeleton of a whole
application instead of the skeleton of a single component.

Managers: Managers are classes that encapsulate specific application-oriented functionality,
such as handling the keyboard focus or managing the life cycle of windows.

In the component architecture, you can find two different application frameworks that are character-
ized by the classes implementing their core objects: the Slide class and the Form class.

Both classes are based on the same concept: the screen, which is encapsulated in the homonymous
class Screen, which acts as base class for both Slide and Form.

Screens
Being an ActionScript developer, you will certainly be familiar with the Flash timeline, and you may
have found it rather unfriendly when developing an application.

The revolutionary model captured by the timeline, with its layers and frames, has been present since
the very first version of Flash, and it is an integral part of Flash’s success.

The timeline was originally designed to implement “movies.” This has never been a mystery, since the
most important Flash objects are still called movie clips and even the final product, the SWF file, has
always been defined as a Flash movie.

However, Flash has come a long way since its beginnings; it is now a powerful object-oriented applica-
tion platform, even endowed with its own component architecture.

The completed source code introduced in this chapter can be found in the package
src04.zip, downloadable from this book’s page on www.friendsofed.com.

92

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 92

Flash creators, realizing that its timeline had been designed for a purpose other than implementing
software applications, added two new types of document in the MX 2004 version of the authoring
environment, as you see in Figure 4-1.

Figure 4-1. Flash document types

When creating a new document, you now have the following choices in addition to the “traditional”
Flash Document option:

Flash Slide Presentation

Flash Form Application

Both of the new document types are based on the same concept: the screen.

In some of the examples introduced previously in this book, we have already explored the conven-
ience of having a high-level container hosting components generated dynamically. The creators of
the component architecture arrived to a similar conclusion when including the Screen class in the
architecture: designing, implementing, and even maintaining applications can be much easier if com-
ponents and other content (graphics, text, etc.) are grouped into a hierarchical structure of high-level
containers (or screens).

Building an application using screens
The screen concept is introduced in the component archi-
tecture via the Screen class. This class is not used directly
to create objects; its purpose is to encapsulate functional-
ity that is common to both of its largely used subclasses:
the Slide class and the Form class.

Figure 4-2 illustrates the main inheritance relationships
among the screen classes.

Both the Form and Slide classes are derived from the
Screen class, which in turn is a subclass of the Loader
class. The Loader class is the same class used to implement
the Loader component, which is a container, as you saw in
the previous chapter.

93

BUILDING COMPONENT-BASED APPLICATIONS

Figure 4-2. Screen inheritance relationships

5939CH04.qxd 1/25/06 10:40 AM Page 93

Screens, whether they are slides or forms, define the user interface of a Flash application hierarchically
via a containment relationship very similarly to nested movie clips. In fact, at runtime, a screen is
essentially a movie clip most likely containing other, nested, movie clips.

Being a high-level container derived from the Loader class, a screen can hold various type of content
such as

Text or graphics.

Components.

External SWF movies or JPG images.

Other screens (namely child screens). You can create screens statically in the authoring envi-
ronment inside documents based on either the Slide Presentation or the Form Application
document types.

After creating a Slide Presentation (or a Form Application) document, the authoring environment
presents a workspace that is quite different from that of a traditional Flash document:

The timeline seems to be missing (although it is just hidden).

A new window, referred to as Screens by its associated menu item under the Window menu,
appears on the left side of the stage.

The purpose of the Screens window is to outline the current screen hierarchy of the document, while
providing a pane that can be used to add new screens, rearrange the screen hierarchy, and select the
screen you wish to work on.

The initial configuration of the Screens window always includes two screens:

The master screen: This is the root of the hierarchy: the screen containing any other screen.
Such screen has a default name of presentation in the case of a Slide Presentation document
and application in the case of a Form Application document.

A child screen: One child screen to start building your application from. Such a screen has a
default name of slide1 in the case of a Slide Presentation document and form1 in the case of
a Form Application document.

Figure 4-3 compares the differences in the naming conventions used in the screen hierarchy of a Slide
Presentation and the screen hierarchy of a Form Application.

Figure 4-3. Comparing the initial Screens windows

94

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 94

A screen hierarchy is a tree-like structure representing containment relationships: each node is a
screen that can contain other screens. The master screen, root of the structure, is the only screen that
has no parent screen, and it contains all other content present in the document.

Learn to recognize the relationships among nodes in the screen hierarchy with the help of the follow-
ing role names:

Master screen: The root of the structure and the only screen that has no parent screen

Child screen: A screen that is contained in another screen

Children: The collection of screens that are directly contained in a screen

Descendants: All of the screens that are nested into a screen

Parent screen: The screen containing a screen

Ancestors: All the screens above a nested screen from its parent up to the master screen

Leaf: A screen that has no child screens

Siblings: Two or more screens that share the same parent screen

Content hierarchy in nested screens
Note that a screen hierarchy is also a content hierarchy: the content of a child screen is usually placed
over the content of its parent screen and, consequently, over the content of all of its ancestors. Note
that the content of the ancestors could still be visible if not overlapped by the child’s content.

This is particularly important when you define the content of the master screen, because its content
can be visible on the stage every time that another screen is displayed.

Figure 4-4 is an example based on a Form Application document that clearly shows how the contents
of nested screens are related to each other. The Screens window of the example shows that the mas-
ter screen (called application by default) has a child (screen2) that in turn has its own child
(screen3). Each of the three screens has some text content (“Master Screen Content”, “Screen2
Content”, and “Screen 3 Content”, respectively).

When screen3 is visible on the stage, you can also see the contents of the other two screens, since
screen3 is contained in screen2, which in turn is contained in the master screen, application.

95

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 95

However, the content of a child screen can overlap the content of its ancestors, since it is usually
placed on top of their content as displayed in Figure 4-4.

Figure 4-4. Content hierarchy in nested screens

All the concepts that you have learned so far apply to both forms and slides, since both of their classes
are derived from the Screen class.

As was mentioned earlier, the Slide class and the Form class identify two slightly different application
frameworks by extending the Screen class.

Let’s examine the main differences between the two application frameworks and, ultimately, what
their purpose is.

Reviewing the purpose of slides and forms
At its simplest, the main difference between a document based on forms and a document based on
slides lies in how the user navigates among the different screens defined in the respective documents.

While the Slide class implements a navigation loosely inspired by the sequential nature of a slideshow,
the Form class does not implement any navigation model, and, when building an application based on
forms, it will be your responsibility to implement one by using ActionScript.

Beware that the absence of a predefined navigation for forms and the names chosen by in the Flash
authoring environment for the two screen-based document types (Slide Presentation, Form Application)
can be very deceiving and lead to a couple of WRONG conclusions:

The Slide Presentation document type should only be used when creating slideshows. The
Form Application document type is a mandatory choice when developing applications.

Slides are simpler than forms.

96

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 96

Although the names of the two document types were chosen to suggest their purpose in an intuitive
way, they can be deceiving when it comes to understanding the actual nature of the application
models encapsulated in the slides and the forms, respectively.

When using slides, you are working with a stateful application framework. Contrarily, forms embody a
stateless application framework. In other words, slides maintain a state of the application, while forms
don’t (unless you add that capability with your code).

The state of the sapplication is maintained by the Slide class via a number of methods that imple-
ment the navigation among screens (slides). Those methods are

gotoFirstSlide: Navigates to the first slide among the descendants of a slide

gotoLastSlide: Navigates to the last slide among the descendants of a slide

gotoNextSlide: Navigates to the next slide in the hierarchy

gotoPreviousSlide: Navigates to the previous slide in the hierarchy

gotoSlide: Navigates to the specified slide

It is evident by the functionality provided in these methods that, in the case of slides, the screen hier-
archy is not only a containment relationship, but also an ordered one.

There is an order among the child screens of a screen. There is a first child, a last child, and, even more
importantly, a current child! That current child represents the current state of the application.

Furthermore, slides navigation is based on the concepts of incoming/outgoing slides: the current slide
becomes the outgoing slide and, as such, is going to be hidden, while the incoming slide becomes the
new current slide and is revealed just after.

This incoming/outgoing mechanism has an even deeper impact when the screen hierarchy is nested
several levels deep. If the incoming and outgoing slides have different ancestors, then all the different
ancestors of the outgoing slide will be hidden as well, while all the different ancestors of the incoming
slide will be made visible just after.

This rather complex behavior is built into the Slide class. Considering that forms do not implement
any navigation, you can start to understand why the second conclusion mentioned earlier is actually
wrong: the Slide class is indeed more complex than the Form class.

The greater complexity of slides is also indicated by the number and nature of a slide’s parameters
that you can set in the authoring environment (5) compared with the parameters of a form (3).

When selecting a slide in the authoring environment, you can set the following parameters:

autoKeyNav: Enables/disables the built-in keyboard handler that allows navigating to the next
and previous slides by using the arrow keys.

contentPath: Defines the slide’s content, which can be internal if it is a linkage identifier, or
external if it is an absolute or relative URL to a SWF or JPG file.

autoLoad: Determines whether the content specified in the contentPath parameter will be
loaded automatically or only when the load method is explicitly invoked.

97

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 97

overlayChildren: Indicates whether the children slides remain visible or not when navigating
from one child to another; this parameter is false by default, that is, children are hidden and
revealed while being navigated.

playHidden: Determines whether the slide, considered as a movie clip, continues to play or not
once it is hidden; this parameter is true by default, meaning that the slide continues to play
unless otherwise specified.

As mentioned previously, selecting a form in the authoring environment will allow you to define three
parameters only:

contentPath: Same functionality as in the slide case.

autoLoad: Same functionality as in the slide case.

visible: Determines whether the form is visible when its parent is visible; this parameter is
true by default, meaning that all of the forms are visible by default.

Forms visibility
While slides are revealed or hidden via a rather sophisticated mechanism that is built into the Slide
class, which can be influenced by the related methods and parameters, forms are displayed or hidden
by directly setting their visible property via the homonymous parameter in the authoring environ-
ment or via ActionScript at runtime.

The visible property implemented in the Form class emphasizes the difference between the form-
based application framework and the one based on slides, since all forms are visible by default as
shown in Figure 4-5.

Figure 4-5. Forms visibility example

If you create a random form-based hierarchy like the one shown in Figure 4-5 and fill each form with
some content, you will notice that unless you explicitly set the visible property of some form to
false, all the forms and their contents will be visible at the same time when the movie is tested.

98

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 98

Conclusion: should you use slides or forms?
If you can get used to how the slide navigation works, then you may well be willing to reuse that func-
tionality when building your applications.

Alternatively, if you prefer to implement a fully customized navigation setup, then forms provide the
option of an application framework without any built-in navigation.

In the end, slides are more intelligent than forms, and you may decide to reuse their functionality,
maybe even mixing up slides and forms.

Note that when using slides, you are not forced to have a strictly sequential navigation: you can dis-
able the default keyboard navigation by setting autoKeyNav to false and using the gotoSlide method
to jump to a specific slide.

Because of their flexibility, slides are probably a better high-level container than forms, although
forms are still useful in all the cases where any predefined navigation would be useless.

Before implementing a complete example, let’s consider another very interesting functionality avail-
able to screen-based applications: a screen hierarchy can be extended with external subtrees.

Screen hierarchies with external subtrees
A screen-based application can be divided into several subsystems that can be developed separately
and merged together in a central document.

This possibility is enabled by the fact that you can load external SWF files into a screen, and by the
capabilities of the screen classes handle the screen hierarchies of such external files.

Let’s create a template that you may use as starting point when designing an application made of
different subsystems, each implemented in a different document. The template that we will create
represents the main system that will coordinate the interaction among the different subsystems.

1. Launch the Flash authoring environment and create a new Slide Presentation. We will be using
slides as the screen of choice for our template to have the chance to use the navigation built
into the Slide class whenever needed. However, you can also create a similar template starting
from a Form Application document, if you like.

2. Save the newly create document as a template by
choosing the menu command File ➤ Save As
Template.

3. Fill in the Save as Template dialog box, shown in
Figure 4-6, that has appeared after you executed
the last command.

Give the new template the name Large Application
while associating it with a newly defined category
named Slide-based apps. Then provide a short
description to act as a reminder of the scope of
this template: Starting point for a slide-based appli-
cation that integrates sub-systems implemented
externally.

99

BUILDING COMPONENT-BASED APPLICATIONS

Figure 4-6.
Creating a new document template

5939CH04.qxd 1/25/06 10:40 AM Page 99

So far, our new template looks exactly like a document created via the Slide Presentation document
type. Let’s change that:

4. Change the master screen name from presentation to mainMenu. This change of name is far
from being just a cosmetic issue. It reminds us that the content in the master screen is available
when every other screen is displayed and, as such, is the ideal place to implement the applica-
tion main menu, if any. Such a menu will allow the user to navigate from one subsystem to
another.

5. Select the mainMenu screen, and in the parameters pane set autoKeyNav as false. We are dis-
abling the built-in keyboard handling that allows navigating slides using the arrow keys. Most
likely the main menu will be implemented by navigating to a specific slide via the gotoSlide
method.

6. Select the slide1 screen and rename it as appState1. Once again, the definition of a proper
name is very important. In this case, appState1 indicates that this screen is dedicated to the
first (initial) state of the application. Remember that slides are capable of maintaining an appli-
cation state, as we saw earlier in this chapter.

7. After selecting the appState1 screen, fill the contentPath with the value subsystem1.swf.
Once again, the names used are very indicative. We are suggesting that the first state of the
application is the one hosting the first subsystem. This subsystem is implemented externally in
an SWF file simply called subsystem1.swf.

8. Since our “large application” is likely to have more than one subsystem, create another two
slides at the same level as appState1 and rename them appState2 and appState3 to indicate
that they are dedicated to the second and third state in the application.

9. After creating the appState2 and appState3 screens, define their contentPath as subsys-
tem2.swf and subsystem3.swf respectively. The second state of the application (appState2)
will host the second subsystem that is implemented in the subsystem2.swf file. Similarly, the
third state of the application will host the third subsystem that is implemented in an external
SWF as well.

10. Save the file again to store all of the changes made to the template. Now you really have
a good starting point when it comes to developing large applications based on external sub-
systems.

The final screen hierarchy of our newly created template should be
the same as that shown in Figure 4-7.

This new template is highly reusable, since we used abstract concepts
such as “application state” and “subsystems.” Because of such abstrac-
tions, we can use this template as starting point for a wide range of
different applications.

For instance, you could place a MenuBar component in the mainMenu
slide to navigate among the application states. Alternatively, you could
use a set of Button components or even a single ComboBox component
for the same purpose.

100

CHAPTER 4

Figure 4-7. Screen hierarchy of
the Large Application template

5939CH04.qxd 1/25/06 10:40 AM Page 100

Each application state hosts what we called a subsystem of the application. Such a subsystem is an
external SWF file that contains its own screen hierarchy.

In concrete terms, the initial application state (appState1) could possibly host the login subsystem,
controlling the user access to the rest of the application. The second application state (appState2)
could host some kind of query subsystem used to retrieve some information that is eventually dis-
played in the third application state (appState3) hosting some sort of reporting subsystem.

This template would allow you to implement the three subsystems (login, query, reporting) in separate
screen-based documents and then coordinate their functionality with the help of the mainMenu. The
possibilities are endless, since each subsystem can be defined separately and, quite possibly, imple-
mented by different developers or even teams.

Furthermore, a very modular approach like the one shown in this template would grant further bene-
fits, such as

Facilitating application maintenance by keeping its functionality neatly separated

Allowing for greater flexibility and extensibility since subsystems can be added or removed
very easily

The core idea in this approach is the screen concept (slide or form) and its related application frame-
work. In fact, such a framework allows also for cross-subsystem communication that basically means
referring a screen included in a subsystem from the context of another subsystem.

The complete path to an external screen
When implementing a subsystem using our new template, you may need to navigate (or refer) to a
screen present in another subsystem.

Because we are using slides, we can easily achieve this using an ActionScript statement similar to
this one:

this.gotoSlide(absolutePathToTheSlide);

where absolutePathToTheSlide is a placeholder for what will be the actual path in the runtime con-
text of your application. Let’s make a concrete example showing such a path.

Let’s assume that the subsystem1.swf file loaded in appState1 of the application contains the very
simple screen hierarchy shown in Figure 4-8.

Figure 4-8. Screen hierarchy example
of a subsystem

101

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 101

At runtime, the screen hierarchy of your application will change to include the screen hierarchy of
subsystem1.swf, which will be appended underneath the appState1 node as shown in Figure 4-9.

Figure 4-9. Runtime screen hierarchy of the
application after loading subsystem1.swf

Note the presence of an unexpected node named contentHolder between the appState1 node and
the root of the subsystem1 screen hierarchy. This node is always present and automatically created by
the application framework once the external content has been loaded.

Once you know how the screen hierarchy changes at runtime, you can refer to the login slide from
within another subsystem.

The complete path to the login slide in our example, in fact, is quite simply, if not shortly

_root.mainMenu.appState1.contentHolder.subsystem1.login

You can use such a path from within the context of a slide in another subsystem, as in the following
example:

this.gotoSlide(_root.mainMenu.appState1.contentHolder.subsystem1.login)

We have seen enough about the screen concept and its concrete implementations (slides and forms)
to create our first highly dynamic screen-based application.

In the next section, you will learn about additional concrete aspects related to screens, plus a tech-
nique for creating them dynamically within a classic Flash document.

Creating a slide presentation dynamically
You certainly have realized by now that the component architecture is based on a large collection of
classes, some of them (the screens) implemented to provide an application framework that can be
used as a starting point when developing a component-based application.

Even more, you learned that the two screen-based document types (Slide Presentation and Form
Application) are nothing more than very simple document templates, and that you can build your own
screen-based templates using either slides or forms.

Being a developer, you will have started wondering whether you could use the Slide and Form classes
in a traditional Flash document. Developers know that the infrastructure of the authoring environment

102

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 102

is useful for producing simple prototypes visually, but it can be limiting in the case of implementing
real-life requirements.

In order to overcome the limits of the authoring environment, you must be able to take full control
over the application that you are developing by creating its objects dynamically and programmatically
defining their appearance and behavior via ActionScript.

Therefore, it is important to be able to create screens dynamically and even extend their class if and
when needed.

The next example shows you how to create a complete slideshow dynamically, using the Slide class in
the context of a typical Flash document without having a single object on the stage at design time.

The example will also be your first screen-based application created the developer’s way: by control-
ling each of its aspects via ActionScript code.

Building the example
1. Start by creating a Flash document and saving it as dynamic_slideshow.fla. Note that we are

going to use screens (slides) in a typical Flash document: you will not be able to open the
Screens panel to examine the screen hierarchy, because the menu option to open it is disabled
in the case of Flash documents. However, even if present, the Screens panel would be empty,
since we are going to create all the screens we need at runtime. This example just demon-
strates that it is possible to do so and control every aspect of the screens programmatically.

2. Change the document dimensions by opening the Document Properties dialog box. Set the
new dimensions as 640✕480 pixels. The size of the document stage is important, since it will
need to be the same as the three external JPG files that we will load dynamically when running
the slideshow. You can find these three files (image1.jpg, image2.jpg, and image3.jpg) in the
source code. However, you can replace any of these JPG files with your own graphics as long as
your files will have the same names (image1.jpg, image2.jpg, and image3.jpg) and size
(640✕480) as the ones used by the example.

3. Select the first and only frame on the first layer of the document and add the following
ActionScript line to it:

#include "slideshow.as"

4. Create an ActionScript file and save it as slideshow.as; this file will contain all the code that
generates the slideshow dynamically.

5. We are going to use a few of components in this example and create them dynamically. Since
we need those components to be present in the document library, we reapply the same trick
we saw in an earlier example by dragging them onto the stage and then deleting them (that is
enough to have them included in the document’s library and, eventually, in the SWF file). In the
ActionScript code of this example, we will create a Button and a Loader component. Therefore,
drag a Button and then a Loader component on the stage and, just after, delete both of them.

6. In order to use the Slide class in a Flash document and create slides dynamically, we must find
it in the library. Since there is no Slide component, we are quickly going to create one. Select
Insert ➤ New Symbol and create a new movie clip symbol named Slide. Go back to the main
scene (Scene1), since we will leave the Slide symbol empty.

103

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 103

7. Select the newly created Slide symbol in the document library and specify that is implemented
using the ActionScript class mx.screens.Slide both in the Linkage Properties and the Component
Definition dialog boxes. As a result of both settings, the document library should display that
the Slide symbol is now a component.

8. The previous steps completed the creation of the Flash document, but its stage is empty. Its
library contains three components (Button, Loader, and the one we created and named Slide).
The first frame includes an external ActionScript file named slideshow.as; it is this code that
will create the whole slideshow application dynamically!

Copy the following code into the slideshow.as file. After copying the code and saving the
ActionScript file, you can test your movie.

import mx.screens.Slide;
import mx.transitions.*;
import mx.transitions.easing.*;
import mx.controls.Button;
import mx.controls.Loader;

// initialization objects
var initMasterSlide = {

_x:0, _y:0,
autoKeyNav: "true",
overlayChildren: false,
playHidden: true,
tabChildren: true,
tabEnabled: false,
focusEnabled: true

};

var initChild = {
_x:0, _y:0,
autoKeyNav: "inherit",
overlayChildren: false,
playHidden: true,
tabChildren: true,
tabEnabled: false,
focusEnabled: true

};

var initFade = {
type:Fade,
duration:2,
easing:None.easeNone,
param1:empty,
param2:empty

};

104

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 104

var initPixelDissolve = {
type:PixelDissolve,
duration:2,
easing:None.easeNone,
xSections:32,
ySections:24

};

var initBlinds = {
type:Blinds,
duration:2,
easing:None.easeNone,
numStrips:24,
dimension:1

};

// handle button navigation - keyboard works too without any
➥ handler to be implemented
function click(eventObject) {

switch (eventObject.target) {
case sldMainNavigation.btnPrev:

sldMainNavigation.currentSlide.gotoPreviousSlide();
break;

case sldMainNavigation.btnNext:
sldMainNavigation.currentSlide.gotoNextSlide();
break;

}
}

function reveal(eventObject) {
switch (eventObject.target) {

case sld01:
if (!eventObject.target._isSlide ||

➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initFade.direction = 0;
TransitionManager.start(eventObject.target, initFade);
}
break;

case sld02:
if (!eventObject.target._isSlide ||

➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initPixelDissolve.direction = 0;
TransitionManager.start(eventObject.target,

➥ initPixelDissolve);
}

105

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 105

break;
case sld03:

if (!eventObject.target._isSlide ||
➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initBlinds.direction = 0;
TransitionManager.start(eventObject.target, initBlinds);
}
break;

}
}

function hide(eventObject) {
switch (eventObject.target) {

case sld01:
if (!eventObject.target._isSlide ||

➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initFade.direction = 1;
TransitionManager.start(eventObject.target, initFade);
}
break;

case sld02:
if (!eventObject.target._isSlide ||

➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initPixelDissolve.direction = 1;
TransitionManager.start(eventObject.target,

➥ initPixelDissolve);
}
break;

case sld03:
if (!eventObject.target._isSlide ||

➥ (eventObject.target._isSlide &&
➥ eventObject.target.currentSlide)) {

initBlinds.direction = 1;
TransitionManager.start(eventObject.target, initBlinds);
}
break;

}
}

// create rootSlide
var sldMainNavigation = this.createClassObject(Slide,
➥ "sldMainNavigation", this.getNextHighestDepth(),
➥ initMasterSlide);

106

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 106

// create child slides
var sld01 = sldMainNavigation.createChild(Slide, "sld01",
➥ initChild);
var sld02 = sldMainNavigation.createChild(Slide, "sld02",
➥ initChild);
var sld03 = sldMainNavigation.createChild(Slide, "sld03",
➥ initChild);

// create rootSlide content
sldMainNavigation.createClassObject(Button, "btnPrev",
➥ sldMainNavigation.getNextHighestDepth(),
➥ {_x:10, _y:10, label:'Prev'});
sldMainNavigation.createClassObject(Button, "btnNext",
➥ sldMainNavigation.getNextHighestDepth(),
➥ {_x:120, _y:10, label:'Next'});

// add listeners to rootSlide buttons
sldMainNavigation.btnPrev.addEventListener("click", this);
sldMainNavigation.btnNext.addEventListener("click", this);

// create child slides content
sld01.createClassObject(Loader, "myLoader",
➥ sld01.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image1.jpg"});
sld02.createClassObject(Loader, "myLoader",
➥ sld02.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image2.jpg"});
sld03.createClassObject(Loader, "myLoader",
➥ sld03.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image3.jpg"});

// add listeners to slides reveal/hide
sld01.addEventListener("hide", this);
sld01.addEventListener("reveal", this);
sld02.addEventListener("hide", this);
sld02.addEventListener("reveal", this);
sld03.addEventListener("hide", this);
sld03.addEventListener("reveal", this);

// go to the first slide
sldMainNavigation.gotoFirstSlide();

Let’s now examine each relevant part of the slideshow.as code separately.

107

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 107

Importing the Slide class
The first line of the ActionScript file imports the Slide class so that we can use its short name (Slide)
in the rest of the code:

import mx.screens.Slide;

Creating the screen hierarchy dynamically
Our example creates a screen hierarchy of four slides (master screen included). If this screen hierarchy
could have been displayed in a Screens window, its outline would have been like that shown in
Figure 4-10.

Figure 4-1. Screen hierarchy generated
dynamically in the example

The master screen is created using the same createClassObject method that we used in the previous
chapter:

var sldMainNavigation = this.createClassObject(Slide,
➥ "sldMainNavigation", this.getNextHighestDepth(), masterSlideInit);

while the three children are created using the createChild method, which is more appropriate in this
case, since we are creating screens that do have a parent:

var sld01 = sldMainNavigation.createChild(Slide, "sld01",
➥ childSlideInit);
var sld02 = sldMainNavigation.createChild(Slide, "sld02",
➥ childSlideInit);
var sld03 = sldMainNavigation.createChild(Slide, "sld03",
➥ childSlideInit);

Note that, very similarly to the slides created in a Slide Presentation document, the master screen will
contain, directly or indirectly, all the content of the slideshow.

When created dynamically, the master screen is initialized using the following object, which provides
the initial values of some of its properties:

var initMasterSlide = {
_x:0, _y:0,
autoKeyNav: "true",
overlayChildren: false,

108

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 108

playHidden: true,
tabChildren: true,
tabEnabled: false,
focusEnabled: true

};

Similarly, the three child screens are also initialized using an object:

var initChild = {
_x:0, _y:0,
autoKeyNav: "inherit",
overlayChildren: false,
playHidden: true,
tabChildren: true,
tabEnabled: false,
focusEnabled: true

};

Adding navigation in the master screen
The name of the master screen, sldMainNavigation, was chosen to emphasize that this screen will
contain two buttons replicating the slideshow navigation. Although the Slide class has built-in func-
tionality to allow users to navigating via the arrow keys, adding a couple of buttons to the interface
and replicating the slideshow navigation is both an excuse to provide an example using components in
the main screen and a design that may become essential in the case of slideshows installed on a sys-
tem with a touch-screen but no keyboard.

The two buttons are created dynamically and added to the master screen AFTER adding the three
child screens:

sldMainNavigation.createClassObject(Button, "btnPrev",
➥ sldMainNavigation.getNextHighestDepth(),
➥ {_x:10, _y:10, label:'Prev'});
sldMainNavigation.createClassObject(Button, "btnNext",
➥ sldMainNavigation.getNextHighestDepth(),
➥ {_x:120, _y:10, label:'Next'});

By adding the buttons after the three slides, we can modify the standard rule that a child’s content
appears on top of the father’s content. Each child slide will load a JPG image that is as big as the whole
stage.

If the same slideshow would have been created statically, the JPG images would have overlapped any
content present in the parent screen (the master screen), making the two buttons invisible and, there-
fore, inaccessible.

Since we are creating the whole slideshow programmatically, we can modify that behavior, and we can
make the master screen’s content (the two buttons) appear on top of the children’s content; thus the

109

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 109

JPG images that will be loaded at runtime will appear underneath the navigation buttons, as shown in
Figure 4-11.

Figure 4-11. The navigation buttons added to the main screen

This simple, yet significant, case shows how coding can overcome the limitations introduced by the
authoring environment.

Implementing the buttons-based navigation
Now that we have ensured that two buttons (Prev and Next) are always visible on top of the child
screens, we need to handle the click event and react by navigating to the previous or next slide
respectively.

The click event handlers are implemented at the _root level in two steps; first we register what
object is listening to both click events:

sldMainNavigation.btnPrev.addEventListener("click", this);
sldMainNavigation.btnNext.addEventListener("click", this);

and then we provide an event handler that checks what button has been clicked and reacts accord-
ingly:

function click(eventObject) {
switch (eventObject.target) {

case sldMainNavigation.btnPrev:
sldMainNavigation.currentSlide.gotoPreviousSlide();
break;

110

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 110

case sldMainNavigation.btnNext:
sldMainNavigation.currentSlide.gotoNextSlide();
break;

}
}

Using Loader components in the child screens
Apart from the two Button instances in the main screen, our example creates three additional com-
ponents dynamically by adding a Loader component instance to each of the three child screens:

sld01.createClassObject(Loader, "myLoader",
➥ sld01.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image1.jpg"});
sld02.createClassObject(Loader, "myLoader",
➥ sld02.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image2.jpg"});
sld03.createClassObject(Loader, "myLoader",
➥ sld03.getNextHighestDepth(),
➥ {_x:0, _y:0, _width:640, _height:480,
➥ contentPath: "image3.jpg"});

You may well remember that the Slide class is a descendant of the Loader class, and, therefore, you
may wonder why we added a Loader component instance to each slide instead of directly loading the
JPG files via their contentPath property.

By adding a Loader component to the slides, we create a more flexible design that allows us to include
external imagery (and components) inside a screen.

For instance, by following the approach demonstrated here, you could easily implement a screen con-
taining several loaders, each of them fetching an image from a different external source.

Introducing the transitions
Since we are implementing a dynamic slideshow, it makes sense to use one of the fancier functionali-
ties included in the component architecture: transitions.

Transitions are capable of animating a screen when it becomes visible or before it disappears from the
stage.

The component architecture includes ten different transition effects, each of them encapsulated in its
own class and customizable via effect-specific parameters and several, already implemented, easing
methods. Easing methods control the speed of an animation, defining its accelerations and decelerations.

The combinations of transition effects, effect parameters, and easing methods are endless and worth
experimenting with to achieve realistic animations of the content when it appears or disappears from
stage.

For a full list of the available transitions, their parameters, and the easing methods, refer to Appendix B.

111

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 111

The example that we have built demonstrates how to apply transitions programmatically by using
three of them: Fade, PixelDissolve, and Blinds. Note that the name of a transition is also the name
of the ActionScript class that implements it. All the transition classes are derived from the common
base class Transition.

Transitions are created and managed with the help of another class: the TransitionManager class.

As you may recall from previous discussions, the TransitionManager class is a manager class. Manager
classes specialize in supporting an application-oriented functionality that, in the case of the
TransitionManager, involves starting the transitions and stopping them whenever necessary. In
the section “Manager Classes” later in this chapter, we will examine the other manager classes
included in the component architecture.

Importing the transition classes
In order to avoid the very long names that would have made the source code lengthier and less read-
able, we import all the transitions and easing classes by adding the following lines at the beginning of
the slideshow.as file:

import mx.transitions.*;
import mx.transitions.easing.*;

Since we import all the transition-related classes, you can reuse this example later on to quickly exper-
iment with other transitions by using their short names. Just remember to create the proper initializa-
tion objects, since each transition class has its own specific parameters. In the current example, we use
three different transition effects and, therefore, we define three different initialization objects:

var initFade = {
type:Fade,
duration:2,
easing:None.easeNone,
param1:empty,
param2:empty

};

var initPixelDissolve = {
type:PixelDissolve,
duration:2,
easing:None.easeNone,
xSections:32,
ySections:24

};

var initBlinds = {
type:Blinds,
duration:2,
easing:None.easeNone,
numStrips:24,
dimension:1

};

112

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 112

Screen events and transition sequencing
It makes sense to animate a screen’s content via a transition effect whenever it becomes visible and
just before it becomes invisible.

Screens provide two events that can be used to synchronize the start of a transition effect:

reveal: Broadcasts when the screen’s state changes from invisible to visible

hide: Broadcasts when the screen’s state changes from visible to invisible

It is interesting to note that both events are originally implemented in the UIObject class and are
therefore available to every component in the architecture.

In order to intercept the change of the visibility state of the children slides, the _root object is regis-
tered as a listener to both the events (hide and reveal) of each slide:

sld01.addEventListener("hide", this);
sld01.addEventListener("reveal", this);
sld02.addEventListener("hide", this);
sld02.addEventListener("reveal", this);
sld03.addEventListener("hide", this);
sld03.addEventListener("reveal", this);

Two event handlers are implemented to react to those events:

// reveal event handler
function reveal(eventObject) {

............................
}

// hide event handler
function hide(eventObject) {

............................
}

Note that the implementations of the two functions are identical with the sole exception of the defi-
nition of the direction parameter.

To make the example clear and visually consistent, we use the same transition effect in association
with a specific slide and define the direction of the effect according to the initial state of the screen
(invisible/visible):

A Fade transition is associated with the first child screen (sld01), and starts when the slide
becomes either visible (reveal event) or invisible (hide event). The direction parameter is set
according to the specific event.

A PixelDissolve transition is associated with the second child screen (sld02), and starts when
the slide becomes either visible (reveal event) or invisible (hide event). The direction param-
eter is set according to the specific event.

A Blinds transition is associated with the third child screen (sld03), and starts when the slide
becomes either visible (reveal event) or invisible (hide event). The direction parameter is set
according to the specific event.

113

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 113

The association slide/transition effect is created by starting the transition in response to the specific
event (hide or reveal). Each transition is started by first defining the direction parameter and then
passing the refined initialization object to the start method of the TransitionManager class as shown
in the following lines:

initFade.direction = 0;
TransitionManager.start(eventObject.target, initFade);

The direction parameter is set to 0 or 1 depending on whether the slide is being revealed (fade in)
or hidden (fade out). Apart from the direction parameter, all the other parameters in the initialization
object (initFade) have the same values regardless of whether the screen is appearing or disappearing.

Run the example and navigate among the screens of the slideshow to fully grasp what is going on and
what the TransitionManager contributes in controlling the concurrent execution of the various tran-
sition effects.

Working with forms
Forms are in many ways similar to slides because both of their classes are derived from the Screen
class. However, we have already seen that forms are a more general-purpose kind of screen, since they
do not include any default navigation.

Basically, the Form class adds very little to the base Screen class and, therefore, is a simpler class than
the Slide class. In fact, the only feature of practical interest introduced by the Form class is the
visible property that has been defined to facilitate the design of custom form-based navigations.

The final section of this chapter is dedicated to completing our exploration of the application-
oriented features included in the component architecture by examining the manager classes.

Manager classes
Manager classes provide specific functionality that can be helpful when building a component-based
application. Typically, an application contains only one instance of a specific manager that is instanti-
ated by the architecture itself on an as-needed basis.

The component architecture includes six manager classes:

DepthManager: Manages the depth of the components and movie clips in the application. The
depth concept is the same as the one provided in the Flash model: an object’s depth is a num-
ber indicating its position in an imaginary z-order. The z-order determines whether an object is
in front or behind another object.

FocusManager: Manages the keyboard focus and provides a means to specify the tab order of
components. The tab order defines which component receives focus when the user presses the
TAB key to navigate among the components in an application.

PopUpManager: Manages the creation and destruction of overlapping windows that can be
modal or nonmodal. When created, a modal window restricts the user interaction to its own
area until it is removed from the stage.

114

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 114

StyleManager: Manages the styles defined for each component and their inheritance, and is
mostly used internally by the architecture. You would be interested in using this class manager
only when creating new styles for a new component.

SystemManager: Mostly used internally by the architecture, it implements a screen property
that provides an almost redundant functionality to access the stage coordinates. At the time of
writing, the implementation of this class is not very mature, and its use should be avoided
because the existence of the Stage object, a built-in ActionScript object, provides similar infor-
mation to the one you may extract from the screen property.

TransitionManager: Manages the life cycle transitions that can also happen concurrently.

Not all the manager classes are important from a developer’s perspective. The current SystemManager
is of no interest, being mostly a mechanism used internally by the architecture, so we will not spend
time looking at it. The TransitionManager becomes handy only when you intend to include transi-
tions in your application by using similar techniques to the one that we have already examined in this
chapter. The StyleManager is another manager class used mostly internally, and you will see some
example of its rare use when learning to use styles, later on in the book.

So, there are really just three manager classes that are frequently used and contribute significantly to
the structure of a component-based Flash application: DepthManager, FocusManager, and PopUpManager.
Let’s examine each of them in greater detail.

Managing depth
The depth of a movie clip or component is an attribute specifying its position in the z-order of a spe-
cific timeline.

The z-order indicates the arrangement of objects one over another. The depth of an object is just a
number that refers to the z-order: an object with a certain depth will appear behind an object with
a higher depth, and its content may be hidden if the outlines of the two objects overlap.

MovieClip methods for handling depth
The MovieClip class provides four methods that allow you to control the depth of an object pro-
grammatically. Since the MovieClip class is an ancestor of the UIObject class, these methods are
available to every component in the architecture.

The four methods are as follows:

getDepth: Returns the depth of a movie clip instance.

getInstanceAtDepth: Returns the reference to a MovieClip instance located at the specified
depth, if any; undefined is returned if there is no instance at that depth.

getNextHighestDepth: Returns an integer that is associated with the next available depth that
would place a newly created object on top of all the objects already existing in the same time-
line. We used this method in the dynamic slideshow example to stack the objects created
dynamically in the most intuitive way.

swapDepths: Exchanges the depth of two objects so that the object that was on top moves
behind the other one.

115

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 115

The four methods implemented by the MovieClip class are very useful, and you will certainly invoke
some of them when handling the depth of a specific object.

With the DepthManager class, the component architecture goes a step further by providing a central-
ized point that allows you to stack objects with flexibility while keeping certain depths reserved for
specially identified uses.

A more flexible way of stacking objects
The DepthManager allows you to achieve a better organization of your application’s depths by splitting
the z-order into two separate spaces:

The Relative Space: In this space, you can freely define the depths of your objects in relative
terms. Such terms can be expressed by using depth categories or referring to another, already
existing, object. Note that, in both cases, the DepthManager can rearrange the depths of other
objects, if necessary, to fulfill your request.

The Reserved Space: This space is maintained by placing a specially created movie clip at the
highest depth of the _root object and by creating the objects at reserved depths inside this
special movie clip.

Most of the time, you will create or move objects in the Relative Space. The DepthManager methods
for allocating objects in the Relative Space are

createChildAtDepth: Creates an instance of a symbol in the library at the specified relative
depth category

createClassChildAtDept: Creates a component instance of the specific class at the specified
relative depth category

setDepthAbove: Places an object just above another object, moving any other object in the
timeline if necessary

setDepthBelow: Places an object just below another object, moving any other object in the
timeline if necessary

setDepthTo: Places an object in a relative depth category

DepthManager divides the Relative Space into three relative depth categories:

Bottom Layer: This category contains depths that are below the other two categories in the
Relative Space.

Top Layer: This category contains depths that are on top of those in the Bottom Layer and
below those in the Topmost Layer.

Topmost Layer: This category contains depths that are on top of those in the other two cate-
gories in the Relative Space.

DepthManager defines four constants to allow you to obtain depths within a category in the relative
space:

kBottom: Specifies a depth within the Bottom Layer category.

kTop: Specifies a depth within the Top Layer category.

116

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 116

kTopmost: Specifies a depth within the Topmost Layer category.

kNotopmost: Specifies a depth not within the Topmost Layer category. This constant is typically
used to remove objects from the Topmost Layer category.

DepthManager also implements reserved depths to be used in special cases. Such depths are allocated
in a special space, a Reserved Space, which is above any other object in the _root.

DepthManager provides two methods for creating objects at such depths:

createClassObjectAtDepth: Creates a component instance of the specific class at the speci-
fied reserved depth

createObjectAtDepth: Creates an instance of a symbol in the library at the specified reserved
depth

At the time of writing, DepthManager includes two reserved depths in the Reserved Space, which are
accessed via their respective constants:

kCursor: This is the topmost of all depths and is usually reserved for a cursor-like object as sug-
gested by the name of its constant.

kTooltip: This is just below the previous reserved depth, and it is intended for use as tooltip-
like content, as suggested by the name of its constant.

Figure 4-12 shows the depth relationships among the Relative Space (and its depth categories) and the
Reserved Space (and its reserved depths).

Figure 4-12. Relative Space and Reserved Space

The methods and constants implement by DepthManager may seem obscure at first. However, they can
indeed help you in better organizing the depths of your application’s objects, since it models them
rationally in two different spaces (Relative and Reserved), plus it rearranges automatically all the
object depths in the background to keep those models consistent with your specification.

117

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 117

Let’s make a few simple tests so you can quickly grasp how to use DepthManager and let it organize the
depths of the objects in an application.

Testing the DepthManager behavior
In the following examples, we will create instances of the Button component dynamically for test pur-
poses only. Remember that, in order to create a component instance dynamically, such a component
must be present in the library of the Flash document, and the quickest way of ensuring this is to drag
the component onto the stage of the document once and then remove it.

The first test is very simple; you can create a new Flash document and just drop the following
ActionScript in its first and only frame:

import mx.managers.DepthManager;
import mx.controls.Button;
trace("DepthManager.kTop = " + DepthManager.kTop);
button1 = createClassChildAtDepth(Button, DepthManager.kTop,
➥ {_x: 10, _y:10, label: "Button 1"});
trace("button1 depth = " + button1.getDepth());
button2 = createClassChildAtDepth(Button, DepthManager.kTop,
➥ {_x: 15, _y:15, label: "Button 2"});
trace("button2 depth = " + button2.getDepth());

The result of testing the movie in the environment is displayed in Figure 4-13.

Figure 4-13. DepthManager, test 1

We create two Button instances dynamically using a DepthManager method (createClassChildAtDepth)
and a constant (kTop) to place both of them in the Top Layer category. As a result of this, the second
instance appears on top of the first one because new instances automatically appear on top if put in
the same depth category.

In particular, DepthManager assigns a depth of 20 to button1 and a depth of 40 to button2. The gap of
20 positions is intentionally left by DepthManager to allow you to fit objects in between without having
to necessarily rearrange other depths. Such gaps, therefore, increase the performance of the applica-
tion transparently.

118

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 118

In the example, we also trace the value of the kTop constant to show that it is insignificant for the
developer, since it does not have any relationship with the actual depth values of the objects. What
you need to remember is the name of the constant (kTop) and the fact that it specifies placing the
objects in the Top Layer, which is between the Bottom Layer and the Topmost Layer in the Relative
Space of depths managed by the DepthManager.

Our second example is almost as simple as the first one. Once again, create an empty Flash document
and drop the following code into its first and only frame:

import mx.managers.DepthManager;
import mx.controls.Button;

createClassObject(Button, "button1", 20,
➥ {_x: 10, _y:10, label:'Button 1'});
trace("button1 depth = " + button1.getDepth());
button2 = createClassChildAtDepth(Button,
➥ DepthManager.kTop, {_x: 15, _y:15, label: "Button 2"});
trace("button2 depth = " + button2.getDepth());
button3 = createClassChildAtDepth(Button,
➥ DepthManager.kTop, {_x: 20, _y:20, label: "Button 3"});
trace("button3 depth = " + button3.getDepth());

The result of testing the movie in the environment is displayed in Figure 4-14.

Figure 4-14. DepthManager, test 2

In this example, we create three Button instances. For the first, we do not use DepthManager, instead
creating it by invoking the createClassObject method of the UIObject class and specifying an
absolute depth of 20.

Why do we do this? We are trying to be naughty and create a problem for DepthManager. In the pre-
vious example, we discovered that DepthManager “likes” to place the first object created in the Top
Layer at an absolute depth of 20.

What happens then if, like in our second example, an object already exists there?

119

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 119

The answer is shown in the output window. The DepthManager realizes this and, quite simply, adds a
depth of 40 to button2 and 60 to button3, keeping faith in its previously examined incremental pol-
icy. This demonstrates that DepthManager is aware of depths and handles them quite consistently.

By now, you will have realized that you can use DepthManager to avoid having to deal with absolute
depths!

Furthermore, the Relative/Reserved Spaces model implemented by DepthManager suggests a rational
way of arranging your objects’ depths when designing your application.

We can now move on and examine the next manager class.

Managing the keyboard focus
Some users may prefer to interact with your Flash applications by using the keyboard more than the
mouse.

Because of this, the design of your applications should include the implementation of a logical tab
order to allow your users to navigate through the various components using the TAB key.

The FocusManager is the manager class you should be using when defining the order in which compo-
nent instances receive the keyboard focus when the user presses the TAB key.

Each component in the architecture is aware of the FocusManager and uses it transparently so that,
most of the time, you don’t have to write any code at all to manage the keyboard focus.

Note that there are a couple of issues that you may find annoying when testing the tab order of a
Flash movie:

The TAB key does not work when testing the movie in the authoring environment. You must run
the compiled movie in the Flash player outside of the authoring environment or in a browser.

When testing the movie in the Flash player or in a browser, you must ensure that the movie has
the focus by clicking its area once before pressing the TAB key and testing the tab order.

If you launch one of the last two examples we built for the DepthManager in the Flash player and take
the precaution of clicking the stage once to transfer the keyboard focus to the movie, you will realize
that the FocusManager is indeed already handling the tab order; in fact, when you press the TAB key, a
light green rectangle (the focus rect) surrounds the area of the first button and, if you keep pressing
the TAB key, moves through all the Button instances on the stage.

By default, the FocusManager looks at the tabIndex property of the objects on stage to define the tab
order, starting from the lowest tabIndex value up to the highest one and then cycling by going back
to the lowest one. If the tabIndex property is not defined, the FocusManager looks at the depth of the
object, which explains why the DepthManager examples had a tab order even if we didn’t explicitly
define one.

120

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 120

Defining a focus schema
In addition to tabIndex, the FocusManager utilizes two additional properties of an object (if it is either
a movie clip or a component):

tabChildren: Indicates whether the object has children that can receive the focus

tabEnabled: Indicates whether the object itself can receive the focus

An object that can receive the focus is usually referred as a tab target. You define the tab targets of
your application by setting their tabChildren/tabEnabled property accordingly.

You also define the navigation order of the tab targets (tab order) by assigning the proper values to
the tabIndex property of each tab target.

In the end, a tab schema is implemented by properly defining up to three properties for each object
in your application (tabEnabled, tabChildren, tabIndex).

The following code implements a simple focus schema:

container_mc.tabChildren=true;
container_mc.tabEnabled=false;

textInput1.tabIndex = 1;
textInput2.tabIndex = 2;
container_mc.textArea1.tabIndex = 3;
container_mc.textInput3.tabIndex = 4;

textInput1.text = "textInput1";
textInput2.text = "textInput2";
container_mc.textArea1.text = "textArea1";
container_mc.textInput3.text = "textInput3";

focusManager.setFocus(container_mc.textArea1);

To implement this example, you must have two TextInput instances on the _root (named textInput1
and textInput2, respectively) and another two component instances (a TextArea named textArea1
and another TextInput named textInput3) inside a movie clip named container_mc that is placed at
_root level as well.

Remember to run this example inside the Flash player since the last line (setting the focus on the
textArea1) would not be effective in the authoring environment. You can find a test01.html file in
the source code associated with this section that you can use for this purpose. Note that, at the time
of writing, Internet Explorer is the only browser to support the JavaScript focus function of the Flash
player accessible, which is accessible via JavaScript as displayed in this code segment extracted from
the test01.html file:

window.onload = function () {
window.document.test01.focus();

}

121

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 121

In the case of other browsers, the user must click the Flash movie clip embedded in the HTML file in
order to transfer the focus to the Flash player and then test the example.

The main points to take away from this example are the following:

You can define a tab order programmatically that can include containers and their children.
Such a tab order is supported transparently and intuitively by the FocusManager.

Since there are components in the application, you can access a FocusManager instance named
focusManager at the _root level. The example accesses it to invoke the setFocus method, ini-
tially giving the focus to the textArea1 instance inside container_ mc.

Figure 4-15 shows the output of the example run within the Flash player.

Figure 4-15. Tab schema example

At the time of writing, the implementation of the setFocus method presents a little quirk: it sets the
focus to the specified object (textArea1 in our example) without making the focus rect appear
around the object. The focus rect appears in this example only when you start pressing the TAB key to
navigate around the components and test that the implementation of the focus schema follows the
intended tab order.

122

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 122

Setting a default button
The FocusManager supports the definition of a default button. This button receives a click event
whenever the user presses the ENTER key (or the RETURN key on a Mac).

You can specify a default button via the defaultPushButton property as in the following example:

focusManager.defaultPushButton = buttonInstance;

The FocusManager also provides a method for sending a click event to the default button program-
matically: sendDefaultPushButtonEvent.

focusManager.sendDefaultPushButtonEvent();

When the previous line of code is executed, the default button receives a click event that is also
propagated to any other listener of the default button click event, if any.

Tab order in a browser
You may experience a couple of unwanted behaviors when your Flash application is embedded inside
an HTML page in your browser:

The Flash movie usually does not receive the focus once the page is loaded. As a result, any call
to the setFocus method may be ineffective.

When navigating the component instances in the application by pressing the TAB key, the focus
eventually moves outside of the Flash application to the HTML page and then to the browser.

Unfortunately, the FocusManager cannot handle such situations, since they fall beyond its scope. In
fact, the only way you can address such misbehaviors is by modifying the code of the HTML page host-
ing the Flash movie.

In the first case, in order to pass the focus to the Flash movie, once that HTML page is loaded, you can
resort to some JavaScript code as in the following example:

<script language="JavaScript">
<!--

window.onload = function () {
window.document.test01.focus();

}

-->
</script>

where test01 is the value of the id/name attributes of the HTML tag embedding the Flash movie
(either object or embed).

However, the JavaScript focus method does not work in some combinations of browser
platform/Flash player. Eventually, the best way of setting the focus to the Flash movie still is to click
once on its stage.

123

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 123

To restrict/allow the focus to move away from the Flash application when navigating with the TAB key,
you can specify an additional attribute (SeamlessTabbing) in the HTML code, as in this example:

<param name="SeamlessTabbing" value="false"/>

This keeps the focus inside the Flash movie, since SeamlessTabbing was set to false.

Disabling the focus rect
A component instance knows how to draw a focus rect around its area to highlight that it has received
the focus.

You can disable this behavior programmatically by setting a component instance drawFocus method
to null, as in the following example:

componentInstance.drawFocus = null;

If the focus rect of a component instance looks unpleasant in the design of your application, the pre-
vious line prevents it from being drawn.

In the end, you can write an application without bothering about the functionality provided by the
FocusManager. However, such functionality becomes essential when the requirements of your applica-
tion include a specific focus schema.

Let’s now examine the last manager class to be covered in this chapter, PopUpManager.

Managing windows
Nowadays many applications imitate the multiwindow environment typical of modern operating sys-
tems. If your intent is to design a similar kind of application, you will certainly find a big help in the
functionality provided by the PopUpManager.

The PopUpManager is capable of creating and destroying overlapping windows that can be either
modal or nonmodal and exposes its functionality via two public methods only:

createPopUp: Creates a pop-up window dynamically.

deletePopUp: Added by the PopUpManager to a window instance previously created by invoking
the createPopUp method. Calling windowInstance.deletePopUp destroys the related window
instance.

The createPopUp method of the PopUpManager offers a number of options that are worth a thorough
examination. Following the usual concrete approach, we are going to explore its functionality via a
complete example.

A simple window-based system
The following example will create a window-based application with very few lines of code, exploiting
the functionality provided by the PopUpManager.

124

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 124

In order to create the example, you just need a new Flash document that includes the Window and the
Button components in its library. By now, you should be well aware that the easiest way to fulfill such
a requirement is to create an instance of each type of component on stage and then delete it.

The rest of the example relies on the following code to be placed on the first and only empty frame
of the Flash document:

import mx.managers.PopUpManager;
import mx.containers.Window;
import mx.controls.Button;

var windowId:Number = 1;

function onCloseClicked(eventObject) {
eventObject.target.deletePopUp();

}

function getWindowInitObject() {
return {_x:50,

_y:50,
_width: 400,
_height: 400,
closeButton:true,
title: "Window" + windowId++

}
}

function click(eventObject) {
var windowInstance = PopUpManager.createPopUp(this,

➥ Window, false, getWindowInitObject());
var closeListener = new Object();
closeListener.click = onCloseClicked;
windowInstance.addEventListener("click", closeListener);

}

btnCreateWin = createClassObject(Button, "btnCreateWin", 1,
➥ {_x:10, _y:10, label:'Create Window'});
btnCreateWin.addEventListener("click", this);

It is almost incredible that such a tiny script can create a window-based system within a Flash movie.
Of course, the code of this example could have been even shorter, but that would have affected its
readability and would not have sufficiently highlighted the most essential aspects of creating the
window-based system.

Before analyzing the code, you may find it convenient to test the movie and check out its behavior.

Once you run the movie, the stage will look almost empty. Only a single button labeled Create
Window appears. Once you clicked it a few times, several window instances will have been created on
the stage, although you may notice only the last one created, since they are stacked on top of each
other.

125

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 125

You can move the window instances around by dragging their title bar in exactly the same way that
you move the windows of your operating system. After dragging the windows around to discover how
many of them you have actually created, your stage may well resemble the one shown in Figure 4-16.

Figure 4-16. A simple window-based system

You will certainly have noticed the little x button at the top-right corner of each window instance. Its
function is, again, as you’d expect. When you click it, the window instance is destroyed and, hence,
disappears from the stage.

You are welcome to play around with this example, but, apart from creating and destroying window
instances, there isn’t much more to it.

Destroying and creating window instances is, indeed, the core of the functionality provided by the
PopUpManager. Let’s examine how it has been exploited by our example.

Creating a window instance
You have already learned how to create a Button instance dynamically and react to its click event;
therefore, we can jump directly to examining how the reaction to clicking the Create Window button
actually creates a window instance.

Window instances are created by the following line of code:

var windowInstance = PopUpManager.createPopUp(this, Window, false,
➥ getWindowInitObject());

126

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 126

This requests PopUpManager to create a window instance that is a child of the _root object (first
parameter), is an instance of the Window class (second parameter), is a nonmodal window (third
parameter), and should be initialized with properties included in the initialization object returned by
the getWindowInitObject function (fourth parameter).

It may seem excessive to implement a function (getWindowInitObject) for creating an initialization
object but, if you look at its code, you will discover that it manages a windowId variable that allows us
to have a different name in the title of each window: quite handy for visually distinguishing window
instances from each other.

The createPopUp method returns a reference to the created object that is stored in the
windowInstance variable. This variable is used in the next lines of code to implement an object that is
listening to the click event of the window’s close button:

var closeListener = new Object();
closeListener.click = onCloseClicked;
windowInstance.addEventListener("click", closeListener);

You may be wondering why you have to implement the code for reacting to the user clicking the close
button. Well, apart from the fact that it gives us a golden opportunity for invoking the deletePopUp
method, it also gives us maximum flexibility as to how to handle such a user request. In fact, quite fre-
quently you may request the user to confirm his or her choice, especially if it is a critical one.

The actual handler of this click event is implemented at _root level by the following function:

function onCloseClicked(eventObject) {
eventObject.target.deletePopUp();

}

This small function does more than it may appear to at first sight. It actually knows that the
deletePopUp is a method of a window instance, and that it was the PopUpManager that added such a
method to the window instance. It also knows that the window instance associated to the specific
event instance is stored in the target property of the eventObject passed as parameter to the event
handler. By uniting all this information, the onCloseClicked function is able to close the proper win-
dow instance in a single line of code.

You may well refer back to this example again when you start building your first window-based
application and experiment with its implementation. Before leaving this topic, however, there is an
experiment that you may like to try immediately.

Experimenting with modal windows
A window that behaves like the ones in the previous examples, allowing you to interact with the
objects on the stage that are outside of the window itself, is called nonmodal or modeless. For
example, the fact that all the windows in the previous example were modeless allowed you to move
from one window to the other and also interact with the Create Window button.

127

BUILDING COMPONENT-BASED APPLICATIONS

5939CH04.qxd 1/25/06 10:40 AM Page 127

Modal windows, on the other hand, restrict user interaction to the content of the active window
instance only. You can experience such behavior by changing a single line of code in the previous
example. The change will impact the createPopUp method, and the new line will look as follows:

var windowInstance = PopUpManager.createPopUp(this, Window, true,
➥ getWindowInitObject());

What changed is the Boolean value passed as the third parameter. The value of true indicates that the
window instance being created is modal.

If you run the example again, you will experience pretty different behavior. Once you have created the
first window, you cannot access the Create Window button anymore. The button is still there, but you
cannot click it until you destroy the existing window instance by clicking its close button. It is only
after destroying the modal window instance that you can access the Create Window button again.

A modal window restricts the user interaction to the window instance itself. Every other component
outside the window instance becomes inaccessible until the modal window instance is destroyed.

Summary
In this chapter, you have learned that the scope of the component architecture extends far beyond
the set of components—it includes application frameworks and application-oriented functionality
encapsulated in manager classes.

In particular, you have learned about the screen concept and how it can be conveniently used to
model your applications around a screen-based hierarchy.

You have also encountered the really productive features provided by the manager classes, and you
now know how and when to use them.

However, soon you will realize that this very rich set of functionality made of components and classes
needs substantial experience to be used properly and conveniently.

This chapter ends the first part of the book, in which we focused on introducing the component archi-
tecture, its features, and how the most basic object-oriented programming techniques can be applied
to such features.

The second part of the book will expose advanced techniques and tools that will allow you to exploit
the full potential of the component architecture and be able to design and implement large-scale
component-based applications in which any aspect of the architecture’s standard components can be
customized.

128

CHAPTER 4

5939CH04.qxd 1/25/06 10:40 AM Page 128

EXPLOITING THE ARCHITECTURE

Part Two

5939CH05.qxd 1/25/06 10:59 AM Page 129

5939CH05.qxd 1/25/06 10:59 AM Page 130

131

Chapter 5

I not only think that we will tamper with Mother Nature,
I think Mother Nature wants us to.

Willard Gaylin

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 131

The previous chapter ended the introductory part, Part 1, of this book.

By reading Part 1, you have learned that the component architecture is a pretty large beast, made of
many thousands of lines of code that implement components via established design patterns, provide
frameworks for building new components and component-based applications, and implement various
classes that encapsulate application-specific functionality.

Starting with this chapter, Part 2 of the book will show you not only how to avoid getting lost in that
sea of options, but also how to leverage the existing application framework to bring it closer to the
sort of applications that you want to create using the architecture.

Exploiting the architecture
The component architecture is very rich in functionality, but can it really be successfully exploited? In
the early days of software development, function libraries were the ancestors of modern component
architectures. To exploit function libraries, however, was a pretty straightforward process: your pro-
gram either needed the functionality of the fooXYZ function or it didn’t; and if it did, you just had to
invoke the function fooXYZ and obtain its output.

In those days, computer displays were character-based, and program output was not much more com-
plex than a single line of text.

Nowadays, computer displays not only have very high resolutions, but they also are gates to multi-
window environments in which each window can contain all sorts of media, from high-quality graphics
to movies. In addition to multimedia capability, modern GUIs also support a wide range of formats,
data exchange via drag-and-drop, and much more.

Function libraries made of self-encapsulated functions could have never coped with this new virtual
reality: object-oriented architectures have become the natural answer to the new scenario.

The immense high complexity of an application user interface imposes a new, more complex, pro-
gramming paradigm.

It is true that object orientation simplifies the problem of developing a modern software application,
but let’s face it: reusing a component architecture is significantly more complex than using a library of
functions.

The only reason to accept such an increase in complexity is because of the numerous benefits that we
as developers can enjoy by choosing the object-oriented methodology and defining/reusing a compo-
nent architecture. This is a good place in the chapter to examine in detail what those benefits are.

Key benefits of a component architecture
By using the component architecture, you expect to be able to develop better, more powerful appli-
cations at a fraction of the time required to fully develop them on your own.

132

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 132

The following criteria should be considered whenever evaluating whether to use the component
architecture in your application or not:

Features: How much would it cost for you to re-create all the components and the function-
ality included in the architecture?

Robustness: How much would it cost for you to implement similar or even better design pat-
terns than those encapsulated in the architecture?

Scalability: How much would it cost for you to make your application as extensible as it can be
made using the architecture?

Maintenance: What’s the cost of producing a well-separated design like the one included in
the architecture to reduce the cost of testing and having an application resilient to changes
when requests will come in?

If you can successfully exploit what the component architecture can offer, then any other option
becomes insignificant. What you now need is to learn how you must work to make your applications
enjoy those benefits by learning how to gain advantage by using the component architecture.

What is your job, really?
Not infrequently, marketing hype can turn away real developers even before they actually evaluate a
product. “Use the XYZ technology and you will develop your application in an instant” is the kind of
advertisement you will typically see, and that can instantly trigger a negative reaction.

Most experienced developers are well aware that there isn’t such a thing as a silver bullet where appli-
cation development is concerned.

In this book, you have already read that you may produce better applications in less time by using the
component architecture. However, that is far from stating that it is a very quick process; it can still take
a significant amount of time.

The combination Flash Player/component
architecture has achieved a level of maturity to
be worth being considered for serious, custom-
made, large Internet applications. And nobody
is going to develop one of those overnight, not
even the fastest gun in town.

Regardless of its simplicity, the diagram in
Figure 5-1 illustrates what is probably the most
important objective of any software project
based on the component architecture.

On the left side of the diagram, notice the
component architecture with a reference to all
of its components, classes, frameworks, and
design patterns. On the right side is a complete
application, like the ones that you will be cre-
ating. In between is a dotted line labeled
“Functional Distance.”

133

ARCHITECTURE-BASED DEVELOPMENT

Figure 5-1. The Functional Distance

5939CH05.qxd 1/25/06 10:59 AM Page 133

The Functional Distance is an abstract measure of the functionality required by your application that
you will not find in the architecture, regardless of its many features; creating it is your job. The term
“distance” has been chosen to indicate a length that you must cover in order to complete your proj-
ect. Every time you develop an application based on the component architecture, you must cover that
distance.

The whole of Part 2 of this book is dedicated to showing you how to cover that distance, and also how
to make it conveniently shorter.

Raising the bar
Learning is a never-ending process, and a good developer, no matter how experienced, constantly dis-
covers better practices.

A component architecture represents an ideal place to store any hard-won knowledge so that it doesn’t
get lost and can be reused in the future.

Let’s examine what options you have to store your knowledge into the architecture.

Extend, expand, and alter
The logic of the component architecture is stored in the source code of a set of ActionScript classes
that developers can find in the Flash authoring environment.

The availability of the source code of the architecture is usually a requisite of serious projects since it
allows you to overcome the architecture’s limitations, if any.

Apart from learning a lot by examining that source code, developers face three different possibilities
when building applications that use such code:

Extend the architecture: By adding new classes that are derived from classes already existing
in the architecture and, as such, inheriting their functionality and purpose

Expand the architecture: By adding new classes that are not derived directly from the exist-
ing ones although may use them

Alter the architecture: By modifying the architecture’s already existing classes to fix a bug or
add/modify a global behavior

The three options have been listed in decreasing order of the frequency they are utilized. However, it
is important that you keep in mind all of them when planning to use the architecture, since each
option impacts the architecture in a very different way, and the choice of using one or the other can
severely influence the fortunes of your project.

Let’s examine what each option has to offer and how it affects your use of the architecture and, even-
tually, your work.

Extending the architecture
Extending the architecture involves creating a new class that inherits the functionality (and part of its
own identity) from one of the classes already present in the architecture.

134

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 134

Figure 5-2 illustrates a few examples and, more importantly, the “direction” of your developments
when you are extending the architecture.

Figure 5-2. Direction of extension

This diagram includes only a fragment of the component architecture (UIObject, UIComponent,
TextInput, SimpleButton, Button) and three different examples that extend it:

YourTextInput: A dummy name for a class that you may create to further specialize the behav-
ior of the TextInput component.

YourButton: Similar to the previous example, this is another class that you may create to add
new functionality to the Button component.

YourComponent: A class that inherits from UIComponent and, as such, it is up to you to imple-
ment its specific functionality by creating a brand-new component.

By creating new components that are based on existing ones or simply on the existing component
framework, your components can inherit a functional identity (as in the case of YourButton, which,
apart from any additions, is still a button) or, at least, be compliant with the interfaces/behavior set by
the architecture (as in the case of the brand-new component YourComponent).

When extending the architecture, you are making its class structure deeper, as illustrated by the direc-
tion line in Figure 5-2, which is vertical and points toward the bottom.

The main objectives of increasing the depth of the architecture are to customize existing components
or to create new components that are architecturally compatible with the preexisting ones (since they
inherit from a common base class if it is either UIObject or UIComponent).

The most frequent reason for customizing components is to have greater control over their appear-
ance. You will learn more about this when we examine the techniques for modifying the look of a
component via skins and styles later in the book.

135

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 135

Expanding the architecture
Expanding the architecture involves creating new classes that are not derived from classes in the archi-
tecture but that do utilize classes in the architecture.

Typically, but not necessarily, you discover the necessity of such classes when working on a particular
problem domain. Some of those classes will be useful only in the domain that originates them; in
other cases, you will expand the architecture with functionality that can be reused in almost any other
context.

Figure 5-3 illustrates a case where further functionality was added in the direction of the problem
domain. The ExoticOption class is utilized as a business object, the logic of which is added to the
component architecture instead of being derived from it.

Figure 5-3. Direction of expansion

In finance, an exotic option is any nonstandard security.

In our example, ExoticOption stands for a context-specific class and, as such, is not derived from any
of the classes already present in the architecture. ExoticOption is not a component of the user inter-
face. However, the ExoticOption class is expanding over the architecture because it makes use of
one or more of the classes in the architecture. For example, ExoticOption may use the Alert class
when the user must make a yes/no decision. This is not the same thing as being derived from the
architecture.

When expanding the architecture, you add classes that are figuratively at the same level of the root of
the structure (UIObject), since they are not derived from any preexisting class in the architecture. As
a result, the class structure of the architecture becomes wider, as illustrated by the direction line in the
Figure 5-3, which is horizontal and points toward the left and right sides of the structure.

Note that the difference in the direction of development is not just a figurative issue. As we saw
earlier, when extending the architecture, the new classes inherit some kind of functional identity

136

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 136

(a new kind of button or a new kind of UI component). Conversely, expanding the architecture implies
adding classes that introduce new functional identities in the architecture. Some of those functional
identities may be related to the business logic of the domain of your application (ExoticOption if
your client is in the financial industry, AminoAcids if instead your client belongs to the pharmaceutical
sector), but others may be domain independent and, therefore more reusable, as in the concrete
examples that we are going to examine later on when we expand and extend the architecture at the
same time to implement an XML layout engine.

Altering the architecture
Altering the architecture does not involve the creation of
new classes, but modifications to the ones already existing
in the architecture. Figure 5-4 illustrates an example of this.

Figure 5-4 includes the same fragment of the component
architecture utilized in Figures 5-2 and 5-3. But in this case,
there are no new classes added, since the change hap-
pened within one or more of the existing classes.

While the class structure of the architecture remains the
same, modifying the source code provided with the Flash
authoring environment can still alter the architecture.

Altering the architecture usually requires an in-depth
knowledge of its internals, and it is not recommended.
However, you may find yourself in a couple of different sit-
uations where this is necessary or convenient. For example:

When you need to fix a bug that is hindering your project. Since fixing a bug does not alter a
class-intended behavior, such alteration is very convenient as long as the final result actually
fixes the bug.

If you also decide to implement a global requirement. For instance, if all of your components
must be able to rotate in a 3D space, then you may well consider implementing such function-
ality via a rotate3D method and including the definition of this method in the UIComponent
class so as to have it consistently available for every component in the architecture.

From abstract ideas to a concrete example
From what you’re read so far, you are probably starting to appreciate that the contents of this chap-
ter are rather abstract, and the concepts discussed are fairly high level.

Component architectures usually start from a big picture, made of several high-level concepts. The
same is true for significant applications or additional layers of logic that are developed on top of a
large architecture.

Building a functional application requires more than learning what functionality is available in the
architecture and what programming techniques are required to use it. It also demands the ability to
translate high-level ideas into a logic design that can be successfully implemented on top of the archi-
tecture.

137

ARCHITECTURE-BASED DEVELOPMENT

Figure 5-4. Alteration (no direction)

5939CH05.qxd 1/25/06 10:59 AM Page 137

In order to see the many abstract concepts introduced earlier at work, we need a concrete example
capable of exploiting several, if not all, of the benefits that our component architecture can offer.

A classic application, such as an address book or a stock options manager, would leave much of the
functionality offered by the component architecture untouched and, as such, would not play the role
of a concrete example successfully.

Our ideal example should act as a logic layer developed on top of the component architecture,
employing not only every component, but also any other class included in the architecture. That is
what an XML layout engine must do in order to provide its own functionality, so we’ll use it as an ideal
example to put into practice the concepts we have discussed so far.

What is an XML layout engine?
In the context of this book, an XML layout engine represents an ideal tutorial since it can rationally
connect the numerous concrete examples required to introduce every aspect involved in controlling
the appearance and behavior of each UI component included in the architecture.

There’s an added bonus here—in its own right, an XML layout engine is a logic layer that can help you
a lot when it comes to building large-scale applications or even rapid prototyping.

An XML layout engine is a layer of logic that allows you to describe a complete user interface via a sin-
gle text file. The text file contains the XML necessary to describe the user interface; we can then use
that data to build it dynamically. Due to its nature, XML is particularly appropriate for describing com-
plex user interfaces, the likes of which are usually implemented using components nested inside a
hierarchy of containers.

An XML layout engine uses XML to achieve a neat separation between the implementation of a user
interface and the application-specific code. Such separation largely facilitates both the development
and maintenance of a component-based application.

XML layout engines are utilized in many software technologies these days. Operating systems, Internet
browsers, and several major applications already have embedded XML layout engines, or announce-
ments have been made of their availability in the next version.

Basically, several products have already successfully demonstrated that an XML layout engine can play
a strategic role in the implementation of user interfaces for reasons that we are going to examine in
the next section.

Benefits of an XML layout engine
Most of the benefits of an XML layout engine are due to its logical place within the structure of an
application, as shown in Figure 5-5.

138

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 138

Figure 5-5. Placing the XML layout engine

Typically, an XML layout engine “sits” on top of a set of UI components and is capable of generating
them dynamically following a layout specification provided via XML.

While providing such functionality, an XML layout engine neatly separates the application-specific
logic from its user interface. Plenty of benefits derive directly from such separation:

Having the user interface described via XML allows us to easily provide different user interfaces
for the same application. Such freedom becomes tremendously cost effective in all the cases
when your application must address different accessibility issues, localization (user interfaces
for different languages/countries), different hardware platforms, even down to different
branding and different user preferences. You can address all these cases plus many others by
simply providing different XML files for each client scenario.

The nested structure of the XML description of the user interface directly reflects the nested
structure of its layout, making it much easier to work with complex user interfaces, which ulti-
mately enables a much easier and faster development.

The mix of user interface and application code can produce hybrid scripts that are difficult to
maintain. An XML layout engine eliminates any scripting code usually required to create the
user interface and in doing so avoids your code being cluttered.

By defining the user interface of your application independently from its business logic, it
allows you to modify the layout and appearance of your application without having to rebuild it.

It enforces the implementation of the Model-View-Controller design pattern that is well known
for greatly simplifying the process of implementing an application.

The resulting application is much more flexible and resilient to changes. You can rewrite the
whole UI without touching the business logic.

It facilitates the coordination of activities that are interdependent and usually assigned to dif-
ferent roles in the case of large projects. Workflows involving developers, designers, and con-
tent producers can be defined in a more efficient way thanks to a neater degree of separation.

139

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 139

All these benefits are very important, plus the bigger your application, the more they become evident:
the tight coupling of user interface code with application-specific logic is one of the major downfalls
of software development projects.

In the end, an XML layout engine can dramatically reduce the time and effort that you put into devel-
oping component-based applications. The benefits listed apply to the most general concept and are
already more than enough, if you are like me, for you to crave for an XML layout engine when creat-
ing user interfaces.

And as if that were not enough, the list of benefits becomes even longer specifically in the context of
Flash.

Further benefits in the Flash context
The component architecture, ActionScript, the Flash player, and the SWF format represent the main
technologies targeted by the specific XML layout engine that will be introduced in this book—it has
been designed to improve productivity by

Easing the writing of XML parsing code

Easing the writing of event management code

Applications based on the engine will enjoy a high degree of flexibility because we will be

Adding new XML tags that generate new components

Updating the implementation of an existing XML tag to align it with the latest version of a com-
ponent

Note that the last option can drastically reduce the cost of porting an application from one version of
the component architecture into the next one: Since the engine generates the components dynami-
cally, once it is updated, it will start generating the latest version of each component for each of your
applications that use it.

Some work has also been done to further enforce the consistency of the look and feel of your appli-
cations by including style support in the XML syntax used to describe the layout of a user interface.

XLEFF
XLEFF (XML Layout Engine For Flash) is the official name of the XML layout engine introduced in this
book.

XLEFF should not be compared to FLEX, since FLEX is a server-side technology based on a Java appli-
cation server, while XLEFF is a client-side technology that does not require a particular technology on
the server side. Basically, projects that benefit from the use of FLEX would not benefit from the use of
XLEFF and vice versa. Scenarios where both the technologies could be considered are very unlikely
because of their different natures.

XLEFF has been designed to be a thin layer of logic on top of the component architecture residing
inside the SWF file, as you see in Figure 5-6.

140

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 140

Figure 5-6. XLEFF

Apart from sharing substantial similarities with the diagram in Figure 5-5, Figure 5-6 shows that your
application logic, XLEFF, and the functionality of the component architecture (components, etc.) will
be packaged in a single SWF file that consumes an external XML feed as a specification to generate the
user interface dynamically.

The XML vocabulary supported by XLEFF is very close to that of the architecture and, therefore, of
immediate use once you know the architecture.

The following XML description would generate a form including two buttons:

<?xml version="1.0"?>
<XLEFF>

<stage>
<form>

<name>MainForm</name>
<xpos>0</xpos>
<ypos>0</ypos>
<button>

<name>YesButton</name>
<lbl>Yes</lbl>
<xpos>270</xpos>
<ypos>280</ypos>
<width>160</width>

</button>
<button>

<name>NoButton</name>
<lbl>No</lbl>
<xpos>470</xpos>
<ypos>280</ypos>
<width>160</width>

</button>
</form>

</stage>
</XLEFF>

141

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 141

Figure 5-7 shows what this form would look like.

Figure 5-7. Form rendered by XLEFF

The previous XML description was purposely defined using the bare minimum attributes that you may
need to specify to place a form on the stage and two button instances inside it. However, XLEFF sup-
ports many more features and is capable of handling via XML almost any functionality present in the
component architecture.

Additionally, thanks to the combination of styles and skins, XLEFF provides an easy and consistent path
for the definition of new component themes (including also a sample theme called XLEFFtheme).

By just slightly changing the previous XML description, it is possible to generate buttons belonging to
the XLEFFtheme. The necessary XML would be modified as follows:

<?xml version="1.0"?>
<XLEFF>

<stage>
<form>

<name>MainForm</name>
<xpos>0</xpos>
<ypos>0</ypos>
<button cls="XLEFFtheme.subclassed.XleffButton">

<name>YesButton</name>
<styleName>XLEFFthemeNormalStyle</styleName>
<lbl>Yes</lbl>
<xpos>270</xpos>

142

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 142

<ypos>280</ypos>
<width>160</width>

</button>
<button cls="XLEFFtheme.subclassed.XleffButton">

<name>NoButton</name>
<styleName>XLEFFthemeNormalStyle</styleName>
<lbl>No</lbl>
<xpos>470</xpos>
<ypos>280</ypos>
<width>160</width>

</button>
</form>

</stage>
</XLEFF>

Note that the most significant changes are

The introduction of a cls attribute specifying a different component class (XLEFFtheme.
subclassed.XleffButton) instead of the default one (Button) to be used when generating
button instances

The introduction of an additional tag (styleName) specifying the set of styles to use when cre-
ating the button instances

The resulting user interface is displayed Figure 5-8.

Figure 5-8. Another form rendered by XLEFF

143

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 143

This example was chosen because achieving such a skewed shape for the buttons requires more than
just acting on styles and skins. Of course, you could obtain a skewed shape with a skin, but it would
not work well with the focus rect (the rectangle highlighting a button when selected) since the default
implementation of the focus rect is done via the drawing API, and such implementation assumes that
buttons have a rectangular (not skewed) shape.

An instance of XLEFFtheme.subclassed.XleffButton handles styles, skins, and also the focus rect by
using the drawing API as well. You will learn how to achieve this level of customization of buttons (and
other components) in Part 3 of the book.

XLEFF main features
XLEFF targets the component architecture by supporting all of the standard UI components. In addi-
tion, it also supports styles at various levels:

Color names: By declaring color names, you can easily reuse specific colors in different con-
texts.

Style sets: You can also declare different sets of styles that can be applied at once by utilizing
the name of a style set.

Global styles: You define global styles that are used as defaults throughout the application.

Instance-specific styles: You can assign specific styles to a single instance of a component.

Class-specific styles: You can also assign styles to all the instances of a specific component
class.

XLEFF can also handle custom classes and can be easily extended to match the new functionality intro-
duced by those classes, if any.

XLEFF supports nesting of containers and components without limitations.

In addition to the functionality typical of an XML layout engine, XLEFF also improves dramatically on
the application frameworks available when building applications based on the component architecture.

Beyond generating user interfaces
Applications developed using XLEFF tend to have their ActionScript code entirely contained inside
classes.

In the case of the Flash authoring environment, this object-oriented best practice offers a further
important advantage. Since classes must be implemented via external ActionScript files, the whole
source code of the application will reside outside of the FLA file, making it extremely easier to main-
tain: you will not have to work hard to find the code cluttered around different frames in different
layers of different movie clips—a task that haunted Flash developers until now!

In addition to that, XLEFF also provides an easier way of implementing event management. User inter-
faces are dead unless your application handles the events that they generate. XLEFF facilitates the
writing of event handlers by raising the productivity of the development environment to a level that is
comparable to rapid application tools such as Visual Basic or Delphi.

144

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 144

By associating event handlers to component instances in a consistent way, XLEFF further contributes
to achieving a neat separation of the three major dimensions of an application: user interface, data
model, and business logic.

XLEFF internal architecture
XLEFF was designed to be a very straightforward, thin layer over the architecture components.
Because of that, you will be able to extend and customize it whenever you will need to add new com-
ponents or align it to a new version of the component architecture.

The first rule to start with when designing a system is to keep it small and simple. Of course, it is not
always possible to respect such a rule, but every successfully implemented system started from a
simple core design, even the most complex ones.

At the time of writing, XLEFF is still very manageable since its internal architecture can be illustrated
by the rather simple diagram shown in Figure 5-9.

Figure 5-9. XLEFF internal architecture

This diagram zooms inside Figure 5-6 to focus on the XLEFF internals.

The major actors in the implementation of XLEFF are as follows:

XModel: ActionScript already provides the functionality required for parsing an XML document
and exposes it via the XML built-in class. XModel is a class that extends the XML class to facilitate
the process of writing business logic code for applications that make an extensive use of XML,
as described in Chapter 8.

XMLStage: XMLStage is the actual core of XLEFF. XMLStage is capable of generating components
dynamically whether they are standard or customized components. As you will find out,
achieving such a goal requires much more than just invoking the createClassObject method.

XML manager classes: Similarly to the manager classes in the component architecture, each of
the XML manager classes provides some application-specific functionality.

Main class: The Main class represents the entry point of your application. If you have ever used
other programming languages, such as C, you may well know where the name of this class
comes from.

145

ARCHITECTURE-BASED DEVELOPMENT

5939CH05.qxd 1/25/06 10:59 AM Page 145

It is very unlikely that you will need to extend or modify the XModel class, but you still need to under-
stand what services it provides and why it has been created instead of using the XML class directly.

You will extend the XMLStage occasionally, when you want to generate new components via XLEFF or
you want to align it to a new version of a component. Its internals, however, capture the rather com-
plicated workflow of stylizing and skinning a component via bitmaps and/or the drawing API, so it
does represent the concrete example you were looking for to learn what techniques to apply for
achieving that.

Again, it is very unlikely that you will need to extend the XML manager classes. As in the case of the
manager classes provided with the component architecture, it will be enough to know what services
they provide and when to use them.

Every time you build an application, you will also provide your implementation of the Main class. The
Main class captures the application framework defined by XLEFF and dramatically helps you in reduc-
ing the Functional Distance I was talking about at the beginning of this chapter.

The next chapters will delve deeper into XLEFF, and you are going to find out about a lot of advanced
techniques during the process.

XLEFF news and updates can be found at www.xleff.org/.

Summary
In this chapter, the focus of the book moved from introducing the component architecture into using
it in the scope of a project.

You then learned the key concepts to consider and the best practices to apply in order to successfully
exploit the architecture in the context of commercial applications.

You also learned what an XML layout engine is and the many benefits it can provide. And you discov-
ered that this book contains and exposes one of those engines and that, by learning how it has been
implemented, you will also capture the knowledge required to customize the appearance and behav-
ior of any GUI component in the architecture, a knowledge that you may also reuse separately in all
sorts of projects.

Note that this is by far the most conceptual chapter in the book and, because of that, probably the
most important one. You may well find it beneficial to read it again after having explored the concrete
examples in the rest of the book, because every time you come back to this chapter, it will probably
show you those same examples in a different, richer light.

146

CHAPTER 5

5939CH05.qxd 1/25/06 10:59 AM Page 146

5939CH05.qxd 1/25/06 10:59 AM Page 147

5939CH06.qxd 1/25/06 11:00 AM Page 148

149

Chapter 6

Efficiency is intelligent laziness.
David Dunham

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 149

XML is a markup language well suited for describing information.

The component architecture already includes a couple of components (Menu and Tree) that use XML
to describe the structure and contents of their instances.

XLEFF, the XML layout engine utilized in this book as part of our tutorial, pushes that approach even
further by applying it not only to every other component, but also to colors, styles, and the stage itself.

By using the same vocabulary of the component architecture, XLEFF supports an XML data structure
that very closely resembles the nature of component-based user interfaces implemented using Flash.

Basics of the XML data structure
The XML data structure supported by XLEFF is a natural extension to the approach already hinted in
the architecture and has been designed to be simple to learn and use.

The following template provides a high-level view of the data structure supported by XLEFF:

<?xml version="1.0"?>
<xleff>

<!-- Color Names section -->
<!-- Styles section -->
<!-- Stage section -->

</xleff>

The three lines of comment in the previous template are placeholders for the three main sections of
the XML data structure:

The Color Names section allows you to define color
names.

The Styles section allows you to define styles.

The Stage section describes the layout of the user inter-
face that will be generated dynamically. The description
of the user interface can include color names and styles
defined in the previous two sections.

After examining the big picture of the XML data structure as
further illustrated in Figure 6-1, we now turn to examine the
contents of the three major sections in greater detail.

The source code and completed files that are introduced in this chapter can be found in the
package src06.zip, downloadable from this book’s page at www.friendsofed.com.

150

CHAPTER 6

Figure 6-1. XML data structure,
the big picture

5939CH06.qxd 1/25/06 11:00 AM Page 150

The Color Names section
The section dedicated to color names is the first of the three major sections in the XML syntax sup-
ported by XLEFF (as mentioned, the remaining two sections are dedicated to the styles and the stage
description).

Even if color naming is arguably the simplest among all the features supported by the component
architecture, color names should not be overlooked, since they can be very helpful in designing user
interfaces that are both flexible and consistent.

A single XML element is sufficient to declare a color name, and the Color Names section of the XML
data structure can be used to quickly declare several color names as in the following example, in
which three XML lines are sufficient to associate three names with their respective color values:

<color name="xleffThemeColor" rgb="0xDDDDFF" />
<color name="xleffTextColor" rgb="0x000099" />
<color name="xleffDisabledColor" rgb="0xDDDDDD" />

Color names provide at least four substantial advantages:

A color name can be easier to remember than its numerical value.

A color name can associate a color value with a particular scope (xleffTextColor clearly indi-
cates the color of text in the user interface).

Color names enforce the consistency of look and feel throughout the design of a user interface.

Well-defined color names significantly increase the flexibility of a user interface, since they
allow you to change color to several related objects at the same time by changing a single
color value.

In the end, color names have been included in the main XML data structure of XLEFF because they are
a native feature of the component architecture, they are easy to use, and they provide significant
advantages while promoting the use of best practices.

The Styles section
Every section of the XML data structure describes some feature supported by the component archi-
tecture, and the Styles section is no exception.

The component architecture supports several kinds of styles; some styles have a “global effect” in the
sense that they affect several component instances at the same time, while other styles have a limited
“local effect” affecting a specific component instance only.

The Styles section of the XML data structure is dedicated to the styles that can influence more than a
component instance at the same time.

151

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 151

All the styles in the XML data structure are described by applying the same XML syntax shown in the
following example:

<style name="aStyleName">
<property name="aPropertyName">

<value type="valueType">aPropertyValue</value>
</property>
<!-- other properties -->

</style>

Such syntax emphasizes that a style is nothing more than a set of properties with a name (the style’s
name). The style defines a value for each of the properties it contains.

Each property has its own name and a type attribute specifying the ActionScript type of the property’s
value stored in the XML value element.

If no type attribute is defined, the property’s value is assumed to be of type String.

You can influence the appearance of a component instance in several ways by applying a style to it.
The following example defines a custom BlackAndWhite style that you can apply to any component
instance to define the color of its text as black (0x000000) and the color of its background as white
(0xffffff):

<style name="BlackAndWhite">
<property name="color">

<value type="Number">0x000000</value>
</property>
<property name="backgroundColor">

<value type="Number">0xffffff</value>
</property>

</style>

When assigning the BlackAndWhite style to a component instance, you are asking the component
architecture to assign new values to the color (0x000000) and colorBackground (0xffffff) style
properties of that component instance.

Note that some style properties may not make sense in the scope of some component classes: apply-
ing the style will have no effect in those cases. Each component in the architecture comes with a list
of the style properties that are supported by its class. You can find the list of styles supported by a spe-
cific component in the chapters dedicated to each component in Part 3 of the book.

Although the XML syntax for defining a style is always the same, the name that you assign to a style
can significantly change the way it works. The Styles section can include different kind of styles: class
styles, predefined styles, nested styles, and custom styles. Let us examine how they differ from each
other.

Class styles
Class styles are applied automatically by the architecture without your having to assign them to
any component instance. That is because a class style applies to all the component instances of a spe-
cific component class.

152

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 152

Class styles can be easily recognized because their name is exactly the same (case included) as the
class name of a component.

For example, let us rename the style we defined earlier from BlackAndWhite to Button, as in the fol-
lowing:

<style name="Button">
<property name="color">

<value type="Number">0x000000</value>
</property>
<property name="backgroundColor">

<value type="Number">0xffffff</value>
</property>

</style>

By assigning to it a new name that happens to be the name of a component class (Button), we have
transformed our style into a class style.

As a result of this, the component architecture will apply that style automatically to all the Button
instances in the user interface described later on in “The Stage Section.”

Class styles are a powerful way for defining the standard appearance of instances belonging to a cer-
tain component class.

Once again, you obtain a lot from doing very little; in fact, you can influence the appearance of all the
instances of a certain class by defining a single style.

Predefined styles
A style defined programmatically is a style that was first implemented in the architecture via ActionScript
using the CSSStyleDeclaration class.

Such a style will have a name like windowStyles or dataGridStyles that has been defined by the
architecture to influence some visual aspect of the Window and DataGrid components, respectively.

By using one of those predefined names in the XML definition of a style, you will be able to override
any properties that may have been defined programmatically by those styles.

Once again, as in the case of class styles, the predefined style will be applied automatically to all the
component instances in the user interface that already use such a style.

Predefined styles are not applied consistently in the component architecture, and you need to know
about their existence if you want to use them for customizing the appearance of the few components
that have them.

Nested styles
Nested styles are the most complicated kind of style that you may need to describe in the Styles sec-
tion. The good news is that you can easily do this by nesting the same XML syntax that we have been
using so far.

153

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 153

For example, the Alert class implements a few nested styles that you can easily redefine by using the
syntax shown in the following:

<style name="Alert">
<property name="color">

<value type="Number">0xff0000</value>
</property>
<style name="titleStyleDeclaration">

<property name="color">
<value>0xfd765</value>

</property>
</style>
<style name="buttonStyleDeclaration">

<property name="color">
<value>0x00fff0</value>

</property>
</style>
<style name="messageStyleDeclaration">

<property name="color">
<value>0xa0a0a0</value>

</property>
</style>

</style>

The previous example shows that nested styles must be included within a class style. The class style in
the example is defined by the name Alert and contains its own properties plus three substyles
(titleStyleDeclaration, buttonStyleDeclaration, messageStyleDeclaration).

You may notice that in the previous example the color property is defined four times, which is why it
is a good example for demonstrating the role of nested styles in complex components.

In the case of the Alert component, in fact, there may be cases when you want to define a different
text color for different parts of the component such as the Alert contents, the Alert title, the Alert
buttons, and the Alert message.

Without nested styles, you could have set the color property only once, and all those subparts of the
component would have been forced to have the same color since you have no other option to spec-
ify different values for them.

Note that even in the case of nested styles, it is characteristic of the component architecture to apply
the style automatically to all the related component instances once you have defined it in the Styles
section.

Custom styles
Custom styles are the simplest and, almost certainly, the most useful among all the kinds of styles that
you may use in the Styles section.

They differ substantially from the other three kinds of styles previously discussed, since they are not
applied automatically by the component architecture.

154

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 154

Custom styles cannot be applied automatically because their names do not belong to any class, pre-
defined, or even nested style.

Basically, the name of a custom style does not exist in the architecture until you define it. One of our
earliest examples, the BlackAndWhite style, was a custom style:

<style name="BlackAndWhite">
<property name="color">

<value type="Number">0x000000</value>
</property>
<property name="backgroundColor">

<value type="Number">0xffffff</value>
</property>

</style>

Since there is no predefined relationship among a custom style and the component instances in the
user interface that you are defining, you must expressly link a custom style to all the component
instances that should be influenced by that style. This relationship is very easily established by assign-
ing the value of the custom style name to a property that every component instance in the architec-
ture has: styleName.

Concrete examples of the application of custom styles will be shown in the next section, which intro-
duces the biggest and most important of the three sections in the XML data structure: the Stage
section.

The Stage section
The goal of the XML data structure defined in this chapter is to describe the user interface of a
component-based Flash application.

The first two sections of the XML data structure, dedi-
cated to colors and styles, usually have a very flat struc-
ture, and it is only in the Stage section that we exploit the
natural ability of XML to describe nested structures.

The Stage section can have arbitrary levels of nesting,
since its substructure describes user interfaces that can
have component instances arranged using an arbitrary
number of containers.

Figure 6-2 shows an abstract example of a very simple
nested structure that could be described in the Stage sec-
tion with two containers at stage level: Container1, which
contains one component instance (ComponentInstance1);
and Container2, which contains two component instances
(ComponentInstance2 and ComponentInstance3).

155

XML FOR DEFINING USER INTERFACES

Figure 6-2. Stage structure, abstract example

5939CH06.qxd 1/25/06 11:00 AM Page 155

The first-level container in the XML data structure supported by XLEFF must be a form element. All the
XML elements supported by XLEFF reflect objects implemented by the component architecture, and
the form element is no exception. The form element is based upon the Form class, which is the most
general of the two concrete screen classes implemented by the component architecture.

The structure of the Stage section becomes deeper whenever forms include other forms or compo-
nents that can act as containers (Accordion, ScrollPane, Loader, Window).

The following XML data has been stripped of the XML attributes of each element to highlight the bare
structure of the stage section in our example:

<stage>
<form>

<label />
<textinput />
<label />
<textinput />
<label />
<textarea />
<button />
<button />

</form>
<form >

<label />
<textarea />

</form>
</stage>

The previous XML data describes a user interface made of two different forms, each of them contain-
ing a few component instances belonging to very common components such as Label, TextInput,
TextArea, and Button.

Figure 6-3 illustrates how such an interface may look like once the forms and the component
instances have been generated dynamically.

156

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 156

Figure 6-3. Dynamically generated user interface

Looking at the XML data presented earlier, you may not be able to immediately recognize which com-
ponent instances correspond to what you see in Figure 6-3. The following XML data, complete with
the attributes, may look less readable at first, but you will be able to quickly explore it once you get
used to separating the interface structure (emphasized in the previous incomplete version of the same
XML data) from the details specified by the attributes:

<stage>
<form name="DefaultForm" x="25" y="25" width="840" height="200"

transparentBackground="false" styleName="xleffForm">
<label name="label1" x="20" y="27" autoSize="left"

text="First Name" />
<textinput name="FirstName" styleName="xleffNormal" x="89"

y="27" width="300" height="22" />
<label name="label2" x="447" y="27" autoSize="left"

text="Last Name" />
<textinput name="LastName" styleName="xleffNormal" x="517"

y="27" width="300" height="22" />
<label name="label3" x="20" y="70" autoSize="left"

text="Notes" />
<textarea name="Notes" styleName="xleffNormal" x="20"

y="92" width="800" height="60" />
<button name="SaveButton" styleName="xleffNormal" x="607"

y="162" width="100" height="22" label="Save" />
<button name="AdvancedButton" styleName="xleffNormal"

x="717" y="162" width="100" height="22"
label="Advanced >" />

157

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 157

</form>
<form name="AdvancedForm" x="25" y="245" width="840"

height="280" transparentBackground="false"
styleName="xleffForm">

<label name="label3" x="20" y="23" autoSize="left"
text="Advanced Notes" />

<textarea name="AdvancedNotes" styleName="xleffNormal"
x="20" y="45" width="800" height="220" />

</form>
</stage>

Note that almost every attribute that you will find in the stage structure reflects the homonymous
property of a component class. Do not worry if at this point the name of some properties may sound
less intuitive than others: we will examine the actual significance of each component’s property in
greater detail in Part 3 of the book. At the moment, we are focusing on the XML data structure and
how its syntax is capable of describing almost any component-based user interface that you may need
to implement.

Even without knowing all the details yet, you should still be able to recognize that the Button instance
labeled Save in Figure 6-3 is generated by the following XML element:

<button name="SaveButton" styleName="xleffNormal" x="607"
y="162" width="100" height="22" label="Save" />

since it is the sole button element (of two) to have a label defined as “Save”.

It should also be intuitive to you that the remaining attributes of that XML element define the other
properties of the component instance such as its position, its size, its style, and the component
instance name (SaveButton); the last is arguably the most important of all the attributes, as you will
discover in Chapter 9 when learning how to connect the user interfaces generated dynamically via an
XML description with actual applications.

XLEFF sampler
The XLEFF sampler is the simplest among the applications that can be developed using XLEFF; never-
theless, it is a useful tool for testing the XML data defining a particular user interface.

We are not going to examine the implementation of the sampler here, since our current focus is on
the XML structure defined so far, and the sampler has been introduced at the sole scope of providing
an immediate way of creating and testing concrete XML examples.

You are not expected to define complete user interfaces until you will have read the rest of the book,
which contains all the information you need to define the XML for every component in the architec-
ture, but you are encouraged to experiment with the XML examples provided here to fully grasp the
most basic principles introduced by the XML layout engine mechanism.

158

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 158

How to use it
The XLEFF sampler is embedded in an HTML file (XLEFFsampler.html) that you can quickly modify to
test your own XML data. The HTML file plays an important role since it defines a variable
(xmlDefFileName) that is passed to the Flash player to tell the sampler which XML file should be used
as a descriptor of the user interface to be generated dynamically.

If you open the HTML file (XLEFFsampler.html) in a text editor, you will notice that it defines the
xmlDefFileName variable by using the FlashVars option of the Flash player by setting it in both
the object and embed tags.

The HTML line related to the object tag looks like this:

<param name="FlashVars" value="xmlDefFileName=sample01.xml" />

while the embed tag includes the following attribute definition:

FlashVars="xmlDefFileName=sample01.xml"

In both cases, the xmlDefFileName variable will tell XLEFFsampler.swf to load the sample01.xml file.
The sampler will then generate a component-based user interface dynamically based on the descrip-
tion contained in that XML file.

If you want to generate the user interface by using a different XML file, all you have to do is change
both occurrences of the sample01.xml filename in the HTML file with the actual name of the file that
you want to use and, of course, reload the HTML file in your browser.

The sample01.xml file is the completed version of the interface previously shown in Figure 6-3 and
contains the following XML data:

<?xml version="1.0"?>
<xleff>

<color name="xleffThemeColor" rgb="0xDDDDFF" />
<color name="xleffTextColor" rgb="0x000099" />
<style name="xleffNormal">

<property name="themeColor">
<value>xleffThemeColor</value>

</property>
<property name="color">

<value>xleffTextColor</value>
</property>
<property name="fontFamily">

<value>_sans</value>
</property>
<property name="fontSize">

<value type="Number">12</value>
</property>

</style>
<style name="xleffForm">

<property name="backgroundColor">
<value>0xa2a2c4</value>

159

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 159

</property>
</style>
<style name="Label">

<property name="color">
<value type="Number">0xFFFFFF</value>

</property>
<property name="fontFamily">

<value>_sans</value>
</property>
<property name="fontWeight">

<value>bold</value>
</property>
<property name="fontSize">

<value type="Number">12</value>
</property

</style>
<stage>

<form name="DefaultForm" x="25" y="25" width="840" height="200"
transparentBackground="false" styleName="xleffForm">

<label name="label1" x="20" y="27" autoSize="left"
text="First Name" />

<textinput name="FirstName" styleName="xleffNormal" x="89"
y="27" width="300" height="22" />

<label name="label2" x="447" y="27" autoSize="left"
text="Last Name" />

<textinput name="LastName" styleName="xleffNormal" x="517"
y="27" width="300" height="22" />

<label name="label3" x="20" y="70" autoSize="left"
text="Notes" />

<textarea name="Notes" styleName="xleffNormal" x="20"
y="92" width="800" height="60" />

<button name="SaveButton" styleName="xleffNormal" x="607"
y="162" width="100" height="22" label="Save" />

<button name="AdvancedButton" styleName="xleffNormal"
x="717" y="162" width="100" height="22"
label="Advanced >" />

</form>
<form name="AdvancedForm" x="25" y="245" width="840"

height="280" transparentBackground="false"
styleName="xleffForm">

<label name="label3" x="20" y="23" autoSize="left"
text="Advanced Notes" />

<textarea name="AdvancedNotes" styleName="xleffNormal"
x="20" y="45" width="800" height="220" />

</form>
</stage>

</xleff>

160

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 160

The most important items to take note of in the complete XML example are as follows:

The interface structure described in the Stage section is exactly the same as that which was
emphasized in the very first incomplete example.

Component instances of different classes frequently share the same attributes names (x, y,
height, width, etc.). With very few exceptions, those names describe the same functionality
(position, size, etc.) and match the properties defined by the component architecture.

Occasionally, XLEFF extends the component architecture, implementing, for instance, a
colorable background for forms that can also be transparent.

The example defines two custom styles (xleffNormal and xleffForm) that are applied to
component instances via their styleName attribute.

The example defines a class style (Label) to influence the appearance of every instance of the
Label component in the interface, without having to apply a custom style to each Label
instance via the styleName attribute.

Playing with the sampler
A good approach to gaining confidence with the XML structure is to modify the sample01.xml file and
reload the XLEFFsampler.html file in your browser, so as to have immediate feedback of the effects
of your changes on the dynamically generated user interface.

The initial experiments should include minor changes such as modifying the attributes that influence
the position or size of a component instance. After that, you can start adding new instances of the
simplest component classes such as labels or buttons.

Eventually you will realize that a proficient way of creating an XML description of a component inter-
face is to use the Flash authoring environment to draw a draft of the interface and “steal” all the coor-
dinates and size attributes that are used by the XML definitions from the Info panel.

In the source files provided, you can also find a proto01.fla file that has been used as a prototype for
generating the XML data for the sample01.xml file. If you open it, you will notice that even a simple
graphic shape is sufficient to obtain the information about the position and size of a form.

However, you must take care when reusing the coordinates shown in the Info panel since they are
expressed in stage terms.

Let us verify what that means.

161

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 161

Figure 6-4 shows the contents of the Info panel after you have opened the proto01.fla file and
selected the graphic shape corresponding to the form defined by the following XML line:

<form name="DefaultForm" x="25" y="25" width="840" height="200"
transparentBackground="false" styleName="xleffForm">

Figure 6-4. Using the Info panel, stage level

As you can see, the values of x, y, width, and height are exactly the same both in the Info panel and
in the XML data.

However, if you select the Save button, you will notice a discrepancy between the information in
the Info panel, shown in Figure 6-5, and the XML data that will generate that button in its intended
position:

<button name="SaveButton" styleName="xleffNormal" x="607" y="162"
width="100" height="22" label="Save" />

While width and height are still the same, the (x, y) coordinates are numerically different. The Info
panel shows the values (632, 187), while the XML data defines (x, y) as (607, 162), respectively.

The XML data compensates for the fact that the SaveButton will be created as a child of DefaultForm
and, therefore, subtracts the values (25,25) from the values shown in the Info panel to express the
button coordinates relatively to its container. If you are wondering where the values (25, 25) come
from, look back at the Info panel in Figure 6-4: they are the coordinates of the form itself that
required no adjustment, because in the structure of the user interface this form is contained by the
stage itself.

The conclusion is that when a component instance is within a container, its position must be expressed
in coordinates that are relative to the container itself.

162

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 162

Figure 6-5. Using the Info panel, container discrepancy

If you do not want to spend time with the calculations, a trick to get the right information in the Info
panel is to group all the objects belonging to a container inside a symbol (which, as a matter of fact,
is itself a container) and then use the option Edit in Place to navigate among its objects to obtain their
relative coordinates from the Info panel, as shown in Figure 6-6.

Figure 6-6. Using the Info panel, container level

163

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 163

Note that in Figure 6-6 the SaveButton is still selected, while the Info panel is showing the relative
coordinates that we need to include in the XML data.

Figure 6-6 contains two callouts that highlight two fundamental aspects that allow us to obtain the
proper relative coordinates from the Info panel:

Although the whole stage is still visible, we are now inside a symbol (namely Symbol 1) con-
taining the SaveButton and every other object that is supposed to be inside the DefaultForm
container.

The objects inside Symbol 1 have been positioned so as to have the top-left corner of the
graphic shape representing the form area coinciding with the registration point of the symbol.
As you may already know, you can easily achieve such a result in one step by selecting all the
objects to be contained in the symbol and then clicking the top-left point of the registration
grid in the Convert to Symbol dialog box, as indicated in Figure 6-7.

Figure 6-7. Defining the top-left registration point

Applying this technique and properly grouping related objects into a symbol, which acts as their con-
tainer, allows you to manage relative coordinates in nested structures efficiently through visual feed-
back of the their properly defined numerical values.

Examining a more complex user interface
The file example02.xml, which you can find among the source files associated with this chapter,
describes a more complex interface than the one discussed earlier.

In order to generate the interface described in example02.xml, you must edit the XLEFFsampler.html
file and replace the two occurrences of sample01.xml in it with the name of the new XML file
(sample02.xml). The sampler will display the new user interface once the modified HTML file is loaded
in your browser.

Once again, to quickly grab the main structure of the user interface, we start looking at an incomplete
version of the XML data on the stage. The following XML block has been produced from the original
in sample02.xml after removing all of the attributes and some of the inner elements. What remains is
an XML description of the core structure of the user interface.

164

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 164

<stage>
<form>

<menubar></menubar>
<accordion></accordion>
<button />
<button />

</form>
</stage>

The previous XML block is much easier to read than the entire sample02.xml, since that file contains
250+ lines of XML data. The simplified XML block allows you to easily see that the user interface has
been based on a main form that contains four component instances: a MenuBar instance, an
Accordion instance, and two Button instances, combined together to create the layout displayed in
Figure 6-8.

Figure 6-8. Defining a more complex user interface

This user interface was designed using a pattern that can be reused in more than one application.

User interface patterns
The user interface described in sample02.xml has been designed to allow intuitive access to a content-
based application while offering several ways to navigate such content. It is the first draft of XLEFFdoc,
a guide to XLEFF produced by the same technology being documented.

165

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 165

The content is structured in sections, each of them displayed inside a child of the Accordion
instance. The sections can be accessed directly by clicking the Accordion headers or, alternatively, by
selecting the respective menu item in the MenuBar instance.

A couple of Button instances provide the means for navigating the sections sequentially by moving to
the next (or the previous) one.

Since a user interface so defined is independent from both the actual content and the logic of the
application, you may be able to reuse it as a starting point for several different applications.

The point made is not that you have found a good user interface pattern, but that an XML layout
engine such as XLEFF allows you to easily capture user interface patterns for later reuse.

A first look into the substructures
The content of XLEFFdoc has been divided in eight sections and, therefore, the Accordion instance has
a total of eight children.

The simplified structure of the XML block describing the Accordion (stripped of attributes and inner
elements) shows that each child is, in fact, a form:

<accordion>
<form></form>
<form></form>
<form></form>
<form></form>
<form></form>
<form></form>
<form></form>

</accordion>

Going further down a level in the Accordion structure, you will realize that each Accordion child is a
form that contains a TextArea instance only, as in the still-simplified XML block:

<form>
<textarea></textarea>

</form>

Of course, it is likely that in the final version of the user interface, the sections may differ somewhat
from each other and, consequently, the substructures of the forms acting as Accordion children may
well be redefined in different ways.

The important thing to notice here is that even a large XML description made of hundreds (or even
thousands) of lines can eventually be simplified and described in a few lines. This is one of the reasons
XML is so convenient to formally describe user interfaces that can then be generated dynamically.

166

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 166

The same concept applies to the MenuBar instance that contains a pop-up menu, as shown in
Figure 6-9.

Figure 6-9. Menu example

The simplified XML block of the MenuBar instance is as follows:

<menubar>
<menu>

<menuitem />
<menuitem />
<menuitem />
<menuitem />
<menuitem />
<menuitem />
<menuitem />
<menuitem />

</menu>
</menubar>

The last XML block clearly shows that the MenuBar instance contains a single pop-up menu that is
made of eight menu items (not surprisingly, one for each Accordion child).

Using custom classes
The user interface currently being examined contains two Button instances that are an example of

How to skin the Button component

How to utilize new component classes in XLEFF

Although customizing the Button component is the topic of Chapter 11, we must now anticipate one
of the issues demonstrated in Part 3 of the book: not every component can be skinned by simply
replacing its graphic assets.

167

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 167

In order to skin certain components, we must create a new class based on the original component
class and provide some added functionality. This process is usually defined as subclassing.

Eventually the new class will be associated with a new component, inheriting most of its functionality
from the component that it is based upon.

This is the case of the Button instances in our example. In fact, those buttons are actually instances of
the XleffButton class, which is a class derived from the Button class and belonging to XLEFFtheme. A
theme, like XLEFFtheme, is a collection of styles and skinned/customized components that share a
common look and feel.

The creation of a new component based on the original Button class was required to obtain the
skewed look displayed in Figure 6-10.

Figure 6-10. Skewed-looking buttons

Since the component architecture defines the outline of most components programmatically via the
RectBorder class, Button included, it would have been not possible to achieve the skewed look with-
out creating a new component based on the Button class and using a custom implementation of the
RectBorder class.

Do not worry if the described technique sounds obscure at the moment, since it will be explained in
detail in Part 3 of the book. What is relevant at this point is to look at the following XML block,
extracted from sample02.xml, and understand that it creates a customized button by specifying a cus-
tomized class via the cls attribute:

<button cls="XLEFFtheme.subclassed.XleffButton"
➥ name="PrevButton"

styleName="xleffNormal" x="520" y="519" width="160"
label="Previous Section" />

Although the instance described by the previous XML block belongs to the functional class of buttons,
the cls attribute of the XML element specifies that the instance must be generated dynamically by
using the class XLEFFtheme.subclassed.XleffButton instead of the original Button class.

The conclusion is that, in addition to dynamically generating any preexisting component in the archi-
tecture, XLEFF also provides an easy way for dynamically creating new components that are cus-
tomized versions of the preexisting ones.

168

CHAPTER 6

5939CH06.qxd 1/25/06 11:00 AM Page 168

Events to be handled
When using the sampler to generate the latest interface, you may notice that the interface reacts to
some but not all the events generated by the user interaction. In particular:

The proper Accordion child is shown when clicking an Accordion header.

The pop-up menu is shown when clicking the sole menu in the MenuBar.

Nothing happens when you click one of the menu items in the pop-up menu. Following the
intuitive logic, the proper Accordion child should be displayed, but it is not.

Nothing happens when you click the Previous Section or Next Section buttons. Following the
intuitive logic, the proper Accordion child should be displayed, but it is not.

There is nothing wrong here, because the dynamically generated user interface is completely sepa-
rated from the application logic, and therefore it triggers no particular action until you implement its
associated application.

An Accordion header reacts, displaying its associated Accordion child menu because that functionality
is already implemented in the component and represents its default behavior. The same holds for the
pop-up menu in the MenuBar that reacts to the user click by displaying its menu items.

Some components respond to some user-generated events, such as the mouse click on an Accordion
header, in a standard way. Those events are intracomponent communications: they are handled inter-
nally by the specific component instance.

Other events, such as clicking a specific menu item or a button, are not handled internally by the com-
ponent. In our example, we would like the proper Accordion child to be displayed when the user
clicks a menu item or a navigation button. But these events are not fired by the Accordion instance in
the interface; they are fired by the MenuBar instance and from the Button instances, respectively.
These are examples of communication between different component instances (intercomponent
communication), and it is your task to implement their functionality.

Summary
In this chapter, you learned how convenient XML can be when it comes to describing a user interface
that is generated dynamically.

You also played with a couple of examples that concretely demonstrated benefits that were firstly
introduced as abstract ideas in the previous chapter.

The next chapter shows you how easily you can implement intercomponent event handlers and, in
doing so, build component-based applications whose user interfaces are generated dynamically.

169

XML FOR DEFINING USER INTERFACES

5939CH06.qxd 1/25/06 11:00 AM Page 169

5939CH07.qxd 1/25/06 11:02 AM Page 170

Opportunities multiply as they are seized.
Sun Tzu

171

Chapter 7

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 171

In this chapter, we will focus on several essential considerations for the completion of a component-
based application. In particular, you will learn

How to define an FLA template, capturing the most essential structure of a component-based
application

How to build a folder structure that can be scalable and convenient enough to support several
applications at the same time

How to increase your efficiency when building component-based applications by implementing
a Main class for each of them, acting as an entry point to the application logic

How the process of implementing an event handler for a dynamically generated user interface
can be dramatically simplified

How to keep the user interface, the application logic, and the content used by the application
well separated from each other

Defining an FLA template
FLA files can be structured in an infinite number of different ways by arranging frames, layers, and
even scenes.

In this chapter, you will build a component-based template (ComponentBasedApp.fla) that can be
reused when developing applications based on the component architecture and utilizing your own
libraries (XLEFF is utilized in the template as an example of a larger library). Such a template does not
limit the use of Flash’s amazing graphic capabilities in any way, since you can always encapsulate ani-
mations and other graphic assets in symbols that can be added to the stage when needed.

The structure captured in the following template is the result of intense experimentation and repre-
sents a working solution to critical issues such as adding an effective preloader to a component-based
application and having all of the classes available whenever needed.

The template exploits scenes, a feature of the Flash document that is not very popular among devel-
opers, probably because it is thought to be useful in the case of long animated clips only.

However, the scenes functionality can also be very useful within large applications such as those based
on components. Scenes can break the higher-level structure of an application into separate modules,
each having its own timeline and a specific purpose.

The completed source code introduced in this chapter is included in the file src07.zip,
downloadable from this book’s page at www.friendsofed.com.

172

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 172

The component-based template will define three scenes:

Scene 1: Preloader scene: The purpose of this scene is to host a custom preloader. A pre-
loader is some sort of visual feedback displayed while the SWF file is being loaded. Good pre-
loaders are capable of keeping the user informed about how much time is needed to complete
the ongoing loading process. In the case of component-based applications, a good preloader is
essential; SWF files tend to be rather large, and the absence of a good preloader would leave
the user in front of an unpleasant blank screen for several seconds, possibly making them think
that the application is not responding. This scene is only visible while the movie is loading and
for one instant only, if the SWF has already been stored in the browser’s cache (indicating that
the user has already loaded the application once).

Scene 2: Dynamic Assets scene: This scene is never visible because, once the preloading
phase is terminated, the preloader jumps directly to the third scene. However, this scene is very
important since it includes an instance of every component, allowing the components’ classes
to be correctly compiled and properly initialized before being utilized in the third and main
scene.

Scene 3: Main scene: The third scene becomes permanently visible after the preloading phase
is completed. This scene hosts your application, while the previous two scenes were only
needed to implement a good preloader and initialize the components properly without affect-
ing the efficiency of the preloader.

Using scenes
The template defines three scenes, which are displayed in the Figure 7-1.

Scenes are ideal for neatly separating the distinct parts of the structure of a component-based appli-
cation, facilitating the easy implementation and maintenance of different functional units.

The template’s structure is based upon the component architecture and will also include the support
for using XLEFF as the most important (and reusable) concrete example provided in this book.

The first two scenes prepare the runtime environment of the specific component-based application
that is actually encapsulated in the third scene.

The role of the first scene is to display the progress of loading the movie’s content; by looking at
its implementation, you will also learn the most critical issues associated with the preloading of a
component-based application.

Figure 7-1. The three scenes in the
ComponentBasedApp.fla template

173

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 173

The Preloader scene
The preloading concept is very popular among Flash designers and developers.

The high-quality user experience usually associated with Flash applications can be somewhat hindered
by the absence of visual feedback showing the progress of the movie being loaded. Depending on the
size of content to be loaded, the user may have to wait a significant amount of time before being able
to interact with the application. A preloader animation must be capable of providing a display of the
loading progress to improve the user experience during that initial step.

However, implementing an efficient preloader can become a daunting task when components are
included in the Flash movie due to several factors that will be addressed in the template being
defined.

Basically, once compiled, the Flash movie of a component-based application can end up with lots of
content transparently included in the first frame. This is mostly due to the fact that classes are
exported in the first frame by default and, as you know by now, the component architecture comes
with lots of classes.

Such a bad scenario is shown in Figure 7-2.

Figure 7-2. Bad scenario: lots of content to be loaded
before the preloader

Whatever content included in the first frame will be loaded before anything else, even before the pre-
loader, so it will not be able to provide any visual feedback to the user during this first phase of the
loading process.

The structure of an FLA file must be carefully defined to minimize the part of the movie loaded before
the preloader; reducing the size of this initial section will allow the preloader to quickly and more
accurately display its visual feedback. Figure 7-3 shows an example of a good scenario in which most
of the content is loaded after the preloader.

Figure 7-3. Good scenario: the majority of content is
loaded after the preloader

Building an effective preloader is a task made complicated by the fact that components need to be
initialized properly and to have the ActionScript classes loaded as soon as possible and certainly
before they are utilized in the code.

174

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 174

Figure 7-4 is a glimpse of the first scene in our template; named the Preloader scene, it is dedicated to
the preloader functionality only. It includes a very simple preloader that is a countdown synchronized
with the loading process.

Figure 7-4. First scene: the Preloader scene

Of course, you can customize this preloader radically to suit your designs. Whenever you do it, take
note of the following guidelines that should be followed when implementing the simple preloader:

Guideline 1: Do not use components or classes in the preloader.

Guideline 2: Include your preloader in the first of the three frames present in the first scene.

Guideline 3: Once the loading process is complete, your preloader should jump to the third
scene by invoking _root.jumpToMain();.

The first guideline is a recommendation suggested by the fact that if you do use classes or compo-
nents in the preloader, then those classes will have to be loaded before being used. If the size of the
classes is insignificant compared to the size of the whole movie, then you may not follow the first
guideline, since the loss of accuracy of the preloader would be imperceptible. However, by following

175

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 175

the first guideline, you can maximize the accuracy of the preloader and therefore the user experience
deriving from it.

The second guideline recommends keeping the three-frames structure of the first scene that includes
the implementation of the jumpToMain function. This structure has been tested thoroughly and
revealed to be a bulletproof pattern that works particularly well when scenes are involved. When
mixing scenes and components and then altering several default aspects of the FLA file in order to
maximize contrasting features such as the preloading of components, it becomes easy to end up with
unexpected behaviors. You are encouraged to try different structures and improve the existing one,
but if problems should arise from your experiments, you can always roll back to the efficient solution
discussed here.

The third guideline is just a note informing you of the presence of the jumpToMain function, imple-
mented in the first frame of the scene. Your preloader should invoke this function once the loading
process is completed to move to the Main scene according to the pattern embedded in the
ComponentBasedApp.fla template.

The body of the jumpToMain function, declared in the first frame, is very simple:

function jumpToMain() {
_root.gotoAndPlay(2);

}

When that function is invoked by your preloader, at the end of the preloading process, the playhead
leaves the first frame where it was stopped during preloading, “takes a breath” on the second frame,
and moves to the third frame, where it encounters the code that moves it to the third and Main scene:

gotoAndPlay("Main Scene",1);

After the process of loading the movie has completed, the jumpToMain function moves to the third
scene, skipping the second one. As a matter of fact, the second scene never gets played. Let’s have a
look at what it contains and why it is included in the template.

The Dynamic Assets scene
The playhead never moves to the frames in the second scene, the Dynamic Assets scene. Nevertheless,
this scene plays a very important role in the structure of the ComponentBasedApp.fla template.

The second scene contains an instance of every symbol involved in the creation of the components
used in the movie. Having each of those symbols included in the second scene ensures that their
classes are compiled and properly initialized, ready to be used whenever needed during the third and
main scene.

Figure 7-5 shows the two layers in the second scene containing several component instances.

176

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 176

Figure 7-5. Second scene: the Dynamic Assets scene

The bottom layer, named Standard Assets, includes a symbol called firstFrameExporter that allows
you to add in a single step every asset required by the standard components in the architecture. You
will add this symbol to the template by dragging it from the library of the StandardComponents.fla
file included with the source code of the component architecture. (See Appendix A for locating the
source code of the component architecture on your machine.) The purpose of the firstFrameExporter
is suggested by its name and clearly stated in the comments included within the symbol: it should be
included in the first frame of the movie in order to have all the symbols in it immediately compiled
and then available for use throughout the rest of the movie from then on.

Unfortunately, having such a symbol in the first frame of the movie would completely spoil the pre-
loader functionality as we saw earlier. That’s why our template includes it in the second scene, forcing
its compilation before the third scene, the sole scene that actually uses the components.

177

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 177

In addition to hosting all the assets of the component architecture in the Standard Assets layer, the
Dynamic Assets scene also includes a second layer called XLEFF Assets. This layer includes the assets of
XLEFF that will also be used in the main scene. More generally, you should utilize the second scene as
a storage area for the assets of any other component that you may use in your application to ensure
their proper compilation and initialization.

The Main scene
The third and last scene in the ComponentBasedApp.fla template, the Main scene, contains the actual
application.

At authoring time, the stage shows the “creating cover” (a sort of splash screen that appears for a few
seconds after the movie has been fully loaded and while the components in the user interface are
being created dynamically), which you can see in Figure 7-6.

Figure 7-6. Third scene: the Main scene

178

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 178

The process of dynamically creating the components in the user interface may take a few seconds
depending on the number of instances being created and the power of the machine running the
application. Of course, you can customize such a screen in any way you like, changing the graphics or
message as you see fit.

The three scenes in the structure of the ComponentBasedApp.fla template, plus a few expedients dis-
cussed later on in this chapter, make sure that

The component-based application can have an efficiently working preloader mechanism.

The classes and assets needed by the component-based application are loaded and compiled
properly and, therefore, available whenever needed by the application code.

Licensing issue
The Flash authoring environment contains the source code of the whole component architecture,
including the FLA structure of every standard component in it. The availability of such source code is
what makes those components highly customizable: without it, some customizations would just not
have been possible.

Being the owner of a licensed Flash authoring environment, you can customize the component to fit
into your designs, include the component sources in your projects, modify the skins, and so on. But
the license coming with the product does not allow you to distribute the original source code: every
original source included in your project must be distributed in compiled format.

Please note that this is the author’s interpretation of the license terms defined at the moment of writ-
ing. You are invited to read the actual terms, as the vendor defined them, by visiting the following site:

www.macromedia.com/software/eula/tools/flash_components.html

In order to respect the “Supplemental License Terms Relating to Components” available at the vendor’s
website, I did not include the source code of the standard components in the ComponentBasedApp.fla
template.

However, the template must include such source code in order to generate the components dynami-
cally while being able to customize them thoroughly.

The solution to this issue is pretty neat, since you can include the standard components source code
manually in the template by using the source code found in your own installation of the Flash tool,
with the added bonus of learning the remaining expedients required to make everything (preloader,
classes, etc.) work as expected.

Including the standard components source code
Importing the standard components source code in the ComponentBasedApp.fla template is an easy
and fast operation once you find where the StandardsComponents.fla file is on your machine (see
Appendix A to locate the component architecture source code).

179

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 179

Figure 7-7 shows the library of the ComponentBasedApp.fla template before you add the source code
of the standard components to it. At this time, the library includes only two main folders:

Template Assets: A folder including the assets specifically created for the template. This
folder includes only one movie clip symbol, named Preloader: an empty symbol utilized for
implementing the preloader in the first scene by attaching some code to its instance.

XLEFF Assets: A folder including the assets of XLEFF, the XML Layout engine also utilized by
the component-based template.

Figure 7-7. The template’s library before adding
the source code of the standard components

The following steps describe what you must do to complete the ComponentBasedApp.fla template by
including the standard components source code in it:

1. Open the ComponentBasedApp.fla template that you will find in the code associated with this
chapter.

2. Open the StandardsComponents.fla file as an external library by using the command File ➤
Import ➤ Open External Library.

3. Drag the firstFrameExporter symbol from the external library into the first frame of the
Standard Assets layer in the second scene of the component-based template, named Dynamic
Assets.

Dragging the firstFrameExporter symbol contained in the StandardsComponents.fla external library
onto the stage of the template’s second scene allows you to transfer all the assets of the component
architecture to the template in a single step.

Figure 7-8 shows the contents of the template’s library after completing the previous task.

Figure 7-8. The template’s library after adding
the source of the standard components

180

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 180

The template’s library now contains two additional objects at its topmost level:

firstFrameExporter: The symbol that you imported from the StandardComponents.fla external
library.

Flash UI Components 2: A folder that was invisibly included when importing the firstFrameExporter
symbols and that contains almost 200 symbols: the source and assets of the standard compo-
nents in the architecture.

After the inclusion of the standard components’ source code and assets, the ComponentBasedApp.fla
template is ready to be used for generating component instances dynamically via XLEFF.

You can easily customize the ComponentBasedApp.fla template by adding further components and
external libraries whenever needed. All you have to do is to follow the guidelines illustrated here
and applied to both the standard components and XLEFF as examples.

In the remaining part of the chapter and in the rest of the book, the presence of XLEFF will act as a
significant example for concretely extending your template and learning how to customize the
appearance and behavior of each standard component.

Progressive update of the template
The presence of the source code of the standard components in the ComponentBasedApp.fla tem-
plate is due to a couple of reasons:

It allows you to customize the appearance and behavior of the standard components and
therefore have full control over the component instances.

It makes it possible to implement an effective preloader in the case of a component-based
application.

During Part 3 of the book, you will learn how to implement fully customized versions of the standard
components that can be included in a new template created by progressively updating a copy of the
ComponentBasedApp.fla template. The inclusion of the source code of the standard components will
ensure that every customization will work properly.

Analyzing the size report
You may well find it interesting to publish the SWF file of the template with the Generate size report
option set. Figure 7-9 shows the significant output of such a report.

Figure 7-9. Main output of the size report

181

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 181

The very first lines of the size report describe an ideal scenario: the movie size (including all the stan-
dard components plus the XLEFF components) is approximately 236KB large. More importantly, only
594 bytes are loaded in the first frame!

The preloader can provide very efficient visual feedback, since less than 1% of the overall movie size is
loaded in the first frame.

The ComponentBasedApp.fla template clearly captures a pattern for taking full control of the loading
process in the case of component-based applications.

This result is achieved by effectively keeping both the symbols and the ActionScript classes away from
the first frame. The template’s structure is defined to maximize such an effect by applying a couple of
techniques described in the next section.

Moving the symbols after the first frame
The components are exported symbols, and every exported symbol is usually included in the first
frame unless the Export in first frame option of the Linkage Properties dialog box is unchecked, as illus-
trated in the example of Figure 7-10.

Figure 7-10. Note the unchecked Export in first frame option.

Luckily, both the standard and the XLEFF symbols already have that option unchecked and, therefore,
there isn’t much you have to do about it apart from remembering to uncheck the option when adding
new exported symbols to the template.

Unchecking the Export in first frame option for a symbol means that the symbol in question is no
longer included in the first frame of the main timeline. However, that also means the symbol will not
be included in the SWF file at all, unless present somewhere else on the timeline.

This aspect exposes yet another reason why the Dynamic Assets scene contains an instance of every
exported symbol (components included): to ensure that those symbols are still included in the SWF
file once we uncheck their Export in first frame options.

Although applying this technique is necessary to reduce the number of bytes loaded with the
first frame, it is not sufficient to minimize it because the ActionScript classes are still loaded in the first
frame by default. The next section will show you how to postpone the inclusion of the ActionScript
classes so that they will be loaded with the same frame of the Dynamic Assets scene that contains the
exported symbols and, therefore, be available when the playhead reaches the Main scene without
negatively affecting the preloading mechanism.

182

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 182

Moving the classes after the first frame
Taking control of the loading process of a component-based application requires a careful approach
not only because of various issues that we have already examined, but also because exported symbols
are not the only objects to be included in the first frame by default.

ActionScript classes, introduced with AS 2.0, are included in the first frame by default as well, and
since the component architecture is based upon numerous classes, it is not a surprise that the size
report in Figure 7-9 clearly indicates that the AS 2.0 Classes Export Frame was by far the “fattest”
frame in the template structure.

When creating the template, I utilized the Export frame for classes option of the ActionScript settings
dialog box shown in Figure 7-11. This dialog box is accessible via the Publishing Settings option of the
movie (File ➤ Publishing Settings ➤ Flash ➤ ActionScript 2.0 Settings).

Figure 7-11. Setting a new export frame for classes

Defining the Export frame for classes setting as the third frame (3) ensures that

The classes are not exported in the first frame.

The classes are exported before any exported symbols and, therefore, available when those
symbols were compiled.

The classes are exported before the main scene and, therefore, available when utilized by
application code.

It is now more evident that the techniques we just examined can achieve a neat result when working
in conjunction with an FLA structure like the one defined for the ComponentBasedApp.fla template.

Defining a folder structure
Object orientation is a successful paradigm mostly because of its ability to capture complex designs in
a simple way.

183

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 183

In the case of the Flash authoring environment, the introduction of classes in ActionScript has been
revolutionary, going far beyond the common significance of the most essential object-oriented mech-
anisms, since classes can be individually associated with symbols in the library: a class is now the most
natural implementation of a symbol’s behavior and can also define its appearance, either partially or
completely.

The availability of such powerful features has vastly expanded the horizon of Flash, and the most pop-
ular browser plug-in has become a developer’s dream, sought after now that the technology, already
well known for being actually capable of running the same application everywhere, has been bestowed
with the functionality required for large-scale developments.

In this section, we are going to define a scalable folder structure that conveniently separates the most
important parts of a Flash component-based application.

Among the several benefits of such a structure, the most important one is that subsystems (such as
XLEFF) and themes can be reused by several applications, making the maintenance of such applica-
tions much cheaper.

Figure 7-12 shows the main branches of the recommended folder structure. The main folder is given
the name root and contains three subfolders:

The apps subfolder, which contains the component-based applications

The org subfolder, which contains one or more subsystems

The yourTheme subfolder, which contains a theme

Once you get used to the implementation reasoning behind the definition of this folder structure, you
will find it very natural to extend it by adding further themes or even new subsystems starting from
the root folder.

Figure 7-13 provides an in-depth view of the apps subtree. The apps folder is supposed to contain a
subfolder for each component-based application that you are developing. Of course, you can give
more meaningful names to the folders containing the actual applications instead of the sample names
shown in Figure 7-13 (application1, application2, application3). Thanks to the folder structure
that we are defining, all of the applications in the apps folder will be able to use the same themes and
subsystems included under the root folder.

Figure 7-13. Example of the apps subtree

Figure 7-12. Main branches of
the folder structure

184

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 184

XLEFF implements an XML layout engine, a functionality well separated from the application itself and,
as such, reusable by several applications at the same time. Because of this, XLEFF is a significant exam-
ple of a subsystem that can be included under the root folder as described in Figure 7-14. In the pro-
posed folder structure, you can add as many folders as you like under the root folder to make the
subsystems included in those folders reusable for the applications inside the apps folder.

The folder structure in Figure 7-14 also includes a folder named yourTheme as a placeholder for a
theme that you may create by subclassing the standard components while learning the techniques
exposed in Part 3 of the book.

A theme is a collection of several assets that may include color schemes, styles, and even ActionScript
classes in order to customize the appearance and behavior of the components in the architecture.
A theme can give an application a consistent look and feel that can also be shared with other appli-
cations.

Adding further themes under the root folder is an easy way of extending the folder structure, allow-
ing you to quickly select, or even change, a theme when building a component-based application.

Properly grouping the applications in a folder structure that includes their subsystem and themes can
significantly reduce development costs and facilitate maintenance of both the applications and their
parts.

But how can an application be aware of the presence of a subsystem or even a theme in the folder
structure? The answer to that question is in the classpath concept.

The role of classpath
A classpath is a collection of paths that is used by the compiler in the authoring environment to locate
external ActionScript files. Because of this, ActionScript class files are usually grouped in folders usu-
ally referred as packages.

The folder structure previously defined distinguishes among three different kinds of packages, appli-
cations, subsystems, and themes, defining a convenient and scalable organization of the classes used
by a component-based application.

When in the Flash authoring environment, you can define the collection of paths that define the class-
path globally and locally.

Paths added to the global classpath via the menu option Edit ➤ Preferences ➤ ActionScript ➤

ActionScript 2.0 Settings are always searched by the compiler, whatever FLA file you are working on.

Figure 7-14. XLEFF as an
example of a subsystem

185

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 185

Paths added to the local classpath via the menu option File ➤ Publish Settings ➤ Flash ➤ ActionScript
2.0 Settings are stored locally in the FLA file and searched only when compiling that particular file.

If you have the chance of defining the folder structure of your Flash projects and you are willing to
give the one recommended in this chapter a try, you will discover that setting the classpath locally can
be more convenient than its global counterpart for the following reasons:

The classpath required by the recommended structure is made of a single path.

This single path is a relative path that allows you to easily move the root folder around in your
file system without having to do any modification to the classpath: everything will still be com-
piled successfully.

Being that the classpath is local, and therefore stored in the application’s FLA files, it is easier
to move or copy the root folder to a different system without having to define a global class-
path for the authoring environment in that system.

So what is the single path to be included in the local classpath of an application FLA belonging to the
recommended folder structure? This path is

./../../

which was already shown in Figure 7-11, since the ActionScript Settings dialog box that allows you to
define the export frame for classes is the same dialog box used to define the local classpath.

Thanks to the dot-based notation available for paths, this very simple setting is all you need to make
the packaged subsystem and themes included in the folder structure visible to the compiler when it
builds the application. You can keep adding further subsystems and even themes to the structure
without having to change anything.

For example, let’s consider the following import statement:

import org.XLEFF.XMLStage;

Thanks to the local classpath definition, the compiler starts looking from the root folder and, from
there, into the org folder, then the XLEFF folder to eventually find the XMLStage.as file that imple-
ments the XMLStage class. Very similarly, the compiler will be able to locate the classes of any other
subsystem and theme starting from the root folder.

Facilitating event-driven programming
Once you have a good grasp of how to organize the initial development of a component-based appli-
cation conveniently, by structuring its FLA file and the folders containing the necessary ActionScript
classes, we can move on to looking at how to efficiently utilize a dynamically generated user interface.

In the last chapter, I showed you that the component instances in the user interface are inherently
capable of handling certain user interaction: the MenuBar instance knows how to hide/show its
menus, the Accordion instance knows how to display the proper child instance reacting to the user
clicking one of its headers, and so on.

186

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 186

We called those events intracomponent events to indicate that they are handled by the functional-
ity already implemented in the component. The good thing about these events is that you don’t have
to write any code to support them, unless you want to change the component’s default behavior.

You also discovered that some events cannot be implemented in the component functionality such as,
for example, the user clicking a Button instance. In those cases, the reaction depends on the specific
application that you are implementing and, therefore, it is your responsibility to provide the
ActionScript code to be executed when the event is triggered.

Such responsibility actually identifies a repeating pattern: writing code to handle the events triggered
by the user interface. This pattern is so central to the development of component-based applications
that XLEFF was designed to include further functionality to make it easier to program and maintain
event handlers.

The FLA structure of the ComponentBasedApp.fla template, the folder structure we saw earlier, and
the repetitive task of coding event handlers (facilitated by XLEFF) find a perfect marriage in the Main
class, which I introduce next.

The Main class
Going back to the third scene of the ComponentBasedApp.fla template, the Main scene, you may
notice that the most important layer in its structure is the one called Main.

This layer contains only a single instance of a component called Main. In Figure 7-15, you can see that
this component is included in the XLEFF folder of the template’s library.

Figure 7-15. The Main component

Although the Main component is included by the XLEFF implementation, the name of the ActionScript
class associated with the component is defined without any package prefixes as you can see in the
dialog box in Figure 7-16, which presents the linkage properties of the Main component.

Figure 7-16. Linkage properties of the Main component

187

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 187

The absence of package information indicates that the Main class is supposed to be found in the same
folder where the application is being developed. In fact, you can find a Main.as file, containing the
Main class, in the same folder where the ComponentBasedApp.fla template is.

This is because the Main class represents the entry point of the application logic, the class where you
will implement what must happen whenever the user triggers events via the user interface dynamically
generated by XLEFF. It follows that every component-based application must provide its own imple-
mentation of the Main class, since all the code in that class will be application specific.

Thanks to this design, the whole process of creating a component-based application has been simpli-
fied to the following:

1. Creating an XML description of the user interface

2. Providing an implementation of the Main class, including the event handlers that are specific to
each particular application

Let’s examine how strikingly easy and direct the implementation of an event handler is in the Main
class compared to the approach we studied in Part 1 of the book where we used listener objects.

Note that the last statement is not criticizing the approach of handling events via listener objects.
Listener objects are highly generic and, as such, useful in all the cases where there isn’t a pattern that
can be optimized.

A concrete example
In order to have a concrete example of the Main class, we now continue to implement the XLEFFdoc
example introduced in the previous chapter.

We are actually going to see that, starting from the ComponentBasedApp.fla template, the whole
process of building a component-based application as been reduced to these two steps:

1. Produce an XML description of the user interface.

2. Produce an implementation of the Main class.

We continue from the XLEFFdoc example since it already includes a significant XML description of a
user interface, which is redisplayed in Figure 7-17.

188

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 188

Figure 7-17. The XLEFFdoc interface

Skeleton of the Main class
The skeleton of the Main class of a component-based application capable of generating the user inter-
face dynamically via XLEFF is very simple:

import mx.controls.*;
import org.XLEFF.*;
import org.XLEFF.managers.*;
import org.XLEFF.utils.*;

class Main extends MainBase {

public function Main() {
}

}

The base class MainBase provides the implementation of the XML Layout parameter that you can set
via the authoring interface to specify the name of the XML file providing the description of the user
interface to be generated dynamically.

189

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 189

The third scene of the ComponentBasedApp.fla template contains a layer called Main, which hosts an
instance of the Main component in its second frame. This instance is physically located on the top-left
corner of the stage and, once selected, you will be able to notice its name, mc_main, and the default
setting of its XML Layout parameter, XLEFFdoc.xml, as shown in Figure 7-18.

Figure 7-18. Setting the XML Layout parameter

Changing the value of the XML Layout parameter allows you to use a different XML file as the descrip-
tor of the user interface to be dynamically generated by XLEFF. Figure 7-19 shows how the folder
structure of your drive should look after making a copy of the Component Based Template folder and
renaming the new folder XLEFFdoc.

Your next task is to flesh out the skeleton of the Main class in the XLEFFdoc folder by adding the event
handlers required by the dynamically generated user interface of our specific application example.

Handling the user interface events
In the previous chapter, we saw that the user interface of the XLEFFdoc example generated by the
“XLEFF sampler” would not handle some application-specific events.

In particular, the user interface was designed with a couple of navigation buttons and a drop-down
menu as alternatives to the navigation offered by the Accordion header.

The intended functionality associated with those components can be easily implemented via a Main
class, whose code is also very readable, as shown in the following lines:

import mx.controls.*;
import org.XLEFF.*;
import org.XLEFF.managers.*;
import org.XLEFF.utils;

Figure 7-19. Folder structure for the
XLEFFdoc application example

190

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 190

class Main extends MainBase {
private var MainForm:MovieClip;

public function Main() {
}

private function onPrevButton_Click(eventObject:Object):Void {
if (MainForm.MainAccordion.selectedIndex > 0) {

MainForm.MainAccordion.selectedIndex =
MainForm.MainAccordion.selectedIndex - 1;

} else {
MainForm.MainAccordion.selectedIndex =

MainForm.MainAccordion.numChildren - 1;
}

}

private function onNextButton_Click(eventObject:Object):Void {
if ((MainForm.MainAccordion.selectedIndex + 1) <

MainForm.MainAccordion.numChildren) {
MainForm.MainAccordion.selectedIndex =

MainForm.MainAccordion.selectedIndex + 1;
} else {

MainForm.MainAccordion.selectedIndex = 0;
}

}

private function onMenuWhatIs_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 0;

}

private function onMenuHowItWorks_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 1;

}

private function onMenuFeatures_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 2;

}

private function onMenuSchema_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 3;

}

private function onMenuEventHandling_Change(eventObject:Object)
➥ :Void {

MainForm.MainAccordion.selectedIndex = 4;
}

191

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 191

private function onMenuTheSampler_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 5;

}

private function onMenuTheAuthor_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 6;

}

private function onMenuLegalNotice_Change(eventObject:Object)
➥ :Void {

MainForm.MainAccordion.selectedIndex = 7;
}

}

The Main class declaration includes a MainForm private member declared as an instance of the
MovieClip class. Where does it come from?

As for all the other instances of objects belonging to the user interface, MainForm will be generated
dynamically by XLEFF because it can be found in XLEFFdoc.xml, the XML file containing the descrip-
tion of the user interface:

<form name="MainForm" styleName="xleffNormal" x="0" y="0">

MainForm is indeed the main form in the user interface of the XLEFFdoc example and its name has
been declared in the previous XML line. Note also that a few lines below that line there is another
significant XML element:

<accordion cls="Accordion" name="MainAccordion" x="20" y="45"
width="850" height="460">

This element refers to an Accordion instance, contained inside MainForm, not very originally named
MainAccordion. How does that translate in the ActionScript code of the Main class? Very intuitively, as
is shown by the following line:

MainForm.MainAccordion.selectedIndex = 0;

XLEFF has dynamically created a very intuitive object model that matches the description contained in
the XML file.

Once you know the instance names that you defined in the XML description and their containment
relationships, you are able to access every component instance generated dynamically utilizing the
same notation common to all the powerful object-oriented programming languages.

As a result, the code you write is almost self-descriptive, as demonstrated in the following example,
implementing the event handler that synchronized the Accordion instance with the choice made by
the user when selecting a menu item:

private function onMenuWhatIs_Change(eventObject:Object):Void {
MainForm.MainAccordion.selectedIndex = 0;

}

192

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 192

The name of the menu item is MenuWhatIs, as you can check by looking for the following line in the
XML file:

<menuitem label="1 - What Is XLEFF" instanceName="MenuWhatIs" />

So the name of the function implementing the related event handler is actually onMenuWhatIs_Change.

The only detail in the name of the event handler that may confuse you is the use of the word
“Change” instead of “Click”, a term that derives from the name given in the component architecture
for the event triggered when the user selects a menu item. In this case, the menu item triggers a
change event instead of a click event!

By default, XLEFF sticks to the names defined by the component architecture consistently to allow you
to learn it quicker.

What happens then when the user selects the MenuWhatIs menu item and the change event is raised
by the component architecture? The onMenuWhatIs_Change event handler is invoked by XLEFF and the
following line is executed:

MainForm.MainAccordion.selectedIndex = 0;

This line asks the accordion instance to display its first child (accordion’s children are numbered start-
ing from zero) since the MenuWhatIs menu item is, in fact, the first menu item in the menu.

Just slightly more complex is the implementation of the event handler associated with the NextButton
instance:

private function onNextButton_Click(eventObject:Object):Void {
if ((MainForm.MainAccordion.selectedIndex + 1) <

MainForm.MainAccordion.numChildren) {
MainForm.MainAccordion.selectedIndex =
MainForm.MainAccordion.selectedIndex + 1;

} else {
MainForm.MainAccordion.selectedIndex = 0;

}
}

The event handler name is now even more intuitive (onNextButton_Click) since buttons do trigger
click events while the code uses a couple of properties of the Accordion class (selectedIndex and
numChildren) to verify whether there actually is a next child of the Accordion to be displayed or
whether it is the case to restart from the first one.

Utilizing the user interface generated dynamically by XLEFF could not be more intuitive once you have
understood the following points:

The Main class will have access to an object model that is the faithful copy of the one specified
in the XML description.

You can implement event handlers by simply following a naming convention.

Let’s then formalize the naming convention supported by XLEFF in the case of the names of event
handlers.

193

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 193

Event handler naming convention
In order to implement an event handler for an event triggered by a component instance, you must
implement a method in the Main class with the following name:

onInstance_Event

In the previous syntax, [Instance] is the name of the component instance, as it was declared in the
XML description of the user interface, and [Event] is the capitalized name of the event being handled.
The on prefix and the underscore character for separating the instance name from the event name
have been added to increase the readability of the event handler name.

Table 7-1 illustrates a few valid examples of event handler names.

Table 7-1. Examples of event handler names

Event Handler Instance Name Event Name

onButton1_Click Button1 click

onButton2_Click Button2 click

onMenuItem1_Change MenuItem1 change

onComboBox1_Enter ComboBox1 enter

onComboBox1_Change ComboBox1 change

Assuming that Button1 is the name of an instance of the Button component, the following is an exam-
ple of an invalid event handler name since the Button class does not support the change event:

onButton1_Change

The fact that writing component-based applications using XLEFF is very easy is what makes it particu-
larly good as a unifying example for navigating in the vastness of the component architecture, under-
standing its functionality, and testing its applicability.

You may then decide to use and extend it for your own applications or as a prototyping tool for
statically produced user interfaces.

The benefits of XLEFF, however, extend even beyond the ability to generate a user interface starting
from an XML description and its help in making event-driven applications easy to program and main-
tain. It can also facilitate the content management of your component-based applications.

Managing content
Software internationalization is a term describing the process of porting an application to other
languages.

194

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 194

Whether you have to port your application in several languages or not, software internationalization
represents a good study case to test how well the content is managed by the framework being used
for developing your applications.

Figure 7-20 shows the user interface of the example we are working on (XLEFFdoc) after having been
translated in Italian.

Figure 7-20. An Italian version of the XLEFFdoc user interface

In the case of a static user interface designed in the authoring environment, you would have to select
each component instance one by one, possibly opening several containers in the process, in order to
set the text in each related parameter according to the Italian language: a process that is as easy as it
is tedious. This process would also be rather error prone, since it makes it so easy to forget some label
buried deep inside the component parameters (think of the menu items within a MenuBar that are
invisible at design time, for example).

Furthermore, once you have finished with the FLA file, you must recompile it and from there on man-
age two FLA files (one for each language version) that, as you will have realized by now, usually have
a much more complicated structure than text files.

Contrast this to the approach when the user interface is generated dynamically via an XML descrip-
tion. Internationalizing the interface is as simple (and quick) as going through the XML file and replac-
ing the content of every label, as in this example:

<menuitem label="3 - Le Caratteristiche" instanceName="MenuFeatures" />

195

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 195

Or this one:

<button name="PrevButton" styleName="xleffNormal" x="520" y="519"
width="160" label="Sezione Precedente" />

Modifying the contents of the XML file does not require recompiling the Flash document to produce
a new SWF file, meaning that you can redefine the existing user interface without having to touch the
Flash document at all.

In some cases, you may wish to use an XML file with a different name, in which case all you need to
do is to change the XML Layout parameter of the Main class to specify the name of the new XML file
to be used.

Evidently, XLEFF can be a big time saver, especially when it comes to maintenance, since changes can
be easily applied. And there is more to come—XLEFF also supports internal and external content.

Pushing the separation paradigm further
In our current example (XLEFFdoc), the layout of the user interface is rather simplified since each
Accordion child contains a single instance of the TextArea component.

The content of the TextArea component instances can be defined internally to the XML description as
in the following example:

<textarea name="WhatIsTextArea" x="10" y="10" width="825" height="284">
<content>Some internal content.</content>

</textarea>

However, unlike labels, the content of the TextArea component can include several lines and poten-
tially increasing the size of the XML file significantly while decreasing its readability and the overall
performance of the parser.

The separation paradigm, which has already shown its numerous benefits in many other areas of our
developments, once again suggests a neat solution: utilizing external content.

Alternatively, to supporting the content XML element, XLEFF also supports the externalContent ele-
ment, as demonstrated by the following example:

<textarea name="WhatIsTextArea" x="10" y="10" width="825" height="284">
<externalContent>content/content01.xml</externalContent >

</textarea>

While the content element was used to specify the actual content to be included in the TextArea
instance, the externalContent in the previous example element provides a relative URL to an XML file
that contains the content to be loaded in the component instance.

196

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 196

XLEFF supports the loading of content embedded in separated XML files having the structure
described in the following example, taken from the content01.xml file, which you can find in the
source code associated with this chapter:

<?xml version="1.0"?>
<content><![CDATA[External Content 1]]></content>

The XML structure of external content files is very simple, since it constitutes a single XML element
(content).

Embedding the actual content in a CDATA section is not mandatory, but it is strongly recommended
because of the important role of this XML feature.

The role of CDATA
The purpose of a CDATA section is to include text that will not be parsed by the XML parser.

A CDATA section starts with

<![CDATA[

and ends with

]]>

CDATA is not always necessary, but it becomes essential in the case of text containing special characters
like < or >. Those characters would generate parsing errors that would eventually lead to an unex-
pected behavior in your application.

Basically, CDATA sections give you the freedom to use whatever character you wish when defining text
content within an XML file (with the sole exception of the]]> sequence, since nested CDATA sections
are not allowed by XML).

Also, using a CDATA section to describe your text content will allow you to faithfully reproduce the line
breaks in the text. For example, the following external content:

<?xml version="1.0"?>
<content><![CDATA[First line.
Second line.
Third line.
Fourth line.
Fifth line.]]></content>

would be displayed in a TextArea instance with line breaks reproduced as follows:

First line.
Second line.
Third line.
Fourth line.
Fifth line.

197

EXTENDING THE APPLICATION FRAMEWORK

5939CH07.qxd 1/25/06 11:02 AM Page 197

Summary
This chapter covered a topic that has a very wide scope, since component-based applications can be
designed for almost any purpose one may think of.

You have learned how a good organization of several different aspects can act synergically, eventually
increasing a developer’s efficiency and productivity dramatically.

Although some of the aspects in completing an application are too specific to be treated in a book,
you have been given guidelines and techniques that allow you to integrate those aspects with the fea-
tures that are to some extent present in the design and development of every component-based
application.

By reading this chapter, you ended up with a set of best practices and a component-based template
that encapsulates them. In particular, you have learned how to

Take control of the loading process in component-based applications, determining when
classes and exported symbols are loaded.

Define the structure of a Flash document that properly compiles and initializes the compo-
nents’ symbols and their classes before they are generated dynamically.

Define a folder structure capable of managing several applications, their shared subsystems,
and their themes efficiently, and at a low cost of maintenance.

In the second part of the chapter, you learned the basics of developing an application based on an
XML layout engine and the benefits that come with it. Many of those benefits depend on mastering
the use of XML within a component-based application framework.

The next chapter will show you how to take full control over XML parsing in order to be able to
extend the framework by adding new features to existing components or even expand it by adding
support for brand new components.

198

CHAPTER 7

5939CH07.qxd 1/25/06 11:02 AM Page 198

5939CH07.qxd 1/25/06 11:02 AM Page 199

5939CH08.qxd 1/25/06 12:42 PM Page 200

201

Chapter 8

He that would perfect his work must first sharpen his tools.
Confucius

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 201

Before being considered for describing user interfaces, XML had already become a very popular choice
for capturing information across multiple applications, on account of the many benefits deriving from
its inherent ability to represent content via a simple, yet highly interoperable format.

XML has been available in ActionScript via a built-in class, originally called XML, since Flash 5. However,
it was not until the next version of the player (version 6) that the class was moved into the core of the
language with a significant gain in performance.

The XML class built into ActionScript provides many different services:

It is capable of loading an XML document and parsing it.

It can send an XML document to a specific URL.

It can build an XML document dynamically.

It can alter the structure of an existing XML document.

However, if you tried to parse an XML document using the XML class, you will be aware that writing
the necessary parsing code is not only tedious, but also generates overcomplicated, almost unreadable
code.

In this chapter, you will find a neat approach to overcoming the limitations of the XML class. In order
to fully grasp the design and benefits of the exposed solution, you need to first review how the XML
class implements the structure of an XML document (DOM) and how that affects the code you usually
write for extracting data from an XML document.

Parsing XML in ActionScript
If you already know how the built-in XML class works, you should find the following examples very
simple. The purpose of these examples is to point out the limitations of the XML class and how to
improve upon them.

When using the XML class, the process of parsing an XML document happens behind the scenes. You
start with an instance of the XML class that becomes somewhat “larger” after it loads an XML docu-
ment from a specific URL because the structure of the loaded XML document will be re-created inside
the instance of the XML class.

The following ActionScript code, run by the XML_00a.fla file that you can find in the source code
associated with this chapter, shows the basic process of loading an XML document via an instance of

The completed source code introduced in this chapter can be found in the package
src08.zip, downloadable from this book’s page at www.friendsofed.com.

202

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 202

the XML class and how such an instance (called xmlObj) has indeed changed after the loading process
is completed:

var xmlObj:XML = new XML();
xmlObj.ignoreWhite = true;
xmlObj.onLoad = function(success:Boolean) {

if (success) {
trace("AFTER: " + xmlObj.toString());

}
}

trace("BEFORE: " + xmlObj.toString());
trace("---------------------------------");
xmlObj.load("../../XMLdata/example.xml");

Note that, unless otherwise specified, we will be using the same XML document throughout all the
examples in this chapter for the sake of consistency when comparing different parsing code.

The chosen XML document is stored in the example.xml file and contains the following description of
a very simple user interface:

<?xml version="1.0"?>
<xleff>

<stage>
<form name="MainForm" x="0" y="0">

<button name="YesButton" label="Yes"
x="270" y="280" width="160" />

<button name="NoButton" label="No"
x="470" y="280" width="160" />

</form>
</stage>

</xleff>

If you run the example XML_00a.fla, you will notice that the outcome of the ActionScript code,
shown previously, will be displayed in the Output window as follows:

BEFORE:

AFTER: <?xml version="1.0"?><xleff><stage><form name="MainForm" x="0"
y="0"><button name="YesButton" label="Yes" x="270" y="280" width="160"
/><button name="NoButton" label="No" x="470" y="280" width="160"
/></form></stage></xleff>

The string resulting from the call to xmlObj.toString is empty before loading the XML document,
while it contains the whole document after the XML document has been loaded.

203

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 203

However, at the same time, something more complicated than just having the XML document in a
single string has happened: the XML document has been parsed, and a tree-like structure has been
added to xmlObj, as displayed in Figure 8-1.

Figure 8-1. The xmlObj tree-like structure “grows” after loading an XML document.

But where does this tree-like structure come from and what is the cost of accessing it via the API
implemented by the XML class built into ActionScript?

Object models and trees
The widespread diffusion of the object-oriented paradigm has involved the frequent use of the term
“object model” in a variety of contexts.

Although there isn’t an “official” definition of what an object model is, an object model usually refers
to the deconstruction of a macro object in subobjects.

In Chapter 6, we considered a user interface as a macro object and deconstructed it into several
objects (stage, forms, accordions, buttons, etc.). Basically, the XML syntax defined by XLEFF is a repre-
sentation of the object model of a user interface.

Going further, it should not be too difficult to realize that an XML document can also be considered a
macro object and deconstructed into several subobjects.

204

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 204

There is an “official” object model for XML documents, and it is called the W3C DOM (Document
Object Model) Level1 recommendation. This recommendation has been produced by W3C, a consor-
tium promoting standards for the Web, and can be found online at http://www.w3.org/TR/REC-xml/.

The XML class that we find in ActionScript is loosely based on the W3C DOM Level1 recommendation,
and that is where the tree-like structure created after parsing an XML document comes from.

If you look back at Figure 8-1, you will notice that there is a one-to-one relationship between each
XML element in the XML file and the nodes in the tree-like structure created in the xmlObj after
parsing the XML document.

The tree-like structure implemented by the XML class reflects the containment relationships present in
the XML document, and each node in the tree is an instance of the XMLNode class, another
ActionScript built-in class.

In Figure 8-1, the nodes in the tree structure were labeled figuratively to facilitate recognizing the
one-to-one correspondence with the elements in the document.

By using the common properties of the XML and XMLNode classes, you can access the nodes of the tree-
like structure, generated after parsing an XML document, in several ways.

Figure 8-2 shows the same tree displayed in the previous xmlObj diagram after replacing each node’s
label with the actual ActionScript statement required to access that node by using the childNodes
property.

Figure 8-2. Accessing the tree-like structure via the childNodes property

205

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 205

The childNodes property of each XMLNode instance is a read-only array that contains the children of
the node that in turn are instances of XMLNode as well.

Without comparing Figure 8-1 with Figure 8-2, it is very difficult, if not impossible, to recognize what
node of the XML document is accessed by the following ActionScript statement:

// a not very readable reference to the 'form node'
xmlObj.childNodes[0].childNodes[0].childNodes[0]

The XML and XMLNode classes define five additional properties that you may use as an alternative to
childNodes in order to browse the tree-like structure of an XML document. Their names intuitively
suggest their purpose: parentNode, firstChild, lastChild, nextSibling, and previousSibling.

Figure 8-3 maps the tree-like structure of our current example into the ActionScript statements
required to access its nodes using some of the alternative properties.

Figure 8-3. Accessing the tree-like structure via the firstChild and nextSibling properties

Each of the parentNode, firstChild, lastChild, nextSibling, and previousSibling properties ref-
erences a single node that is somewhat related to the current node. Using them instead of the
childNodes array can slightly improve the performance of your code, since there is no index processing,
but the resulting ActionScript statements are still not very readable, as in the case of the following:

// another not very readable reference to the 'form node'
xmlObj.firstChild.firstChild.firstChild

206

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 206

Of course, you can declare variables with names that are better related to the domain problem of
your application and use them as pointers to the tree-like structure in order to make your code more
readable. In fact, that is what wise developers do every time they have to use the XML class to access
the data in an XML document.

The typical job of an XML developer
When wearing the hat of the XML developer, we define one or more XML schemas (or receive them
as part of the application’s requirements) that model the information within the problem domain of
an application, and we usually end up writing lots of parsing code to access the data present in XML
documents created respecting those schemas.

The larger the project, the more important it is that the source code be readable in order to reduce
the costs of debugging, maintaining, and extending the software being developed.

That is the one of the major reasons why any typical multitier architecture includes at least one tier for
the business logic in the application. In cases like these, developers spend a lot of time implementing
intermediate objects that are much closer to the business logic than the tree-like structure included in
the XML class.

The benefits of such intermediate objects become more evident if you compare the tree-like structure
shown in Figure 8-4 with those displayed in the previous two diagrams (Figures 8-2 and 8-3).

Figure 8-4. A tree-like structure that is related to the problem domain

207

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 207

Let’s compare the three statements in those three figures that are associated with the same “form
node” of the current XML example:

// a not very readable reference to the 'form node'
xmlObj.childNodes[0].childNodes[0].childNodes[0]
// another not very readable reference to the 'form node'
xmlObj.firstChild.firstChild.firstChild
// do you really need a comment to know what the next line is about?
xleff.stage[0].form[0]

Of course, the line

xleff.stage[0].form[0]

not only tells you about what kind of the object being referred (form), but also tells you more about
the two objects that contain it (xleff and stage).

The point here is about how many steps you have to make to access the information stored in the
XML document and how readable those steps are. The comparison is between the anonymous struc-
ture created by the XML class, depending on properties such as firstChild and childNodes, and an
object model that is based on the specific XML document that you are dealing with. So far, we have
been reusing the same XML document illustrated in Figure 8-1. An example that uses a completely dif-
ferent XML document will further clarify the points being made here. Let us consider another simple
XML document:

<?xml version="1.0"?>
<forest>

<tree>
<branch>

<apple />
<apple />

</branch>
</tree>
<tree>

<branch>
<orange />
<orange />

</branch>
<branch>

<orange />
</branch>

</tree>
</forest>

Here we are simply describing a forest with two trees (an apple tree and an orange tree). Accessing
the orange in the second branch of the orange tree following the three different approaches illus-
trated so far would produce the following three statements:

208

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 208

// a not very readable reference to the 'form node'
xmlObj.childNodes[0].childNodes[1].childNodes[1].childNodes[0]
// another not very readable reference to the 'form node'
xmlObj.firstChild.firstChild.nextSibling.firstChild \\ continues below

.nextSibling.firstChild
forest.tree[1].branch[1].orange[0]

Once again the statement

forest.tree[1].branch[1].orange[0]

tells us immediately that we are dealing with the first orange on the second branch of the second tree
in the forest (read it from right to left and consider that arrays are zero-based).

You can choose slightly different strategies to implement your “business objects” starting from the
highly generic tree-like structure returned by the XML class, but no matter what you will always end
up doing a lot of repetitive work.

Wouldn’t it be wonderful if the XML class automatically returned an object matching not the generic
DOM of an XML document, but the more application-specific object model defined by the XML
schema upon which the XML document is based?

That is what the XModel class included in XLEFF does.

Simplifying the parsing process
Being able to write parsing code that is at the same time more compact and readable can make a huge
difference in the case of applications that severely rely on XML.

When implementing the very first version of XLEFF, all the limitations of the anonymous tree-like
structure of the XML class becomes immediately evident, and the need to extend such a class becomes
mandatory in order to effectively produce and maintain the XML layout engine.

The sort of code being written by using the XML class is very repetitive, and that suggests that there is
a pattern hidden in such code:

A second fundamental aspect of such pattern is that

The application-specific object model (or a significant part of it) is described
by the XML schema(s) of the XML document(s) being used in the application.

The developer is constantly transforming the generic object model of the XML
DOM into an application-specific object model.

209

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 209

Both aspects firmly suggest the way to go: extend the XML class by implementing a new class (XModel)
capable of returning a macro object modeled following the object model defined by the application-
specific schema inside the XML documents.

The use of the XModel class in the XLEFF project makes the parsing code so much more readable and
compact that it is not an exaggeration to say that XLEFF may have not existed without the help of such
functionality.

Although the XModel class was purposely created for XLEFF, its functionality is logically independent
from it, and it would be as useful in any other project requiring you to produce a lot of XML parsing
code.

Since the scope of the XModel class is made so clear by the necessity of having a more readable pars-
ing code while writing less and less of it, every feature in the class has been added with such benefits
in mind.

Let’s then compare the parsing code deriving from the use of XModel with the options offered by the
XML class.

Parsing an XML document
Parsing an XML document using the XML class involves the implementation of the onLoad event han-
dler, as we saw in our earlier example in this chapter.

The XModel class defines a new onModelledObject event that is handled via a listener object following
the standard approach for custom events discussed in the first part of the book. The following code
sample illustrates a typical use of the XModel class:

var listener = new Object();
listener.onModelledObject = function(eventObject:Object) {

var xleff:Object = eventObject.modelledObject;
// the xleff variable now refers to the modelled object
// resulting from parsing the example.xml document

}

xModel.addEventListener("onModelledObject", listener);
xModel.load("../../XMLdata/example.xml");

The onModelledObject event handler receives an eventObject that has a property called
modelledObject: this property provides access to the macro object created by the XModel class after
parsing the XML document.

Note that following the declaration of

var xleff:Object = eventObject.modelledObject;

the variable xleff represents the root of such a macro object that has the expected structure, which
was described in the statements we previously saw in Figure 8-4.

210

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 210

As you may notice, there is a one-to-one correspondence between the XML elements in the XML doc-
ument and the subobjects of the macro object. You may also notice that the root element (coinciding
with the modelledObject property returned by the onModelledObject event) is the only node not
implemented as an array—this is because the root element of an XML document is slightly different
from the other nodes in the document.

Document root and other nodes
The XModel class implements the root element of an XML document as an object and any other node
underneath it as an array. This is because an XML document can have only one root element, but this
root element can have any number of children.

The root element of the XML document is also the only node that has an anonymous name
(modelledObject), unrelated to the specific schema of the XML document, since it is a property of the
object returned from the onModelledObject event.

To further clarify this point, the following code illustrates the declaration you may write if you are
using the XModel class to create a macro object for the XML example describing a forest that we saw
earlier:

var forest:Object = eventObject.modelledObject;

Following this declaration, you would be able to access the node using the following line:

forest.tree[1].branch[1].orange[0];

since the macro object created by the XModel class would reflect the contents of that XML document.

Identifying a node name
We already know that whenever we use the anonymous tree-like structure returned from the XML
class, we are unable to recognize the name of the XML element associated with a node by just looking
at the structure, as in this example:

xmlObj.childNodes[0].childNodes[0].childNodes[0]

In order to identify the element name, we must read the value of the nodeName property of the
XMLNode class. The following statement:

trace(xmlObj.childNodes[0].childNodes[0].childNodes[0].nodeName);

would print the text

form

in the Output window, assuming that the XML document being parsed is the first one we introduced
in this chapter, which is the default for the our current examples.

211

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 211

However, the nodeName property of a node would not tell us the names of the parent nodes. In the
case of the macro object returned by XModel, we don’t need to test the value of any property to know
the name of a node and also the names of its parents, as demonstrated in the following example:

xleff.stage[0].form[0]

The previous statement is clearly more readable and compact than any alternative statement built by
using the properties provided the XML and XMLNode classes.

Identifying a node type
The W3C DOM Level 1 recommendation defines 12 different types of node, each of them identified
by an integer:

1. ELEMENT_NODE

2. ATTRIBUTE_NODE

3. TEXT_NODE

4. CDATA_SECTION_NODE

5. ENTITY_REFERENCE_NODE

6. ENTITY_NODE

7. PROCESSING_INSTRUCTION_NODE

8. COMMENT_NODE

9. DOCUMENT_NODE

10. DOCUMENT_TYPE_NODE

11. DOCUMENT_FRAGMENT_NODE

12. NOTATION_NODE

However, the XML class supports only two types of node: the ELEMENT_NODE (1) and the TEXT_NODE (3).

All the nodes that we have been dealing with in this chapter until now were of type 1 (ELEMENT_NODE),
since the respective XML documents did not contain any node of type 3 (TEXT_NODE).

Let’s extend our default XML document in order to have a node of type 3 in the tree-like structure
created by the XML class:

<?xml version="1.0"?>
<xleff>

<stage>
<form name="MainForm" x="0" y="0">

<button name="YesButton" label="Yes"
x="270" y="280" width="160" />
<button name="NoButton" label="No"
x="470" y="280" width="160" />
<textarea name="TextArea1"

➥ x="270" y="400"
width="400" height="200">

<content>

212

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 212

This text creates a TEXT_NODE
type in the XML class tree-like
structure
</content>
</textarea>

</form>
</stage>

</xleff>

Note that, following the syntax supported by XLEFF for the description of user interfaces, we added
another node of type 1 (associated with the textarea element) containing an additional node of type
1 (associated with the content element). The content element, however, contains some text; text
inside an element generates an unnamed node of type 3 in the tree-like structure created by the XML
class when parsing that XML document.

When considering node types, writing parsing code by using the XML class becomes even more awk-
ward, and the outcome is even less readable because of the following:

An additional nodeType property of the XMLNode class is provided to check the actual type of a
node (returning an integer value of 1 or 3, according to the node’s type).

The nodeName property makes sense only for nodes of the type 1. In fact, in the case of type 3
nodes, this property has a value of null.

The XMLNode class defines another cumbersome property named nodeValue to allow retrieving
the text of a node of type 3. To make things worse, this property has no significance in the case
of type 1 nodes and, in fact, its value is set to null when the node is of type 1.

Basically, when writing parsing code by using the XML class, you will frequently have to test the
nodeType property to verify the type of a node and, depending on its actual type, access a different
property (nodeName for nodes of type 1, nodeValue for nodes of type 3).

Assuming that you know the exact structure of the XML document in our example, a single statement
accessing the text inside the content element would look something like the following:

xmlObj
.childNodes[0]
.childNodes[0]
.childNodes[0]
.childNodes[2]
.childNodes[0]
.childNodes[0]
.nodeValue

The previous ActionScript statement is not only very long, but also cryptic, since the childNodes prop-
erty does not tell us much about the XML structure that we are navigating. Furthermore, by looking at
the previous line, you cannot tell the type of the node that you are accessing (text node or element
node), which can be particularly significant since the nodeValue property is null in the case of ele-
ment nodes, and verifying the type of the node, by checking the nodeType property, makes your code
more robust but also more complex.

213

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 213

Compare the previous approach with that of the XModel class in a similar situation. The XModel class
does not distinguish among different node types since it is not a DOM (Document Object Model). As
you have learned, the XModel class creates a macro object matching the object model described by
the XML schema of the XML document.

When text is included inside an XML element, the XModel class just adds a text property to the spe-
cific subobjects and assigns the text value to it. Accessing the text inside the content element of our
XML document in a single statement would then be done using the following code:

xleff.stage[0].form[0].textarea[0].content[0].text

This is considerably more compact and readable than any single statement you may create to access
the same text value by using any combination of the properties made available by the XML and
XMLNode classes!

Accessing the attributes of a node
As you may well know, XML elements can have attributes whose values can be enclosed in single or
double quotes, as in the following example:

<button name="YesButton" label="Yes"
x="270" y="280" width="160" />

The former line shows a button element that has five attributes (name, label, x, y, and width). In the
following example, where xmlObj is supposed to be the instance of the XML class, a variable n was uti-
lized to have a short reference to the node corresponding to the button element in order to demon-
strate how its attributes can be accessed via the XMLNode class:

var n:XMLNode =
xmlObj.childNodes[0].childNodes[0].childNodes[0].childNodes[0];
trace(n.attributes.name);
trace(n.attributes.label);
trace(n.attributes.x);
trace(n.attributes.y);
trace(n.attributes.width);

When executed, the previous code would display the following values in the Output window:

YesButton
Yes
270
280
160

It follows that, when using the XML class to parse an XML document, the attributes of an XML element
are accessed via the attributes property of the respective XMLNode instance. The attributes prop-
erty is implemented as an associative array in which the keys are the names of the element’s attributes
and the values are the respective attribute’s values.

214

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 214

Even when accessing attributes of an XML element, the XModel class provides a more compact and
readable option, as explained by the following example:

var n:XMLNode = xleff.stage[0].form[0].button[0];
trace(n.name);
trace(n.label);
trace(n.x);
trace(n.y);
trace(n.width);

The XModel class does not introduce an intermediary subobject and, in doing so, assigns the attributes
as values in a more intuitive way, which can also be demonstrated by accessing an attribute’s value via
a complete reference to the attribute, like so:

xleff.stage[0].form[0].button[0].name

This accesses the name attribute of the first button in the form in a very readable manner.

Browsing the structure of an XML document
We have been focusing on the most elemental steps in writing XML parsing code to show how clearly
the suggested approach, implemented by the XModel class, provides a way to increase the readability
of the code and the productivity of the developer.

Still there are infinitely more complex cases that may benefit from such an approach. Considering the
steps to take when browsing the structure of an XML document can provide an even more significant
example of those we have seen so far.

Let’s reconsider the extended version of our default XML example after we added the textarea ele-
ment to it. The following fragment shows a form element containing two button elements and a
textarea element:

<form name="MainForm" x="0" y="0">
<button name="YesButton" label="Yes"

x="270" y="280" width="160" />
<button name="NoButton" label="No"

x="470" y="280" width="160" />
<textarea name="TextArea1" x="270" y="400"

width="400" height="200">
<content>
This text creates a TEXT_NODE
type in the XML class tree-like
structure
</content>

</textarea>
</form>

215

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 215

In the tree-like structure resulting from the use of the XML class, the node corresponding to the form
element would be accessed via the following code:

var n:XMLNode = xmlObj.childNodes[0].childNodes[0].childNodes[0];

We already know that this code isn’t very readable, but this is not the point we are trying to demon-
strate here. If executing the following code

trace(n.childNodes.length);

we would find out that the node associated with the form element has three children. It is to be
expected, since we know that the form element contains two button elements and one textarea
element—a total of three (3) children.

The problem is that when programming actual parsing code, we would not know what the XML docu-
ment would contain at runtime. All we would know programmatically is that the n node is a form ele-
ment (by checking its nodeName property) and that its childNodes property contains three additional
nodes. The research for further information is still possible, but it requires more and more checking.

When using the XModel class, we not only obtain more readable and compact code, but also a macro
object in which information is already arranged in a better way.

We already know that the subobject corresponding to the form element would be accessed via the fol-
lowing statement:

var n:XMLNode = xleff.stage[0].form[0];

What we have not appreciated yet is that such a subobject would not have a single property with three
children; rather it would have two different properties: one named button containing two children,
and the other named textarea containing the third child. The following code would show a 2 fol-
lowed by a 1 in the Output window:

trace(n.button.length);
trace(n.textarea.length);

Having the children already grouped in arrays in a way that is consistent with their XML elements sim-
plifies the code that you must write for your applications even more than before.

The more complex the parsing code to be produced, the greater the benefits from such object-
modeled organization of the information.

In the next few chapters, XLEFF will be used as a complex example, allowing you to fully appreciate the
benefits of the approach captured in the XModel class. Every time you see XML parsing code in XLEFF,
ask yourself how you would have done that by using the XML class—you would certainly end up with a
significant increase in the complexity of your code.

216

CHAPTER 8

5939CH08.qxd 1/25/06 12:42 PM Page 216

A few notes on the use of XModel
The approach encapsulated in the XModel class offers so many benefits and can play such an impor-
tant role in developing XML-based applications that you will certainly be interested in investigating
whether there are holes in its strategy.

It may help your investigations to first consider that the XModel class works pretty well in the case of
XLEFF—XML layout engines are naturally required to produce lots of XML parsing code in order to
implement and maintain their functionality.

Also, it would be a severe misreading to interpret the approach suggested here as a criticism to the
XML class implemented in ActionScript. On the contrary, the fact that XModel extends the XML class rep-
resents a very significant example of how conveniently built-in classes can be extended to give a com-
petitive edge to your applications.

Finally, since the XModel class does not override any functionality implemented by the XML class, it is
compatible with any code that you may have already written using the default built-in class.

Summary
In this chapter, you learned how to save a lot of time when it comes to writing XML parsing code.

Such a result is achieved by realizing that most of the time spent writing code to access the content of
XML documents goes into translating the generic XML DOM supported by the XML class into an object
model that is specific to your application.

You also learned how to use the XModel class—a huge time-saver since

It automatically shapes the information inside an XML document in an object-oriented way by
returning a macro object that very intuitively captures the application-specific contents of the
document.

It allows you to write code that is both more compact and more readable, facilitating the
development and maintenance of your XML-based applications.

The next chapter will complete the second part of the book dedicated to mastering the techniques for
exploiting the component architecture by introducing the customization process.

217

MAKING YOUR XML LIFE EASIER

5939CH08.qxd 1/25/06 12:42 PM Page 217

5939CH09.qxd 1/25/06 11:06 AM Page 218

219

Chapter 9

Wisdom and beauty form a very rare combination.
Petronius

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 219

Quite often you will have to customize one or more aspects of a component in order to meet your
customer’s specifications.

The complexity of customizing a single aspect of a component can range from the simple replacement
of a few graphic symbols to a rewrite of part of its functionality, the latter requiring a complete under-
standing of its implementation.

The appearance and behavior of components are influenced by several intertwined concepts: to under-
stand the way they work and interact, you must learn the choices that were made when designing and
implementing the architecture. Only then will you be able to select the technique that best suits a
requirement among those that you will learn in this chapter.

The architecture supports two different functionalities for customizing the appearance of a compo-
nent: styles and skins.

Although both can contribute to developing a uniform look among different components, styles usu-
ally act on a more global context than skins, and because of this they tend to define aspects that you
can find in almost any component, such as color and text.

Conversely, because of its nature, a skin is usually strictly related to a specific component; artistic skills
are required in order to create a set of skins that can give two different components a consistent look
and feel.

Styles and skins are grouped in sets called themes. A theme is a collection of styles and skins that,
working together, confer a similar look to a set of components.

Those are the basics. Now you need to learn the details.

Working with styles
We first met styles in Chapter 6, when they were included in the XML description of a user interface
to be dynamically generated by XLEFF. Those XML definitions were based upon the architecture’s
implementation of styles.

You may recall the presence of color names, colors, and text properties. In this section, we are going
to examine how to use styles programmatically with ActionScript and, in more general terms, how
styles have been implemented in the architecture.

The support for styles is implemented in the UIObject class, the root of the component architecture,
and therefore it is available to any standard component.

A style is uniquely identified by its name. Of course, a specific style has an effect on a certain compo-
nent only if that component supports it. By implementing a specific style, a component also defines
how that style influences its appearance.

The completed source code introduced in this chapter can be found in the package
src09.zip, downloadable from this book’s page at www.friendsofed.com.

220

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 220

Parameters controlled by styles
Styles provide control over certain parameters of a component’s appearance such as color, text, and
behavior. Styles can also provide a limited control on the graphic design of a component instance.

Styles can then be classified into four general categories:

Color styles, used to tell a component what colors to use. Color styles can also affect the skin
and the text inside a component instance.

Text styles, used to define formatting attributes (font family, font weight, etc.) of the text
inside a component instance.

Behavior styles, related to the dynamics of a component and affecting some components,
such as the ComboBox or the Accordion, that display state transitions via animations. Behavior
styles can affect the speed and accelerations of such animations.

Graphic styles, affecting a component design in a limited way. The border style property is the
most typical example of a graphic style. Components supporting the border style property can
have several types of border (inset, outset, etc.).

The style lookup process
A component instance reads a style’s value while drawing itself to synchronize its appearance accord-
ingly with the style definition. However, the same style can be defined in more than one context:
Figure 9-1 shows the priorities of the style lookup process as they have been implemented in the com-
ponent architecture.

Figure 9-1. Style lookup process

221

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 221

Figure 9-1 is telling us that styles defined as properties of a component instance are given priority
above any other definition and that global styles are the last context to be searched, after which the
style property is considered undefined.

Figure 9-1 also lists all the options made available by the architecture when it comes to defining a
style. Let us examine them one by one, starting from the highest priority.

Styles as properties of a component instance
If a style name is defined as a style property of a component instance, then its value takes precedence
over any other definition of the same style name.

The best way to see how to set a style property of a component instance is to look at the code:

comboBox1.setStyle("backgroundColor", 0xaaaaff);

In the previous line, comboBox1 is an instance of the ComboBox component that you may have
dropped on the stage of a newly created Flash document and named as suggested.

The setStyle method allows you to define the value of a specific style property. The first parameter
specifies the style name of the style property being defined (backgroundColor in the example). The
second parameter specifies the value being assigned to the style property (0xaaaaff, being a bluish
color in the example).

It is just as simple as that. Note that a complementary method, named getStyle, can be used to
retrieve the value of a style programmatically. Interestingly, running the following code in a Flash doc-
ument containing nothing else but the comboBox1 instance of the previous example would show that
the backgroundColor style is initially undefined and, after the execution of the setStyle method,
would be defined by the value specified programmatically:

trace(comboBox1.getStyle("backgroundColor"));
comboBox1.setStyle("backgroundColor", 0xaaaaff);
trace(comboBox1.getStyle("backgroundColor"));

If you delete the comboBox1 instance from the stage of the former example and replace it with the
one that follows, you can verify that the setStyle and getStyle methods still work as expected in
the case of a dynamically generated component:

import mx.controls.ComboBox;

var comboBox1:ComboBox = createClassObject(ComboBox, "comboBox1", 1);
trace(comboBox1.getStyle("backgroundColor"));
comboBox1.setStyle("backgroundColor", 0xaaaaff);
trace(comboBox1.getStyle("backgroundColor"));

By using the setStyle method, you can define the style properties of a component instance one at a
time. Note that the styles defined programmatically by using this technique will affect that specific
component instance only.

222

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 222

When using XLEFF, you can set a component instance’s style property by including its XML element
within the component XML element, as in the following example:

<combobox name="comboBox1">
<style>
<property name="backgroundColor">
<value type="Number">0xaaaaff</value>

</property>
</style>

</combobox>

Note that you can set more than one style property of the same component instance by adding fur-
ther property elements inside the style element.

The styleName property
Defining the style properties of a component instance one by one gives you greater control since you
may specify different settings for each component, although overusing this option is likely to produce
a user interface with an irregular look. Also, in the absence of other options, your source code would
grow with numerous calls to setStyle in order to define each style property individually for each
component instance.

Grouping style properties into sets can provide significant help in enforcing a consistent look and feel
while writing much less code. Because of this, the architecture supports grouping style properties in
four different ways.

The first and most intuitive grouping technique allows collection of a number of style properties into
a single style object so that you are able to assign all its properties to a component instance in a sin-
gle step via the styleName property.

Once again, we may reuse the previous example made of a Flash document containing a single
instance of a ComboBox component named comboBox1 to illustrate this technique with simplicity. The
following lines create a style object named style:

import mx.styles.*;

var style = new CSSStyleDeclaration();
style.styleName = "Style4MyCombos";

What you should learn from the previous line is that style objects are instances of the
CSSStyleDeclaration class, yet another class implemented by the component architecture. We define
a name (Style4MyCombos) for the style object that indicates our intention to reuse it for any
ComboBox instance in our application.

Once we have the style object, we can add to it as many style properties as we like. Imitating our pre-
vious example, we only add the backgroundColor property, but you may experiment by adding more
of them:

style.setStyle("backgroundColor", 0xaaaaff);
// you can set other style properties here
// by adding further calls to style.setStyle

223

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 223

In order to make this style object accessible globally, we add it to the global styles collection created
and maintained by the component architecture:

_global.styles.Style4MyCombos = style;

Note that we globally define the name of the style object according to the definition of its styleName
property.

From there on, you can use the new, globally defined style object to assign all its style properties to a
component instance in a single step, as in the following example:

comboBox1.setStyle("styleName", _global.styles.Style4MyCombos);

Since the style object as been added to the global collection of styles, you can refer to it anywhere
in your application. The technique explained here can work also if we include its whole source code in
the first frame of the Flash document:

import mx.styles.*;

var style = new CSSStyleDeclaration();
style.styleName = "Style4MyCombos";
style.setStyle("backgroundColor", 0xaaaaff);
// you can set other style properties here
// by adding further calls to style.setStyle
_global.styles.Style4MyCombos = style;

comboBox1.setStyle("styleName", _global.styles.Style4MyCombos);

Note that if you apply the best practice of enforcing strict typing by changing the line where the style
object is declared:

var style:CSSStyleDeclaration = new CSSStyleDeclaration();

the example will stop working because the compiler will tell you that the setStyle method is not
defined; the error message will be as follows:

There is no method with the name 'setStyle'

This is due to a potential flaw in the design of the CSSStyleDeclaration class. If you open the class
file provided with the source code of the component architecture, you will find that there is no
setStyle method declared in there, nor is the class derived from a base class that defines such a
method.

The compiler is quite right, although we know that the setStyle method must have been added
somehow to the class; otherwise, the previous code would not work at all. In fact, the setStyle
method is implemented as a class (CSSSetStyle) and added to the CSSStyleDeclaration class via its
prototype property. Find the following line:

CSSStyleDeclaration.prototype.setStyle = ui._setStyle;

224

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 224

In the implementation of the classConstruct method of the CSSSetStyle class, this demonstrates
how the setStyle method eventually ends up being added to the CSSStyleDeclaration class.
Unfortunately, such an exotic method clashes with the type checking mechanism implemented by the
Flash compiler that cannot validate at compile time properties and methods added at runtime.

I spent a few lines on this issue to show that although best practices are a good thing, sometimes you
have to forget them in order to achieve a result. Hopefully, in the next version of the component
architecture, the implementation of the CSSStyleDeclaration class will be cleaner, and strict typing
will not be a problem for it.

Note that the XLEFF equivalent of the style object option is to define a style in the Styles section of
the XML schema like so:

<style name="Style4MyCombos">
<property name="backgroundColor">

<value type="Number">0xaaaaff</value>
</property>

</style>

and then assign it to a component instance via the styleName attribute, as in the following:

<combobox name="comboBox1" styleName="Style4MyCombos" />

Even in this case, XLEFF follows very closely the design of the component architecture.

Class-level styles
Style objects could be used in a broader context than the one showed in our last example. For
example, you may define a BlueStyle object that can be applied to component instances belonging
to different classes but that support the same style properties (such as backgroundColor). This is
achieved through a shortcut, used when you must address a specific component class: class-level style
properties.

If the global styles collection contains a style object whose name is exactly the same as that of a
component class, its style properties are automatically defined in every instance of the component in
question. That may sound more complex than it actually is, so let us look at an example:

_global.styles.ComboBox.setStyle("backgroundColor", 0xaaaaff);

This single line is sufficient to define the backgroundColor style property for all the ComboBox
instances in your application, since it adds the style property’s definition to the ComboBox global style
included in the styles global collection.

If all the ComboBox instances in your application must have the same look, this is probably the best
option to consider when defining their style properties in your application.

225

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 225

Note that if a certain style object for a specific component class is not implemented, you can add it to
the global styles collection and it will start working, assuming that it has the exact same name of its
associated component class. However, you must act carefully, as demonstrated by the following example:

if (_global.styles.MyComponentClass == undefined) {
_global.styles. MyComponentClass =

new mx.styles.CSSStyleDeclaration();
}

Before adding the MyComponentClass global style object to the global styles collection, check
whether it is already defined; otherwise, you will risk losing all its preexisting definitions.

XLEFF support of class-level styles is very intuitive also. You can define style classes in the same XML
section where you define style objects. The only difference is that class-level styles will have the name
of an existing component class, as in the following example:

<style name="ComboBox">
<property name="backgroundColor">

<value type="Number">0xaaaaff</value>
</property>

</style>

Inheriting styles from a container
The third way of grouping style properties may be less intuitive than using style objects or class-level
styles, but it can still be effective in several circumstances: it works by inheriting the style properties of
a component instance’s container, if any.

Not every style property can be inherited, though, since a style property must be implemented as
inheritable in order to be inherited.

Although the official documentation claims that the component architecture already implements cer-
tain style properties as inheritable, concrete testing shows that this feature is not yet consistently
supported throughout the architecture. Since it is also likely that the number and name of the style
properties that are inheritable will change in the feature, I recommend using the StyleManager class
to verify whether a specific style property is actually inheritable by using its static isInheritingStyle
method, for example:

import mx.styles.*;

trace(StyleManager.isInheritingStyle("backgroundColor"));

At the moment of writing, the backgroundColor is not an inheritable style property and, therefore, the
previous example would display the value false in the Output window if executed in the authoring
environment.

Note that, when implementing new styles for new components, you can make them inheritable by
using a complementary method of the StyleManager class, called registerInheritingStyle, that

226

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 226

works as in the following example, which shows a style property called MyNewStyleProperty being
registered as inheritable:

import mx.styles.*;

StyleManager.registerInheritingStyle("MyNewStyleProperty"));

By using the registerInheritingStyle method, you may also try to change the existing inheritance
rule in the component architecture, although the use of this method for this purpose is currently
undocumented and, therefore, should be considered a hack and used with care.

In the case of XLEFF, the layout engine has nothing to do with implementing inherited styles, since
they are inherited transparently at runtime depending on the containers that will be dynamically
created in the interface. Conclusion: if an inheritable style property works for the component archi-
tecture, it will also work in XLEFF.

Global styles
Global styles are the fifth and last technique that allow you to define a style property. They can be
loosely considered the fourth “grouping” technique since, like the previous three techniques, global
styles allow you to apply style properties to more than one component instance at a time.

Global styles come last in the priority order of the style lookup process illustrated earlier in Figure 9-1.
If, at runtime, a style property definition cannot be found even among the global styles, its value
remains undefined.

Global style properties are added to the global style object, which is an instance of the
CSSStyleDeclaration class like any other style object considered so far.

In the case of the example we have been using for our examination of the five different options for
defining style properties, one line of code is sufficient to set the bluish background for the
comboBox1 instance of the ComboBox class:

_global.style.setStyle("backgroundColor", 0xaaaaff);

Notice that the last statement defines the backgroundColor style property globally by using the
_global.style object implemented by the component architecture. As a result of this, the statement
affects every component instance in the application, not just comboBox1, unless the backgroundColor
has been also defined by using some of the previous four techniques; if this is the case, the process
outlined in Figure 9-1 determines how multiple definitions of the same style property are prioritized
and which one will prevail.

XLEFF supports a globalstyles XML element that you can add to the Styles section of the XML
schema to declare style properties that must be implemented globally, as in the following example:

<globalstyles>
<property name="backgroundColor">

<value type="Number">0xaaaaff</value>
</property>

</globalstyles>

227

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 227

Analyzing skins
As you saw earlier, the use of style properties allows you to customize certain aspects of a component
instance, including its graphic design to a limited extent.

However, most of the standard components in the architecture owe much of their appearance to
skins, and you will have to consider various techniques to replace them if you really want to take full
control of how components look.

What is a skin?
Generally speaking, a skin is ultimately an exported symbol. The component architecture implements
skins in several different ways, depending on the specific component. The common denominator of
those implementations is that skins are, in any case, movie clips with a linkage identifier and, by exten-
sion, are symbols exported for ActionScript.

Working with skins can be hard even for a seasoned developer because some skins are implemented
by coding rather complex algorithms. We will start looking at the commonalities and differences
among various skins so we can define an abstract process for selecting the proper technique when
customizing them.

Apart from being exported symbols, skins share another common feature: each skin is somewhat asso-
ciated with a specific state of a component.

Components can assume different states over time depending on the user interaction or as the result
of programming. For example, think of a Button instance that can present several states such as
button up, button over (when the mouse point is over it), button down (while the button is being
clicked), and so on.

When considering a particular skin, do not forget that it is associated with one state of a component,
and its purpose is to visualize that state.

A skin may, of course, be associated with more than one state at a time, but providing different skins
for each state of a component makes that component instance much more lively, since the user will
be able to recognize each of those states visually. Associating the same skin to two different states of
a component may well make those states look very similar, if not identical.

Now that you understand all skins are exported symbols with a linkage identifier and associated with
(at least) a component state, it makes sense for me to introduce you to the three major categories of
skins: handcrafted skins, mixed skins, and purely coded skins.

Handcrafted skins
A handcrafted skin is an exported symbol that is not empty: it contains graphics designed by an artist
to visualize a particular state of the associated component.

The StandardComponents.fla file that we examined earlier in the book contains not only the physical
structure of the standard component, but also their default skins. After locating the file (see Appendix
A for instructions), you can open it and start examining the skins that you can find in its library.

228

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 228

The file library contains several folders, and you can access the skins by selecting Flash UI
Components 2 ➤ Themes ➤ MMDefault. Once in the MMDefault folder, you will find several folders,
each having a name associated with a certain standard component.

Let us focus on the CheckBox Assets subfolder to find examples of handcrafted skins. Remember that
skins are associated with a component states, which is indicated by the presence of a States subfolder
containing the skins of the CheckBox component, as displayed in Figure 9-2.

Figure 9-2. Locating the CheckBox handcrafted skins

Figure 9-2 also shows that each of the skins in the States folder has a linkage identifier as expected
(CheckFalseDisabled, CheckTrueDisabled, etc.).

The state of a CheckBox instance is determined by several factors at the same time:

The mouse interaction (over, out, click)

The instance enabled status (enabled, disabled)

The instance selected status (true, false)

It is interesting to note that the CheckBox component comes with eight different skins, each of them
associated with a different state of a component instance.

229

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 229

Figure 9-3 shows each of the eight skins alongside the names chosen for both
the symbols and their linkage identifiers.

The linkage identifiers chosen for the CheckBox skins are rather intuitive; you
may well guess that the skin name CheckTrueOver is associated with the state of
the CheckBox instance when the mouse rolls over it and its selected and
enabled properties are both true. However, concrete confirmation of what state
a skin represents will come when we investigate the CheckBox class throughout
this chapter.

You can generate the image captured in Figure 9-3 via ActionScript code by cre-
ating a new Flash document and adding/deleting a single CheckBox instance on
its stage to ensure that the CheckBox component will be included in its library.

The following code, added to the first frame of the document, will generate the
image displayed in Figure 9-3:

function showSkin(linkId:String, idx:Number) {
var x:Number = 50;
var y:Number = 10 + 30*idx;
attachMovie(linkId, "cb" + idx, getNextHighestDepth(),➥

{_x: x, _y: y});

createTextField("cb" + idx + "txt", getNextHighestDepth(),➥

x + 20, y - 4, 100, 20);
eval("cb" + idx + "txt").text = linkId;

}

showSkin("CheckFalseDisabled", 0);
showSkin("CheckTrueDisabled", 1);
showSkin("CheckFalseUp", 2);
showSkin("CheckTrueUp", 3);
showSkin("CheckFalseOver", 4);
showSkin("CheckTrueOver", 5);
showSkin("CheckFalseDown", 6);
showSkin("CheckTrueDown", 7);

What is interesting in the last example is

It shows that skins are included in the compiled (SWC) version of the CheckBox component. To
include the component in the document’s library is enough to start generating those skins
dynamically.

The function showSkin implemented in the example uses the attachMovie method to create a
skin dynamically. Although the component architecture implements the basic skin functional-
ity in the UIObject class via several methods, skins are exported symbols because, eventually,
they are created dynamically in the same way: by calling attachMovie.

230

CHAPTER 9

Figure 9-3. The eight skins
of a CheckBox and their

linkage identifiers

5939CH09.qxd 1/25/06 11:06 AM Page 230

The skins of the CheckBox component prove to be a good starting point since they provide us with
examples of the simplest type of skins:

These handcrafted skins are individually linked with a specific state of a component.

Each state of the component is associated to one skin only. As a result, only one skin is visible
at any moment.

Each state of the component can be wholly previewed in the library by looking at the respec-
tive skin.

The remaining two major categories of skins are usually much more complicated, and not just because
of the presence of ActionScript code, as you are going to see in the examples in the next two sections.

Mixed skins
It is not always possible to implement a component appearance by using a single handcrafted skin
for each of its states. In the case of the CheckBox component, its sole content is a label that is always
placed well apart from the component’s skin regardless of whatever option we choose for the
labelPlacement property (right, left, top, or bottom), as shown in Figure 9-4.

Figure 9-4. The four positions available for a CheckBox’s label

Positioning the CheckBox label does not require any change to the skin design, and this ultimately is
what allows it to be implemented following the simplest option: one graphic symbol for each of the
component states.

However, there are cases when accommodating a component’s content requires a more flexible, and
therefore more complex, implementation of its skins.

Mixed skin is a term that I use in this book to indicate a skin that is built by combining not just one,
but several exported symbols at the same time in order to visualize the current state of a component.
The adjective “mixed” also indicates that the various symbols are controlled and coordinated via algo-
rithms implemented using ActionScript. The implementation of a mixed skin, therefore, involves a
combination of several graphic symbols plus frequently complex coding. As you can imagine, cus-
tomizing a component that has a mixed skin is not as easy as changing the skins of a handcrafted
component.

231

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 231

The component architecture includes several examples of mixed skins. Arguably, the UIScrollBar com-
ponent implements the most complex example of mixed skin in the architecture, since 26 different
graphic symbols are required to draw its skin.

In the architecture, scrollbars are frequently subcomponents of containers like the ScrollPane compo-
nent, and they are also available as the UIScrollBar standard component.

The 26 graphic symbols requested to display the states of the UIScrollBar component can be found in
the StandardComponents.fla file’s library by selecting Flash UI Components 2 ➤ Themes ➤ MMDefault
➤ ScrollBar Assets ➤ States. I have displayed these symbols in Figure 9-5 for your convenience.

Figure 9-5. The 26 exported graphic symbols required by the UIScrollBar skin

232

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 232

The graphic symbols used in the UIScrollBar implementation deconstruct the component structure
into four logical entities:

Up arrow button: The button of a scrollbar that the user clicks to scroll backward

Down arrow button: The button of a scrollbar that the user clicks to scroll forward

Thumb: The handle of a scrollbar that the user drags back and forth to scroll accordingly

Track: The background of the area constraining the movement of the thumb

Figure 9-6 shows the skin of a scrollbar deconstructed into these four subobjects.

Figure 9-6. A scrollbar’s skin deconstructed

Both the up arrow and down arrow buttons take four skins each to represent their four states
(Disabled, Down, Over, and Up). Although belonging to a subcomponent, these skins can be considered
handcrafted ones since each of them corresponds to a specific state of the subcomponent.

The thumb is treated similarly to a button; however, although it only has four states (Disabled, Down,
Over, and Up) like the other buttons, it takes 16 skins to be represented. This is because the skin of each
state of the thumb is visualized using not just one, but four graphic symbols (ScrollThumbBottomUp,
ScrollThumbGripUp, ScrollThumbMiddleUp, and ScrollThumbTopUp in the case of the Up state).
Figure 9-7 shows the skin of the thumb deconstructed into the four subskins.

Figure 9-7. A scrollbar’s thumb deconstructed

233

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 233

When scrollbars are used inside containers such as the ScrollPane component, the size of the thumb
in the scrollbar matches the percentage of content currently visible in the container. Because of its
variability, the state of the thumb cannot be visualized by a single graphic component. The combina-
tion of the four skin parts shown in Figure 9-7, controlled via code, allows the creation of a thumb
whose size is variable while certain visual aspects (like the grip and the extremes of the thumb) remain
unchanged. In the case of a horizontal scrollbar, like the one shown in Figure 9-6, all of the four skin
parts are rotated to match the horizontal design.

The two skins still unaccounted for (ScrollTrack and ScrollTrackDisabled) belong to the scrollbar’s
track. They also may be considered handcrafted skins, since each of them corresponds to a state of
the track (enabled or disabled). However, such skins are evidently stretched to match the length of
the scrollbar, as required.

In the end, the scrollbar example provides us with a mixed skin made of several skin parts that also
belongs to four different elements of a scrollbar (up/down buttons, thumb, and track).

To customize a mixed skin not only is a lengthy process (26 graphic symbols to be redesigned), but
also requires the understanding of how certain skin parts are controlled, resized, and rotated by the
skin algorithms implemented for the component in order to create an apparently seamless skin. The
complete process of customizing the skin of the UIScrollBar component is described in Chapter 21.

However, in the case of mixed skins, you only need to know how the skin parts are used by those algo-
rithms in order to replace them with compatible graphics. Therefore, you are not requested to imple-
ment or change a skin algorithm when you customize a mixed skin.

Purely coded skins
As you may be guessing by now, the third category of skins, purely coded skins, is even more com-
plex and does require you to write a skinning algorithm if you want to customize this kind of skin.

The designs of the skins considered so far were defined by a single graphic symbol (handcrafted skins)
or from the arrangement of several graphic symbols duplicated, resized, or even rotated via code to
achieve the final result (mixed skins).

In both cases, however, you could find some kind of graphic asset inside the exported symbol repre-
senting the whole skin or just a part of it.

In the case of purely coded skins, you are still dealing with exported symbols that, as you know, are
movie clips with a linkage identifier. However, in the case of purely coded skins, those movie clips are
empty!

The most commonly used purely coded skin in the component architecture certainly is that associated
with the Button component. That is right—the appearance of instances of the Button component
does not depend on any graphic assets, and it is fully created at runtime via the Drawing API available
in ActionScript.

Let us then look at what assets you can find in the StandardComponents.fla file in the folder associ-
ated with the Button component. You can find the folder in the document’s library by selecting Flash
UI Components 2 ➤ Themes ➤ MMDefault ➤ Button Assets. Figure 9-8 shows the contents of this
folder.

234

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 234

Figure 9-8. The contents of the Button Assets folder

The first detail worthy of notice is the absence of a States subfolder that should have contained the
skins associated with each state of the Button component.

The Button component skin is implemented by only one symbol (ButtonSkin) that you can find
directly inside the Button Assets folder.

Do not get confused by the presence of another symbol, called ActivatorSkin. This symbol is a skin,
but it is only used in the case of menus objects, and probably should have been included in a differ-
ent folder (occasionally we may find other discrepancies in the component architecture source code).

So, in the case of the Button component, each of its several states is implemented by one symbol only.
To make things even more mysterious, at first, if you open that symbol (ButtonSkin), you will find that
it is, indeed, empty!

This is just a further confirmation of what was already stated: purely coded skins do not use any
graphic assets. The key in the implementation of this “magic” skin can be found if you examine its
Linkage Properties dialog box, shown in Figure 9-9.

Figure 9-9. Linkage properties of the ButtonSkin symbol

235

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 235

The Linkage Properties dialog box reveals that the ButtonSkin symbol not only has a linkage identifier
as expected, but is also associated with an ActionScript class: mx.skins.halo.ButtonSkin. It is this
class that takes care of drawing every skin that a Button instance may need to display its current state.

We will examine the details of the Button component in Chapter 11. For the scope explored in this
chapter, all you need to know is that this skin is implemented by an ActionScript class using the
Drawing API.

Implementing a skin like that of the Button component involves numerous calls to methods such as
lineTo, curveTo, moveTo, and, of course, the mathematics required to draw lines and curves accord-
ing to the intended design.

This is why purely coded skins are certainly the most difficult skins to be customized—they require
altering or even replacing drawing algorithms.

Now that you know the several kinds of styles and skins, you are ready to move on the theme concept
and learn the techniques available for customizing the appearance and behavior of the standard com-
ponents in the architecture.

Working with themes
The theme concept satisfies the need to have user interfaces with a consistent look and feel.
Although artistic freedom is important, user interfaces designed using a variety of fonts and no set
color scheme are likely to confuse users.

The purpose of a theme is to group styles and skins that are visually well balanced in order to facili-
tate their use when customizing the appearance and behavior of the components included in the
architecture.

The current component architecture includes only two themes: the default Halo theme, and a rather
anonymous, if not incomplete, alternative called the Sample theme.

Producing a theme for the component architecture is a task of substantial complexity that should not
be underestimated. Regardless of the huge popularity of the Flash technology, web resources on
themes have not appeared yet, even though themes were first introduced in 2003.

Before delving into the various techniques available to produce and apply a theme, it is worth review-
ing the design choices that were made when producing the current version of the component archi-
tecture in order to grasp the major challenges of designing a new theme for it.

Changing skins and the mirage of code separation
As we saw in the first part of this chapter, defining styles for the component architecture is a straight-
forward process involving very little coding, regardless of whatever option you choose among those
made available by the architecture.

Unfortunately, producing new skins for components is not as simple.

236

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 236

The idea of skinning components was initially born to separate a component appearance from its
implementation, but, as you learned earlier, that ideal is respected by a certain kind of skin only
(handcrafted skins), while there are two other categories of skins (mixed skins and purely coded skins)
that substantially, or even totally, rely on coding.

The lack of uniformity may well be subject to criticism, but at the same time it represents a huge
opportunity for the accomplished ActionScript developer to learn and compare three different imple-
mentations, each of them with their own specific benefits.

Furthermore, an attentive examination of the component architecture at its higher level of abstraction
will reveal one important aspect shared by all skins: in all cases, a skin is an exported symbol dynami-
cally created and manipulated by the component class, so to a certain extent it is well separated from
the component logic.

Because of this, theoretically you can replace a purely coded skin with a handcrafted (or mixed) one.
Of course, this is not an easy task and may not be convenient compared with other options. However,
considering alternative implementations for the existing skins will help you in appreciating the pros
and cons of their current implementation.

Let us now start exploring what techniques you can concretely apply to change the skin of a compo-
nent depending on the nature of the skin being replaced.

Changing skins at authoring time
Changing a skin at authoring time, whenever possible, is certainly the easiest among the techniques
available, although it has limitations that some of the more complex techniques do not have.

This technique is based on an essential principle: if you add an exported symbol having the same link-
age identifier of a skin used by a certain component to the Flash document’s library, then every
instance of that component will start using the new symbol instead of the one embedded in the com-
piled version of the component.

If that concept sounds complex, you will be surprised to find how simple it actually is, as the following
example illustrates:

1. Create a new Flash document and save it as CheckBoxSkinTest.fla.

2. Drag the CheckBox component on stage to create an instance of that component.

3. Using the Oval tool, draw a small red circle with a black border approximately as big as the box
of the CheckBox (12 by 12 units).

4. Double click the circle shape to select it and convert it to a movie clip named CheckFalseUp.
Before closing the Convert To Symbol dialog box, check the Export for ActionScript option so
you have a linkage identifier with the same name as the one you just defined for the symbol.
Delete the circle shape on the stage, which has become an instance of the CheckFalseUp
exported symbol.

5. Save the Flash document.

Earlier in this chapter, in the example of a handcrafted skin, you saw that the CheckBox component
uses eight skins, one for each of its states. In fact, what we just did was to manually draw one of those
skins, the one associated with the initial state of the CheckBox (not selected, up).

237

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 237

If you test this last example, you may be surprised to see the red circle
you have just drawn being used by the CheckBox instance, as displayed in
Figure 9-10, without your having to write any code at all.

That happened automatically since the circle had been converted into an
exported symbol whose linkage identifier (CheckFalseUp) is the same as the
CheckBox skin in use by the CheckBox class. Figure 9-11 shows how the docu-

ment library of our example contains two objects only: the compiled CheckBox component and our
newly created symbol.

Figure 9-11. The compiled CheckBox component and a custom skin

While testing the last example, notice that the red circle encapsulated in the new skin (CheckFalseUp)
is displayed only when the checkbox is in its initial state (not selected, up). If you roll the mouse
pointer over the component instance or even click it, other original skins are displayed according to
the component’s other states.

When planning to fully customize a component, you should provide an alternative for each of its skins.
In the case of the CheckBox component, you already saw that eight skins are requested to visualize
each of the component’s states.

The HaloTheme.fla file, which you can find in the same folder as the StandardComponents.fla file,
contains all the assets of the Halo theme. Reusing these assets as a starting point in customizing the
skins of a component can significantly speed up your operation, as you can appreciate in the follow-
ing example:

1. Open the Flash document we created in the previous example and save it as
CheckBoxSkinTest2.fla.

2. Delete the symbol CheckFalseUp from the document’s library. We will replace it with a copy of
its original version in the next steps.

3. Open the HaloTheme.fla file as an external library by selecting File ➤ Import ➤ Open External
Library.

238

CHAPTER 9

Figure 9-10. Espresso skinning
of the CheckBox

5939CH09.qxd 1/25/06 11:06 AM Page 238

4. Look for the folder containing the CheckBox assets in the HaloTheme.fla file. You can find it
by selecting Flash UI Components 2 ➤ Themes ➤ MMDefault ➤ CheckBox Assets.

5. Drag the file folder named CheckBox Assets from the HaloTheme.fla library into the
CheckBoxSkinTest2.fla library. This creates a copy of the folder and its contents in the Flash
document of our new example.

In a few steps you have included a copy of all the original skins required by the CheckBox component
in the CheckBoxSkinTest2.fla file and you can now edit all of them as you like to alter the look and
feel of the CheckBox component.

Figure 9-12 shows the library of the CheckBoxSkinTest2.fla file, underscoring the advantage deriving
from this quick approach.

Figure 9-12. The library of our example after you add a copy of all the CheckBox assets

The document’s library of our example now contains the compiled CheckBox component and all the
exported symbols associated with its skins with their original linkage identifiers.

You can easily redesign the appearance of the CheckBox component by altering the symbols in the
document’s library, since they are working copies that also remind you what skins you have to provide
to complete the job.

For instance, you may use the Free Transform tool to quickly rotate the squares of
every skin 45 degrees and obtain a CheckBox that looks like the one displayed in
Figure 9-13.

The technique that you have just learned demonstrates that it is possible to change a
component’s skins without having to write a single line of code, making this tech-
nique attractive to designers who do not have time to learn the necessary skills for
advanced programming.

239

THE CUSTOMIZATION PROCESS

Figure 9-13. Altered
CheckBox skin

5939CH09.qxd 1/25/06 11:06 AM Page 239

However, this technique should be considered a “quick-and-dirty” option because of several limitations:

Once added to the library, the new skin overrides the existing one, and it is applied indiscrimi-
nately to every instance of the related component: you are unable to apply different skins to
different component instances.

It works conveniently in the case of handcrafted skins only. It can also work with mixed skins,
but it requires a perfect understanding of how the skin parts are assembled together via code
in order to produce a whole skin. It cannot work with purely coded skins, since they require
coding to work as expected.

Sometimes a component’s functionality does not meet your requirements in full, and you may
need to customize its behavior. You cannot achieve that goal without coding.

While this technique can be useful in several cases when creating small applications, it is basically
unsuitable for large projects due to its inherent limitations. However, it is a significant example of the
close relationship between the linkage identifiers of symbols and the component classes that use them
to implement their skins.

Let us now examine techniques that can provide you with more control via coding.

Changing skins programmatically
You have learned how to change handcrafted skins, and possibly mixed skins, by simply providing
alternative graphics in the form of an exported symbol.

You have also learned of the limitation of this technique, and, being a developer, you may have
already guessed that in order to take full control of the skinning process some coding will be required.

In this section, we will examine how to change skin programmatically. This will remove the first limita-
tion previously considered: you will be able to define different skins for component instances belong-
ing to the same class.

In order to implement skinning, components must store the linkage identifiers associated with the
symbols used to implement them.

Even if there is no exact naming convention established for them, those linkage identifiers are stored
inside the component classes as properties. The following lines of code are a few examples of those
properties that you can find in the implementation of the respective classes:

// from the implementation of the RadioButton class
var falseOverIcon:String = "RadioFalseOver";

.....

// from the implementation of the NumericStepper class
var downArrowUp:String = "StepDownArrowUp";

.....

// from the implementation of the Window class
var skinTitleBackground:String = "TitleBackground";

240

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 240

As you can see from the names of the properties selected for the previous example, similarities are
rare, and to locate the property associated to a specific skin may require a careful study of the source
code, especially in the case of subcomponents’ skins. The chapters dedicated to each component in
Part 3 will help you locate every specific property associated with a skin.

In this context, we are going to examine the technique that you may apply once you know which
property is associated with a certain skin.

Having already worked with the CheckBox component in the previous examples makes this class ideal
for presenting this new technique. The CheckBox component stores the linkage identifier associated
with the CheckFalseUp state that we customized earlier in the falseUpIcon property of the CheckBox
class, as you can verify by finding the following line in the source code of the class:

var falseUpIcon:String = "CheckFalseUp";

Going back to the objective of programmatically changing the skin of the CheckBox component, let us
build an example showing how to do it:

1. Open the Flash document created in our first example (CheckBoxSkinTest.fla), which is the
one with the red dot skin, and save it as CheckBoxSkinTest3.fla.

2. Using the Info Panel, place the CheckBox instance already on stage at x: 100, y: 100.

3. Select the CheckFalseUp symbol in the document’s library and change its linkage identifier
from CheckFalseUp to CustomCheckFalseUp by right-clicking the symbol and selecting the
Linkage option. The name of the identifier is in the first field of the Linkage Properties dialog
box. By renaming the linkage identifier, that symbol will not be associated to the skin of
CheckBox instances automatically anymore. If you run a test at this point, you will notice that
the skin of the CheckBox instance is back to its default appearance.

4. Select the first frame in the document and add the following code:

#include "test.as"

5. Create an ActionScript file and save it as test.as in the same folder as the Flash document you
are working on.

6. Add the following code to the newly created ActionScript file:

import mx.controls.CheckBox;

var initObj:Object = {
_x: 100,
_y: 140,
_width: 200,

Note that, although difficult to believe, the CheckBox class also includes the dec-
laration of a falseUpSkin property, which is not used by the class implementa-
tion. Several unnecessary and confusing declarations appear in the source code of
the component architecture that will probably be removed in its next version. They
are mostly harmless, as long as you realize they are unused and ignore them.

241

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 241

label: "Custom CheckBox",
falseUpIcon: "CustomCheckFalseUp"

}
var cb1:CheckBox = createClassObject(CheckBox, "cb1",

getNextHighestDepth(), initObj);

7. Save the ActionScript file.

If you test the file, you will find that the movie now shows two CheckBox
instances, but only one uses the custom skin that we designed for the exam-
ple. Figure 9-14 shows the expected result.

The last technique demonstrates that different customizations of the same
component can coexist in the same application. It is based on an initializa-
tion object (named initObj in the example) that is passed to the instance to
be customized when the instance is created dynamically via a call to the
createClassObject method.

The core attribute of the initialization object used to implement this technique is the falseUpIcon
property of the CheckBox class that is utilized to store the linkage identifier (CustomCheckFalseUp) of
the CheckFalseUp symbol in the document library. Not using the default name (CheckFalseUp) for the
linkage identifier ensured that every other CheckBox instance would not be affected by automatic
changes, retaining its default appearance as demonstrated by the instance already on stage.

You may be now wondering “We just saw how to customize a specific instance created dynamically,
but what if the instance was creating at authoring stage and, therefore, already on the stage?” Since
the initialization object technique cannot be applied in that case, let us look at another example that
fixes this:

1. Open the Flash document created in our previous example (CheckBoxSkinTest3.fla) and save
it as CheckBoxSkinTest4.fla.

2. Select the CheckBox instance on the stage and add the following movie clip event handler to it:

onClipEvent (initialize) {
falseUpIcon = "CustomCheckFalseUp";

}

3. Save the Flash document.

If you now run a test on this new example, the output will show that both
of the CheckBox instances are using the custom symbol that we defined
for its skin (see Figure 9-15).

We customize the CheckBox instance on stage by using a different tech-
nique in order to be able to modify the value of the falseUpIcon prop-
erty of the CheckBox class at the right time, which is before the
component instance would be created on stage by the Flash player.

242

CHAPTER 9

Figure 9-14. Customizing the
skin of a specific instance

Figure 9-15. Two different
techniques, the same result

5939CH09.qxd 1/25/06 11:06 AM Page 242

In order to do this, we had to utilize an undocumented event called initialize. This event runs
before the component is created on stage and, therefore, fits well our purpose of customizing the skin
of that specific instance programmatically.

The initialize event is undocumented, so it is not listed among the onClipEvent candidates when
you write the example code in the authoring environment.

The candidate events suggested by the authoring environment when writing onClipEvent statements
are load, unload, enterFrame, mouseDown, mouseMove, mouseUp, keyDown, keyUp, and data. For each of
these events, you can find an alternative in the MovieClip class in the form of an event handler
(onLoad, onUnload, etc.).

Generally, it is good practice to avoid using the onClipEvent statement if a more object-oriented
alternative is available; but since the initialize event is undocumented, the MovieClip class does
not offer an event handler such as onInitialize and, therefore, there are no alternatives to its use in
the case of component instances added at authoring time. When component instances are created
dynamically, you can apply the initialization object technique you saw before that provides yet
another reason to favor dynamic creation whenever possible.

Skins that reflect styles
You can achieve greater control over a component’s appearance when certain aspects of its skin, like
the color, can be altered via style properties.

The standard components in the architecture support several styles that we will examine in detail in
the chapters dedicated to each component in Part 3.

In this section, you will learn a simple but powerful technique that shows you how to add the support
of a color style to the skins that you create when customizing a component.

In the following example, we rebuild the custom skin that we defined in our previous examples to
make it more suitable for supporting two custom color styles: boxColor and boxBorderColor.

1. Create a new Flash document and save it as CheckBoxSkinTest5.fla.

2. Drag the CheckBox component on stage to create an instance of that component.

3. Create a new movie clip symbol by selecting Insert ➤ New Symbol, and give it the name
CheckFalseUp and the linkage identifier CustomCheckFalseUp. (Remember to check the Export
for ActionScript option to be able to define the linkage identifier.)

4. Add two additional layers in the newly created CheckFalseUp symbol and then rename its
three layers as actions, sub-skin box, and sub-skin border, starting from the topmost layer.

5. Select the first frame in the topmost layer (actions) and add the following ActionScript code:

box_mc.boxColor = getStyle("boxColor");
border_mc.boxBorderColor = getStyle("boxBorderColor");

6. Draw a borderless shape using the Oval Tool in the first frame of the sub-skin box layer. Once
done, set the position and size of the shape as follows: X = 1.0, Y = 1.0, H = 10.0, W = 10.0,
by using the Info panel. Set the shape color as red.

243

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 243

7. Draw a borderless shape using the Oval tool in the first frame of the sub-skin border layer.
Once done, set the position and size of the shape as follows: X = 0.0, Y = 0.0, H = 12.0,
W = 12.0, by using the Info panel. Set the shape color as black.

8. Select the shape in the sub-skin box layer and convert it into a symbol named CheckFalseUpBox
and a linkage identifier of CheckFalseUpBox.

9. Select the shape in the sub-skin border layer and convert it into a symbol named
CheckFalseUpBorder and a linkage identifier of CheckFalseUpBorder.

10. Select the symbol instance in the sub-skin box layer and give it the instance name of box_mc.

11. Select the symbol instance in the sub-skin border layer and give it the instance name of
border_mc.

12. Edit the box_mc symbol instance and add the following code to its first frame:

mx.skins.ColoredSkinElement.setColorStyle(this, "boxColor");

13. Edit the border_mc symbol instance and add the following code to its first frame:

mx.skins.ColoredSkinElement.setColorStyle(this, "borderColor");

14. Select the CheckBox instance on the stage and attach the following ActionScript code to it:

onClipEvent (initialize) {
falseUpIcon = "CustomCheckFalseUp";
boxColor = 0x008800;
boxBorderColor = 0xff0000;

}

15. Save the Flash document.

The CheckFalseUp skin of the current example looks similar to the ones in our previous examples,
but it contains two subskins (an instance of CheckFalseUpBox named box_mc and an instance of
CheckFalseUpBorder named border_mc).

Introducing two subskins for the box and the border is necessary for being able to set their color sep-
arately via two different styles (boxColor and boxBorderColor).

The few lines of code in this example are worth a thorough examination since they demonstrate a
technique for breaking down a skin into several subskins (two in the example, but this can be repli-
cated with any number) while implementing a style for defining the color of each subskin.

Let us first examine the sole lines present in each of the two subskins:

// present in the CheckFalseUpBox
mx.skins.ColoredSkinElement.setColorStyle(this, "boxColor");
// present in the CheckFalseBorder
mx.skins.ColoredSkinElement.setColorStyle(this, "borderColor");

Those lines both use the ColoredSkinElement mix-in class provided by the component architecture
that does most of the job transforming a skin (or subskin) into a colorable skin. The only difference
comparing the two lines is given by the style that influences the color of each specific subskin.

244

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 244

There is some code in the CheckFalseUp symbol as well:

box_mc.boxColor = getStyle("boxColor");
border_mc.boxBorderColor = getStyle("boxBorderColor");

The CheckFalseUp skin is one of the skins of the CheckBox component and, as such, it receives the
style definitions from the component architecture. Both the lines of code included in this skin have
the effect of propagating those style settings to its subskins that, being colorable skins, have a good
use for them.

Basically the CheckFalseUp skin can support two color styles, because each of those colors is sup-
ported by one of its subskins. This way we have bypassed the limitation imposed by the movie clip
color that a skin could support one color only. Note that by replicating this technique, you can now
build skins that support any number of colors via their subskins.

Finally, let us examine the code attached to the CheckBox instance on the stage:

onClipEvent (initialize) {
falseUpIcon = "CustomCheckFalseUp";
boxColor = 0x008800;
boxBorderColor = 0xff0000;

}

This code applies the technique associated with the initialize event that you learned earlier on. You
already have all the elements for replacing this approach with the one using an initialization object in
the case of a dynamically generated component instance.

In the current example, the initialize event handler does a bit more than just redefining the linkage
identifier of the skin. It also defines the values to be used for the two custom styles that we have just
implemented in the new skin: boxColor and boxBorderColor.

If you test the movie, you will see an output similar to that of Figure 9-10, with the main differences
being that the inner part of the rounded skin has a dark green color (0x008800) while the border has
a lighter green color (0xff0000) as defined by the values of the custom style properties boxColor and
boxBorderColor.

Thanks to this technique, you can now have fun drawing stylized skins that sport as many colors as
you like.

In search of a unified approach: subclassing
The techniques you learned so far address important but varying issues. Although they are very useful
and allow you to take customize several aspects of a component’s appearance, what is still missing is
a unifying approach in which you can blend them whenever needed.

That approach has to come from coding, since in the wide majority of cases you cannot satisfy your
requirements by simply replacing one or more graphic symbols.

Being a developer, you will be pleased to know that there is indeed an object-oriented approach that
can integrate each of the techniques presented and even provide more control on the customization
of a component. Such an approach is called subclassing.

245

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 245

The term “subclassing” highlights the fact that what you do when customizing a component is create
a new component whose class is derived directly from the class of the component that you are cus-
tomizing. Subclassing a component then becomes a synonym of customizing it through extending
and/or overriding some of its functionality by adding properties and methods to its derived class.

In order to customize a component, you need to include the component’s source in the Flash docu-
ment of your project. As you already saw, the source of all standard components can be found in the
file StandardComponents.fla.

Since the CheckBox component accompanies all the examples in this chapter, we are going to subclass
it in the following example to start exploring the benefits of this approach:

1. Create a new Flash document and save it as CheckBoxSkinTest6.fla.

2. Create a folder called Flash UI Components 2 in the document’s library. You will use it as the
container of the source of the components to be customized.

3. Create another folder called Customized Components in the document’s library. You will use
this as the container of the customized components and their assets.

4. Open the StandardComponents.fla file as an external library by selecting File ➤ Import ➤
Open External Library.

5. Drag the CheckBox component that you find in the Flash UI Components 2 folder of the
StandardComponents.fla library into the CheckBoxSkinTest6.fla file’s Flash UI Components 2
folder. This action will add to the document’s library all the source symbols of the CheckBox
component in one step.

6. Duplicate the CheckBox symbol in the document’s library and rename its copy as
CustomCheckBox.

7. Open the Linkage Properties dialog box of the new CustomCheckBox symbol and define both
the linkage identifier and the AS 2.0 class as subclassed.components.CustomCheckBox. Also,
verify that Export for ActionScript and Export in first frame are checked.

8. Create a CustomCheckBox Assets folder under the Customized Components folder in the doc-
ument’s library.

9. Open the CheckBoxSkinTest5.fla file of our previous example as an external library by select-
ing File ➤ Import ➤ Open External Library.

10. Drag the CheckFalseUp symbol from the CheckBoxSkinTest5.fla library into the
CustomCheckBox Assets folder under the Customized Components folder in the document’s
library. This will also copy the other two symbols, CheckFalseUpBorder and CheckFalseUpBox,
there. The document’s library will now look like what is displayed in Figure 9-16.

246

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 246

Figure 9-16. Document library of the subclassing example

11. Select the first and only frame in the Flash document of the current example and add the fol-
lowing line of code to it:

#include "test.as"

12. Create an ActionScript file called test.as and save it in the same folder as the Flash document
we are working on after adding the following code to it:

import subclassed.components.CustomCheckBox;

var initObj:Object = {
_x: 100,
_y: 140,
_width: 200,
label: "Custom CheckBox",
boxColor: 0x008800,
boxBorderColor: 0xff0000

}
var cb1:CustomCheckBox = createClassObject(CustomCheckBox, "cb1",
➥ getNextHighestDepth(), initObj);

13. Create a folder called subclassed in the same folder containing the Flash document of our
example. Then create a folder named components inside the subclassed folder.

247

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 247

14. Create a new ActionScript file named CustomCheckBox.as, add the following code to it, and
then save it in the components folder.

import mx.controls.CheckBox;

class subclassed.components.CustomCheckBox
➥ extends mx.controls.CheckBox {

static var symbolName:String =
➥ "subclassed.components.CustomCheckBox";

static var symbolOwner = subclassed.components.CustomCheckBox;

var falseUpIcon = "CustomCheckFalseUp";

function CustomCheckBox () {
}

}

15. Save the Flash document of this example.

The output of this example will once again be similar to that of Figure 9-10, although the steps we
have taken for obtaining the final results are rather different: we added the CheckBox source symbol
(not compiled) to the document’s library and implemented a class for a duplicate that we created and
renamed as CustomCheckBox.

The presence of the falseUpIcon property in the implementation of the CustomCheckBox class indi-
cates that the skin customization is applied at class level: every instance of this customized component
will have the same skin. This is a design choice that assumes that a customized component is somewhat
identified by its customized skin, whose appearance can be influenced at instance level by style prop-
erties like those added to the initialization object of this example (boxColor and boxBorderColor).

If you look at this example, the benefits of the subclassing approach are almost invisible: you end up
writing more code (but not much more), and you have to do a few steps more than some of the pre-
vious approaches in order to prepare the document’s library with the original source and its duplicate,
which will become the customized component.

The extra work does not amount to much. The benefits at the moment can all be suggested by intu-
ition: we have an ActionScript class (CustomCheckBox) that we can use for packaging the techniques
discussed earlier, but also, and more importantly, we can override or even extend the existing func-
tionality of a standard component.

The many benefits of subclassing will be exploited in Part 3 of the book when we apply it to real cases
provided by each standard component.

248

CHAPTER 9

5939CH09.qxd 1/25/06 11:06 AM Page 248

An alternative to subclassing
Although subclassing is the approach recommended in this book, in particular circumstances you may
prefer to have a faster, though “dirtier,” technique that allows you to override some existing feature of
a component.

The technique exposed here involves using the prototype property of a component class.

In the previous examples, you learned that there are two different techniques for customizing the skin
of a component instance, depending on how the instance was created (dynamically or statically). One
technique relied on an initialization object, while the other required writing an event handler for the
undocumented initialize event.

By using the prototype property of a component class, you can affect components that are created
either statically or dynamically; in fact, by using the prototype property you can affect each and every
instance of a particular class. The following line is an example that would have set our custom skin for
every CheckBox, regardless of how it would have been generated:

CheckBox.prototype.falseUpIcon = "CustomCheckFalseUp";

The previous line overrides the definition of the falseUpIcon property of the CheckBox class pointing
to a skin related to a specific state (CheckFalseUp) of the component by using the prototype prop-
erty. Of course, the prototype property can be used in the same way for overriding not only other
skins, but also one or more specific features of a component class implemented via a property or
method.

Summary
In this chapter, you have learned how the component architecture implements styles and skins.

You have also learned that there are three different kind of skins, and that for some of them the sep-
aration of code from representation cannot be achieved, because in several cases a skin’s appearance
is defined also, or exclusively, by ActionScript code.

You became aware of a set of different techniques that allow you to overcome any limitation you may
encounter when customizing a component.

The approaches presented here can be applied in many different situations. The third part of the
book, starting next, exploits the application of these techniques in the context of each standard com-
ponent, providing plenty of concrete and different examples.

249

THE CUSTOMIZATION PROCESS

5939CH09.qxd 1/25/06 11:06 AM Page 249

5939CH09.qxd 1/25/06 11:06 AM Page 250

CUSTOMIZING THE COMPONENTS

Part Three

5939CH10.qxd 1/25/06 11:08 AM Page 251

5939CH10.qxd 1/25/06 11:08 AM Page 252

253

Chapter 10

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 253

The Accordion component is a container capable of structuring its contents into multiple segments, or
children, that share the same space by being displayed one at a time. It provides each segment with
a header that remains visible even when the segment’s content is hidden. Displaying the content of a
new segment is as easy as clicking its header; the content of that segment then replaces the content
that was previously visible. The Accordion implementation that we will examine in this chapter nicely
exploits the Flash technology by using a smooth animation for displaying the transition from one child
of the Accordion to the other.

Due to its peculiar behavior, the Accordion component is not the sort of feature typically available in
other component architectures. This chapter will help you to get the most from this component, and
you will be pleasantly surprised to discover that its apparent complexity can be handled easily by using
the proper techniques. The component’s behavior is very consistent, making it a robust choice that
can successfully meet a variety of requirements.

A minimal example
In this section of the book, every chapter will include a minimal example that serves three purposes:

Facilitate the identification of the discussed component’s core features by showing the mini-
mum number of steps required to implement an instance of the component.

Provide a starting point to be reused when explaining the techniques that can be applied to
this component later in the chapter.

Introduce the XLEFF syntax for generating the same component instance via an XML description.

This chapter’s minimal example will implement an Accordion instance that will look like the one
shown in Figure 10-1.

Figure 10-1. The Accordion instance implemented
by the minimal example

The completed source code introduced in this chapter can be found in the package
src10.zip, downloadable from this book’s page at www.friendsofed.com.

254

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 254

You can implement the Accordion component using ActionScript code or by setting the component
instance parameters in the authoring environment. We will explore and compare both approaches,
starting with the code-based version.

Code-based version
The code-based version of our minimal example actually requires very few lines of code. Follow these
steps to create it:

1. Create a new Flash document and save it as accordion01.fla.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the document’s dimensions as 300 ✕ 300 pixels.

3. Drag the Accordion component on stage in order to create an Accordion instance. Define its
instance name as mainAccordion.

4. Select the mainAccordion instance and, via the Info panel, set its position at X: 0, Y: 0 and its
dimensions as W: 300, H: 300. This way, the Accordion instance will coincide with the whole
stage of the Flash document.

5. Create a new ActionScript file and save it as test.as in the same folder where you saved the
accordion01.fla file.

6. Add the following code to the newly created test.as file:

import mx.core.View;

mainAccordion.createSegment(View, "s1", "Segment 1");
mainAccordion.createSegment(View, "s2", "Segment 2");
mainAccordion.createSegment(View, "s3", "Segment 3");
mainAccordion.createSegment(View, "s4", "Segment 4");
mainAccordion.createSegment(View, "s5", "Segment 5");

7. Select the first frame in the document and add the following ActionScript line to it:

#include "test.as"

8. Save the accordion01.fla and test.as files.

Testing the movie will demonstrate the live implementation of the Accordion instance, as shown
earlier in Figure 10-1.

The implementation relies on the createSegment method of the Accordion class, invoked five times in
similar fashion. The following line creates the first segment:

mainAccordion.createSegment(View, "s1", "Segment 1");

This line creates a segment with an instance name of s1 (second parameter), whose header has a text
label showing Segment 1 (third parameter). In the first parameter, we provide a reference to the View
class, which will be used to implement the content area of the segment being created. It is your
responsibility to implement the content area of a segment by providing an object that usually inherits
from the View class or, at least, is based on the UIObject class, as explained in the “Segment content
area” section later in this chapter.

255

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 255

Could this example have been implemented in the authoring environment without writing a line of
code? Yes, as you’ll see in the next section.

Codeless version
There is lot of hype about deploying component-based applications without coding. However, as you
will see, in any case where the two options—coded or codeless—are available and can be compared,
a codeless option is frequently very limited compared to its counterpart.

Nonetheless, the fact that it is possible to produce codeless versions is useful when you want to exper-
iment with a component’s basic behavior or when building prototypes. You can learn quite a bit by
examining how far a codeless implementation can go.

Follow these steps to create the codeless version of the minimal example:

1. Create a new Flash document and save it as accordion02.fla.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
its dimensions as 300 ✕ 300 pixels.

3. Drag the Accordion component on stage in order to create an Accordion instance. Define its
instance name as mainAccordion.

4. Select the mainAccordion instance and, via the Info panel, sets its position at X: 0, Y: 0 and its
dimensions as W: 300, H: 300. This way, the Accordion instance will coincide with the whole
stage of the Flash document.

5. Keeping the selection on the mainAccordion instance, open the Parameters tab in the
Properties panel. Define five items in the childLabels parameter: Segment 1, Segment 2,
Segment 3, Segment 4, and Segment 5. Also define five elements in the childNames parameter:
s1, s2, s3, s4, and s5. After you’ve created those items, the Properties panel should look like
Figure 10-2.

6. Save the Flash document.

Figure 10-2. The Properties panel after defining some of the Accordion’s parameters

Testing the movie will show that you have implemented the same Accordion instance you saw previ-
ously, but this time, without writing a line of code.

Although prototypes are frequently sold as applications, it is far too
easy to distinguish them from the more versatile and robust solutions
that have been produced with sapient coding. Quite simply, there will
always be requirements that cannot be met without coding.

256

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 256

However, by adding a single line of code in the first frame of our codeless example, you can extract
some interesting information about how the component has been implemented via the authoring
environment:

trace(mainAccordion.s1.className);

This line investigates the class used by the component environment by default when defining the con-
tent area of an Accordion’s segment. The trace function will output the following information:

View

This visually confirms that the View class is the default choice made by the architecture when imple-
menting an Accordion’s content area. The authoring environment chooses the View class for
implementing a content area to allow tabbing among the content areas. As you will learn in the next
section, XLEFF supports the use of Form instances to implement the content areas of segments. Since
the Form class inherits from the View class via its ancestors, the tabbing functionality is still available to
navigate the Accordion instance's contents.

XLEFF version
The following XML block provides an XML description of the Accordion instance implemented by the
minimal example:

<accordion name="mainAccordion" x="0" y="0"
width="300" height="300">

<form name="s1" x="0" y="0" label="Segment 1" />
<form name="s2" x="0" y="0" label="Segment 2" />
<form name="s3" x="0" y="0" label="Segment 3" />
<form name="s4" x="0" y="0" label="Segment 4" />
<form name="s5" x="0" y="0" label="Segment 5" />

</accordion>

Basically, the only difference to what you may have expected is the use of the <form> element instead
of a <view> element, which is currently not supported by XLEFF. At the time of writing, XLEFF assumes
that forms will be the standard container used in designing component-based interfaces. Therefore,
Accordion segments are implemented via Form instances, whose label attributes will be displayed in
the Accordion header.

The package associated with this chapter includes a preconfigured version of the XLEFF sampler,
discussed in Chapter 6, that reuses the previous XML description to generate an Accordion instance
similar to that implemented in the minimal example.

The component structure
The main subparts of an Accordion component are frequently called children in the official documen-
tation. However, in several cases (as in the case of the createSegment method), they are referred to as
segments. As you may have already noticed, the term segment is my choice, and the reason is rather
intuitive: the term child is too generic—every component can have children. As you will see later, Tree

257

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 257

and DataGrid components have children, too, but they are called more appropriately (and specifically)
nodes and cells, respectively. The term segment quite simply is a better definition of an Accordion’s
subpart.

An Accordion instance must have at least one segment, although at least two segments are required
to make transitions from one segment’s content to the other. A segment is made of one header and
one content area. Figure 10-3 shows an Accordion instance made of only one segment to emphasize
the neat separation between a segment’s header and its content area.

Figure 10-3. Structure of an Accordion segment

Segment header
The header of a segment plays an important role when navigating the contents of an Accordion
instance. A segment's header is visible even when its content area is hidden. The user can ask the
Accordion instance to display the content area of a segment by simply clicking its header.

Once a header has focus, a user can also move the focus among the headers using the arrow keys and
change the selected header by pressing the ENTER key or the SPACEBAR. The key-based navigation among
content areas can be faster. The PAGE UP and PAGE DOWN keys move the focus to a new segment in a
single step. The TAB key moves the focus back and forth to other component instances (if any) or back
and forth among the Accordion headers and content areas.

A segment’s header can include an icon that is displayed on the left side of its label and can also be
skinned, as discussed in the “Skinnability” section later in this chapter.

Segment content area
When implementing the content area of a segment you have two options: provide the constructor of
a class or provide the linkage identifier of a symbol that you included in the Flash document’s library.

These keyboard commands largely work only in the stand-alone Flash Player, not the
Flash Player in the actual Flash IDE that opens content when you are testing it.

258

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 258

You can provide the constructor of a class to create an instance that will implement the content area.
The specified class must be compatible with the component architecture, meaning that it must be
inherit from the UIObject class. Since every standard component inherits from UIObject, you may use
any of the existing components to implement a content area. As noted earlier, the reason why the
authoring environment chooses the View class by default for implementing a content area is to allow
tabbing among the content areas. Therefore, if you want to maintain the tab order and related navi-
gation inside an Accordion, you must implement the content areas with instances of the View class or
of a class that inherits from it. Figure 10-4 shows the descendants of the View class as they have been
implemented by the component architecture.

Figure 10-4. Classes and components inheriting from the View class

Alternatively, if you implement the content area by providing the linkage identifier of a symbol that
you included in the Flash document’s library, that symbol will be dynamically instantiated as a UIObject
instance by the component architecture.

Now that you know more about a segment’s structure, we can expand our minimal example to exploit
some of the Accordion’s features.

A richer example
Now, we will expand our minimal example to include icons for the Accordion’s headers and symbol
instances for its content areas. Once again, we will build both a codeless and a coded version, since
both the options are still available. However, this time, we will start with the version that does not
require any coding.

Codeless version
The following example continues from the one we built in the accordion02.fla Flash document. In
that example, we defined a couple of parameters of the Accordion instance accessible via the
Properties panel. We are now going to define the remaining two parameters that we previously left
untouched.

259

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 259

Follow these steps to create the richer Accordion example:

1. Open the accordion02.fla file you created earlier and save it as accordion03.fla.

2. Create a new movie clip symbol via the Insert ➤ New Symbol menu option, and define both its
name and its linkage identifier as icon1.

3. Edit the icon1 symbol and, using the Oval tool, draw a round shape within it.
Use the Info panel to define the shape position as X: 3.0, Y: 1.0 and its dimen-
sions as W: 8.0, H: 8.0. Using the Properties panel, define the stroke height of
the shape as 3. Also set the border color as dark gray and the fill color as light
gray. The final shape should look like the one shown in Figure 10-5.

4. Create yet another new symbol via the Insert ➤ New Symbol menu option,
and define both its name and its linkage identifier as content1. We will now
add some shapes to both of the newly created symbols to give them a basic
appearance.

5. Edit the content1 symbol and, using the Rectangle
tool, draw a square shape within it. Use the Info
panel to define the shape position as X: 0.0, Y: 0.0
and its dimensions as W: 297.0, H: 192.0. Using
the Properties panel, define the stroke height
of the shape as 1. Also set the border color as red
and the fill color as dark green. The final shape
should look like the one shown in Figure 10-6.

6. Go back to the stage and select the mainAccordion
instance. Open the Parameters tab in the Properties
panel and define five items in the childIcons
parameter: icon1, icon1, icon1, icon1, and icon1.
Then define five elements in the childSymbols
parameter: content1, content1, content1, content1,
and content1. After you’ve created those items, the
Properties panel will look like Figure 10-7.

Figure 10-7. The Properties panel after further defining the Accordion’s parameters

7. Save the Flash document.

Testing the movie will result in an Accordion implementation that is slightly richer in detail, as shown
in Figure 10-8.

260

CHAPTER 10

Figure 10-5. A quickly
prepared icon for the

Accordion’s headers

Figure 10-6. Just a square with a thin, red border
to fit into the content areas

5939CH10.qxd 1/25/06 11:08 AM Page 260

Figure 10-8. A more detailed implementation
of an Accordion instance

It should be obvious that you can draw five different icons and five different symbols and assign them
to each Accordion segment via the childIcons and childSymbols parameters in the Properties panel,
although all we did in this example was assign the same icon (icon1) and the same symbol (content1)
five times to those parameters.

Even though it wasn’t elaborate, we gave some attention to the simple graphic of the content1 sym-
bol. In particular, we defined the shape’s size to fit perfectly into the content area and designed its
thin, red border to visually display this fit.

But how did I know that this content area would be 297 pixels wide and 192 pixels tall? Unfortunately,
you cannot determine the content area’s precise size within the authoring environment. To discover
the size, I captured a screen of this example and measured the size of the content area using
Photoshop. Basically, you can follow the same empirical procedure or a variant of it, based on the
tools you know. You need to determine the dimensions of the content area so that you can match
them when defining the dimensions of the instance implementing it. If you don’t, the Accordion con-
tent will look patched with holes, or it will look cropped if the content instance is too big.

Let’s now see how to build an equivalent version of the richer example by coding it.

Code-based version
The code-based version of the example will replicate the same functionality of the codeless version
that we just implemented. Follow these steps to create this version:

1. Open the accordion01.fla file you created earlier and save it as accordion04.fla in a new
folder. Also copy the test.as file associated with the accordion01.fla file into the new folder.

2. Open the accordion03.fla file as an external library via File ➤ Import ➤ Open External
Library menu option. Import both the icon1 and content1 symbols from the accordion03.fla
library into the accordion04.fla library by dragging and dropping them (so you do not need
to re-create them).

261

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 261

3. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines in the file with the following:

mainAccordion.createSegment("content1", "s1", "Segment 1", "icon1");
mainAccordion.createSegment("content1", "s2", "Segment 2", "icon1");
mainAccordion.createSegment("content1", "s3", "Segment 3", "icon1");
mainAccordion.createSegment("content1", "s4", "Segment 4", "icon1");
mainAccordion.createSegment("content1", "s5", "Segment 5", "icon1");

4. Save both the Flash document and the test.as file.

Testing the file will display an Accordion instance that is identical to the one implemented in the pre-
vious codeless version, as shown earlier in Figure 10-8.

Five repetitive lines of code are sufficient to generate the five segments in the Accordion instance,
including the definition of their content areas and the labels and icons for their headers. Each line uses
the createSegment method that was discussed earlier. In this version, we added a fourth parameter
that is the linkage identifier of the header’s icon, and we replaced the constructor of the View class in
the first parameter with the linkage identifier of the content symbol in the document’s library.

Now that you have learned how to implement Accordion instances with and without coding, let’s
move on and see how to customize their appearance and behavior. Every customization option will
require a certain amount of coding, so we will not build any other codeless examples in this chapter.
As I noted earlier, the codeless approach has limits, and one of those is that it cannot be used to
customize a component. The codeless approach is suitable only for prototyping or small-scale imple-
mentations.

Supported styles
Styles can be highly productive, and they certainly contribute to creating a consistent look and feel
among component instances and even different components.

In this section of the book, when listing the styles supported by a component, I will distinguish
between two different kinds of styles:

Common styles: These are the styles that are supported by several component classes. They
not only affect the same aspects of a component, but they also are the only styles that allow a
certain consistency among instances of different components, because they are implemented
universally within the component architecture.

Specific styles: These are that styles that make sense only in the context of a particular com-
ponent. Certain features are necessarily component-specific. These styles allow a certain
consistency among instances of the same component.

Let’s first examine the common styles supported by the Accordion component.

262

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 262

Common styles
The Accordion component supports several common styles, grouped by their respective functional
context as follows:

Color styles: themeColor, backgroundColor, color, disabledColor, and all the border-specific
color styles (borderCapColor, borderColor, buttonColor, highlightColor, shadowCapColor,
and shadowColor)

Border styles: borderStyle

Font styles: embedFonts, fontFamily, fontSize, fontStyle, and fontWeight

Text styles: textDecoration

Most of the common styles have names that indicate which aspects of a component’s appearance they
affect. In order to avoid repeating the same information in every chapter dedicated to a specific com-
ponent, I’ll address each category in the chapter where they are most applicable. Color and border
styles will be examined in Chapter 11, which covers the Button component, and font and text styles
will be discussed in greater detail in Chapter 18, which covers the TextArea, TextInput, and Label
components.

Sometimes, common styles do not behave as expected because of holes in the official documentation
or bugs in the component and/or in the architecture implementations. I’ll point out those cases and,
whenever necessary, provide techniques and workarounds in the “Solved mysteries” section in the
appropriate chapter.

Generally, however, you should also test each style for yourself, since future versions of the compo-
nent architecture may modify the way they work. You can easily test the styles of the Accordion
component by expanding one of our previous examples as follows:

1. Open the accordion04.fla file you created earlier and save it as accordion05.fla in a new
folder. Also copy the test.as file associated with the accordion04.fla file in the new folder.

2. Edit the content1 symbol in the document library and delete the shape in it. Once the
content1 symbol is empty, drag an instance of the TextArea component into it. Give it
the instance name of textarea_mc.

3. Select the textarea_mc instance and, using the Info panel, define its position as X: 0.0, Y: 0.0
and its dimensions as W: 298.0, H: 193.0.

4. Keeping the textarea_mc instance selected, set the text parameter in the Properties panel with
the following text:

Some text content, added to test style options.

5. Open the test.as file copy in the same folder where the current Flash document is and
replace the ActionScript lines in the file with the following:

function setAccordionStyles(accordion) {
accordion.setStyle("themeColor", "red");
accordion.setStyle("fontFamily", "Courier New");
accordion.setStyle("fontStyle", "italic");
accordion.setStyle("color", "red");

}

263

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 263

setAccordionStyles(mainAccordion);

mainAccordion.createSegment("content1", "s1", "Segment 1", "icon1");
mainAccordion.createSegment("content1", "s2", "Segment 2", "icon1");
mainAccordion.createSegment("content1", "s3", "Segment 3", "icon1");
mainAccordion.createSegment("content1", "s4", "Segment 4", "icon1");
mainAccordion.createSegment("content1", "s5", "Segment 5", "icon1");

6. Save both the Flash document and the test.as file.

The setAccordionStyles function implemented in our example is clearly the entry point for testing
the styles supported by the Accordion component. It contains several calls to the setStyle method
implemented by the component architecture in the UIObject class and, therefore, available to any
component instance. By adding further setStyle calls, you can easily make your own style tests.

We replaced the shape in the content1 symbol with an instance of the TextArea component to see
how styles set on the Accordion instance can also affect the content areas of its segments.

Figure 10-9 shows the result of testing the movie, visually demonstrating the styling effects:

The themeColor style affects the Accordion headers, giving a reddish color to the currently
selected one and a red border to the other headers when you roll the mouse over one of them.

The fontStyle, fontFamily, and color styles affect both the headers and the content areas of
the Accordion segments. You can see that the headers and the TextArea instances display their
text using the red color, italics, and the Courier New font.

Figure 10-9. A stylized Accordion instance

At the time of writing, testing the fontWeight and the fontSize styles will not give the expected
results. Also, what if you wanted to affect the appearances of a segment’s header and content area
separately? These are the sorts of unexpected situations and special requirements that I will address in
the “Solved mysteries” section later in this chapter.

Next, let’s examine the styles that are specific to the Accordion component.

264

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 264

Specific styles
The Accordion component supports three specific styles, including two animation styles that are also
implemented by a couple other components (ComboBox and Tree) that use animations to display
their state transitions.

The Accordion-specific styles are as follows:

Header height: The headerHeight style defines the height of the Accordion’s headers in
pixels. The default height of an Accordion header is 22 pixels.

Animation styles: The openDuration and openEasing styles can influence the animated state
transitions of a component instance. See Appendix B for a list of the easing methods that can
be assigned to both of these style properties.

Styles are very useful up to a certain customization level. In some cases, you may need to implement
a design that quite simply cannot be achieved with styles alone. The Accordion component is also
skinnable, which provides another level of customization. Let’s see how.

Skinnability
Looking at a component from the perspective of its skins can add a further dimension to it. You have
already seen that the logical structure of an Accordion is defined by its segments and that each seg-
ment is made of a header and a content area. When it comes to skins, however, the content area
disappears, since it is just an abstract concept that becomes concrete only when somehow populated
by an actual instance.

Focusing on skins, we discover that the physical framework of an Accordion component is made of
two parts: the component’s border and its headers.

The border
Most standard components owe the implementation of their border to the RectBorder class. The
RectBorder class supports the border styles you saw earlier in the section about styles, and you should
consider this class as a purely coded skin that can be stylized using those border styles.

The existing implementations of the RectBorder class are associated with the two available themes:
the Halo theme and the Simple theme. Both implementations use the drawing API, although the Simple
theme implementation provides a much simpler implementation, as suggested by its name. In this
case, simpler also means that it does not support all of the border styles listed earlier.

So, the only RectBorder class that really counts is the one provided with the Halo theme. Since it
affects, by default, almost every standard component, we will examine it in greater detail in Chapter 11,
which is dedicated to the Button component, where you will also see how to replace it with a cus-
tomized version.

265

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 265

The headers
The Accordion component headers extend the Button class and, because of that, you may consider
them as Button subcomponents. This also implies that the Accordion headers are originally imple-
mented with purely coded skins, as the Button class is. This fact makes the Accordion component a
very good case for purely coded skins to be replaced by handcrafted (purely graphic) skins, since the
Accordion class provides eight skin properties, initially undefined, which are capable of overriding
the purely coded skin of the headers:

falseUpSkin

falseDownSkin

falseOverSkin

falseDisabledSkin

trueUpSkin

trueDownSkin

trueOverSkin

trueDisabledSkin

These eight skin properties can be grouped into two sets of four, depending on the state of the header
(true means selected, and false means not selected). Each group, then, provides four skins for each
button state: up, down, over, and disabled.

In the following example, we will skin the headers of an Accordion instance by replacing their purely
coded default version with a handcrafted version. Once again, the minimal example we implemented
earlier in this chapter will represent the ideal starting point for testing this option. Follow these steps
to create the skinning example:

1. Open the accordion01.fla file you created earlier and save it as accordion06.fla in a new
folder. Also copy the test.as file associated with the accordion01.fla file in the new folder.

2. Open the document’s library and create a folder called Accordion Assets. Inside that folder,
place two subfolders: Images and Skins. Figure 10-10 shows the folder structure, including the
symbols that you must add in the next steps.

3. Create a new movie clip symbol named falseDisabledSkin with a linkage identifier identical
to the symbol’s name. Using the option File ➤ Import ➤ Import To Stage, import the image file
falseDisabledSkin.png, which you will find in the source package associated with this chap-
ter. This image has a size of 300 ✕ 22 pixels. After selecting the image inside the new created
symbol, use the Info panel to define its position as X: 0.0, Y: 0.0.

4. Repeat the previous step for each of the remaining seven skins, using the proper names that
are associated with each specific skin. Once you have created a symbol, move it into the Skins
folder of the document’s library. Then move its associated image in the Images folder in the
same library, to eventually build a library that has the structure shown in Figure 10-10.

266

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 266

Figure 10-10. Header skins and related images in the document’s library

5. Open the test.as file copy in the same folder where the current Flash document is and
replace the ActionScript lines in the file with the following:

import mx.core.View;
import mx.containers.Accordion;

Accordion.prototype.falseUpSkin = "falseUpSkin";
Accordion.prototype.falseDownSkin = "falseDownSkin";
Accordion.prototype.falseOverSkin = "falseOverSkin";
Accordion.prototype.falseDisabledSkin = "falseDisabledSkin";
Accordion.prototype.trueDownSkin = "trueDownSkin";
Accordion.prototype.trueUpSkin = "trueUpSkin";
Accordion.prototype.trueOverSkin = "trueOverSkin";
Accordion.prototype.trueDisabledSkin = "trueDisabledSkin";

mainAccordion.createSegment(View, "s1", "Segment 1");
mainAccordion.createSegment(View, "s2", "Segment 2");
mainAccordion.createSegment(View, "s3", "Segment 3");
mainAccordion.createSegment(View, "s4", "Segment 4");
mainAccordion.createSegment(View, "s5", "Segment 5");

6. Save both the Flash document and the test.as file.

As you may have already noticed, we used the prototype technique described at the end of Chapter 9
to quickly override the skin properties of the Accordion component, which are originally undefined,
providing the names of the linkage identifiers we defined for each of the eight skin states.

267

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 267

Note that using handcrafted skins works well only if you know the exact size of the headers (300 ✕ 22
pixels in this example). Although Accordion instances that are implemented with headers of a different
size could still use those skins, they would not look as good as they would in their intended dimensions.

Figure 10-11 shows the skinned version created in this example.

Figure 10-11. Skinned version of the
minimal example

The next section examines several issues that are related to quirks in the current implementation of
the Accordion component, explaining techniques that can be used to work around each issue.

Solved mysteries
Almost every component has its own unexpected behaviors, and the Accordion component is no
exception. In the “Solved mysteries” section presented in almost every component-dedicated chapter,
you will find hard-won knowledge that will help you in implementing component instances that can
meet more stringent requirements.

Inheriting styles
The Accordion component is a container and, like any container in the component architecture, sup-
ports the mechanism of inheriting styles. A component instance can inherit style definitions from its
container as long as the considered style is an inherited style. Officially, the following styles can be
inherited:

Single-value color styles such as color (Some color styles are not implemented as a single
value.)

Font styles like fontFamily, fontSize, fontStyle, and fontWeight

Text styles like textAlign and textIndent

268

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 268

However, at the time of writing, the way that style inheritance works for the Accordion component is
quite different from the specification of the component architecture. Here is a summary of how the
styles work:

Single-value color styles work as expected, affecting both the header and the content area of a
segment.

The fontStyle and fontFamily styles also work as expected, affecting both the header and the
content area of a segment.

The fontSize style affects the content area of a segment but not its header.

The fontWeight style seems to affect neither the content area nor the header of a segment.

The textAlign style, officially not supported by the Accordion header, affects the content area
of a segment but not its header.

The textIndent style seems to affect neither the content area nor the header of a segment.

As you can see, the behavior of the so-called inherited styles is rather inconsistent in the case of the
Accordion component. Additionally, what if you want a style property to have different settings for
the header and the content area of a segment?

Let’s build an example that addresses these issues while exposing a technique that may be reused in
other circumstances where you deal with the styles of a container and its children.

Since having a TextArea instance in the content area of a segment has proved to be useful for testing
the styles applied to the content area of a segment, we will expand on the example we built earlier in
the “Supported styles” section.

1. Open the accordion05.fla file you created earlier and save it as accordion07.fla in a new
folder. Also copy the test.as file associated with the accordion07.fla file in the new folder.

2. We are going to change the height of the Accordion headers and reduce the number of seg-
ments from five to three. This will require refitting the TextArea instance in the content1 symbol.
Edit the content1 symbol in the document’s library and, after selecting the textarea_mc
instance, set its new dimensions as W: 298.0, H: 181.0.

3. Open the test.as file copy in the same folder where the current Flash document is and
replace the ActionScript lines in the file with the following:

function setAccordionStyles(accordion) {
accordion.setStyle("headerHeight", 40);
accordion.setStyle("fontFamily", "Courier New");
accordion.setStyle("fontStyle", "italic");

_global.styles.AccordionHeader.setStyle("fontSize", 30);
_global.styles.AccordionHeader.setStyle("fontWeight", "bold");

}

function setContentAreaStyles(contentArea) {
contentArea.setStyle("fontStyle", "normal");
contentArea.setStyle("fontWeight", "bold");

}

269

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 269

setAccordionStyles(mainAccordion);

var s1 = mainAccordion.createSegment("content1", "s1", "Segment 1");
var s2 = mainAccordion.createSegment("content1", "s2", "Segment 2");
var s3 = mainAccordion.createSegment("content1", "s3", "Segment 3");

setContentAreaStyles(s1);
setContentAreaStyles(s2);
setContentAreaStyles(s3);

4. Save both the Flash document and the test.as file.

Testing the movie will result in a further customized version of the Accordion instance, as shown in
Figure 10-12.

Figure 10-12. Making all the styles work

Every aspect of the solution illustrated here relies on the code in the test.as file. Let’s first analyze
the general procedure present in that code:

1. Set the Accordion instance styles via the setAccordionStyles function.

2. Create the Accordion’s segments.

3. Set the content areas’ specific styles via the setContentAreaStyles function.

The setAccordionStyles function does a bit more than just invoking the setStyle method on the
Accordion instance. Such a method would not work for setting the fontSize and fontWeight styles of
the Accordion’s headers and, therefore, we define those styles as class-level styles of the AccordionHeader
class, used by the component architecture to implement Accordion headers, as in the following line:

_global.styles.AccordionHeader.setStyle("fontSize", 30);

We already examined the technique of setting class-level styles in the previous chapter. The novelty is
the existence of the undocumented AccordionHeader class used to set those troubled style properties.

270

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 270

That the class-level style properties defined for the headers are working is visually confirmed in
Figure 10-12, where you can see the increased size of the bold text in the headers. (The headers’
height was previously increased by setting the headerHeight style property of the Accordion calling
setStyle, as usual.)

After the Accordion’s segments have been created, three calls to the setContentAreaStyles function
define their style properties. That way, we can override the setting defined for the Accordion instance
and, for example, have a different setting for the fontStyle property. In fact, while the headers still
show their text in italic, the content area text is now normal. Also, notice that we needed to specify
the fontWeight as bold for the content areas, too, since they are not affected by the class-level styles
of the AccordionHeader class.

By properly exploiting this approach, you can set any style for both the header and content area of an
Accordion segment and even control their definitions separately.

However, we still have a limitation to overcome. The use of the AccordionHeader class-level styles
means that every Accordion instance will have the headers responding to those same settings. What if
you need to have a second Accordion instance on stage with much smaller headers (and therefore a
smaller setting for the fontSize property)?

Creating header styles on a per-instance basis
Finding a workaround to create header styles on a per-instance basis requires a full understanding of
the component architecture’s current limitations and the nature of its quirks. The technique I found
and will share here is a bit more complicated than what you have seen so far, but its application gives
you further control of how to implement and customize component instances. Once again, let’s build
a concrete example that demonstrates the technique.

1. Open the accordion07.fla file you created earlier and save it as accordion08.fla in a new
folder. Also copy the test.as file associated with the accordion08.fla file in the new folder.

2. Create a new movie clip symbol, via the Insert ➤ New Symbol menu command, and name it
Formatter. This is an empty symbol that we will use to exploit its timeline by coding. Drag the
newly created symbol on stage and name its instance as formatter_mc.

3. Open the test.as file copy in the same folder where the current Flash document is and
replace the ActionScript lines in the file with the following:

function setAccordionStyles(accordion) {
accordion.setStyle("headerHeight", 40);
accordion.setStyle("fontFamily", "Courier New");
accordion.setStyle("fontStyle", "italic");

}

function setContentAreaStyles(contentArea) {
contentArea.setStyle("fontStyle", "normal");
contentArea.setStyle("fontWeight", "bold");

}

setAccordionStyles(mainAccordion);

271

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 271

var s1 = mainAccordion.createSegment("content1", "s1", "Segment 1");
var s2 = mainAccordion.createSegment("content1", "s2", "Segment 2");
var s3 = mainAccordion.createSegment("content1", "s3", "Segment 3");

setContentAreaStyles(s1);
setContentAreaStyles(s2);
setContentAreaStyles(s3);

formatter_mc.accordion = mainAccordion;
formatter_mc.setHeaderStyles = function() {

var header:Object;
for (var i:Number = 0; i < this.accordion.numChildren; i++) {

header = this.accordion.getHeaderAt(i);
header.setStyle("fontSize", 30);
header.setStyle("fontWeight", "bold");

}
mainAccordion.invalidate();

}

formatter_mc.onEnterFrame = function() {
switch (counter) {

case 0:
this.setHeaderStyles();
this.onEnterFrame = null;
break;

default:
counter = 0;

}
}

4. Save both the Flash document and the test.as file.

Once again, the solution is in the code of the test.as file. The first half of the script in the test.as
file follows the approach we used in the previous example, with the sole exception that the class-level
style definitions for the AccordionHeader class have been removed. We know that those definitions
would have affected every Accordion instance, and that is exactly what we want to avoid here.

The technique implemented via the Formatter symbol allows you to set those style properties for the
mainAccordion instance only, without affecting other Accordion instances that may be on stage at the
same time.

The technique uses the getHeaderAt method of the Accordion class to retrieve a header instance
and then invoke the setStyle method in its scope. Unfortunately, such a logical approach doesn’t
work if the method is invoked during the first frame of the main timeline. That’s the purpose of the
formatter_mc empty symbol. Its onEnterFrame method ensures that the setStyle method is invoked
in the header scope during the second frame when the Accordion component instance is already up
and running.

272

CHAPTER 10

5939CH10.qxd 1/25/06 11:08 AM Page 272

This is not only a nifty trick, but it is also a technique that you may need in many other cases when the
process of initializing a standard component does not work because of limitations introduced by
the current implementation of the architecture.

Reasons for subclassing
Now that you know all the quirks of the component and the best practices, techniques, and work-
arounds to implement its instances, you can keep applying them again and again each time you need
them in your project. Alternatively, you may decide to make a single extra effort by subclassing the
component to create a new, better version of it, in which the quirks are fixed and best practices are
observed. Typically, a subclassed component will also encapsulate a particular set of skins and style
defaults that will be used homogeneously in your project.

Looking at how XLEFF handles the customization process provides a significant example of the con-
venience of creating a subclassed version of a component. The XML layout engine does not support
any skinning but comes with a set of subclassed components that have been skinned consistently in
order to make up a theme.

The following segment of XML code is almost identical to the one you saw earlier in the case of the
XLEFF version of the minimal example:

<accordion cls="yourTheme.subclassed.Accordion"
name="mainAccordion" x="0" y="0" width="300" height="300">

<form name="s1" x="0" y="0" label="Segment 1" />
<form name="s2" x="0" y="0" label="Segment 2" />
<form name="s3" x="0" y="0" label="Segment 3" />
<form name="s4" x="0" y="0" label="Segment 4" />
<form name="s5" x="0" y="0" label="Segment 5" />

</accordion>

The only difference from the previous version is the presence of a cls attribute in the accordion ele-
ment. The attribute’s value (yourTheme.subclassed.Accordion) is the full class name of a subclassed
version of the Accordion component that you may have implemented and saved in the /yourTheme/
subclassed/ path.

Since customizations are encapsulated within the subclassed component, XLEFF does not need to
know anything about them, and you do not need to specify (or reimplement) them again and again.
The XML layout engine just dynamically instantiates an instance of the subclassed component, and
that’s it.

Subclassing was explained in the Chapter 9, and you now know every technique to create a subclassed
version of the Accordion component, encapsulating what you need to do to make it better suit your
business requirements.

273

THE ACCORDION COMPONENT

5939CH10.qxd 1/25/06 11:08 AM Page 273

5939CH11.qxd 1/25/06 11:09 AM Page 274

275

Chapter 11

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 275

Buttons are present in every graphical user interface, and they represent the cornerstone of the point-
and-click system introduced by that device oddly called the mouse.

It follows that they are frequently used in component-based applications, and utilizing instances of the
Button component included in the architecture is pretty simple, even if its inner implementation is
surprisingly complicated, which affects the complexity of customizing its appearance and behavior.

As usual, we will first explore a minimal example and start digging from there.

Minimal example of the Button component
Actually using a Button instance is so simple that it’s almost unbelievable how complicated things can
get when it comes to customizing its appearance, as you will see later on in this chapter.

A consequence of the simplicity of implementing a Button instance is that our minimal example is
truly minimal:

1. Create a new Flash document and save it as button01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 300✕300 pixels.

3. Drag the Button component on stage in order to create a Button instance. Define its instance
name as mainButton.

4. Select the mainButton instance and set its position at (X: 100.0, Y: 139.0) via the Info panel;
this will place the Button instance in the center of the stage.

5. Create an ActionScript file and save it as test.as. Add the following lines to it:

mainButton.addEventListener("click", this);

function click(eventObject:Object):Void {
if (eventObject.target._name == "mainButton") {

trace("You clicked the mainButton instance");
}

}

6. Select the first frame in the Flash document and add the following ActionScript line to it:

#include "test.as"

7. Save both the Flash document and the ActionScript file in the same folder.

The completed source code introduced in this chapter can be found in the package
src11.zip, downloadable from this book’s page on www.friendsofed.com.

276

CHAPTER 11

5939CH11.qxd 1/25/06 11:09 AM Page 276

Clicking buttons does not trigger any action unless you implement event handlers for their click
events. This is what we do in our minimal example. First we register the _root object as a listener of
the click event raised by the mainButton instance by using the addEventListener method available
to all the instances inheriting from the UIObject class:

mainButton.addEventListener("click", this);

Then we implement in the top-level object (_root) a click function that will be automatically invoked
by the component architecture whenever the mainButton instance raises a click event:

function click(eventObject) {
if (eventObject.target._name == "mainButton") {

trace("You clicked the mainButton instance");
}

}

Testing the movie will result in a Button instance in the middle of the stage. Every time you click that
button, the following message will be added to the Output window:

You clicked the mainButton instance

Our example is extremely simple. The only “excess” involves testing the name of the object that trig-
gered the click event to be sure that it was indeed the mainButton instance. It is a good practice to
verify what object triggered the event, since the listener object (in our case _root) could be listening
to several instances at the same time and, therefore, its click function may be invoked, reacting to
events triggered by different instances. Testing the name of the object that actually raised the event
will allow you to execute the proper response.

Looking at how XLEFF implements the minimal example, it’s worth very few words. The following XML
segment should be included inside an XML file in order to dynamically generate a Button instance sim-
ilar to the one present in the minimal example:

<button name="mainButton" x="100" y="139" label="Button" />

Now that you appreciate how little is required to implement a button instance and the response asso-
ciated with it, we can move on to creating a slightly richer example that uses all the parameters acces-
sible via the authoring environment.

A richer example
By selecting a Button instance on the stage, you can set up to five of its parameters via the Properties
panel in the authoring environment:

label: Certainly the most frequently used parameter, since it allows you to set the text label
that appears in the Button instance.

icon: An optional parameter that allows you to specify the linkage identifier of a symbol in the
document’s library that will be included as an icon inside the Button instance.

labelPlacement: Makes sense only when you specify an icon for the Button instance. In that
case, this property specifies the position of the text label in relation to the icon. Defined as
right by default, it also supports left, bottom, and top.

277

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 277

toggle: Boolean value that can modify how the Button instance works. Set to false by default,
if true, it changes the Button instance default behavior into that of a toggle switch, meaning
that the Button instance stays pressed after a click and it is released after the next click.
Basically, when acting as a toggle switch, a Button instance becomes functionally very similar to
a CheckBox instance.

selected: Makes sense only when the Button instance is acting as a toggle switch. In this case,
it indicates the state of the Button instance: pressed or released. Set to false by default, if
true, it will display the Button instance as pressed.

Let’s build an example that utilizes all these parameters by implementing an instance of a toggle
button with an icon:

1. Open the Flash document created earlier, named button01.fla, and save it as button02.fla in
a new folder. Also copy the test.as file associated with the button01.fla file into the new
folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines therein with the following:

mainButton.addEventListener("click", this);

function click(eventObject) {
if (eventObject.target._name == "mainButton") {

trace("The selected state of the mainButton instance is: " +
eventObject.target.selected);

}
}

3. Create a new Movie Clip symbol by selecting Insert ➤ New Symbol, and define both its name
and its linkage identifier as icon1.

4. Edit the icon1 symbol and, using the Oval tool, draw a round shape inside it. Use the Info panel
to define the shape position as (X: 1.0, Y: 1.0) and its dimensions as (W: 8.0, H: 8.0). Using the
Properties panel, define the stroke height of the shape as 3. Also set the stroke color as dark
green and the fill color as light green. The final shape should look like the one displayed inside
the Button instance later in Figure 11-2.

5. Go back to the stage and select the mainButton instance. Open the Parameters tab in the
Properties panel and specify the five parameters of the Button instance as icon: icon1, label:
Button, labelPlacement: left, selected: true, toggle: true. After you set these parameters, the
Properties panel will look like the one in Figure 11-1.

Figure 11-1. The Properties panel after you further define the Button’s parameters

6. Save the Flash document and the ActionScript file.

278

CHAPTER 11

5939CH11.qxd 1/25/06 11:09 AM Page 278

Testing the movie will result in a Button instance containing an icon
on the right side of the text label like the one in Figure 11-2.

Note that the Button instance has been implemented as a toggle
switch and that it has been set as initially selected. The green bor-
der of the Button instance confirms that the instance is initially
selected. If you keep clicking the Button instance, the selected state
will pass from selected to released and so on. The Output window will display a message confirming
the current value of the selected property of the Button instance, as in the following example:

The selected state of the mainButton instance is: false

Of course, you may implement the same Button instance via coding instead of setting the instance
parameters in the authoring environment. The following code example does just that, and it is very
readable since the names of the parameters in the authoring environment are identical to the names
of the properties of the Button instance:

mainButton.label = "Button";
mainButton.icon = "icon1";
mainButton.labelPlacement = "left";
mainButton.toggle = true;
mainButton.selected = true;

Regardless, even when we added more detail to the implementation of an object instance and
changed its behavior from the default (push button) to that of a toggle switch, using Button instances
still proved to be very simple.

Let’s increase the level of customization of this component by looking at how much we can alter its
appearance via the supported style properties.

Supported styles
Styles allow an immediate customization of a component appearance that can be fine-tuned up to a
per-instance basis. Styles can increase your productivity while contributing to creating a consistent
look and feel in the appearance of your applications.

In this book, when listing the styles supported by a component, we will distinguish between two broad
categories of styles:

Common styles: Styles in this category are supported by several component classes. These
styles not only affect the same aspects of a component, but also, as a matter of fact, are the
only styles that allow promoting a certain consistency among instances of different compo-
nents exactly because they are implemented universally within the component architecture.

Specific styles: Styles in this category make sense only in the context of a particular compo-
nent. Certain features are necessarily component specific, and the fact that they can be defined
by using styles contributes to promoting a certain consistency among instances of the same
component.

Let’s first examine the common styles supported by the Button component.

279

THE BUTTON COMPONENT

Figure 11-2. A Button instance
with an icon behaving like a

toggle switch and initially selected

5939CH11.qxd 1/25/06 11:09 AM Page 279

Common styles
Almost all of the common styles supported by the Button component are dedicated to the appear-
ance of the text label.

Following our practical approach, let’s build a Button instance whose appearance is customized by
using all of the common styles supported by the Button component:

1. Open the Flash document created earlier, named button01.fla, and save it as button04.fla in
a new folder. Also copy the test.as file associated with the button01.fla file into the new
folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines therein with the following:

mainButton.setSize(100,40);
mainButton.setStyle("themeColor", "haloBlue");
mainButton.setStyle("color", 0x00AAEE);
mainButton.setStyle("fontFamily", "Courier New");
mainButton.setStyle("fontSize", 20);
mainButton.setStyle("fontStyle", "italic");
mainButton.setStyle("fontWeight", "bold");

3. Save the Flash document and the ActionScript file.

Testing this movie will result in a Button instance appearing as shown in
Figure 11-3.

The first line of this example uses the setSize to make the Button instance
taller, creating the space required to conveniently host the enlarged text
label. The use of several text-oriented style properties (color, fontFamily,
fontSize, fontStyle, and fontWeight) determines the attribute of the text
label visible in Figure 11-3.

Setting the themeColor style property to a cyan-like color (0x00AAEE) influences in a single step sev-
eral states of the Button instance. The default Halo theme automatically defines the border styles and
the component background color based on the value assigned to the themeColor style property. You
can verify this by rolling over the Button instance or keeping it pressed by holding down the mouse
click button: all of the Button states will be influenced by the cyan-like color assigned to the
themeColor property in our example.

The Button component also supports another couple of common styles, textDecoration and
disabledColor, which behave as expected: influencing the appearance of the text label by allowing
underlined text and defining the text color of disabled Button instances.

The consistency of behavior that we find in the common styles supported by the Button component
disappears once we dig into its so-called border styles.

280

CHAPTER 11

Figure 11-3.
Stylized Button instance

5939CH11.qxd 1/25/06 11:09 AM Page 280

Specific styles
Although we will discuss the border styles of the Button component here in the “Specific Styles” sec-
tion, they may well have been included in the “Solved Mysteries” section of this chapter.

The major discrepancy that we find in the implementation of such styles is that they are not imple-
mented by the Button component, but by the theme in use, and the two themes currently available in
the component architecture provide a radically different implementation of these particular styles.

Finding out how border styles really work in the current version of the component architecture
requires a thorough reverse-engineering analysis that jumps around several component classes, sev-
eral other classes belonging to the architecture, and further classes added by the each specific theme.

Examining all of those relationships (most of them obscure and probably replaced in the next version
of the component architecture) is beyond the scope of this chapter and, more importantly, unworthy
of your time. As in other cases that were too specific, you can benefit from the author’s hard-won
knowledge and get directly to the point, which is how concretely border styles are affected by the
Halo and the Sample themes.

Once again, the techniques will be demonstrated via concrete examples, starting with the simpler and
less flexible Halo theme.

Halo theme case
As a matter of fact, you have already seen how the Halo theme affects border styles in the previous
example: via the themeColor property.

In the “Solved Mysteries” section later on in this chapter, you will find an example showing how the
implementation of the Halo theme works out the border styles starting from the theme color. In this
section, we are going to implement a simple example showcasing what the Halo theme offers in terms
of the border styles of a Button instance:

1. Open the Flash document created earlier, named button01.fla, and save it as button05.fla in
a new folder. Also copy the test.as file associated with the button01.fla file into the new
folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines therein with the following:

function setBorderStyles(s:String) {
switch (s) {

case "haloBlue":
mainButton.setStyle("themeColor", "haloBlue");
break;

case "Reddish":
mainButton.setStyle("themeColor", 0xFF0000);
break;

default:
mainButton.setStyle("themeColor", "haloGreen");

}
mainButton.label = s;

}

281

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 281

function click(eventObject) {
var b = eventObject.target;
if (b._name == "mainButton") {

switch (b.label) {
case "Default":

setBorderStyles("haloBlue");
break;

case "haloBlue":
setBorderStyles("Reddish");
break;

case "Reddish":
setBorderStyles("Default");
break;

}
}

}

mainButton.label = "Default";
mainButton.addEventListener("click", this);

3. Save the Flash document and the ActionScript file.

Testing our movie will result in a Button instance whose label changes, rotating the values "Default",
"haloBlue", and "Reddish" each time the button is clicked. A new themeColor is set each time.

The Halo theme comes with three predefined color names: haloGreen (acting as the default theme
color), haloOrange, and haloBlue.

In our example, we rotate among the values of haloGreen (the default), haloBlue, and a custom color
specified numerically as 0xFF0000 (red).

Keep clicking the Button instance so you will get an idea of how setting the themeColor to one of
those three values affects several states of the Button instance dynamically and simultaneously.

This demonstrates both the advantage and the limitation of the approach implemented in the Halo
theme: you don’t need to do anything more to give a consistent look to each Button state apart from
setting the themeColor style property. On the other hand, you cannot do anything more, meaning that
you cannot set the colors of the Button instances separately.

As you are going to see, the implementation of the border styles in the case of the Sample theme is
more complicated, but a bit more flexible.

Sample theme case
The Halo theme is the default theme of the component architecture: it is pre-added to the compo-
nent instances, and you can use it straightaway without having to install it.

282

CHAPTER 11

5939CH11.qxd 1/25/06 11:09 AM Page 282

In the case of the Sample theme, you must add its Button assets to the Flash document in order to
override the default theme (Halo). Let’s do this while building our new example:

1. Open the Flash document created earlier, named button01.fla, and save it as button06.fla in
a new folder. Also copy the test.as file associated with the button01.fla file into the new
folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines therein with the following:

function setBorderStyles(s:String) {
switch (s) {

case "Custom":
mainButton.setStyle("borderColor", 0x11ee00);
mainButton.setStyle("buttonColor", 0xddeedd);
mainButton.setStyle("shadowColor", 0x44bb22);
mainButton.setStyle("highlightColor", 0x99ee99);
break;

default:
mainButton.setStyle("borderColor", 0xd5dddd);
mainButton.setStyle("buttonColor", 0x6f7777);
mainButton.setStyle("shadowColor", 0xEEEEEE);
mainButton.setStyle("highlightColor", 0xc4cccc);

}
mainButton.label = s;

}

function click(eventObject) {
var b = eventObject.target;
if (b._name == "mainButton") {

if (b.label == "Default") setBorderStyles("Custom");
else setBorderStyles("Default");

}
}

mainButton.label = "Default";
mainButton.addEventListener("click", this);

3. Open the SampleTheme.fla file that you find in the same folder as the StandardComponents.fla
file (see Appendix A) as an external library by selecting File ➤ Import ➤ Open External Library.

4. Copy the Button Assets folder that you find in the SampleTheme.fla library by dragging and
dropping it into the library of the current Flash document. The Button Assets folder is located
under the Flash UI Components 2 ➤ Themes ➤ MMDefault folder path. Simply copying this
folder into the Flash document’s library will apply the Sample theme to the instances of the
Button component in the document.

5. Save the Flash document and the ActionScript file.

283

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 283

Testing the movie will result in a Button instance that looks pretty dif-
ferent from those implemented by the Halo theme. Figure 11-4 shows
the initial appearance of a Button instance implemented using the
Sample theme.

Similarly to our previous example, we implement a rotating algorithm
to showcase different appearances. In this case, if you keep clicking the Button instance, you can visu-
alize two different appearances, “Default” and “Custom”.

Unlike the Halo theme, the Sample theme doesn’t care about the themeColor style property. The Sample
theme implements four border styles (borderColor, buttonColor, shadowColor, and highlightColor)
that initially have the values displayed by the “Default” appearance. When setting the “Custom”
appearance, our example mimics the greenish default color of the Halo theme by setting each of the
four style properties as follows:

mainButton.setStyle("borderColor", 0xd5dddd);
mainButton.setStyle("buttonColor", 0x6f7777);
mainButton.setStyle("shadowColor", 0xEEEEEE);
mainButton.setStyle("highlightColor", 0xc4cccc);

By replacing one of those colors with red (0xFF0000 or "red") and testing the movie again, you will
have visual feedback of what part of the component skin is affected by each specific style.

This example not only shows you how different the implementation of border styles is between the
Halo and the Sample themes, but also, in part, how much of the definition of those styles depends on
the specific theme: if you implement your own theme, you may well have to implement your own
border styles or, as you will see later on, none of them!

Although very simple to use, the Button component is built upon a surprisingly complex implementa-
tion. Its skin, borders included, is purely coded. Every graphic feature of a Button instance is eventu-
ally implemented with calls to the drawing API. However, the purely coded implementation of the skin
is the result of combining the functionality of several classes, some of them included in the package
of a theme (Halo or Sample).

For a long time, the underlying implementation of the Button component has made the process of
skinning the Button component nightmarish. Let’s see how it is possible to make skinning a Button
component a much simpler process without losing the flexibility required by designers who want to
customize the appearance of a Button instance thoroughly.

Skinnability
Purely coded skins, like the default skin of the Button component, can be a very controversial choice
for implementing the appearance of a component.

This is a book for developers and, therefore, it may sound surprising, at first, to find out that replac-
ing a purely coded skin with a handcrafted one is, as a matter of fact, more convenient in the vast
majority of cases.

284

CHAPTER 11

Figure 11-4. A Button instance
utilizing the Sample theme

5939CH11.qxd 1/25/06 11:09 AM Page 284

However, regardless of purely coded skins having some benefits compared to their counterparts based
on graphic assets, they clash with the most important among the core principles in designing and
developing GUIs: the separation of code from representation.

That is what makes producing purely coded skins so expensive and ultimately inconvenient. We will go
deeper into the issue, rather than avoid it, by showing a purely coded skin replacement for the Button
instance later on in this chapter.

However, you may well consider and prefer the technique that we are going to examine immediately,
one that allows you to easily replace the purely coded skin of a button with a handcrafted one.
Undoubtedly, this technique will be your best choice in the vast majority of cases.

Replacing the purely coded skin
The beauty of the technique being introduced here is that it will allow you to replace the purely coded
skin of the Button component with a handcrafted skin without losing any of the functionality of the
Button class such as the handling of the text label and the icon.

While building the examples, we are going to use a few graphic assets that you will find in the source
files associated with this chapter. Those assets have been designed to give a decent look to the Button
instances but, of course, you are welcome to replace them and experiment with other skins that best
suit your designs.

1. Create a new Flash document and save it as button07.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 300✕300 pixels.

3. Drag the Button component on stage three times in order to create three Button instances.
Define their instance names as button1, button2, and button3.

4. Select the button1 instance and set its size as (W: 100.0, H: 50.0) and its position at (X: 100.0,
Y: 42.0) using the Info panel; select the button2 instance and set its size as (W: 100.0, H: 50.0)
and its position at (X: 100.0, Y: 125.0); select the button3 instance and set its size as (W: 100.0,
H: 50.0) and its position at (X: 100.0, Y: 208.0).

5. Create an ActionScript file and save it as test.as. Add the following lines to it:

import mx.controls.Button;

Button.prototype.themeColor = 0x999966;
Button.prototype.disabledColor = 0xeeeeee;
Button.prototype.drawFocus = function() {};
Button.prototype.falseUpSkin = "btnFalseUpSkin";
Button.prototype.falseOverSkin = "btnFalseOverSkin";
Button.prototype.falseDownSkin = "btnFalseDownSkin";
Button.prototype.falseDisabledSkin = "btnFalseDisabledSkin";

button3.enabled = false;

285

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 285

6. Select the first frame in the document and add the following ActionScript line to it:

#include "test.as"

7. Create a new Movie Clip symbol (Insert ➤ New Symbol) called
falseUpSkin with a linkage identifier set as btnFalseUpSkin. The
graphic of this symbol, which is 100✕50 pixels in size, appears as
shown in Figure 11-5. You can find this graphic symbol in the
library of the source file associated with this chapter.

8. Create a new symbol (Insert ➤ New Symbol) called falseOverSkin
with a linkage identifier set as btnFalseOverSkin. The graphic of
this symbol has a similar shape and size to the previous one, but its
colors are slightly different. Once again, refer to the library of the
source file associated with this chapter to find this exact graphic
asset.

9. Create a new symbol (Insert ➤ New Symbol) called falseDownSkin
with a linkage identifier set as btnFalseDownSkin. The graphic of
this symbol, which is approximately 108✕62 pixels in size, appears
as shown in Figure 11-6. You can find this graphic symbol in the
library of the source file associated with this chapter.

10. Create a new symbol (Insert ➤ New Symbol) called falseDisabledSkin with a linkage identifier
set as btnFalseDisabledSkin. The graphic of this symbol is similar to that of the falseUpSkin
symbol, but its colors are grayed out. Once again, refer to the library of the source file associ-
ated with this chapter to find this exact graphic asset.

11. Create a folder called skins in the document’s library and drop the four newly created sym-
bols (falseUpSkin, falseOverSkin, falseDownSkin, and falseDisabledSkin) into it. They are the
handcrafted skins we will use in this example. After reorganizing it, the document’s library
should look like what you see in Figure 11-7.

Figure 11-7. The document’s library with our newly created skin

12. Save both the Flash document and the ActionScript file.

286

CHAPTER 11

Figure 11-5.
The falseUpSkin symbol

Figure 11-6.
The falseDownSkin symbol

5939CH11.qxd 1/25/06 11:09 AM Page 286

Figure 11-8 shows how the three Button instances look on stage at authoring time.

Figure 11-8. The Button instances as they
appear at authoring time

The look of the three Button instances at authoring time is defined by the Halo
theme. Compare this with the look of the same Button instances at runtime
when testing the movie; as shown in Figure 11-9.

You will certainly notice that the look of the Button instances at runtime is very
different, as they show the skins created for our example. Playing with the
Button instances by using the mouse and/or the keyboard will also show the
skins of the two button states that are initially not visible (over and down).

A Button instance usually has three states (up, down, and over) when enabled
and only one state (disabled) when disabled.

To implement these skins, we use the fast option offered by the prototype
property, but we could also choose to subclass the Button component or to
attach the skins to each instance via their undocumented initialize clip event
(both the alternatives are explained in Chapter 9). The Button class implements
four properties (falseUpSkin, falseOverSkin, falseDownSkin, and falseDisabledSkin) that allow us
to install our skins using the following code:

Button.prototype.falseUpSkin = "btnFalseUpSkin";
Button.prototype.falseOverSkin = "btnFalseOverSkin";
Button.prototype.falseDownSkin = "btnFalseDownSkin";
Button.prototype.falseDisabledSkin = "btnFalseDisabledSkin";

Note that we use a btn prefix consistently when naming the skins’ linkage identifiers in order to avoid
name conflicts with similar skins that may be used by other components (after all, the Button compo-
nent is not the only one to have states named up, over, down, and disabled).

287

THE BUTTON COMPONENT

Figure 11-9. The Button
instances as they appear

at runtime

5939CH11.qxd 1/25/06 11:09 AM Page 287

The third button in our example is disabled in order to show the fourth skin via the ActionScript line:

button3.enabled = false;

The color of the text label of the disabled button is set via the disabledColor style property:

Button.prototype.disabledColor = 0xeeeeee;

We also define a themeColor style property that somewhat informs the component architecture about
which base color of the color scheme is in use by our handcrafted skins:

Button.prototype.themeColor = 0x999966;

The component architecture would have used this color when drawing the focus rect around a button.
However, such a rectangular focus rect would not look too good around our custom skins and, there-
fore, we disable it by overriding the drawFocus method with an implementation that does nothing.

Button.prototype.drawFocus = function() {};

Note that the user can easily notice when a Button instance obtains the focus via tabbing, since it
shows the falseOverSkin in that case.

In the end, replacing the purely coded skins of the Button component with
handcrafted ones can be done efficiently and quickly by replacing only 4 of
the 32 skins supported by the Button class, as clearly demonstrated by our
example. You will learn about the purpose of the remaining 28 skins in the
next section.

By using handcrafted skins, you can design a vectorial skin by using the Flash
drawing tools, or you can also import external bitmapped graphics in order
to achieve additional effects.

In the source files associated with this chapter, you will find a second version
(button08.fla) of the example in this section that uses bitmapped images as
graphic assets that give to the three Button instances a look like the one dis-
played in Figure 11-10.

Quite clearly, using the approach illustrated here allows you to change the Button component appear-
ance via either vectorial or bitmapped skins in a snap to accommodate any kind of graphic requirement.

The only limit of handcrafted skins compared with purely coded skins is that they don’t look as good
when the component instance is stretched beyond its intended dimensions.

However, let’s face it: in the case of well-designed user interfaces, buttons always have standard sizes.
Most of the time you will need to implement only one size for your buttons, but even in the case of
several standard sizes to implement, a few sets of skins (small, medium, and large, for example) are
still more convenient than producing purely coded versions of the skins, as you will also appreciate
later on in this chapter.

Let’s now thoroughly examine the skin properties supported by the Button component: although we
already covered what you need to know in the wide majority of cases, there may be requirements in
which the following knowledge turns out to be useful.

288

CHAPTER 11

Figure 11-10.
The same example

using bitmapped skins

5939CH11.qxd 1/25/06 11:09 AM Page 288

The 32 skins of a button
The fact that the Button component supports the very large number of 32 skins has usually made
developers reluctant to consider replacing purely coded skins with handcrafted versions.

As we saw previously, in most cases, you don’t really need to care about 28 of the 32 skin properties
to implement custom handcrafted skins that replace the purely coded versions.

Let’s now examine why 28 out of 32 skins are not necessary in the majority of cases by seeing what
cases they can actually be used in.

Implementing a toggle button
The component architecture provides a specific component (CheckBox) that acts as a toggle button.
However, as you already saw in this chapter, the Button component is so flexible that it can be used
for this purpose by setting its toggle property to true (in which case its selected property will store
the state of the toggle button).

In the case of a toggle button, the four skins we created in our last example (falseUpSkin,
falseOverSkin, falseDownSkin, and falseDisabledSkin) are no longer sufficient and, in fact, the
Button class implements four similar skin properties to visualize the state of the toggle button when
selected (trueUpSkin, trueOverSkin, trueDownSkin, and trueDisabledSkin). Pretty intuitively, it is
the prefix in the name of the skin (false or true) that separates the two sets of skins and associates
them with the toggle status (not selected or selected, respectively).

Emphasizing a button instance
The Button class supports another property named emphasized. The emphasized property should be
set to true in the case of a Button instance that is the default button in the user interface.

If you want to improve the look and feel of your interface, you may well want to provide a slightly dif-
ferent set of skins for a Button instance that is emphasized.

Such an option will “cost” you another eight skins (falseUpSkinEmphasized, falseOverSkinEmphasized,
falseDownSkinEmphasized, falseDisabledSkinEmphasized, trueUpSkinEmphasized, trueOverSkin➥

Emphasized, trueDownSkinEmphasized, and trueDisabledSkinEmphasized) since you must take care
of the possibility of implementing a toggle button as we saw earlier. Toggle buttons can be empha-
sized, too.

Once again, it is rather intuitive to realize that the postfix Emphasized is the key in defining the new
set of skin names.

Iconic buttons
So far, we have reached an overall number of 16 skins: the basic 4, another 4 skins added to handle
the toggle state, and an additional 8 skins added to handle the emphasized state.

If we introduce a further element, we will be forced to double the skins set again, and we will reach
the final set of the 32 skins supported by the Button component. You may have already guessed what
this new element is by reading the title of this section: the Button icon.

289

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 289

If you want to provide a different skin for Button instances that include an icon, then you must pro-
vide it for all the cases that we have already examined, and that generates another 16 skin names:

falseUpIcon, falseDownIcon, falseOverIcon, falseDisabledIcon: Associated with the four
basic states of a Button instance

trueUpIcon, trueDownIcon, trueOverIcon, trueDisabledIcon: Skins you may need if imple-
menting a toggle button

falseUpIconEmphasized, falseDownIconEmphasized, falseOverIconEmphasized, false➥

DisabledIconEmphasized, trueUpIconEmphasized, trueDownIconEmphasized, trueOverIcon➥

Emphasized, trueDisabledIconEmphasized: Skins you will need if you are mad enough to wish
to emphasize the icon as well

It should appear clear, by now, why the four basic skins we implemented in the previous section are all
you need in the vast majority of cases.

Quite rarely you will find it necessary to implement any of the remaining 28 skins supported by the
Button component. However, whenever you need to, all you have to do is to draw the handcrafted
skins and install them by using the respective skin properties in exactly the same way as we did it for
the four basic skins in our last example.

Solved mysteries
The Button component is pretty robust, meaning that there are no known quirks in its functionality at
the time of writing.

However, the complexity of its implementation is amazing, especially considering that buttons were
native objects in Flash since its earlier versions.

Both the major techniques you learned earlier in this chapter (customizing the border styles imple-
mented by the two themes available and replacing the purely coded skins of the Button component
with handcrafted skins) could have easily been included in this section, since in both cases they unlock
inner features of the component architecture.

What we have left here is to examine in greater detail the implementation of a purely coded skin. You
will probably concede that handcrafted skins are a much better option but, nevertheless, this discus-
sion will give you a better insight into the current implementation of the component architecture and
food for thought about the different approaches available for skinning a component.

A purely coded classic: the pill button
We will proceed, as usual, by implementing a practical example. In this
case, we are going to implement a purely coded skin in the style of the
classic pill buttons that you find in various user interfaces.

The skin that we wish to implement is based on the Halo theme, and it is
compared to the standard Halo appearance in Figure 11-11.

290

CHAPTER 11

Figure 11-11. The default
skin (top) compared with

the new skin (bottom)

5939CH11.qxd 1/25/06 11:09 AM Page 290

1. Create a new Flash document and save it as button09.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 300✕300 pixels.

3. Drag the Button component on stage twice in order to create two Button instances. Define
their names as button1 and button2.

4. Select the button1 instance and set its position at (X: 100.0, Y: 100.0) using the Info panel;
select the button2 instance and set its position at (X: 100.0, Y: 178.0).

5. Select the button2 instance and add the following ActionScript lines to it by opening the
Actions panel:

onClipEvent (initialize) {
this.falseUpSkin = "ButtonPillSkin";
this.falseDownSkin = "ButtonPillSkin";
this.falseOverSkin = "ButtonPillSkin"
this.falseDisabledSkin = "ButtonPillSkin";
this.trueUpSkin = "ButtonPillSkin";
this.trueDownSkin = "ButtonPillSkin";
this.trueOverSkin = "ButtonPillSkin"
this.trueDisabledSkin = "ButtonPillSkin";

}

6. Create a new Movie Clip symbol (Insert ➤ New Symbol) called ButtonPillSkin with a linkage
identifier and an ActionScript 2.0 class name both set as ButtonPillSkin as well.

7. Create a folder called skins in the document’s library and drop the newly created symbol into
it (ButtonPillSkin). This empty symbol is the purely coded skin that will allow us to display pill
buttons. After reorganizing it, the document’s library should look like the one in Figure 11-12.

Figure 11-12. The document’s library including the purely coded skin

8. Save the Flash document.

Note that the book does not list the complete source code of the ButtonPillSkin class; however, you
can find it in the ButtonPillSkin.as file included in the source file associated with this chapter.

Before testing the movie, you must place a copy of the ButtonPillSkin.as file in the same folder as the
Flash document that you created for this example. This file contains 117 lines of code, most of them
repetitive, and we will only examine the most significant here.

Once tested, the movie will show the same two Button instances displayed in Figure 11-11.

291

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 291

By using the undocumented initialize event, we apply the purely coded skin only to one of the two
instances (button2). You wrote the code inside the Flash document in the fifth step of the previous
procedure. The most relevant bit of it is that every skin property is assigned the same skin regardless
of the state: ButtonPillSkin.

It becomes obvious that the purely coded skin (ButtonPillSkin) must be able to recognize the cur-
rent state of the Button instance and draw the proper skin at runtime.

That’s why so many lines are required to implement the ButtonPillSkin class. Most of them are part
of a single switch statement that tests the borderStyle style property to draw the proper skin at run-
time, as in the following:

switch (borderStyle) {
case "falseup":

................
case "falsedown":

................
case "falserollover":

................
case "falsedisabled":

................
case "trueup":

................
case "truedown":

................
case "truerollover":

................
case "truedisabled":

................
}

Note that each case is associated with the value of a state. Those eight values are defined and set by
the Button class and, therefore, are very important if you want to implement your own purely coded
skin like we did in this example.

A purely coded skin must extend from the RectBorder class, as in the following:

class ButtonPillSkin extends RectBorder {

The RectBorder class implements the border of most, but not all, the components in the architecture.
If you want to skin the border of those components, you must reapply a similar technique to the one
displayed here for the Button component.

As mentioned previously, a purely coded skin is eventually implemented by calls to the drawing API.
However, if we examine an example of how a button state is implemented by the ButtonPillSkin

292

CHAPTER 11

5939CH11.qxd 1/25/06 11:09 AM Page 292

class, you will notice this is made of several calls to the drawRoundRect method, as in the case of the
following:

case "falsedisabled":
drawRoundRect(0,0,w,h,5 + radiusAdj,0xc8cccc,100);
drawRoundRect(1,1,w-2,h-2,4 + radiusAdj,0xf2f2f2,100);
drawRoundRect(2,2,w-4,h-4,3 + radiusAdj,0xd4d9d9,100);
drawRoundRect(3,3,w-6,h-6,2 + radiusAdj,0xf2f2f2,100);
break;

The drawRoundRect method is implemented by the Halo theme and is a rather large function (82 lines)
that makes several calls to the drawing API in order to draw a rounded rect in the style that is typical
of the Halo theme. You can find its implementation in the source code of the component architecture
(in the default.as file included under mx\skins\halo).

Therefore, each implementation of a button’s state usually requires many calls to the drawing API. In
our example we were “lucky,” since we managed to produce the pill button look by reusing the
drawRoundRect method already implemented by the Halo theme.

The conclusion is that implementing a purely coded skin is likely to require hundreds (if not thou-
sands) of lines of code in addition to reverse-engineering any functionality of the component archi-
tecture that may affect their implementation.

Purely coded skins are an interesting experiment, but it is very unlikely that they will find a future in
component architectures that include skinnable components.

Reasons for subclassing a Button component
As usual, at the end of a chapter dedicated to a component, we consider what reasons you may have
for subclassing it.

The Button component is very robust and, therefore, there aren’t quirks or patches that would make
subclassing it particularly appealing.

However, you may well find it still convenient if you want to encapsulate styles and skins that you
widely reuse in your project.

In particular, if you produce several bitmapped versions of the same skins to fit various sizes (small,
medium, large), you may find it convenient to be able to instantiate subclassed versions such as
SmallButton, MediumButton, and LargeButton.

In the end, the better way of building new themes may well be creating a collection of subclassed
components.

293

THE BUTTON COMPONENT

5939CH11.qxd 1/25/06 11:09 AM Page 293

5939CH12.qxd 1/25/06 11:10 AM Page 294

295

Chapter 12

THE CHECKBOX AND RADIOBUTTON
COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 295

The CheckBox and RadioButton classes, implementing the respective components, share the same
base class, Button, and, therefore, all its functionality, which we examined previously.

Both CheckBox and RadioButton instances are utilized to offer selectable options with a difference:
CheckBox instances are typically used in the case of one or more options that can be selected at the
same time, while RadioButton instances are usually grouped to represent a set of mutually exclusive
options: only one of them can be selected at any moment.

It follows that you select and deselect a CheckBox instance by clicking repeatedly over it, exactly like
a toggle switch button, which we saw in the previous chapter. In the case of RadioButton instances,
clicking one of them will always select it, while at the same time deselecting another RadioButton
instance in the same group that was previously selected, if any.

Experimenting with the minimal example will clarify any doubts you may still have about the behavior
of these two components.

Minimal example of the CheckBox and the
RadioButton components

Let’s build a practical example that uses both components to compare their behavior:

1. Create a new Flash document and save it as crbuttons01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 300✕200 pixels.

3. Drag the CheckBox component on stage three times in order to create three instances. Name
those instances checkbox1, checkbox2, and checkbox3, respectively.

4. Drag the RadioButton component on stage three times in order to create three instances.
Name those instances radiobutton1, radionbutton2, and radiobutton3, respectively.

5. Select the checkbox1 instance and set its position at (X: 40.0, Y: 45.0) via the Info panel; then
select the checkbox2 instance and set its position at (X: 40.0, Y: 89.0); finally, select the
checkbox3 instance and set its position at (X: 40.0, Y: 133.0).

6. Select the radiobutton1 instance and set its position at (X: 160.0, Y: 45.0) via the Info panel;
then select the radiobutton2 instance and set its position at (X: 160.0, Y: 89.0); finally, select
the radiobutton3 instance and set its position at (X: 160.0, Y: 133.0).

7. Save the Flash document.

Testing the movie will show three instances of the CheckBox component and three instances of the
RadioButton component. By clicking over those instances, you will find out that you can select more
than one CheckBox instance at the same time, while you can only select one RadioButton instance at
a time, possibly ending with a configuration like the one displayed in Figure 12-1.

The completed source code introduced in this chapter can be found in the package
src12.zip, downloadable from this book’s page on www.friendsofed.com.

296

CHAPTER 12

5939CH12.qxd 1/25/06 11:10 AM Page 296

Figure 12-1. The minimal example after you
selected some instances by clicking them

XLEFF version
The following XML description is the XLEFF equivalent for generating a user interface corresponding
to the one in our minimal example:

<checkbox name="checkbox1" label="CheckBox" x="40" y="45" />
<checkbox name="checkbox2" label="CheckBox" x="40" y="89" />
<checkbox name="checkbox3" label="CheckBox" x="40" y="133" />
<radiobutton name="radiobutton1" label="RadioButton" group="radioGroup"

x="160" y="45" />
<radiobutton name="radiobutton2" label="RadioButton" group="radioGroup"

x="160" y="89" />
<radiobutton name="radiobutton3" label="RadioButton" group="radioGroup"

x="160" y="133" />

You can find the XLEFF sampler configured to show the XLEFF version of the minimal example among
the source files associated with this chapter.

The only attribute in the XML description that you should find unfamiliar at this point is the group
attribute specifying the name of the group including the RadioButton instance. We will see more on
the significance of the RadioButton group later on in this chapter.

Comparing the authoring parameters
By comparing the parameters that you can set at authoring time, you can find out more about the
similarities and differences between the CheckBox and the RadioButton components.

Figure 12-2 shows the parameters of the checkbutton1 instance that you can see when selecting it in
the authoring environment.

297

THE CHECKBOX AND RADIOBUTTON COMPONENTS

Figure 12-2. Parameters of the CheckBox component

5939CH12.qxd 1/25/06 11:10 AM Page 297

Only three parameters are available:

label: Defines the text appearing near the CheckBox instance.

labelPlacement: Defines the position of the text label in relation to the CheckBox icon. Four
options are available (left, right, top, and bottom), right being the default.

selected: False by default. Whenever set to true, indicates that the CheckBox instance will ini-
tially appear as selected.

Figure 12-3 shows the parameters of the radiobutton1 instance that you can see when selecting it in
the authoring environment.

298

CHAPTER 12

Figure 12-3. Parameters of the RadioButton component

Three of the five parameters available for RadioButton instances have the same names and function of
the homonymous CheckBox parameters that we have just examined.

The remaining two parameters are as follows:

data: Undefined by default. It allows you to specify a String data value associated with the
RadioButton instance.

groupName: Another String value, set to radioGroup by default. It stores the name of the radio
group associated with the RadioButton instance. RadioButton instances belonging to the same
radio group affect each other whenever selected: only one of them can be selected at any
time, as you saw in the previously implemented minimal example.

Each of the parameters we have examined corresponds to a property with the same name that can be
set via ActionScript. The only difference is in accessing those properties via ActionScript that reside in
the data property of the RadioButton class. When assigned by coding, the value of the data property
can be of any data type.

Supported styles
Another good reason for learning about the CheckBox and RadioButton components at the same time
is that they support the same sets of common and specific styles.

Common styles
The common styles supported by both the CheckBox and RadioButton components are all related
to the text label (color, disabledColor, embedFonts, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration), with the exception of themeColor, which, as usual, defines the color scheme of the
components in the case of the Halo theme.

5939CH12.qxd 1/25/06 11:10 AM Page 298

Their functionality is consistent throughout all the standard components in the architecture and will
be examined in greater detail in Chapter 18.

Let’s extend our minimal example to quickly experiment with some of the common styles applied to
both components.

1. Open the minimal example stored in the Flash document crbuttons01.fla and save it as
crbuttons03.fla.

2. Select the first and only frame on the document’s timeline and add the following ActionScript
lines to it:

import mx.styles.CSSStyleDeclaration;

_global.styles.CheckBox = new CSSStyleDeclaration();
_global.styles.RadioButton = new CSSStyleDeclaration();

function setGlobalStyles(style):Void {
style.setStyle("themeColor", "red");
style.setStyle("color", "red");
style.setStyle("fontFamily", "Courier New");
style.setStyle("fontStyle", "italic");
style.setStyle("fontWeight", "bold");

}

setGlobalStyles(_global.styles.CheckBox);
setGlobalStyles(_global.styles.RadioButton);

3. Save the Flash document.

Testing the movie will display stylized, reddish versions of the CheckBox and RadioButton instances
like those displayed in Figure 12-4.

Figure 12-4. Stylized version of the minimal
example

Note that the symbols (squares for the CheckBox instances and circles for the RadioButton instances)
will become reddish only when rolling over them or clicking them, whereas they remain grayish while
in the up state.

The code used for implementing the stylized version of our minimal example is worth some comments.

299

THE CHECKBOX AND RADIOBUTTON COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 299

We applied the style at class level using one of the techniques illustrated in Chapter 9. However, quite
surprisingly, we had to work around the fact that the component architecture does not define class
style objects in the case of some components, CheckBox and RadioButton included.

That’s why we create these objects in the global styles collection as follows:

_global.styles.CheckBox = new CSSStyleDeclaration();
_global.styles.RadioButton = new CSSStyleDeclaration();

Note that you should always verify whether a particular class style has already been implemented
before creating its object by checking if it is undefined, because by overriding an existing one you may
involuntarily remove some preexisting style definitions. In our example, we do not make the test
since, at the time of writing, the component architecture does not define global style objects for the
CheckBox and RadioButton components. However, a longer but safer implementation would replace
the previous two lines with

if (_global.styles.CheckBox == undefined) {
_global.styles.CheckBox = new CSSStyleDeclaration();

}
if (_global.styles.RadioButton == undefined) {

_global.styles.RadioButton = new CSSStyleDeclaration();
}

Going back to analyzing the code in our example, the last point worth our attention is the
setGlobalStyles function, which was implemented with the sole purpose of applying the same style
values to both the CheckBox and RadioButton classes.

We can now move on to examining the style properties that are specific to the CheckBox and
RadioButton components.

Specific styles
The specific styles supported by both the CheckBox and RadioButton components are valid for the
Sample theme only. Basically, the Sample theme implements and supports the following styles:

symbolBackgroundColor

symbolBackgroundDisabledColor

symbolBackgroundPressedColor

symbolColor

symbolDisabledColor

These color styles affect the symbol of an instance, and its background and their names are mostly
self-descriptive once you know that the symbol of the CheckBox component is the check symbol and
the symbol of the RadioButton component is the large dot symbol.

300

CHAPTER 12

5939CH12.qxd 1/25/06 11:10 AM Page 300

In order to implement an example using some of the specific styles, you need to install the Sample
theme, which is what we are going to do in the next example:

1. Open the minimal example stored in the Flash document crbuttons01.fla and save it as
crbuttons04.fla.

2. Select the first and only frame on the document’s timeline and add the following ActionScript
lines to it:

import mx.styles.CSSStyleDeclaration;

_global.styles.CheckBox = new CSSStyleDeclaration();
_global.styles.RadioButton = new CSSStyleDeclaration();

function setGlobalStyles(style):Void {
style.setStyle("color", "red");
style.setStyle("fontFamily", "Courier New");
style.setStyle("fontStyle", "italic");
style.setStyle("fontWeight", "bold");

style.setStyle("symbolColor", "red");
style.setStyle("symbolBackgroundColor", 0xFFCCCC);
style.setStyle("symbolBackgroundPressedColor", "red");

}

setGlobalStyles(_global.styles.CheckBox);
setGlobalStyles(_global.styles.RadioButton);

3. Open the SampleTheme.fla file that you find in the same folder as the StandardComponents.fla
file (see Appendix A) as an external library by selecting File ➤ Import ➤ Open External Library.

4. Copy the CheckBox Assets and the RadioButton Assets folders that you find in the
SampleTheme.fla library by dragging and dropping them into the library of the current Flash
document. Both folders are located under the Flash UI Components 2 ➤ Themes ➤

MMDefault folder path in the SampleTheme.fla library. Simply copying this folder into the
Flash document’s library will not apply the Sample theme as usual, because the assets of both
the CheckBox and RadioButton components have a further requirement. In the meantime, you
can close the SampleTheme.fla library, since you will not need it anymore.

5. Find the CheckBoxAssets symbol inside the CheckBox Assets folder in the document’s library
and, after opening the Linkage Properties dialog box, check the Export in first frame option.

6. Find the RadioButtonAssets symbol inside the RadioButton Assets folder in the document’s
library and, after opening the Linkage Properties dialog box, check the Export in first frame
option.

7. Save the Flash document.

The CheckBox and RadioButton assets of the Sample theme must be exported in the first frame to be
utilized unless you structure your application in a way that ensures that those assets are loaded before
being used.

301

THE CHECKBOX AND RADIOBUTTON COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 301

We have already built a template that is capable of preloading any of the standard component assets
in the second part of the book. Of course, for the sake of simplicity, we are not going to complicate
the structure of our current example to avoid setting the dreaded Export in first frame option, since
our example implements no preloader.

If, after testing the movie, you play with the instances on stage by clicking some of them, you will
notice that the three specific styles utilized in this example (symbolColor, symbolBackgroundColor,
and symbolBackgroundPressedColor) effectively influence the appearance of the CheckBox and
RadioButton instances as expected, as you see in Figure 12-5.

Figure 12-5. A further stylized version of the
minimal example

Now that you know everything about the styles of these two components, you can look into how to
skin them in order to achieve an additional level of customization.

Skinnability
Both the CheckBox and the RadioButton components are very easy to skin, since their original skins
are handcrafted. They both use some of the skin properties defined by their common base class:
Button. In fact, they actually use the skin properties defined for the icon of the Button component.

The CheckBox component uses eight skin properties:

falseUpIcon: Initially set as CheckFalseUp.

falseDownIcon: Initially set as CheckFalseDown.

falseOverIcon: Initially set as CheckFalseOver.

falseDisabledIcon: Initially set as CheckFalseDisabled.

trueUpIcon: Initially set as CheckTrueUp.

trueDownIcon: Initially set as CheckTrueDown.

trueOverIcon: Initially set as CheckTrueOver.

trueDisabledIcon: Initially set as CheckTrueDisabled.

The RadioButton component uses only six of those eight properties:

falseUpIcon: Initially set as RadioFalseUp.

falseDownIcon: Initially set as RadioFalseDown.

falseOverIcon: Initially set as RadioFalseOver.

302

CHAPTER 12

5939CH12.qxd 1/25/06 11:10 AM Page 302

falseDisabledIcon: Initially set as RadioFalseDisabled.

trueUpIcon: Initially set as RadioTrueUp.

trueDisabledIcon: Initially set as RadioTrueDisabled.

The names of the style properties are once again readable. The prefix (true or false) is associated
with the selected state that is common to both components. The middle part indicates the four states
(Up, Down, Over, and Disabled) of a button instance, while the postfix (Icon) is always the same and
does not have a particular meaning in relation to the component’s state.

The names of the linkage identifiers assigned to the properties are intuitive, too. The prefix (Check or
Radio) indicates whether it is a CheckBox or RadioButton linkage identifier. The middle part is associ-
ated with the selected state (true or false), and the last part is associated with the button states (Up,
Down, Over, and Disabled).

In the source files associated with this chapter, you will find a Flash document (crbuttons05.fla) that
skins both the CheckBox and RadioButton components, replacing the handcrafted skins with graphics
provided by bitmapped images.

In this case, we are not going to examine the full procedure to create the file, since it is very repeti-
tive, and only aim to create new symbols in the document’s library.

In fact, in order to skin the CheckBox component, the document’s library includes eight symbols
defined by using the linkage identifiers we just listed; these also appear in Figure 12-6, which shows
both the symbols used for the skin and the images used to implement their appearance.

Figure 12-6. Symbols defined to skin the CheckBox component and the images used by them

303

THE CHECKBOX AND RADIOBUTTON COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 303

Quite similarly, the document’s library also includes six symbols, defined as specified earlier, in order to
skin the RadioButton component. The definitions of those symbols are displayed in the Figure 12-7.

Figure 12-7. Symbols defined to skin the RadioButton component and the images used by them

No code is needed as long as the linkage identifiers used for the symbols are those shown in the
images since, as we saw earlier, those are the default names assigned to the skin properties that both
the CheckBox and RadioButton components use to implement their skins.

Testing the crbuttons05.fla file will give to the minimal
example a new appearance, shown in Figure 12-8, due to
a total of 14 exported symbols (8 for the CheckBox com-
ponent plus 6 for the RadioButton component) added to
its library.

Of course, you can also skin both the CheckBox and
RadioButton components by applying any of the other
skinning techniques explained in Chapter 9 (using the
initialize undocumented clip event, using the proto-
type property, subclassing, etc.) and appearing in several
other chapters whenever skinning more complex com-
ponents.

It’s now time to take a look at the (very few) mysteries of the CheckBox and RadioButton components.

304

CHAPTER 12

Figure 12-8. The minimal example skinned
by adding symbols to its library

5939CH12.qxd 1/25/06 11:10 AM Page 304

Solved mysteries
Both the CheckBox and RadioButton components are very robust and easy to use, stylize, and skin.
Because of this, there isn’t much to discover or patch when using them in a component-based appli-
cation.

However, the RadioButton component does have an associated class, the behavior of which is not
completely documented: the RadioButtonGroup class.

Where to find the RadioButtonGroup instance
Every time that a RadioButton instance gets created, the component architecture looks at its
groupName property (or parameter) to determine which radio group contains that instance. As we saw
earlier, RadioButton instances are used for implementing mutually exclusive choices and grouped via
the same value of their groupName property.

When the component architecture encounters a new value for the groupName property of a RadioButton
instance, it automatically creates an instance of the RadioButtonGroup class whose instance name is
the value of the groupName property. Furthermore, the RadioButtonGroup instance is created in the
scope of the parent of the RadioButton instance.

As usual, building a practical example is helpful to fully grasp the importance of the functionality pro-
vided by the component architecture:

1. Open the minimal example stored in the Flash document crbuttons01.fla and save it as
crbuttons06.fla.

2. Select the first and only frame on the document’s timeline and add the following ActionScript
lines to it:

radiobutton1.data = "Chris";
radiobutton2.data = "Julie";
radiobutton3.data = "Sam";

trace(radioGroup.selection);
radioGroup.selectedData = "Julie";
trace(radioGroup.selection);

3. Save the Flash document.

Lots of things are happening behind the scenes of the few lines of this example.

There are three RadioButton instances on stage (radiobutton1, radiobutton2, and radiobutton3).
Their groupName property is assigned the value radioGroup via the groupName parameter in the
authoring environment: that is what makes them related to each other, by belonging to the same
radio group called radioGroup.

305

THE CHECKBOX AND RADIOBUTTON COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 305

When the first RadioButton instance (radiobutton1) is created, the component architecture encounters
the “radioGroup” name for the first time and therefore creates an instance of the RadioButtonGroup
class with that name: radioGroup. This instance is created in the parent of the RadioButton instance,
which is the _level0 object. The code in our example is attached to the first frame of the document
and therefore in the scope of the _level0 object. That’s why we can write a line like

trace(radioGroup.selection);

and find a radioGroup object in that scope. It is the component architecture that enables transpar-
ently creating such an object, which is an instance of the RadioButtonGroup class.

Knowing this, you can access two useful properties of the RadioButtonGroup class:

selectedData: Returns the value of the data property of the currently selected RadioButton
instance in the group. It can be assigned values of any data type as in the case of the data
property. When assigned a value, it selects the RadioButton instance associated with that value.

selection: Returns the object reference of the RadioButton instance currently selected. It can
be assigned an object reference of a RadioButton instance in the group that becomes the cur-
rently selected instance.

The functionality of those properties may sound a bit obscure, but it is clarified and demonstrated by
our example. In the first three lines of the example, we assign some data to each of the RadioButton
instances on stage:

radiobutton1.data = "Chris";
radiobutton2.data = "Julie";
radiobutton3.data = "Sam";

We then verify the current value of the selection property of the RadioButtonGroup instance. The
following trace will return an undefined value in the Output window of the authoring environment,
since there is no RadioButton instance initially selected in our minimal example:

trace(radioGroup.selection);

Just after, we use the selectedData property of the RadioButtonGroup instance to select the second
RadioButton instance (radiobutton2) programmatically by referring to the value of its data property:

radioGroup.selectedData = "Julie";

Finally, we check whether the selectedData property behaved as expected. Did our previous state-
ment select the radiobutton2 instance? Of course, we can have a positive visual confirmation of it by
looking at the initial state of the radiobutton2 instance in the movie, but we may also want to verify
that the selection property of the RadioButtonGroup instance has been synchronized with the new
state. The following trace will clarify all this:

trace(radioGroup.selection);

306

CHAPTER 12

5939CH12.qxd 1/25/06 11:10 AM Page 306

The same trace that was executed before now displays a different value in the same Output window
of the authoring environment: _level0.radiobutton2. Yes, assigning a value to the selectedData
property of the RadioButtonGroup instance sorted the expected result by selecting the radiobutton2
instance and also influencing the definition of the selection property of the same RadioButtonGroup
instance.

With six lines of code, you tested and fully grasped what the component architecture does in the
“mysterious” implementation of the RadioButtonGroup class, and you can reuse it to your advantage
whenever needed.

Reasons for subclassing the CheckBox and the
RadioButton components

The two components discussed in this chapter are among the simplest to use and the more robust in
the component architecture. That reduces the number of reasons why you should consider subclass-
ing them for your own purposes.

However, the possibility of packaging a set of skins and styles is still appealing whenever it comes to
creating a theme or reusing those skins and styles in a large, distributed project.

By now, you know all the techniques and have all the information you need to create your own ver-
sions of the CheckBox and RadioButton components.

307

THE CHECKBOX AND RADIOBUTTON COMPONENTS

5939CH12.qxd 1/25/06 11:10 AM Page 307

5939CH13.qxd 1/25/06 11:11 AM Page 308

309

Chapter 13

THE LIST, COMBOBOX, AND DATAGRID
COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 309

This chapter is dedicated to discussing three rather complex components at once because of the very
distinct similarities among them. Learning about these components at the same time can not only save
you a lot of time, but also provide you with a better understanding of their logic design and proper
utilization.

It is quite simple to explain the intimate relationships that bind these components: both the ComboBox
and the DataGrid components are largely based upon the List component, although in different ways.

The ComboBox component aggregates an instance of the List component with an instance of
the TextInput component to provide a sort of merged functionality. Both instances (the List and the
TextInput) are subcomponents of the ComboBox component.

The DataGrid class is derived from the List class and, because of that, inherits all of its functionality
and extends upon it to add a further dimension (columns) to the already existing one (rows).

Due to the relevance and “weight” of these components, this is certainly among the richest and largest
chapters in the book. Nevertheless, its topics are structured following the pattern that we have consis-
tently applied throughout Part 3 of this book. Our starting point will therefore be to build a minimal
example implementing three instances, one for each component being examined in this chapter.

Minimal example including the List, ComboBox,
and DataGrid components

Let us build our minimal example by including an instance of each of the three components, to start
comparing their functionality:

1. Create a new Flash document and save it as lists01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document and set its dimen-
sions as 700✕300 pixels.

3. Drag the List component on stage to create an instance of it and name it list1. Using the Info
panel, define its position as (X: 462, Y: 66) and its dimensions as (W: 200, H: 200).

4. Drag the ComboBox component on stage to create one of its instances and name it combobox1.
Using the Info panel, define its position as (X: 462, Y: 34) and its dimensions as (W: 200, H: 22).

5. Drag the DataGrid component on stage to create one of its instances and name it datagrid1.
Using the Info panel, define its position as (X: 37, Y: 36) and its dimensions as (W: 400, H: 200).

6. Create an ActionScript file and save it as test.as. Add the following lines to it:

var colors = [
{label: "White", data: 0xFFFFFF},
{label: "Black", data: 0x000000},
{label: "Red", data: 0xFF0000},

The completed source code introduced in this chapter can be found in the package
src13.zip, downloadable from this book’s page at www.friendsofed.com.

310

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 310

{label: "Green", data: 0x00FF00},
{label: "Blue", data: 0x0000FF}

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

7. Select the first frame in the document and add the following ActionScript line to it:

#include "test.as"

8. Save both the Flash document and the ActionScript file.

Testing the movie will show three instances, one for each of the three components being examined,
each populated with the same data, as illustrated by Figure 13-1.

Figure 13-1. The minimal example

The dataProvider property, supported by all three components, plays a core role in feeding each
component instance with data. In all the many examples in this chapter, we are going to feed the three
instances with the same data using the same data object, as in the following:

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

Of course, real-world applications usually provide different data to different component instances;
however, by providing the same data in the examples displayed in this chapter, we have a better
chance to analyze similarities and differences among the ComboBox, List, and DataGrid components.
After all, to provide different data can be as easy as assigning different objects to the dataProvider
property.

The dataProvider property accepts Array values or objects of any type supporting the DataProvider
API (the purpose of which is to define an interface that allows you to manage an object interface in
the same way as an Array instance).

311

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 311

Our minimal example defines the colors object, assigned to the dataProvider property of each com-
ponent instance, as the array:

var colors = [
{label: "White", data: 0xFFFFFF},
{label: "Black", data: 0x000000},
{label: "Red", data: 0xFF0000},
{label: "Green", data: 0x00FF00},
{label: "Blue", data: 0x0000FF}

];

The colors array contains five objects with a similar structure made of two properties: label and
data. That is not a mere coincidence but an important requirement: the array in the example is
assigned to a dataProvider property and, because of that, all of its elements must be objects of the
same type (with the same properties). The {label, data} structure is a default that can and will be
changed in most of the examples included in this chapter.

Regardless of the very few lines of ActionScript used in the minimal example, the final result shows us
every essential aspect of the ComboBox, List, and DataGrid components’ behavior. In particular, it pro-
vides a first glimpse about how they handle the dataProvider value.

The names of the properties of the objects in the colors array (label and data) have no special
meaning for the DataGrid component, but they represent the default for an item of both the
ComboBox and the List components.

The default behavior of the DataGrid instance is to display as many columns as the number of proper-
ties (two in our minimal example) and as many rows as the number of objects in the dataProvider
array. It is part of its default behavior to include a header for each column with a text description that
matches the name of each property (again, label and data in our example). Consider the following
object with three properties:

{colorName: "Black", colorValue: 0x000000, colorSample:"Carbon"}

Assigning an array with objects of that type to the dataProvider property of the DataGrid instance would
have resulted in a grid with three columns with headers of colorName, colorValue, and colorSample
respectively, demonstrating that the DataGrid component can handle any object structure.

However, we utilized a {label, data} structure for our minimal example since that is the structure
expected by both the ComboBox and the List components. Both components assume that there is a
label property whose values are displayed in the rows of their lists (note that you must click the
ComboBox instance’s down arrow to see its list). The presence of a data property is also considered a
default by both components when invoking their addItem method, as you will see later on.

So, we defined the structure of the objects in the colors array to be compatible with the defaults
expected by both the List and ComboBox. Because of that, you are now able to compare how the
same information is displayed by the three different component instances.

Now let us examine how XLEFF would generate a similar minimalist example.

312

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 312

XLEFF version
The following XML describes how to generate dynamically, via XLEFF, three instances that are similar
to those in our minimal example:

<list x="550" y="200" width="200" height="200" name="list1" />
<combobox x="550" y="168" width="200" height="22" name="combobox1" />
<datagrid name="datagrid1" x="125" y="200" width="400" height="200" />

In real-world applications, you would probably populate these instances by assigning an object to their
respective dataProvider properties via ActionScript.

However, XLEFF allows you to embed data in the XML description. In the case of the List instance, you
can populate it as shown in the following example:

<list x="550" y="200" width="200" height="200" name="list1">
<item label="Red">

<value type="Number">0xFF0000</value>
</item>
<item label="Green">

<value type="Number">0x00FF00</value>
</item>
<item label="Blue">

<value type="Number">0x0000FF</value>
</item>
<item label="Black">

<value type="Number">0x000000</value>
</item>

</list>

Basically, you would include as many item elements as needed. Each item element would have a label
attribute and include an additional element called value, like this:

<item label="Red">
<value type="Number">0xFF0000</value>

</item>

Note that the value element may have a type attribute indicating the type of the value associated
with each item. The String type is used if no type attribute is specified. The same itemized syntax
would be used in the case of the ComboBox instance.

In the case of the DataGrid, the syntax is rather different to allow for its bidimensional nature.
Implementing the colors array in XML requires something like this:

<datagrid name="datagrid1" x="125" y="200" width="400" height="200">
<column name="ColorName" label="Color Name" width="190" />
<column name="ColorValue" label="Color Value" width="193" />
<row>

<value>Red</value>
<value type="Number">0xFF0000</value>

</row>

313

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 313

<row>
<value>Green</value>
<value type="Number">0x00FF00</value>

</row>
<row>

<value>Blue</value>
<value type="Number">0x0000FF</value>

</row>
<row>

<value>Black</value>
<value type="Number">0x000000</value>

</row>
</datagrid>

As you can see, the datagrid element can contain two kinds of elements: column, dedicated to speci-
fying the attributes of a column, and row, dedicated to including the data to be displayed in each row.

Via the column element, you can specify attributes such as the name of the column, the label to be
displayed in its header, and its exact width.

The row element, unlike the item element that you saw earlier, can include more than one value ele-
ment. In fact, it will include as many value elements as the number of columns. The syntax of the
value element is the same as that used inside the item element.

You can find the XLEFF Sampler configured for generating the full XLEFF version of the current mini-
mal example in the source files associated with this chapter.

Of course, there is much more to learn about these very structured components. Let us continue by
building several richer examples.

Richer examples
The functionality provided by the List, ComboBox, and DataGrid components is very rich and, because
of that, we will implement several richer examples, each of them focusing on a particular aspect of
such functionality:

The Itemization example will further analyze the differences between the structures of each
component and the way they are related to DataProvider objects.

The Custom Label example will demonstrate how to display processed values inside the List,
ComboBox, and DataGrid components.

The Scrolling example will examine how the scrolling behavior of each component can be
defined programmatically.

The Sorting example will delve into the issue of displaying the data inside a component
instance in a specific, or even custom, order.

314

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 314

The Selection Management example will show how to handle single and multiple selections
of items within a component instance.

The Making It Editable example will demonstrate how the ComboBox and DataGrid compo-
nents can be used to interactively alter the data of a DataProvider object associated with a
component instance.

Let us then start building the first of the richer examples.

Itemization
All of the three components examined in this chapter are influenced to some extent by the itemized
structure defined for the List component and the similarly itemized structure of a DataProvider
object.

A one-to-one relationship is established between each item in a list instance and each item in a
DataProvider object, as displayed in Figure 13-2.

Figure 13-2. One-to-one relationship between list items and data items

Note that each data item is an object that can have one or more properties and, in the case of List and
ComboBox instances, one of those properties plays a special role: the label.

Building a concrete example will better explain how the properties of data items are utilized by the
List, ComboBox, and DataGrid instances:

1. Open the Flash document created earlier, named lists01.fla, and save it as lists03.fla in a
new folder. Also copy the test.as file associated with the lists01.fla file in the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:Number, p3:String):Object {
return {A: p1, B: p2, C: p3};

}

var colors = [
createItem("White", 0xFFFFFF, "Paper"),
createItem("Black", 0xFFFFFF, "Carbon"),
createItem("Red", 0xFF0000, "Rose"),

315

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 315

createItem("Green", 0x00FF00, "Field"),
createItem("Blue", 0x0000FF, "Sky")

];

list1.labelField = "A";
combobox1.labelField = "A";
combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

colors.addItem(createItem("Yellow", 0xFFFF00, "Submarine"));

3. Save both the Flash document and the test.as file.

Figure 13-3 shows the result of testing our last example.

Figure 13-3. Instances in the Itemization example

We implemented a createItem function to populate the colors array. That gives us a bit more flexi-
bility in defining the structure of objects inside the DataProvider object: you can easily change the
name of one of the three properties that we defined for this example (A, B, and C):

function createItem(p1:String, p2:Number, p3:String):Object {
return {A: p1, B: p2, C: p3};

}

The first evident result of having data items with three properties each is that the datagrid1 instance
now shows three columns, one from each property (A, B, and C). The association of column to prop-
erty can be easily recognized by looking at the name of the headers and to the values in each column.
That is the default behavior of a DataGrid instance, and we did not have to add any code to achieve

316

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 316

that apart, of course, from the line that assigns the colors array to the dataProvider property of the
component instance:

datagrid1.dataProvider = colors;

A bit more work is required to reuse the same colors array in the case of the List and ComboBox
instances. Unlike the minimal example that we implemented before, this time our data items do not
have a label property, and, therefore, we must specify which of the available properties must be con-
sidered for that role. In both cases, we picked the A property and specified that it is indeed the prop-
erty to be considered for the label role by using the labelField property of both the List and
ComboBox instances:

list1.labelField = "A";
combobox1.labelField = "A";

The result of the previous two lines of code is that both list1 and combobox1 instances show the
values of the A property in their list items.

We could have ended our example here, but with the last line we add to it, we further demonstrate
the intimate relationship between the data items in a DataProvider object and the items in a compo-
nent instance:

colors.addItem(createItem("Yellow", 0xFFFF00, "Submarine"));

With the previous line, we added an additional data item to the colors array, and that result is imme-
diately reflected in all three instances of our example, as you can verify by testing the movie or
looking back at Figure 13-3.

The role of the label can therefore be reassigned to a different property of a data item. But what if we
want to display a processed value instead of the one available in the data item? In that case, we need
to customize the label.

Custom labels
As you saw earlier, the default behavior of the DataGrid component is to render each value in the
associated DataProvider object distributed in as many columns as the properties of the data items
and as many rows as the data items themselves. The DataGrid component also reuses the name of
those properties to define the text label of each column header.

You have also learned that both the List and the ComboBox components render only one of the prop-
erties in each data item: the label property or that of any other property that has been specifically
assigned the “label” role.

What if you want to alter such default behavior and display some different text instead of the value of
a specific property?

317

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 317

Our next example will demonstrate that you can take full control over the text displayed in each of
the three components by using a very similar approach:

1. Open the Flash document created earlier, named lists03.fla, and save it as lists04.fla in a
new folder. Also copy the test.as file associated with the lists03.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

import mx.controls.gridclasses.DataGridColumn;

function createItem(p1:String, p2:String):Object {
return {A: p1, B: p2};

}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),
createItem("Green", "Field"),
createItem("Blue", "Sky")

];

function customLabelFunction(item:Object):String {
if (item == undefined) return undefined;
return "The " + item.B + " is " + item.A;

}

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

list1.labelFunction = customLabelFunction;
combobox1.labelFunction = customLabelFunction;

var column = new DataGridColumn("C");
column.headerText = "Calculated";
column.labelFunction = customLabelFunction;
datagrid1.addColumn(column);

3. Save both the Flash document and the test.as file.

Figure 13-4 shows the result of testing our last example.

318

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 318

Figure 13-4. Customizing the text values displayed in the component instances

Similarly to the previous example, we still have a createItem function used to populate the colors
array, but this time, each item as only two properties: A, associated to a color name, and B, associated
to a real-world example of that color (such as “Sky” for “Blue”). We used this logic for producing a
custom label function that returns a String combining the values of both properties of an item:

function customLabelFunction(item:Object):String {
if (item == undefined) return undefined;
return "The " + item.B + " is " + item.A;

}

It will be the component architecture that invokes such a function and passes the proper data item
to it. All we have to do is to programmatically specify when this function, which we name
customLabelFunction, must be used instead of the actual value of a data item’s property.

In the case of the list1 and combobox1 instances, we do this by assigning the function to their
labelFunction properties:

list1.labelFunction = customLabelFunction;
combobox1.labelFunction = customLabelFunction;

In the case of a DataGrid instance, the work to be done is just slightly more complicated, since we
must specify which column will use the labelFunction. We exploit this necessity to also add columns
dynamically while defining their calculated values:

var column = new DataGridColumn("C");
column.headerText = "Calculated";
column.labelFunction = customLabelFunction;
datagrid1.addColumn(column);

The datagrid1 instance starts with two columns only, one for each property in the data items (A and B).
In the previous lines, we create a DataGridColumn object named C, utilized to add a third column to
the datagrid1 instance via the addColumn method.

319

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 319

The DataGridColumn instance is also used to define the text that must appear in the column’s header
(“Calculated”) and to specify the use of the previously implemented customLabelFunction to display
content in the column’s cells.

Of course, you could easily implement three different custom label functions, one for each compo-
nent instance, once you have learned this technique. The overuse of the same function in our context
aims to point out, once again, how highly compatible the functionality provided by the DataGrid, List,
and ComboBox components is while emphasizing their differences.

The DataGridColumn class is used by the DataGrid class to implement columns on top of the List
class implementation. Its location within the source of the component architecture is revealed by the
import statement required to use it:

import mx.controls.gridclasses.DataGridColumn;

The getColumnAt method of the DataGrid component returns a DataGridColumn object associated to
the specific column in the DataGrid instance. For instance, you may add the following lines in the con-
text of our current example to modify the headers of the first two columns:

datagrid1.getColumnAt(0).headerText = "Column 1";
datagrid1.getColumnAt(1).headerText = "Column 2";

In the next section, you will learn how to define scroll policies to get rid of the scrollbar tracks that
appear in our example even when they are not needed, since all the content is visible and there is
nothing to scroll.

Scrolling
Looking back at the figures associated with our previous examples (Figures 13-1, 13-3, and 13-4), you
may notice the unpleasant presence of an inactive vertical bar in the case of the list1 and datagrid1
instances.

Let us build an example that gets rid of those unnecessary vertical bars and at the same time illustrates
how to handle the scroll policies of those components:

1. Open the Flash document created earlier, named lists04.fla, and save it as lists05.fla in a
new folder. Also copy the test.as file associated with the lists04.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {label: p1, data: p2};

}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),

320

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 320

createItem("Green", "Field"),
createItem("Blue", "Sky")

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

combobox1.rowCount = colors.length;
list1.rowCount = colors.length;
datagrid1.rowCount = colors.length;

3. Save both the Flash document and the test.as file.

Figure 13-5 shows the result of testing our last example.

Figure 13-5. Controlling the scrollbars in the component instances

You will notice that not only have the unnecessary vertical bars disappeared, but also both the data-
grid1 and the list1 instances have had their heights redefined to accommodate the number of items in
the colors array, resulting in a much cleaner and better balanced view.

Very few lines of code were enough to produce such results. A scrolling policy defines whether a
scrollbar should appear or not. The component architecture defines three values for a scrolling policy:

"off": Indicates that the scrollbar should not appear in any case

"on": Indicates that the scrollbar should appear in any case

"auto": Indicates that the scrollbar should appear if the content does not fit inside the visible
area of a component instance

Such String values can be assigned to hScrollPolicy and vScrollPolicy, which define the horizon-
tal and vertical scrolling policies of a component instance.

321

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 321

However, there are a few exceptions:

The hScrollPolicy and vScrollPolicy properties do not apply to the case of the ComboBox
component.

In the case of the List component, the hScrollPolicy property does not support the "auto"
option. Furthermore, if you set it to "on", the horizontal scrollbar will work only if you also
define a value for the maxHPosition property, indicating the virtual width of the content area
(how far the horizontal scrolling action can go).

In the case of the DataGrid component, setting the hScrollPolicy property to "off" results in
all the columns’ widths being redefined in order to fit within the visible area of the component
instance.

Knowing that, it should be clear what the following lines in our example do:

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

The first line disables the horizontal scrollbar in the datagrid1 instance by setting its horizontal policy
to "off". As a result, the two columns are equally resized to fit within the visible area.

The second line sets the vertical policy of the datagrid1 instance to "auto"; this is enough to make the
vertical bar disappear, as the content fits within the visible area of the component. The third line sets
the vertical policy of the list1 instance to "auto", obtaining the same effect.

The example also uses the rowCount property, which is available for all of the three component
instances:

combobox1.rowCount = colors.length;
list1.rowCount = colors.length;
datagrid1.rowCount = colors.length;

The rowCount property is very useful because it automatically redefines the height of a component
instance so that its visible area can display an exact number of rows. In our example, we decide to dis-
play as many rows as the items in the DataProvider object (colors). The combination of setting the
vScrollPolicy property to "auto" and displaying as many rows as the items in the DataProvider
object causes the disappearance of the vertical unnecessary scrollbars in both the list1 and datagrid1
instances.

In the case of the combobox1 instance, the rowCount property affects the drop-down list that appears
when you click its down arrow. If you test it, you will notice that the drop-down list does indeed show
all of the data items and, consequentially, does not show any vertical scrollbar.

Next we will examine what sorting options are offered by the component architecture to arrange the
data items, and their visual counterparts, following a specific order.

322

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 322

Sorting
Not surprisingly, considering the strict relationship between items of a component instance and data
items, whenever you need to sort the former, you eventually end up sorting, directly or indirectly, the
latter in its associated DataProvider object.

You could experiment with sorting by adding a single line to the previous example:

datagrid1.sortItemsBy("data", "DESC");

The previous line invokes the sortItemsBy method to sort the items by arranging the values of the
data column (and its related data item’s property) in descending order. You could use ASC instead of
DESC to sort them in ascending order.

Figure 13-6 shows the resulting view after adding this line to the previous example.

Figure 13-6. Items sorted via sortItemsBy

Notice that all three component instances now reflect the same sort order since they all share the
same DataProvider object. Although the values of the data property are not visible in the com-
bobox1 and list1 instances, the values of the label property are sorted accordingly to match the order
defined for the data property.

Basically, the values of the label property are presented in the following order: "Blue", "Red",
"White", "Green", and "Black" to reflect the descending order of the values of the data property:
“Sky”, “Rose”, “Paper”, “Field”, and “Carbon”, set programmatically by executing the sortItemsBy
method.

Note that the sortItemsBy method is also available for both the combobox1 and list1 instance; there-
fore, using one of the next two lines would have caused the same result as the line we saw previously:

list1.sortItemsBy("data", "DESC");

or

combobox1.sortItemsBy("data", "DESC");

323

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 323

In the case of the DataGrid component, you do not even need to invoke the sortItemsBy method to
sort its items in ascending or descending order, since the component default behavior does it for you.
Clicking a column header sorts the items by applying alternatively an ascending/descending order to
the values in that column. A small iconic arrow on the right side of the column header indicates
whether the current sort order is ascending (arrow up) or descending (arrow down). You can exclude
such default behavior for all columns by setting the sortableColumns property of a DataGrid instance
to false. Alternatively, you can disable that option for specific columns only by setting the
sortOnHeaderRelease property of a DataGridColumn instance to false.

Things get more complicated if you want to implement a fully custom sort order that is defined from
more than one property at the same time. The component architecture allows you to do it, but we
need to build an example to properly examine how it can be achieved:

1. Open the Flash document created earlier, named lists05.fla, and save it as lists06.fla in a
new folder. Also copy the test.as file associated with the lists05.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {lastName: p1, firstName: p2};

}

function customSort(item1:Object, item2:Object):Number {
if (item1.lastName < item2.lastName) {

return -1;
} else if (item1.lastName > item2.lastName) {

return 1;
} else {

if (item1.firstName < item2.firstName) {
return -1;

} else if (item1.firstName > item2.firstName) {
return 1;

} else {
return 0;

}
}

}

var characters = [
createItem("Kavula", "Humma"),
createItem("Beeblebrox", "Zaphod"),
createItem("Beeblebrox", "Bob"),
createItem("Beeblebrox", "Konrad")

];

combobox1.dataProvider = characters;
list1.dataProvider = characters;
datagrid1.dataProvider = characters;

324

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 324

combobox1.labelField = "firstName";
list1.labelField = "firstName";

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

combobox1.rowCount = characters.length;
list1.rowCount = characters.length;
datagrid1.rowCount = characters.length;

function headerRelease(eventObject:Object):Void {
var sortOrder:String = eventObject.target.sortDirection;
var sortOptions:Number = 0;

if (sortOrder.toUpperCase() == 'DESC') {
sortOptions |= Array.DESCENDING;

}
characters.sortItems(customSort, sortOptions);

}
datagrid1.addEventListener("headerRelease", this);

characters.sortItems(customSort, Array.ASCENDING);

3. Save both the Flash document and the test.as file.

The increased number of ActionScript lines underscores how defining a sorting order that depends on
more than one property at the same time can raise the level of complexity of our implementation.
However, you may well have to satisfy a similar requirement and, therefore, this technique is worth a
thorough examination.

We replaced the colors DataProvider object in our previous example with a characters one:

var characters = [
createItem("Kavula", "Humma"),
createItem("Beeblebrox", "Zaphod"),
createItem("Beeblebrox", "Bob"),
createItem("Beeblebrox", "Konrad")

];

Each item now has two properties (lastName and firstName) that are intended to be the last and first
name of a character. This scenario is required to build a custom sorting function that establishes a
somewhat logical relationship in its custom sorting process: items will be sorted by the lastName val-
ues at first and then, when those values are identical, by the firstName values. That is what the
customSort function does:

function customSort(item1:Object, item2:Object):Number {
if (item1.lastName < item2.lastName) {

return -1;
} else if (item1.lastName > item2.lastName) {

325

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 325

return 1;
} else {

if (item1.firstName < item2.firstName) {
return -1;

} else if (item1.firstName > item2.firstName) {
return 1;

} else {
return 0;

}
}

}

Note that it will be the component architecture to pass two items at a time to the customSort func-
tion for comparison. The customSort function will return a number indicating

Whether the first item is smaller than the second item (by returning –1)

Whether the first item is greater than the second item (by returning 1)

Whether the two items are identical (by returning 0)

Installing the customSort function in the datagrid1 instance is a matter of its own. We want the
DataGrid items to be ordered following our custom order whenever the user clicks a column header.
To do this, the _level0 object listens to the headerRelease event of the DataGrid component.

datagrid1.addEventListener("headerRelease", this);

When the user clicks a column header, an headerRelease event is triggered by the component instance
and the following handler is executed:

function headerRelease(eventObject:Object):Void {
var sortOrder:String = eventObject.target.sortDirection;
var sortOptions:Number = 0;

if (sortOrder.toUpperCase() == 'DESC') {
sortOptions |= Array.DESCENDING;

}
characters.sortItems(customSort, sortOptions);

}

All the headerRelease handler does is to run a sortItems method on the characters DataProvider
object using our custom sorting function (customSort) and the appropriate sort order option that is
being alternated by the component architecture ("ASC" and "DESC").

Unlike the sortItemsBy method, the sortItems method allows us to specify a custom sorting function
that can redefine the order of the data items following any sort of rule and, therefore, even establish
a relationship among different properties, as in the case of our example.

326

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 326

Since the sortItems method expects the options to be defined in terms of the Array class constants,
a minimal translation must be applied to the value returned by the component architecture to match
the proper Array constant:

if (sortOrder.toUpperCase() == 'DESC') {
sortOptions |= Array.DESCENDING;

}

The final touch in our script is to define the initial sort order of the data items as Ascending:

characters.sortItems(customSort, Array.ASCENDING);

That is why, initially, testing the movie will display something like what you see in Figure 13-7.

Figure 13-7. Specifying a custom sort order that is defined from more than one field

Figure 13-7 shows that there are three Beeblebrox items before the fourth Kavula item since our cus-
tom function first looks at the values of the firstName property. However, the three Beeblebrox items
are sorted accordingly to the values of the lastName property, as you can verify by looking at the
order defined for Bob, Konrad, and Zaphod.

If you keep clicking a column header, you will apply the customSort function to the data items by
alternating the ascending and descending options.

Whatever the data model associated with your application, you can now build any kind of custom
sorting function and apply it to a component instance automatically or programmatically.

Let us now consider how the user can select items in the component instances and how you can
retrieve or set a particular selection.

Selection management
The main choice when it comes to defining the selection options of a list-based component is between
single and multiple selections. In the first case, only one item can be selected at any time: clicking one
item will select it only after deselecting the previously selected one.

Setting the multipleSelection property to true enables multiple selections in the case of the
DataGrid and List components. When multiple selections are enabled, the user can add further items
to the currently selected ones by clicking them while keeping the CTRL key pressed.

327

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 327

Multiple selections are not supported by the ComboBox component, where only one item can be
selected at any time and displayed in its TextInput subcomponent.

The following example will show how multiple selections can be set and retrieved programmatically
and several other aspects related to the management of the selected item(s) of a component instance:

1. Open the Flash document created earlier, named lists06.fla, and save it as lists07.fla in a
new folder. Also copy the test.as file associated with the lists06.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {A: p1, data: p2};

}

function change(eventObject:Object):Void {
var eventSource = eventObject.target;
switch (eventSource._name) {

case "datagrid1":
trace(eventSource._name + " changed selection.");
break;

case "list1":
trace(eventSource._name + " changed selection.");
break;

case "combobox1":
trace(eventSource._name + " changed selection.");
break;

}
}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),
createItem("Green", "Field"),
createItem("Blue", "Sky")

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

328

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 328

var selected = [0,2,4];

datagrid1.multipleSelection = true;
datagrid1.selectedIndices = selected;

list1.multipleSelection = true;
list1.selectedIndices = selected;

combobox1.selectedIndex = 2;

datagrid1.addEventListener("change", this);
list1.addEventListener("change", this);
combobox1.addEventListener("change", this);

3. Save both the Flash document and the test.as file.

Setting the multipleSelection property to true for both the datagrid1 and list1 instances enables
multiple selections that you can also try manually by using the CTRL/CMD or SHIFT keys as usual, while
the combobox1 instance shows how single selection is handled (and how it would be handled by the
other two instances if their multipleSelection property was set to false).

In the case of single selection, the selectedIndex property can be used to set/retrieve the index of
the currently selected item, like in the following:

combobox1.selectedIndex = 2;

In the case of multiple selections, the selectedIndices property is an array of numbers, each of
which is the index of a selected item. The selectedIndices property can be both set and retrieved. In
our example, we define a selected variable that later on we assign to the selectedIndices property
of both the datagrid1 and list1 instances:

var selected = [0,2,4];

datagrid1.multipleSelection = true;
datagrid1.selectedIndices = selected;

list1.multipleSelection = true;
list1.selectedIndices = selected;

The selections that we define programmatically are displayed when you first run the example. Figure
13-8 shows that the same three items are selected in both the datagrid1 and list1 instances (indexes =
0, 2, and 4), while the combobox1 instance has the third item selected (index = 2).

329

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 329

Figure 13-8. Single and multiple selections

Our example also includes a change event handler function that is used to intercept a change in the
selection of a component instance following the user interaction:

function change(eventObject:Object):Void {
var eventSource = eventObject.target;
switch (eventSource._name) {

case "datagrid1":
trace(eventSource._name + " changed selection.");
break;

case "list1":
trace(eventSource._name + " changed selection.");
break;

case "combobox1":
trace(eventSource._name + " changed selection.");
break;

}
}

Our change event handler does nothing more than publish the instance name of the object that trig-
gered the even but, of course, in a real-world application you would look at its selected (or
selectedIndices) property to know what is the newly selected item(s).

All of the three component instances support the change event and, in fact, we register the _level0
object as a listener of that event when triggered by any of them:

datagrid1.addEventListener("change", this);
list1.addEventListener("change", this);
combobox1.addEventListener("change", this);

We are close to completing the tour of the functionality provided by list-based components. The only
aspect missing is how to make those instances interactively editable.

330

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 330

Making it editable
Rather oddly, List component instances do not support editing, while you can edit the contents of
both of List’s derivatives, the DataGrid and the ComboBox components, by setting their editable
property to true.

Let us quickly build an example that shows not just how to make the datagrid1 and combobox1
instances editable, but also what the side effects are of this additional functionality:

1. Open the Flash document created earlier, named lists07.fla, and save it as lists08.fla in a
new folder. Also copy the test.as file associated with the lists07.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {label: p1, data: p2};

}

function enter(eventObject:Object):Void {
var eventSource = eventObject.target;
if (eventSource._name == "combobox1") {

eventSource.addItem(eventSource.text, "A " +
eventSource.text + " Object");

eventSource.text = "";
}

}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),
createItem("Green", "Field"),
createItem("Blue", "Sky")

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

datagrid1.editable = true;
combobox1.editable = true;

combobox1.addEventListener("enter", this);

3. Save both the Flash document and the test.as file.

331

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 331

To make the datagrid1 and combobox1 instances editable requires very little coding:

datagrid1.editable = true;
combobox1.editable = true;

The reason why our last example is still interesting lies in the possibility that it allows us to experiment
with the new editable state of both component instances.

In the case of the combobox1 instance, becoming editable means that the TextInput subcomponent is
initially empty, and you can actually add text to it, as in the case illustrated by Figure 13-9 that shows
how the example would look if you select the combobox1 instance and start entering the Yellow text
value in its TextInput subcomponent.

Figure 13-9. Adding text to a ComboBox instance

However, how do we store that “Yellow” text in the DataProvider object? It is your responsibility to
implement what must be done with the text being edited in a ComboBox instance. In our example, we
handle the enter event in order to add such text to the DataProvider object defined in our example.
Once again, the _level0 object is registered as the event listener:

combobox1.addEventListener("enter", this);

And what its enter event handler does is to add an item to the DataProvider object via the addItem
method and then clean the TextInput subcomponent of the combobox1 instance via its text property:

function enter(eventObject:Object):Void {
var eventSource = eventObject.target;
if (eventSource._name == "combobox1") {

eventSource.addItem(eventSource.text, "A " +
eventSource.text + " Object");

eventSource.text = "";
}

}

332

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 332

Figure 13-10 shows how all of the three instances are updated if you press the ENTER key after adding
the “Yellow” text to the combobox1 instance.

Figure 13-10. The “Yellow” item after being added interactively to the DataProvider object

Since the colors DataProvider object was shared by all of the three component instances, they have
all been synchronously updated after the “Yellow” item was added to the DataProvider object.

That completes the analysis of the code in our last example. However, there is still a default behavior
of the DataGrid component that you may find interesting to verify that does not require any addi-
tional lines of code; such behavior is a side effect of the following line:

datagrid1.editable = true;

DataGrid instances that can be edited allow you to select their cells and edit their content one by one.
The DataProvider object will be automatically updated following your actions. Try it by selecting
the cell containing the “Red” text and changing it into “Reds”. As soon as you press the ENTER key, the
DataProvider object will be updated with the new value and, once again, the “Reds” value will show
in all of the three component instances since they share the same DataProvider object.

We have completed a tour of the functionality provided by the list-based components. By examining
them together, you have quickly learned their many similarities and few differences, and this will cer-
tainly help you in using them proficiently in your projects.

We can now look at how to customize the appearance of those components via styles, skins, and more.

Supported styles
Our distinction between common and specific styles makes even more sense in this chapter since the
common styles are jointly supported by the three components that we are examining, while the spe-
cific styles will usually be dealt with separately.

333

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 333

Let us build an example that customizes the appearance of our minimal example and then analyze
what common and specific styles are redefined in it:

1. Open the Flash document created earlier, named lists08.fla, and save it as lists09.fla in a
new folder. Also copy the test.as file associated with the lists08.fla file in the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {label: p1, data: p2};

}

function setCommonStyles(instance) {
instance.setStyle("backgroundColor", 0xFFFFCC);
instance.setStyle("color", 0x0000FF);
instance.setStyle("rollOverColor", 0xAAFFFF);
instance.setStyle("selectionColor", 0xAADDFF);

}

function setDataGridStyles(instance) {
instance.getColumnAt(1).setStyle("backgroundColor", 0xFFCCFF);
instance.setStyle("headerColor", 0xAAFFFF);
instance.setStyle("vGridLines", true);
instance.setStyle("hGridLines", true);
instance.setStyle("vGridLineColor", "haloOrange");
instance.setStyle("hGridLineColor", "haloOrange");

}

function setComboBoxStyles(instance) {
instance.setStyle("defaultIcon", "Icon1");

}

function setListStyles(instance) {
instance.setStyle("defaultIcon", "Icon1");
instance.setStyle("alternatingRowColors", [0xFFFFCC, 0xFFCCFF]);

}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),
createItem("Green", "Field"),
createItem("Blue", "Sky")

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

334

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 334

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

setCommonStyles(datagrid1);
setCommonStyles(list1);
setCommonStyles(combobox1);

setDataGridStyles(datagrid1);
setComboBoxStyles(combobox1);
setListStyles(list1);

3. Create a new movie clip symbol by selecting Insert ➤ New Symbol. Define both its name and
its linkage identifier as Icon1.

4. Edit the Icon1 symbol and draw a rectangle shape in it. Note that the stroke should be set to
4 pixels in order to have a shape looking like the one shown in Figure 13-11. Define the size of
the shape as (W: 8, H: 8) and its position as (X: 2, Y: 2). Alternatively, you can cut and paste the
shape that you find in the lists09.fla source file associated with this section.

5. Save both the Flash document and the test.as file.

Figure 13-11 shows how this example looks after you test the movie.

Figure 13-11. Stylized component instances

Our last example is essentially based on four functions:

setCommonStyles: Applied to all of the three component instances, since it defines some of the
styles that are common to all of them

setListStyles: Applied to the list1 instance only, since it defines some of the styles that are
specific to the List component

setComboBoxStyles: Applied to the combobox1 instance only, since it defines some of the
styles that are specific to the ComboBox component

setDataGridStyles: Applied to the datagrid1 instance only, since it defines some of the styles
that are specific to the DataGrid component

335

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 335

Each of these functions has a clear purpose, and you can easily modify any of them to try different
styles once we have examined all the common and specific styles in the next sections of this chapter.

Common styles
The common styles include text and font styles (embedFonts, fontFamily, fontSize, fontStyle,
fontWeight, textAlign, textIndent, and textDecoration) that will be discussed in Chapter 18.

Similarly, some of the color styles (color, backgroundColor, themeColor, and backgroundDisabled➥

Color) present the same consistent behavior that they have for every other component in the archi-
tecture.

However, in this section we are also going to consider a few other styles that are shared by the List,
ComboBox, and DataGrid components (but not usually found in other components) as common
styles:

rollOverColor: This style defines the color of the highlighted bar that appears on an item
when the mouse rolls over it.

selectionColor: This style defines the color of the highlighted bar of a selected item.

repeatDelay: Set to 500 by default, this is a number indicating how many milliseconds the
component instance will wait while the user is pressing the button of the scrollbar subcompo-
nent before repeating the scrolling action.

repeatInterval: Set to 35 by default, this is a number indicating how many milliseconds sepa-
rate a scrolling move when the component instance scroll is repeated automatically.

The setCommonStyles function in our previous example defines only four of the common styles, but
you can, of course, add further setStyle calls to try any other style and/or change the values of the
existing ones to experiment with different appearances.

The border styles are also among the common styles of the three components considered in this
chapter. They are implemented via the RectBorder class that we examined in Chapter 11.

DataGrid-specific styles
In the case of the DataGrid component, you can also set the backgroundColor style of each DataGrid➥

Column instance as we do in the setDataGridStyles function in the following line:

instance.getColumnAt(1).setStyle("backgroundColor", 0xFFCCFF);

Apart from that, the DataGrid component also supports a few styles that are specific to its own
instances:

headerColor: Defines the background color of the column headers

headerStyle: A style property that accepts a CCSStyleDeclaration object and applies its CSS
definitions to the column headers

336

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 336

vGridLines: A Boolean that, if true, displays vertical gridlines in the content area of the
DataGrid instance

hGridLines: A Boolean that, if true, displays horizontal gridlines in the content area of the
DataGrid instance

vGridLineColor: A color value defining the color of the vertical gridlines if displayed

hGridLineColor: A color value defining the color of the vertical gridlines if displayed

The setDataGridStyles function in our examples set every specific style but the headerStyle.

List-specific styles
The List class supports only two specific styles that are both defined in the setListStyles function
of our example:

defaultIcon: The value is a linkage identifier of an exported symbol that can be used as an
icon added to every row in the List instance.

alternatingRowColors: The value is an array with at least two colors that replace the back-
ground color for the rows and are used cyclically for all the rows in the List instance.

The setListStyles function in our example defines both the defaultIcon and the alternating➥

RowColors styles as follows:

instance.setStyle("defaultIcon", "Icon1");
instance.setStyle("alternatingRowColors", [0xFFFFCC, 0xFFCCFF]);

ComboBox-specific styles
The ComboBox component supports the defaultIcon style similarly to the List component. The
defaultIcon style is the only style set by the setComboBoxStyles function of our example, although
the ComboBox component also supports two more specific styles for influencing speed and accelera-
tion of its animation:

openDuration: A number, 250 by default, defining the duration in milliseconds of the anima-
tion displayed when the List subcomponent of a ComboBox instance appears or disappears
following the user action.

openEasing: Influences the accelerations in the animation displayed when the List subcompo-
nent of a ComboBox instance appears or disappears following the user action. See Appendix B
for a list of the easing methods that can be assigned to this style property.

The setComboBoxStyles function in our example only defines the defaultIcon style, leaving the ani-
mation speed and accelerations to their default values.

337

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 337

Skinnability
This section, dedicated to skinning the List, ComboBox, and DataGrid components, is much shorter
than you would expect for a variety of reasons:

The components’ infrastructures are mostly made of borders and scrollbars, the skinning tech-
niques of which are described in other chapters.

Borders depend on a purely coded skin implemented by the RectBorder class, which is exam-
ined in Chapter 11.

The scrollbars subcomponent can be skinned, and the related technique is explained in
Chapter 21.

What you may really wish to “skin” is the items in the List and the ComboBox components or
the cells of the DataGrid component. Those areas can be fully customized, but the process is
dissimilar from skinning, and it is usually referred as cell rendering. Cell rendering is explained
in the “Solved Mysteries” section of this chapter.

What is left in this section, then, is skinning the only bit of the ComboBox component that does not
belong to any of the previously considered cases: its drop-down button. This is the goal of our next
example:

1. Open the Flash document created earlier, named lists09.fla, and save it as lists10.fla in a
new folder. Also copy the test.as file associated with the lists09.fla file into the new folder.

2. Open the copy of the test.as file that is in the current document’s folder and replace the
ActionScript lines there with the following:

function createItem(p1:String, p2:String):Object {
return {label: p1, data: p2};

}

var colors = [
createItem("White", "Paper"),
createItem("Black", "Carbon"),
createItem("Red", "Rose"),
createItem("Green", "Field"),
createItem("Blue", "Sky")

];

combobox1.dataProvider = colors;
list1.dataProvider = colors;
datagrid1.dataProvider = colors;

datagrid1.hScrollPolicy = "off";
datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

3. Create a new movie clip symbol by selecting Insert ➤ New Symbol. Define both its name and
its linkage identifier as ComboDownArrowUp.

338

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 338

4. Edit the ComboDownArrowUp symbol and draw a shape in it. The shape’s dimension should be
approximately 14✕22 pixels, and its position should be set as (X: 0, Y: 0). Alternatively, you can
reuse the graphics of the symbol included in the lists10.fla source file associated with this
section.

5. Repeat steps 3 and 4 three times in order to create three more symbols: ComboDownArrowOver,
ComboDownArrowDown, and ComboDownArrowDisabled. The purpose of the four symbols that you
create is to visually represent the four states of the drop-down button of a ComboBox instance
(up, over, down, and disabled). Therefore, each of its skins should have a different but consis-
tent look to visually represent each state in a proper way. Once again, you can reuse the
graphic assets included in the lists10.fla source file associated with this section.

6. Save both the Flash document and the test.as file.

Figure 13-12 shows the detail of the appearance of the ComboBox
instance in this example, after you test the movie.

Skinning the ComboBox instance in our example only requires
adding four exported symbols to its library with the proper linkage
identifiers (ComboDownArrowUp, ComboDownArrowOver, ComboDown➥

ArrowDown, and ComboDownArrowDisabled). Figure 13-13 shows the
skins in the library of the Flash document created for our example.

Figure 13-13. The ComboBox skins in the document’s library

The next section will thoroughly examine the cell-rendering process that gives you much more control
when it comes to customizing the appearance and behavior of the components examined in this
chapter.

Solved mysteries
List-based components have a major “mystery” to solve: the cell-rendering process.

Cell rendering
Cell rendering is a term associated with the visual representation of a data item inside a partial area
of a visual component, referred to as a cell due to the replicated presence of its structure within the

339

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

Figure 13-12. Skinning the
drop-down button of a

ComboBox instance

5939CH13.qxd 1/25/06 11:11 AM Page 339

visual component. Every cell has a data item associated with it and, since all of the data items are sup-
posed to have the same properties, all you need to implement is a specific cell renderer for that kind
of data item. Such a cell renderer is typically reused to render several cells inside a component
instance.

In the case of the List and the ComboBox component, a cell is represented by a whole row, while in
the case of the DataGrid component, a cell is identified as the content area lying in the intersection
between a column and a row.

Figure 13-14 visually clarifies the role of cells in the cases of the List and the DataGrid components.
The cells of the ComboBox component are identical to the List case, since they are implemented by its
List subcomponent.

Figure 13-14. Cells in the List and the DataGrid cases

The component architecture implements a so-called Cell Renderer API that all cell renderers should
be compliant with. However, at the moment of writing, putting such an API to work in your projects is
a matter of interpretation and involves several undocumented issues. That is the main reason why the
cell rendering process is included in this section of the chapter.

Here you will find a complete example that deals with every essential aspect of the cell rendering
process and that you can customize to build your specific cell renderers.

Once again, we follow our concrete approach and build the example before looking into the func-
tional requirements of a cell renderer and how it works:

1. Create a new Flash document and save it as lists11.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document and set its dimen-
sions as 700✕300 pixels.

3. Drag the List component on stage to create one of its instances and name it list1. Using the
Info panel, define its position as (X: 462, Y: 66) and its dimensions as (W: 200, H: 200).

4. Drag the DataGrid component on stage to create one of its instances and name it datagrid1.
Using the Info panel, define its position as (X: 37, Y: 66) and its dimensions as (W: 400, H: 124).

340

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 340

5. Create an ActionScript file and save it as test.as. Add the following lines to it:

var colors = [
{symbolBaseName: "White", colorValue: 0xFFFFFF},
{symbolBaseName: "Black", colorValue: 0x000000},
{symbolBaseName: "Red", colorValue: 0xFF0000},
{symbolBaseName: "Green", colorValue: 0x00FF00},
{symbolBaseName: "Blue", colorValue: 0x0000FF}

];

list1.dataProvider = colors;
datagrid1.dataProvider = colors;

datagrid1.vScrollPolicy = "auto";
list1.vScrollPolicy = "auto";

list1.rowCount = list1.length;
list1.cellRenderer = "CustomCellRenderer";

datagrid1.getColumnAt(1).width = 196;
datagrid1.getColumnAt(1).resizable = false;
datagrid1.getColumnAt(1).cellRenderer = "CustomCellRenderer";

6. Select the first frame in the document and add the following ActionScript line to it:

#include "test.as"

7. Create an ActionScript file and save it as CustomCellRenderer.as. Add the following lines to it:

import mx.core.UIComponent;
import mx.controls.List;

class CustomCellRenderer extends UIComponent {

// unused by this cell renderer
private var listOwner:List;
private var owner:MovieClip;
private var getCellIndex:Function;
private var getDataLabel:Function;

// specific to this cell renderer
private var customSymbol_mc:MovieClip;

function CustomCellRenderer() {}

// it must do something if your cell can be resizable
function size(): Void {}

341

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 341

public function getPreferredWidth():Number {
return 196;

}

public function getPreferredHeight():Number {
return 20;

}

public function setValue(label:String, item:Object,
state:String):Void {

switch (state) {
case "normal":

attachMovie(item.symbolBaseName,
➥ "customSymbol_mc", 1);

break;
case "highlighted":

attachMovie(item.symbolBaseName + "Over",
"customSymbol_mc", 1);

break;
case "selected":

attachMovie(item.symbolBaseName + "Selected",
"customSymbol_mc", 1);

break;
}

}
}

8. Go back to the Flash document and create a new movie clip symbol by selecting Insert ➤
New Symbol. Define its name, its linkage identifier, and the name of its AS 2.0 Class as
CustomCellRenderer.

9. You must now create 15 movie clips as exported symbols or import them from the completed
source file associated with this chapter. The name of each symbol is the same as its linkage
identifier. The linkage identifiers are Black, BlackOver, BlackSelected, Blue, BlueOver,
BlueSelected, Green, GreenOver, GreenSelected, Red, RedOver, RedSelected, White, WhiteOver,
and WhiteSelected. Each symbol must contain a bitmapped graphic (or a shape) of 196✕20
pixels positioned at (X: 0, Y: 0). If you want to achieve the exact look shown in Figure 13-15,
you must import the symbols from the completed source file associated with this chapter by
opening it as an external library (File ➤ Import ➤ Open External Library) and dragging those
symbols into the library of your Flash document.

10. Save the Flash document, the test.as file, and the CustomCellRenderer.as file.

Figure 13-15 shows the colorful result of testing our cell-rendering example. Rolling over the custom
rendered cells or even selecting some will give you complete visual feedback of the implemented
rendition.

342

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 342

Figure 13-15. Outcome of a custom cell renderer

Of course, there is plenty to analyze in the last example. First of all, notice that we reused the same
custom cell renderer for both the datagrid1 and list1 instances regardless of the different structures
of a DataGrid and a List component. This shows the high flexibility of the cell rendering process when-
ever implemented properly.

The custom cell renderer was installed in both component instances via the cellRenderer property as
in the following lines included in the test.as file:

list1.cellRenderer = "CustomCellRenderer";
.........
datagrid1.getColumnAt(1).cellRenderer = "CustomCellRenderer";

Note that, while the custom cell renderer is used to render every cell in the list1 instance, in the case
of the datagrid1 instance we are using it to render the cells of the second column only. In fact, in the
case of the DataGrid component, cell renderers can be installed on a per-column basis by accessing its
DataGridColumn instances via the getColumnAt method as we did in the previous ActionScript line.
These aspects are visually confirmed in Figure 13-14.

There is not much more to comment about the code in the test.as file, since it is similar to the
implementation of our previous example with the exception of the following two lines:

datagrid1.getColumnAt(1).width = 196;
datagrid1.getColumnAt(1).resizable = false;

The previous two lines fix the width of the second column in the DataGrid instance to 196 pixels and
make it not resizable to avoid having it resized by the user action. That is because we know that our
custom cell renderer places a 196-pixels-wide bitmapped graphic in the cells of that column, and we
do not want its look to be spoiled by the possibility of resizing that column interactively.

The main actor of this example is, undoubtedly, the custom cell renderer. Let us examine what it really
is about.

Building a custom cell renderer
In the previous example, you built a custom cell renderer by associating an ActionScript class
(CustomCellRenderer) with an exported symbol having the same name. This shows what a custom cell
renderer actually is: a new component.

343

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:11 AM Page 343

A cell renderer is the means provided by the component architecture to replace the default imple-
mentation of a cell with a custom component that, as such, can meet any requirement that you
may have.

Instances of a cell renderer become, in effect, subcomponents in the context of the component that
creates them.

Luckily, our custom cell renderer is a very simple component implemented by an empty exported
symbol. The absence of skins or a component structure allows us to focus on the requirements of the
Cell Renderer API.

However, you must not forget that a custom cell renderer is a component and can be implemented to
exploit any other functionality provided by the component architecture.

After all, our custom cell renderer already creates the premises for this by inheriting from the
UIComponent class:

class CustomCellRenderer extends UIComponent {

Such detail makes it clear, once again, of the component nature of a cell renderer.

Our CustomCellRenderer class defines two properties and two methods that are not used by its
implementation but have been included because you could find a good use for them whenever imple-
menting your own custom cell renderer:

listOwner: Refers to the List instance that is the root object of the component

owner: Refers to the cell instance that it is contained in the listOwner object and, in turn, con-
tains the cell renderer instance

getCellIndex: Method returning an object with two properties, columnIndex and itemIndex,
numerically indicating the column and the row of the currently rendered cell

getDataLabel: Method returning the name of the property in the data item that is playing the
role of the label, as we saw earlier in this chapter

It is the component architecture that defines the implementation of these properties and methods.
However, you must include their definition in your classes only if you are going to use them in your
own code. You can strip their definitions from the CustomCellRenderer class and see that it still works
fine since that functionality was not used in its implementation.

Our CustomCellRenderer class defines one property that is specific to its implementation:
customSymbol_mc. The customSymbol_mc property refers to the specific color symbol that is dynami-
cally attached to cell to represent its current value in the setValue method:

public function setValue(label:String, item:Object, state:String):Void {
switch (state) {

case "normal":
attachMovie(item.symbolBaseName, "customSymbol_mc", 1);
break;

case "highlighted":

344

CHAPTER 13

5939CH13.qxd 1/25/06 11:11 AM Page 344

attachMovie(item.symbolBaseName + "Over",
"customSymbol_mc", 1);

break;
case "selected":

attachMovie(item.symbolBaseName + "Selected",
"customSymbol_mc", 1);

break;
}

}

The setValue method is the most important method that you must provide when implementing a
custom cell renderer: it basically defines how the cell will look depending on the values of the data
item associated with it.

The setValue method receives three parameters from the component architecture that give you
access to relevant information when writing the code that renders the cell’s content:

label: Provides the label value of the current cell. Not used in our example and basically a
redundant parameter, since you find the same information (and more) in the next parameter.

item: Provides access to the values of the data item associated with the current cell. Very use-
ful to define the cell representation based on any combination of the related data item values.

state: Very important, since it defines the current state of the cell: "normal", "highlighted",
or "selected". Our example provides a separate implementation for each of these, states
underlining their relevance in the appearance of a cell.

Finally, our custom cell renderer also implements a couple of methods (getPreferredWidth,
getPreferredHeight) whose names are self-describing since they inform the component architecture
about the dimensions preferred by our cell renderer. In our case, we know dimensions pretty well,
since they are dictated by the bitmapped graphic assets dynamically created in the cell, which have
dimensions of 196✕20 pixels.

Note that the cell renderer in our example has fixed dimensions defined by the image contained in it.
However, there may be cases when the size of a cell renderer is variable. In these cases, it is your
responsibility to implement a size method that will rearrange the cell content according to its new
dimensions. The size method has been included with an empty body in our CustomCellRenderer
class to remind you to implement it if the content of your cells must be resizable. Of course, it is up
to your requirements to specify how they should look once resized.

DataGrid column headers
Note that the DataGridColumn class allows you to specify a custom cell renderer for the column head-
ers of a DataGrid component.

All you have to do is implement your own cell renderer, applying exactly the same technique dis-
cussed in this chapter, and then install it via the headerRenderer property of the DataGridColumn class
as shown in the following example:

datagrid1.getColumnAt(1).headerRenderer = CustomHeaderRenderer;

345

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:12 AM Page 345

The undefined item bug
Here we will look back at one of our previous examples that contained a workaround to a bug in the
DataGrid component.

When implementing custom labels, we define a custom label function as follows:

function customLabelFunction(item:Object):String {
if (item == undefined) return undefined;
return "The " + item.B + " is " + item.A;

}

The following line is there just to cover for a bug in the current DataGrid implementation:

if (item == undefined) return undefined;

If you remove this line and run the example again, you will notice how the bug visually influences the
DataGrid instance. Figure 13-16 shows the problem.

Figure 13-16. Note the partially empty lines in the DataGrid instance

Basically, while the List and ComboBox components check for the number of data items in the
DataProvider object, the DataGrid component does not when it comes to custom label functions, and
the outcome is clearly displayed in Figure 13-16.

The line we add resolves the problem by verifying the passed item is, in fact, undefined, in which case
the customLabelFunction returns undefined as well, which is enough for the DataGrid component to
behave as expected.

346

CHAPTER 13

5939CH13.qxd 1/25/06 11:12 AM Page 346

Reasons for subclassing the List, ComboBox, and
DataGrid components

It is generally a good idea to subclass a component in any case when building a theme so as to have
styles and skins encapsulated in its subclassed version.

However, the list-based component does not give many other motivations to be subclassed apart from
very specific ones that may come from your own projects.

In fact, consider that the DataGrid component is, as a matter of fact, a subclassed version of the List
component, since the DataGrid class inherits from the List class directly (and that is what subclassing
is, after all).

Therefore, you may also subclass any of these components to create a component with a new and
largely extended functionality.

347

THE LIST, COMBOBOX, AND DATAGRID COMPONENTS

5939CH13.qxd 1/25/06 11:12 AM Page 347

5939CH14.qxd 1/25/06 11:14 AM Page 348

349

Chapter 14

THE DATECHOOSER AND DATEFIELD
COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 349

Quite frequently your applications may request the user to input a date.

The two components examined in this chapter largely facilitate such interaction, since they both force
the user to intuitively select an existing date via a calendar view, avoiding the need for any validation
code that you should produce and handle if using a text input field for the same task.

The DateChooser component implements a calendar view that can be utilized to select a date, while
the DateField component combines a read-only TextInput component with a DateChooser component
that pops up whenever needed, in order to save space in the graphical user interface. In visual
terms, the DateField component is a more compact version of the DateChooser component.

Building a minimal example will further clarify the role that these components can play in your appli-
cations.

Minimal example of the DataChooser and
DataField components

Let us build a practical example that uses both components to compare their behavior:

1. Create a new Flash document and save it as dates01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 600✕300 pixels.

3. Drag the DateChooser component on stage in order to create one instance. Define the newly
created instance name as datechooser1. Set the datechooser1 position to (X: 50.0, Y: 40.0) via
the Info panel.

4. Drag the DateField component on to the stage. Define the newly created instance name as
datefield1. Set the datefield1 position at (X: 270.0, Y: 40.0) via the Info panel.

5. Save the Flash document.

Testing the movie will show one instance of the
DateChooser component and one instance
of the DateField component, as displayed in
Figure 14-1.

Clicking the DateField component will reveal its
DateChooser subcomponent, as illustrated in
Figure 14-2.

The completed source code introduced in this chapter is included in the file src14.zip,
downloadable from this book’s page at www.friendsofed.com.

350

CHAPTER 14

Figure 14-1. The minimal example

5939CH14.qxd 1/25/06 11:14 AM Page 350

Figure 14-2. The minimal example after clicking the DateField instance

XLEFF version
The XLEFF version of our minimal example reflects the simplicity of including these components in a
graphical user layout:

<datechooser
name="datechooser1" x="50" y="40" width="205" height="214" />

<datefield name="datefield1"x="270" y="40" width="100" height="22" />

Note that you can find a preconfigured copy of the XLEFF sampler in the source files associated with
this chapter to generate such a minimal example.

A richer example
While in the authoring environment, you can alternatively select the two instances in our minimal
example to find out that they expose the same five parameters in the Parameters tab of the Properties
panel:

dayNames: An array of seven strings that are used to display the name of the days in the calen-
dar view. The default value of this parameter is [S, M, T, W, T, F, S] where the first S stands for
Sunday, the M stands for Monday, and so on.

disabledDays: An array, initially empty, that can include up to seven numerical values ranging
from 0 (Sunday) to 6 (Saturday). All the dates that fall on the days specified in this array are
disabled and cannot be selected by the user.

firstDayOfWeek: A numerical value indicating which day will be displayed first in the calendar
view. Its default value is 0 (Sunday).

monthNames: An array of twelve strings that are used to display the name of the months in the
calendar view. The default value of this parameter is [January, February, March, April, May,
June, July, August, September, October, November, December].

showToday: A Boolean determining whether the current date is highlighted whenever visible in
the calendar view. Its default value is true.

351

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 351

Although the use of these parameters is rather intuitive, building a richer example that uses all of
them will make their functionality more evident:

1. Open the previously created dates01.fla Flash document and save it as dates02.fla.

2. Select the datechooser1 instance and click the Parameters tab of the Properties panel.

3. Redefine the seven values of the dayNames parameter as [D, L, Ma, Me, G, V, S].

4. Add two values to the disabledDays parameter: [0, 6].

5. Redefine the value of the firstDayOfWeek parameter as 1.

6. Redefine the twelve values of the monthNames parameter as [Gennaio, Febbraio, Marzo, Aprile,
Maggio, Giugno, Luglio, Agosto, Settembre, Ottobre, Novembre, Dicembre].

7. Redefine the value of the showToday parameter as false.

8. Repeat the steps 3 to 7, after selecting the datefield1 instance on stage.

9. Save the Flash document.

Figure 14-3 shows the outcome of our last example after you click the datefield1 instance to display
its DateChooser subcomponent.

Figure 14-3. The minimal example when both of the calendar views are visible

The main purpose of the two parameters that allow us to change the names of days and months
(dayNames and monthNames) is to implement localized versions of the calendar view. We use these two
parameters to produce an Italian version of our minimal example, shown in Figure 14-3.

We also use the disabledDays parameter for making the weekend days not selectable: adding the
values 0 (Sunday) and 6 (Saturday) to this parameter actually disables those days in every month view
displayed in the components.

We change the default setting of the firstDayOfWeek from 0 (Sunday) to 1 (Monday), so that the cal-
endar view displays the week starting from Monday instead of Sunday. Note that, since the names of
the days have been redefined as [D = Domenica, L=Lunedi, Ma=Martedi, Me=Mercoledi, G=Giovedi,
V=Venerdi, S=Sabato], the weeks start from L (Lunedi=Monday), as displayed in Figure 14-3.

Finally, we also change the default setting of the showToday parameter from true to false. As a result
of this, the current date is not highlighted whenever visible in the calendar view.

352

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 352

Code version
Ensuring that all the dayNames and monthNames parameters have been defined consistently can become
a very tedious, error-prone process, since you have to manually change lots of values in each of the
instances in your application.

Luckily, each of the parameters examined in the previous section corresponds to a class property with
the same name.

Setting those variables programmatically can be much more convenient, as illustrated by the follow-
ing code:

var itaMonths =
["Gennaio","Febbraio","Marzo","Aprile","Maggio","Giugno",
"Luglio","Agosto","Settembre","Ottobre","Novembre","Dicembre"];

var itaDays = ["D", "L", "Ma", "Me", "G", "V", "S"];

function setParameters(instance) {
instance.monthNames = itaMonths;
instance.dayNames = itaDays;
instance.showToday = false;
instance.firstDayOfTheWeek = 1;
instance.disabledDays = [0, 6];

}

setParameters(datechooser1);
setParameters(datefield1);

The previous script defines two arrays (itaDays and itaMonths) containing the Italian names for
months and days that can be assigned to the dayNames and monthNames properties of an instance
whenever needed, allowing you to avoid rewriting those names again and again and reducing the
chances of errors.

The outcome of the previous script is similar to that illustrated in Figure 14-3, and you can find a Flash
document (dates02b.fla) using such code among the source files associated with this chapter.

How to retrieve and set a date
Implementing DateChooser and DateField components as you saw earlier has little practical value until
you learn how to use those instances to retrieve user input or display a selected date.

Let us extend our minimal example to include the handling of the selected date:

1. Open the previously created dates01.fla Flash document and save it as dates03.fla in a new
folder.

2. Select the first frame of the dates03.fla document and add the following ActionScript line
to it:

#include "test.as"

353

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 353

3. Create a new ActionScript file and save it as test.as in the same folder as the dates03.fla
file.

4. Add the following ActionScript code to the test.as file:

function change(eventObject:Object):Void {
var eventSource = eventObject.target;
if (eventSource._name == "datechooser1") {

trace("datechooser1 new selection is: " +
datechooser1.selectedDate);

}
if (eventSource._name == "datefield1") {

trace("datefield1 new selection is: " +
datefield1.selectedDate);

}
}

datechooser1.addEventListener("change", this);
datefield1.addEventListener("change", this);

trace("datechooser1 new selection is: " + datechooser1.selectedDate);
trace("datefield1 new selection is: " + datefield1.selectedDate);

datechooser1.selectedDate =
datefield1.selectedDate = new Date(2000,0,1);

5. Save both dates03.fla and test.as.

Testing our latest example will show that both instances display the same selected date (1 Jan 2000),
as in Figure 14-4.

Figure 14-4. Setting and retrieving the selected date

The definition of the selectedDate property, available for both of the components, allows us to
define which date was initially selected by both instances:

datechooser1.selectedDate =
datefield1.selectedDate = new Date(2000,0,1);

354

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 354

Note that the value assigned to the selectedDate property is an object of the Date class.

The two lines that preceded the definition of the selectedDate property have been included to high-
light that such a property is initially undefined:

trace("datechooser1 new selection is: " + datechooser1.selectedDate);
trace("datefield1 new selection is: " + datefield1.selectedDate);

These lines generate the following text in the output window just after testing the movie in the
authoring environment, confirming that the selectedDate property is indeed undefined by default:

datechooser1 new selection is: undefined
datefield1 new selection is: undefined

Both the DateChooser and DateField components trigger a change event whenever the user selects a
date. This is the reason for providing an implementation of the change event handler such as the
following:

function change(eventObject:Object):Void {
var eventSource = eventObject.target;
if (eventSource._name == "datechooser1") {

trace("datechooser1 new selection is: " +
datechooser1.selectedDate);

}
if (eventSource._name == "datefield1") {

trace("datefield1 new selection is: " +
datefield1.selectedDate);

}
}

Such an event handler verifies which instance (datechooser1 or datefield1) actually triggered the
change event and shows a message in the Output window including the newly selected date.

Selecting a new date in one of the two instances would generate a message in the Output window sim-
ilar to the following:

datechooser1 new selection is: Tue Jan 18 00:00:00 GMT+0000 2000

Conclusion: by using the selectedDate property and implementing an event handler for the change
event, you can easily set and retrieve the date selected in both of the DateChooser and DateField
components.

Both components also support the definition of selectable ranges that you can define to meet all sorts
of requirements, as you are going to see in the next section.

Ranges definition
Both the DateChooser and DateField components introduce the concept of range to indicate a
sequence of days that you may want to use to somewhat restrict the user selection.

355

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 355

Two different logic processes are available for defining what dates can be selected in a component
instance:

Disabling by providing a collection of ranges, each of them specifying a sequence of days that
cannot be selected by the user

Enabling by providing a single range of days and restricting the user selection to those days
only

Let us first build an example of the disabling approach so that you can fully grasp how it works:

1. Open the previously created dates03.fla Flash document and save it as dates04.fla in a new
folder.

2. Create a new ActionScript file and save it as test.as in the same folder where the
dates04.fla file is.

3. Add the following ActionScript code to the test.as file:

var dRanges = [
new Date(2000, 0, 2),
{ rangeEnd: new Date(1999, 11, 31) },
{ rangeStart: new Date(2000, 1, 1) },
{ rangeStart: new Date(2000, 0, 10),
rangeEnd: new Date(2000, 0, 20) }

];

function commonSetup(instance) {
instance.selectedDate = new Date(2000,0,1);
instance.disabledRanges = dRanges;

}

commonSetup(datechooser1);
commonSetup(datefield1);

4. Save both dates04.fla and test.as.

Testing our latest example will produce an outcome similar to that displayed in Figure 14-4 with an
important difference: you will not be able to select a date outside January 2000, although you can still
navigate the calendar view via the navigation arrows, and you cannot select January 2 or any days
between the 10th and 20th of January.

Such detailed configuration is implemented by using the disabledRanges property and by assigning
the following dRanges array to it:

var dRanges = [
new Date(2000, 0, 2),
{ rangeEnd: new Date(1999, 11, 31) },
{ rangeStart: new Date(2000, 1, 1) },
{ rangeStart: new Date(2000, 0, 10),
rangeEnd: new Date(2000, 0, 20) }

];

356

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 356

The dRanges array in our example is carefully defined to include the four different kinds of range that
you may include in an array that can be assigned to the disabledRanges property:

A Date object: The first item in the dRanges array is a Date object. Including it in the dRanges
array disables one single day: the one in the Date object.

A range object with a rangeEnd property only: The presence of the rangeEnd property only
indicates a range that starts from the beginning of time up to the day specified in such prop-
erty. We used this option in our example to disable all the days up to 31 December 1999.

A range object with a rangeStart property only: The presence of the rangeStart property
only indicates a range that starts from the day specified and continues interminably into the
future. We used this option in our example to disable all the days from 1 February 2000
onward.

A range object with both the rangeStart and the rangeEnd properties: the presence of
both properties defines a range that starts from a specific day specified in rangeStart and
ends in the day specified in rangeEnd. We used this fourth and last option in our example to
disable all the days ranging from the 10th to the 20th of January 2000.

The use of the disabling approach may sound overcomplicated, but it was provided to allow you to
have the finest control over how to restrict the user selection.

The enabling approach is more intuitive and easier to implement, but it is less flexible, as demon-
strated in the following example:

1. Open the previously created dates04.fla Flash document and save it as dates04b.fla in a
new folder.

2. Create a new ActionScript file and save it as test.as in the same folder where the
dates04b.fla file is.

3. Add the following ActionScript code to the test.as file:

var sRange = { rangeStart: new Date(2000, 0, 10),
➥ rangeEnd: new Date(2000, 0, 20) };

function commonSetup(instance) {
instance.selectedDate = new Date(2000,0,12);
instance.selectableRange = sRange;

}

commonSetup(datechooser1);
commonSetup(datefield1);

4. Save both dates04b.fla and test.as.

Once again, the test movie will have a look similar to our minimal example, with the difference that
the selection options are restricted. In this case, you will be able to select only the days starting from
the 10th of January 2000 up to the 20th of the same month.

357

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 357

Enabling a single range exclusively is achieved by assigning a range object with both the properties
rangeStart and rangeEnd defined to the selectableRange property. In our example, this range object
is defined as follows:

var sRange = { rangeStart: new Date(2000, 0, 10), rangeEnd: new
Date(2000, 0, 20) };

Before ending our study of the functionalities of both the DateChooser and the DateField components
and learning how to customize them, you may find it interesting to know about a second event sup-
ported by these components: the scroll event.

The scroll event
In our example, both the DateChooser and the DateField components raise a scroll event whenever
the user changes the month displayed in the calendar view by clicking one of the two arrow buttons.

The scroll event handler receives an event object including a detail property that can have one of
four String values:

nextMonth: Indicates the user clicked the next button arrow and the month being displayed
belongs to the same year

previousMonth: Indicates the user clicked the previous button arrow and the month being
displayed belongs to the same year

nextYear: Indicates the user clicked the next button arrow and the month being displayed
belongs to the next year

previousYear: Indicates the user clicked the previous button arrow and the month being
displayed belongs to the previous year

The typical use of such an event is to keep different component instances synchronized on the same
month and year, as illustrated in the following example:

1. Open the previously created dates04.fla Flash document and save it as dates05.fla in a new
folder.

2. Create a new ActionScript file and save it as test.as in the same folder where the
dates05.fla file is.

3. Add the following ActionScript code to the test.as file:

function scroll(eventObject:Object):Void {
var eventSource = eventObject.target;
var synchronized;

if (eventSource._name == "datechooser1") {
synchronized = datechooser2;

} else {
synchronized = datechooser1;

}

358

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 358

synchronized.displayedYear = eventSource.displayedYear;
synchronized.displayedMonth = eventSource.displayedMonth;

}

datechooser1.addEventListener("scroll", this);
datechooser2.addEventListener("scroll", this);

4. Select the datefield1 instance on stage and delete it.

5. Drag the DateChooser component on stage in order to create a second instance. Define the
newly created instance name as datechooser2. Set the datechooser2 position at (X: 330.0, Y:
40.0) via the Info panel.

6. Save both dates05.fla and test.as.

Testing the movie will now present two DateChooser instances on the stage, as displayed in Figure 14-
5.

Figure 14-5. Two synchronized instances

To verify that the instances are indeed synchronized by exploiting the scroll event, you can click the
arrow buttons of one of them and notice how the other one follows your action as well.

The code in the scroll event handler is rather intuitive: it verifies what instance raised the event
(eventSource), stores the other instance in the synchronized variable, and then synchronizes the two
instances via the displayedMonth and displayedYear properties.

In a real-world application, you would most probably use the scroll event to keep some other kind
of view in synch with the user action.

Now that you have good knowledge of the functionality provided by the DateChooser and the
DateField components, we can start looking into what you can do to customize their appearance.

359

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 359

Supported styles
Both the DateChooser and the DateField components support the same styles.

Among those styles are several common text and color styles that are handled similarly throughout
the component architecture, allowing for the creation of a consistent look and feel when including
different components in your applications.

Let us examine these component styles starting from the ones that are commonly shared with the
other components in the architecture.

Common styles
The common text styles supported by both the DateChooser and the DateField components are
embedFonts, fontFamily, fontSize, fontStyle, fontWeight, and textDecoration.

Text styles are intuitive to use and described in greater detail in Chapter 18, which is dedicated to the
text-based components.

The common color styles supported by both the DateChooser and the DateField components are
themeColor, backgroundColor, and color. They behave exactly as expected by allowing you to define
a color scheme for the component appearance in a single step (themeColor) or setting the color of
the component’s background (backgroundColor) and the text color (color) separately.

We are going to use some of the common styles when building our next example, which also uses
the specific styles in order to define a consistent, new appearance for both the DateChooser and the
DateField components.

Specific styles
The specific styles of both the DateChooser and the DateField components have been provided to
allow you to stylize some specific areas of their calendar view.

The common text styles that we saw before influence all the text content in the component instance.
However, you can also apply those text styles to three component areas separately by using the spe-
cific style’s objects:

HeaderDateText: A global style that influences the appearance of text in the calendar view
header (basically the text displaying the month’s name). Such a header includes the text of the
month’s name being displayed and the arrow buttons.

WeekDayStyle: A global style that influences the appearance of the text of the day names, just
below the calendar header.

TodayStyle: A global style that influences the appearance of the text of the current date when
it is visible.

360

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 360

In addition to these three global style objects that allow the setting of the text styles of each particu-
lar area, the DateChooser and the DateField components also define a few color styles specific to their
calendar view:

borderColor: Defines the color of a 1-pixel border, which is around each instance of a
DateChooser, and whose appearance cannot be influenced in any other way (styles or skins)

headerColor: Defines the background color of the calendar view header, including the month’s
name and the two arrow buttons

rollOverColor: Defines the background color of a date whenever the mouse is rolling over it

selectionColor: Defines the background color of the selected date, if any

todayColor: Defines the background color of the selected date, whenever visible

Common styles, specific global styles, and specific color styles should be combined to produce a con-
sistent appearance of the component instances.

Our next example provides a demonstration of most of these styles working together to define a
greenish version of the minimal example:

1. Open the previously created dates01.fla Flash document and save it as dates06.fla in a new
folder.

2. Select the first frame of the dates06.fla document and add the following ActionScript line
to it:

#include "test.as"

3. Create a new ActionScript file and save it as test.as in the same folder where the
dates06.fla file is.

4. Add the following ActionScript code to the test.as file:

function setStyles(instance) {
// COMMON TEXT STYLES
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 12);

// COMMON COLOR STYLES
instance.setStyle("backgroundColor", 0xCCEECC);

// SPECIFIC COLOR STYLES
instance.setStyle("borderColor", 0x668866);
instance.setStyle("headerColor", 0x668866);
instance.setStyle("rollOverColor", 0x99FF33);
instance.setStyle("selectionColor", 0x44FF11);
instance.setStyle("todayColor", 0x668866);

}

361

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 361

if (_global.styles.TodayStyle == undefined) {
_global.styles.TodayStyle = new CSSStyleDeclaration();

}
_global.styles.TodayStyle.setStyle("color", 0x99FF99);

if (_global.styles.WeekDayStyle == undefined) {
_global.styles.WeekDayStyle = new CSSStyleDeclaration(0x006600);

}
_global.styles.WeekDayStyle.setStyle("color", c);

if (_global.styles.HeaderDateText == undefined) {
_global.styles.HeaderDateText = new CSSStyleDeclaration();

}
_global.styles.HeaderDateText.setStyle("color", 0x99FF99);

setStyles(datechooser1);
setStyles(datefield1);

5. Save both dates06.fla and test.as.

Once you test the movie and click the datefield1 instance to make its DateChooser subcomponent
appear, you will be able to appreciate the new, consistent look of both the calendar views, as dis-
played in Figure 14-6.

Figure 14-6. Stylized component instances

The new look was obtained by applying several variations of green to the color styles while also chang-
ing some text attributes.

In particular, most of the styles are set on a per-instance basis via the setStyles function, while the
text color of three areas has been defined by creating their respective global styles and invoking
the setStyle method on those global style instances as in the case of the header:

if (_global.styles.HeaderDateText == undefined) {
_global.styles.HeaderDateText = new CSSStyleDeclaration();

}
_global.styles.HeaderDateText.setStyle("color", 0x99FF99);

362

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 362

As demonstrated by this example, styles can influence most of the appearance of the DateChooser
and the DateField components. However, if you wish to refine their look even more, you can change
the skins of the few component parts that we have not touched yet.

Skinnability
Skinning the DateChooser and the DateField components does not require a lot of work since very
limited areas of both components can be skinned:

The arrow buttons in the calendar view

The icon on the right side of a DateField instance

Skinning the arrow buttons
The arrow buttons in the calendar view of both the DateChooser and the DateField components allow
the user to navigate to the next or previous month. They are implemented by very simple black arrows
that you may well wish to replace if you have defined a stylized version of your component like the
one we produced in our last example.

Figure 14-7 shows the design of new arrows that we will use to skin the arrow buttons. You can find
these graphic assets in the file dates07.fla in the source file associated with this chapter.

Figure 14-7. The design of the new arrow buttons

The DateChooser class defines six skin properties (three for each arrow button) to allow you to skin
the arrow buttons:

fwdMonthButtonUpSymbolName

fwdMonthButtonDownSymbolName

fwdMonthButtonDisabledSymbolName

backMonthButtonUpSymbolName

backMonthButtonDownSymbolName

backMonthButtonDisabledSymbolName

The role of each skin name is quite intuitive if you consider that the two prefixes (back and fwd) indi-
cate whether the skin is for the back button or the forward one, while the presence of Up, Down, or

363

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 363

Disabled clearly indicates which button state is associated with the skin. Quite weirdly, there are no
skin properties for the Over state.

You may redefine those skin properties by subclassing the DateChooser component, but that would
not affect the DateChooser subcomponent inside the DateField class.

Luckily, there is a quick way of applying the new skins to the arrow buttons that appear in the calen-
dar views of both the DateChooser and the DateField components: create exported symbols with the
linkage identifier defined as the value of those skin properties.

Those values are as follows:

fwdMonthButtonUpSymbolName = "fwdMonthUp"

fwdMonthButtonDownSymbolName = "fwdMonthDown"

fwdMonthButtonDisabledSymbolName = "fwdMonthDisabled"

backMonthButtonUpSymbolName = "backMonthUp"

backMonthButtonDownSymbolName = "backMonthDown"

backMonthButtonDisabledSymbolName = "backMonthDisabled"

The file dates07.fla that you find in the source files associated with this chapter was created starting
from a copy of dates06.fla and then adding the exported symbols with the linkage identifiers
defined following those values, also shown in Figure 14-8.

Figure 14-8. The six exported symbols required to skin the arrow buttons in a calendar view

Figure 14-8 shows you what is relevant to skin the arrow buttons with your own graphic: to create six
exported symbols with the proper linkage identifiers. Each of these symbols must contain the graphic
that you provide for each particular button state.

This approach requires no programming, and it also influences the DateChooser subcomponent con-
tained within a DateField instance as demonstrated by executing a test on the dates07.fla file and
clicking the DateField instance, resulting in a layout like the one illustrated by Figure 14-9.

364

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 364

Figure 14-9. The new skins of the arrow buttons at work in both component instances

Skinning the DateField icon
A similar noncoding approach is used in the dates07.fla file to skin the icon of the DateField
instance. Figure 14-10 shows a detail of the design adopted for the new icon.

The DateField class defines four skin properties, and, reapplying the same technique discussed
before, we are going to use their default values as the linkage identifiers of exported symbols to apply
the new skins without coding. The four skin properties and their default values are as follows:

downArrowUpName = "openDateUp"

downArrowDownName = "openDateDown"

downArrowOverName = "openDateOver"

downArrowDisabledName = "openDateDisabled"

Since what we are actually skinning here is a single button instance, all you have to focus on by look-
ing at those names (and their values) is the button state (Up, Down, Over, and Disabled) to understand
when the related skin symbol is displayed.

Figure 14-10. The design of the new
icon for the DateField instance

365

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 365

A further look at the library in the dates07.fla file will confirm the presence of the four exported
symbols and their related linkage identifier that you must define with your own graphic whenever cus-
tomizing the DateField instances in your application. Figure 14-11 indicates the part of the library of
the dates07.fla file related to those exported symbols that are contained in the DateField Skins
folder of the document’s library.

Figure 14-11. The four exported symbols required to skin the icon of the
DateField component

Figure 14-12 shows the new look of both the DateChooser and DateField components once you have
applied the new styles and skins to them. This is how those components appear when you run a test
on the dates07.fla file before clicking the DateField icon.

Figure 14-12. The DateChooser and the DateField components
stylized and skinned (note the icon)

Solved mysteries
This section focuses on topics that are very specific to the current implementation of the components
discussed in this chapter that could not be included in the previous sections.

While the DateChooser is a pretty stable component with no particular mystery to solve, the same
cannot be said for the DateField component, as it presents an additional feature and a bug that fit in
this section very well.

Let us start from the additional feature, which is useful to know and easy to implement.

366

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 366

Displaying the date in custom format
Adding the following ActionScript line at the end of the test.as script of the stylized example shown
earlier (dates06.fla) will select a date in the datefield1 instance:

datefield1.selectedDate = new Date(2006,0,1);

Once a date is currently selected in a DateField instance, the component shows the date value in text
format in its associated field, as illustrated in Figure 14-13.

Figure 14-13. The standard format of the date
displayed by the DateField component

What if you need to change the text format of the date’s value? The DateField component implements
a dateFormatter property that can be used to assign a function to the component instance that will
display the date in a custom format. The following is an example of such a function:

datefield1.dateFormatter = function(d:Date):String {
var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", "Oct", "Nov", "Dec"];

return d.getFullYear() + ", "
+ d.getDate() + " " + months[d.getMonth()];

}

It is important to notice that such a function expects a Date object as a parameter and returns a
String value. Adding the previous function at the top of the test.as script of the stylized example
shown earlier will cause the datefield1 instance to format the value of its selected date, as displayed
in Figure 14-14.

Figure 14-14. The DateField component displaying
its date value using our custom formatter

Providing a custom function for the dateFormatter property of a DateField instance is a very easy way
to customize the representation of its Date value into any format that you may need to implement.

Our next topic is a bug in the component architecture, related to the DateField property, that cannot
be solved so easily.

A DateField bug
In the example implemented in the dates05.fla file, we used the displayedMonth and displayedYear
properties of the DateChooser component to keep two of its instances synchronized.

367

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 367

Those two properties provide a means to set or retrieve the current month (or year) displayed by a
component instance and are officially implemented in the DateField component as well. However,
they do not work properly in the DateField component, and you should not use them unless you can
understand and fix the bug that causes their misbehavior.

The bug is clearly demonstrated by the following example:

1. Open the previously created dates01.fla Flash document and save it as dates08.fla in a new
folder.

2. Select the first frame of the dates08.fla document and add the following ActionScript line
to it:

#include "test.as"

3. Create a new ActionScript file and save it as test.as in the same folder where the
dates08.fla file is.

4. Add the following ActionScript code to the test.as file:

function setYearAndMonth(instance):Void {
instance.displayedMonth = 0;
instance.displayedYear = 2000;

}

setYearAndMonth(datechooser1);
setYearAndMonth(datefield1);

5. Save both dates08.fla and test.as.

The setYearAndMonth function sets both the displayedMonth and displayedYear properties of an
instance, and it is applied to both of our instances: datechooser1 and datefield1.

Testing the movie and clicking the datefield1 instance to open its calendar view will reveal a display
like the one illustrated in Figure 14-15.

Figure 14-15. The DateField bug

368

CHAPTER 14

5939CH14.qxd 1/25/06 11:14 AM Page 368

Figure 14-15 shows that the displayedMonth and displayedYear defined via coding are displayed by
the DateChooser instance, but not in the case of the DateField instance.

At the time of writing, this bug has not yet been fixed in the official version of the component archi-
tecture and, therefore, it is wise avoiding using the displayedMonth and displayedYear properties in
the case of the DateField component.

Reasons for subclassing the DataChooser and
DataField components

The approach chosen in this book is based on reusing, extending, and customizing the components,
but does not include altering their source code in order to eliminate a bug like the one we just exam-
ined in the previous version.

The reason is pretty simple: altering the source code of the component architecture creates a differ-
ent version from the official one, and this version may well be incompatible with future updates that
will eventually fix that bug.

However, subclassing the component and fixing the bug in its subclassed version can resolve most
problems, including the one mentioned in the previous section.

So far we have appreciated subclassing as the prime technique for customizing components. The pres-
ence of marginal misbehaviors in some of the existing components makes it an even more attractive
option, since fixing a bug in a subclassed version of a component does not require altering the com-
ponent architecture source code: you are just overriding it.

That is the theory.

The practice requires an in-depth analysis of the current internals of the component architecture, the
use of the StandardComponents.fla containing the source (not compiled) version of each standard
component, and very strong experience in programming.

The basic subclassing technique is exposed in Chapter 9, but its applications are limitless. Its use for
fixing the component architecture bugs goes beyond the scope of this book. Hopefully, by the end of
this book, you will have learned enough to be able to analyze the existing source code of the compo-
nent architecture and make up your own mind about how to fix bugs within it.

369

THE DATECHOOSER AND DATEFIELD COMPONENTS

5939CH14.qxd 1/25/06 11:14 AM Page 369

5939CH15.qxd 1/25/06 11:15 AM Page 370

371

Chapter 15

THE LOADER, SCROLLPANE, AND
PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 371

The Loader and ScrollPane components are two containers that share a similar purpose. Both can dis-
play internal content stored in an exported symbol resident in the library of the Flash document, or
load and display external content stored in a JPEG file or in another SWF file.

The ProgressBar is a component designed to provide visual feedback of the loading process when
either the Loader or ScrollPane component loads content from an external source over the Internet.
In some cases, you may use an instance of the ProgressBar on its own; however, most of the time, you
will use it in conjunction with either a Loader or ScrollPane instance.

This chapter will cover these three components, first demonstrating each separately, and then explor-
ing how the ProgressBar component interacts with each of the two container components. By com-
paring the functionality of the Loader and ScrollPane components, you will better understand how
they work and know which one to pick when you have a specific requirement.

Minimal examples
In the following examples, we will build minimal implementations that expose the core functionality
of each component separately. Later in the chapter, we will explore how these components interact
with each other.

The Loader component is a simpler container than the ScrollPane component and, therefore, the most
convenient starting point.

A minimal example of the Loader component
The objective of the minimal example is to capture the very basic purpose of a component by provid-
ing the simplest implementation possible. In the case of the Loader component, this concept is
applied up to the point that no coding is required to implement our first example. Follow these steps
to create it:

1. Create a new Flash document and save it as lsp01a.fla.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 800 ✕ 600 pixels.

3. Drag the Loader component onto the stage in order to create one instance of the component.
Name the newly created instance loader1.

4. Select the loader1 instance and set its position at X: 0.0, Y: 0.0 and its dimensions as W: 600.0,
H: 450.0.

5. Keeping the loader1 instance selected, define its contentPath parameter, via the Parameters
tab in the Properties panel, as dragon.jpg.

6. Save the Flash document.

The completed source code introduced in this chapter can be found in the package
src15.zip, downloadable from this book’s page at www.friendsofed.com.

372

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 372

Note that this example uses a JPG image 800 ✕ 600 pixels in size, stored in a file named dragon.jpg,
which you can find in the source files associated with this chapter. It must be copied into the same
folder that contains the newly created Flash document.

Testing the example will result in the Loader instance being filled with the dragon.jpg file, as illus-
trated in Figure 15-1.

Figure 15-1. The minimal Loader example

Figure15-1 emphasizes the borders of the movie with a shadow to highlight that the loaded image
occupies only a portion of it. That portion is defined by the size and position of loader1.

The original image of 800 ✕ 600 pixels was scaled to fit within the area of the loader1 instance
(600 ✕ 450). This behavior is enabled by setting the scaleContent parameter to true, which is the
default. Figure 15-2 shows both the stage and the parameters as they were defined in the authoring
environment.

373

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 373

Figure 15-2. The stage and parameters set for the minimal Loader example

As you can see in Figure 15-2, you can set the following three parameters of the Loader component in
the authoring environment:

autoLoad: A Boolean that, whenever true (the default), indicates that the content is loaded
automatically whenever the contentPath is defined. If this parameter is set to false, the con-
tent will not be loaded immediately after the contentPath is defined; it will be loaded only
after you invoke the load method of the Loader class explicitly.

contentPath: Accepts a string value specifying the location of the content that will be loaded
into the component instance. The content can be either internal or external. Internal content
is loaded if the string value refers to a linkage identifier of an exported symbol in the movie’s
library. External content is loaded when the string value refers to an absolute or relative URL
pointing to a JPG file or an SWF file.

scaleContent: A Boolean that allows you to choose how the content is handled by the loader.
If this parameter is set to true (the default), the content is scaled to fit in the Loader dimen-
sions. If it is set to false, the Loader instance is resized in order to display the whole content.

Note that each of those parameters corresponds to a property with the same name in the Loader class
that you can access programmatically.

374

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 374

To better understand the Loader component’s functionality (and, later on, fully grasp what makes the
ScrollPane component a different option), select the loader1 instance in the previous example and set
its scaleContent parameter to false. Then test the movie, and you will see the dragon.jpg image full
scale (800 ✕ 600), covering all of the movie’s area. Figure 15-3 shows the two different results pro-
duced by the different settings of the scaleContent parameter. In the first case, when scaleContent
is true, the image is resized to fit in the component instance. In the second case, when scaleContent
is false, the component instance is resized to display the whole image.

Figure 15-3. Comparing the results of setting scaleContent to true (left) and setting it to false (right)

Basically, the Loader component behavior is characterized by resizing its contents. The ScrollPane
component provides a different behavior, as you’ll see in the next section.

A minimal example of the ScrollPane component
The procedure for implementing the minimal example of the ScrollPane component is almost identi-
cal to the one you used for the Loader component and, once again, no coding is required. Follow
these steps:

1. Create a new Flash document and save it as lsp01b.fla.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 800 ✕ 600 pixels. While the Document Properties dialog box is still
open, you should also choose a different background color (such as dark gray: #666666) to
emphasize the features of the component instance by visually isolating it.

3. Drag the ScrollPane component onto the stage in order to create one instance of the compo-
nent. Name the newly created instance scrollpane1.

4. Select the scrollpane1 instance and set its position as X: 100.0, Y: 75.0 and its dimensions as
W: 600.0, H: 450.0.

5. Keeping the scrollpane1 instance selected, define its contentPath parameter (via the
Parameters tab in the Properties panel) as dragon.jpg.

6. Save the Flash document.

375

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 375

As in the previous example, a JPG image named dragon.jpg, 800 ✕ 600 pixels in size, must be present
in the same folder as the newly created Flash document.

When testing the movie, the scrollpane1 instance will load the dragon.jpg file, as illustrated in
Figure 15-4.

Figure 15-4. The minimal ScrollPane example

The main difference between the Loader component and the ScrollPane component is already apparent:
in the case of the ScrollPane, neither the component instance nor the content (the image) is resized.
Rather than resizing the component instance or its content, the ScrollPane component offers a differ-
ent option for viewing all of the content: scrollbars. Because of this, you will not find a scaleContent
parameter (or property) among the parameters of the ScrollPane component.

Actually, the contentPath parameter is the only parameter that the ScrollPane component has in com-
mon with the Loader component, and it is used to load the same types of internal and external
content as the Loader, following the same rules, as described in the previous section. On the other
hand, the ScrollPane component has seven parameters not implemented by the Loader component,
as shown in Figure 15-5. Six of these parameters influence the way the scrollbars work, and they will
be discussed in Chapter 21.

Figure 15-5. The ScrollPane parameters

376

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 376

The only parameter that is truly specific to the ScrollPane component is scrollDrag, set to false by
default. Setting the scrollDrag parameter (or the corresponding property) to true will allow the user
to scroll the content by dragging over it. The scrollDrag option is usually used in conjunction with
hiding the scrollbars, to offer the user an alternative scrolling navigation technique. You can see how
this works by setting the following parameters in the previous example:

scrollDrag: true

hScrollPolicy: off

vScrollPolicy: off

Now let’s move on to an example of the third component included in this chapter.

A minimal example of the ProgressBar component
Let’s build a codeless minimal example of the ProgressBar component. Follow these steps:

1. Create a new Flash document and save it as lsp01c.fla.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 600 ✕ 450 pixels.

3. Drag the ProgressBar component on the stage in order to create one instance of the compo-
nent. Name the newly created instance progressbar1.

4. Select the progressbar1 instance and set its position at X: 225.0, Y: 210.0.

5. Save the Flash document.

Testing this example will result in the display of a frozen bar like the one shown in
Figure 15-6.

The ProgressBar instance in this example does not move, and it permanently
shows the message “LOADING 0%.” However, the minimal example does demon-
strate the purpose of the ProgressBar component, which is to show the progress
of an activity. In fact, without any activity going on in our example, the
ProgressBar instance quite rightly doesn’t move from its starting point. Now let’s
see the ProgressBar in action.

The ProgressBar’s animated behavior
Extending the previous minimal example by simulating an ongoing process will demonstrate the ani-
mated behavior of the ProgressBar component. Here are the steps:

1. Open the lsp01c.fla file you created in the previous example and save it as lsp02a.fla in a
new folder.

2. Create an ActionScript file and save it as test.as in the same folder as the lsp02a.fla file.

3. Add the following code to the newly created test.as file:

function updateProgress() {
switch (phase) {

case 1:
progressbar1.label = "Phase 1: Creating Characters";

377

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

Figure 15-6. The frozen
ProgressBar instance in the

minimal example

5939CH15.qxd 1/25/06 11:15 AM Page 377

progressbar1.setProgress(1, 4);
break;

case 2:
progressbar1.label = "Phase 2: Creating Cities";
progressbar1.setProgress(2, 4);
break;

case 3:
progressbar1.label = "Phase 3: Creating Trees";
progressbar1.setProgress(3, 4);
break;

case 4:
progressbar1.label = "Phase 4: Completing Generation";
progressbar1.setProgress(4, 4);
break;

default:
clearInterval(id);
progressbar1.setVisible(false);
break;

}
phase++;

}

progressbar1.label = "Initializing..";
progressbar1.mode = "manual";

progressbar1.setSize(200,30);
progressbar1.move(200,210);

var phase:Number = 1;
var id:Number = setInterval(updateProgress, 2000);

4. Select the first frame in the lsp02a.fla document and add the following ActionScript line
to it:

#include "test.as"

5. Save both the lsp02a.fla and test.as files.

When testing the movie, you will notice that the ProgressBar instance now moves every two seconds
and disappears after reaching its full scale (100%). Also, the message in the component label changes
depending on which phase is being simulated.

The sequence of phases and their associated messages simulate activities to generate several resources.
The simulation is achieved by using the ActionScript function setInterval to define an interval that
will call the updateProgress function, implemented every two seconds in the example:

var id:Number = setInterval(updateProgress, 2000);

378

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 378

The updateProgress function moves the ProgressBar instance forward by invoking its setProgress
method, as in this line:

progressbar1.setProgress(1, 4);

The setProgress method expects two parameters: a first number indicating the current step and a
second number indicating the total number of steps. The previous line could basically be read as “set
the progress of the bar as step 1 of 4.”

Of course, when invoking the setProgress method, you can use the unit that best suits your require-
ments. For instance, in the most frequent case of a percentage, the following line would set the bar
progress at 70%:

progressbar1.setProgress(70, 100);

updateProgress modifies the text associated with the ProgressBar at each new phase by assigning a
description to the its label property, like so:

progressbar1.label = "Phase 1: Creating Characters";

When the numeric variable phase becomes greater than 4, the simulated activity is considered com-
plete, the interval is canceled, and the ProgressBar instance is hidden via the setVisible method,
inherited from the UIObject class:

clearInterval(id);
progressbar1.setVisible(false);

The other two methods inherited from the UIObject class, setSize and move, make the ProgressBar
instance larger and reposition it at the center of the movie, respectively:

progressbar1.setSize(200,30);
progressbar1.move(200,210);

The mode property of the ProgressBar class influences the way a ProgressBar instance interacts with
other components, as you will see later in this chapter. Since in our current example, there is no such
interaction, we set the mode property as manual:

progressbar1.mode = "manual";

Apart from demonstrating the animation of the ProgressBar component, this example shows how you
can use this component to externalize the progress of any activity in your application by programmat-
ically controlling its progress.

Before moving on to the topic of component instance interaction, let’s look at another use of the
ProgressBar component that you might find worthwhile.

The indeterminate ProgressBar
In the previous example, you learned how to use the ProgressBar component to expose the progress
of any activity. However, in some cases, you cannot quantify such progress. In those cases, you can still
use the ProgressBar as a sort of visual placeholder that remains visible as long as a certain activity is
going on. The following example shows how to use the ProgressBar component in this manner.

379

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 379

1. Open the lsp02a.fla file you created in the previous example and save it as lsp02b.fla in a
new folder.

2. Create an ActionScript file and save it as test.as in the same folder as the lsp02b.fla file.

3. Add the following code to the newly created test.as file:

function doneIt() {
clearInterval(id);
progressbar1.setVisible(false);

}

progressbar1.label = "Initializing..";
progressbar1.mode = "manual";
progressbar1.indeterminate = true;

progressbar1.setSize(200,30);
progressbar1.move(200,210);

var id:Number = setInterval(doneIt, 3000);

4. Save both the lsp02b.fla and test.as files.

Testing the movie will display the ProgressBar instance with an
animated striped fill, resembling the one shown in Figure 15-7.

The ProgressBar instance disappears after three seconds, indicat-
ing that the simulated initializing process has been completed.
We used the setInterval function once again, this time to simu-
late an activity of unknown duration:

var id:Number = setInterval(doneIt, 3000);

The doneIt function, invoked after three seconds, coincides with the end of the simulated activity
and, in fact, cancels the interval and hides the ProgressBar instance:

function doneIt() {
clearInterval(id);
progressbar1.setVisible(false);

}

It is the indeterminate property of the ProgressBar class that allows you to change the appearance
of the component instance so radically. The indeterminate property must be set to true program-
matically (it’s set to false by default) in order to apply the animated striped fill appearance to the
ProgressBar instance, and in that case, the mode property must be set as manual as well:

progressbar1.mode = "manual";
progressbar1.indeterminate = true;

This example complements the previous one. By knowing both approaches, you can now implement
visual feedback for processes, the duration of which can be either known or unknown at runtime.

380

CHAPTER 15

Figure 15-7. The indeterminate
appearance of the ProgressBar

component

5939CH15.qxd 1/25/06 11:15 AM Page 380

XLEFF versions
The package associated with this chapter includes several configurations of the XLEFF sampler that
generate layouts similar to the ones produced by the previous examples. The following XML line easily
replicates the minimal example of the Loader component:

<loader x="145" y="50" width="600" height="450" name="loader1"
contentPath="dragon.jpg" />

Once again, the nomenclature used by XLEFF closely resembles that of the component architecture.
Because of that, you can modify the scaling behavior of the Loader component by defining the
scaleContent attribute of the loader XML element, like so:

<loader x="50" y="0" width="600" height="450" name="loader1"
contentPath="dragon.jpg" scaleContent="false" />

Similarly, it is possible to generate the XLEFF version of the ScrollPane minimal example via the
following XML line:

<scrollpane x="145" y="50" width="600" height="450" name="scrollpane1"
contentPath="dragon.jpg" />

In the case of the ProgressBar component, you must remember that XLEFF separates the graphical
user interface of an application from its implementation and, therefore, the XML description will gen-
erate an unanimated ProgressBar instance. The objective of generating such a ProgressBar instance
dynamically is to use it in an application:

<progressbar x="370" y="270" width="150" height="30"
name="progressbar1" />

You can easily transform the previous XML description into one generating an indeterminate
ProgressBar by setting the indeterminate and mode attributes, which mimic the component architec-
ture properties with the same names:

<progressbar x="370" y="270" width="150" height="30"
name="progressbar1" indeterminate="true" mode="manual" />

With the minimal examples completed, we are ready to move on to some enhanced versions.

Combined examples
Now that we have examined the behavior of the Loader, ScrollPane, and ProgressBar components sep-
arately, we are going to build a few richer examples to explore how the ProgressBar component inter-
acts with the two container components. The ProgressBar supports a couple of communication modes
that can be exploited by both the Loader and the ScrollPane components.

381

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 381

The ProgressBar communication modes
The mode property of the ProgressBar class defines how an instance of the ProgressBar component
will communicate with an instance of another component, such as the Loader and the ScrollPane
components. The source property of the ProgressBar class stores a reference to the component
instance that will be communicate with the ProgressBar instance.

The ProgressBar class implements three different communication modes. You can select the commu-
nication mode that best suits your requirements by assigning one of the following string values to the
mode property of a ProgressBar instance:

manual: Specified when communication among component instances is not necessary (the
source property is undefined). Earlier in this chapter, you saw a couple examples that use this
option in order to define the progress displayed in the bar programmatically.

polled: In this case, the ProgressBar instance will communicate with the component instance
referred to in its source property. The communication will rely on the fact that the class of the
source instance implements a couple of methods, getBytesLoaded and getBytesTotal, which
are invoked by the ProgressBar instance to become aware of the progress made by the source
instance. Since both the Loader and the ScrollPane components support those two methods,
you can use the polled mode with both of them.

event: In this case also, the ProgressBar instance will communicate with the component
instance referred to in its source property. However, when selecting the event mode, the
ProgressBar instance registers itself as a listener for two events (progress and complete) raised
by the source instance. It follows that the class implementing the source instance must support
these two events. Since both the ScrollPane and the Loader components support these events,
you should be able to use this mode with both of them. However, it doesn’t work with the
ScrollPane component (see the “Solved mysteries” section later in this chapter for a solution to
this bug).

Let’s now build a couple of examples that will show you how to exploit the mode and source parame-
ters of the ProgressBar component to monitor the progress of the Loader and ScrollPane components
whenever they load external content.

Codeless interaction
Thanks to the communication modes supported by the ProgressBar component, you can easily asso-
ciate a ProgressBar instance with another component instance, considered as the source, as long as
the class implementing the source instance supports a couple of events (progress and complete)
or methods (getBytesLoaded and getBytesTotal) that are compatible with the ProgressBar speci-
fication.

Both the Loader component and the ScrollPane component are capable of interacting with the
ProgressBar component. Let’s build a couple of examples that demonstrate this codeless interaction.

ProgressBar and Loader interaction
First, we will build an example using the same JPG file, dragon.jpg, that we used in the first two exam-
ples of this chapter.

382

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 382

1. Create a new Flash document and save it as lsp04a.fla. Save the dragon.jpg file into the
same location as this file.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 600 ✕ 450 pixels.

3. Drag the ProgressBar component onto the stage in order to create one instance of the com-
ponent. Name the newly created instance progressbar1.

4. Select the progressbar1 instance and set its position as X: 225.0, Y: 210.0.

5. Keeping the progressbar1 instance selected, set its source parameter in the Parameters tab of
the Properties panel as this._parent.loader1.

6. Create a new layer. Select the first frame of the new layer and drag the Loader component
onto the stage. A Loader instance will be created in the new layer. Name the Loader instance
loader1.

7. Select the loader1 instance and set its position at X: 0.0, Y: 0.0 and its dimensions as W: 600.0,
H: 450.0.

8. Keeping the loader1 instance selected, define its contentPath parameter, via the Parameters
tab in the Properties panel, as dragon.jpg.

9. Save the Flash document.

Testing the movie via the usual command (Control ➤ Test Movie) will not be sufficient to see the
ProgressBar in action. The dragon1.jpg file is on your hard disk and, because of that, it will be loaded
so quickly that you may only barely notice the presence of the ProgressBar instance before it
disappears.

However, the Flash authoring environment is capable of simulating the down-
load of a file over the Internet. The View ➤ Simulate Download menu com-
mand becomes available while you are testing the movie. Select it to make the
ProgressBar instance visible by simulating the download of the dragon.jpg file
from the Web. Figure 15-8 shows the progress of the ProgressBar instance,
which you should see after simulating the download in the Flash authoring
environment.

In this example, we connected the progressbar1 instance to the loader1 instance via the source
parameter of the ProgressBar instance defined as follows:

this._parent.loader1

The value of the source parameter will be evaluated in the scope of the ProgressBar instance. That is
why we pointed at the loader1 instance via a relative path (this._parent), based on the fact that, in
our example, both the progressbar1 and loader1 instances are inside the same container (_level0).
However, depending on the structure of your application, the loader1 instance could be in a different
container, and in that case, you should define a relative path that correctly points to it.

Note that we didn’t define the mode parameter of the progressbar1 instance since its default value
(event) is compatible with the Loader component.

383

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

Figure 15-8. Simulating the
download

5939CH15.qxd 1/25/06 11:15 AM Page 383

ProgressBar and ScrollPane interaction
Producing an example that uses a ScrollPane instance requires almost the exact same steps as you fol-
lowed with the Loader (actually, the only difference is due to a bug in the ProgressBar). Once again,
we will use the same dragon.jpg file that we have used in earlier examples.

1. Create a new Flash document and save it as lsp04b.fla. Save the dragon.jpg file into the
same location as this file.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 600 ✕ 450 pixels.

3. Drag the ProgressBar component on the stage to create one instance of the component. Name
the newly created instance progressbar1.

4. Select the progressbar1 instance and set its position at X: 225.0, Y: 210.0.

5. Keeping the progressbar1 instance selected, set its source parameter in the Parameters tab of
the Properties panel as this._parent.scrollpane1.

6. Keeping the progressbar1 instance still selected, change the settings of its mode parameter in
the Parameters tab of the Properties panel from event to polled.

7. Create a new layer. Select the first frame of the new layer and drag the ScrollPane component
onto the stage. A ScrollPane instance will be created in the new layer. Name the ScrollPane
instance as scrollpane1.

8. Select the scrollpane1 instance and set its position at X: 0.0, Y: 0.0 and its dimensions as
W: 600.0, H: 450.0.

9. Keeping the scrollpane1 instance selected, define its contentPath parameter, via the
Parameters tab in the Properties panel, as dragon.jpg.

10. Save the Flash document.

Once again, you need to simulate the download to see the progress of the ProgressBar instance by
first testing the movie via the usual command (Control ➤ Test Movie) and then selecting the View ➤

Simulate Download menu option, as you did in the previous example.

Building this example, which associates a ScrollPane instance with a ProgressBar, has required the
same steps as the previous example plus one: changing the mode parameter of the progressbar1
instance from event into polled. This shouldn’t be necessary, since the ScrollPane component sup-
ports the required events (progress and complete), just as the Loader component does. However,
setting the mode parameter back to event will stop the progressbar1 instance from progressing (try it
for yourself). That is due to a bug in the ProgressBar component that will be explained and solved in
the “Solved mysteries” section later in this chapter. For the moment, you should remember to use the
polled mode (instead of the event mode) whenever associating a ScrollPane instance with a
ProgressBar via its source parameter, like so:

this._parent.scrollpane1

We walked through these two examples, associating a ProgressBar instance with a Loader and then a
ScrollPane, without writing a single line of code. However, a bit of programming can make those
examples more flexible, while demonstrating how to control the communication between those com-
ponents programmatically. So, let’s see how to take control of the communication process.

384

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 384

Mediated interaction
The interaction between component instances in the previous two examples was beyond our control as
developers. We just used the source parameter of the ProgressBar instance to connect two instances,
which then started communicating with each other in event (or polled) mode. Such a high level of
automation empowers the authoring environment but has its limitations. For one, the progressbar1
instance is still visible in both examples, although you cannot see it because it is in the layer below the
one hosting the Loader (or ScrollPane) instance.

If you swap the order of the two layers in those examples, you will notice that the progressbar1
instance is not hidden after the image is fully loaded. Apart from this detail, you may wish to take full
control over what’s happening for several other reasons. For example, you may need to synchronize
other activities in your application.

To demonstrate, we will extend the previous examples by implementing an intermediate layer of logic
that mediates between the progressbar1 instance and its associated source instance (either a Loader
or a ScrollPane instance). This technique can be used to fully exploit the association between those
component instances.

Let’s start, once again, with the Loader component.

1. Create a new Flash document and save it as lsp05a.fla in a new folder. Copy the dragon.jpg
file, used in the other examples, into the same folder.

2. Open the Document Properties dialog box, via the Modify ➤ Document menu option, and set
the stage dimensions as 600 ✕ 450 pixels.

3. Drag the Loader component onto the stage in order to create an instance of the component.
Name the newly created instance loader1.

4. Select the loader1 instance and set its position at X: 0.0, Y: 0.0 and its dimensions as W: 600.0,
H: 450.0.

5. Create a new layer. Select the first frame of the new layer and drag the ProgressBar component
onto the stage. A ProgressBar instance will be created in the new layer. Name the ProgressBar
instance progressbar1. This time, the ProgressBar instance is on top of the Loader instance,
since it is hosted in the topmost layer.

6. Select the progressbar1 instance and set its position at X: 225.0, Y: 210.0.

7. Create a new layer and name it actions. Select its first frame and attach the following
ActionScript line to it:

#include "test.as"

8. Create a new ActionScript file and save it as test.as in the same folder containing the other
two files.

9. Insert the following code in the new ActionScript file:

function progress(eventObject:Object) {
var alreadyLoaded =➥

eventObject.target.getBytesLoaded();
var total = eventObject.target.getBytesTotal();
progressbar1.setProgress(alreadyLoaded, total);

}

385

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 385

function complete() {
progressbar1.setVisible(false);

}

loader1.addEventListener("progress", this);
loader1.addEventListener("complete", this);
progressbar1.mode = "manual";

loader1.contentPath = "dragon.jpg";

10. Save both lsp05a.fla and test.as.

Running the simulated test of the movie will show the same outcome as the earlier ProgressBar and
Loader codeless examples. However, the approach used here is quite different and gives you control
of several aspects. First, this time, the ProgressBar instance is on top of the Loader instance, and it
becomes invisible when the following line is executed:

progressbar1.setVisible(false);

By setting the ProgressBar mode to manual, you have inserted an intermediate listener object (_level0
in our example) that intercepts both the progress and complete events when raised by the Loader
instance.

Note that the progress event handler in our example redirects the progress information to the
progressbar1 instance via its setProgress method.

function progress(eventObject:Object) {
var alreadyLoaded =➥

eventObject.target.getBytesLoaded();
var total = eventObject.target.getBytesTotal();
progressbar1.setProgress(alreadyLoaded, total);

}

Redirecting the progress information is a necessary step once the progressbar1 instance is in manual
mode. The progressbar1 instance would not be able to show any progress without receiving such
information. However, intercepting both events (complete and progress) gives you full control over
the interaction between the two component instances.

Intercepting these events allows you to do something when they are triggered. In our example, we
exploited this control only by making the ProgressBar instance disappear once the loading process is
completed. In a real-world application, you may use this technique to synchronize other objects. Also,
by applying this same technique, you can easily build an extended version of the Loader component
that encapsulates a ProgressBar.

In the source files associated with this chapter, you will also find an example (lsp05b.fla) that
demonstrates the same technique applied to the ScrollPane case. To implement this, you simply need
to replace the Loader instance with a ScrollPane instance. The fact that this technique works by just
replacing instances of different components is a further demonstration of its value and of the benefits
of a well-designed (and utilized) component architecture.

386

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 386

Supported styles
Since both the Loader and the ScrollPane components are containers, there isn’t much that can be
customized in terms of their appearance. In fact, the Loader component does not support any style,
and the only style that has some effect on the ScrollPane component is the themeColor style, which
influences its scrollbars. Therefore, the only styles that we will examine in this chapter are those of the
ProgressBar component.

The ProgressBar component supports the following styles:

Text styles: For customizing the appearance of its label, the ProgressBar supports embedFonts,
fontFamily, fontSize, fontStyle, fontWeight, textDecoration, and textIndent. If you do
not already know how these text styles behave, refer to Chapter 18.

Color styles: You can colorize a ProgressBar instance consistently by using the themeColor
style that, as you’ve already seen, is supported in conjunction with the Halo theme by default.
Other common color styles supported by the ProgressBar component are color and
disabledColor, which define the color of the text in the label and of the component instance
when it is disabled, respectively.

Let’s customize one of our previous examples to demonstrate how you can stylize a ProgressBar.

1. Open the lsp02a.fla file you created earlier and save it as lsp06.fla in a new folder.

2. Create an ActionScript file and save it as test.as in the same folder that contains the
lsp06.fla file.

3. Add the following code to the newly created test.as file:

function updateProgress() {
switch (phase) {

case 1:
progressbar1.label = "Phase 1: Creating Characters";
progressbar1.setProgress(1, 4);
break;

case 2:
progressbar1.label = "Phase 2: Creating Cities";
progressbar1.setProgress(2, 4);
break;

case 3:
progressbar1.label = "Phase 3: Creating Trees";
progressbar1.setProgress(3, 4);
break;

case 4:
progressbar1.label = "Phase 4: Completing Generation";
progressbar1.setProgress(4, 4);
break;

default:
clearInterval(id);
progressbar1.setVisible(false);
break;

387

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 387

}
phase++;

}

function setStyles(instance) {
instance.setStyle("themeColor", "haloOrange");
instance.setStyle("color", "haloOrange");
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 12);
instance.setStyle("fontStyle", "italic");
instance.setStyle("fontWeight", "bold");

}

progressbar1.label = "Initializing..";
progressbar1.mode = "manual";

progressbar1.setSize(300,30);
progressbar1.move(150,210);

setStyles(progressbar1);

var phase:Number = 1;
var id:Number = setInterval(updateProgress, 2000);

4. Select the first frame in the lsp02a.fla document and add the following ActionScript line
to it:

#include "test.as"

5. Save both the lsp02a.fla and test.as files.

Most of the code in this example is identical to the code we created and analyzed earlier (when we
first created the lsp02a.fla example in the “The ProgressBar’s animated behavior” section). We
reused that example and applied a few styles to the ProgressBar instance to achieve the customized
look that you can see by testing the movie, as shown in Figure 15-9.

Figure 15-9. A stylized ProgressBar instance

Basically, by using the themeColor style, you can affect only the bar of the component instance.
Therefore, we also used the color, fontFamily, fontSize, fontStyle, and fontWeight styles to cus-
tomize the appearance of the ProgressBar instance’s label in a way that is consistent with the new
color set for the bar.

388

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 388

instance.setStyle("themeColor", "haloOrange");
instance.setStyle("color", "haloOrange");
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 12);
instance.setStyle("fontStyle", "italic");
instance.setStyle("fontWeight", "bold");

Skinnability
Even in the case of skinning, there isn’t much to do about components such as the Loader and the
ScrollPane, since they are essentially containers. However, you may be tempted to redefine their
borders, implemented by a RectBorder instance. See Chapter 11 for a detailed explanation of how to
customize borders based on a RectBorder instance.

In the case of the ScrollPane component, you may also need to skin its subcomponents—the scroll-
bars. See Chapter 21 for details on how to skin scrollbars.

Once again, the ProgressBar is the only component covered in this chapter that has specific visual
parts that you can customize. The ProgressBar is made up of two entities: the bar showing the progress
of the monitored activity and the track. Figure 15-10 highlights these two parts of the component in
their default skins.

Figure 15-10. The bar and track of a ProgressBar component

The ProgressBar class defines three skin properties that are associated with the track:

progTrackLeftName = "ProgTrackLeft"

progTrackMiddleName = "ProgTrackMiddle"

progTrackRightName = "ProgTrackRight"

Basically, the track is divided into three skins: two skins associated with the track’s edges
(ProgTrackLeft and ProgTrackRight) and a skin associated with the middle of the track, which is usu-
ally resized to cover the distance from one edge to the other.

The ProgressBar class also defines three skin properties that are associated with the bar, since it is
divided in the same way as the track:

progBarLeftName = "ProgBarLeft"

progBarMiddleName = "ProgBarMiddle"

progBarRightName = "ProgBarRight"

389

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 389

As with the track, two skins are dedicated to the edges of the bar (ProgBarLeft and ProgBarRight),
while a third skin (ProgBarMiddle) is used for its middle part and usually stretches to join the edges.

If you are wondering how to skin the ProgressBar component when it appears in its indeterminate
state, you should know that its class defines a further skin property:

progIndBarName = "ProgIndBar"

The ProgIndBar skin replaces the ProgBarMiddle skin in the middle part when the indeterminate
property is true, while the skins used for the edges of the bar (ProgBarLeft and ProgBarRight)
remain the same.

In the source files associated with this chapter, you will find an example (lsp07.fla) that replaces
those seven skins. Open it in the authoring environment while you read the rest of this section in
order to examine the symbols included in the document’s library to replace the standard skins of the
ProgressBar, as shown in Figure 15-11.

Figure 15-11. The library of the skinning example

This example uses the simplest of the techniques for replacing the skins of a component: providing
exported symbols that have the same names as the default values of the skin properties (ProgTrackLeft,
ProgTrackMiddle, ProgTrackRight, ProgBarLeft, ProgBarMiddle, ProgBarRight, and ProgIndBar).
Note that, when skinning the ProgressBar component, the library must contain an additional exported
symbol: ProgressBarAssets (also shown in Figure 15-11).

Creating the ProgressBarAssets symbol is a straightforward process since it contains one instance of
each of the seven skin symbols. Figure 15-12 illustrates the contents of the ProgressBarAssets sym-
bol and further clarifies the role of each skin symbol included in it.

390

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 390

Figure 15-12. Contents of the ProgressBarAssets symbol (the custom skins)

The lsp07.fla file is basically the skinned version of the previous lsp02a.fla example. The new skins
give the ProgressBar track a carved look, while the bar appears in a rust color. Figure 15-13 shows the
skinned version of the ProgressBar displaying a message that is one of those defined in the
lsp02a.fla example.

Figure 15-13. A skinned ProgressBar instance

In this example, I made a couple of adjustments to the ProgressBar instance to improve its appearance
with the new skin. In particular, I placed the instance’s label in the center by accessing the
labelPlacement property, like so:

progressbar1.labelPlacement = "center";

The labelPlacement property of the ProgressBar class accepts five string values (left, right, top,
bottom, and center). The default value of the labelPlacement property (bottom) would have not
worked well in this example, since the new skin is taller than the default one and the ProgressBar com-
ponent is quite rigid in defining the positioning of its label. Also, the use of the center option for the
labelPlacement property would have not been sufficient to achieve the look you see in Figure 15-13,
since the label text would have overlapped the left edge. I resolved that issue by setting the
textIndent style of the component instance to 10, moving the text ten units on the right:

instance.setStyle("textIndent", 10);

391

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 391

For the rest, the example implements a startExample function that allows you to quickly switch the
indeterminate state on and off:

function startExample(showIndeterminate:Boolean) {
if (showIndeterminate) {

phase = 6;
id = setInterval(updateProgress, 12000);
progressbar1.indeterminate = true;
progressbar1.label = "";

} else {
phase = 1;
id = setInterval(updateProgress, 2000);
progressbar1.label = "Initializing ";

}
}

To experiment, open the test.as file associated with the lsp07.fla document, and change the line:

startExample(false);

to:

startExample(true);

Then test the movie again to see the appearance of the custom skin defined for the ProgressBar when-
ever is in the indeterminate state, as shown in Figure 15-14.

Figure 15-14. Custom skin for the indeterminate
state of the ProgressBar component

Solved mysteries
The current implementation of the ProgressBar component has a subtle bug that you saw when imple-
menting the lsp04b.fla example. In that case, we tried to use the event option of the ProgressBar
mode property while referring a ScrollPane instance as the source object. However, we were instead
forced to use the polled option, since event does not work with the ScrollPane component, regard-
less of the fact that this component supports both the progress and the complete events.

If you open the file ProgressBar.as, available in the source code of the component architecture (see
Appendix A for instructions on how to locate this file), and look for the event handler of the progress
event (function progress), you will find that its implementation does not use the parameters of
the event object (current and total) but assumes that the source object implements two further
properties: bytesLoaded and bytesTotal.

392

CHAPTER 15

5939CH15.qxd 1/25/06 11:15 AM Page 392

If you attach the following code to the first frame of the lsp04b.fla example, you will then be able
to set the mode parameter of the progressbar01 instance to event and, this time, it will work in the
case of using a ScrollPane instance as the source object:

import mx.controls.ProgressBar;

ProgressBar.prototype.progress = function(eventObject:Object):Void {
this.setProgress(eventObject.current, eventObject.total);

}

This solution overrides the progress event handler of the ProgressBar class to provide an implemen-
tation that, in a single line of code, does what such an event handler was expected to do: use the
values associated with the event object to set the progress of the ProgressBar instance.

The fact that the solution to this bug is very simple is an opportunity to emphasize how event-driven
communications must work among components belonging to the same architecture. The relevance of
this patch goes beyond this single case because it reinforces a communication standard based on
events throughout the architecture. Furthermore, it can be applied without altering the original
source code of the component architecture.

This case also highlights the importance of having the source code of the component architecture
available. This way, whenever something does not work as specified, you have the chance to analyze
its code and possibly find your own solution to the problem.

Reasons for subclassing
The patch explained in the previous section is a good enough reason for creating a subclassed version
of the ProgressBar component. Of course, you may also wish to subclass the ProgressBar component
to create a distributable skinned version associated with a theme of your own creation.

The Loader and ScrollPane components usually don’t require to skinning (the scrollbars in the
ScrollPane component can be skinned separately, as you will see in Chapter 21). However, if you find
the opportunity to subclass them, it would certainly pay off to add a ProgressBar instance to their sub-
classed versions. That way, you will not need to implement the interactions described in this chapter
every time you want to use them.

393

THE LOADER, SCROLLPANE, AND PROGRESSBAR COMPONENTS

5939CH15.qxd 1/25/06 11:15 AM Page 393

5939CH16.qxd 1/25/06 12:04 PM Page 394

395

Chapter 16

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 395

The MenuBar and the Menu components replicate a couple of features that are very common in mod-
ern software applications: menu bars and pop-up menus.

The Menu component implements a pop-up window that the user utilizes to select from several menu
items listed in a menu fashion. You can create Menu instances on the fly that react to a user event
such as a mouse click.

Menu instances are also created dynamically on demand by the MenuBar component.

As usual, building a minimal example for both components will show you their core functionality bet-
ter than any description.

Minimal examples
In this section, you can find minimal examples of the Menu and MenuBar components that will show
you the core features of these components while focusing on their most immediate and practical use.

Minimal example of the Menu component
Let us start from the Menu component, since it also is a subcomponent of the MenuBar component
that we will examine just after.

1. Create a new Flash document and save it as mnu01a.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 640✕480 pixels.

3. Drag the Menu component on the stage in order to create one instance of the component, but
then delete it just after. We will create the Menu instance dynamically, and this step is to add
the Menu component to the document’s library.

4. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

5. Create a new ActionScript file and save it as test.as in the same folder where you saved the
mnu01a.fla file.

6. Add the following code to the ActionScript file you just created:

import mx.controls.Menu;

var popupMenu1:Menu = Menu.createMenu();
popupMenu1.addMenuItem({label: "Command 1",
➥ instanceName:"menuItem1"});

The completed source code introduced in this chapter can be found in the package
src16.zip, downloadable from this book’s page on www.friendsofed.com.

396

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 396

popupMenu1.addMenuItem({label: "Command 2",
➥ instanceName:"menuItem2"});
popupMenu1.addMenuItem({label: "Command 3",
➥ instanceName:"menuItem3"});

this.onMouseUp = function(Void):Void {
popupMenu1.show(this._xmouse, this._ymouse);

}

7. Save the mnu01a.fla and test.as files.

Testing the example will show an empty stage. However, a pop-up menu will appear whenever you
click the stage close to the point where you clicked, as displayed in the Figure 16-1.

Although very minimal, this example shows all of the most important features of the Menu compo-
nent. First of all, it shows how they are created dynamically:

var popupMenu1:Menu = Menu.createMenu();

createMenu is a static method of the Menu class and, as such, you do not need an instance of this class
to invoke it. All you need to access this method is the name of the class as specified in the previous
line of code.

The createMenu method returns an instance of the Menu component that is not visible. This is why we
implement the onMouseUp event handler of the _level0 object; every time you click the empty stage,
the show method of the Menu class is invoked, and the popupMenu1 instance is displayed starting from
the current mouse coordinates:

this.onMouseUp = function(Void):Void {
popupMenu1.show(this._xmouse, this._ymouse);

}

Note that, just after creating the popupMenu1 instance, we add three menu items to it by invoking the
addMenuItem method of the Menu class. The addMenuItem method requires one object with properties
describing what kind of menu item must be added to the Menu instance. We will examine this method
in greater detail later on in this chapter when we build a richer example that shows all sorts of menu
items that can be created.

Figure 16-1. The minimal example after
you click somewhere on the stage

397

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 397

Minimal example of the MenuBar component
The MenuBar component is made of buttons that appear in its bar and Menu instances that are asso-
ciated with those buttons, as displayed by the following example:

1. Create a new Flash document and save it as mnu01b.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 640✕480 pixels.

3. Drag the MenuBar component on the stage in order to create one instance. Define its instance
name as menubar1.

4. Select the menubar1 instance and set its position at (X: 0.0, Y: 0.0) and its dimensions as
(W: 640.0, H: 22.0).

5. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

6. Create a new ActionScript file and save it as test.as in the same folder where you saved the
mnu01b.fla file.

7. Add the following code to the ActionScript file just created:

var menu1 = menubar1.addMenu("Menu 1");
menu1.addMenuItem({label: "Command 1",
➥ instanceName:"menuItem1"});
menu1.addMenuItem({label: "Command 2",
➥ instanceName:"menuItem2"});
menu1.addMenuItem({label: "Command 3",
➥ instanceName:"menuItem3"});

var menu2 = menubar1.addMenu("Menu 2");
menu2.addMenuItem({label: "Command 4",
➥ instanceName:"menuItem4"});
menu2.addMenuItem({label: "Command 5",
➥ instanceName:"menuItem5"});
menu2.addMenuItem({label: "Command 6",
➥ instanceName:"menuItem6"});

8. Save the mnu01b.fla and test.as files.

The code in this example is very linear but repetitive. We invoke the createMenu method of the
MenuBar class twice to create two Menu instances that, as in the previous example, are not visible
immediately when you test this movie.

Although not visible, the Menu instances exist as subcomponents of the MenuBar instance and, in fact,
we can use the object reference returned by the createMenu method to invoke the addMenuItem of
the Menu class and add three menu items to each of the Menu instances in this example.

Testing this example, the MenuBar instance displays two buttons in its bar, one for each of the Menu
instances created and associated with the MenuBar instance. Figure 16-2 shows how the
MenuBar instance appears initially.

398

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 398

Figure 16-2. The MenuBar minimal example when it starts

Note that the two objects in the MenuBar are buttons and not Menu instances. A Menu instance is dis-
played only when you click one of those buttons, as illustrated by Figure 16-3.

Figure 16-3. A Menu instance displayed after you click a button in the MenuBar instance

The objective of this minimal example is to emphasize the core functionality of the MenuBar compo-
nent and how it relates to its subobjects, which are, in fact, instances of the Menu component.

The following examples will exploit the fact that the MenuBar component creates instances of the
Menu component to allow you to explore the features of both components at the same time.

Let us then explore the extra features of both the MenuBar and Menu components by building the
next, richer, examples.

Richer examples
We are going to build a richer example in order to demonstrate several features that were not
exposed by the minimal examples. The objectives of our next example are

To showcase every menu item type

To demonstrate creating nested menu instances

To see how to handle the user input whenever a Menu item is selected

The MenuBar and Menu components provide two radically different ways to build the structure of
Menu instances: programmatically, as we saw earlier, and via an XML description, following the same
approach of XML layout engines that we discussed during Part 2 of the book.

The first of our richer examples will extend the programmatic approach utilized earlier in this chapter.

Generating richer menus by coding
Let us extend the MenuBar minimal example created earlier.

1. Open the document mnu01b.fla created earlier and save it in a new folder as mnu02a.fla.

2. Create a new symbol (behavior: movie clip) by selecting the Insert ➤ New Symbol menu
options, and define both its name and its linkage identifier as icon1.

399

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 399

3. Draw a shape into the newly created symbol or reuse the graphics that you can find in the
completed mnu02a.fla file associated with this chapter. Place the shape at (X: 0, Y:0) and
define its size as (W: 14, H: 14).

4. Repeat the previous two steps a couple of times to create another two symbols with names
and linkage identifiers of icon2 and icon3. Once again, you can define a simple shape for each
of them or reuse the graphic that you find in the source file associated with this chapter.

5. Create a new ActionScript file and save it as test.as in the same folder where you saved the
mnu02a.fla file.

6. Add the following code to the ActionScript file you just created:

var menu1 = menubar1.addMenu("Menu 1");
menu1.addMenuItem({label: "Item 1.1",
➥ instanceName:"menuItem1_1"});
menu1.addMenuItem({label: "Item 1.2",
➥ instanceName:"menuItem1_2"});
menu1.addMenuItem({label: "Item 1.3",
➥ instanceName:"menuItem1_3"});
menu1.addMenuItem({label: "Item 1.4",
➥ instanceName:"menuItem1_4", enabled: false});
menu1.addMenuItem({type: "separator"});
menu1.addMenuItem({label: "Item 1.5", instanceName:"menuItem1_5",
➥ icon: "icon1"});
menu1.addMenuItem({label: "Item 1.6",
➥ instanceName:"menuItem1_6", icon: "icon2"});
menu1.addMenuItem({label: "Item 1.7",
➥ instanceName:"menuItem1_7", icon: "icon3"});

var menu2 = menubar1.addMenu("Menu 2");
menu2.addMenuItem({label: "Item 2.1", instanceName:"menuItem2_1",
➥ type: "radio", groupName: "groupA", selected: true});
menu2.addMenuItem({label: "Item 2.2", instanceName:"menuItem2_2",
➥ type: "radio", groupName: "groupA"});
menu2.addMenuItem({label: "Item 2.3", instanceName:"menuItem2_3",
➥ type: "radio", groupName: "groupA"});
menu2.addMenuItem({type: "separator"});
var menuitem2_4 = menu2.addMenuItem({label: "Item 2.4",
➥ instanceName:"menuItem2_4"});
menuitem2_4.addMenuItem({label: "Item 2.4.1",
➥ instanceName:"menuItem2_4_1", type: "check", selected: true});
menuitem2_4.addMenuItem({label: "Item 2.4.2",
➥ instanceName:"menuItem2_4_2", type: "check", selected: true});
menuitem2_4.addMenuItem({label: "Item 2.4.3",
➥ instanceName:"menuItem2_4_3", type: "check", selected: true});
menu2.addMenuItem({type: "separator"});
menu2.addMenuItem({label: "Item 2.5", instanceName:"menuItem2_5",
➥ type: "radio", groupName: "groupB"});

400

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 400

menu2.addMenuItem({label: "Item 2.6", instanceName:"menuItem2_6",
➥ type: "radio", groupName: "groupB", selected: true});
menu2.addMenuItem({label: "Item 2.7", instanceName:"menuItem2_7",
➥ type: "radio", groupName: "groupB"});

menubar1.addEventListener("change", this);

function change(eventObject:Object):Void {
var a:Object = eventObject.menuItem.attributes;

trace("======= change event =======")
trace("instanceName: " + a.instanceName);
trace("label: " + a.label);
trace("selected: " + a.selected);
trace("============================")

}

7. Save the mnu02a.fla and test.as files.

The structure of the Flash document in our last example is identical to that of the MenuBar minimal
example, containing only a single instance of the MenuBar component. The ActionScript file, however,
contains several lines for creating two Menu instances that are richer than those of the previous
example.

In this example, menu items are still created via the addMenuItem method of the Menu class by passing
an object that acts as menu item descriptor. The descriptor object of a menu item can have up to
seven different properties:

label: A String value storing the text to be displayed in the menu item.

instanceName: A String value storing the name of the menu item instance that can be used to
access the menu item individually but, most importantly, to distinguish it from other menu
item instances.

type: A String value storing the type of the menu item. When undefined, it coincides with the
"normal" value. Other possible values are "separator", "radio", and "check".

groupName: A String value that makes sense only if the type of the menu item is "radio". In
that case, it allows grouping "radio" menu items that can be selected by mutual exclusion, as
in the case of the RadioButton component. It stores the name of a radio group (of menu
items).

selected: A Boolean value that makes sense only if the type of the menu item is "radio" or
"check", since those are the only two menu item types that can be selected/unselected. Its
default value is false.

enabled: A Boolean, true by default, that can be used to disable a specific menu item.

icon: A String value storing a linkage identifier of a symbol in the document library that can
be used as icon inside the menu item.

The type property is arguably the most important of the seven properties, since it influences the
behavior of the menu item.

401

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 401

When the user selects a "normal" menu item, the component instance raises a change event, but the
user selection is not stored in the state of the menu item.

The user cannot select a menu item of the "separator" type; these act as a sort of visual divider
between two menu items, as suggested by their type name.

Selecting "radio" and "check" menu items also results in triggering a change event. In addition, the
new state of the menu item is stored in its selected property.

Running our latest example will visually highlight the behaviors and the available appearances of menu
items, once you start experimenting with the Menu instances that pop up after you click one of the
two buttons in the MenuBar instance.

Figure 16-4 shows the Menu instance appearing after you click the Menu 1 button.

With the exception of the fifth item, which is a "separator", the Menu instance displayed in Figure 16-4
contains all "normal" menu items, created without defining any type property, since "normal" is the
default.

Setting enabled to false disables the fourth menu item:

menu1.addMenuItem({label: "Item 1.4",
➥ instanceName:"menuItem1_4", enabled: false});

The last three "normal" menu items include an icon in their representation. An icon can be imple-
mented by a graphic stored inside an exported symbol. The following line assumes that an exported
symbol with the linkage identifier of icon1 is present in the document’s library:

menu1.addMenuItem({label: "Item 1.5", instanceName:"menuItem1_5",
➥ icon: "icon1"});

Figure 16-4. Normal menus, enabled or disabled,
with or without an icon and one separator

402

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 402

Clicking the Menu 2 button in the MenuBar instance will display the second menu implemented by
our example, as illustrated by Figure 16-5.

Apart from the two separators helping in visually arranging the other menu items, the first level of the
Menu instance displayed in Figure 16-5 contains the following:

A first set of three "radio" menu items (2.1, 2.2, 2.3)

A "normal" menu item (2.4) that also links to a submenu

Another set of three "radio" menu items (2.5, 2.6, 2.7)

We created two sets of "radio" menu items to demonstrate the use of the groupName property.
Basically, the menu items in the first set (2.1, 2.2, 2.3) belong to the "groupA" radio group as speci-
fied in the following:

menu2.addMenuItem({label: "Item 2.1", instanceName:"menuItem2_1",
➥ type: "radio", groupName: "groupA", selected: true});
menu2.addMenuItem({label: "Item 2.2", instanceName:"menuItem2_2",
➥ type: "radio", groupName: "groupA"});
menu2.addMenuItem({label: "Item 2.3", instanceName:"menuItem2_3",
➥ type: "radio", groupName: "groupA"});

Similarly, we defined a "groupB" value for the groupName property of the remaining three "radio"
menu items (2.5, 2.6, 2.7). The result of this grouping is that you can have two "radio" menu items
selected in the same Menu instance, since they belong to two different radio groups. Selecting
another "radio" menu item in "groupA" will deselect the menu item previously selected in that
group, but will have no effect on the "radio" menu items in "groupB". Try it for yourself by experi-
menting with the example.

Figure 16-5. Two groups of radio menu items,
two separators, and a nested menu

403

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 403

The only "normal" menu item (2.4) displayed in Figure 16-5 includes an arrow on its right side to indi-
cate that, once selected, it will show its submenu, as illustrated in Figure 16-6.

Figure 16-6. A nested Menu instance

The following lines of code created the nested Menu instance shown in Figure 16-6:

var menuitem2_4 = menu2.addMenuItem({label: "Item 2.4",
➥ instanceName:"menuItem2_4"});
menuitem2_4.addMenuItem({label: "Item 2.4.1",
➥ instanceName:"menuItem2_4_1", type: "check", selected: true});
menuitem2_4.addMenuItem({label: "Item 2.4.2",
➥ instanceName:"menuItem2_4_2", type: "check", selected: true});
menuitem2_4.addMenuItem({label: "Item 2.4.3",
➥ instanceName:"menuItem2_4_3", type: "check", selected: true});

The most important detail to notice here is that we store the object reference returned by the first call
to the addMenuItem method in a variable (menuitem2_4). In fact, the addMenuItem method returns a
reference to the menu item instance that we usually do not store. However, such an object reference
becomes precious when creating a nested menu, since it can be used to invoke its addMenuItem
method to create a submenu associated with that specific menu item.

The nested menu example showcases the only type of menu item we have not displayed yet: the
"check" menu item. In fact, the nested menu contains three "check" menu items, all of them initially
checked by setting their selected property to true.

The fact that our richer example includes every menu item type will be useful later on when stylizing
and skinning the component, since we will be able to preview every visual aspect of a menu item in
the same example.

Our example also implements a handler for the change event triggered by the MenuBar instance
whenever a menu item is selected:

404

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 404

menubar1.addEventListener("change", this);

function change(eventObject:Object):Void {
var a:Object = eventObject.menuItem.attributes;

trace("======= change event =======")
trace("instanceName: " + a.instanceName);
trace("label: " + a.label);
trace("selected: " + a.selected);
trace("============================")

}

The implementation of the change event handler shows that the event object has a menuItem property
that provides a reference to the menu item instance that triggered the event, once selected by the
user.

When handling a menu item instance, you must be aware that they are actually implemented as
instances of the XMLNode class (a built-in ActionScript class). This is the reason why we have to go
through the attributes property to eventually access the attributes of a menu item instance in the
implementation of the change event handler.

The change event handler in our example reacts to the selection of a menu item by showing its
instanceName, label, and selected attributes in the Output window.

If you test the movie in the authoring environment, you may notice a similar message added to the
Output window every time that you select a menu item:

======= change event =======
instanceName: menuItem2_3
label: Item 2.3
selected: true
============================

Our example shows how to retrieve the information stored in the event object of the change event.
Knowing which menu item was selected and how to access its attributes allows you to execute the
proper code specific to your applications.

Generating richer menus using XML
Our previous example revealed that menu items are stored as XMLNode instances, indicating that the
whole structure of a Menu instance is translated into an XML-like structure whenever the menu is
created.

Such a choice of implementation method was made to allow you to exploit XML when defining the
structure of a Menu or even a MenuBar component instance. In the previous example, you had a
chance to appreciate that repetitive calls to the addMenuItem method are not very readable, especially
when it comes to nested menus, since the menu’s structure is not immediately evident from
ActionScript.

405

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 405

Due to the nature of its nested structure, XML represents the ideal choice for describing nested
menus, and the component architecture provides you with a convenient alternative for creating menu
items: you can define the structure of menus by passing an instance of the XML class to the
dataProvider property of both the Menu and MenuBar classes.

Let us reimplement the previous richer example by exploiting this alternative so that you can learn the
technique while at the same time comparing the two approaches.

1. Open the document mnu02a.fla created earlier and save it in a new folder as mnu02b.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
mnu02b.fla file.

3. Add the following code to the ActionScript file just created:

var dp = new XML();
dp.ignoreWhite = true;

dp.onLoad = function(success:Boolean):Void {
if (success) {

menubar1.dataProvider = dp.firstChild;
}

}

dp.load("menus.xml");

menubar1.addEventListener("change", this);

function change(eventObject:Object):Void {
var a:Object = eventObject.menuItem.attributes;

trace("======= change event =======")
trace("instanceName: " + a.instanceName);
trace("label: " + a.label);
trace("selected: " + a.selected);
trace("============================")

}

4. Create a new text file using a text editor such as Notepad and save it as menus.xml in the same
folder where you saved the mnu02b.fla file.

5. Add the following XML data to the menus.xml text file just created:

<menubar>
<menu label="Menu 1">
<menuitem label="Item 1.1" instanceName="menuItem1_1" />
<menuitem label="Item 1.2" instanceName="menuItem1_2" />
<menuitem label="Item 1.3" instanceName="menuItem1_3" />
<menuitem label="Item 1.4" instanceName="menuItem1_4"

➥ enabled="false" />
<menuitem type="separator" />

406

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 406

<menuitem label="Item 1.5" instanceName="menuItem1_5"
➥ icon="icon1" />

<menuitem label="Item 1.6" instanceName="menuItem1_6"
➥ icon="icon2" />

<menuitem label="Item 1.7" instanceName="menuItem1_7"
➥ icon="icon3" />
</menu>
<menu label="Menu 2">
<menuitem label="Item 2.1" instanceName="menuItem2_1"

➥ type="radio" groupName="groupA" selected="true" />
<menuitem label="Item 2.2" instanceName="menuItem2_2"

➥ type="radio" groupName="groupA" />
<menuitem label="Item 2.3" instanceName="menuItem2_3"

➥ type="radio" groupName="groupA" />
<menuitem type="separator" />
<menuitem label="Item 2.4" instanceName="menuItem2_4">
<menuitem label="Item 2.4.1"

➥ instanceName="menuItem2_4_1" type="check" selected="true" />
<menuitem label="Item 2.4.2"

➥ instanceName="menuItem2_4_2" type="check" selected="true" />
<menuitem label="Item 2.4.3"

➥ instanceName="menuItem2_4_3" type="check" selected="true" />
</menuitem>
<menuitem type="separator" />
<menuitem label="Item 2.5" instanceName="menuItem2_5"

➥ type="radio" groupName="groupB" />
<menuitem label="Item 2.6" instanceName="menuItem2_6"

➥ type="radio" groupName="groupB" selected="true" />
<menuitem label="Item 2.7" instanceName="menuItem2_7"

➥ type="radio" groupName="groupB" />
</menu>

</menubar>

6. Save the mnu02a.fla, test.as, and menus.xml files.

The most significant aspect of our latest example is that we are using XML data to specify the whole
structure of the MenuBar instance following an approach that is very similar to that of the XML layout
engines we discussed in Part 2 of the book.

The essential structure of the XML data included in the menus.xml file is as follows:

<menubar>
<menu label="Menu 1">
....................................
</menu>
<menu label="Menu 2">
....................................
</menu>

</menubar>

407

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 407

The menubar element is used to group menu elements that, in turn, will include their own menuitem ele-
ments. Each of the menuitem elements can have up to seven attributes that are named and work
exactly as discussed earlier in this chapter. The following line is an example of a menuitem element also
including an icon attribute:

<menuitem label="Item 1.5" instanceName="menuItem1_5" icon="icon1" />

The XML description stored in the menus.xml file reproduces the same menu structure as the previous
example, as shown in Figures 16-4, 16-5, and 16-6.

The following XML snippet is yet another example of how convenient its use is when it comes to
describing component-based user interfaces. In fact, a nested menu associated with a specific menu
item can be easily and intuitively described by nesting the <menuitem> elements as done here:

<menuitem label="Item 2.4" instanceName="menuItem2_4">
<menuitem label="Item 2.4.1"

➥ instanceName="menuItem2_4_1" type="check" selected="true" />
<menuitem label="Item 2.4.2"

➥ instanceName="menuItem2_4_2" type="check" selected="true" />
<menuitem label="Item 2.4.3"

➥ instanceName="menuItem2_4_3" type="check" selected="true" />
</menuitem>

Another advantage of the XML approach is that the resulting ActionScript code is much simpler and,
therefore, more readable.

The few lines of ActionScript in our latest example create an XML instance to load the content of the
menus.xml file and, once that content is loaded, the code assigns it to the dataProvider property of
the MenuBar instance:

menubar1.dataProvider = dp.firstChild;

In a very similar way, you could use the dataProvider property of the Menu class to create XML-driven
Menu component instances. Of course, the root element of the XML file should be a menu element
instead of a menubar element.

XLEFF version
Part 2 introduced the concept of XML layout engines, describing the many benefits that they can offer.
We also explored the use of XLEFF as a concrete example of an XML layout engine based on the Flash
component architecture.

The Menu and MenuBar components are not the only ones to support XML as a description language
when it comes to generate their instances: the Tree component uses XML for the same purpose in a
very similar way (see Chapter 19).

The implementation of those components demonstrates the convenience of XML, and XLEFF extends
that convenient approach to all the components in the architecture by allowing the use of XML for
describing the structure of every standard component.

408

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 408

In the case of the Menu and MenuBar components, XLEFF supports the same syntax of the component
architecture with very few extensions to the menubar element to allow you to place the component on
stage and define the name of its instance, like so:

<menubar x="0" y="0" width="890" name="menubar1">
...

</menubar>

If you wish to replicate our richer example by using XLEFF, the structure inside the menubar element
should be exactly the same as that defined in the menus.xml file used by the mnu02b.fla example.

The source files associated with this chapter include a preconfigured version of the XLEFF sampler,
which generates a menu bar instance similar to that created in the richer examples. Check this out to
verify the similarities mentioned in this section.

Supported styles
The MenuBar component is capable of propagating style definitions to the Menu instances created as
subcomponents.

Applying the following style to the menubar1 instance in our latest example would affect not only the
text in the buttons of the bar, but also the text of each menu item in the Menu instances associated
with those buttons:

menubar1.setStyle("fontFamily", "Courier New");

As a developer, you can exploit the fact that the MenuBar is capable of propagating styles to its Menu
instances to define a consistent appearance throughout your application.

In this section, we are also going to exploit the style propagation mechanism by using our previous
richer example based on the MenuBar as the vehicle for exploring the influence of styles on both
MenuBar and Menu components at the same time.

Stylizing the MenuBar (and its Menu instances)
Both the MenuBar and the Menu components support several styles that behave consistently when
applied to the standard components in the architecture. We usually refer to these styles as common
styles.

Common styles
The common styles supported by the MenuBar and Menu components can be conveniently grouped
into two categories, text styles and color styles:

The common text styles supported by the Menu and MenuBar components are embedFonts,
fontFamily, fontSize, fontStyle, fontWeight, textDecoration, and textIndent. Text styles
are examined in greater detail in Chapter 18, which is dedicated to text-based components.

The common color styles supported by the Menu and MenuBar components are themeColor
(only supported by the default theme, Halo), color, backgroundColor, and disabledColor.

409

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 409

We will use most of these common styles in our next example, when we stylize the richer example
built earlier in this chapter.

Apart from the common styles, there are several specific styles that apply to Menu instances that you
can also set in a MenuBar instance to affect the menu items of its subcomponent instances (menus).

Specific styles
The following styles affect the Menu instances specifically:

rollOverColor: Overrides the color of the background when the mouse cursor rolls over a
menu item. However, it is better to use themeColor for this purpose, not only because it
enforces consistency in the color scheme, but also because this style has a bug at the time of
writing: it does not work for menu items associated with a nested menu.

selectionColor: Overrides the color of the background when a menu item is selected by click-
ing it. It works, but it overrides the themeColor settings that can be used for the same scope
and to enforce color scheme consistency. The use of this color style is not recommended.

alternatingRowColors: Works the same as in the case of the List and Grid components (see
Chapter 13). However, setting alternating background colors for menu items generally results
in a confusing design. The use of this color style is not recommended.

textRollOverColor: Defines the color of the text in a menu item whenever the mouse cursor
rolls over it.

textSelectedColor: Defines the color of the text in a menu item whenever clicked.

useRollOver: true by default, if set to false, disables the rollover background effect. Not
working as expected at the time of writing. The use of this style is not recommended.

popupDuration: Defines the time spent to display a Menu instance when it pops out. Set to 50
(milliseconds) by default, it can be used to easily achieve interesting effects (try it with a set-
ting of 1000).

selectionDuration: Defines the duration of the animation started when you click over a menu
item. Set to 200 (milliseconds) by default.

selectionEasing: Influences accelerations and decelerations of the animation starting when a
menu item is clicked. See Appendix B for a list of easing methods that can be assigned to this
style property.

defaultIcon: Defines an icon to be used as the default icon of all the menu items of type
"normal" that do not have an icon attribute specified.

In the next section, we are going to apply several styles to the MenuBar instance implemented in our
richer example so that we can appreciate their effect not only on the bar, but also on every kind of
menu item.

Exploring the styles
The richer example that we built earlier represents the ideal starting point for exploring the influence
of styles on both the MenuBar and the Menu components at the same time:

410

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 410

1. Open the document mnu02b.fla created earlier and save it in a new folder as mnu03.fla.

2. Edit the icon1 symbol that you find in the document’s library and change the fill color of its
shape to #CF9200 to match the color scheme implemented by the styles defined in this exam-
ple. Apply the same fill color to the shapes in the other two symbols: icon2 and icon3.

3. Copy the file menus.xml from the folder containing mnu02b.fla to the folder containing the
new mnu03.fla document since we will reuse the same XML description for populating the
MenuBar instance in this example.

4. Create a new ActionScript file and save it as test.as in the same folder where you saved the
new mnu03.fla file.

5. Add the following code to the ActionScript file just created:

var dp = new XML();
dp.ignoreWhite = true;

dp.onLoad = function(success:Boolean):Void {
if (success) {
menubar1.dataProvider = dp.firstChild;

}
}

dp.load("menus.xml");

function setStyles(instance:Object):Void {
instance.setStyle("themeColor", "haloOrange");

instance.setStyle("color", 0xCF9200);
instance.setStyle("backgroundColor", 0xFFFEE3);
instance.setStyle("textRollOverColor", 0xCF9200);
instance.setStyle("textSelectedColor", "yellow");
instance.setStyle("disabledColor", 0xDFCE93);

instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 14);

}

setStyles(menubar1);

6. Save the mnu03.fla and test.as files.

Our latest example reuses the XML data created earlier (menus.xml), allowing us to study the influence
of styles on the appearance of various menu items (menus.xml describes a MenuBar instance show-
casing each existing menu item type).

The purpose of this example is to stylize the previous example by applying several styles to the
menubar1 instance via the setStyles function. Setting the style properties is the first step in creating
a fully customized appearance of the MenuBar instance and its Menu subcomponents.

411

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 411

The setStyles function implements a color scheme mainly based on the themeColor style, capable of
colorizing several features of a component instance at the same time.

The example implements an orange-based color scheme by first defining the themeColor style prop-
erties as haloOrange:

instance.setStyle("themeColor", "haloOrange");

The remaining color style properties, themeColor, color, backgroundColor, textRollOverColor,
textSelectedColor, and disabledColor, are defined using color values that relate to the chosen
color scheme:

instance.setStyle("color", 0xCF9200);
instance.setStyle("backgroundColor", 0xFFFEE3);
instance.setStyle("textRollOverColor", 0xCF9200);
instance.setStyle("textSelectedColor", "yellow");
instance.setStyle("disabledColor", 0xDFCE93);

The implementation of setStyles ends by defining a couple of font style properties:

instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 14);

The final outcome demonstrates how far the styles can go in customizing the appearance of the
MenuBar and the Menu components. The result is analyzed in the Figures 16-7 to 16-10. You should
use these figures as indications of the areas of the MenuBar to be examined in the authoring environ-
ment while testing the movie, since some of the color details discussed here may not be evident in the
printed images.

Figure 16-7 shows the detail of the bar in the menubar1 instance. The text and color styles influence
the labels of the button bars but leave the bar background untouched: the background will need to
be skinned, and we will do so in the next section of this chapter.

Figure 16-7. Stylized MenuBar instance, bar detail

Figure 16-8 shows the Menu 1 instance, which is largely influenced by the color scheme implemented
in our latest example. Note that you have to colorize the icons manually, but this is a reasonable

412

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 412

requirement, since you would provide your own icons when implementing your application. Figure 16-8
contains two subtle features that are not influenced by the color styles: the "separator" menu item
and, more subtly, the outer border of the selected button in the menu bar. We will align these features
to the color scheme being implemented in the next two sections of this chapter.

Figure 16-9 shows the detail of the Menu 2 instance, highlighting that the icon associated with the
"radio" menu items is not affected by the color styles; neither is the arrow of a menu item associated
with a submenu. Both features will be aligned to the color scheme when skinning the component
instance in the next section of this chapter.

Figure 16-9. Stylized MenuBar instance, Menu 2 detail

Figure 16-8. Stylized MenuBar
instance, Menu 1 detail

413

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 413

Figure 16-10 shows the nested menu in our example. This demonstrates that the themeColor influ-
ences the background color of the selected menu item, while the textSelectedColor style influences
the color of its text. However, the icon of the "check" menu items is still black and will need to be
skinned in order to match our custom color scheme.

Figure 16-10. Stylized MenuBar instance, nested menu detail

The conclusion is that several visual aspects cannot be influenced by styles:

The background of the menu bar

The custom icons of the menu items

The "separator" menu item

Part of the background of the buttons in the menu bar

The icon of menu items associated with a nested menu

The icons of "radio" and "check" menu items

Apart from the custom icons of the menu items, you have still to learn how to customize all the
remaining visual aspects in the previous list. Skinning our current example will show you how to fully
customize the appearance of the MenuBar and the Menu components.

Skinnability
The previous section left us with a number of tasks to accomplish in order to fully customize the
appearance of a MenuBar instance (and its Menu subcomponents).

Customizing the visual aspects that do not yet adhere to the orange-based color scheme implemented
in our example has now become mostly a matter of providing a modified version of the existing skins.

No changes will be required to the code or the XML data of the previous example in order to skin the
component instance. The following procedure describes the steps for adding the skin symbols to our
previous example that must be modified in order to complete the implementation of a custom ver-
sion of the MenuBar and Menu components.

414

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 414

The mnu04.fla file found in the source files associated with this chapter contains a completed version
of the skinned component; examine this to verify how the skin symbols must look in the finalized ver-
sion of the example that you are going to build now:

1. Open the document mnu03.fla created earlier and save it in a new folder as mnu04.fla.

2. Copy the menus.xml and test.as files from the folder containing mnu03.fla to the folder con-
taining the new mnu04.fla document—we will reuse the ActionScript code and the XML data
from the previous example.

3. Open the file HaloTheme.fla as an external library by selecting the File ➤ Import ➤ Open
External Library menu options. This file is part of the component architecture source that you
can locate on your machine by following the instructions described in Appendix A.

4. Open the library of the mnu04.fla file (Window ➤ Library). You should now have both
libraries (mnu04.fla and HaloTheme.fla) opened and accessible in the authoring environment.

5. The folders Menu Assets and MenuBar Assets can be found inside the HaloTheme.fla library
by selecting Flash UI Components 2 ➤ Themes ➤ MMDefault. Drag both folders into the
mnu04.fla library so you have a copy of the MenuBar and Menu assets in there. You can now
close the HaloTheme.fla library. After this step, the contents of the mnu04.fla library should
look like those shown in Figure 16-11.

Figure 16-11. The library’s content after you added the MenuBar and Menu assets

6. Save the mnu04.fla file.

415

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 415

Our latest example is not yet complete since we must still modify the symbols in the Menu Assets and
MenuBar Assets folders that we have copied.

However, it is important that you learn the role of each of those symbols before applying any change
to them.

The MenuBar Assets folder contains three exported symbols that implement the skin of the menu bar
background. Their linkage identifiers (MenuBarBackLeft, MenuBarBackMiddle, and MenuBarBackRight)
are the values of three skin properties implemented by the MenuBar class:

menuBarBackLeftName = "MenuBarBackLeft"

menuBarBackMiddleName = "MenuBarBackMiddle"

menuBarBackRightName = "MenuBarBackRight"

The background of the menu bar is divided into three sections: the two edges (left and right) and the
area in between (middle). While the edge skins are not resized, the middle section of the skin is usu-
ally stretched to fill the gap between the two edges.

In order to define the background of the menu bar consistently with the color scheme in our example,
you must edit the three symbols in the document library and modify their design and color. Figure 16-12
shows the design that you can find in the completed version of the mnu04.fla file included in this
chapter’s source files.

Figure 16-12. The three skins provided for the new background of the menu bar

The Menu class does not support any skin properties for the symbols that you find in the Menu Assets
folder in the document’s library. However, modifying those symbols will actually skin the menu items
despite the absence of skin properties, which means that you cannot use exported symbols with dif-
ferent linkage identifiers and, therefore, your changes will affect every menu item instance in your
application. This is not a major limitation, since it does not affect the consistency of the menu items’
appearance; on the contrary, their consistency is enforced by this limitation.

The Menu Assets folder contains seven symbols that can be used to skin the menu items:

MenuBranchEnabled and MenuBranchDisabled: Defines the arrow icon of a menu item associ-
ated with a nested menu whenever the menu item is enabled or disabled, respectively

MenuCheckEnabled and MenuCheckDisabled: Defines the icon of a "check" menu item when-
ever it is enabled or disabled, respectively

MenuRadioEnabled and MenuRadioDisabled: Defines the icon of a "radio" menu item when-
ever it is enabled or disabled, respectively

MenuSeparator: Defines the skin of the "separator" menu item

MenuBarBackLeft MenuBarBackRight

MenuBarBackMiddle

416

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 416

Although it is easy to modify the graphic of those symbols, to change their colors is enough to provide
them with an appearance that is consistent with the orange-based color scheme of our example.

Once again, you can change their colors as you like or examine the completed source file associated
with this chapter (mnu04.fla) to check out a consistently colorized version of these skins.

Figure 16-13 shows the stylized and skinned MenuBar instance and its Menu 2 subcomponent, which
you can appreciate in its true colors by running the completed source file (mnu04.fla) in the author-
ing environment.

Figure 16-13. The stylized and skinned MenuBar instance in its orange-based color scheme

It may seem that we have customized every visual aspect of the MenuBar and the Menu components.
While this is true for the Menu component, the menu bar still has a detail that is not touched by styles
and skins.

The nature of this detail is close to the internals of the component architecture, which makes it a case
for the “Solved mysteries” section up next.

Solved mysteries
Despite being fairly simple components, both the MenuBar and the Menu components have a mystery
to be solved.

First let us complete the process of fully customizing the MenuBar instance of our richer example. The
styles and skin implemented so far in our examples have customized every aspect of their appearance
except one, related to the buttons in the menu bar.

Further customization of a MenuBar skin
A thorough examination of Figure16-13 reveals that the outer border of the selected button (Menu 2)
is still black and, therefore, not influenced by the themeColor style nor by any of our other custom
settings.

417

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 417

Furthermore, simply rolling over a button in the menu bar would reveal that its rollover state is not
influenced by the style settings and the new skins, as shown in Figure 16-14.

Figure 16-14. The background of the button in the
menu bar when the mouse cursor rolls over it

We are now going to extend our last example to take full control of the appearance of the buttons in
the menu bar:

1. Open the document mnu04.fla created earlier and save it in a new folder as mnu05.fla.

2. Copy the menus.xml and test.as files from the folder containing mnu04.fla to the folder con-
taining the new mnu05.fla document. The XML data of the previous example will be reused as
it is, while you will add a few lines of code to the test.as file.

3. Open the test.as file copied in the folder of this example and add the following lines of code
at the beginning without replacing or changing any of the existing lines:

import mx.controls.menuclasses.MenuBarItem;

MenuBarItem.prototype.createChildren = function (Void):Void {
this.super.createChildren();
this.createLabel("cell",20);
this.cell.setValue(this.__initText);
this.createClassObject(CustomActivatorSkin, "border_mc", 0,

➥ {styleName:this.owner, borderStyle:"none"});
this.useHandCursor = false;
this.trackAsMenu = true;

}

4. Create a new ActionScript file and save it as CustomActivatorSkin.as in the same folder con-
taining the other files of the current example.

5. Add the following lines of code to the newly created CustomActivatorSkin.as file:

import mx.skins.RectBorder;
import mx.skins.SkinElement;
import mx.core.ext.UIObjectExtensions;

class CustomActivatorSkin extends RectBorder {

static var symbolName:String = "CustomActivatorSkin";
static var symbolOwner:Object = CustomActivatorSkin;

var className = "CustomActivatorSkin ";

var drawRoundRect:Function;

418

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 418

function CustomActivatorSkin() {}

function init():Void {
super.init();

}

function size():Void {
drawHaloRect(width,height);

}

function drawHaloRect(w:Number,h:Number):Void {
var borderStyle = getStyle("borderStyle");
var themeCol = getStyle("themeColor");

clear();

switch (borderStyle) {

case "none":
drawRoundRect(x,y,w,h,0,0xffffff,0);
break;

case "falsedown":
drawRoundRect(x,y,w,h,0,0xDFCE93,100);
drawRoundRect(x+1,y+1,w-2,h-2,0,

➥ [0x333333,0xfcfcfc],100,-90,"radial");
drawRoundRect(x+1,y+1,w-2,h-2,0,themeCol,50);
drawRoundRect(x+3,y+3,w-6,h-6,0,0xffffff,100);
drawRoundRect(x+3,y+4,w-6,h-7,0,0xFFDEA3,20);
break;

case "falserollover":
drawRoundRect(x,y,w,h,0,themeCol,50);
drawRoundRect(x+3,y+4,w-6,h-7,0,0xFFDEA3,100);
break;

}
}

static function classConstruct():Boolean {
UIObjectExtensions.Extensions();
_global.skinRegistry["CustomActivatorSkin"] = true;
return true;

}

static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

}

419

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 419

6. Go back to the mnu05.fla document and create a new movie clip symbol by selecting Insert ➤
New Symbol. Once the Create New Symbol dialog box is open, define the symbol name and its
linkage identifier as CustomActivatorSkin. Before closing the dialog box, also define the
ActionScript 2.0 class associated with the symbol as CustomActivatorSkin.

7. Save the mnu05.fla, test.as, and CustomActivatorSkin.as files.

In this example, we extended the component architecture in order to be able to replace the default
purely coded skin of the buttons that appear in the menu bar. These buttons are implemented by the
MenuBarItem class, utilizing the mx.skins.halo.ActivatorSkin to draw the background of the but-
tons in a MenuBar instance.

In order to use our own purely coded skin, we override the createChildren method of the
MenuBarItem class by using the prototype-based technique:

MenuBarItem.prototype.createChildren = function (Void):Void {
this.super.createChildren();
this.createLabel("cell",20);
this.cell.setValue(this.__initText);
this.createClassObject(CustomActivatorSkin, "border_mc", 0,

➥ {styleName:this.owner, borderStyle:"none"});
this.useHandCursor = false;
this.trackAsMenu = true;

}

The new createChildren method executes almost the same code of the architecture with one excep-
tion: it creates an instance of the CustomActivatorSkin class instead of the default mx.skins.halo.
ActivatorSkin class, giving control to our custom purely coded skin that is implemented by the
CustomActivatorSkin exported symbol via its associated class.

Once again, the CustomActivatorSkin class implementation resembles that of the preexisting
ActivatorSkin class of the Halo theme that you can find in the component architecture source code.

However, when it comes to drawing the border and the background of the buttons in the menu bar,
in the drawHaloRect method, the class executes our custom code that draws borders and background
by using colors consistent with the orangey color scheme implemented in this chapter’s examples.

Now we can really affirm that there is not a single visual aspect of the MenuBar and the Menu com-
ponents that has not been customized by the techniques exposed in this chapter.

However, this “Solved mysteries” section still has a couple of interesting topics worth your considera-
tion. Let us get to these now.

Creating persistent Menu instances
The instances of the Menu component have a very short life on the stage by design, since they appear
in response to an event such as clicking a menu bar button, and they disappear after the user selects
a menu item.

420

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 420

However, the Menu component can be used in many more contexts if it is provided an option for
keeping a Menu instance on the stage.

In the next example, we are going to extend the component architecture to implement a persistent
property for Menu instances that, whenever set to true, stops the Menu instance from disappearing
from the stage:

1. Create a new Flash document and save it as mnu06.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 640✕480 pixels.

3. Drag the Menu component onto the stage in order to create one instance of the component,
but then delete it just after. We will create the Menu instance dynamically, and this step is to
add the Menu component to the document’s library.

4. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

5. Create a new ActionScript file and save it as test.as in the same folder as the mnu06.fla file.

6. Add the following code to the ActionScript file you just created:

import mx.controls.Menu;

Menu.prototype.hideAllMenus = function(Void):Void {
if (this.getRootMenu().persistent) {

return;
}
this.getRootMenu().hide();

}

var popupMenu1 = Menu.createMenu();
popupMenu1.persistent = true;

var dp = new XML();
dp.ignoreWhite = true;
dp.onLoad = function(success:Boolean):Void {

if (success) {
popupMenu1.dataProvider = dp.firstChild;
popupMenu1.show(10, 10);

}
}

dp.load("menu.xml");

7. Create a new text file using a text editor such as Notepad and save it as menu.xml in the same
folder where you saved the mnu06.fla file.

421

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 421

8. Add the following XML data to the menu.xml text file just created:

<menu>
<menuitem label="Item 1.1" instanceName="menuItem1_1"

➥ type="radio" groupName="groupA" selected="true" />
<menuitem label="Item 1.2" instanceName="menuItem1_2"

➥ type="radio" groupName="groupA" />
<menuitem label="Item 1.3" instanceName="menuItem1_3"

➥ type="radio" groupName="groupA" />
<menuitem type="separator" />
<menuitem label="Item 1.4" instanceName="menuItem1_4">
<menuitem label="Item 1.4.1" instanceName="menuItem1_4_1"

➥ type="check" selected="true" />
<menuitem label="Item 1.4.2" instanceName="menuItem1_4_2"

➥ type="check" selected="true" />
<menuitem label="Item 1.4.3" instanceName="menuItem1_4_3"

➥ type="check" selected="true" />
</menuitem>
<menuitem type="separator" />
<menuitem label="Item 1.5" instanceName="menuItem1_5"

➥ type="radio" groupName="groupB" />
<menuitem label="Item 1.6" instanceName="menuItem1_6"

➥ type="radio" groupName="groupB" selected="true" />
<menuitem label="Item 1.7" instanceName="menuItem1_7"

➥ type="radio" groupName="groupB" />
</menu>

9. Save the mnu06.fla, test.as, and menu.xml files.

This example also demonstrates that you can use the dataProvider property of the Menu class in the
same way it was used before in the case of the MenuBar class: to define the structure of the compo-
nent instance by using an XML description.

The XML data used in this example is identical to the data that created the Menu instance labeled
Menu 2 in the MenuBar example. The only difference is that the <menu> element does not have a
label attribute, because in this case it would be meaningless (that label is utilized by the button in the
menu bar).

However, the main objective of this example is to extend the component architecture to allow a Menu
instance to stay on the stage.

422

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 422

If you test the movie, you will find that the ActionScript code in the test.as file implements this func-
tionality successfully, since the Menu instance displayed in Figure 16-15 does not go away after you
select a menu item.

The Menu instance is created by using the createMenu static method of the Menu class that was already
used in the minimal example at the beginning of this chapter. Then, just after its creation, we exploit
the relaxed type of the popupMenu1 declaration to add a persistent property to the Menu instance
dynamically:

var popupMenu1 = Menu.createMenu();
popupMenu1.persistent = true;

This persistent property is put to good use by our own version of the hideAllMenus method of the
Menu class that overrides its default implementation:

Menu.prototype.hideAllMenus = function(Void):Void {
if (this.getRootMenu().persistent) {

return;
}
this.getRootMenu().hide();

}

Our version of the hideAllMenus method behaves as expected by hiding the Menu instance only if the
persistent property is false or undefined. In the case that the persistent property has been defined as
true, our custom version of the hideAllMenus method returns, avoiding hiding the Menu instance.

This is yet another demonstration of how it is possible to extend a component architecture with small,
accurate changes and add a new functionality that makes a component reusable in several other con-
texts: a persistent menu may well be used as an alternative form of navigation when designing the user
interface of a component-based application.

Figure 16-15. A Menu instance made persistent

423

THE MENU AND MENUBAR COMPONENTS

5939CH16.qxd 1/25/06 12:04 PM Page 423

Reasons for subclassing the Menu and the MenuBar
components

This chapter gives you plenty of reasons for subclassing the Menu and MenuBar components—when
you subclass a component, you are able to encapsulate any of the features that have been discussed
here. For example, you may subclass the Menu component to provide an implementation of the
persistent property compatible with strict typing.

But probably the best reason for subclassing the Menu and MenuBar components lies in providing a
distributable version of them, customized by applying the styles, skins, and techniques examined in
this chapter.

424

CHAPTER 16

5939CH16.qxd 1/25/06 12:04 PM Page 424

5939CH16.qxd 1/25/06 12:04 PM Page 425

5939CH17.qxd 1/25/06 11:20 AM Page 426

427

Chapter 17

THE NUMERICSTEPPER COMPONENT

5939CH17.qxd 1/25/06 11:20 AM Page 427

The NumericStepper component is an editable text field that can be used to ask the user to select a
numeric value.

The component includes two small up and down arrow buttons on its right-hand side, allowing users
to increment/decrement the current value of a numeric quantity specified programmatically or at
authoring time (1 by default). This component can be utilized when the user must select a numeric
value within a range of limited options such as when voting on an article or when selecting a loan over
a fixed number of years.

The minimal example implemented in the next section will further illustrate the use of this rather
small and peculiar component.

Minimal example of the NumericStepper
component

As you are going to find out now, building a minimal example of the NumericStepper component is
mostly about setting the parameters of its instance in the authoring environment:

1. Create a new Flash document and save it as ns01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 200✕200 pixels.

3. Drag the NumericStepper component on the stage in order to create one instance of the com-
ponent. Name the new instance numericstepper01 and define its position as (X: 60, Y: 89).

4. Select the numericstepper01 instance and access the Parameters section of the Properties
panel in order to set the following parameters: (maximum = 100; minimum = 10; stepSize =
10; value = 50). Figure 17-1 shows the Properties panel after you completed the current step.

5. Save the ns01.fla file.

Figure 17-1. The parameters of NumericStepper instance defined in the minimal example

For each of the four parameters set in our first example, there is a corresponding property in the
NumericStepper class with the same name. Those parameters and their respective properties (maximum,
minimum, stepSize, and value) fully define the behavior of a NumericStepper instance, as you can
verify by testing the example in the authoring environment.

The completed source code introduced in this chapter can be found in the package
src17.zip, downloadable from this book’s page at www.friendsofed.com.

428

CHAPTER 17

5939CH17.qxd 1/25/06 11:20 AM Page 428

Figure 17-2 shows the numericstepper01 instance with its initial
numeric value (50) set via the value parameter.

The value starts at 50. Every click on the up arrow button on the right
side of the component instance will increase its value by the unit
defined in the stepSize parameter (10 in this case). Clicking the up
arrow will have no effect once the value has reached the level speci-
fied in the maximum parameter (100).

Very similarly, every click on the down arrow button will decrease the value by the unit defined in the
stepSize parameter; the down arrow button will become ineffective once the value has reached
the level set by the minimum parameter.

Note that the text field of a numeric stepper is editable, allowing you to specify a value not present in
the ordered set. However, this value is not stored in the component instance, and the value you set by
editing the field changes to the closest value in the ordered set as soon as the component instance
loses the focus. You can experience this behavior by entering the value 92 in the numericstepper01
instance and then clicking somewhere on the stage so that it loses the focus: the value will be adjusted
automatically to 90, which is the closest among the acceptable values defined by our previous settings.

Since the only purpose of the NumericStepper component is to retrieve a numeric value that satisfies
the constraints defined by its settings, our next example will focus on the process of retrieving such a
value.

XLEFF version
Generating a NumericStepper instance using the XML layout engine introduced in the second part of the
book is very straightforward, as demonstrated by the following XML version of our minimal example:

<numericstepper x="400" y="260" value="50" stepSize="10" maximum="100"
➥ minimum="10" name="numericstepper01">

You can find a fully configured version of the XLEFFsampler, running the minimal example, among the
files associated with this chapter and play with the attributes of the numericstepper element to gen-
erate different NumericStepper instances.

Retrieving the value
The NumericStepper class implements three properties that you can access programmatically at any
time to retrieve the value currently stored in the component instance and the values that follow or
precede it:

value: Simply returns the current numeric value stored in the component instance

previousValue: The value that precedes the current value in the set of acceptable values for
the component instance

nextValue: The value that follows the current value in the set of acceptable values for the
component instance

429

THE NUMERICSTEPPER COMPONENT

Figure 17-2. A NumericStepper
instance

5939CH17.qxd 1/25/06 11:20 AM Page 429

The NumericStepper class also implements a change event that is broadcast to all the registered
listeners whenever the value of the component instance changes.

In the next example, you are going to implement a change event handler to examine how the
NumericStepper component actually works:

1. Open the document ns01.fla created earlier and save it in a new folder as ns02.fla.

2. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

3. Create a new ActionScript file and save it as test.as in the same folder where you saved the
ns02.fla file.

4. Add the following code to the ActionScript file you just created:

function change(eventObject:Object):Void {
var ns = eventObject.target;
trace("EVENT change: " + ns.value);

}

numericstepper01.addEventListener("change", this);

5. Save the ns02.fla and test.as files.

The purpose of the event handler implemented in our example is to keep track of every occurrence of
the change event by showing the value associated with the NumericStepper instance in our example
whenever a change event is raised.

Testing the example in the authoring environment will result in the same stage previously shown in
Figure 17-3. However, the following text will appear in the Output window if you click the up arrow
button of the NumericStepper instance once:

EVENT change: 60

Simultaneously, the component instance will show the new value (60) in the text field.

By clicking another four times on the same up arrow button you can increment the component’s value
up to its maximum (100). After that, any further click of the up arrow button will not change the
value associated with the component instance, and the change event will not be raised. No additional
text lines will appear in the Output window after the following:

EVENT change: 60
EVENT change: 70
EVENT change: 80
EVENT change: 90
EVENT change: 100

430

CHAPTER 17

5939CH17.qxd 1/25/06 11:20 AM Page 430

Clicking the down arrow button will decrease the value to 90, and another text line will appear in the
Output window:

EVENT change: 60
EVENT change: 70
EVENT change: 80
EVENT change: 90
EVENT change: 100
EVENT change: 90

The previous tests demonstrated that the component instance actually raises a change event every
time its value changes as a result of a click of its arrow buttons.

Minor bug for Flash MX 2004 users
In case you are using a version of the component architecture released with the Flash MX 2004
authoring environment, you should be aware that the implementation of the change event is not con-
sistent in a particular case, as demonstrated by the following test.

While still testing the movie in the authoring environment, change the component value to 24 by simply
replacing the text in its field and then click on the stage, away from the component instance so that it
loses the focus.

The value that you entered in the field (24) is adjusted to the nearest acceptable value (20) as soon as
the component instance loses the focus.

The problem is that no message like the following one appears in the Output window:

EVENT change: 20

The value of the component instance clearly has changed, but no change event was raised by the
NumericStepper instance in this case.

We will come back on this issue later on, in the “Solved mysteries” section of this chapter, after com-
pleting the examination of the NumericStepper component.

Styles supported by the NumericStepper
component

Almost every style supported by the NumericStepper component is a common style, shared with the
other components in the architecture.

The NumericStepper component supports a few common color styles (themeColor, color,
backgroundColor, and disabledColor) and several common text styles (embeddedFonts, fontFamily,
fontSize, fontStyle, fontWeight, textAlign, and textDecoration) that are described in greater
detail in Chapter 18.

431

THE NUMERICSTEPPER COMPONENT

5939CH17.qxd 1/25/06 11:20 AM Page 431

The NumericStepper component supports three styles that are specific to this component:

symbolColor: Influences the color of the arrow in the buttons on the right side of the compo-
nent. Note that, while being supported by the Sample theme, this style is not supported by the
default theme, Halo.

repeatDelay: Indicates the delay, in milliseconds, that a component instance waits when the
user first presses one arrow button before starting to repeat its associated action. Its default
value is 500 milliseconds, and you may experiment with shorter values if you wish to increase
the reactivity of a component instance.

repeatInterval: Indicates the interval, in milliseconds, between two repeated actions once the
component enters into repeat mode because of the user holding one of the arrow buttons. Its
default value is 35.

The following example applies several styles to a NumericStepper instance to let you grasp how much
can be achieved by using styles and what is left to skin in order to fully customize the appearance of
this component:

1. Open the document ns02.fla created earlier and save it in a new folder as ns03.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
ns03.fla file.

3. Add the following code to the ActionScript file you just created:

function setStyles(instance:Object):Void {
instance.setStyle("themeColor", "blue");
instance.setStyle("color", "blue");
instance.setStyle("disabledColor", 0xDDDDDD);
instance.setStyle("backgroundColor", 0xE0E0FF);
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 12);
instance.setStyle("fontStyle", "italic");
instance.setStyle("fontWeight", "bold");
instance.setStyle("textAlign", "right");

}

setStyles(numericstepper01);

4. Save the ns03.fla and test.as files.

In the case of the NumericStepper component, the influence of the themeColor style property is min-
imal: it only affects the arrow buttons when you roll over or click them.

The other styles utilized in the example help in conferring a bluish look to the
component instance by defining the color of the background and the text.
Also, they redefine the font and text alignment to achieve the appearance
shown in Figure 17-3.

In the next section, you will skin the arrow buttons to align the color of their
arrow symbols to the bluish color scheme implemented in this example and
complete the customization of the appearance of a NumericStepper instance.

432

CHAPTER 17

Figure 17-3. A stylized
NumericStepper instance

5939CH17.qxd 1/25/06 11:20 AM Page 432

Skinning the NumericStepper component
The NumericStepper class defines eight skin properties, but as a matter of fact the component utilizes
nine skins. The following is a complete list of the eight skin properties and their default values plus the
linkage identifier of the skin that does not have a corresponding skin property:

upArrowUp = "StepUpArrowUp"

upArrowDown = "StepUpArrowDown"

upArrowOver = "StepUpArrowOver"

upArrowDisabled = "upArrowDisabled"

downArrowUp = "StepDownArrowUp"

downArrowDown = "StepDownArrowDown"

downArrowOver = "StepDownArrowOver"

downArrowDisabled = "StepDownArrowDisabled"

{No Skin Property} = "StepTrack"

The first eight skins are divided in two groups of four, each defining the appearance of the up arrow
and down arrow buttons, respectively. The four skins of each group match the typical four states of a
button (Up, Down, Over, and Disabled).

The ninth skin is used for the appearance of the track between the arrow buttons. Such a track
appears only when you define a NumericStepper taller than its default height (22 pixels) and therefore
it is useless in the vast majority of applications.

However, the next example will be based on a component instance taller than 22 pixels so that you
can visually appreciate the presence of this ninth skin and replace it with a custom one, whenever
needed:

1. Open the document ns03.fla created earlier and save it in a new folder as ns04.fla.

2. Select the numericstepper01 instance and set its height via the Info panel to 50 pixels.

3. Create a new ActionScript file and save it as test.as in the same folder where you saved the
ns04.fla file.

4. Add the following code to the ActionScript file you just created:

function setStyles(instance:Object):Void {
instance.setStyle("color", 0x096BA0);
instance.setStyle("disabledColor", 0xDDDDDD);
instance.setStyle("backgroundColor", 0x29BBF0);
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 40);
instance.setStyle("fontStyle", "italic");
instance.setStyle("fontWeight", "bold");
instance.setStyle("textAlign", "center");

}

setStyles(numericstepper01);

433

THE NUMERICSTEPPER COMPONENT

5939CH17.qxd 1/25/06 11:20 AM Page 433

5. At this point you should define nine exported symbols that will replace the component’s orig-
inal skins. You can either reuse the graphics that you will find in the completed file associated
with this chapter or provide your own. The names of the nine exported symbols (with linkage
identifiers to match) are StepDownArrowDisabled, StepDownArrowDown, StepDownArrowOver,
StepDownArrowUp, StepTrack, StepUpArrowDisabled, StepUpArrowDown, StepUpArrowOver,
StepUpArrowUp. Figure 17-4 shows the symbols that should appear in the document’s library
after you created them.

Figure 17-4. The nine exported symbols providing the new skins of the
NumericStepper component

6. Defining the nine skin symbols in the library is not sufficient to activate them. An additional
exported symbol, a movie clip with name of NumericStepperAssets and matching linkage iden-
tifier, must be created. This movie clip must contain one instance of each of the nine exported
symbols created in the previous step. Figure 17-5 shows the content of this exported symbol
with the skins that you can find in the completed file associated with this chapter.

Figure 17-5. The contents of the NumericStepperAssets
symbol: the nine skins of the component

7. Save the ns04.fla and test.as files.

Testing the example in the authoring environment will show a NumericStepper instance that is signif-
icantly taller than the default one that you saw in the previous examples, as shown in Figure 17-6.

The bluish rectangle between the two arrow buttons is the track that was skinned by providing a
StepTrack exported symbol, which is usually not visible when the component height defaults to
22 pixels or less.

If you play a bit with the example, you can appreciate the skins defined for the over and down states
of the arrow buttons. You may also notice a disturbingly large text cursor flashing whenever the text
field in the component has the focus.

Figure 17-6. A stylized and skinned instance
of the NumericStepper component

434

CHAPTER 17

5939CH17.qxd 1/25/06 11:20 AM Page 434

In the next section, we will get rid of the flashing cursor while providing a fix for the hole in the imple-
mentation of the change event that we experimented with earlier.

Solved mysteries
After learning the main purpose of NumericStepper component, you will probably be aware that its
main mystery concerns why it is editable.

If you use it to enforce the user to select a numeric value from a restricted set of options, defined by
its four properties (maximum, minimum, stepSize, and value), why should the user be able to edit it like
a text field and input invalid numeric values in it that are adjusted when the component instance loses
the focus?

This section is dedicated to adding an editable property to NumericStepper instances so that you can
disable the editing option and make the value modifiable by the arrow buttons only. By doing so, the
value shown by the NumericStepper instance will be always valid.

Note that disabling the editing option is also a workaround for the minor bug mentioned earlier in this
chapter affecting MX 2004 users only.

Let us examine how to implement an editable property that is capable of disabling the editing of the
text field when set to false.

1. Open the document ns04.fla created earlier and save it in a new folder as ns05.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
ns05.fla file.

3. Add the following code to the ActionScript file just created:

import mx.controls.NumericStepper;

NumericStepper.prototype.draw = function():Void {
if (this.editable != undefined && this.editable == false) {
this.inputField.label.type = "dynamic";
this.inputField.label.selectable = false;

} else {
this.inputField.enabled = this.enabled;

}

this.prevButton_mc.enabled = this.enabled;
this.nextButton_mc.enabled = this.enabled;

this.size();
this.initializing = false;
this.visible = this.__visible;

}

435

THE NUMERICSTEPPER COMPONENT

5939CH17.qxd 1/25/06 11:20 AM Page 435

function setStyles(instance:Object):Void {
instance.setStyle("color", 0x096BA0);
instance.setStyle("disabledColor", 0xDDDDDD);
instance.setStyle("backgroundColor", 0x29BBF0);
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 40);
instance.setStyle("fontStyle", "italic");
instance.setStyle("fontWeight", "bold");
instance.setStyle("textAlign", "center");

}

setStyles(numericstepper01);

numericstepper01.editable = false;

4. Save the ns05.fla and test.as files.

This fix overrides the draw method of the NumericStepper component by using the prototype prop-
erty. The custom draw method replicates the functionality of the original implementation with a cou-
ple of substantial differences. First, it verifies whether an editable property is defined for the
component instance and whether its value is false:

if (this.editable != undefined && this.editable == false) {

Next, if the editable property is defined as false, the new draw method changes the type of the text
field from its default "input" to "dynamic", which neatly makes it read-only:

this.inputField.label.type = "dynamic";

The following line that makes the text not selectable has been added for purely cosmetic reasons and
can be deleted if you ever need to make the text selectable:

this.inputField.label.selectable = false;

Testing the movie will result in the same customized instance shown in Figure 7-7. However, any
attempt to edit the text in the component instance’s text field will fail, and you will be able to change
the component’s value only if you click the arrow buttons.

436

CHAPTER 17

5939CH17.qxd 1/25/06 11:20 AM Page 436

Reasons for subclassing the NumericStepper
component

Apart from the usual motives that are true for almost every component (packaging styles and skins for
distribution), the NumericStepper component offers a further reason to subclass it: encapsulating the
implementation of the editable property so that you can forget to add it to your projects every time
that you need it.

If you ever subclass the NumericStepper component, you may also enhance its behavior by disabling
the proper button, up or down, when reaching the maximum or minimum value respectively, provid-
ing a visual feedback (button disabled) showing that one of the two ends of the range has been
reached.

437

THE NUMERICSTEPPER COMPONENT

5939CH17.qxd 1/25/06 11:20 AM Page 437

5939CH18.qxd 1/25/06 11:21 AM Page 438

439

Chapter 18

THE TEXTAREA, TEXTINPUT, AND
LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 439

Although text content plays an important role in several components in the architecture, the three
components examined in this chapter are undoubtedly those that depend on it the most. You can rely
on the TextArea, TextInput, and Label components whenever you need to retrieve or display text
content.

The main differences characterizing the text components are as follows:

The Label component is read-only, while the TextInput and TextArea components can be
edited, allowing users to modify their text content.

The text content of the Label and TextInput components is implemented as a single line of text,
while the TextArea component handles multiline text.

As usual, implementing a minimal example will help you focus on the core features of these
components.

Minimal example
The following minimal example roughly imitates a very familiar user interface: that of an e-mail
message.

Figure 18-1 shows how an instance of the Label component appears alongside an instance of the
TextInput component to highlight its purpose (the “Subject” of the message), while an instance of the
TextArea component is exploited to retrieve the multiline content of the message itself.

Figure 18-1. Layout of the minimal example

The completed source code introduced in this chapter can be found in the package
src18.zip, downloadable from this book’s page at www.friendsofed.com.

440

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 440

Let us build the minimal example so you can start appreciating the functionality of these text-based
components:

1. Create a new Flash document and save it as text01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 640✕480 pixels. Before closing the dialog box, define the Background color as
#AACCFF.

3. Drag the TextArea component on the stage in order to create one instance of the component.
Select the newly created component instance and define its name as textarea01 via the
Properties panel.

4. While the textarea01 instance is still selected, use the Info panel to define its location and
dimensions as (X: 10, Y: 40) and (W: 620, H: 250).

5. Drag the TextInput component on the stage in order to create one instance of the component.
Select the newly created component instance and define its name as textinput01 via the
Properties panel.

6. While the texinput01 instance is still selected, use the Info panel to define its location and
dimensions as (X: 115, Y: 10) and (W: 515, H: 22).

7. Drag the Label component on the stage in order to create one instance of the component.
Select the newly created component instance and define its name as label01 via the Properties
panel. While in the Properties panel, select the Parameters tab and set the values of the
autoSize and text parameters as right and Subject, respectively.

8. While the label01 instance is still selected, use the Info panel to define its location as (X: 10,
Y: 10).

9. Save the text01.fla file.

Testing the example will display an interface similar to the one shown in Figure 18-1.

You can verify that the text of the Label instance cannot be changed or selected, while both the
TextInput and the TextArea instances allow you to enter text whether it be a single line of text, as in
the first case, or multiline text, as in the second case.

Checking out the parameters of the component instances in the authoring environment will highlight
further similarities and differences among these components.

The only parameter shared by all of the three components is text. The purpose of the text
parameter is to allow you to enter some text that will become the initial content of the com-
ponent instance. However, the use of the text parameter is very limiting in the case of the
TextArea component, since it does not allow you to enter multiline content.

Both the Label and the TextArea components share an html parameter, storing a Boolean value
that is false by default. By setting this parameter to true, you will be able to use some of the
most basic HTML tags to format the text in the component instance. Refer to the specification
of the Flash Player that you are targeting for a complete list of the HTML tags that you can
utilize.

Both the TextInput and the TextArea components share an editable parameter that stores a
Boolean value that is true by default. By setting this property to false, the user will not be
able to edit the content of the component instance.

441

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 441

The TextInput and the TextArea components also share a parameter named password, which
stores a Boolean value that is false by default. Setting this parameter to true reveals its pur-
pose: to hide the text content while being entered by the user.

The Label component has a specific parameter, named autoSize, influencing the component’s
behavior when the text content is wider and/or taller than the component instance’s initial
dimensions. The autoSize parameter accepts a String value that can be one of the following
four options: "none", "center", "left", and "right".

Finally, the TextArea has one specific parameter also, wordWrap, which stores a Boolean value
that is true by default. When this parameter is set to true, the text content wraps inside the
visible area of the component instance.

Each of the parameters in the previous list corresponds to a property in the component class with the
same name; these allow you to modify the behavior of a component instance dynamically via
ActionScript.

XLEFF version of the minimal example
Describing the layout of the minimal example using XML and XLEFF is, as in many other cases, just a
matter of creating a few elements whose names, attributes, and values reflect the name of the com-
ponents and their properties:

<label x="135" y="135" text="Subject" autoSize="right"
➥ name="label01" />
<textinput x="240" y="135" width="515" name="textinput01" />
<textarea x="135" y="165" width="620" height="250"
➥ name="textarea01" />

The src18.zip package associated with this chapter includes the XLEFF sampler preconfigured using
the previous XML snippet to generate the described layout.

How the Label component resizes automatically
Unless you fully grasp how it works, the functionality provided by the autoSize parameter (and prop-
erty) of the Label component can deface the layout of a user interface at runtime by positioning the
text content where you do not expect it.

When you test the movie, you will notice that the text of the label01 instance in the minimal example
appears to have moved away from its authoring time location; the change of position is due to the
setting specified for the autoSize parameter ("right").

The autoSize parameter (and its corresponding property of the Label class) can do more than just
align the text content; it can also resize or even reposition the instance depending on the runtime
dimensions of the text content.

The diagrams shown in Figure 18-2 and Figure 18-3 help in visualizing the actual behavior of the Label
component depending on the settings available for the autoSize parameter: "none", "center",
"left", and "right".

442

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 442

Figure 18-2 shows four Label instances as they have been placed in the authoring environment. There
is a box behind each component instance to emphasize the original locations and dimensions of each
instance.

Figure 18-2. Four Label instances in the authoring environment

The following code can be utilized for trying the four different options:

function expand(instance) {
instance.text = "Sampling the autoSize property";
instance.setStyle("fontSize", 26);

}

label01.autoSize = "none";
label02.autoSize = "center";
label03.autoSize = "left";
label04.autoSize = "right";

expand(label01);
expand(label02);
expand(label03);
expand(label04);

443

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 443

Figure 18-3 highlights what really happens to the component instances after defining the autoSize
parameter and then expanding their contents.

Figure 18-3. Impact of the autoSize property on four different Label instances

The custom grid placed underneath the four Label instances in Figure 18-3 helps you to appreciate
what happens to each Label instance:

autoSize = "none": This is seen in the topmost Label instance in Figure 18-3; the instance
location and dimensions are not changed. As a result, only part of the text content is visible.

autoSize = "center": This is seen in the second Label instance from the top in Figure 18-3;
both the location and dimensions of the Label instance change. The instance is stretched in
order to display the whole text content. Its y-coordinate remains the same, though it is reposi-
tioned horizontally, and its new position is centered on the original position displayed by the
box behind the component instance.

autoSize = "left": This is seen in the third Label instance from the top in Figure 18-3; the
dimensions of the Label instance are modified in order to display the whole text content, while
its position is still the same as it was defined in the authoring environment.

autoSize = "right": This is seen in the fourth Label instance from the top in Figure 18-3; both
the location and dimensions of the Label instance change. The instance is stretched in order to
display the whole text content. Its y-coordinate remains the same, though it is repositioned
horizontally so that the right edge of the instance coincides with the right edge as was defined
in the authoring environment.

444

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 444

The presence of the custom grid in Figure 18-2 and Figure 18-3, designed behind the Label instances,
plays a decisive role in visualizing the influence of the autoSize property, since it captures the position
and dimensions of each instance before their content is expanded programmatically.

You can find such a grid inside the text01b.fla file in the src18.zip package associated with this
chapter.

The text field inside
Being a Flash developer, you are probably familiar with text field objects. Each of the three compo-
nents examined in this chapter relies on a text field object, which is implemented in the Flash Player
and externalized by the TextField built-in class of ActionScript 2.

A text field object can be created dynamically via the TextField class or at authoring time via the Text
Tool that you find in the Tools palette. Table 18-1 illustrates which properties of the TextField class
are exposed by the Label, TextInput, and TextArea classes.

Table 18-1. TextField properties propagated by the component classes

TextField Property Label TextInput TextArea

text Yes Yes Yes

html Yes No Yes

length No Yes Yes

maxChars No Yes Yes

password No Yes Yes

restrict No Yes Yes

styleSheet No No Yes

wordWrap No No Yes

You have already learned about the purpose of the text, html, password, and wordWrap properties
earlier on when examining their associated parameters. The following list describes the functionality
associated with the other properties appearing in Table 18-1, confirming that they reflect the corre-
sponding properties of the TextField class:

length: Exposed by both the TextInput and the TextArea components. As in the case of the
TextField class, this property is read-only and returns the number of characters in the text
field.

maxChars: Exposed by both the TextInput and the TextArea components. As in the case of the
TextField class, this property limits the number of characters that can be entered in the text
field by the users.

445

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 445

restrict: Exposed by both the TextInput and the TextArea components. As in the case of the
TextField class, this property restricts the set of characters that can be entered in the text
field by the users. See the ActionScript language reference for a description of the syntax of
the String value assigned to this property. This property is undefined by default, indicating
that the user can enter any character. In general, the user can enter a character only if it is
included in the string value, so the easiest (and clearest) way to use this property is to plainly
list all the accepted characters, as in this example:

textarea01.restrict = "0123";
// the user can now enter only the following characters:
// '0', '1', '2' and '3'

styleSheet: Only exposed by the TextArea component, this property allows you to attach (or
detach) a Cascading Style Sheet object to the text field object. The use of this property is
detailed in the “Solved mysteries” section of this chapter, where CSS will be used to influence
both HTML and XML data.

After analyzing the commonalities among the three components and the built-in TextField class, in
the next section we will move our focus to component-specific functionality by creating a richer
example.

Richer example of the TextInput and
TextArea components

Both the TextInput and TextArea components also support a few specific events that we are going to
examine in our next example in this section.

Handling the input process
The main purpose of the TextInput and the TextArea components is to retrieve and/or display text
content. Basically, the only substantial difference between the two components is that the TextInput
component limits the content to a single line, while the TextArea component can handle multiline
content.

Both components implement a change event that you can use to track changes to the text content of
a component instance and synchronize the rest of your application accordingly. The TextInput com-
ponent also implements an enter event, notifying that the ENTER key has been pressed while a
TextInput instance had the focus.

Building the following example will help you understand how these events work and when best to
utilize them in your applications:

1. Open the document text01.fla created earlier and save it in a new folder as text02.fla.

2. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

446

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 446

3. Create a new ActionScript file and save it as test.as in the same folder where you saved the
text02.fla file.

4. Add the following code to the ActionScript file just created:

textinput01.addEventListener("change", this);
textinput01.addEventListener("enter", this);
textarea01.addEventListener("change", this);

function change(eventObject:Object) {
trace(eventObject.target._name + " : " +

➥ eventObject.target.text);
}

function enter(eventObject:Object) {
trace("ENTER KEY PRESSED");

}

5. Save the text02.fla and test.as files.

During the test, the resulting movie will present the same layout of the minimal example shown in
Figure 18-1. However, in this example, the _level0 object is listening to both the change and enter
events.

Entering the characters a, b, and c in the textinput01 instance will result in the following messages
appearing in the Output window:

textinput01 : a
textinput01 : ab
textinput01 : abc

Very similar lines will appear in the Output window if you enter the same characters in the textarea01
instance:

textarea01 : a
textarea01 : ab
textarea01 : abc

Considering that the change event handler implemented in our example is

function change(eventObject:Object) {
trace(eventObject.target._name + " : " +

➥ eventObject.target.text);
}

the messages appearing in the Output window clearly demonstrate that the change event handler is
invoked every time that the text content of a component instance changes following your user action.

447

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 447

While still testing, you can verify how the textinput01 and the textarea01 instances handle the ENTER

key differently:

Hitting the ENTER key while textarea01 has the focus results in adding a newline character at
the cursor’s position. Also, a change event is triggered since the text content of the component
instance is indeed changed.

Hitting the ENTER key while textinput01 has the focus has no effect on the text content of the
component instance. However, an “ENTER KEY PRESSED” message appears in the Output
window since an enter event was raised and the associated handler executed. In real-world
applications, the enter event handler is usually exploited to validate the text content against
some specific requirement.

Now that you can proficiently utilize the core features of the text-based components discussed in this
chapter, we can move on to customizing their appearance starting from their supported styles.

Supported styles
The styles supported by the Label, TextInput, and TextArea components can be considered common in
the broader sense adopted in the previous chapters, indicating that they are style properties also sup-
ported by other components in the architecture.

The following common color styles are supported by all of the three components examined in this
chapter: themeColor, color, and disabledColor.

backgroundColor, also a common color style, is supported by the TextInput and TextArea components
only, since the background of the Label component is transparent.

The following text styles are common to the three text-based components examined in this chapter
plus several other components in the architecture:

embedFonts: Accepts a Boolean value, which is false by default. This style must be set to true
whenever the fontFamily style refers to a font that has been included (embedded) in the SWF
movie.

fontFamily: A String value storing the name of the font utilized for the text. The default value
of this important style property is "_sans".

fontSize: A Number value indicating the size of the font in points. Its default value is 10.

fontStyle: A String value set to "normal" by default. The only alternative value for this style
property is "italic".

fontWeight: A String value set to "none" by default. The only alternative value for this style
property is "bold". Assigning the value "normal" to this property resets it to the default value
of "none".

textAlign: A String value set to "left" by default. Other valid values for this style property
are "center" and "right". Note that in the case of the Label component, the value assigned
to this style property is effective only if the autoSize property of the Label instance is set to
"none".

textDecoration: A String value set to "none" by default. The only alternative value for this
style property is "underline".

448

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 448

textIndent: A Number value specifying the text indentation in pixels. Its default value is 0.

marginLeft: A Number value specifying the text left margin in pixels. Its default value is 0.

marginRight: A Number value specifying the text right margin in pixels. Its default value is 0.

Both the TextInput and the TextArea components also support the borderStyle style property, which
is implemented by the RectBorder class and, therefore, shared among all the components in the
architecture that use this class for drawing their borders.

The default value of the borderStyle style property is inset=. Alternative values are none, outset,
and solid. When the component’s theme is Halo, as in the default case, another four border styles
options are available: default, alert, dropDown, and menuBorder.

The most convenient way of defining the color of the border is via the themeColor style property,
which is capable of defining a consistent color scheme automatically.

Alternatively, you can define several color style properties that only affect borders: borderColor,
buttonColor, borderCapColor, highlightColor, shadowCapColor, and shadowColor. Note that some
of those border colors are effective only when the border type, chosen via the borderStyle style
property, supports them.

The following example demonstrates how the appearance of the text-based component examined in
this chapter can be almost fully customized by simply applying style definitions to them:

1. Open the document text02.fla created earlier and save it in a new folder as text03.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
text03.fla file.

3. Add the following code to the ActionScript file just created:

function setStyles(instance) {
instance.setStyle("themeColor", "blue");
instance.setStyle("color", "blue");
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 12);
instance.setStyle("fontWeight", "bold");
instance.setStyle("backgroundColor", 0xDDE0FF);
instance.setStyle("borderStyle", "alert");

}

setStyles(label01);
setStyles(textinput01);
setStyles(textarea01);

4. Save the text03.fla and test.as files.

Testing the movie will show you how a few style settings are sufficient to radically alter the appearance
of the layout previously defined in the minimal example.

449

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 449

Enter some text content in the textinput01 and textarea01 instances in order to fully appreciate the
new look. Figure 18-4 shows the stylized layout after some sample text was entered in both the com-
ponent instances.

Figure 18-4. The stylized version of the minimal example

Note on the skins
As an exception from the other chapters dedicated to customizing components, this chapter does not
include a section dedicated to the skins.

Apart from the fact that the appearance of the text-based components discussed here can be almost
completely customized via style properties, as you saw earlier, the reasons I have not included a skin
section in this chapter are as follows:

The Label component does not use any skins.

The TextInput and TextArea components use the RectBorder class to draw their borders, and
the technique for customizing this class is included in Chapter 11.

The TextArea component can have scrollbars that can be skinned, and these are described in
Chapter 21.

Solved mysteries
Every component hides some secret and arguably simple components, and the text-based ones exam-
ined in this chapter are no exception.

This section will examine how to satisfy a couple of very frequent requirements that have been some-
what forgotten in the current version of the component architecture.

450

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 450

Hiding the background
Due to the highly graphical nature of the Flash technology, you may occasionally need to hide the
background of the TextInput and TextArea components to show some design underneath the compo-
nent instances.

This option was certainly considered when implementing the component architecture, but, unfortu-
nately, this feature is only barely supported.

At the time of writing, you can make the background invisible by globally defining the backgroundColor
style property as follows:

_global.styles.TextArea.setStyle("backgroundColor", "transparent");

The flexibility of such an option, however is very poor, since

The transparent value works only if set globally as shown in the previous code, where it is
applied to the TextArea global style. Applying the transparent value to an instance does not
work. The fact that there is no way of setting this option individually forces all the TextArea
instances in your application to have a transparent background.

Quite weirdly, defining the transparent setting in the TextArea global style also affects
TextInput instances. Therefore, executing the previous line of code will affect not only every
TextArea instance in your application, but also every TextInput instance as well.

The transparent setting of the backgroundColor style property doesn’t affect the borders of
component instances that remain visible, and most probably defaces the design underneath
the component. This results in more work for you, even if this is a minor issue, since you can
hide the border by invoking the method setStyle, as in the following example:

instance.setStyle("borderStyle", "none");

The following example will extend both the TextArea and the TextInput classes so that you will be
able to hide the background and the borders of specific component instances in a single step:

1. Open the document text03.fla created earlier and save it in a new folder as text04a.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
text04a.fla file.

3. Add the following code to the ActionScript file just created:

import mx.controls.TextInput;
import mx.controls.TextArea;

TextInput.prototype.setBackground =
➥ function(showIt:Boolean):Void {

this.border_mc.setVisible(showIt);
}

TextArea.prototype.setBackground =
➥ function(showIt:Boolean):Void {

this.border_mc.setVisible(showIt);
}

451

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 451

textinput01.setBackground(false);
textarea01.setBackground(false);

textinput01.text = "there still is TextInput instance here";
textarea01.text = "there still is TextArea instance here";

4. Save the text04a.fla and test.as files.

Testing the movie will result in the total absence of component backgrounds and borders from the
layout of the minimal example, as shown in Figure 18-5.

Figure 18-5. Hiding the background and border of the TextInput and TextArea instances

The disappearance of backgrounds and borders makes it really difficult to distinguish the text in the
Label instance from the text in the TextInput and TextArea instances. However, both the TextArea and
the TextInput instances are still there and are fully functional, and you can verify this by clicking their
sample text and editing it.

The solution relies on implementing a setBackground method for both the TextInput and TextArea
classes so that you can hide/unhide the background of an instance at will by invoking it with the
proper Boolean parameter (false to hide, true to unhide) as in the calls that we make in the example:

textinput01.setBackground(false);
textarea01.setBackground(false);

The implementation of the setBackground method of both classes is identical, since it exploits a
similarity in the internal structure of the TextArea and TextInput components: both create a child sub-
component named border_mc that represents the background and the border of a component
instance.

Since the border_mc instance inherits from the UIObject class, we can invoke the setVisible method
on it and satisfy our requirement in a way that is compatible with the existing design of the compo-
nent architecture:

this.border_mc.setVisible(showIt);

452

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 452

By implementing a specific feature, this example is yet another demonstration that extending the
architecture is not only possible, but also easy, when reapplying the patterns included in its imple-
mentation.

The next section deals with a problem that you may have encountered when trying to load content
into a TextArea instance from an external text file.

Handling the combination linefeed/CR
Loading content into a TextArea instance from an external text file is an option commonly used that
can present an unpleasant issue depending on what platform you are running: text lines can appear
separated by blank lines that were not included in the original text content. The problem only appears
when utilizing ASCII text files created in the Windows platform, and it is due to the way newlines are
stored in the file.

Even if you work on the Mac platform only, you should still be aware of this issue, since there may be
cases when you must utilize text files produced by Windows users.

The following example aims to reproduce the problem so that you can appreciate its full extent:

1. Create a new Flash document and save it as text04b.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 400✕400 pixels.

3. Drag the TextArea component on the stage in order to create one instance of the component.
Select the newly created component instance and define its name as textarea01 via the
Properties panel.

4. While the textarea01 instance is still selected, use the Info panel to define its location and
dimensions as (X: 0, Y: 0) and (W: 400, H: 400).

5. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

6. Create a new ActionScript file and save it as test.as in the same folder where you saved the
text04b.fla file.

7. Add the following code to the ActionScript file just created:

var contentLoader:LoadVars = new LoadVars();
contentLoader.onData = function(content:String) {

if (content != undefined) {
textarea01.text = content;

}
}

contentLoader.load("content.txt");

8. Create a new text file using a Windows text editor such as Notepad or copy the content.txt
file included in the source code associated with this chapter in the same folder where you
saved the text04b.fla file.

453

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

5939CH18.qxd 1/25/06 11:21 AM Page 453

9. Unless you are using the content.txt file included in the source files associated with this
chapter, you must fill the text file with sample text, ensuring that it contains several lines of it.

10. Save the text04b.fla, test.as, and content.txt files.

The outcome of our last example should be similar to the one shown in Figure 18-6 where the sample
text in the content.txt file appears fragmented by numerous blank lines that were not present in the
original content.

Figure 18-6. Loading a text file in a TextArea instance can
produce an unexpected result.

This is yet another case where finding a solution is more an issue of knowing what is going on rather
than writing plenty of code.

The Windows and Mac operating systems store text files in a different way. Table 18-2 presents what
character(s) they utilize to represent a newline.

Table 18-2. Newlines as they are represented in text files by different operating systems

Operating System ASCII Character(s) Escape Sequence(s)

Microsoft Windows 0D 0A \r\n

Apple Macintosh OS 9 and earlier 0D \r

Apple Macintosh OS X and higher 0A \n

454

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 454

Basically, Mac OS utilizes a single character (either the carriage return \r or the line-feed \n, depend-
ing on the operating system version) to represent a newline, while Windows uses two characters each
time (\r followed by \n).

As you saw earlier, the TextArea component is implemented on top of a native text field object. At the
time of writing, text field objects interpret the combination \r\n as a double newline, and that explains
the presence of an additional, unnecessary, blank line every time there is a newline a Windows text file.

Fixing the problem, once its cause is identified, is a matter modifying a single line of ActionScript in our
example. We previously used a LoadVars instance to load the text content stored in the external file:

var contentLoader:LoadVars = new LoadVars();
contentLoader.onData = function(content:String) {

if (content != undefined) {
textarea01.text = content;

}
}

The LoadVars class allows us to easily retrieve the content of the text file in a String instance named
content. Since the String class provides several powerful methods, we can replace the line

textarea01.text = content;

with

textarea01.text = content.split("\r\n").join("\r");

to properly get rid of the double newline characters in one step.

The fix proposed here breaks the String instance into
individual lines, utilizing the couple of characters
"\r\n" as separator for the split method, and then
rejoins those lines, utilizing the "\r" character as sep-
arator by invoking the join method.

Note how this code will not alter text files produced
using the Mac OS platform, since they do not contain
any occurrence of "\r\n".

Figure 18-7 shows how the content in the TextArea
instance of our example becomes faithful to the con-
tent in the external text file after you fixed the prob-
lem by modifying the source code as indicated.

455

THE TEXTAREA, TEXTINPUT, AND LABEL COMPONENTS

Figure 18-7. Content of the TextArea instance after fixing
the “blank lines” problem

5939CH18.qxd 1/25/06 11:21 AM Page 455

Reasons for subclassing the Label, TextInput, and
TextArea components

Encapsulating skins, or even styles, is a typical reason for considering subclassing a component.

However, since the text-based components examined in this chapter do not support skins of their own
(the skins of the scrollbars can be customized separately without touching the TextArea component,
as you will see in Chapter 21), building a theme does not represent a strong reason for subclassing the
Label, TextInput, and TextArea components.

As you learned earlier in this chapter, almost every aspect of the appearance of the text-based com-
ponents can be influenced by proper style settings; so you may decide not to subclass these compo-
nents whenever creating a theme, but just influence their appearance by defining a set of global styles
associated with your theme.

Subclassing becomes a significantly more interesting option if you want to extend these components,
in particular, the TextArea component. Subclassing the TextArea component allows you to encapsulate
both the features discussed in the “Solved mysteries” section of this chapter into an extended version
of the component so you can avoid having to reapply those techniques every time that you need them.

After learning the techniques exposed in this chapter and the previous ones, you can start making
your own decisions in terms of design and implementation and, for instance, implement the visibility/
invisibility of the background as a property instead of a method.

456

CHAPTER 18

5939CH18.qxd 1/25/06 11:21 AM Page 456

5939CH18.qxd 1/25/06 11:21 AM Page 457

5939CH19.qxd 1/25/06 11:23 AM Page 458

459

Chapter 19

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 459

The Tree component allows you to add hierarchical views to your application that the user can exploit
to browse and select structured information.

The Tree component can play an important role in object-oriented applications due to its ability to
provide an intuitive and yet faithful representation of the object model encapsulating the application-
specific logic.

Although the Tree component is most frequently utilized to implement interactive “tables of con-
tents” for help guides or other kinds of information systems, the actual extent of its use is limited only
by your imagination.

This chapter is dedicated to dissecting the structure of the Tree component so that you will be able to
customize both its appearance and behavior without limits.

Minimal example of the Tree component
Building a minimal example exposing the basic features of the Tree component is the first step in the
direction of taking full control over its functionality:

1. Create a new Flash document and save it as tree01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 240✕336 pixels.

3. Drag the Tree component on the stage in order to create one instance of the component.
Select the new component instance and define its name as tree01 via the Properties panel.

4. While the tree01 instance is still selected, use the Info panel to define its location and dimen-
sions as (X: 0, Y: 0) and (W: 240, H: 336).

5. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

6. Create a new ActionScript file and save it as test.as in the same folder where you saved the
tree01.fla file.

7. Add the following code to the ActionScript file you just created:

var xmlLoader:XML = new XML();
xmlLoader.ignoreWhite = true;
xmlLoader.load("tree.xml");
xmlLoader.onLoad = function(success:Boolean):Void {
tree01.dataProvider = this;
tree01.setIsOpen(tree01.getTreeNodeAt(0), true);

}

tree01.vScrollPolicy = "auto";

The completed source code introduced in this chapter can be found in the package
src19.zip, downloadable from this book’s page at www.friendsofed.com.

460

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 460

8. Create a new text file using a text editor such as Notepad in Windows and save it as tree.xml
in the same folder where you saved the tree01.fla file.

9. Add the following XML snippet to the tree.xml file:

<node label="ROOT NODE (branch)">
<node label="Child node 1 (leaf)" />
<node label="Child node 2 (branch)">
<node label="Child node 2.1 (leaf)" />
<node label="Child node 2.2 (leaf)" />
<node label="Child node 2.3 (branch)">
<node label="Child node 2.3.1 (leaf)" />
<node label="Child node 2.3.2 (leaf)" />

</node>
<node label="Child node 2.4 (leaf)" />

</node>
<node label="Child node 3 (branch)">
<node label="Child node 3.1 (leaf)" />
<node label="Child node 3.2 (leaf)" />
<node label="Child node 3.3 (leaf)" />

</node>
<node label="Child node 4 (leaf)" />
<node label="Child node 5 (leaf)" />

</node>

10. Save the tree01.fla, test.as, and tree.xml files.

The structure of a Tree instance is quite simply made of nodes. The Tree component distinguishes
between two kinds of nodes:

Branch: A branch node is a node that has one or more child nodes.

Leaf: A leaf node is a node that has zero child nodes.

XML is used to describe the node-based structure of a Tree instance.

The XML syntax supported by the Tree component is very intuitive since it is made of a single XML ele-
ment, the node element, which you can nest to describe the branches of the Tree instance. The
following XML snippet describes a branch node with two leaves (nodes without children):

<node>
<node />
<node />

</node>

The XML snippet stored in the tree.xml file of our example describes a tree structure using node XML
elements and their label attributes, which define the text being displayed when nodes appear in the
tree view.

The label attribute of the node XML element is the only attribute supported by the Tree component,
although some official sources mention a second attribute (isBranch).

461

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 461

As a matter of fact, the isBranch attribute is not supported by the
Tree component. Later on in the “Solved mysteries” section of this
chapter, you will learn how to add support for additional attributes,
including isBranch.

Testing the minimal example will result in the Tree component
instance appearing as shown in Figure 19-1.

The labels utilized in the minimal example expressly distinguish between branch nodes and leaves in
the text. Such a distinction is visually supported by the Tree component by associating a folder icon
with branch nodes and a document icon with leaves.

By default, branch nodes are closed, that is, they do not show their child nodes.

The root node, labeled ROOT NODE (branch), is open, since we included the following line in the
example:

tree01.setIsOpen(tree01.getTreeNodeAt(0), true);

This line uses the getTreeNodeAt method to retrieve the first node of the tree using a zero-based
index and the setIsOpen method to open it. Figure 19-2 shows a couple of branch nodes, labeled
Child node 2 (branch) and Child node 3 (branch), that are still closed, since they were not opened
programmatically.

Users can open/close a node by clicking the disclosure icon, represented by the arrow appearing just
before the folder icon of a branch node.

If you open all the branch notes in the minimal example by clicking
their disclosure icons, you will eventually expose the whole node-
based structure described in the tree.xml file and shown in
Figure 19-2.

462

CHAPTER 19

Figure 19-1. The Tree instance in the minimal example

Figure 19-2. The whole node-based structure of the
minimal example exposed

5939CH19.qxd 1/25/06 11:23 AM Page 462

Looking at the whole structure of the Tree instance implemented in the minimal example, you can
appreciate the following additional roles played by its nodes:

Root: A root node is a node that does not have the parent node.

Parent: A parent node is a node with one or more child nodes.

Child: A child node is a node contained by another node, its parent node.

Sibling: Sibling nodes are nodes that share the same parent node.

Ancestor node: A node is an ancestor of another node if it contains it directly as a child or
indirectly by containing its parent or one of its ancestors.

Descendant node: A node is a descendant of another node if that node is one of its ancestors.

Terms such as leaf, branch, root, parent, child, sibling, ancestor, and even descendant will frequently
be used in the remainder of the chapter to refer to the role played by a node in the context of a tree-
like structure.

Although the internal structure of the Tree component closely resembles the tree-like nature of XML,
you should consider the XML data produced for the Tree component more as an XML snippet rather
than a complete and valid XML document.

While XML documents can only have one root element, it would not have made sense to introduce
this limitation in the Tree component, since it would have reduced the number of its applications.

You can easily create an example of a Tree instance with several root nodes by replacing the XML
snippet in the tree.xml file of the minimal example with the following:

<node label="Root node 1" />
<node label="Root node 2">
<node label="Child node 2.1" />
<node label="Child node 2.2" />
<node label="Child node 2.3">
<node label="Child node 2.3.1" />
<node label="Child node 2.3.2" />

</node>
<node label="Child node 2.4" />

</node>
<node label="Root node 3">
<node label="Child node 3.1" />
<node label="Child node 3.2" />
<node label="Child node 3.3" />

</node>
<node label="Root node 4" />
<node label="Root node 5" />

463

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 463

Testing the example with the new XML snippet will now show a Tree instance with five root nodes like
the one in Figure 19-3.

The minimal example utilizes an instance of the built-in XML class to load the contents of tree.xml and
assign it to the dataProvider property of the Tree class:

var xmlLoader:XML = new XML();
xmlLoader.ignoreWhite = true;
xmlLoader.load("tree.xml");
xmlLoader.onLoad = function(success:Boolean):Void {

tree01.dataProvider = this;
tree01.setIsOpen(tree01.getTreeNodeAt(0), true);

}

As I mentioned earlier, a valid XML document can have only one root element because of the W3C
DOM Level1 recommendation. However, the last example successfully loaded an XML snippet con-
taining five root elements, one for each root node shown in Figure 19-3, by exploiting the fact that
the XML class does not check the validity of the loaded XML document and, therefore, is capable of
loading and parsing XML snippets that contain more than one root element.

XLEFF version of the minimal example
The Tree component is one of the few components in the architecture that already uses XML for
describing its internal structure.

XLEFF extends the benefits deriving from XML to all the components in the architecture by exposing and
enhancing their functionality using a syntax very similar to the one already in use in the architecture.

The following XML snippet, which you can test by using the preconfigured XLEFF sampler included in
the files associated with this chapter, shows how similar this syntax is:

Figure 19-3. A Tree instance with
five root nodes

464

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 464

<tree x="350" y="100" width="240" height="336"
➥ name="tree01" vScrollPolicy="auto">
<node label="ROOT NODE (branch)" open="true">
<node label="Child node 1 (leaf)" />
<node label="Child node 2 (branch)">
<node label="Child node 2.1 (leaf)" />
<node label="Child node 2.2 (leaf)" />
<node label="Child node 2.3 (branch)">
<node label="Child node 2.3.1 (leaf)" />
<node label="Child node 2.3.2 (leaf)" />

</node>
<node label="Child node 2.4 (leaf)" />

</node>
<node label="Child node 3 (branch)">
<node label="Child node 3.1 (leaf)" />
<node label="Child node 3.2 (leaf)" />
<node label="Child node 3.3 (leaf)" />

</node>
<node label="Child node 4 (leaf)" />
<node label="Child node 5 (leaf)" />

</node>
</tree>

Basically, the tree XML element wraps the same XML snippet used in the minimal example, an aspect
that is highlighted by the next few lines:

<tree x="350" y="100" width="240" height="336"
➥ name="tree01" vScrollPolicy="auto">

similar node-based syntax

</tree>

In addition to the node-based syntax describing the structure of a Tree instance that you saw earlier,
XLEFF also supports two other attributes for the node element:

open: When set to "true", this attribute allows you to specify that the branch node must show
its children.

isBranch: When set to "true", this attribute allows you to change a leaf note into a branch
node, even if the node does not have children (yet).

Supported styles
The Tree component supports numerous common style properties and several specific, even peculiar,
style properties that allow you to customize its entire appearance without resorting to any skinning
technique.

465

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 465

Color styles
The common color style properties supported by the Tree component are as follows:

themeColor: Supported by the default Halo theme only. It allows you to pick a color that will
act as base color in a color scheme automatically generated by the Halo theme.

color: Defines the text color.

disabledColor: Defines the text color of a component instance when disabled.

backgroundColor: Defines the background color.

backgroundDisabledColor: Defines the background color of a component instance when disabled.

In addition, the Tree component also supports the following specific color style properties:

depthColors: Defines an array of colors, one for each nesting level in the Tree instance. The
first color in the array defines the background color of the nodes at level 0 (root nodes),
the second color defines the background color of the nodes at level 1, and so on.

selectionColor: The background color of a node when it is selected.

selectionDisabledColor: The background color of a selected node when the component
instance is disabled.

textSelectedColor: The text color of the label in a selected node.

rollOverColor: The background color of a node when the mouse cursor rolls over it.

textRollOverColor: The text color of the label in a node when the mouse cursor rolls over it.

Text styles
The Tree component supports the following common text style properties: embedFonts, fontFamily,
fontSize, fontWeight, fontStyle, textAlign, textDecoration, and textIndent. Text style properties
are discussed in greater detail in Chapter 18.

Animation styles
The Tree component supports a few style properties that can modify the behavior of the animations
triggered when the component’s state changes:

openDuration: The duration in milliseconds of the animation displayed when a branch node
opens to show its children or closes to hide them. The default value of this style property
is 250.

openEasing: A style property controlling the accelerations of the open/close animations by
accepting a function provided by the transitions package included in the component architec-
ture (see Appendix B for more information about the easing methods that can be assigned to
this style property).

466

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 466

selectionDuration: The duration in milliseconds of the animation shown when a node
changes state from unselected to selected and vice versa. The default value of this style prop-
erty is 200.

selectionEasing: A style property controlling the accelerations of the animation launched
when a node is selected (see Appendix B for more information about the easing methods that
can be assigned to this style property).

Icon styles
Thanks to the icon style properties of the Tree component, you can customize the most graphic bits
of the component: the icons appearing in a node.

All the icon style properties accept String values, which are linkage identifiers of exported symbols
that you include in the document’s library of your application to replace the default icons of the Tree
component.

The Tree component supports five icon style properties:

defaultLeafIcon: Determines the icon associated with leaf nodes

disclosureOpenIcon: Determines the icon that the user must click to close a branch node

disclosureClosedIcon: Determines the icon that the user must click to open a branch node

folderOpenIcon: Determines the icon of a branch node when open

folderClosedIcon: Determines the icon of a branch node when closed

Other component-specific styles
The Tree component also supports another couple of styles that allow you to customize specific visual
aspects:

indentation: The nodes in a Tree component are indented to let the user visualize the levels
of nesting. The numeric value assigned to this style property determines the depth in pixels of
an indentation step, which is set to 17 by default.

useRollOver: When set to false, rolling with the mouse cursor over a node will not change its
text and background colors anymore. As a result of this, the node will not be highlighted.

A note on skins
The Tree component does not implement skins of its own. The only skins appearing in a Tree instance
are those of the RectBorder class for the border, detailed in Chapter 11, and the skins of its scrollbar’s
subcomponents, the customization of which is described in Chapter 21.

In the following section, you are going to implement an example that will demonstrate how you can
change the whole appearance of a Tree component by simply using style properties.

467

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 467

Stylizing the minimal example
The objective of the following example is to redefine any visual aspect in a Tree instance by utilizing
style properties:

1. Open the document tree01.fla created earlier and save it in a new folder as tree02.fla.

2. Create a new movie clip symbol by selecting Insert ➤ New Symbol, and define both its name
and its linkage identifier as CustomClosedIcon. You can either reuse the graphic that you find
in the completed files associated with this chapter or draw your own icon. The icon dimensions
should be approximately 20✕20 pixels.

3. Repeat the second step four times in order to add four more exported symbols to the docu-
ment’s library. The names (with corresponding linkage identifiers) of the four symbols are
CustomCollapseIcon, CustomExpandIcon, CustomLeafIcon, CustomOpenIcon.

4. Create a new ActionScript file and save it as test.as in the same folder where you saved the
tree02.fla file.

5. Add the following code to the ActionScript file you just created:

function setStyles(instance):Void {
instance.setStyle("backgroundColor", 0xffbb66);
instance.setStyle("depthColors",

➥ [0xffbb66, 0xffcc99, 0xffddaa]);
instance.setStyle("borderStyle", "default");
instance.setStyle("color", 0x886644);
instance.setStyle("textSelectedColor", "yellow");
instance.setStyle("selectionColor", 0x99ccff);
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 14);
instance.setStyle("fontWeight", "bold");
instance.setStyle("defaultLeafIcon", "CustomLeafIcon");
instance.setStyle("disclosureClosedIcon", "CustomExpandIcon");
instance.setStyle("disclosureOpenIcon", "CustomCollapseIcon");
instance.setStyle("folderClosedIcon", "CustomClosedIcon");
instance.setStyle("folderOpenIcon", "CustomOpenIcon");
instance.setStyle("indentation", 17);
instance.setStyle("useRollOver", false);

}

var xmlLoader:XML = new XML();
xmlLoader.ignoreWhite = true;
xmlLoader.load("tree.xml");
xmlLoader.onLoad = function(success:Boolean):Void {
tree01.dataProvider = this;
tree01.setIsOpen(tree01.getTreeNodeAt(1), true);
tree01.setIsOpen(tree01.getTreeNodeAt(2), true);

}

468

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 468

tree01.vScrollPolicy = "auto";
tree01.rowHeight = 30;
tree01.multipleSelection = true;

setStyles(tree01);

6. Create a new text file using a text editor such as Notepad in Windows and save it as tree.xml
in the same folder where you saved the tree02.fla file.

7. Add the following XML snippet to the tree.xml file:

<node label="Root node 1" />
<node label="Root node 2">
<node label="Child node 2.1" />
<node label="Child node 2.2" />
<node label="Child node 2.3" />

</node>
<node label="Root node 3">
<node label="Child node 3.1" />
<node label="Child node 3.2" />
<node label="Child node 3.3" />

</node>
<node label="Root node 4" />
<node label="Root node 5" />

8. Save the tree02.fla, test.as, and tree.xml files.

With the exception of the icons, which could look different if you did
not use the images included in the source files associated with this
chapter, testing our last example will result in the customized appear-
ance shown in Figure 19-4.

As well as applying several style properties listed earlier in this chapter, our last example uses an addi-
tional style property:

instance.setStyle("borderStyle", "default");

469

THE TREE COMPONENT

Figure 19-4. A stylized instance of the Tree component

5939CH19.qxd 1/25/06 11:23 AM Page 469

The borderStyle style property and its default value depend on the implementation of the RectBorder
class provided by the default Halo theme. The following line also contributes to the look shown in
Figure 19-4 by making the row containing each node taller (the default value of the rowHeight prop-
erty of the Tree class is 20 pixels):

tree01.rowHeight = 30;

The influence of a few style properties on the tree01 instance can be appreciated only after selecting
one or more nodes. The multipleSelection property was set to true to highlight those aspects:

tree01.multipleSelection = true;

With multiple selection enabled, you can also select more than one
node at a time by using the CTRL/CMD or SHIFT keys as usual. Selecting a
couple of nodes while testing the last example will result in an appear-
ance similar to the one shown in Figure 19-5.

You can retrieve the user selection, or define a selection programmatically, via two properties:

selectedNode: Retrieves (or sets) the currently selected node in the case of a single selection.

selectedNodes: Returns (or sets) the currently selected nodes in the case of multiple selec-
tions. Its value is an array of node instances.

So far you have learned the basic functionality of the Tree component and how to customize its
appearance. In the next section, you will complete the exploration of its features while customizing
its behavior.

Solved mysteries
The Tree component is based on a pretty robust implementation that also shows a peculiar approach
to stylizing/skinning by allowing you to customize its appearance, including the inner graphics, by
using styles only.

The fact that you can redefine its icons by using style properties gives you maximum flexibility in terms
of its use: you can use a different icon set for each Tree instance in your application whenever needed.

The next example will exploit the robustness and the flexibility of the Tree component to extend it by
adding further behaviors.

470

CHAPTER 19

Figure 19-5. The stylized Tree instance after you
select a couple of nodes

5939CH19.qxd 1/25/06 11:23 AM Page 470

Taking full control
In some occasions, depending on the requirements that you are working on, you may find that click-
ing the disclosure icon to open/close branch nodes is not the most suitable option. In those cases, you
may prefer to design and implement an interface where branch nodes can be opened or closed by
clicking any part of a node’s area.

In the next example, you will learn how to modify the behavior of the Tree component to achieve this
and add further behaviors that can be very useful in a variety of circumstances:

1. Open the document tree01.fla created earlier and save it in a new folder as tree03.fla.

2. Set the background color of the new Flash document as #66cccc by accessing the Document
Properties dialog box via Modify ➤ Document.

3. Create a new movie clip symbol by selecting Insert ➤ New Symbol, defining both its name and
its linkage identifier as EmptyIcon. This symbol will remain empty.

4. Create a new movie clip symbol by selecting Insert ➤ New Symbol, defining both its name and
its linkage identifier as CustomClosedIcon. You can either reuse the graphic that you find in the
completed files associated with this chapter or draw your own icon, which should resemble a
plus sign of at most 20✕20 pixels.

5. Create a new movie clip symbol by selecting Insert ➤ New Symbol, defining both its name and
its linkage identifier as CustomOpenIcon. You can either reuse the graphic that you find in the
completed files associated with this chapter or draw your own icon, which should resemble a
minus sign of at most 20✕20 pixels.

6. Create a new ActionScript file and save it as test.as in the same folder where you saved the
tree03.fla file.

7. Add the following code to the ActionScript file you just created:

import mx.controls.Tree;

Tree.prototype.setBackground = function(showIt:Boolean):Void {
this.border_mc.setVisible(showIt);

}

function setStyles(instance):Void {
instance.setStyle("themeColor", "haloOrange");
instance.setStyle("backgroundColor", 0xffc070);
instance.setStyle("depthColors", [0xffc070, 0xffc878, 0xffd080]);
instance.setStyle("borderStyle", "default");
instance.setStyle("color", 0x664422);
instance.setStyle("selectionColor", 0xdddddd);
instance.setStyle("rollOverColor", 0xcccccc);
instance.setStyle("textRollOverColor", 0x664422);
instance.setStyle("textSelectedColor", 0x664422);
instance.setStyle("fontFamily", "Courier New");
instance.setStyle("fontSize", 14);
instance.setStyle("fontWeight", "bold");
instance.setStyle("indentation", 10);
instance.setStyle("defaultLeafIcon", "EmptyIcon");

471

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 471

instance.setStyle("folderOpenIcon", "CustomOpenIcon");
instance.setStyle("folderClosedIcon", "CustomClosedIcon");
instance.setStyle("disclosureClosedIcon", "EmptyIcon");
instance.setStyle("disclosureOpenIcon", "EmptyIcon");

}

var treeController:TreeController = new TreeController(true, true);
treeController.controlTree(tree01);

setStyles(tree01);

tree01.vScrollPolicy = 'auto';

tree01.setBackground(false);

var xmlLoader:XML = new XML();
xmlLoader.ignoreWhite = true;
xmlLoader.load("tree.xml");
xmlLoader.onLoad = function(success:Boolean):Void {
tree01.dataProvider = this;

}

8. Create a new ActionScript file and save it as TreeController.as in the same folder where you
saved the tree03.fla file.

9. Add the following code to the ActionScript file you just created:

import mx.controls.Tree;

class TreeController {
public var autoCollapse:Boolean;
public var persistent:Boolean;
private var pendingNode:XMLNode;

function TreeController(ac:Boolean, p:Boolean) {
autoCollapse = (ac == undefined) ? true : ac;
persistent = (p == undefined) ? false : p;
pendingNode = null;

}

function change(eventObject:Object):Void {
var t:Tree = eventObject.target;
var selNode:XMLNode = t.selectedNode;
var closingSibling = this.getOpenSibling(selNode, t);
if ((closingSibling != null) && this.autoCollapse) {
if (t.getIsBranch(selNode)) {
t.setIsOpen(closingSibling, false, true, true);
this.pendingNode = selNode;

}
} else if (t.getIsBranch(selNode)) {

472

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 472

var open:Boolean = t.getIsOpen(selNode);
t.setIsOpen(selNode, !open, true, true);

}
}

function nodeClose(eventObject:Object):Void {
var t:Tree = eventObject.target;
var node:XMLNode = eventObject.node;
this.closeChildren(node, t);
if ((this.pendingNode != null) &&

➥ (t.getIsBranch(this.pendingNode))) {
t.setIsOpen(this.pendingNode,

➥ node != t.selectedNode, true, true);
this.pendingNode = null;

}
}

function controlTree(t:Tree):Void {
t.addEventListener('change', this);
t.addEventListener('nodeClose', this);
}

private function getOpenSibling
➥ (node:XMLNode, t:Tree):XMLNode {

var parent:XMLNode = node.parentNode;
var n:XMLNode;
for (var index = 0; index < parent.childNodes.length;

➥ index++) {
n = parent.childNodes[index];
if (t.getIsOpen(n)) return n;

}
return null;

}

private function closeChildren(node:XMLNode, t:Tree):Void {
if (persistent) return;
for (var index in node.childNodes) {
if (t.getIsOpen(node.childNodes[index])) {
closeChildren(node.childNodes[index], t);

}
}
t.setIsOpen(node, false, false);

}
}

10. Copy the tree.xml file utilized in the tree02.fla example in the folder where the tree03.fla
file is. The XML snippet in the tree.xml file is the one with the five roots that we already used
several times in this chapter.

11. Save the tree03.fla, test.as, and TreeController.as files.

473

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 473

Testing the current example will display a customized version of the
tree01 instance looking like the one shown in Figure 19-6.

Both the branch nodes at the root level (Root node 2 and Root node 3) are initially collapsed, since
their default initial state was not modified in the current example.

The main functionality implemented in this example is stored in the TreeController class. This class
adds three new behaviors to the Tree component:

Branch nodes can now be opened and closed by clicking anywhere inside the node area,
removing the restriction of the disclosure icons.

Only one branch node can be open at a specific level at any time. Clicking a sibling branch
node to open it will result in a two-step transition: (1) the already opened sibling branch node
is closed and (2) the clicked branch node is opened. This feature is optional and controlled by
a Boolean property named autoCollapse. You can define the autoCollapse value via the con-
structor of the TreeController class or by directly assigning a value to the property. The
default value of autoCollapse is true.

When a parent branch node is closed, all of its descendants are closed or, alternatively, you can
choose to leave them open although not visible until the parent node is open again. This fea-
ture is optional and controlled by a Boolean property named persistent. You can define the
persistent value via the constructor of the TreeController class or by directly assigning a
value to the property. The default value of persistent is false, meaning that when a parent
node is closed, all of its descendants are closed as well.

In our example, we create a TreeController instance by setting both the autoCollapse and persistent
properties to true via the class constructor:

var treeController:TreeController = new TreeController(true, true);

Since all of the three new behaviors are enabled from the start, you can interactively experience how
they work by playing with the customized tree01 instance before further analyzing the code imple-
menting these behaviors.

The TreeController instance (treeController) is literally “attached” to the Tree component instance
(tree01) just after its creation via the controlTree method:

treeController.controlTree(tree01);

474

CHAPTER 19

Figure 19-6. Changing behavior and appearance
of the Tree component

5939CH19.qxd 1/25/06 11:23 AM Page 474

Looking at the source code of the controlTree method will clarify what this means:

function controlTree(t:Tree):Void {
t.addEventListener('change', this);
t.addEventListener('nodeClose', this);

}

Basically, treeController registers itself as a listener of two events of the Tree component instance:
change and nodeClose.

The Tree class inherits the change event from its base class, List, and implements two additional
events:

nodeClose: Broadcasts whenever a branch node is closed. This event adds an additional prop-
erty, called node, to the event object. The node property is a reference to the node that caused
the event.

nodeOpen: Broadcasts whenever a branch node is open. This event adds an additional property,
called node, to the event object. The node property is a reference to the node that caused the
event.

The implementation of the TreeController class does not need to listen to the nodeOpen event.
Listening to the change and nodeClose events raised by the Tree component instance is sufficient to
implement the new behaviors.

The change event handler of the TreeController class is invoked whenever you click a node of the
Tree instance:

function change(eventObject:Object):Void {
var t:Tree = eventObject.target;
var selNode:XMLNode = t.selectedNode;
var closingSibling = this.getOpenSibling(selNode, t);
if ((closingSibling != null) && this.autoCollapse) {
if (t.getIsBranch(selNode)) {
t.setIsOpen(closingSibling, false, true, true);
this.pendingNode = selNode;

}
} else if (t.getIsBranch(selNode)) {

var open:Boolean = t.getIsOpen(selNode);
t.setIsOpen(selNode, !open, true, true);

}
}

The change event handler main options are as follows:

To close a sibling open node, if such open node exists and the autoCollapse property is set
to true

To open/close the clicked node, if it is a branch node, depending on its current state (closed/open,
respectively)

475

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 475

While the second option has no further consequences, the first option only implements the first part
of the two-step transition requested by autoCollapse. That’s why the change event handler stores a
reference to the clicked node in the pendingNode private property: that reference will be reused by
the implementation of the second step of the transition.

Closing a sibling node will trigger a nodeClose event. This side effect makes the nodeClose event han-
dler the ideal method for implementing the second step of the transition:

function nodeClose(eventObject:Object):Void {
var t:Tree = eventObject.target;
var node:XMLNode = eventObject.node;
this.closeChildren(node, t);
if ((this.pendingNode != null) &&

➥ (t.getIsBranch(this.pendingNode))) {
t.setIsOpen(this.pendingNode,

➥ node != t.selectedNode, true, true);
this.pendingNode = null;

}
}

The implementation of the nodeClose event invokes the closeChildren method, whose purpose is
pretty much self-descriptive and will be analyzed in a short while. After closing the children of the
node, the nodeClose event handler checks whether there is a pendingNode reference to a node that is
waiting to be open and, if so, opens it, implementing the second step in the two-step transition
requested by autoCollapse.

The closeChildren method invoked in the nodeClose event handler actually closes the children only
if persistent is set to true. In fact, its first line is

if (persistent) return;

The TreeController class implements a second “utility” method, getOpenSibling, whose name is
self-descriptive.

You have already learned about the algorithm implemented by the TreeController class. Apart from
the functionality provided, the TreeController class also represents a real-world example of how to
use several features of the Tree class:

It exploits the fact that the nodes of a Tree component instance are implemented as instances
of the XMLNode class.

It shows how to check whether a node is actually a branch via the getIsBranch method.

It demonstrates how to open/close methods via the setIsOpen method.

It shows how to exploit the change and nodeClose events triggered by a Tree instance.

The next section introduces a simpler but possibly more important technique: how to add support for
custom attributes added to the XML snippet describing the structure of a Tree instance.

476

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 476

Implementing isBranch and other XML attributes
As mentioned earlier in the book, several official sources show examples of XML snippets including an
isBranch attribute that is not implemented nor used in any way by the Tree component.

The purpose of this “ghost” XML attribute may well be to allow the creation of empty branch nodes.
Branch nodes must have children by definition. However, you may need to implement leaf nodes that
look like, and in fact are, empty branch nodes that can be populated with children dynamically. The
example in this section illustrates a convenient way of implementing custom XML attributes by sup-
porting two of them:

isBranch: If true, forces a leaf node to be a branch

isOpen: If true, changes the default initial state of a branch node from closed to open

The combination of the isBranch and isOpen attributes gives you much greater flexibility in defining
the initial configuration of a Tree instance via XML, as demonstrated by the following example:

1. Open the document tree01.fla created earlier and save it in a new folder as tree04.fla.

2. Create a new ActionScript file and save it as test.as in the same folder where you saved the
tree04.fla file.

3. Add the following code to the ActionScript file just created:

import mx.controls.Tree;

Tree.prototype.initBranches = function(node:XMLNode):Void {
if (node == undefined) {
for (var i = 0; i <

➥ this.dataProvider.childNodes.length; i++) {
this.initBranches(this.dataProvider.childNodes[i]);

}
} else {
if ((node.attributes.isBranch == "true") &&

➥ !(this.getIsBranch(node))) {
this.setIsBranch(node, true);

}
if ((node.attributes.isOpen == "true") &&

➥ !(this.getIsOpen(node))) {
this.setIsOpen(node, true);

}
for (var i = 0; i < node.childNodes.length; i++) {
this.initBranches(node.childNodes[i]);

}
}

}

477

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 477

var xmlLoader:XML = new XML();
xmlLoader.ignoreWhite = true;
xmlLoader.load("tree.xml");
xmlLoader.onLoad = function(success:Boolean):Void {
tree01.dataProvider = this;
tree01.initBranches();

}

tree01.vScrollPolicy = "auto";

4. Create a new text file using a text editor such as Notepad in Windows and save it as tree.xml
in the same folder where you saved the tree04.fla file.

5. Add the following XML snippet to the tree.xml file:

<node label="ROOT NODE" isOpen="true">
<node label="Child node 1" isBranch="true" isOpen="true" />
<node label="Child node 2" isOpen="true">
<node label="Child node 2.1" isBranch="true" />
<node label="Child node 2.2" />
<node label="Child node 2.3" isOpen="true">
<node label="Child node 2.3.1" />
<node label="Child node 2.3.2" />

</node>
<node label="Child node 2.4" />

</node>
<node label="Child node 3" isOpen="true">
<node label="Child node 3.1" />
<node label="Child node 3.2" />
<node label="Child node 3.3" />

</node>
<node label="Child node 4" />
<node label="Child node 5" isBranch="true" isOpen="true" />

</node>

6. Save the tree04.fla, test.as, and tree.xml files.

Figure 19-7 shows the fully expanded instance of the Tree compo-
nent as it appears after testing the last example.

Figure 19-7. Open and empty branch nodes defined via XML

478

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 478

All the branch nodes in the tree structure are initially open because of the isOpen attributes defined
in the XML snippet, as in the following:

<node label="ROOT NODE" isOpen="true">

Since every branch node is open, you can also notice that there are three empty branch nodes in the
structure: Child node 1, Child node 2.1, and Child node 5.

Leaf nodes have been changed into empty branch nodes by defining the isBranch attribute as in the
following:

<node label="Child node 5" isBranch="true" isOpen="true" />

Both the isOpen and isBranch attributes are implemented by the initBranches method, added to
the Tree class via its prototype property:

Tree.prototype.initBranches = function(node:XMLNode):Void {
if (node == undefined) {
for (var i = 0; i <

➥ this.dataProvider.childNodes.length; i++) {
this.initBranches(this.dataProvider.childNodes[i]);

}
} else {
if ((node.attributes.isBranch == "true") &&

➥ !(this.getIsBranch(node))) {
this.setIsBranch(node, true);

}
if ((node.attributes.isOpen == "true") &&

➥ !(this.getIsOpen(node))) {
this.setIsOpen(node, true);

}
for (var i = 0; i < node.childNodes.length; i++) {
this.initBranches(node.childNodes[i]);

}
}

}

The initBranches method is implemented using recursion:

If initBranches is invoked without the node parameter (node == undefined), then
initBranches applies itself recursively to each root node in the dataProvider property.

When a node parameter is provided, initBranches performs three actions:

1. Verifies whether the isBranch attribute is set and invokes the setIsBranch method of the
Tree class to change a leaf node into a branch node, if that is the case

2. Verifies whether the isOpen attribute is set and invokes the setIsOpen method of the Tree
class to open the branch node, if that is the case

3. Applies itself recursively to each child of the current node

479

THE TREE COMPONENT

5939CH19.qxd 1/25/06 11:23 AM Page 479

You typically invoke initBranches without a parameter in order to apply it to the whole tree struc-
ture, as in the following:

xmlLoader.onLoad = function(success:Boolean):Void {
tree01.dataProvider = this;
tree01.initBranches();

}

The recursive implementation of initBranches makes it very easy to extend: all that you have to do is
to test for another custom attribute and execute its associated code depending on the value assigned
to the attribute.

The recursive algorithm used in initBranches stems from the implementation of XLEFF, the XML lay-
out engine introduced earlier in the book. Its source code, available as open source at www.xleff.org,
contains several other examples of recursion that you may find interesting.

Reasons for subclassing the Tree component
In this chapter, you learned about the power and flexibility of the Tree component. You also learned
how to customize its appearance and behavior.

While the high flexibility offered by its styles weakens the motives for subclassing this component, the
number of new behaviors that can be encapsulated in a subclassed version of this component makes
this more costly option still attractive.

For instance, encapsulating the functionality implemented by the TreeController class presented in
this chapter in an extended, subclassed, version of the Tree component would allow you to forget the
existence of the TreeController class and utilize its functionality straightaway via a couple of new
properties.

480

CHAPTER 19

5939CH19.qxd 1/25/06 11:23 AM Page 480

5939CH19.qxd 1/25/06 11:23 AM Page 481

5939CH20.qxd 1/25/06 11:24 AM Page 482

483

Chapter 20

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 483

Both the components discussed in this chapter are containers that can be dragged around on the
stage by the user.

The Window component is a general-purpose container with an empty area whose contents must be
specifically implemented by you. The Alert component is a specialized version of the Window compo-
nent; its contents are predefined and typically include a message for the user and a few optional but-
tons to retrieve the user’s choice.

While the Alert component can be used in almost any kind of application, the Window component
somewhat dictates a specific, window-based, model of the user interface.

The minimal example in the following section will show you the basics for implementing a window-
based system, including interactions controlled with the help of the Alert component.

Minimal example of the Window and
Alert components

You have already learned how to implement a very minimal window-based system by completing the
last example in Chapter 4.

In this section, you will extend that example by requesting the user confirmation before closing an
opened window and, in doing so, you will also learn similarities and differences between the Window
and the Alert components:

1. Create a new Flash document and save it as windows01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set the stage
dimensions as 800✕600 pixels.

3. Drag the Window, the Alert, and the Button components on stage in order to create one
instance of each component, and then delete the three resulting instances. By doing so, you
ensure that the components have been added to the document’s library so that they can be
created dynamically via ActionScript at runtime.

4. Select the first frame in the document and attach the following ActionScript code to it:

#include "test.as"

5. Create a new ActionScript file and save it as test.as in the same folder where you saved the
windows01.fla file.

The completed source code introduced in this chapter can be found in the package
src20.zip, downloadable from this book’s page at www.friendsofed.com.

484

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 484

6. Add the following code to the ActionScript file you just created:

import mx.managers.PopUpManager;
import mx.containers.Window;
import mx.controls.Button;
import mx.controls.Alert;

var windowId:Number = 0;
var coords:Array = [50, 70, 90, 110, 130, 150, 170, 190, 210, 230];
var currentWindow:Window;

function onUserChoice(eventObject:Object):Void {
if (eventObject.detail == Alert.YES) {

currentWindow.deletePopUp();
}

}

function getWindowInitObject(Void):Object {
return {_x:coords[windowId % coords.length],

_y:coords[windowId % coords.length],
_width: 400,
_height: 400,
closeButton:true,
title: "Window [" + (++windowId) + "]"

}
}

function click(eventObject:Object):Void {
var win:Window;
var target:Object = eventObject.target;
switch (target._name) {

case "btnCreateWindow":
win = Window(PopUpManager.createPopUp(this,

➥ Window, false, getWindowInitObject()));
win.addEventListener("click", this);
break;

default:
currentWindow = Window(target);
Alert.show("Delete " + target.title + " ?",

➥ "Confirmation Request", Alert.YES | Alert.NO, null,
➥ onUserChoice, null, Alert.NO);

}
}

var btn:Button = createClassObject(Button, "btnCreateWindow", 1,
➥ {_x:10, _y:10, label:'Create Window'});
btn.addEventListener("click", this);

7. Save the windows01.fla and test.as files.

485

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 485

A button labeled Create Window will appear on stage when you test the movie.

A new Window instance will be added to the stage every time that you click it. If you click the Create
Window button five times, the stage will be populated with five window instances, as shown in
Figure 20-1.

Figure 20-1. The stage of the minimal example after creating five Window instances

Differently from the example you saw in Chapter 4, clicking the close buttons of a dynamically created
window does not immediately remove it from the stage. An Alert instance, like the one shown in
Figure 20-2, will pop up, asking for user confirmation. After clicking one of the Alert instance’s
buttons, the Alert instance disappears, and the Window instance may also be removed from the stage,
depending on whether you chose Yes or No.

486

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 486

Figure 20-2. Alert instance asking the user to make a choice

In the following sections, we examine the significant aspects in the code of our minimal example.

Dynamically creating windows
In the previous chapters, you have learned that component instances can be created statically by
dropping them on the stage at authoring time or dynamically by invoking the createClassObject
method of the UIObject class, as explained in Chapter 2.

However, in the case of the Window component, the best option you have is to create a Window
instance dynamically by using the PopUpManager class, as we did in the minimal example.

Because of the component’s intended use and because of its implementation, Window instances
behave quite erratically if created without the intermediation of the PopUpManager class, which has
been included in the architecture for the exact purpose of creating pop-up windows dynamically.

487

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 487

The component architecture helps you manage the depth and focus of each component, which is par-
ticularly important when it comes to creating instances of components that can be dragged around on
the stage. Basically, if you do not use the PopUpManager class, your application is doomed to show
some inconsistent behavior related to focus or even depth management.

On the other hand, as our minimal example demonstrates, using the PopUpManager class for creating
Windows is an easy task, accomplished with a single line of code:

win = Window(PopUpManager.createPopUp(this, Window, false,
➥ getWindowInitObject()));

The createPopUp method returns a MovieClip instance that, in our case, is a Window instance. This is
why we could safely typecast it as a Window before assigning it to the win variable.

The createPopUp method takes five parameters:

The first parameter is a reference to the parent object containing the Window instance. In the
case of the minimal example, the parent object is defined by using the this identifier that,
being evaluated in the context of the main timeline, refers to the root movie clip.

The second parameter is a reference to the class used to dynamically create the instance. In
the case of the minimal example, we utilized the Window class in order to create Window
instances.

The third parameter is a Boolean value indicating whether the instance will be modal or not. In
the case of the minimal example, the Window instance is created as nonmodal to allow the
user to interact with the other instances on stage, simulating a typical window-based system.

The fourth parameter is very important, since it allows you to provide an object whose prop-
erties will be used to initialize the dynamically created instance. In our example, we imple-
mented a getWindowInitObject function to create an initialization object dynamically so that
we could provide different values for the Window instance’s title and location.

The fifth parameter was not used in the minimal example since it is an optional Boolean value
that, if true, allows the component to broadcast mouse events even when they happen out-
side of the component’s area. It is unlikely that you may ever need to use this parameter. It was
included in the method’s signature to support some of the component architecture internal
features.

The createPopUp method returns a reference to the instance being created that we used in our mini-
mal example to register the root movie clip as a listener of the Window’s click event:

win.addEventListener("click", this);

The click event is raised by a Window instance whenever the user clicks the window’s close button.

Since the root movie clip is also listening to the click event of the Button instance labeled Create
Window, its click event handler examines the instance name of the object that triggered the event
before deciding what to do:

var target:Object = eventObject.target;
switch (target._name) {

..........

488

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 488

When the user clicks the btnCreateWindow instance, the click event handler creates a new Window
instance by invoking the createPopUp method of the PopUpManager class.

The only alternative is that the user clicked the close button of a Window instance. In that case the
click event handler creates an Alert instance to ask for a confirmation.

Dynamically creating alerts
Alert instances are supposed to be created dynamically only. An Alert instance appears when the user
must make a choice and disappears once that the user makes it.

Alert instances can be easily created via the static show method of the Alert class, as in the case of our
minimal example:

Alert.show("Delete " + target.title + " ?", "Confirmation Request",
➥ Alert.YES | Alert.NO, null, onUserChoice, null, Alert.NO);

The show method accepts seven parameters:

The first parameter accepts a String value containing the message to be displayed in the con-
tent area of the Alert instance.

The second parameter accepts a String value that will be displayed in the title bar of the Alert
instance.

The third parameter accepts a Number value that determines which of four buttons will be dis-
played in the content area of the Alert instance (Alert.OK, Alert.CANCEL, Alert.YES,
Alert.NO) and whether the Alert instance must be created as a nonmodal window
(Alert.NONMODAL). You can specify more than one option at the same time by joining them via
the | operator.

The fourth parameter is an Object reference to the container of the Alert instance. The Alert
instance is typically shown at the center of its container’s area. In our minimal example, we
passed the null value for this parameter to specify that the Alert instance should be contained
in the _root object so that it would appear at the center of the stage as shown in Figure 20-2.

The fifth parameter is a callback function that will be invoked by the component architecture
when the user clicks one of the buttons in the Alert instance. This function will receive the
click event object enriched with a further property, named detail, containing the value of
the button that has been clicked by the user. In our minimal example, we implement a function
named onUserChoice for this purpose. The onUserChoice function checks the value of the
detail property to decide whether to close the current window by invoking the deletePopUp
method of the Window class:

if (eventObject.detail == Alert.YES) {
currentWindow.deletePopUp();

}

489

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 489

The sixth parameter is optional and not utilized in our minimal example. This String parame-
ter allows you to specify the linkage identifier of an exported symbol that will be used as an
icon inside the content area of the Alert instance. You can find an additional file among those
in the package associated with this chapter named windows01b.fla that includes a sample
icon; Figure 20-3 shows how the Alert instance looks when an icon is specified.

The seventh parameter is also optional. It accepts a numeric value that specifies which button
in the Alert instance will act as the default button, if any. Any of the four button constants
(Alert.OK, Alert.CANCEL, Alert.YES, Alert.NO) is a valid value for this parameter. In our min-
imal example, the Alert.NO button was designated as the default button.

Our minimal example clearly shows the typical life cycles of Window and Alert instances and every
aspect of their core features. However, the minimal example does not define any content inside the
Window instances that are created and remain empty.

Our next example will show you how to manage content inside a Window instance.

Managing the content of a Window instance
The content area of a Window instance is empty by default. It is your responsibility to implement the
content of your Window instance.

In the next example, you will extend the minimal example implemented earlier to create Window
instances hosting an image in their content areas:

1. Open the document windows01.fla created earlier and save it in a new folder as windows02.fla.

2. Create a new ActionScript file and save it as test.as in the same folder as the windows02.fla
file.

3. Add the following code to the ActionScript file you just created:

import mx.managers.PopUpManager;
import mx.containers.Window;
import mx.controls.Button;
import mx.controls.Alert;

Figure 20-3. Alert instance using an
exported symbol as icon

490

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 490

var windowId:Number = 0;
var coords:Array = [50, 70, 90, 110, 130, 150, 170, 190, 210, 230];
var images:Array = ["image01.jpg", "image02.jpg", "image03.jpg"];
var currentWindow:Window;

function onUserChoice(eventObject:Object):Void {
if (eventObject.detail == Alert.YES) {

currentWindow.deletePopUp();
}

}

function getWindowInitObject(Void):Object {
return {_x:coords[windowId % coords.length],

_y:coords[windowId % coords.length],
_width: 400,
_height: 400,
closeButton:true,
visible: false,
title: "Window [" + (++windowId) + "]"

}
}

function click(eventObject:Object):Void {
var win:Window;
var target:Object = eventObject.target;
switch (target._name) {

case "btnCreateWindow":
win = Window(PopUpManager.createPopUp(this, Window,

➥ false, getWindowInitObject()));
win.addEventListener("click", this);
win.addEventListener("complete", this);
win.contentPath = images[(windowId-1) % images.length];
break;

default:
currentWindow = Window(target);
Alert.show("Delete " + target.title + " ?",

➥ "Confirmation Request", Alert.YES | Alert.NO,
➥ null, onUserChoice);

}
}

function complete(eventObject:Object):Void {
var window:Window = Window(eventObject.target._parent);
var m:Object = window.getViewMetrics();
window.setSize(window.content._width + m.left + m.right,

➥ window.content._height + m.top + m.bottom);
window.setVisible(true);

}

491

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 491

var btn:Button = createClassObject(Button, "btnCreateWindow", 1,
➥ {_x:10, _y:10, label:'Create Window'});
btn.addEventListener("click", this);

4. Save the windows02.fla and test.as files.

The previous example uses three JPG files located in the same folder as the windows02.fla file.

You can find those JPG files in the package associated with this chapter. In case you want to replace
them with your own graphics, their specifications are as follows:

image01.jpg: 300✕100 pixels

image02.jpg: 300✕225 pixels

image03.jpg: 150✕250 pixels

The names of the JPG files are stored in the following ActionScript array:

var images:Array = ["image01.jpg", "image02.jpg", "image03.jpg"];

The image is assigned to the content area of a Window instance via its contentPath property, as in the
following:

win.contentPath = images[(windowId-1) % images.length];

The formula used to access a specific image, (windowId-1) % images.length, generates rotating
indexes as in 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, and so on, ensuring that one of the three images is used
whenever you create a new window by clicking the Create Window button.

Testing the movie and clicking the Create Window button five times will result in a stage populated as
shown in Figure 20-4. Note that the Window instances in Figure 20-4 have been moved from their
original position by dragging their respective title bars to show a bit more of their contents.

Thanks to the contentPath property of the Window class, you can load three different kinds of content
objects in the content area of a Window instance:

An external JPG file, by providing its URL

An external SWF file, by providing its URL

An exported symbol, by providing its linkage identifier

The first option is arguably the simplest to achieve, and it was used in our example to allow you to
focus on the relevant aspects of managing content in the case of the Window component.

Creating an external SWF file or even an exported symbol in the context of our example would be an
unnecessary distraction, since the core technique contained in it works in the exact same way, what-
ever type of content object you choose to load in the content area of a Window instance.

492

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 492

Figure 20-4. Five Window instances hosting an image in their content areas

The technique is based on the complete event triggered by a Window instance and can be summa-
rized by the following steps:

1. Create an invisible Window instance.

2. Listen to the complete event of the created Window instance.

3. Load a content object in the Window instance via its contentPath property. Once the complete
event has been raised by the Window instance, execute the following two steps:

4. Adjust the size of Window instance to fit its loaded contents.

5. Turn the Window instance visible.

In our example, the Window instance was created by invoking the createPopUp method of the
PopUpManager in a line of code that is identical to that of the previous minimal example:

win = Window(PopUpManager.createPopUp(this, Window, false,
➥ getWindowInitObject()));

493

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 493

However, something is changed in the implementation of the getWindowInitObject that provides the
initialization object for the Window instance. The object now contains an additional property:

visible: false,

The visible property set to false ensures that the Window instance is initially not visible. If you turn
it to true, the example will still work, but you may notice some unpleasant, although temporary, rub-
bish on the stage when the Window instance is being created.

Once the createPopUp method returns a reference to the Window instance being created, the exam-
ple registers the root movie clip as a listener of its complete event:

win.addEventListener("complete", this);

Only then is the contentPath property of the Window instance assigned the URL of a JPG file (this
technique would work in the exact same way if, at this point, you would specify the URL of an SWF file
or the linkage identifier of an exported symbol):

win.contentPath = images[(windowId-1) % images.length];

The first part of the technique is now completed, and the root movie clip listens for a complete event,
communicating that the Window instance has been created and initialized properly. Once the
complete event is raised by the component architecture, its associated event handler gets executed:

function complete(eventObject:Object):Void {
var window:Window = Window(eventObject.target._parent);
var m:Object = window.getViewMetrics();
window.setSize(window.content._width + m.left + m.right,

➥ window.content._height + m.top + m.bottom);
window.setVisible(true);

}

It is the complete event handler that executes the remaining two steps of the process described
earlier. First, it resizes the Window instance using its setSize method, and then it turns the Window
instance visible by invoking its setVisible method.

One important detail that should not pass unnoticed is the use of the content property of the Window
class for accessing its content object and retrieving its dimensions.

The numeric values used in the setSize method, when defining the size of the Window instance, take
into account the vertical space occupied by the title bar and the bottom border (m.top + m.bottom)
and the horizontal space occupied by the left and right borders of the window instance (m.left +
m.right). We retrieved the size of each edge by invoking the getViewMetrics method:

var m:Object = window.getViewMetrics();

The getViewMetrics method returns an object with four properties (left, right, top, and bottom),
each of which stores a number indicating the space occupied by the respective edge of the compo-
nent instance.

The result has already been shown in Figure 20-4: the Window instances are resized to accommodate
the images accurately, regardless their different dimensions.

494

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 494

Looking back at the implementation of the complete event handler, there is an additional detail
worthy of your attention: the way we retrieved a reference to the Window instance that raised the
complete event:

var window:Window = Window(eventObject.target._parent);

The previous line shows an insight into the implementation of the Window component that is required
to actually retrieve the reference to the Window instance. This reference is not eventObject.target
as it should be, but eventObject.target._parent.

This intriguing detail is a consequence of the undocumented fact that it is the content subobject of a
Window instance that actually raises the complete event. Accessing a reference to the Window
instance becomes then a matter of accessing the _parent object of the target (content) object as in
eventObject.target._parent.

The exploration of the core features of both the Window and Alert components is now complete, and
we can start considering how to customize the appearance of these components.

Supported styles
The fact that the Alert class inherits from the Window class makes the Alert component a specialized
version of the Window component.

Because of this, the Alert and Window component share several common styles:

Common color styles such as color, disabledColor, backgroundColor, and themeColor (only
supported by the default Halo theme).

Common text styles such as embedFonts, fontFamily, fontSize, fontWeight, textAlign,
textDecoration, and textIndent. Text styles are explored in greater detail in Chapter 18.

The border styles, definable via the borderStyle property, and implemented by the
RectBorder class examined in Chapter 11.

When it comes to text styles, however, the Alert component allows you to define them separately by
implementing three static properties, each of which accepts an instance of the CSSStyleDeclaration
class:

titleStyleDeclaration: Affects the text in the title bar of an Alert instance

messageStyleDeclaration: Affects the text of the message appearing in the content area of an
Alert instance

buttonStyleDeclaration: Affects the text in the buttons that appear in an Alert instance

The Window component has a peculiar style object too: the global style windowStyles. The Window
component is a container and, as such, can propagate the style definitions set for a Window instance
to its content object. The style properties that you set in the global style windowStyles will only affect
the Window instances (and not their content objects).

495

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 495

If these peculiarities sound a little bit tricky, the next example will show you how to use them for pro-
ducing a consistent, stylized look for Window and Alert instances:

1. Open the document windows01.fla created earlier and save it in a new folder as
windows03.fla.

2. Create a new ActionScript file and save it as test.as in the same folder as the windows03.fla
file.

3. Add the following code to the ActionScript file you just created:

import mx.managers.PopUpManager;
import mx.containers.Window;
import mx.controls.Button;
import mx.controls.Alert;
import mx.styles.CSSStyleDeclaration;

var windowId:Number = 0;
var coords:Array = [50, 70, 90, 110, 130, 150, 170, 190, 210, 230];
var currentWindow:Window;

function onUserChoice(eventObject:Object):Void {
if (eventObject.detail == Alert.YES) {

currentWindow.deletePopUp();
}

}

function getWindowInitObject(Void):Object {
return {_x:coords[windowId % coords.length],

_y:coords[windowId % coords.length],
_width: 400,
_height: 400,
closeButton:true,
title: "Window [" + (++windowId) + "]"

}
}

function click(eventObject:Object):Void {
var win:Window;
var alert:Alert;
var target:Object = eventObject.target;
switch (target._name) {

case "btnCreateWindow":
win = Window(PopUpManager.createPopUp(this, Window,

➥ false, getWindowInitObject()));
setWindowStyles(win);
win.addEventListener("click", this);
break;

default:

496

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 496

currentWindow = Window(target);
alert = Alert.show("Delete " + target.title + " ?",

➥ "Confirmation Request", Alert.YES | Alert.NO,
➥ null, onUserChoice, null, Alert.NO);

setAlertStyles(alert);
}

}

function setGlobalStyles(Void):Void {
var winStyles:Object = _global.styles.windowStyles;
winStyles.setStyle("color", 0x0000aa);
winStyles.setStyle("fontFamily", "Courier New");
winStyles.setStyle("fontSize", 14);
winStyles.setStyle("fontWeight", "bold");
winStyles.setStyle("textAlign", "center");

var cssTitle = new CSSStyleDeclaration();
var cssMessage = new CSSStyleDeclaration();
var cssButton = new CSSStyleDeclaration();
cssTitle.setStyle("color", 0x0000aa);
cssMessage.setStyle("color", 0x000080);
cssButton.setStyle("color", 0x0000ff);
Alert.titleStyleDeclaration = cssTitle;
Alert.messageStyleDeclaration = cssMessage;
Alert.buttonStyleDeclaration = cssButton;

}

function setWindowStyles(win:Window):Void {
win.setStyle("themeColor", 0x0000ff);
win.setStyle("backgroundColor", 0xddddff);

}

function setAlertStyles(alert:Alert):Void {
alert.setStyle("themeColor", 0x0000aa);
alert.setStyle("backgroundColor", 0xaaaaff);
alert.setStyle("fontFamily", "Courier New");
alert.setStyle("fontSize", 14);
alert.setStyle("fontWeight", "bold");
alert.setStyle("textAlign", "center");

}

var btn:Button = createClassObject(Button, "btnCreateWindow", 1,
➥ {_x:10, _y:10, label:'Create Window'});
btn.addEventListener("click", this);

setGlobalStyles();

4. Save the windows03.fla and test.as files.

497

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 497

Testing our last example will demonstrate to what extent you can influence the appearance of the
Window and Alert components. Figure 20-5 shows the stylized version of the same configuration pre-
viously captured in Figure 20-2.

Figure 20-5. The stylized version of the minimal example

Several visual aspects have changed from the minimal example:

Both Window and Alert instances have a new background color.

Both Window and Alert instances utilize a different font.

The text in the title bars of both Window and Alert instances appears in the middle of the
bar now.

The color of the text in the title bars (and in the Alert message and buttons) is changed to
match the bluish theme implemented by our example.

The peculiarities in the implementation of styles in the cases of the Window and Alert components
have been exploited in our example by arranging the code in three major functions:

498

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 498

setWindowStyles: Sets the styles of Window instances on a per-instance basis. It is invoked just
after creating a new Window instance and utilizes the instance setStyle method to define
both its themeColor and backgroundColor style properties.

setAlertStyles: Sets the styles of Alert instances on a per-instance basis. It is invoked just
after creating a new Alert instance and utilizes the instance setStyle method to define its
themeColor and backgroundColor style properties, in addition to some of its text-related style
properties (fontFamily, fontSize, fontWeight, and textAlign).

setGlobalStyles: The previous two functions define style properties on a per-instance basis in
the same way adopted in many other examples in this book. It is this function that takes care
of the peculiar global styles implemented by the Window and Alert components. It sets several
text-related style properties using the windowStyles global style object of the Window compo-
nent to avoid such style definitions being inherited by the content object of Window instance.
It also creates three CSSStyleDeclaration instances, used to define a different text color
for each of the three global styles specifically implemented by the Alert component:
titleStyleDeclaration, messageStyleDeclaration, and buttonStyleDeclaration.

By following the approach illustrated here, you can implement a custom consistent look for both the
Window and Alert component. However, you may have noticed that there are two parts of both com-
ponents that are not affected by styles: the title bar background and, in the case of the Window
component, the close button located on its right side.

Customizing those visual aspects requires the use of skins, as you are going to see in the next section.

Skinning the Window and Alert components
Completing the customization of the Window and Alert components involves providing new skins for
the title bar and, in the case of the Window component, the close button.

Skin properties of the Window component
The Window component implements five skin properties, allowing you to skin its instances separately,
if needed.

One of the Window’s skin properties, skinTitleBackground, is dedicated to the title bar and used
when drawing the title bar’s background. Its default definition is

var skinTitleBackground:String = "TitleBackground";

The remaining four skin properties (skinCloseUp, skinCloseOver, skinCloseDown, and
skinCloseDisabled) are utilized to skin the four states (up, over, down, and disabled) of the close
button that can appear on the right side of the title bar. Their default definitions are

var skinCloseUp:String = "CloseButtonUp";
var skinCloseOver:String = "CloseButtonOver";
var skinCloseDown:String = "CloseButtonDown";
var skinCloseDisabled:String = "CloseButtonDisabled";

499

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 499

Skin properties of the Alert component
The Alert component implements its own style properties, and their implementation is quite different
from the style properties of the Window component.

The greatest difference is in the fact that the Alert component implements its style properties as
static properties. As a result, you can assign a custom skin to a style property of the Alert component
by using a reference to its class name, as in

Alert.titleBackground = "CustomAlertTitleBackground";

Since the linkage identifier of the new skin is assigned to a static style property, the new skin will be
applied to all the Alert instances. This is not really a limitation, since the intended use of Alert com-
ponent makes it impossible to have more than one Alert instance on stage at the same time.

The titleBackground style property referred to in the previous line of code is the equivalent of
the skinTitleBackground style property of the Window component: it defines the background of the
title bar.

The Alert component also defines six skin properties that are used to skin the buttons that appear in
its content area:

buttonUp

buttonUpEmphasized

buttonDown

buttonDownEmphasized

buttonOver

buttonOverEmphasized

The peculiarity of these skins is that they allow you to influence not only three of the typical states of
a button (up, over, and down), but also the way a button looks when emphasized. A button is empha-
sized by the component architecture when it has been assigned the role of default button.

The skin properties of the Alert buttons are undefined by default, meaning that the default appear-
ance of those buttons will be similar to that of instances of the Button component.

Adding skins to our previous stylized example
The following example completes the look defined by the stylized example in the previous section by
adding a few custom skins to the Window and Alert instances:

1. Open the document windows03.fla created earlier and save it in a new folder as windows04.fla.

2. Create a new movie clip symbol by selecting Insert ➤ New Symbol. Define the symbol name as
CustomAlertTitleBackground and click the Advanced button, if visible, to show Linkage prop-
erties. Click the Export for ActionScript checkbox and specify the following AS 2.0 Class:
mx.skins.SkinElement. This symbol will be used to skin the background of the title bar of
Alert instances.

500

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 500

3. Use the Rectangle tool to draw a borderless shape inside the newly created symbol. The shape
should have the following attributes: (color: #9999FF, X:0, Y:0, W:400, H:20).

4. Create a new movie clip symbol by selecting Insert ➤ New Symbol. Define the symbol name as
CustomWindowTitleBackground and click the Advanced button, if visible, to show Linkage
properties. Click the Export for ActionScript checkbox and specify the following AS 2.0 Class:
mx.skins.SkinElement. This symbol will be used to skin the background of the title bar of
Window instances.

5. Use the Rectangle tool to draw a borderless shape inside the newly created symbol. The shape
should have the following attributes: (color: #CCCCFF, X:0, Y:0, W:400, H:16).

6. Create a new movie clip symbol by selecting Insert ➤ New Symbol. Define the symbol name as
CustomCloseButtonUp and click the Advanced button, if visible, to show Linkage properties.
Click the Export for ActionScript checkbox to ensure that the symbol gets the default linkage
identifier and is exported. This symbol will be used to skin the up state of the close button in
the title bar of Window instances.

7. Draw a sort of “X” graphic in the new symbol or reuse the graphic that you can find in the
source file associated with this chapter. Alternatively, experiment with your own icon, which
should be located at (X:5, Y:4) and have an approximate dimension of 7✕7 pixels.

8. Following a similar process to the one illustrated in the previous two steps, create another
three movie clip symbols to skin the remaining states of the close button. The names (with cor-
responding linkage identifiers) of the new symbols must be CustomCloseButtonDisabled,
CustomCloseButtonDown, and CustomCloseButtonOver.

9. Create a new ActionScript file and save it as test.as in the same folder as the windows04.fla
file.

10. Add the following code to the ActionScript file you just created:

import mx.managers.PopUpManager;
import mx.containers.Window;
import mx.controls.Button;
import mx.controls.Alert;
import mx.styles.CSSStyleDeclaration;

var windowId:Number = 0;
var coords:Array = [50, 70, 90, 110, 130, 150, 170, 190, 210, 230];
var currentWindow:Window;

function onUserChoice(eventObject:Object):Void {
if (eventObject.detail == Alert.YES) {

currentWindow.deletePopUp();
}

}

501

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 501

function getWindowInitObject(Void):Object {
return {_x:coords[windowId % coords.length],

_y:coords[windowId % coords.length],
_width: 400,
_height: 400,
closeButton:true,
title: "Window [" + (++windowId) + "]",
skinCloseUp: "CustomCloseButtonUp",
skinCloseOver: "CustomCloseButtonOver",
skinCloseDown: "CustomCloseButtonDown",
skinCloseDisabled: "CustomCloseButtonDisabled",
skinTitleBackground: "CustomWindowTitleBackground"

}
}

function click(eventObject:Object):Void {
var win:Window;
var alert:Alert;
var target:Object = eventObject.target;
switch (target._name) {

case "btnCreateWindow":
win = Window(PopUpManager.createPopUp(this, Window,

➥ false, getWindowInitObject()));
setWindowStyles(win);
win.addEventListener("click", this);
break;

default:
currentWindow = Window(target);
alert = Alert.show("Delete " + target.title +

➥ " ?", "Confirmation Request", Alert.YES | Alert.NO,
➥ null, onUserChoice, null, Alert.NO);

setAlertStyles(alert);
}

}

function setGlobalStyles(Void):Void {
var winStyles:Object = _global.styles.windowStyles;
winStyles.setStyle("color", 0x0000aa);
winStyles.setStyle("fontFamily", "Courier New");
winStyles.setStyle("fontSize", 14);
winStyles.setStyle("fontWeight", "bold");
winStyles.setStyle("textAlign", "center");

502

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 502

var cssTitle = new CSSStyleDeclaration();
var cssMessage = new CSSStyleDeclaration();
var cssButton = new CSSStyleDeclaration();
cssTitle.setStyle("color", 0x0000aa);
cssMessage.setStyle("color", 0x000080);
cssButton.setStyle("color", 0x0000ff);
Alert.titleStyleDeclaration = cssTitle;
Alert.messageStyleDeclaration = cssMessage;
Alert.buttonStyleDeclaration = cssButton;

}

function setWindowStyles(win:Window):Void {
win.setStyle("themeColor", 0x0000ff);
win.setStyle("backgroundColor", 0xddddff);

}

function setAlertStyles(alert:Alert):Void {
alert.setStyle("themeColor", 0x0000aa);
alert.setStyle("backgroundColor", 0xaaaaff);
alert.setStyle("fontFamily", "Courier New");
alert.setStyle("fontSize", 14);
alert.setStyle("fontWeight", "bold");
alert.setStyle("textAlign", "center");

}

var btn:Button = createClassObject(Button, "btnCreateWindow", 1,
➥ {_x:10, _y:10, label:'Create Window'});
btn.addEventListener("click", this);

setGlobalStyles();

Alert.titleBackground = "CustomAlertTitleBackground";

11. Save the windows04.fla and test.as files.

When you test this last example (create five Window instances by clicking the Create Window button
and then try to close the last one by clicking its close button), you will end up with a configuration of
the stage similar to the ones resulting from the previous examples in this chapter.

You will also notice that the new custom skins have replaced the default one, producing a look like the
one shown in Figure 20-6.

503

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 503

Figure 20-6. The stylized and skinned version of the minimal example

The five custom skins where applied to each Window instance during their creation process by
extending the definition of the initialization object returned by the getWindowInitObject function as
follows:

function getWindowInitObject(Void):Object {
return {_x:coords[windowId % coords.length],

_y:coords[windowId % coords.length],
_width: 400,
_height: 400,
closeButton:true,
title: "Window [" + (++windowId) + "]",
skinCloseUp: "CustomCloseButtonUp",
skinCloseOver: "CustomCloseButtonOver",
skinCloseDown: "CustomCloseButtonDown",
skinCloseDisabled: "CustomCloseButtonDisabled",
skinTitleBackground: "CustomWindowTitleBackground"

}
}

504

CHAPTER 20

5939CH20.qxd 1/25/06 11:24 AM Page 504

In our example, Alert instances now have a slightly different title bar from Window instances, since a
separate skin was provided for it and set globally in the example’s last line:

Alert.titleBackground = "CustomAlertTitleBackground";

There are a couple of details in the last example related to the title bar skins of both the Window and
Alert components that should not pass unnoticed:

The symbol used to skin a title bar defines the height of the title bar. Both the Window and
Alert instances now show a thinner title bar since their custom skins are 16 and 20 pixels tall
respectively, while the original, default skin used by both components is implemented by a
symbol that is significantly taller (30 pixels).

Simply providing a graphic is not sufficient in the case of the symbol used to skin the title bar.
You also have to associate an ActionScript class (mx.skins.SkinElement) in order to imple-
ment the skin resizing behavior. You don’t have to implement this class, though, since it is
included in the component architecture.

Reasons for subclassing the Window and
Alert components

The most typical reason for subclassing a component is to encapsulate styles and skins into its sub-
classed version so that it can be reused both quickly and uniformly inside your own projects.

In addition, the Window component gives you another strong reason that makes subclassing it a par-
ticularly attractive option: as you have learned from this chapter, the content area of the Window
component is empty by default, and it is your responsibility to implement its content, reusing some or
all of the techniques illustrated earlier.

Because of this, the Window class is typically subclassed to create document-oriented views, each of
them specialized in the representation of a specific document type.

505

THE WINDOW AND ALERT COMPONENTS

5939CH20.qxd 1/25/06 11:24 AM Page 505

5939CH21.qxd 1/25/06 11:25 AM Page 506

507

Chapter 21

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 507

The structure of this chapter slightly differs from the other chapters in Part 3 of the book because its
most important topic is not a specific component but the use of the scrollbars in the design of the
component architecture.

Scrollbars play an important role as subcomponents in the implementation of several important com-
ponents: the ComboBox, DataGrid, List, ScrollPane, TextArea, and Tree components all utilize the same
subcomponent to scroll their content.

In addition to those scrollbars, the architecture also provides the UIScrollBar, which is a rather odd
component sharing the same functionality of the other scrollbars, although its range of application is
rather limited.

The next section shows you the peculiar purpose of the UIScrollBar, while the second part of the
chapter shows you how to customize the scrollbars when they appear as subcomponents inside larger
components.

Minimal example of the UIScrollBar component
The UIScrollBar component is probably the legacy of some functionality that has not yet reached
a proper level of maturity. Still, it is something of a curiosity because it is the only true example of a
plug-and-play component in the component architecture.

Its practical use, however, is almost pointless, since a similar, better, and more component-oriented
functionality is provided by the TextArea component that is described in Chapter 18.

The current limitation of the UIScrollBar component is that it only works with native text fields and,
because of that, its functionality strictly resembles that of the TextArea component, although it does
not achieve the same level of encapsulation and flexibility.

However, you may find it useful if you are designing an interface where the scrollbar must not be visu-
ally attached to the text field, in which case you can also make it smaller or bigger than its associated
text field.

The minimal example that follows will show you the sole purpose of the UIScrollBar component: to
scroll the content of a text field.

1. Create a new Flash document and save it as scrollbars01.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, set its dimen-
sions as 400 ✕ 200 pixels, and select a background color of #3399CC.

The completed source code introduced in this chapter can be found in the package
src21.zip, downloadable from this book’s page at www.friendsofed.com.

508

CHAPTER 21

5939CH21.qxd 1/25/06 11:25 AM Page 508

3. Use the Text tool to create an input text field on stage. Figure 21-1 shows the Properties panel
that you can use as reference for creating a text field with similar properties. While you can
experiment with a slightly different size and location for the text field, do not forget to define
its instance name as text01, define its type as Input Text, and turn on its border option to make
it visible on the stage.

Figure 21-1. Properties of the text field in the minimal example

4. Turn on the object snapping by selecting View ➤ Snapping ➤ Snap to Objects.

5. Drag the UIScrollBar component on stage, paying particular attention to dropping it inside the
bottom half of the text field area. By doing so, the newly created instance will automatically
reposition and resize itself to fit underneath the text field. If this does not happen at your first
attempt, drag the newly created instance inside the text field area until you are successful.
Figure 21-2 shows how the combination text field and UIScrollBar instance should appear
on stage.

Figure 21-2. The stage of the minimal example after
snapping the UIScrollbar instance

6. Save the scrollbars01.fla file.

Testing the example will result in a runtime stage that looks very similar to the one shown in Figure 21-3.
However, if you start writing inside the text field on stage and keep writing, you will notice that the
UIScrollBar instance will become alive once the text field contains enough content to be scrolled.
Figure 21-3 shows the lively appearance of the UIScrollBar instance after you reached that point.

Figure 21-3. The UIScrollBar appearance after you have added
enough content to the text field

509

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 509

Once alive, the UIScrollBar instance resembles the same scrollbars that you have found inside several
standard components of the architecture and can be used to scroll the text field’s content.

As mentioned earlier, it does not make sense to use the combination native text field plus UIScrollBar
component when developing component-based applications, since the TextArea component can
achieve the same functionality and much more by encapsulating the native text field.

As a matter of fact, the UIScrollBar component is much more interesting as a subcomponent of several
standard components. In the next section, you will learn how to customize its appearance and behavior
when included inside very important components that support the scrolling of their contents.

Customizing the scrollbars inside a component
Scrollbars play a relevant, functional role in the context of many important standard components.

The following standard components include one or two instances of the UIScrollBar component in
order to implement content that can be scrolled horizontally and/or vertically:

ComboBox (examined in Chapter 13)

DataGrid (examined in Chapter 13)

List (examined in Chapter 13)

ScrollPane (examined in Chapter 15)

TextArea (examined in Chapter 18)

Tree (examined in Chapter 19)

The UIScrollBar instances within those components are not accessible directly. However, you can rede-
fine the skins of the scrollbar globally, defining a new, consistent look for the scrollbars inside each of
the components in the previous list.

This is the purpose of our next example, divided into two phases:

1. Create a stylized version of a DataGrid instance.

2. Redefine the appearance of both the horizontal and vertical scrollbars to match the new look
of the DataGrid instance.

Step 1: Building a stylized version of the DataGrid component
In this section, you are going to quickly implement a stylized version of the DataGrid component in
order to customize the look of the scrollbars in the next step. (Note that Chapter 13 already contains
a stylized version of the DataGrid component, demonstrating in greater detail how the style properties
influence that component.)

1. Create a new Flash document and save it as scrollbars02a.fla.

2. Open the Document Properties dialog box by selecting Modify ➤ Document, and set its
dimensions as 440✕340 pixels.

510

CHAPTER 21

5939CH21.qxd 1/25/06 11:25 AM Page 510

3. Drag the DataGrid component on stage to create one of its instances and name it datagrid01.
Using the Info panel, define its position as (X: 20, Y: 20) and its dimensions as (W: 400, H: 300).

4. Select the first frame in the document and add the following ActionScript line to it:

#include "test.as"

5. Create an ActionScript file and save it as test.as. Add the following lines to it:

import mx.controls.DataGrid;

function setDataGridStyles(instance:DataGrid):Void {
instance.setStyle("themeColor", 0xccccff);
instance.setStyle("borderStyle", "default");
instance.setStyle("backgroundColor", 0xddddff);
instance.setStyle("color", 0x003399);
instance.setStyle("rollOverColor", 0x77CCCC);
instance.setStyle("textRollOverColor", 0xFFFFFF);
instance.setStyle("textSelectedColor", 0xFFFFFF);
instance.setStyle("selectionColor", 0x55AAAA);
instance.setStyle("headerColor", 0xccccff);
instance.setStyle("vGridLines", true);
instance.setStyle("vGridLineColor", 0x2255BB);
instance.setStyle("alternatingRowColors",

➥ [0xddddff, 0xd9d9f9]);
instance.setStyle("fontFamily", "Tahoma");
instance.setStyle("fontSize", 12);
instance.hScrollPolicy = "auto";
instance.vScrollPolicy = "auto";

}

function populate(instance:DataGrid):Void {
var dp:Array = new Array();

for (var i=0; i < 20; i++) {
var element:Object = new Object();
for (var j=9; j >=0; j--) {

element["column" + j] = "item(" + j + "," + i +")";
}
dp.push(element);

}

instance.dataProvider = dp;
}

function initColumns(instance:DataGrid):Void {
for (var i=0; i < instance.columnCount; i++) {

instance.getColumnAt(i).width = 100;
}

}

511

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 511

setDataGridStyles(datagrid01);
populate(datagrid01);
initColumns(datagrid01);

6. Save the scrollbars02a.fla and test.as files.

Apart from setting style properties that are described in Chapter 13, our example implements a
couple of functions:

populate: Creates 200 elements in the DataGrid instance, distributed over 20 rows and
10 columns. Such fictious content will make the scrollbars active and provide content that can
be scrolled both horizontally and vertically.

initColumns: Invoked AFTER the DataGrid instance has been populated to set the width of
each column to 100 pixels.

Testing the movie will produce an almost completely stylized version of the DataGrid instance, as
shown in Figure 21-4.

Figure 21-4. An almost completely customized DataGrid instance

The example shows both the horizontal and vertical scrollbars in their default look. In the following
step, you are going to completely redefine their appearance.

Step 2: Skinning the scrollbars
The implementation of the UIScrollBar component relies on 31 exported symbols that can be found
inside the StandardComponents.fla file provided with the component architecture source code (see
Appendix A for locating this file and the rest of the component architecture source code in your system).

The very high number of exported symbols required by this component can make the process of skin-
ning the scrollbars globally a daunting task if not approached methodically.

512

CHAPTER 21

5939CH21.qxd 1/25/06 11:25 AM Page 512

However, note that no further code must be added to our previous example in order to skin the
scrollbars inside the DataGrid component: it is just a matter of including your own version of those
symbols in the FLA document’s library:

1. Open the file scrollbars02a.fla and save it in the SAME folder with the new name
scrollbars02b.fla. By saving it in the same folder as the previous example, you will allow the
new document to reuse the test.as file previously created.

2. Open the StandardComponents.fla file as an external library by selecting File ➤ Import ➤

Open External Library.

3. Locate the folder called Scrollbar Assets inside the StandardComponents.fla library. This
folder can be found inside Flash UI Components 2 ➤ Themes ➤ MMDefault.

4. Drag the Scrollbar Assets folder from the StandardComponents.fla library into the library
of the scrollbars02b.fla document. With this step you ensure that the library of the FLA file
implementing our example contains all of the symbols required to properly customize the
appearance of the scrollbars.

5. Close the StandardComponents.fla library and leave the library of the scrollbars02b.fla
document. You are now going to take a break to explore the contents of the Scrollbar
Assets folder just copied inside the scrollbars02b.fla library.

Figure 21-5 shows the contents of the scrollbars02b.fla library at this point. Note that the ScrollBar
Assets folder contains two subfolders that have been closed to show you its main structure:

The States folder, containing 26 exported symbols that implement parts of the scrollbar skins.
All of these symbols are required to implement a customized version of the scrollbars.

The Elements folder, containing 27 symbols. Only two of these symbols are required to imple-
ment a customized version of the scrollbars.

Three exported symbols: HScrollBar Assets, ScrollBar Assets, and VScrollBar Assets. All of these
symbols are required to implement a customized version of the scrollbars.

Figure 21-5. Main structure of the example’s library

Making a manageable custom version of the scrollbars is also a matter of doing some cleanup:

6. Open the Element folder in the scrollbars02b.fla library and delete 25 symbols in it, leaving
only the following two symbols: BtnDownArrow and BtnUpArrow.

513

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 513

The previous step removes all the predefined graphics that must be replaced in order to customize
the scrollbars’ skin. As a result, all of the symbols under the States folder are now made of several
empty layers. Filling up those symbols with the appropriate graphic is what you still have to do to com-
plete the customization process.

Your next task is to create seven graphic symbols that will be reused as skin parts inside the
26 exported symbols included in the States folder. Once created, you can store these seven graphic
symbols in a new folder called Graphics, inside the ScrollBar Assets folder.

Figure 21-6 shows the contents of the Graphics folder once you have created these new graphic
symbols. Note that the package associated with this chapter includes a completed version of the
scrollbars02b.fla file that you can use as reference while working through the current example.

Figure 21-6. The added Graphics folder and its seven new graphic symbols

7. Create a new symbol with the type Graphic. Define the symbol name as ScrollArrow.

The purpose of the ScrollArrow symbol is to provide the skin of the arrow used in the arrow buttons
of the scrollbar. This symbol must contain some kind of arrow of 6✕4 pixels positioned at (X: 0, Y: 0).
You can either draw your own arrow or cut and paste the graphic included in the completed version
of the scrollbars02b.fla file, shown in Figure 21-7.

8. Create a new symbol with the type Graphic. Define the symbol name as
ScrollButtonBackground.

Figure 21-7. The graphic in the ScrollArrow symbol

514

CHAPTER 21

5939CH21.qxd 1/25/06 11:25 AM Page 514

The purpose of the ScrollButtonBackground symbol is to provide the skin of the background in the
arrow buttons of the scrollbar. This symbol should contain a shape of 16✕16 pixels positioned at (X: 0,
Y: 0). You can either draw your own shape or cut and paste the graphic included in the completed ver-
sion of the scrollbars02b.fla file, shown in Figure 21-8.

Figure 21-8. The graphic in the
ScrollButtonBackground symbol

9. Create a new symbol with the type Graphic. Define the symbol name as ScrollThumbBottom.

The purpose of the ScrollThumbBottom symbol is to provide the skin of
the bottom section of the thumb in the scrollbar. This symbol should
contain a shape of 14✕5 pixels positioned at (X: 0, Y: 0). You can either
draw your own shape or cut and paste the graphic included in the com-
pleted version of the scrollbars02b.fla file, shown in Figure 21-9.

10. Create a new symbol with the type Graphic. Define the symbol
name as ScrollThumbGrip.

The purpose of the ScrollThumbGrip symbol is to provide the skin of
the grip icon that appears in the middle of the thumb in the scrollbar.
This symbol should contain a shape of 5✕8 pixels positioned at (X: 0,
Y: 0). You can either draw your own shape or cut and paste the graphic
included in the completed version of the scrollbars02b.fla file,
shown in Figure 21-10.

11. Create a new symbol with the type Graphic. Define the symbol
name as ScrollThumbMiddle.

The purpose of the ScrollThumbMiddle symbol is to provide the skin
for the middle section of the thumb in the scrollbar. Note that this sec-
tion appears behind the grip icon and should work as a sort of back-
ground for it. This symbol should contain a shape of 14✕1 pixels
positioned at (X: 0, Y: 0). You can either draw your own shape or cut
and paste the graphic included in the completed version of the
scrollbars02b.fla file, shown in Figure 21-11.

515

HANDLING THE SCROLLBARS

Figure 21-9. The graphic in the
ScrollThumbBottom symbol

Figure 21-10. The graphic in the
ScrollThumbGrip symbol

Figure 21-11. The graphic in the
ScrollThumbMiddle symbol

5939CH21.qxd 1/25/06 11:25 AM Page 515

12. Create a new symbol with the type Graphic. Define the
symbol name as ScrollThumbTop.

The purpose of the ScrollThumbTop symbol is to provide the skin
of the top section of the thumb in the scrollbar. This symbol
should contain a shape of 14✕5 pixels positioned at (X: 0, Y: 0).
You can either draw your own shape or cut and paste the graphic
included in the completed version of the scrollbars02b.fla file,
shown in Figure 21-12.

13. Create a new symbol with the type Graphic. Define the
symbol name as ScrollTrack.

The purpose of the ScrollTrack symbol is to provide the skin for
the scrollbar track. This symbol should contain a shape of 16✕4
pixels positioned at (X: 0, Y: 0). You can either draw your own
shape or cut and paste the graphic included in the completed
version of the scrollbars02b.fla file, shown in Figure 21-13.

The whole skin of the UIScrollBar component has been deconstructed into seven logical parts by the
seven graphic symbols that you have just created. Figure 21-14 shows how those graphic symbols are
combined to produce the custom appearance of the scrollbars in our example.

Figure 21-14. Roles of the graphic symbols in the scrollbar
customized appearance

The seven graphic symbols are reused in different combinations by the 26 exported symbols
requested to skin all of the states in a scrollbar instance. Table 21-1 shows which graphic symbols are
reused by each exported symbol.

516

CHAPTER 21

Figure 21-12. The graphic in the
ScrollThumbTop symbol

Figure 21-13. The graphic in the ScrollBar
symbol

5939CH21.qxd 1/25/06 11:25 AM Page 516

Table 21-1. Graphic symbols included in each exported symbol

Exported Symbol Included Graphic Symbols

ScrollDownArrowDisabled ScrollArrow and ScrollButtonBackground

ScrollDownArrowDown ScrollArrow and ScrollButtonBackground

ScrollDownArrowOver ScrollArrow and ScrollButtonBackground

ScrollDownArrowUp ScrollArrow and ScrollButtonBackground

ScrollThumbBottomDisabled ScrollThumbBottom

ScrollThumbBottomDown ScrollThumbBottom

ScrollThumbBottomOver ScrollThumbBottom

ScrollThumbBottomUp ScrollThumbBottom

ScrollThumbGripDisabled ScrollThumbGrip

ScrollThumbGripDown ScrollThumbGrip

ScrollThumbGripOver ScrollThumbGrip

ScrollThumbGripUp ScrollThumbGrip

ScrollThumbMiddleDisabled ScrollThumbMiddle

ScrollThumbMiddleDown ScrollThumbMiddle

ScrollThumbMiddleOver ScrollThumbMiddle

ScrollThumbMiddleUp ScrollThumbMiddle

ScrollThumbTopDisabled ScrollThumbTop

ScrollThumbTopDown ScrollThumbTop

ScrollThumbTopOver ScrollThumbTop

ScrollTrack ScrollTrack

ScrollTrackDisabled ScrollTrack

ScrollUpArrowDisabled ScrollArrow and ScrollButtonBackground

ScrollUpArrowDown ScrollArrow and ScrollButtonBackground

ScrollUpArrowOver ScrollArrow and ScrollButtonBackground

ScrollUpArrowUp ScrollArrow and ScrollButtonBackground

517

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 517

Completing our example is now a matter of including the proper graphic symbol instances inside the
exported symbols, as shown in Table 21-1. The ScrollThumbGripDown exported symbol, for example,
must include an instance of the ScrollThumbGrip graphic symbol, and so on.

The majority of the exported symbols listed in Table 21-1 contain only one graphic symbol instance
positioned at (X: 0, Y: 0), with a few exceptions:

In the cases of the eight exported symbols that include both the ScrollArrow and
ScrollButtonBackground graphic symbols, you must create two layers and place the
ScrollArrow instance on the top layer and the ScrollButtonBackground instance on the bottom
layer. The ScrollArrow instance should also be moved to appear in the center of the
ScrollButtonBackground instance.

In the case of the four exported symbols whose names begin with ScrollDown, you must also
flip the ScrollArrow instance vertically to make the arrow point down.

Each graphic symbol instance in all the exported symbols associated with the scrollbar’s thumb
(whose names include “Thumb”) should be placed at (X: 1, Y: 0) instead of at (X: 0, Y: 0).

When editing one of the exported symbols, you must create one new layer (or two depending on how
many graphic symbol instances you are going to add following the specifications in Table 21-1) and
delete all the preexisting layers. Those layers have been hosting the default design that you are replac-
ing with the new custom one.

If you have any doubt, open the completed version of the scrollbars02b.fla file in the package
associated with this chapter and check out its library.

Once the library of your last example is completed, you can test it and verify that the appearance of
the scrollbars inside the DataGrid instance has been completely redefined, as shown in Figure 21-15.

Figure 21-15. The completed customized version of the DataGrid
instance, scrollbars included

518

CHAPTER 21

5939CH21.qxd 1/25/06 11:25 AM Page 518

The significance of the name of the exported symbols listed in the first column of Table 21-1 is almost
self-descriptive. They contain a reference to the parts of a scrollbar instance (the buttons
“DownArrow” and “UpArrow,” the “Thumb” and its “ThumbGrip,” the “Track”) and also contain refer-
ences to a specific state of a particular part (“Up,” “Down,” “Over,” and “Disabled”).

Starting from our last example, you can play with the existing simplified graphic and end up with your
own custom version of the scrollbars to be used in your component-based applications.

As you can see, the process of skinning a scrollbar can be really lengthy, mostly because of the many
exported symbols that are required to produce a new skin.

However, once you have created a new skin following this approach, it will apply consistently and
seamlessly to all of the scrollbar instances in the component architecture, subcomponents included,
without requiring any further work.

Conclusion
This chapter concludes the third and last part of the book.

After reading the book from cover to cover, you can now enjoy a high degree of control over the
component architecture and its standard components and start implementing your own component-
based applications in Flash.

Hopefully, this book has shown you that components can be used conveniently to produce powerful
applications in a fraction of the time that would be required to develop the same applications without
using them.

A software developer knows that there always is a lot of work to do, but also knows how to have fun
doing it.

Enjoy your experiments and your next projects.

519

HANDLING THE SCROLLBARS

5939CH21.qxd 1/25/06 11:25 AM Page 519

5939CH21.qxd 1/25/06 11:25 AM Page 520

APPENDIXES

Part Four

5939ApxA.qxd 1/25/06 11:26 AM Page 521

5939ApxA.qxd 1/25/06 11:26 AM Page 522

523

Appendix A

When looking for the source code of the component architecture, you will find two
different file types:

The ActionScript files implementing the classes and components of the archi-
tecture

The FLA documents containing the components themselves and/or their
collection of skins

Their location, however, can vary from one machine to the next, depending on
several parameters:

The operating system that is running on your machine, Windows or Mac OS X

The application folder containing the installation of the Flash authoring
environment

The user folder that the operating system creates to host the data of your
account

The application folder at user level, which is a folder that you can find
somewhere inside your user folder and that is dedicated to storing installa-
tion and user-specific data of the Flash authoring environment

The version of your Flash authoring environment, which must be either
Flash MX 2004 or Flash 8

The language used by your Flash authoring environment, most frequently
English (en), although it could be one of several other languages supported
by the product

LOCATING THE SOURCE CODE OF THE
COMPONENT ARCHITECTURE

5939ApxA.qxd 1/25/06 11:26 AM Page 523

At installation time, Flash stores two identical copies of ActionScript source code in your system:

A Master Copy, which can be found in the application folder. This source code should never
be altered since it would not get recompiled. It is included to allow you to restore the User
Copy, if needed, or to simply read it.

A User Copy, which can be found in the application folder at user level. This source code will
be recompiled, if modified. Although it is not a recommended practice, you may use this copy
to create a customized, user-based version of the component architecture. Note that the
examples in this book reuse the functionality of the component architecture, extending or
even overriding part of it without ever modifying the original source code.

When looking for the ActionScript source code of the component architecture, you can use either the
files in the Master Copy or those in the User Copy as long as you do not change them.

The next two sections will tell you where those copies are on your machine depending on what oper-
ating system you work with.

If you are a Windows user
The Master Copy is located in the following folder:

{application folder}\{Flash version}\{language}\First Run\Classes\mx

Typical examples are

C:\Program Files\Macromedia\Flash MX 2004\en\First Run\Classes\mx

and

C:\Program Files\Macromedia\Flash 8\en\First Run\Classes\mx

The User Copy is located in the following folder:

{application folder at user level}\{Flash version}\{language}\Configuration\Classes\mx

Typical examples are

C:\Documents and Settings\{username}\Local Settings\Application Data\Macromedia
\Flash MX 2004\en\Configuration\Classes\mx

and

C:\Documents and Settings\{username}\Local Settings\Application Data\Macromedia
\Flash 8\en\Configuration\Classes\mx

Note that in both of the typical examples, you should replace {username} with your own account
name.

524

APPENDIX A

5939ApxA.qxd 1/25/06 11:26 AM Page 524

If you are a Mac user
The Master Copy is located in the following folder:

{application folder}/{Flash version}/{language}/First Run/Classes/mx

Typical examples are

HD/Applications/Macromedia/Flash MX 2004/en/First Run/Classes/mx

and

HD/Applications/Macromedia/Flash 8/en/First Run/Classes/mx

The User Copy is located in the following folder:

{application folder at user level}/{Flash version}/{language}/Configuration/Classes/mx

Typical examples are

HD/Drive/Users/{username}/Library/Application Support/Macromedia
/Flash MX 2004/en/Configuration/Classes/mx

and

HD/Drive/Users/{username}/Library/Application Support/Macromedia
/Flash 8/en/Configuration/Classes/mx

Note that in both of the typical examples, you should replace {username} with your own account
name.

FLA source files
The component architecture source code includes three important FLA documents:

StandardComponents.fla, containing the movie clips of each standard component in the
architecture

HaloTheme.fla, containing the assets of the default theme (Halo)

SampleTheme.fla, containing the assets of a simpler theme (Sample)

Windows users will find these files in the following folder:

{application folder}\{Flash version}\{language}\Configuration\ComponentFLA

Typical examples are

C:\Program Files\Macromedia\Flash MX 2004\en\Configuration\ComponentFLA

525

LOCATING THE SOURCE CODE OF THE COMPONENT ARCHITECTURE

5939ApxA.qxd 1/25/06 11:26 AM Page 525

and

C:\Program Files\Macromedia\Flash 8\en\Configuration\ComponentFLA

Mac users will find such files in the following folder:

{application folder}/{Flash version}/{language}/Configuration/ComponentFLA

Typical examples are

HD/Applications/Macromedia Flash MX 2004/en/Configuration/ComponentFLA/

and

HD/Applications/Macromedia Flash 8/en/Configuration/ComponentFLA/

Link them
To avoid looking for this information again and again, it may be a good idea to create a couple of
shortcuts to the folders containing the ActionScript and FLA source files respectively and place them
on your desktop or wherever you can easily access them.

526

APPENDIX A

5939ApxA.qxd 1/25/06 11:26 AM Page 526

5939ApxA.qxd 1/25/06 11:26 AM Page 527

5939ApxB.qxd 1/25/06 11:27 AM Page 528

529

Appendix B

The component architecture implements several transitions that can be applied
indifferently to movie clips or component instances. When used in this section, the
term movie clip refers to both movie clips and component instances.

A transition produces an animation that reveals or hides the content of a movie clip.
Two terms are commonly used to indicate whether the transition reveals or hides
content:

In: Indicates that the content will be revealed by the transition

Out: Indicates that the content will be hidden by the transition

If you want to use the transition classes by referring to their names in your code, you
must import the following packages:

import mx.transitions.*;
import mx.transitions.easing.*;

Transitions are applied to a movie clip via the TransitionManager class by invoking
the static method start, as in the following example:

TransitionManager.start(instance, transitionParams);

TRANSITIONS AND EASING CLASSES

5939ApxB.qxd 1/25/06 11:27 AM Page 529

The start method is capable of stopping a transition that is already occurring in order to start a new
one. The two parameters accepted by the start method are as follows:

instance: A reference to a movie clip instance

transitionParams: A reference to an object whose properties specify what type of transition
must be started plus several parameters that influence the transition’s behavior

Each transition type is named after the ActionScript class that implements it. The component archi-
tecture provides ten different types of transitions:

Blinds: Reveals or hides the content of a movie clip by utilizing animated stripes in a blinds
fashion

Fade: Reveals or hides the content of a movie clip by fading it in or out

Fly: Reveals or hides the content of a movie clip by sliding it in or out from a specified direction

Iris: Reveals or hides the content of a movie clip by using a circle-shaped or square-shaped
mask

Photo: Reveals or hides the content of a movie clip by fading it in and out with the addition of
a flashing effect, emulating the use of a photographic flash

PixelDissolve: Reveals or hides the content of a movie clip simulating a pixel-based screen by
hiding or showing a specified number of squares in a random sequence

Rotate: Reveals or hides the content of a movie clip by spinning it around an amount specified
in degrees

Squeeze: Reveals or hides the content of a movie clip by expanding or squeezing it in a speci-
fied dimension (horizontal or vertical)

Wipe: Reveals or hides the content of a movie clip by simulating the action of restoring or eras-
ing it in a specific direction

Zoom: Reveals or hides the content of a movie clip by enlarging or reducing its size in a zoom-
like motion

Parameters common to all of the transition types
Four parameters are common to all of the transition types:

type: This parameter specifies what type of transition should be started and accepts a refer-
ence to the transition class, as in the following:

type: Blinds;

direction: This parameter accepts a Number value specifying whether the transition will reveal
(0) or hide (1) the content of a movie clip, like so:

direction: 0; // revealing content, "in" transition
direction: 1; // hiding content, "out" transition

530

APPENDIX B

5939ApxB.qxd 1/25/06 11:27 AM Page 530

duration: This parameter accepts a Number value indicating the number of seconds of a transi-
tion’s duration, as in the following:

duration: 4;

easing: This parameter accepts the reference to a method or function. Such a function must
define the accelerations in the transition’s animation, if any. The following section is dedicated
to the easing classes that provide several methods that you can use as values for the easing
parameter.

Easing classes
The component architecture provides six easing classes:

None: The methods of this class specify that the animation of a transition will have no acceler-
ations.

Back: The methods of this class specify that the animation of a transition will have accelerations
that will temporarily extend the animation itself beyond its intended range.

Bounce: The methods of this class specify that the animation of a transition will have accelera-
tions that will simulate a bouncing motion at one or both ends of the animation.

Elastic: The methods of this class specify that the animation of a transition will have acceler-
ations that will simulate an elastic effect at one or both ends of the animation.

Regular: The methods of this class specify that the animation of a transition will have a steady
acceleration at the beginning or a steady deceleration at the end, or both.

Strong: The methods of this class specify accelerations that are similar to those of the Regular
class, although more pronounced.

Each easing class provides three different methods that can be assigned to the easing parameter of a
transition:

easeIn: Applies an acceleration at the beginning of the animation

easeOut: Applies an acceleration at the end of the animation

easeInOut: Applies accelerations to both ends of the animation

The None easing class also provides a fourth method, easeNone, which is typically used as the default
value assigned to the easing parameter of a transition. Note that the four methods of the None easing
class (easeNone, easeIn, easeOut, and easeInOut) implement the same easing function.

The following lines provide four examples of values that can be assigned to the easing parameter of
a transition:

easing: None.easeNone;
easing: Bounce.easeIn;
easing: Elastic.easeInOut;
easing: Strong.easeOut;

531

TRANSITIONS AND EASING CLASSES

5939ApxB.qxd 1/25/06 11:27 AM Page 531

Transition-specific parameters
In addition to the four parameters listed earlier (type, direction, duration, and easing) that are
common to all of the transitions, some transition types require specific parameters that affect the
transition’s behavior. The following sections are dedicated to those specific parameters.

The Blinds transition
The Blinds transition requires two specific parameters:

dimension: Accepts a Number value defining whether the stripes are horizontal (0) or vertical (1)

numStrips: Accepts a Number value determining how many stripes will be used to reveal or hide
the content

The Fly transition
The Fly transition requires one additional parameter:

startPoint: Accepts a Number value from 1 to 9 defining the starting point of the transition.
The numeric values follow a positional rule similar to that of a phone keypad (1 = top left,
2 = top middle, 3 = top right, 4 = left, 5 = center, 6 = right, 7 = bottom left, 8 = bottom middle,
9 = bottom right).

The Iris transition
The Iris transition requires two specific parameters:

shape: Accepts a String value that must be either SQUARE or CIRCLE and defines the shape of
the mask that is revealing or hiding the content

startPoint: Same as for the Fly transition

The PixelDissolve transition
The PixelDissolve transition requires two specific parameters:

xSections: Accepts a Number value that defines the number of vertical sections that divide the
content when revealed or hidden by the pixel blocks

ySections: Accepts a Number value that defines the number of horizontal sections that divide
the content when revealed or hidden by the pixel blocks

The Rotate transition
The Rotate transition requires two specific parameters:

ccw: Accepts a Boolean value that, if true, defines the rotation as counterclockwise

degrees: Accepts a Number value (0 through 360) defining the span of the rotation in degrees

532

APPENDIX B

5939ApxB.qxd 1/25/06 11:27 AM Page 532

The Squeeze transition
The Squeeze transition requires one additional parameter:

dimension: Accepts a Number value defining the direction of the expansion or contraction:
0 (horizontal) or 1 (vertical)

The Wipe transition
The Wipe transition requires one additional parameter:

startPoint: Same as for the Fly transition

Example of a transition parameters object
The following example shows how the TransitionManager class, the parameters of a transition class,
and a method of an easing class work together to start a specific transition:

import mx.transitions.*;
import mx.transitions.easing.*;

var outBlinds = {
type: Blinds,
direction: 1,
duration: 3,
easing: Regular.easeInOut,
numStrips: 20,
dimension: 1

};

TransitionManager.start(myClip, outBlinds);

To try the previous example in a Flash document, you must create a movie clip symbol with some con-
tent in it and create one instance of that symbol on stage, giving it the name of myClip. Refer to
Chapter 4 for a complete example utilizing this approach.

533

TRANSITIONS AND EASING CLASSES

5939ApxB.qxd 1/25/06 11:27 AM Page 533

5939INDEX.qxd 1/25/06 11:28 AM Page 534

A
accessibility, 51–52
accessing attributes of node, 214–215
Accordion component

description of, 75, 254
implementing, 255
minimal example of

code-based version, 255
codeless version, 256
purposes, 254–255
XLEFF version, 257

Properties panel and, 256
richer example of

code-based version, 261–262
codeless version, 259–261

skin properties
borders, 265
headers, 266–268

solved mysteries
header styles, creating on per-instance

basis, 271–272
inheriting styles, 268–271

structure of
overview of, 257
segment content area, 258
segment header, 258

subclassing and, 273
supported styles

common, 263–264
overview of, 262
specific, 265

AccordionHeader class, 270
actions layer, 87
ActionScript class

associating symbol with, 6
Object class and, 29

535

INDEX

ActionScript Settings dialog box, Export frame
for classes option, 183

addEventListener method, 23
addMenuItem method (Menu class), 401, 404
Alert component

description of, 76
minimal example of

dynamically creating alerts, 489–490
dynamically creating windows, 487–488
overview, 484–487

overview of, 484
skin properties, 500–505
subclassing, 505
supported styles, 495–499

alerts, creating dynamically, 489–490
altering architecture, 137
alternatingRowColors style, 337
analyzing size report, 181–182
ancestors, 95
animated behavior andProgressBar

component, 377–379
animation styles and Tree component, 466
Apple Macintosh source code, looking

for, 523
application framework, 34, 92
applications

building using screens
content hierarchy in nested

screens, 95–96
forms visibility, 98
overview of, 93–95
path to external screens, 101–102
screen hierarchies with external

subtrees, 99–101
slide presentation, creating

dynamically, 102–114
slides and forms, 96–99

5939INDEX.qxd 1/25/06 11:29 AM Page 535

component-based, codeless version of,
deploying, 256

event-driven, 21
multiplier, 64

apps subtree, 184
arrow buttons in calendar view, skinning, 363–364
assets layer, 87
assigning objects to variables, 15
associating symbol with ActionScript class, 6
attributes of node, accessing, 214–215
authoring environment

properties in, 12–14
testing movie within, 7

authoring parameters, comparing for CheckBox
and RadioButton, 297–298

authoring time, changing skins at, 237–240
autoLoad parameter (Loader component), 374
autoSize parameter (Label component), 442–445

B
Back class, 529
background, hiding, 450–452
bar of ProgressBar component, 389
base classes, 14
behavior styles, 221
benefits of component architecture, 132
Blinds transition

description of, 528
parameters, 530

border styles and Button component
Halo theme case, 281–282
Sample theme case, 282–284

borderColor style, 361
borders

Accordion component, 265
View class and, 53

Bounce class, 529
bounding box layer, 88
branch nodes of Tree component, 461–462,

471–476
browser, tab order in, 123–124
browsing structure of XML document, 215–216

building
component instance

children, creating, 45
drawing step, 45–46
initialization step, 44

custom cell renderer, 343–345
stylized version of DataGrid component, 510–512

building application
content hierarchy in nested screens, 95–96
forms visibility, 98
path to external screens, 101–102
screen hierarchies with external subtrees, 99–101
screens, using, 93–95
slide presentation, creating dynamically

buttons-based navigation, implementing, 110
example, building, 103–104
forms, working with, 114
Loader components in child screens,

using, 111
navigation in master screen, adding, 109–110
overview of, 102
screen events and transition sequencing, 113
screen hierarchy, creating, 108
transition classes, importing, 112
transitions, introducing, 111

slides and forms, 96–99
business logic tier, 64, 207
Button class and Accordion component headers

and, 266–268. See also CheckBox component;
RadioButton component

Button component
complexity of, 290
description of, 66, 276
example using parameters of, 278–279
minimalist example of, 276–277
number of skins of

emphasizing button instances and, 289
iconic buttons and, 289–290
implementing toggle buttons and, 289

parameters of, 277
purely coded skins and, 234–236
Reusability Card and, 61
skin properties

overview of, 284
purely coded skin, implementing, 290–293

INDEX

536

5939INDEX.qxd 1/25/06 11:29 AM Page 536

purely coded skin, replacing with
handcrafted, 285–288

subclassing, 293
supported styles

common, 280
specific, 281–284
types of, 279

button components, 65. See also Button
component; CheckBox component;
RadioButton component

Button instances
at authoring time, 287
emphasizing, 289
at runtime, 287
states of, 287

buttons
emphasized, 500
generating, 143–144
iconic, 289–290
pill, implementing, 290–293
toggle, implementing, 289

buttons-based navigation, implementing, 110
ButtonSkin symbol, 236

C
CDATA section, 197
cell, description of, 339
cell renderer

building custom, 343–345
description of, 340

cell rendering
building custom cell renderer, 343–345
ComboBox, DataGrid, and List

components, 339–343
skinning compared to, 338

cell-structured components
ComboBox, 70
DataGrid, 71
description of, 65
List, 70
Tree, 72
types of, 69

chain of inheritance, 20

change event
NumericStepper class and component, 430
TextInput and TextArea components, 446–448
Tree component, 475

change event handler, 330
CheckBox component

altered skin, 239
assets of, 239
CheckFalseUp, skin 245
compiled, and custom skin, 238
description of, 66, 296, 305
Espresso skinning of, 238
falseUpIcon property, 241–243
handcrafted skins, 229–230
minimalist example of

comparing authoring parameters, 297–298
steps for, 296
XLEFF version, 297

mixed skins, 231
skin properties, 302–303
subclassing, 307
supported styles

common, 298–300
specific, 300–302

CheckFalseUp skin (CheckBox component), 245
child screen

description of, 94
Loader components, using in, 111

children
of Accordion component

overview, of 257
segment content area, 258
segment header, 258

in screen hierarchy, 95
children-based layout and View class, 53
class construct in component architecture,

relevance of, 4
class constructors

definition of, 6
empty, 15

class styles, 152–153
class-level styles, 225–226

INDEX

537

5939INDEX.qxd 1/25/06 11:29 AM Page 537

classes
AccordionHeader, 270
ActionScript

associating symbol with, 6
Object class and, 29

Alert, 489
associating symbol with, 6
Back, 529
base, 14
Bounce, 529
Button, 266–268, 296
Colorable, 17–19
CSSStyleDeclaration, 223–224
custom, and XLEFF sampler, 167–168
CustomCellRenderer, 344
DataGridColumn, 345
easing, 529
Elastic, 529
Form, 92–93
importing transition, 112
Loader, 93
Main

event handler naming convention, 194
overview of, 187–188
skeleton of, 189–190
user interface events, handling, 190–193
XLEFF and, 145

manager
DepthManager, 115–120
FocusManager, 120–124
overview of, 114–115
PopUpManager, 124–128, 487, 493

MovieClip
depth, handling, 115
UIObject class and, 36

moving after first frame, 183
mx.core.UIObject, 36
None, 529
Object, 29
PopUpManager, 124–128, 487, 493
RectBorder, 265, 292
Screen, 92–93
ScrollView, 35, 54

Slide
methods, 97
overview of, 92–93
parameters, 97

Strong, 529
StyleManager, 115, 226
SystemManager, 115
TextField, 445
TransitionManager, 115, 527
TreeController, 474–476
UIComponent, 51–52
UIEventDispatcher, triggering, 22
UIObject

className property, overriding, 38
component architecture and, 36
component instances, building, 44–46
createClassObject method, 39, 487
creating component instance dynamically, 37
integrating Flash components in component

architecture, 40–43
legacy of, 36
support for styles and, 220
symbolName property, overriding, 38
symbolOwner property, overriding, 38

View, 53–54
Vogoness, 46–50
Window, 492
XLEFF and, 144–146
XML

code written by using, 209–210
properties, 206
services of, 202
tree-like structure and, 205
XModel class compared to, 210–216

XML manager, 145
XMLNode, 205–206
XMLStage, 145
XModel, 145, 209–210, 217

classic feature, 63
className property, overriding, 38
classpath, role of, 185–186
click function and Button component, 277
codeless version of component-based applications,

deploying, 256

INDEX

538

5939INDEX.qxd 1/25/06 11:29 AM Page 538

coding, generating richer menus by, 399–405
Color Names section of XML data structure, 151
color of component instances, setting in single

statement, 11
color styles

description of, 221
Tree component, 466

Colorable class and inheritance, 17–19
ComboBox component

cell rendering
building custom cell renderer, 343–345
overview of, 339–343

colors array and, 312
dataProvider property and, 311
description of, 70
List component and, 310
minimalist example of, 310–312
richer examples of

Custom Labels, 317–320
Itemization, 315–317
Making It Editable, 331–333
overview, 314
Scrolling, 320–322
Selection Management, 327–330
Sorting, 323–327

rowCount property, 322
skin properties, 338–339
subclassing, 347
supported styles

common, 336
overview of, 333–336
specific, 337

XLEFF version of, 313–314
common feature, 61
common styles

Accordion component, 263–264
Button component, 280
CheckBox component, 298–300
ComboBox, DataGrid, and List components, 336
DateChooser and DateField components, 360
description of, 279
Menu and MenuBar components, 409
RadioButton component, 298–300

communications, event-driven, 393

compatibility of versions of component
architecture, 4

complete event and Window instance, 493–494
complexity

of usage criteria for Reusability Card, 62
of user interface, 132

complexity relationship in component
architecture, 35

component architecture
altering, 137
application-oriented features of, 92
assets of, 34
benefits of, 132
class construct in, 4
core classes

ScrollView, 54
UIComponent, 51–52
UIObject, 36–39
View, 53–54

default theme of, 282
expanding, 136
exploiting, 132–133
extending, 134–135
history of, 4
inheritance and, 35–36
integrating Flash components in, 40–43
objective of, 133
overriding features of, 43
overview of, 34
source code of, looking for

FLA documents, 523
Mac user, 523
overview of, 521–522
shortcuts, creating, 524
Windows user, 522

storing knowledge into
from abstract to concrete, 137–138
altering, 137
expanding, 136
extending, 134–135

component framework
completing, 37
description of, 34
size of, 60

INDEX

539

5939INDEX.qxd 1/25/06 11:29 AM Page 539

component instances
See also Button instances; Menu instances
building

children, creating, 45
drawing step, 45–46
initialization step, 44

color of, setting in single statement, 11
constructors and, 6
creating, 5, 82
creating dynamically, 37, 82–84, 118–120
deselecting or selecting CheckBox or

RadioButton, 296
editing, 85
group name and RadioButton, 305
header styles, creating on per-instance basis,

271–272
Menu, 420–423, 404
RadioButtonGroup, 305–307
text values displayed in, customizing 319
window, 126–127, 493–494
_x and _y properties of, 43

component-based template
defining, 172–173
licensing issue

progressive update of template, 181
standard components source code,

including, 179–181
scenes

Dynamic Assets, 176–178
Main, 178–179
Preloader, 174–176
using, 173

size report, analyzing
moving classes after first frame, 183
moving symbols after first frame, 182
overview of, 181–182

components
See also component instances; specific

components; UI components
creating, 5–7
events

implementing custom, 21–25
listening to custom, 23
overview of, 20–21
triggering custom, 21–22

Flash, integrating in component architecture,
40–43

inheritance and
benefits of, 17–19
multiple inheritance, 19–20
overview of, 14–17

methods, adding, 7–8
plug and play, 62
polymorphism

benefits of, 30–31
example of, 26–29
signature of method and, 29–30

properties in authoring environment, 12–14
properties, implementing

explicitly, 9–10
implicitly, 11–12
overview of, 8

quirky, 62
refining implementation of, 46–50
robust, 62
skins and, 228
styles as properties of, 222–223
template for new, 54, 57
typical structure of

actions layer, 87
assets layer, 87
bounding box layer, 88
overview of, 85–86

user interaction, creating, 82–84
concrete methods, 44
constructors

definition of, 6
empty, 15

container, inheriting styles from, 226
container components, 65, 72. See also Accordion

component; Loader component; Scrollpane
component; Window component

content area of Accordion segment, 258–259
content hierarchy in nested screens, 95–96
content, managing

CDATA section, 197
overview of, 194–195
pushing separation paradigm further, 196–197
Window instance, 490–495

INDEX

540

5939INDEX.qxd 1/25/06 11:29 AM Page 540

contentPath parameter
Loader component, 374
ScrollPane component, 376

contentPath property (Window class), 492
Create Window button, 486
createChildren method, 45, 50
createClassObject method (UIObject class), 39, 487
createMenu method (Menu class), 397
createPopUp method (PopUpManager class), 488,

493
createSegment method (Accordion class), 255
CSSStyleDeclaration class, 223–224
custom events

implementing, 21–25
listening to, 23
triggering, 21–22

Custom Labels example of ComboBox, DataGrid,
and List components, 317–320

custom styles, 154–155
CustomCellRenderer class, 344
customization

overview of, 220
skin properties

handcrafted, 228–231
mixed, 231–234
overview of, 228
purely coded, 234–236

styles
class-level, 225–226
global, 227
inheriting from container, 226
lookup process, 221
overview of, 220
parameters controlled by, 221
as properties of component instance, 222–223
styleName property, 223–225

themes
changing skins and, 236–243
purpose of, 236
skins that reflect styles, 243–245
subclassing and, 245–249

customizing
See also customization
MenuBar skin, 417–420

scrollbars
building stylized version of DataGrid

component, 510–512
skinning scrollbars, 512–519

customSort function, 326–327

D
data tier, 64
DataGrid component

building stylized version of, 510–512
cell rendering

building custom cell renderer, 343–345
overview of, 339–343

colors array and, 312
dataProvider property and, 311
description of, 71
List component and, 310
minimalist example of, 310–312
richer examples of

Custom Labels, 317–320
Itemization, 315–317
Making It Editable, 331–333
overview, 314
Scrolling, 320–322
Selection Management, 327–330
Sorting, 323–327

rowCount property, 322
skin properties, 338–339
subclassing, 347
supported styles

common, 336
overview of, 333–336
specific, 336

workaround to bug in, 346
XLEFF version of, 313–314

DataGridColumn class, 345
dataProvider property

List, ComboBox, and DataGrid components, 311
Menu and MenuBar classes, 406, 422

DateChooser component
code version of, 353
description of, 77, 350
implementing, 353–355
minimal example of, 350

INDEX

541

5939INDEX.qxd 1/25/06 11:29 AM Page 541

range definition, 355–358
richer example of, 351–352
scroll event and, 358–359
skin properties, 363–364
solved mysteries

DateField bug, 367–368
displaying date in custom format, 367
overview of, 366

subclassing, 369
supported styles

common, 360
specific, 360–363

XLEFF version of, 351
DateField bug, 367–368
DateField component

code version of, 353
description of, 78, 350
implementing, 353–355
minimal example of, 350
range definition, 355–358
richer example of, 351–352
scroll event and, 358–359
skin properties, 363–366
solved mysteries

DateField bug, 367–368
displaying date in custom format, 367
overview of, 366

subclassing, 369
supported styles

common, 360
specific, 360–363

XLEFF version of, 351
DateField icon, skinning, 365–366
dateFormatter property (DateField

component), 367
dayNames parameter, 351
default button, setting, 123
defaultIcon style, 337
defective component, 62
defining

FLA template, 172–173
focus schema, 121–122

folder structure
classpath, role of, 185–186
overview of, 183–185

range, 355–358
deploying component-based applications without

coding, 256
DepthManager class

overview, of 114–115
stacking objects and, 116–117
testing behavior of, 118–120

descendants, 95
deselecting CheckBox or RadioButton instance, 296
designing systems, 145
developer and XML, 207–209
direction parameter (transitions), 528
disabledColor style property (Button

component), 280
disabledDays parameter, 351
disabledRanges property, 356
disabling approach to range definition, 356
disabling focus rect, 124
dispatchEvent method, 22
displaying date in custom format, 367
document library, adding symbols to, 83
doLayout method, 53
draw method, 49
drawing component instances, 45–46
drawRoundRect method and Halo theme, 293
duration parameter (transitions), 529
Dynamic Assets scene, 173, 176–178
dynamically creating

alerts, 489–490
component instances, 37, 82–84, 118–120
slide presentation
buttons-based navigation, implementing, 110
example, building, 103–104
forms, working with, 114
Loader components in child screens, using, 111
navigation in master screen, adding, 109–110
overview of, 102
screen events and transition sequencing, 113
screen hierarchy, creating, 108

INDEX

542

5939INDEX.qxd 1/25/06 11:29 AM Page 542

transition classes, importing, 112
transitions, introducing, 111
user interface, 157
windows, 487–488

E
easing classes, 529
easing methods, 111
easing parameter (transitions), 529
editable parameter (TextInput and TextArea

components), 441
editable property

adding to NumericStepper component, 435–436
List, ComboBox, and DataGrid components,

331–333
editing

component instances, 85
exported symbols, 518

Elastic class, 529
emphasized button, 500
emphasizing button instances, 289
enabling approach to range definition, 357
essential feature, 61
event communication mode of ProgressBar

component, 382
event handlers

definition of, 23
naming convention, 194

event management and XLEFF, 144
event-driven applications, 21
event-driven communications, 393
event-driven programming, facilitating

Main class
event handler naming convention, 194
overview of, 187–188
skeleton of, 189–190
user interface events, handling, 190–193

overview of, 186–187
events

See also specific events
implementing custom, 21–25
initialize, 243
intracomponent, 187
listening to custom, 23

overview of, 20–21
screen, 113
triggering custom, 21–22
XLEFF sampler and, 169

expanding architecture, 136
exploiting component architecture

benefits of, 132
objective of, 133

Export frame for classes option (ActionScript
settings dialog box), 183

Export in first frame option (Linkage Properties
dialog box), 182

extending
architecture, 134–135
XMLStage class, 146

extends keyword
ActionScript class and, 29
inheritance and, 14–17

F
Fade transition, 528
falseUpIcon property, 241–243
falseUpSkin symbol, 286
firstDayOfWeek parameter, 351
firstFrameExporter symbol, 177
FLA source files, 523
FLA template

defining, 172–173
licensing issue

progressive update of template, 181
standard components source code,

including, 179–181
scenes

Dynamic Assets, 176–178
Main, 178–179
Preloader, 174–176
using, 173

size report, analyzing
moving classes after first frame, 183
moving symbols after first frame, 182
overview of, 181–182

Flash
document types, 93
timeline, 92

INDEX

543

5939INDEX.qxd 1/25/06 11:29 AM Page 543

Flash components, integrating in component
architecture, 40–43

Flash movie, 92
Flash MX 2004 bug in NumericStepper

component, 431
Flash player and XML layout engine, 140
Flash rendering system and updating movie, 46
FLEX,XLEFF compared to, 140
Fly transition

description of, 528
parameters, 530

focus management, 52
focus rect, disabling, 124
focus schema, defining, 121–122
FocusManager class

default button, setting, 123
disabling focus rect, 124
focus schema, defining, 121–122
keyboard focus, managing, 120
overview of, 114
tab order in browser, 123–124

folder structure, defining
classpath, role of, 185–186
overview of, 183–185

Form Application document type, 93–96
Form class, 92–93
form rendered by XLEFF, 142
forms

purpose of, 96–98
slides compared to, 99
working with, 114

forms visibility, 98
frequency of use criteria for Reusability Card, 61
function libraries, exploiting, 132
functional containment relationship in component

architecture, 35
Functional Distance, 133
functions

customSort, 326–327
getWindowInitObject, 504
jumpToMain function, 176
setAccordionStyles, 264, 270
setAlertStyles, 499
setComboBoxStyles, 337
setCommonStyles, 336

setDataGridStyles, 337
setGlobalStyles, 300, 499
setListStyles, 337
setWindowStyles, 499

G
generating richer menus

by coding, 399–405
using XML, 405–408

get method, 11
getCellIndex method, 344
getDataLabel method, 344
getStyle method, 222
getWindowInitObject function, 504
global styles, 227
graphic styles, 221
graphic symbols for scrollbars, 516–519
Graphics folder, 514
grouping style properties

class-level styles and, 225–226
inheriting styles from container, 226
styleName property and, 223–225

groupName property (RadioButton instance), 305
guide layers, creating, 82

H
Halo theme

Button component and, 281–282
drawRoundRect method and, 293

handcrafted skins, 228–231
handling

combination linefeed/CR, 453–455
input process, 446–448

header styles of Accordion component, creating on
per-instance basis, 271–272

headerColor style, 336, 361
HeaderDateText style, 360
headerRelease event, 326
headers and Accordion component, 266–268
headerStyle style, 336
heavy component, 62
hGridLineColor style, 337
hGridLines style, 337

INDEX

544

5939INDEX.qxd 1/25/06 11:29 AM Page 544

hiding background, 450–452
hierarchical relationship in component

architecture, 35
history of component architecture, 4
hScrollPolicy property, 321
html parameter (Label and TextArea

components), 441

I
icon, Button instance, 279
icon parameter (Button component), 277
icon styles (Tree component), 467
iconic buttons, 289–290
identifying

node name, 211
node type, 212–213

implementation of components, refining, 46–50
implementing

Accordion component, 255
custom events, 21–25
properties

explicitly, 9–10
implicitly, 11–12
overview of, 8

purely coded skin, 290–293
toggle buttons, 289
XML attributes of Tree component, 477–480

importing transition classes, 112
incoming slide, 97
indeterminate appearance of ProgressBar

component, 379–380
Info panel

container discrepancy, 162
container level, 164
stage level, 162

inheritance
benefits of, 17–19
component architecture and, 35–36
multiple inheritance, 19–20
overview of, 14–17
specializing existing components and, 26

inheriting styles
Accordion component and, 268–271
from container, 226

init method, 44
initBranches method (Tree component), 479–480
initialize event, 243
innovative feature, 64
input process, handling, 446–448
Inspectable metadata tag, syntax of, 13
instances

See also Button instances; Menu instances
building

children, creating, 45
drawing step, 45–46
initialization step, 44

color of, setting in single statement, 11
constructors and, 6
creating, 5, 82
creating dynamically, 37, 82–84, 118–120
deselecting or selecting CheckBox or

RadioButton, 296
editing, 85
group name and RadioButton, 305
header styles, creating on per-instance basis,

271–272
Menu, 420–423, 404
RadioButtonGroup, 305–307
text values displayed in, customizing 319
window, 126–127, 493–494
_x and _y properties of, 43

intracomponent events, 187
invalidate method, 46
invalidation, 46
Iris transition

description of, 528
parameters, 530

isBranch attribute of Tree component,
implementing, 477–480

isInheritingStyle method, 226
Itemization example of ComboBox, DataGrid, and

List components, 315–317
iterative approach, 30

J
jumpToMain function, 176

INDEX

545

5939INDEX.qxd 1/25/06 11:29 AM Page 545

K
key-based navigation among content areas,

Accordion segment header, 258
keyboard access, 51–52
keyboard focus, managing, 120
keywords, extends

ActionScript class and, 29
inheritance and, 14–17

L
Label component

autoSize parameter, 442–445
description of, 68
minimal example of, 440–441
parameters of, 441–442
as read-only, 440
solved mysteries

handling combination linefeed/CR, 453–455
hiding background, 450–452

subclassing, 456
supported styles, 448–449
text content of, 440
XLEFF version of, 442

label parameter (Button component), 277
labelPlacement parameter (Button

component), 277
labelPlacement property (ProgressBar class), 391
layers of movie clips

actions, 87
assets, 87
bounding box, 88
defining, 86

leaf, 95
leaf nodes of Tree component, 461
length property (TextField class), 445
licensing issue and component-based template

progressive update of template, 181
standard components source code,

including, 179–181
linefeed/CR combination, handling, 453–455
linkage identifier, 37
Linkage Properties dialog box

ButtonSkin symbol and, 235–236
Export in first frame option, 182

List component
cell rendering

building custom cell renderer, 343–345
overview of, 339–343

colors array and, 312
ComboBox and DataGrid components and, 310
dataProvider property and, 311
description of, 70
minimalist example of, 310–312
richer examples of

Custom Labels, 317–320
Itemization, 315–317
Making It Editable, 331–333
overview, 314
Scrolling, 320–322
Selection Management, 327–330
Sorting, 323–327

rowCount property, 322
skin properties, 338–339
subclassing, 347
supported styles

common, 336
overview of, 333–336
specific, 337

XLEFF version of, 313–314
listeners, 21
listening to custom events, 23
listings, slideshow.as, 104–107
listOwner property, 344
Loader class, 93
Loader component

in child screens, using, 111
description of, 74, 372
minimal example of, 372–375
ProgressBar component

communication modes, 382
interaction, 382–383
mediated interaction, 385–386

ScrollPane component compared to, 376
skin properties, 389
subclassing, 393
supported styles, 387
XLEFF version of, 381

logic layer. See XML layout engine
logical tab, 120

INDEX

546

5939INDEX.qxd 1/25/06 11:29 AM Page 546

M
Macintosh (Apple) source code, looking for, 523
Main class

event handler naming convention, 194
overview of, 187–188
skeleton of, 189–190
user interface events, handling, 190–193
XLEFF and, 145

Main scene, 173, 178–179
maintenance features, evaluating, 133
Making It Editable example of ComboBox,

DataGrid, and List components, 331–333
manager classes

DepthManager, 115–120
FocusManager, 120–124
overview of, 114–115
PopUpManager, 124–128

managers, 92
managing

content
CDATA section, 197
overview of, 194–195
pushing separation paradigm further, 196–197
of Window instance, 490–495

keyboard focus, 120
manual communication mode of ProgressBar

component, 382
Master Copy of ActionScript source code, 522
master screen

description of, 94
navigation in, adding, 109–110

maturity criteria for Reusability Card, 63
maxChars property (TextField class), 445
mediated interaction

ProgressBar and Loader components, 385–386
ProgressBar and ScrollPane components, 386

Menu component
description of, 78, 396
minimal example of, 396–397
subclassing, 424
XLEFF version of, 408–409

Menu instances
nested, 404
persistent, creating, 420–423

MenuBar component
description of, 79, 396
minimal example of, 398–399
richer example of

coding, 399–405
XML, 405–408

skin properties, 414–417
solved mysteries

customizing skin, 417–420
persistent Menu instances, creating, 420–423

subclassing, 424
supported styles

common, 409
examples of, 410–414
specific, 410

XLEFF version of, 408–409
metadata tags to expose properties, 12–14
methods

addEventListener, 23
adding to components, 7–8
addMenuItem, 401, 404
createChildren, 45, 50
createClassObject, 39, 487
createPopUp, 488, 493
createSegment, 255
dispatchEvent, 22
doLayout, 53
draw, 49
drawRoundRect, 293
easing, 111
get, 11
getCellIndex, 344
getDataLabel, 344
getStyle, 222
init, 44
initBranches, 479–480
invalidate, 46
isInheritingStyle, 226
overriding, 43–44, 45, 52
placeholder, 44
registerInheritingStyle, 227
removeEventListener, 23
set, 11
setEnabled, 52
setStyle, 222, 224

INDEX

547

5939INDEX.qxd 1/25/06 11:29 AM Page 547

show, 489
signature of, 29–30
size, 45–46, 52
sortItems, 326
sortItemsBy, 323
types of, 44

Microsoft Windows source code, looking for, 522
mixed skins, 231–234
modal windows, 127–128
modeless windows, 127
modifying XLEFF sampler, 161–164
monthNames parameter, 351
movie clips

description of, 92
layers of

actions, 87
assets, 87
bounding box, 88
defining, 86

MovieClip class
depth, handling, 115
UIObject class and, 36

movies, updating, 46
moving

classes after first frame, 183
symbols after first frame, 182
window instances, 126

multiple inheritance, 19–20
multipleSelection property, 327, 329
multiplier applications, 64
multitiered model, 64
mx.core.UIObject class, 36
myColor property

authoring environment and, 12
implementing

explicitly, 9–10
implicitly, 11–12
overview of, 8

N
naming convention for event handler, 194
navigation

buttons-based, implementing, 110
for forms, 96

in master screen, adding, 109–110
to screen in other subsystem, 101–102
for slides, 97

nested Menu instances, 404
nested menus, describing, 406
nested screens, content hierarchy in, 95–96
nested structure of XML description, 139
nested styles, 153–154
node, accessing attributes of, 214–215
node name, identifying, 211
node type, identifying, 212–213
None class, 529
nonmodal windows, 127
novelty feature, 63
NumericStepper component

description of, 80, 428
minimal example of, 428–429
parameters of, 428
skin properties, 433–434
solved mysteries, 435–436
subclassing, 437
supported styles, 431–432
XLEFF version of

bug for Flash MX 2004 users, 431
change event and, 430
properties of, 429

O
Object class and ActionScript class, 29
object model

definition of, 204
XML and XMLNode classes, 206

object-oriented programming (OOP)
events and, 20
inheritance and, 14, 19
methods and, 7
polymorphism and, 26

objective of component architecture, 133
objects

assigning to variables, 15
event, properties of, 22
source,definition of, 21
stacking, 116–117

onClipEvent statement, 243

INDEX

548

5939INDEX.qxd 1/25/06 11:29 AM Page 548

one-to-one relationship between list and data
items, 315

onModelledObject event, 210
onNewPoem event, 22–23
OOP. See object-oriented programming
openDuration style, 337
opening branch nodes of Tree

component, 471–476
outgoing slide, 97
overriding

default theme, 282
features of component architecture, 43
methods, 43–44, 45, 52

owner property, 344

P
packages, 185
parameters

for all transitions, 528
Blinds transition, 530
Fly transition, 530
Iris transition, 530
PixelDissolve transition, 530
Rotate transition, 530
Squeeze transition, 531
of text components, 441–442
Wipe transition, 531

Parameters tab (Properties panel), 19, 351
parent screen, 95
parsing XML in ActionScript

object models and trees, 204–206
overview of, 202–203
typical job of developer, 207–209
XModel class and

notes on use of, 217
overview of, 209–210
XML class compared to, 210–216

password parameter (TextInput and TextArea
components), 442

path to external screens, 101–102
peculiar components

Alert, 76
DateChooser, 77
DateField, 78

description of, 65
Menu, 78
MenuBar, 79
NumericStepper, 80
ProgressBar, 80
types of, 76
UIScrollBar, 81

persistent Menu instances, creating, 420–423
Photo transition, 528
pill buttons, implementing, 290–293
PixelDissolve transition

description of, 528
parameters, 530

placeholder methods, 44
placing XML layout engine, 139
plug and play component, 62
polled communication mode of ProgressBar

component, 382
polymorphism

benefits of, 30–31
example of, 26–29
signature of method and, 29–30

popularity criteria for Reusability Card, 64
PopUpManager class

modal windows and, 127–128
overview of, 114
window instances, creating, 126–127, 487, 493
window-based system, creating, 124–126

pre-existing feature, 63
predefined styles, 153
preloader, 173
Preloader scene, 173–176
programmatically, changing skins, 240–243
ProgressBar component

animated behavior of, 377–379
communication modes, 382
description of, 80, 372
Loader component

interaction, 382–383
mediated interaction, 385–386

minimal example of, 377
ScrollPane component

interaction, 384
mediated interaction, 386

skin properties, 389–392

INDEX

549

5939INDEX.qxd 1/25/06 11:29 AM Page 549

solved mysteries, 392–393
subclassing, 393
supported styles, 387–388
as visual placeholder, 379–380
XLEFF version of, 381

progressive update of template, 181
properties

in authoring environment, 12–14
of event objects, 22
falseUpIcon, 241–243
groupName and RadioButton instance, 305
implementing

explicitly, 9–10
implicitly, 11–12
overview of, 8

labelPlacement, 391
NumericStepper component, 429, 435–436
prototype, 249
RadioButtonGroup class, 306
styleName, 223–225
styles as, 222–223
Styles section of XML data structure, 152
TextField class, 445

Properties panel
Accordion component, 256
Button component, 277–278
Parameters tab, 19, 351

prototype property, 249
purely coded skins

Button component and
implementing, 290–293
overview of, 284
replacing with handcrafted, 285–288

overview of, 234–236

Q
quirky component, 62

R
RadioButton component

description of, 67, 296, 305
minimalist example of

comparing authoring parameters, 297–298

steps for, 296
XLEFF version, 297

RadioButtonGroup instance, 305–307
skin properties, 302–303
subclassing, 307
supported styles

common, 298–300
specific, 300–302

RadioButtonGroup instance, 305–307
range definition, 355–358
rare feature, 61
RectBorder class

purely coded skins and, 292
themes and, 265

refining implementation of components, 46–50
registerInheritingStyle method, 227
registration point of symbol, 164
Regular class, 529
Relative Space, 116
removeEventListener method, 23
repeatDelay style

List, ComboBox, and DataGrid components, 336
NumericStepper component, 432

repeatInterval style
List, ComboBox, and DataGrid components, 336
NumericStepper component, 432

replacing purely coded skin with
handcrafted, 285–288

requesting user confirmation before closing
window

dynamically creating alerts, 489–490
dynamically creating windows, 487–488
overview of, 484–487

Reserved Space, 116–117
restrict property (TextField class), 446
retrieving

date, 353–355
value with NumericStepper component, 429–431

Reusability Card
complexity of usage criteria, 62
frequency of use criteria, 61
maturity criteria, 63
overview of, 60
popularity criteria, 64
stability criteria, 62

INDEX

550

5939INDEX.qxd 1/25/06 11:29 AM Page 550

robust component, 62
robustness, evaluating, 133
rollOverColor style, 336, 361
root element of XML document, 211
Rotate transition

description of, 528
parameters, 530

rowCount property, 322

S
Sample theme

Button component and, 282–284
styles supported by, 300–302

scalability
evaluating, 133
polymorphism and, 30–31

scaleContent parameter (Loader component), 374
scenes and component-based template

Dynamic Assets, 176–178
Main, 178–179
overview of, 172–173
Preloader, 174–176

Screen class, 92–93
screen events, 113
screen hierarchy

creating dynamically, 108
description of, 95
with external subtrees, 99–101
of subsystem, 102

screens
building application using

content hierarchy in nested screens, 95–96
forms visibility, 98
overview of, 93–95
path to external screens, 101–102
screen hierarchies with external

subtrees, 99–101
slide presentation, creating

dynamically, 102–114
slides and forms, 96–99

Flash timeline and, 92
Screens window, 94
scroll event and DateChooser and DateField

components, 358–359

ScrollArrow symbol, 514
scrollbars

customizing
building stylized version of DataGrid

component, 510–512
graphic symbols for, 516–519
skinning scrollbars, 512–519

description of, 508
mixed skins and, 233

ScrollButtonBackground symbol, 515
scrollDrag parameter (ScrollPane component), 377
Scrolling example of ComboBox, DataGrid, and List

components, 320–322
ScrollPane component

description of, 73, 372
minimal example of, 375–377
ProgressBar component

communication modes, 382
interaction, 384
mediated interaction, 386

skin properties, 389
subclassing, 393
supported styles, 387
XLEFF version of, 381

ScrollThumbBottom symbol, 515
ScrollThumbGrip symbol, 515
ScrollThumbMiddle symbol, 515
ScrollThumbTop symbol, 516
ScrollTrack symbol, 516
ScrollView class, 35, 54
segments of Accordion component

content area, 258
header, 258
overview of, 257

selected parameter (Button component), 278
selectedData property (RadioButtonGroup

class), 306
selectedDate property (Date class), 355
selectedIndex property, 329
selectedIndices property, 329
selecting CheckBox or RadioButton instance, 296
Selection Management example of ComboBox,

DataGrid, and List components, 327–330
selection property (RadioButtonGroup class), 306
selectionColor style, 336, 361

INDEX

551

5939INDEX.qxd 1/25/06 11:29 AM Page 551

separation paradigm, pushing further, 196–197
sequential approach, 31
set method, 11
setAccordionStyles function (Accordion

component), 264, 270
setAlertStyles function, 499
setComboBoxStyles function, 337
setCommonStyles function, 336
setDataGridStyles function, 337
setEnabled method, 52
setGlobalStyles function, 300, 499
setListStyles function, 337
setStyle method, 222, 224
setting date, 353–355
setWindowStyles function, 499
show method (Alert class), 489
showToday parameter, 351
siblings, 95
signature of methods, 29–30
simple component, 62
size method, 45–46, 52
size report and component-based template

moving classes after first frame, 183
moving symbols after first frame, 182
overview of, 181–182

skeleton of Main class, 189–190
skin properties

See also skinning; skins
Accordion component

borders, 265
headers, 266–268

CheckBox component, 302–303
ComboBox, DataGrid, and List

components, 338–339
DateChooser and DateField components

arrow buttons in calendar view, 363–364
DateField icon, 365–366

Loader component, 389
Menu and MenuBar components, 414–417
ProgressBar component, 389–392
RadioButton component, 302–303
ScrollPane component, 389

skinning
See also skin properties
Alert component, 500–505
Button component

number of skins of, 289–290
overview of, 284
purely coded skin, implementing, 290–293
purely coded skin, replacing with

handcrafted, 285–288
NumericStepper component and, 433–434
scrollbars, 512–519
Window component, 499–505

skins
See also skin properties; skinning
changing

at authoring time, 237–240
mirage of code separation and, 236–237
programmatically, 240–243

handcrafted, 228–231
mixed, 231–234
overview of, 228
purely coded, 234–236
specific context of, 220
that reflect styles, 243–245

Slide class
methods, 97
overview of, 92–93
parameters, 97

slide presentation, creating dynamically
buttons-based navigation, implementing, 110
example, building, 103–104
forms, working with, 114
Loader components in child screens, using, 111
navigation in master screen, adding, 109–110
overview of, 102
screen events and transition sequencing, 113
screen hierarchy, creating, 108
transition classes, importing, 112
transitions, introducing, 111

Slide Presentation document type, 93–96
slides

forms compared to, 99
purpose of, 96–98

INDEX

552

5939INDEX.qxd 1/25/06 11:29 AM Page 552

slideshow.as listing, 104–107
software internationalization, 194
solved mysteries

Accordion component
header styles, creating on per-instance

basis, 271–272
inheriting styles, 268–271

DateChooser and DateField components
DateField bug, 367–368
displaying date in custom format, 367
overview of, 366

Menu and MenuBar components
customizing skin, 417–420
persistent Menu instances, creating, 420–423

NumericStepper component, 435–436
ProgressBar component, 392–393
text components

handling combination linefeed/CR, 453–455
hiding background, 450–452

Tree component
implementing XML attributes, 477–480
overview of, 470
taking full control, 471–476

Sorting example of ComboBox, DataGrid, and List
components, 323–327

sortItems method, 326
sortItemsBy method, 323
source code

of architecture
from abstract to concrete, 137–138
altering, 137
expanding, 136
extending, 134–135
overview of, 134

looking for
FLA documents, 523
Mac user, 523
overview of, 521–522
shortcuts, creating, 524
Windows user, 522

source objects, 21
specific feature, 64

specific styles
Accordion component, 265
Button component and

Halo theme case, 281–282
Sample theme case, 282–284

CheckBox component, 300–302
ComboBox component, 337
DataGrid component, 336
DateChooser and DateField

components, 360–363
description of, 279
List component, 337
Menu and MenuBar components, 410
RadioButton component, 300–302

Squeeze transition
description of, 528
parameters, 531

stability criteria for Reusability Card, 62
stacking objects, 116–117
Stage section of XML data structure, 155–158
standard components source code, including,

179–181
stateless application framework, 97
storing knowledge into component architecture

from abstract to concrete, 137–138
altering, 137
expanding, 136
extending, 134–135

Strong class, 529
structure

of components
actions layer, 87
assets layer, 87
bounding box layer, 88
overview of, 85–86

of XML document, browsing, 215–216
style inheritance and Accordion component,

268–271
StyleManager class, 115, 226
styleName property, 223–225

INDEX

553

5939INDEX.qxd 1/25/06 11:29 AM Page 553

styles
See also common styles; specific styles
Button component

common, 280
specific, 281–284
types, of 279

class-level, 225–226
ComboBox component, 337
ComboBox, DataGrid, and List

components, 333–336
DataGrid component, 336
global, 227
global context of, 220
inheriting

Accordion component and, 268–271
from container, 226

List component, 337
lookup process, 221
NumericStepper component, 431–432
overview of, 220
parameters controlled by, 221
as properties of component instance, 222–223
skins that reflect, 243–245
styleName property, 223–225
XLEFF and, 144

Styles section of XML data structure
class styles, 152–153
custom styles, 154–155
nested styles, 153–154
overview of, 151–152
predefined styles, 153

styleSheet property (TextField class), 446
stylized version of DataGrid component,

building, 510–512
subclasses, 14
subclassing

Accordion component, 273
alternative to, 249
Button component, 293
CheckBox and RadioButton components, 307
ComboBox, DataGrid, and List components, 347
DateChooser and DateField components, 369
Loader component, 393
Menu and MenuBar components, 424

NumericStepper component, 437
overview of, 168, 245–248
ProgressBar component, 393
ScrollPane component, 393
text components, 456
Tree component, 480
Window and Alert components, 505

subsystem, 101
supported styles

Accordion component
common, 263–264
overview of, 262
specific, 265

DateChooser and DateField components
common, 360
specific, 360–363

Loader component, 387
Menu and MenuBar components

common, 409
examples of, 410–414
specific, 410

ProgressBar component, 387–388
ScrollPane component, 387
text components, 448–449
Tree component

animation, 466
color, 466
icon, 467
indentation, 467
minimal example and, 468–470
text, 466
useRollOver, 467

Window and Alert components, 495–499
symbolColor style of NumericStepper

component, 432
symbolName property, overriding, 38
symbolOwner property, overriding, 38
symbols defined to skin

CheckBox component, 304
RadioButton component, 304

symbols, moving after first frame, 182
SystemManager class, 115
systems, designing, 145

INDEX

554

5939INDEX.qxd 1/25/06 11:29 AM Page 554

T
Tab key and keyboard focus, 120
tab order in browser, 123–124
tab target, 121
templates

for building application made of subsystems,
creating, 99–100

component-based
defining, 172–173
licensing issue and, 179–181
screens and, 173–179
size report and, 181–183

for new components, 54, 57
testing

DepthManager behavior, 118–120
movie within authoring environment, 7
tab order of movie, 120
XML data, 159–161

text components
comparison of, 440
description of, 65
Label, 68
parameters of, 441–442
solved mysteries

handling combination linefeed/CR, 453–455
hiding background, 450–452

subclassing, 456
supported styles, 448–449
text field objects and, 445
TextArea, 69
TextInput, 68
types of, 67

text field objects and text components, 445
text parameter (text components), 441
text styles

Alert component, 495
description of, 221
Tree component, 466

text values displayed in component instances,
customizing, 319

TextArea component
description of, 69
handling input process, 446–448
minimal example of, 440–441

parameters of, 441–442
solved mysteries

handling combination linefeed/CR, 453–455
hiding background, 450–452

subclassing, 456
supported styles, 448–449
text content of, 440
UIScrollBar component compared to, 508
XLEFF version of, 442

textarea element and XML example, 215
textDecoration style property (Button

component), 280
TextInput component

description of, 68–69
handling input process, 446–448
minimal example of, 440–441
parameters of, 441–442
solved mysteries

handling combination linefeed/CR, 453–455
hiding background, 450–452

subclassing, 456
supported styles, 448–449
text content of, 440
XLEFF version of, 442

themeColor style property (Button
component), 280

themes
Button component and

Halo, 281–282
Sample, 282–284

changing skins
at authoring time, 237–240
mirage of code separation and, 236–237
programmatically, 240–243

default, overriding, 282
description of, 168, 185, 220
purpose of, 236
Sample, styles supported by, 300–302
skins that reflect styles, 243–245
subclassing

alternative to, 249
overview of, 245–248

todayColor style, 361
TodayStyle style, 360
toggle buttons, implementing, 289

INDEX

555

5939INDEX.qxd 1/25/06 11:29 AM Page 555

toggle parameter (Button component), 278
track of ProgressBar component, 389
transition classes, importing, 112
transition sequencing, 113
TransitionManager class, 115, 527
transitions

applying, 527
example of, 531
introducing, 111
parameters common to all types of, 528–529
types of, 528

transparent setting of backgroundColor style
property, 451

Tree component
description of, 72, 460
minimal example of, 460–464
nodes of, 463
solved mysteries

implementing XML attributes, 477–480
overview of, 470
taking full control, 471–476

subclassing, 480
supported styles

animation, 466
color, 466
icon, 467
indentation, 467
minimal example and, 468–470
text, 466
useRollOver, 467

XLEFF version of, 464–465
TreeController class, 474–476
triggering custom events, 21–22
type parameter (transitions), 528
type property of menu item, 401

U
UI components

button, 65–67
categories of, 65
cell-structured, 69–72
container, 72–75
peculiar, 76–81
text, 67–69

UIComponent class, 51–52
UIEventDispatcher class, triggering, 22
UIObject class

className property, overriding, 38
component architecture and, 36
component instances, building, 44–46
createClassObject method, 39, 487
creating component instance dynamically, 37
integrating Flash components in component

architecture, 40–43
legacy of, 36
support for styles and, 220
symbolName property, overriding, 38
symbolOwner property, overriding, 38

UIScrollBar component
description of, 81, 508
minimal example of, 508–510
mixed skins and, 232–233

updating movie, 46
user confirmation, requesting before closing

window
alerts, dynamically creating, 489–490
overview of, 484–487
windows, dynamically creating, 487–488

User Copy of ActionScript source code, 522
user interface

complexity of, 132
describing via XML, 139
dynamically generated, 157
XLEFF equivalent for generating, 297
XLEFF sampler

custom classes and, 167–168
events and, 169
overview of, 164–165
patterns of, 165
substructures of, 166–167

user interface events, handling, 190–193
user interface tier, 64

V
value, retrieving with NumericStepper

component, 429–431
variables, assigning objects to, 15
verifying class style before creating object, 300

INDEX

556

5939INDEX.qxd 1/25/06 11:29 AM Page 556

versions of component architecture, compatibility
of, 4

vGridLineColor style, 337
vGridLines style, 337
View class, 53–54
visual aspects and styles, 414
visual placeholder, ProgressBar component

as, 379–380
Vogon component

custom event, implementing, 23–25
inheritance and, 14, 17–19
methods, adding, 7–8
minimal version of, creating, 5–7
onNewPoem event, 23
polymorphism

example of, 26–29
signature of method and, 29–30

properties in authoring environment, 12–14
properties, implementing

explicitly, 9–10
implicitly, 11–12
overview of, 8

UIEventDispatcher class, triggering, 22
Vogoness class, refining implementation of

components, 46–50
vScrollPolicy property, 321

W
W3C DOM Level1 recommendation, 205
WeekDayStyle style, 360
widespread feature, 64
Window component

description of, 74
managing content of, 490–495
minimal example of

alerts, dynamically creating, 489–490
overview, 484–487
windows, dynamically creating, 487–488

overview of, 484
skin properties, 499–505
subclassing, 505
supported styles, 495–499

window instances, 126–127, 493–494
window-based system, creating, 124–126

windows, creating dynamically, 487–488
Windows (Microsoft) source code, looking for, 522
Wipe transition

description of, 528
parameters, 531

wordWrap parameter (TextArea component), 442

X
XLEFF

See also XML layout engine
Accordion component, 257
benefits of, 194
buttons, generating, 143–144
classes and, 144–146
ComboBox, DataGrid, and List

components, 313–314
DateChooser and DateField components, 351
description of, 140–141
as example of subsystem, 185
features of, 144
form rendered by, 142
internal architecture of, 145–146
Loader component and, 381
Menu and MenuBar components, 408–409
NumericStepper component

bug for Flash MX 2004 users, 431
change event and, 430
properties of, 429

object model and, 192
ProgressBar component, 381
ScrollPane component, 381
text components, 442
Tree component, 464–465
user interface generated dynamically by, 190–193
Web site for, 146

XLEFF equivalent for generating user interface, 297
XLEFF sampler

complex user interface, examining
custom classes and, 167–168
events and, 169
overview of, 164–165
patterns of, 165
substructures of, 166–167

description of, 158

INDEX

557

5939INDEX.qxd 1/25/06 11:29 AM Page 557

modifying and reloading, 161–164
using, 159–161

XML
benefits of, 202
data structure

Color Names section, 151
overview of, 150
Stage section, 155–158
Styles section, 151–155

description of, 150
generating richer menus using, 405–408
parsing in ActionScript

object models and trees, 204–206
overview of, 202–203
typical job of developer, 207–209
XModel class and, 209–210, 217
XModel class compared to XML class, 210–216

Tree component and, 461–464
W3C DOM Level1 recommendation, 205

XML attributes of Tree component,
implementing, 477–480

XML class
code written by using, 209–210
properties, 206
services of, 202
tree-like structure and, 205
XModel class compared to

accessing attributes of node, 214–215
browsing structure of XML document, 215–216
document root and other nodes, 211
identifying node name, 211
identifying node type, 212–213
overview of, 210–211

XML layout engine
See also XLEFF
benefits of, 138–140
description of, 138
in Flash context, 140

XML Layout parameter, 189
XML manager classes and XLEFF, 145
xmlDefFileName variable, 159
XMLNode class

childNodes property, 205
properties, 206

xmlObj
description of, 203
tree-like structure, 204–205

XMLStage class and XLEFF, 145
XModel class

notes on use of, 217
overview of, 209–210
XLEFF and, 145
XML class compared to

accessing attributes of node, 214–215
browsing structure of XML document, 215–216
document root and other nodes, 211
identifying node name, 211
identifying node type, 212–213
overview of, 210–211

Z
z-order, 115
Zoom transition, 528

INDEX

558

5939INDEX.qxd 1/25/06 11:29 AM Page 558

5939INDEX.qxd 1/25/06 11:29 AM Page 559

	AdvancED ActionScript Components:
	CONTENTS
	Introduction
	PART ONE INTRODUCING THE ARCHITECTURE
	Chapter 1 OOP in Component Design
	Chapter 2 Core Classes and Component Design
	Chapter 3 Exploring the UI Components
	Chapter 4 Building Component-based Applications

	PART TWO EXPLOITING THE ARCHITECTURE
	Chapter 5 Architecture-based Development
	Chapter 6 XML for Defining User Interfaces
	Chapter 7 Extending the Application Framework
	Chapter 8 Making Your XML Life Easier
	Chapter 9 The Customization Process

	PART THREE CUSTOMIZING THE COMPONENTS
	Chapter 10 The Accordion Component
	Chapter 11 The Button Component
	Chapter 12 The CheckBox and RadioButton Components
	Chapter 13 The List, ComboBox, and DataGrid Components
	Chapter 14 The DateChooser and DateField Components
	Chapter 15 The Loader, ScrollPane, and ProgressBar Components
	Chapter 16 The Menu and MenuBar Components
	Chapter 17 The NumericStepper Component
	Chapter 18 The TextArea, TextInput, and Label Components
	Chapter 19 The Tree Component
	Chapter 20 The Window and Alert Components
	Chapter 21 Handling the Scrollbars

	PART FOUR APPENDIXES
	Appendix A Locating the Source Code of the Component
	Appendix B Transitions and Easing Classes

	INDEX

