

Scot P. Hillier

Microsoft SharePoint
Building Office 2003 Solutions,
Second Edition

5750_FM_final.qxd 11/3/05 9:29 PM Page i

Microsoft SharePoint: Building Office 2003 Solutions, Second Edition

Copyright © 2006 by Scot P. Hillier

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-575-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser
Technical Reviewer: Judith M. Myerson
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editors: Rebecca Rider, Nicole LeClerc
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Lori Bring
Indexer: Tim Tate
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

5750_FM_final.qxd 11/3/05 9:29 PM Page ii

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 SharePoint Business Solutions . 1

■CHAPTER 2 SharePoint Products and Technologies Overview 17

■CHAPTER 3 SharePoint Portal Server Basics. 47

■CHAPTER 4 SharePoint Content Development . 85

■CHAPTER 5 Building Web Parts . 119

■CHAPTER 6 The Microsoft Single Sign-On Service . 161

■CHAPTER 7 Advanced Web Part Development . 187

■CHAPTER 8 The Microsoft Office System . 229

■CHAPTER 9 Programming SharePoint Services . 277

■CHAPTER 10 Visual Studio 2005 and the Microsoft Office System 327

■CHAPTER 11 SharePoint Portal Server Administration . 357

■INDEX . 375

iii

5750_FM_final.qxd 11/3/05 9:29 PM Page iii

5750_FM_final.qxd 11/3/05 9:29 PM Page iv

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 SharePoint Business Solutions. 1

Segmenting Information Workers . 2

Transactors . 2

Professionals . 2

Executives . 2

Information Worker Challenges. 3

System Complexity . 3

The Information Challenge . 4

The Process Challenge . 5

The Collaboration Challenge . 5

The Access Challenge . 6

The Management Challenge . 6

Understanding Business Scenarios . 7

Augmenting Personal Productivity . 8

Increasing Team Productivity . 9

Supporting Remote Workers . 10

Integrating with Partners and Customers . 10

Analysis and Design Considerations . 11

Documenting the Business Vision. 11

Documenting Policies and Practices . 11

Managing Change . 14

Technical Considerations . 15

Server Requirements. 15

Client Requirements . 16

v

5750_FM_final.qxd 11/3/05 9:29 PM Page v

■CHAPTER 2 SharePoint Products and Technologies Overview 17

The Microsoft Office System . 17

SharePoint and the Office System . 18

Windows SharePoint Services . 19

SharePoint Portal Server. 23

Office 2003 . 24

Installation Considerations . 25

Stand-Alone Server . 27

Small Server Farm. 27

Medium Server Farm. 28

Large Server Farm. 28

Exercise 2-1: Creating a Development Environment. 29

Prerequisites. 30

Installing Windows Server 2003 on SPSController. 30

Configuring Remote Desktop Administration on SPSController 35

Installing Windows Server 2003 on SPSPortal 36

Installing SQL Server 2000 on SPSPortal . 38

Installing SPS on SPSPortal . 39

Installing Visual Studio .NET 2003 on SPSPortal 45

Preparing SPSClient . 45

■CHAPTER 3 SharePoint Portal Server Basics . 47

Understanding Portal Structure. 47

Topics and Areas . 47

WSS Team Sites . 51

Self-Service Site Creation . 52

Managing Users. 54

Understanding Site Groups . 54

Adding Users. 56

Active Directory Account Creation Mode . 58

Understanding User Profiles. 58

Libraries . 60

Document Libraries . 60

Backward-Compatible Document Libraries . 64

Form Libraries . 71

Image Libraries . 73

■CONTENTSvi

5750_FM_final.qxd 11/3/05 9:29 PM Page vi

Lists . 73

Announcements . 74

Links. 74

Contacts . 74

Events . 75

Tasks . 75

Issues. 75

Alerts . 75

Discussions . 76

Surveys . 77

Searching . 78

Exercise 3-1: SPS Basics . 78

Cleanup . 78

Designing the Area Structure. 80

Adding Users. 81

Creating the Site Structure. 81

Migrating Documents . 82

■CHAPTER 4 SharePoint Content Development . 85

Customizing Portal Content . 85

Site Membership . 85

Audiences . 89

Understanding Web Parts . 91

Templates . 96

Personalization with My Site . 98

Using My Site . 98

Customizing My Site . 99

Customizing with Microsoft FrontPage. 100

Designing a New Page . 101

Working with Data Sources . 104

Working with Data Views . 106

Creating and Consuming a Web Service in FrontPage 107

Using Web Components . 110

Understanding Ghosted Pages. 110

Exercise 4-1: Building an Executive Dashboard. 110

Preparing Data Sources . 111

Building the Team Site . 113

■CONTENTS vii

5750_FM_final.qxd 11/3/05 9:29 PM Page vii

■CHAPTER 5 Building Web Parts. 119

Web Part Basics. 119

The WebPart Class. 120

The Web Part Life Cycle . 121

Web Part Properties. 123

Rendering Web Parts . 125

Deploying Web Parts . 128

Understanding Strong Names . 129

Building the Web Part . 131

Code Access Security . 132

Deployment Packages . 140

Using Web Part Pages. 142

Adding Web Parts to a Page. 142

Debugging Web Parts . 143

Exercise 5-1: Building a Simple Web Part . 144

Creating the New Project . 144

Modifying the Web Part Description File . 145

Coding the Web Part . 146

Deploying the Web Part. 148

Exercise 5-2: Adding Child Controls to Web Parts 150

Creating the New Project . 150

Modifying the Web Part Description File . 150

Coding the Web Part . 151

Deploying the Web Part. 156

■CHAPTER 6 The Microsoft Single Sign-On Service . 161

Setting Up SSO. 161

Setting the Security Policy . 167

Using SSO in a Web Part . 168

Programmatic Administration . 172

Viewing the Audit Log . 175

Exercise 6-1: Using Single Sign-On . 176

Prerequisites. 176

Creating the Application Definition . 176

Entering the Credentials . 177

Creating the Web Part . 177

Deploying the Web Part. 182

Assigning Permissions . 184

■CONTENTSviii

5750_FM_final.qxd 11/3/05 9:29 PM Page viii

■CHAPTER 7 Advanced Web Part Development . 187

Client-Side Web Parts . 187

Using ActiveX Controls . 187

Using Script Files . 188

Building Connectable Web Parts . 189

Connection Interfaces . 190

Connection Life Cycle . 192

Using Transformers . 199

Custom Tool Parts . 200

Default Tool Parts . 201

Creating a Tool Part . 202

Exercise 7-1: Using Terminal Services. 203

Setting Up Terminal Services . 203

Creating the New Web Page . 205

Creating the Web Part . 207

Deploying the Web Part. 208

Exercise 7-2: Connectable Web Parts . 209

Creating the Project. 209

Implementing the Interfaces . 210

Defining the Properties . 210

Creating the Child Controls . 211

Coding the Web Part Life Cycle . 212

Using the Web Part . 219

Exercise 7-3: Custom Tool Parts . 223

Building the Basic Web Part . 223

The Custom Tool Part . 224

Using the Tool Part . 228

■CHAPTER 8 The Microsoft Office System . 229

Office Integration . 229

Document Management . 229

Document Workspaces . 231

Meeting Workspaces . 235

Contacts and Calendars . 236

Linked Lists. 236

Developing Office Solutions. 238

XML Support . 238

Smart Documents . 241

Research Library . 250

■CONTENTS ix

5750_FM_final.qxd 11/3/05 9:29 PM Page ix

Exercise 8-1: Building a Smart Document . 255

Prerequisites. 256

Setting Up the Project . 256

Creating the XML Schema . 257

Creating the Control Sets . 258

Deploying the Smart Document . 266

Exercise 8-2: Building a Research Service . 269

Prerequisites. 269

Starting the Project . 269

Creating the Registration Response . 270

Creating the Query Response . 272

Using the Custom Service . 275

■CHAPTER 9 Programming SharePoint Services . 277

Document Workflow . 277

Capturing Events . 278

Manipulating Documents . 282

Accessing Portal Site and User Information . 287

Accessing Site Collections . 287

Accessing Lists and List Items . 288

Accessing User Information . 289

Understanding Data Caching . 290

Using SharePoint Web Services . 292

Exercise 9-1: Creating a Workflow Engine . 294

Prerequisites. 294

Building the Workflow Engine . 296

Debugging the Solution . 302

Exercise 9-2: Building a Site Collection Web Part 303

Prerequisites. 303

Creating the Project. 304

Defining the Properties . 306

Creating the Child Controls . 306

Creating the Helper Functions . 308

Rendering the Web Part . 309

Using the Web Part . 313

■CONTENTSx

5750_FM_final.qxd 11/3/05 9:29 PM Page x

Exercise 9-3: Building a Global Task Web Part . 313

Prerequisites. 313

Creating the Project. 314

Creating the Child Controls . 316

Changing the Identity . 317

Rendering the Web Part . 318

Using the Web Part . 321

Exercise 9-4: Building an Identity Web Part . 322

Creating the Project. 322

Creating the Child Controls . 323

Rendering the Web Part . 324

Updating the User Information. 325

Using the Web Part . 326

■CHAPTER 10 Visual Studio 2005 and the Microsoft Office System 327

The ASP.NET 2.0 Web Parts Framework . 328

Understanding the Web Parts Control Set . 328

Building Custom Web Parts . 330

Using Web Parts in a Page . 333

Personalizing Web Parts . 335

Using Visual Studio Tools for Office . 337

Understanding Project Types . 337

Adding Smart Tags to Documents. 339

Exercise 10-1: Building a Web Part Page . 342

Creating the New Project . 342

Adding Site Membership . 342

Creating the Logo Web Part . 343

Creating the Text Web Part . 344

Creating the Link Web Part. 344

Creating the Business Card . 345

Testing the Solution . 348

Exercise 10-2: Building a Smart Document . 349

Setting Up the Project . 349

Creating the XML Schema . 350

Creating the Invoice Template . 351

Coding the Solution . 352

Testing the Solution . 356

■CONTENTS xi

5750_FM_final.qxd 11/3/05 9:29 PM Page xi

■CHAPTER 11 SharePoint Portal Server Administration 357

Back Up and Restore . 357

Site Usage Analysis . 359

Cleaning Up Unused Sites . 360

Managing the Search Service . 362

Defining External Content Sources . 363

Scheduling Content Crawls . 363

Creating Keywords . 364

Enabling Online Presence. 365

Managing Quotas and Locks . 366

Exercise 11-1: Establishing Secure Access . 367

Creating an Alias . 367

Enabling Secure Sockets Layer (SSL) . 369

■INDEX . 375

■CONTENTSxii

5750_FM_final.qxd 11/3/05 9:29 PM Page xii

About the Author

■SCOT P. HILLIER is an independent consultant focused on SharePoint, the Microsoft Office Sys-
tem, and .NET technologies. Scot is the author of eight books on Microsoft technologies
written over the last ten years as well as numerous articles appearing in magazines and online.
In addition to writing, Scot can often be found presenting nationally to analysts, decision mak-
ers, and developers. Scot is a former U. S. Navy submarine officer and graduate of the Virginia
Military Institute. When not working, Scot can be found at home with his family, playing games
and taking walks. Scot can be reached at scot@shillier.com and support for his books may
be found at www.sharepointstuff.com.

xiii

5750_FM_final.qxd 11/3/05 9:29 PM Page xiii

5750_FM_final.qxd 11/3/05 9:29 PM Page xiv

About the Technical Reviewer

■JUDITH M. MYERSON is a systems architect and engineer. Her areas of interest include middle-
ware technologies, enterprise-wide systems, database technologies, application development,
servers, management, Internet protocols, security, and project management. She is the tech-
nical reviewer of Hardening Linux by James Turnbull (Apress, 2005) and Microsoft Content
Management Server Field Guide by Francois-Paul Briand and Michael Wirsching (Apress, 2005).
You can contact her at jmyerson@bellatlantic.net or jmyerson2000@yahoo.com.

xv

5750_FM_final.qxd 11/3/05 9:29 PM Page xv

5750_FM_final.qxd 11/3/05 9:29 PM Page xvi

Acknowledgments

Producing a second edition of this book has been much easier on me than the team at Apress.
Even though I had the luxury of starting the effort from an existing manuscript, the Apress team
still took the book through every phase of editing and layout that is required for a first edition.
As usual, they did a great job and deserve a heartfelt thank you. The project was driven by Jim
Sumser, who did an outstanding job supporting the effort. Kylie Johnston functioned as the
project manager for the book and, once again, made sure everything ran smoothly. Judith
Myerson provided the technical review with good input on the exercises and explanations.
I’d also like to thank my readers, who have provided input, found some errors, and made good
suggestions for improvement. Hopefully they will benefit the most from this edition.

Since I started this edition, I have left the company where I was a consultant for five years
to start my own independent business. While this change presents many challenges, it is all
made significantly easier by the love and support of my family. Nan, you never doubted for a
moment; bless you. Ashley, we miss you now that you’re out running around in the car! When
you get back, maybe we can discuss Nabokov, World War II, or the importance of the Supreme
Court. Matt, you’re a great son, but too bad your Imperial Guard must die at the hands of the
Tau (insert evil laugh here). I love you all.

xvii

5750_FM_final.qxd 11/3/05 9:29 PM Page xvii

5750_FM_final.qxd 11/3/05 9:29 PM Page xviii

Introduction

Almost five years ago, when I completed my sixth book, Scot Hillier’s COM+ Programming
with Visual Basic (SAMS, 2000), I thought I was done with technical writing. Since then, I have
seen some new technologies emerge, but none was compelling enough to coax me back to the
keyboard. That all changed when I got my hands on the Microsoft Office System beta.

Although the Office System certainly has its limitations, several elements really got my
attention. The developer in me had a hard time resisting the .NET architecture upon which
SharePoint Portal Server (SPS) is based. All true developers love to tinker with products, and
the extensive API associated with SPS made development fun again.

From a business perspective, I saw the possibility to create some solutions that would solve
real issues that were currently plaguing businesses—file system organization and process auto-
mation came quickly to mind. Both of these areas are strong suits for the Office System.

Ultimately, it was the combination of interesting development projects and the promise
of improving some business processes that drove me to suggest the book to the Apress staff.
In fact, this is really the perspective I tried to bring to the book. I wanted to combine my busi-
ness needs and programming skills to create a vision of how to use the Office System. You can
judge how well that goal was met.

Who This Book Is For
Many years ago, I asked a colleague what professional developers wanted in a book. He
responded simply, “Code they can steal.” I have never forgotten this advice and it has been
the foundation of every book I have written since. This book is therefore targeted squarely
at the intermediate to advanced developer in a corporate environment with a pending
SharePoint project. Therefore, readers should be well versed in .NET development with
either VB .NET or C# in the Microsoft Visual Studio environment.

How This Book Is Organized
I began my technical career training professional developers in Visual Basic 3.0. As a result, my
writing style and chapter organization reflect a training class. Each chapter in the book begins
with an explanation of the appropriate foundational concepts, followed by practical exercises
to reinforce the explanation. A brief description of each chapter follows.

Chapter 1, SharePoint Business Solutions: This chapter is an overview of SPS and the
Office System from a business perspective.

Chapter 2, SharePoint Products and Technologies Overview: This chapter is an overview
of SPS and the Office System from a technical perspective, and it contains the detailed
instructions necessary to set up the development environment for this book. All of the
exercises in the book assume the environment established in this chapter. xix

5750_FM_final.qxd 11/3/05 9:29 PM Page xix

Chapter 3, SharePoint Portal Server Basics: This chapter is a detailed look at SPS features
and functions, and it contains detailed instructions on setting up the basic portal.

Chapter 4, SharePoint Content Development: This chapter examines the different ways
to create content for SPS that do not explicitly require programming.

Chapter 5, Building Web Parts: This chapter thoroughly investigates the Web Part life cycle
and all the steps necessary to create Web Parts for SPS.

Chapter 6, The Microsoft Single Sign-On Service: This chapter covers the single sign-on
capabilities of SPS and how to use them in Web Part development.

Chapter 7, Advanced Web Part Development: This chapter examines all of the advanced
Web Part concepts, including the processes of implementing interfaces for Web Part inter-
operability, custom Web Part properties, and client-side Web Parts.

Chapter 8, The Microsoft Office System: This chapter focuses on development for Micro-
soft Office products. In particular, the chapter covers Smart Documents and custom
research services.

Chapter 9, Programming SharePoint Services: This chapter focuses on programming
SharePoint Services through the .NET API. Here you will create a custom workflow engine
and several Web Parts to overcome limitations found in SharePoint Services.

Chapter 10, Visual Studio 2005 and the Microsoft Office System: This chapter looks at
the new version of Visual Studio and its impact on Office System development. At the
time of this writing, Visual Studio 2005 is still in beta, but the new capabilities for Office
development are compelling enough to demand an early look.

Chapter 11, SharePoint Portal Server Administration: This chapter presents the basic
administration tools associated with SharePoint.

About the Project Material
This book is intended to give you all of the business and technical background necessary to
get a jump-start deploying solutions based on Microsoft SharePoint products and technolo-
gies. I am assuming that you are an intermediate to advanced technical reader who is involved
in an effort to roll out a portal solution. I also assume that you have a reasonable level of busi-
ness experience to provide context for the work.

Because SharePoint solutions affect the entire enterprise, portions of the book deal with
various technical disciplines. In some places, I discuss network engineering principles. In
other places, I write code using Visual Studio .NET. Therefore, readers should have some expe-
rience with intermediate networking and a strong understanding of programming concepts.

Throughout the book, I will ask you to participate in the concepts presented. Where a con-
cept is easy to demonstrate, I provide you with short, hands-on activities. These activities are
intended to reinforce basic ideas or demonstrate simple features. You will also find complete
exercises at the end of chapters. These exercises are intended as in-depth aids to reinforce sev-
eral concepts and create a complete vision for a solution. The exercises are a critical part of the
book, and you should complete as many as possible. Additionally, the exercises assume that
you have established the development environment defined in Chapter 2. If you do not want

■INTRODUCTIONxx

5750_FM_final.qxd 11/3/05 9:29 PM Page xx

to type in all of the code associated with each exercise, you can download the completed exer-
cises available from the Apress site (www.apress.com) or www.sharepointstuff.com.

I use a wide variety of software products to simulate a true enterprise environment in this
book. Throughout, I invite you to try out features and functions of SPS and see how it integrates
with other major Microsoft products and technologies. In order to create the basic environment
used by this book, you should have the following software available:

• Microsoft Windows 2003, Enterprise Edition

• Microsoft Exchange 2003

• Microsoft Windows Terminal Services

• Microsoft SQL Server 2000

• Microsoft SharePoint Portal Server

• Microsoft Office 2003

• Microsoft InfoPath

• Microsoft Visual Studio .NET

Finally, please note that I intend this book to be read cover to cover. Unlike some techni-
cal books, this one is not meant simply to be a reference that readers access primarily through
the index. This book is intended to be an educational experience, and each chapter always
assumes that you have read all previous material carefully.

■INTRODUCTION xxi

5750_FM_final.qxd 11/3/05 9:29 PM Page xxi

5750_FM_final.qxd 11/3/05 9:29 PM Page xxii

SharePoint Business Solutions

Microsoft’s Windows SharePoint Services and SharePoint Portal Server (SPS) released to
market in October 2003. One year later, over 30 million licensees owned SharePoint, making
it the fastest-growing product in Microsoft history. This is an important fact, because it shows
a serious commitment from Microsoft to SharePoint as an information worker solution plat-
form. SharePoint is not intended to be some passing phase of technology that you might decide
to use one day; rather, it represents Microsoft’s strategy to breathe new life into its suite of
Office products. This strategy is critical to the company’s long-term growth and profitability.

Even though Microsoft has created a vast array of software products, the empire is really
built on the Office suite. Familiar products such as Word, Excel, and Outlook have always been
the true moneymakers for the company. Unfortunately, Microsoft has sold the Office suite to
almost everyone on the planet who will ever buy it (and many who won’t buy it have simply
stolen it). Faced with complete market saturation, Microsoft has historically tried to sell new
versions of the Office suite by adding new features. At this point, however, few people see any
value in some new fonts or templates, so Microsoft must look for new ways to add value. This
is where SharePoint comes in.

Stop for a moment and think about working inside Word or Excel to create a document.
These products, installed locally on your computer, are like enterprise rich-clients. However,
when you’re using an Office product, you’re isolated from the rest of the organization—it’s just
you and the document. In effect, the Office products are like clients with no server. This is cer-
tainly unusual for an enterprise application, which is normally supported by a back-end server
and storage system. SharePoint is that server. In fact, I often describe SharePoint as the “Office
Server.” It functions to connect all of the Office clients together, making the Office suite an
enterprise application.

This concept of the Office suite as an enterprise application is called the Office System by
Microsoft. Now, instead of selling another version of the Office suite, Microsoft can sell the Office
System. Presenting the value of the Office System is how Microsoft intends to sell another version
of Office into a completely saturated market. Microsoft is betting heavily that the Office System
will be the workplace environment for all information workers in the future. Therefore, we should
approach SharePoint not as another software product, but as a collaboration platform for build-
ing information worker solutions.

In this chapter, I’ll present the business case for SharePoint. This will include an exami-
nation of the current challenges facing organizations and end users. After defining the business
problem, I’ll list some common scenarios where SharePoint solutions can be particularly
effective.

1

C H A P T E R 1

■ ■ ■

5750_c01_final.qxd 11/3/05 9:54 PM Page 1

Segmenting Information Workers
These days everyone talks about the “knowledge economy” and “information workers.” These
terms were used originally to acknowledge that many economies were moving away from tradi-
tional manufacturing toward the management of information. As globalization continues to
take hold, however, we are realizing that everyone needs better management of information in
order to compete effectively. In fact, we now see that most workers use information within the
framework of a business process, regardless of their job. Everyone from the controller analyzing
financial data to a repair crew with a work order on a wireless device is an information worker.

When building solutions for these information workers, it is useful to segment them into
three different groups to better understand their needs. These groups are Transactors, Profes-
sionals, and Executives. We’ll look at each group in detail in the sections that follow.

Transactors
Some information workers use a single line-of-business system all day long. This group is
known as Transactors. Transactors are front-line workers who often create or enter data into
systems. For example, a designer using a CAD system to create a model is a Transactor. The
designer primarily uses the CAD system all day and creates new data used by the organization.
Customer service representatives in a call center are also Transactors. They primarily use a
single system all day and enter new data about customers. Because other information workers
rely on the new data produced by Transactors, this data must be effectively integrated into any
SharePoint solution so that it becomes available to support business processes.

Professionals
The group of information workers that must access multiple line-of-business systems and
may use any number of them throughout the day is known as Professionals. Professionals
have access to customer data systems, product data systems, and financial systems. Their
primary work environment, however, is usually the Microsoft Office suite. Professionals are
generally sending e-mail, writing documents, or building spreadsheets. They often log in to
a line-of-business system, but they do it primarily to retrieve information so they can con-
tinue to work in an Office product. The classic example of a Professional is the company
controller, who logs into a financial system simply to copy data into an Excel spreadsheet
for analysis. The goal is to create a financial model in Excel, but the data is in several different
systems. In fact, many Professionals have essentially become “human middleware” that glue
together seemingly disparate information from multiple sources into a single document.
Eliminating human middleware is one of the primary goals of any SharePoint solution.

Executives
Executives must monitor and adjust business processes based on Key Performance Indicators
(KPIs). These KPIs tell the Executives whether the organization is healthy and functioning cor-
rectly. When KPIs indicate that a business process is not healthy, Executives must be able to
analyze information in order to adjust the business process. Delivering KPIs to Executives in a
way that supports managing organizational performance is a key part of any SharePoint solution.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS2

5750_c01_final.qxd 11/3/05 9:54 PM Page 2

Information Worker Challenges
Global competition, or globalization, is now the major economic force shaping business deci-
sions. The traditional long-term relationship between companies and their employees is extinct.
Companies are constantly looking for ways to make employees more productive in an increas-
ingly competitive marketplace, cut costs, and improve productivity. For their part, employees are
typically less loyal to their companies. Today’s employees are just as likely to start their own busi-
nesses as they are to bring new ideas to their employer. At the same time, technology is creating
an increasingly complex work environment. All of these factors combine to create special chal-
lenges for businesses and information workers around system complexity, information, processes,
collaboration, access, and management.

System Complexity
When the desktop metaphor was introduced, it offered a simplified mechanism for interacting
with a new, complex, and often scary appliance: the personal computer (PC). The success of
the desktop metaphor was that it simplified interaction with a computer. Nontechnical people
were not required to learn complex function key combinations in order to use the computer.
This metaphor—and above all its simplifying effect—was responsible for the success of graphic
operating systems.

Early on, of course, there were several operating systems from a number of vendors that
used the desktop metaphor. Each of these—Apple, IBM, and Microsoft—were competing to
dominate the PC market. As a result, vendors began to include more functionality in the oper-
ating systems. Instead of just a file explorer, computers were loaded with all kinds of applets
for managing every aspect of the computer. Vendors even shipped the computer with simple
games that became a standard part of the operating system.

Later, after Microsoft had established clear dominance with Windows, it used the operat-
ing system to compete against other companies that introduced new technologies. The most
famous example of this, of course, is the fight over the Netscape browser. Ultimately, Microsoft
was found guilty of using its operating system to unfairly compete against Netscape. However,
the constant fear of a small rival suddenly taking over the marketplace has driven Microsoft to
consistently add more and more features to its operating system. As a result, the typical desk-
top is now awash in functionality. Not only do you have every line-of-business application you
need to do your daily job, but you also have CD players, DVD players, and games. You have
three or four different document editors available to you. You have two or three ways to get
e-mail. Applications have followed suit as well by adding more and more features, reports, and
integration points. The desktop and the applications it hosts are complex all over again.

Along with mounting complexity, information workers are also faced with a lack of stan-
dards for application behavior and integration. The most obvious example of this problem can
be seen in the use of passwords. Users are now forced to maintain upward of ten different sets
of credentials to access all the client-server, browser-based, and Internet applications they
need on a daily basis. Typically, each of these applications has different rules for password length
and design. The result is that users are unable to remember all of their credentials without
recording them somewhere, which threatens the entire network security system.

Not only must information workers manage several sets of their credentials, but they also
must have intimate knowledge of the data sources utilized by applications. A typical example
of this intimate knowledge is when an application login screen prompts an information

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 3

5750_c01_final.qxd 11/3/05 9:54 PM Page 3

worker to select the database or domain he wants to access. This seemingly simple request actu-
ally forces the end user to understand the network topology of the organization. This is an
unnecessary burden to place on an information worker. This same intimate knowledge is also
required to access file servers, mapped network drives, and printers. Figure 1-1 shows a simplified
drawing of a typical network of systems resulting from this chaotic approach to functionality.

Considering the three categories of information workers (Transactors, Professionals,
and Executives) while examining Figure 1-1 reveals that most organizations are structured
in manner that only supports Transactors. Because Transactors work primarily with a single
line-of-business system, they can easily log in to one system and be productive throughout
the day. However, Professionals and Executives face a chaotic environment that actually
works against them because they require information from multiple sources synthesized
into documents and reports.

The Information Challenge
Because the information that Professionals and Executives need to support the organization
is locked up in separate isolated systems, they tend to work around the systems by getting
much of their information from other human beings. I find that most people will spend some
time looking through systems for information, but they rapidly become frustrated and simply
send an e-mail to the person they think is most likely to have a copy of the information. Typi-
cally an e-mail is sent with a query such as the following: “Can you send me the link to that file
again?” or “Do you have the latest document template?” The response to this type of query is
an e-mail with a hyperlink embedded or a document attached. The e-mail is then stored in the
recipient’s personal Outlook folder, so that person can use the information again in the future.
This situation results in information workers becoming what I call human search engines.

I once worked with a company that hired a consulting organization to help the company
create formalized procedures for its information workers. The consultant that was leading the
project did a great job identifying the processes, documenting the procedures, and creating
the documents. Additionally, he created a special filing system on a network drive to store all
of the procedures. The only problem was that no one understood the filing system except him.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS4

Figure 1-1. A typical network of systems

5750_c01_final.qxd 11/3/05 9:54 PM Page 4

At the end of the project, the company was forced to hire the consultant as a full-time employee
simply to help other people locate the various process documents. In fact, I can testify that
this person has no job other than to receive requests for documents and respond by sending
copies attached to e-mail. This is a true human search engine. How many of these do you have
in your organization?

The Process Challenge
While many organizations have defined some level of business process, most organizations
have no way to support it beyond attaching documents to e-mail. Professionals who are creat-
ing documents and spreadsheets typically need some form of review and approval, so they
simply attach the document to an e-mail for routing. Recipients who are involved in the review
and approval process have no formal mechanism for tracking comments or minding versions
of the document, so they often respond by sending e-mail with suggested changes, comments,
or observations. The document creator must subsequently synthesize all the mail into a set of
changes and route the document again.

Nearly all organizations can force the processes to work, but the processes never improve.
The people involved in the process will continue sending e-mails, attending meetings, and
working late until the document is completed and approved. However, two problems result
from this approach. The first problem is that the organization typically loses all of the histori-
cal knowledge generated in the process. This means that when a similar document is created,
the organization cannot benefit from any previous work. The inefficient process is simply
started all over again. The second problem is that the inefficient process delays the time to
market. Organizations may miss critical deadlines, have employees work overtime, or hire
additional people as they wrestle with an unsupported, chaotic process.

The Collaboration Challenge
Increasingly, information workers are being asked to work on teams where the members are
located in other geographical locations and time zones. However, most organizations have
no means beyond e-mail to facilitate the work of these virtual teams. Consequently, e-mail is
functioning not only as a process engine, but also as a collaboration tool. You can see this in
the dozens of conversational e-mails you receive every day. A large part of all corporate e-mail
traffic is being used to facilitate collaboration, reach consensus, and make decisions. Do you
get e-mail that looks like this?

Incoming mail: “Scot, we’re in the conference room and need the estimate for the Kurbel
proposal. Do you have it?”

Outgoing mail: “It’s on the Z drive under Kurbel.”

Incoming mail: “We looked and can’t find it.”

Outgoing mail: “Here. I copied the numbers into this mail.”

Incoming mail: “Thanks!”

Just as organizations lose information when they use e-mail as a process engine, they also
lose information when they use e-mail as a collaboration engine. In my example, notice that
the information was duplicated in the e-mail and that the team was never able to actually

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 5

5750_c01_final.qxd 11/3/05 9:54 PM Page 5

locate the requested estimate. This means that they will have to save the e-mail containing the
information in a place separate from the original estimate. If I subsequently update the esti-
mate, the team will never know it because they are working from the data in the e-mail.

Along with facilitating collaboration, e-mail also serves most people as their global task
list. When I describe e-mail as a global task list, I am referring to the practice of keeping an
e-mail as a reminder to take an action. You might, for example, keep an e-mail from a cus-
tomer as a reminder to follow up on a sales opportunity. Furthermore, it doesn’t even matter
if the e-mail you keep has anything to do with the action you want to take. Keeping the e-mail
makes you think about the customer and reminds you to follow up.

People use their e-mail as a global task list because they have no other tool that shows
them all the tasks they have to perform for an organization. Doing so, however, results in the
average Professional information worker having dozens or even hundreds of e-mails in her
in-box with no organization or prioritization. Furthermore, people are now spending upward
of two hours each day dealing with excessive e-mail.

Along with e-mail, shared file systems are often routinely misused to facilitate collabora-
tion. Nearly all organizations have some form of shared file system that is made available to
information workers for storing documents. In most cases, the information workers have
complete read/write access to these servers. The information workers can create directories
and save documents at will. Unfortunately, once a file server is opened to information work-
ers, it quickly becomes a chaotic mess.

Most file servers are exposed to information workers as mapped network drives. Infor-
mation workers can access these drives directly from their own computers and are encouraged
to store critical files on the drive so that those files can be properly backed up. However, the
directory structure of these files servers is a nightmare. No one can remember where they are
supposed to create new directories and often don’t remember where they have previously
stored a file. This results in different versions of the same file being stored in several directories,
with no one able to determine which one is the most recent.

The Access Challenge
Increasingly, information workers are working from locations other than the central company
headquarters. Workers today are highly mobile: they work from home, they work from the
road, and they work from other countries. They need constant access to systems even when
they are completely disconnected from a network. Information workers carry BlackBerry
devices, Pocket PCs, and wireless computers. Partners and customers increasingly expect to
be able to access appropriate information contained in a company’s systems. All this means
that solutions built for information workers must have a well-conceived access strategy that
exposes information to the appropriate audience.

The Management Challenge
As if the complexity and variety of information systems were not enough, organizations are also
faced with an explosion of data contained in these systems. A typical organization might have
as many as eight customer databases crossing several isolated systems such as Customer Rela-
tionship Management (CRM), Enterprise Resource Planning (ERP), and multiple spreadsheets
and documents. Each of these systems has a reporting mechanism to access the data, but there
is generally no way to see all of the data together to create a single view of a customer, supplier,

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS6

5750_c01_final.qxd 11/3/05 9:54 PM Page 6

or partner. Consequently, organizations are forced to create manual systems to collect and
analyze information.

Executive information workers need visibility into business processes in order to judge
the health of the organization and make adjustments. This process of analyzing KPIs against
goals followed by adjusting the business processes is known as performance management.
Most executives really have no effective means beyond simple reports to manage the organi-
zational performance. Furthermore, these reports are often nothing more than spreadsheets
created by Professionals, who route them to Executives via e-mail. As a result of this situation,
many Executives have simply given up trying to proactively manage organizational perform-
ance. Instead, they examine financial data and try to make strategic adjustments after the fact.

All of this is to say that the computing environment for most end users has become unbear-
ably complicated. In this environment, end users are crying out for simplicity and consolidation.
They need tools that give them a more personal view of enterprise resources to cut through the
layers of complexity and make them more productive.

Stop for a moment and consider the role of Microsoft Outlook in most organizations.
Microsoft Outlook is truly the workhorse of most corporations. Outlook is often the first appli-
cation an end user opens at the beginning of the day and the last one closed at night. Why? The
answer is because end users are trying to impose simplification by using Microsoft Outlook to
access their enterprise resources.

Think about it. Your organization may have a document management system, but you
generally get your documents as e-mail attachments. Your organization may have an enter-
prise reporting system, but you get your reports through e-mail as well. This is because end
users do not want to use the document management client or wade through the hundreds of
reports available in the enterprise reporting system. These systems are too painful to access
and too complicated to use. What’s more, the end user has probably forgotten her password
for the document management system and isn’t about to spend 30 minutes on the phone
with the help desk to get it reset.

System complexity and variety, overwhelming amounts of data, and work-style challenges
have all led end users to a frustrating relationship with their computers. They are begging for
simplification, but each new effort rolled out by the IT department only seems to add to the
problems. The key to solving these issues lies in creating a user experience that truly consoli-
dates and simplifies.

Understanding Business Scenarios
SharePoint products and technologies form a versatile set of building blocks that you can
use to solve a variety of business problems. Unlike most technical solutions, however, a
SharePoint implementation has the ability to transform the way in which an organization
works. This is because SharePoint touches nearly all aspects of daily operations. SharePoint
solutions can bring together information in the form of documents, scheduling, communi-
cations, transactions, and reporting. This information can then be delivered to employees,
partners, and customers. Figure 1-2 shows a diagram representing this union.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 7

5750_c01_final.qxd 11/3/05 9:54 PM Page 7

In this section, we’ll examine how SharePoint can help augment personal productivity,
increase team productivity, support remote workers, and integrate with partners and customers.

Augmenting Personal Productivity
Perhaps the most obvious and straightforward scenario involving a SharePoint deployment is
the improvement of personal productivity for employees. I have already addressed in detail the
system and data challenges facing users of the Windows desktop, but a productivity solution
based on SharePoint products and technologies can also be used to make relevant applications,
documents, and data available to end users more quickly.

The typical end user spends a significant amount of time searching for documents and
information each day. This time is essentially lost productivity during which the user browses
document management systems, reporting systems, or the Internet. Documents are easily lost
on file servers because no standards for file taxonomy, naming, or version control are in use.
What’s more, business users are often frustrated by technical barriers such as mapped network
drives or server names.

A SharePoint solution targeting personal productivity makes relevant content easier to
retrieve by creating specific sites for end users. These sites can contain the appropriate doc-
uments, links, and search results for a particular community of users. Such sites eliminate
mapped network drives and separate logins that hinder productivity. Figure 1-3 shows a
document repository targeted at a group of sales professionals.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS8

Figure 1-2. Visualizing the scope of a SharePoint solution

Figure 1-3. A document repository for sales professionals

5750_c01_final.qxd 11/3/05 9:54 PM Page 8

Increasing Team Productivity
Along with personal productivity solutions, SharePoint products and technologies can also create
team productivity solutions. Increasingly, team productivity is a vital part of business success.
Today, most organizations have some combination of formal teams and ad hoc teams. The formal
teams are often fixed and departmentalized, whereas other teams may form spontaneously or for
a limited time. SharePoint products and technologies support both kinds of teams.

Because formal teams are generally long-lived, a SharePoint solution may contain several
fixed sites for these teams. These sites may be created during an initial rollout and then enhanced
over time. For these types of teams, SharePoint Portal Server (SPS) supports both document and
meeting workspaces where team members can collaborate even if they are not physically present.
Along with meetings and documents, team members can also take advantage of threaded discus-
sion forums that facilitate collaboration, even if team members are not present in both time and
place. Figure 1-4 shows a typical threaded discussion forum.

Ad hoc teams can benefit from the same collaborative features enjoyed by formal teams,
but the sites that host these groups may be created on the fly. SPS is a truly decentralized
model. The philosophy behind SPS is intended to support team building and productivity
from the boardroom to the company softball team. A collaborative solution focused on team
building may give site-creation permissions to many individuals who can then easily create
team sites directly from within the portal. Figure 1-5 shows a typical site-creation link avail-
able within SPS.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 9

Figure 1-4. A threaded discussion forum

5750_c01_final.qxd 11/3/05 9:54 PM Page 9

Supporting Remote Workers
Increasingly, the concept of a central geographical location where employees commute to
perform work is fading. Organizations today have more telecommuters, outbound offices,
and mobile workers than ever before. For an organization, this has typically meant an increase
in support costs. Outbound workers often require high-end laptops, remote synchronization,
wireless connectivity, and more client-side software. Using a SharePoint solution focused on
remote workers, organizations can eliminate some of the maintenance required to support
these workers.

Solutions built around SPS may be made accessible outside of an organization’s firewall.
Using this type of approach, an organization can make sites and services available to employees
as long as they have an Internet connection. This means that telecommuters can easily access
required resources with less software installed on their local machine. For mobile workers, such
a solution can ease the burden of data synchronization by integrating such operations within
the portal.

Integrating with Partners and Customers
Because SharePoint solutions can be safely exposed outside the firewall, they make excellent
platforms for integrating with customers and partners. SPS can host specific self-service sites
for key customers and communication sites for partners. This same idea also allows subsidiary
companies to communicate and collaborate with parent companies—all without having to
integrate at the system level.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS10

Figure 1-5. A site-creation link

5750_c01_final.qxd 11/3/05 9:54 PM Page 10

Analysis and Design Considerations
SPS can be remarkably easy to install. In fact, if you follow the single-server deployment strat-
egy, you can have SPS up and running in 30 minutes. However, that does not mean that it is
simple to create an effective business solution using SharePoint products and technologies.
The key to properly designing a SharePoint solution is to spend the required time to identify
the business problem to be solved and the expected result. Once you understand the solution,
then you must document the roles, policies, and systems that constitute the solution. Finally,
you must design a solution that incorporates all of the elements in a way that solves the origi-
nal business problem.

Documenting the Business Vision
For as long as I have been involved in designing software solutions, teams have always agreed in
principle that identifying the business problem and understanding the return on investment
(ROI) were critical to the success of every project. However, I have rarely seen a team actually
engage in these activities, and in the end, this often was a leading factor in the failure of a project.

Shortcutting required analysis is a fact of life in the information technology world, and it
is driven equally by managers and engineers. On the management side, project sponsors are
frequently unable to articulate the expected return from a technology project. When inter-
viewed, managers are incapable of explaining the productivity increases or cost savings that
are expected from a technology effort. Instead, they rely on a vague feeling that the mere pres-
ence of a tool, or portal, will surely help the organization be better. This is what I’ll call the
tool-only approach.

On the technical side, most engineers are not trained to look at technology issues as
essentially business problems. Instead they look at business issues as primarily technology
problems. The typical technical thought process asks the following question: What data does
the end user need? Then it asks this: What application provides that data? The solution then
is to deploy the application that provides the data and declare the problem solved.

A portal solution based on SharePoint products and technologies is a web of solutions to
myriad problems. Organizations considering such an implementation would do well to begin
by interviewing key project sponsors to document the expected company benefit from such
an effort. Sponsors should be clear about the expected productivity increases or cost savings
associated with the effort. Use this exercise as a litmus test for the entire project. If a signifi-
cant return cannot be envisioned for the project, then it may not be worth the effort.

If the return is determined to warrant the project effort, then the correct process is first
to create a vision document. The first deliverable of the project, the vision document articu-
lates the business problem, proposed solution, and expected benefit. This document is the
highest-level guidance for the project. It acts as the beacon to which the team is headed. In
well-run projects, the vision document is periodically revisited to ensure that no extraneous
effort is expended and that the team is correctly implementing the vision and achieving the
desired results.

Documenting Policies and Practices
Once the vision document is completed, the next step is to document the policies and practices
that will constrain the use of the solution. Policies and practices act as boundary conditions for

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 11

5750_c01_final.qxd 11/3/05 9:54 PM Page 11

the solution. Successful projects exist within these boundaries while solving the original busi-
ness problem.

Policies are restrictions placed on the organization by its management and articulated
as simple statements. For example, the statement “Company credit cards are not to be used
for personal expenses” is a policy that restricts the use of company credit cards. Similarly, the
statement “Only port 80 will be open on the firewall” is also a policy. This policy restricts the
use and configuration of the company infrastructure. Policies are not easily changed; there-
fore, a successful project must identify the policies that constrain it.

Practices are similar to policies in that they act as boundary conditions on the solution
design. However, practices are more closely associated with the tactical processes used
by the organization to do business. For example, the use of an approved vendor list to simplify
the purchase process is a practice. Practices are less formal than policies, but they can easily
be just as limiting on the final design.

Policies and practices exist at many levels in an organization. Some policies may apply
to an entire organization, whereas others may be specific to a single process. Initially, you
should try to identify the policies and practices that are most likely to constrain the general
use of a portal solution. As the portal effort matures, you will identify departmental processes
constrained by additional policies and practices. As a starting point, consider the following
common areas where policies and practices may affect the initial portal deployment: allowing
external access, negotiating service-level agreements, accessing the application, and manag-
ing content.

Allowing External Access
Determine whether or not personnel will be allowed to access the portal externally. If external
access will be allowed, then document the policies for authentication. Determine if a simple user
name and password will be sufficient, or whether stronger measures will be required. Specifically,
you should determine if Secure Sockets Layer (SSL) and certificates will be required.

Along with system policies, determine if users will be required to access the portal utiliz-
ing a two-factor authentication system such as RSA SecurID. SecurID tokens act as virtual
ATM cards for the portal. In order to access the portal, users must possess the token and know
a personal identification number (PIN). The passcode generated by the token changes every
60 seconds, so a user must be in possession of the token at the time of login. The PIN is a fixed
set of numbers known only to the user. The combination of these two elements to complete
a login request is why it is called two-factor authentication. When combined with SSL and
certificates, such access schemes are exceedingly hard to hack.

In addition to considerations about personnel access, you should document policies for
system deployments. Determine what parts of the system will be deployed behind the firewall
or in a Demilitarized Zone (DMZ). All of these issues arise early in a portal development proj-
ect and will affect the final design significantly.

Negotiating Service-Level Agreements
Based on the business vision, you should determine the expected availability for the portal.
If the portal is functioning as little more than an intranet, perhaps no significant impact
occurs if it goes down. On the other hand, some organizations are utilizing the portal as the
primary workspace for employees. In this case, a formal service-level agreement should be
negotiated for the system.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS12

5750_c01_final.qxd 11/3/05 9:54 PM Page 12

Along with a service-level agreement, the portal may have to be part of the disaster
recovery/business continuity plan. Again, based on the business vision, determine if the
criticality of this system warrants a replicated site on the disaster recovery network. If so,
make disaster recovery an integral part of the project plan. I have seen many organizations
ignore this point and roll out a portal as “just a pilot.” These same organizations turn around
a few months later and realize they have a single point of failure in their system architecture
and a gaping hole in their disaster recovery plan.

Accessing the Application
Determine the policies and practices you will use to provide application access. As I stated
earlier, the Microsoft vision of SharePoint solutions incorporates tight integration with
Office 2003. If this is in line with your company vision, then you must evaluate your current
Office deployment. Give thought to any planned upgrades and how you will handle instal-
lation and maintenance on the client machines.

Because the Microsoft vision requires client-side deployments of Office applications,
many organizations are combining SharePoint Portal Server with server-based technologies
like Windows Terminal Services. Terminal Services is a technology that allows a Windows desk-
top running on a centralized server to be viewed and operated on a remote computer. Using
this technology, organizations can develop significant cost savings by nearly eliminating all
client-side installation and maintenance. These server-side installations are then accessed
through the Remote Desktop client. Figure 1-6 shows the Remote Desktop client configured
to access a server running a SharePoint portal.

Managing Content
Documents and other content are a significant part of a SharePoint solution. Therefore, organ-
izations must document the policies and practices that determine how the content is created,
posted, and managed. Determining the policies and practices surrounding content will have
a lot to do with the culture of the organization. In its heart, SharePoint is a distributed solu-
tion. This means that it is structured to allow easy content creation and posting. Additionally,
sites and subsites can be created without necessarily requiring centralized approval. Many
organizations find this philosophy incompatible with the traditional centralized approach
to information technology.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 13

Figure 1-6. Preparing to access Windows Terminal Services

5750_c01_final.qxd 11/3/05 9:54 PM Page 13

Administrators do have significant control over permissions granted to portal users
through the use of SharePoint roles; however, every organization will have to determine which
people will be responsible for creating and maintaining content. This may be a formal system
where each department has a content manager, or it may be a freewheeling approach that lets
nearly anyone create a site on the fly and populate it with relevant content. In any case, you
should consider these issues carefully before you begin designing the portal.

Managing Change
During a presentation, a customer once asked me to describe the most difficult issue sur-
rounding a SharePoint deployment. My answer was immediate. I responded, “It’s the same
issue as every other project—managing the change for the end users.” Change management
is the process that helps end users adopt new ways of doing business, and it is never easy.
In fact, I would say that change management issues are responsible for more project failures
than nearly anything else.

Despite its ability to affect the success of a project, change management is rarely consid-
ered in sufficient detail. In my experience, this is because the team is primarily concerned with
correctly implementing the technical solution. What’s more, technical teams really are not
trained to help users through the change management process. Once, I was discussing a
portal rollout with an IT director who told me that he was absolutely convinced of the value
embodied in our project. His only concern, he said, was how to get the end users to adopt the
new environment. Before I could answer him, he muttered under his breath, “I guess we’ll just
ram it down their throats.” Wow!

Successful change management is about educating and assisting end users. Every good
portal project must involve some key elements to help end users adapt and be productive.
Scheduling end-user training is an obvious first step, but it is rarely enough to ensure success.
Instead, consider the entire group of end users and have a complete plan to manage the change.

Begin by mentally dividing the end users into three groups. The first group is the set of
people who are excited about the project. This group can be a strong ally in your effort to bring
others through the change process. The second group is the set of people who are neutral about
the project. This group is waiting to see if the project will be successful before they get behind
it. The last group is the set of people who are openly hostile toward the project. This group does
not want to change and is typically very vocal about it.

Although the third group is the loudest and cries for the most attention, they should be
largely ignored. Instead, I like to start a pilot with the first group. Don’t worry about the tradi-
tional approach of piloting your project with a particular department. This approach is too
narrow and invites people from all three groups into the pilot. This will surely result in some-
one from the third group declaring the project a disaster. Just locate the most enthusiastic
people you can—regardless of department—and start a pilot.

Piloting with enthusiastic people guarantees good press. This means that the people in
the second group—the ones who are waiting for success—will begin to hear good things about
the project. This will result in more people from the second group becoming enthusiastic and
joining the first group. Now you can expand your pilot to include more people. In this way, you
can continue to build momentum for the project. This strategy can save you a lot of heartache
when rolling out something with as much organizational impact as a portal.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS14

5750_c01_final.qxd 11/3/05 9:54 PM Page 14

Technical Considerations
Along with the business, analysis, and design considerations presented in this chapter, you
need to be aware of several technical considerations and limitations. Like all software systems,
SharePoint products and technologies have minimum hardware requirements. Also, like all
software systems, a few compatibility issues may affect your deployment plans. In the sections
that follow, I’ll cover the server and client requirements for installing SharePoint products and
technologies.

Server Requirements
When planning for the server installation, both hardware and software requirements must be
met. I will address installation in some detail in the next chapter, but this section allows you
to start planning your deployment. The following are the minimum hardware requirements to
run SharePoint Portal Server (SPS):

• Intel Pentium III–compatible processor

• 512MB of random access memory (RAM)

• 550MB of free hard disk space

You should consider a couple of special points when you are setting up SharePoint
products and technologies. First, Microsoft SPS assumes that all the partitions involved in
the deployment are formatted as NTFS. Additionally, program and data file paths cannot point
to removable or networked storage. Finally, if you are deploying SPS in a farm using Windows
Network Load Balancing (NLB), you should install a second network interface card (NIC) to
support communication between servers in the farm.

In addition to the hardware requirements, SPS has specific software requirements. Most
notable is the fact that SPS requires one of the Windows 2003 operating systems. This does not
mean that your entire network has to be upgraded to Windows 2003, but it does mean that you
have to have at least one server running the operating system on which you install SharePoint.

You should keep several special considerations in mind when you are deploying the
SharePoint software. First, if you choose to run SPS on Windows Server 2003, Web Edition,
you must have Microsoft SQL Server installed on a separate computer. Second, all servers in
a server farm must run the same version of Windows 2003 and the same version of SQL
Server 2000; however, the computer running SQL Server 2000 does not have to run under
Windows 2003. Third, if you are installing SPS on a domain controller, you must install SQL
Server on a separate server. Finally, the following operating system components must be
installed on the computer running SPS:

• Microsoft ASP.NET 1.0 or later

• Enabled network COM+ access

• Internet Information Services Manager

• World Wide Web service

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS 15

5750_c01_final.qxd 11/3/05 9:54 PM Page 15

Client Requirements
Microsoft SPS will work with a wide variety of clients. Client machines may be running any
operating system from Windows 98 through Windows XP. Client browsers Internet Explorer
5.01 and higher are supported. Although support for previous versions of Office exists, in order
to integrate all the functions of SPS, client machines should have Office 2003 installed.

CHAPTER 1 ■ SHAREPOINT BUSINESS SOLUTIONS16

5750_c01_final.qxd 11/3/05 9:54 PM Page 16

SharePoint Products and
Technologies Overview

The term “SharePoint” refers to more than just a portal solution. In fact, the term alone does
not refer to any particular product or technology. Instead, it is a catchall term that refers to
several different aspects of web-based collaborative solutions.

In this chapter, I’ll review all of the different products and technologies that are both spe-
cific to the term SharePoint as well as related to collaborative solutions in general. This review
will help you become familiar with the vocabulary I’ll use throughout the rest of the book.

The Microsoft Office System
When most information workers hear the term “Office,” they immediately think of products
such as Word, Excel, and Outlook. However, these products are really part of what is formally
called the Microsoft Office suite. The difference between the terms “Office” and “Office suite”
may not have been meaningful in the past, but it is now an important distinction because the
emergence of SharePoint technologies introduces the new term “Office System.” The
Microsoft Office System is a set of products and services that are intended to change the role
of Office from a document-creation toolset to a solution platform for information workers.

The Microsoft Office System is made up of four pillars: Programs, Servers, Services, and
Solutions. The Programs pillar is made up of all the products in the Microsoft Office suite,
including Word, Excel, PowerPoint, Access, Visio, and FrontPage, as well as some new prod-
ucts such as InfoPath, which is used to create electronic forms, and OneNote, which is used
for taking notes on a Tablet PC.

The Servers pillar consists of several server products that help connect users of the
Office suite. These products include Windows SharePoint Services, SharePoint Portal Server,
Live Communications Server (used for instant messaging), Exchange, and Project Server. It’s
really these servers that transform the Office suite into the Office System.

The Services pillar consists of two services that you can access through the Internet.
The first is Microsoft Live Meeting. Live Meeting is the old Placeware technology that
Microsoft purchased. It allows you to set up and host meetings using computers for the
visuals and a phone line for the audio. It’s similar to services such as WebEx. The second
service is the Office Update service. Office Update allows you to download service packs,
templates, and graphics directly from an Office product.

The Solutions pillar is the last pillar and represents a concept instead of a product. This
concept recognizes that the products contained in the Office System form a platform for 17

C H A P T E R 2

■ ■ ■

5750_c02_final.qxd 11/3/05 9:53 PM Page 17

building information worker solutions. It is through the proper customization and config-
uration of these products that a solution is created.

I am fond of telling people that building a solution with the Office System is not a soft-
ware installation problem. In fact, installing any of the Office System products takes no more
than about 30 minutes each. However, installing the products really accomplishes very little.
This is because all of the products in the Office system must be tailored and configured to sup-
port the specific business problem being solved. The biggest mistake I have seen people make
is to install SharePoint and then just “put it out there” to see what happens. Usually what hap-
pens is that the pilot fails because the software is not properly customized and integrated. I
always know this has happened when someone says to me, “Oh, we tried SharePoint; it didn’t
do anything.”

SharePoint and the Office System
SharePoint products and technologies are certainly a major part of the Office System. In fact,
I consider them to be the backbone of the Office System because they serve to connect users
of the Office suite.

In this section, I’ll cover the major components of SharePoint so that you can gain an
understanding of the Office System as a solution platform. Figure 2-1 shows a simplified
drawing of the SharePoint products and technologies related to the Office suite.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW18

Figure 2-1. SharePoint and the Office System

5750_c02_final.qxd 11/3/05 9:53 PM Page 18

Windows SharePoint Services
Windows SharePoint Services (WSS) is the collaboration backbone of the Office System.
Because WSS is part of Windows Server 2003, I do not consider it to be a separate product.
WSS has no additional license requirements, so you can simply install it for free. Using WSS,
you may create dozens, hundreds, or even thousands of team sites. Team sites are interactive
web sites designed to support groups of people engaged in a business process. WSS team sites
provide a number of features designed to support business teams, but the most important
features revolve around the management of documents and information. Figure 2-2 shows
a typical WSS team site.

In this section, I’ll cover the various features of team sites, including document libraries,
lists, discussions, and Web Parts. These features form the basis for managing documents and
information within a SharePoint solution.

Document Libraries
Every WSS team site you create may have one or more document libraries associated with it.
A document library is like a mini document management system with check-in, check-out,
version control, and approval capabilities built right in. Document libraries are intended to
contain all of the documents that a team needs to accomplish a business function. These
documents may be Office documents built in the Office suite or they may be non-Office doc-
uments such as Adobe Acrobat files, text files, or even e-mail. Just about any document may
be stored in a document library. Figure 2-3 shows a typical document library in a WSS team site.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 19

Figure 2-2. A WSS team site

5750_c02_final.qxd 11/3/05 9:53 PM Page 19

Document libraries also support an event system that you can tap into programmatically.
These events can call into .NET assemblies when new documents are placed in a library, mod-
ified, or deleted. You can use these events to implement rudimentary workflow applications or
integrate with other systems. Unfortunately, WSS does not have a native workflow engine—a
serious flaw, in my opinion. Instead, we must work around this issue using a combination of
custom code or other products. I’ll discuss workflow in more detail later in the book.

Lists
I like to refer to businesspeople today as “document centric.” I say this because most business-
people are concerned with the creation, status, or delivery of documents. However, teams
really need more than just document information in order to accomplish a business purpose.
For example, teams may need a task list, a list of contacts, or a calendar to facilitate and coor-
dinate their efforts. This type of information all falls under a broad category in WSS simply
called lists.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW20

Figure 2-3. A document library

5750_c02_final.qxd 11/3/05 9:53 PM Page 20

Lists in WSS can be lists of anything, but most often they take the form of information
typically found in Microsoft Outlook. In fact, many list types can be synchronized with infor-
mation contained in Outlook. For example, you can create a list of key contacts on a WSS team
site and synchronize them with your contact list in Outlook. You can also create shared calen-
dars on a WSS team site and view them in Outlook alongside your regular calendar. Figure 2-4
shows a typical task list in a WSS team site.

Web Parts
Along with documents and lists, teams also need access to the data found in line-of-business
systems. As I discussed in Chapter 1, most information workers log in to several different line-
of-business systems daily simply to retrieve information and continue working in the Office
suite. WSS team sites have the capability to expose the information in these systems so that it
becomes available through the site. This is accomplished using a SharePoint technology called
Web Parts. Web Parts are .NET assemblies used to return and present information from a
system. Often, but not always, these parts are custom-coded specifically for a given system.
Figure 2-5 shows a typical Web Part returning information from a Customer Relationship
Management (CRM) system.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 21

Figure 2-4. A task list

5750_c02_final.qxd 11/3/05 9:53 PM Page 21

Discussions and Surveys
While document libraries, lists, and Web Parts are designed to integrate SharePoint with
other information stores, discussions and surveys are unique to each WSS team site. Dis-
cussions and surveys are intended to be used to facilitate communication and consensus
building among team members who are not present in the same time and space. Discus-
sions allow a team to communicate and debate asynchronously while keeping a complete
record of their progress. Surveys allow a team to reach consensus by voting on key decisions.
Discussions and surveys, if properly used, have the ability to significantly reduce the amount
of e-mail an individual receives. Additionally, the threads and decisions are located in a single
place, which makes them easier to audit, review, or reuse.

The Content Database
While WSS looks and feels much like any ASP.NET web application, under the covers it is signif-
icantly different. This is because WSS utilizes an Internet Services Application Programming
Interface (ISAPI) filter to intercept URL information and translate it into content.

An ISAPI filter is a .NET assembly that sits on a web server and is programmed to intercept
HTTP requests for pages within a given domain. When the WSS ISAPI filter recognizes an HTTP
request associated with a WSS team site, the request is intercepted and the appropriate HTML
is constructed on the fly for return to the calling client. All this means that the web pages you
see in a WSS site do not actually exist on the web server. Instead they are constructed from data
contained in the content database.

The content database is a SQL Server database that maintains all of the web page defi-
nitions, documents, lists, discussions, surveys, and security information. This means that
SharePoint products and technologies require an associated SQL Server. It also means that
all documents in document libraries are saved in the content database as binary large
objects (BLOBs).

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW22

Figure 2-5. A Web Part

5750_c02_final.qxd 11/3/05 9:53 PM Page 22

Working in Team Sites
In order to understand the true value of a WSS site, consider a situation in which you have
been asked to create a complete profile for each of the top five customers your organization
serves. In the absence of a SharePoint solution, how many systems would you have to access
to create the required profiles? First, you would have to go to the shared file server and retrieve
all documents that are related to the customer. Next, you would have to go to the e-mail sys-
tem and retrieve all related e-mails. Then, you would have to access the customer database,
financial system, and ERP systems to return information and reports. Finally, you would rekey
this information into a spreadsheet or simply print it all out. This is a lot of effort just to retrieve
information even before a team can use it. A properly designed SharePoint solution, on the
other hand, would offer you one WSS team site to visit where all of this information would
be available.

WSS team sites can have a significant impact on the way in which a team functions. No one,
however, should underestimate the amount of change that a SharePoint solution will bring to an
organization. This change is always painful, and it often directly threatens the success of any
project. The key thing to keep in mind is that a SharePoint solution is not a software installa-
tion problem. You must properly design and implement the solution while effectively managing
change. I cannot say this often enough.

SharePoint Portal Server
When discussing WSS team sites, I said that you could have dozens, hundreds, or thousands
of sites. The last time I spoke to someone within Microsoft about WSS use, that person told me
that the Microsoft campus in Redmond, Washington, had over 50,000 WSS team sites! If you
imagine a WSS installation containing thousands of sites, you might become concerned that
this will be a giant mess. In fact, it sounds a bit like a shared file system gone insane. Your mind
reels imagining all the rogue sites, broken links, and unused information—not to mention the
backup requirements.

There is no doubt that a WSS installation can turn into a rat’s nest if it is allowed to grow
organically without any structure or control. Furthermore, locating information could become
impossible. This is the problem that SharePoint Portal Server (SPS) is intended to address.

The primary role of SPS is to aggregate and personalize the information contained in WSS
team sites. Unlike WSS, SPS is a separate product and requires the purchase of separate licenses.
SPS can be thought of as a specific application built on top of WSS because it uses the same
technology, but its purpose is entirely different. Whereas WSS team sites are used primarily to
facilitate collaboration, SPS uses WSS to implement a more formal and permanent site struc-
ture for an organization.

The primary entry point into SPS is the portal home page. Information workers begin at
the home page regardless of their role in the organization or place in the company hierarchy.
The home page is intended to deliver company announcements and provide tools for locating
useful resources. From the portal home page, information workers can gain access to WSS team
sites. From these sites, information workers can subsequently access documents, lists, and
other information. The major features of SPS—topics, areas, audiences, My Site, and search,
discussed in the sections that follow—are all intended to help information workers quickly
locate resources within the portal.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 23

5750_c02_final.qxd 11/3/05 9:53 PM Page 23

Topics and Areas
SPS aggregates and organizes content through the use of topics and areas. Topics are branches
on a tree that help information workers navigate the portal content. Areas are leaves on the
same navigation tree. In my experience, topics and areas are the most poorly understood of
all SharePoint features. I will discuss these elements in detail in the next chapter, but for now
think of topics and areas just as you would the Start menu on your computer. Topics are like
the groupings on the Start menu, whereas areas are like the shortcuts on the Start menu.

Audiences
Audiences is a powerful feature in SPS that allows you to target content at an information
worker based on his role. This is an effective way to help filter out information that is not
important to the current user while highlighting destinations that are popular. I’ll cover
audiences in more detail in Chapter 4.

My Site
Every user of SPS can have their own personal site called My Site. My Site allows an Information
Worker to organize links, tasks, and sites in ways that are important to her. It offers another
effective way to filter information so that information workers can have a simplified and per-
sonalized view of even complicated SharePoint installations. I’ll cover My Site in more detail in
Chapter 4.

Portal Search
The SPS search engine is used to search across all content contained within the portal or any
WSS team site. In fact, the SPS portal search is the only way to search all WSS team sites simul-
taneously. While each individual WSS team site does have a search capability, it is restricted to
the site where it is located. You can’t search from one WSS team site to another. I’ll discuss how
to configure the SPS search engine in Chapter 11.

Office 2003
With Microsoft Office 2003, Microsoft has made it clear that the company envisions the Office
suite as the primary productivity environment for the information worker. To achieve this end,
Microsoft Office 2003 offers complete integration with WSS team sites. This means that infor-
mation workers can create sites, invite participants to join a team, manage lists, and share
documents seamlessly using nothing more than Word, Excel, PowerPoint, and Outlook.

The primary mechanism that connects information workers with WSS team sites is called
workspaces. Office 2003 supports two types of workspaces depending upon the product you are
using. If you are primarily interested in collaborating around a document, then Office can create
a document workspace. On the other hand, if you are more interested in focusing on a meeting
with colleagues, then you can use Outlook to create a meeting workspace.

Document workspaces can be associated with any document contained in a document
library. These workspaces allow multiple people to view and edit documents while keeping
track of changes and versions. Along with the document management support, a document
workspace also provides related lists such as tasks.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW24

5750_c02_final.qxd 11/3/05 9:53 PM Page 24

Meeting workspaces are associated with meeting requests sent from Microsoft Outlook.
When sending out meeting requests, you can set up a meeting workspace for the attendees to
use. The workspace keeps track of things like the meeting agenda, assigned tasks, and results.

In addition to direct integration with WSS, Microsoft Office 2003 includes a new form-
creation application called InfoPath. InfoPath allows information workers to fill out a form
online that can be used to programmatically populate a number of line-of-business systems
or initiate a workflow process. The idea behind InfoPath is to allow information workers to
enter information into one form instead of having to rekey the same information into many
systems. InfoPath ties neatly into WSS because it supports a specialized document library just
for InfoPath forms. Furthermore, because InfoPath is XML based, it works well with BizTalk
Server to help integrate systems into the SharePoint Services platform.

Installation Considerations
Before beginning your installation of SharePoint, you need to consider some infrastructure
issues. SharePoint ships with an administrator’s guide that has a complete set of planning
topics, so I will not try to repeat all of that detail in this section. Instead, I will just go over the
major things you should consider.

The primary issue to consider is the overall capacity of your solution. Although SPS scales
well in a test environment, it has some limitations you will want to keep in mind as you plan
for deployment. Under most scenarios, these limitations will probably never be reached, but
understanding how SPS scales can help you keep the solution running trouble-free. All of the
test results referenced here assume a server-class, dual-processor machine with 1GB of RAM.

Document Capacity
Through my work with SharePoint products and technologies, I have come to understand that
planning for document capacity is probably the most important design point. Because all of
the documents are maintained in the content database, you must size this database appropri-
ately for growth. In determining the content database capacity, you must consider document
size, number of versions, and documents generated per year.

Begin by determining the capacity required to handle any existing documents that you
plan to migrate into SharePoint. This is a fairly straightforward process based on document
size. Next, determine the average size of a document that you intend to host in the solution
going forward. Multiply this value by the average number of versions you expect to be created
for each document. Finally, multiply this number by the average number of documents cre-
ated in a year. This value will give you a basic starting point for sizing the content database.

User Capacity
Determining the number of concurrent users that can access a SharePoint installation is tricky
at best. The total number of concurrent users is affected not only by the hardware configura-
tion, but also by the activity level of the users themselves. Obviously a system can handle many
more simultaneous users that are only occasionally pulling read-only information as opposed
to users consistently engaged in read-write operations. With that in mind, you can make some
statements regarding scalability assuming a moderate level of read-write activity from a group
of simultaneous users.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 25

5750_c02_final.qxd 11/3/05 9:53 PM Page 25

A single web server environment is good for just under 4,000 concurrent users, assuming
the required database server is deployed on a separate machine. This number rises to about
6,000 concurrent users when a second web server is added and a farm is created. For three web
servers, the number of concurrent users rises to about 7,000.

After four web servers are added to the farm, the number of supported concurrent users
does not rise significantly. This is because access to the database server becomes the limiting
factor. In order to scale beyond 7,000 concurrent users, a second database server must be added
to the infrastructure.

Other Limitations
Along with user capacity, SharePoint has limits associated with several other key parameters.
The limits covered here are not hard limits, but exceeding them can degrade overall system per-
formance. Generally these limitations are large and will not affect most organizations; however,
they are worth reviewing before you get started with your installation. Table 2-1 summarizes
the key limitations.

Table 2-1. SPS Limitations

Item Limit

Total web sites in portal 10,000

Total subsites beneath any one web site 1,000

Total documents in any one folder 10,000

Total documents in the repository 2,000,000

Total single document size 50MB

Total entries in any one list 3,000

Total web parts on any one page 100

Deployment Architectures
Although WSS may be deployed separately from SPS, I will assume throughout this book that
you are using SPS in conjunction with WSS. Because SPS is built on SharePoint Services tech-
nology, WSS will always be installed when you create an SPS installation; therefore, I will refer
only to SPS throughout the remainder of this chapter.

While SPS may be deployed in any of several different scenarios, the business needs of
your organization will largely determine the deployment scenario. Each of the available sce-
narios requires you to deploy several different components that support the portal. SPS itself
consists of four major components: the Web component, the Index component, the Search
component, and the job server. Additionally, SPS requires a SQL Server installation to support
the configuration of the portal and to act as the document repository. Optionally, you may
choose to install the components to provide backward compatibility between the SPS2003
document repository and the SPS2001 repository.

In this section, I’ll cover each of the following deployment scenarios: stand-alone server,
small server farm, medium server farm, and large server farm.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW26

5750_c02_final.qxd 11/3/05 9:53 PM Page 26

Stand-Alone Server
The stand-alone server is the simplest deployment option and the one that you will use through-
out this book. In a single-server deployment, all four of the SPS components and the SQL Server
database reside on a single machine. The SQL Server database may be either a complete
installation or the Microsoft SQL Server Desktop Engine (MSDE). The optional components
for backward compatibility with SharePoint 2001 may also be installed on the same machine.
Exercise 2-1 (at the end of this chapter) will take you through a complete stand-alone server
installation that you can use with the rest of this book.

Although a stand-alone server deployment is great for experimentation and testing, I do
not recommend that you use it in production. This is because a stand-alone server deployment
can perform quite poorly under operational conditions. One significant drawback of this con-
figuration is that the Index component can overwhelm the processing power of the server when
it runs. I have seen these types of installations brought to their knees when the Index compo-
nent runs, resulting in negative reactions from information workers who can no longer access
sites. Furthermore, it is impossible to move the Index component onto a separate server once
you have created this configuration. Therefore, you will end up starting your installation from
scratch all over again.

Small Server Farm
A small server farm is defined as a single web server running the Web component, Index
component, Search component, and job server. A second server is used to host SQL Server
2000. In this configuration, you must create an account in the local Power Users group on the
web server. This account is then given Security Administrators and Database Creators mem-
bership on the SQL Server installation. Detailed installation instructions are available in the
administrator’s guide and will not be repeated here. Figure 2-6 shows a conceptual drawing
of a small server farm deployment.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 27

Figure 2-6. A small server farm deployment

5750_c02_final.qxd 11/3/05 9:53 PM Page 27

Although the small server farm is a recognized deployment configuration, it suffers from
the same problem with the Index component as does the stand-alone server. Therefore, I do
not recommend using this scenario in production either. The only time this scenario might be
appropriate is when you are only deploying WSS and have no intention of using SPS. In this
case, you will not have an Index component to worry about since the WSS search does not
cross all sites.

Medium Server Farm
A medium server farm is defined as having at least three servers. At least one, but possibly
more, servers are set up as web servers with the Search component installed. These servers are
joined together using Network Load Balancing (NLB) to function as the front-end web servers
that will receive HTTP requests. In this configuration, you must also set up an account in the
local Power Users group on each web server. A second server is used to host the Index compo-
nent and the job server. This server must also have an account set up in the local Power Users
group. Finally, a third server hosts SQL Server 2000. Detailed installation instructions are avail-
able in the administrator’s guide and will not be repeated here. Figure 2-7 shows a conceptual
drawing of a medium server farm deployment.

Large Server Farm
A large server farm is defined as having at least six servers. At least two, but possibly more,
servers are set up as web servers joined together using NLB. At least two, but no more than
four, separate servers are configured with the Search component. At least one, but no more
than four, separate servers are configured with the Index component and job server. Finally,
at least one separate server hosts SQL Server. Just as in the other scenarios, you must set up
an account in the local Power Users group. Detailed installation instructions are available in
the administrator’s guide and will not be repeated here. Figure 2-8 shows a conceptual draw-
ing of a large farm deployment.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW28

Figure 2-7. A medium server farm deployment

5750_c02_final.qxd 11/3/05 9:53 PM Page 28

Shared Services
In large organizations, you may find it appropriate to create more than one installation of
SPS. In such a case, you can simplify deployment and management by using Shared Services.
Shared Services allow you to set up a single installation to manage user information, search
services, alert services, and single sign-on services. Because these services are likely to be
common to all installations within an organization, sharing them makes management and
configuration easier.

Upgrading from SharePoint Portal Server 2001
Although it is possible to upgrade an existing SPS2001 installation to the 2003 version, this is
not a process that you should take lightly. First of all, SPS requires Windows Server 2003. This
means that you will have to begin the upgrade process by first upgrading all of the web servers
in your farm where SPS will be deployed.

During the upgrade process, some of the information contained in SPS2001 is imported
into SPS2003, but much of the information is not used. In particular, any portal customizations
and Web Parts you created under SPS2001 will not be used in the upgraded portal. Much of this
content is based on fundamentally different technologies with no backward compatibility.
Additionally, security roles do not carry over from SPS2001.

Exercise 2-1: Creating a
Development Environment
The exercises in this book assume that you have a certain development environment available.
This environment includes not only SPS, but also several other products and technologies. In
this exercise, you will set up the development environment you will use for the rest of the book.

You should have at least two machines available on which to install Windows Server 2003.
For the purposes of this book, you can use almost any edition, but I used the Enterprise Edition.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 29

Figure 2-8. A large server farm deployment

5750_c02_final.qxd 11/3/05 9:53 PM Page 29

As part of the setup, you will configure one of the servers to act as a domain controller. There-
fore, you should be sure that you can dedicate the two machines to your test environment.

This exercise is not intended to walk you through an exhaustive screen-by-screen instal-
lation of the required software. Instead, I will focus on special areas of the installation where
you need to configure the software or take special care to ensure a correct installation. Gener-
ally, I assume that you have some idea of how to install Microsoft server products, but I will
try to give enough guidance to keep you from going astray.

Prerequisites
Before beginning your installation, you will want to give some thought to the installation limi-
tations discussed earlier. Although there are certainly pros and cons to any installation, I chose
to place Active Directory and Exchange 2003 on one machine and SPS on another. I named the
domain controller SPSController and the portal server SPSPortal. Table 2-2 shows a complete
list of installed software on each machine.

Table 2-2. Machine Configurations

Machine List of Software

SPSController Microsoft Windows Server 2003, Enterprise Edition
Active Directory
Microsoft Exchange 2003

SPSPortal Microsoft Windows Server 2003, Enterprise Edition
Microsoft SQL Server 2000
Microsoft SharePoint Portal Server 2003
Microsoft Visual Studio .NET 2003

SPSClient Microsoft Windows XP Professional
Microsoft Office 2003
Microsoft InfoPath

Installing Windows Server 2003 on SPSController
In this section, you will install Windows Server 2003 on the SPSController machine and create
a domain controller. Although an Active Directory domain is not required for SPS2003 to func-
tion, I will assume its presence in this and other exercises throughout the book. When you are
finished, you will create a second server and join it to the domain.

■Note When creating test installations for SharePoint development, you can drastically simplify the
process by using virtual environments created with either Microsoft Virtual Server (MVS) or VMware.
I have used both products to successfully develop solutions.

Getting Started
To begin the installation process, boot your computer with the Windows Server 2003, Enterprise
Server CD-ROM. Each computer has a different specific method for booting from a CD-ROM.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW30

5750_c02_final.qxd 11/3/05 9:53 PM Page 30

Often you will have to change the boot sequence using the system BIOS. My machines have a
special boot menu feature I can select during startup. If you are using a virtual environment, you
must create the virtual machine before starting the installation process.

Formatting the Partition
When prompted during the installation, be sure to format the installation partition using
the NTFS file format. Microsoft SharePoint Portal Server 2003 requires the NTFS file format.

Naming the Server
When prompted during installation, name this machine SPSController. I will refer to this
name for the domain controller throughout the book, so it is a good idea to stick with the
same name.

Skipping the Domain
When prompted during installation, do not join an existing domain because this server will
be promoted later to a domain controller. When you create the second server, you will join it
to this new domain.

Creating the Domain Controller
After the initial installation is complete, log in to the local machine as the system administra-
tor. The Manage Your Server applet will open automatically when you log in the first time.

From the Manage Your Server applet, select the right-facing arrow to add or remove a role
to the server. After finishing the Preliminary Steps, select to set up the server in a “Typical con-
figuration for a first server”. Follow this by entering the name of a new domain (I used sps.local
and will refer to it throughout the book).

■Caution When installing a domain controller, Windows will install the Dynamic Host Configuration
Protocol (DHCP) service. If this service is installed, you should not connect this machine to any network with
an existing DHCP server. If you do, this server may issue invalid IP addresses to clients on the network! To
avoid this, disable the DHCP service after installation by selecting Start ➤ Administrative Tools ➤ DHCP.

Changing Server Policies
Because the domain controller will largely be used for experimentation, you may want to
change the policies for passwords so that they can be simplified and will not expire. This will
probably save you some time later because you won’t forget the passwords you are using.
Select Start ➤ Administrative Tools ➤ Domain Security Policy.

In the Default Domain Security Settings screen, expand the tree under Account Policies
and again under Password Policy. Under this node, you can change the definitions for pass-
word form and expiration. Figure 2-9 shows the Default Domain Security Settings screen.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 31

5750_c02_final.qxd 11/3/05 9:53 PM Page 31

Adding Users and Groups to the Domain
After the domain controller is installed, you must add required users and groups to Active
Directory. Select Start ➤ Administrative Tools ➤ Active Directory Users and Computers. In
the management console, select to add a new user or group. Create the users and groups
shown in Table 2-3. Each of these groups and accounts will be explained and configured as
you proceed through the installation process.

Table 2-3. Required Users and Groups

Name Description

SPSAdmins SharePoint Administrators group

SPSConfigDB Configuration Database Administrator account

SPSImport Profile Import account

SPSPool Application Pool Identity account

■Note This is also a good time to add some test users to Active Directory. These test accounts are useful
for setting up various scenarios in SharePoint.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW32

Figure 2-9. Changing password restrictions

5750_c02_final.qxd 11/3/05 9:53 PM Page 32

Installing Exchange 2003 on SPSController
In this section, you will install Exchange 2003 and set up mailboxes for all the users. Although
Exchange 2003 is not specifically required for SPS to run, the collaborative backbone provided
by Exchange 2003 significantly enhances the overall business solution. Before you get started
installing Exchange 2003, however, you must install a number of prerequisites.

Configuring Prerequisites
Windows Server 2003 is installed without Internet Information Server (IIS) by default. IIS and
several of its components are required for Exchange 2003 installation. To add these components,
select Start ➤ Control Panel ➤ Add or Remove Programs. Then follow these steps to add the
required prerequisites:

1. On the Add or Remove Programs screen, click the Add/Remove Windows Components
button.

2. Select the Application Server component and click Details. Figure 2-10 shows the
Application Server screen.

3. On the Application Server screen, check the boxes to install the ASP.NET and Internet
Information Services (IIS) components.

4. Highlight the Internet Information Services (IIS) component and click Details. This will
bring up the Internet Information Services (IIS) screen shown in Figure 2-11.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 33

Figure 2-10. Adding required prerequisites

5750_c02_final.qxd 11/3/05 9:53 PM Page 33

5. On the Internet Information Services (IIS) screen, select the NNTP Service and
SMTP Service components.

6. Click OK to return to the Application Server screen.

7. Click OK again to return to the Windows Components screen.

8. Click Next to install the components.

Installing Exchange 2003
Once the prerequisites are installed, you may proceed to the installation of Exchange 2003. For
the test environment, you can simply choose Typical as your installation type. Figure 2-12
shows the Installation Summary screen.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW34

Figure 2-11. Adding required IIS components

5750_c02_final.qxd 11/3/05 9:53 PM Page 34

Configuring Remote Desktop Administration
on SPSController
Remote Desktop Administration (RDA) is a handy way to access the SPSController server
when you are logged into another machine. This is helpful when you’re working the exercises
in the book because you can avoid logging into physically separate machines. RDA uses only
about 2MB of memory and has little impact on processing power, so Microsoft recommends
enabling it for every server.

RDA is enabled from the System Properties dialog box on the server. Clients attach to
it using the Remote Desktop Connection applet. You can find the client applet at Start ➤
All Programs ➤ Accessories ➤ Communications ➤ Remote Desktop Connection on any
Windows XP machine. Follow these steps to enable RDA on SPSController:

1. Select Start ➤ Control Panel ➤ System to open the System Properties dialog box.

2. Select the Remote tab.

3. Check the Allow Users to Connect Remotely to This Computer box, as shown in
Figure 2-13.

4. Click OK.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 35

Figure 2-12. Installing Exchange 2003

5750_c02_final.qxd 11/3/05 9:53 PM Page 35

Installing Windows Server 2003 on SPSPortal
Follow the same steps as you did for installing Windows Server 2003 on the SPSController
server. There are only two differences in the installation process. First, be sure to name this
server SPSPortal. Second, when prompted during installation, join the sps.local domain
that you created earlier.

Configuring ASP.NET
ASP.NET is required on the server where SPS will be installed. In order to install ASP.NET, select
Start ➤ Control Panel ➤ Add or Remove Programs. Follow these steps to complete the installation:

1. Click the Add/Remove Windows Components button on the Add or Remove Programs
screen.

2. Select Application Server and click the Details button.

3. In the Details screen, select ASP.NET and click OK. Click Next to install the components.
Figure 2-14 shows the Details screen.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW36

Figure 2-13. Enabling remote desktop administration

5750_c02_final.qxd 11/3/05 9:53 PM Page 36

■Note Under Windows Server 2003, Internet Information Server (IIS) is installed in “lockdown” mode.
This means that only static HTML may be delivered by the web server until dynamic content is explicitly
permitted. Generally, when a dynamic content technology like ASP.NET is installed, the installation routine
will enable it in the IIS Manager. However, you should be aware of this limitation in case you want to use
other types of dynamic content in your solutions.

Configuring Internet Explorer
Windows Server 2003 installs Internet Explorer with Enhanced Security activated. Although
this is a good default installation for production machines, it can get in the way during testing
and experimentation. To disable Enhanced Security, select Start ➤ Control Panel ➤ Add or
Remove Programs. Then follow these steps:

1. Click the Add/Remove Windows Components button on the Add/Remove Programs
screen.

2. Uncheck the Internet Explorer Enhanced Security Configuration check box. Click Next
to uninstall the components. Figure 2-15 shows the Windows Components screen.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 37

Figure 2-14. Installing ASP.NET

5750_c02_final.qxd 11/3/05 9:53 PM Page 37

Installing SQL Server 2000 on SPSPortal
In a stand-alone server deployment, you may choose to install a separate copy of SQL Server
2000 or use the Microsoft SQL Server Desktop Engine (MSDE). In this installation, I will use a
separate copy of SQL Server 2000. The installation of SQL Server 2000 is straightforward with
the exception that you will receive a warning indicating that Windows Server 2003 does not
support SQL Server 2000. You can continue the installation anyway because you will apply
Service Pack 1 (SP1) later, which will allow SQL Server 2000 to run on Windows Server 2003.
Figure 2-16 shows the warning message.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW38

Figure 2-15. Removing Internet Explorer Enhanced Security

Figure 2-16. SQL Server installation warning

5750_c02_final.qxd 11/3/05 9:53 PM Page 38

After the initial installation completes, install Service Pack 4 (SP4) for SQL Server 2000.
During the installation of the service pack, you will be prompted to upgrade the Microsoft
Search service. Check the box to perform the required upgrade.

After the installation of the service pack is complete, start the SQL Server service from
the SQL Server Service Manager. The Service Manager is accessible by selecting Start ➤ All
Programs ➤ Microsoft SQL Server ➤ Service Manager. Be sure that SQL Server is set to start
when the server is booted.

Installing SPS on SPSPortal
The installation of SPS2003 follows three phases. First, SharePoint Services are set up on the
server. Second, SPS is installed. Finally, proceed through a set of configuration pages to set up
the initial portal home. Start by placing the Microsoft SharePoint Portal Server CD-ROM in the
drive. The installation screen will appear, and you can select the Install Microsoft Office Share-
Point Portal Server 2003 Components option.

After SharePoint Portal Server is installed, you will be prompted to provide an account name
and password for the configuration database administrator. You created this account earlier,
but it also needs create permissions for SQL Server and must be a member of the Local Admin-
istrators group for the server where SharePoint is installed. For this development environment,
you could also use the Local Administrator account; however, I do not recommend doing so
for a production deployment. Figure 2-17 shows the screen where the account information is
entered.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 39

Figure 2-17. Designating the configuration database administrator

5750_c02_final.qxd 11/3/05 9:53 PM Page 39

Configuring Server Farm Account Settings
Once the initial installation is complete, the browser will open to the Configure Server Farm
Account Settings page. This page is part of the SharePoint Portal Server Central Administration
site. Figure 2-18 shows the page in the browser.

The Default Content Access Account setting designates the account you should use when
creating an index of content sources. Check the box and type the user name of the account you
created earlier. Note that you must also provide this account with read permission on the con-
tent to be crawled. In this development environment, it is also acceptable to use an administrator
account, but you would not want to do this in production.

The Portal Site Application Pool Identity setting designates the account under which the
portal sites run. This identity determines the permissions associated with the portal sites. In
a typical deployment, this account would also have domain-level permissions and would not
be an administrator account. Click OK when you have entered the account information.

Configuration Database Settings
The next page that appears is the Specify Configuration Database Settings page for SPSPortal.
On this page, select Create Configuration Database. The database server name should be
SPSPORTAL. Click OK when you have entered the account information. Figure 2-19 shows
the page in the browser.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW40

Figure 2-18. Configuring server farm account settings

5750_c02_final.qxd 11/3/05 9:53 PM Page 40

Configuring Server Farm Account Settings
The next page that appears is the Configure Server Farm Account Settings page for SPSPortal.
In this page, add the e-mail address for the administrator in the Contact E-mail Address area
(i.e., administrator@sps.local). Click OK when you are done. Figure 2-20 shows the page in
the browser.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 41

Figure 2-19. Specifying configuration database settings

Figure 2-20. Configuring server farm account settings

5750_c02_final.qxd 11/3/05 9:53 PM Page 41

Component Assignments
The next page that appears is the Configure Server Topology page for SPSPortal. In this page,
examine the section entitled Problems with This Configuration. Typically, this section will
indicate that you have not set up the Web component, Search component, Index component,
and job server. In the Component Assignments section, you will see the four components
listed, but not assigned. To assign these components, click the Change Components button.
Figure 2-21 shows part of the page in the browser.

In the Change Component Assignments page, check the boxes for the Web, Search, and
Index components. Then select SPSPortal as the job server. This assigns all of the components
to the stand-alone server you have created. Click OK when you are done. Figure 2-22 shows
the page in the browser.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW42

Figure 2-21. Configuring server topology

5750_c02_final.qxd 11/3/05 9:53 PM Page 42

Global E-mail Settings
After the component assignments are made, you will be returned to the Configure Server
Topology page. On this page, click the SPSPortal hyperlink under the Component Assignments
section. This link will take you to the SharePoint Portal Server Central Administration page for
SPSPortal. On this page, click the hyperlink Server Configuration ➤ Configure E-mail Server
Settings. Use this page to specify the global e-mail settings for the Exchange 2003 installation
you performed earlier. Figure 2-23 shows the page in the browser.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 43

Figure 2-22. Changing component assignments

Figure 2-23. Configuring e-mail server settings

5750_c02_final.qxd 11/3/05 9:53 PM Page 43

Creating the Portal
Once you have finished configuring the e-mail settings, return to the SharePoint Portal Server
Central Administration page. On this page, click the hyperlink Portal Site and Virtual Server
Configuration ➤ Create a Portal Site. This will open the Create Portal Site for SPSPortal page.
In this page, specify a name for the new portal (e.g., DataLan Corporation), and contact infor-
mation for the portal owner. Click OK to create your new portal. Figure 2-24 shows the new
portal home page.

Installing Service Packs
After you have set up the portal, you should install SP1 for both Windows SharePoint Services
and SharePoint Portal Server. You must install SP1 for Windows SharePoint Services before
attempting to install the service pack for SharePoint Portal Server. The process for installing
the service packs is straightforward and requires no special considerations.

Adding New Users
Once the new portal is created, you will need to give other users permission to access it.
You can grant this permission directly from the portal home page. In the lower-right corner
of the portal, select Finishing Up ➤ Give Users Access to the Portal. This will open the Man-
age Users page.

SPS supports several different user roles that I will discuss later. For now, simply add a
couple of accounts and assign them as members. When you add the new members, each user
will receive an e-mail letting them know that they have been added to the list of authorized
users. Figure 2-25 shows the e-mail in Outlook 2003.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW44

Figure 2-24. Creating the new portal

5750_c02_final.qxd 11/3/05 9:53 PM Page 44

Installing Visual Studio .NET 2003 on SPSPortal
Visual Studio .NET 2003 is required to work the code examples and exercises in the later
chapters of the book. In your installation, you will set it up directly on the SPSPortal server.
There are no major issues with the initial installation of the software; however, you should
be sure to install both VB .NET and C# because the book contains examples written in both
languages.

Preparing SPSClient
In order to work with the examples in the book, you will need to create at least one client
machine running Windows XP Professional. You do not need to have any special concerns
for the installation other than to join the client machine to the domain you created earlier.
After the operating system is installed, you will need to install Microsoft Office 2003 and
Microsoft InfoPath. Both of these installations are straightforward; you can simply use the
typical installations.

CHAPTER 2 ■ SHAREPOINT PRODUCTS AND TECHNOLOGIES OVERVIEW 45

Figure 2-25. Inviting users to the new portal

5750_c02_final.qxd 11/3/05 9:53 PM Page 45

5750_c02_final.qxd 11/3/05 9:53 PM Page 46

SharePoint Portal
Server Basics

SharePoint Portal Server (SPS) is reasonably simple to install, but it is challenging to config-
ure. Not only do you have to plan and implement a suitable site structure, but you must also
configure a number of features. In this chapter, I will cover the fundamentals of administra-
tion necessary to get the portal deployed to end users.

Understanding Portal Structure
When you first install SPS and view the home page, you will notice that a default structure has
been created for you. As with most default portals, you will want to modify the structure sig-
nificantly before making it accessible to end users. Modifying the structure, however, should
not be done lightly. A properly designed portal structure is critical for end-user success. If you
spend the time necessary to plan out how the portal will be accessed and searched, end users
will readily accept it as valuable. If you fail to implement a strong structure, you run a great
risk of having the portal marginalized or simply rejected outright. When designing the portal
structure, you must consider topics, areas, and team sites.

Topics and Areas
The core structure of the portal is based on the concepts of topics and areas. Topics are used
to form a tree navigation structure based on important categories. The topic navigation tree
appears on the left-hand side of the portal and is used to display an area. Areas in SPS func-
tion to accomplish two key objectives. First, areas organize the portal to help users locate
information, documents, and resources. Second, areas function like a site map to facilitate
browsing of the portal. When used together, topics and areas form a navigation system that
is similar to the Start menu on your desktop. Think of topics as the Start menu folders and
areas as the shortcuts that launch an application.

In the default portal initially created by SPS, you can view the areas by first clicking the
Site Settings link on the portal home page. Site Settings is a link that is available to members
of the Administrator site group on almost every page of the portal site. Clicking this link
always takes you to an appropriate set of administrative activities for the current site. From
the Site Settings page, you can easily view the portal structure. Simply click the link Portal
Site Content ➤ Manage Portal Site Structure. Figure 3-1 shows the site structure of the
default portal. 47

C H A P T E R 3

■ ■ ■

5750_c03_final.qxd 11/3/05 9:49 PM Page 47

Notice that the default portal structure is divided into a hierarchy of areas. Underneath
the Home node are the Topics, News, and Sites areas. Each of these areas may in turn have
any given number of subareas. SPS can easily scale to thousands of areas and subareas.

You can create new areas directly from the site map. When you create a new area for the
site, you may specify where it should appear in the hierarchy as well as the dates on which it
should appear. Creating an area always results in the addition of a new web page to the portal.
You can access any of these pages by clicking its name in the site map.

To create a new area, follow these steps:

1. From the site map, click the Create Area link located in the Actions list. This will bring
up the Create Area page.

2. On the Create Area page, name the new area Information Technology and give it a
description.

3. Click OK to create the new area. When you return to the site map, the new area should
be visible.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS48

Figure 3-1. The default portal structure

5750_c03_final.qxd 11/3/05 9:49 PM Page 48

4. Now carefully click and drag the area icon and move the new area onto the existing
Divisions area.

5. Expand the Divisions area. Figure 3-2 shows the final site map.

All areas in SPS can contain various elements including links, lists, and documents.
From this perspective, all areas are essentially created equal; however, areas can serve dis-
tinctly different purposes. The three main types of areas in SPS are Topic areas, News areas,
and the Sites area.

Topics Areas
Topics areas are designed to organize and publish information by subject. They are intended
to be limited to a single subject and to provide specific content on that subject. When using
topics, you may either create new content specifically for a topic or assign existing content
to a topic. Most of the areas you create in SPS are Topics areas.

Designing the portal topics and properly assigning content to them can be time-consuming
and error-prone. This is especially true if you are trying to migrate a large volume of existing con-
tent into a new installation of SPS. Fortunately, SPS ships with a tool to help assign content to

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 49

Figure 3-2. Adding a new area

5750_c03_final.qxd 11/3/05 9:49 PM Page 49

topics called the Topic Assistant. The Topic Assistant can be found on the Site Settings page for
the portal. Click the link Portal Site Content ➤ Use Topic Assistant.

Before you can use the Topic Assistant effectively, you must enable and train it. Enabling the
Topic Assistant is simply a matter of checking the Enable Topic Assistant box on the Use Topic
Assistant page. Once the Topic Assistant is enabled, you can then select the precision with which
you want the documents organized. Selecting high precision results in fewer documents being
categorized, but it ensures greater accuracy in the results. Low precision will categorize more
documents, but the accuracy will suffer as a result. Figure 3-3 shows the page for enabling and
training the Topic Assistant.

Before the Topic Assistant can function correctly, you must have sufficient content available
in the portal to properly train it. You can make the required content available either by adding it
manually to an existing topic or by crawling existing external content with the Index component.
In either case, make sure that you have manually categorized enough content to adequately rep-
resent the different topics in the portal. I will detail how to use the Topic Assistant in the exercise
at the end of the chapter.

To categorize a document, follow these steps:

1. Navigate to the portal home page.

2. On the home page, click Topics.

3. On the Topics page, click the Human Resources link.

4. On the Human Resources page, click the Upload Document link.

5. On the Upload Document page, click the Browse button and select a file to upload.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS50

Figure 3-3. Enabling and training the Topic Assistant

5750_c03_final.qxd 11/3/05 9:49 PM Page 50

6. Fill in the Owner, Description, and Status fields for the new document.

7. Click the Save and Close link.

8. On the Add Listing page, click OK. This will add the document to the current topic.

9. From the Human Resources topic, select Change Settings.

10. On the Change Settings page, click the Search tab.

11. On the Search tab, select the option to include the area when categorizing content with
the Topic Assistant.

News Areas
News areas are listings intended to highlight important portal content. When you add news
to the portal, it can come from either existing content or new content you type directly into
the portal. Once created, a news item then appears as a headline in the portal.

To create a news item, follow these steps:

1. On the portal home page, click the News link. This opens the News page.

2. On the News page, click the Add News link from the Actions list. This opens the
Add News page.

3. On the Add News page, enter a title and description for a news item.

4. In the Content section of the Add News page, select to “Add news listing by entering
text.”

5. Click the Open Text Editor button.

6. In the text editor, add some content for the news item and click OK.

7. On the Add News page, click OK to finalize the news item.

Sites Area
The Sites area is designed to facilitate navigation of the sites within the portal. This special
area is like a search page dedicated to locating WSS sites that are associated with the portal.
Aggregating WSS sites is one of the key functions of SPS, and the Sites area allows sites not
only to be searched, but also grouped by various categories.

WSS Team Sites
You can create new WSS team sites directly within SPS. Sites are normally created for cross-
functional teams, project teams, and the like. When creating a site, you can select from several
different templates depending upon the intended use of the site. Sites can contain various ele-
ments including documents, images, tasks, contacts, events, discussions, and surveys.

Portal users can search for sites of interest using the Sites page accessible from the portal
home page. End users can also locate sites by using links created on area pages. New sites can
be highlighted as special interest sites or just appear as quick links for a period of time.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 51

5750_c03_final.qxd 11/3/05 9:49 PM Page 51

Here are the steps to follow to create a site:

1. On the portal home page, click the Sites link. This opens the Sites page.

2. On the Sites page, click the Create Site link from the Actions list. This opens the
New SharePoint Site page.

3. On the New SharePoint Site page, fill in the information for title, description, and
location.

4. Click the Create button. This opens the Add Link to Site page.

5. On the Add Link to Site page, select the areas to associate with the site.

6. Click OK. This opens the Template Selection page.

7. On the Template Selection page, select Team Site and click OK. Figure 3-4 shows the
final site.

Self-Service Site Creation
Normally, users of the portal cannot create new sites in the portal. However, you can configure
SPS to allow users to create sites using Self-Service Site Creation (SSSC). When this feature is
enabled, users can create their own top-level sites without any special permission.

SSSC is part of the Windows SharePoint Services and is configured through the SPS Central
Administration page. You can access the Central Administration page by being logged in as an
administrator and selecting Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Central
Administration. From this page, you can access the Windows SharePoint Services administration
by clicking the link on the top-left side of the page.

From the Windows SharePoint Services page, you can administer your virtual server by
selecting Virtual Server Configuration ➤ Configure Virtual Server Settings. This opens a page

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS52

Figure 3-4. Creating a new site

5750_c03_final.qxd 11/3/05 9:49 PM Page 52

that lists all the virtual servers. Selecting one opens the Virtual Server Settings page shown in
Figure 3-5.

Using the Virtual Server Settings page, you can enable or disable SSSC for the portal. Once
SSSC is enabled, end users will be able to create their own sites directly from the Site Directory.
Figure 3-6 shows the Create Site link in the Actions list of the Site Directory.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 53

Figure 3-5. Virtual Server Settings

Figure 3-6. Self-Service Site Creation

5750_c03_final.qxd 11/3/05 9:49 PM Page 53

Managing Users
Once the portal structure is designed and implemented, you will want to assign permissions
to portal users. Adding users is relatively straightforward. In fact, you added some users after
the portal was installed in Chapter 2. However, determining the permissions that should be
granted to each user requires understanding and planning. When planning user permissions,
you should consider site group membership, the process for adding new users, and the cre-
ation of user profiles.

Understanding Site Groups
In order to manage users, you must begin by understanding the role-based permissions sys-
tem upon which SPS operates. SPS refers to the various roles it provides as site groups. In SPS,
you can assign portal users to the Reader, Contributor, Web Designer, Administrator, Content
Manager, or Member site groups.

Each of the site groups in SPS has a corresponding set of rights. These rights are associ-
ated with a particular site group initially, but you can easily change the assignments of rights.
You can also create your own custom site groups with specific rights you assign.

Before assigning users to site groups, carefully consider their needs. The vast majority of
users are likely to be good candidates for the Member site group. This group allows a user to
access all of the elements in the portal and personalize her environment.

In a typical portal deployment, 20 to 40 percent of the user community will belong to the
Contributor site group. These individuals have additional limited management capabilities
associated with lists and can also make use of the document management features of SPS. In
some deployments, organizations may even choose to add the majority of users to this group,
effectively eliminating the Member site group.

In contrast to the Member and Contributor groups, most organizations will assign less
than 10 percent of their users to the Content Manager site group. This group is responsible
for reviewing and approving content. In order to properly moderate the posted content, this
group should be small.

Generally, the Web Designer and Administrator site groups will have small populations.
These groups will be limited to individuals who need special rights to create content or manage
the portal. Web designers are specialized users responsible for advanced content, formatting, and
appearance, whereas administrators have complete control over the portal and all its settings.

The least used of all the site groups is the Reader group. This group is useful only for
delivering content to specialized groups such as customers or partners. In these cases, only
limited functionality is required. Each right defined in SPS is explained in the following list,
and Table 3-1 maps the rights to each site group.

View Area: This right allows a user to view an area and its contents.

View Pages: This right allows a user to view pages within an area.

Add Items: This right allows a user to add items to lists within an area and add documents
to libraries.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS54

5750_c03_final.qxd 11/3/05 9:49 PM Page 54

Edit Items: This right allows a user to edit items in lists, edit documents in a library, and
edit web part pages contained in document libraries.

Delete Items: This right allows a user to delete items from a list in an area or a document in
a library.

Manage Personal Views: This right allows a user to create, edit, and delete personal views
of lists.

Add/Remove Personal Web Parts: This right allows a user to add or remove web parts from
a personalized page.

Update Personal Web Parts: This right allows a user to change web part settings to person-
alize content.

Cancel Check Out: This right allows a user to check in a document to a library without sav-
ing the current changes even if they are not the one who checked out the document.

Add and Customize Pages: This right allows a user to use an editor to change HTML pages,
web part pages, and portal content.

Create Area: This right allows a user to create a new area in the portal.

Manage Area: This right allows a user to change the properties of an area.

Manage Area Permissions: This right allows a user to change the user rights associated with
an area.

Apply Style Sheets: This right allows a user to apply a style sheet to an area or the entire site.

Browse Directories: This right allows a user to browse the directories in an area.

Create Personal Site: This right allows a user to create a personal site in the portal.

Create Sites: This right allows a user to create a new site in the portal if SSSC is enabled.

Use Personal Features: This right allows a user to use alerts and personal sites in the portal.

Manage Alerts: This right allows a user to change alert settings for the portal and users.

Manage User Profiles: This right allows a user to add, delete, and change information
associated with the profiles of portal users.

Manage Audiences: This right allows a user to add, delete, and change the membership of
an audience.

Manage Portal Site: This right allows a user to manage portal and site settings.

Manage Search: This right allows a user to add, delete, and change index and search settings.

Search: This right allows a user to search the portal site and associated content.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 55

5750_c03_final.qxd 11/3/05 9:49 PM Page 55

Table 3-1. Site Groups and Rights

Web Content
Right Reader Contributor Designer Administrator Manager Member

View Area X X X X X X

View Pages X X X X X X

Add Items X X X X X

Edit Items X X X X

Delete Items X X X X

Manage Personal Views X X X X

Add/Remove Personal X X X X X
Web Parts

Update Personal Web Parts X X X X X

Cancel Check Out X X X

Add and Customize Pages X X X

Create Area X X X

Manage Area X X X

Manage Area Permissions X

Apply Style Sheets X X

Browse Directories X X X X

Create Personal Site X X X X X

Create Sites X X X X X

Use Personal Features X X X X X

Manage Alerts X

Manage User Profiles X

Manage Audiences X

Manage Portal Site X X

Manage Search X

Search X X X X X X

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS56

Adding Users
Once you have planned out the membership of each site group, you are ready to add users
to the groups. In order to add users to site groups, you should be logged in as a member of
the Administrator site group. The simplest way to get started adding users is to navigate to
Site Settings ➤ Manage Users.

On the Manage Users page, you can easily add users and groups from the directory.
When you select to add users, SPS provides a screen to select users and groups from Active
Directory. Figure 3-7 shows the selection page.

5750_c03_final.qxd 11/3/05 9:49 PM Page 56

In the absence of any separate action, subsites created in the portal will inherit the security
settings of their parent. However, you can change the settings to allow customized permissions
for any site. Generally, as you move deeper into subsites on the portal, the content targets smaller
groups with greater permissions. As an example, sites created specifically for IT projects might
allow access to just the project team but with expanded permissions to manage content.

Follow these steps to add users:

1. From the portal home page, click the Site Settings link.

2. On the Site Settings page, select General Settings ➤ Manage Users. This opens the
Manage Users page.

3. On the Manage Users page, click the Add Users link. This opens the Add Users page.

4. On the Add Users page, type a user name in the form domain\name and select the site
group where the user will be added.

5. Click Next.

6. On the next page, verify the e-mail information for the new user. You can modify the
message if you want. Then click Finish. Figure 3-8 shows a typical list of users added
to the portal.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 57

Figure 3-7. Selecting users and groups from Active Directory

5750_c03_final.qxd 11/3/05 9:49 PM Page 57

Active Directory Account Creation Mode
Along with the normal domain account mode, SPS also supports a special account mode
known as Active Directory Account Creation (ADAC). This mode is intended for use by Inter-
net service providers (ISPs) who support large constituencies that are not members of the
hosting domain. In ADAC mode, users are entered using e-mail addresses instead of domain
accounts. In this way, an ISP can host Internet users without having to specifically add them
to a domain.

It’s important to note that ADAC is incompatible with the normal domain account mode.
During the installation of SharePoint Services, you select the mode in which the site will oper-
ate. After you make the selection, you cannot alter it. Throughout this book, I assume that
SharePoint Services are operating in domain account mode.

Understanding User Profiles
One of the primary business reasons for deploying a portal like SPS is to improve employee
productivity. Generally this productivity increase is realized through the simplification and
personalization of enterprise resources viewed by the end user. If portal users have quick
access to the documents, information, and people they need to do their job, they will in turn
be more productive.

SPS addresses simplification and personalization through the use of user profiles.
Whereas site groups are primarily vehicles to address user privileges, user profiles provide
detailed information about portal users so that content may be targeted to interested groups

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS58

Figure 3-8. Users and groups assigned to site groups

5750_c03_final.qxd 11/3/05 9:49 PM Page 58

of users. Additionally, profiles can be used to include information about people in site
searches, which allows a portal user to locate a subject area expert for assistance.

Before you can investigate the uses of profiles later in the book, you must create them. The
simplest way to create a set of profiles for your portal users is to import them directly from Active
Directory. You can access the tools for profile management by starting at the portal home page
and clicking the Site Settings link. On the Site Settings page, select User Profile, Audiences, and
Personal Sites ➤ Manage Profile Database. This opens the Manage Profile Database page.

On the Manage Profile Database page, you can set up a recurring schedule to import pro-
files from Active Directory. The simplest way to set up the import is to click the Specify Source
link, which opens the Configure Profile Import page. On this page, you may specify the source of
the profile information and schedule a recurring import.

To import user profiles, take these steps:

1. Log in to the portal in the Administrator site group.

2. From the portal home page, click Site Settings.

3. From the Site Settings page, select User Profile, Audiences, and Personal Sites ➤
Manage Profile Database.

4. From the Manage Profile Database page, select Profile and Import Settings ➤
Specify Source.

■Note If you receive the error message “Failed to retrieve the current domain name from the Active
Directory directory services,” then you should set up a custom source as described in the paragraph
following these steps.

5. On the Configure Profile Import page, select Current Domain under the Source section.

6. Provide an appropriate name and password to run the import. If you set up your envi-
ronment according to the instructions in Chapter 2, then you already created the profile
import account. In any case, ensure the account you use has read permissions to Active
Directory.

7. Set up a full and incremental schedule, if you want one.

8. Click OK.

9. On the Manage Profile Database page, click the Start Full Import link.

For more complex environments than I have set up for this book, it may be necessary
to define a custom source for the profile import. When you define a custom source on the
Configure Profile Import page, you will be prompted to specifically name the domain con-
troller and domain for the import source. You will also have to define a valid search base
for the import and a valid Active Directory filter. As an example, a valid search base for my
environment is DC=sps,DC=local and a valid filter is objectClass=User.

Once the import is complete, click the View User Profiles link on the Manage Profile
Database page to see the results of the import. Examine the list of objects that were imported

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 59

5750_c03_final.qxd 11/3/05 9:49 PM Page 59

and delete any that are inappropriate, such as system objects. Once you have the import cleaned
up, you can examine a specific profile to see what information is available.

The value of the import will obviously depend upon how much information is available
in Active Directory. In any case, the profiles in SPS are more extensive than the entries found in
Active Directory, so you will probably have to enter some information by hand. The good news
is that portal users can edit their own profile, so you can simply have them update the profile
as a first order of business when they use the portal.

Libraries
Once you have defined your site structure and added users to site groups, you will want to
begin to make content available. Although SPS can present several different types of content,
the backbone of the SPS vision is the sharing of files among site users. In order to share files,
SPS makes use of libraries. The three main types of libraries available in SPS are document
libraries, form libraries, and image libraries.

Document Libraries
In many ways, document libraries are the central feature of SPS. Nearly all site users will be
involved with creating, retrieving, and sharing documents. You can create document libraries
at any level in the portal hierarchy and assign different permissions to each one. This makes
them very useful for facilitating collaboration among organizational teams. What’s more,
you’ll see later that document libraries are fully integrated with Microsoft Office 2003. In this
section, I will discuss accessing document libraries and using the document management
features of SharePoint.

Accessing Document Libraries
By default, every area contains a document library, but when you first visit an area, the area
page is largely blank. Many of the content elements are hidden from view, including the
built-in document library. The simplest way to make the document library visible is for a
member of the Content Manager, Web Designer, or Administrator site group to modify the
page by creating a listing of the documents. Every site group except Reader has permission
to add documents to the library using the Upload Document link on the Actions list. How-
ever, members of the Reader and Member site groups will not be able to see the documents
until the library is added to a listing. In theory, a member of the Member site group can also
create a listing for the library, but in order to add a listing, you need to know the URL of the
item. This will most likely be challenging for a typical Member.

Follow these steps to display a document library list:

1. Log in to the portal as a member of the Content Manager, Web Designer, or Adminis-
trator site group.

2. Navigate to any area under Topics.

3. Select Edit Page from the Actions list.

4. Select Modify Shared Page ➤ Add Web Parts ➤ Browse from the upper-right corner
of the page.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS60

5750_c03_final.qxd 11/3/05 9:49 PM Page 60

5. From the Web Parts list, click and drag the document library into one of the zones on
the page. Figure 3-9 shows the modified page.

6. When you are finished, click View Page on the Actions list.

When the area page is modified, it creates a listing of all of the documents in the library.
Any site group can open a document directly from the list. Every site group except Reader can
also add documents using the Add New Document link that appears below the list. They can
also access the complete functionality of the document library by clicking Document Library
at the top of the list. This link opens the document library page. From this page, you can create
or upload new documents.

When new documents are added to the library, a document profile is created. The docu-
ment profile is a set of properties that forms metadata about the document. This includes not
only obvious elements such as name and description, but also a Status field where you can
specify the quality of the document as rough, draft, in review, or final. The document profile
associated with the library can be modified to include more and different columns. On the
Document Library page, clicking the link Modify Settings and Columns will allow you to add
and delete properties in the profile.

Document Management Features
Once documents are part of the library, users can take advantage of the document management
features built into SPS. These document management features include check-in, check-out, and
version control. Although the Member site group can add new documents and set property val-
ues for a document profile, it cannot edit the document or change the properties. In fact, most

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 61

Figure 3-9. Displaying a document library list

5750_c03_final.qxd 11/3/05 9:49 PM Page 61

of the document management capabilities of SPS require that you at least belong to the Con-
tributor site group. Access to the document management features is accomplished through
a drop-down list associated with each document. Figure 3-10 shows the drop-down list for a
document in a library.

You can check out documents directly from the document library using the drop-down list.
When a document is checked out, it is still listed in the document library and visible to site users.
The document can be opened; however, no changes may be saved to the document except by
the individual who has it checked out.

Once changes are made to the document, it may be checked back into the library directly
from the menu in any Office product by selecting File ➤ Check In. You will also be prompted
automatically if you exit the Office application. Web designers, content managers, and admin-
istrators have the authority to cancel an existing check-out. This action causes the document
to be checked back in to the library immediately; however, all changes made to the document
since it was checked out are lost. This feature is primarily used to recover a checked-out docu-
ment when the holder is unavailable for some reason.

By default, the document library overwrites the old document version with the new ver-
sion and does not keep any history. If you would like to keep version history, then you must
enable it from the Versions page. You can access the Versions page from the drop-down menu
associated with a document. You then enable version history by clicking Modify Versioning
Settings from the Actions list.

Along with version control, you can also enable content approval for a document library.
When document approval is enabled, new documents will not be visible to the general popu-
lation of site users. Instead, the documents must be approved by a member of the Content
Manager site group before they become generally available. Rejections and approvals are
issued directly in the portal using the drop-down menu associated with each document.
Figure 3-11 shows the menu for rejecting or approving a document.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS62

Figure 3-10. Accessing document management features

5750_c03_final.qxd 11/3/05 9:49 PM Page 62

To approve content, follow these steps:

1. Log in to the portal as a member of the Administrator site group.

2. Navigate to an area where you have the document library displayed.

3. Click the link Modify Settings and Columns in the Actions list.

4. On the Document Library Settings page, click the Change General Settings link.

5. In the Content Approval section, choose Yes.

6. In the Document Versions section, choose Yes.

7. Click OK.

8. Log in to the portal as a member of the Contributor site group.

9. Navigate to the document library page you just modified.

10. On the Document Library page, click Upload Document. Add a new document to
the library.

11. Log in to the portal as a member of the Content Manager site group.

12. Navigate to the document library where the new file is located.

13. Click the Approve/Reject Items link on the document drop-down menu.

14. Change the Approval Status to Approved and click OK.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 63

Figure 3-11. Approving or rejecting a document

5750_c03_final.qxd 11/3/05 9:49 PM Page 63

Backward-Compatible Document Libraries
The document library structure provided in SPS2003 is considerably different from that pro-
vided in SPS2001. Perhaps the most significant difference is that SPS2003 uses a SQL Server
database as the backbone of the document library, whereas SPS2001 used the Web Storage
System. The Web Storage System is a set of enhanced folders that provides document manage-
ment features to documents that are stored within them.

There are two primary reasons for using the backward-compatible document library
feature of SPS2003. First, if you have an existing Web Storage System library from a previous
installation of SPS2001, then you may want to use the backward-compatible document library
instead of migrating documents to the new library system. Second, organizations that are not
immediately moving to Office 2003 can use the backward-compatible library with previous
versions of Office to provide enhanced capabilities, which I’ll discuss later. In this section, I’ll
discuss installing the backward-compatible document library and managing rights.

Installation
The components to support the backward-compatible document library are not installed by
default. Instead, you must explicitly install them from the SPS installation disk. On the instal-
lation start page, the required components appear under the Install Optional Components
heading. Figure 3-12 shows the installation screen.

■Note The SMTP service is a prerequisite for installing the backward-compatible document library.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS64

Figure 3-12. Installing the components for backward-compatible libraries

5750_c03_final.qxd 11/3/05 9:49 PM Page 64

After selecting to install the optional components, you will be given a choice: do you want to
install both the client and server components or just the client components? The server compo-
nents are necessary to set up the Web Storage System and create the library. The client components
are required for Office applications to access the library. Therefore, you will have to install the
client components on every machine where a previous version of Office is installed that requires
access to the library.

Once installation is complete, you may access basic administrative functions for the library
through SPS Central Administration. From here, the first thing to do is specify the server where
the document library resides. From the main page, select Server Configuration ➤ Configure
Server Topology. On the Configure Server Topology page, click the Change Components button.
Reference the server containing the library components here. Figure 3-13 shows the Change
Component Assignments page.

Once you have referenced a server hosting a backward-compatible library, a new option
will appear on the central administration page. Selecting Component Configuration ➤ Config-
ure Document Libraries (Web Storage System-based) brings up the List and Manage Document
Libraries page. From this page you can create a new document library.

When a new library is created, SPS builds a structure in the Web Storage System for new
documents. This structure is then associated with a Uniform Resource Locator (URL) address.
This address is visible in the List and Manage Document Libraries page and may be used to
access the document library directly.

The simplest way to examine the new document library is to create a new Network Place in
the file explorer. From the file explorer, you can create a new Network Place and use the URL
specified for the library. After you create the new Network Place, you can open it and see the
basic library structure. You will notice that the structure consists of several administrative folders
as well as a specific folder named Documents, which represents the root of the document store.
If you are familiar with the document storage features of SPS2001, you will immediately recog-
nize the structure as similar. Figure 3-14 shows a typical backward-compatible library displayed
inside the file explorer.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 65

Figure 3-13. Referencing the backward-compatible library server

5750_c03_final.qxd 11/3/05 9:49 PM Page 65

In addition to accessing the backward-compatible document library from a Network
Place, you can also access it directly from the portal. Once you have set up and referenced a
library, the portal home page will show a new navigation link to the document library. You can
perform almost all operations associated with the backward-compatible document library
from either the portal or the file explorer.

Administering Users, Roles, and Rights
Once the backward-compatible library is created, you will want to provide access to the portal
users. Giving new users permission to access the library is done through SPS Central Adminis-
tration. From the main page, you can select Component Configuration ➤ Configure Document
Libraries (Web Storage System-based) to display the List and Manage Document Libraries
page. On this page, click the Edit link to perform basic administration.

On the Change Document Library Settings page, you can perform several administrative
tasks. General settings like contact information can be changed directly in the page while three
hyperlinks allow you to perform additional tasks. At the bottom of the page, you will see links
for managing security, document profiles, and content sources.

When you click the Manage Document Library Security link, the system opens the exact
same Network Place that you examined earlier. Within the library structure, you will see a folder
named Management. Opening this folder reveals two items: Document Profiles and Workspace
Settings. Opening the Workspace Settings item displays a property sheet that allows you to give
users access to the entire document library. Figure 3-15 shows the property sheet.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS66

Figure 3-14. Viewing the backward-compatible library

5750_c03_final.qxd 11/3/05 9:49 PM Page 66

New users can gain access to the backward-compatible document library by clicking the
Add button and selecting the accounts from the directory structure. When you add a user to
the document library, you must assign them to a role. The backward-compatible document
library uses roles to assign rights to users. The library supports three roles: Reader, Author,
and Coordinator. Table 3-2 lists the roles and their associated rights.

Table 3-2. Rights and Roles in the Backward-Compatible Document Library

Right Reader Author Coordinator

Read documents in standard folders. X X X

Read published documents in enhanced folders. X X X

Search public documents. X X X

Add, edit, delete documents. X X

Submit documents for publication. X X

Create or modify subfolders. X X

Add and remove users. X

Manage document profiles. X

Manage library structure. X

Manage approval process. X

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 67

Figure 3-15. Adding users to the document library

5750_c03_final.qxd 11/3/05 9:49 PM Page 67

Document Management Features
Just like the standard document libraries associated with SPS2003, the backward-compatible
library supports several document management features, including check-in, check-out, version
control, and approval routing. The difference between the standard and backward-compatible
libraries is found in the role definitions. Each user’s rights are determined by their role in the
backward-compatible library as opposed to their rights within SPS2003.

Authors and coordinators may add new documents to the library. New documents can be
added either through the portal or using the web folder available through Network Places. When
documents are added to the library, metadata is associated with the document in the form of a
profile. The document profiles in the backward-compatible library are similar to those available
in the standard libraries. When a document is first added to the library, you will be asked to select
a profile for the document and fill in the metadata. This metadata is used to retrieve documents
during later search operations. Figure 3-16 shows a typical document profile.

Coordinators can create and edit document profiles for the library. Creating or editing
a document profile can be done through the Manage Document Profiles link on the Change
Document Library Settings page or directly in the web folder available in Network Places.
Either way, you will end up in the Document Profiles folder where you can view all of the
current profile definitions. Profiles can be opened and edited, or a new profile can be added

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS68

Figure 3-16. Filling in a document profile through SPS

5750_c03_final.qxd 11/3/05 9:49 PM Page 68

by opening the Add Document Profile item. When you add or edit a profile, you may define
new metadata fields and specify whether or not they are required.

Once a document is in the library, it may be checked out by authors or coordinators directly
from the portal or file explorer. When the document is checked out, no one else can edit it. Addi-
tionally, a local copy of the document is downloaded to your computer for you to work on.

After you have made changes to the document, you may check it back into the library
directly from the Office application where you edited it by selecting File ➤ Check In. When you
check in a document directly from an Office application, you will be prompted to fill in the doc-
ument profile. You may also make the document available to others by selecting to publish the
document immediately. Figure 3-17 shows the document profile from an Office application.

Each time a document is checked in, a new version is created. The version history for any
document is available directly in the portal where any version can easily be opened for editing.
Major version numbers are assigned to documents when they are published. Minor version
numbers are assigned to documents when they are checked in.

You can also access version history for any document through the file explorer. In the file
explorer, simply locate the document in the library beneath the web folder in Network Places.
When you have located the folder, right-click and select Properties from the pop-up menu. The
displayed property sheet has a Versions tab that lists the version history. Figure 3-18 shows the
property sheet with a typical version history.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 69

Figure 3-17. Filling in a document profile through Office

5750_c03_final.qxd 11/3/05 9:49 PM Page 69

Just like the standard document library, the backward-compatible document library sup-
ports an approval process for new documents. The approval process for backward-compatible
libraries differs from the standard one in that the process is set up using folders contained in
the library. Using the Properties tab for any folder in the library, you may specify the users who
must approve a document before it can be published. When you specify these users, you may
also select whether all of the users must approve in sequence or whether any one of the users
can approve a document. Figure 3-19 shows the property sheet where approvers are defined.

Approval routing begins when a new document is saved into a folder with approvers defined.
If the routing option on the folder is set to One After Another, then approvers receive an e-mail
with a link to the document in the order they are listed on the property sheet. In this case, each
approver must approve the document in order before it will be published. If the routing option on
the folder is set to All at Once, then every approver receives an e-mail at the same time. Under this
scenario, you may specify whether any single approver can approve the document or if it must be
approved by everyone before publishing.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS70

Figure 3-18. Accessing version history

5750_c03_final.qxd 11/3/05 9:49 PM Page 70

Form Libraries
A form library can be thought of as a special document library. The purpose of the form library
is to store XML-based forms that can gather similar information. For example, you might cre-
ate a form library in the Human Resources area of the portal that contains a vacation request
form, a 401k change form, or a health insurance change form. In this way, key forms are cen-
tralized and easily located through the topic structure of the site.

Although the concept of centralizing forms seems natural enough, you are probably won-
dering why the forms have to be XML-based. The answer is that these XML-based forms will be
used as system integration points to add data to multiple line-of-business systems. The concept
is to use an XML-based form to gather data one time and then route the data to all of the systems
that require it.

As an example, consider a sales professional returning from a call with a customer. At the
end of the day, the sales professional needs to enter several different kinds of data into various
line-of-business systems. To start with, the details of the call and status of opportunities must
be entered into the Customer Relationship Management (CRM) system. Then, mileage and
expenses must be entered into a financial system. Finally, a status report must be created and
stored on the file server. In this scenario, the sales professional has to enter data into three dif-
ferent systems, and in all likelihood, much of the data is repeated.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 71

Figure 3-19. Establishing approval routing

5750_c03_final.qxd 11/3/05 9:49 PM Page 71

XML-based forms promise to eliminate nonvalue activities such as redundant data entry
by offering a single point for data entry. In the Microsoft view, the sales professional would
enter all of the data—customer, expenses, reporting—into a single XML-based form. This form
would then be routed to the CRM system, financial system, and reporting system to create the
required entries. I will discuss the underlying construction of such systems later in the book.
For now, I will simply focus on creating the libraries where the documents will be stored.

Creating a form library can be done directly in the portal. Unlike document libraries, form
libraries do not exist by default. When you create a form library, it is given a default form tem-
plate for use with the library. Typically, a form library is used for only one type of form. Therefore,
you will have many different form libraries in a typical portal.

To create a form library, follow these steps:

1. Log in to the portal as a member of the Content Manager, Web Designer, or
Administrator site group.

2. Navigate to the Human Resources area of the portal.

3. Click the Manage Content link under the Actions list. This brings up the Documents
and Lists page.

4. In the Documents and Lists page, click the Create link. This opens the Create page.

5. On the Create page, click the Form Library link. This opens the New Form Library
page.

6. In the New Form Library page, name the new library HR Forms and give it a
description.

7. Click Create.

Once the form library is created, you can create and upload forms. In Office 2003, XML-
based forms are created using Microsoft InfoPath. InfoPath is a product that allows for the design
and use of XML-based forms in the business environment. Forms in InfoPath may be designed
based on an existing template, on a database schema, or from scratch. All of the forms created
with InfoPath are interactive with complete control sets like list boxes, options, and text fields.
Once the form is created, you can publish it to the form library.

Take these steps to publish an XML-based form:

1. Open Microsoft InfoPath.

2. In Microsoft InfoPath, click the link Design a Form ➤ Design a Form.

3. In the Design a Form window, select Design a New Form ➤ Customize a Sample.

4. In the Customize a Sample window, select Expense Report (Domestic). Click OK.

5. In the Design Tasks window, select Publish Form. This starts the Publishing Wizard.

6. In the Publishing Wizard, select to create a new SharePoint form library.

7. Type in the URL of the form library page you created earlier. Figure 3-20 shows the
Publishing Wizard.

8. Name the new library Expense Reports and give it a description.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS72

5750_c03_final.qxd 11/3/05 9:49 PM Page 72

Image Libraries
Like form libraries, image libraries are a special type of document library. These libraries are
specifically intended to manage digital photography and images such as corporate logos.
Although images can be stored in any document library, image libraries have special features
to view and use graphical content. Just like any library, image libraries can be created at any
area or site. In fact, areas have an image library by default.

Uploading pictures into the library is similar to uploading any document or form. Once the
images are uploaded, however, they may be presented in special views available only in the image
library. The images may also be edited from the portal using Microsoft Picture Manager or
sent directly to any Office application for inclusion in a document. The image library can also
be accessed directly as a web folder under Network Places in the file explorer.

Lists
Along with document libraries, lists form the foundation of content within SPS. A list is a
collection of information items displayed in an area or on a site. SharePoint supports lists
for announcements, links, contacts, events, tasks, and issues. Everyone who has access to
the portal will be able to view lists. Every site group except Reader may also add items to a
list. Editing and deleting items in a list can be done by every site group except Reader and
Member.

When a list appears on a page, users may add items to the list by using the link that
appears immediately below the list. For more comprehensive control of list items, users may
click the Manage Content link under the Actions list. This gives complete access to add, edit,
or delete list items.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 73

Figure 3-20. Publishing a new form

5750_c03_final.qxd 11/3/05 9:49 PM Page 73

To add a list item, follow these steps:

1. Log in to the portal in the Member site group.

2. On the portal home page, locate the Events list.

3. Click the Add New Event link.

4. Add information for a new event. When you are finished, click Save and Close.

5. The new event will now be visible on the portal home page. Click the event title for
more details.

6. From the event detail page, select Export Event. This adds the event to your Microsoft
Outlook calendar.

Announcements
The most immediate example of a list is the announcements list that appears on the portal
home page. This is the only list created by SPS that is not initially empty. Announcements
are useful for presenting headlines to users regarding current events or items of immediate
importance.

Links
Link list items are hyperlinks to web pages of interest to a team or organization. A blank list
of links typically appears on any new site added to the portal. When users add links to the list,
they provide the target URL and a description.

Contacts
Contact list items represent team members associated with an area or site. A blank list of con-
tacts is typically created for any new site added to the portal. The blank list is filled by importing
new contacts into the list from Microsoft Outlook or entering them manually.

Here is what you need to do to import contacts:

1. Log in to the portal in the Content Manager site group.

2. From the portal home page, click the Sites link to open the Site Directory.

3. In the Site Directory, click the Create Site link from the Actions list.

4. Create a new site based on the Team Site template.

5. When the new site is created, select Lists ➤ Contacts to open the list.

6. In the new contacts list, click the Import Contacts link.

7. Select the contacts to import from the address book that appears.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS74

5750_c03_final.qxd 11/3/05 9:49 PM Page 74

Events
Event list items are headlines associated with meetings, seminars, parties, and so on. When
you create a new site, a blank event list typically appears on the home page. Users may enter
new events directly from the home page and can also associate a document with the event.
This is useful for linking directions or agendas with events.

Tasks
Task items form a to-do list for a team. When a new site is created, a blank task list is available.
When you create a new task in the list, you may assign it to a team member. The list may then
be viewed in summary to track all items for the team.

Issues
Issue items are useful for tracking items such as customer concerns or product defects. When
a new site is created, a list of issues is generally not created. You must explicitly create the list
for the new site. Once items are added to the list, you may track the response to the issue, its
priority, and status.

Alerts
Alerts provide notification to a particular user when an item of interest has been added or
updated within the portal. When a new alert is created, the user can define the areas of interest
and set up how the notification will occur. SPS can provide alerts pertaining to the following
items:

• Areas

• Sites

• Libraries

• Documents

• Lists

• List items

• Search results

• Portal users

Adding an alert is accomplished by the individual user and is generally done using the
Alert Me link in the Actions list associated with the item of interest. When a user creates a new
alert, he can specify how the alert should be delivered. For more sophisticated alerts, users can
specify whether notification should occur for new items, changes, or both. Users can also
apply a filter to an alert that will look for key words or phrases before sending an alert.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 75

5750_c03_final.qxd 11/3/05 9:49 PM Page 75

Once the alert is defined, SPS can deliver the alert to a personalized web site, as an e-mail
to Microsoft Outlook, or both. Users can also specify whether they want to be notified imme-
diately of changes or have multiple alerts delivered in a summary notification. Figure 3-21
shows a typical notification e-mail received in Microsoft Outlook.

Discussions
SPS supports two different kinds of discussions: discussion boards and web discussions.
Discussion boards in SPS are similar to any newsgroup forum you may have visited on the
Internet. Web discussions, on the other hand, are a new way to comment on documents and
share those comments with others.

When a new site is created, a discussion board is automatically created. Portal users who
have access to the site may start new discussions or participate in existing ones. Discussion
boards support expanding and collapsing discussions as well as searching to find postings of
interest.

Web discussions allow a way for portal users to view a document online and associate
a discussion with the document. Discussions are started using the drop-down list associated
with a document in a library. When the discussion is started, the document is opened in the

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS76

Figure 3-21. Receiving an alert

5750_c03_final.qxd 11/3/05 9:49 PM Page 76

appropriate Office product and a discussion pane appears at the bottom of the document.
Figure 3-22 shows an example of a web discussion. I’ll cover web discussions in more detail
in Chapter 5.

Surveys
Surveys provide a way to poll portal users for input on a subject. When a site is first created, it
usually does not have a survey associated with it. Once created, surveys support a wide variety
of response types from simple Yes/No answers to free-form text.

You’ll need to complete the following steps to create a survey:

1. Log in to the portal in the Administrator site group.

2. Navigate to a site that you created earlier.

3. Click the Create link at the top of the site home page.

4. Select the link to create a new survey.

5. Give your survey a name and description.

6. Click Next.

7. Add a question to your survey and click Finish.

8. Return to the site home page and select your survey from the list.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 77

Figure 3-22. Discussing a document

5750_c03_final.qxd 11/3/05 9:49 PM Page 77

9. On the survey page, enter a response to the survey.

10. After you have several responses, you can view a summary. Figure 3-23 shows
a graphical representation of survey responses.

Searching
Finding information easily is one of the main business benefits of SPS, and the built-in search
engine is the primary mechanism for quickly looking across content sources. Searching can be
as simple as typing a key word or phrase into the search box located on the portal home page.

The simple search produces a results page initially sorted by relevance and grouped by site.
However, the page offers several different views of the results to help users locate information.
The available views are sorted by site, author, date, area, or just a simple list of results.

SPS supports an advanced search feature, which is accessed by clicking on the magnifying
glass located next to the simple search. The advanced search gives the user much more con-
trol over the scope of the search, including where to search and what properties to include.

Exercise 3-1: SPS Basics
In this chapter, I showed you the fundamental features of SPS2003. Now that you have an
overview of the product, you can begin to create a more formal portal that you can use to
further your investigation. In this exercise, you will clean up the initial portal installation,
create a structure based on your business needs, and migrate documents into the portal.

Cleanup
Assuming you were following along in this chapter, when you first installed SPS, you accepted
the default portal. As you investigated the portal features, you also created additional sites and
areas that may not be appropriate for the final business vision. Therefore, you’ll start this exer-
cise by cleaning up the portal installation and preparing to create your own structure.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS78

Figure 3-23. Viewing survey results

5750_c03_final.qxd 11/3/05 9:49 PM Page 78

Clearing the Portal Home Page
Start by logging in to the portal as a member of the Administrator site group. On the portal home
page, click the Manage Content link under the Actions list. Take note of any items that you have
added to the home page during your investigation and remove them.

Now return to the home page and click the News link at the top of the page. On the news
home page, click the Manage Content link under the Actions list. Remove all of the news items
from the page, including the default items placed there by the initial installation.

Once again, return to the portal home page. Click the Edit Page link under the Actions list.
This causes a link to appear in the upper-right corner of the page entitled Modify Shared Page.
From this link, select Modify Shared Page ➤ Design This Page. This puts the home page into
design mode. In design mode, click the “X” next to the Portal Owner QuickStart Guide to remove
it from the page. When you are finished, click the View Page link under the Actions list. Figure 3-24
shows what my home page looked like after cleaning it up.

Removing Areas
Throughout this chapter, you have created areas and sites to investigate new features. Before
you create a more formal portal structure, you should clean up these areas and sites. Start by
clicking the Manage Portal Site link under the Actions list on the portal home page, which will
take you to the portal site map. From the portal site map, select to show all areas and listings.
Delete areas and listings that will not be part of your final site structure. You will probably want
to delete most of the areas that SPS defined for you in the initial installation with the excep-
tion of Topics, News, and Sites.

Removing Sites
Return to the portal home page and click the Sites link at the top of the page to open the Site
Directory. From the Site Directory, click Manage Sites under the Actions list. From the Site list,
delete any sites that will not be part of your final structure. This action will not actually delete

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 79

Figure 3-24. Cleaning up the home page

5750_c03_final.qxd 11/3/05 9:49 PM Page 79

a selected site; it will just remove the listing. Actual site deletion is an administrative process
that requires confirmation from the site owner. Later in the book, you will learn to implement
automatic site deletion.

Designing the Area Structure
Perhaps the most important part of the portal design is the area structure. The area structure
is critical to locating information and sites. A good area design will make the portal useful.
A poor design will result in low adoption rates throughout the organization.

Now is the time for you to think through the initial area structure you want to create for your
portal. When developing this structure, keep in mind both the structure of your organization and
the structure of your documents. This is because areas are used to navigate through both the hier-
archy of your organization and the taxonomy of the document management system.

The easiest place to begin this effort is with your organizational hierarchy. This structure
likely already exists in the form of an organizational chart. Using this chart, you can create a
similar area structure underneath the Topics area. For my portal, I kept the Departments area
and built the company structure underneath.

After considering the company hierarchy, I thought about the document taxonomy
I wanted to implement. Because my organization is a services company, most people want
to access documents by customer. In fact, the company has a large file server that essentially
has a folder for every customer the company has serviced. Because this paradigm is deeply
ingrained, I decided to create an area for each customer. My plan was then to have a docu-
ment library associated with each customer’s area. Creating this many areas is a large effort,
but my experience is that moving documents into a new structure is always a lot of work.
My guess is that you will experience the same thing as you migrate to a new portal.

■Note Because migrating documents into the portal can be a major undertaking, you may want to
consider using third-party tools to assist. One tool that I have used successfully to migrate documents is
the Tzunami K-Wise Deployer. You can get information about this tool at www.k-wise.com.

Along with customers, the other primary way in which my colleagues think about
documents is according to which service offering they support. Our service offerings are
subsequently broken down into practice areas. Therefore, I created an area for each of the
key offerings. Figure 3-25 shows a summary view of my final area structure.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS80

5750_c03_final.qxd 11/3/05 9:49 PM Page 80

Adding Users
After you have defined the basic structure, it is time to add users to the portal. Earlier in this
chapter, I covered the mechanics of adding users, so I will not go over that in detail again. How-
ever, now is the time to give consideration to the membership for each site group. First consider
where the bulk of the users will be assigned. For my site, I chose to make most users Members.
This gives them reasonable functionality without allowing them to get in trouble. I elevated cer-
tain people to the Contributor site group based on their job requirements.

The next thing to do once the main body of users is placed in a group is to assign an owner
to each of the areas you created in your portal structure. These owners will be members of the
Content Manager site group and will be responsible for the maintenance of their area. Distribut-
ing maintenance responsibilities like this is critical for ensuring that the portal does not become
a dumping ground full of outdated information. Many a company intranet has succumbed to
such a fate because no one maintained the site content.

For each area you defined, visit the home page and click Change Settings under the Actions
list. On the General tab of the Change Settings page, add the name of the area contact. Once you
have added the area contact, they will appear on the home page of the area with a link for users
to send them mail.

The final thing to take care of at this point is to import all of the users into the profiles data-
base. Earlier in the chapter, I covered how to import the users, so I will not go over it again;
however, be sure to examine the profiles and fill in any important information that was not pro-
vided by the directory service.

Creating the Site Structure
Once the users are added, the next thing to consider is the structure of team sites you want
available in the initial portal rollout. Whereas areas exist to support information retrieval, sites
exist to facilitate team collaboration. Therefore, you should give consideration to the teams
that exist within your organization. Typically, some teams are long-lived while others are more

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 81

Figure 3-25. Final sitemap

5750_c03_final.qxd 11/3/05 9:49 PM Page 81

ad hoc. A company board of directors is an example of a long-lived team, whereas organizers
of the holiday party usually belong to an ad hoc team. In your initial rollout, you will probably
want to create sites for long-lived teams while providing SSSC for ad hoc teams.

In my portal structure, I created team sites for each of the service offerings my example
company represents. In my organization, these teams meet weekly to investigate new technol-
ogy and develop sales and marketing materials. I also enabled SSSC mode so that individuals
could create their own team sites. For each site I created, I linked them back to the areas so that
the sites could be easily located. Figure 3-26 shows how three of my sites appear under different
areas in the site map.

Migrating Documents
Easily the largest job of all in rolling out SPS is migrating documents into the new structure.
Later in the book, you’ll see how it is possible to leave content sources in place and crawl them
so they can be searched, but for now I’ll focus on getting documents into the portal. This all
begins by assembling representative documents that you can use to train the Topic Assistant.

Pick an appropriate place in your area structure and upload representative documents into
the document library. I selected to start with a single customer and upload various documents
that related to sales and project deliverables. In my strategy, the documents live in a specific
customer area, but they are categorized by other areas such as Sales or Delivery. Therefore,
I changed the settings to prevent the Topic Assistant from using the customer area for catego-
rization. This is done from the Search tab of the Area settings page as shown in Figure 3-27.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS82

Figure 3-26. Mapping sites to areas

5750_c03_final.qxd 11/3/05 9:49 PM Page 82

After the representative documents were loaded into a single customer area, I went
through each one and submitted them to multiple portal areas. In this way, the documents
are associated with areas in your structure so that the Topic Assistant can be properly trained.
Submitting the documents to various areas is done through the drop-down list associated
with each document. When you submit to an area, you can use a replica of the site map to
select the areas to associate with the document. Figure 3-28 shows the site map replica with
areas selected.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS 83

Figure 3-27. Excluding an area from the Topic Assistant

5750_c03_final.qxd 11/3/05 9:49 PM Page 83

Once you have submitted a representative sample of documents to the various areas, you
are ready to train the Topic Assistant. From the Site Settings page, select Portal Site Content ➤
Use Topic Assistant. On the Use Topic Assistant page, click the link Train Now. The Topic Assis-
tant will then examine the documents you have loaded and the areas associated with them.
After training is complete, you will get a report as to whether or not the Topic Assistant had
enough information to successfully complete training. If you are successful, then the Topic
Assistant will automatically categorize content the next time a content source is crawled.

CHAPTER 3 ■ SHAREPOINT PORTAL SERVER BASICS84

Figure 3-28. Submitting a document to several areas

5750_c03_final.qxd 11/3/05 9:49 PM Page 84

SharePoint Content
Development

Although the default installation of SharePoint Portal Server (SPS) looks attractive right out
of the box, you will undoubtedly want to customize the appearance and behavior of the portal
to match your organization. SPS supports this type of customization directly in the portal as
well as through external products like Microsoft FrontPage. Additionally, individual users can
personalize the portal to support their own needs. In this chapter, I will cover the various cus-
tomization and personalization techniques that will help you integrate the portal into your
organization.

Customizing Portal Content
As I have said before, one of the major objectives of SPS is to improve the productivity of the
knowledge worker. With this in mind, SPS provides a number of ways to customize the portal
and target content at groups of knowledge workers. These mechanisms include the ability to
create targeted team sites, but also the ability to modify pages, use custom templates, and define
groups that receive specific content.

Site Membership
One of the first ways in which you can target content to portal users is through the structure
of the portal sites. In the previous chapter, you created several sites for use by various teams
in the organization. After creating these team sites, you can then grant access to them so that
only team members can use them. Applying these restrictions effectively targets the site con-
tent to a particular group of portal users.

Top-level sites that are created directly from the portal initially have no members, and no
one is allowed access to them. Modifying access rights to a site can only be done by a member
of the Administrator site group for that site. Access rights can subsequently be granted by click-
ing the Site Settings link at the top of the site home page.

On the Site Settings page, selecting Administration ➤ Manage Users opens the Manage
Users page for the particular site. Typically, the first thing to do is grant administration rights to
someone who will be responsible for the overall site and its content. After naming the adminis-
trator, you can add team members to the site. Typically, these team members will be added to
the Contributor site group. Once the initial set of permissions is established, administration of

85

C H A P T E R 4

■ ■ ■

5750_c04_final.qxd 11/3/05 9:46 PM Page 85

a site should be turned over to the designated administrator. This person, in turn, can control
the access rights for team members.

Once the new site administrator takes responsibility for the site, the next thing to do
is ensure that all requests for access to the site are properly directed. This is done by select-
ing Administration ➤ Go to Site Administration from the Site Settings page. This opens the
Top-Level Site Administration page. On this page, the administrator should select Users
and Permissions ➤ Manage Access Requests. On the page that opens, the new administra-
tor can direct access requests to his or her own mailbox. Figure 4-1 shows the Manage
Request Access page.

Throughout the portal, whenever a user attempts to access a restricted feature, SPS
responds with an access request page. This page allows the user to send an access request by
e-mail to the administrator of a site or area. Figure 4-2 shows a typical access request page in
the portal.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT86

Figure 4-1. Directing access requests

Figure 4-2. Requesting access to a resource

5750_c04_final.qxd 11/3/05 9:46 PM Page 86

Once the access request is made, the administrator for the resource receives an e-mail
containing links to approve or reject the access request. Clicking one of the links takes the
administrator directly to the appropriate page in the portal. From the portal, access can be
granted and an e-mail response generated. Figure 4-3 shows a typical e-mail request received
by an administrator.

Sites in SPS can be created at the top level or as subsites underneath any existing site.
When subsites are created, they inherit the permissions of the parent site above them. Although
this system of hierarchical site groups is appropriate for most uses, SPS will allow a site to be
separated from the hierarchy and have its own unique set of permissions. Unique permissions
are useful whenever you need to completely change the permission set of a site.

To set up unique permissions, you need to follow these steps:

1. Log in to the portal as a member of the Administrator site group.

2. From the portal home page, click the Sites link to open the Site Directory.

3. From the Site Directory, navigate to a top-level site you created earlier.

4. On the home page of the site, click Create.

5. On the Create page, click Sites and Workspaces.

6. Name the new site and give it a description.

7. Select Use Unique Permissions.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 87

Figure 4-3. Receiving a request

5750_c04_final.qxd 11/3/05 9:46 PM Page 87

8. Click Create.

9. On the Template Selection page, select the Team Site template.

10. Click OK.

11. When the site home page appears, click Site Settings.

12. On the Site Settings page, select Administration ➤ Manage Users.

Along with changing the access permissions, you can also determine whether or not to
allow anonymous access to a site. Anonymous access allows anyone who is a registered domain
user to access the site even without specific permission. You can change this setting for each
site you create.

Here is what to do to allow anonymous access:

1. Log in to the portal as a member of the Administrator site group.

2. From the portal home page, click Sites.

3. Navigate to an existing site you created earlier.

4. From the Site home page click Site Settings.

5. On the Site Settings page, select Administration ➤ Go to Site Administration.

6. On the Top-Level Site Administration page, select Users and Permissions ➤ Manage
Anonymous Access.

7. On the Change Anonymous Access Settings page, adjust the settings as desired.
Figure 4-4 shows the Change Anonymous Access Settings page.

8. Click OK.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT88

Figure 4-4. Allowing anonymous access

5750_c04_final.qxd 11/3/05 9:46 PM Page 88

In addition to all of the site-level permissions, SPS also allows you to control access at
the list level. This means that you can give access to a site while restricting access to a partic-
ular list on the site. From any list on a page, you can select Modify Settings and Columns to
reach the customization page for a list. On this page, click “Change permissions for this list”
to restrict access.

Audiences
Portal users can be classified in many different ways to identify groups that are interested in par-
ticular content. So far, you have used site groups and access rights to target content to portal
users. However, SPS supports a more granular approach to content direction using audiences.
Audiences allow you to group portal users by similar characteristics—such as membership in
an Active Directory group—and then display specific content to the audience.

When SPS is first installed, a single audience is defined called All Portal Users. This audi-
ence targets content at anyone with permission to view the portal home page. Initially, the
only way to view any of the targeted content is either on the portal home page, or through
the My Site link. However, you can go much further by creating your own audiences.

You create audiences by specifying membership rules. These rules are associated with
properties found in the Active Directory. You may specify one or many rules to determine
membership. When you define membership, you may specify that all the rules must be met
or that any of the rules can be met.

Once you have created an audience, it must be compiled. Compilation is done periodi-
cally to ensure that audience membership is always up to date. You can set up a compilation
schedule, or force a compilation manually. Audiences do not exist until they are compiled.

To create an audience, follow these steps:

1. Log in to the portal as a member of the Administrator site group.

2. Click the Site Settings link.

3. On the Site Settings page, select User Profile, Audiences, and Personal Sites ➤ Manage
Audiences.

4. On the Manage Audiences page, click Create Audience.

5. Give the audience a name and description. Choose whether the audience candidates
must satisfy all the rules you specify or any of them.

6. Click OK.

7. On the Add Audience Rule page, specify a rule for audience membership. Figure 4-5
shows a typical rule definition.

8. After the new audience and rule are created, return to the Manage Audiences page.

9. On the Manage Audiences page, click Start Compilation.

10. After the compilation is complete, view the audience membership to verify the results.

Once an audience is created and compiled, you may target content to the group it repre-
sents. SPS allows you to target content to audiences using any of three different mechanisms.
First, you may direct the content to the Links for You section of the home page. Alternately,

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 89

5750_c04_final.qxd 11/3/05 9:46 PM Page 89

you may direct the content to My Site in either the Links for You section or the News for You
section.

When targeting content to an audience, you must typically select a link, listing, or docu-
ment. You cannot target entire areas or sites. When you first add a link, listing, or document
at the portal level, you can choose to target it to an audience. You can also choose to target the
content after it is added to the portal by dragging the content to the Home or News area.

Here are the steps to target content:

1. Log in to the portal as a member of the Administrator site group.

2. From the portal home page, click Manage Portal Site from the Actions list.

3. From the portal site map, select to show All items.

4. Expand the site map and locate a link, listing, or document.

5. Select Edit from the drop-down menu associated with the link, listing, or document.

6. On the Change Settings page, click the Display tab.

7. On the Display tab, select the audience to target.

8. Click OK.

9. Return to the portal site map.

10. On the site map, drag the targeted link, listing, or document to the Home area.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT90

Figure 4-5. Creating an audience rule

5750_c04_final.qxd 11/3/05 9:46 PM Page 90

11. Log in to the portal as a member of the audience you targeted.

12. Note the link on the home page of the portal. Figure 4-6 shows the results.

In order to show the targeted content
on My Site, you select Portal Site Content ➤
Manage Targeted Links on My Site from the
Site Settings page. This opens a list where
new items can be added. You can add exist-
ing items to the list or create new ones.

Targeting content to a specific audience
is a powerful concept, but its default imple-
mentation is limited. With only three places
to place the targeted material, audiences
may seem to be more trouble than they’re
worth. However, the concept of audiences
reaches its true value when it is incorporated into custom Web Parts that are able to display
information and change behavior based on audience membership. I’ll examine Web Part
development later in the book and make extensive use of the programmable classes found
in the Microsoft.SharePoint.Portal namespace.

Understanding Web Parts
SPS not only provides a solid structure to assist end users in locating information, it also pro-
vides a strong framework to assist content developers in presenting information. The SPS
content framework is built on a set of customizable software components known as Web Parts.
Web Parts are visible immediately upon entering the portal. They are responsible for generat-
ing all of the lists and views that make up the portal. Without Web Parts, nothing would appear
on a portal web page.

For end users, the Web Part framework is seamless. Although each page in the portal is
made up of several Web Parts, end users experience them as a single page of content. The dis-
tinction between Web Parts and web pages becomes significant, however, for designers and
programmers responsible for the portal content.

Modifying Web Part Pages
Members of the Web Designer, Administrator, and Content Manager site groups have the right
to add and customize shared pages within the portal. Users with this right can customize a web
page by selecting Edit Page from the Actions list. Selecting to edit the page causes a drop-down
to appear on the page entitled Modify Shared Page. Selecting Modify Shared Page ➤ Design This
Page causes the page to enter Web Part mode. In this mode, Web Parts can be added or removed
and their behavior can be altered. Figure 4-7 shows a typical portal page in Web Part mode.

Shared pages in the portal represent the content seen by all portal users. However, all site
groups except Reader can modify their own Personal View for most pages. Modifying the Per-
sonal View of a page affects the way the content is displayed to the user who modified the page
but does not affect the rest of the portal users. Before modifying a page, you should clearly
understand whether your changes will be globally applied to the Shared View or just your
Personal View.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 91

Figure 4-6. Targeted content in the portal

5750_c04_final.qxd 11/3/05 9:46 PM Page 91

Once the Shared or Personal View is in Web Part mode, you can easily remove any Web
Part by clicking the “X” located in the upper-right corner of the Web Part. Web Parts can also

be added to the page by selecting Modify Shared View
➤ Add Web Parts. From this menu item, you can
select to browse, search, or import Web Parts.

Web Parts are stored in one of several galleries
that you can browse or search. These galleries are
listed directly on the page when you select to add
Web Parts to a page. The available galleries include
the Web Part Page Gallery, the [sitename] Gallery,
the Virtual Server Gallery, and the Online Gallery.
Figure 4-8 shows the galleries available for use in
a page.

The Web Part Page Gallery contains all of the
Web Parts that are available specifically to the web
page that is being modified. If you close a Web Part
by clicking the “X” in the upper right-hand corner,
then the Web Part disappears from the page and
becomes available in the Web Part Page Gallery.
Once it is in the gallery, it may be moved back to
the page by dragging it from the gallery and onto
the page.

The [sitename] Gallery is named after the site
where the current page is located. For example, if
your site is named Board of Directors, then the
[sitename] Gallery will be named Board of Direc-
tors Gallery. This gallery contains the bulk of the

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT92

Figure 4-7. Entering Web Part mode

Figure 4-8. Accessing Web Part
galleries

5750_c04_final.qxd 11/3/05 9:46 PM Page 92

general-purpose Web Parts that may be used throughout the current site. Later, you will add
your own custom Web Parts to this gallery for use in the portal.

The Virtual Server Gallery is a gallery intended for large enterprise deployments of SPS
with many sites. In these cases, the Virtual Server Gallery acts as an enterprise-level repository
for Web Parts. Using this gallery entails a special deployment model for Web Parts called a
Web Part package file that I will cover later in the book.

The Online Gallery is a special gallery of Web Parts created and maintained by Microsoft.
Initially, you will find some news and stock Web Parts in this gallery. Over time, Microsoft expects
to add more Web Parts for general use.

Regardless of where you get the Web Part, placing it on the page is always accomplished in
the same manner. Each page is divided into several zones that can contain Web Parts, and the
number and layout of the available zones depends upon the template used to create the cur-
rent page. To move a Web Part onto the page, you click and drag the Web Part from the selected
gallery into an available zone. Each zone on the page may contain more than one Web Part.
Figure 4-9 shows a Web Part being dragged into a zone.

Once a Web Part is placed in the desired zone, it can be modified. This is accomplished
by selecting Modify Shared Web Part from the drop-down menu associated with the Web Part.
Figure 4-10 shows how to access the properties for the Web Part.

Web Part properties are typically grouped together in logical categories such as Appear-
ance or Layout. You can examine the individual properties by expanding the categories in the
properties pane. Once you have the properties set, click Apply to see your changes immedi-
ately on the page.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 93

Figure 4-9. Placing a Web Part in a zone

5750_c04_final.qxd 11/3/05 9:46 PM Page 93

Connecting Web Parts
Although Web Parts are useful for displaying information, links, and lists, so far we have only
seen them acting as islands of information. The content presented by multiple Web Parts on
a page may be related, but the Web Parts are unaware of the related information. The connec-
tion is only made in the mind of the end user. With connected Web Parts, however, you can
relate multiple Web Parts functionally. For example, an image on a site can be connected to
an image viewer. Figure 4-11 shows an example of selecting an image link as the source for an
image on a site home page.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT94

Figure 4-10. Modifying a Web Part

Figure 4-11. Connecting Web Parts

You need to follow these steps to connect Web Parts:

1. Log in to the portal as a member of the
Administrator site group.

2. On the portal home page, select Edit Page
from the Actions list.

3. Now select Modify Shared Page ➤ Add Web
Parts ➤ Browse.

4. Drag the Contacts Web Part from the Site
Gallery to the middle-left zone of the portal
home page.

5. Click View Page on the Actions list to leave
Web Part mode.

6. Now click the Contacts link to open the
detail page.

7. On the Contacts page, click Import Contacts.

8. Import the contacts from Microsoft Outlook for
the personnel that you assigned as area or site
administrators.

5750_c04_final.qxd 11/3/05 9:46 PM Page 94

9. On the Contacts page, click Modify Settings and Columns.

10. On the Customize Contacts page, select Views ➤ Create a New View.

11. On the Create View page, click Standard View.

12. Name the new view Experts and check the box “Make this the default view.”

13. In the Columns section, uncheck every box except Last Name and First Name.

14. Click OK.

15. On the portal home page, select Edit Page from the Actions list.

16. Now select Modify Shared Page ➤ Design This Page.

17. Using the drop-down list for the Contacts Web Part, select Modify Shared Web Part.

18. In the List Views pane, change the current view to Experts.

19. Click OK.

20. Now select Modify Shared Page ➤ Add Web Parts ➤ Browse.

21. Drag another Contacts Web Part from the Site Gallery to the bottom zone of the portal
home page.

22. Using the drop-down list from the first Contacts Web Part, select Connections ➤
Provide Row To ➤ Contacts [2].

23. When the transformer dialog appears, follow the prompts to select the fields to con-
nect between the Web Parts.

24. Click View Page from the Actions list. You should now have a master-detail contacts
display on the home page of the portal.

If you spend some additional time working on the list views, you can create exactly what you
want. I added an additional hyperlink field to my list so that I could name an expert for each area
in the portal. Figure 4-12 shows the final view perfected to associate an expert with each area and
provide contact information to the portal user.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 95

Figure 4-12. Creating a master-detail connection

5750_c04_final.qxd 11/3/05 9:46 PM Page 95

Templates
Templates are a foundational element of SPS and allow for rapid structure and content cre-
ation. Although you are initially limited to the default templates offered by SPS, you do have
some capability to create new templates within the portal. Later you will see that you can gain
much more flexibility using an external editor, but for now, you will focus on creating site, list,
and area templates within the portal environment.

Site Templates
Whenever you create a new site, SPS uses predefined templates to simplify the creation of
the new elements for the site. You have already seen the list of templates in use several times.
These templates allow you to create everything from a specialized team site to a blank site
you can use to create content from scratch. Although SPS comes with several templates
already defined, you can create your own templates and then make them available to others
for use. These new templates can be created directly in the browser and saved through the
SPS interface.

SPS defines a Site Collection as the top-level site and all of the sites beneath it in the
hierarchy. You have already seen that permissions granted at the top of a site collection are
inherited by sites lower in the collection. Using the same organizational structure, SPS main-
tains a Site Template Gallery for each Site Collection. A new site template can be created and
added to the gallery by any member of the Administrator site group.

Site templates may be created outside of SPS using an authoring tool like Microsoft
FrontPage, but the simplest way to create a template is to use an existing site within the portal
framework. Creating a template from an existing site is done through the Site Settings page for
the site you want to save. Generally, you will save only the structure of a site as a template;
however, SPS does allow you the option of saving content along with the structure.

To create a site template, follow these steps:

1. Log in to the portal as a member of the Administrator site group.

2. From the portal home page, click the Sites link.

3. From the Site Directory, click the Create Site link under the Actions list.

4. Name the new site Softball Team and give it a description.

5. Type in a web site address for the new site and click Create.

6. On the Add Link to Site page, click OK.

7. On the Template Selection page, select to base this site on the Team Site template and
click OK.

8. When the new site is created, select Modify Shared Page ➤ Add Web Parts ➤ Browse in
the upper-right corner of the page.

9. On the Web Parts pane, drag the Members Web Part onto the page.

10. When you have finished modifying the site, click the Home link.

11. From the Home page, click Site Settings.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT96

5750_c04_final.qxd 11/3/05 9:46 PM Page 96

12. On the Site Settings page, select Administration ➤ Go to Site Administration.

13. On the Top-Level Site Administration page, select Management and Statistics ➤
Save Site as Template.

14. On the Save Site as Template page, name the new template Sports Team. Give it a
file name and description.

15. Note that this page would allow you to save the site content as part of the template,
if you wished. Click OK to finish.

Once you have created saved templates for a site collection, you can go back and manage
the templates. Accessing the set of templates for a site collection is done through the Top-Level
Site Administration page. On this page select Site Collection Galleries ➤ Manage Site Template
Gallery. This will show you a list of all templates for the site collection excluding the default
templates. From this list, you can edit the template properties or delete the template altogether.

List Templates
Just as you can create site templates from existing sites, SPS allows you to create list templates
from existing lists. A list template consists of the fields that you define for the list and any
views you define. Just like site templates, you also have the option of saving the list content
as part of the template.

Follow these steps to create a list template:

1. Log in to the portal as a member of the Administrator site group.

2. Navigate to the Softball site that you created earlier.

3. On the site home page, click the Create link.

4. On the Create page, select Lists ➤ Contacts to create a new list for the site.

5. Name the new list Players and give it a description.

6. Click Create.

7. When the new list is displayed, select Modify Settings and Columns from the
Actions list.

8. On the Customize page, select Columns ➤ Add a New Column.

9. Name the new column Position and give it a description.

10. Click OK to return to the Customize page.

11. On the Customize page, select General Settings ➤ Save List as Template.

12. On the Save as Template page, name the template Players. Give it a file name and
description.

13. Click OK.

14. If you now return to the Create page, you will see that the new list template is available.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 97

5750_c04_final.qxd 11/3/05 9:46 PM Page 97

Area Templates
Just like sites, areas in SPS also utilize templates to control their appearance. When you create
an area within the portal, it is assigned a default template; however, you can change the assign-
ment by selecting Change Settings from the Actions list. This link opens a tabbed page that
controls most of the aspects associated with an area.

The template for an area is designated on the Page tab. On this tab, you can specify that
the area inherits its template from its parent, uses a default template, or uses a custom tem-
plate based on another web page. Additionally, you can specify how subareas underneath
this area will appear.

Personalization with My Site
Along with all of the information, documents, and links provided through the area structure of
SPS, end users are also provided with a personal site known as My Site. My Site is easily accessed
by clicking the associated link directly on the portal home page. When My Site is first accessed,
SPS takes a moment to format the initial site, which contains a calendar, news, links, and alerts.

Using My Site
My Site consists of both a private and public view. The private view is intended as a personal
workplace for the individual end user. The public view, on the other hand, acts like a business
card that can be accessed by other portal users. You can see the different views by clicking
either Private or Public under the Select View list. Figure 4-13 shows a public view of My Site.

One of the first things users should do when they initially access My Site is update their
profile. Profile information is available by clicking the Edit Profile link under the Actions list.
The profile page allows end users to include enhanced contact information and even a para-
graph of information about themselves.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT98

Figure 4-13. The public view of My Site

5750_c04_final.qxd 11/3/05 9:46 PM Page 98

You will notice that the profile items on My Site are a subset of the items available in the
profile database. This is because the administrator determines which properties in the profile
database can be edited by the end user directly. The administrator also determines which prop-
erties will appear in the public view of My Site. Administrators can access the profile database
through the Site Settings page under the section User Profile, Audiences, and Personal Sites.

When the private view is first accessed, you will notice a reference to My Calendar. My Cal-
endar is a Web Part that you can connect to an Exchange 2003 server so that your calendar will
be visible on My Site. To display your calendar, you must modify the properties of the Web Part.
This will require end users to know the exact name of the Exchange server. If you have created
the test environment outlined in Chapter 2, you can easily set up the calendar Web Part.

Here is how you would set up My Calendar:

1. Log in to the portal as any end user.

2. From the portal home page, click the My Site link.

3. On the home page of My Site, ensure that you have the private view selected.

4. Select Modify My Page ➤ Design This Page.

5. On the My Calendar Web Part, select Modify My Web Part from the drop-down
menu.

6. Under the Mail Configuration section, enter the mail server address as http://
spscontroller/exchange.

7. Enter the appropriate mailbox name for the account you are currently logged in
under.

8. Click OK.

Along with the calendar, the private view provides a place for you to add your own per-
sonal links to key information under My Links Summary. You will also see any targeted content
under the Links for You list. (Links for You on My Site is exactly the same as the Web Part that
appears on the portal home page.) Finally, any alerts that you have set throughout the portal
are summarized in the My Alerts Summary list, which can also be managed from a link on the
Actions list.

Customizing My Site
End users have full control over the items that appear on My Site. At any time, a user can
customize My Site by using the Modify My Page menu. This menu allows end users to add or
remove Web Parts from the page. In this way, end users can make My Site a personalized work-
space that shows them the information, documents, and links that they most care about.

In addition to modifying the Web Parts that appear on My Site, users may also add new
lists and pages directly by clicking the appropriate link under the Actions list. Selecting to cre-
ate a new list opens a Create page similar to any area or site in the portal. From this page, end
users have a wide choice of elements to add to My Site.

Although the administrator retains control over the appearance of the public view of
My Site, end users can utilize the public view to share documents, sites, and links with other
users. Under My Lists, users have access to both a private document library and a shared

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 99

5750_c04_final.qxd 11/3/05 9:46 PM Page 99

document library. The shared library is used for posting documents that you want to make
available to others. For example, the portal administrator may post a document describing the
procedures to personalize My Site. This way, portal users can engage in self-service rather than
sending all their questions directly to the portal administrator. The type of sharing can be done
with the Shared Links and Shared Workspace Sites Web Parts that appear on the public view of
My Site.

Customizing with Microsoft FrontPage
Because SPS is built on top of SharePoint Services, most of the items in SPS are accessible in
some way from Microsoft Office 2003. Later in the book, I will go into detail about exactly how
the standard products like Word, Excel, and Outlook integrate with SharePoint Services. But
for now, I will focus primarily on the content-creation capabilities that Microsoft FrontPage
2003 brings to your portal solution.

■Caution If you must support browsers other than Internet Explorer, you should work closely with those
browsers to ensure that pages appear correctly when created with FrontPage.

Although SPS offers several ways to create and manage content, if you are a web devel-
oper, you will likely find them too limiting. In my experience, companies want their intranets
to look and feel much like their existing corporate site on the Internet. This means that we
need more control over the content and the layout of pages. This is the real reason to use
Microsoft FrontPage in conjunction with SPS.

You can open the portal site directly from a URL by selecting File ➤ Open Site. When you
open the URL, FrontPage displays a folder list view that shows all of the areas, sites, libraries,
and lists defined in the portal. Figure 4-14 shows a typical folder list for a portal.

Opening the portal home page within FrontPage will give you an idea of the structure and
elements available for editing. From the folder list, you can right-click a file and select Open
from the pop-up menu. If you do this, you will see the same portal home page you are used
to, but all of the elements are exposed for editing. You’ll see, for example, that you could easily
type directly into the page to edit content. You’ll also notice that the landscape is complicated.
Before you start making significant changes, you’ll need to understand several aspects of page
design; however, my goal is to provide only a brief overview of the major design tools you will
need to work with pages in the portal.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT100

5750_c04_final.qxd 11/3/05 9:46 PM Page 100

Designing a New Page
Adding a page to an existing web site is a simple matter of selecting File ➤ New from the menu.
When you make this selection, FrontPage opens a task pane with a list of new items you can
create. This introduces one of the most important new metaphors in FrontPage. Many of the
tasks in FrontPage are accomplished through task panes. Task panes are similar in functionality
to a dialog box, but they remain visible even after you finish the immediate operation. Multiple
task panes stack up in a queue like web pages in a browser. You can navigate the task panes by
using the back, forward, and home buttons within the pane or the drop-down menu at the top
of the pane.

Once the new page is added, you may start designing it. Before you start creating sites
that integrate directly with SharePoint Services, you’ll review some of the basic page-creation
tools in FrontPage. These tools will be useful later when you are working with more compli-
cated pages.

When starting a new page, many web designers will create a prototype page using a
graphics program such as Adobe Photoshop. Then they cut the image apart to create
the graphics for the new page. This is especially helpful if you have an existing web site and
are trying to make the new page match that look and feel. As I mentioned earlier, this is often
the case with intranets—they must match the look and feel of the corporate Internet site. You
can get help with this effort by making use of a tracing image in FrontPage.

Tracing images allow you to take a JPEG, GIF, PNG, or BMP file and use it like tracing paper
to help with the layout and design of a page. In order to set a tracing image, you must have the
page in design view, which is controlled by a set of buttons underneath the page, as shown in
Figure 4-15. Once in design view, the tracing image is set by selecting View ➤ Tracing Image ➤
Configure from the FrontPage menu. When you configure the tracing image, you select the file
to act as the image, its position on the page, and its opacity.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 101

Figure 4-14. Viewing the portal structure

5750_c04_final.qxd 11/3/05 9:46 PM Page 101

Once you have a tracing image in place, you will want to construct the layout of the page to
define the areas where content will be placed. Microsoft FrontPage allows you to set up multi-
ple complex regions for content using layout tables. Layout tables are similar to any HTML
table, but they are specifically intended to help layout content regions on the page. Inserting a
layout table into a page is done by using a task pane. The layout table task pane can be opened
by selecting Table ➤ Layout Tables and Cells.

Within the task pane, you can choose to create your own layout tables or use the prede-
fined layouts in the pane. Generally, the predefined layouts are sufficient because several
different kinds are available. Even if these are not exactly what you want, you can modify the
layouts once they are applied to the page.

To utilize Layout Tables and Cells, take these steps:

1. Select Start ➤ All Programs ➤ Microsoft Office ➤ Microsoft Office FrontPage 2003 to
open Microsoft FrontPage.

2. From the main menu, select File ➤ Open Site.

3. In the Open Site dialog, type http://spsportal and click Open.

4. When the site opens, make sure the folder list is visible by selecting View ➤ Folder List
from the main menu.

5. Using the folder list, examine the sites, lists, and libraries defined in the site.

6. Open the New task pane by selecting File ➤ New from the main menu.

7. In the New task pane, click Blank Page to add a new page to the site.

8. Open the Layout Tables and Cells task pane by selecting Table ➤ Layout Tables
and Cells.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT102

Figure 4-15. Setting a tracing image

5750_c04_final.qxd 11/3/05 9:46 PM Page 102

9. In the Layout Tables and Cells task pane, click a new layout from the Table Layout
section with a top title row that spans the entire page and a navigation column that
spans the left side of the page.

10. Click your mouse inside the top row.

11. In the task pane, select New Tables and Cells ➤ Insert Layout Cell.

12. In the Insert Layout Cell dialog, accept the default values and click OK to insert the
new cell.

13. When the new cell appears, click Cell Formatting.

14. In the task pane, click Cell Properties and Borders.

15. In the task pane, change the background color to blue in the BgColor drop-down list.

16. Click the sizing handle and make the cell fill the entire available area within the layout
table.

17. In the task pane, click Cell Corners and Shadows.

18. Select to round the upper-right corners of the cell.

19. Place cells in the layout so that the page has a blue title area and blue navigation area.
Figure 4-16 shows my final page.

Once the initial layout is complete, adding text is a simple matter of typing directly into
the cells. You can format the font style directly from the editor using the same approach as
you would in Microsoft Word. For images, you may either place the image directly in a cell or
make use of layers to position images. Layers are floating frames that can be positioned any-
where on the page. You can add a new layer from the Insert menu, drag the layer around the
page, and position it exactly where you want it. Using the layouts and layers, you can rapidly
put a page together over a tracing image.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 103

Figure 4-16. Table and cell layout

5750_c04_final.qxd 11/3/05 9:46 PM Page 103

Working with Data Sources
Once you have an idea of how to use the basic layout tools, you will want to be able to add more
interesting content than just text and graphics. Microsoft FrontPage in conjunction with Share-
Point Services supports the ability to create XML data sources that you can use in your web pages.
This capability allows you to connect directly with SQL databases, XML sheets, SharePoint lists,
and other sources to display dynamic data sets. Using FrontPage, you can display the data with-
out ever writing code.

The key to using dynamic data sets in your web pages is to make use of the Data Source
Catalog and the Data View Web Part. The Data Source Catalog acts as an agent for mapping
access to any number of data sources that can provide XML data sets. The Data View Web Part
is the component that displays those data sets on the page.

When the Data View Web Part is displaying an XML data set, it has the ability to format
the data set based on the eXtensible Stylesheet Language Transformations (XSLT). This means
that you can use the FrontPage “What You See Is What You Get” (WYSIWYG) editor to format
columns, colors, and styles for a data set. You can also use conditional format to change the
style of a data cell when it reaches certain parameters. In this way, you can call attention to
outlying data in the set.

Using XML data sets begins with the Data Source Catalog. You can access the Data Source
Catalog by selecting Data ➤ Insert Data View from the main menu in Microsoft FrontPage. The

catalog lists all of the available XML data sources. If you
have an existing SharePoint Service site open in Front-
Page, you’ll notice that all of the lists and libraries in the
site are available for use as data sources. In addition to
these sources, you’ll also see support for database con-
nections, XML files, server-side scripts, and web services.
Figure 4-17 shows a typical Data Source Catalog.

When using the Data Source Catalog, you are not
limited to the lists and libraries associated with the site
that is currently open. You can either create new lists and
libraries directly or utilize list and libraries from other
sites within the portal structure. If you click either the
Create New SharePoint List or the Create New Document
Library link, you will open a dialog that allows you to add
a new list, library, or survey to the Data Source Catalog.
If you instead want to add an element from another site,
you can click the Manage Catalog link to add a new source.
From this link, you can add a reference to another Share-
Point site, which will import all of the data sources defined
for that site.

If the data source you want to use is not a SharePoint
element already, you will have to spend some time set-
ting up the source before it can be used. Most of the data
sources are set up in a similar fashion that begins by
clicking the Add to Catalog link, which appears just below
the data source type you want to use.

To add a database connection, follow these steps:

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT104

Figure 4-17. The Data Source
Catalog

5750_c04_final.qxd 11/3/05 9:46 PM Page 104

1. From the FrontPage main menu, select Data ➤ Insert Data View to open the Data
Source Catalog pane.

2. In the Data Source Catalog, expand the Database Connections node.

3. Click the link Add to Catalog just beneath the node to open the Data Source Properties
dialog.

4. On the General tab, name the connection pub authors.

5. On the Source tab, click the Configure Database Connection button.

6. In the Configure Database Connection dialog, enter spsportal in the Server Name
text box.

7. In the Authentication section, enter a valid user name and password to access the SQL
Server installation.

8. Click Next.

9. On the next step, select the Pubs database from the drop-down list and select the
Authors table from the list.

10. Click Finish.

11. On the Source tab, click Fields.

12. In the Displayed Fields dialog, remove the field au_id from the set of displayed fields
and click OK.

13. On the Source tab, click Sort.

14. In the Sort dialog, select to sort the fields by au_lname and click OK.

15. In the Data Source Properties dialog, click OK to complete the definition of the new
data source.

When you use a database connection as a data source, it is generally not a good idea to
save the credentials directly in the database connection. Instead, you can use Windows authen-
tication to verify access credentials at the time the data is accessed in the web site. However, if
you go down this path, you will have to set up credentials in the database for each user. A better
mechanism for authentication is to use the Microsoft Single Sign-On (SSO) service. This service
allows you to set up a master set of credentials just for accessing such data sources. Later in the
book, I’ll cover the setup and usage of SSO when I discuss creating custom Web Parts.

Once the data source is defined, adding it to the page is a simple matter of dragging the
source from the catalog to the page. Once you drop the data source onto the page, FrontPage
adds the server-side code necessary to access the data source and display the data. Because
the page now contains server-side code, you may be prompted to rename the page to contain
an .aspx extension. The .aspx extension is required for the page to be recognized as contain-
ing server-side code.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 105

5750_c04_final.qxd 11/3/05 9:46 PM Page 105

Working with Data Views
Once the data set is visible on the page, you can make changes to the presentation directly
in the page. Changing font styles, font sizes, and column header names can be done using the
same techniques as in a word processor. A drop-down menu also becomes available in the
upper-left corner of the table. This drop-down menu gives you the ability to sort and filter the
data as well as change the presentation style. From this menu, you can also apply conditional
formatting to call out values in the data set that need attention.

Selecting Style from the drop-down menu opens the View Styles dialog. In this dialog, you
may choose to apply one of several predefined styles that arrange the tabular data in various
reporting formats. You can also change the paging, add headers and footers, as well as add a
sort/filter toolbar to the header of the table. This gives your data view some flexibility to support
the reporting needs of the intended users.

Selecting Sort and Group from the drop-down menu opens the Sort and Group dialog. In
this dialog, you can select the fields to sort the tabular data. You can pick multiple fields for the
sort and apply a grouping to the sorted data.

Selecting Filter from the drop-down menu opens the Filter Criteria dialog. In this dialog,
you can specify the filter to apply when the page is viewed. Using this dialog, you may apply
several different criteria nested together. As you might expect, this is essentially a SQL query
tool that applies to the data view.

Using conditional formatting, you can highlight a cell when it has values that meet certain
criteria. To get started, you have to select the table, column, or cell where you want to apply the
formatting. After selecting the values, you can pick Conditional Formatting from the drop-down
menu. This in turn opens the Conditional Formatting pane, where you click Create to build the
conditions.

Building conditional formatting rules is very similar to building filter rules. You can spec-
ify the fields and conditions that trigger the formatting. Once the rules are defined, FrontPage
opens a style dialog that you can use to change the font, size, and color of the data to call it out
in the table.

Not only can you apply sorts, filters, groups, and formatting in the data view, but you can
apply them to the data source as well. In the Data Source Catalog, you can use the drop-down
list associated with a data source and select Show Data. This action opens the data in the task
pane and presents the same options as you find in the drop-down menu on a page.

Although data views can stand alone on a page like a report, they also have the ability to
interact with other data sources. For example, you can have one data view that displays names
and another data view that displays contact information. Selecting a name from the first data
view causes the contact information to show in the second data view. This is the same concept
of connecting Web Parts that you saw when you modified pages directly in SPS. The biggest
difference between connecting Web Parts in FrontPage versus SPS is that FrontPage can con-
nect Web Parts from two different web pages. SPS can only connect Web Parts that are on the
same page.

You can connect two data views by selecting Web Part Connections from the drop-down
menu associated with either of the views. Microsoft FrontPage responds by running a wizard
that helps you make the connection. The wizard walks you through the process of selecting
the fields to connect and the behavior for each part. The wizard also allows you to select a
connection with a Web Part that is on a different page.

One of the major challenges of portal development is the integration of systems within
the portal. I have found that data views are the easiest way to take data from disparate systems

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT106

5750_c04_final.qxd 11/3/05 9:46 PM Page 106

and present them together in a meaningful way. Furthermore, because they do not require any
programming, they are pretty simple to get up and running. This capability is the single biggest
reason to use FrontPage in your portal development.

Here is what you need to do to work with data views:

1. In Microsoft FrontPage, select File ➤ New.

2. In the New pane, click Blank Page.

3. Open the Data Source Catalog by selecting Data ➤ Insert Data View.

4. From the Data Source Catalog, drag the Pub Authors data source onto the new page
and drop it.

5. Select the table on the page and locate the drop-down menu.

6. From the drop-down menu, select Style to open the View Styles dialog.

7. On the Options tab, check the box Show Toolbar Options For.

8. Click OK.

9. From the table’s drop-down menu, select Filter to open the Filter Criteria dialog.

10. In the Filter Criteria dialog, click the link “Click here to add a new clause.”

11. In the Field Name list, select au_lname.

12. In the Comparison list, select Begins With.

13. In the Value list, select [Input Parameter].

14. Click OK.

15. Select File ➤ Save and save the new page.

16. Select File ➤ Preview in browser to see the new page.

Creating and Consuming a Web Service in FrontPage
Earlier in this chapter, I noted that web services are one of the data sources that could be used by
Microsoft FrontPage. It turns out that web services are useful in many other aspects of portal
development. Later, you will find that they can be integrated with InfoPath to create mechanisms
to input form data into multiple systems. Although complete coverage of web services is beyond
the scope of this book, I will cover the basics of web service development and show you how
to use it as a data source in FrontPage.

The easiest way to think of web services is as a component accessible over a network
using standard Hypertext Transfer Protocol (HTTP). In this way, a web service is not unlike
its predecessor, the Distributed Component Object Model (DCOM). DCOM was designed to
allow components on different machines to communicate across a network. The fundamental
problem with DCOM is that it was proprietary and was easily blocked by corporate firewalls.
The driving force behind web services is essentially to create an open protocol for distributed
components that won’t be blocked by firewalls.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 107

5750_c04_final.qxd 11/3/05 9:46 PM Page 107

Although creating a web service in Visual Studio is simple, creating one on the same virtual
server where SharePoint Services is installed is difficult. This is because SharePoint Services
essentially takes over the virtual server where it is installed, making it difficult to run any other
kind of web application, including Active Server Pages (ASP) and web services. The simplest
way around this dilemma is to create a new virtual server on a different port. Once the new
virtual server is created, you can easily build web services on it. The exercise at the end of this
chapter shows in detail how to create a new virtual server.

When you create a new web service project in Visual Studio, the project template provides
most of what you need immediately. The key file you need to examine is Service1.asmx, which
contains the code for the web service. The code in a web service is not much different from
any Visual Studio project you create. The biggest area of concern lies in the decorations used
in the code.

Like all Visual Studio projects, web services are based on class definitions; however, the
classes in a web service are decorated with a Namespace attribute that references a unique URL
instead of just a simple name. The structure of the URL itself is not critical, but it does provide
a way to organize the web services you create and make them discoverable by external com-
ponents. In this case, you do not need to go through discovery because you already know
about the web service. The following code shows a typical class definition for a web service.

<System.Web.Services.WebService _

(Namespace:="http://www.datalan.com/pubs/authors")> _

Public Class Authors

Inherits System.Web.Services.WebService

End Class

Inside the class definition, you may define functions that accept input parameters and
return values. The only difference between any normal function you create and a web service
is once again found in the attributes. Every function must have a <WebMethod()> decoration.
The following code shows a typical definition for a web service method.

<WebMethod()> _

Public Function GetData() As String

End Function

A web service can accept and return any kind of data type; however, Microsoft FrontPage
deals best with DataSet objects returned directly from the web service. If you return a DataSet
object, you will be able to use the sorts and filters more easily. Listing 4-1 shows a complete
example of a web service returning a list of author last names as XML from the Pubs database.

Listing 4-1. A Web Service Returning XML

Imports System.Web.Services

Imports System.Data

Imports System.Data.SqlClient

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT108

5750_c04_final.qxd 11/3/05 9:46 PM Page 108

<System.Web.Services.WebService _

(Namespace:="http://www.datalan.com/pubs/authors")> _

Public Class Authors

Inherits System.Web.Services.WebService

<WebMethod()> _

Public Function GetData() As DataSet

'Dataset for query

Dim objDataSet As DataSet

'Set up connection string from custom properties

Dim strConnection As String = _

"Password=;Persist Security Info=True;User ID=sa;" _

+ "Initial Catalog=pubs;Data Source=(local)"

'Query database for phone numbers"

Dim strSQL As String = "select au_lname from authors"

'Try to run the query

Try

With New SqlDataAdapter

objDataSet = New DataSet("root")

.SelectCommand = New _

SqlCommand(strSQL, New SqlConnection(strConnection))

.Fill(objDataSet, "Contacts")

End With

Return objDataSet

Catch ex As Exception

Return Nothing

Exit Function

End Try

End Function

End Class

Once the web service is written, it can be added to the Data Source Catalog in Microsoft
FrontPage. From the Data Source Catalog, you would click the Add to Catalog link below the
XML Web Services node to open the Data Source Properties dialog. In this dialog, you must
provide the URL that points to the web service description. The web service description is the
definition of the methods, parameters, and return values provided by the web service. You access
the web service description using the URL of the web service followed by ?WSDL. For this exam-
ple, the following URL points to the web service description:

http://spsportal:8080/pubs/service1.asmx?WSDL

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 109

5750_c04_final.qxd 11/3/05 9:46 PM Page 109

Once the web service description URL is defined, you can connect to the web service.
Connecting to the web service will make the returned data available in the Data Source Cata-
log, where you can drag it onto a page. Once on the page, it functions like any other data view.

Using Web Components
Another useful component for creating portal content is the FrontPage web component.
FrontPage web components are essentially Web Parts that do not have knowledge of the Web
Part infrastructure. FrontPage web components have properties and can display data, but they
cannot connect to other web components. In fact, it is easy to see that web components con-
trols are really the predecessor to Web Parts.

If web components are just light versions of Web Parts, then why would you use them?
The answer is that there are many web components available that were created before Web
Parts. Therefore, you might find some useful functionality that is not immediately available
in a Web Part. A prime example of this is the spreadsheet and chart control. Web components
also exist for Java applets, ActiveX controls, and Flash movies. All of the web components are
accessible from the menu by selecting Insert ➤ Web Component.

Understanding Ghosted Pages
While using Microsoft FrontPage makes it easy to change the look and feel of a SharePoint site,
it does have one significant drawback that you should understand before proceeding. This
drawback revolves around the manner in which SharePoint creates and manages web pages
through site templates. This system can be disrupted when FrontPage is used to modify a site.

At this point, I have shown that SharePoint uses templates to define the look and feel of a
site. This strategy allows SharePoint to efficiently manage pages by saving the page definition
once and then using it many times. For example, all of the sites you create that use the standard
Team Site template share a single set of page definitions. These page definitions are loaded into
memory when the site is accessed and subsequently used to render the site content. The pages
that are created in memory based on the template are referred to as ghosted pages.

Whenever a site is modified in FrontPage, unique pages are saved to the SharePoint data-
base, which are separate from the template initially used to create the site. This means that the
modified site pages are no longer generated in memory from the initial template. This is referred
to as unghosting a site. Unghosted sites can cause problems because they may not be properly
updated whenever a service pack or security update is applied to the original template in Share-
Point. Furthermore, you may experience performance degradation if the modifications are
significant, because the unghosted page is no longer resident in memory. This does not mean
that you should never use FrontPage to modify a site; it simply means that you must understand
the impact of such modifications before choosing to make them.

Exercise 4-1: Building an Executive Dashboard
Key Performance Indicators (KPIs) are measurements that indicate the state of an organiza-
tion. KPIs can either present data from the past (e.g., revenue from the previous quarter) or
they can predict into the future (e.g., the likely number of units that will sell in the southeast).
Both types of KPIs have value to managers running an organization; however, most managers

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT110

5750_c04_final.qxd 11/3/05 9:46 PM Page 110

have a difficult time getting access to KPIs. In this exercise, you will create an executive dash-
board that presents some mock KPIs using a SharePoint site created with Microsoft FrontPage.

Preparing Data Sources
Although SharePoint sites are excellent for presenting information to end users, you must still
do the work necessary on the back end to provide appropriate data sources for SharePoint
Services to access. Sites built with Microsoft FrontPage can use several different kinds of data
sources, including XML, SQL databases, and web services. In this exercise, you will make use
of some different data sources, including direct access to SQL databases, Microsoft Excel
spreadsheets, and SQL XML.

The concept of making services available remotely across the Internet is now affecting
nearly every aspect of the enterprise. The same is true with SQL Server. SQL Server 2000 sup-
ports directly accessing databases through HTTP using SQL XML. This means that you can
make SQL calls directly from a browser.

In order to set up SQL Server to deliver data over the web, you must first configure a virtual
directory for clients to access. Interestingly, your installation of SharePoint Services has a global
impact on the SPSPortal server. This means that SharePoint Services has really taken over the
entire web site where it was installed. Therefore, you first have to create a new web site for the
client to access the functions of SQL XML.

To create a new web site, follow these steps:

1. Log in to SPSPortal as the local administrator.

2. Select Start ➤ Administrative Tools ➤ Internet Information Services (IIS) Manager.

3. In the IIS Manager, expand the tree until the Web Sites folder is visible.

4. Right-click the Web Sites folder and select New ➤ Web Site. This starts the web site
wizard.

5. In the Description text box, type SQLXML and click Next.

6. In the “TCP port this Web site should use (Default 80)” text box, type 8080 and click
Next.

7. Click Browse to search for a new directory.

8. In the Browse for Folder dialog select the root of the C: drive and click Make New Folder.

9. Name the new folder SQLXML Web and click OK.

10. Finish the rest of the wizard to create the new web site.

11. In the IIS Manager, click the Web Service Extensions folder.

12. Select the web service extension All Unknown ISAPI Extensions and click Allow.

13. Close the IIS Manager.

Once the new web site is created, you must now create a virtual directory beneath the new
web site. The virtual directory will act as the access point for the SQL Server data. You will utilize
existing data from the Northwind database for your exercise.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 111

5750_c04_final.qxd 11/3/05 9:46 PM Page 111

Here is what you will do to create a virtual directory:

1. Select Start ➤ All Programs ➤ Microsoft SQL Server ➤ Configure SQL XML Support
in IIS.

2. In the IIS Virtual Directory Manager, expand the tree until the SQLXML web site is
visible.

3. Right-click the SQLXML web link and select New ➤ Virtual Directory; this opens the
New Virtual Directory Properties dialog.

4. On the General tab, name the new virtual directory Northwind.

5. Under the Local Path section, click Browse. Browse to the SQLXML Web folder you
created earlier and select it.

6. Click Make New Folder and create a directory underneath named Northwind.

7. Click OK.

8. On the Security tab, enter credentials that will be used to log in to SQL Server.

■Note If you use Windows Integrated Security, you will need to give permissions to access the folder you
created on the General tab. This is because you created a new web outside of the default web site.

9. On the Data Source tab, select the Northwind database.

■Note If you use Windows Integrated Security, you will need to give appropriate permissions to access the
Northwind database.

10. On the Settings tab, check the box “Allow sql=… or template=… URL queries.” Uncheck
any other boxes.

11. Click OK to exit the property sheet.

12. Test the setup by logging into SPSClient and opening Internet Explorer.

13. In the browser, type the following URL:

http://spsportal:8080/northwind?_sql=select * from categories for xml ➥

auto&root=data

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT112

5750_c04_final.qxd 11/3/05 9:46 PM Page 112

Building the Team Site
Now that the data sources are prepared for use, you can move on to create the site itself. In this
part of the exercise, you will use Microsoft FrontPage to create a new SharePoint Services site.
This site will use different data sources to present KPIs in a dashboard format. After you create
the site, you will make it accessible from SPS.

To create a new team site, follow these steps:

1. Log in to SPSClient as the administrator.

2. Once logged in, select Start ➤ All Programs ➤ Microsoft Office ➤ Microsoft Office
FrontPage 2003.

3. In FrontPage, select File ➤ New. This opens the New pane.

4. In the New pane, select New Web Site ➤ SharePoint Team Site.

5. In the Web Site Templates dialog, select the General tab.

6. On the General tab, select to create a new SharePoint Team Site.

7. Specify the location of the new site as http://spsportal/ ExecutiveDashboard.

8. Click OK.

9. When the new site is created, select View ➤ Folder List to display the site contents.

10. In the folder list, right-click default.aspx and select Open from the pop-up menu.
This makes the page appear in design view.

11. In the designer, change the name of the web site by highlighting the text Team Web Site
and changing it to Executive Dashboard.

Adding the Data Sources to the Catalog
Using the folder list, you can explore the contents of the new site. You’ll notice that the new
site is identical to one that you create in SPS using the Team Site template; however, you have
much more control over the layout and functionality of the site when you edit it in FrontPage.
Specifically, you can add custom data sources that are not available in SPS.

Perform the following steps to add a custom data source:

1. Select Data ➤ Insert Data View to open the Data Source Catalog.

2. In the Data Source Catalog, expand the Database Connections node.

3. Click the Add to Catalog link underneath the node to open the Data Source Properties
dialog.

4. On the Source tab, click the Configure Database Connection button.

5. In the Configure Database Connection dialog, type spsportal in the Server Name
text box.

6. In the Authentication section, select “Save this username and password in the data
connection.” Type valid credentials into the User Name and Password boxes.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 113

5750_c04_final.qxd 11/3/05 9:46 PM Page 113

■Note It is not a best practice to save the credentials in the data connection. Normally, you would use the
Microsoft Single Sign-On (SSO) service or Windows authentication. I cover the SSO later in the book.

7. Click Next.

8. Select the Northwind database from the drop-down list of databases.

9. Select the Sales By Category view.

10. Click Finish to return to the Data Source Properties dialog.

11. Click the Fields button.

12. In the Displayed Fields dialog, remove the CategoryID field from the list of displayed
fields.

13. On the General tab, name the connection Overall Category Sales.

14. Click OK.

15. Click OK again to exit.

16. Verify that you have typed the query correctly by opening the drop-down menu
associated with the new connection and selecting Show Data.

Along with traditional direct connections to the database, you can also make use of the
SQL XML connection to return data. These connections are made under the Server-Side
Scripts section.

1. In the Data Source Catalog, expand the Server-Side Scripts node.

2. Click the Add to Catalog link beneath the node to open the Data Source Properties
dialog.

3. In the URL box, type the following URL:

http://spsportal:8080/northwind?_sql=

select * from [Category Sales for 1997] for xml auto&root=summary

4. On the General tab, name the connection Category Sales for 1997.

5. Click OK.

6. Verify that you have typed the query correctly by opening the drop-down menu
associated with the new connection and selecting Show Data.

Creating the Data Views
Once the data sources have been added to the catalog, you can use them to create content for
the management dashboard. In this section of the exercise, you’ll clean up the default page
and then add the new content. You’ll create both tables and charts for the dashboard.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT114

5750_c04_final.qxd 11/3/05 9:46 PM Page 114

1. In design view, select each Web Part on the page and delete it by right-clicking and
selecting Cut from the pop-up menu. You should have two empty zones remaining:
Left and Right.

2. With the Data Source Catalog open, carefully drag the connection labeled Overall Cat-
egory Sales onto the page; drop it onto the left Web Part Zone. A data table will appear
as a result.

3. In the upper-left corner of the data table, locate the arrow used to access the Data View
Options drop-down menu and click it. Figure 4-18 shows the arrow to click.

4. Select Data View Options ➤ Sort and Group.

5. Select to sort the data by CategoryName.

6. Click OK.

7. Carefully drag the connection labeled Category Sales for 1997 and drop it onto the
right Web Part Zone.

Once both of the data views are in the page, you can connect them to make them more
effective. In this exercise, you will connect the Category Sales for 1997 Web Part to the Overall
Category Sales Web Part. In this way, you can filter the larger data set by using the smaller data
set. This is a typical master-detail relationship between Web Parts.

1. In the right Web Part Zone, select the Category Sales for 1997 Web Part.

2. Select Data ➤ Web Part Connections from the FrontPage menu. This starts the Web
Part Connections wizard.

3. In the first step, accept the default value of Provide Data Values To and click Next.

4. In the next step, accept the default value of “Connect to a Web Part on this page” and
click Next.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 115

Figure 4-18. Accessing the Data View Options menu

5750_c04_final.qxd 11/3/05 9:46 PM Page 115

5. In the next step, accept the default values for Target Web Part and Target Action.
Click Next.

6. In the next step, choose to filter on CategoryName by selecting it from both columns
and clicking Next.

7. In the next step, accept the default value of “Create a hyperlink on CategoryName”
and click Next.

8. Click Finish.

9. Select File ➤ Save to save your work.

10. In the folder list, right-click default.aspx and select Preview in Browser from the
pop-up menu. Verify the filter behavior by clicking hyperlinks in the category list.

Along with data sources and Web Parts, you can also use server-side web components to
display data. Web components allow you to access other interesting sources of data, such as
Excel spreadsheets, and incorporate them into the page. In this section, you’ll add a chart to
the dashboard.

1. Carefully click in the area just below the right Web Part Zone. You will place the next
component below the zone, not inside it.

2. In Microsoft FrontPage, select Insert ➤ Web Component.

3. In the Insert Web Component dialog, select Spreadsheets and Charts from the
Component Type list.

4. In the Choose a Control list, select Office Chart.

5. Click Finish. A new chart space will be added to the page and the Commands and
Options dialog will open.

6. On the Data Source tab, click the option to display “Data typed into a data sheet”.

7. In the data sheet, type the information contained in Table 4-1.

Table 4-1. Data for the Web Component

Category Sales

Beverages 102074

Condiments 55277

Confections 80894

Dairy Products 114749

Grains/Cereals 55948

Meat/Poultry 81338

Produce 53019

Seafood 65544

8. On the Type tab, select the column chart.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT116

5750_c04_final.qxd 11/3/05 9:46 PM Page 116

9. Close the Commands and Options dialog.

10. In the web page, size the chart to fit comfortably in the available space.

11. Select File ➤ Save to save your work.

12. Select File ➤ Exit to close Microsoft FrontPage.

Accessing the Site from SPS
Once the new site is completed, you can add a reference to it in SPS. Adding a linked reference
will make the site available in the Site Directory and through searches. You can also manage
many aspects of the site using standard SPS management tools.

1. Log in to SPS as a member of the Administrator site group.

2. On the portal home page, click the Sites link.

3. On the Site Directory, click the Add Link to Site link under the Actions list.

4. On the Add Link to Site page, name the site Executive Dashboard and give it a
description.

5. In the URL field, type http://spsportal/ExecutiveDashboard.

6. In the Areas section, click the Change Location link.

7. In the Change Location site map, expand the nodes and check the areas Sites and
Topics ➤ Departments.

8. Click OK to close the site map.

9. Click OK again to add the new site link.

10. Using the site map, navigate to the area where you placed a link to the new site.

11. On the home page, verify that the Web Parts are working correctly and then click the
Site Settings link.

12. On the Site Settings page, select Administration ➤ Go.

13. On the Site Administration page, select Users and Permissions ➤ Manage Permission
Inheritance.

14. On the Manage Permission Inheritance page select Use Unique Permissions.

15. Click OK to return to the Site Settings page.

16. On the Site Settings page, select Administration ➤ Manage Users.

17. Adjust the permissions so that only appropriate management and financial personnel
can access the new dashboard.

CHAPTER 4 ■ SHAREPOINT CONTENT DEVELOPMENT 117

5750_c04_final.qxd 11/3/05 9:46 PM Page 117

5750_c04_final.qxd 11/3/05 9:46 PM Page 118

Building Web Parts

Throughout our investigation of SharePoint Portal Server (SPS), we have used Web Parts to
integrate systems and display information. Although SPS ships with a number of useful Web
Parts, the included set is unlikely to handle every situation because each organization has a
different set of systems to integrate. Therefore, you will inevitably have to create your own
Web Parts.

In this chapter, we will examine the fundamental construction and deployment of Web
Parts. Before we begin, however, you will want to make sure that you have all the required
tools in place to create Web Parts. If you followed the instructions in Chapter 2, you should
already have Microsoft Visual Studio .NET 2003 installed on SPSPortal.

Along with Visual Studio, you should download and install the Web Part template for
SharePoint Services. The template is available from http://msdn.microsoft.com and is named
WebPartTemplatesforVSNetSample2.exe. The templates provide both C# and VB .NET projects.

Although you do not need to have the template to create the Web Part, it simplifies the
process by providing a new project type and some starter code. The examples in this chapter
assume you are using the template, but I will explain all of the code requirements in detail
whether they are generated by the template or coded by hand. Throughout the examples,
I will use both C# and VB .NET so that you can get the fundamentals regardless of your
language preference.

Web Part Basics
You create a new Web Part project in the same way that you create any other project. When
you select File ➤ New Project from the Visual Studio menu, you are presented with a set
of project types from which to choose. Regardless of whether you choose C# or VB .NET,
the project type is named “Web Part Library.” When you create this project, the template
generates four key files for you: the assembly information file, the manifest file, the code file,
and the Web Part description file.

The assembly information file, AssemblyInfo.cs or AssemblyInfo.vb, contains assembly
information such as the version. This information will be important when you are giving the
Web Part permission to run inside of SPS. The manifest file, Manifest.xml, contains informa-
tion important to the distribution of the Web Part. The code file, WebPart.cs or WebPart.vb,
contains all of the code necessary for the Web Part to function. The Web Part description file,
WebPart.dwp, contains metadata about the Web Part that SPS needs to upload the part and
make it available for use in page design.

119

C H A P T E R 5

■ ■ ■

5750_c05_final.qxd 11/3/05 9:43 PM Page 119

The WebPart Class
Creating a Web Part in Visual Studio is possible because Microsoft has provided an extensive
set of .NET classes that allow access to nearly every facet of SharePoint Services. These classes
are all defined within the SharePoint namespace. Throughout the book, we will be examining
various pieces of the SharePoint namespace, but for now we will look closely at a single class:
Microsoft.SharePoint.WebPartPages.WebPart. All Web Parts you construct must inherit from
Microsoft.SharePoint.WebPartPages.WebPart, and depending upon the exact functionality
you are trying to implement, you will have to override various methods of this class.

The first thing to note about the WebPart class is that it inherits from the System.Web.UI.➥

Control class. This is exactly the same class from which the class System.Web.UI.WebControls.➥

WebControl inherits. This is significant because developers use the WebControl class to create
custom ASP.NET controls that live in the Visual Studio toolbox. In fact, Web Parts behave almost
exactly like custom ASP.NET controls. Both types of controls are accessible from a toolbox, both
have properties that are set during the design of a user interface, and both have runtime behav-
ior that is affected by the values of the properties. Figure 5-1 shows the class hierarchy that
relates Web Parts and custom controls.

When you create a new Web Part project in Visual Studio .NET, a new class is
generated that inherits from the WebPart class. The project also decorates the class with three
attributes that affect its behavior. The following code shows a template class declaration in C#.

[DefaultProperty("Text"),

ToolboxData("<{0}:WebPart1 runat=server></{0}:WebPart1>"),

XmlRoot(Namespace="HelloCS")]

public class WebPart1 : Microsoft.SharePoint.WebPartPages.WebPart

{

}

CHAPTER 5 ■ BUILDING WEB PARTS120

Figure 5-1. The WebPart class hierarchy

System.Object

System.Web.UI.Control

System.Web.UI.WebControls.WebControl

Custom Control

Microsoft.SharePoint.WebPartPages.WebPart

Web Part

5750_c05_final.qxd 11/3/05 9:43 PM Page 120

The DefaultProperty and ToolboxData attributes are exactly the same attributes found in
an ASP.NET custom control. These attributes exist to govern the behavior of the control in a
full-scale design environment such as Visual Studio .NET. These attributes show clearly that
Web Parts are a specialized version of exactly the same components that Visual Studio devel-
opers drag onto ASP.NET web pages. Compare the previous code with the following code,
which is a class declaration for an ASP.NET custom control written in VB .NET.

<DefaultProperty("Text"), _

ToolboxData("<{0}:WebCustomControl1 runat=server> _

</{0}:WebCustomControl1>")> _

Public Class WebCustomControl1

Inherits System.Web.UI.WebControls.WebControl

End Class

A close examination of the two code fragments will reveal that the Web Part code has one
additional attribute not found in the ASP.NET custom control code—the XmlRoot attribute.
This attribute is specific to Web Parts and is used as the root element when an instance of the
Web Part is serialized to XML. This serialization maintains the state of the control and is part
of the Web Part framework found in SharePoint Services.

The relationship between Web Parts and ASP.NET custom controls just demonstrated is
so strong that you can actually add Web Parts to the toolbox in Visual Studio .NET. Once in the
toolbox, the Web Parts can be dragged onto a web page in an ASP.NET project. However, this is
really not the recommended use for a Web Part because Visual Studio .NET does not support
the same infrastructure as SharePoint Services. Therefore, although an ASP.NET application
is similar to a SharePoint Services site, it is not capable of providing all of the features such as
Web Part connections or in-browser page design.

The Web Part Life Cycle
Just like ASP.NET controls, Web Parts participate in a server-side request/response sequence
that loads a page in the portal each time it is requested and unloads the page once it is sent to
the client. Web parts, therefore, follow the same control life cycle that ASP.NET controls follow.
This life cycle supports a state management system that makes the portal appear to the end
user like they are interacting with a stateful system, when in fact each request for a page is a
separate operation.

When a page from a SharePoint Services site that contains Web Parts is requested for the
first time—or when it is submitted to the server—the Web Part life cycle begins. The first phase
in this life cycle is initialization. The initialization phase is marked by a call to the OnInit method
of the WebPart class. During initialization, values from the Web Part storage system are loaded
into the Web Part. These values are created when the Web Part page is designed.

SharePoint Services supports either a single set of shared values that are applied to all portal
users or a set for each individual user. Each property in a Web Part may be designated to sup-
port shared or personal values. Additionally, Web Parts may be modified in a shared or personal
view by end users with appropriate permissions. All of these elements combine to determine
the initial set of property values that will be loaded into the Web Part.

CHAPTER 5 ■ BUILDING WEB PARTS 121

5750_c05_final.qxd 11/3/05 9:43 PM Page 121

After the Web Part is initialized, the ViewState of the Web Part is populated. ViewState is
a property inherited from System.Web.UI.Control. The ViewState is filled from the state infor-
mation that was previously serialized into a hidden field in the web page. Once the ViewState
property is populated, the control returns to the same state it was in when it was last processed
on the server. The ViewState is populated through a call to the LoadViewState method.

Once the Web Part has returned to its previous state, the server can make changes to the
properties of the Web Part based on values that were posted by the client browser. Any new
values that were posted during the request—such as text field values—are applied to the cor-
responding property of the Web Part. At this point, the Web Part has reached the state intended
by the end user.

After all of the new property values are applied to the Web Part, the page may begin using
the information to process the end-user request. This begins through a call to the OnLoad event
of the WebPart class. The OnLoad event fires for every Web Part regardless of how many proper-
ties have changed. Web Part developers use the OnLoad event as the basis for the functionality
embodied in the Web Part. During this event, Web Parts may access a database or other system
to retrieve information for display. The key thing to remember about this event is that it always
fires after the posted data has been applied to the Web Part.

Once the OnLoad event completes, any events triggered by the client interaction with the
Web Part are fired. This includes all user-generated events such as the Click event associated
with a button. It is critical for the Web Part developer to understand that the user-generated
events happen after the OnLoad event. This means that you must be careful not to rely on the
results of user-generated events when you write code for the OnLoad event.

Once the Web Part has finished handling the user-generated events, it is ready to create
the output of the control. The Web Part begins creating this output with a call to the OnPreRender
event of the WebPart class. The OnPreRender event gives the Web Part developer the opportu-
nity to change any of the Web Part properties before the control output is drawn. This is the
perfect place to run a database query that relies on several user-supplied values because all
of the values will be available at this point in the life cycle.

After the OnPreRender event is complete, the ViewState of the Web Part is serialized and saved
to a hidden field in the web page. The ViewState is saved through a call to the SaveViewState
event, which is inherited from the System.Web.UI.Control class.

Once the ViewState is saved, the Web Part output may be drawn. Drawing begins through a
call to the RenderWebPart event. In this method, the Web Part must programmatically generate its
HTML output. This output will be rendered in the appropriate zone on the page in the portal.

After the output is rendered, the control Web Part can be removed from the memory of the
server. Web parts receive notification that they are about to be removed from memory through
the Dispose event. This method allows the Web Part developer to release critical resources such
as database connections before the Web Part is destroyed.

The Web Part life cycle ends when it is finally removed from memory. The last event to fire
is the OnUnload event. This event notifies the Web Part that it is being removed from memory.
Generally Web Part developers do not need access to this event because all cleanup should have
been accomplished in the Dispose event.

Understanding the complete life cycle helps significantly when developing Web Parts. In
particular, understanding when certain values are available to the Web Part will ensure that you
create components with consistent behavior. Figure 5-2 summarizes the life cycle in a flowchart.

CHAPTER 5 ■ BUILDING WEB PARTS122

5750_c05_final.qxd 11/3/05 9:43 PM Page 122

Web Part Properties
Well-designed Web Parts function in a variety of different pages because they are configurable
by an administrator or end user directly in the portal. This configuration is possible because
each Web Part supports a series of properties that can be set in the portal and read by the Web
Part at runtime. In code, these properties are created in the same manner as any property for
any class with the exception that they have special decorations that determine their behavior
within the design environment of SPS. The process of creating a property begins with a stan-
dard property construct. This involves declaring a member variable to hold the value and a get/
set construct to set and retrieve the value. Listing 5-1 shows a typical property defined using C#.

Listing 5-1. Creating a Property in C#

private string m_text;

public string Text

{

get

{

return m_text;

}

CHAPTER 5 ■ BUILDING WEB PARTS 123

Figure 5-2. The Web Part life cycle

Initialize Web Part
WebPart.OnInit(System.EventArgs)

Load ViewState into Web Part
System.Web.UI.Control.LoadViewState

Load posted data into Web Part

Developer process basic functions (e.g., db connection)
WebPart.OnLoad(System.EventArgs)

Developer process any user-generated events (e.g., Click)

Developer finalize processing before rendering
WebPart.OnPreRender(System.EventArgs)

Serialize ViewState into hidden field in page
System.Web.UI.Control.SaveViewState

Developer draw HTML output of Web Part
WebPart.RenderWebPart(System.Web.UI.HtmlTextWriter)

Developer perform cleanup (e.g., release db connection)
System.Web.UI.Control.Dispose

Tear down Web Part
WebPart.OnUnload(System.EventArgs)

5750_c05_final.qxd 11/3/05 9:43 PM Page 123

set

{

m_text = value;

}

}

Most properties are designed to be configured directly in the portal. Therefore, you must
decorate the property with different attributes to define its behavior when a page is designed.
These property values are subsequently serialized and saved when the page is processed so
that the property values can be read later when an end user accesses the page. Each of the
properties you define is decorated with the Browsable, Category, DefaultValue, WebPartStorage,
FriendlyName, and Description attributes.

The Browsable attribute is a Boolean value that determines whether or not the property
appears in the tool pane during design time. You may set this value to either True or False.
Although most of your properties will be browsable, you may have sensitive properties that
should not be accessible by general portal users. The advantage of using a nonbrowsable
property is that the value is still serialized and saved even though it cannot be set in the
portal. In these cases, the Web Part itself is setting the value in code.

The Category attribute is a String value that determines the category in the tool pane
where the property should appear. Using this attribute, you may have the property appear in
a standard category like Appearance or you may create your own custom category. Generally,
you should try to observe a logical placement that corresponds to the way most of the stan-
dard Web Parts work.

The DefaultValue attribute specifies the value of the property when the Web Part is first
placed on a page. The exact value of the attribute is dependent upon the data type of the prop-
erty itself. When setting a default value in the attribute, recognize that this does not actually
change the value of the property itself. In order to ensure that the actual default value is in
sync with the DefaultValue attribute, be sure to set the value of the member variable in code.

The WebPartStorage attribute is an enumeration that determines whether the property
values are saved for an individual or for all users of the page on which the Web Part sits. This
attribute may be set to Storage.None, Storage.Personal, or Storage.Shared. When the attribute
is set to Storage.None, the property is not serialized and saved to the Web Part storage system.
When the attribute is set to Storage.Personal, the property value may be set for each user of
a page. The Web Part infrastructure serializes and saves the values separately for each user.
Finally, when the attribute is set to Storage.Shared, the Web Part infrastructure saves only a
single value of the property that is applied to all users of the page on which the Web Part sits.

The FriendlyName and Description attributes are both String values that are used to dis-
play a name and description for the property in the tool pane. These are both straightforward
attributes that are obvious in their use. The only thing to watch out for here is consistency. Use
the same names and descriptions for the same properties across all Web Parts you create. This
will make them much easier to understand and configure.

Once you understand the property definition scheme, you can create as many as you need
to properly configure the Web Part. Although they are easy to change, I recommend that you
spend some time designing your Web Part before implementing the property set. If you think
through the intended use of the Web Part, you will save yourself a lot of wasted time writing
and rewriting property structures. As a final example, Listing 5-2 shows a complete property
structure in VB .NET.

CHAPTER 5 ■ BUILDING WEB PARTS124

5750_c05_final.qxd 11/3/05 9:43 PM Page 124

Listing 5-2. Defining a Web Part Property

Dim m_DatabaseName As String

<Browsable(true),Category("Miscellaneous"), _

DefaultValue(""),WebPartStorage(Storage.Personal),FriendlyName("Database"), _

Description("The database to access")> _

Property DatabaseName() As String

Get

Return m_DatabaseName

End Get

Set(ByVal Value As String)

m_DatabaseName = Value

End Set

End Property

Rendering Web Parts
Because the WebPart class inherits from System.Web.UI.Control, the entire user interface for
a Web Part must be created through code. There is no drag-and-drop user interface design in a
Web Part. This approach is definitely a drawback and can slow your ability to create Web Parts.
Be that as it may, it becomes less of an issue once you have created a few Web Parts and learned
the techniques for generating the user interface.

Properly rendering a Web Part requires that you first create any ASP.NET controls that you
will need in code. The required ASP.NET controls are then added to the controls collection of
the Web Part by overriding the CreateChildControls method of the base class. Finally, you can
draw the output by overriding the RenderWebPart method.

You may use any available ASP.NET control found in Visual Studio .NET or any ASP.NET
control you have written to create the user interface for a Web Part. Remember, however, that
these controls cannot be dragged onto a page. Instead, they must be declared in code.

When you declare ASP.NET controls in code, be sure to set a reference to the appropriate
namespace. Nearly all of the ASP.NET controls that you could want belong to the
System.Web.UI.WebControls namespace. Therefore, you should reference them in code using
the following C# or VB .NET declaration.

//C#

using System.Web.UI.WebControls;

'VB .NET

Imports System.Web.UI.WebControls

Once the appropriate namespace is referenced, you may create instances of the controls.
When you create these instances, be sure to create them with their associated events. This way,
you will have access to all of the events for any control you use. The following code shows an
example of declaring several ASP.NET controls in VB .NET using the WithEvents keyword.

CHAPTER 5 ■ BUILDING WEB PARTS 125

5750_c05_final.qxd 11/3/05 9:43 PM Page 125

'Controls to appear in the Web Part

Protected WithEvents txtSearch As TextBox

Protected WithEvents btnSearch As Button

Protected WithEvents lstData As ListBox

Protected WithEvents lblMessage As Label

Once the controls are declared, you can set their properties and add them to the Controls
collection of the Web Part. You can do this by overriding the CreateChildControls method. In
this method, set property values for each control and then add it to the Controls collection
using the Controls.Add method. Listing 5-3 shows several controls being added to a Web Part.

Listing 5-3. Adding ASP.NET Controls to a Web Part

Protected Overrides Sub CreateChildControls()

'Purpose: Add the child controls to the Web Part

'Text Box for Search String

txtSearch = New TextBox

With txtSearch

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(8)

End With

Controls.Add(txtSearch)

'Button to initiate searching

btnSearch = New Button

With btnSearch

.Text = "Search!"

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(8)

End With

Controls.Add(btnSearch)

'List to display results

lstData = New ListBox

With lstData

.AutoPostBack = True

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(8)

.Rows = 5

End With

Controls.Add(lstData)

CHAPTER 5 ■ BUILDING WEB PARTS126

5750_c05_final.qxd 11/3/05 9:43 PM Page 126

'Label for error messages

lblMessage = New Label

With lblMessage

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.Text = ""

End With

Controls.Add(lblMessage)

End Sub

When coding a Web Part in C#, you follow the same general ideas; however, you must man-
ually connect events to the ASP.NET controls in the Web Part. Once the event is connected, you
must also define an event handler in code. Listing 5-4 shows a simple example of declaring an
ASP.NET TextBox and Button.

Listing 5-4. Adding ASP.NET Controls in C#

protected TextBox txtDisplay;

protected Button btnGo;

protected override void CreateChildControls()

{

this.btnGo.Click += new System.EventHandler(this.btnGo_Click);

this.Controls.Add(btnGo);

txtDisplay.Width=Unit.Percentage(100);

this.Controls.Add(txtDisplay);

}

private void btnGo_Click(object sender, System.EventArgs e)

{

txtDisplay.Text=Text;

}

Once the controls are all configured and added to the Web Part, you are ready to draw the
output. When rendering the user interface of the Web Part, you use the HtmlTextWriter class
provided by the RenderWebPart method. This class allows you to create any manner of HTML
output for the Web Part. The following code fragments show how to override the RenderWebPart
method in both C# and VB .NET.

//C#

protected override void RenderWebPart(HtmlTextWriter output)

{

}

CHAPTER 5 ■ BUILDING WEB PARTS 127

5750_c05_final.qxd 11/3/05 9:43 PM Page 127

'VB .NET

Protected Overrides Sub RenderWebPart _

(ByVal output As System.Web.UI.HtmlTextWriter)

End Sub

As a general rule, you should render your user interface within an HTML <TABLE>. The
reason for this is that you can never be sure what the Web Part page layout will look like.
As you saw in the last chapter, layouts and Web Part zones can take almost any form. There-
fore, you should use the relative layout offered by the <TABLE> tag to respect the width defined
by the zone where the Web Part appears. Listing 5-5 shows how to render a table containing
ASP.NET controls. You should take particular note of the WIDTH definition within the table.

Listing 5-5. Rendering ASP.NET Controls in an HTML Table

With output

.Write("<TABLE BORDER=0 WIDTH=100%>")

.Write("<TR>")

.Write("<TD Width=70%>")

txtCompany.RenderControl(output)

.Write("</TD>")

.Write("<TD>")

btnSearch.RenderControl(output)

.Write("</TD>")

.Write("</TR>")

.Write("<TR>")

.Write("<TD COLSPAN=2>")

grdNames.RenderControl(output)

.Write("</TD>")

.Write("</TR>")

.Write("<TR>")

.Write("<TD COLSPAN=2>")

lblMessage.RenderControl(output)

.Write("</TD>")

.Write("</TR>")

.Write("</TABLE>")

End With

Deploying Web Parts
After you have finished coding the Web Part, you are ready to begin the process of deploying it
for use in SharePoint Services. Unfortunately, Web Part deployment is not a simple task. You
must complete several detailed steps in order to successfully use a Web Part in a new page.

CHAPTER 5 ■ BUILDING WEB PARTS128

5750_c05_final.qxd 11/3/05 9:43 PM Page 128

Understanding Strong Names
Because SPS is a web-based application with potential ties to sensitive organizational infor-
mation, Web Part security is a significant concern. These security concerns encompass not
only access to information, but also potential malicious behavior by Web Parts. In order to
ensure that no unsafe Web Parts are allowed to run in SPS, you must digitally sign all Web
Parts with a strong name.

You can create a strong name by combining the text name of the Web Part, its version
number, culture information, digital signature, and a public key. When you create a strong
name for your Web Part, you guarantee that its name is globally unique. This ensures that
your Web Part is not confused with any other Web Part that might happen to have the same
text name.

Along with uniqueness, a strong name also guarantees the version lineage of the Web
Part. This means that no one can create a new version of the Web Part without access to the
private key that created the initial strong name. This is important, because it ensures that
every subsequent version of the Web Part came from the same developer—or independent
software vendor (ISV)—who created the initial version. This protection establishes trust with
SPS and the end users.

Additionally, strong names also ensure that the Web Part has not been modified since
it was originally compiled. The .NET Framework applies several security checks to Web Parts
that have strong names. It is this series of tests that ensure that the Web Part has not changed.
Once again, this creates trust within the SPS deployment, which helps an organization feel
confident deploying and using Web Parts for even sensitive business needs.

One thing to keep in mind about strongly named Web Parts is that they are only allowed
to reference other strongly named assemblies. This is because security is only assured when
strong naming protects the entire chain of calls. Most of the time this will not be an issue, but
occasionally you might run into a third-party component that you want to use in a Web Part
that is not strongly named. In this case, Visual Studio will notify you during the build process.

Before you can give your Web Part a strong name, you must generate a public/private key
pair to use when signing the Web Part. You create a key pair using the Strong Name tool (sn.exe).
In order to use the Strong Name tool, you must open the command-line interfaces and navi-
gate to the directory where the tool is located. From that location, you must run the Strong Name
tool with the syntax sn.exe –k [file name].

To create a key pair file, follow these steps:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤ Com-
mand Prompt.

2. In the command window, navigate to \Program Files\Microsoft Visual Studio ➥

.NET 2003\SDK\v1.1\bin.

3. In the command-line window, create a key file by executing the following line:

sn.exe -k c:\keypair.snk

Once the key pair is created, you can use it to sign the Web Part by referencing it in the
AssemblyInfo file. Within this file, three attributes determine how the Web Part is signed:
AssemblyKeyFile, AssemblyKeyName, and AssemblyDelaySign.

CHAPTER 5 ■ BUILDING WEB PARTS 129

5750_c05_final.qxd 11/3/05 9:43 PM Page 129

Using the AssemblyKeyFile attribute, you may reference the key pair directly by an absolute
path or a path relative to your project directory. This is the most likely mechanism you will use
to sign your Web Parts. The following code shows an example of how to reference the key file.

' VB .NET Syntax

<Assembly: AssemblyKeyFile("C:\keypair.snk")>

//C# Syntax

[assembly: AssemblyKeyFile("C:\\keypair.snk")]

Using the AssemblyKeyName attribute, you can reference an existing key that has been
installed on your machine. Organizations might choose to do this if they have a digital certifi-
cate from a provider such as VeriSign that they already use to sign code. In this case, you would
provide the name of the key to use.

If an organization already has a digital certificate, then it may not be made generally
available to developers who need to sign code. In this case, the developer may choose to delay
signing the Web Part. When you delay signing, the Web Part space is reserved for the final sig-
nature, but you can still use the Web Part during development.

In order to delay signing the Web Part, you must set the AssemblyDelaySign attribute to
True. You must then get the public key portion of the certificate and reference it using the
AssemblyKeyFile attribute. Finally, you must instruct the .NET Framework to skip the strong-
name verification test for the Web Part by using the Strong Name tool with the following syntax:

sn –Vr [assembly.dll]

■Caution Skipping the strong-name verification opens a security hole in SPS. Any Web Part that uses the
same assembly name can spoof the genuine Web Part. Reserve this technique solely for development in
organizations where the digital certificate is not provided to developers. Otherwise, always reference a valid
key pair.

Regardless of how you choose to sign the Web Part, you should make sure that the version
number specified in the AssemblyInfo file is absolute. Visual Studio .NET has the ability to auto-
increment your project version using wild cards; however, this is not supported by strong naming.
Therefore, you must specify an exact version for the Web Part. The following code fragment
shows an example.

//C# Syntax

[assembly: AssemblyVersion("1.0.0.0")]

'VB .NET Syntax

<Assembly: AssemblyVersion("1.0.0.0")>

CHAPTER 5 ■ BUILDING WEB PARTS130

5750_c05_final.qxd 11/3/05 9:43 PM Page 130

Building the Web Part
After the assembly file is edited, you have just a couple of steps left before you can build the
Web Part. The first of these steps is to modify the Web Part description file—with the .dwp
extension—in order to update it with the assembly information. SPS uses the Web Part descrip-
tion file to upload the Web Part into one of its galleries. The last step is to designate the proper
build directory for the final assembly.

The Web Part description file is an XML file that contains the title, description, assembly
name, and type name for the Web Part. If you use the Web Part template to start a project, then
you are provided with a mock Web Part description file. To successfully upload the Web Part,
you must modify the entries to reflect the information related to your Web Part. Although the
<Title> and <Description> elements are self-explanatory, the rest of the file requires some
explanation.

The <Assembly> element consists of the assembly name without the .dll extension fol-
lowed by the Version, Culture, and PublicKeyToken. The assembly name is generally the same
as the Web Part project name, and the Version is found in the AssemblyInfo file. The Culture
is also found in the AssemblyInfo file in the AssemblyCulture attribute. However, this attribute is
often left empty. In this case, use the value Neutral to indicate that no culture information
is supplied. The PublicKeyToken is a truncated version of the public key, which is obtained by
using the Strong Name tool.

Once you have generated a key file using the Strong Name tool, you can extract the
PublicKeyToken from the file. The PublicKeyToken is important in not only the web description
file, but also later in SPS as you will see. To extract the PublicKeyToken, run the Strong Name
tool using the following syntax:

sn.exe -T assembly.dll

The <TypeName> element consists of a fully qualified name for the Web Part. The fully qual-
ified name is the namespace followed by the class name.

Along with the required elements of the Web Part description file, you may also set prop-
erties of the Web Part using the description file. To set a property, simply add an element that
has the same name as the property you wish to set. When the Web Part is uploaded, the prop-
erty values are set by the SPS Web Part infrastructure. The following code shows a complete
Web Part description file.

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>Page View</Title>

<Description>A Web Part to embed pages in the portal</Description>

<Assembly>SPSPageView, Version=1.0.0.0, Culture=Neutral,

PublicKeyToken=5959aab8a976a104</Assembly>

<TypeName>SPSPageView.Container</TypeName>

<Width>100</Width>

</WebPart>

Once the Web Part description file is properly modified, you must set the build directory
for the project. All Web Parts must be installed in the \inetpub\ wwwroot\bin directory. Although
you can certainly copy your assembly to this directory after it is built, you may find it easier to
simply set the build directory so that the assembly is automatically compiled to the correct spot.

CHAPTER 5 ■ BUILDING WEB PARTS 131

5750_c05_final.qxd 11/3/05 9:43 PM Page 131

■Note The \bin directory is not created by default; you must create it manually.

You can set the build directory for your project by right-clicking the project in Visual Stu-
dio and selecting Properties from the pop-up menu. This will open the Property Pages dialog.
In this dialog, select Configuration Properties ➤ Build. Locate the Output Path option and set
it to point to \inetpub\wwwroot\bin. Now you can build the Web Part successfully. Figure 5-3
shows the output path in the Property Pages dialog for a C# project.

Code Access Security
SPS is based on ASP.NET technology. As such, it is bound by the same security limitations that
apply to any ASP.NET application. Practically speaking, this means that Web Parts are often
restricted from accessing enterprise resources such as databases and web services unless you
specifically configure SharePoint Services to allow such access. Managing how code can access
enterprise resources is known as code access security.

Understanding Configuration Files
Code access security is implemented by a series of configuration files. The first configuration
file of concern is machine.config located in C:\Windows\Microsoft.NET\ Framework\v1.14322\

CHAPTER 5 ■ BUILDING WEB PARTS132

Figure 5-3. Setting the output path in C#

5750_c05_final.qxd 11/3/05 9:43 PM Page 132

CONFIG. This file specifies master settings that will be inherited by all SharePoint Services sites
that run on the server. This particular file is densely packed with information, and a complete
discussion of the contents is beyond the scope of this book. However, one section—
<securityPolicy>—is of immediate importance.

The <securityPolicy> section defines five levels of trust for ASP.NET applications: Full,
High, Medium, Low, and Minimal. The trust level definitions allow you to assign partial per-
missions to an ASP.NET application that determine what resources the application can access.
For example, applications with High levels of trust can read and write to files within their
directory structure whereas an application with a Low trust level can only read files. The per-
missions allotted by each level of trust are defined within a separate policy file designated by
the <trustLevel> element. The following code shows the <securityPolicy> section for the
machine.config file associated with an installation of SPS.

<securityPolicy>

<trustLevel name="Full" policyFile="internal"/>

<trustLevel name="High" policyFile="web_hightrust.config"/>

<trustLevel name="Medium" policyFile="web_mediumtrust.config"/>

<trustLevel name="Low" policyFile="web_lowtrust.config"/>

<trustLevel name="Minimal" policyFile="web_minimaltrust.config"/>

</securityPolicy>

The security policy files referenced by the <trustLevel> element are also XML files. These
files contain a separate section for each policy that the file defines. Examining each of the files
referenced in the machine.config file results in the complete picture of the trust levels and
permission shown in Table 5-1.

CHAPTER 5 ■ BUILDING WEB PARTS 133

Table 5-1. Trust Levels and Permissions in ASP.NET

Permission Full High Medium Low Minimal

AspNetHostingPermission Full High Medium Low Minimal

Environment Unlimited Unlimited Read: TEMP, TMP, OS, None None
USERNAME,
COMPUTERNAME

FileIO Unlimited Unlimited Read,Write,Append, Read,Path None
PathDiscovery:Appli- Discovery:
cation Directory Application

Directory

IsolatedStorage Unlimited Unlimited AssemblyIsolationBy 1Mb quota None
User, Unrestricted
UserQuota

Reflection Unlimited ReflectionEmit None None None

Registry Unlimited Unlimited None None None

Security Unlimited Execution, Assertion, Execution, Assertion, Execution Execution
ControlPrincipal, ControlPrincipal,
ControlThread, ControlThread,
RemotingConfiguration RemotingConfiguration

Socket Unlimited Unlimited None None None

WebPermission Unlimited Unlimited Connect to Origin Host None None

Continued

5750_c05_final.qxd 11/3/05 9:43 PM Page 133

Table 5-1. Continued

Permission Full High Medium Low Minimal

DNS Unlimited Unlimited Unlimited None None

Printing Unlimited Default Default None None

OleDBPermission Unlimited None None None None

SqlClientPermission Unlimited Unlimited Unlimited None None

EventLog Unlimited None None None None

Message Queue Unlimited None None None None

Service Controller Unlimited None None None None

Performance Counters Unlimited None None None None

Directory Service Unlimited None None None None

CHAPTER 5 ■ BUILDING WEB PARTS134

The machine.config file represents the highest level of configuration for ASP.NET applica-
tions; however, each application may have a supplemental configuration file named web.config.
This file is typically found in the root directory of an application, and for SPS it is located in
\inetpub\wwwroot. Opening this file will reveal that it also has a <securityPolicy> section that
defines two additional levels of trust known as WSS_Medium and WSS_Minimal. The following
code shows the <securityPolicy> section from the file.

<securityPolicy>

<trustLevel name="WSS_Medium"

policyFile="C:\Program Files\Common Files\Microsoft Shared\

Web Server Extensions\60\config\wss_mediumtrust.config" />

<trustLevel name="WSS_Minimal"

policyFile="C:\Program Files\Common Files\Microsoft Shared\

Web Server Extensions\60\config\wss_minimaltrust.config" />

</securityPolicy>

The security policy files defined by SPS are based on the files defined by ASP.NET. As a result,
they define permissions for the same functions plus two additional functions. Table 5-2 shows
the trust levels and permissions added by SPS.

Table 5-2. Trust Levels and Permissions in SPS

Permission WSS_Medium WSS_Minimal

AspNetHostingPermission Medium Minimal

Environment Read: TEMP, TMP, OS, USERNAME,
COMPUTERNAME None

FileIO Read, Write, Append, PathDiscovery:Application None
Directory

IsolatedStorage AssemblyIsolationByUser, Unrestricted None
UserQuota

Reflection None None

Registry None None

5750_c05_final.qxd 11/3/05 9:43 PM Page 134

Permission WSS_Medium WSS_Minimal

Security Execution, Assertion, ControlPrincipal, Execution
ControlThread, RemotingConfiguration

Socket None None

WebPermission Connect to Origin Host None

DNS Unlimited None

Printing Default None

OleDBPermission None None

SqlClientPermission Unlimited None

EventLog None None

Message Queue None None

Service Controller None None

Performance Counters None None

Directory Service None None

SharePointPermission ObjectModel=true None

WebPartPermission Connections=true Connections=true

The default installation of SharePoint Services defines a trust level of WSS_Minimal for all
sites. Because Web Parts are deployed to the \inetpub_wwwroot\bin directory, they are affected
by the trust level set in the web.config file. This means that Web Parts associated with a Share-
Point Services site have significant limitations. Most important, Web Parts running under
WSS_Minimal cannot access any databases nor can they access the objects contained in the
SharePoint object model.

The Common Language Runtime (CLR) will throw an error if a Web Part attempts to access
an unauthorized resource. Therefore, you must always implement appropriate error handling
in a Web Part during attempts to access resources. Exception classes for these errors can be
found in the Microsoft.SharePoint.Security namespace.

Customizing Policy Files
Because one of the major reasons to write a Web Part is to integrate line-of-business systems
with the portal, you will undoubtedly want to raise the trust level under which certain Web
Parts will run. You have three options for raising the trust level for assemblies in the \inetpub\
wwwroot\bin directory. All three have strengths and weaknesses you need to consider depend-
ing upon whether you are in a development, testing, or production environment.

The first option is simply to raise the trust level for all SharePoint Services sites by modify-
ing the web.config file directly in a text editor. The trust level for SharePoint Services is set in
the <system.web> section of the web.config file. To raise the level of trust, modify the <trust>
tag to use any one of the seven defined levels. The following code shows an example with the
trust level set to WSS_Medium.

<trust level="WSS_Medium" originUrl=""/>

Although making a global change to the trust level is simple, it should only be done in
development environments. Generally, you should strive to limit access to resources to only

CHAPTER 5 ■ BUILDING WEB PARTS 135

5750_c05_final.qxd 11/3/05 9:43 PM Page 135

essential Web Parts in a production environment. The default WSS_Minimal level is recom-
mended for production.

The second option is to deploy all of your Web Parts into the Global Assembly Cache (GAC).
The GAC grants the Full level of trust to Web Parts installed there without requiring a change
to the web.config file. Once again, this is a fairly simple way to solve the problem, but it does
make the Web Part available to all applications and servers. This is a potential problem because
a highly trusted component is now more widely accessible. As a side note, you will also have to
restart Internet Information Server (IIS) each time you recompile a Web Part into the GAC.

Web parts can be added to the GAC in several ways. First, you can use the command-line
tool gacutil.exe with the following syntax:

gacutil –i [assembly.dll]

You can also simply navigate to the directory \Windows\assembly to view and modify the
contents of the GAC. Finally, you can use the Microsoft Windows Installer to install the Web
Part to the GAC during distribution. The latter method is the recommended best practice for
production environments, whereas the first two are generally acceptable for development and
testing environments.

The final option for raising the trust level associated with a Web Part is to create your
own custom policy file. Although this approach requires the most effort, it is easily the most
secure. This approach should be considered the recommended best practice for production
environments.

To create a custom policy file, follow these steps:

■Note If you are strictly following this text, you may not have developed your first Web Part yet. If this is
the case, complete this series of steps after you finish the exercise at the end of the chapter.

1. Open the Windows file explorer and navigate to \Program Files\Common Files\
Microsoft Shared\Web Server Extensions\60\config.

2. Copy wss_minimaltrust.config and paste it back to create a copy of the file.

3. Rename the copied file wss_sqltrust.config.

4. Open wss_sqltrust.config in Visual Studio for editing.

5. In the <SecurityClasses> section, add a reference to the SqlClientPermission class so
Web Parts can access SQL databases.

<SecurityClass Name="SqlClientPermission"

Description="System.Data.SqlClient.SqlClientPermission, System.Data,

Version=1.0.53383.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"/>

6. In the <NamedPermissionSets> section, add a new permission set that grants all of the
rights you want to define for your new policy, including access to SQL databases.

CHAPTER 5 ■ BUILDING WEB PARTS136

5750_c05_final.qxd 11/3/05 9:43 PM Page 136

7. Extract the public key for the assembly from a Web Part you have developed by using
the Security Utility tool with the following syntax:

secutil.exe -hex -s [assembly.dll]

8. Create a new <CodeGroup> section to apply the policy to the Web Part. This <CodeGroup>
must precede the existing <CodeGroup> section defined for ASP.NET because once a
policy is assigned, processing stops. The following code shows an example:

<CodeGroup

class="UnionCodeGroup"

version="1"

PermissionSetName="wss_sqltrust">

<IMembershipCondition

class="StrongNameMembershipCondition"

version="1"

PublicKeyBlob="0x002433830048338300943383338

3060233833383243383052534131338343383001338310

0936E3CD84B98E97825E63A7DBD7C15C10893315D16B5D9

8E7B7F38814BF0861D0BB5279A710EFFA

CA29A01BB745136FA2DDCAF8F5105C5F429DFF904A0B94

F0A4A8D27D3F8329CA4E7B44962D8764B8

D8A38D9F16859A035C23AC69D39D2969D03680C791C4D7

5B38BBE4D12C30467B6FE8F41131FC859E

D3B9B6F0D432478DC"

Name="SPSPivotalContacts"

/>

9. Save and close the file.

10. Open the web.config file in Visual Studio.

11. Edit the <securityPolicy> section to add a reference to the new policy as shown here:

<securityPolicy>

<trustLevel name="WSS_Medium" policyFile="C:\Program Files\

Common Files\Microsoft Shared\Web Server

Extensions\60\config\wss_mediumtrust.config" />

<trustLevel name="WSS_Minimal" policyFile="C:\Program Files\

Common Files\Microsoft Shared\Web Server

Extensions\60\config\wss_minimaltrust.config" />

<trustLevel name="WSS_SQL" policyFile="C:\Program Files\

Common Files\Microsoft Shared\Web Server

Extensions\60\config\wss_sqltrust.config" />

</securityPolicy>

12. In the <system.web> section, modify the <trust> element to use the new policy as
shown here:

<trust level="WSS_SQL" originUrl="" />

CHAPTER 5 ■ BUILDING WEB PARTS 137

5750_c05_final.qxd 11/3/05 9:43 PM Page 137

13. Save and close the file.

14. Restart IIS and the new policy will be in effect.

Listing 5-6 shows the final XML.

Listing 5-6. Defining a New Policy

<PermissionSet

class="NamedPermissionSet"

version="1"

Name="wss_sqltrust">

<IPermission

class="AspNetHostingPermission"

version="1"

Level="Minimal"

/>

<IPermission

class="SecurityPermission"

version="1"

Flags="Execution"

/>

<IPermission class="WebPartPermission"

version="1"

Connections="True"

/>

<IPermission

class="SqlClientPermission"

version="1"

Unrestricted="true"

/>

</PermissionSet>

The predefined security policies available to SharePoint Services lack templates for defining
access to several key resources. These resources include the SharePoint object model and web
services. Therefore, I will review the necessary modifications you must make to policy files in
order to access these resources.

If you want your Web Part to be able to access the classes in the SharePoint namespace,
you must define a new <IPermission> element in the policy file similar to what was done above
for SQL access. The following code shows how to define the element.

<IPermission

class="SharePointPermission"

version="1"

ObjectModel="true"

/>

Similarly, if you want your Web Part to be able to call a web service, you must also define
a new <IPermission> element. In this element, you specify the Uniform Resource Identifier

CHAPTER 5 ■ BUILDING WEB PARTS138

5750_c05_final.qxd 11/3/05 9:43 PM Page 138

(URI) of the web service to access. This URI may be in the form of a regular expression, which
means you can set it up to match more than one available web service. The following code
shows how to define the element.

<IPermission class="WebPermission" version="1">

<ConnectAccess>

<URI uri="http://localhost/services/callreport.asmx?WSDL"/>

</ConnectAccess>

</IPermission>

Remember that in any case where a strongly named Web Part is in use, all of the other
components must also be strongly named. This can cause problems when you are accessing
web services or other libraries. In these cases, you must either install your Web Part to the
GAC or implement a custom security policy.

Marking Web Parts As Safe
Adding a new Web Part to the inetpub\wwwroot\bin directory or the GAC handles the code access
security issues for the part, but it is not sufficient to allow the part to be imported into SPS. In
addition to permission to access resources, Web Parts also need permission to be imported into
SPS. This permission is granted by marking the Web Part as “Safe” in the web.config file.

The web.config file contains not only the code access security policy, but also the list of all
assemblies allowed to run in a Web Part page. This information is kept in the <SafeControls>
section of the file. Before a Web Part can be imported into SPS, it must be listed in the section.
Listing 5-7 shows a truncated example of a <SafeControls> section.

Listing 5-7. Controls Marked As Safe

<SafeControls>

<SafeControl Assembly="SPSMaskTool, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b" Namespace="SPSMaskTool" TypeName="*" />

<SafeControl Assembly="SPSPageView, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b" Namespace="SPSPageView" TypeName="*" />

<SafeControl Assembly="SPSDataList, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b" Namespace="SPSDataList" TypeName="*" />

<SafeControl Assembly="SPSDataSet, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b" Namespace="SPSDataSet" TypeName="*" />

<SafeControl Assembly="SPSPivotalContacts, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b"

Namespace="SPSPivotalContacts" TypeName="*" />

<SafeControl Assembly="Citrix, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=eb3e58846fb2ac2b" Namespace="Citrix" TypeName="*" />

</SafeControls>

In the <SafeControls> section, you must add a <SafeControl> element for each Web Part
that you want to use in SPS. In the <SafeControl> element, you must specify several attributes.
These attributes are similar to those attributes that you specified in the Web Part description file.

CHAPTER 5 ■ BUILDING WEB PARTS 139

5750_c05_final.qxd 11/3/05 9:43 PM Page 139

• The Assembly attribute contains the fully qualified assembly name along with the
Version, Culture, and PublicKeyToken attributes.

• The Version attribute contains the assembly version as it appears in the manifest file.

• The Culture attribute contains the culture designation or “neutral” if none is provided.

• The PublicKeyToken attribute contains the token generated from the Strong Name tool.

• The Namespace attribute contains the namespace as defined in the Web Part project.

• The TypeName attribute contains the fully qualified name of the type or an asterisk to
denote every Web Part in the assembly.

• Safe is an optional attribute that is normally set to True, but can be set to False to deny
permission to a specific Web Part.

SharePoint Services reads the <SafeControls> section at runtime to load Web Parts dynam-
ically into the appropriate web page. Essentially, SharePoint Services uses late binding to load
the control, and the <SafeControls> section contains the information necessary to load the
Web Part and test it for security. If a Web Part is not listed in the <SafeControls> section, Share-
Point Services throws an exception notifying you that the control is not safe. Figure 5-4 shows a
typical error message for an unsafe Web Part.

Deployment Packages
Setting the output path for the Web Part project to inetpub\wwwroot\bin is a simple way to
ensure that the final Web Part assembly is deployed to the right location; however, this tech-
nique is only useful in a development environment. For production environments, you will
want to build a distribution package that can be deployed independent of Visual Studio.

Creating a deployment package is done inside Visual Studio .NET as a new Cabinet proj-
ect in the same solution where the Web Part project is located. When you create the Cabinet,

CHAPTER 5 ■ BUILDING WEB PARTS140

Figure 5-4. Identifying unsafe Web Parts

5750_c05_final.qxd 11/3/05 9:43 PM Page 140

you need to include the manifest file and the Web Part description file. Along with the assem-
bly, these files are required to successfully deploy the Web Part.

■Note If you are strictly following this text, you may not have developed your first Web Part yet. If so,
complete this series of steps after you finish the exercise at the end of the chapter.

Here are the steps to follow to create a deployment package:

1. Start Visual Studio .NET.

2. Open a solution containing a Web Part project.

3. From the Visual Studio main menu, select File ➤ Add Project ➤ New Project to open
the Add New Project dialog.

4. Click the Setup and Deployment Projects folder.

5. Select to create a new Cabinet project.

6. Name the project and click OK.

7. In the Solution Explorer, right-click the Cabinet project and select Add ➤ Project Out-
put from the pop-up menu.

8. In the Add Project Output Group dialog box, select the Web Part project you want to
deploy.

9. In the configuration drop-down list, select Release .NET.

10. In the project list box, select Primary Output.

11. Click OK.

12. In the Solution Explorer, right-click the Cabinet project again and select Add ➤ Project
Output from the pop-up menu.

13. In the Add Project Output Group dialog box, select the Web Part project you want to
deploy.

14. In the configuration drop-down list, select Release .NET.

15. In the project list box, select Content Files.

16. Click OK.

17. Build the Cabinet project.

Once the Cabinet file is created, you may deploy it onto any server running SharePoint
Services by using the administration tool StsAdm.exe. The tool is located in the directory
\Program Files\Common Files\Microsoft Shared\web server extensions\60\bin. Using this
tool, you can add a Web Part to SharePoint Services, delete one, or see a list of all the Web Parts

CHAPTER 5 ■ BUILDING WEB PARTS 141

5750_c05_final.qxd 11/3/05 9:43 PM Page 141

that are available. Table 5-3 lists the available command-line switches for the tool and the fol-
lowing examples show you how to use it.

To add a Web Part package:

Stsadm.exe -o addwppack -filename c:\mypart.cab

To delete a Web Part package:

Stsadm.exe -o deletewppack -name mypart.cab

Table 5-3. Command-Line Switches for StsAdm

Switch Usage

o addwppack, deletewppack, enumwppacks

filename The name of the Cabinet file

name The name of the package

url The URL of the virtual server; if not specified, applies to all virtual servers on the
machine

globalinstall Installs the package to the GAC

force Forces an overwrite of an existing package

Using Web Part Pages
Once the Web Part is compiled and deployed, it is ready for use in SPS; however, Web Parts
are intended to be added and configured by end users—not developers. Therefore, the tools
to manage Web Parts are an intrinsic part of SPS and are accessible directly to portal users
who have sufficient permissions assigned. These permissions allow users to import Web Parts
directly to a page or add them from a gallery.

Adding Web Parts to a Page
Perhaps the easiest way to add a new Web Part to a page is to simply import it directly into
SPS. If the end user has permission to customize pages, then they may select Modify Shared
Page ➤ Add Web Parts ➤ Import to open the Import pane. From the Import pane, users can
browse for Web Part description files that correspond to the Web Part they want to upload.
Figure 5-5 shows the menu selection required to import a Web Part.

CHAPTER 5 ■ BUILDING WEB PARTS142

Figure 5-5. Importing Web Parts

5750_c05_final.qxd 11/3/05 9:43 PM Page 142

Once the Web Part is imported, it appears in the Import pane. Users may then drag the
Web Part out of the pane and drop it in a zone on the page. After it is dropped in a zone, you
may configure it by setting the available properties. Importing is a simple way to add new
parts, but you can make your new Web Parts more accessible to end users by creating a gallery
for them, which you will learn to do later in the book.

Debugging Web Parts
As with any component, you will undoubtedly need to debug your Web Parts to get them to
function correctly; however, because Web Parts are late-bound components—meaning they
are added to SPS at runtime—they cannot be run alone in Visual Studio for testing. Therefore,
you will need to hook into SPS to properly debug them. Fortunately, this is a fairly straight-
forward process.

Before you can begin debugging, you must accomplish all of the steps we discussed
earlier to give the Web Part appropriate permissions. This means that you should ensure that
the correct policy file is in use and that the Web Part is added to the <SafeControls> section
of the web.config file. Additionally, you should set the project configuration to Debug and be
sure that the output path is set to compile the assembly into the \bin directory. Once this is
done, you can set breakpoints in your code.

The best strategy for debugging a Web Part is to select a site within SPS where you intend
to add the Web Part and hook Visual Studio into that page. Hooking into the page is done from
the Property Pages dialog. You then set debugging options by selecting Configuration Proper-
ties ➤ Debugging in the dialog.

Once the debugging options are set, you must modify the web.config file to allow debug-
ging. This requires you to open the web.config file in Visual Studio and modify the <trust> and
<compilation> elements. The first thing to do is to change the active policy from WSS_Minimal
to at least WSS_Medium because debugging is not allowed under WSS_Minimal. Then you must
modify the _<configuration> element to have a debug attribute set to True.

To set up debugging in C#, take these steps:

1. Open a Web Part project in Visual Studio .NET.

2. Set the build configuration to Debug.

3. Right-click the project in the Solution Explorer and select Properties from the pop-up
menu.

4. In the Property Pages dialog, select Configuration Properties ➤ Debugging.

5. Under Debuggers set Enable ASP.NET debugging to True.

6. Under Start Action set Debug Mode to URL and click the Apply button.

7. Set the Start URL to the URL for the SharePoint Services site where you will add the
new Web Part.

8. In the Property Pages dialog, select Configuration Properties ➤ Build.

9. Set the Output Path to \inetpub\wwwroot\bin.

10. Click OK.

CHAPTER 5 ■ BUILDING WEB PARTS 143

5750_c05_final.qxd 11/3/05 9:43 PM Page 143

11. Open the C:\inetpub\wwwroot\web.config file in Visual Studio.

12. In the <system.web> section, modify the <compilation> element as follows:

<compilation batch="false" debug="true" />

13. Modify the <trust> element as follows:

<trust level="WSS_Medium" originUrl="" />

14. Save the file and close it.

15. Select Start ➤ Administrative Tools ➤ Internet Information Server (IIS) Manager to
open the IIS Manager.

16. In the IIS Manager, right-click SPSPORTAL and select All Tasks ➤ Restart IIS.

17. In the Stop/Start/Restart dialog, click OK to restart IIS and apply the new security policy.

18. In Visual Studio, set the Web Part project as the start-up project by right-clicking it in
the Solution Explorer and selecting Set As Startup Project from the pop-up menu.

19. Select Debug ➤ Start from the menu to begin debugging.

20. When the SharePoint Services site appears in the browser, click Edit Page from the
Actions list.

21. Select Modify Shared Page ➤ Add Web Parts ➤ Import from the menu in the upper-
right corner of the page.

22. In the Import pane, click Browse.

23. Navigate to the Web Part description file and click OK.

24. In the Import pane, click Upload.

25. Drag the Web Part into any zone on the page. Your breakpoints should work now.

Exercise 5-1: Building a Simple Web Part
When properly designed, Web Parts may be used in a variety of situations. In this exercise, you
will create a page viewer Web Part that accepts a URL and displays a web site. This is a conven-
ient way to embed external web pages in your portal, and will offer you a chance to use many
of the concepts we have discussed in the chapter.

Creating the New Project
Before beginning, make sure that you have the Web Part template installed. This template will
be the foundation of your project. For this exercise, you will create the Web Part using C#.

Perform the following steps to create the project:

1. Open Visual Studio .NET 2003.

2. Select File ➤ New ➤ Project from the menu.

3. In the New Project dialog, select the Visual C# Projects folder.

CHAPTER 5 ■ BUILDING WEB PARTS144

5750_c05_final.qxd 11/3/05 9:43 PM Page 144

4. From the project items, select Web Part Library.

5. Name the new project SPSPageView.

6. Click OK.

7. In the Solution Explorer, locate the file WebPart1.cs.

8. Rename this file PageView.cs.

9. In the Solution Explorer, locate the file WebPart1.dwp.

10. Rename this file PageView.dwp.

11. Open the file Manifest.xml for editing.

12. In the DwpFiles section, change the Web Part description file name to PageView.dwp.

Modifying the Web Part Description File
The Web Part template that you are using creates a default Web Part description file with a
.dwp extension. This file contains information that is used by SPS to upload the Web Part and
make it available. However, you need to change the information to reflect the names you will
use in this project.

Perform the following steps to modify the Web Part description file:

1. Open the file PageView.dwp in Visual Studio .NET.

2. Change the <Title> tag to contain the name PageView.

3. Change the <Description> tag to contain the text “A Web Part to embed pages in the
portal.”

4. Change the <Assembly> tag to contain SPSPageView. You may come back later and cre-
ate a complete entry including Version, Culture, and PublicKeyToken, but this entry
alone should work for this exercise.

5. Change the <TypeName> tag to contain SPSPageView.Container.

6. Save the file and close it.

Listing 5-8 shows the final contents of the Web Part description file.

Listing 5-8. The Web Part Description File

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>PageView</Title>

<Description>A Web Part to embed pages in the portal</Description>

<Assembly>SPSPageView</Assembly>

<TypeName>SPSPageView.Container</TypeName>

<!-- Specify initial values for any additional base

class or custom properties here. -->

</WebPart>

CHAPTER 5 ■ BUILDING WEB PARTS 145

5750_c05_final.qxd 11/3/05 9:43 PM Page 145

Coding the Web Part
Writing the code for the Web Part entails several steps. First, you will clean up the template
code to make it easier to understand. Second, you will define the properties for the Web Part.
Finally, you will write the code to render the Web Part in the portal.

Follow these steps to write the code:

1. Open PageView.cs in Visual Studio .NET.

2. In the code, rename the class from WebPart1 to Container. Be sure to make the changes
both in the name of the class and the attributes that decorate the class.

3. Change the DefaultProperty declaration of the class from Text to URL.

4. Remove the code from the RenderWebPart function.

5. Go through the class and strip out all of the comments and the one predefined property.

Listing 5-9 shows how the code should appear in the file.

Listing 5-9. Starting the Web Part in PageView.cs

using System;

using System.ComponentModel;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Xml.Serialization;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Utilities;

using Microsoft.SharePoint.WebPartPages;

namespace SPSPageView

{

[DefaultProperty("URL"),

ToolboxData("<{0}:Container runat=server></{0}:Container>"),

XmlRoot(Namespace="SPSPageView")]

public class Container : Microsoft.SharePoint.WebPartPages.WebPart

{

protected override void RenderWebPart(HtmlTextWriter output)

{

}

}

}

Defining the Properties
The basic design of your Web Part is going to be a division in the web page created by an
<IFRAME></IFRAME> tag. Using this tag, you can embed a web page into the portal. The only
thing you need to know is the URL of the page to embed. However, the URL is not enough to
create a professional Web Part with good fit and finish.

CHAPTER 5 ■ BUILDING WEB PARTS146

5750_c05_final.qxd 11/3/05 9:43 PM Page 146

When Web Parts are used on a page, the designer can never know the available height and
width of the display area. Typically, the height is not an issue and can be set using a property
because the browser produces scroll bars if the specified height exceeds the available display
height. However, the Web Part designer should be respectful of the available width by specify-
ing the required width as a percentage. With this in mind, you will define two properties for
your Web Part: one for the URL and the other for the page height. Listing 5-10 shows the code
you should add to the class to define the properties.

Listing 5-10. Defining the Properties

private string url="";

private int pageHeight = 400;

[Browsable(true),Category("Miscellaneous"),

DefaultValue(""),

WebPartStorage(Storage.Personal),

FriendlyName("URL"),Description("The address of the page to display")]

public string URL

{

get

{

return url;

}

set

{

url = value;

}

}

[Browsable(true),Category("Miscellaneous"),

DefaultValue(400),

WebPartStorage(Storage.Personal),

FriendlyName("Page Height"),Description("The height of the page in pixels.")]

public int PageHeight

{

get

{

return pageHeight;

}

set

{

pageHeight = value;

}

}

CHAPTER 5 ■ BUILDING WEB PARTS 147

5750_c05_final.qxd 11/3/05 9:43 PM Page 147

Rendering the Web Part
In order to render the Web Part display, you must override the RenderWebPart function. Because
there is no drag-and-drop tool for creating the Web Part interface, you must code it by hand.
The RenderWebPart function provides an HTMLTextWriter that outputs HTML to create the inter-
face. Add the following line of code to the RenderWebPart function to create the display.

output.Write("<div><iframe height='" + pageHeight + "'

width='100%' src='" + URL + "'></iframe></div>");

Deploying the Web Part
Once the Web Part is coded, you must prepare the project to be compiled. In order to run in
SPS, the Web Part assembly must have a strong name and be deployed in the \bin directory
underneath the root of the web site. Additionally, the Web Part must be marked as safe in the
web.config file. In this section, we’ll take all the steps necessary to deploy the Web Part.

Creating a Strong Name
Web parts need a strong name in order to run in SPS. In order to give the Web Part a strong
name, you have to create a key pair file using the Strong Name tool, sn.exe. Once the strong
name is created, you must create a reference to it in the assembly file.

Create a strong name as follows:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

2. In the command window, navigate to \Program Files\
Microsoft Visual Studio .NET 2003\SDK\v1.1\bin.

3. In the command-line window, create a key file by executing the line
sn.exe -k c:\keypair.snk.

4. In Visual Studio .NET, open the AssemblyInfo.cs file.

5. In the AssemblyInfo.cs file, scroll to the bottom of the file and add a reference to the
key file by editing the AssemblyKeyFile entry to read as follows:

[assembly: AssemblyKeyFile("c:\\keypair.snk")]

6. Save and close AssemblyInfo.cs.

Compiling the Web Part
Once the strong name is defined and referenced in the key file, you are ready to compile the
code. Because Web Parts must run in the \bin directory underneath the root of the web site, it
is easier if you simply compile your assembly into the required directory. This makes it easier
to get the Web Part working.

Follow these steps to compile the project:

1. Right-click the SPSPageView project in Visual Studio .NET and select Properties from
the pop-up menu.

2. In the Property Pages dialog, select Configuration Properties ➤ Build.

CHAPTER 5 ■ BUILDING WEB PARTS148

5750_c05_final.qxd 11/3/05 9:43 PM Page 148

3. Set the Output Path property to \inetpub\wwwroot\bin.

4. Click OK.

5. Compile the Web Part by selecting Build ➤ Build SPSPageView.

6. When the Web Part compiles successfully, close Visual Studio .NET.

Marking the Web Part As Safe
Even though the Web Part has compiled successfully, it cannot run in SPS until it is marked as
safe. To mark the Web Part as safe, you need to make an entry in the web.config file under the
<SafeControls> section. Furthermore, this section requires an entry for the PublicKeyToken,
which is embedded in the key file.

Follow these steps to mark the Web Part as safe:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

2. In the command window, navigate to \Program Files\
Microsoft Visual Studio .NET 2003\SDK\v1.1\bin.

3. In the command-line window, display the PublicKeyToken by running the following line:

sn.exe -T c:\inetpub\wwwroot\bin\SPSPageView.dll

4. Record the value of the PublicKeyToken for use in the web.config file.

5. Using a text editor, open the web.config file, which is located under \inetpub\wwwroot.

6. Locate the <SafeControls> section of the file. In this section, you must add a new
<SafeControl> entry for your Web Part. The following example shows the form, but you
must substitute your particular PublicKeyToken.

<SafeControl Assembly="SPSPageView, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=ba635e9bfab94eac"

Namespace="SPSPageView" TypeName="*" />

7. When the changes are complete, save and close the file.

Using the Web Part
Once the Web Part is properly compiled, placed in the \bin directory, and marked as safe, it
can be used in a portal page. To use the Web Part, you will import it into a gallery. Once it’s
imported, you can drag it onto a page and set its properties.

Perform these steps to use the Web Part:

1. Log into SPS as a member of the Administrator Site Group.

2. Navigate to any site that you have previously created.

3. On the site home page, select Modify Shared Page ➤ Add Web Parts ➤ Import.

4. In the Import pane, click Browse.

5. Locate the file PageView.dwp and click Open.

CHAPTER 5 ■ BUILDING WEB PARTS 149

5750_c05_final.qxd 11/3/05 9:43 PM Page 149

6. In the Import pane, click Upload.

7. Drag the PageView Web Part from the pane to any zone on the page.

8. When the Web Part appears, select Modify Shared Web Part from its drop-down menu.

9. Under the Miscellaneous section, enter a value for the URL field in the form
http://[address].

10. Click OK.

Exercise 5-2: Adding Child Controls to Web Parts
One of the challenges associated with creating Web Parts is using existing ASP.NET controls in
your user interface. This is because the controls are not dragged onto a design surface from
the toolbox. Instead, you must create them programmatically. This exercise introduces you to
the basic techniques required to utilize existing controls in your Web Part.

Creating the New Project
Before beginning, make sure that you have the Web Part template installed. This template will
be the foundation of your project. For this exercise, you will be creating a Web Part that accesses
the Pubs database using VB .NET.

Follow these steps to create the new project:

1. Open Visual Studio .NET 2003.

2. Select File ➤ New ➤ Project from the menu.

3. In the New Project dialog, select the Visual Basic Projects folder.

4. From the project items, select Web Part Library.

5. Name the new project SPSPubsAuthors.

6. Click OK.

7. In the Solution Explorer, locate the file WebPart1.vb.

8. Rename this file PubsAuthors.vb.

9. In the Solution Explorer, locate the file WebPart1.dwp.

10. Rename this file PubsAuthors.dwp.

11. Open the file Manifest.xml for editing.

12. In the DwpFiles section, change the Web Part description file name to
PubsAuthors.dwp.

Modifying the Web Part Description File
The Web Part template that you are using creates a default Web Part description file with a
.dwp extension. This file contains information that is used by SPS to upload the Web Part and
make it available. However, the information needs to be changed to reflect the names you will
use in this project.

CHAPTER 5 ■ BUILDING WEB PARTS150

5750_c05_final.qxd 11/3/05 9:43 PM Page 150

Perform these steps to modify the Web Part description file:

1. Open the file PubsAuthors.dwp in Visual Studio .NET.

2. Change the <Title> tag to contain the name PubsAuthors.

3. Change the <Description> tag to contain the text “A Web Part to access the Pubs
database.”

4. Change the <Assembly> tag to contain SPSPubsAuthors. You may come back later and
create a complete entry including Version, Culture, and PublicKeyToken, but this entry
alone should work for the exercise.

5. Change the <TypeName> tag to contain SPSPubsAuthors.View.

6. Save the file and close it.

Listing 5-11 shows the final contents of the Web Part description file.

Listing 5-11. The Web Part Description File

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>PubsAuthors</Title>

<Description>A Web Part to access the Pubs database</Description>

<Assembly>SPSPubsAuthors</Assembly>

<TypeName>SPSPubsAuthors.View</TypeName>

<!-- Specify initial values for any additional

base class or custom properties here. -->

</WebPart>

Coding the Web Part
Writing the code for the Web Part requires some extra steps to utilize the ASP.NET controls. In
addition to creating properties and rendering the output, you must instantiate and configure
the additional controls.

Follow these steps to code the Web Part:

1. Open PubsAuthors.vb in Visual Studio .NET.

2. In the code, rename the class from WebPart1 to View. Be sure to make the changes both
in the name of the class and the attributes that decorate the class.

3. Change the DefaultProperty decoration of the class from “Text” to “”.

4. Remove the code from the RenderWebPart function.

5. Go through the class and strip out all of the comments and the one predefined property.

Listing 5-12 shows the how the code should appear in the file.

CHAPTER 5 ■ BUILDING WEB PARTS 151

5750_c05_final.qxd 11/3/05 9:43 PM Page 151

Listing 5-12. Starting the Web Part in PubsAuthors.vb

Imports System

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Xml.Serialization

Imports Microsoft.SharePoint

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

<DefaultProperty(""), ToolboxData("<{0}:View runat=server></{0}:View>"), _

XmlRoot(Namespace:="SPSPubsAuthors")> _

Public Class View

Inherits Microsoft.SharePoint.WebPartPages.WebPart

Protected Overrides Sub RenderWebPart _

(ByVal output As System.Web.UI.HtmlTextWriter)

End Sub

End Class

Defining the Properties
The design of your Web Part is going to use a DataGrid control to display the authors table
from the Pubs database. In this Web Part, you will set up properties for the server, user name,
and password. You will enter these properties directly into the Web Part to make the database
connection. Listing 5-13 shows the properties to define for the Web Part.

■Caution You should never design a Web Part to accept user names and passwords as properties. We
are doing it in this exercise to simplify the development of the Web Part. Later in the book, you will learn to
incorporate the Microsoft Single Sign-On (SSO) service into the Web Part. SSO is the correct mechanism for
handling all user names and passwords for Web Parts.

Listing 5-13. Defining the Properties

Private strSQLserver As String = ""

Private strDatabase As String = ""

Private strUserName As String = ""

Private strPassword As String = ""

CHAPTER 5 ■ BUILDING WEB PARTS152

5750_c05_final.qxd 11/3/05 9:43 PM Page 152

'SQL Server Name

<Browsable(True), Category("Miscellaneous"), DefaultValue(""), _

WebPartStorage(Storage.Shared), FriendlyName("SQLServer"), _

Description("The server where pubs is installed.")> _

Property SQLServer() As String

Get

Return strSQLserver

End Get

Set(ByVal Value As String)

strSQLserver = Value

End Set

End Property

'Database Name

<Browsable(True), Category("Miscellaneous"), DefaultValue(""), _

WebPartStorage(Storage.Shared), FriendlyName("Database"), _

Description("The database where the Enterprise Data is located.")> _

Property Database() As String

Get

Return strDatabase

End Get

Set(ByVal Value As String)

strDatabase = Value

End Set

End Property

'User Name

<Browsable(True), Category("Miscellaneous"), DefaultValue(""), _

WebPartStorage(Storage.Shared), FriendlyName("UserName"), _

Description("The account to use to access the database.")> _

Property UserName() As String

Get

Return strUserName

End Get

Set(ByVal Value As String)

strUserName = Value

End Set

End Property

CHAPTER 5 ■ BUILDING WEB PARTS 153

5750_c05_final.qxd 11/3/05 9:43 PM Page 153

'Password

<Browsable(True), Category("Miscellaneous"), DefaultValue(""), _

WebPartStorage(Storage.Shared), FriendlyName("Password"), _

Description("The password to access the database.")> _

Property Password() As String

Get

Return strPassword

End Get

Set(ByVal Value As String)

strPassword = Value

End Set

End Property

Defining the Child Controls
In order to use existing ASP.NET controls in your new Web Part, you must override the
CreateChildControls method. In this method, you programmatically create a new instance
of each child control, adjust its properties, and add it to the Controls set for the Web Part.
Listing 5-14 shows how to create the child controls for the Web Part.

Listing 5-14. Creating Child Controls

Protected WithEvents grdNames As DataGrid

Protected WithEvents lblMessage As Label

Protected Overrides Sub CreateChildControls()

'Grid to display results

grdNames = New DataGrid

With grdNames

.Width = Unit.Percentage(100)

.HeaderStyle.Font.Name = "arial"

.HeaderStyle.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.HeaderStyle.Font.Bold = True

.HeaderStyle.ForeColor = System.Drawing.Color.Wheat

.HeaderStyle.BackColor = System.Drawing.Color.DarkBlue

.AlternatingItemStyle.BackColor = System.Drawing.Color.LightCyan

End With

Controls.Add(grdNames)

CHAPTER 5 ■ BUILDING WEB PARTS154

5750_c05_final.qxd 11/3/05 9:43 PM Page 154

'Label for error messages

lblMessage = New Label

With lblMessage

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.Text = ""

End With

Controls.Add(lblMessage)

End Sub

Rendering the Web Part
Because your Web Part is displaying just the rows from the authors table, you will not need to
accept user input for search criteria. Therefore, you can simply query the database and generate
the display directly in the RenderWebPart method. However, if you were accepting user input, you
would have to be concerned with the Web Part life cycle and when the input becomes available as
discussed in the beginning of this chapter. Listing 5-15 shows how to render the Web Part output.

Listing 5-15. Rendering the Web Part

Protected Overrides Sub RenderWebPart _

(ByVal output As System.Web.UI.HtmlTextWriter)

Dim objDataSet As System.Data.DataSet

'Set up connection string from custom properties

Dim strConnection As String

strConnection += "Password=" & Password

strConnection += ";Persist Security Info=True;User ID="

strConnection += UserName + ";Initial Catalog=" + Database

strConnection += ";Data Source=" + SQLServer

'Query pubs database

Dim strSQL As String = "select * from authors"

'Try to run the query

Try

With New System.Data.SqlClient.SqlDataAdapter

objDataSet = New DataSet("root")

.SelectCommand = _

New System.Data.SqlClient.SqlCommand(strSQL, _

New System.Data.SqlClient.SqlConnection(strConnection))

CHAPTER 5 ■ BUILDING WEB PARTS 155

5750_c05_final.qxd 11/3/05 9:43 PM Page 155

.Fill(objDataSet, "authors")

End With

Catch ex As Exception

lblMessage.Text = ex.Message

Exit Sub

End Try

'Bind to grid

Try

With grdNames

.DataSource = objDataSet

.DataMember = "authors"

.DataBind()

End With

Catch ex As Exception

lblMessage.Text = ex.Message

Exit Sub

End Try

'Draw the controls in an HTML table

With output

.Write("<TABLE BORDER=0 WIDTH=100%>")

.Write("<TR>")

.Write("<TD>")

grdNames.RenderControl(output)

.Write("</TD>")

.Write("</TR>")

.Write("<TR>")

.Write("<TD>")

lblMessage.RenderControl(output)

.Write("</TD>")

.Write("</TR>")

.Write("</TABLE>")

End With

End Sub

Deploying the Web Part
Once the Web Part is coded, you must prepare the project to be compiled. In order to run in
SPS, the Web Part assembly must have a strong name and be deployed in the \bin directory
underneath the root of the web site. Additionally, the Web Part must be marked as safe in the
web.config file. If you have already completed Exercise 5-1, you will find these steps nearly
identical.

CHAPTER 5 ■ BUILDING WEB PARTS156

5750_c05_final.qxd 11/3/05 9:43 PM Page 156

Creating a Strong Name
Web parts need a strong name in order to run in SPS. In order to give the Web Part a strong
name, you have to create a key pair file using the Strong Name tool, sn.exe. Once the strong
name is created, you must create a reference to it in the assembly file. If you have already
completed Exercise 5-1, you can use the same key file for this Web Part. Although it’s true that
you can use the same key file pair for every Web Part, the recommended practice is to use a
new one for each Web Part.

Perform these steps to create a strong name:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

2. In the command window, navigate to \Program Files\
Microsoft Visual Studio .NET 2003\SDK\v1.1\bin.

3. In the command-line window, create a key file by executing the following line:

sn.exe -k c:\keypair.snk

4. In Visual Studio .NET, open the AssemblyInfo.vb file.

5. In the AssemblyInfo.vb, add a new line as follows:

<Assembly: AssemblyKeyFile("c:\keypair.snk")>

6. Save and close AssemblyInfo.vb.

Compiling the Web Part
Once the strong name is defined and referenced in the key file, you are ready to compile the
code. Because Web Parts must run in the \bin directory underneath the root of the web site,
it is easier if you simply compile your assembly into the required directory. This will make it
easier to get the Web Part working.

Perform these steps to compile the Web Part:

1. Right-click the SPSPubsAuthors project in Visual Studio .NET and select Properties
from the pop-up menu.

2. In the Property Pages dialog, select Configuration Properties ➤ Build.

3. Set the Output Path property to \inetpub\wwwroot\bin.

4. Click OK.

5. Compile the Web Part by selecting Build ➤ Build SPSPubsAuthors.

6. When the Web Part compiles successfully, close Visual Studio .NET.

Modifying the web.config File
Even though the Web Part has compiled successfully, it cannot run in SPS until it is marked as
safe. Marking the Web Part as safe requires that you make an entry in the web.config file under
the <SafeControls> section. You will also have to change the trust level for the site because
Web Parts cannot access databases under the default trust level of WSS_Minimal.

CHAPTER 5 ■ BUILDING WEB PARTS 157

5750_c05_final.qxd 11/3/05 9:43 PM Page 157

Perform these steps to modify the web.config file:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

2. In the command window, navigate to \Program Files\
Microsoft Visual Studio .NET 2003\SDK\v1.1\bin.

3. In the command-line window, display the PublicKeyToken by running the following
line:

sn.exe -T c:\inetpub\wwwroot\bin\SPSPubsAuthors.dll

4. Record the value of the PublicKeyToken for use in the web.config file.

5. Using a text editor, open the web.config file, which is located under the \inetpub\
wwwroot directory.

6. Locate the <SafeControls> section of the file. In this section, you must add a new
<SafeControl> entry for your Web Part. The following example shows the form, but
you must substitute your particular PublicKeyToken.

<SafeControl Assembly="SPSPubsAuthors, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=ba635e9bfab94eac"

Namespace="SPSPubsAuthors" TypeName="*" />

7. Locate the <system.web> section of the file. In this section, change the <trust> element
so that the security policy is set to WSS_Medium as shown here:

<trust level="WSS_Medium" originUrl="" />

8. Save the file and close it.

9. Select Start ➤ Administrative Tools ➤ Internet Information Server (IIS) Manager to
open the IIS Manager.

10. In the IIS Manager, right-click SPSPORTAL and select All Tasks ➤ Restart IIS.

11. In the Stop/Start/Restart dialog, click OK to restart IIS, and apply the new security
policy.

Using the Web Part
Once the Web Part is properly compiled, placed in the \bin directory, and marked as safe, it
can be used in a portal page. To use the Web Part, you will import it into a gallery. Once it’s
imported, you can drag it onto a page and set its properties.

Perform these steps to use the Web Part:

1. Log in to SPS as a member of the Administrator Site Group.

2. Navigate to any site that you have previously created.

3. On the site home page, select Modify Shared Page ➤ Add Web Parts ➤ Import.

CHAPTER 5 ■ BUILDING WEB PARTS158

5750_c05_final.qxd 11/3/05 9:43 PM Page 158

4. In the Import pane, click Browse.

5. Locate the file PubsAuthors.dwp and click Open.

6. In the Import pane, click Upload.

7. Drag the PubsAuthors Web Part from the pane to any zone on the page.

8. When the Web Part appears, select Modify Shared Web Part from its drop-down menu.

9. In the Miscellaneous section, enter a value for the SQLServer, UserName, and Password
properties.

10. Enter the value pubs for the Database property.

11. Click OK. The records should now appear in the grid.

CHAPTER 5 ■ BUILDING WEB PARTS 159

5750_c05_final.qxd 11/3/05 9:43 PM Page 159

5750_c05_final.qxd 11/3/05 9:43 PM Page 160

The Microsoft Single
Sign-On Service

In the previous chapter, you created a basic Web Part that accessed a database using cre-
dentials retrieved from properties of the Web Part. Although this made for a simple design, it
required users to type their credentials in clear text directly into the property pane. As I stated
several times, this technique is unacceptable for a production environment.

In addition to security concerns, however, information workers also have difficulty simply
managing credentials. Information workers are required to remember different sets of creden-
tials for different line-of-business systems. Furthermore, passwords are often cryptic and hard
to remember because complexity requirements prevent the use of terms that are easy to crack.
All of this results in a situation where security and usability collide, often resulting in systems
that are neither secure nor usable. This is where the Microsoft Single Sign-On (SSO) service
comes into play.

SSO acts to manage multiple credential sets by associating them with a user’s network Win-
dows login credentials. Once SSO is implemented, information workers only have to remember
their network credentials. When a Web Part must access a line-of-business system, it utilizes
appropriate credentials that were previously associated with the user’s network credentials.

You should note right at the outset that configuring SSO is complicated and getting it to
work correctly is tricky. The configuration steps require several cryptic hand edits to configu-
ration files that impact code access security. The overall experience can be frustrating, but the
rewards are worth the effort when you finally eliminate all the annoying secondary logins
required by your enterprise applications.

Setting Up SSO
SSO is a combination of a Windows 2003 service, a SQL Server data store, and web-based
administration tools that provide credential storage and retrieval services to your Web Parts.
SSO is installed by default along with SharePoint Portal Server (SPS); however, the service is
stopped and set to manual start-up. In order to begin working with SSO, you must configure
and start the service.

Before the SSO service can be started, you must create a new global security group that
will contain an account used to run the service. This same group will contain the accounts
that are authorized to administer the SSO service. The account used to run the SSO service
will also be a member of this group. This group must meet several requirements:

161

C H A P T E R 6

■ ■ ■

5750_c06_final.qxd 11/3/05 9:41 PM Page 161

• Belong to the local administrators group on the job server.

• Belong to the local administrators group on the server running the configuration
database.

• Belong to the STS_WPG and SPS_WPG groups—which run all of the pooled SharePoint
components and resources—on every server in the farm where SPS is installed.

• Have db_owner and public rights for the SharePoint Services configuration database.

• Belong to the Server Administrators role for the SQL Server instance where the SSO
database is located.

Once you have defined a security group with an account, you can configure the SSO serv-
ice to run under the specified account. Additionally, you can add users to the security group
so that they can define credentials in the data store. Designated users may then define sets of
applications and credentials for enterprise applications.

To set up the SSO account, follow these steps:

1. Log in to SPSController as the domain administrator.

2. Select Start ➤ Administrative Tools ➤ Active Directory Users and Computers.

3. In the Active Directory Users and Computers dialog, right-click the Users folder and
select New ➤ Group from the pop-up menu.

4. In the New Object dialog, type MSSSOAdmins in the Group Name. Any member of this
group will be allowed to administer the SSO service.

5. Click OK.

6. In the Active Directory Users and Computers dialog, right-click the Users folder and
select New ➤ User from the pop-up menu.

7. In the New Object dialog, type MSSSOService in the Full Name and User Logon Name
boxes.

8. Click Next.

9. Type a password for the account.

10. Uncheck the “User must change password at next logon” box.

11. Check the “User cannot change password” box.

12. Check the “Password never expires” box.

13. Click Next.

14. On the next screen, uncheck the “Create an Exchange mailbox” box.

15. Click Next.

16. On the next screen, click Finish.

17. Right-click the MSSSOService object and select Properties from the pop-up menu.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE162

5750_c06_final.qxd 11/3/05 9:41 PM Page 162

18. On the Member Of tab, click Add.

19. Type in the account name sps\MSSSOAdmins and click the Check Names button.

20. Once the account name is validated, click OK.

21. Click OK again.

To set up local groups, follow these steps:

1. Log in to SPSPortal as the domain administrator.

2. Select Start ➤ Administrative Tools ➤ Computer Management.

3. In the Computer Management dialog, expand the Local Users and Groups node and
open the Groups folder.

4. In the Groups folder, right-click Administrators and select Add to Group from the
pop-up menu.

5. In the Administrators Properties dialog, click Add.

6. Type in the account name sps\MSSSOAdmins and click the Check Names button.

7. Once the account name is validated, click OK.

8. In the Administrators Properties dialog, click OK.

9. In the Groups folder, right-click SPS_WPG and select Add to Group from the pop-up
menu.

10. In the SPS_WPG Properties dialog, click Add.

11. Type in the account name sps\MSSSOAdmins and click the Check Names button.

12. Once the account name is validated, click OK.

13. In the SPS_WPG Properties dialog, click OK.

14. In the Groups folder, right-click STS_WPG and select Add to Group from the pop-up
menu.

15. In the STS_WPG Properties dialog, click Add.

16. Type in the account name sps\MSSSOAdmins and click the Check Names button.

17. Once the account name is validated, click OK.

18. In the STS_WPG Properties dialog, click OK.

■Note Because this book utilizes a single-server configuration, you do not have to add the MSSSOAdmin
account to any other local groups. If you deploy a multiple-server configuration, be sure to add the account
to the appropriate group for each server that meets the requirements outlined earlier.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 163

5750_c06_final.qxd 11/3/05 9:41 PM Page 163

To set up SQL Server permissions, follow these steps:

1. Select All Programs ➤ Microsoft SQL Server ➤ Enterprise Manager.

2. In the SQL Server Enterprise Manager, expand the tree and select Console Root ➤
Microsoft SQL Servers ➤ SQL Server Group ➤ (local) (Windows NT) ➤ Security ➤
Logins.

3. Right-click the Logins node and select New Login from the pop-up menu.

4. In the Name field type sps\MSSSOAdmins.

5. On the Database Access tab, check the box associated with the configuration database
(e.g., SPS01_Config_db).

6. In the list of database roles, check db_owner and public.

7. On the Server Roles tab, check the Server Administrators box.

8. Click OK.

9. Select Start ➤ Administrative Tools ➤ Services.

10. In the Services dialog, right-click the Microsoft Single Sign-On Service and select
Properties from the pop-up menu.

11. On the Log On tab, select the option This Account and type in sps\MSSSOService.

12. Enter the password you set for this account.

13. Click Apply.

14. On the General tab, change the Startup Type to Automatic.

15. Click Start to start the service.

Before you can access credentials using SSO, an application definition must be created for
the credentials. Application definitions consist of a unique name for the application and the
definition of the logon fields to accept. SSO is capable of managing a number of fields beyond
user name and password. In fact, you can define any custom field for the service, such as domain
or database name.

Accessing the administrative pages for SSO is done by selecting Start ➤ All Programs ➤
SharePoint Portal Server ➤ SharePoint Portal Server Single Sign-On Administration. When
you first access the administration pages, only one option is available. You must complete the
setup of the MSSSO service by clicking the Manage Server Settings link. The server settings
require you to specify the accounts that will be used to manage the SSO service and define
new applications. Until these settings are complete, you cannot define new applications.
Figure 6-1 shows what the page should look like the first time you access it.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE164

5750_c06_final.qxd 11/3/05 9:41 PM Page 164

To specify server settings, take these steps:

1. Log in to SPSPortal as member of MSSSOAdmins.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings for Single Sign-On page, click Manage Server Settings.

4. On the Manage Server Settings page, type sps\MSSSOAdmins into the Account Name
box for both the Single Sign-On Settings and Enterprise Application Definition Settings
sections.

5. Click OK.

Once the initial settings are entered, you may return to the Manage Settings for Single
Sign-On page where the additional hyperlinks will be available. Selecting Enterprise Appli-
cation Definition Settings ➤ Manage Settings for Enterprise Application Definitions opens
a page where you may define new applications. This page allows you to name the applica-
tion, define the fields that should be managed, and determine whether the application will
use a group or individual login. Figure 6-2 shows the available configuration options.

You should use a group login when you want a single set of credentials to be used by Web
Parts regardless of what user is accessing the system. This design is often associated with read-
only information where users do not normally need separate identification. An organization
might use this, for example, to give employees access to public information regarding corpo-
rate performance. In this scenario, it is not important which employee is accessing the system
because the read-only information will not change.

Where you are more concerned about access and permissions, you should use an individual
login. Applications defined with an individual login will require that each end user have their
own set of credentials. SSO is capable of prompting individuals for credentials the first time they
use a Web Part; after this, the service automatically stores the credentials for future use.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 165

Figure 6-1. The Manage Server Settings page

5750_c06_final.qxd 11/3/05 9:41 PM Page 165

To create an enterprise applications definition, follow these steps:

1. Log in to SPSPortal as a member of MSSSOAdmins.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings for Single Sign-On page, select Enterprise Application Defini-
tion Settings ➤ Manage Settings for Enterprise Application Definitions.

4. On the Manage Enterprise Application Definitions page, click the New Item link.

5. On the Create Enterprise Application Definition page, type My Application into the
Display Name box.

6. Type MyApp into the Application Name box.

7. Type administrator@sps.local into the Contact E-mail Address box.

8. Change the Account Type to Individual.

9. Type User name into the Field 1: Display Name box.

10. Type Password into the Field 2: Display Name box.

11. Choose the Yes option for Mask under Field 2 to mask the password when it is entered.

12. Click OK.

Although SSO is capable of prompting users for credentials, you can set them up ahead of
time by using the administrative web pages. Because you will not know individual login infor-
mation, this capability is clearly most useful when an application is defined to utilize a group

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE166

Figure 6-2. Defining an application

5750_c06_final.qxd 11/3/05 9:41 PM Page 166

login. Individual logins will generally prompt users for credentials when they first use the Web
Part. We’ll see how to utilize this capability in code later on.

Here is what you need to do to define login credentials:

1. Log in to SPSPortal as a member of the MSSSOAdmins group.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings for Single Sign-On page, select Enterprise Application Defini-
tion Settings ➤ Manage Account Information for Enterprise Application Definitions.

4. In the User Account Name box enter sps\administrator.

5. Click OK.

6. On the Account Information page, type sa into the User Name box.

7. Type the sa password into the Password box for your SPSPortal installation of SQL
Server.

8. Click OK.

Setting the Security Policy
The Microsoft SSO service uses a SQL Server database to store application credentials, and Web
Parts attempting to access this data store are subject to code access security restrictions deter-
mined by the active policy. By default, WSS_Minimal and WSS_Medium do not allow access to
SSO functionality. In order to grant access, you must modify the policy files or create a custom
policy file.

SSO uses a ticketing system for accessing credentials. Web parts can request a ticket from
SSO that can subsequently be used to access credentials within the data store. Permission to
access SSO is determined by the SingleSignonPermission class. This class accepts an enumer-
ated value that determines the level of access the code is granted. Table 6-1 lists the possible
values for the SingleSignonPermission class.

Table 6-1. The SingleSignonPermission Class

Permission Description

Minimal The Web Part can reserve a ticket to redeem credentials later but cannot access
credential information.

Credentials The Web Part can redeem a ticket for credentials and access credential information.

Administer The Web Part has full access to SSO for credential information and application
administration.

Whether you choose to modify an existing policy file or create a new one, you must make
an appropriate entry in both the <SecurityClasses> and <PermissionSets> sections of the file.
In the <SecurityClasses> section, you must add a reference to the SingleSignonPermission
class. The following code shows the appropriate entry.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 167

5750_c06_final.qxd 11/3/05 9:41 PM Page 167

<SecurityClass Name="SingleSignonPermission"

Description=

"Microsoft.SharePoint.Portal.SingleSignon.Security.SingleSignonPermission,

Microsoft.SharePoint.Portal.SingleSignon.Security, Version=11.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c"/>

Once the entry is made to reference the SingleSignonPermission class, you must add an
entry to the wss_sqltrust <PermissionSet> to grant the appropriate level of permission. As with
all other permissions, you grant the access using the <IPermission> element setting Minimal,
Credentials, or Administer as the value. Additionally, the specific permission grant must appear
within the permission set for wss_sqltrust. As always, remember to restart Internet Information
Server (IIS) once your policy changes are complete. The following code shows the entry for
granting access to SSO within the wss_sqltrust permission set that you created in Chapter 5
under Listing 5-6.

<PermissionSet

class="NamedPermissionSet"

version="1"

Name="wss_sqltrust">

<IPermission

class="SingleSignonPermission"

version="1"

Access="Credentials"

/>

Using SSO in a Web Part
Once the service is running and the policy is established, you are ready to create a Web Part.
In order to use the Microsoft SSO service in a Web Part, you must first set a reference to the
SingleSignOn assembly in Visual Studio. After starting a new Web Part project, set a reference
to the Microsoft.SharePoint.Portal.SingleSignon.dll assembly. Once this reference is set,
you can import the library into your code by using one of the following formats for C# or
VB .NET.

//C#

using Microsoft.SharePoint.Portal.SingleSignon;

'VB .NET

Imports Microsoft.SharePoint.Portal.SingleSignon

The Microsoft.SharePoint.Portal.SingleSignon namespace provides several classes
that provide complete access to all of the administration functions of SSO. You can use these
classes not only to access enterprise systems, but also to create your own separate adminis-
tration interface. You can even go so far as to build a Web Part that allows portal users to
perform self-service on their own credentials. Table 6-2 summarizes the classes available
in the SingleSignon namespace.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE168

5750_c06_final.qxd 11/3/05 9:41 PM Page 168

Table 6-2. Classes in the SingleSignon Namespace

Class Description

Application Retrieves, adds, and deletes application definitions

Credentials Retrieves, adds, and deletes application credentials

SSOReturnCodes Enumerates the results of a SingleSignonException

SingleSignonException Thrown when an SSO error occurs

Access to the entire set of stored credentials managed by SSO is accomplished through the
Credentials class. Using this class, you can store, retrieve, and delete credentials for any applica-
tion stored in the configuration database. Table 6-3 lists the members of the Credentials class.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 169

Table 6-3. The Credentials Class

Member Description

DeleteAllUserCredentials(String Account) Deletes all the credentials for a user or group Account for
every application definition.

DeleteUserCredentials(String Application, Deletes the credentials for a user or group Account for a
String Account) specific Application definition.

GetCredentials(UInt32 Flag, String Returns a reference to an array of Credentials given an
Application, String[] Credentials) Application name. If the Flag is set to 0, then the cache is

checked for the credentials before the database is accessed
directly. If the Flag is set to 1, then the cache is not checked.

GetCredentialsUsingTicket(UInt32 Flag, Returns a reference to an array of Credentials given an
String Application, String Ticket, Application name and an access Ticket. If the Flag is set
String[] Credentials) to 0, then the ADO.NET data cache is checked for the

credentials before the database is accessed directly. If the
Flag is set to 1, then the cache is not checked.

ReserveCredentialTicket(SingleSignOn➥ Returns an access Ticket that may be used by a member
TicketType.Default, String Ticket) of the SSO administrator account to access credentials.

SetCredentials(UInt32 Flag, String Sets the Credentials for a specific Application for the
Application, String [] Credentials) current user.

SetGroupCredentials(String Application, Sets the Credentials for a specific Application for the
String Group, String[] Credentials) specified Group.

SetUserCredentials(String Application, Sets the Credentials for a specific Application for the
String Account, String[] Credentials) specified Account.

When a Web Part needs to access an external system, it calls the GetCredentials method.
Any user is allowed to call GetCredentials; however, the active security policy determines the
level of access allowed. If the credentials exist in the data store, then they are returned as an
array of Strings. The order of the data returned in the array is the same as the order in which
the application fields were defined by the administrator. The following code shows the basic
technique using VB .NET.

Dim Username As String

Dim Password As String

Dim strCredentials() As String

Dim uintFlag As New UInt32

5750_c06_final.qxd 11/3/05 9:41 PM Page 169

Credentials.GetCredentials(UInt32.Parse("1"), "AppName", strCredentials)

Username = strCredentials(0)

Password = strCredentials(1)

If the Web Part attempts to retrieve credentials and fails, then the GetCredentials method
throws a SingleSignonException. The exact reason for the failure is subsequently determined
by examining the LastErrorCode property of the SingleSignonException object. Table 6-4 lists
the possible return values for the LastErrorCode property.

Table 6-4. Single Sign-On Return Codes

Name Description

SSO_E_ACCESSDENIED Access is denied to the SSO resource.

SSO_E_ALREADY_SS The computer is already set up as a secret server.

SSO_E_APPLICATION_ALREADY_EXISTS The Enterprise Application Definition already exists.

SSO_E_APPLICATION_CANNOT_OVERWRITE The operation is unable to overwrite the Enterprise
Application Definition.

SSO_E_APPLICATION_CREATION_➥ Disposition is unknown.
DISPOSITION_UNKNOWN

SSO_E_APPLICATION_NOT_FOUND The Enterprise Application Definition cannot be found.

SSO_E_APPLICATION_TYPE_UNKNOWN The Enterprise Application Definition type is unknown.

SSO_E_CREDS_NOT_FOUND The credentials could not be found.

SSO_E_DB_ALREADY_EXISTS The database specified already exists.

SSO_E_EXCEPTION This is a general SSO exception.

SSO_E_GET_CREDS_FLAG_UNKNOWN The GetCredentials flag is unknown.

SSO_E_INVALID_AUDIT_PURGE_DAYS The purge audit days specified are invalid.

SSO_E_INVALID_NUMBER_OF_CRED_FIELDS The number of credential fields specified is invalid.

SSO_E_INVALID_NUMBER_OF_CREDS The number of credentials is invalid.

SSO_E_INVALID_TICKET_TIMEOUT The access token time-out specified is invalid.

SSO_E_MASTER_SECRET_NOT_EXIST The encryption key does not exist.

SSO_E_REENCRYPTING SSO is re-encrypting the SSO database.

SSO_E_SECRET_ALREADY_EXISTS The base system key already exists.

SSO_E_SET_CREDS_FLAG_UNKNOWN The SetCredentials flag is unknown.

SSO_E_SHAREPOINT_VROOT_CANNOT_➥ The virtual root for SPS could not be found.
BE_FOUND

SSO_E_SSO_DB_NOT_INSTALLED The SSO database does not exist.

SSO_E_SSO_NOT_CONFIGURED SSO is not configured.

SSO_E_SSO_NOT_INSTALLED The SSO service is not installed.

SSO_E_SSO_WRONG_VERSION The wrong SSO database version is being used.

SSO_E_TICKET_TYPE_UNKNOWN The access token type is unknown.

SSO_E_WRONG_SS This is the wrong secret server.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE170

5750_c06_final.qxd 11/3/05 9:41 PM Page 170

Your Web Part should treat the SSO resource exactly as it would any protected resource
limited by code access security policies. This means that you should always implement error
handling when attempting to access the data store. In most cases, you will be attempting to
retrieve credentials and should be concerned that the credentials do not exist. This situation
can happen frequently with application definitions that contain an individual login. In fact,
it is almost guaranteed to happen the first time a user invokes a Web Part that accesses a new
application definition.

Because an administrator will not know individual credentials, your Web Part should expect
to handle SSO_E_CREDS_NOT_FOUND the first time any user accesses your Web Part. In response, you
must help the user enter the correct credentials into the data store for future use. SSO supports
the user by providing a web page where the user can enter their credentials if they are not found.

Users access the logon form provided by the SSO by clicking a hyperlink that you build
in code. The hyperlink is generated by the SingleSignonLocator class. This class supports the
GetCredentialEntryUrl method, which takes the application name as an argument. The fol-
lowing code shows how to build a simple hyperlink in the RenderWebPart method to redirect
users to the logon form.

Try

Catch x As SingleSignonException

'If we cannot get the credentials, then show a link to log in

If x.LastErrorCode = SSOReturnCodes.SSO_E_CREDS_NOT_FOUND Then

'Get the URL to save SSO credentials

Dim strURL As String

strURL = SingleSignonLocator.GetCredentialEntryUrl("MyApp")

'Display a link

output.Write("Please log in")

End If

End Try

■Caution The GetCredentialEntryUrl method will fail if the current user has no credentials in the
SSO database. Talk about a catch-22! The workaround is to first define dummy credentials for each user
and then delete them. This will associate the user with an application definition while ensuring that the
SSO_E_CREDS_NOT_FOUND exception occurs when the Web Part is first accessed.

The SingleSignonLocator class belongs to the Microsoft.SharePoint.Portal namespace.
Therefore, you will have to set a reference to the Microsoft.SharePoint. Portal.dll assembly
before you can use the class. Additionally, you will want to import the namespace into your
code using one of the following examples.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 171

5750_c06_final.qxd 11/3/05 9:41 PM Page 171

//C#

using Microsoft.SharePoint.Portal;

'VB.NET

Imports Microsoft.SharePoint.Portal

Programmatic Administration
The basic approach to single sign-on described earlier requires that every user provide cre-
dentials the first time they use a Web Part. Although this approach will work, you may run into
some challenges. For example, enterprise applications may require users to change passwords
periodically. In this case, the retrieved credentials may not work and you would have to redi-
rect the user to the logon page. As an alternative approach, you may want to give users the ability
to manage all of their credentials directly from the portal.

The Application class is the primary class used to administer SSO. This class has a num-
ber of subclasses that form collections of information contained in the data store. Table 6-5
lists the subclasses of the Application class.

Table 6-5. Subclasses of the Application Class

Class Description

ApplicationCollection A collection of all Enterprise Application Definitions

ApplicationInfo A single application definition from a collection of definitions

ApplicationFieldCollection A collection of all fields defined in an application

ApplicationField A single field from a collection of fields

When creating any administrative tool for credentials, you will most likely want to begin
by listing the available application definitions. Using the ApplicationCollection class, you can
gain access to the entire collection of application definitions and display them. You can
access the collection by simply creating the ApplicationCollection object. You can then
enumerate the collection to retrieve the definitions. Listing 6-1 shows how to access the
collection and display the results in a list box.

Listing 6-1. Listing Application Definitions

Try

'Get collection of all application definitions

Dim objCollection As New Application.ApplicationCollection

Dim objApp As Application.ApplicationInfo

For Each objApp In objCollection

'List only the individual applications, not group apps

If objApp.Type = Application.ApplicationType.Individual Then

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE172

5750_c06_final.qxd 11/3/05 9:41 PM Page 172

'Create the new listing

Dim objItem As New ListItem

With objItem

.Text = objApp.ApplicationFriendlyName

.Value = objApp.ApplicationName

End With

'Add the new listing

lstApps.Items.Add(objItem)

End If

Next

Catch x As SingleSignonException

lblMessage.Text = x.Message

Catch y As Exception

lblMessage.Text = y.Message

End Try

After the available applications are listed, users will want to select an application and
enter their credentials. The ApplicationFieldCollection class provides access to all of the
fields that are defined for an application. Using this class, you can label a set of text boxes with
the required fields for entry. Because each application definition is limited to a maximum of
five fields, creating a display where users can enter information is relatively easy to handle.
Listing 6-2 shows an example of configuring five TextBox and Label controls to display the
field names and a place for the user to type the credentials.

Listing 6-2. Displaying Field Information

Try

'Get the collection of fields

Dim objFields As New _

Application.ApplicationFieldCollection(lstApps.SelectedValue)

Dim objField As Application.ApplicationField

Dim i As Integer = 0

'Show fields

For Each objField In objFields

i += 1

Select Case i

Case 1

Text1.Visible = True

If objField.Mask = True Then

Text1.TextMode = TextBoxMode.Password

Else

Text1.TextMode = TextBoxMode.SingleLine

End If

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 173

5750_c06_final.qxd 11/3/05 9:41 PM Page 173

Label1.Visible = True

Label1.Text = objField.Field

Case 2

Text2.Visible = True

If objField.Mask = True Then

Text2.TextMode = TextBoxMode.Password

Else

Text2.TextMode = TextBoxMode.SingleLine

End If

Label2.Visible = True

Label2.Text = objField.Field

Case 3

Text3.Visible = True

If objField.Mask = True Then

Text3.TextMode = TextBoxMode.Password

Else

Text3.TextMode = TextBoxMode.SingleLine

End If

Label3.Visible = True

Label3.Text = objField.Field

Case 4

Text4.Visible = True

If objField.Mask = True Then

Text4.TextMode = TextBoxMode.Password

Else

Text4.TextMode = TextBoxMode.SingleLine

End If

Label4.Visible = True

Label4.Text = objField.Field

Case 5

Text5.Visible = True

If objField.Mask = True Then

Text5.TextMode = TextBoxMode.Password

Else

Text5.TextMode = TextBoxMode.SingleLine

End If

Label5.Visible = True

Label5.Text = objField.Field

End Select

Next

'Show button

btnSubmit.Visible = True

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE174

5750_c06_final.qxd 11/3/05 9:41 PM Page 174

Catch x As SingleSignonException

lblMessage.Text = x.Message

Catch y As Exception

lblMessage.Text = y.Message

End Try

After the credentials are entered into the TextBox controls, the credentials must be updated.
This is accomplished by calling the SetCredentials method of the Credentials class. This method
updates the SSO data store for the current user. Listing 6-3 shows the code for updating the cre-
dentials from the data entered in the TextBox controls.

Listing 6-3. Updating Credentials

Dim strFields(4) As String

strFields(0) = Text1.Text

strFields(1) = Text2.Text

strFields(2) = Text3.Text

strFields(3) = Text4.Text

strFields(4) = Text5.Text

Try

Credentials.SetCredentials(Convert.ToUInt32(1), lstApps.SelectedValue, _

strFields(0), strFields(1), strFields(2), strFields(3), strFields(4))

lblMessage.Text = "Successfully added credentials."

Catch x As SingleSignonException

lblMessage.Text = x.Message

Catch y As Exception

lblMessage.Text = y.Message

End Try

Viewing the Audit Log
Every action performed against the Microsoft SSO service is logged in the data store associ-
ated with the service. Each action is logged with a member of the ServiceAction enumeration.
This enumeration identifies the operation that was attempted. The log also captures relevant
information such as the identity of the user who performed the action and the application that
was accessed. You can find the audit log defined under the SSO database in the SSO_Audit
table. Figure 6-3 shows a sample log.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 175

5750_c06_final.qxd 11/3/05 9:41 PM Page 175

Exercise 6-1: Using Single Sign-On
The Microsoft SSO service is useful for allowing Web Parts to access line-of-business systems
without prompting for a separate login. In this exercise, you will create a simple Web Part that
displays the audit log from SSO.

Prerequisites
Before beginning this exercise, be sure that you have properly configured the Microsoft SSO
service on SPSPortal. This means you should have a global security group named MSSSOAdmins
defined, and it should contain an account named MSSSOService. Additionally, MSSSOAdmins
must be a member of the required local groups on SPSPortal. The SSO service should be running
under MSSSOService. If you have not properly configured SSO, refer to the steps earlier in the
chapter.

Creating the Application Definition
This exercise retrieves all necessary information from the SSO service that you need to con-
nect to the SSO database and retrieve the audit log. You will use a group account definition to
access the data store. Therefore, you must create an enterprise application definition and
store the credentials for the definition.

Follow these steps to create the application definition:

1. Log in to SPSPortal as a member of MSSSOAdmins.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE176

Figure 6-3. A sample audit log

5750_c06_final.qxd 11/3/05 9:41 PM Page 176

3. On the Manage Settings for Single Sign-On page, select Enterprise Application
Definition Settings ➤ Manage Settings for Enterprise Application Definitions.

4. On the Manage Enterprise Application Definitions page, click the New Item link.

5. On the Create Enterprise Application Definition page, type MSSSO audit log into the
Display Name box.

6. Type MSSSOAudit into the Application Name box.

7. Type administrator@sps.local into the Contact E-mail Address box.

8. Ensure the Account type is set to Group.

9. Type Username into the Field 1: Display Name box.

10. Type Password into the Field 2: Display Name box.

11. Choose the Yes option for Mask under Field 2 to mask the password when it is entered.

12. Click OK.

Entering the Credentials
Most often when you use SSO, you will not enter credentials directly. Instead, you will allow
users to enter their own credentials the first time they use a Web Part. In this exercise, how-
ever, we will start with defined credentials to ensure that your Web Part is working correctly.
Later you will implement a separate _login form for first-time users.

Follow these steps to enter the credentials:

1. Log in to SPSPortal as a member of MSSSOAdmins.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings for Single Sign-On page, select Enterprise Application Defini-
tion Settings ➤ Manage Account Information for Enterprise Application Definitions.

4. In the Enterprise Application Definition list, select MSSSO Audit Log.

5. In the Group Account Name enter sps\MSSSOAdmins.

6. Click OK.

7. On the Account Information page, type values in that will allow access to the Pubs
database.

8. Click OK.

Creating the Web Part
At this point, you have built a couple of Web Parts and should understand how to start a proj-
ect. Rather than repeat all the steps here again, simply open Visual Studio .NET and create a
new Web Part library project in C#. Name the new project MSSSOAudit. After the new project

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 177

5750_c06_final.qxd 11/3/05 9:41 PM Page 177

is created, make appropriate modifications to the Web Part description file as you have done
in previous exercises.

Setting References
Before you can get started writing code, you must set a reference that will allow you to use SSO
and access SQL databases. Because you will be using the Credentials class and a DataSet, you
must set a reference to the Microsoft.SharePoint.Portal.SingleSignon.dll assembly and the
System.Data.dll assembly.

Perform these steps to set the appropriate references:

1. In Visual Studio, select Project ➤ Add Reference from the menu.

2. In the Add Reference dialog, click Microsoft.SharePoint.Portal.SingleSignon.dll and
System.Data.dll.

3. Click Select and then OK to add the reference.

4. Add the following lines to MSSSOAudit.cs to reference the SSO assembly in your code
along with the references necessary for database access.

using Microsoft.SharePoint.Portal.SingleSignon;

using System.Data;

using System.Data.SqlClient;

Defining the Properties
The design of your Web Part is going to use a DataGrid control to display the SSO_Audit table
from the SSO database. In this Web Part, you will set up properties for the user name and
password, but you will not allow them to be Browsable in the portal. Listing 6-4 shows the
complete Web Part as it should appear after the properties are defined.

Listing 6-4. Defining the Properties

using System;

using System.ComponentModel;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Xml.Serialization;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Utilities;

using Microsoft.SharePoint.WebPartPages;

using Microsoft.SharePoint.Portal.SingleSignon;

using System.Data;

using System.Data.SqlClient;

namespace MSSSOAudit

{

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE178

5750_c06_final.qxd 11/3/05 9:41 PM Page 178

[DefaultProperty(""),

ToolboxData("<{0}:Log runat=server></{0}:Log>"),

XmlRoot(Namespace="MSSSOAudit")]

public class Log : Microsoft.SharePoint.WebPartPages.WebPart

{

//PROPERTIES

private string m_userName="";

private string m_password="";

[Browsable(false),Category("Miscellaneous"),

DefaultValue(""),

WebPartStorage(Storage.Shared),

FriendlyName("UserName"),

Description("The account name to access the SSO database")]

public string userName

{

get

{

return m_userName;

}

set

{

m_userName = value;

}

}

[Browsable(false),Category("Miscellaneous"),

DefaultValue(""),

WebPartStorage(Storage.Shared),

FriendlyName("Password"),Description(

"The password to access the SSO database")]

public string password

{

get

{

return m_password;

}

set

{

m_password = value;

}

}

}

}

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 179

5750_c06_final.qxd 11/3/05 9:41 PM Page 179

Defining the Child Controls
Your Web Part will show the audit table in a grid; therefore, you must override the
CreateChildControls method to add the new DataGrid control. In this method, you program-
matically create a new instance of the grid, adjust its properties, and add it to the Controls
collection for the Web Part. Listing 6-5 shows how to create the child controls for the Web Part.

Listing 6-5. Creating Child Controls

//CHILD CONTROLS

protected DataGrid grdAudit;

protected Label lblMessage;

protected override void CreateChildControls()

{

//DataGrid

grdAudit = new DataGrid();

grdAudit.Width = Unit.Percentage(100);

grdAudit.HeaderStyle.Font.Name = "arial";

grdAudit.HeaderStyle.ForeColor = System.Drawing.Color.Wheat;

grdAudit.HeaderStyle.BackColor = System.Drawing.Color.DarkBlue;

grdAudit.AlternatingItemStyle.BackColor = System.Drawing.Color.LightCyan;

Controls.Add(grdAudit);

//Label

lblMessage=new Label();

lblMessage.Width = Unit.Percentage(100);

lblMessage.Font.Name = "arial";

lblMessage.Text = "";

Controls.Add(lblMessage);

}

Rendering the Web Part
Because your Web Part is displaying just the rows from the audit table, you can place your sin-
gle sign-on code directly in the RenderWebPart method without concern for the state of any of
the child controls. If you were relying on user interaction, you would have to consider the Web
Part life cycle and event firing order to determine the best place to retrieve credentials.
Listing 6-6 shows how to render the Web Part output.

Listing 6-6. Rendering the WebPart

//RENDERING

protected override void RenderWebPart(HtmlTextWriter output)

{

string[] strCredentials=null;

string strConnection=null;

SqlDataAdapter objAdapter;

SqlCommand objCommand;

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE180

5750_c06_final.qxd 11/3/05 9:41 PM Page 180

SqlConnection objConnection;

DataSet objDataSet;

//Try to get credentials

try

{

// Call MSSSO

Credentials.GetCredentials(Convert.ToUInt32(1),

"MSSSOAudit",ref strCredentials);

//save credentials

userName=strCredentials[0];

password=strCredentials[1];

//Create connection string

strConnection += "Password=" + password;

strConnection += ";Persist Security Info=True;";

strConnection += "User ID=" + userName + ";Initial Catalog=SSO;";

strConnection += "Data Source=(local)";

}

catch (SingleSignonException x)

{

if (x.LastErrorCode==SSOReturnCodes.SSO_E_CREDS_NOT_FOUND)

{lblMessage.Text="Credentials not found!";}

else

{lblMessage.Text=x.Message;}

}

//Try to show the grid

try

{

//query the SSO database

objAdapter=new SqlDataAdapter();

objDataSet=new DataSet("root");

objConnection=new SqlConnection(strConnection);

objCommand=new SqlCommand("Select * from SSO_Audit",objConnection);

objAdapter.SelectCommand=objCommand;

objAdapter.Fill(objDataSet,"audit");

//bind to the grid

grdAudit.DataSource=objDataSet;

grdAudit.DataMember="audit";

grdAudit.DataBind();

}

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 181

5750_c06_final.qxd 11/3/05 9:41 PM Page 181

catch (Exception x)

{

lblMessage.Text+=x.Message;

}

finally

{

//draw grid

grdAudit.RenderControl(output);

output.Write("
");

lblMessage.RenderControl(output);

}

}

Deploying the Web Part
Just like all of the Web Parts you have created previously, this one requires a strong name and
must be marked as safe in the web.config file. Additionally, you must grant this Web Part per-
mission to access both SQL Server databases and the Microsoft SSO service. You will grant
these permissions by modifying the web.config and wss_mediumtrust.config files.

Creating a Strong Name
At this point, it should be clear that accessing the Strong Name tool is a common operation
when creating Web Parts. Therefore, you may want to make it more easily available in Visual
Studio. Follow these steps to add the Strong Name tool to the Visual Studio environment:

1. In Visual Studio select Tools ➤ External Tools from the menu.

2. In the External Tools dialog, click Add.

3. Change the Title for the new tool to Strong Name Tool.

4. Near the Command box, click the ellipsis (…) button.

5. Navigate to \Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\bin and
select sn.exe.

6. In the Open file dialog, click Open.

7. Check the “Use output window” box.

8. Check the “Prompt for arguments” box. Figure 6-4 shows the completed tool definition.

9. After you complete the definition, click OK.

10. To use the Strong Name tool, select Tools ➤ Strong Name Tool from the Visual Studio
menu.

11. In the Strong Name Tool window, type -k c:\keypair.snk into the Argumentbox.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE182

5750_c06_final.qxd 11/3/05 9:41 PM Page 182

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 183

Figure 6-4. Adding the Strong Name tool to Visual Studio

■Note This operation overwrites any previously defined key pair at the same location. To avoid this prob-
lem, you can either continue with the existing key pair, or define a new key in another location.

12. Click OK.

13. In Visual Studio .NET, open the AssemblyInfo.cs file.

14. In AssemblyInfo.cs modify the AssemblyKeyFile attribute as follows:

[assembly: AssemblyKeyFile(c:\\keypair.snk)]

15. Save and close AssemblyInfo.cs.

Compiling the Web Part
Once the strong name is defined and referenced in the key file, you are ready to compile the
code. Because Web Parts must run in the \bin directory underneath the root of the web site, it
is easier if you simply compile your assembly into the required directory. This will make it eas-
ier to get the Web Part working.

Perform these steps to compile the Web Part:

1. Right-click the MSSSOAudit project in Visual Studio .NET and select Properties from
the pop-up menu.

2. In the Property Pages dialog, select Configuration Properties ➤ Build.

5750_c06_final.qxd 11/3/05 9:41 PM Page 183

3. Set the Output Path property to \inetpub\wwwroot\bin.

4. Click OK.

5. Compile the Web Part by selecting Build ➤ Build MSSSOAudit.

Modifying the web.config File
For the Web Part to successfully access the SQL database, you must make an entry in the
web.config file under the <SafeControls> section. You will also have to change the trust level
for the site because Web Parts cannot access databases under the default trust level of
WSS_Minimal.

Follow these steps to modify the web.config file:

1. In Visual Studio, select Tools ➤ Strong Name Tool from the menu.

2. In the Strong Name Tool window, type the following into the Arguments box:

-T c:\inetpub\wwwroot\bin\MSSSOAudit.dll

3. Click the OK button to display the PublicKeyToken.

4. Open the web.config file in Visual Studio.

5. Locate the <SafeControls> section of the file. In this section, you must add a new
<SafeControl> entry for your Web Part. The following example shows the form, but you
must substitute your particular PublicKeyToken:

<SafeControl Assembly="MSSSOAudit, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=ba635e9bfab94eac"

Namespace="MSSSOAudit" TypeName="*" />

6. Locate the <System.web> section of the file. In this section, change the <trust> element
so that the security policy is set to WSS_Medium as shown here:

<trust level="WSS_Medium" originUrl="" />

7. Save the file and close it.

Assigning Permissions
Before SPS will authorize the Web Part to interact with SSO, you must grant permission by
modifying the policy file. You could create your own custom file as I described in the previous
chapter, or simply modify the current policy. For this exercise, you will modify the
wss_mediumtrust.config file.

Perform these steps to assign permissions:

1. Open wss_mediumtrust.config in Visual Studio for editing.

2. In the <SecurityClasses> section, add the following entry to reference the permission
class:

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE184

5750_c06_final.qxd 11/3/05 9:41 PM Page 184

<SecurityClass Name="SingleSignonPermission"

Description=

"Microsoft.SharePoint.Portal.SingleSignon.Security.SingleSignonPermission,

Microsoft.SharePoint.Portal.SingleSignon.Security, Version=11.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c"/>

■Caution The preceding code should appear on a single line within the configuration file. If it is not writ-
ten on a single line, SharePoint Services may throw errors.

3. In the policy file, locate the <PermissionSet> element with the Name attribute of ASP.NET.
Add the following <IPermission> element directly beneath the <PermissionSet> element
to grant access to the SSO service.

<IPermission

class="SingleSignonPermission"

version="1"

Access="Administer"

/>

4. Save the file and close it.

5. Restart IIS to have the new policy take effect.

Once the Web Part is properly compiled, placed in the \bin directory, marked as safe, and
given permission to access SSO, it can be used in a portal page. To use the Web Part, you will
import it into a gallery. Once it’s imported, you can drag it onto a page and set its properties.

1. Log in to SPS as a member of the MSSSOAdmins security group.

2. Navigate to any site that you have previously created.

3. On the site home page, select Modify Shared Page ➤ Add Web Parts ➤ Import.

4. In the Import pane, click Browse.

5. Locate the file MSSSOAudit.dwp and click Open.

6. In the Import pane, click Upload.

7. Drag the MSSSOAudit Web Part from the pane to any zone on the page. The audit
records should immediately appear in the grid.

CHAPTER 6 ■ THE MICROSOFT SINGLE SIGN-ON SERVICE 185

5750_c06_final.qxd 11/3/05 9:41 PM Page 185

5750_c06_final.qxd 11/3/05 9:41 PM Page 186

Advanced Web Part
Development

Although basic Web Parts are useful for customizing the display of information and some
light system integration, they have some limitations. I noted, for example, that properties were
limited to simple values of types like String, Integer, and enumerations. Also, the Web Parts
you created in Chapters 5 and 6 were isolated from one another and could not take advantage
of Web Part connections. Additionally, all of my examples only operated as server-side code. In
this chapter, you’ll examine advanced Web Part concepts that allow you to overcome the limita-
tions found in the basic Web Part.

Client-Side Web Parts
When I began our discussion of Web Parts, I made it clear that they were essentially ASP.NET
controls running in a special infrastructure. This definition is significant because all of the
Web Parts you have written so far have been designed to operate on the server. They have relied
upon post-back processing to access data and integrate other systems. This fundamental pro-
cessing model is unchangeable in SharePoint Services; however, you can utilize some new
techniques to introduce client-side processing to your Web Parts.

Using ActiveX Controls
The most common reason to use client-side processing is to incorporate an ActiveX control
into your Web Part. In some cases, by using an ActiveX control, you can provide functionality
that is not easily created through server-side processing. A good example of such functionality
is found in the Office Web Components (OWC).

OWC is a set of ActiveX controls that implement spreadsheet and charting functionality
that is compatible with Office products like Excel. The controls have a rich interface that allows
end users to interact with data sources, pivot spreadsheets, and change chart characteristics.
This functionality is not present in ASP.NET and would be difficult to implement through
server-side processing.

You can include ActiveX controls in a Web Part by writing an appropriate <OBJECT> tag in
the RenderWebPart method. As far as the Web Part is concerned, <OBJECT> tags are no different
than any other HTML element. When the Web Part appears to the client, however, the refer-
enced ActiveX control will load into the portal. The following code shows an example of
creating an <OBJECT> tag in a Web Part. 187

C H A P T E R 7

■ ■ ■

5750_c07_final.qxd 11/3/05 9:40 PM Page 187

output.Write ("<OBJECT id=""myobj""" & _

" style=""VISIBILITY: hidden; WIDTH: 0px; HEIGHT: 0px""" & _

" classid=""clsid:238F6F83-B8B4-11CF-8771-00A024541EE3""" & _

" VIEWASTEXT>" + vbCrLf)

output.Write("</OBJECT>" + vbCrLf)

The most challenging part of incorporating an ActiveX control is correctly constructing
the <OBJECT> tag. Fortunately, you can easily lift the required HTML from Microsoft FrontPage.
Whenever you add an ActiveX control to a page, FrontPage generates the appropriate code.
Simply use this code as a template for your RenderWebPart method.

Although the <OBJECT> tag is sufficient for incorporating the ActiveX control into the user
interface, most ActiveX controls rely on a client-side script to make them fully functional. This
means that you may have to generate client-side script routines in the RenderWebPart method.
This can be a bit tricky, especially when the client-side script uses a large number of quotation
marks. Listing 7-1 shows an example of creating a JavaScript block using VB .NET in the
RenderWebPart method.

Listing 7-1. Creating a Client-SideScript

With output

.Write("<script language=""javascript"" type=""text/javascript"">")

.Write("<!--")

.Write("function windowLoad()")

.Write("{")

.Write("//Code goes here")

.Write("}")

.Write("-->")

.Write("</script>")

End With

Using Script Files
In Listing 7-1, I showed you how to generate your own script code directly in the RenderWebPart
method. However, you can also create separate script files that can be accessed at runtime by
your Web Parts. There are two techniques for accessing such scripts: linking and embedding.

Linking a script file allows you to create your script in a separate file and put it on the web
server. When a Web Part references the script, it is loaded into the browser cache. All future
references to the script then utilize the cached code. Linking a script requires you to first cre-
ate the script in a separate text file. Once this file is created, it is placed under a special folder
and referenced in your Web Part.

To make a script available to Web Parts for linking, follow these steps:

1. Open the Windows Explorer, navigate to \inetpub\wwwroot, and create a new subfolder
named \wpresources.

2. In this folder, create a new folder with the name of the Web Part assembly (e.g.,
SPSPageView.Container).

3. Under the new folder, create another folder consisting of the Assembly, Version,
Culture, and PublicKeyToken (e.g., 1.0.0.0_en-us_eb3e58846fb2ac2b).

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT188

5750_c07_final.qxd 11/3/05 9:40 PM Page 188

■Note Although the correct format for the new folder is version_culture_token, you may leave out
the culture information when the culture is neutral; however, you must add a double underscore (e.g.,
1.0.0.0__eb3e58846fb2ac2b).

4. Create a script file in a text editor.

5. Save this file under the folder you just created.

Once the file is saved in the appropriate location, you may use the RegisterClient➥

ScriptBlock method of the Page object to load the script at runtime. This method takes as
arguments a unique identifying name and a String for the script. Because you are linking
the script, you only need to reference the location of the script file. The following code
shows how to link a script file.

String scriptKey = "MyKey";

String scriptFile = this.ClassResourcePath + "\\myscript.js";

String scriptBlock = "<script language='javascript' src='"

+ scriptFile + "'></script>";

Page.RegisterClientScriptBlock(scriptKey,scriptBlock);

Embedding a script differs from linking it in that the script is not stored in a separate file.
In this case, the script is simply created in code and then loaded using the RegisterScriptBlock
method. Regardless of which method you choose, however, you should always check to see if
the script has been loaded previously before you attempt to load it. You can do this using the
script key and the IsClientScriptBlockRegistered method of the Page object. Although no
error will occur if you attempt to reload a script, doing so will reduce the efficiency of your
overall loading process.

Building Connectable Web Parts
The philosophy behind the use of Web Parts in SharePoint Portal Server (SPS) is that end users
should be able to access information and assemble views without having to rely upon pro-
grammers to create custom web pages. One of the ways that this philosophy is put into action
is through the use of Web Part connections. Connecting Web Parts in the portal allows a value
from one Web Part to be used as an input, sort, or filter for the display of another Web Part.

Earlier in the book, you saw this functionality from the end-user perspective. In that
example, you created a master-detail view of a contact list by using one Web Part to select a
contact name and a second Web Part to display the detailed contact information. One of the
main uses of connected Web Parts is creating these types of master-detail views, which allows
end users to customize how information appears on their portal pages.

Behind the scenes, SPS uses the Web Part infrastructure to determine which Web Parts on
a page are suitable for connection. Connectable Web Parts are then given a special Connections
item on their drop-down menu that lists all of the other Web Parts to which it can connect.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 189

5750_c07_final.qxd 11/3/05 9:40 PM Page 189

If you want to create connectable Web Parts that can be used in SPS, you must understand
how to integrate your Web Parts with the connection infrastructure.

Connection Interfaces
The primary mechanism for integrating Web Parts with the connection infrastructure is
through a set of interfaces. These interfaces expose methods and events that allow the con-
nection infrastructure to query your Web Parts for appropriate connection information and
provide notification when another Web Part wants to connect. The available interfaces sup-
port passing a single piece of data, a row of data, an entire list of data, or custom data sets
between Web Parts. Table 7-1 lists the available interfaces and their purposes.

Table 7-1. Connection Interfaces

Interface Purpose

ICellProvider Provides a single value to other Web Parts

ICellConsumer Consumes a single value from other Web Parts

IRowProvider Provides an entire row of data to other Web Parts

IRowConsumer Consumes an entire row of data from other Web Parts

IListProvider Provides an entire list to other Web Parts

IListConsumer Consumes an entire list from other Web Parts

IFilterProvider Provides a value for filtering to other Web Parts

IFilterConsumer Uses a provided value from other Web Parts for filtering a view

IParametersInProvider Provides arbitrary input values to other Web Parts

IParametersInConsumer Consumes arbitrary input values from other Web Parts

IParametersOutProvider Provides arbitrary output values to other Web Parts

IParametersOutConsumer Consumes arbitrary output values from other Web Parts

Connection interfaces are provided in complementary pairs that can be implemented to
pass data such as ICellProvider and ICellConsumer. However, connection interfaces can often
allow connections that are not immediately obvious. For example, a Web Part that provides an
entire row can be connected to a Web Part that only consumes a single field. This is because
the Web Part infrastructure implements a selection dialog that allows end users to select which
field from the row will be consumed. This means that there are many possible combinations
of compatible interfaces. Figure 7-1 shows a typical field selection dialog in SPS.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT190

Figure 7-1. Connecting Web Parts in SPS

5750_c07_final.qxd 11/3/05 9:40 PM Page 190

Determining which interfaces are compatible is handled by the Web Part infrastructure
according to several rules. The first, and most obvious, rule is that all complementary inter-
face pairs are compatible. This means that ICellProvider/ICellConsumer, IRowProvider/
IRowConsumer, and IListProvider/IListConsumer are always compatible. For interfaces that
are not complementary, extended connections—known as transformers—are allowed where
they make sense; however, some of these connections are not supported directly in SPS and
can only be achieved when you are editing the page in Microsoft FrontPage. Table 7-2 lists
these interfaces and their restrictions.

Table 7-2. Extended Connection Compatibility

IParameters- IParameters-
IFilterProvider IRowProvider InProvider OutProvider

ICellConsumer SPS1/FP2

IFilterConsumer CPC3 SPS/FP/CPC

IParametersIn-Consumer FP/CPC FP/CPC FP/CPC

1 SPS: Connection creation allowed directly in SPS
2 FP: Connection creation allowed in Microsoft FrontPage
3 CPC: Cross-page connections allowed in Microsoft FrontPage

During the design of your Web Part, you determine the interfaces to implement based
on its intended use. Keep in mind that your Web Part must be easily understood by portal end
users. Your goal is to avoid the need for detailed training or help files associated with your Web
Part. To the greatest extent possible, the purpose of your Web Part should be understood through
its display and the options provided on the connection menu.

Once you have determined which interfaces will be implemented by your Web Part, you
are ready to begin development. You can start your Web Part using the same Web Part templates
that you used in earlier chapters. Although the Web Part templates have some specific templates
available just for connectable Web Parts, they are generally geared toward simple single-value
connections. You will find them lacking if you want to create more sophisticated Web Parts.

Regardless of how you start the project, you must specify the interfaces to implement in your
Web Part. All of the interfaces for connecting Web Parts are located in the Microsoft.SharePoint.➥

WebPartPages.Communication namespace. Declaring that a class implements an interface from
this namespace requires that every method and event in the interface be declared. Each of the
interfaces available for connecting Web Parts has a somewhat differing set of events and meth-
ods; therefore, you should be careful with the declarations. Listing 7-2 shows an example of
declaring the IRowProvider interface in VB .NET.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 191

5750_c07_final.qxd 11/3/05 9:40 PM Page 191

Listing 7-2. Declaring Interfaces

Imports Microsoft.SharePoint.WebPartPages.Communication

<DefaultProperty("Text"), ToolboxData("<{0}:WebPart1

runat=server></{0}:WebPart1>"),

XmlRoot(Namespace:="SPSDataSet")> _

Public Class WebPart1

Inherits Microsoft.SharePoint.WebPartPages.WebPart

Implements IRowProvider

Public Event RowProviderInit(ByVal sender As Object, _

ByVal e As _

Microsoft.SharePoint.WebPartPages.Communication.RowProviderInitEventArgs) _

Implements _

Microsoft.SharePoint.WebPartPages.Communication.IRowProvider.RowProviderInit

Public Event RowReady(ByVal sender As Object, _

ByVal e As _

Microsoft.SharePoint.WebPartPages.Communication.RowReadyEventArgs) _

Implements _

Microsoft.SharePoint.WebPartPages.Communication.IRowProvider.RowReady

End Class

Connection Life Cycle
Correctly implementing the interfaces to support communication is a painstaking process
that you need to understand thoroughly to be successful. Each of the methods and events you
must code are directly connected to the process used by the Web Part framework to connect
the target Web Parts. Before you begin development, you need to examine the sequence of
events that happen when two Web Parts are connected.

Consider the scenario in which two Web Parts are on a page in SPS but are not yet con-
nected. Assume that the Web Parts have implemented complementary interfaces. The exact
interfaces are not critical to the discussion, so I will simply refer to the Web Parts as the provider
part and the consumer part.

The connection process begins when the end user selects to connect the provider and
consumer using the drop-down menu associated with either Web Part. When this happens,
the Web Part infrastructure responds by querying both the provider and consumer Web Parts
to get a reference to interfaces they implement. This information allows the Web Part infra-
structure to begin using the interfaces to create the connection.

Once the Web Part infrastructure has access to the interfaces, the next thing it does is ask the
Web Parts whether they support connecting on the client, the server, or both. This information is
provided to the connecting Web Parts so that they can correctly prepare for the connection.

Once the Web Part architecture determines where the Web Parts run, it connects the Web
Parts. Each Web Part is notified that the connection has taken place and is passed relevant
information regarding the pending data transfer. This way each of the Web Parts can react to
the connection and prepare for the transaction.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT192

5750_c07_final.qxd 11/3/05 9:40 PM Page 192

Once the Web Parts are connected, the infrastructure instructs the Web Parts to fire any
preparatory events. Typically, these events involve broadcasting schema information regard-
ing the transfer to the other Web Part. The provider part Web Part might broadcast a list of field
names that represent the columns in a row, or it may simply send a single field name associ-
ated with a cell depending upon the implemented interface. For its turn, the consumer part
will broadcast similar schema information to specify what data it is expecting to receive.

At this point in the process, the provider Web Part is waiting for some user interaction that
will signal the start of a transfer. Generally, this involves the selection of an item or row. Such a
selection causes the Web Part infrastructure to notify the provider part that the data transfer
has begun. The provider part then fires an event within the consumer part that sends the selected
data. When the consumer part receives the data, it responds by modifying its view in accordance
with its designed functionality. Once the transfer of data is complete, the Web Part infrastruc-
ture redraws both Web Parts. Figure 7-2 shows a diagram of the connection life cycle.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 193

Figure 7-2. The connection life cycle

5750_c07_final.qxd 11/3/05 9:40 PM Page 193

Each of the steps in the connection life cycle is associated with a method or event in the
interface implemented by a Web Part. The process of creating connectable Web Parts is one
of coding the methods and events to achieve the correct functionality. As an example, we’ll
investigate the simplest form of data transfer—a single field. A single field can be transferred
using the complementary interfaces ICellProvider and ICellConsumer.

Registering Interfaces
Before connections can be made between Web Parts, the Web Part infrastructure must know
what interfaces are implemented by each Web Part. Using this information, the Web Part infra-
structure can ensure that only compatible Web Parts are connected. This prevents end users
from making connection errors that could cause strange behavior in the portal.

Web Parts tell the infrastructure about the interfaces they support by overriding the
EnsureInterfaces method. EnsureInterfaces is a member of the WebPart class and is called
by the infrastructure whenever it needs updated information regarding supported interfaces.
Within this method, Web Parts make a call to the RegisterInterface method for each interface
they support regardless of whether the interface is a provider or a consumer. Table 7-3 lists the
parameters for the RegisterInterface method.

Table 7-3. RegisterInterface Parameters

Parameter Type Description

InterfaceName String A friendly name for the interface. This name should be unique
within the Web Part and not contain any special characters
(e.g., MyInterface).

InterfaceType String The text name of the interface (e.g., ICellProvider,
ICellConsumer).

MaxConnections Enumeration The parameter that specifies that the Web Part can connect
to only one Web Part (WebPart.LimitOneConnection) or any
number of parts (WebPart.UnlimitedConnections).

RunAt Enumeration The parameter that specifies whether data is transferred on
the client (ConnectionRunAt.Client), the server
(ConnectionRunAt.Server), or both
(ConnectionRunAt.ServerAndClient).

InterfaceObject Object A reference to the object that implements this interface
(typically Me or this).

ClientReference String A unique identifier used only for client connections. This
name should contain the token _WPQ_, which is replaced
at connection time with a guaranteed unique identifier.

MenuItem String The text that will appear in the connection menu.

Description String A description of the interface.

The ability to register an interface for the purpose of connecting Web Parts is subject to
code access security requirements. By default, Web Part connections are supported in both
the WSS_Minimal and WSS_Medium policies. If you use a custom policy, however, you will have to
add the permission as we discussed in Chapter 5. Because of the potential for an error, you should
call the RegisterInterface method inside of a try/catch block and trap for the SecurityException
class. Listing 7-3 shows an example of calling the RegisterInterface method using C#.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT194

5750_c07_final.qxd 11/3/05 9:40 PM Page 194

Listing 7-3. Registering an Interface

public override void EnsureInterfaces()

{

try

{

RegisterInterface("MyInterface",

"ICellConsumer",

WebPart.UnlimitedConnections,

ConnectionRunAt.Server,

this,

"",

"Get a company identifier from...",

"Receives a company identifier");

}

catch(SecurityException e)

{

//Must implement "WSS_Minimal" or "WSS_Medium"

//Show exception message in a label

lblMessage.Text += e.Message + "
";

}

}

Running on Client or Server
Once the Web Parts have notified the infrastructure that they are connectable, they must spec-
ify whether they can connect on the server, the client, or both. All Web Parts, regardless of the
particular interfaces they implement, must provide this information. The infrastructure queries
the Web Part by calling the CanRunAt method. The Web Part then returns one of the enumer-
ated values ConnectionRunAt.Client, ConnectionRunAt.Server, or ConnectionRunAt.Server➥

AndClient. The following code shows an example in VB .NET.

Public Overrides Function CanRunAt() As ConnectionRunAt

Return ConnectionRunAt.Server

End Function

Although the preceding code is quite simple, some situations may require more process-
ing. For example, pages with an ActiveX component installed for client processing may switch
to server processing if the control is not installed.

Connection Notifications
Once the Web Part infrastructure understands where to connect the parts and on what inter-
faces, the connection is made. Both the provider and consumer Web Parts are notified that the
connection has been established through a call to the PartCommunicationConnect method. This
method passes along relevant information that each Web Part may care to track including a
reference to the other Web Part, the interface that is connected, and where the data transfer
will occur. Table 7-4 lists the arguments of the PartCommunicationConnect method.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 195

5750_c07_final.qxd 11/3/05 9:40 PM Page 195

Table 7-4. PartCommunicationConnect Arguments

Argument Type Description

InterfaceName String A friendly name for the interface. This should be the same
as the value you provided in the RegisterInterfaces
method.

ConnectedPart WebPart A reference to the other Web Part in the connection.

ConnectedInterfaceName String The friendly name of the interface on the other Web Part
in the connection.

RunAt Enumeration Specifies where the data transfer will take place.

When the PartCommunicationConnect method is called, your Web Part should validate all
of the information that it receives. This includes checking to see if the friendly interface name
sent in is the same as the one that was sent out when RegisterInterfaces was called. Addi-
tionally, you should call EnsureChildControl to force the CreateChildControls method to run.
This ensures that your user interface is ready to respond to the data transaction. Listing 7-4
shows an example of coding the PartCommunicationConnect method in VB .NET.

Listing 7-4. Receiving Connection Notification

Public Overrides Sub PartCommunicationConnect(_

ByVal InterfaceName As String, ByVal connectedPart As _

Microsoft.SharePoint.WebPartPages.WebPart, _

ByVal connectedInterfaceName As String, ByVal runAt As _

Microsoft.SharePoint.WebPartPages.Communication.ConnectionRunAt)

'Purpose: To inform this Web Part that the infrastructure has connected it to

'another part

'This part only connects on the server

If runAt = ConnectionRunAt.Server Then

'Add the child controls for the part

EnsureChildControls()

'Increment the connection counter

If InterfaceName = MyInterfaceName Then

intConnectionCount += 1

End If

End If

End Sub

Broadcasting Schema Information
Once the connection is made, each part is allowed to broadcast relevant schema information
to the other part. This broadcast functions to allow each Web Part to receive more detailed

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT196

5750_c07_final.qxd 11/3/05 9:40 PM Page 196

information about the data before it is transferred. Typically this schema information includes
one or more field names that identify the data to be transferred. Web Parts can use this infor-
mation to validate the expected data before the transaction begins.

The Web Part infrastructure starts the broadcasting process by calling the
PartCommunicationInit method on each Web Part involved in the connection. When a Web
Part receives this call, it then executes specific initialization events that broadcast the infor-
mation to interested listeners. The listeners may then take any necessary action to prepare
for the pending data transfer based on the schema information sent.

Up to this point, your Web Parts have behaved largely identically regardless of whether
they were providers or consumers. When it comes to broadcasting initialization events prior
to the actual data transfer, however, each Web Part has its own custom events. This means that
the implementation of the PartCommunicationInit method will be different in each Web Part.

Although the behavior of each Web Part will vary, Microsoft engineers have followed a
convention that dictates events ending with the Init suffix are candidates for firing in the
PartCommunicationInit method. This convention makes it easier to decide how to code the
method. Listing 7-5 shows an example of a Web Part that implements ICellConsumer that
broadcasts schema information via the CellConsumerInit event.

Listing 7-5. Broadcasting Schema Information

public override void PartCommunicationInit()

{

if(m_connectionCount > 0)

{

CellConsumerInitEventArgs initArgs = new CellConsumerInitEventArgs();

initArgs.FieldName = myCellName;

initArgs.FieldDisplayName = myCellTitle;

CellConsumerInit(this, initArgs);

}

}

In many simple Web Parts, the broadcasting of schema information adds little value. If,
for example, a Web Part can only accept a Company Name field, it will be powerless to do any-
thing if it is connected to a Customer Name field instead. Because these situations are possible,
it is important to validate the schema information, but also to provide sufficient error handling
to deal with meaningless values when they are received. Often this is simply a matter of show-
ing no results in the consumer Web Part until a valid value is sent by the provider Web Part.

Exchanging Data
Once the Web Parts have broadcast their schema information, they are ready for the actual
data exchange. The Web Part infrastructure initiates this exchange by calling the
PartCommunicationMain method. This method allows Web Parts to fire any other events that
are necessary to complete the transaction.

Although it is possible for both a provider and consumer Web Part to fire events from the
PartCommunicationMain method, most often you will use it in a provider part to send the actual

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 197

5750_c07_final.qxd 11/3/05 9:40 PM Page 197

data to the consumer part. Following the event naming convention, any event that does not
end with the Init suffix is a candidate for firing in PartCommunicationMain. Listing 7-6 shows
how a Web Part implementing ICellProvider sends its data by firing the CellReady event and
passing the selected value from a ListBox control.

Listing 7-6. Sending Data

Public Overrides Sub PartCommunicationMain()

Dim objReadyArgs As CellReadyEventArgs = New CellReadyEventArgs

'Make sure we are connected and have a selected item in the list

If intConnectionCount > 0 And lstCompanies.SelectedIndex <> -1 Then

'Set the field value

objReadyArgs.Cell = lstCompanies.SelectedItem.Text

'Fire the CellReady event to send the data

RaiseEvent CellReady(Me, objReadyArgs)

End If

End Sub

The event fired in the provider part is implemented by the consumer part. Therefore, when
the provider sends the data, the consumer part receives it and takes action. Listing 7-7 shows
how a consumer might implement the CellReady event and use the passed data value to cre-
ate a set of records from a database.

Listing 7-7. Receiving the Data

public void CellReady(object sender, CellReadyEventArgs cellReadyArgs)

{

string strConn = "Password=" + password + ";Persist Security Info=True;

User ID=" + userName + ";Initial Catalog=" + database + ";

Data Source=" + sqlServer;

//Build SQL statement

string strSQL = "exec CustOrdersOrders '" + cellReadyArgs.Cell + "'";

DataSet dataSet = new DataSet("orders");

//Run the query

try

{

SqlConnection conn = new SqlConnection(strConn);

SqlDataAdapter adapter = new SqlDataAdapter(strSQL,conn);

adapter.Fill(dataSet,"orders");

}

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT198

5750_c07_final.qxd 11/3/05 9:40 PM Page 198

catch(Exception x)

{

lblMessage.Text += x.Message + "
";

}

//Bind to grid

try

{

grdOrders.DataSource=dataSet;

grdOrders.DataMember="orders";

grdOrders.DataBind();

}

catch(Exception ex)

{

lblMessage.Text += ex.Message + "
";

}

}

After the data is transferred, both Web Parts will draw their outputs through the
RenderWebPart method. Whether or not the Web Part is involved in a connection does not
make a difference as to how the output is rendered. In fact, you should remember that all of
the methods that constitute the basic Web Part life cycle do not change. Therefore, everything
you learned in Chapter 5 regarding initializing, loading, child controls, and rendering applies.
When you design your Web Parts, you must combine the basic life cycle with the connection
life cycle to achieve the behavior you want.

Using Transformers
Earlier in the chapter, I presented rules for interface compatibility. In that discussion, I said that
certain interface pairs could be made compatible through the use of transformers. Transform-
ers come into play in cases where a connected Web Part provides or consumes one of several
different fields. In these scenarios, the end user must make a choice that maps the fields from
the connected Web Parts. SPS always presents a visual tool for mapping fields when connected
Web Parts require a transformer.

In order to provide the information necessary to map the fields, connected Web Parts that
require a transformer must override the GetInitEventArgs method. In this method, a connected
Web Part can tell the Web Part infrastructure what fields it supplies or consumes that are avail-
able for mapping. The Web Part infrastructure then uses this information to create the visual
tool presented to the end user.

Each interface that requires a transformer supplies its field information through a class
that inherits from InitEventArgs. Each event argument class accepts the appropriate meta-
data information necessary to describe the available fields—usually in the form of an array of
Strings. This information is then returned from the GetInitEventArgs method to the Web Part
infrastructure. Listing 7-8 shows an example of a Web Part providing field information through
IFilterConsumer.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 199

5750_c07_final.qxd 11/3/05 9:40 PM Page 199

Listing 7-8. Returning Field Data

Public Overrides Function GetInitEventArgs _

(ByVal strInterfaceName As String) As InitEventArgs

'Purpose: Provide a field list to pick from when connecting Web Parts.

'This will be the field that consumes the filter.

'Make sure we are being called on the IFilter interface

If strInterfaceName = "FilterConsumer" Then

'Create an object to hold the field list

Dim objFilterConsumerInitEventArgs As New FilterConsumerInitEventArgs

'The field list is created as an array of Strings

Dim strFieldNames(2) As String

Dim strFieldTitles(2) As String

strFieldNames(0) = "comp"

strFieldNames(1) = "cust"

strFieldNames(2) = "ord"

strFieldTitles(0) = "Company"

strFieldTitles(1) = "Customer"

strFieldTitles(2) = "Order"

'Put the data in the event argument

objFilterConsumerInitEventArgs.FieldList = strFieldNames

objFilterConsumerInitEventArgs.FieldDisplayList = strFieldTitles

'Pass the object back

Return objFilterConsumerInitEventArgs

Else

Return Nothing

End If

End Function

Custom Tool Parts
Throughout your investigation of Web Parts, you have used properties to configure the parts
within SPS. The Web Parts you have created have supported fundamental types such as String
and Boolean. The tool pane in SPS automatically creates the appropriate user interface element—
called a tool part—for these basic properties in the tool pane. For example, the tool pane uses
a text box tool part for String properties and a check box tool part for Boolean properties.

There may be times, however, when you may want to create more complex properties.
In these cases, you may need to create your own custom tool parts to allow the end user to
set the properties of your Web Part. These custom tool parts allow you significant control over
how your Web Parts are configured.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT200

5750_c07_final.qxd 11/3/05 9:40 PM Page 200

Default Tool Parts
As we have seen, every Web Part uses tool parts. By default, the Web Part infrastructure defines
two types of tool parts that are associated with every Web Part: the WebPartToolPart object and
the CustomPropertyToolPart object.

The WebPartToolPart object renders all of the properties associated with the WebPart base
class. The WebPart base class includes fundamental properties such as Title and Name. This
functionality is handled automatically by the base class and the Web Part infrastructure.

Whenever you create a custom property based on supported types such as String, Integer,
and Boolean, the Web Part infrastructure creates the tool parts for these properties using the
CustomPropertyToolPart object. As with the base class properties, the functionality to imple-
ment these tool parts is handled automatically by the Web Part infrastructure. Up to this point,
these interactions have been invisible to your Web Parts.

The WebPart base class is responsible for providing a WebPartToolPart and Custom➥

PropertyToolPart to the Web Part infrastructure. The WebPart base class creates these objects
and sends them to the Web Part infrastructure when the GetToolParts method is called. Although
previously you have never had to write this code, Listing 7-9 shows what the code would look
like if you did have to write it.

Listing 7-9. The Default Implementation of GetToolParts

Public Overrides Function GetToolParts() As ToolPart()

Dim toolParts(1) As ToolPart

Dim objWebToolPart As WebPartToolPart = New WebPartToolPart

Dim objCustomProperty As CustomPropertyToolPart = New CustomPropertyToolPart

toolParts(0) = objWebToolPart

toolParts(1) = objCustomProperty

Return toolParts

End Function

In order to create a custom tool part, you must override the default implementation of
GetToolParts and add your own part to the set of tool parts passed to the Web Part infrastruc-
ture. When you create your own tool part, you create a new class that inherits from the ToolPart
class. Inheriting from the ToolPart class allows you to add the new tool part to the set.
Listing 7-10 shows how the GetToolParts method would appear if you added a new tool part
based on a custom class named Tool.

Listing 7-10. Overriding the GetToolParts Method

Public Overrides Function GetToolParts() As ToolPart()

Dim toolParts(2) As ToolPart

Dim objWebToolPart As WebPartToolPart = New WebPartToolPart

Dim objCustomProperty As CustomPropertyToolPart = New CustomPropertyToolPart

toolParts(0) = objWebToolPart

toolParts(1) = objCustomProperty

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 201

5750_c07_final.qxd 11/3/05 9:40 PM Page 201

'This is where we add our tool part

toolParts(2) = New Tool

Return toolParts

End Function

Creating a Tool Part
As I said earlier, to create a custom tool part, you need to build a new class that inherits from
the ToolPart class. Because a tool part is essentially a specialized Web Part that runs in the tool
pane of SPS, you will find that you use many of the same skills to build a tool part that you
used previously to build Web Parts. You can begin your tool part with a simple class definition
shown in the following code.

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

Public Class Tool

Inherits ToolPart

End Class

Just like a standard Web Part, tool parts must override the CreateChildControls method to
build a user interface. You draw the user interface by overriding the RenderToolPart method in
the same way you would for a Web Part. When the user interface is drawn, the child controls
show up in the property pane underneath the category you designate for the tool part.

What makes a tool part different from a standard Web Part is that it has methods that allow
it to receive events from the property pane in SPS. These events are primarily fired whenever a
user clicks Apply, OK, or Cancel in the tool pane. The ToolPart class allows your custom tool part
to receive these events through the ApplyChanges, CancelChanges, and SyncChanges methods.

The ApplyChanges method is called by the Web Part infrastructure whenever a user clicks
Apply or OK. In this method, you retrieve the new value of the property as it was entered into
the property pane by the end user. You must in turn pass the property to the Web Part so that
it can update its own display. In order to pass a value from the property pane to the Web Part,
you must retrieve a reference to the Web Part using the SelectedWebPart property. The follow-
ing code shows a simple example.

Public Overrides Sub ApplyChanges()

'Move value from tool pane to Web Part

Dim objWebPart As Part = DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

objWebPart.Text = txtProperty.Text

End Sub

After any changes are made in the property pane, the Web Part infrastructure calls the
SyncChanges method. This method is used to pass changes back from the Web Part to the prop-
erty pane. This is necessary because the Web Part and the property pane can be out of sync if
the user cancels an action or if there is a validation error you need to report to the user. The
following code shows a simple example.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT202

5750_c07_final.qxd 11/3/05 9:40 PM Page 202

Public Overrides Sub SyncChanges()

Dim objWebPart As Part = DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

txtProperty.Text = objWebPart.Text

End Sub

The CancelChanges method is called by the Web Part infrastructure whenever a user clicks
Cancel. In this method, you can take action to undo any changes that were made to the Web Part
previously. You can also expect the SyncChanges method to be called after the CancelChanges
method completes. The following code shows a simple example.

Public Overrides Sub CancelChanges()

Dim objWebPart As Part = DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

objWebPart.Text = ""

End Sub

Exercise 7-1: Using Terminal Services
Integrating Microsoft Terminal Services with SPS provides a good mechanism for accessing
legacy applications directly from the portal. Such a solution could mean a significant reduc-
tion in client-side installations and maintenance for older applications. In this exercise, you
will set up Terminal Services and create a Web Part to access an application.

Setting Up Terminal Services
Before you can set up Terminal Services, you need to provide a separate server. Do not attempt
to install Terminal Services on SPSPortal or SPSController because the installation can interfere
with other projects in the book. I have solved this problem by creating a VMware session named
TS2K3. If you are not using a server consolidation product like VMware, however, you will need a
server capable of running Windows 2003.

Installing Terminal Services
Terminal Services should always be installed on the server as the first order of business after
the operating system is installed. This is because applications that you want to access from
Terminal Services must be installed after the server is configured or they will not be available.
The rest of the exercise assumes that you have properly installed and configured Windows
Server 2003, Enterprise Edition and joined it to the sps.local domain.

1. Select Start ➤ Manage Your Server to open the Manage Your Server page.

2. On the Manage Your Server page, click “Add or remove a role” to run the Configure Your
Server Wizard.

3. In the Configure Your Server Wizard, click Next.

4. In the Server Role list, select Terminal Server.

5. Click Next.

6. View the summary screen and click Next.

7. After the installation is complete and the server reboots, click Finish.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 203

5750_c07_final.qxd 11/3/05 9:40 PM Page 203

Installing the Web Client
In order to access Terminal Services through the portal, you will use the web-based client con-
trol that ships with Windows 2003. Web-based access to Terminal Services is not configured by
default. It must be installed separately along with Internet Information Server (IIS).

1. Select Start ➤ Control Panel ➤ Add or Remove Programs.

2. In the Add or Remove Programs dialog, click Add/Remove Windows Components.

3. In the Windows Components Wizard, click Application Server and then the Details
button.

4. In the Application Server dialog, click Internet Information Services and then the
Details button.

5. In the Internet Information Services dialog, click World Wide Web Service and then the
Details button.

6. In the World Wide Web Service dialog, check Remote Desktop Web Connection.

7. Click OK.

8. In the Internet Information Service dialog, click OK.

9. In the Application Server dialog, check ASP.NET and then click OK.

10. In the Windows Components Wizard, click Next.

11. When installation is complete, click Finish.

Testing the Web Client
Once you have installed the web-based Terminal Services client, you can test it from any
browser. The web client installation comes with a default web page that can be used immedi-
ately to access a terminal server. The actual functionality is provided by an ActiveX control
that is automatically downloaded when the page is accessed.

1. Log in to SPSClient.

2. Open an instance of Internet Explorer.

3. Navigate the browser to http://ts2k3/tsweb/default.htm to view the Remote Desktop
Web Connection page.

4. In the Remote Desktop Web Connection page, type TS2K3 into the Server box.

5. In the Size drop-down box select 800 by 600.

6. Click Connect.

7. Use your administrator credentials to log in to TS2K3.

8. Log off of TS2K3.

9. Close Internet Explorer.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT204

5750_c07_final.qxd 11/3/05 9:40 PM Page 204

Configuring Terminal Services
Once you have verified that the web client is working correctly, you will need to configure
Terminal Services for this exercise. By default, Terminal Services always logs remote users into
a desktop session. Additionally, the default configuration always requires the user to enter a
user name and password. In this example, you will configure Terminal Services to provide access
to a single application through a common set of credentials. This will allow you to provide
access to the application through the portal.

1. Select Start ➤ Administrative Tools ➤ Terminal Services Configuration.

2. In the configuration dialog, open the Connections folder.

3. Right-click the RDP-Tcp connection and select Properties from the pop-up menu.

4. On the Environment tab, check the “Override settings from user profile and Remote
Desktop Connection or Terminal Services client” box.

5. In the “Program path and file name” text box, type C:\windows\notepad.exe to make
Notepad the application that runs when a user connects to Terminal Services.

6. On the Logon Settings tab, select the “Always use the following logon information”
option.

7. Enter a user name and password with permission to log on to the server and run the
application.

8. Click OK.

■Note Configuring Terminal Services to run a single application is best done by creating a policy in Active
Directory. You are configuring the server directly to simplify the exercise. Consult the help documentation for
Terminal Services for best practices.

Creating the New Web Page
Although you can use the default web page that installs with the remote desktop connection
components, typically you will want to modify the page. In this exercise, you will create your
own simple ASP.NET page that accepts query string parameters as input. When the parame-
ters are received, you will use ASP.NET to write a client-side script that will use the Terminal
Services ActiveX control.

1. Log in to SPSPortal as the domain administrator.

2. Start Visual Studio .NET.

3. Select File ➤ New Project from the menu.

4. In the Add New Project dialog, open the Visual Basic Projects folder.

5. Select to create a new ASP.NET web application.

6. In the Location text box, type http://ts2k3/SPSTSWeb.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 205

5750_c07_final.qxd 11/3/05 9:40 PM Page 205

■Note Ensure that the wwwroot directory is shared on TS2K3 or Visual Studio will not be able to create the
project.

7. Click OK.

8. In the Solution Explorer, rename WebForm1.aspx to Default.aspx.

9. In the Solution Explorer, open the code view for the page Default.aspx.

10. Modify the Page_Load event to generate the client-side HTML and script as shown in
Listing 7-11.

11. Once the web page is correctly modified, select Build ➤ Build SPSTSWeb from the
menu.

Listing 7-11. Creating the HTML and Script

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

With Response

.Write(vbCrLf)

.Write("<script language=""VBScript"">" + vbCrLf)

.Write("<!--" + vbCrLf)

.Write("Sub StateChange" + vbCrLf)

.Write(" set RDP = Document.getElementById(""MsRdpClient"")" + vbCrLf)

.Write(" If RDP.ReadyState = 4 Then" + vbCrLf)

.Write(" RDP.Server = """ + Request.QueryString("Server") + """" + vbCrLf)

.Write(" RDP.FullScreen = " + Request.QueryString("FullScreen") + vbCrLf)

.Write(" RDP.DesktopWidth = """ + Request.QueryString("DesktopWidth") _

+ """" + vbCrLf)

.Write(" RDP.DesktopHeight = """ + Request.QueryString("DesktopHeight") _

+ """" + vbCrLf)

.Write(" RDP.AdvancedSettings2.RedirectDrives = " _

+ Request.QueryString("RedirectDrives") + vbCrLf)

.Write(" RDP.AdvancedSettings2.RedirectPrinters = " _

+ Request.QueryString("RedirectPrinters") + vbCrLf)

.Write(" RDP.FullScreenTitle = """ + Request.QueryString("Title") + _

"""" + vbCrLf)

.Write(" RDP.Connect" + vbCrLf)

.Write(" End If" + vbCrLf)

.Write("End Sub" + vbCrLf)

.Write("-->" + vbCrLf)

.Write("</script>" + vbCrLf)

.Write(vbCrLf)

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT206

5750_c07_final.qxd 11/3/05 9:40 PM Page 206

.Write("<OBJECT ID=""MsRdpClient"" Language=""VBScript""" + vbCrLf)

.Write("CLASSID=""CLSID:7584c670-2274-4efb-b00b-d6aaba6d3850""" + vbCrLf)

.Write("CODEBASE=""msrdp.cab#version=5,2,3790,0""" + vbCrLf)

.Write("OnReadyStateChange=""StateChange""" + vbCrLf)

.Write("WIDTH=""" + Request.QueryString("DisplayWidth") + """" + vbCrLf)

.Write("HEIGHT=""" + Request.QueryString("DisplayHeight") + """" + vbCrLf)

.Write("</OBJECT>" + vbCrLf)

End With

End Sub

Creating the Web Part
The ASP.NET web application created in the previous steps could be called directly from
any browser to access Terminal Services using the web client. However, you will want to
integrate the functionality into SPS by creating a Web Part that will dynamically build a
hyperlink to call the page. The hyperlink will be created based on several properties of the
Web Part. In this way, you will be able to configure access to Terminal Services using the
properties of the Web Part.

Because you should be reasonably adept at creating the basic framework for a Web Part,
I will not repeat the detailed instructions here. Simply open Visual Studio and create a new
Web Part project using VB .NET. Name the new project SPSTerminal and name the class Client.

Defining the Properties
Your Web Part is limited to creating a simple hyperlink based on the properties necessary to
access the Terminal Services web client. Although there are several properties, each of them
corresponds to a value required by the Terminal Services web client. Add code to your Web
Part to define the properties in Table 7-5.

Table 7-5. Web Part Properties

Name Type Default Value Description

URL String The URL where the web client ASP.NET page is
located

Server String The name of the Terminal Services server

FullScreen Boolean False Determines if the Terminal Services session runs
in full screen mode

DisplayWidth String 100% Specifies the relative width of the session viewer

DisplayHeight String 100% Specifies the relative height of the session viewer

DesktopWidth Integer 800 Specifies the width of the Terminal Services desktop

DesktopHeight Integer 600 Specifies the height of the Terminal Services
desktop

RedirectDrives Boolean False Determines if the client drives are mapped to the
Terminal Services session

RedirectPrinters Boolean True Determines if the client printers are mapped to
the Terminal Services session

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 207

5750_c07_final.qxd 11/3/05 9:40 PM Page 207

Rendering the Web Part
Because you are simply creating a hyperlink as the sole interface element of the Web Part, no
child controls are required. All you have to do is create the hyperlink in the RenderWebPart
method. Add the code in Listing 7-12 to create the hyperlink for the Web Part.

Listing 7-12. Creating the Hyperlink

Protected Overrides Sub RenderWebPart(_

ByVal output As System.Web.UI.HtmlTextWriter)

With output

Dim strConnectURL As String = ""

strConnectURL += URL

strConnectURL += "?Server=" + Server

strConnectURL += "&FullScreen=" + FullScreen.ToString

strConnectURL += "&DeskTopWidth=" + DesktopWidth.ToString

strConnectURL += "&DeskTopHeight=" + DesktopHeight.ToString

strConnectURL += "&DisplayWidth=" + DisplayWidth

strConnectURL += "&DisplayHeight=" + DisplayHeight

strConnectURL += "&RedirectDrives=" + RedirectDrives.ToString

strConnectURL += "&RedirectPrinters=" + RedirectPrinters.ToString

strConnectURL += "&Title=" + Title

.Write("" & _

"Connect to " + Server + "
" + vbCrLf)

End With

End Sub

Deploying the Web Part
Deploying the Terminal Services Web Part is no different than deploying any basic Web Part. No
special permissions are required for the part to run, so you should modify the Web Part description
file appropriately, generate a strong name, build the part, and mark it as safe. You have already per-
formed these steps several times in various exercises, so I will not repeat the steps here.

Once the Web Part is properly compiled, you should be able to add it to a site in SPS. The
Web Part itself is an unassuming hyperlink; however, it should access the Terminal Services
client when properly configured. Set the properties for the Web Part as listed in Table 7-6. Then
click the hyperlink and verify that Notepad starts in a Terminal Services session.

■Note The Remote Desktop ActiveX control must be installed on the client accessing Terminal Services.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT208

5750_c07_final.qxd 11/3/05 9:40 PM Page 208

Table 7-6. Property Settings for the Web Part

Name Value

URL http://ts2k3/SPSTSWeb/Default.aspx

Server ts2k3

FullScreen False

DisplayWidth 100%

DisplayHeight 100%

DesktopWidth 800

DesktopHeight 600

RedirectDrives False

RedirectPrinters True

Exercise 7-2: Connectable Web Parts
Connectable Web Parts are good for allowing end users to create more personalized views of
data without additional programming assistance. Of course, someone still has to create the
original Web Parts. In this exercise, you will create a Web Part that supports two different inter-
faces. These interfaces will allow you to connect the Web Part to custom lists you create in SPS.

Creating the Project
You will be building your Web Part in C#. Therefore, you should start a new Web Part library
project in Visual Studio and name it SPSMultiFace. The Web Part itself will be named Detail.
Once the project is created, take care to modify the Web Part description file and template code
with the new names.

In order to code the project, you will also need to set several references. Your Web Part will
need access to the appropriate namespaces for Single Sign-On (SSO), SQL Server database
access, and Web Part connections. Listing 7-13 shows what your project should look like before
you begin to add code.

Listing 7-13. Starting the Web Part

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.ComponentModel;

using System.Xml.Serialization;

using System.Security;

using System.Security.Permissions;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Utilities;

using Microsoft.SharePoint.WebPartPages;

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 209

5750_c07_final.qxd 11/3/05 9:40 PM Page 209

using Microsoft.SharePoint.WebPartPages.Communication;

using Microsoft.SharePoint.Portal;

using Microsoft.SharePoint.Portal.SingleSignon;

using System.Data;

using System.Data.SqlClient;

namespace SPSMultiFace

{

[DefaultProperty(""),

ToolboxData("<{0}:Detail runat=server></{0}:Detail>"),

XmlRoot(Namespace="SPSMultiFace")]

public class Detail : Microsoft.SharePoint.WebPartPages.WebPart

{

}

}

Implementing the Interfaces
Your Web Part is designed to consume a cell as well as provide a row. Therefore your Detail
class will have to implement ICellConsumer and IRowProvider. You can implement these inter-
faces by adding them to the class declaration. When you add the interfaces, Visual Studio should
automatically offer to add the interface stubs. These stubs will define the events that the inter-
face supports. Listing 7-14 shows how the code should appear with the stubs defined.

Listing 7-14. Adding the Event Stubs

//Inherits WebPart and implements ICellConsumer

public class Detail : Microsoft.SharePoint.WebPartPages.WebPart,

ICellConsumer, IRowProvider

{

public event CellConsumerInitEventHandler CellConsumerInit;

public event RowReadyEventHandler RowReady;

public event RowProviderInitEventHandler RowProviderInit;

}

Defining the Properties
Your Web Part will only use four properties. These properties will not be visible in the property
pane and are used only to hold the connection information for the database. Because you
have implemented properties many times in many Web Parts, the detailed code will not be
repeated here. Instead, create the properties using the information in Table 7-7.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT210

5750_c07_final.qxd 11/3/05 9:40 PM Page 210

Table 7-7. Property Information

Property Type Browsable Description

sqlServer string false The server name where SQL Server is located

database string false The name of the database (e.g., Pubs)

userName string false The user name to access the database

password string false The password for the database

Creating the Child Controls
Your Web Part uses a DataGrid to display book records from the Pubs database. The records
you display will be based on a search parameter received through the ICellConsumer interface.
Once the records are displayed, the grid may in turn provide a row to another Web Part. There-
fore, you have to construct our DataGrid to support row-level selection. Listing 7-15 shows
how to code the CreateChildControls method to create the DataGrid and a Label for messages.

Listing 7-15. Creating Child Controls

//Child Controls

protected DataGrid grdBooks;

protected Label lblMessage;

protected override void CreateChildControls()

{

//Purpose: draw the user interface

grdBooks = new DataGrid();

grdBooks.AutoGenerateColumns=false;

grdBooks.Width=Unit.Percentage(100);

grdBooks.HeaderStyle.Font.Name = "arial";

grdBooks.HeaderStyle.Font.Name = "arial";

grdBooks.HeaderStyle.Font.Bold = true;

grdBooks.HeaderStyle.ForeColor = System.Drawing.Color.Wheat;

grdBooks.HeaderStyle.BackColor = System.Drawing.Color.DarkBlue;

grdBooks.AlternatingItemStyle.BackColor = System.Drawing.Color.LightCyan;

grdBooks.SelectedItemStyle.BackColor=System.Drawing.Color.Blue;

//Add a button to the grid for selection

ButtonColumn objButtonColumn = new ButtonColumn();

objButtonColumn.Text="Select";

objButtonColumn.CommandName="Select";

grdBooks.Columns.Add(objButtonColumn);

//Add data columns

BoundColumn objColumn = new BoundColumn();

objColumn.DataField="title_id";

objColumn.HeaderText="Title ID";

grdBooks.Columns.Add(objColumn);

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 211

5750_c07_final.qxd 11/3/05 9:40 PM Page 211

objColumn = new BoundColumn();

objColumn.DataField="title";

objColumn.HeaderText="Title";

grdBooks.Columns.Add(objColumn);

objColumn = new BoundColumn();

objColumn.DataField="price";

objColumn.HeaderText="Price";

grdBooks.Columns.Add(objColumn);

objColumn = new BoundColumn();

objColumn.DataField="ytd_sales";

objColumn.HeaderText="2003 Sales";

grdBooks.Columns.Add(objColumn);

objColumn = new BoundColumn();

objColumn.DataField="pubdate";

objColumn.HeaderText="Published";

grdBooks.Columns.Add(objColumn);

Controls.Add(grdBooks);

lblMessage = new Label();

lblMessage.Width = Unit.Percentage(100);

lblMessage.Font.Name = "arial";

lblMessage.Text = "";

Controls.Add(lblMessage);

}

Coding the Web Part Life Cycle
Once the child controls are defined, you are ready to code each step in the life cycle of the Web
Part. Remember that a connectable Web Part not only goes through the normal steps such as
OnLoad and RenderWebPart, but it must also properly register its interfaces and respond to con-
nection events. In this section, you will code the life cycle methods in roughly the order they
are called by the Web Part infrastructure.

■Note You may want to refer back to Figure 7-2 during this exercise as an aid in understanding the life cycle.

Registering Interfaces
The first thing your Web Part will do is register its interfaces with the Web Part infrastructure
when the EnsureInterfaces method is called. Because you implement two interfaces, you will
have to make two separate calls to the RegisterInterface method. Listing 7-16 shows how to
code the EnsureInterfaces method.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT212

5750_c07_final.qxd 11/3/05 9:40 PM Page 212

Listing 7-16. Registering Interfaces

//Private member variables

private int m_rowConsumers = 0;

private int m_cellProviders=0;

public override void EnsureInterfaces()

{

//Tell the connection infrastructure what interfaces the Web Part supports

try

{

RegisterInterface("PublisherConsumer_WPQ_",

"ICellConsumer",

WebPart.LimitOneConnection,

ConnectionRunAt.Server,

this,

"",

"Get a publisher name from...",

"Receives a publisher name.");

RegisterInterface("BookProvider_WPQ_",

"IRowProvider",

WebPart.UnlimitedConnections,

ConnectionRunAt.Server,

this,

"",

"Provide a row to...",

"Provides book information as a row of data.");

}

catch(SecurityException e)

{

//Use "WSS_Minimal" or "WSS_Medium" to utilize connections

lblMessage.Text+=e.Message+ "
";

}

}

Run Location
The Web Part infrastructure will query your Web Part to find out where it runs. All of your code
executes on the server. Therefore, add the following simple code to tell the Web Part infrastruc-
ture that your part only runs on the server.

public override ConnectionRunAt CanRunAt()

{

//This Web Part runs on the server

return ConnectionRunAt.Server;

}

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 213

5750_c07_final.qxd 11/3/05 9:40 PM Page 213

Connection Notification
An end user will connect your Web Part with another using the drop-down menu in SPS. When
your part is connected, it will receive notification when the PartCommunicationConnect method
is called. In this method, you will track the number of Web Parts that are connected based on
the interface that is connecting. Add the code from Listing 7-17 to the Web Part.

Listing 7-17. The PartCommunicationConnect Method

public override void PartCommunicationConnect(string interfaceName,

WebPart connectedPart,string connectedInterfaceName,ConnectionRunAt runAt)

{

//Make sure this is a server-side connection

if (runAt==ConnectionRunAt.Server)

{

//Draw the controls for the Web Part

EnsureChildControls();

//Check if this is my particular cell interface

if (interfaceName == "PublisherConsumer_WPQ_")

{

//Keep a count of the connections

m_cellProviders++;

}

if (interfaceName == "BookProvider_WPQ_")

{

//Keep a count of the connections

m_rowConsumers++;

}

}

}

Implementing the Transformers
Both ICellConsumer and IRowProvider are compatible with several different interfaces.
Because of this, the Web Part infrastructure needs to implement a transformer that allows the
end user to map fields in the connected Web Parts. Therefore, your Web Part must tell the Web
Part infrastructure what fields are available for mapping. Add the code from Listing 7-18 for
the GetInitEventArgs method, which is called by the Web Part infrastructure.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT214

5750_c07_final.qxd 11/3/05 9:40 PM Page 214

Listing 7-18. Providing Transformer Metadata

public override InitEventArgs GetInitEventArgs(string interfaceName)

{

//Purpose: provide data for a transformer

if (interfaceName == "PublisherConsumer_WPQ_")

{

EnsureChildControls();

CellConsumerInitEventArgs initCellArgs = new CellConsumerInitEventArgs();

//Field name metadata

initCellArgs.FieldName = "pub_name";

initCellArgs.FieldDisplayName = "Publisher name";

//return the metadata

return(initCellArgs);

}

else if (interfaceName == "BookProvider_WPQ_")

{

EnsureChildControls();

RowProviderInitEventArgs initRowArgs = new RowProviderInitEventArgs();

//Field names metadata

char [] splitter =";".ToCharArray();

string [] fieldNames =

"title_id;title;price;ytd_sales;pubdate".Split(splitter);

string [] fieldTitles =

"Title ID;Title;Price;Sales;Date".Split(splitter);

initRowArgs.FieldList = fieldNames;

initRowArgs.FieldDisplayList=fieldTitles;

//return the metadata

return(initRowArgs);

}

else

{

return null;

}

}

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 215

5750_c07_final.qxd 11/3/05 9:40 PM Page 215

Communicating Schema Information
Before any data can be transferred between Web Parts, the connected parts must exchange
schema information so that they will know what to expect. This schema exchange is accom-
plished when the PartCommunicationInit method is called by the Web Part infrastructure. In
this method, your Web Part fires its init methods to transfer the schema information to the
connected parts. Add the code from Listing 7-19 to transfer the schema information.

Listing 7-19. Sending Schema Information

public override void PartCommunicationInit()

{

if(m_cellProviders > 0)

{

CellConsumerInitEventArgs initCellArgs = new CellConsumerInitEventArgs();

//Field name metadata

initCellArgs.FieldName = "pub_name";

initCellArgs.FieldDisplayName = "Publisher name";

//Fire the event to broadcast what field the Web Part can consume

CellConsumerInit(this, initCellArgs);

}

if(m_rowConsumers>0)

{

RowProviderInitEventArgs initRowArgs = new RowProviderInitEventArgs();

//Field names metadata

char [] splitter =";".ToCharArray();

string [] fieldNames =

"title_id;title;price;ytd_sales;pubdate".Split(splitter);

string [] fieldTitles =

"Title ID;Title;Price;Sales;Date".Split(splitter);

initRowArgs.FieldList = fieldNames;

initRowArgs.FieldDisplayList=fieldTitles;

//Fire event to broadcast what fields the Web Part can provide

RowProviderInit(this,initRowArgs);

}

}

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT216

5750_c07_final.qxd 11/3/05 9:40 PM Page 216

Sending Data
The actual data is transferred between connected parts when the Web Part infrastructure calls
the PartCommunicationMain method. We only have to code this method for the IRowProvider
interface because it must initiate the transfer by firing the RowReady event. This event expects
to send a row of information to a connected part based on a selection made in the DataGrid.
If no selection is made, then a null row is transferred. Add the code from Listing 7-20 to fire
the RowReady event.

Listing 7-20. Sending a Row of Data

public override void PartCommunicationMain()

{

if (m_rowConsumers>0)

{

string status = string.Empty;

DataRow[] dataRows = new DataRow[1];

if(grdBooks.SelectedIndex > -1)

{

//Send selected row

DataSet dataSet = (DataSet)grdBooks.DataSource;

DataTable objTable = dataSet.Tables["books"];

dataRows[0] = objTable.Rows[grdBooks.SelectedIndex];

status = "Standard";

}

else

{

//Send a null row

dataRows[0] = null;

status = "None";

}

//Fire the event

RowReadyEventArgs rowReadyArgs = new RowReadyEventArgs();

rowReadyArgs.Rows=dataRows;

rowReadyArgs.SelectionStatus=status;

RowReady(this,rowReadyArgs);

}

}

Receiving Data
When your Web Part receives data from a cell provider, the CellReady event will fire. Your Web
Part is designed to only run a query when a valid cell is provided by a connected Web Part.
Therefore, all of the database code will be run in this event. Also note that you must implement
the CellProviderInit method because it is part of the ICellConsumer interface, but your Web

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 217

5750_c07_final.qxd 11/3/05 9:40 PM Page 217

Part has nothing to do for this event. Add the code from Listing 7-21 to receive the cell data, run
the query, and populate the grid.

■Note For simplicity, I have hard-coded some database credentials into the code. Be sure to change these
credentials to suit your environment. Also, you can get some “extra credit” by modifying the code to use the
Microsoft SSO service.

Listing 7-21. Returning Book Information

public void CellProviderInit(object sender,

CellProviderInitEventArgs cellProviderInitArgs)

{

//Since we can only consume one kind of cell, nothing can be done here

}

public void CellReady(object sender, CellReadyEventArgs cellReadyArgs)

{

//Purpose: Run the query whenever a new cell value is provided

EnsureChildControls();

//Get Credentials (from SSO in production environment)

userName="sa";

password="";

database="pubs";

sqlServer="(local)";

string strConn = "Password=" + password + ";Persist Security Info=True " +

";User ID=" + userName + ";Initial Catalog=" + database + ";Data Source=" +

sqlServer;

//Build SQL statement

string strSQL;

DataSet dataSet = new DataSet("books");

try

{

strSQL = "SELECT title_id, title, price, ytd_sales, pubdate ";

strSQL += "FROM publishers INNER JOIN titles ";

strSQL += "ON publishers.pub_id = titles.pub_id ";

strSQL += "WHERE (pub_name = '" + cellReadyArgs.Cell.ToString() + " ')";

}

catch

{

lblMessage.Text="Select a value from a connected Web Part.";

return;

}

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT218

5750_c07_final.qxd 11/3/05 9:40 PM Page 218

//Run the query

try

{

SqlConnection conn = new SqlConnection(strConn);

SqlDataAdapter adapter = new SqlDataAdapter(strSQL,conn);

adapter.Fill(dataSet,"books");

}

catch(Exception x)

{

lblMessage.Text += x.Message + "
";

}

//Bind to grid

try

{

grdBooks.DataSource=dataSet;

grdBooks.DataMember="books";

grdBooks.DataBind();

}

catch(Exception ex)

{

lblMessage.Text += ex.Message + "
";

}

}

Rendering the Web Part
Once all of the data is retrieved from the database, you can render the grid. Because you added
a ButtonColumn to the DataGrid, the rows in the grid will be selectable through a hyperlink. If
you connect another Web Part as a row consumer, selecting a row will result in a data transfer.
Add the code from Listing 7-22 to render the Web Part.

Listing 7-22. Rendering the Web Part

protected override void RenderWebPart(HtmlTextWriter output)

{

//Draw the control

grdBooks.RenderControl(output);

output.Write("
");

lblMessage.RenderControl(output);

}

Using the Web Part
Once the Web Part is coded, you may compile it and use it in SPS. Before compiling, be sure
that you have provided a strong name for the Web Part and marked it as safe in the web.config
file. Also note that connecting Web Parts is affected by the current code access security policy.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 219

5750_c07_final.qxd 11/3/05 9:40 PM Page 219

In order to connect Web Parts, you should be sure that you have implemented WSS_Minimal
or WSS_Medium as the policy. Also, don’t forget to restart IIS if you make any changes to
web.config.

Creating the Publishers List
Before you import the Web Part into SPS, you will create a list of publishers that you can use to
provide the search parameter to your Web Part. You will create this list from scratch inside the
portal. Once the list is created, you will add some items for the search.

To create the publishers list, follow these steps:

1. Log in to SPSPortal as a member of the Administrators site group.

2. Navigate to any site you created earlier.

3. In the site, click the Create link to open the Create page.

4. On the Create page, select Custom Lists ➤ Custom List.

5. Name the new list Publishers and click Create.

6. Once the list is created, click “Modify settings and columns” in the Actions list.

7. On the Customize Publishers page, select Columns ➤ Title to modify the one existing
column.

8. On the Change Column page, change the column name to Publisher.

9. Click OK.

10. Click the Home link to return to the site home page.

11. On the home page, select Modify Shared Page ➤ Add Web Parts ➤ Browse.

12. In the Add Web Parts pane, locate the Publishers list and drag it to a zone on the page.

13. Close the Add Web Parts pane.

14. Add the following Publisher items to the Publishers list:

• New Moon Books

• Binnet & Hardley

• Algodata Infosystems

• Five Lakes Publishing

• Ramona Publishers

• GGG&G

• Scootney Books

• Lucerne Publishing

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT220

5750_c07_final.qxd 11/3/05 9:40 PM Page 220

Importing the Web Part
Once the Publishers list is set up, you can import the new Web Part and connect it. The Web
Part will fill the grid based on selections made in the Publishers list.

To import the new Web Part, follow these steps:

1. On the home page, select Modify Shared Page ➤ Add Web Parts ➤ Import.

2. In the Add Web Parts pane, click Browse.

3. Locate the Web Part description file for SPSMultiFace and click Open.

4. Click Upload.

5. Drag the new Web Part from the Add Web Parts pane onto any zone.

6. Using the drop-down list for SPSMultiFace, select Connections ➤ Get a Publisher
Name From ➤ Publishers.

7. In the Edit Connection dialog, select Publisher as the column name to provide.

8. Click Finish.

9. Close the Add Web Parts pane.

10. Select a publisher name from the list and verify that the grid fills with book informa-
tion. Figure 7-3 shows the final site.

Creating the Authors List
The Publishers list uses the ICellConsumer interface. In order to test out the IRowProvider inter-
face, you will need to create a second list. This list will contain authors associated with titles.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 221

Figure 7-3. Connecting the new Web Part

5750_c07_final.qxd 11/3/05 9:40 PM Page 221

To create the Authors list, take these steps:

1. In the site, click the Create link to open the Create page.

2. On the Create page, select Custom Lists ➤ Custom List.

3. Name the new list Authors and then click Create.

4. Once the list is created, click “Modify settings and columns” in the Actions list.

5. On the Customize Authors page, select Columns ➤ Add a New Column.

6. Name the new column Author and then click OK.

7. Click the Home link to return to the site home page.

8. On the home page, select Modify Shared Page ➤ Add Web Parts ➤ Browse.

9. In the Add Web Parts pane, locate the Authors list and drag it to a zone on the page.

10. Close the Add Web Parts pane.

11. Add the following items to the Authors list:

• Title: The Busy Executive’s Database Guide; Author: Bennet

• Title: Fifty Years in Buckingham Palace Kitchens; Author: Blotchet-Halls

• Title: But Is It User Friendly?; Author: Carson

• Title: The Gourmet Microwave; Author: Deface

• Title: Silicon Valley Gastronomic Treats; Author: del Castillo

• Title: Secrets of Silicon Valley; Author; Dull

• Title: The Busy Executive’s Database Guide; Author: Green

• Title: You Can Combat Computer Stress!; Author: Green

12. Using the drop-down menu associated with the Authors list, select Modify Shared
Web Part.

13. Using the drop-down menu associated with the Authors list, select Connections ➤
Get Sort/Filter From ➤ SPSMultiFace.

14. In the Edit Connection dialog, select Title as the SPSMultiFace column to use when
connecting.

15. Click Next.

16. In the Edit Connection dialog, select Title as the Authors list column to use when
connecting.

17. Click Finish.

18. Close the Authors properties pane.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT222

5750_c07_final.qxd 11/3/05 9:40 PM Page 222

19. In the Publishers list, click Algodata Infosystems and verify the grid data appears.

20. In the grid of books, click the Select link associated with the title The Busy Executive’s
Database Guide. Verify that the Authors list is filtered. Figure 7-4 shows the final project.

Exercise 7-3: Custom Tool Parts
Custom tool parts allow you to create specialized user interfaces within the property pane.
These tool parts lend support to properties that go beyond the fundamental data types. In this
exercise, you will create a Web Part with a text property designed to only accept a properly for-
matted phone number as a value.

Building the Basic Web Part
Start this project by creating a new Web Part library in Visual Studio using VB .NET. As always,
clean up the template code and modify the Web Part description file. Name the project SPS-
MaskTool and name the class Part. Additionally, define a text property for the Web Part and
render that text as HTML. Listing 7-23 shows what the Web Part should look like to get started.

Listing 7-23. The Simple Web Part

Imports System

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Xml.Serialization

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 223

Figure 7-4. The completed project

5750_c07_final.qxd 11/3/05 9:40 PM Page 223

Imports Microsoft.SharePoint

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

<DefaultProperty("Text"), ToolboxData("<{0}:Part runat=server></{0}:Part>"),

XmlRoot(Namespace:="SPSMaskTool")> _

Public Class Part

Inherits Microsoft.SharePoint.WebPartPages.WebPart

Dim m_text As String = ""

'Browsable must be False to hide the normal custom property tool part

<Browsable(False), Category("Miscellaneous"), DefaultValue(""),

WebPartStorage(Storage.Personal), FriendlyName("Text"),

Description("Text Property")> _

Property [Text]() As String

Get

Return m_text

End Get

Set(ByVal Value As String)

m_text = Value

End Set

End Property

Protected Overrides Sub RenderWebPart(ByVal output As _

System.Web.UI.HtmlTextWriter)

output.Write(SPEncode.HtmlEncode([Text]))

End Sub

End Class

The Custom Tool Part
Your custom tool part will be built as a separate class that inherits from the ToolPart class. In
this class, you will code the methods to handle events from the Apply, OK, and Cancel buttons.
When the tool part is complete, you will add it to the property pane.

Creating the New Class
Because your custom tool part is defined in a new class, you must add a class to the project.
Fortunately, the Web Part templates provide a template for the custom tool part as well. You
can add this template to your project directly from the menu.

Here is what you need to do to add the new tool part:

1. From the Visual Studio menu, select Project ➤ Add New Item.

2. In the Add New Item dialog, click the Tool Part template.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT224

5750_c07_final.qxd 11/3/05 9:40 PM Page 224

3. Change the name of the new file to Tool.vb.

4. Click Open.

5. From the Solution Explorer, open Tool.vb.

6. Modify the code in Tool.vb to appear as follows:

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

Imports System.Text.RegularExpressions

Public Class Tool

Inherits ToolPart

End Class

Creating the Child Controls
Just like a Web Part, a tool part must create child controls to render in the user interface. In
fact, the code is identical to the code you have created several times in past exercises. In the
custom tool part, you will use a TextBox to accept the user input and a Label to present error
messages if the input is not a valid phone number. Add the code from Listing 7-24 to the tool
part to create these controls.

Listing 7-24. Creating the Child Controls

'Controls to appear in the tool part

Protected WithEvents txtProperty As TextBox

Protected WithEvents lblMessage As Label

Protected Overrides Sub CreateChildControls()

'Purpose: Add the child controls to the Web Part

'Label for the errors

lblMessage = New Label

With lblMessage

.Width = Unit.Percentage(100)

End With

Controls.Add(lblMessage)

'Text Box for input

txtProperty = New TextBox

With txtProperty

.Width = Unit.Percentage(100)

End With

Controls.Add(txtProperty)

End Sub

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 225

5750_c07_final.qxd 11/3/05 9:40 PM Page 225

Coding the Property Pane Events
When the user clicks any of the buttons in the property pane, events are fired in your tool part.
This allows you to use a regular expression to validate the input and modify the Web Part based
on the results. Add the code from Listing 7-25 to implement the event handling for the buttons.

Listing 7-25. Coding the Button Events

Public Overrides Sub ApplyChanges ()

'User pushes "OK" or "Apply"

Try

'Test the input value against the regular expression

Dim objRegEx As New Regex("\b\d{3}-\d{3}-\d{4}\b ")

Dim objMatch As Match = objRegEx.Match(txtProperty.Text)

If objMatch.Success Then

'Move value from tool pane to Web Part

Dim objWebPart As Part = _

DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

objWebPart.Text = txtProperty.Text

lblMessage.Text = ""

Else

lblMessage.Text = "Invalid phone number."

txtProperty.Text = "###-###-####"

End If

Catch x As ArgumentException

End Try

End Sub

Public Overrides Sub SyncChanges ()

'This is called after ApplyChanges to sync tool pane with Web Part

Try

'Test the input value against the regular expression

Dim objRegEx As New Regex("\b\d{3}-\d{3}-\d{4}\b")

Dim objMatch As Match = objRegEx.Match(txtProperty.Text)

If objMatch.Success Then

'Move value from Web Part to tool pane

Dim objWebPart As Part = _

DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

txtProperty.Text = objWebPart.Text

lblMessage.Text = ""

Else

lblMessage.Text = "Invalid phone number."

txtProperty.Text = "###-###-####"

End If

Catch x As ArgumentException

End Try

End Sub

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT226

5750_c07_final.qxd 11/3/05 9:40 PM Page 226

Public Overrides Sub CancelChanges()

'User pushes "Cancel"

Dim objWebPart As Part = DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

objWebPart.Text = ""

txtProperty.Text = "###-###-####"

lblMessage.Text = ""

End Sub

Rendering the Tool Part
Just like a Web Part, a tool part must be rendered. In this case, the tool part overrides the
RenderToolPart method. Other than the name change, the code is identical. Add the following
code to the tool part to render the user interface in the property pane.

Protected Overrides Sub RenderToolPart(ByVal output As HtmlTextWriter)

'Display the existing property

Dim objWebPart As Part = DirectCast(Me.ParentToolPane.SelectedWebPart, Part)

txtProperty.Text = objWebPart.Text

'Draw the tool part

lblMessage.RenderControl(output)

output.Write("
")

txtProperty.RenderControl(output)

End Sub

Adding the Custom Tool Part
Once the tool part is coded, you can add it to the tool pane. The custom tool part is added by
overriding the GetToolParts method. This method is part of the Web Part class, so you will
have to open SPSMaskTool.Part for editing. Once you have this open, add the code from
Listing 7-26 to override the method.

Listing 7-26. Adding the Tool Part to the Property Pane

Public Overrides Function GetToolParts() As ToolPart()

'This code is required because it was contained in the

'method we are overriding. We cannot simply call the base class

'because we can only return a single array, so we have to rebuild it.

Dim toolParts(3) As ToolPart

Dim objWebToolPart As WebPartToolPart = New WebPartToolPart

Dim objCustomProperty As CustomPropertyToolPart = New CustomPropertyToolPart

toolParts(0) = objWebToolPart

toolParts(1) = objCustomProperty

'This is where we add our tool part

toolParts(2) = New Tool

Return toolParts

End Function

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT 227

5750_c07_final.qxd 11/3/05 9:40 PM Page 227

Using the Tool Part
Once the Web Part and tool part are coded, you may compile and use them. Be sure to give the
Web Part a strong name, modify the Web Part description file, and mark the Web Part as safe in
the web.config file. After you have properly deployed the Web Part to the \inetpub\wwwroot\
bin directory, import it into a web site and try the functionality. Figure 7-5 shows the tool part
after an incorrectly formatted property was entered.

CHAPTER 7 ■ ADVANCED WEB PART DEVELOPMENT228

Figure 7-5. The custom tool part

5750_c07_final.qxd 11/3/05 9:40 PM Page 228

The Microsoft Office System

Along with upgrades to the Windows operating systems, upgrades to the Office suite form
the financial backbone of Microsoft. To support this business model, Microsoft has tradition-
ally focused on improving the feature set of the Office suite. Customers were asked to upgrade
based on new fonts, new toolbars, new editing capabilities, and the like. With Office 2003,
Microsoft has changed its focus from features to collaboration. Everything in the Office suite is
designed to allow teams to work together more effectively, and SharePoint Services forms the
foundation for the collaboration. When referring to the combined capabilities of Office 2003,
SharePoint Services, and SharePoint Portal Server (SPS), Microsoft uses the term Office System.

According to Microsoft, the Office System consists of four pillars: Programs, Servers, Ser-
vices, and Solutions. The Programs pillar refers to the applications that make up the Office suite.
This includes Outlook, Word, Excel, PowerPoint, Access, Project, Visio, Publisher, FrontPage,
InfoPath, and OneNote. While many of these products are well known, new products such as
InfoPath have unique integration capabilities that I will discuss later. The Servers pillar refers
to supporting servers that include SharePoint as well as Exchange, Project Server, and Live Com-
munications Server. The Services pillar refers to two services that are provided by Microsoft
across the Internet: Live Meeting and Office Update. Live Meeting allows you to host online
meetings, while Office Update provides patches and service packs for the Office System. Finally,
the Solutions pillar refers to the construction of specific business solutions based on the Office
System. In this chapter, I’ll look at creating business solutions that integrate several of the pil-
lars of the Office System.

Office Integration
As we all know, the Microsoft Office suite is primarily concerned with creating documents.
We also know from our discussions throughout the book that SharePoint Services is primarily
concerned with managing documents. Although much of their value comes from comple-
mentary functionality centered on document creation and management, both Microsoft Office
and SPS have nondocument capabilities. In this section, I’ll show you the document-centric
integration between Office and SharePoint Services and follow it with an overview of addi-
tional integration points.

Document Management
The cornerstone of document management within the Office 2003 system is the document
library. Document libraries are fully integrated with Office 2003. Fundamental document

229

C H A P T E R 8

■ ■ ■

5750_c08_final.qxd 11/3/05 9:38 PM Page 229

management features like check-in, check-out, and versioning are available directly from the
File menu in most products. Additionally, you can access any document library directly from
the Open dialog.

Once SPS is set up with an area taxonomy and document libraries, you can access docu-
ments by selecting File ➤ Open from the main menu of most Office products. However, the
integration with SharePoint Services is not immediately obvious in the Open dialog because
no special icons or options suggest that the document libraries are available. Instead, you can
simply type the URL of the portal site into the dialog to reveal the same area taxonomy that is
present in SPS. Figure 8-1 shows the Open dialog with the area taxonomy displayed.

Because the area taxonomy provides a critical and familiar way to find documents, you
may want to make it more easily accessible to end users. You can do this by adding it to the
Look In list that appears in the Open dialog. Once you add it, end users can just click the icon
to gain immediate access to the area taxonomy.

To add the area taxonomy, follow these steps:

1. From an Office product, select File ➤ Open.

2. In the Open dialog, type http://spsportal into the File Name text box and click Open.

3. When the area taxonomy is displayed, select Tools ➤ Add to My Places from the menu
in the dialog.

4. Locate the reference to the portal in the Look In list.

5. Right-click the icon and select Move Up from the pop-up menu until the icon is at the
top of the list.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM230

Figure 8-1. Viewing the area taxonomy

5750_c08_final.qxd 11/3/05 9:38 PM Page 230

6. When it is positioned correctly, right-click the icon again and select Rename from the
pop-up menu.

7. Name the icon SharePoint Portal.

Using the area taxonomy, you can access any of the libraries that are immediately associated
with an area, but you cannot easily navigate the site structure of the portal. Instead, document
libraries associated with sites are treated as web folders. This means you can access them directly,
if you know the URL. However, you will not find an easy way to manage URLs associated with
sites. The only way to use them with a team is to e-mail them to others, but this is no better than
e-mailing a link to a document on a file server.

When it comes to accessing document libraries associated with sites, users will have an
easier time using SPS to locate the library. From the library, users can then create new docu-
ments or open existing ones. These actions will in turn start the appropriate Office product
to view and edit the document. Later, when the user wants to save the document, Office will
automatically open the correct document library. This approach ensures that users never have
to know complicated URL addresses to access a document.

Document Workspaces
Regardless of how the document is accessed, when it is ultimately opened in a Microsoft Office
product, it will be associated with a document workspace. Document workspaces are SharePoint
Services sites that contain a document library, tasks, links, and other information. Document
workspaces may exist because they were created directly in SPS as a new site, or they may be
created ad-hoc from within an Office product. Because document workspaces provide many
of the capabilities associated with SharePoint Services directly in the Office product, end users
can collaborate without having SPS open alongside Office. This is significant not only because
SharePoint Services capabilities are integrated, but also simply because it requires less screen
real estate.

A good way to create general ad-hoc sites is to create a new site collection in SPS called
“adhoc” under which all ad-hoc sites will be created. Then you can assign users to the Admin-
istrators site group for this master site. Additionally, users may choose to build personal
workspaces beneath My Site. In fact, the first time a user visits My Site, Office will prompt the
user to designate My Site as the default collection for the user’s personal workspaces.

To create a document workspace from Microsoft Word, perform these steps:

1. Log in to SPSClient as a member of the Administrators site group for the site where
the new workspace will be created.

2. Start Microsoft Word 2003.

3. Select File ➤ New from the menu.

4. In the New Document pane, select Templates ➤ On My Computer.

5. In the Templates dialog, click the Memos tab.

6. On the Memos tab, select the Professional Memo template.

7. Click OK.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 231

5750_c08_final.qxd 11/3/05 9:38 PM Page 231

8. From the main menu, select Tools ➤ Shared Workspace.

9. In the Shared Workspace pane, click the Members tab.

10. In the Document Workspace Name box, type Meeting memo.

11. In the Location for New Workspace box, type the address of a site that you have created
already (e.g., http://spsportal/sites/adhoc).

12. Click Create.

The center of document collaboration within Office 2003 is the workspace pane. A workspace
pane is directly associated with a document workspace and will appear whenever a document is
opened from an existing workspace or a new workspace is created. The workspace pane consists
of tabs for the document status, workspace membership, tasks, a list of documents in the work-
space, links, and the document profile. Figure 8-2 shows a typical workspace pane.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM232

Figure 8-2. The Shared Workspace pane

5750_c08_final.qxd 11/3/05 9:38 PM Page 232

The Membership Tab
Once a new workspace is created, portal users can be invited to join the workspace. It is impor-
tant to note that document workspaces created in Office 2003 do not inherit permissions from
the site collection in which they reside. This means that users must be invited to the document
workspace in order to participate. The user who initially creates the workspace typically does this.

These are the steps you would take to invite portal users:

1. In the Shared Workspace pane, click the Members tab.

2. On the Members tab, click the Add New Members link to open the Add New Members
dialog.

3. In the Add New Members dialog, type the e-mail addresses or user names for the por-
tal users you want to invite.

4. Assign the members to a site group for the workspace. Most members will belong to
the Contributors site group.

5. Click Next.

6. Verify the user information is correct and click the Finish button.

7. When you are invited to send an e-mail to the new members, click OK to start Micro-
soft Outlook.

8. Edit the invitation message to your liking and click Send.

The Status Tab
The Status tab in the workspace displays information regarding the status of the current docu-
ment. Status changes can occur, for example, because edits were made to the document that
have not been reflected in the document workspace. When this happens, the Status tab will
notify members of the workspace that there is a difference between the two versions. It will
also present a link to allow the document library version to be updated. Additionally, if a por-
tal user updates the document directly in the library, members of the workspace will be given
a link to get the latest copy.

Of course with this level of flexibility, conflicts are bound to occur. If users make changes
to the same documents that are in conflict with each other, then the Status tab displays a mes-
sage noting the conflict. In this case, you are presented with a set of options for resolving the
conflict. Figure 8-3 shows the available options.

The first option is to merge the changes. In this case, you may view all of the changes and
accept or reject them individually or all at once. The second option is to open both documents
simultaneously and resolve the conflicts by hand. The final option is to simply override one
copy of the document with the other. Once the document conflicts have been resolved, you
can save the document back to the workspace.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 233

5750_c08_final.qxd 11/3/05 9:38 PM Page 233

The Tasks Tab
The Tasks tab in the workspace is used to assign and track tasks associated with the document.
This is especially useful if several people are going to work on preparing a document. In such
a case, you might assign certain sections of the document to a user. Each user can add their
section to the document and track the progress through the task list.

The Documents Tab
The Documents tab in the workspace is used to see all of the documents that are available
in the document library. This is useful when a document is being prepared from a set of sub-
documents. For example, a sales proposal might consist of a product description copied from
a catalog. This description could be excerpted by a member and placed in the library as a sep-
arate document. The team leader could then open the excerpt and add it into the master
document later.

The Links Tab
From the Links tab in the workspace, you can add links for resources associated with the doc-
ument preparation. This is useful when some of the information for the document will come
from other web sites—for example, background information on a customer’s organization.
This way, the document preparation team can lift the text from the site and paste it into the
final document.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM234

Figure 8-3. Conflict resolution options

5750_c08_final.qxd 11/3/05 9:38 PM Page 234

The Document Information Tab
The Document Information tab contains metadata about the current document. This includes
basic information such as who created the document or who modified it. It also allows you
access to the different versions that exist in the document library and a quick link for checking
in/checking out functionality. You can also configure an e-mail alert from this tab to notify you
when the document has changed.

Meeting Workspaces
Although organizations often collaborate around documents, not every meeting results in a
document. Instead, the organization may have a meeting to make a decision, update a project’s
status, or review a sales report. In these cases, people need a different set of tools to facilitate
the meeting.

The Microsoft Office System provides a location specifically designed to track meeting
participants, agendas, and a set of tasks called a meeting workspace. A meeting workspace is
a specialized SharePoint Services site. It can be created directly in SPS or in Microsoft Outlook
as part of a meeting request. Figure 8-4 shows a meeting workspace in SPS.

Although meeting workspaces offer a set of tools for managing information associated
with a meeting, it is important to realize that they are not intended to actually host a meeting.
This means that meeting workspaces should never be confused with the functionality found
in Microsoft Live Meeting or similar competing services like WebEx. In a typical scenario, you
could use Microsoft Live Meeting to host a meeting while tracking the agenda and action items
on the meeting workspace. This way, a complete record is available to the participants after
the meeting is completed.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 235

Figure 8-4. A typical meeting workspace

5750_c08_final.qxd 11/3/05 9:38 PM Page 235

When preparing SPS to allow meeting workspaces, follow the same approach you used
for document workspaces. Allow users to create these workspaces under a site collection.
This way, all portal users can create meeting workspaces as they are needed whenever a
meeting is scheduled in Outlook.

Here are the steps to create a meeting workspace:

1. Log in to SPSClient as a user with permissions to create a new workspace.

2. Open Microsoft Outlook.

3. In Microsoft Outlook, click the Calendar icon.

4. On the calendar, right-click a time slot and select New Meeting Request from the
pop-up menu.

5. Give the new meeting a subject and location.

6. Click the Scheduling tab.

7. Select Add Others ➤ Add from Address Book.

8. In the Select Attendees and Resources dialog, add several users to the meeting request
by double-clicking their names.

9. Click OK when you are done.

10. Click the Appointment tab.

11. Click the Meeting Workspace button.

12. Select to create the workspace in an appropriate location.

13. Click Create.

14. When the new workspace is created, click the Send button to notify the attendees.

When a new meeting workspace is created from Outlook, attendees will receive the tradi-
tional message inviting them to the meeting. The body of the meeting invitation will contain a
link to the meeting workspace so that they can visit it before, during, or after the meeting. This
will allow attendees to upload important documents before the meeting takes place and review
action items after the meeting ends.

Contacts and Calendars
Contacts and calendars in Outlook are fully integrated with SPS. Whenever you encounter a
contact list in SPS, you can import or export contacts with your personal Outlook. Anywhere
you find an event in SPS, you can also export it to your local Outlook calendar. Additionally,
you can link an entire event list as a calendar in your Outlook; you will be able to access it as
a separate folder under the Calendars icon.

Linked Lists
For all of the line-of-business applications that have been created by independent software
vendors (ISVs), Microsoft Excel remains a significant tool for creating and analyzing data. The

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM236

5750_c08_final.qxd 11/3/05 9:38 PM Page 236

use of Excel seems to be a testament to the way most people work. They simply want to grab
a blank piece of paper, write down what they need, analyze it, and make a decision. Often it
appears that line-of-business systems try to make the user conform to the process embodied
in the software instead of the other way around.

It is for this reason that end users should find the list integration capability between Excel
and SPS truly worthwhile. Instead of fighting the way many people work, Excel now lets end
users create a list and then link it to a SharePoint Services site. This link is a simple idea, but it
allows Excel users to continue editing the list directly while the data is available to all portal
users through a public site.

To create and link a list, follow these steps:

1. Log in to SPSClient.

2. Open Microsoft Excel.

3. In Microsoft Excel, set up a simple list with the column headers and data as detailed
here:

• Column headers: Sales Rep, Quarterly Sales

• Row 1 data: Bellotti, 500

• Row 2 data: Mineweaser, 400

• Row 3 data: Hillier, 475

4. Select the entire list you just created.

5. From the menu, select Format ➤ AutoFormat.

6. In the AutoFormat dialog, select the Accounting 1 layout and click OK.

7. Select any cell in the list you just created.

8. From the menu, select Data ➤ List ➤ Create List.

9. When prompted by the Create List dialog, click OK.

10. When the new list is created, the List toolbar should appear. Click the Toggle Total Row
button on the List toolbar.

11. From the List toolbar, select List ➤ Publish List to start the Publish List wizard.

12. In the Publish List wizard, type the URL of a site that you have already created in SPS
where you have permission to add content.

13. Check the “Link to the new SharePoint list” box.

14. In the Name text box, type Sales Performance.

15. Click Next.

16. Verify the data types in your list and click Finish.

17. If you do not have appropriate permissions, you will be prompted with a logon box.
Provide credentials, if necessary, to publish the list.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 237

5750_c08_final.qxd 11/3/05 9:38 PM Page 237

When the list is published to the site, it will not be immediately visible. Instead, it will be
available under the Lists link on the site. If you want to make it visible on the home page, you
must edit the page. The published list can be dragged onto the page from a Web Part gallery
just like any other list.

Whenever you update the list, the changes will be reflected on the SharePoint site if you
click the Synchronize button on the List toolbar. Just like documents, however, the synchro-
nization process can result in conflicts when the data is updated in both Excel and SPS. In these
cases, clicking Synchronize displays a conflict resolution dialog. In this dialog, you can discard
your changes, force your changes, or unlink the list. Figure 8-5 shows a typical conflict resolu-
tion dialog.

Developing Office Solutions
Although the Office 2003 System offers several collaboration features for end users that do not
require any separate development, in order to create more complicated solutions, you will need
to roll up your sleeves and write some code. Office 2003 development is a broad and deep topic,
and complete coverage is beyond the scope of this book. In this section, however, we’ll investigate
several key topics that can be integrated with an organizational solution based on SharePoint
products and technologies.

XML Support
One of the greatest challenges in creating business solutions based on documents has always
been navigating the document structure. In the past, developers have been limited to using
bookmarks and the clumsy Range object to locate key portions of a document through code.
Microsoft has attempted to address this problem by providing XML structural support in the
Office system. This support includes both native XML structures and the ability to use external
schemas to define document structure. Imposing an XML schema on a document causes it to
be well formed and therefore much easier to manipulate through code.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM238

Figure 8-5. Resolving list update conflicts

5750_c08_final.qxd 11/3/05 9:38 PM Page 238

Both Microsoft Word and Excel have the ability to save documents in XML format directly
from the product menu. In Microsoft Word, however, this ability is taken even further through the
use of a native XML structure called WordML. WordML is a detailed XML format that preserves all
native Word document formatting. In this way, you can utilize well-formed XML within Word doc-
uments to easily locate document sections with standard XML processing tools.

In addition to the built-in structure of WordML, you can define your own XML schemas and
impose those schemas upon a Word document. The value of this approach is that you can make
the schema as simple or as complex as you need, and you do not have to impose the schema
upon the entire document. Instead, you can select parts of the document and insert nodes
that will enforce document structure.

Before you can insert nodes into a document, you must define an XML schema and attach
it to a document. Your custom XML schema is defined in an XML Schema Document (XSD)
document according to the schema definition expected by Word. A discussion of the complete
schema definition is beyond the scope of this book, but you can reference it by downloading
the Word developer SDK from http://msdn.microsoft.com. Nonetheless, creating a basic
schema can be straightforward and requires little more than the definition of a set of nodes.
Listing 8-1 shows a simple schema definition for an address label.

Listing 8-1. A Simple Schema

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="urn:schemas-microsoft-com.DataLan.Address"

targetNamespace="urn:schemas-microsoft-com.DataLan.Address"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

id="AddressInfo">

<xsd:element name="Address1" type="xsd:string"/>

<xsd:element name="Address2" type="xsd:string"/>

<xsd:element name="City" type="xsd:string"/>

<xsd:element name="State" type="xsd:string"/>

<xsd:element name="Zip" type="xsd:string"/>

</xsd:schema>

Notice that the schema defines a set of fields for the address label and the data type for
each field. In this case, I have defined a string for each field, but you can also use types such
as integer and boolean. These types are used by Word to validate the structure of the docu-
ment after the schema is attached. The designer can attach schemas to documents directly
from the Word menu.

Here is how to attach a schema:

1. From the menu in Microsoft Word, select Tools ➤ Templates and Add-Ins.

2. In the Templates and Add-Ins dialog, select the XML Schema tab.

3. On the XML Schema tab, click the Add Schema button.

4. Navigate to the XSD file containing the schema you want to load and click Open.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 239

5750_c08_final.qxd 11/3/05 9:38 PM Page 239

Once the schema is attached to a document, you can insert nodes from the task pane. The
top of the task pane has a drop-down menu that allows you to access the XML structure of the
document. In this view, you are shown the available node definitions and can select to insert
them. You can also choose to make the XML structure visible in the document or hide the nodes.
Figure 8-6 shows a mailing label in Microsoft Word built using the schema from Listing 8-1.

A schema can be immediately helpful to an end user. For example, when you are collabo-
rating to create a document, you can easily use the node definitions to assign tasks to others.
Additionally, an attached schema will be used to validate the document structure. Whenever
the entered data violates the schema definition, an error will appear in the document as well
as in the task pane. Figure 8-7 shows an error when a user enters the wrong data type in a field.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM240

Figure 8-6. XML schema visible in Word

Figure 8-7. Displaying schema errors

5750_c08_final.qxd 11/3/05 9:38 PM Page 240

Along with providing structure and validation, an XML schema makes it much easier to
write programs that manipulate document sections. Developers can access the document
sections through the node definitions to create workflow applications or automate processing.
This even includes documents that can fill in their own information.

Smart Documents
With the release of Office 2003, Microsoft has tried to make document-centric development
more attractive by enhancing the Smart Document capability originally introduced in Office
XP. Smart Documents are documents that have a level of situational and contextual awareness.
This means, for example, that a document table with a list of products knows that it is associ-
ated with a product catalog. Furthermore, the information contained in the table is accessible
to programmers in a standardized schema embodied in XML.

The primary characteristic of Smart Documents is that they present a set of controls to a
user based on the XML node that is currently active. These controls typically appear in the task
pane and offer information necessary to complete the active section of the document. Figure 8-8
shows a typical Smart Document with controls visible in the task pane.

Smart Documents are a combination of an XML schema and programming code devel-
oped in C# or VB .NET. They are deployed to end users through an XML expansion pack, which
is a combination of a manifest, an assembly, and a schema. The manifest is an XML file that
tells the Office product what files make up the Smart Document solution. The assembly is the

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 241

Figure 8-8. Accessing Smart Document controls

5750_c08_final.qxd 11/3/05 9:38 PM Page 241

encapsulation of the Smart Document functionality. The schema is the same type of schema
discussed earlier. Creating Smart Documents is about as difficult as creating a basic Web Part.
Not only must you create the functionality and XML files, but you must also deal with code
access security issues.

Preparing the Environment
Before you can begin to create Smart Documents, you must create a development environment.
Although you should already have Visual Studio installed, you must also install the primary
interop assemblies (PIAs) for the target Office product and Smart Tags. Developing Smart Docu-
ments requires the PIAs because Office is still a Component Object Model (COM)–based product.
As a result, you must install the PIAs in order to use the .NET environment with the Office suite.

To install required programmability support, you will need to take these steps:

1. Log in to SPSPortal as a local administrator.

2. Place the Microsoft Office 2003 setup disc in the drive.

3. When prompted by the setup routine, choose to perform a Custom Install.

4. Click Next.

5. On the Custom Setup screen, check the “Choose advanced customization of appli-
cations” box.

6. Click Next.

7. On the Advance Customization screen, expand the tree and choose to install .NET
rogrammability Support for each Office product.

8. Expand the tree for Office Tools and choose to install Microsoft Forms 2.0 .NET Pro-
grammability Support and Smart Tag .NET Programmability Support. Figure 8-9
shows the selections.

9. Click Next.

10. Review the installation options and click the Install button.

Along with the PIAs, you should also install the Office 2003 Smart Document SDK. This
SDK not only contains valuable documentation, but also several tools that you will need to
successfully build Smart Documents. In particular, Smart Documents run as partially trusted
code, so you will have to modify configuration files on the client to trust them. The Office 2003
Smart Document SDK contains a graphical tool that makes it much easier to modify the .NET
configuration for a client.

■Note Do not confuse the client configuration required for Smart Documents with the server configuration
you performed for SPS. Although both client and server use .NET security, the client configuration affects how
local code runs and is not related to the code access security configuration of the server where SPS runs.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM242

5750_c08_final.qxd 11/3/05 9:38 PM Page 242

Relating Schema and Functionality
Once you have set up the development environment, you can begin a new Smart Document
project. The functionality of Smart Documents is created as a .NET assembly that implements
an interface to allow interaction between the assembly and the associated Office product.
Therefore, every Smart Document begins as a class library project in Visual Studio.

In order to participate in the Smart Document life cycle, a class library must implement
the ISmartDocument interface. This interface is contained in the primary Interop assembly for
Smart Tags in the namespace Microsoft.Office.Interop.SmartTag. Therefore, you need to set
a reference to the Microsoft Smart Tags 2.0 Type Library, which is located under the COM tab
in the Add Reference dialog in Visual Studio.

The functionality of the Smart Document is embodied in the assembly, but it is related to
the document itself through the XML schema. The Smart Document examines the document
schema first and then associates the assembly functionality with the nodes according to the
design of your code. As an example, suppose you wanted to create an address label using a
Smart Document that connected to a Microsoft Customer Relationship Management (MSCRM)
system on the back end. Your Smart Document would exist in Word with functionality to search
for a company name and then fill in the rest of the label. Listing 8-2 shows a schema that defines
just the company name and a single address field for simplicity.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 243

Figure 8-9. Installing programmability support

5750_c08_final.qxd 11/3/05 9:38 PM Page 243

Listing 8-2. A Schema for Address Labels

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="urn:schemas-microsoft-com.DataLan.SmartLabelSD"

targetNamespace="urn:schemas-microsoft-com.DataLan.SmartLabelSD"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

id="CompanyName">

<xsd:element name="CompanyName" type="xsd:string"/>

<xsd:element name="AddressBody" type="xsd:string"/>

</xsd:schema>

When coupling the assembly functionality to the document, Word calls into the assembly
through the ISmartDocument interface using information from the schema. This process begins
through a call to SmartDocInitialize, which is the initializing routine for the document. In
this method, you can perform any functions that are required before any other processing.

Building Control Sets
Once the document is initialized, most of the subsequent calls to the assembly are used to
construct the control set that will appear in the task pane of Word. Frankly, the process is ugly,
but it is effective. Essentially the entire user interface is built through late binding with your
assembly, providing all the required information Word needs to populate the task pane. This
process begins when Word calls SmartDocXmlTypeCount, from which you simply return the
number of nodes contained in the XML schema that have controls associated with them. In
this example, you will perform a lookup for the company name and return two address lines,
which may be pasted into a document. Therefore you return the integer value of 2.

After Word has determined how many nodes it must deal with, it calls the assembly again
to determine which nodes will have controls associated with them. This is accomplished by
successive calls to the SmartDocXmlTypeName property. Word will call this function the same
number of times as the value returned from SmartDocXmlTypeCount. Your job is to return the
fully qualified reference to the nodes that will have controls associated with them. The order
of the nodes is unimportant in this method; just return one reference for each call as shown
in the following code.

public string get_SmartDocXmlTypeName(int XMLTypeID)

{

if (XMLTypeID ==1)

{return "urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName";}

if (XMLTypeID ==2)

{return "urn:schemas-microsoft-com.DataLan.SmartLabelSD#AddressBody";}

else {return null;}

}

Once the node references are passed, Word requests a friendly caption for each control set.
This is accomplished by successive calls to the SmartDocXmlTypeCaption property. Because the
node references have been given to Word, the subsequent call order is now important. This is
because the Smart Document infrastructure has established a list of nodes for which it will

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM244

5750_c08_final.qxd 11/3/05 9:38 PM Page 244

build controls sets. In this example, you will always provide information about the CompanyName
node first. The following code shows how to return friendly captions for each control set.

public string get_SmartDocXmlTypeCaption(int XMLTypeID, int LocaleID)

{

if (XMLTypeID ==1){return "Company Name";}

if (XMLTypeID ==2){return "Company Address";}

else {return null;}

}

After the control set is given a caption, the Smart Document infrastructure queries to find
out how many individual controls are associated with each control set. This is done through a
call to the ControlCount property. The infrastructure sends in the fully qualified node and expects
to receive a number in return. The following code shows an example.

public int get_ControlCount(string XMLTypeName)

{

if(XMLTypeName=="urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName")

{return 3;}

if(XMLTypeName=="urn:schemas-microsoft-com.DataLan.SmartLabelSD#AddressBody")

{return 2;}

else {return 0;}

}

Before the actual control set can be built, the Smart Document infrastructure needs to
assign each individual control a unique identifier across all control sets. This is accomplished
by repeated calls to the ControlID property. This property is called for each control that will be
part of the Smart Document. The calls are made by passing in the fully qualified node reference
and an index number. The index is simply the count order for a control set and is not unique,
so you must create a unique number for it.

In this example, the Company Name control set has three controls and the Company
Address control set has two controls. When these control sets are built, the Smart Document
infrastructure calls the ControlID and passes in the ControlIndex and XMLTypeName. Your code
must respond with a unique ControlID. Table 8-1 details the unique ControlID returned for
each possible combination of arguments.

Table 8-1. ControlID Return Values

Control ControlID
Index XMLTypeName Returned

1 urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName 10

2 urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName 20

3 urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName 30

1 urn:schemas-microsoft-com.DataLan.SmartLabelSD#AddressBody 100

2 urn:schemas-microsoft-com.DataLan.SmartLabelSD#AddressBody 200

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 245

5750_c08_final.qxd 11/3/05 9:38 PM Page 245

Generating the unique values is a simple process of operating a mathematical function
on the index. In this case, you are simply multiplying the index by 10 for the first control set
and 100 for the second. The following code shows how it is done.

public int get_ControlID(string XMLTypeName, int ControlIndex)

{

if(XMLTypeName=="urn:schemas-microsoft-com.DataLan.SmartLabelSD#CompanyName")

{return 10*ControlIndex;}

if(XMLTypeName=="urn:schemas-microsoft-com.DataLan.SmartLabelSD#AddressBody")

{return 100*ControlIndex;}

else {return 0;}

}

Along with a unique identifier, the controls are also given unique names that can be asso-
ciated with the document schema. For each ControlID created in the previous step, a name is
requested through a call to the ControlNameFromID property. In this example, you simply append
the ControlID to the base URI of the schema. The following code shows how it is done.

public string get_ControlNameFromID(int ControlID)

{

return "urn:schemas-microsoft-com.DataLan.SmartLabelSD"

+ ControlID.ToString();

}

The next step in building the control sets is to provide a caption for each individual con-
trol. These are generated by your code when the ControlCaptionFromID property is called. The
Smart Document infrastructure calls this property for each unique ControlID you defined ear-
lier. Your code then responds with a friendly caption for each control. At this point, you have
to decide which ControlID will be for what control. You need to remember this throughout the
rest of the project to ensure that the correct control type is rendered with the caption when
you create the controls later. The following code shows how to generate the captions.

public string get_ControlCaptionFromID(int ControlID, string ApplicationName,

int LocaleID, string Text, string Xml, object Target)

{

if(ControlID==10){return "Search Text";} //TextBox

if(ControlID==20){return "Search";} //Button

if(ControlID==30){return "Companies";} //List

if(ControlID==100){return "Addresses";} //List

if(ControlID==200){return "Insert";} //Button

else {return null;}

}

Now that the captions are generated, you have to define the actual control type for each
ControlID. This is accomplished by repeated calls to the ControlTypeFromID property. The process
is similar to defining captions, except you return an enumerated type of Microsoft.Office.➥

Interop.SmartTag.C_TYPE that defines each control type. Using this enumeration, you can define
any basic control you might need. The following code shows how to define the controls.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM246

5750_c08_final.qxd 11/3/05 9:38 PM Page 246

public C_TYPE get_ControlTypeFromID(int ControlID,

string ApplicationName, int LocaleID)

{

if(ControlID==10){return C_TYPE.C_TYPE_TEXTBOX;}

if(ControlID==20){return C_TYPE.C_TYPE_BUTTON;}

if(ControlID==30){return C_TYPE.C_TYPE_LISTBOX;}

if(ControlID==100){return C_TYPE.C_TYPE_TEXTBOX;}

if(ControlID==200){return C_TYPE.C_TYPE_BUTTON;}

else {return 0;}

}

Working with Control Sets
Once the control sets are defined, you may want to populate them with some initial values.
These values are the ones that will appear in the controls whenever their related schema
section becomes active in the document. At the very least, you will want to assign button
captions through the PopulateOther method, but other methods exist in the interface for
each type of possible control.

All of the population methods work in essentially the same way. The ControlID is passed
in along with several arguments that can be set to populate the appropriate control. For exam-
ple, C_TYPE_BUTTON controls and C_TYPE_TEXTBOX controls can have a Text argument passed in.
For C_TYPE_LISTBOX controls and C_TYPE_COMBO controls, you set the value of a list item by using
a 1-based array named List. The following code shows a simple example of setting button
captions and list items.

if(ControlID==20){Text="Lookup";}

if(ControlID==100){Text=addressBody;}

if(ControlID==200)

{

List[1] = "Item 1";

List[2] = "Item 2";

List[3] = "Item 3";

}

When the user interacts with controls in the set, they cause events that are handled by
methods in the ISmartDocument interface. In keeping with the programming model you have
seen throughout this discussion, events are handled in a common location for all controls of
the same type. In order to distinguish which control actually caused the event, the event meth-
ods receive the ControlID of the firing control. Using conditional programming, you can take
action based on the ControlID and the event fired.

Deploying Smart Documents
Smart Documents are deployed through the use of a manifest file that specifies every file con-
tained in the solution. A manifest file is an XML document that contains information about
the assembly, document schema, and other related documents, such as templates necessary
to run your Smart Document. Office 2003 refers to this set of documents and assemblies as an
XML expansion pack. Listing 8-3 shows a complete manifest file that defines an XML expan-
sion pack.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 247

5750_c08_final.qxd 11/3/05 9:38 PM Page 247

Listing 8-3. A Manifest File

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

<version>1.0</version>

<updateFrequency>20160</updateFrequency>

<uri>urn:schemas-microsoft-com.DataLan.SmartLabel</uri>

<solution>

<solutionID>{1F5E8807-262A-4992-A0D0-05033C41EFC0}</solutionID>

<type>smartDocument</type>

<alias lcid="1033">Smart Label</alias>

<documentSpecific>False</documentSpecific>

<targetApplication>Word.Application.11</targetApplication>

<file>

<type>solutionActionHandler</type>

<version>1.0</version>

<filePath>Address.dll</filePath>

<CLSNAME>Address.SmartLabel</CLSNAME>

<managed/>

<runFromServer>True</runFromServer>

</file>

</solution>

<solution>

<solutionID>schema</solutionID>

<type>schema</type>

<alias lcid="1033">Smart Label</alias>

<file>

<type>schema</type>

<version>1.0</version>

<filePath>SmartLabel.xsd</filePath>

</file>

</solution>

</manifest>

The manifest file consists of information that defines the XML expansion pack as a whole
and each constituent of the pack. This information is loaded directly from Word and must be
completely accurate for the solution to run. Unfortunately, the manifest file must be created
by hand, so it is important to understand the various elements that make up the XML struc-
ture. Table 8-2 lists the key elements and a brief explanation of each.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM248

5750_c08_final.qxd 11/3/05 9:38 PM Page 248

Table 8-2. Elements of the Manifest File

Element Description

<version> The version of the solution.

<updateFrequency> The interval for update checks in minutes.

<uri> The schema associated with the solution.

<solutionID> A Globally Unique Identifier (GUID) uniquely identifying the solution.

<type> The type of solution or file.

<alias> A friendly name that appears in Office referencing the solution.

<documentSpecific> If true, this means that this solution is intimately associated with a par-
ticular document type and should never be allowed to attach to other
documents.

<targetApplication> The target for the solution.

<filePath> The complete path to the solution.

<CLSNAME> The fully qualified name of the assembly.

<managed> This indicates this Smart Document solution is .NET based.

<runFromServer> This determines if a solution is downloaded to the client or run in place
on the server.

■Note A complete listing of every possible element is available in the Office 2003 Smart Document SDK.

Once a proper manifest file is created, you can deploy the contents of the file to a central
location. Users may then load the XML expansion pack by selecting Tools ➤ Templates and
Add-Ins from the Word menu. In the Templates and Add-Ins dialog, the XML Expansion Packs
tab allows new packs to be added.

Security Considerations
Even though you correctly create a manifest, schema, and assembly for your XML expansion
pack, the solution will not run on a client machine unless it is trusted. Office 2003 has a spe-
cial security component for managed add-ins called the Visual Studio Tools for Office loader.
This loader handles the security for partially trusted code that runs as part of an Office prod-
uct. The loader works with the .NET security classes to verify the evidence of an assembly
before it is allowed to run.

Configuring the client to trust your Smart Document is similar to configuring SPS to trust
a Web Part, but client configuration poses a separate set of challenges. When you configured
code access security on the server, the configuration could be done once centrally for all por-
tal users. Smart Documents require the configuration of each client machine that will use the
solution. The simplest way to set up configuration for each user to trust your Smart Documents
is to use a strong name for your assembly and digitally sign both the assembly and the manifest.

Generating a strong name for the assembly is identical to generating one for a Web Part.
Digitally signing the assembly, however, requires that you have a digital certificate installed
specifically for signing code. If the certificate is installed, you can use the SignCode.exe utility

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 249

5750_c08_final.qxd 11/3/05 9:38 PM Page 249

to apply the certificate to your assembly. You should use the same certificate to sign the mani-
fest as well. The Office 2003 Smart Document SDK ships with a tool that allows you to sign the
manifest.

If you do not have a digital certificate suitable for signing code, you still have a couple of
options with which to configure security. Your first option is to create your own test certificate
for signing using the MakeCert.exe tool that ships with Visual Studio. The second option—and
the one I will use in the examples—involves modifying the security settings to trust your Smart
Documents based on their file location and disabling the XML signature check.

Disabling the signature check for manifest files is a matter of altering a registry key; however,
if you have the Office 2003 Smart Document SDK installed, you may use the utility available on
the program menu. Configuring trust for the Smart Documents is accomplished by running one
of several wizards also provided by the Office 2003 Smart Document SDK. These wizards allow
you to adjust security for the machine as a whole or just for a particular assembly by selecting
Start ➤ Administrative Tools ➤ Microsoft .NET Framework 1.1 Wizards.

Research Library
Using document workspaces through SharePoint Services helps end users assign tasks and
assemble documents more easily when those documents are primarily built by teams. How-
ever, these collaboration features do not help the individual locate the actual information
required to create the document. Smart Documents certainly help in this area, but Smart Doc-
uments provide only specific information associated with a document field or section. What is
missing from the solution is a general tool that can bring back various types of information.
This is where the Research Library comes into play. The Research Library is a general-purpose
search tool that can search for information in reference books, line-of-business systems, the
Internet, and even SPS. Out of the box, the Research Library provides access to several sources
of information like a dictionary and thesaurus.

The Research Library is available in most of the Office 2003 products and is accessible
by selecting Tools ➤ Research from the menu. Using the Research Library is straightforward
regardless of the source you want to search. The end user simply selects a service and types
a search string into the task pane. The Research Library then searches the selected service for
responses to the search string. The responses vary depending upon the service. The Research
Library might display definitions, alternative word choices, Internet hyperlinks, or any other
kind of appropriate information. In many cases, you can then insert the information directly
into your document. Figure 8-10 shows the Research Library after a typical search.

The initial set of services that ship with Office 2003 are only moderately interesting, but
the true value of the Research Library lies in the fact that you can extend the library to include
SharePoint Services sites or even your own custom services. This is possible because the
Research Library architecture is based on web services. The web services communicate with
the Research Library through a set of XML documents. As long as the correct documents are
exchanged, you can integrate any system with the library. In fact, SPS supports the required
XML schemas so that it can be searched using the library.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM250

5750_c08_final.qxd 11/3/05 9:38 PM Page 250

To search a SharePoint Services site, follow these steps:

1. Open the Research Library in Microsoft Word by selecting Tools ➤ Research.

2. At the bottom of the research pane, click the Research Options link.

3. In the Research Options dialog, click the Add Services button.

4. In the Address box, type the URL http://spsportal/_vti_bin/search.asmx.

5. Click Add.

6. Close the Research Options dialog.

7. In the research pane, select the SPS source from under the All Intranet Sites and
Portals section.

8. Type a search string into the Search For box and click the green arrow.

Building a Research Service
Building your own research service allows you to integrate systems directly with the Research
Library. To construct a research service, you must build a web service to support registering
the service with the library and responding to queries from the library. Both of these activities
are accomplished by passing request/response XML documents between the library and the
service.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 251

Figure 8-10. The Research Library

5750_c08_final.qxd 11/3/05 9:38 PM Page 251

The request/response paradigm allows you to treat the research pane like a web browser.
The difference is that the information is passed as a payload in an XML stream. The schemas
defining these streams are all documented in the Research Library SDK. The SDK itself is not
required to create or deploy a research service, but the schema references are critical to creat-
ing the exact presentation and behavior you want.

Registering a Service

When an end user wants to add a new source to the Research Library, they must provide a URL
that refers to a web service capable of registering the source with the library. The Research Library
expects the web service to expose a function named Registration. This function must accept
a single String argument and return a String result. The registration request is made when the
library passes an XML stream to the Registration method. The method then responds with a
properly formatted XML stream that defines the new research service. Listing 8-4 shows a typ-
ical response from a research service.

Listing 8-4. Registration Response XML Stream

<?xml version="1.0" encoding="utf-8" ?>

<ProviderUpdate xmlns="urn:Microsoft.Search.Registration.Response">

<Status>SUCCESS</Status>

<Providers>

<Provider>

<Message>This is a research library for the CRM system</Message>

<Id>{BC907F3F-D894-42ef-BBC6-C9EE5C0AE46D}</Id>

<Name>CRM</Name>

<QueryPath>http://spsportal/myService/query.asmx</QueryPath>

<RegistrationPath> http://spsportal/myService/registration.asmx

</RegistrationPath>

<AboutPath> http://spsportal/myService/about.asmx </AboutPath>

<Type>SOAP</Type>

<Services>

<Service>

<Id>{351B0D21-9767-4677-9880-361AA722EA1A}</Id>

<Name>Company Lookup</Name>

<Description>Returns address information</Description>

<Copyright></Copyright>

<Display>On</Display>

<Category>BUSINESS_BUSINESS</Category>

</Service>

</Services>

</Provider>

</Providers>

</ProviderUpdate>

The XML response to the Registration method could be completely hard-coded in
a single XML document because none of the values in the stream needs to be calculated. In
practical applications, the location of the web service is likely to change when moving from

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM252

5750_c08_final.qxd 11/3/05 9:38 PM Page 252

development to production, so you typically have to modify the stream at runtime. In most
cases, this means changing the path associated with the <QueryPath>, <RegistrationPath>,
and <AboutPath> elements. The rest of the elements are generally fixed. Table 8-3 lists the key
elements in the registration response stream with a brief description.

Table 8-3. Elements in the Registration Response Stream

Element Description

<ProviderUpdate> The outer envelope of the response. Must refer to the
urn:Microsoft.Search.Registration.Response namespace.

<Status> The result of the registration. May be SUCCESS, ERROR, or
ERROR_NOT_COMPATIBLE.

<Providers> Contains multiple provider registrations.

<Provider> Contains the detailed registration information for a provider.

<Message> A message that will appear when the service is registered.

<Id> A GUID uniquely identifying a provider or service.

<Name> The name of a provider or service.

<RegistrationPath> The complete URL to a web service with a Registration method.

<QueryPath> The complete URL to a web service with a Query method.

<AboutPath> The complete URL to “about” information.

<Type> The communication protocol. Always set to SOAP.

<Services> Contains multiple service descriptions.

<Service> Contains detailed information about a service.

<Description> A description of the service.

<Copyright> A copyright message.

<Display> Determines if service is visible. May be ON, OFF, or HIDDEN.

<Category> The category under which the service will be listed.

■Note A complete listing of every possible element is available in the Research SDK.

Responding to Queries

The registration response stream must specify a complete URL to a web service that contains
a Query method. Just like the Registration method, the Query method accepts an XML stream
as a String argument and returns an XML stream as a String. The Research Library packages
the query in the XML stream along with metadata about the request. When you write the code
for the Query method, you extract the query text from the <QueryText> element of the XML
stream and use it to process the search request.

The basic approach to processing the incoming XML query stream is to load it into an
XmlDocument object. Once the query stream is loaded, you can use the object to select out the
nodes that you need to process the query. Listing 8-5 is a partial listing focused on how to
access the <QueryText> node using VB .NET.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 253

5750_c08_final.qxd 11/3/05 9:38 PM Page 253

Listing 8-5. Processing the XML Query Stream

<WebMethod()>Public Function Query(ByVal queryXml As String) As String

'Load query into new document

Dim objXMLRequest As New XmlDocument

objXMLRequest.LoadXml(queryXml)

'Prepare for parsing

Dim objRequestManager As New XmlNamespaceManager(objXMLRequest.NameTable)

objRequestManager.AddNamespace("ns", "urn:Microsoft.Search.Query")

'Get query string

Dim strQuery = _

objXMLRequest.SelectSingleNode("//ns:QueryText",objRequestManager).InnerText

End Function

Depending upon how you design your service, you may be interested in several other
nodes available in the query stream. The <Name> element contains the name of the application
making the request. This is important if you must customize your response to different Office
products. The <StartAt> element specifies which record to begin with in the result set, and the
<Count> element specifies how many records to return with the result set. These are important
if you are paging your results through multiple responses.

Once you have completed your processing, you must return a result stream to the client
in accordance with the expected XML schema. The Research Library recognizes a general schema
that forms an envelope for the result set and specific schemas to define the query results. The
following code shows a typical envelope for results.

<?xml version="1.0" encoding="utf-8" ?>

<ResponsePacket revision="1" xmlns="urn:Microsoft.Search.Response">

<Response domain="{351B0D21-9767-4677-9880-361AA722EA1A}">

<Range>

</Range>

<Status>SUCCESS</Status>

</Response>

</ResponsePacket>

The response envelope contains the metadata information the Research Library needs to
properly handle the returned results. Most importantly, the <Response> element must contain
a domain attribute that is identical to the <Id> of the service that was originally registered. The
actual query results are then built between the <Range> and </Range> tags.

When the results are written into the stream, the format must be in compliance with the
urn:Microsoft.Search.Response.Content schema. Generally, the process involves creating a new
XmlTextWriter object and painstakingly creating the results one element at a time. The schema,
however, is reasonably flexible and allows you to include things such as images, hyperlinks, and
Text, Copy, and Insert buttons. Listing 8-6 shows a typical result stream returning a single record.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM254

5750_c08_final.qxd 11/3/05 9:38 PM Page 254

Listing 8-6. A Query Response Stream

<?xml version="1.0" encoding="utf-8"?>

<ResponsePacket revision="1" xmlns="urn:Microsoft.Search.Response">

<Response domain="{351B0D21-9767-4677-9880-361AA722EA1A}">

<Range>

<StartAt>1</StartAt>

<Count>1</Count>

<TotalAvailable>1</TotalAvailable>

<Results>

<Content xmlns="urn:Microsoft.Search.Response.Content">

<Heading collapsible="true" collapsed="true">

<Text>DataLan Corporation</Text>

<P>

<Char>170 Hamilton Avenue</Char>

<Actions><Insert/><Copy/></Actions>

</P>

<P>

<Char>White Plains, NY 10601</Char>

<Actions><Insert/><Copy/></Actions>

</P>

</Heading>

</Content>

</Results>

</Range>

<Status>SUCCESS</Status>

</Response>

</ResponsePacket>

Exercise 8-1: Building a Smart Document
Smart Documents can bring significant value to end users. Typically when users create a
document, they start with a template and little else. Generally the information required by
the template is locked in line-of-business systems and is not easily retrieved. In most cases,
end users complete documents by cutting and pasting from line-of-business systems into
Microsoft Word. In this exercise, you will create an invoice using the Northwind database.
Figure 8-11 shows the task pane from the final document with a product name ready to
insert into the invoice.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 255

5750_c08_final.qxd 11/3/05 9:38 PM Page 255

Prerequisites
Before you begin this project, make sure that you have installed the PIAs for Microsoft Word
and Smart Tags 2.0. If you are using the standard configuration described in this book, then
you should install the PIAs on both SPSPortal and SPSClient. The PIAs are required on
SPSClient because this is where you run the completed Smart Document. The PIAs are
required on SPSPortal because this is where you originally installed Visual Studio. You could
optionally install the entire Office suite on SPSPortal to make your exercise easier. Along
with the PIAs, be sure to download and install the Office 2003 Smart Document SDK from
http://msdn.microsoft.com. Finally, you may want to download an appropriate template for
your Smart Document. I found a simple invoice template to use, but it is not required. Even
a blank document will do for the exercise.

Setting Up the Project
Your Smart Document begins by creating a new project in Visual Studio where you can build
the XML expansion pack. In this project, you will build the assembly, create the schema, and
write the manifest. For this exercise, you will write the assembly in VB .NET.

To set up the project, follow these steps:

1. Start Visual Studio and select File ➤ New ➤ Project from the menu.

2. In the Add New Project dialog, click the Visual Basic Projects folder.

3. Create a new Class Library project and name the new project SmartInvoice.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM256

Figure 8-11. The task pane for the exercise

5750_c08_final.qxd 11/3/05 9:38 PM Page 256

4. In the Solution Explorer, rename the Class1.vb file to Northwind.vb.

5. Select Project ➤ Add Reference from the Visual Studio menu.

6. In the Add Reference dialog, click the COM tab.

7. Select to add references to the Microsoft Smart Tags 2.0 Type Library and Microsoft
Word 11.0 Object Library.

8. Click OK.

9. Open the Northwind.vb file. Change the class name and add the import statements
as shown in Listing 8-7.

Listing 8-7. The Initial Code

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports Microsoft.Office.Interop.SmartTag

Imports Word = Microsoft.Office.Interop.Word

Public Class Northwind

End Class

Creating the XML Schema
Before you code the assembly, you must create the XML schema that you will use to map the
assembly functionality to the Smart Document. In this exercise, you are going to map the
product catalog from the Northwind database to the Smart Document. This will include not
only product description information, but prices as well. This will allow you to use some dif-
ferent types of data in the document.

To create the XML schema, follow these steps:

1. In Visual Studio, select Project ➤ Add New Item.

2. In the Add New Item dialog, select XML Schema and name the file SmartInvoice.xsd.

3. Modify the schema file to appear exactly as shown in Listing 8-8.

Listing 8-8. The Schema for the Smart Invoice

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="urn:schemas-microsoft-com.DataLan.SmartInvoice"

targetNamespace="urn:schemas-microsoft-com.DataLan.SmartInvoice"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

id="ProductInfo">

<xsd:element name="ProductID" type="xsd:string"/>

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 257

5750_c08_final.qxd 11/3/05 9:38 PM Page 257

<xsd:element name="ProductName" type="xsd:string"/>

<xsd:element name="QuantityPerUnit" type="xsd:string"/>

<xsd:element name="UnitPrice" type="xsd:double"/>

</xsd:schema>

Creating the Control Sets
Once the schema is created, you can create the control sets associated with each of the XML
nodes in your schema. This process follows the steps outlined earlier in the chapter. You must first
implement the ISmartDocument interface and then code each required property and method. You
will not use every method in the interface, just the ones needed for your specific functionality.

In order to implement the ISmartDocument interface, you should open Northwind.vb in
Visual Studio. On the line directly below the class definition, type Implements ISmartDocument
and hit the Enter key. This should automatically place all of the interface stubs in your code.

Building the User Interface
Building the user interface follows the same life cycle steps that we discussed earlier in the
chapter. In most cases, the code is fairly straightforward. You simply respond to each request
for information made by the Smart Document infrastructure. Initially, you’ll create some
constants to make it easier to handle the node references in the XML schema. The following
code shows the constants to add.

'Variables

Public Const URI As String = "urn:schemas-microsoft-com.DataLan.SmartInvoice"

Public Const PRODUCTID As String = URI & "#ProductID"

Public Const PRODUCTNAME As String = URI & "#ProductName"

Public Const QUANTITYPERUNIT As String = URI & "#QuantityPerUnit"

Public Const UNITPRICE As String = URI & "#UnitPrice"

Dim intSelectedIndex As Integer = 0

Dim objDataSet As DataSet

Specifying the Number of Control Sets

The first piece of information is to specify how many nodes in your schema will have a control
set. In this exercise, all the nodes will have a control set. Therefore, you simply return a fixed
value from the SmartDocXmlTypeCount property. Code the property as follows:

Public ReadOnly Property SmartDocXmlTypeCount() As Integer Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCount

Get

Return 4

End Get

End Property

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM258

5750_c08_final.qxd 11/3/05 9:38 PM Page 258

Specifying Which Nodes Have Control Sets

Once the Smart Document infrastructure knows how many control sets to create, it needs
to know which nodes will have the control sets. It determines this by calling the SmartDoc➥

XmlTypeName property once for each control set. An element name is subsequently returned
for each call. Code the SmartDocXmlTypeName property as shown in Listing 8-9.

Listing 8-9. The SmartDocXmlTypeName Property

Public ReadOnly Property SmartDocXmlTypeName _

(ByVal XMLTypeID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeName

'Returns the the element name

'Order is not important

Get

Select Case XMLTypeID

Case 1

Return PRODUCTID

Case 2

Return PRODUCTNAME

Case 3

Return QUANTITYPERUNIT

Case 4

Return UNITPRICE

End Select

End Get

End Property

Specifying Control Set Captions

For each control set, a caption is assigned by the Smart Document infrastructure. It does
this by calling the SmartDocXmlTypeCaption property for each control set. A text caption is
subsequently returned for each call. Code the SmartDocXmlTypeCaption property as shown
in Listing 8-10.

Listing 8-10. The SmartDocXmlTypeCaption Property

Public ReadOnly Property SmartDocXmlTypeCaption(ByVal XMLTypeID As Integer, _

ByVal LocaleID As Integer) As String Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCaption

'Order must be the same as in Step 2

Get

Select Case XMLTypeID

Case 1

Return "Product ID"

Case 2

Return "Product Name"

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 259

5750_c08_final.qxd 11/3/05 9:38 PM Page 259

Case 3

Return "Quantity per Unit"

Case 4

Return "Unit Price"

End Select

End Get

End Property

Specifying How Many Controls Are in Each Set

The Smart Document infrastructure next needs to know how many controls are in each set.
It determines this by calling the ControlCount property. The control count is subsequently
returned for each call. Code the ControlCount property as shown in Listing 8-11.

Listing 8-11. The ControlCount Property

Public ReadOnly Property ControlCount(ByVal XMLTypeName As String) As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCount

Get

Select Case XMLTypeName

Case PRODUCTID

Return 2

Case PRODUCTNAME

Return 2

Case QUANTITYPERUNIT

Return 2

Case UNITPRICE

Return 2

End Select

End Get

End Property

Specifying Unique IDs for Each Control

In order to track the controls in each set internally, the Smart Document infrastructure needs
to assign them unique identifiers. It does this by calling the ControlID property. An identifier is
returned for each call made. Code the ControlID property as shown in Listing 8-12.

Listing 8-12. The ControlID Property

Public ReadOnly Property ControlID(ByVal XMLTypeName As String, _

ByVal ControlIndex As Integer) _

As Integer Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlID

'ControlIndex is just the index for each set 1,2,3...

'Therefore, we add an arbitrary number to guarantee uniqueness

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM260

5750_c08_final.qxd 11/3/05 9:38 PM Page 260

Get

Select Case XMLTypeName

Case PRODUCTID

Return ControlIndex

Case PRODUCTNAME

Return ControlIndex + 100

Case QUANTITYPERUNIT

Return ControlIndex + 200

Case UNITPRICE

Return ControlIndex + 300

End Select

End Get

End Property

Adding the Controls to the Schema

The Smart Document infrastructure adds the controls to the schema so that they can be used
with the document. It does this by creating a unique node name for each control through calls
to the ControlNameFromID property. A node name is returned for each call. You can code the
ControlNameFromID property as shown here:

Public ReadOnly Property ControlNameFromID(ByVal ControlID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlNameFromID

Get

Return URI & ControlID.ToString

End Get

End Property

Specifying Individual Control Captions

The Smart Document infrastructure assigns individual captions to each control in the set.
It does this by calling the ControlCaptionFromID property. Then a caption is returned for each
call. You can code the ControlCaptionFromID property as shown in Listing 8-13.

Listing 8-13. The ControlCaptionFromID Property

Public ReadOnly Property ControlCaptionFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object) _

As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCaptionFromID

Get

Select Case ControlID

Case 1

Return "Product ID"

Case 2, 102, 202, 302

Return "Insert"

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 261

5750_c08_final.qxd 11/3/05 9:38 PM Page 261

Case 101

Return "Product Name"

Case 201

Return "Quantity Per Unit"

Case 301

Return "Unit Price"

End Select

End Get

End Property

Specifying the Type for Each Control

The Smart Document infrastructure needs to determine what types of controls make up each
set. It uses the ControlTypeFromID property to determine this. A control class is returned for
each call. You can code the ControlTypeFromID property as shown in Listing 8-14.

Listing 8-14. The ControlTypeFromID Property

Public ReadOnly Property ControlTypeFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer) _

As Microsoft.Office.Interop.SmartTag.C_TYPE Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlTypeFromID

Get

Select Case ControlID

Case 1

Return C_TYPE.C_TYPE_COMBO

Case 2, 102, 202, 302

Return C_TYPE.C_TYPE_BUTTON

Case 101, 201, 301

Return C_TYPE.C_TYPE_TEXTBOX

End Select

End Get

End Property

Handling the Controls
Once the control sets are created, you can fill them with the initial values that will appear in
the task pane. For buttons, this is a simple matter of setting the caption text, but for your lists
and text boxes, you want to extract information from the Northwind database. Start by coding
the PopulateOther method to place captions on the button as shown in Listing 8-15.

Listing 8-15. Setting Button Captions

Public Sub PopulateOther(ByVal ControlID As Integer, _

ByVal ApplicationName As String, _

ByVal LocaleID As Integer, ByVal Text As String, _

ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateOther

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM262

5750_c08_final.qxd 11/3/05 9:38 PM Page 262

'Set control values

Select Case ControlID

Case 2, 102, 202, 302

Text = "Insert"

End Select

End Sub

Filling the List

In this exercise, you provide a list of product IDs to begin. A user can select one of these entries
to start filling in the invoice. However, this assumes that you are dealing with users who know
the product IDs well and prefer to work that way. In other applications, you might choose to
use a product name as the starting point.

You can access the Northwind database in the PopulateListOrComboContent method.
Most of the code here is standard data access code. Note, however, that you populate the list
by referencing the List argument. You also tell the list how many items it contains by using
the Count argument. Finally, you indicate that the first item in the list is selected through the
InitialSelected argument. Add the code from Listing 8-16 to code this method.

Listing 8-16. Populating the List

Public Sub PopulateListOrComboContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef List As System.Array, ByRef Count As Integer, _

ByRef InitialSelected As Integer) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateListOrComboContent

Select Case ControlID

Case 1

'Set up connection string from custom properties

Dim strPassword As String = ""

Dim strUserName As String = "sa"

Dim strDatabase As String = "Northwind"

Dim strSQLServer = "SPSPortal"

Dim strConnection As String = "Password=" & strPassword

strConnection += ";Persist Security Info=True;User ID=" + strUserName

strConnection += ";Initial Catalog=" + strDatabase

strConnection += ";Data Source=" + strSQLServer

'Create SQL String

Dim strSQL As String = "SELECT ProductID, ProductName, " & _

"QuantityPerUnit, UnitPrice FROM Products"

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 263

5750_c08_final.qxd 11/3/05 9:38 PM Page 263

'Try to run the query

With New SqlDataAdapter

objDataSet = New DataSet("root")

.SelectCommand = New SqlCommand _

(strSQL, New SqlConnection(strConnection))

.Fill(objDataSet, "Products")

End With

'Fill List

Dim index As Integer = 0

Dim objTable As DataTable = objDataSet.Tables("Products")

Dim objRows As DataRowCollection = objTable.Rows

Dim objRow As DataRow

'Set the number of items in the list

Count = objTable.Rows.Count

For Each objRow In objRows

index += 1

List(index) = objRow.Item("ProductID")

Next

'Select the first item

InitialSelected = 1

End Select

End Sub

Populating the Text Boxes

After a product ID is selected, the remaining control sets are populated based on the value
selected in the list. This allows the user to review the value before inserting it into the docu-
ment. The text boxes are populated through calls to the PopulateTextboxContent method. Add
the code in Listing 8-17 to retrieve the values from the DataSet and place them in the appro-
priate text boxes.

Listing 8-17. Populating the Text Boxes

Public Sub PopulateTextboxContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, _

ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef Value As String) Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateTextboxContent

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM264

5750_c08_final.qxd 11/3/05 9:38 PM Page 264

'Variables for insert text

Dim txtProductName As String

Dim txtQuantityPerUnit As String

Dim txtUnitPrice As String

'Get values based on Product ID selection

If objDataSet.Tables.Count > 0 Then

txtProductName = _

objDataSet.Tables("Products").Rows.Item(intSelectedIndex) _

.Item("ProductName").ToString

txtQuantityPerUnit = _

objDataSet.Tables("Products").Rows.Item(intSelectedIndex). _

Item("QuantityPerUnit").ToString

txtUnitPrice = _

objDataSet.Tables("Products").Rows.Item(intSelectedIndex). _

Item("UnitPrice").ToString

End If

'Set control values

Select Case ControlID

Case 101

Value = txtProductName

Case 201

Value = txtQuantityPerUnit

Case 301

Value = txtUnitPrice

End Select

End Sub

Handling Events

Your Smart Document needs to react when a new product ID is selected or when text is inserted
in the document. You can code events for both the buttons and the list to capture user actions.
When the buttons are clicked, you insert text into the document. When the list selection changes,
you trap the index so that you can use it to fill the other controls with appropriate information.
Add the code from Listing 8-18 to handle the events.

Listing 8-18. Handling Events

'List

Public Sub OnListOrComboSelectChange(ByVal ControlID As Integer, _

ByVal Target As Object, _

ByVal Selected As Integer, ByVal Value As String) Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.OnListOrComboSelectChange

intSelectedIndex = Selected - 1

End Sub

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 265

5750_c08_final.qxd 11/3/05 9:38 PM Page 265

'Buttons

Public Sub InvokeControl(ByVal ControlID As Integer, _

ByVal ApplicationName As String, _

ByVal Target As Object, ByVal Text As String, _

ByVal Xml As String, ByVal LocaleID As _

Integer) Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.InvokeControl

Dim objRange As Word.Range

objRange = CType(Target, Word.Range)

'Create insert text from a text control based on which button is pushed

Select Case ControlID

Case 2

Dim intIndex As Integer = _

objRange.XMLNodes(1).SmartTag.SmartTagActions(1).ListSelection

objRange.XMLNodes(1).Text = "Product " & _

objDataSet.Tables("Products").Rows.Item(intSelectedIndex).Item("ProductID")

Case 102, 202, 302

objRange.XMLNodes(1).Text = _

objRange.XMLNodes(1).SmartTag.SmartTagActions(1).TextboxText

Case 203

End Select

End Sub

Deploying the Smart Document
In order to deploy your Smart Document solution, you must create a manifest file and config-
ure security. In this exercise, you will keep things simple by deploying directly from the \bin
directory where you compile the assembly. You will create a manifest that will be placed in the
same directory, and set up your machine to trust the file location.

Creating the Manifest
As we discussed earlier in the chapter, the manifest file contains the details regarding the con-
tents of the XML expansion pack. Using Visual Studio, add a new XML file named manifest.xml
to the project. Modify the file to appear exactly as shown in Listing 8-19.

Listing 8-19. The Manifest File

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

<version>1.0</version>

<updateFrequency>20160</updateFrequency>

<uri>urn:schemas-microsoft-com.DataLan.SmartInvoice</uri>

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM266

5750_c08_final.qxd 11/3/05 9:38 PM Page 266

<solution>

<solutionID>{BDE88D2F-FA67-4890-A674-A2BEE936A1A4}</solutionID>

<type>smartDocument</type>

<alias lcid="1033">Smart Invoice</alias>

<documentSpecific>False</documentSpecific>

<targetApplication>Word.Application.11</targetApplication>

<file>

<type>solutionActionHandler</type>

<version>1.0</version>

<filePath>SmartInvoice.dll</filePath>

<CLSNAME>SmartInvoice.Northwind</CLSNAME>

<managed/>

<runFromServer>True</runFromServer>

</file>

</solution>

<solution>

<solutionID>schema</solutionID>

<type>schema</type>

<alias lcid="1033">Smart Invoice</alias>

<file>

<type>schema</type>

<version>1.0</version>

<filePath>SmartInvoice.xsd</filePath>

</file>

</solution>

</manifest>

Configuring Security
Normally when you distribute an XML expansion pack, you need to digitally sign the manifest
file and the assembly. For this exercise, however, you will disable the signature check for the man-
ifest and the assembly. Disabling the manifest check is simple if you have installed the Office
2003 Smart Document SDK. A tool is available directly from Start ➤ All Programs ➤ Microsoft
Office 2003 Developer Resources ➤ Microsoft Office 2003 Smart Document SDK ➤ Tools ➤ Dis-
able XML Expansion Pack Manifest Security. This tool should be run on SPSClient. In order to
trust the assembly, you must configure the .NET security for the SPSClient. Once again, you
will rely on tools available in the SDK.

To trust the assembly, follow these steps:

1. Copy the assembly named SmartInvoice.dll and the manifest file into a directory on
SPSClient.

2. From SPSClient, select Start ➤ Administrative Tools ➤ Microsoft .NET Framework 1.1
Wizards.

3. In the .NET Wizards window, click Trust an Assembly.

4. In the Trust an Assembly wizard, select “Make changes to this computer” and click the
Next button.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 267

5750_c08_final.qxd 11/3/05 9:38 PM Page 267

5. Browse to the directory where you copied the project files, locate the assembly named
SmartInvoice.dll, and click Next.

6. Move the slider up to Full Trust and then click Next.

7. Verify the settings and click Finish.

■Note By default, the version number of your assembly is incremented each time you compile it. As a
result, you have to repeat these steps each time the assembly is rebuilt. You can remedy this behavior by
replacing the wildcard characters in the version number found in the AssemblyInfo file.

Loading the XML Expansion Pack
Once the security configuration is complete, you are ready to load the XML expansion pack
into Word. Because you intend to run the pack from the \bin directory, copy the schema and
manifest file into the \bin directory with the assembly file. Once the three files are together in
the same directory, you can use the XML expansion pack. If you have selected a template to
use with the XML expansion pack, you can open it now in Word. Otherwise, just open a blank
document.

To load the XML expansion pack, follow these steps:

1. From Word, select Tools ➤ Templates and Add-Ins.

2. In the Templates and Add-Ins dialog, click the XML Expansion Packs tab.

3. On the XML Expansion Packs tab, click Add.

4. Navigate to the directory where you copied the project files and locate the manifest
file you created earlier.

5. Click Open.

6. When you receive a security warning about the unsigned manifest, click No.

7. In the Templates and Add-Ins dialog, click OK to finish loading the schema and then
open the task pane.

8. In the task pane, select the check box entitled XML Structure.

9. Using the list of available nodes, add a single node of each type to the document.

10. Once you have added nodes, select Document Actions from the drop-down menu
in the task pane.

11. Place the document cursor in the ProductID node. You should see a list of product
codes in the task pane.

12. Select a product ID and click Insert.

13. Now place the document cursor in the ProductName node. The text box should auto-
matically fill with the associated product name.

14. Click Insert to add the product name to the document.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM268

5750_c08_final.qxd 11/3/05 9:38 PM Page 268

Exercise 8-2: Building a Research Service
Building a custom research service allows you to integrate information from line-of-business
systems with the task pane of Office 2003 products. This integration has the potential to improve
end-user productivity by placing key information about products, customers, and so on in close
proximity with the documents that are being created. In this exercise, you will create a custom
research service that displays publisher names and addresses from the Pubs database.

Prerequisites
When SPS is installed, it prevents Visual Studio from accessing the site for development. Addi-
tionally, the security restrictions that SharePoint Services places on the site can prevent web
applications and web services from running normally. Therefore, your best bet is to use a com-
pletely separate server running Internet Information Server (IIS) for all of your web services.
For this exercise, however, you will create a new site on SPSPortal for the research service.

To create this new web site, you will need to perform these steps:

1. Log in to SPSPortal as the local administrator.

2. Select Start ➤ Administrative Tools ➤ Internet Information Services (IIS) Manager.

3. In the IIS Manager, expand the tree until the Web Sites folder is visible.

4. Right-click the Web Sites folder and select New ➤ Web Site. This will start the web site
wizard.

5. In the Description text box, type Research and then click Next.

6. In the “TCP port this web site should use (Default 80)” text box, type 8888 and then
click Next.

7. Click Browse to search for a new directory.

8. In the Browse for Folder dialog, select the root of the C: drive and click the Make New
Folder button.

9. Name the new folder ResearchWeb and click OK.

10. Finish the rest of the wizard to create the new web site.

11. Close the IIS Manager.

Starting the Project
Custom research services are built on top of web services. The fundamental structure of a
service requires a Registration and a Query web method. The bulk of the programming work
is parsing the incoming request stream and providing an appropriate response stream.

Here is what you need to do to begin the project:

1. Select File ➤ New ➤ Project from the Visual Studio menu.

2. In the New Project dialog, click the Visual C# Projects folder.

3. In the Templates window, select ASP.NET Web Service.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 269

5750_c08_final.qxd 11/3/05 9:38 PM Page 269

4. Make sure the web service is designated to be built on the correct web site, name the
new project ResearchPubs, and click OK.

5. When the project is created, open Service1.asmx.

6. The web service must reference the urn:Microsoft.Search namespace and needs sev-
eral using statements so that it can access the database and parse XML. The code in
Listing 8-20 shows how the beginning of your class file should appear.

Listing 8-20. Starting the Project

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Configuration;

using System.IO;

using System.Xml;

namespace ResearchPubs

{

[WebService(Namespace="urn:Microsoft.Search")]

public class Service1 : System.Web.Services.WebService

{

Creating the Registration Response
When the research service is registered, it must respond with an appropriate XML stream.
Because much of the response is boilerplate, you use an XML document as a template for the
response. Before you begin to code the Registration method, you need to create the template.
Add a new XML file to your project named RegistrationResponse.xml. Modify the template to
appear as shown in Listing 8-21.

Listing 8-21. The Response Template

<?xml version="1.0" encoding="utf-8" ?>

<ProviderUpdate xmlns="urn:Microsoft.Search.Registration.Response">

<Status>SUCCESS</Status>

<Providers>

<Provider>

<Message>This is a research service for publisher information</Message>

<Id>{DEA2797E-DEDC-4a7d-AEB5-DD8DF82F753F}</Id>

<Name>Publishers</Name>

<QueryPath/>

<RegistrationPath/>

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM270

5750_c08_final.qxd 11/3/05 9:38 PM Page 270

<AboutPath/>

<Type>SOAP</Type>

<Services>

<Service>

<Id>{3C927E62-566D-4193-AF40-B0CA3E4F3E00}</Id>

<Name>Publisher Lookup</Name>

<Description>Returns address information for a publisher</Description>

<Copyright></Copyright>

<Display>On</Display>

<Category>BUSINESS_BUSINESS</Category>

</Service>

</Services>

</Provider>

</Providers>

</ProviderUpdate>

Once the template is written, you are ready to code the Registration method. This
method loads the template and then modifies the <RegistrationPath/>, <QueryPath/>, and
<AboutPath/> elements to reflect the true location of the service. When you create a research
service for distribution, you will probably want to make this code more portable. In this exer-
cise, you have hard-coded some path information. Add the code in Listing 8-22 to complete
the Registration method.

■Note The input argument of the Registration method must be named registrationxml or the XML
data sent from Office will not reach the method. Office 2003 expects this exact name for the argument.

Listing 8-22. The Registration Method

[WebMethod()]public string Registration(string registrationxml)

{

//Key path information

string templatePath =

HttpContext.Current.Server.MapPath(".").ToString()

+ "\\RegistrationResponse.xml";

string servicePath = "http://spsportal:8888/ResearchPubs/Service1.asmx";

//Load template

XmlDocument outXML = new XmlDocument();

outXML.Load(templatePath);

//Prepare to modify template

XmlNamespaceManager manager =

new XmlNamespaceManager(outXML.NameTable);

manager.AddNamespace("ns", "urn:Microsoft.Search.Registration.Response");

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 271

5750_c08_final.qxd 11/3/05 9:38 PM Page 271

//Modify XML

outXML.SelectSingleNode("//ns:QueryPath", manager).InnerText = servicePath;

outXML.SelectSingleNode("//ns:RegistrationPath", manager).InnerText _

= servicePath;

outXML.SelectSingleNode("//ns:AboutPath", manager).InnerText = servicePath;

return outXML.InnerXml.ToString();

}

Creating the Query Response
After the service is registered with the Research Library, new queries will be made by calls to
the Query method. The response you formulate will be based on a search of the Pubs database
using the <QueryText> element passed in by the Research Library. The stream is contained in
an XML envelope that you will create as a template. Although the envelope is fairly simple, you
must ensure that the domain attribute of the <Response> element is identical to the <Id> ele-
ment for the <Service> defined in the registration response template. Add a new XML file to
your project named QueryResponse.xml and modify it to appear as shown in Listing 8-23.

Listing 8-23. The Query Response Envelope

<?xml version="1.0" encoding="utf-8" ?>

<ResponsePacket revision="1" xmlns="urn:Microsoft.Search.Response">

<Response domain="{3C927E62-566D-4193-AF40-B0CA3E4F3E00}">

<Range>

</Range>

<Status>SUCCESS</Status>

</Response>

</ResponsePacket>

Coding the Query Method
Your Query method will be responsible for parsing the <QueryText> element and packaging the
results for return to the Research Library. The actual database query will be handled by a sepa-
rate function. The basics of the Query method are similar to those in the Registration method.
You parse the incoming XML and build the outgoing XML based on a template. Add the code
from Listing 8-24 to create the Query method.

■Caution The input argument of the Query method must be named queryXml or the XML data sent from
Office will not reach the method. Office 2003 expects this exact name for the argument.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM272

5750_c08_final.qxd 11/3/05 9:38 PM Page 272

Listing 8-24. The Query Method

[WebMethod()]public string Query(string queryXml)

{

//The query text from the Research Library

string queryText="";

//Key path information

string templatePath =

HttpContext.Current.Server.MapPath(".").ToString()

+ "\\QueryResponse.xml";

//Load incoming XML into a document

XmlDocument inXMLDoc = new XmlDocument();

try

{

if (queryXml.Length > 0)

{

inXMLDoc.LoadXml(queryXml.ToString());

//Prepare to parse incoming XML

XmlNamespaceManager inManager =

new XmlNamespaceManager(inXMLDoc.NameTable);

inManager.AddNamespace("ns", "urn:Microsoft.Search.Query");

inManager.AddNamespace _

("oc", "urn:Microsoft.Search.Query.Office.Context");

//Parse out query text

queryText = inXMLDoc.SelectSingleNode _

("//ns:QueryText", inManager).InnerText;

}

}

catch{queryText="";}

//Load response template

XmlDocument outXML = new XmlDocument();

outXML.Load(templatePath);

//Prepare to modify template

XmlNamespaceManager outManager =

new XmlNamespaceManager(outXML.NameTable);

outManager.AddNamespace("ns", "urn:Microsoft.Search.Response");

//Add results

outXML.SelectSingleNode("//ns:Range",outManager). _

InnerXml = getResults(queryText);

//Return XML stream

return outXML.InnerXml.ToString();

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 273

5750_c08_final.qxd 11/3/05 9:38 PM Page 273

Packaging the Results
The actual result set that your service returns to the Research Library must be contained inside
of an XML stream that complies with the expected schema. Therefore, you must loop through
every record returned from the query and write out the XML elements to contain them. This is
mostly a matter of carefully coding the XML construction. Add the code from Listing 8-25 to
build the results.

Listing 8-25. Packaging the Result Set

public string getResults(string queryText)

{

//Credentials

string userName="sa";

string password="";

string database="pubs";

string sqlServer="(local)";

//Build connection string

string strConn = "Password=" + password +

";Persist Security Info=True;User ID=" + userName +

";Initial Catalog=" + database + ";Data Source=" + sqlServer;

//Build SQL statement

string strSQL = "SELECT pub_name, city, state FROM Publishers " +

"WHERE pub_name LIKE '" + queryText + "%'";

DataSet dataSet = new DataSet("publishers");

//Run the query

SqlConnection conn = new SqlConnection(strConn);

SqlDataAdapter adapter = new SqlDataAdapter(strSQL,conn);

adapter.Fill(dataSet,"publishers");

//Build the results

StringWriter stringWriter = new StringWriter();

XmlTextWriter textWriter = new XmlTextWriter(stringWriter);

DataTable dataTable = dataSet.Tables["publishers"];

DataRowCollection dataRows = dataTable.Rows;

textWriter.WriteElementString("StartAt", "1");

textWriter.WriteElementString("Count", dataRows.Count.ToString());

textWriter.WriteElementString("TotalAvailable", dataRows.Count.ToString());

textWriter.WriteStartElement("Results");

textWriter.WriteStartElement _

("Content", "urn:Microsoft.Search.Response.Content");

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM274

5750_c08_final.qxd 11/3/05 9:38 PM Page 274

foreach(DataRow dataRow in dataRows)

{

///Heading

textWriter.WriteStartElement("Heading");

textWriter.WriteAttributeString("collapsible", "true");

textWriter.WriteAttributeString("collapsed", "true");

textWriter.WriteElementString("Text", dataRow["pub_name"].ToString());

//City

textWriter.WriteStartElement("P");

textWriter.WriteElementString("Char", dataRow["city"].ToString());

textWriter.WriteStartElement("Actions");

textWriter.WriteElementString("Insert", "");

textWriter.WriteElementString("Copy", "");

textWriter.WriteEndElement();

textWriter.WriteEndElement();

//State

textWriter.WriteStartElement("P");

textWriter.WriteElementString("Char", dataRow["state"].ToString());

textWriter.WriteStartElement("Actions");

textWriter.WriteElementString("Insert", "");

textWriter.WriteElementString("Copy", "");

textWriter.WriteEndElement();

textWriter.WriteEndElement();

textWriter.WriteEndElement();

}

textWriter.WriteEndElement();

textWriter.WriteEndElement();

textWriter.Close();

return stringWriter.ToString();

}

Using the Custom Service
Using the service is a matter of registering the service and sending a query. Registering always
requires you to know the URL of the web service. Once registered, the service will be available
in the research pane.

To use the new service, take these steps:

1. Open the Research Library in Microsoft Word by selecting Tools ➤ Research from
the menu.

2. At the bottom of the research pane, click the Research Options link.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM 275

5750_c08_final.qxd 11/3/05 9:38 PM Page 275

3. In the Research options dialog, click Add Services.

4. In the Address box, type the URL http://spsportal:8888/ResearchPubs/Service1.asmx.

5. Click Add and accept any additional prompts.

6. Close the Research Options dialog.

7. In the research pane, select the service source from under the All Business and
Financial Sites section.

8. Type a search string into the Search For box and click the green arrow. Figure 8-12
shows the final project.

CHAPTER 8 ■ THE MICROSOFT OFFICE SYSTEM276

Figure 8-12. The final project

5750_c08_final.qxd 11/3/05 9:38 PM Page 276

Programming SharePoint
Services

Throughout our investigation of SharePoint Services, we have found many different ways to
use the built-in features to solve business problems; however, Microsoft has not provided all
of the capabilities you are likely to need. As soon as you roll out SharePoint Portal Server (SPS),
your end users will begin to point out the weaknesses in the product. Some of the more obvi-
ous weaknesses include lack of support for workflow, difficulty in navigating site collections,
and cumbersome task management.

The solution to these missing pieces is to extend the capabilities of SharePoint Services.
Fortunately, Microsoft has spent a significant amount of time developing .NET namespaces
and web services for SharePoint Services. This comprehensive set of namespaces allows you
programmatic access to a significant portion of SharePoint Services.

The SharePoint Services object model is extensive, to say the least. There are 18 namespaces
within the object model and dozens of classes covering most of the features of SharePoint Ser-
vices. The depth and breadth of the architecture makes it impractical to study the object model
directly. Instead, it is better to use the object model to solve specific problems. In this chapter,
you will get started using these namespaces by creating solutions to some of the fundamental
weaknesses in SharePoint Services.

Document Workflow
Workflow is truly a necessity for a system like Office 2003, and its absence from SharePoint
Services is significant. What makes the situation worse is the fact that SharePoint Portal Server
2001 (SPS2001) had a workflow engine—albeit a simple one. This means that users of SPS2001
may see the lack of workflow as an indication that SPS2003 is a lesser product.

On the positive side, you can reproduce the workflows that were available in SPS2001
using the SharePoint Services object model. This object model will allow you to capture events
associated with a document library and respond to those events by moving documents, send-
ing mail, or other actions.

■Note If you want to move beyond basic workflow to automate more complex processes, you may find
that SharePoint Services does not offer enough functionality. In these cases, you will want to investigate the
use of third-party workflow engines. My favorite engine is K2.net 2003 available at www.k2workflow.com.

277

C H A P T E R 9

■ ■ ■

5750_c09_final.qxd 11/3/05 9:35 PM Page 277

Capturing Events
You begin developing document workflow by trapping events that occur in a document library.
To capture events, you must perform a series of configuration and programming tasks. These
tasks include enabling event handlers, creating the event-handling class, and connecting the
class to a target document library.

Enabling Event Handlers
Before you begin to receive the events, however, you have to enable document events for
libraries associated with your SharePoint installation.

To enable document library events, follow these steps:

1. Log in to SPSPortal as the local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Central
Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and Vir-
tual Server Configuration ➤ Configure Virtual Server Settings from the Virtual Server
List.

4. On the Virtual Server List page, select the link for the site where you have installed
SharePoint Services (typically Default Web Site).

5. On the Virtual Server Settings page, select Virtual Server Management ➤ Virtual Server
General Settings.

6. On the Virtual Server General Settings page, in the Event Handlers section, select to
turn on event handlers.

7. Click OK.

Creating the Event Handler
Once event handlers are enabled for document libraries, you may trap them by creating a cus-
tom class library that implements the Microsoft.SharePoint.IListEventSink interface. This
interface has only one member, the OnEvent method. This method is called whenever a trap-
pable event occurs in a targeted document library and receives an SPListEvent object that
describes the event through the SPListEventType enumeration. Table 9-1 lists the events that
are trapped by the OnEvent method.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES278

5750_c09_final.qxd 11/3/05 9:35 PM Page 278

Table 9-1. Document Library Events

Event Description

SPListEventType.CheckIn Document is checked into the library

SPListEventType.CheckOut Document is checked out of the library

SPListEventType.Copy Document is copied

SPListEventType.Delete Document is deleted

SPListEventType.Insert Document is added to the library

SPListEventType.Move Document is moved to another library

SPListEventType.UncheckOut Check-out is overridden by an administrator

SPListEventType.Update Document is edited or the status changes

Typically, when you code the OnEvent method, you use conditional programming to trap
the event of interest. In the branch logic, you can then take appropriate action to respond to
the event. Listing 9-1 shows a simple Select-Case structure that allows a class to trap any event
fired by a document library.

Listing 9-1. Trapping Library Events

Public Sub OnEvent(ByVal listEvent As Microsoft.SharePoint.SPListEvent) _

Implements Microsoft.SharePoint.IListEventSink.OnEvent

Dim objWriter As StreamWriter

objWriter = New StreamWriter("c:\events.txt", False)

Select Case listEvent.Type

Case SPListEventType.CheckIn

objWriter.WriteLine("CheckIn")

Case SPListEventType.CheckOut

objWriter.WriteLine("CheckOut")

Case SPListEventType.Copy

objWriter.WriteLine("Copy")

Case SPListEventType.Delete

objWriter.WriteLine("Delete")

Case SPListEventType.Insert

objWriter.WriteLine("Insert")

Case SPListEventType.Invalid 'Not used

Case SPListEventType.Move

objWriter.WriteLine("Move")

Case SPListEventType.UncheckOut

objWriter.WriteLine("UncheckOut")

Case SPListEventType.Update

objWriter.WriteLine("Update")

End Select

objWriter.Close()

End Sub

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 279

5750_c09_final.qxd 11/3/05 9:35 PM Page 279

Impersonating a User Identity
Although the basics of coding the class are simple, there is one wrinkle when implementing
it in production. Event handling classes run in the context of the Internet Information Server
(IIS) Application Pool Identity. This identity typically has little permission and cannot access
objects in SharePoint Services. You can find out what account is running the application pool
using the IIS Manager.

Here are the steps to follow to view the Application Pool Identity:

1. Log in to SPSPortal as the local administrator.

2. Select Start ➤ Administrative Tools ➤ Internet Information Services (IIS) Manager.

3. In the Internet Information Services (IIS) Manager dialog, expand the tree and open
the Application Pools folder.

4. Right-click the MSSharePointPortalAppPool node and select Properties from the pop-
up menu.

5. Click the Identity tab.

■Note If you have set up your test environment in accordance with this book, your Application Pool Identity
will be the local administrator for SPSPortal. Although this is fine for the test environment, you may want to
consider changing it for production systems. You can change the identity in the SPS Central Administration
pages in the same way you initially did during setup.

Because the Application Pool Identity does not generally have permission to access the
SharePoint Services namespaces necessary to manage the document workflow, you need to
change the identity under which the event handler runs. You can do this by retrieving a new
Windows token for an account that has the appropriate permissions and creating a new
System.Security.Principal.WindowsIdentity object. A WindowsImpersonationContext object
is then created to build a context under which the handler can run. Listing 9-2 shows how to
create the new context in VB .NET using the Windows API Function LogonUser.

Listing 9-2. Changing the Identity Context

Dim objContext As WindowsImpersonationContext

Dim objToken As New IntPtr(0)

Dim ID As WindowsIdentity

Const LOGON32_PROVIDER_DEFAULT As Integer = 0

Const LOGON32_LOGON_NETWORK As Integer = 3

'Logon using the new credentials

objToken = IntPtr.Zero

Dim blnReturn As Boolean = _

LogonUser ("administrator", "sps", "password", _

LOGON32_LOGON_NETWORK, _

LOGON32_PROVIDER_DEFAULT, objToken)

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES280

5750_c09_final.qxd 11/3/05 9:35 PM Page 280

'Create the new identity context

ID = New WindowsIdentity(objToken)

objContext =ID.Impersonate

'Handle library events here

'Tear down context

objContext.Undo

While impersonating a user identity is useful in many SharePoint programming scenarios,
you will find that it does not work properly in every case. Certain parts of the SharePoint object
model simply do not support impersonation. Even though you execute the code shown in List-
ing 9-2, you may still receive an Access Denied error. In these cases, your only choice may be to
change the Application Pool Identity account; however, this should never be done lightly. If you
raise the privileges of the Application Pool Identity, then all Web Parts in your SharePoint solu-
tion will gain these privileges and your system will be vulnerable to malicious code.

In addition to challenges accessing the SharePoint object model, you will also find that
using impersonation to access a SQL Server database can be problematic. In most scenarios,
you will receive an Access Denied error when trying to authenticate an impersonated account
against a SQL Server database. The best solution to this problem is to use standard security
instead of impersonation to access the database or to grant the Application Pool Identity
account very limited rights.

Connecting to the Target Library
Once the class is written, you are ready to build it and connect it to a target library. Event
handling classes must be placed in the Global Assembly Cache (GAC) to function correctly,
and assemblies in the GAC require strong names. Therefore, you need to create a key pair for
the class and reference the key pair in the AssemblyInfo file. These steps will not be repeated
here because you have performed them several times when you were building Web Parts in
the earlier chapters.

After you have given the assembly a strong name and compiled it, you may place it in the
GAC. Although a special utility called gacutil.exe is available for adding assemblies to the GAC,
all you really need to do is drag the assembly to C:\Windows\assembly and drop it. This direc-
tory contains the GAC and is outfitted with a special shell extension that will automatically add
your assembly to the GAC.

Once the assembly is properly installed in the GAC, you can connect it to a target docu-
ment library. Connecting the event handler to a library is accomplished from within SPS itself.
You must navigate to the target library and select to change the advanced settings. The connec-
tion is made by specifying the full strong name for the assembly in the form
Assembly,Version,Culture,PublicKeyToken.

The required format is identical to the format you have already used to mark Web Parts
as safe in the web.config file. However, you must be very careful to type in the string correctly
and observe case-sensitivity with the assembly and class name. Any mistake in the string will
cause SharePoint Services to throw an error.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 281

5750_c09_final.qxd 11/3/05 9:35 PM Page 281

Here is what you need to do to connect the event handler to a library:

1. Log in to SPS as a member of the Administrator site group.

2. Navigate to a document library from which you want to receive events.

3. Click the Modify Settings and Columns link in the Actions list.

4. On the Customize Library page, select General Settings ➤ Change Advanced Settings.

5. On the Document Library Advanced Settings page, locate the Event Handler section.

6. In the Assembly Name text box, type the full, case-sensitive strong name of the assem-
bly. The following code shows an example:

LibraryEvents,Version=1.0.0.0,Culture=Neutral,

PublicKeyToken=b2bb66c9e13ee2f9

7. In the Class Name text box, type the full, case-sensitive name of the handling class. The
following code shows an example:

LibraryEvents.Handler

■Note The Properties field is optional and may contain any text. This value is available in the event handler
from the SinkData property of the SPListEvent object, which is discussed momentarily.

8. Click OK.

9. Restart IIS.

Manipulating Documents
After you have trapped the document library events, you will want to respond by taking pro-
grammatic action on the targeted document. The SharePoint Services namespace contains
classes that allow you access to library structures, document properties, and document actions.
Using these classes, you can detect a wide variety of user actions, from document changes to
approvals and rejections. Your event handler can then complete the workflow by moving or
copying files based on these user actions.

Referencing Event Information
Once an event is received by your handling class, you will immediately want to know key
information about the event such as what document caused it to fire. The OnEvent method
receives an SPListEvent object that contains references to many of the objects that you will
need to respond to user-generated events. Table 9-2 lists each property of the SPListEvent
class with a brief explanation.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES282

5750_c09_final.qxd 11/3/05 9:35 PM Page 282

Table 9-2. Properties of the SPListEvent Class

Property Type Description

Type Returns the type of event that was trapped.

ListID System.Guid Returns the Globally Unique Identifier (GUID) of the document
library where the event occurred.

Site Returns the parent site object containing the document library
that caused the event. This is useful if the same handler is con-
nected to multiple libraries.

WebUrl String Returns the absolute URL of the site where the event occurred.

SinkData String The value of the user-defined text entered in the Properties text
box when the event handler is initially connected to the docu-
ment library. This is useful if the same handler is connected to
multiple libraries.

Title String The title of the document library that raised the event.

PropertiesBefore Returns a set of key-value pairs that represents the state of the
document before the event was fired.

PropertiesAfter Returns a set of key-value pairs that represents the state of the
document after the event is fired.

UrlAfter String Returns the site-relative URL of the document after the event is
fired. The document URL can change based on user actions such
as document rejection.

UrlBefore String Returns the site-relative URL of the document before the event
was fired.

UserDisplayName String Returns the display name of the user whose actions fired the
event.

UserID Int32 Returns the ID of the user whose actions fired the event.

UserLoginName String Returns the user name of the user whose actions fired the event.

If you examine the properties returned by the SPListEvent object, you will notice that it
does not have a property to return the document that caused the event to fire. In workflow
applications, however, you will almost always manipulate the document in response to an
event. Retrieving a reference to the document itself is actually accomplished through the SPWeb
object in conjunction with the SPListEvent object. The following code shows how to return
a reference to the document that caused the event to fire.

Dim objSite As SPWeb = listEvent.Site.OpenWeb

Dim objFile As SPFile = objSite.GetFile(listEvent.UrlAfter)

Accessing Document Properties
Once you have retrieved a reference to the SPFile object, you can use it to access a multitude
of properties for the target document. These properties may subsequently be the target of
changes generated by an event-handling class. You may choose, for example, to change the
Approval Status property based on some user action.

File properties come in three main categories that are each accessed in a different way.
Some document properties like Name, Author, and Title are accessible directly as properties
of the SPFile object. Other properties that represent document metadata are available only

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 283

5750_c09_final.qxd 11/3/05 9:35 PM Page 283

through a Hashtable object. Still other properties, such as Approval Status, are available only
by accessing the SPListItem object that contains the file data in the library list. Accessing the
properties that are available directly from the SPFile object is simple. The properties are avail-
able immediately upon retrieving a reference to the target document. The other categories of
properties, however, take a little more effort.

The Properties collection of the SPFile object contains a set of key-value pairs that repre-
sent document metadata. Most of the metadata is of limited use, but you can access the values
of custom columns in the document library using this collection. In order to access this set of
properties, you must use a Hashtable object. Listing 9-3 shows the code required to print out
the metadata values to a file.

Listing 9-3. Writing Out Metadata Values

objWriter = New StreamWriter("c:\events.txt", False)

'Get document associated with this event

Dim objSite As SPWeb = listEvent.Site.OpenWeb

Dim objFile As SPFile = objSite.GetFile(listEvent.UrlAfter)

'List the metadata

Dim objHashTable As System.Collections.Hashtable = objFile.Properties

Dim objKeys As System.Collections.ICollection = objHashTable.Keys

Dim objKey As Object

For Each objKey In objKeys

objWriter.WriteLine(objKey.ToString & ": " & _

objFile.Properties(objKey.ToString).ToString)

Next

Metadata properties contain many values associated with the document as it relates to
the web site along with any custom columns you have defined in the library. Although you
are focused on using the SPFile object for documents in libraries, this metadata can also
be retrieved for web pages on a site. Listing 9-4 shows a typical set of key-value pairs for a
Microsoft Word document stored in a document library. Take special note of the Status
property, which is a custom property defined just for this particular document library.

Listing 9-4. Typical Metadata Values for a Word Document

vti_categories:

vti_author: SPS\administrator

Status: Editor Reviewed

vti_modifiedby: SPS\administrator

vti_nexttolasttimemodified: 11/1/2003 7:27:18 AM

vti_filesize: 20480

vti_approvallevel:

vti_cachedtitle:

vti_timelastmodified: 11/1/2003 8:52:10 AM

vti_title:

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES284

5750_c09_final.qxd 11/3/05 9:35 PM Page 284

vti_docstoreversion: 2

vti_sourcecontrolcookie: fp_internal

vti_sourcecontrolversion: V2

vti_timecreated: 11/1/2003 7:27:18 AM

vti_cachedcustomprops: vti_approvallevel

vti_categories vti_assignedto vti_title Status

vti_assignedto:

vti_docstoretype: 0

Some of the document properties that are of value to us in designing workflow can only
be accessed through the SPListItem object that contains the document. The SPListItem class
represents a single row in the document library. Using this object, you can access the values
of all of the columns in the document library. Listing 9-5 shows how to write these values out
to a file.

Listing 9-5. Accessing SPListItem Fields

Dim objListItem As SPListItem = objFile.Item

Dim objFields As SPFieldCollection = objListItem.Fields

Dim objField As SPField

For Each objField In objFields

objWriter.WriteLine(objField.Title & ": " & _

objListItem.Item(objField.Title).ToString)

Next

Probably the most significant field in the SPListItem object is the Approval Status field. This
field can have a value of 0, 1, or 2 to represent status values of Approved, Rejected, or Pending,
respectively. This field will be the foundation of many workflow processes that rely upon docu-
ment approval by multiple people in an organization. Along with this field you can access several
other valuable properties including the same custom fields that we accessed using the Hashtable
approach. Listing 9-6 shows a typical set of properties and values retrieved from an SPListItem
object. Take special note of the Approval Status property and the custom Status property.

Listing 9-6. Typical SPListItem Fields and Values

ID: 9

Created Date: 11/1/2003 2:27:17 AM

Created By: 1;#SPS\administrator

Last Modified: 11/1/2003 3:52:09 AM

Modified By: 1;#SPS\administrator

Approval Status: 0

URL Path: /sites/showroom/Events Library/Doc3.doc

URL Dir Name: 9;#sites/showroom/Events Library

Modified: 11/1/2003 3:52:09 AM

Created: 11/1/2003 2:27:17 AM

File Size: 20480

File System Object Type: 0

ID of the User who has the item Checked Out: 9;#

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 285

5750_c09_final.qxd 11/3/05 9:35 PM Page 285

Name: Doc3.doc

Virus Status: 9;#20480

Checked Out To: 9;#

Checked Out To: 9;#

Document Modified By: SPS\administrator

Document Created By: SPS\administrator

owshiddenversion: 2

File Type: doc

Name: Doc3.doc

Name: Doc3.doc

Select: 9

Select: 9

Edit:

Type: doc

Server Relative URL: /sites/showroom/Events Library/Doc3.doc

Encoded Absolute URL: http://spsportal/sites/showroom/Events%20Library/Doc3.doc

Name: Doc3.doc

File Size: 20480

Order: 900

Status: Editor Reviewed

Beyond reading and writing values, accessing document properties in a workflow applica-
tion is significant because it allows your event handler to respond to situations that go beyond
the events defined by the SPListEventType object. The SharePoint Services event model allows
you to trap most user actions directly; events such as document deletion are unambiguous
and you can typically respond to them directly. However, when an SPListEventType.Update
event is trapped, you cannot immediately determine what caused the event. This is because
the SPListEventType.Update event can occur when the body of a document is changed, its
approval status is changed, or its property profile is changed. The only way to determine the
exact cause of the event is to examine properties of the document causing the event.

Acting on Documents
Once you have determined that an event of interest has occurred, you will want to take action
on the target document. In most cases, this simply means moving or copying the document to
another library. For example, when your handler receives the SPListEventType.Update event,
you may check the Approval Status of the document. If this value is 0 (Approved), you may then
move it to a library where it would await the next level of review and approval. This technique
of using libraries as review and approval queues works well for automating workflow. Inter-
ested parties can simply set up alerts against the libraries of interest and await notification that
a document has reached their particular review stage in the workflow. Listing 9-7 shows a sim-
ple example of using the MoveTo method to move a document based on its approval status.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES286

5750_c09_final.qxd 11/3/05 9:35 PM Page 286

Listing 9-7. Moving Documents

If listEvent.Type = SPListEventType.Update Then

Dim objSite As SPWeb = listEvent.Site.OpenWeb

Dim objFile As SPFile = objSite.GetFile(listEvent.UrlAfter)

Select Case objFile.Item.Item("Approval Status")

Case 0 'Approved

objFile.MoveTo("http://spsportal/sites/showroom/Approved/" & _

objFile.Name, False)

Case 1 'Reject

objFile.MoveTo("http://spsportal/sites/showroom/Rejected/" & _

objFile.Name, False)

Case 2 'Pending

objFile.MoveTo("http://spsportal/sites/showroom/Pending/" & _

objFile.Name, False)

End Select

End If

Along with moving documents, the SPFile object also supports copying, deleting, and
check-in/check-out functions. Using these methods, you can build simple workflows that
support business processes within the organization.

Accessing Portal Site and User Information
One of the major uses of the SharePoint Services object model is to access component parts
of a SharePoint installation. Using the object model, you can access any site collection, site,
or list on an extended virtual server. You can also identify the current user and access infor-
mation about the user, associated groups, and assigned roles. Accessing the site and user
components of the installation will allow you to create Web Parts that fill in some of the gaps
in SharePoint Services that users will surely encounter.

Consider the scenario where an end user has navigated to the top-level site in a collec-
tion. With the top-level site open, the user has no simple way to discover what other sites are
contained in the collection. If you could present a list of available sites in the current collec-
tion, users would be better able to find what they are interested in. The SharePoint Services
object model allows you to provide this view to the user.

Accessing Site Collections
Accessing objects in the SharePoint Services model is accomplished in a manner similar to
any hierarchical object model you may have worked with in the past. The key to navigating
such a model is to find the starting point—or root—of the model. In SharePoint Services, you
can access the navigation root in the hierarchy with one of the following lines of code.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 287

5750_c09_final.qxd 11/3/05 9:35 PM Page 287

//C#

SPSite thisSite = SPControl.GetContextSite(Context);

'VB .NET

Dim objSite As SPSite = SPControl.GetContextSite(Context)

The SPControl class is a member of the Microsoft.SharePoint.WebControls namespace
and is the base class from which all other WebControls in the namespace are created. In order
to use this namespace, you must set a reference to the Microsoft SharePoint Services library.
You do not have to create an instance of this class to use it. Simply call the GetContextSite
method and pass the Context variable. The Context variable is inherited from System.Web.UI.Page
and is always available to Web Parts and web applications you create in Visual Studio. The
GetContextSite method returns an SPSite object, which represents the site collection where
the Web Part is currently running.

SPSite objects represent a site collection as an aggregate object. In order to access any
particular site in the collection, you must return a collection of SPWeb objects. You may then
access the individual web sites by enumerating them or accessing one directly through an
index. The following code shows how to enumerate the sites in a collection using C#.

SPSite thisSite = SPControl.GetContextSite(Context);

SPWebCollection webs = thisSite.AllWebs;

foreach(SPWeb web in webs)

{

//add code here

}

Accessing Lists and List Items
Along with site collections, you will access lists and list items frequently. A significant problem
for end users of SPS is that they are typically assigned tasks associated with many different
sites. This rapidly results in a situation where end users cannot manage all of the tasks they are
assigned and frequently are not even aware that a task exists. Of course, alerts are helpful, but
alerts must be created by the end user. You have seen many cases where someone creates a
team site and enters tasks on a list, but no one visits the site to create an alert. Therefore, build-
ing Web Parts that help manage task lists is critical to the success of an SPS implementation.

Once a web site is opened, you may access all of the lists it contains through the
SPListCollection object. The collection contains an SPList object for every list on the web
site. The following code shows how to enumerate the lists for the current web site from which
a Web Part is running.

SPWeb thisWeb = SPControl.GetContextWeb(Context);

SPListCollection spsLists= thisWeb.Lists;

foreach(SPList spsList in spsLists)

{

//add code here

}

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES288

5750_c09_final.qxd 11/3/05 9:35 PM Page 288

It is important to understand that SharePoint Services considers almost everything to be
a list. This includes not only obvious components such as task lists, but more subtle compo-
nents like document libraries and discussion forums. Therefore, you will find it useful to be
able to differentiate between various lists that are returned in code. Each SPList object has a
BaseType property that returns an SPBaseType enumeration specifying what kind of list is rep-
resented. Here is a list of the members of the SPBaseType enumeration:

• SPBaseType.DiscussionBoard

• SPBaseType.DocumentLibrary

• SPBaseType.GenericList

• SPBaseType.Issue

• SPBaseType.Survey

• SPBaseType.UnspecifiedBaseType

Once you have accessed a list of interest, you may subsequently access the items in
the list. Each item in the list is represented by an SPListItem object contained in an
SPListItemCollection object. Enumerating these list items follows the same pattern as
you have already seen.

Regardless of whether you are accessing sites, lists, or items, each object has a set of
properties and methods that are meaningful. Typically, this means returning the Name, Title,
or URL associated with an object. Additionally, each object has some special properties and
methods designed to return useful collections. For example, you can return just the webs
associated with the current user by utilizing the GetSubwebsForCurrentUser method of the
SPWeb class. All of these classes, and others, are fully documented in the SharePoint Services
SDK available at http://msdn.microsoft.com.

Accessing User Information
When iterating through sites and lists, you quite often want to know how they apply to the
current user. You may be interested in knowing what role the current user has on a site or what
items in a list are assigned to the current user. You can access this information using an SPUser
object. The following code shows how to return the SPUser object that represents the current
user.

SPSite site = SPControl.GetContextSite(Context);

SPWeb web = site.OpenWeb();

SPUser user = web.CurrentUser;

Once the SPUser object is returned, you can retrieve the logon name of the user through
the LoginName property. You can also retrieve the display name for the user through the Name
property. Because list assignments are made using these values, you can often determine which
items in a list belong to the current user by comparing the Assign To field of a list item to these
values. Listing 9-8 shows how to look through a collection of lists and identify tasks assigned
to the current user.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 289

5750_c09_final.qxd 11/3/05 9:35 PM Page 289

Listing 9-8. Determining List Item Ownership

Dim objSite As SPSite = SPControl.GetContextSite(Context)

Dim objWeb As SPWeb = objSite.OpenWeb()

Dim objUser As SPUser = objWeb.CurrentUser

Dim objLists As SPListCollection = objWeb.Lists

Dim objList As SPList

'Walk every list on a site

For Each objList In objLists

If objList.BaseType = SPBaseType.GenericList _

OrElse objList.BaseType = SPBaseType.Issue Then

For i As Integer = 0 To objList.ItemCount - 1

Try

Dim objItem As SPListItem = objList.Items(i)

'Check to see if this task is assigned to the user

Dim strAssignedTo As String = _

UCase(objItem.Item("Assigned To").ToString)

If strAssignedTo.IndexOf(UCase(objUser.LoginName)) > -1 _

OrElse strAssignedTo.IndexOf(UCase(objUser.Name)) > -1 Then

'Add code here

End If

Catch

End Try

Next

End If

Next

objWeb.Close()

objSite.Close()

Understanding Data Caching
When creating Web Parts that access the SharePoint object model, you will quite often find
that you want to create lists and tree views of items. For example, if you want to create a list
of sites in a SharePoint installation, you would have to make multiple calls to fill out every
branch of the tree. When your SharePoint installation is small, you will find that standard pro-
gram loops work fine; however, as your installation grows, Web Parts that rely on loops will
begin to exhibit performance degradation. This degradation can rapidly reach the point
where a page load can be delayed by many seconds as a list is built.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES290

5750_c09_final.qxd 11/3/05 9:35 PM Page 290

In order to prevent this sort of performance degradation, you should implement data
caching to save lists of information so they do not have to be created for each page load. When
you create Web Parts, you can make use of either the SharePoint or ASP.NET cache. The cache
that is utilized is determined by the value of the Storage attribute of the WebPartCache element
in the web.config file. This element is set to CacheObject by default, which utilizes the ASP.NET
cache. Setting this attribute to Database utilizes the SharePoint database as a cache.

The PartCacheWrite method is used to write data to the cache and the PartCacheRead
method is used to read data from the cache. Typically, a Web Part will read from the cache
and check to see if the return value is null. If the value is null, then the Web Part will process
normally and write the results to the cache for future use. The PartCacheInvalidate method
is used to clear the cache, which functions to force a refresh of the data. Listing 9-9 shows a
complete Web Part that creates a simple HTML list of subsites while using the cache to
improve performance.

Listing 9-9. Caching Web Part Data

namespace SPSCacheTreeView

{

[DefaultProperty(""),

ToolboxData("<{0}:Builder runat=server></{0}:Builder>"),

XmlRoot(Namespace="SPSCacheTreeView")]

public class Builder : Microsoft.SharePoint.WebPartPages.WebPart

{

string tree;

int i = 0;

LinkButton button;

public void buildTree()

{

SPSite site = SPControl.GetContextSite(Context);

SPWeb web = site.OpenWeb();

tree = web.Title + "
";

i++;

addChildWebs(web);

i--;

PartCacheWrite(Storage.Shared,"tree", tree, TimeSpan.FromSeconds(10));

}

public void addChildWebs(SPWeb parent)

{

try

{

//get child webs

SPWebCollection webs = parent.Webs;

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 291

5750_c09_final.qxd 11/3/05 9:35 PM Page 291

foreach(SPWeb subweb in webs)

{

//add to tree

tree += subweb.Title.PadLeft(subweb.Title.Length + i,

"-".ToCharArray()[0]) + "
";

i++;

addChildWebs(subweb);

i--;

}

}

catch(Exception x)

{

tree += "<p>" + x.Message + "</p>";

}

}

protected override void CreateChildControls()

{

button = new LinkButton();

button.Text = "Refresh";

button.Click +=new EventHandler(Refresh);

Controls.Add(button);

}

protected override void RenderWebPart(HtmlTextWriter output)

{

//display tree

if(PartCacheRead(Storage.Shared,"tree") == null) buildTree();

output.Write("
");

output.Write(tree);

button.RenderControl(output);

}

private void Refresh(object sender, EventArgs e)

{

PartCacheInvalidate(Storage.Shared, "tree");

}

}

}

Using SharePoint Web Services
In addition to the object model, you can also access SharePoint Services information using web
services. SharePoint Services exposes web services for remote management of nearly every aspect
of SharePoint Services. Using these services, you can integrate the information in SharePoint
Services with other line-of-business systems.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES292

5750_c09_final.qxd 11/3/05 9:35 PM Page 292

To use a web service in Visual Studio, follow these steps:

1. In Visual Studio, select File ➤ New ➤ Project.

2. In the New Project dialog, click Visual C# Projects, and then select Windows Application.

3. Name the project and then click OK.

4. In the Solution Explorer, right-click Web References and select Add Web Reference
from the pop-up menu.

5. In the Add Web Reference dialog box, enter http://spsportal/_vti_bin/lists.asmx to
reference the list web service.

■Note Each web service requires a different reference.

6. Click Go to see the web service definition.

7. Click Add Reference to make the service available to your project.

Once the web service is referenced, you can use it in your project just like any other
namespace. Values returned from the web service vary depending upon which service is
called, but the calling technique is largely the same. Before calling the web service, you must
authenticate the current user with the service. After authentication, you can make calls to the
methods of the service. The following code shows how to authenticate the current user with
the service and return a set of lists.

spsportal.Lists service = new spsportal.Lists();

service.Credentials=System.Net.CredentialCache.DefaultCredentials;

System.Xml.XmlNode node = service.GetListCollection();

textBox1.Text=node.OuterXml;

You can also use the web services to create and manage your own document and meeting
workspaces. This is perhaps the most compelling use of the available web services because it
allows you to create functionality similar to the workspace pane found in Microsoft Office. You
can reference the document workspace web service at spsportal/_vti_bin/Dws.asmx and the
meeting workspace web service at spsportal/_vti_bin/Meetings.asmx. Creating a document
or meeting workspace uses essentially the same approach with differences primarily in the
arguments and return values.

Creating a document workspace is done by calling the CreateDws method of the web serv-
ice. This method can be used to create the workspace, add users, and associate documents. It
expects the user and document data to be in a designated XML format. It also needs the user
to specify a name and a title for the new workspace. Listing 9-10 shows an example of creating
a document workspace and adding users.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 293

5750_c09_final.qxd 11/3/05 9:35 PM Page 293

Listing 9-10. Creating a Document Workspace

spsportaldws.Dws dwsService = new spsportaldws.Dws();

dwsService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string users = "<UserInfo>"

+ "<item Email='" + txtMail1.Text + "' Name='" + txtName1.Text + "'/>"

+ "<item Email='" + txtMail2.Text + "' Name='" + txtName2.Text + "'/>"

+ "<item Email='" + txtMail3.Text + "' Name='" + txtName3.Text + "'/>"

+ "</UserInfo>";

txtResponse.Text= dwsService.CreateDws(txtName.Text,users,txtTitle.Text,"");

When the workspace is created, the service responds with an XML payload that states
the results of the call. If a workspace already exists, for example, an error code will return.
If the creation process was successful but errors occurred when adding users or documents,
that information is also provided. Listing 9-11 shows a typical response to site creation.

Listing 9-11. Workspace Creation Response

<Results>

<Url>http://spsportal/Workspace</Url>

<DoclibUrl>Shared Documents</DoclibUrl>

<ParentWeb>DataLan Corporation</ParentWeb>

<FailedUsers>

<User Email="JohnArnold@sps.local" />

</FailedUsers>

<AddUsersUrl>http://spsportal/Workspace/_layouts/1033/aclinv.aspx</AddUsersUrl>

<AddUsersRole>Contributor</AddUsersRole>

</Results>

Once the workspace is created, you may use other methods of the services to manage
users, documents, tasks, and alerts. In this way, you can create a fully functional document
or meeting workspace for any application.

Exercise 9-1: Creating a Workflow Engine
Because SPS lacks any kind of workflow designer and engine, implementing even simple busi-
ness processes requires writing code. If you custom-code each process, then you will rapidly
find that performing maintenance on the code will become time consuming. Therefore, you
will want to create some kind of engine that is more generic. In this exercise, you will create a
simple workflow engine for approval routing that is programmable using an XML document.

Prerequisites
Before you begin to create the engine, you must perform several operations to prepare the
environment. The first thing to do is enable event handling on your virtual server using the
steps outlined earlier in the chapter. No document library events are trapped unless they are
specifically enabled. After the document library events are enabled, you will need to create

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES294

5750_c09_final.qxd 11/3/05 9:35 PM Page 294

a new site with three libraries you can use to simulate routing the document. Your engine will be
designed to move a document from a Submit library to a Review library to an Approve library.

Here are the steps to set up the libraries:

1. Log in to SPS as a member of the Administrator site group.

2. Navigate to the Site Directory by clicking the Sites link.

3. In the Site Directory, click the Create Site link under the Actions list.

4. Create a new blank site named Workflow.

5. When the new site is created, click the Create link.

6. On the Create page, select to create a new document library named Submit.

7. Repeat steps 1 through 6 to create a second document library named Review and a
third named Approve.

The last thing to do before you start writing the engine is configure the Microsoft Single
Sign-On (SSO) service with a set of impersonation credentials you can use to run the event
handler. You will retrieve these credentials within the event handler. This section assumes
that you have already set up SSO in accordance with Chapter 6.

To configure SSO credentials, take these steps:

1. Log in to SPSPortal as a member of the MSSSOAdmins group.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings page select Enterprise Application Definition Settings ➤
Manage Settings for Enterprise Application Definitions.

4. On the Manage Enterprise Application Definitions page, click the New Item link.

5. On the Create Enterprise Application Definition page, enter Workflow Engine in the
Display Name box.

6. Enter Workflow in the Application Name box.

7. Enter administrator@sps.local in the Contact E-mail Address box.

8. Enter UserName in the Field 1: Display Name box.

9. Enter Domain in the Field 2: Display Name box.

10. Enter Password in the Field 3: Display Name box.

11. Select Yes for the Mask option associated with Field 3.

12. Click OK.

13. Return to the Manage Settings page and select Enterprise Application Definition
Settings ➤ Manage Account Information for Enterprise Application Definitions.

14. In the Account Information section, choose Workflow Engine from the drop-down list.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 295

5750_c09_final.qxd 11/3/05 9:35 PM Page 295

15. Type sps\Domain Users in the Group Account Name box.

16. Click OK.

17. On the “Provide workflow engine account information” page, type administrator in
the UserName box.

18. Type sps in the Domain box.

19. Type the administrator password in the Password box.

20. Click OK.

Building the Workflow Engine
Document library event handlers are built as class library assemblies. For your workflow
engine, you will build a class library in C# and implement the IListEventSink interface. This
interface traps document approval events for the Submit and Review libraries and routes the
document to the next library when it is approved. The routing details will be managed through
an XML document.

Here is what to do to start the project:

1. Log in to SPSPortal as a local administrator.

2. Start Visual Studio and choose File ➤ New ➤ Project from the menu.

3. In the New Project dialog, click the Visual C# Projects folder.

4. In the Templates window, click Class Library.

5. Name the new project Workflow and click OK.

6. When the new project is created, select Project ➤ Add Reference from the menu.

7. In the Add Reference dialog, select to add references to Microsoft.SharePoint.➥

Portal.SingleSignon.dll, System.Windows.Forms.dll, System.Xml.dll, and Windows
SharePoint Services.

8. Click OK.

9. Rename the Class1.cs file as Engine.cs.

10. Open the Engine.cs file and rename the namespace to WorkFlow and the class to Engine.

11. Add code references to the imported assemblies so that your code appears exactly as
shown in Listing 9-12.

Listing 9-12. The WorkFlow.Engine Class

using System;

using System.Windows.Forms;

using System.Xml;

using System.Security.Principal;

using System.Runtime.InteropServices;

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES296

5750_c09_final.qxd 11/3/05 9:35 PM Page 296

using Microsoft.SharePoint;

using Microsoft.SharePoint.Portal.SingleSignon;

namespace WorkFlow

{

public class Engine

{

}

}

Creating the New Identity Helper
Before you code the body of the event handler, you will construct a helper function to establish
the identity under which the event handler will run. This helper function is essentially the same
in every event-handling class you create. It makes a call to the Windows API to log the imperson-
ation user on to the system. It then returns a WindowsIdentity object to the main code. Add the
code in Listing 9-13 to the Engine class to get the impersonation identity.

Listing 9-13. Creating the Impersonation Identity

protected static WindowsIdentity CreateIdentity

(string userName, string domain, string password)

{

IntPtr tokenHandle = new IntPtr(0);

tokenHandle=IntPtr.Zero;

const int LOGON32_PROVIDER_DEFAULT=0;

const int LOGON32_LOGON_NETWORK=3;

//Logon the new user

bool returnValue = LogonUser(userName,domain,password,

LOGON32_LOGON_NETWORK,LOGON32_PROVIDER_DEFAULT,

ref tokenHandle);

if(returnValue==false)

{

int returnError = Marshal.GetLastWin32Error();

throw new Exception("Log on failed: " + returnError);

}

//return new identity

WindowsIdentity id = new WindowsIdentity(tokenHandle);

CloseHandle(tokenHandle);

return id;

}

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 297

5750_c09_final.qxd 11/3/05 9:35 PM Page 297

[DllImport("advapi32.dll", SetLastError=true)]

private static extern bool LogonUser

(String lpszUsername, String lpszDomain, String lpszPassword,

int dwLogonType, int dwLogonProvider, ref IntPtr phToken);

[DllImport("kernel32.dll", CharSet=CharSet.Auto)]

private extern static bool CloseHandle(IntPtr handle);

Creating the XML Document
The last task to perform before you build the body of the event handler is to create the XML
document that will contain the routing instructions. Your strategy is to use the SinkData prop-
erty to identify which of the libraries has triggered the event and then route the document to
the next library. To make your solution more flexible, you will build an XML file that contains
elements based on the SinkData property and the addresses of the libraries.

To create the XML routing document, follow these steps:

1. In Visual Studio, select Project ➤ Add New Item from the menu.

2. In the Add New Item dialog, select to add an XML file.

3. Name the new file Workflow.xml and click Open.

4. Open Workflow.xml in Visual Studio and modify it to appear as follows:

<?xml version="1.0" encoding="utf-8" ?>

<Workflow xmlns="urn:DataLan.SharePoint.WorkFlow.Engine">

<Submit></Submit>

<Review></Review>

</Workflow>

5. Open SPS in Internet Explorer and navigate to the Review library you created earlier.

6. From the document library page, copy the URL associated with the root of the library.

7. Copy this fragment between the <Submit></Submit> elements in the XML file so that
approved documents from the Submit library will be moved to the address of the
Review library.

8. Repeat this action to route approved documents in the Review library to the Approve
library. The following code shows an example of how the final XML file might appear.

<?xml version="1.0" encoding="utf-8" ?>

<Workflow xmlns="urn:DataLan.SharePoint.WorkFlow.Engine">

<Submit>http://spsportal/sites/workflow/Review</Submit>

<Review>http://spsportal/sites/workflow/Approve</Review>

</Workflow>

9. Copy the XML file into the root of the C: drive.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES298

5750_c09_final.qxd 11/3/05 9:35 PM Page 298

Coding the IListEventSink Interface
Now that the supporting elements are prepared, you can code the main body of the event
handler in the IListEventSink interface. Add this interface to your class by typing a colon after
the class name followed by the interface name. You should then be able to press the Tab key
and have Visual Studio automatically insert the interface stubs for you so the beginning of
your class will appear as follows:

public class Engine:IListEventSink

{

public void OnEvent(SPListEvent listEvent)

{

In the body of the OnEvent method, you will retrieve the credentials for the impersonation
identity from SSO and create the new identity context. Then you will determine if an approval
event has occurred in the connected library. If an approval event has occurred, then you will
read the XML file to determine the destination of the approved file. Finally, you will move the
file to the destination library. Add the code necessary to make your final implementation of
the OnEvent method as shown in Listing 9-14.

Listing 9-14. The OnEvent Method

public void OnEvent(SPListEvent listEvent)

{

//Call MSSSO

string[] strCredentials=null;

Credentials.GetCredentials

(Convert.ToUInt32(1),"Workflow",ref strCredentials);

string userName = strCredentials[0];

string domain = strCredentials[1];

string password = strCredentials[2];

//Create new context

WindowsImpersonationContext windowsContext =

CreateIdentity(userName,domain,password).Impersonate();

//Get event objects

SPWeb eventSite = listEvent.Site.OpenWeb();

SPFile eventFile = eventSite.GetFile(listEvent.UrlAfter);

SPListItem eventItem = eventFile.Item;

//Determine if an approval event fired

if((listEvent.Type == SPListEventType.Update) &&

((string)eventItem["Approval Status"]=="0"))

{

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 299

5750_c09_final.qxd 11/3/05 9:35 PM Page 299

//Load the XML document

string xmlPath ="C:\\Workflow.xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(xmlPath);

//Prepare to parse XML

XmlNamespaceManager manager = new XmlNamespaceManager(xmlDoc.NameTable);

manager.AddNamespace("ns","urn:DataLan.SharePoint.WorkFlow.Engine");

//Find the target library for the move

string targetPath = xmlDoc.SelectSingleNode

("//ns:" + listEvent.SinkData,manager).InnerText;

//Move the document

eventFile.MoveTo(targetPath + "/" + eventFile.Name,false);

}

//Tear down context

windowsContext.Undo();

}

Compiling the Engine
Event-handling classes must be placed in the GAC in order to function. Assemblies placed in
the GAC must have a strong name; therefore, you must create a strong name for your assem-
bly before you compile it. Additionally, you must ensure that the version attribute of your
assembly is fixed and not changed dynamically each time the assembly is compiled. Both
of these changes are essential to properly deploying an assembly to the GAC.

Here is what you need to do to compile the assembly:

1. Open a command window by selecting Start ➤ All Programs ➤ Accessories ➤
Command Prompt.

2. In the command window, navigate to \Program Files\
Microsoft Visual Studio .NET 2003\SDK\v1.1\bin.

3. In the command-line window, create a key file by executing the following line:

sn.exe -k c:\workflow.snk

4. In Visual Studio .NET, open the AssemblyInfo.cs file.

5. In the AssemblyInfo.cs file, scroll to the bottom of the file and add a reference to the
key file by editing the AssemblyKeyFile entry to read as follows:

[assembly: AssemblyKeyFile("c:\\workflow.snk")]

6. Locate and modify the AssemblyVersion attribute to remove the wild cards and create
a static version number as shown in the following code:

[assembly: AssemblyVersion("1.0.0.0")]

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES300

5750_c09_final.qxd 11/3/05 9:35 PM Page 300

7. Save and close the AssemblyInfo.cs file.

8. Compile your assembly by selecting Build ➤ Build Workflow.

9. Once the assembly is compiled, drag it from your project directory into the folder
C:\windows\assembly to add it to the GAC.

Connecting the Libraries
Your workflow engine is designed to react to approval events in the Submit and Review libraries.
Therefore, you must connect your assembly to both of these libraries. Additionally, you must
enable document approval on all three libraries to complete the process.

To connect the event handler, take these steps:

1. Log in to SPSPortal as the local administrator.

2. Open Windows Explorer and navigate to C:\Windows\Assembly.

3. Locate the Workflow assembly, right-click it, and select Properties from the pop-up
menu.

4. Note the Version, Culture, and PublicKeyToken information for the assembly.

5. Log in to SPS as a member of the Administrator site group.

6. Navigate to the Submit library you created earlier.

7. Click the Modify Settings and Columns link under the Actions list.

8. On the Customize page, select General Settings ➤ Change Advanced Settings.

9. In the Assembly Name box, type the full strong name of the assembly. An example is
shown here:

WorkFlow,Version=1.0.0.0,Culture=Neutral,

PublicKeyToken=5959aab8a976a104

10. In the Class Name box, type the fully qualified class name as shown here:

WorkFlow.Engine

11. In the Properties box, type Submit.

12. Click OK.

13. On the Customize page, select General Settings ➤ Change General Settings.

14. On the Document Library Settings page, select to require content approval for
submitted items.

15. Click OK.

16. Navigate to the Review library you created earlier.

17. Click the Modify Settings and Columns link under the Actions list.

18. On the Customize page, select General Settings ➤ Change Advanced Settings.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 301

5750_c09_final.qxd 11/3/05 9:35 PM Page 301

19. In the Assembly Name box, type the full strong name of the assembly. Here is an
example:

WorkFlow,Version=1.0.0.0,Culture=Neutral,

PublicKeyToken=5959aab8a976a104

20. In the Class Name box, type the fully qualified class name as shown here:

WorkFlow.Engine

21. In the Properties box, type Review.

22. Click OK.

23. On the Customize page, select General Settings ➤ Change General Settings.

24. On the Document Library Settings page, select to require content approval for sub-
mitted items.

25. Click OK.

26. Navigate to the Approve library you created earlier.

27. Click the Modify Settings and Columns link under the Actions list.

28. On the Customize page, select General Settings ➤ Change General settings.

29. On the Document Library Settings page, select to require content approval for sub-
mitted items.

30. Click OK.

31. Restart IIS to make your changes take effect.

If you have successfully created the solution, you should now be able to create a new doc-
ument in the Submit library and approve it. Once you have approved the document, it should
automatically move to the Review library. Once approved in the Review library, the document
should automatically move to the Approve library.

Debugging the Solution
This project is moderately difficult, and chances are that you will not get it all correct the first
time through. Therefore, you will likely have to debug the solution. Because the event handler
is created as a class library, you can use standard debugging techniques to set breakpoints and
walk through the code.

To debug the project, follow these steps:

1. In Visual Studio, change the solution configuration to Debug.

2. Rebuild the project by selecting Build ➤ Rebuild WorkFlow.

3. Open Windows Explorer and navigate to C:\Windows\Assembly.

4. Locate the WorkFlow assembly, right-click it, and select Delete from the pop-up menu.

5. Drag the debug version of your assembly into the GAC.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES302

5750_c09_final.qxd 11/3/05 9:35 PM Page 302

6. Restart IIS to unload the old version of the assembly from memory.

7. Open the SPS home page in Internet Explorer.

8. In Visual Studio, set breakpoints in your project code at the desired locations.

9. Select Debug ➤ Processes.

10. In the Processes dialog, select w3wp.exe from the list of Available Processes.

■Note The w3wp.exe process will not be visible until you open a portal web page in the browser. You
should also be sure that the “Show processes in all sessions” box is checked on the Processes dialog.

11. Click Attach.

12. In the Attach to Process dialog, check the Common Language Runtime box.

13. Click OK.

14. Return to Internet Explorer and navigate to the Submit library. When you approve a
document, your code should break in Visual Studio.

Exercise 9-2: Building a Site Collection Web Part
As your SPS installation grows, you may find that the number of site collections, team sites, and
workspaces grows to the point where it is difficult to navigate the hierarchy. With that in mind,
this project creates a site collection Web Part that shows all of the subsites underneath a top-
level site. This is useful because it allows end users to discover sites they may not have known.
Additionally, the Web Part has the ability to show users sites to which they do not belong so that
they can request access, if appropriate. Figure 9-1 shows a view of the final project.

Prerequisites
Before beginning the project, you will need to define a new application for the Microsoft SSO
service. The Web Part developed in this project will programmatically interact with several web
sites, and it requires administrator permission to complete its function. Use the following steps
to create the new application definition:

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 303

Figure 9-1. Listing sites in a collection

5750_c09_final.qxd 11/3/05 9:35 PM Page 303

1. Log in to SPSPortal as a member of the MSSSOAdmins group.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings page, select Enterprise Application Definition Settings ➤
Manage Settings for Enterprise Application Definitions.

4. On the Manage Enterprise Application Definitions page, click the New Item link.

5. On the Create Enterprise Application Definition page, enter SubSiteList in the Display
Name box.

6. Enter SubSiteList in the Application Name box.

7. Enter administrator@sps.local in the Contact E-mail Address box.

8. Enter UserName in the Field 1: Display Name box.

9. Enter Domain in the Field 2: Display Name box.

10. Enter Password in the Field 3: Display Name box.

11. Select Yes for the Mask option associated with Field 3.

12. Click OK.

13. Return to the Manage Settings page and select Enterprise Application Definition
Settings ➤ Manage Account Information for Enterprise Application Definitions.

14. In the Account Information section, choose SubSiteList from the drop-down list.

15. Type sps\Domain Users in the Group Account Name box.

16. Click OK.

17. On the “Provide workflow engine account information” page, type administrator in
the UserName box.

18. Type sps in the Domain box.

19. Type the administrator password in the Password box.

20. Click OK.

Creating the Project
This Web Part project will be written in VB .NET. Therefore, you should open Visual Studio
and create a new Web Part project in VB .NET named SPSSubSites. When the project is created,
rename the class file and the Web Part description file as SPSSubSites.dwp and SPSSubSites.vb,
respectively. Then, open SPSSubSites.dwp from the Solution Explorer and change the file to
appear as shown in Listing 9-15.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES304

5750_c09_final.qxd 11/3/05 9:35 PM Page 304

Listing 9-15. The Web Part Description File

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>Site Collection</Title>

<Description>A Web Part to list sub sites</Description>

<Assembly>SPSSubSites</Assembly>

<TypeName>SPSSubSites.Lister</TypeName>

</WebPart>

Before you begin to modify the Web Part code, you must add a couple of references to the
project. This Web Part will change identity, just as you did when you created document work-
flow to get permission to list web sites. Therefore, you need access to the SSO system. You also
have to set a reference to the SharePoint Services namespace.

To set the references, follow these steps:

1. Select Project ➤ Add Reference from the Visual Studio menu.

2. In the Add References dialog, double-click Microsoft.SharePoint.Portal.➥

SingleSignon.dll and Windows SharePoint Services.

3. Click OK.

Once the references are added, open the SPSSubSites.vb file for editing. You will add sev-
eral Imports statements to the file and modify the class name. Change your Web Part to appear
as shown in Listing 9-16.

Listing 9-16. Starting the Project

Option Strict On

Option Explicit On

Option Compare Text

Imports System

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Xml.Serialization

Imports Microsoft.SharePoint

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

Imports Microsoft.SharePoint.WebControls

Imports System.Security.Principal

Imports System.Runtime.InteropServices

Imports Microsoft.SharePoint.Portal.SingleSignon

<DefaultProperty("ShowAllSites"), _

ToolboxData("<{0}:Lister runat=server></{0}:Lister>"), _

XmlRoot(Namespace:="SPSSubSites")> _

Public Class Lister

Inherits Microsoft.SharePoint.WebPartPages.WebPart

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 305

5750_c09_final.qxd 11/3/05 9:35 PM Page 305

Defining the Properties
Your Web Part has only a single property defined named ShowAllSites. ShowAllSites is a Boolean
value that determines if the Web Part lists sites to which the current user does not belong. Listing
such sites allows the end user to discover sites and request access. If you want to hide sites in the
collection, however, set this property to False. The property is simple to define. Just add the code
from Listing 9-17.

Listing 9-17. The ShowAllSites Property

Protected blnShowAllSites As Boolean = False

<Browsable(True), Category("Behavior"), DefaultValue(False), _

WebPartStorage(Storage.Shared), FriendlyName("Show All Sites"), _

Description("Show sites to which the user does not belong.")> _

Property ShowAllSites() As Boolean

Get

Return blnShowAllSites

End Get

Set(ByVal Value As Boolean)

blnShowAllSites = Value

End Set

End Property

Creating the Child Controls
The child sites discovered by the Web Part are listed in a grid. The grid creates a hyperlink to
the site—so a user can navigate directly—as well as an e-mail link to the site collection owner.
Therefore, you have to create the HyperLinkColumns and BoundColumns by hand for your grid.
You have used similar techniques several times in other Web Parts throughout the book. Add
the code from Listing 9-18 to create the grid for the Web Part.

Listing 9-18. Creating the Child Controls

Protected WithEvents grdSites As DataGrid

Protected WithEvents lblMessage As Label

Protected Overrides Sub CreateChildControls()

'Grid to display results

grdSites = New DataGrid

With grdSites

.AutoGenerateColumns = False

.Width = Unit.Percentage(100)

.HeaderStyle.Font.Name = "arial"

.HeaderStyle.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.HeaderStyle.Font.Bold = True

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES306

5750_c09_final.qxd 11/3/05 9:35 PM Page 306

.HeaderStyle.ForeColor = System.Drawing.Color.Wheat

.HeaderStyle.BackColor = System.Drawing.Color.DarkBlue

.AlternatingItemStyle.BackColor = System.Drawing.Color.LightCyan

End With

Dim objBoundColumn As BoundColumn

Dim objHyperColumn As HyperLinkColumn

'Name Column

objHyperColumn = New HyperLinkColumn

With objHyperColumn

.HeaderText = "Site Name"

.DataTextField = "Name"

.DataNavigateUrlField = "URL"

grdSites.Columns.Add(objHyperColumn)

End With

'Membership Column

objBoundColumn = New BoundColumn

With objBoundColumn

.HeaderText = "Your Role"

.DataField = "Role"

grdSites.Columns.Add(objBoundColumn)

End With

'Description Column

objBoundColumn = New BoundColumn

With objBoundColumn

.HeaderText = "Site Description"

.DataField = "Description"

grdSites.Columns.Add(objBoundColumn)

End With

'Contact Column

objHyperColumn = New HyperLinkColumn

With objHyperColumn

.HeaderText = "Site Contact"

.DataTextField = "Author"

.DataNavigateUrlField = "eMail"

grdSites.Columns.Add(objHyperColumn)

End With

Controls.Add(grdSites)

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 307

5750_c09_final.qxd 11/3/05 9:35 PM Page 307

'Label for error messages

lblMessage = New Label

With lblMessage

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.Text = ""

End With

Controls.Add(lblMessage)

End Sub

Creating the Helper Functions
As I mentioned earlier, this Web Part needs to change its identity to access all the necessary
site information. Therefore, you need to provide the same help function to create a new iden-
tity as you did for document workflow. This function is useful in many Web Parts and you will
use it often. Add the code from Listing 9-19 to create the new identity.

Listing 9-19. Creating a New Identity

Protected Shared Function CreateIdentity(ByVal User As String, _

ByVal Domain As String, ByVal Password As String) As WindowsIdentity

Dim objToken As New IntPtr(0)

Dim ID As WindowsIdentity

Const LOGON32_PROVIDER_DEFAULT As Integer = 0

Const LOGON32_LOGON_NETWORK As Integer = 3

'Initialize token object

objToken = IntPtr.Zero

' Attempt to log on

Dim blnReturn As Boolean = LogonUser(User, Domain, Password, _

LOGON32_LOGON_NETWORK, LOGON32_PROVIDER_DEFAULT, objToken)

'Check for failure

If blnReturn = False Then

Dim intCode As Integer = Marshal.GetLastWin32Error()

Throw New Exception("Logon failed: " & intCode.ToString)

End If

'Return new token

ID = New WindowsIdentity(objToken)

CloseHandle(objToken)

Return ID

End Function

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES308

5750_c09_final.qxd 11/3/05 9:35 PM Page 308

<DllImport("advapi32.dll", SetLastError:=True)> _

Private Shared Function LogonUser(ByVal lpszUsername As String, _

ByVal lpszDomain As String, _

ByVal lpszPassword As String, ByVal dwLogonType As Integer, _

ByVal dwLogonProvider As Integer, _

ByRef phToken As IntPtr) As Boolean

End Function

<DllImport("kernel32.dll", CharSet:=CharSet.Auto)> _

Private Shared Function CloseHandle(ByVal handle As IntPtr) As Boolean

End Function

Rendering the Web Part
Once the helper functions are defined, you can begin to code the main body of the Web Part.
You will write this code directly in the RenderWebPart method. We will discuss each part of the
code so that you can follow how it works. Essentially, your strategy will be to enumerate the
sites in the collection, add them to a DataSet, and bind the DataSet to the grid for display.
Begin by adding the code from Listing 9-20 to the RenderWebPart method.

Listing 9-20. Declaring Initial Objects

Protected Overrides Sub RenderWebPart(_

ByVal output As System.Web.UI.HtmlTextWriter)

'Get the site collection

Dim objSite As SPSite = SPControl.GetContextSite(Context)

Dim objMainSite As SPWeb = objSite.OpenWeb

Dim objAllSites As SPWebCollection = objSite.AllWebs

Dim objMemberSites As SPWebCollection = objMainSite.GetSubwebsForCurrentUser

Dim objSubSite As SPWeb

'Get the user identity

Dim strUsername As String = objMainSite.CurrentUser.LoginName

'Create a DataSet and DataTable for the site collection

Dim objDataset As DataSet = New DataSet("root")

Dim objTable As DataTable = objDataset.Tables.Add("Sites")

'Context for the new identity

Dim objContext As WindowsImpersonationContext

Dim arrCredentials() As String

Dim strUID As String

Dim strDomain As String

Dim strPassword As String

Once you have retrieved the basic information for the site collection and the user, you
are ready to change the identity of the Web Part so that it can enumerate the subsites in the

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 309

5750_c09_final.qxd 11/3/05 9:35 PM Page 309

collection. To accomplish this, you will retrieve credentials from the SSO system. Add the
code from Listing 9-21 to the RenderWebPart method to change the identity.

■Note After you change the identity of the Web Part, the identity of the current user is no longer available;
therefore, you should always retrieve the identity of the current user before changing the identity of the
Web Part.

Listing 9-21. Changing the Web Part Identity

Try

'Try to get credentials

Credentials.GetCredentials(_

Convert.ToUInt32("0"), "SubSiteList", arrCredentials)

strUID = arrCredentials(0)

strDomain = arrCredentials(1)

strPassword = arrCredentials(2)

'Change the context

Dim objIdentity As WindowsIdentity

objIdentity = CreateIdentity(strUID, strDomain, strPassword)

objContext = objIdentity.Impersonate

Catch x As SingleSignonException

lblMessage.Text += "No credentials available." + vbCrLf

Catch x As Exception

lblMessage.Text += x.Message + vbCrLf

End Try

After the new identity is created, the Web Part can enumerate the child sites and add them
to the DataSet. Which sites are enumerated is determined by the value of the ShowAllSites prop-
erty. Along the way, the Web Part builds the appropriate site and e-mail links for the end user.
Add the code from Listing 9-22 to enumerate the child sites.

Listing 9-22. Enumerating Child Sites

Try

'Design Table

With objTable.Columns

.Add("Role", Type.GetType("System.String"))

.Add("Name", Type.GetType("System.String"))

.Add("Description", Type.GetType("System.String"))

.Add("URL", Type.GetType("System.String"))

.Add("Author", Type.GetType("System.String"))

.Add("eMail", Type.GetType("System.String"))

End With

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES310

5750_c09_final.qxd 11/3/05 9:35 PM Page 310

'Fill the Table with Member Sites

For Each objSubSite In objMemberSites

Dim objRow As DataRow = objTable.NewRow()

With objRow

Try

.Item("Role") = objSubSite.Users(strUsername).Roles(0).Name

Catch

.Item("Role") = "None"

End Try

.Item("Name") = objSubSite.Name

.Item("Description") = objSubSite.Description

.Item("URL") = objSubSite.Url

.Item("Author") = objSubSite.Author.Name

.Item("eMail") = "mailto:" + objSubSite.Author.Email

End With

objTable.Rows.Add(objRow)

Next

Catch x As Exception

lblMessage.Text = x.Message

End Try

Try

'Fill the Table with non-member sites

If ShowAllSites = True Then

For Each objSubSite In objAllSites

'Get the user collection for each sub site

Dim objUsers As SPUserCollection = objSubSite.Users

Dim objUser As SPUser

Dim blnMember As Boolean

'Skip the parent site

If objMainSite.Name <> objSubSite.Name Then

blnMember = False

'Look through user list

For Each objUser In objUsers

If objUser.LoginName.Trim = strUsername.Trim Then

blnMember = True

End If

Next

If blnMember = False Then

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 311

5750_c09_final.qxd 11/3/05 9:36 PM Page 311

'If the current user is not a member add a record

Dim objRow As DataRow = objTable.NewRow()

With objRow

.Item("Role") = "Not a Member!"

.Item("Name") = objSubSite.Name

.Item("Description") = objSubSite.Description

.Item("URL") = objSubSite.Url

.Item("Author") = objSubSite.Author.Name

.Item("eMail") = "mailto:" + objSubSite.Author.Email

End With

objTable.Rows.Add(objRow)

End If

End If

objSubSite.Close()

Next

End If

'Close sites

objMainSite.Close()

objSite.Close()

'Tear down context

objContext.Undo()

Catch x As Exception

lblMessage.Text = x.Message

End Try

Once all of the sites are enumerated, the DataSet can be bound to the grid. Add the code
from Listing 9-23 to complete the RenderWebPart method.

Listing 9-23. Displaying the Subsites

'Bind dataset to grid

output.Write("<p>Current user: " + objMainSite.CurrentUser.Name + "
" _

+ "Collection owner: " _

+ objSite.Owner.Name + "</p>")

With grdSites

.DataSource = objDataset

.DataMember = "Sites"

.DataBind()

End With

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES312

5750_c09_final.qxd 11/3/05 9:36 PM Page 312

'Show grid

grdSites.RenderControl(output)

output.Write("
")

lblMessage.RenderControl(output)

Using the Web Part
Before you can compile the Web Part, you must give it a strong name and modify the
AssemblyInfo file with the name of the key pair file. Just as you have done with every Web Part,
you must also modify the web.config file for SPS to mark the Web Part as safe. You have already
accomplished these tasks several times, so I won’t repeat the steps here. Once you have finished
compiling the Web Part, import it onto the home page of a top-level site and verify that it enu-
merates the subsites below.

Exercise 9-3: Building a Global Task Web Part
Along with the proliferation of sites in SPS, the proliferation of task items can rapidly become
overwhelming. Because tasks can be assigned at any site, end users rapidly lose track of their
tasks. In this project, you will build a global task list Web Part that will be deployed on the mas-
ter My Site so that it is available for every user in the portal. The Web Part will search for tasks
throughout all sites and collect them in a single list. Figure 9-2 shows a view of the final project.

Prerequisites
As in the previous project, this project interacts with several sites and lists that an individual
user may not have permission to access. Therefore, you must change the identity of the Web
Part to that of an administrator. To accomplish this, you will use credentials stored in the SSO
database.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 313

Figure 9-2. The global task list

5750_c09_final.qxd 11/3/05 9:36 PM Page 313

To configure SSO credentials:

1. Log in to SPSPortal as a member of the MSSSOAdmins group.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Single Sign-On Administration.

3. On the Manage Settings page, select Enterprise Application Definition Settings ➤
Manage Settings for Enterprise Application Definitions.

4. On the Manage Enterprise Application Definitions page, click the New Item link.

5. On the Create Enterprise Application Definition page, enter SPSAuthority in the
Display Name box.

6. Enter SPSAuthority in the Application Name box.

7. Enter administrator@sps.local in the Contact E-mail Address box.

8. Enter UserName in the Field 1: Display Name box.

9. Enter Domain in the Field 2: Display Name box.

10. Enter Password in the Field 3: Display Name box.

11. Select Yes for the Mask option associated with Field 3.

12. Click OK.

13. Return to the Manage Settings page and select Enterprise Application Definition
Settings ➤ Manage Account Information for Enterprise Application Definitions.

14. In the Account Information section, choose SPSAuthority from the drop-down list.

15. Type sps\Domain Users in the Group Account Name box.

16. Click OK.

17. On the “Provide workflow engine account information” page, type administrator in
the UserName box.

18. Type sps in the Domain box.

19. Type the administrator password in the Password box.

20. Click OK.

Creating the Project
Open Visual Studio and create a new Web Part project in VB .NET named SPSTasks. When the
project is created, rename the class file and the Web Part description file as SPSTasks.dwp and
SPSTasks.vb, respectively. Then, open SPSTasks.dwp from the Solution Explorer and change
the file to appear as shown in Listing 9-24.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES314

5750_c09_final.qxd 11/3/05 9:36 PM Page 314

Listing 9-24. The Web Part Description File

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>Your Global Task List</Title>

<Description>A Web Part to collect all tasks for a user</Description>

<Assembly>SPSTasks</Assembly>

<TypeName>SPSTasks.Lister</TypeName>

</WebPart>

Before you begin to modify the Web Part code, you must add two references to the project.
This Web Part uses a different identity to get permission to examine lists on all the sites. There-
fore, you need access to the SSO system. You also have to set a reference to the SharePoint
Services namespace.

To set the references, follow these steps:

1. Select Project ➤ References from the Visual Studio menu.

2. In the Add References dialog, double-click Microsoft.SharePoint.
Portal.SingleSignon.dll and Windows SharePoint Services.

3. Click OK.

Once the references are added, open the SPSTasks.vb file for editing. You will add several
Imports statements to the file and modify the class name. Change your Web Part to appear as
shown in Listing 9-25.

Listing 9-25. The Initial Class Code

Option Explicit On

Option Strict On

Option Compare Text

Imports System

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Xml.Serialization

Imports Microsoft.SharePoint

Imports Microsoft.SharePoint.Utilities

Imports Microsoft.SharePoint.WebPartPages

Imports Microsoft.SharePoint.WebControls

Imports Microsoft.SharePoint.Administration

Imports System.Security.Principal

Imports System.Runtime.InteropServices

Imports Microsoft.SharePoint.Portal.SingleSignon

<DefaultProperty(""), ToolboxData("<{0}:Lister runat=server></{0}:Lister>"), _

XmlRoot(Namespace:="SPSTasks")> _

Public Class Lister

Inherits Microsoft.SharePoint.WebPartPages.WebPart

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 315

5750_c09_final.qxd 11/3/05 9:36 PM Page 315

Creating the Child Controls
Just like several other Web Parts you have created, this Web Part displays a grid. The Web Part
creates the global task list by filling a DataSet, which is subsequently bound to a grid for dis-
play. When you build the task list, you provide hyperlinks to both the site that hosts the task
list and the task list itself. Add the code from Listing 9-26 to define the child controls for the
Web Part.

Listing 9-26. Creating the Child Controls

Protected WithEvents grdTasks As DataGrid

Protected WithEvents lblMessage As Label

Protected Overrides Sub CreateChildControls()

'Grid to display results

grdTasks = New DataGrid

With grdTasks

.AutoGenerateColumns = False

.Width = Unit.Percentage(100)

.HeaderStyle.Font.Name = "arial"

.HeaderStyle.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.HeaderStyle.Font.Bold = True

.HeaderStyle.ForeColor = System.Drawing.Color.Wheat

.HeaderStyle.BackColor = System.Drawing.Color.DarkBlue

.AlternatingItemStyle.BackColor = System.Drawing.Color.LightCyan

End With

Dim objHyperColumn As HyperLinkColumn

'Host Site Name Column

objHyperColumn = New HyperLinkColumn

With objHyperColumn

.HeaderText = "Host Site"

.DataTextField = "SiteName"

.DataNavigateUrlField = "SiteURL"

grdTasks.Columns.Add(objHyperColumn)

End With

'Host Site Name Column

objHyperColumn = New HyperLinkColumn

With objHyperColumn

.HeaderText = "Task"

.DataTextField = "TaskTitle"

.DataNavigateUrlField = "ListURL"

grdTasks.Columns.Add(objHyperColumn)

End With

Controls.Add(grdTasks)

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES316

5750_c09_final.qxd 11/3/05 9:36 PM Page 316

'Label for error messages

lblMessage = New Label

With lblMessage

.Width = Unit.Percentage(100)

.Font.Name = "arial"

.Font.Size = New FontUnit(FontSize.AsUnit).Point(10)

.Text = ""

End With

Controls.Add(lblMessage)

End Sub

Changing the Identity
As you have done in several Web Parts, this Web Part must change identity in order to access
the task lists. This code never changes from part to part, but it is essential for the Web Part to
function. Add the code from Listing 9-27 to create this helper function.

Listing 9-27. Changing the Web Part Identity

Protected Shared Function CreateIdentity(ByVal User As String, _

ByVal Domain As String, ByVal Password As String) As WindowsIdentity

Dim objToken As New IntPtr(0)

Dim ID As WindowsIdentity

Const LOGON32_PROVIDER_DEFAULT As Integer = 0

Const LOGON32_LOGON_NETWORK As Integer = 3

'Initialize token object

objToken = IntPtr.Zero

' Attempt to log on

Dim blnReturn As Boolean = LogonUser(User, Domain, Password, _

LOGON32_LOGON_NETWORK, LOGON32_PROVIDER_DEFAULT, objToken)

'Check for failure

If blnReturn = False Then

Dim intCode As Integer = Marshal.GetLastWin32Error()

Throw New Exception("Logon failed: " & intCode.ToString)

End If

'Return new token

ID = New WindowsIdentity(objToken)

CloseHandle(objToken)

Return ID

End Function

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 317

5750_c09_final.qxd 11/3/05 9:36 PM Page 317

<DllImport("advapi32.dll", SetLastError:=True)> _

Private Shared Function LogonUser(ByVal lpszUsername As String, _

ByVal lpszDomain As String, _

ByVal lpszPassword As String, ByVal dwLogonType As Integer, _

ByVal dwLogonProvider As Integer, _

ByRef phToken As IntPtr) As Boolean

End Function

<DllImport("kernel32.dll", CharSet:=CharSet.Auto)> _

Private Shared Function CloseHandle(ByVal handle As IntPtr) As Boolean

End Function

Rendering the Web Part
Once the helper function is complete, you may begin to code the main body of the Web Part.
Most of the work is embodied in a function that enumerates the tasks and fills the DataSet.
The Web Part identifies a task when a list item has an Assigned To field and that field contains
either the user’s login name or display name. Add the code from Listing 9-28 to create the
global task list.

Listing 9-28. Enumerating the Tasks

Protected Function GetGlobalTasks(ByVal objUser As SPUser) As DataSet

'Purpose: Walk all sites and collect pointers to the tasks

'Context for the new identity

Dim objContext As WindowsImpersonationContext

Dim arrCredentials() As String

Dim strUID As String

Dim strDomain As String

Dim strPassword As String

Dim objDataSet As DataSet

Try

'Try to get credentials

Credentials.GetCredentials(_

Convert.ToUInt32("0"), "SPSAuthority", arrCredentials)

strUID = arrCredentials(0)

strDomain = arrCredentials(1)

strPassword = arrCredentials(2)

'Change the context

Dim objIdentity As WindowsIdentity

objIdentity = CreateIdentity(strUID, strDomain, strPassword)

objContext = objIdentity.Impersonate

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES318

5750_c09_final.qxd 11/3/05 9:36 PM Page 318

Catch x As SingleSignonException

lblMessage.Text += "No credentials available." + vbCrLf

Catch x As Exception

lblMessage.Text += x.Message + vbCrLf

End Try

Try

'Create new DataTable for tasks

objDataSet = New DataSet("root")

Dim objTable As DataTable = objDataSet.Tables.Add("Tasks")

'Design Table

With objTable.Columns

.Add("SiteName", Type.GetType("System.String"))

.Add("SiteURL", Type.GetType("System.String"))

.Add("TaskTitle", Type.GetType("System.String"))

.Add("ListURL", Type.GetType("System.String"))

End With

'Fill DataTable with tasks for the current user

Dim objAdmin As New SPGlobalAdmin

Dim objServer As SPVirtualServer = objAdmin.VirtualServers(0)

Dim objSites As SPSiteCollection = objServer.Sites

Dim objSite As SPSite

'Walk every site in the installation

For Each objSite In objSites

Dim objWeb As SPWeb = objSite.OpenWeb()

Dim objLists As SPListCollection = objWeb.Lists

Dim objList As SPList

'Walk every list on a site

For Each objList In objLists

If objList.BaseType = SPBaseType.GenericList _

OrElse objList.BaseType = SPBaseType.Issue Then

For i As Integer = 0 To objList.ItemCount - 1

Try

Dim objItem As SPListItem = objList.Items(i)

'Check to see if this task is assigned to the user

Dim strAssignedTo As String = _

UCase(objItem.Item("Assigned To").ToString)

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 319

5750_c09_final.qxd 11/3/05 9:36 PM Page 319

If strAssignedTo.IndexOf(_

UCase(objUser.LoginName)) > -1 _

OrElse strAssignedTo.IndexOf(_

UCase(objUser.Name)) > -1 Then

'If so, add it to the DataSet

Dim objRow As DataRow = objTable.NewRow()

With objRow

.Item("SiteName") = objList.ParentWeb.Title

.Item("SiteURL") = objList.ParentWeb.Url

.Item("TaskTitle") = objItem("Title")

.Item("ListURL") = objList.DefaultViewUrl

End With

objTable.Rows.Add(objRow)

End If

Catch

End Try

Next

End If

Next

objWeb.Close()

Next

'Tear down the context

objContext.Undo()

Catch x As Exception

lblMessage.Text += x.Message + vbCrLf

End Try

Return objDataSet

End Function

The RenderWebPart method retrieves the current user and makes a call to the GetGlobalTasks
method. Once the tasks are all enumerated and contained in the DataSet, you can bind the
DataSet to the grid for display. Add the code from Listing 9-29 to show the task list.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES320

5750_c09_final.qxd 11/3/05 9:36 PM Page 320

Listing 9-29. Displaying the Task List

Protected Overrides Sub RenderWebPart(_

ByVal output As System.Web.UI.HtmlTextWriter)

'Get the site collection

Dim objSite As SPSite = SPControl.GetContextSite(Context)

Dim objWeb As SPWeb = objSite.OpenWeb

Dim objUser As SPUser = objWeb.CurrentUser

'Get the DataSet of Tasks

Dim objDataSet As DataSet = GetGlobalTasks(objUser)

'Display Tasks

With grdTasks

.DataSource = objDataSet

.DataMember = "Tasks"

.DataBind()

End With

'Show grid

grdTasks.RenderControl(output)

output.Write("
")

lblMessage.RenderControl(output)

End Sub

Using the Web Part
Before you can compile the Web Part, you must give it a strong name and modify the
AssemblyInfo file with the name of the key pair file. Just as you have done with every Web Part,
you must also modify the web.config file for SPS to mark the Web Part as safe. Additionally,
you should ensure that the trust level is set to Full. You have accomplished these tasks several
times, so I will not repeat the steps here.

Once the Web Part is compiled, you will want to place it on the shared view for My Site.
If you have administrator permissions and modify the shared view, the Web Part will be avail-
able to all users of the portal.

To add the Web Part, follow these steps:

1. Log in to SPS as a member of the Administrator site group.

2. From the portal home page, click the My Site link.

3. On the My Site home page, select Modify My Page ➤ Shared View.

4. On the shared view, select Modify Shared Page ➤ Add Web Parts ➤ Import.

5. Add the global task list Web Part to the shared page to make it available to all portal
users.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 321

5750_c09_final.qxd 11/3/05 9:36 PM Page 321

■Note The task list aggregates tasks for an individual based on the logon name and the display name.
Errors in either of these values can negatively impact the accuracy of the final task list. See the next project
for more details on this issue.

Exercise 9-4: Building an Identity Web Part
Another issue that comes up early in a SharePoint Services deployment is the management
of display names and e-mail addresses associated with individual sites. Because all top-level
sites are independent, it is easy for the site creator to misspell a name or address. Furthermore,
end users have no simple way to correct their information. In this exercise, you will create a
simple Web Part that will allow users to change their personal information directly in a site.
Figure 9-3 shows a view of the final project.

Creating the Project
This Web Part project will be written in C#. Open Visual Studio and create a new Web Part
project in C# named SPSIdentity. When the project is created, rename the class file and the
Web Part description file as SPSIdentity.dwp and SPSIdentity.cs, respectively. Then, open
SPSIdentity.dwp and change the file to appear as shown in Listing 9-30.

Listing 9-30. The Web Part Description File

<?xml version="1.0" encoding="utf-8"?>

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >

<Title>Your Information</Title>

<Description>A Web Part that shows identity information</Description>

<Assembly>SPSIdentity</Assembly>

<TypeName>SPSIdentity.Reporter</TypeName>

</WebPart>

Before you begin to modify the Web Part code, you must add a reference to the SharePoint
Services namespace. Once the reference is added, open the SPSIdentity.cs file for editing. You
will add several using statements to the file, modify the class name, and remove the default
property. Change your Web Part to appear as shown in Listing 9-31.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES322

Figure 9-3. Displaying personal information

5750_c09_final.qxd 11/3/05 9:36 PM Page 322

Listing 9-31. Starting the Project

using System;

using System.ComponentModel;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Xml.Serialization;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Utilities;

using Microsoft.SharePoint.WebPartPages;

using Microsoft.SharePoint.WebControls;

namespace SPSIdentity

{

[DefaultProperty(""),

ToolboxData("<{0}:Report runat=server></{0}:Report>"),

XmlRoot(Namespace="SPSIdentity")]

public class Reporter : Microsoft.SharePoint.WebPartPages.WebPart

{

Creating the Child Controls
This Web Part has no properties. It simply displays the user’s information and allows the user to
make changes. The user interface for this Web Part is more involved than others you have cre-
ated, but it still follows the same general development principles. Add the code from Listing 9-32
to the project to create the user interface for the Web Part.

Listing 9-32. Creating the Child Controls

protected Label userNameLabel;

protected TextBox displayNameText;

protected TextBox emailText;

protected Button updateButton;

protected Label messageLabel;

protected override void CreateChildControls()

{

//UserName Label

userNameLabel = new Label();

userNameLabel.Width = Unit.Percentage(100);

userNameLabel.Font.Size = FontUnit.Point(10);

userNameLabel.Font.Name = "arial";

Controls.Add(userNameLabel);

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 323

5750_c09_final.qxd 11/3/05 9:36 PM Page 323

//DisplayName Text

displayNameText = new TextBox();

displayNameText.Width = Unit.Percentage(100);

displayNameText.Font.Name = "arial";

displayNameText.Font.Size = FontUnit.Point(10);

Controls.Add(displayNameText);

//E-Mail Text

emailText = new TextBox();

emailText.Width = Unit.Percentage(100);

emailText.Font.Name = "arial";

emailText.Font.Size = FontUnit.Point(10);

Controls.Add(emailText);

//Submit Button

updateButton = new Button();

updateButton.Font.Name = "arial";

updateButton.Font.Size = FontUnit.Point(10);

updateButton.Text = "Change";

Controls.Add(updateButton);

updateButton.Click +=new EventHandler(update_Click);

//Message Label

messageLabel = new Label();

messageLabel.Width = Unit.Percentage(100);

messageLabel.Font.Size = FontUnit.Point(10);

messageLabel.Font.Name = "arial";

Controls.Add(messageLabel);

}

Rendering the Web Part
When the Web Part runs, it displays the logon name, display name, and e-mail address for the
current user. The display name and e-mail address are presented in text boxes so that they can
be edited directly. Add the code from Listing 9-33 to display the current user information.

Listing 9-33. Displaying Current User Information

protected override void RenderWebPart(HtmlTextWriter output)

{

//Get current user information before the context is changed

SPSite site = SPControl.GetContextSite(Context);

SPWeb web = site.OpenWeb();

SPUser user = web.CurrentUser;

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES324

5750_c09_final.qxd 11/3/05 9:36 PM Page 324

//Show user information

userNameLabel.Text = user.LoginName;

displayNameText.Text = user.Name;

emailText.Text = user.Email;

//Create output

output.Write("<TABLE Border=0>");

output.Write("<TR>");

output.Write("<TD>User name: ");

userNameLabel.RenderControl(output);

output.Write("</TD>");

output.Write("</TR>");

output.Write("<TR>");

output.Write("<TD> Display name: ");

displayNameText.RenderControl(output);

output.Write("</TD>");

output.Write("</TR>");

output.Write("<TR>");

output.Write("<TD>e-Mail: ");

emailText.RenderControl(output);

output.Write("</TD>");

output.Write("</TR>");

output.Write("<TR>");

output.Write("<TD>");

updateButton.RenderControl(output);

output.Write("</TD>");

output.Write("</TR>");

output.Write("<TR>");

output.Write("<TD>");

messageLabel.RenderControl(output);

output.Write("</TD>");

output.Write("</TR>");

output.Write("</TABLE>");

//close

web.Close();

site.Close();

}

Updating the User Information
The user interface for the Web Part displays a button that can be clicked to edit the user infor-
mation. End users simply type the changes directly into the Web Part and click the button. The
changes are then written back to SharePoint Services. Add the code from Listing 9-34 to update
the credentials.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES 325

5750_c09_final.qxd 11/3/05 9:36 PM Page 325

Listing 9-34. Updating the User Information

private void update_Click(object sender, EventArgs e)

{

//Get current user information before the context is changed

SPSite site = SPControl.GetContextSite(Context);

SPWeb web = site.OpenWeb();

SPUser user = web.CurrentUser;

//Update current user information

user.Email=emailText.Text;

user.Name=displayNameText.Text;

user.Update();

web.Close();

site.Close();

}

Using the Web Part
Using the Web Part is no different than using any other Web Part. Give the Web Part a strong
name and compile it. Add the Web Part to the <SafeControls> section of the web.config file
and import it into a page. The Web Part should then display the information for the current
user. The best way to use this part is to place it on a top-level site to ensure the credentials are
correct for the entire site collection.

CHAPTER 9 ■ PROGRAMMING SHAREPOINT SERVICES326

5750_c09_final.qxd 11/3/05 9:36 PM Page 326

Visual Studio 2005 and the
Microsoft Office System

Throughout this book, I have used Visual Studio 2003 (VS2003) to create Web Parts and Office
solutions. However, VS2003 was not really designed with SharePoint and Office System projects
in mind. You can certainly see evidence of this in the fact that there is no inherent support for
creating Web Parts in VS2003 as well as in the amount of coding necessary to create a Smart
Document for Office.

As this edition goes to press, Microsoft is preparing to release Visual Studio 2005 (VS2005),
which contains tools, enhancements, and project types of interest to the SharePoint developer.
Additionally, VS2005 is designed to be used with the .NET Framework 2.0, which delivers sig-
nificant new support for Web Parts that can be used outside of the SharePoint environment.
Although this chapter is written against the Beta 2 release of VS2005, I felt the integration with
the Office System justified an early look. I just have to make the standard disclaimer that some
of this information may change by the time the final product is released.

As of this writing, you can get a copy of VS2005 Beta 2 from Microsoft by visiting the Visual
Studio 2005 home page at http://lab.msdn.microsoft.com/vs2005. On the VS2005 home page,
you can download one of the many editions of Visual Studio. The Express editions are intended
to be lightweight versions of Visual Studio targeted at novice developers. These editions include
versions for web development, VB .NET, C#, C++, and J#. Additionally, you can download an
Express version of SQL Server 2005 to use in conjunction with the development environment.
Professional developers will not likely use any of the Express versions; instead, they will make
use of Visual Studio Team System (VSTS).

VSTS is intended to be a single consolidated environment that supports all members of
the software development team. VSTS has separate editions for architects, developers, testers,
and project managers. Each of these editions is intended to provide the toolset necessary for
a particular role. Architects, for example, would have access to design and modeling tools.
Developers would utilize the integrated debugging environment along with source code con-
trol. Testers would make use of unit testing and performance tools, while project managers
would use Microsoft Project and Windows SharePoint Services to manage the software life cycle.

Complete coverage of VSTS is well beyond the scope of this book, but I do want to talk about
things that are of particular importance to the SharePoint developer. Therefore, I have set up
a development environment that includes VSTS and Microsoft Office 2003 on a Windows XP
client. Using this simple setup, we can investigate two key technologies: the ASP.NET 2.0 Web
Parts Framework and the Visual Studio 2005 Tools for Office (VSTO).

327

C H A P T E R 1 0

■ ■ ■

5750_c10_final.qxd 11/3/05 9:34 PM Page 327

The ASP.NET 2.0 Web Parts Framework
The power of SharePoint as a solution platform comes in no small measure from its support
for Web Parts. The Web Parts framework built into Windows SharePoint Services (WSS) pro-
vides a consistent environment for both developer and user. Standard interfaces, attributes,
and deployment models make Web Part construction straightforward, while standard inter-
face elements to add, remove, and modify Web Parts make them easy to customize. The only
drawback to using Web Parts is that a complete installation of WSS is required to utilize the
framework.

Beginning with the next release of the .NET Framework and Visual Studio 2005, develop-
ers will no longer be limited to using Web Parts solely within SharePoint environments. This is
because Microsoft has built the Web Parts framework into the .NET Framework class library.
The set of classes that implement the framework are known collectively as the ASP.NET 2.0
Web Parts Framework, and they allow you to can create and deploy Web Parts for custom appli-
cations as well as the next version of SharePoint technologies. Although the next version of
SharePoint will not be available until late 2006, you can begin to get familiar with the frame-
work upon which it will be based now.

Understanding the Web Parts Control Set
The .NET Framework classes that implement the Web Parts framework are intended to be used
within ASP.NET applications. Before you can utilize any Web Parts, however, you must use sev-
eral of the .NET classes to implement the basic functions of the framework. These basic functions
provide support for zones, layouts, and property management. In VS2005, all of the required
classes are implemented as server controls known collectively as the Web Parts control set. When
you create a new ASP.NET application, these controls appear automatically in the Visual Studio
toolbox as shown in Figure 10-1.

Every ASP.NET page that contains Web Parts must include a single WebPartManager con-
trol. This control must be dragged from the toolbox and placed at the top of the page. The
WebPartManager control provides much of the foundational functionality of the Web Parts
framework, but it is not visible at runtime. Once it is in place, however, you can add other
controls that implement visible elements.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM328

Figure 10-1. The Web Parts control set

5750_c10_final.qxd 11/3/05 9:34 PM Page 328

After adding a WebPartManager control, you can use the WebPartZone control to define zones
within the page. These zones work exactly like the zones in SharePoint; they define areas where
you can add Web Parts to the page. In fact, Visual Studio will allow you to use any standard con-
trol as a Web Part once the WebPartManager and WebPartZone controls are in place.

Follow these steps to use a standard control as a Web Part:

1. Start Visual Studio 2005 and select File ➤ New ➤ Web Site from the main menu.

2. In the New Web Site dialog, select the ASP.NET Web Site template.

3. In the Location drop-down list, select File System.

4. Click the Browse button.

5. In the Choose Location dialog, select a location in the file system tree to create the
new web site.

6. Create a new folder and name it SimpleSite.

7. Click the Open button to return to the New Web Site dialog.

8. In the New Web Site dialog, click the OK button to create the new web site.

9. In the Solution Explorer, select the Default.aspx file and click the View Designer
button.

10. Drag a WebPartManager control from the toolbox and place it at the top of the
Default.aspx page.

11. Drag a WebPartZone control from the toolbox and place it directly below the
WebPartManager control.

12. Expand the Standard control set in the toolbox and drag a Label control into the
WebPartZone control.

13. Select Debug ➤ Start Without Debugging from the main menu.

When you run this simple example, you will see the Label control visible within the Web
Part zone. You will also notice that a drop-down menu is available that allows you to minimize
or close the Web Part. However, there is no capability as of yet to change the layout or appear-
ance of the page. In order to implement that capability, you must write some code to change
the display mode of the page and add some additional controls to the page.

Changing the display mode of a page permits dragging Web Parts between zones, chang-
ing Web Part properties, connecting Web Parts, and adding new parts to the page. Changing
the display mode is a simple matter of setting the DisplayMode property of the WebPartManager
in code. However, each mode also requires one or more additional controls to implement the
user interface necessary to modify the page layout or Web Part properties.

The EditorZone control creates a special zone on the web page where you can place addi-
tional controls that allow the page or Web Parts to be modified. Once an EditorZone is placed,
you may add additional AppearanceEditorPart, LayoutEditorPart, BehaviorEditorPart, or
PropertyGridEditorPart controls to the zone. The EditorZone and its associated controls remain
invisible until the DisplayMode is changed to reveal them.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 329

5750_c10_final.qxd 11/3/05 9:34 PM Page 329

The CatalogZone control creates a special zone on the web page where you can place
additional controls that allow new Web Parts to be added. Once a CatalogZone is placed, you
may add additional DeclarativeCatalogPart, PageCatalogPart, or ImportCatalogPart controls
to the zone. The CatalogZone and its associated controls remain invisible until the DisplayMode
is changed to reveal them.

The ConnectionsZone control creates a special zone on the web page where you can make
connections between Web Parts. Just like in SharePoint, you can pass information between
Web Parts to create more complicated user interfaces. Table 10-1 lists the settings for the
DisplayMode property, its resulting effect on the web page, and the associated controls that
allow editing or managing Web Parts.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM330

Table 10-1. DisplayMode Settings

Value Description Associated Controls

WebPartManager.BrowseDisplayMode Displays the page normally.

WebPartManager.DesignDisplayMode Displays the Web Part zones. Allows Web WebPartZone
Parts to be dragged between zones.

WebPartManager.EditDisplayMode Displays the Web Part zones and editing EditorZone,
controls. Allows Web Parts to be dragged AppearanceEditorPart,
between zones and Web Part properties LayoutEditorPart,
to be edited. BehaviorEditorPart,

PropertyGridEditorPart

WebPartManager.CatalogDisplayMode Displays the Web Parts zones and catalog CatalogZone,
controls. Allows Web Parts to be dragged DeclarativeCatalogPart,
between zones and new Web Parts to be PageCatalogPart,
added to the page. ImportCatalogPart

WebPartManager.ConnectDisplayMode Displays the Web Part zones. Allows Web ConnectionsZone
Parts to be connected.

Building Custom Web Parts
Although you can use any standard control as a Web Part if it is supported by the Web Parts con-
trol set, most of the time you will find that you still need to build your own custom Web Parts
from scratch. First of all, standard controls are limited in functionality and not easily extended.
Second, the standard controls will not work as Web Parts in the next version of SharePoint. The
good news, however, is that building a Web Part in ASP.NET 2.0 is very similar to building one in
SharePoint 2003.

Creating a custom Web Part in ASP.NET 2.0 begins by inheriting from the WebPart class, in
much the same way as in SharePoint 2003. The big difference is that the base class for Web Parts
in SharePoint 2003 derives from Microsoft.SharePoint.WebPartPages.WebPart, whereas the
base class for ASP.NET 2.0 Web Parts and the next release of SharePoint is System.Web.UI.➥

WebControls.WebParts.WebPart. Although Microsoft does promise backward compatibility with
Web Parts built on the Microsoft.SharePoint namespace, all future development will use the
new namespace of ASP.NET 2.0.

You begin the definition of a new Web Part by creating a new Class Library project in C#
or VB .NET. Once the project is created, you must set a reference to the System.Web namespace,
which contains the WebPart base class. Once the reference is set, you may then set up the class
to inherit from the base class. As an example, I’ll build two image viewer parts that will contain

5750_c10_final.qxd 11/3/05 9:34 PM Page 330

a property for specifying a URL for an image file. Listing 10-1 shows the foundational code for
the Web Part built in C#, and Listing 10-2 shows the code in VB .NET.

Listing 10-1. Starting a Web Part in C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls.WebParts;

namespace CViewer

{

public class Frame:WebPart

{

}

}

Listing 10-2. Starting a Web Part in VB .NET

mports System

Imports System.Web

Imports System.Web.UI.WebControls.WebParts

Public Class Frame

Inherits WebPart

End Class

ASP.NET 2.0 Web Parts are still based on the concept of a server control, just like SharePoint
2003 Web Parts. Therefore, they have essentially the same life cycle as I outlined in Chapter 5.
There are differences, however, in the names of the methods and attributes used within the
class module. For example, ASP.NET 2.0 Web Parts have a RenderContents method instead of
a RenderWebPart method. Aside from the name, everything else about these methods is the
same. You still use an HtmlTextWriter to generate the output that will be displayed to the user.
Although the names of some of the methods are different, some are still the same. For exam-
ple, you can still override the CreateChildControls method to add your own controls to the
Web Part.

Creating properties for Web Parts in ASP.NET 2.0 is also nearly identical to SharePoint 2003.
Again, the only real difference is in the naming; ASP.NET 2.0 attributes have different names
than their SharePoint 2003 counterparts. For example, declaring that a property is WebBrowsable
will allow its properties to be edited in the PropertyGridEditorPart, which I’ll cover later in the
chapter. Listing 10-3 shows the viewer Web Part in C#, and Listing 10-4 shows the code in VB .NET.

Listing 10-3. The Completed Web Part in C#

using System;

using System.Web.UI;

using System.Web.UI.WebControls.WebParts;

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 331

5750_c10_final.qxd 11/3/05 9:34 PM Page 331

namespace CViewer

{

public class Frame:WebPart

{

private string _url =

"http://www.datalan.com/images/DLlogo2.jpg";

public string Url

{

get{return _url;}

set{_url = value;}

}

protected override void RenderContents(HtmlTextWriter writer)

{

writer.Write("<IMG SRC=\"" +

Url + "\" HEIGHT=\"60px\" WIDTH=\"202px\">");

}

}

}

Listing 10-4. The Completed Web Part in VB .NET

Imports System

Imports System.Web

Imports System.Web.UI.WebControls.WebParts

Public Class Frame

Inherits WebPart

Private m_URL As String = _

"http://www.datalan.com/images/partner_microsoft_poy.gif"

Public Property URL() As String

Get

Return m_URL

End Get

Set(ByVal value As String)

m_URL = value

End Set

End Property

Protected Overrides Sub RenderContents(_

ByVal writer As System.Web.UI.HtmlTextWriter)

writer.Write("<IMG SRC=""" & _

URL & """ HEIGHT=""83px"" WIDTH=""190px"">")

End Sub

End Class

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM332

5750_c10_final.qxd 11/3/05 9:34 PM Page 332

Using Web Parts in a Page
One of the strengths of the SharePoint Web Part infrastructure is that it provides administration
and management of Web Parts with no additional work on your part. Inside of a SharePoint site,
you can view catalogs of Web Parts, import Web Parts, and modify Web Parts. In a custom appli-
cation based on ASP.NET 2.0, the administrative functionality must be implemented using the
Web Parts control set and writing some code into the custom web page.

While standard controls can easily be dragged from the toolbox into an existing zone, cus-
tom Web Parts cannot. Therefore, you must set a reference to the assembly containing the Web
Part and register it with each web page where it will be used. This is done by including a Register
directive in the ASP.NET code of the page. Typically, you will reference the assembly containing
the custom Web Part and provide an alias for the associated namespace using the TagPrefix
attribute. The following code shows how to register both the C# and VB .NET versions of the
Web Part created earlier:

<%@ Register TagPrefix="csharppart" Namespace="CViewer" Assembly="CViewer" %>

<%@ Register TagPrefix="vbpart" Namespace="VBViewer" Assembly="VBViewer" %>

Once the assembly is registered, you may use the various catalog-management controls in
the toolbox to make the custom Web Parts available in the page. You begin by dragging a Catalog➥

Zone control from the toolbox onto the web page design surface. The CatalogZone acts as a host
for any combination of the DeclarativeCatalogPart, PageCatalogPart, and ImportCatalogPart.

The DeclarativeCatalogPart is used to create a catalog on the page by declaring avail-
able Web Parts in ASP.NET code. The PageCatalogPart allows Web Parts that are closed by
the user to be added back to a page, while the ImportCatalogPart is used to add Web Parts
by importing them in much the same way as in SharePoint 2003. In my example, I’ll use the
DeclarativeCatalogPart to make the Web Parts available.

Once the DeclarativeCatalogPart is on the web page, you can use it to edit the under-
lying ASP.NET code. This is accomplished by editing the WebPartsTemplate property directly
on the design surface. Figure 10-2 shows the control, which contains a blank text area used to
enter the ASP.NET code that will declare a Web Part in the catalog.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 333

Figure 10-2. A text area for modifying the WebPartsTemplate property

5750_c10_final.qxd 11/3/05 9:34 PM Page 333

While the WebPartsTemplate property is supposed to make it easy to add the necessary dec-
larative code to the page, its behavior is incorrect in the current beta release. Therefore, I have
found that you must edit the code directly in the Source view for the page. The only real chal-
lenge is figuring out where to place your code. I recommend attempting to make the change
through the DeclarativeWebPart control first and then cleaning up the code in Source view.

Follow these steps to make the proper declaration:

1. Drag a CatalogZone control from the toolbox onto the design surface of the web page.

2. Drag a DeclarativeWebPart control from the toolbox into the CatalogZone control.

3. Click the Edit Templates hyperlink.

4. In the WebPartsTemplate text area, add a declaration in the form <tagprefix:➥

classname ID="id" Title="title" Runat="Server" />. The following code shows
this declaration for the CViewer.Frame class I created earlier:

<csharppart:Frame ID="mycspart" Title="C# Viewer" Runat="Server" />

5. Switch to Source view in the page and clean up the declaration as necessary to make
it appear like the preceding code.

After the Web Parts are declared, they should be listed in the body of the DeclarativeWebPart
in Design view. The only thing left to do is add a button to the page that will set the DisplayMode
property of the WebPartManager control to display the catalog. Entering catalog mode is done
with a single line of code similar to the following:

WebPartManager1.DisplayMode = WebPartManager.CatalogDisplayMode

Once in catalog mode, you can add any of the declared Web Parts to the zones defined
by WebPartZone controls. When the Web Parts are added, they will show the images that were
specified as the default values in code. Figure 10-3 shows the catalog with the Web Parts avail-
able for addition to a zone.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM334

Figure 10-3. Web Parts in the declarative catalog

5750_c10_final.qxd 11/3/05 9:34 PM Page 334

Personalizing Web Parts
At this point I can add Web Parts from the declarative catalog to the page, but I have no way to
change the properties of the Web Parts. Both Web Parts simply display the default image speci-
fied in the class code. In order to make changes to the properties, I have to include some editing
controls on the page and then decorate my properties with some special attributes.

Properties are edited using a combination of an EditZone control and a PropertyGrid➥

EditorPart control. The EditZone control acts as a host for the PropertyGridEditorPart con-
trol, which creates the user interface necessary to edit Web Part properties. First you drag an
EditZone control onto the page, and then you drag a PropertyGridEditorPart control on top
of it. While you’re at it, you can also drag an AppearanceEditorPart into the zone, which will
allow you to edit basic properties such as the title of the Web Part. Figure 10-4 shows the cur-
rent page, which I have cleaned up a bit through the use of an HTML table for formatting.

After the editing controls are on the page, you must add some attributes to the Web Part
properties you wish to edit. By default, the properties that you create are hidden from the user
unless you explicitly declare that they may be edited. This is exactly the same behavior as I dis-
cussed in Chapter 5 with SharePoint 2003 Web Parts; however, the attributes are different.

To expose a property for editing, you must decorate it with the WebBrowsable attribute.
This attribute allows the PropertyGridEditorPart control to display the property value for
editing in the page. Additionally, you can decorate the property with the WebDisplayName and

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 335

Figure 10-4. A set of editing controls

5750_c10_final.qxd 11/3/05 9:34 PM Page 335

WebDescription attributes to show a property name and description respectively in the editor.
Marking the property with the WebBrowsable attribute, however, will not save the changes to
the page once the application is closed. If you want the changes to persist, then the property
must also be decorated with the Personalizable attribute. List 10-5 shows the URL property
decorated with the appropriate attributes in both C# and VB .NET.

Listing 10-5. The URL Property

//C# Property

[WebBrowsable(),WebDisplayName("URL"),

WebDescription("The URL of the image"),Personalizable()]public string Url

{

get{return _url;}

set{_url = value;}

}

'VB .NET Property

<WebBrowsable(), WebDisplayName("URL"), _

WebDescription("The URL of the image"), Personalizable()> _

Public Property URL() As String

Get

Return m_URL

End Get

Set(ByVal value As String)

m_URL = value

End Set

End Property

Whenever you create a new web site for use with Web Parts, Visual Studio automatically
creates a SQL Server Express database to maintain personalized property values. You can see
the database by opening the Server Explorer inside of VS2005. This database maintains the
property values as set by each individual who is using the page.

The database associated with your web application remembers the property values for
each user based on the security context with which they access the application. For applica-
tions that use Windows authentication, this happens automatically. However, you can also
choose to use forms authentication in ASP.NET 2.0 to track the property assignments.

Once the editing environment is created and the properties are properly decorated, you
can place the web page in edit mode. This is done by changing the DisplayMode property of
the WebPartManager to EditDisplayMode. Once this is done, you may use the drop-down menu
associated with any Web Part to change the property values. Figure 10-5 shows the final web
page in edit mode.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM336

5750_c10_final.qxd 11/3/05 9:34 PM Page 336

Using Visual Studio Tools for Office
In Chapter 8, I showed the functionality of and discussed how to create several different solu-
tions based on the Microsoft Office suite that were complementary to WSS. In some cases, the
functionality was easy to incorporate, such as the Shared Workspace. However, in cases where
you had to write custom code, such as for research applications and Smart Documents, the
process was far from simple. Much of the custom coding in these types of applications is con-
fusing and tedious, which may have discouraged you from trying to utilize them in your own
organization. Fortunately, Microsoft has made some strides in solving these difficulties by
shipping a new version of VSTO with VS2005 that makes application development with the
Office suite much easier than it was before.

Understanding Project Types
When VSTO is installed with VS2005, the first thing you’ll notice is that Microsoft Word and
Excel project types are available directly from the New Project dialog. These project types
allow you to create solutions that can utilize controls dragged directly from the toolbox onto
a document or task pane. Additionally, you can build Smart Documents with a code-behind
metaphor similar to any other project type. Figure 10-6 shows the New Project dialog with the
VSTO project types displayed.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 337

Figure 10-5. Editing Web Part properties

5750_c10_final.qxd 11/3/05 9:34 PM Page 337

When you select to create one of the new project types, VS2005 starts a project that acts
as a host for either Word or Excel. This means that you can actually see the entire Word or Excel
application running inside of VS2005. This capability allows you to treat an Office document
like a Windows form. You can drag tools from the toolbox onto the document, double-click
them, and write code behind the controls.

Follow these steps to add controls to a document:

1. Start Visual Studio 2005 and select File ➤ New ➤ Project from the main menu.

2. In the New Project dialog, expand the Visual Basic node and select the Office node
from the Project Types tree.

3. In the Templates list, select the Word Template project.

4. Name the new project HelloWord.

5. Click the OK button to start the project wizard.

6. On the Select a Document for Your Application screen, choose to Create a New Docu-
ment and click the OK button.

7. From the toolbox, drag a button onto the new Word document.

8. Double-click the button to open the code window.

9. In the Click event, add the following code:

MessageBox.Show("Hello, Word!")

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM338

Figure 10-6. VSTO project types

5750_c10_final.qxd 11/3/05 9:34 PM Page 338

10. Select Debug ➤ Start Without Debugging from the main menu.

11. When the application starts, click the button and display the message.

Along with placing controls directly on a document, you can also create your own inter-
face on the task pane. I showed you how to do this in Chapter 8 using Visual Studio 2003, but
VS2005 makes it much easier. All you have to do is programmatically add the controls when
the document is loaded.

Follow these steps to add a control to the task pane:

1. Complete the preceding steps to create the HelloWord project.

2. In the Solution Explorer, select ThisDocument.vb and click the View Code button.

3. Inside the ThisDocument class, make the following declaration for a button:

Private WithEvents MyButton As New Button

4. In the code window, use the Class Name drop-down list to select the MyButton class.

5. Use the Method Name drop-down list to select the Click event.

6. Add the following code to the Click event to show a message:

MessageBox.Show("Hello, Task Pane!")

7. Add the following code to the Startup event of the ThisDocument class to load the
button into the task pane:

MyButton.Text = "Push Me!"

ActionsPane.Controls.Add(MyButton)

8. Select Debug ➤ Start Without Debugging from the main menu.

9. When the application starts, click the button in the task pane and display the message.

Adding Smart Tags to Documents
In Chapter 8, I showed how to create Smart Tags for Office documents and trigger actions based
on recognized terms. Building Smart Tags is another area that is complex in VS2003 but has been
simplified in VS2005. Using VSTO, you can create Smart Tags in far fewer steps than before.

Smart Tags in VS2005 are associated with an Office document project like the ones created
earlier in this chapter. To get started, you must set a reference to the Microsoft Smart Tags 2.0
Type Library in VS2005. Once the reference is set, you must add a new class to the project and
inherit from Microsoft.Office.Tools.Word.SmartTag. As an example, I’ll build Smart Tags that
recognize the terms “DataLan”, “Microsoft”, and “Apress”. The process begins by creating a class
that references the appropriate namespaces. Listing 10-6 shows the starting code for the Smart
Tags in both C# and VB .NET.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 339

5750_c10_final.qxd 11/3/05 9:34 PM Page 339

Listing 10-6. Starting Smart Tag Code

//C# Code

using System.Windows.Forms;

using Microsoft.Office.Tools.Word;

using Microsoft.Office.Interop.SmartTag;

namespace WordDocument1

{

class companyTag : Microsoft.Office.Tools.Word.SmartTag

{

}

}

'VB .NET Code

Imports Microsoft.Office.Tools.Word

Imports Microsoft.Office.Interop.SmartTag

Public Class CompanyTag

Inherits Microsoft.Office.Tools.Word.SmartTag

End Class

Next, you must override the class constructor and provide information about the terms to
recognize as well as the actions to take upon recognition. This is a matter of declaring one or
more Action variables and adding them to the Actions collection of the Smart Tag. Additionally,
you must add the terms to recognize to the Terms collection of the Smart Tag. Listing 10-7 shows
the overridden constructors for both C# and VB .NET.

Listing 10-7. Overriding the Constructors

//C# Code

Action nameAction;

public companyTag():base("www.datalan.com#sample", "Sample")

{

nameAction = new Action("Show recognized name");

Actions = new Action[] { nameAction };

nameAction.Click +=new ActionClickEventHandler(nameAction_Click);

Terms.Add("DataLan");

Terms.Add("Microsoft");

Terms.Add("Apress");

}

'VB .NET Code

Private WithEvents NameAction As Action

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM340

5750_c10_final.qxd 11/3/05 9:34 PM Page 340

Sub New()

MyBase.New("www.datalan.com#sample", "Sample")

NameAction = New Action("Show recognized name")

Actions = New Action() {nameAction}

Terms.Add("Datalan")

Terms.Add("Microsoft")

Terms.Add("Apress")

End Sub

When a term from the Terms collection is recognized, a Smart Tag will appear in the doc-
ument. Selecting the Smart Tag will display the associated items from the Actions collection.
When a user selects one of the actions, your code runs the appropriate event; therefore, you
must create an event for each of the actions. Listing 10-8 shows how to create an event in both
C# and VB .NET.

Listing 10-8. Capturing Action Events

//C# Code

public void nameAction_Click(

object sender,Microsoft.Office.Tools.Word.ActionEventArgs e)

{

MessageBox.Show("The recognized name is: " + e.Range.Text);

}

'VB .NET Code

Private Sub MailAction_Click(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ActionEventArgs) _

Handles NameAction.Click

MessageBox.Show("The name is: " & e.Range.Text)

End Sub

Once the Smart Tag is complete, you must load it into memory when the document is
opened. This is accomplished by adding it to the VstoSmartTags collection. Listing 10-9 shows
how to add the Smart Tag in both C# and VB .NET.

Listing 10-9. Adding a Smart Tag to a Document

//C# Code

private void ThisDocument_Startup(object sender, System.EventArgs e)

{

VstoSmartTags.Add(new companyTag());

}

'VB .NET Code

Private Sub ThisDocument_Startup(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Startup

VstoSmartTags.Add(New CompanyTag)

End Sub

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 341

5750_c10_final.qxd 11/3/05 9:34 PM Page 341

Exercise 10-1: Building a Web Part Page
With the release of ASP.NET 2.0, developers can now use Web Parts in custom applications
outside of SharePoint 2003. Additionally, ASP.NET 2.0 is important because it will be the basis
for the Web Parts framework in the next version of SharePoint. In this exercise, you will work
with the Web Parts control set to create a simple application that uses Web Parts to display a
business card.

Creating the New Project
Creating web site projects in VS2005 can be done directly against a web server or by using the
local file system. These options give you some flexibility during development. In this project,
you will create a new web application in C# using the local file system.

Follow these steps to create the new project:

1. Start Visual Studio 2005 and select File ➤ New ➤ Web Site from the main menu.

2. In the New Web Site dialog, select the ASP.NET Web Site template.

3. In the Location drop-down list, select File System.

4. In the Language drop-down list, select Visual C#.

5. Click the Browse button.

6. In the Choose Location dialog, select a location in the file system tree to create the
new web site.

7. Create a new folder and name it BusinessCard.

8. Click the Open button to return to the New Web Site dialog.

9. In the New Web Site dialog, click the OK button to create the new web site.

Adding Site Membership
Implementing site membership allows you to control access to your web site projects. Addition-
ally, site membership includes the capability for users to customize Web Parts individually and
have those customizations persist across sessions. In this section, you will work with VS2005 to
set up membership restrictions on your web site.

Follow these steps to set up membership rules:

1. In the Solution Explorer, select the project and click the ASP.NET Configuration button.

2. In the ASP.NET Web Site Administration Tool, click the Security hyperlink.

3. On the Security tab, click the link entitled Use the Security Setup Wizard to Configure
Security Step by Step.

4. On the Welcome page, click the Next button.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM342

5750_c10_final.qxd 11/3/05 9:34 PM Page 342

5. On the Select Access Method page, choose From a Local Area Network and click the
Next button.

6. On the Add New Access Rules page, select to add a user and type the name of your
account.

7. Set the permission option to Allow and click the button labeled Add This Rule.

8. Click the Finish button.

9. Close the ASP.NET Web Site Administration Tool.

Creating the Logo Web Part
Web Parts can be created in a variety of ways in VS2005. You can use standard controls
as Web Parts or create custom controls. In the next few sections, you will create Web Parts
for the application using user controls. The first control you will create is for displaying a
logo on the business card.

Follow these steps to create the Web Part:

1. In the Solution Explorer, right-click the project and select Add New Item from the con-
text menu.

2. In the Add New Item dialog, select to add a new web user control.

3. Name the new web user control LogoPart.ascx and click the Add button.

4. In the Solution Explorer, select the LogoPart.ascx file and click the View Designer
button.

5. In the toolbox, expand the Standard control section and drag an Image control from the
toolbox onto the designer surface.

6. Select the Image control on the designer surface to display the Properties window.

7. In the Properties window, change the AlternateText property to read Insert Logo.

8. In the Solution Explorer, select the LogoPart.ascx file and click the View Code button.

9. Add the following code to define a new property for the control:

[WebBrowsable(),WebDisplayName("LogoURL"),

WebDescription("The URL for the logo image.")]

public string logoURL

{

get{return Image1.ImageUrl;}

set{Image1.ImageUrl = value;}

}

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 343

5750_c10_final.qxd 11/3/05 9:34 PM Page 343

Creating the Text Web Part
The next Web Part you will create is for displaying simple text on the card. This Web Part will
be used in several places on the web page.

Follow these steps to create the Web Part:

1. In the Solution Explorer, right-click the project and select Add New Item from the
context menu.

2. In the Add New Item dialog, select to add a new web user control.

3. Name the new web user control TextPart.ascx and click the Add button.

4. In the Solution Explorer, select the TextPart.ascx file and click the View Designer
button.

5. In the toolbox, expand the Standard control section and drag a Label control from the
toolbox onto the designer surface.

6. Select the Label control on the designer surface to display the Properties window.

7. In the Properties window, change the Text property to read Insert Text.

8. In the Solution Explorer, select the TextPart.ascx file and click the View Code button.

9. Add the following code to define a new property for the control:

[WebBrowsable(), WebDisplayName("CardText"),

WebDescription("The text to display.")]

public string cardText

{

get { return Label1.Text; }

set { Label1.Text = value; }

}

Creating the Link Web Part
Because the business card is based on a web page, you can have some extra built-in functional-
ity. In this case, you will create a Web Part that supports hyperlink navigation. You will use this
Web Part to display the e-mail address for the card so viewers can send mail directly by clicking
the link.

Follow these steps to build the Web Part:

1. In the Solution Explorer, right-click the project and select Add New Item from the
context menu.

2. In the Add New Item dialog, select to add a new web user control.

3. Name the new web user control LinkPart.ascx and click the Add button.

4. In the Solution Explorer, select the LinkPart.ascx file and click the View Designer
button.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM344

5750_c10_final.qxd 11/3/05 9:34 PM Page 344

5. In the toolbox, expand the Standard control section and drag a HyperLink control from
the toolbox onto the designer surface.

6. Select the HyperLink control on the designer surface to display the Properties window.

7. In the Properties window, change the Text property to read Insert Text.

8. In the Solution Explorer, select the LinkPart.ascx file and click the View Code button.

9. Add the following code to define new properties for the control:

[WebBrowsable(), WebDisplayName("LinkText"),

WebDescription("The text of the link.")]

public string linkText

{

get { return HyperLink1.Text; }

set { HyperLink1.Text = value; }

}

[WebBrowsable(), WebDisplayName("LinkURL"),

WebDescription("The URL for the link.")]

public string linkUrl

{

get { return HyperLink1.NavigateUrl; }

set { HyperLink1.NavigateUrl = value; }

}

Creating the Business Card
Once the Web Parts are complete, you are ready to create the business card. The business card
is created by defining a layout using a table element and filling the table with zones. After the
zones are defined, you will place Web Parts in them to complete the user interface.

Follow these steps to create the business card:

1. In the Solution Explorer, select Default.aspx and click the View Designer button.

2. In the Toolbox, expand the WebParts control section and drag a WebPartManager control
from the toolbox onto the designer surface.

3. Select Layout ➤ Insert Table from the main menu in Visual Studio.

4. In the Insert Table dialog, set the number of rows to 4 and the number of columns to 2.

5. Click the OK button to insert the new table.

6. Select the upper two cells in the left-hand column. Then right-click the cells and select
Merge Cells from the context menu.

7. Select the lower two cells in the left-hand column. Then right-click the cells and
select Merge Cells from the context menu. Your table should now appear as shown
in Figure 10-7.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 345

5750_c10_final.qxd 11/3/05 9:34 PM Page 345

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM346

Figure 10-7. The formatted table

8. Drag a WebPartZone control from the toolbox into the upper-left hand cell in the table.

9. When you drop the WebPartZone control, a task window should appear. Select
AutoFormat from this task window.

10. In the AutoFormat dialog, select Classic from the Scheme list and click the OK button
to apply the format.

11. Repeat this process until you have placed a WebPartZone control in each cell. Your page
should now appear as shown in Figure 10-8.

12. After the Web Part zones are created, drag the LogoPart web user control from the
Solution Explorer into the upper left-hand zone.

13. Drag the LinkPart web user control into the lower right-hand zone.

14. Drag the TextPart web user control into each of the remaining zones. Your page should
now appear as shown in Figure 10-9.

Figure 10-8. Adding Web Part Zones to the table

5750_c10_final.qxd 11/3/05 9:34 PM Page 346

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 347

Figure 10-9. The completed web page

15. Drag an EditorZone control from the toolbox and drop it below the completed table.

16. Drag a PropertyGridEditorPart control from the toolbox and drop it inside the
EditorZone control.

17. Drag an AppearanceEditorPart control from the toolbox and drop it inside the
EditorZone control. The combination of the EditorZone, PropertyGridEditorZone,
and AppearanceEditorPart controls will allow you to change the properties of the
Web Parts.

18. Expand the Standard control section, drag a Button control from the toolbox, and
drop it underneath the EditorZone control.

19. Using the Properties window, change the Text property of the button to Design View.
Figure 10-10 shows the control set for editing properties.

5750_c10_final.qxd 11/3/05 9:34 PM Page 347

20. In the Solution Explorer, select Default.aspx and click the View Code button.

21. Add the following code to switch the card into design mode:

protected void Button1_Click(object sender, EventArgs e)

{

if(Button1.Text=="Design Card")

{

WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode;

Button1.Text="View Card";

}

else

{

WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode;

Button1.Text="Design Card";

}

}

Testing the Solution
Once the business card is created, you can test the solution. You should be able to easily change
the properties and save them. You also should be able to stop and start the application and see
that the changes persist.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM348

Figure 10-10. The completed editing control set

5750_c10_final.qxd 11/3/05 9:34 PM Page 348

Follow these steps to test the application:

1. Select Debug ➤ Start Without Debugging from the main menu in Visual Studio.

2. When the application starts, you should see the business card with the default entries
contained in each zone.

3. Click the Design Card button.

4. When the page enters design mode, click the down arrow associated with each zone
and select Edit from the menu.

5. In the Property Grid, change the properties of the Web Parts to appropriate values for
your business card.

6. In the Appearance pane, select None from the Chrome Type drop-down list for each
Web Part. Figure 10-11 shows an example card created using the application.

Exercise 10-2: Building a Smart Document
Building Smart Documents in previous versions of Visual Studio could be tedious and difficult.
The Visual Studio Tools for Office (VSTO) found in VS2005 make development of such docu-
ments much easier. In this exercise, you will build a smart invoice document using VSTO. This
Smart Document is similar to the one you created in Chapter 8.

Setting Up the Project
When VSTO is installed with VS2005, you can create project types based on Word or Excel. Fur-
thermore, Word and Excel are hosted directly in the development environment. In this exercise,
you will create a project based on a Word document.

Follow these steps to start the project:

1. Start Visual Studio 2005 and select File ➤ New ➤ Project from the main menu.

2. In the New Project dialog, expand the Visual Basic node and select the Office node
from the Project Types tree.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 349

Figure 10-11. The final card

5750_c10_final.qxd 11/3/05 9:34 PM Page 349

3. In the Templates list, select the Word Template project.

4. Name the new project SmartInvoice2005.

5. Click the OK button to start the project wizard.

6. On the Select a Document for Your Application screen, choose to Create a New Docu-
ment and click the OK button.

Creating the XML Schema
The invoice we are creating uses an XML schema to define the elements in the invoice. Defin-
ing the elements in a Word document with XML makes it easier to detect when items of interest
are added to the document. In this project, you will be interested in product names, identifiers,
quantity, and price.

Follow these steps to define the XML schema:

1. In Visual Studio, select Project ➤ Add New Item from the main menu.

2. In the Add New Item dialog, select XML Schema and name the file SmartInvoice2005.xsd.

3. After the new schema is created, right-click the schema design surface and select
Add ➤ New Element from the context menu.

4. Name the new element ProductID and change its type to string.

5. Add a new element named ProductName and change its type to string.

6. Add a new element named QuantityPerUnit and change its type to string.

7. Add a new element named UnitPrice and change its type to double. Figure 10-12 shows
the completed schema in the Visual Studio designer.

8. In the Solution Explorer, double-click the file ThisDocument.vb to open the document
template in Visual Studio.

9. Select Tools ➤ Microsoft Office Word Tools ➤ Templates and Add-Ins.

10. In the Templates and Add-Ins dialog, click the XML Schema tab.

11. On the XML Schema tab, click the Add Schema button.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM350

Figure 10-12. The Smart Document schema

5750_c10_final.qxd 11/3/05 9:34 PM Page 350

12. In the Add Schema dialog, navigate to your project directory and double-click the file
SmartInvoice2005.xsd.

13. In the Schema Settings dialog, uncheck the box entitled Changes Affect Current User Only.

14. In the Alias field, type SmartInvoice2005 and click the OK button.

15. In the Templates and Add-Ins dialog, click the OK button to finish adding the new
schema to the document template.

Creating the Invoice Template
Once the XML schema is defined for the document, you can use it to define fields. In this proj-
ect, you will define a table where line items for an invoice can be entered. You will go on to define
this document as a template so that it can be reused.

Follow these steps to define the document template:

1. With the document template open, select Table ➤ Insert ➤ Table from the main menu.

2. In the Insert Table dialog, set the number of columns to 4 and the number of rows to 6.

3. Click the OK button to add the table to the document template.

4. With the cursor inside the new table, select Table ➤ Table AutoFormat from the main
menu.

5. In the Table AutoFormat dialog, select the Table Classic 1 format and click the Apply
button.

6. Name the table columns Number, Name, Quantity, and Price from left to right.

7. Using the cursor, select the four table cells immediately under the Name column.

8. With the cells selected, click the ProductID element that appears in the XML Structure
pane.

9. When prompted, select to apply the element to the current selection. This will place
XML nodes in the table column.

10. Repeat steps 7 through 9 to add the remaining XML nodes to the appropriate column.
Figure 10-13 shows the completed table in Visual Studio.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 351

5750_c10_final.qxd 11/3/05 9:34 PM Page 351

Coding the Solution
Coding the Smart Document involves creating a user interface, handling user actions, and
managing the document data. You begin coding the solution by setting up references to key
namespaces in the project. In the Solution Explorer, select the file ThisDocument.vb and click
the View Code button. Then add the following code to the project:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports Word = Microsoft.Office.Interop.Word

Public Class ThisDocument

End Class

Adding Controls
The user interface associated with the Smart Document is a set of controls residing in the task
pane. Based on the location of the cursor within the table of invoice items, the controls in the
task pane will adjust to allow information to be inserted into the document. The product data
that appears inside the task pane is managed in a DataSet object. The DataSet object is deco-
rated with the Cached attribute, which allows the document to be taken offline and still work
because the data is cached within the document itself. Add the following code to the class to
declare the necessary variables to create the user interface and manage the underlying data:

Private WithEvents lstProductID As New ListBox

Private txtName As New TextBox

Private txtQuantity As New TextBox

Private txtPrice As New TextBox

Private WithEvents btnInsertID As New Button

Private WithEvents btnInsertName As New Button

Private WithEvents btnInsertQuantity As New Button

Private WithEvents btnInsertPrice As New Button

'Cached DataSet

<Cached()> Private objProductSet As DataSet

'Current Selection

Private objSelection As Word.Selection

Initializing the Data
When the document is first loaded, it must check to see whether the DataSet is populated. If
the document has been previously used, then the DataSet will be filled from cached data. If the
DataSet is empty, however, it must be populated from the database. In this exercise, you are
simply using the Northwind database commonly available in SQL Server. Add the code from
Listing 10-10 to the document class to initialize the data. Be sure to modify the connection
string to reflect your environment.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM352

5750_c10_final.qxd 11/3/05 9:34 PM Page 352

Listing 10-10. Initializing the Data

Private Sub ThisDocument_Startup(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Startup

'Add Controls to Actions Pane

With ActionsPane.Controls

.Add(lstProductID)

btnInsertID.Text = "Insert Number"

btnInsertID.Enabled = False

.Add(btnInsertID)

.Add(txtName)

btnInsertName.Text = "Insert Name"

btnInsertName.Enabled = False

.Add(btnInsertName)

.Add(txtQuantity)

btnInsertQuantity.Text = "Insert Quantity"

btnInsertQuantity.Enabled = False

.Add(btnInsertQuantity)

.Add(txtPrice)

btnInsertPrice.Text = "Insert Price"

btnInsertPrice.Enabled = False

.Add(btnInsertPrice)

End With

'Get Product Information if not already cached

If objProductSet Is Nothing Then

Try

'Connection string

Dim strConnection As String = {replace with your string}

'SQL string

Dim strSQL As String = "Select ProductID, ProductName,

QuantityPerUnit, UnitPrice FROM Products"

'Run query

With New SqlDataAdapter

objProductSet = New DataSet("root")

.SelectCommand = New SqlCommand(strSQL, _

New SqlConnection(strConnection))

.Fill(objProductSet, "Products")

End With

Catch x As Exception

MsgBox(x.Message)

End Try

End If

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 353

5750_c10_final.qxd 11/3/05 9:34 PM Page 353

'Fill List with Product IDs

With lstProductID

.DataSource = objProductSet.Tables("Products")

.DisplayMember = "ProductName"

.ValueMember = "ProductID"

End With

End Sub

Managing the User Interface
As the user interacts with the controls in the task pane, they must be updated to reflect the
products selected or actions taken. Changes in the status of the control set are also made based
on the current location of the cursor within the XML nodes on the document. Add the code
from Listing 10-11 to create the required behaviors.

Listing 10-11. Managing the Control Set

Private Sub lstProductID_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles lstProductID.SelectedIndexChanged

'Update the text boxes

txtName.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("ProductName").ToString

txtQuantity.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("QuantityPerUnit").ToString

txtPrice.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("UnitPrice").ToString

End Sub

Private Sub ProductIDNode_ContextEnter(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

ProductIDNode.ContextEnter

btnInsertID.Enabled = True

End Sub

Private Sub ProductIDNode_ContextLeave(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

ProductIDNode.ContextLeave

btnInsertID.Enabled = False

End Sub

Private Sub ProductNameNode_ContextEnter(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

ProductNameNode.ContextEnter

btnInsertName.Enabled = True

End Sub

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM354

5750_c10_final.qxd 11/3/05 9:34 PM Page 354

Private Sub ProductNameNode_ContextLeave(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

ProductNameNode.ContextLeave

btnInsertName.Enabled = False

End Sub

Private Sub QuantityPerUnitNode_ContextEnter(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

QuantityPerUnitNode.ContextEnter

btnInsertQuantity.Enabled = True

End Sub

Private Sub QuantityPerUnitNode_ContextLeave(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

QuantityPerUnitNode.ContextLeave

btnInsertQuantity.Enabled = False

End Sub

Private Sub UnitPriceNode_ContextEnter(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

UnitPriceNode.ContextEnter

btnInsertPrice.Enabled = True

End Sub

Private Sub UnitPriceNode_ContextLeave(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs) Handles _

UnitPriceNode.ContextLeave

btnInsertPrice.Enabled = False

End Sub

Inserting Text into the Document
When a user has selected an appropriate column in the document and the controls are updated,
they can insert text into the document. Inserting text is done by capturing the current selection
within the document. The selection indicates the current cursor location and therefore where
the text should be inserted. Add the code from Listing 10-12 to complete the project.

Listing 10-12. Inserting Text

Private Sub ThisDocument_SelectionChange(ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Word.SelectionEventArgs) Handles _

Me.SelectionChange

objSelection = e.Selection

End Sub

Private Sub btnInsertID_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnInsertID.Click

objSelection.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("ProductID").ToString

End Sub

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM 355

5750_c10_final.qxd 11/3/05 9:34 PM Page 355

Private Sub btnInsertName_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnInsertName.Click

objSelection.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("ProductName").ToString

End Sub

Private Sub btnInsertQuantity_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnInsertQuantity.Click

objSelection.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("QuantityPerUnit").ToString

End Sub

Private Sub btnInsertPrice_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnInsertPrice.Click

objSelection.Text = DirectCast(lstProductID.SelectedItem, _

DataRowView).Row("UnitPrice").ToString

End Sub

Testing the Solution
Once the coding is complete, you can run the project by selecting Debug ➤ Start Without
Debugging from the main menu. When the application starts, you should see the table of
items in the invoice. Start by selecting a product in the product list located in the task pane.
Next, place your cursor in various columns of the table and check that the appropriate insert
button enables. Click the button and try inserting some text. Figure 10-14 shows the com-
pleted user interface in the task pane.

CHAPTER 10 ■ VISUAL STUDIO 2005 AND THE MICROSOFT OFFICE SYSTEM356

Figure 10-14. The Smart Document task pane

5750_c10_final.qxd 11/3/05 9:34 PM Page 356

SharePoint Portal Server
Administration

Throughout this book, you have used the SharePoint Portal Server (SPS) Central Administra-
tion site to manage sites and users. However, administration and maintenance in SPS2003 goes
beyond simply setting up user accounts and team sites. Just like any other critical business
system in your organization, SPS requires a comprehensive maintenance plan to protect cor-
porate data and ensure optimal performance.

Because SPS acts as a repository for documents and information, you must ensure that
the system is backed up regularly. You must also ensure that unused sites are removed to free
system resources. Additionally, SPS services must be configured for performance. Beyond these
basic tasks, your installation may require the development of a disaster recovery plan or service-
level agreement. Although the intent of this chapter is not to act as a substitute for the
Administrator’s Guide, I will examine the major administrative tasks you must perform to keep
an SPS installation healthy.

Back Up and Restore
One of the first things that you will want to configure in a production environment is proper
backup of the SPS installation. SPS ships with a backup and restore tool that is accessible by
selecting Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server Data
Backup and Restore. Figure 11-1 shows the utility.

The backup and restore utility backs up every aspect of your SPS installation with the
exception of custom Web Parts. Therefore, you should back up the Windows 2003 system in
conjunction with the backup and restore utility. Additionally, several prerequisites must be
met before the utility can run correctly:

• SQL Server 2000 client tools must be installed on the server where the utility runs.

• The service account for SQL Server must have write access to the backup directory.

• The search service must have write access to the backup directory.

• The search database access accounts must have write access to the backup directory.

• The user configuring backup and restore must have write access to the backup directory.

357

C H A P T E R 1 1

■ ■ ■

5750_c11_final.qxd 11/3/05 9:31 PM Page 357

Backup and restore in SPS is simple because you can only perform the operation for the
entire portal as a whole. Although the task itself is simple, you pay the price in flexibility. For
example, you cannot recover a single lost file from a document library. Instead, you have to
rebuild the server and restore the entire portal. This is a significant drawback, to say the least.
We can only hope that a third party produces a better set of tools that will allow more granular
restorations.

Here are the steps to follow to perform a backup:

1. Log in to SPSPortal as a local administrator.

2. Open Windows Explorer.

3. Create a new directory at the location C:\backup.

4. Select Start ➤ SharePoint Portal Server ➤ SharePoint Portal Server Data Backup and
Restore.

5. In the “Microsoft Office SharePoint Portal Server 2003 backup and restore” dialog, click
Browse.

6. In the “File prefix for all backup images” dialog, navigate to the C:\backup directory
and type the prefix backup1 in the File Name field.

7. Click Open.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION358

Figure 11-1. The backup and restore utility

5750_c11_final.qxd 11/3/05 9:31 PM Page 358

8. In the Backup Comment field, type A test backup.

9. In the Available Components list, expand the tree and ensure that all of the components
are selected.

10. Click Backup to run the backup.

Site Usage Analysis
The distributed model of SPS potentially allows any user in the organization to create sites.
This is particularly true when you enable Self-Service Site Creation (SSSC) mode. The result of
this approach is that an organization can rapidly have hundreds of team sites created. This sit-
uation not only increases the complexity of site navigation for all users, but also increases the
resources required to maintain backups. Therefore, you will want to take steps to ensure that
the available sites are bringing significant value to end users.

Site usage analysis gives you a way to track the use of sites within SPS and to identify those
that are bringing the most value. Site usage analysis is not configured by default in SPS. You must
begin by configuring it at the server level.

To enable site usage analysis, follow these steps:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Central
Administration.

3. On the SharePoint Portal Server Central Administration page, select Component
Configuration ➤ Configure Usage Analysis Processing.

4. On the Configure Usage Analysis Processing page, check the box labeled Enable
Logging.

5. Check the box labeled Enable Usage Analysis Processing.

6. Set appropriate parameters.

7. Click OK.

Once usage analysis is configured, it must run before any information is available. After it
runs, however, you will be able to view usage information at either the collection or site level.
The statistics provide information on such things as the number of page hits and number of
unique users.

Here is what you need to do to view usage statistics:

1. Log in to SPS as a member of the Administrator site group.

2. Navigate to any top-level site in the portal.

3. From the site home page, click the Site Settings link.

4. On the Site Settings page, select Administration ➤ Go to Site Administration.

5. On the Top-Level Site Administration page, select Site Collection Administration ➤
View Site Collection Usage Summary.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 359

5750_c11_final.qxd 11/3/05 9:31 PM Page 359

6. On the Site Collection Usage Summary page, view the statistics and click OK.

7. On the Top-Level Site Administration page, select Management and Statistics ➤ View
Site Usage Data.

8. On the Site Usage Report page, view the statistics for this individual site.

Cleaning Up Unused Sites
Along with ensuring the quality of available sites, another problem with site proliferation
is that there is really no motivation for any user to delete a site after it has served its purpose.
If a user creates a site for the annual company sales meeting, they are unlikely to care about
the site after the meeting is over. In fact, this is just a larger version of the same issues that
affect all file systems. If you were to examine the file system backups at most organizations,
you would find that a significant number of the documents being backed up no longer have
any use.

The solution in SPS is to implement site use confirmation and deletion. This facility
allows SPS to query site owners and determine if a site is still in use. The owners confirm sites
that are still in use, whereas sites that are no longer useful may be deleted. If you want, you
can even set up SPS to automatically delete sites that have not been confirmed over a period
of time.

Site use and confirmation is configured to send e-mail notifications to the owner of a site
collection that has not been used for a specified period of time. When the e-mail is received,
the owner will have a set of hyperlinks in the e-mail that will allow the owner to confirm that
the site is in use or delete the site. If you have enabled automatic site deletion, then the site
will automatically be deleted if the site collection owner fails to respond to the request after
a configured number of notifications.

To enable site use confirmation and deletion, take these steps:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Central Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and
Virtual Server Configuration ➤ Configure Virtual Server Settings from the Virtual
Server List.

4. On the Virtual Server List page, select Default Web Site.

5. On the Virtual Server Settings page, select Automated Web Site Collection Management
➤ Configure Site Collection Use Confirmation and Deletion.

6. On the “Configure site collection use confirmation and auto-deletion” page, check the
box labeled “Send e-mail notifications to owners of unused site collections.”

7. Set the notification parameters.

8. Check the box labeled “Automatically delete the site collection if use is not confirmed”
if you want to enable automatic site deletion.

9. Click OK.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION360

5750_c11_final.qxd 11/3/05 9:31 PM Page 360

Enabling automatic site deletion ensures that unneeded sites are always removed from
the SPS installation. However, automatically deleting sites can result in the removal of sites
that are seldom used but contain valuable information. For this reason, you should always set
reasonable notification intervals that give plenty of opportunity for site collection owners to
respond. Finally, you should require that all site collections have a designated secondary owner
who can respond to the notifications if the primary owner is unavailable.

In order to make sure that all site collections have a secondary site collection contact,
follow these steps:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Central Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and
Virtual Server Configuration ➤ Configure Virtual Server Settings from the Virtual
Server List.

4. On the Virtual Server List page, select Default Web Site.

5. On the Virtual Server Settings page, select Automated Web Site Collection Manage-
ment ➤ Configure Self-Service Site Creation.

6. On the Configure Self-Service Site Creation page, ensure that Self-Service Site Creation
mode is On.

7. Check the box labeled Require Secondary Contact.

8. Click OK.

The site use confirmation and deletion system uses two different message texts to send
notifications: one text is used when you enable site confirmation, while the other text is used
if you have also enabled automatic deletion. Administrators may customize these notices, which
are located in C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\60\
TEMPLATE\1033\XML\DeadWeb.xml. Listing 11-1 shows the contents of the notification file.

Listing 11-1. The Site Notification Message

<?xml version="1.0" encoding="utf-8" ?>

<!-- _lcid="1033" _version="11.0.5510" _dal="1" -->

<!-- _LocalBinding -->

<Email>

<Confirmation>

<ConfirmationSubject>

Confirm SharePoint Web site in use

</ConfirmationSubject>

<ConfirmationBody>

<![CDATA[Please follow the link below

to your SharePoint Web site to confirm that it is still in use.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 361

5750_c11_final.qxd 11/3/05 9:31 PM Page 361

|0

If the site is not being used, please go to |1,

and select "Delete This Site" to remove the Web site.

You will receive reminders of this until you confirm the site is in

use, or delete it.]]>

</ConfirmationBody>

</Confirmation>

<AutoDeleteWarning>

<AutoDeleteSubject>

ACTION REQUIRED: Your SharePoint site collection is about to expire

</AutoDeleteSubject>

<AutoDeleteBody>

<![CDATA[To extend the expiration date for this site

collection, click the link below:
|0

Otherwise this site collection, including all of its subsites, might be

deleted.

If this site collection is no longer needed, you can delete it by

going to |1, and selecting

"Delete this site".

Please note - When a SharePoint Web site collection is deleted, all Web

sites, content and information which

were part of the site collection are completely erased. The site can

only be restored if a backup exists.]]>

</AutoDeleteBody>

</AutoDeleteWarning>

</Email>

Managing the Search Service
Although SPS provides several ways to locate information, such as area and personal links,
there is no substitute for a healthy search engine. The quality of searches performed within the
portal is dependent upon properly scheduling and building indexes of content on key sources.
Early in the book, I specified the account to use when crawling data sources, but it is important
to remember that the account used must have permission to access the data sources you want
to include in the index.

To change the access account, you need to follow this procedure:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Central Administration.

3. On the SharePoint Portal Server Central Administration page, select Server Config-
uration ➤ Configure Server Farm Account Settings.

4. On the “Configure server farm account settings” page, locate the Default Content
Access Account section.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION362

5750_c11_final.qxd 11/3/05 9:31 PM Page 362

5. Check the Specify Account box.

6. Type the user name and password of an account that has permission to access the
sources you wish to include in your index and search process.

Defining External Content Sources
In most organizations, searchable content will not be strictly limited to sites, documents, and
lists contained within SPS. Instead, there are likely to be several external sources that contain
documents that you will want to make accessible through searching. Along with site content
already contained in the portal, SharePoint can index Microsoft Exchange servers, Lotus Notes
databases, web sites, and file servers.

To add a content source, follow these steps:

1. Log in to SPS as a member of the Administrator site group.

2. From the portal home page, click the Site Settings link.

3. On the Site Settings page, select Search Settings and Indexed Content ➤ Configure
Search and Indexing.

4. On the Configure Search and Indexing page, select General Content Settings and
Indexing Status ➤ Add Content Source.

5. On the Add Content Source page, select the type of content to crawl and click Next.

6. Specify the particular parameters necessary to crawl the source.

7. Click OK.

8. Establish a full and incremental update schedule for the source.

Scheduling Content Crawls
Regardless of whether the content is a direct part of SPS or an external source, you will need
to schedule content crawls to make the source available in search results. SPS’s search service
supports Full, Incremental, and Adaptive updates of the content indexes.

A Full update crawls the entire content source and updates the search index for every
document. A Full update will add new information to the index, modify existing information,
and delete obsolete information. A Full update is an intensive operation that should be sched-
uled for off-peak hours and performed only occasionally. Generally, a Full update is warranted
under the following conditions:

• Whenever the index update rules are changed

• Whenever the server crashes

• When the portal structure changes significantly

• When the noise word file is changed

• When an index is manually reset

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 363

5750_c11_final.qxd 11/3/05 9:31 PM Page 363

An Incremental update, on the other hand, only indexes content that has changed since
the last crawl. This makes an Incremental update much more efficient. You can schedule such
updates daily during off-peak hours to ensure that the search results are always up to date.

An Adaptive update uses historical analysis to try and perform a more efficient update
than even that achieved with an Incremental update. The analysis uses information from pre-
vious updates to determine which documents are likely to have changed. The update then
focuses on this set of documents.

To create an update schedule, follow these steps:

1. Log in to SPS as a member of the Administrator site group.

2. From the portal home page, click the Site Settings link.

3. On the Site Settings page, select Search Settings and Indexed Content ➤ Configure
Search and Indexing.

4. On the Configure Search and Indexing page, select General Content Settings and
Indexing Status ➤ Manage Search Schedules.

5. If the content source already has a schedule defined, you may select Edit from the
drop-down menu associated with the item.

6. If the content source does not have a schedule defined, click the New Search Schedule
link.

Creating Keywords
Keywords are used by the search engine to show results more prominently when a search
result includes such words. Administrators can create and manage keywords by selecting Site
Settings ➤ Search Settings and Indexed Content ➤ Manage Keywords. In this section, you can
create keywords, identify synonyms, and associate them with a Best Bet URL. Figure 11-2 shows
a sample results page with a Best Bet prominently displayed using a star icon.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION364

5750_c11_final.qxd 11/3/05 9:31 PM Page 364

Enabling Online Presence
Wherever a user is referenced throughout SPS, you can provide presence information. Presence
information is used to identify who is online and send instant messages to them. Presence infor-
mation is available only when the client machine has Office 2003 installed along with either the
Microsoft Messenger or the MSN Messenger. Figure 11-3 shows an example of presence infor-
mation displayed in the portal.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 365

Figure 11-2. Displaying Best Bets

Figure 11-3. Displaying presence information

5750_c11_final.qxd 11/3/05 9:31 PM Page 365

To enable online presence, follow these steps:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Central Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and
Virtual Server Configuration ➤ Configure Virtual Server Settings from the Virtual Server
List Page.

4. On the Virtual Server List page, select Default Web Site.

5. On the Virtual Server Settings page, select Virtual Server Management ➤ Virtual Server
General Settings.

6. On the Virtual Server General Settings page, select Yes to “Enable person name Smart
Tag and online status for members.”

7. Click OK.

Managing Quotas and Locks
As an organization uses SPS, it will consume more and more resources. To ensure that the instal-
lation remains healthy, you need to specify limits—called quotas—surrounding the resources
that any site can use. If usage gets out of hand, you may even need to lock the site so that no
additional resources can be consumed.

Quotas are not enabled by default in SPS. To enable them, you must define a quota tem-
plate that contains the restrictions you wish to impose. Quota values are maintained in the
configuration database and are typically applied to site collections when they are first created.
The quota template is used to apply a set of restrictions to a site collection all at once.

Follow these steps to create and apply a quota template:

1. Log in to SPSPortal as a local administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Portal Server
Central Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and
Virtual Server Configuration ➤ Configure Site Quotas and Locks from the Virtual
Server List.

4. On the Manage Quotas and Locks page, select Manage Quotas ➤ Manage Quota
Templates.

5. On the Manage Quota Templates page, select “Create a new quota template.”

6. Name the quota Test Template.

7. Click OK.

8. Return to the Manage Quotas and Locks page.

9. Select Manage Quotas ➤ Manage Site Collection Quota and Locks.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION366

5750_c11_final.qxd 11/3/05 9:31 PM Page 366

10. On the “Manage site collection quotas and locks” page, type the URL of a top-level site
you have created.

11. Click View Data.

12. In the Current Quota Template list, select the Test Template.

13. Click OK.

Exercise 11-1: Establishing Secure Access
The work we have completed so far in this book has all been accomplished as if SPS was only
accessible from an internal server. Typically, we have used the machine name of the server
directly in the browser. If you want to include external access to SPS as part of your solution,
however, you will have to make some changes.

The first thing you’ll have to do is give your portal a name that’s accessible from outside
the firewall. Typically, you use portal or sharepoint as a prefix in the domain name (e.g.,
portal.datalan.com) and make a new entry in the Domain Name Service (DNS) for the enter-
prise. You’ll also have to ensure that the server running the portal has an Internet Protocol (IP)
address that can be exposed on the Internet, unlike the default setup this book uses.

Although these steps are enough to expose the portal externally, they are not enough to
guarantee security. At a minimum, you should enable Secure Socket Layers (SSL) for the por-
tal. You may also choose to implement a more significant authentication scheme such as the
use of tokens. In this exercise, you will give your portal an alias name and enable SSL.

Creating an Alias
Creating an alias for your web site is a simple matter of making a new record entry in the DNS
for the network. Creating an alias will allow you to use a name like sharepoint.sps.local when
accessing SPS instead of SPSPortal. Although you will create your alias solely for internal use,
you can create an alias for external use and map it to an IP address that will expose the portal
on the Internet.

Here is what you should do to create an alias for SPSPortal:

1. Log in to SPSController as the domain administrator.

2. Select Start ➤ Administrative Tools ➤ DNS.

3. In the dnsmgmt dialog, expand the Forward Lookup Zones folder.

4. Right-click the sps.local folder and select New Alias (CNAME) from the pop-up menu.

5. In the New Resource Record dialog, type sharepoint.

6. Click Browse.

7. Double-click the SPSController node.

8. Double-click the Forward Lookup folder.

9. Double-click the sps.local folder.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 367

5750_c11_final.qxd 11/3/05 9:31 PM Page 367

10. Select the spsportal entry from the list and click OK.

11. In the New Resource Record dialog, click OK. Figure 11-4 shows the new entry in the
DNS system.

One problem with using alias names to access the portal is that users will be presented
with a login box regardless of whether they are inside or outside the firewall. There is no way
to prevent this behavior. Users can also expect to be prompted occasionally when documents
are accessed. You should be careful about how you configure and access SPS to minimize
unnecessary logon prompts.

To test the alias name, follow this procedure:

1. Log in to SPSClient as an end user of the portal.

2. Open Internet Explorer and navigate to sharepoint.sps.local.

3. When prompted, log in and verify the portal home page is visible.

Another problem with using alias names lies in the proper resolution of addresses. Hard-
coded addresses that reference internal resources can become unavailable when users access
SPS externally through the alias name. SPS helps somewhat in this regard by providing a place
for you to list alias names that are in use. When you list alias names for SharePoint, it will use
the alias with search results to ensure that the address links are always valid.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION368

Figure 11-4. Creating an alias

5750_c11_final.qxd 11/3/05 9:31 PM Page 368

Follow these steps to list the alias name with SharePoint Services:

1. Log in to SPSPortal as a portal administrator.

2. Select Start ➤ All Programs ➤ SharePoint Portal Server ➤ SharePoint Central
Administration.

3. On the SharePoint Portal Server Central Administration page, select Portal Site and
Virtual Server Configuration ➤ Configure Alternate Portal Site URLs for Intranet,
Extranet, and Custom Access.

4. On the “Configure alternate portal access settings” page, select Edit from the drop-
down menu associated with the Default Web Site entry.

5. In the Intranet URL field, type http://sharepoint.sps.local.

6. Click OK.

Enabling Secure Sockets Layer (SSL)
Enabling SSL for your portal affords an extra level of security based on certificates and encryp-
tion. In order to enable SSL for your portal, you must have a certificate for the server. Once the
certificate is available, you can install it on the server and enable SSL.

Installing Certificate Services
Server certificates can be purchased commercially from a trusted source such as VeriSign, or
you can create your own using Microsoft Certificate Services. In this exercise, you will install
and use Microsoft Certificate Services. Making your own certificates is fine for testing and lim-
ited production use, but if you are going to allow access to the portal to a wide audience, you
should consider getting a certificate from a trusted provider.

To install Certificate Server, follow these steps:

1. Log in to SPSController as a domain administrator.

2. Select Start ➤ Control Panel ➤ Add or Remove Programs.

3. In the Add or Remove Programs dialog, click Add/Remove Windows Components.

4. In the Windows Components dialog, check the Certificate Services box.

5. Respond to the warning dialog by clicking Yes.

6. Uncheck the “Internet Explorer enhanced security configuration” box.

7. In the Windows Components dialog, click Next.

8. In the CA Type step, select Stand-Alone Root CA.

9. Click Next.

10. In the CA Identifying Information step, type spscontroller into the “Common name for
this CA” text box.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 369

5750_c11_final.qxd 11/3/05 9:31 PM Page 369

11. Click Next.

12. In the Certificate Database Settings step, accept the default values and click Next.

13. Click Finish to complete the operation.

Creating the New Certificate
You begin creating a certificate by preparing a request using the virtual server that you want
to secure. This server prepares a text file that may then be submitted to Certificate Services.
In this case, you will create a request for SPSPortal.

1. Log in to SPSPortal as a local administrator.

2. Open Windows Explorer.

3. Create a new directory at C:\certificates\spsportal.

4. Select the C:\certificates directory, right-click it, and select Sharing and Security
from the pop-up menu.

5. On the Sharing tab, select Share This Folder.

6. Click Permissions.

7. Grant everyone full control and click OK.

8. Click OK again.

9. Select Start ➤ Administrative Tools ➤ Internet Information Services (IIS) Manager.

10. Expand the SPSPortal node and open the Web Sites folder.

11. Right-click the Default Web Site node and select Properties from the pop-up menu.

12. On the Directory Security tab, click Server Certificate.

13. In the Web Server Certificate wizard, click Next.

14. In the Server Certificate step, select the Create a New Certificate option, and click Next.

15. In the Delayed or Immediate Request step, select the “Prepare the request now, but
send it later” option, and click Next.

16. In the Name and Security Settings step, leave the values as they are and click Next.

17. In the Organization Information step, type your company name in the Organization
field and your company unit in the Organizational Unit field.

18. Click Next.

19. In the Your Site’s Common Name step, type spsportal in the Common Name field.

20. Click Next.

21. In the Geographical Information step, enter the appropriate information and click Next.

22. In the Certificate Request File Name step, click Browse.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION370

5750_c11_final.qxd 11/3/05 9:31 PM Page 370

23. In the Saves As dialog, navigate to the C:\certificates\spsportal directory and click
Save.

24. In the Certificate Request File Name step, click Next.

25. In the Request File Summary step, click Next.

26. Click Finish to complete the operation.

Once the request is prepared, you may use it to create a new certificate. Certificate Services
uses the text file created under SPSPortal to generate the certificate. The new certificate may
then be installed on the portal server.

Here you will create the new server certificate:

1. Log in to SPSController as the domain administrator.

2. Open Internet Explorer and navigate to spscontroller/certsrv/default.asp.

3. Click the Request a Certificate link.

4. Click the Advanced Certificate Request link.

5. Click the link labeled “Submit a certificate request by using a base-64-encoded CMC or
PKCS #10 file, or submit a renewal request by using a base-64-encoded PKCS #7 file.”

6. Open the certificate text file in Notepad that you previously saved at \\spsportal\
certificates\spsportal.

7. Copy the entire contents of the certificate file and paste them into the Saved Request.

8. Click Submit.

9. Select Start ➤ Administration Tools ➤ Certification Authority.

10. In the Certification Authority dialog, expand the tree and open the Pending Requests
folder.

11. Locate the pending request, right-click it, and select All Tasks ➤ Issue from the pop-up
menu.

12. Open Internet Explorer and navigate to spscontroller/certsrv/default.asp.

13. Click the “View the status of a pending certificate request” link.

14. Click the link for the pending certificate.

15. On the Certificate Issued page, click the Download Certificate link.

16. In the File Download dialog, click Save.

17. Save the file into the \\spsportal\certificates\spsportal directory.

18. On the Certificate Issued page, click the Download Certificate Chain link.

19. In the File Download dialog, click Save.

20. Save the file into the \\spsportal\certificates\spsportal directory.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 371

5750_c11_final.qxd 11/3/05 9:31 PM Page 371

Installing the New Certificate
Once the new certificate is created, then you can install it on the portal server. When using the
Microsoft Certificate Services, you must install the certificate file with the .p7b extension. This
file will establish the appropriate trusts to ensure that you can view the portal.

To install the new certificate, follow these steps:

1. Log in to SPSPortal as the local administrator.

2. Select Start ➤ Administrative Tools ➤ Internet Information Services (IIS) Manager.

3. Expand the SPSPortal node and open the Web Sites folder.

4. Right-click the Default Web Site node and select Properties from the pop-up menu.

5. On the Directory Security tab, click Server Certificate.

6. In the Web Server Certificate Wizard, click Next.

7. In the Pending Certificate Request step, select “Process the pending request and install
the certificate.”

8. Click Next.

9. In the Process a Pending Request step, click Browse.

10. In the Open dialog, navigate to the C:\certificates\spsportal directory and select the
file with the .cer extension.

11. Click Open.

12. In the Process a Pending Request step, click Next.

13. In the SSL Port step, accept the default value and click Next.

14. In the Certificate Summary step, view the details and click Next.

15. Click Finish to complete the operation.

16. In the Default Web Site Properties dialog, click View Certificate.

17. In the Certificate dialog, verify that the certificate is valid by viewing the Certification
Path tab.

18. Click OK.

19. In the Default Web Site Properties dialog, click Edit under the Secure Communications
section.

20. In the Secure Communications dialog, check the Require Secure Channel box and
click OK.

21. In the Default Web Site Properties dialog, click OK.

22. When the Inheritance Overrides dialog appears, click OK.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION372

5750_c11_final.qxd 11/3/05 9:31 PM Page 372

Testing Secure Access
Once the certificate is installed on the portal server, you are ready to utilize SSL. When users
access the portal through SSL, they will initially see the certificate warning; you can subse-
quently install the certificate on their machine and trust your root authority. This will allow
them to access the portal without acknowledging the certificate each time.

Here is what you need to do to test secure communications:

1. Log in to SPSClient as a portal end user.

2. Open Internet Explorer and navigate to https://sharepoint.sps.local.

3. When the Security Alert dialog appears, click View Certificate.

4. On the Certification Path tab, select the root certificate named spscontroller and click
View Certificate.

5. In the Certificate dialog, click Install Certificate.

6. In the Certificate Import Wizard, click Next.

7. In the Certificate Store step, select to Automatically Select the Certificate Store Based
on the Type of Certificate and click Next.

8. Click Finish to complete the operation.

9. In the Root Certificate Store dialog, click Yes.

10. In the Certificate dialog, click OK.

11. In the other Certificate dialog, click OK.

12. In the Security Alert dialog, click Yes.

CHAPTER 11 ■ SHAREPOINT PORTAL SERVER ADMINISTRATION 373

5750_c11_final.qxd 11/3/05 9:31 PM Page 373

5750_c11_final.qxd 11/3/05 9:31 PM Page 374

■A
access challenge, 6
access

anonymous, 88
external portal access, 367

creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
legacy applications via Terminal Services.

See Terminal Services
site group access rights, 54–56
sites, 287–289

data caching, 290–292
lists/list items, 288–289
site collections, 287–288

user information, 289–290
account creation, Active Directory Account

Creation (ADAC) mode, 58
Active Directory

adding users and groups, 32
importing user profiles from Active

Directory, 59–60
Active Directory Account Creation (ADAC)

mode, 58
ActiveX controls

client-side Web Parts, 187–188
using Terminal Services, 206–207

ADAC (Active Directory Account Creation)
mode, 58

adding users, 44–45
document libraries, 66–67
document workspaces, 233
site groups, 56–58, 81

administration
back up and restore, 357–359
backward-compatible document libraries,

66–67
enabling online presence, 365–366
search service, 362–364

adding content sources, 363
changing access account, 362–363
managing keywords, 364–365
quota/lock management, 366–367
scheduling content crawls, 363–364

site usage analysis, 359–360
site use confirmation and deletion,

360–362
alerts, 75–76

aliases, 367–369
analysis and design considerations, 11–14

documenting business vision, 11
documenting policies and practices,

11–14
managing change, 14

announcements, 74
anonymous access, 88
application access policies/practices, 13
Application class, 172
application definitions, SSO setup, 164–166,

176–177
listing, 172–173

Application Pool Identity, 280–281
approving documents, 62–63

backward-compatible document libraries,
70–71

architectures, 26–29
large server farm, 28–29
medium server farm, 28
small server farm, 27–28
stand-alone server, 27

areas, 24, 47–51
creating, 48–49
deleting, 79
designing area structure, 80–81
News areas, 51
Sites area, 51
taxonomy, 230–231
templates, 98
Topics areas, 49–51

ASP.NET
adding controls to Web Parts, 126–127
declaring controls, 125–126
installing/configuring, 33, 36–37
trust levels/permissions, 133–134

ASP.NET 2.0 Web Parts Framework, 328–336
building custom Web Parts, 330–332,

343–345
building Web Parts pages, 342–349

adding site membership, 342–343
creating Web Parts, 343–345
populating tables with Web Part zones,

345–348
project setup, 342
testing solution, 348–349

personalizing Web Parts, 335–337
using Web Parts in pages, 333–334
Web Parts control set, 328–330

Index

375

5750_idx_final.qxd 11/4/05 10:11 AM Page 375

assemblies
trusting, 267–268
workflow engines, compiling, 300–301

Assembly attribute, Web Parts, 140
attaching XML schemas to documents,

239–241
audiences, 24, 89–91
audit logs, Microsoft SSO service, 175–176
augmenting personal productivity, 8
authentication

Microsoft Single Sign-On Service. See SSO
web services, 293

automatic site deletion, 360–362

■B
back up and restore, 357–359
backward-compatible document libraries,

64–70
administering, 66–67
document management features, 68–70
installing, 64–66
viewing, 66

Best Bets, search service, 364–365
broadcasting schema information,

connectable Web Parts, 196–197, 216
Browsable attribute, Web Part properties, 124
building control sets, Smart Documents,

244–247, 258–262
ControlID property, 245–246, 260–261
defining controls, 246–247, 262
generating captions, 246, 259–262

building dashboards
adding data sources to catalogs, 113–114
creating data views, 114–117
creating team sites, 113
linking sites to SPS, 117
preparing data sources, 111–112

building research services, 251–252, 269. See
also research services

beginning projects, 269–270
creating sites for services, 269

building Smart Documents using VSTO,
349–356. See also Smart Documents

coding solution, 352–356
creating XML schema, 350–351
defining document templates, 351
project setup, 349–350
testing solution, 356

building Web Parts, 131–132, 177–182
adding child controls. See child controls,

adding to Web Parts
coding, 146, 148, 151–152, 154–156
connectable Web Parts. See connectable

Web Parts
creating projects, 144–145
custom Web Parts, 330–332, 343–345

deployment, 148–149. See also deploying,
Web Parts

global task Web Parts, 313–322
configuring SSO credentials, 313–314
creating child controls, 316–317
creating new identities/helper

functions, 317–318
project setup, 314–315
rendering Web Parts, 318, 320–321
using Web Parts, 321–322

identity Web Parts, 322–326
creating child controls, 323–324
displaying user information, 324–325
project setup, 322–323
rendering Web Parts, 324–325
updating user information, 325–326
using Web Parts, 326

modifying description files, 145, 150–151
site collection Web Parts, 303–313

configuring SSO credentials, 303–304
creating child controls, 306–308
creating new identities/helper func-

tions, 308–309
defining properties, 306
project setup, 304–305
rendering Web Part, 309–313
using Web Part, 313

Terminal Services, 207–208
tool parts, 223–224
using Web Parts, 149–150

building Web Parts pages, 342–349
adding site membership, 342–343
creating Web Parts, 343–345
populating tables with Web Part zones,

345–348
project setup, 342
testing solution, 348–349

business card project. See building Web Parts
pages

business scenarios, 7–8
augmenting personal productivity, 8
increasing team productivity, 9–10
integrating with partners and customers,

10
remote worker support, 10

business solutions
analysis and design considerations, 11–14

documenting business vision, 11
documenting policies and practices,

11–14
managing change, 14

business scenarios, 7–10
information worker challenges, 3–7

access challenge, 6
collaboration challenge, 5–6
information challenge, 4–5

■INDEX376

5750_idx_final.qxd 11/4/05 10:11 AM Page 376

management challenge, 6–7
process challenge, 5
system complexity, 3–4

technical considerations, 15–16
three categories of information workers, 2

buttons
coding tool part property pane events,

226–227
Smart Documents, 247, 262

■C
C#

adding ASP.NET controls, 127
custom Web Parts, 331–333
debugging Web Parts, 143–144
defining properties, 123–124
editing Web Part properties, 336
specifying output paths, 132

caching Web Part data, 290–292
calendar, 99, 236
capacity

documents, 25
users, 25–26

captions, Smart Document control sets, 246,
259–262

capturing events, 278–282
action events, Smart Tags, 341
event handlers

connecting event handlers to target
libraries, 281–282

creating, 278–279
enabling, 278

impersonating user identities, 280–281,
295–298

CatalogZone control, 333–334
categories of information workers, 2
categorizing documents, 50–51
Category attribute, Web Part properties, 124
certificate services

creating certificates, 370–371
installing Certificate Services, 369–370
installing certificates, 372
testing secure access, 373

challenges of information workers
access, 6
collaboration, 5–6
information, 4–5
management, 6–7
process, 5
system complexity, 3–4

change management, 14
checking documents in/out, 62, 69
child controls

adding to tool parts, 225
adding to Web Parts

coding Web Parts, 151–156

connectable Web Parts, 211–212
creating projects, 150
deploying Web Parts, 156–159
global task Web Parts, 316–317
identity Web Parts, 323–324
modifying description files, 150–151
site collection Web Parts, 306–308
SSO setup, 180

classes
Application, 172
custom tool parts, 224–225
event handling. See handling events
HtmlTextWriter, Web Part output, 127–128
overriding class constructors, Smart Tags,

340–341
SingleSignon namespace, 169

Credentials, 169–170
Exception, 170–171
SSOReturnCodes, 170

SingleSignonLocator, 171–172
SingleSignonPermission, 167–168
SPControl, 288
SPFile, 287
SPListEvent, 282–283
SPListItem, 285–286
SPWeb, 289
Web Parts control set, 328–330

client-side Web Parts, 187–189. See also
Terminal Services

ActiveX controls, 187–188
linking/embedding scripts, 188–189

clients
minimum requirements for SharePoint

Portal Server, 16
preparing SPSClient, 45

code access security, 132–140
configuration files, 132–135
creating custom policy files, 135–139
marking Web Parts as Safe, 139–140, 149

coding VSTO Smart Documents, 352–356
coding Web Parts, 146–148, 151–152, 154–156

connectable Web Parts life cycle, 212–219
defining child controls, 154–155
defining properties, 124–125, 146–147,

152–154
rendering Web Parts, 125–128, 148,

155–156
connectable Web Parts, 219
global task Web Parts, 318–321
identity Web Parts, 324–325
site collection Web Parts, 309–313
SSO setup, 180–182
Terminal Services, 208

collaboration
collaboration challenge, 5–6
increasing team productivity, 9–10

■INDEX 377

5750_idx_final.qxd 11/4/05 10:11 AM Page 377

compiling
Web Parts, 148–149, 157, 183–184
workflow engines, 300–301

component assignments, 42–43
configuration files, code access security,

132–135
configuring

ASP.NET, 36–37
component assignments, 42–43
database settings, 40
e-mail server settings, 43
Internet Explorer, 37–38
Remote Desktop Administration (RDA) on

SPSController, 35–36
server farm account settings, 40–41
server topology, 42
Terminal Services, 205
virtual servers, 53

conflict resolution
document updates, 234
list updates, 238

connectable Web Parts, 189–190
building, 209–219

coding Web Part life cycle, 212–219
creating child controls, 211–212
creating projects, 209–210
defining properties, 210–211
implementing interfaces, 210

connection interfaces, 190–192
connection life cycle, 192–199

broadcasting schema information,
196–197

coding, 212–214, 216–219
connection notifications, 195–196, 214
exchanging data, 197–199, 217–219
registering interfaces, 194–195, 212–213
run location specification, 195, 213

implementing interfaces, 210
registering interfaces, 194–195, 212–213
transformers, 199–200, 214–215
using, 219–223

connecting Web Parts, 94–95, 115–116
constructors, overriding class constructors,

Smart Tags, 340–341
contacts, 74, 236
content crawls, search service, 363–364
content database, 22
content management, 13–14
control sets, Smart Documents, 241–247

creating, 244–247, 258–262
ControlID property, 245–246, 260–261
defining controls, 246–247, 262
generating captions, 246, 259–262

event handling, 247, 265–266
populating with initial values, 247,

262–265

controls
ActiveX. See ActiveX controls
adding to documents, 338–339
adding to task panes, 339
adding ASP.NET controls to Web Parts,

126–127
adding child controls to tool parts, 225
adding child controls to Web Parts

coding Web Parts, 151–156
connectable Web Parts, 211–212
creating projects, 150
deploying Web Parts, 156–159
global task Web Parts, 316–317
identity Web Parts, 323–324
modifying description files, 150–151
site collection Web Parts, 306–308
SSO setup, 180

declaring ASP.NET controls, 125–126
SPControl class, 288
Web Parts control set, 328–330

building Web Parts pages, 347–348
creating. See also building

areas, 48–49
data views, 114–117
development environments, 29–30

configuring Remote Desktop
Administration (RDA) on
SPSController, 35–36

installing Exchange 2003 on
SPSController, 33–35

installing SPS2003 on SPSPortal, 39–44
installing SQL Server 2000 on SPSPortal,

38–39
installing Visual Studio .NET 2003 on

SPSPortal, 45
installing Windows Server 2003 on

SPSController, 30–34
installing Windows Server 2003 on

SPSPortal, 36–38
preparing SPSClient, 45

form libraries, 72
news items, 51
surveys, 77
team sites, 52–53, 113
templates

list templates, 97
site templates, 96–97

virtual directories, 112
web services, 107–110
web sites, 111

Credentials class, SingleSignon namespace,
169–170

Culture attribute, Web Parts, 140
custom policy files, 135–139
custom tool parts, 200–203

using with Web Parts, 223–228

■INDEX378

5750_idx_final.qxd 11/4/05 10:11 AM Page 378

custom Web Parts (ASP.NET 2.0 Web Parts
Framework), 330–332, 343–345

using in pages, 333–334
customers, integrating with, 10
customizing My Site, 99–101

data sources, 104–105
data views, 106–107, 114–117
designing new pages, 101–103
ghosted pages, 110
web components, 110, 116–117
web services, 107–110

customizing portal content
audiences, 89–91
My Site. See customizing My Site
site membership, 85–89
templates, 96–98. See also templates
Web Parts, 91–95, 115–116. See also

Web Parts

■D
dashboards, building

adding data sources to catalogs, 113–114
creating data views, 114–117
creating team sites, 113
linking sites to SPS, 117
preparing data sources, 111–112

data caching, 290–292
Data Source Catalog, 104
data sources

adding to catalogs, 113–114
adding to My Site, 104–105
preparing, 111–112

data views, My Site, 106–107, 114–117
databases

adding database connections, 104–105
configuration database settings, 40

debugging
Web Parts, 143–144
workflow engine projects, 302–303

DeclarativeCatalogPart, 333–334
declaring

ASP.NET controls, 125–126
connection interfaces, connectable Web

Parts, 192
DefaultValue attribute, Web Part properties,

124
defining

applications, SSO setup, 164–166, 176–177
listing application definitions, 172–173

child controls, Web Parts, 154–155. See also
child controls, adding to Web Parts

control sets, Smart Documents, 244–247,
258–262

ControlID property, 245–246, 260–261
defining controls, 246–247, 262
generating captions, 246, 259–262

document templates, VSTO Smart
Documents, 351

login credentials, SSO setup, 167, 177
policies, custom policy files, 138
XML schemas, 239

VSTO Smart Documents, 350–351
Web Parts properties, 123–125, 146–147,

152–154
connectable Web Parts, 210–211
site collection Web Parts, 306
SSO databases, 178–179
Terminal Services, 207, 209

deleting
areas, 79
sites, 79
unused site, 360–362

deploying
Smart Documents, 247–249, 266–268

configuring security, 267–268
creating manifest files, 266–267
loading XML expansion packs, 268

Web Parts, 182–185
building Web Parts, 131–132
code access security, 132–140
compiling Web Parts, 148–149, 183–184
deployment packages, 140–142
marking Web Parts as Safe, 139–140, 149
strong names, 129–130, 148, 157,

182–183
Terminal Services, 208–209

deployment architectures, 26–29
large server farm, 28–29
medium server farm, 28
small server farm, 27–28
stand-alone server, 27

Description attribute, Web Part properties,
124

description files, Web Parts, 131
global task Web Parts, 315
identity Web Parts, 322
modifying, 145, 150–151
site collection Web Parts, 305

design considerations, 11–14
documenting business vision, 11
documenting policies and practices,

11–14
managing change, 14

design mode, 79
designing

area structure, 80–81
new pages (My Site), 101–103

■INDEX 379

5750_idx_final.qxd 11/4/05 10:11 AM Page 379

development environment creation, 29–30
configuring Remote Desktop

Administration (RDA) on
SPSController, 35–36

installing Exchange 2003 on
SPSController, 33–35

installing SPS2003 on SPSPortal, 39–44
installing SQL Server 2000 on SPSPortal,

38–39
installing Visual Studio .NET 2003 on

SPSPortal, 45
installing Windows Server 2003 on

SPSController, 30–34
installing Windows Server 2003 on

SPSPortal, 36–38
preparing SPSClient, 45

development environments, Smart
Documents, 242, 256

dialog boxes
Open, 230
System Properties, configuring RDA,

35–36
digital signatures

manifest files/assemblies, 267–268
Web Part strong names, 129–130

creating, 148, 157, 182–183
discussion forums, 9, 22, 76–77

discussion boards, 76
web discussions, 76–77

displaying
document library lists, 60–61
presence information, 365–366
user information, identity Web Parts,

324–325
DisplayMode property, 330
Dispose event (WebPart), 122
document capacity, 25
Document Information tab (Shared

Workspaces pane), 235
document libraries, 19–20, 60–70. See also

libraries
accessing, 60–61
backward-compatible libraries, 64–70

administering, 66–67
document management features, 68–70
installing, 64–66
viewing, 66

connecting event handlers to target
libraries, 281–282

document management features, 61–63,
68–70

document profiles, 61
form libraries, 71–73
image libraries, 73
setup for workflow engines, 294–295
trapping events, 279

document management (Office 2003),
229–231

area taxonomy, 230–231
document profiles, 61, 68–69
document workflow, 277

acting on documents, 286–287
capturing events, 278–282

connecting event handlers to target
libraries, 281–282

creating event handlers, 278–279
enabling event handlers, 278
impersonating user identities, 280–281,

295–298
creating workflow engines, 294–303

coding IListEventSink interface,
299–300

compiling engines, 300–301
configuring SSO credentials, 295–296
connecting to Submit and Review

libraries, 301–302
creating impersonation identities,

297–298
creating XML routing documents, 298
debugging projects, 302–303
project startup, 296–297
setting up document libraries, 294–295

manipulating documents, 282–287
accessing document properties,

283–286
referencing event information, 282–283

third-party workflow engines, 277
document workspaces, 24, 231–232

adding new members, 233
creating, 231–232

web services, 293–294
document information, 235
document sharing, 234
document status, 233–234
inviting users, 233
links, 234
tasks, 234

documenting
business vision, 11
policies and practices, 11–14

documents. See also document workflow;
document workspaces

adding controls, 338–339
adding Smart Tags, 339–341
approving/rejecting, 63

backward-compatible document
libraries, 70–71

establishing approval routing, 71
attaching XML schemas, 239–241
categorizing, 50–51
checking in/out, 62, 69
metadata, 284

■INDEX380

5750_idx_final.qxd 11/4/05 10:11 AM Page 380

migrating into new structures, 82–84
moving, 286–287
properties, 283–286
Smart Documents. See Smart Documents
templates, VSTO Smart Documents, 351
versions, 62, 69–70

Documents tab (Shared Workspaces pane),
234

domain controllers
adding users and groups, 32
changing server policies, 31–32
creating, 31

downloading Web Part template for
SharePoint Services, 119

.dwp extension, 131

■E
e-mail

alerts, 75–76
global task list, 6
notifications of unused sites, 360–361
server settings, 43

editing Web Part properties, 335–337
elements

manifest files, 249
research service response streams, 253

embedding scripts, Web parts, 189
enabling

online presence, 365–366
Secure Sockets Layer (SSL), 369–373

creating certificates, 370–371
installing certificate services, 369–370
installing certificates, 372
testing secure access, 373

enumerating
child sites, site collection Web Parts,

310–312
tasks, global task Web Parts, 318–320

events
capturing (document workflow), 278–282

connecting event handlers to target
libraries, 281–282

creating event handlers, 278–279
enabling event handlers, 278
impersonating user identities, 280–281,

295–298
capturing events, Smart Tags, 341
handling

coding tool part property pane events,
226–227

connecting event handlers to Submit
and Review libraries, 301–302

Smart Document control sets, 247,
265–266

lists, 75
referencing document event information,

282–283

Excel, creating linked lists, 237–238. See also
Office System

Exception class, SingleSignon namespace,
170–171

Exchange 2003, installing on SPSController,
33–35

Executives, 2
external access to portal, 367

creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
creating certificates, 370–371
installing certificate services, 369–370
installing certificates, 372

policies, 12
testing secure access, 373

■F
farms. See server farms
file properties, 283
filters, ISAPI, 22
form libraries, 71–73

creating, 72
publishing forms, 72–73

formatting partitions, 31
FriendlyName attribute, Web Part properties,

124
FrontPage

customizing My Site, 100–101
data sources, 104–105
data views, 106–107, 114–117
designing new pages, 101–103
ghosted pages, 110
web components, 110, 116–117
web services, 107–110

layout tables/cells, 102–103
tracing images, 101–102

■G
galleries, Web Parts, 92–93

importing Web Parts, 185
ghosted pages, 110
global security groups, SSO, 161–162
global task list (e-mail), 6
globalization, 3
graphics (image) libraries, 73
groups

adding to Active Directory, 32
global security groups, SSO, 161–162
site groups, 54–56

adding users, 56–58, 81
SSO setup

global security groups, 161–162
local groups, 163

■INDEX 381

5750_idx_final.qxd 11/4/05 10:11 AM Page 381

■H
handling events

coding tool part property pane events,
226–227

connecting event handlers to
Submit/Review libraries, workflow
engines, 301–302

document workflow
connecting event handlers to target

libraries, 281–282
creating events handlers, 278–279
enabling events handlers, 278
impersonating user identities, 280–281

Smart Document control sets, 247,
265–266

hardware requirements for SharePoint Portal
Server, 15

helper functions
global task Web Parts, 317–318
site collection Web Parts, 308–309
workflow engines, 297–298

home pages
deleting areas, 79
deleting sites, 79
design mode, 79

HTML
tables, rendering Web Part user interfaces,

128
using Terminal Services, 206–207

HtmlTextWriter class, Web Part output,
127–128

human search engines, 4
hyperlinks

lists, 74
SingleSignonLocator class, 171–172
Web Parts, 208

■I
identities

changing site collection Web Part
identities, 309–310

impersonating user identities. See imper-
sonating user identities

identity Web Parts, 322–326
creating child controls, 323–324
displaying user information, 324–325
project setup, 322–323
rendering Web Parts, 324–325
updating user information, 325–326
using Web Parts, 326

IIS (Internet Information Server) installation,
33–34

ASP.NET installation, 37
IIS Manager, Application Pool Identity,

280–281
IListEventSink interface, 299–300

image libraries, 73. See also libraries
impersonating user identities, 280–281,

295–296
creating helper functions

global task Web Parts, 317–318
site collection Web Parts, 308–309
workflow engines, 297–298

implementing
interfaces, connectable Web Parts, 210
transformers, connectable Web Parts,

214–215
importing

contacts to lists, 74
user profiles from Active Directory, 59–60
Web parts, 142–143, 221

into galleries, 185
increasing team productivity, 9–10
information challenge, 4–5
information workers

challenges, 3–7
access challenge, 6
collaboration challenge, 5–6
information challenge, 4–5
management challenge, 6–7
process challenge, 5
system complexity, 3–4

three categories of information workers, 2
initialization, Web Parts, 121
installations

ASP.NET, 33, 36–37
backward-compatible document libraries,

64–66
certificate services, 369–370
certificates, 372–373
deployment architectures, 26–29
Exchange 2003 on SPSController, 33–35
Internet Information Services (IIS)

components, 33–34
machine (software) configurations, 30
service packs, 44
SharePoint installation considerations,

25–26, 30
Smart Document programmability

support, 242
SPS2003 on SPSPortal, 39–44
SQL Server 2000 on SPSPortal, 38–39
Terminal Services, 203
upgrading from SPS2001, 29
Visual Studio .NET 2003 on SPSPortal, 45
Web clients, 204
Web Part template for SharePoint Services,

119
Windows Server 2003

on SPSController, 30–34
on SPSPortal, 36–38

integrating with partners and customers, 10

■INDEX382

5750_idx_final.qxd 11/4/05 10:11 AM Page 382

interfaces, connectable Web Parts, 190–192
declaring, 192
implementing, 210
registering, 194–195, 212–213

Internet Explorer configuration, 37–38
Internet Information Server (IIS) installation,

33–34
ASP.NET installation, 37

ISAPI (Internet Services Application
Programming Interface) filters, 22

issues, lists, 75

■J-K
K2.net 2003 workflow engine, 277
Key Performance Indicators (KPIs), 2
keys

modifying web.config for SSO database
access, 184

strong-name verification, Web Parts,
129–130

creating, 148, 157, 182–183
keywords, search service, 364–365
KPIs (Key Performance Indicators), 2

■L
large server farm architecture, 28–29
layout tables/cells (Microsoft FrontPage),

102–103
libraries, 60–73

document libraries, 60–70
accessing, 60–61
backward-compatible libraries, 64–70
connecting event handlers to target

libraries, 281–282
document management features,

61–63, 68–70
document profiles, 61
setup for workflow engines, 294–295
trapping events, 278–279

form libraries, 71–73
creating, 72
publishing forms, 72–73

image libraries, 73
limitations of SPS, 26
linked lists, 236–238
linking

scripts, Web parts, 188–189
team sites to SPS, 117

links
lists, 74. See also linked lists
Web Parts, 344–345

Links tab (Shared Workspaces pane), 234
list templates, 97
lists, 73–75

accessing, 288–289
adding list items, 73–74

announcements, 74
contacts, 74
determining list item ownership, 289–290
events, 75
issues, 75
linked lists, 236–238
links, 74
Smart Documents, 247, 263–264
tasks, 75
templates, 97
WSS team sites, 20–21

loading XML expansion packs, 249
local groups, SSO setup, 163
locks, 366–367
logins, Single Sign-On Service. See SSO
logs, SSO audit logs, 175–176

■M
Manage Your Server applet, 31
management challenge, 6–7
managing

change, 14
content, 13–14
documents, 61–63, 68–70
users, 54–60

Active Directory Account Creation
(ADAC) mode, 58

adding users, 56–58
site groups, 54–56
user profiles, 58–60

manifest files, 247–249
creating, 266–267

marking Web Parts as Safe, 139–140, 149
medium server farm architecture, 28
meeting workspaces, 24, 235–236
membership

document workspaces, 233
Web Parts pages, 342–343

Membership tab (Shared Workspaces pane),
233

memory requirements for SharePoint Portal
Server, 15

metadata
Word documents, 284
writing to files, 284

Microsoft FrontPage, customizing My Site,
100–101

data sources, 104–105
data views, 106–107, 114–117
designing new pages, 101–103
ghosted pages, 110
web components, 110, 116–117
web services, 107–110

layout tables, 103
layout tables/cells, 102–103
tracing images, 101–102

■INDEX 383

5750_idx_final.qxd 11/4/05 10:11 AM Page 383

Microsoft Office. See Office System
Microsoft Single Sign-On Service. See SSO
Microsoft Terminal Services. See Terminal

Services
Microsoft Virtual Server (MVS), 30
migrating documents into new structures,

82–84
minimum requirements for SharePoint

Portal Server
clients, 16
hardware, 15
operating system components, 15

moving documents, 286–287
MSSSOAdmins account, 162–166
MVS (Microsoft Virtual Server), 30
My Calendar, 99
My Site, 24, 98–99

customizing, 99–101
data sources, 104–105
data views, 106–107, 114–117
designing new pages, 101–103
ghosted pages, 110
web components, 110, 116–117
web services, 107–110

My Calendar setup, 99

■N
Namespace attribute, Web Parts, 140
naming servers, 31
News areas, 51

■O
OBJECT tag, ActiveX controls (client-side

Web Parts), 187–188
Office System, 1, 17–18, 24–25, 229

integration. See Office System integration
SharePoint components, 18

Office 2003, 24–25
SharePoint installation considerations,

25–26, 30
SharePoint Portal Server (SPS), 23–24
Windows SharePoint Services (WSS),

19–23
solutions. See Office System solutions
Visual Studio 2005 Tools for Office (VSTO),

337–341
building Smart Documents, 349–352,

354–356
project types, 337–339
Smart Tags, 339–341

Office System integration, 229
calendar, 236
contacts, 236
document management, 229–231
document workspaces, 231–232, 293–294

document information, 235

document sharing, 234
document status, 233–234
inviting users, 233
links, 234
tasks, 234

linked lists, 236–238
meeting workspaces, 235–236

Office System solutions, 238
Research Library. See Research Library
Smart Documents. See Smart Documents
XML support, 238–241

Office Web Components (OWC), 187
OnEvent method, 278–279, 299–300
Online Gallery (Web Parts), 93
OnLoad event (WebPart), 122
OnPreRender event (WebPart), 122
OnUnload event (WebPart), 122
Open dialog box, 230
operating system requirements for

SharePoint Portal Server, 15
Outlook

alerts, 75–76
calendar, 236
contacts, 236
meeting workspaces, 235–236

overriding
class constructors, Smart Tags, 340–341
RenderWebPart method, 127–128

OWC (Office Web Components), 187

■P
partitions, formatting, 31
partners, integrating with, 10
passwords

changing server policies, 31–32
Microsoft Single Sign-On Service. See SSO

performance management, 7
permissions

ASP.NET, 133–134
backward-compatible document libraries,

66–67
granting permission for Web Parts to

interact with SSO, 184–185
site group rights, 54–56
site membership, 85–89
SPS, 134
SQL Server permissions, SSO setup, 164

personal productivity, augmenting, 8
personalizing Web Parts, 335–337
pictures, image libraries, 73
policies

changing server policies, 31–32
documenting, 11–14

populating
Smart Document controls, 247, 262–265
tables with Web Part zones, 345–348

■INDEX384

5750_idx_final.qxd 11/4/05 10:11 AM Page 384

Portal Site Application Pool Identity, 40
portal structure, 47–53

areas, 47–51. See also areas
default site structure, 47–48
topics, 47–51. See also topics
WSS team sites, 51–53. See also team sites

portals
accessing sites, 287–289

data caching, 290–292
lists/list items, 288–289
site collections, 287–288

accessing user information, 289–290
adding users, 81
alerts, 75–76
areas, 24
creating portal sites, 44
customizing content

audiences, 89–91
site membership, 85–89
templates, 96–98. See also templates
Web Parts, 91–95. See also Web Parts

deleting areas, 79
deleting sites, 79
designing area structure, 80–81
discussions, 76–77. See also discussions
external access, 367

creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
libraries, 60–73. See also libraries

document libraries, 60–70
form libraries, 71–73
image libraries, 73

lists, 73–75. See also lists
managing users, 54–60. See also users

Active Directory Account Creation
(ADAC) mode, 58

adding users, 56–58
site groups, 54–56
user profiles, 58–60

migrating documents into new structures,
82–84

site structure, 81–82
SPS search engine, 24, 78
surveys, 77–78
topics, 24

presence information, 365–366
process challenge, 5
productivity (teams), increasing, 9–10
products, 18

Office 2003, 24–25
SharePoint Portal Server (SPS), 23–24
Windows SharePoint Services (WSS),

19–23
Professionals, 2

profiles
document profiles, 61
users, 58–60

importing from Active Directory, 59–60
programmability support installation, Smart

Documents, 242
programming SharePoint Services, 277

accessing portal sites, 287–289
data caching, 290–292
lists/list items, 288–289
site collections, 287–288

accessing user information, 289–290
document workflow, 277

acting on documents, 286–287
capturing events, 278–282
creating workflow engines. See

document workflow, creating
workflow engines

manipulating documents, 282–287
third-party workflow engines, 277

web services, 292–294
projects

creating, 144–145, 150
global task Web Parts, 314–315
identity Web Parts, 322–323
research services, 269–270
site collection Web Parts, 304–305
Smart Documents, 256–257
VSTO project types, 337–339
VSTO Smart Documents, 349–350
Web Part pages, 342
workflow engines, 296–297

properties
Web Parts, 123–125

defining, 146–147. See also defining Web
Parts properties

editing, 335–337
documents, 283–286

public keys, modifying web.config for SSO
database access, 184

PublicKeyToken attribute, Web Parts, 140
publishing forms, 72–73

■Q-R
query responses, research services, 253–255,

272–275
quotas, 366–367
RAM, minimum requirements, 15
RDA (Remote Desktop Administration), 35–36
references, adding, 178
registering

connection interfaces, connectable Web
Parts, 194–195, 212–213

custom Web Parts, 333
research services, 252–253, 270–272

registration responses. See responding
to XML queries, research services

■INDEX 385

5750_idx_final.qxd 11/4/05 10:11 AM Page 385

rejecting documents, 62–63
backward-compatible document libraries,

70–71
Remote Desktop Administration (RDA),

35–36
Remote Desktop client, application access

policies/practices, 13
remote worker support, 10
rendering tool parts, 227
rendering Web Parts, 125–128, 148, 155–156

connectable Web Parts, 219
global task Web Parts, 318–321
identity Web Parts, 324–325
site collection Web Parts, 309–313
SSO setup, 180–182
Terminal Services, 208

RenderWebPart event (WebPart), 122
RenderWebPart method, overriding, 127–128
Research Library, 250–255

building research services, 251–252, 269
beginning projects, 269–270
creating sites for services, 269

registering research services, 252–253,
270–272

registration responses. See Research
Library, responding to queries

responding to queries, 253–255, 272–275
searching sites, 251, 275–276
using custom research services, 275–276

research services, 251–252. See also Research
Library

creating new sites, 269
registering, 252–253, 270–272
responding to queries, 253–255, 272–275
starting projects, 269–270
using, 275–276

resolving update conflicts
document workspaces, 234
linked lists, 238

responding to XML queries, research
services, 253–255, 272–275

restore (back up and restore, 357–359
rights. See also permissions

backward-compatible document libraries,
66–67

site groups, 54–56
site membership, 85–89

roles, backward-compatible document
libraries, 66–67

■S
Safe attribute, Web Parts, 139–140
scheduling content crawls, search service,

363–364

schemas (XML), 239–241
broadcasting schema information,

connectable Web Parts, 196–197, 216
Smart Documents, 243–244, 257–258
VSTO Smart Documents, 350–351

scripts
client-side Web Parts, 188–189
Terminal Services, 206–207

search service, 24, 78
administration, 362–364

adding content sources, 363
changing access account, 362–363
managing keywords, 364–365
quota/lock management, 366–367
scheduling content crawls, 363–364

Best Bets, 364–365
searching sites, 276

custom research services, 275
Research Library, 251

Secure Sockets Layer (SSL), 369–373
creating certificates, 370–371
installing certificate services, 369–370
installing certificates, 372
testing secure access, 373

security
external portal access, 367

creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
Microsoft Single Sign-On Service. See SSO
Smart Documents, 249–250, 267–268
uninstalling Internet Explorer Enhanced

Security, 37–38
Web Part strong names, 129–130

creating, 148, 157, 182–183
Web Parts

code access security, 132–140
SSO database access, 184–185

web services, authenticating users, 293
server farms

architecture, 27–29
configuring account settings, 40–41

servers
architectures, 27–29
changing server policies, 31–32
configuring server topology, 42
e-mail, 43
external access, 367

creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
minimum requirements, 15
naming, 31
SSO setup, 164–165
virtual server configuration, 53

service pack installation, 44

■INDEX386

5750_idx_final.qxd 11/4/05 10:11 AM Page 386

service-level agreements, 12–13
setting references, 178
Shared Workspace pane, 232

Document Information tab, 235
Documents tab, 234
Links tab, 234
Membership tab, 233
Status tab, 233–234
Tasks tab, 234

SharePoint, 1
SharePoint Portal Server. See SPS
SharePoint Services

Office System integration. See Office
System integration

programming. See programming
SharePoint Services

sharepoints, 367
creating aliases, 367–369
enabling Secure Sockets Layer (SSL),

369–373
ShowAllSites property, 306
signatures, Web Part strong names, 129–130

creating, 148, 157, 182–183
Single Sign-On Service. See SSO
site collections

accessing, 287
building site collection Web Parts, 303–313

configuring SSO credentials, 303–304
creating child controls, 306, 308
creating new identities/helper

functions, 308–309
defining properties, 306
project setup, 304–305
rendering Web Parts, 309–313
using Web Parts, 313

site groups, 54–56
adding users, 56–58, 81

site maps, 81–84
site membership, 85–89, 342–343
site templates, 96–97
site usage analysis, 359–360

deleting unused sites, 360–362
site-creation links, 9–10
[sitename] Gallery (Web Parts), 92
sites

accessing, 287–289
data caching, 290–292
lists/list items, 288–289
site collections, 287–288

creating portal sites, 44
creating sites for new research services,

269
deleting, 79, 360–362
My Site, 24, 98–99

customizing, 99–101
data sources, 104–105

data views, 106–107, 114–117
designing new pages, 101–103
ghosted pages, 110
My Calendar setup, 99
web components, 110, 116–117
web services, 107–110

team sites, 19
content database, 22
discussions, 22
document libraries, 19–20
lists, 20–21
SPS (SharePoint Portal Server), 23–24
surveys, 22
Web Parts, 21–22
working in, 23

team sites. See team sites
unghosting, 110
web sites, 111

Sites area, 51
small server farm architecture, 27–28
Smart Documents, 241–250, 255–256

building using VSTO, 349–356
coding solution, 352–356
creating XML schema, 350–351
defining document templates, 351
project setup, 349–350
testing solution, 356

control sets, 241–247
captions, 246, 259–262
ControlID property, 245–246, 260–261
creating, 244–247, 258–262
defining controls, 246–247, 262
event handling, 247, 265–266
populating with initial values, 247,

262–265
deploying, 247–249, 266–268

configuring security, 267–268
creating manifest files, 266–267
loading XML expansion packs, 268

installing programmability support, 242,
256

relating schema and functionality,
243–244

security, 249–250, 267–268
setting up projects, 256–257
XML schema, 257–258

Smart Tags, adding to documents, 339–341
software, machine configurations, 30
SP1 installation, 44
SPControl class, 288
SPFile object, 287
SPList object, 289
SPListEvent class, 282–283
SPListItem object, 285–286, 289
SPListItemCollection object, 289

■INDEX 387

5750_idx_final.qxd 11/4/05 10:11 AM Page 387

SPS (SharePoint Portal Server), 23–24, 15
alerts, 75–76
discussions, 76–77. See also discussions
libraries, 60–73. See also libraries

document libraries, 60–70
form libraries, 71–73
image libraries, 73

limitations, 26
linking team sites to SPS, 117
lists, 73–75
managing users, 54–60. See also users

Active Directory Account Creation
(ADAC) mode, 58

adding users, 56–58
site groups, 54–56
user profiles, 58–60

minimum requirements, 15–16
portal structure, 47–53
search engine, 24, 78
SP1 installation, 44
surveys, 77–78

SPS 2001 upgrades, 29
SPS 2003 installations, 39–44
SPSClient, 45
SPSController

configuring Remote Desktop
Administration (RDA), 35–36

installing Exchange 2003, 33–35
installing Windows Server 2003, 30–34

SPSPortal
installing SPS2003, 39–44
installing SQL Server 2000, 38–39
installing Visual Studio .NET 2003, 45
installing Windows Server 2003, 36–38

SPUser objects, 289–290
SPWeb class, 289
SQL Server 2000, installing on SPSPortal,

38–39
SQL Server permissions, SSO setup, 164
SSL (Secure Sockets Layer), 369–373

creating certificates, 370–371
installing certificate services, 369–370
installing certificates, 372
testing secure access, 373

SSO (Single Sign-On Service), 161
Application class, 172
audit logs, 175–176
changing site collection Web Part

identities, 309–310
configuring credentials

global task Web Parts, 313–314
site collection Web Parts, 303–304
workflow engines, 295–296

programmatic administration, 172
displaying field information for users,

173–175

listing application definitions, 172–173
updating credentials, 175

security policy, 167–168
setting references, 178
setup, 161–167

defining applications, 164–166, 176–177
defining login credentials, 167, 177
global security groups, 161–162
local groups, 163
managing server settings, 164–165
SQL Server permissions, 164

SingleSignon namespace, 169
Credentials class, 169–170
Exception class, 170–171
SSOReturnCodes class, 170

SingleSignonLocator class, 171–172
SingleSignonPermission class, 167–168
Web Parts, 168–172

creating, 177–180, 182
deploying, 182–185
granting permission for Web Parts to

interact with SSO, 184–185
importing Web Parts into galleries, 185
modifying web.config file, 184

stand-alone server architecture, 27
Status tab (Shared Workspaces pane),

233–234
strong names, Web Parts, 129–130

creating, 148, 157, 182–183
StsAdm.exe

command-line switches, 142
deploying Web Parts, 141–142

subsites, site collection Web Parts, 312–313
supporting remote workers, 10
surveys, 22, 77–78
system complexity, 3–4
System Properties dialog box, configuring

RDA, 35–36

■T
tables

layout tables/cells (Microsoft FrontPage),
102–103

populating with Web Part zones, 345–348
rendering Web Part user interfaces, 128
VSTO Smart Documents, 351

targeting content to audiences, 90–91
task lists, 21, 75
task panes, adding controls, 339
tasks

global task Web Parts, 313–322
configuring SSO credentials, 313–314
creating child controls, 316–317
creating new identities/helper

functions, 317–318

■INDEX388

5750_idx_final.qxd 11/4/05 10:11 AM Page 388

project setup, 314–315
rendering Web Parts, 318–321
using Web Parts, 321–322

lists, 21, 75
Tasks tab (Shared Workspaces pane), 234
team productivity, increasing, 9–10
team sites, 19, 51–53

adding data sources to catalogs, 113–114
content database, 22
creating data views, 114–117
creating sites, 52–53, 113
discussions, 22
document libraries, 19–20
linking sites to SPS, 117
lists, 20–21
site structure, 81–82
SPS (SharePoint Portal Server), 23–24

search engine, 24, 78
surveys, 22
Web Parts, 21–22
working in, 23

technical considerations, 15–16
templates, 96–98

area templates, 98
list templates, 97
quotas, 366–367
site templates, 96–97
VSTO Smart Documents, 351
Web Part template for SharePoint Services,

119
Terminal Services

application access policies/practices,
13

creating web pages, 205–207
creating Web Parts, 207–208
deploying Web Parts, 208–209
set up, 203–205

configuring Terminal Services, 205
installing Terminal Services, 203
installing Web client, 204
testing Web client, 204

testing
secure access, 373
test accounts, 32
VSTO Smart Documents, 356
Web clients, 204
Web Parts pages, 348–349

text, Web Parts, 344
text boxes, Smart Documents, 264–265
tool parts, 200–203

adding to tool panes, 227
coding property pane events, 226–227
creating child controls, 225
creating custom tool parts, 202–203, 224

creating classes, 224–225
default tool parts, 201–202

rendering, 227
using, 228
Web Parts, 223–228

Topic Assistant, 50
categorizing documents, 50–51
training, 82–84

topics, 24, 47–51
Topics areas, 49–51

tracing images (Microsoft FrontPage),
101–102

training Topic Assistant, 82–84
Transactors, 2
transformers, connectable Web Parts,

199–200, 214–215
trapping document library events, 279. See

also handling events
trust levels

ASP.NET, 133–134
SPS, 134
Web Parts-SSO database access, 184–185

trusting assemblies, 267–268
TypeName attribute, Web Parts, 140

■U
unghosting sites, 110
uninstalling Internet Explorer Enhanced

Security, 37–38
unused site deletion, 360–362
updating user information, identity Web

Parts, 325–326
upgrading SPS2001 installations, 29
uploading Web Parts, 185, 221
URL property, 336
URLs, aliases, 369
usage analysis, 359–360

deleting unused sites, 360–362
user capacity, 25–26
user interfaces, Web Parts, 128
users

accessing user information, 289–290
adding, 44–45

Active Directory, 32
document libraries, 66–67
site groups, 56–58, 81

backward-compatible document libraries,
66–67

changing personal information directly in
sites. See users, identity Web Parts

identity Web Parts, 322–326
creating child controls, 323–324
displaying user information, 324–325
project setup, 322–323
rendering Web Parts, 324–325
updating user information, 325–326
using Web Parts, 326

■INDEX 389

5750_idx_final.qxd 11/4/05 10:11 AM Page 389

users (continued)
managing, 54–60

Active Directory Account Creation
(ADAC) mode, 58

adding users, 56–58
site groups, 54–56
user profiles, 58–60

profiles, 58–60
importing from Active Directory, 59–60

test accounts, 32

■V
VB .NET

custom Web Parts, 332–333
editing Web Part properties, 336

verification, Web Part strong names. See
strong names, Web Parts

Version attribute, Web Parts, 140
versions, documents, 62, 69–70
viewing

Application Pool Identity, 280–281
backward-compatible document libraries,

66
survey responses, 78

views (data views), My Site, 106–107, 114–117
ViewState property, Web Parts, 122
virtual directories, 112
Virtual Server Gallery (Web Parts), 93
virtual server configuration, 53
vision documents, 11
Visual Studio, 327

ASP.NET 2.0 Web Parts Framework,
328–336

building custom Web Parts, 330–332,
343–345

building Web Parts pages, 342–349
personalizing Web Parts, 335–337
using Web Parts in pages, 333–334
Web Parts control set, 328–330

installing Visual Studio .NET 2003 on
SPSPortal, 45

Visual Studio 2005 Tools for Office (VSTO),
337–341

building Smart Documents, 349–356
coding solution, 352–356
creating XML schema, 350–351
defining document templates, 351
project setup, 349–350
testing solution, 356

project types, 337–339
Smart Tags, 339–341

VMware, 30
VSTO (Visual Studio 2005 Tools for Office),

337–341
building Smart Documents, 349–356

coding solution, 352–356

creating XML schema, 350–351
defining document templates, 351
project setup, 349–350
testing solution, 356

project types, 337–339
Smart Tags, 339–341

■W
Web clients, installing/testing
web components, 110, 116–117
web discussions, 76–77
web pages

building Web Parts pages, 342–349
adding site membership, 342–343
creating Web Parts, 343–345
populating tables with Web Part zones,

345–348
project setup, 342
testing solution, 348–349

creating for use with Terminal Services,
205–207

using Web Parts in pages, 333–334
Web Parts, 21–22, 91–95, 119–128

adding child controls
coding Web Parts, 151–156
connectable Web Parts, 211–212
creating projects, 150
deploying Web Parts, 156–159
global task Web Parts, 316–317
identity Web Parts, 323–324
modifying description files, 150–151
site collection Web Parts, 306–308
SSO setup, 180

ASP.NET 2.0 Web Parts Framework,
328–336

building custom Web Parts, 330–332,
343–345

building Web Parts pages, 342–349
personalizing Web Parts, 335–337
using Web Parts in pages, 333–334
Web Parts control set, 328–330

build directory, 131–132
building, 131–132, 177–182

coding Web Parts, 146–148, 151–156
creating projects, 144–145
custom Web Parts, 330–332, 343–345
deploying Web Parts. See Web Parts,

deploying
modifying description files, 145
using Web Parts, 149–150

Web Parts pages. See Web Parts pages
client-side, 187–189. See also Terminal

Services
ActiveX controls, 187–188
linking/embedding scripts, 188–189

compiling, 148–149, 157, 183–184

■INDEX390

5750_idx_final.qxd 11/4/05 10:11 AM Page 390

connectable Web Parts, 189–190
coding Web Part life cycle, 212–219
connection interfaces, 190–192
connection life cycle, 192–199, 212–219
creating child controls, 211–212
creating projects, 209–210
defining properties, 210–211
implementing interfaces, 210
registering interfaces, 194–195, 212–213
run location specification, 195, 213
transformers, 199–200, 214–215
using, 219–223

connecting, 94–95, 115–116
custom Web Parts, 330–332, 343–345

using in pages, 333–334
data caching, 290–292
defining properties, 123–125, 146–147,

152–154
connectable Web Parts, 210–211
site collection Web Parts, 306
SSO databases, 178–179
Terminal Services, 207, 209

deploying, 182–185
building Web Parts, 131–132
code access security, 132–140
compiling Web Parts, 148–149, 183–184
deployment packages, 140–142
marking Web Parts as Safe, 139–140, 149
strong names, 129–130, 148, 157,

182–183
description files, 131

global task Web Parts, 315
identity Web Parts, 322
modifying, 145, 150–151
site collection Web Parts, 305

documents. See documents; document
libraries

downloading Web Part template for
SharePoint Services, 119

galleries, 92–93
global task Web Parts, 313–322

configuring SSO credentials, 313–314
creating child controls, 316–317
creating new identities/helper

functions, 317–318
project setup, 314–315
rendering Web Parts, 318, 320–321
using Web Parts, 321–322

hyperlinks, 208
identity Web Parts, 322–326

creating child controls, 323–324
displaying user information, 324–325
project setup, 322–323
rendering Web Parts, 324–325
updating user information, 325–326
using Web Parts, 326

life cycle of Web Parts, 121–123
modifying, 91–94
personalizing, 335–337
properties, 123–125

defining. See Web Parts, defining
properties

editing, 335–337
rendering, 125–128, 148, 155–156

connectable Web Parts, 219
global task Web Parts, 318–321
identity Web Parts, 324–325
site collection Web Parts, 309–313
SSO setup, 180–182
Terminal Services, 208

Single Sign On (SSO) service, 168–172. See
also SSO

site collection Web Parts, 303–313
configuring SSO credentials, 303–304
creating child controls, 306–308
creating new identities/helper

functions, 308–309
defining properties, 306
project setup, 304–305
rendering Web Part, 309–313
using Web Part, 313

SSO
granting permission for Web Parts to

interact with SSO, 184–185
importing Web Parts into galleries, 185
modifying web.config for SSO database

access, 184
Terminal Services, 207–209. See also

Terminal Services
creating Web Parts, 207–208
deploying Web Parts, 208–209

tool parts, 200–203, 223–228
creating custom tool parts, 202–203, 224
default tool parts, 201–202

using connectable Web Parts, 219–223
using Web Parts in pages, 333–334. See also

Web Parts pages
Web Part mode, 92
WebPart class, 120–121

Web Parts control set, 328–330
building Web Parts pages, 347–348

Web Parts pages, 142–144, 149–150, 333–334,
342–349

adding Web Parts to pages, 142–143
adding site membership, 342–343
creating Web Parts, 343–345
debugging Web Parts, 143–144
populating tables with Web Part zones,

345–348
project setup, 342
testing solution, 348–349

Web Server Certificate Wizard, 372

■INDEX 391

5750_idx_final.qxd 11/4/05 10:11 AM Page 391

web services, 107–110, 292–294
web sites, creating, 111. See also team sites
web.config file

marking Web Parts as Safe, 139–140, 149
modifying for SSO database access, 184

WebPart class, 120–121
WebPartManager control, 328–330
WebPartStorage attribute, Web Part

properties, 124
Windows Server 2003 installation

installing on SPSController, 30–34
installing on SPSPortal, 36–38

Windows SharePoint Services (WSS), 19–23
SP1 installation, 44
team sites, 19. See also team sites

content database, 22
discussions, 22
document libraries, 19–20
lists, 20–21
surveys, 22
Web Parts, 21–22
working in, 23

Windows Terminal Services. See Terminal
Services

Word. See also Office System
creating document workspaces, 231–232
document metadata, 284
Research Library. See Research Library
Smart Documents. See Smart Documents
XML support, 238–241

schemas, 239–241
WordML, 239
XML expansion packs, 247–249

creating manifest files, 266–267
loading, 268
security, 267–268

WordML, 239
workflow, 277

acting on documents, 286–287
capturing events, 278–282

connecting event handlers to target
libraries, 281–282

creating event handlers, 278–279
enabling event handlers, 278
impersonating user identities, 280–281,

295–298
creating workflow engines, 294–303

coding IListEventSink interface,
299–300

compiling engines, 300–301
configuring SSO credentials, 295–296
connecting to Submit and Review

libraries, 301–302

creating impersonation identities,
297–298

creating XML routing documents, 298
debugging projects, 302–303
project startup, 296–297
setting up document libraries, 294–295

manipulating documents, 282–287
accessing document properties,

283–286
referencing event information, 282–283

third-party workflow engines, 277
workspace pane, 232

Shared Workspace, 232
Document Information tab, 235
Documents tab, 234
Links tab, 234
Membership tab, 233
Status tab, 233–234
Tasks tab, 234

workspaces
document workspaces, 24, 231–232

creating, 231–232, 293–294
document information, 235
document sharing, 234
document status, 233–234
inviting users, 233
links, 234
tasks, 234

meeting workspaces, 24, 235–236
writing

document library column values, 285
document metadata to files, 284

WSS (Windows SharePoint Services), 19–23
team sites. See team sites

■X-Z
XML, 238–241

data sources. See data sources
expansion packs, 247–249

creating manifest files, 266–267
loading, 249, 268
security, 267–268

routing documents, workflow engines, 298
schemas, 239–241

VSTO Smart Documents, 350–351
Smart Documents. See Smart Documents
WordML, 239

XmlRoot attribute (WebPart), 121
zones

CatalogZone control, 333–334
populating tables with Web Part zones,

345–348
WebPartZone control, 329–330

■INDEX392

5750_idx_final.qxd 11/4/05 10:11 AM Page 392

5750_idx_final.qxd 11/4/05 10:11 AM Page 393

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

5750_idx_final.qxd 11/4/05 10:11 AM Page 394

	Microsoft SharePoint: Building Office 2003 Solutions, Second Edition
	Table of Content
	Chapter 1 SharePoint Business Solutions
	Chapter 2 SharePoint Products and Technologies Overview
	Chapter 3 SharePoint Portal Server Basics.
	Chapter 4 SharePoint Content Development
	Chapter 5 Building Web Parts
	Chapter 6 The Microsoft Single Sign-On Service
	Chapter 7 Advanced Web Part Development
	Chapter 8 The Microsoft Office System
	Chapter 9 Programming SharePoint Services
	Chapter 10 Visual Studio 2005 and the Microsoft Office System
	Chapter 11 SharePoint Portal Server Administration
	Index

