.......

SYN'ERESS®

1 YEAR UPGRADE)

BUYER PROTECTION PLAN /

Palm OS

Web Application

Developer’s Guide

Developing and Delivering POAs with Web Clipping
- Step-by-Step Instructions for Creating Palm Web Applications Using
Web Clipping Technology

- Hundreds of Developing & Deploying Sidebars, Security Alerts, and
Web Clipping Code Explained

- Complete Coverage of Design for Internet-Enabled Mobile Devices

Ben Combee

R. Eric Lyons
I David C. Matthews
(E Rory Lysaght
Foreword by Adam Tow

GIZ)T)al Knowled Ige

RECOMMENDED READING

solutionsa@asyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

» One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» "“Ask the Author”™ customer query forms that enable you to post
questions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWw.syngress.com/solutions

SYNGRESS®

http://www.syngress.com/solutions

SYN*RESS®

Web Application

Developer’s Guide

Developing and Delivering POAs with Web Clipping

Ben Combee
R. Eric Lyons
David C. Matthews
Rory Lysaght

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from
the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental
or consequential damages arising out from the Work or its contents. Because some states do not allow the exclu-
sion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, and “Career Advancement Through Skill Enhancement®,are registered trademarks
of Syngress Media, Inc. “Ask the Author™,”“Ask the Author UPDATE™,” “Mission Critical™,” and “Hack
Proofing™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 DJG4T945T5
002 AKLRT4MLE4
003 VMERL3N54N
004 SGD34B39UN
005 8LUSMUGN7H
006 NFG4RNTEM4
007 BWBVHTR46T
008 QPB9R565MR
009 83N5M4BKAS
010 GT6YH22WFC

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Palm OS Web Application Developer’s Guide: Including PQA and Web Clipping

Copyright © 2001 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and executed
in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-32-6

Technical Editor: Ben Combee Freelance Editorial Manager: Maribeth Corona-Evans
Technical Reviewer: Calvin Swart Cover Designer: Michael Kavish

Co-Publisher: Richard Kristof Page Layout and Art by: Shannon Tozier

Acquisitions Editor: Catherine B. Nolan Copy Editor: Darren Meiss

Developmental Editor: Kate Glennon Indexer: Robert Saigh

CD Production: Michael Donovan

Distributed by Publishers Group West in the United States and by Jaguar Book Group in Canada

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Bill
Richter, Kevin Votel, Brittin Clark, and Kent Anderson of Publishers Group West for
sharing their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten, Annabel Dent, and Laurie Giles of Harcourt Australia for all
their help.

David Buckland, Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Joe Pisco, Helen Moyer, and the great folks at InterCity Press for all their help.

Acknowledgments

Ben Combee would like to thank the following people for their support and contri-
butions to the book:

Thank you to Charles Wilson, John Wirth, and Anil Patel. To David Fedor, Danny
Epstein, Peter Epstein, Ken Krugler, Keith Rollin, and the other helpful Palm
employees that contribute to the online forums. To Neil Rhodes, Aaron Ardiri, and
John Marshall for their work on free development tools for the Palm.To Vernard and
Kim Martin, Charles and Heather Patisaul, and finally to Lamar, Rose, Cyndi, and
Kaye Combee.

Vi

Contributors

David C. Matthews is an Independent Consultant located in Huntsville,
AL. He has over 20 years of full life cycle software development experi-
ence and currently specializes in wireless Web technologies. He has con-
tributed to several books on developing PalmOS Web clipping
applications, DHTML, and JavaScript. David has also overseen several
development projects, including a voice-activated wireless Web interface
for wearable computer control of an aviation maintenance management
system, a Web-centric wireless GPS-based golfer PDA, and a Web-centric
inventory management system with barcode support. An Instrument
Rated Private Pilot, David is also an IEEE member and holds a bachelor’s
degree in Electrical Engineering from Auburn University. He has com-
pleted post-graduate work in Electrical Engineering at The University of
Alabama in Huntsville.

Rory Lysaght is a Mobile Device Specialist at Ripcord Systems, a wire-
less startup based in Seattle and London. At Ripcord, Rory put together
one of the first wireless GSM 1PAQs in Europe. He has worked in Web
and wireless development in the US, Europe, and Japan. He has con-
tributed articles to several online and paper publications, including Web
Review and the EE Times. Prior to this, Rory worked as a photojournalist,
publishing numerous documentary stories in magazines in the same three
continents. He is a member of the WAP forum and the Palm developer
network. He lives in Seattle, WA.

R. Eric Lyons is a Palm OS Application Developer who designs and
develops wireless stock trading and wireless e-mail applications. In addi-
tion to these applications, he assisted with the design of the client toolkit
for the Touchpoint 4.0 mobile enterprise platform. Eric’s background
includes positions as Software Engineer for EASE CT Solutions and
Application Developer at Syntellect. Eric holds a bachelor’s degree from

vii

viii

Clemson University and is a member of the Atlanta Palm OS Developer’s
Group. In his spare time, Eric is a musician in the Atlanta Freedom
Marching Band.

Hari Bhaskaran is the Principal Software Architect for JP Mobile where
he builds client-server solutions that connect wireless handhelds with JP
Mobile’s server products. His Palm development work includes the award-
winning OneTouch Mail (recipient of the 1998 Best Handheld Software
award, Mobile Computing Magazine) and OmniSky products, as well as
BeamLink. Hari has a bachelor’s degree in Computer Science from
R.E.C Calicut, India. He currently resides in Richardson, TX. Hari would
like to thank his wife, Suma, for her love and support. Hari would also
like to thank his collegues Alex Farcasiu, Joan Garcia, and all his friends at
JP Mobile for their help.

Foreword by

Adam Tow has been passionate about the handheld industry ever since
he purchased his first handheld, the Apple Newton MessagePad, in
September, 1993. Adam is currently the Manager of Technology at Palm,
Inc., the worldwide leader of mobile computing, where he is actively
involved in the company’s wireless initiatives. Prior to joining Palm, Adam
founded and directed Foundation Systems, a mobile computing solutions
firm, where he consulted with Palm and OmniSky on the release of two
critically acclaimed consumer wireless devices, the Palm VII organizer and
the OmniSky Palm V handheld. Adam has presented on Web clipping
development at PalmSource and the Palm Developer’s Conference. In
addition, his company’s software for the Newton and Palm OS platforms
has been sold in over 22 countries and has been featured in publications
such as Pen Computing Magazine, Mobile Computing, and the San Francisco
Chronicle. He has been interviewed in Interface Magazine and on C|Net
and ZDNN. He is the founding member of the Stanford Palm User
Group.

Adam received his bachelor’s degree from Stanford University in
Symbolic Systems, with a focus in Human-Computer Interaction. His
other passions include photography, digital multimedia, and online jour-
nalism. Adam can be reached on the Web at www.tow.com/ or via e-mail
at adam(@tow.com.

Technical Editor and Contributor

Ben Combee is a Lead Software Developer at Metrowerks where he is
responsible for the future direction of the CodeWarrior for Palm OS
tools, the leading C and C++ development toolset used in the Palm com-
munity. Ben is also working on future wireless strategy for Metrowerks
and its parent company, Motorola. In the past, he was the lead architect
for wireless devices with Veriprise Wireless where he developed custom
applications and libraries for the Palm VII/VIIx, Omnisky Minstrel, and
Glenarye @ctiveLink wireless systems. His application, VChat, won “Best
INetLib Application” in the PalmHack contest at the 2000 PalmSource
show. Ben has also been the lead developer for the CodeWarrior C/C++
compiler for Intel and AMD microprocessors, and he presented a talk
about Linux compiler technology at the 1999 Annual Linux Showecase.
Before this, he helped design microcontrollers and operating systems for
Motorola’s advanced pager products. Ben has a bachelor’s degree in
Computer Science from the Georgia Institute of Technology. While at
Georgia Tech, Ben served as the president of the Association for
Computing Machinery (ACM) chapter for two years. Ben is an active
participant in Palm’s online developer forums, having answered over 600
questions posted by fellow Palm developers. Ben lives in Austin, TX.

Technical Reviewer

Calvin Swart joined the Computer Science research staff at IBM’s
Thomas J. Watson Research Center in 1985. He has served in research
and programming roles in numerous graphics, networking, and interper-
sonal communications projects. Most recently, he participated in the
design and programming of solutions in several areas including K-12
Internet access and wireless e-business, one example being a Palm shop-
ping application for Safeway UK. He is interested in embedded program-
ming on small devices and their use in e-business. Calvin resides in

Poughkeepsie, NY.

About the cD 8§

This CD-ROM contains the code files that are used in each chapter of this book.
The code files for each chapter are located in a “chXX” directory. For example, the
files for Chapter 8 are in ch08.The organizational structure of these directories
varies. For some chapters, the files are named by the figure number. In other chap-
ters, the files are organized by the projects that are presented within the chapter.

Files ending with .htm and .html are HTML files. Usually, these are inputs to the
Web Clipping Application Builder program that is used to make Web clippings. These
may have associated graphic files. Some chapters have files with a .pl extension. These
are Perl source files and are designed to be installed as CGI scripts on your Web
server. Chapter 8 contains files with .php extensions; these are Web pages with
embedded scripts that get executed by the PHP interpreter on a Web server.

Chapters 10 and 11 each contain programs written in C for Palm OS.The
examples in Chapter 10 were all produced with CodeWarrior for Palm OS, Release 7.
These are small enough to work with the demo version of CodeWarrior for Palm
OS that is included on this CD-ROM. The programs in Chapter 11 were written
using PR C Tools, the port of the GNU C compiler to Palm OS.These also come
with CodeWarrior projects. Most of the programs in Chapter 11 can be built with
the demo edition of CodeWarrior, but the final program is too large to work with
the included demo.

Also contained on this CD-ROM are full versions of several useful Web server
programs, all built for Microsoft Windows. Included are the latest versions (at the
time of publication) of PHP, Apache Server, and ActivePerl. To install the ZIP files,
you need some sort of unzip utility, such as WinZip (www.winzip.com). To install the
.msi files, you need the Windows Installer. This package is built into Windows 2000,
Windows XP, and Windows Me. For older OS releases, you can download Windows
Installer from www.microsoft.com/msdownload/platformsdk/instmsi.htm. If you
want to check for newer versions of the software, see the following Web sites: Apache
Server (http://httpd.apache.org), ActivePerl (http://aspn.activestate.com/ASPN/
Perl), and PHP (http://php.apache.org).

P

Look for this CD icon to obtain files used
in the book demonstrations.

-

Xi

Contents G

Load Web Clipping Chapter 1 I.ntroducing Web Clipping 1

Applications on Your Introduction 2

Device What Is Web Clipping? 2 ~y
_ = Loading Web Clipping Applications on Your Device 5)

New Web clipping Running the Install Tool 5

applications can be added
to Palm VII devices in the
same fashion that Palm OS
applications are installed.
Web clipping applications
can be added to a Palm
VIl by using the Install Tool
application on a desktop
computer and performing
a HotSync operation with
the device.

Performing a HotSync Operation on
Your Device

ing the Web Clipping Application Builder

Xiv Contents

Learn How to Install Picking Your HTML Files 20
Icons in the Setting Options in the Build PQA Dialog Box 21
Application Launcher Setting Small and Large Icons 24
—— Building a Multiple Document PQA 25
gamea_ -a Linking to Internet Web Sites 28
I'I-E_ @ ‘ﬂ Automating WCA through Command
Piddrean L3l Cord inda .
S L_me Paramete_rs _ 30
bk Dawebosk Espanre Using PQA Builder 1.0 and WCA Builder 1.5 32
B O < Which Version Should I Use? 32
o~ e Using QAB 1.5 (Palm OS 4.0 SDK) 33
@ @ ©
Merofad Mofud Frets 4 Color Icons 33
Unwired Widgets Product List Example 35
Summary 38
Solutions Fast Track 39
Frequently Asked Questions 40
Chapter 3 Building WCAs Using HTML 41
Introduction 42
Starting HTML Documents with a Header 42
Setting the Title of the Page 43
Using META Tags to Add Document-Level
Learn What HTML Tags Information 44

Are Available and How

to Use Them Marking Your Page as Palm-Friendly

_— = with the PalmComputingPlatform Tag 44
The most common body Providing Icon Information through
tags available in the HTML META Tags 45
3.2 specification are Adding Unconnected Graphics Files 45

available in the Web

clipping HTML definition. Opverriding the History List 46
Content with these tags No Support for Other Standard
applied may render META Tags 46
differently to fit th I . .
P;mirg; élle\zcel_ Scr:eS: 2 Providing HTML Content with Block and
Text Markup Body Tags 46
Block Markup 46
Paragraphs: <P> 47

Large Headers: <H1>, <H2>,and <H3> 48
Small Headers: <H4>, <H5>, and <H6> 49
Horizontal Rule: <HR > 50

Learn the Four Colors
Available for Most
Devices and How to
Use Them Most

Effectively

_TT =
Color Name Hex
Black #000000
Silver #C0CO0COo
Gray #808080
White #FFFFFF

Contents

Images:
Ordered and Unordered List:
and
Structured Information: <TABLE>
Text Markup
Physical Markup: Bold, Italics, and
Underlining
Font Markup:
Logical Markup: Strong and
Emphasized Text
Hyperlinks: <A>
Line Breaks:

Linking to Application Pages and Web Sites
Example: Linking to
www.unwiredwidgets.com
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 4 Using Images in Web Clipping
Applications
Introduction
Dealing with Limited Screen Size
Use of the Locallcon META Tag
Specifying Nonlinked Images
Using Colors and Grayscale
Minimizing Bandwidth with Black and White
Smoothing Things Out with Grayscale
Using Full Color on Palm OS 4.0
Optimizing Image Size
Using the Palm Image Checker to Validate
Your Images
Experimenting with Color Depth
Reesizing Images
Adding Images to the Widget Catalog Example
Widget Banner Ads Example
Summary

50

53
55
58

58
60

60
61
63
64

66
69
69
71

73
74
74
78
79
81
83
83
83
84

86
88
90
91
97

103

XV

Xvi Contents

Why Doesn’t Password
Obscure My Input?

_T =

When you enter your
password, rather than
echoing asterisks like
desktop Web browsers do,
Clipper pops up a dialog
box in which you enter the
password in the clear. This
is done to address the
problem of using the Palm
OS graffiti input scheme.
Showing the characters is
necessary for the user to
know what they are
actually scribbling.
Without that feedback,
you could easily enter
wrong data. Palm’s
compromise is to show
this password input for
only the brief time that the
user is entering the text.

Use Date and Time
Variables with the
History Text

‘e S Frodects 102

Fch\ by 3427 1140

[Ehwop Brinal | | [Dottt
R | U d YW
'irl'!"lml BT &I" * ol
AN

HistoryListText Displayed

Solutions Fast Track
Frequently Asked Questions

Chapter 5 Interacting with Forms
Introduction
Using Standard HTML Forms
Accepting User Input
Handling Textual Input
Retrieving Sensitive Passwords
Making a Choice Using a Checkbox
Selecting from Several Items with
Radio Buttons
Storing State in Hidden Fields
Submitting Completed Forms
Starting with a Clean Slate
Selecting from Many Choices
Handling Large Amounts of Input Text
Tracking Widget Inventory Example
Processing Forms on the Server
Placing a Widget Order Example
Enhancing Forms for Clipper
Using the Timepicker Type
Using the Datepicker Type
Setting Delivery Date for Widget Orders Example
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 6 Optimizing WCAs for Palm OS
Devices
Introduction
Making Pages Useful on Both Desktop and
Palm Devices
Using the <SMALLSCREENIGNORE>
Tag
Making Unwired Widgets Pages for Both
Desktop and Palm Devices

104
106

107
108
108
110
112
114
116

121
124
126
127
128
132
134
137
143
145
146
148
150
153
154
156

157
158

158

159

160

Find Answers to Your
Questions About the
Palm.Net Proxy
_m =
Q: Where should proxy

server problems be
reported?

A Visit the Proxy Server
Feedback page at
http://oasis.palm.com/
dev/support/ask.cfm?p
age=38 and include
pertinent information,
such as the steps
required to produce
the problem, date and
time of the first
occurrence (including
time zone), and so on.

Q: What can | do to stay
abreast of the latest
developments in WCA
debugging
technology?

A: A good first step is to
join the Web Clipping
Announcement list and
Web Clipping Forum
using the forms at
www.palmos.com/dev/
tech/support/forums.

Starting with a Desktop-Oriented Page
Redesigning the Page for Both Desktop
and Handheld
Using Tables for Page Layout
Specifying History Text
Using the HistoryListText META Tag
Using Date and Time Variables with the
History Text
Using MAILTO Links to Send E-Mail
Using Other Mail Handlers with
Palm OS 4.0
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 7 Debugging Web Clipping
Applications

Introduction

Emulating Web Clipping by Using the Palm OS

Emulator
Getting a Copy of POSE
Obtaining Palm OS ROM Images

Downloading the ROMs from Palm’s

Web Site

Contents

162

167
175
184
184

185
187

189
190
190
192

195
196

196
197
199

199

Grabbing a ROM Image from a Palm OS

Device
Understanding the Palm.Net Proxy
Communicating between POSE/Devices
and the Proxy

Hashing Links

Converting Images

Securing Data Using Elliptic Curve
Cryptosystems

200
200

201
202
202

203

Talking to Development and Production

Servers
Communicating between the Proxy and
Your Web Server

203

205

xvii

xviii Contents

Caching 205
Secure Sockets Layer Encryption 205
Detecting Proxy Problems 206
Using Valid Development Proxy Servers
and HTTP Port Numbers 207
Having a Valid Security Certificate 208
Failing Due to Invalid HTML 208
Diagnosing Image Problems 209
Detecting Server Errors 210
Getting Multiple Web Server Hits 212
Understanding POSE Transaction Errors 213
. . Device Error Codes 213
IL?sei::;fg oSoeksisG::ns Proxy Server Error Codes 214
—_— = HTTP Error Codes 217
= Cookies let you store Miscellaneous Error Codes 217
data on the device Using Tools to Debug WCAs 218
that can be retrieved Summary 220
at a later time. Solutions Fast Track 221
= Cookies are supported Frequently Asked Questions 222

only in Web clipping

onPam0S4.0and Chapter 8 Identifying Users and Sessions 223
later devices.

. Introduction 224
" Although cookies can Maintaining State on the Web 224
be used to make the)) .
user’s life much easier, Using %DEVICEID to Uniquely Identify a
by storing preferences Device 225
or login information, Reasons to Avoid %DEVICEID 225
they can also be used)]
to secretly track which Using %DEVICEID in a PQA 227
sites a user visits. Formatting a Device Identifier 228
Building Device Identifiers on Mobitex
Devices 230
Building Device Identifiers on the Palm OS
Emulator 230
Building Device Identifiers with the Mobile
Internet Kit 230

Building Device Identifiers with the
OmniSky CDPD Modem 230

Use Enhanced
%LOCATION

_ =
Because position-aware
WCAs often need to
convert %ZIPCODE to
other position qualifiers
(State and County, for
example), a new Palm-
specific variable has been
created within Palm OS
4.0. Named %LOCATION,
it provides a robust
mechanism for obtaining
additional qualifiers for
the current base station.

Contents

Building Device Identifiers on the Kyocera
QCP-6035 Smartphone
Identifying Sessions Using URL Rewriting
Encoding a Session ID in a URL
Managing Sessions with PHP 4
Understanding PHP Syntax
Configuring PHP for URL Rewriting
Starting a Session
Saving System State in a Session
Using Automatic URL Rewriting
Adding Session IDs to Hyperlinks
and Forms
Palm.Net Proxy URL Hashing and
Session IDs
My Unwired Widgets Order Example
Identifying Sessions Using Cookies in
Palm OS 4.0
Sending Cookies from a Web Server
Including Cookies in a Web Browser Request
Using Cookies to Enhance Web Sites
Cookies versus URL Rewriting
Cookie Explorer Example
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9 Locating Mobile Users

Introduction

Finding a User’s Position with the Palm VII
Understanding %ZIPCODE Operation
Understanding %ZIPCODE Limitations
Understanding %ZIPCODE Syntax

Address Locator Example

Mapping ZIP Codes to Coordinates
Considering Available Data Sources
Extracting Coordinates

Determining the Closest Address

231
232
233
235
236
238
239
239
240

240

241
243

248
249
251
252
254
254
259
259
261

263
264
264
265
265
267
269
276
276
277
283

XX

Contents

Learn the Type
Parameters for the
Add Palm Data Plug-In

_T =

Type

Number Description

1

2

3

Add date book
entry

Add address
book entry
Add to-do list
entry

Add memo pad
entry

Add expense
record

Locating the Closest Widget Outlet Example

Using Enhanced %LOCATION Information in
Palm OS 4.0

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 10 Integrating Web Clipping
with Palm OS Applications

Introduction
Launching and Sublaunching Applications
Using SysUIAppSwitch to Launch a New
Program
Using SysAppLaunch to Call into Another
Program
Launching Nonapplication Databases
Calling Clipper from Palm OS Applications
Determining if Clipper Can Be Called
Preparing the URL Buffer
Launching Clipper to Handle Our URL
Returning from Clipper
Calling iMessenger from Palm OS Applications
Determining if iMessenger Can Be Called
Specifying a New E-Mail Message
Sublaunching iMessenger to Edit and Send
E-Mail
Returning from iMessenger
Unwired Widget Application About Box
Example
Calling Palm OS Applications from Web
Clipping Applications
Launching Applications Using palm URLs
Activating Helper Applications Using
palmcall URLs
Passing a Parameter Block
Specifying Parameters Using Forms
Unwired Widgets Sales Chart Example

285

296
299
299
302

303
304
305

305

306
307
308
309
310
311
312
315
317
317

319
320

321

323
325

325
326
327
328

Contents

Designing the Query String
Building a Test PQA
Parsing the Query String
Pulling Numbers from the
Parameter List
Extracting Strings from the
Parameter List
Parsing the Parameter List as a Whole
Drawing the Bar Chart
Cleaning Up Before Returning to Clipper
Testing the Plug-In without Clipper
Applying iKnapsack to Add PIM Data
Understanding iKnapsack’s Architecture
Using the iKnapsack User Interface
Setting Your Default Programs
Managing the iKnapsack Plug-Ins
Managing Your Web Clipping
Applications
Using the Add Palm Data Plug-In
Adding a Date Book Entry
Adding an Address Book Entry
Adding a To Do List Entry
Adding a Memo Pad Entry
Adding an Expense Entry
Adding PIM Data for Unwired Widgets Example
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 11 Using the Internet Library
in Palm OS Applications
Introduction
Choosing Your Language
History of INetLib and NetLib
Why Use HTTP?
A Hello World Program
Running the Hello World Program

329
330
331

332

333
335
338
342
343
346
346
346
347
348

350
351
352
354
355
356
356
359
364
364
366

369

370
370
371
372
373
378

XXi

xxii Contents

Anatomy of the Hello World Program
Finding and Initializing Internet Library
Checking for the Internet Feature
Finding the Internet Library
Initializing the Internet Library

WARNING Creating an INetLib Connection
If you forget to include Choosing a Conversion Algorithm
“https://" as part of the Five-Bit CML Conversion
resNameP, you may find (ctpConvCML)
that your HTTPS Eicht-Bi .

, ight-Bit CML Conversion

transaction was .
degraded to HTTP even (ctpConvCML8Bir)
if you specified the LZ77 Compression (ctpConvNonelLZ77)
;’;Zf;lingTTPs No Conversion (ctpConvNone)
INetLibSockOpen(). Setting Conversion Algorithms for
Unfortunately, INetLib the Connection

does not warn you

war Maximum Response Size
about this mistake.

Moving to an Event-Driven Model
A Quick Introduction to the Palm OS
Event Model
INetLib Events
URLFetch: An Improvement on Hello World
Understanding the URLFetch Example
Palm OS Device Databases
User Interface: Lists and Fields
Browsing the Documentation
Accessing a Server-Side Application
How Server-Side Applications Difter from
Web Clipping
Using POST Operations
Opening the Socket
Associating the Socket with an HTTP
Request
Preparing HT'TP Data
Sending Request Data
Choosing between GET and POST
Passing Data via GET

379
381
382
383
384
386
386

386

387
387
388

388
389
390

390
392
393
394
394
394
395
395

395
396
396

397
398
401
402
404

Contents XXiii

URL Encoding and the Palm.Net Proxy 405
Receiving Responses from the Server 407
Waiting for INetLib Events 407
Checking the Socket Status 409
Reading Data from the Socket 409
Handling Connection Errors 410
Interpreting Return Values from Palm OS
Routines 410
Handling Server Errors 410
Authenticating the User and Device 416
Overview of Cookies, Sessions, and User
Authentication 416
Using Cookies for Session Management
(Palm OS 4.0) 418
Client-Side Code 420
Perl/CGI Example 420
Using the Device ID for Session
Management 424
Retrieving the Device ID 424
Adding Validation Code to Device ID 425
Providing Configuration Aliases 429
Displaying Signal Strength 430
Optimizing Transport 432
Data Format 432
Proprietary Format 432
XML 432
Transport Format 434
No Compression 434
Using the Proxy’s Built-In LZ77
Compression 434
End-to-End Compressed Data 437
An Unwired Widgets Mail Reader Example 438
Requirements for UWMail 438
Design of UWMail 439

A Brief Discussion on Mail Format,
Storage, IMAP4, and POP3 439

XXiv Contents

Server Architecture 442
Client Architecture 446
Enhancing UWMail 454
Securing Data 455
Obscurity Does Not Constitute Security 455
Securing Server Access 455
Securing HTTP Transactions 456
Testing for Proxy Issues and Known Bugs 457
OmniSky Servers 457
Unwanted Characters in Server

Response 457

The Omnisky INetLib Implementation
and ctpWireless 459
Summary 461
Solutions Fast Track 462
Frequently Asked Questions 467

Appendix Palm OS Web Applications
Fast Track 469

Index 489

Foreword

In looking back upon my years in the handheld industry, I keep reminding myself of
how far we’ve come. I fondly recall purchasing my first handheld in September,
1993. A marvel to carry and use, the device unchained me from my bulky laptop and
quickly became my primary mobile companion, holding vast amounts of personal
information that I referred to daily.

At a local user group meeting in 1996, I used for the first time the Pilot 1000, a
new pocket-sized handheld from Palm Computing. This product struck a resonant
chord in me for its usefulness and portability. It made its mark in the marketplace
too, reaching one million units sold faster than any prior computer hardware
product. Five years later, over 13 million people worldwide have adopted Palm orga-
nizers as indispensable tools for organizing and managing their lives. Palm handhelds
owe their success to a refined focus on simplicity, ease of use, portability, and the user.
Often referred to as the Zen of Palm, this overarching design philosophy is what dis-
tinguishes Palm from many of its competitors.

Initially, Palm handhelds functioned admirably as satellites to a user’s desktop com-
puter. These devices were able to connect to the Internet through external modems,
but the resulting solution, unfortunately, was often too bulky and inconvenient for
long-term use. In 1999, Palm signaled the intersection of handhelds and the wireless
Web in releasing the Palm VII organizer to the U.S. market. What started out as a
device to organize one’s life had now become something that could access the larger
world of information on the Internet while still remaining eminently pocketable.

Many of us were introduced to the Internet in the early 1990s. During those
years, the most common form of connecting to the Net was through modems, which
typically ran at speeds ranging from 9.6 to 28.8 kilobits per second (kbps).
Information was conveyed primarily through text, with a few images sprinkled

XXV

XXVi Foreword

throughout to add some color to the Web pages. Today the Internet has become
ubiquitous, and we continually access complex, image-laden pages at speeds many
times faster than previously possible. The voracious bandwidth appetites of Flash
multimedia presentations, QuickTime movies, and streaming MP3s would choke
yesterday’s Net connections.

The past is present, however, with the wireless Web. Internet-enabled mobile
devices, such as the Palm VII, connect at speeds closer to the 9.6 kbps modem we
have long since retired, a far cry from the LAN or DSL connections we use in our
workplaces and homes. It is also clear that much of the content on the Internet today
has not been designed for this segment of Net devices. A typical wireless handheld
does not have a speedy data connection with which to download hundreds of kilo-
bytes of data in seconds, nor does it have a high-resolution screen capable of ade-
quately rendering such information. As a result, developing applications for the
wireless Web demands a difterent attitude and approach than developing for the tra-
ditional Web; it requires careful thought, planning, and new models for data visualiza-
tion. After all, no one wants to look at a small display that is littered with
advertisements in place of actual information! The wireless Web also forces developers
to optimize their content so that it takes up the least amount of bandwidth.

Lest we become disenchanted with the prospect of wireless development with
such restrictions, remember that a new class of functionality is enabled by mobile
Internet devices. Unlike desktop or even laptop computers, wireless handhelds can be
carried by their owners for 10 to 12 hours a day. Exciting opportunities, such as loca-
tion-based services and messaging are only possible when the Internet is truly every-
where you go.

Much like the handheld industry was in 1993, the wireless Internet still in its
infancy. As handhelds had before them, wireless devices will continue to gain in func-
tionality and popularity over time. More powerful handhelds with high-resolution
screens and fast Net connections loom on the industry’s horizon. At first glance, it
might be easy to dismiss the importance of a mobile Web design philosophy in light
of such upcoming products. The dynamics of mobile computing, however, are very
different from those of desktop computing, and they call for such a philosophy to
stay at the forefront of the developer’s mind. In a mobile environment, speed and
access to relevant information will always be more important than fancy, time-
consuming presentation. The design philosophy behind Palm handhelds—a strong
focus on the user, ease of use and relevance—serve as excellent guiding principles for
developing wireless, mobile applications. It is on this note that we visit the subject of

Www.syngress.com

Foreword XXVii

this book. The ability to harness the power of the Internet with the simplicity of the
Palm is a key skill you will learn from reading Palm OS Web Application Developers

Guide: Including PQA and Web Clipping.

Our Audience

There is a wealth of resources for learning Web development in print and online.
There is a dearth, however, of quality guides detailing the extension of the Web to
mobile devices. This book fills that gap and has been written for anybody who 1s
interested in developing Web applications for the Palm OS. For newcomers, welcome
to the exciting world of mobile Web development! With clear and concise examples,
you will develop a great design foundation for your future Web development pro-
jects. If you are a professional Web developer whose company wants to extend its
Web presence to the wireless community, get ready to learn how to translate and
optimize your Web sites for viewing on Palm devices. Finally, if you are a developer
within the Palm Economy, you will learn how to transform your device-centric Palm
apps into Web-enabled and Web-centric apps. This book is unique in its detailed cov-
erage of Palm’s Internet Library (INetLib), which is used to develop native C/C++
Palm OS applications that access the Internet. Whatever your reason, Palm OS Web
Application Developers Guide: Including PQA and Web Clipping will serve as your guide
in demystifying the Web design process on the Palm.

The Contents

In short, this book details how to create Web applications for the Palm OS using the
Web clipping technology that is found on many Palm Powered products, such as the
Palm VIIx wireless handheld, the Palm m100 with the Mobile Internet Kit, and the
Kyocera QCP 6035 Smartphone. The book can be separated into three sections. The
first two chapters are introductory and provide a glimpse into the philosophy and
technology behind Web clipping:

» Chapter 1, Introducing Web Clipping, introduces you to the concept of Web
clipping and the thinking behind its development.

» Chapter 2, Building a Simple Web Clipping Application, takes you step-by-step
in creating your first Web clipping application.

Www.syngress.com

XXViii

Foreword

Chapters 3 through 9 form the foundation for learning how to develop efficient

and compelling Palm-optimized Web applications. These chapters delve deeply into

the development process on both the device and server.

Chapter 3, Building WCAs Using HTML, outlines the HTML 3.2 subset that
Web clipping supports, with detailed information and diagrams on how such
content is rendered on Palm devices.

Chapter 4, Using Images in Web Clipping, shows you how to make maximum
use of images to enhance your Web clipping applications.

Chapter 5, Interacting with Forms, describes how to capture user input on the
device for delivery to and processing by your server-based scripts.

Chapter 6, Optimizing WCAs for the Palm, introduces key techniques for
making your Web content look great on Palm handhelds.

Chapter 7, Debugging Web Clipping Applications, teaches you important skills
for ensuring your Web clipping applications are ready for prime time.

Chapter 8, Identifying Users and Sessions, explains how you can maintain state
within your applications.

Chapter 9, Locating Mobile Users, shows you how to use the unique features
of Web clipping to create location-based services for your handheld Web
applications.

Developers looking to better integrate their Web applications with the built-in
and third-party applications on the Palm handheld should be excited to read the final
two chapters, which cover the following advanced topics:

Chapter 10, Integrating Web Clipping with Palm OS Applications, outlines how
your Web clipping applications can integrate and interact with other Palm
OS applications on your device.

Chapter 11, Using the Internet Library with Palm OS Applications, details
how to add Internet capabilities to your existing C/C++ based Palm OS
applications.

And lastly, the Fast Track Appendix which summarizes the key facts and concepts

for optimizing your Web applications.
It is important to stress here that the techniques and skills that you will gain from

this guide will prove useful to your development efforts for mobile devices beyond

Www.syngress.com

Foreword XXiX

those powered by the Palm OS and Web clipping. The future paints a landscape of a
handheld and wireless marketplace where Palm is an important player among many
others who are delivering mobile Internet solutions. The design issues that you will
face while developing applications for the Palm, such as display size, low available
memory, and bandwidth constraints, are the same as those faced by all other mobile,
connected devices. The knowledge, skill, and ability to address these issues will prove
invaluable in your future mobile projects.

We have certainly come a long way since the first consumer handhelds rolled
off the manufacturing line in the early 1990s. We are just at the beginning, however,
of leveraging the power of the Internet with the simplicity and portability of mobile
devices. It’s up to us to define and create the wireless Web. Let’s get to work!

—Adam Tow,
adam@tow.com

Www.syngress.com

Chapter 1

Introducing

Web Clipping

Solutions in this chapter:

= What Is Web Clipping?

» Loading Web Clipping Applications on
Your Device

» Loading Web Clipping Applications on the
- Palm OS Emulator

= Using Clipper
= Using Clipper on Palm OS Devices

» Using Clipper to Get Access to Web
Information

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 ¢ Introducing Web Clipping

Introduction

In October 1999, Palm, Inc. entered the wireless Internet market with the intro-
duction of the Palm VII organizer. Although the Palm VII wasn’t the first portable
device to feature built-in wireless networking, it was the first based on the suc-
cessful Palm OS operating system, and it had an irresistible combination of size,
battery life, throughput, and coverage area.

In designing the Palm VII, Palm, Inc. had several advantages over its competi-
tors. First, it was based on an established operating system with a variety of appli-
cations already available. The Palm VII would be useful beyond its wireless
capabilities. Second, it leveraged an existing wireless network in BellSouth
Wireless Data’s Mobitex system. Because of its wide deployment, users discovered
that they could use it all across the nation. Finally, Palm, Inc. created a Web con-
tent delivery technology called Web clipping. Based on Hypertext Markup
Language (HTML), Web clipping content is optimized for Palm OS devices and
the network capacity of the Mobitex network.

This chapter introduces the installation and features of Web clipping applica-
tions and the Clipper browser application. In addition, an outline is provided of
the capacity and availability of the Mobitex network on Palm VII devices and the
capacity and availability of other networks on other Palm OS—based wireless
devices.

What Is Web Clipping?

Web clipping is the name Palm, Inc. created for their Web content delivery system
designed for their line of Palm OS devices. Using the word Web in the title is
obvious: HTML is the standard language to define content on the World Wide
Web. Clipping 1s based oft the name of the content browser application for Palm
OS devices: Clipper.

Ultimately, Palm, Inc. wanted to deliver the complete World Wide Web on
wireless devices with the same appearance, operation, and performance as desktop
computers. However, they faced major design issues to make that a reality.

First, the screen size of Palm OS devices is significantly smaller than the size
of a desktop computer screen. The screen size of Palm OS devices to date 1s 160
pixels wide (153 pixels plus the scroll bar) by 160 pixels high on a 2.5 inch
square screen. Professional Web pages are typically designed to accommodate a
browser window size of about 530 pixels wide by 400 pixels high on a 14-inch

Www.syngress.com

Introducing Web Clipping * Chapter 1

diagonal screen. Full-size Web pages will not translate well to the small screen on
portable devices.

Compare the opening page of the Syngress Publishing Web site in the 640x480
pixel browser window in Figure 1.1, and the 160x160 pixel browser window on
the Palm VII shown in Figure 1.2. Because of the limited size of the device, the
page does not come close to displaying properly on the Palm OS device.

Figure 1.1 Sample Web Page on a Desktop Browser

o ' m“ L8 Lerlipphben MypzsapoH Deipeard b apke -
& -9 2 8232 R
E.‘ﬂ—h]la;.‘.‘-u-nrnmr:.-'m j e | Lk 2] Bt cd *

Bearch Byngress

SYNGRESS e fners

IT BOOKS AND CERTIFICATION SOFTWARE
= " L]

Home ' Windows | Osco | Cataleg | Felg | Deme | Hembars | Specisls |

figril MCEE PO00 Gaificatioe
Rinwy Tt Sainl Touls

Catakg Check out ExamSim
| sofvward for the MOSE
Liman 2500 Gecaris on D

-

ireis e Morw Openl

e B E T | E E BTG F

R T e e T e |
= . miahe a8 Mocach Certifued Brofan ne

L '

wral Srerabing
T |mnmmmmcmmmm~u =
) BRI

Figure 1.2 Same Sample Web Page on a Palm OS Device

WwWWw.syngress.com

Chapter 1 ¢ Introducing Web Clipping

Second, the speed and expense of wireless networks does not come close to
matching today’s wired networks. In the year 2001, the maximum performance of
the fastest wireless network, Cellular Digital Packet Data (CDPD), was 19.2Kbps,
less than half the speed of most modem connections to the Internet. The Palm
VII, which uses the Mobitex network designed for two-way paging, runs at
9.6Kbps. Analog modems seem like high performance automobiles in comparison
with speeds of 56Kbps. T1, cable, and Digital Subscriber Line (DSL) networks
run above 1Gbps. People who believe accessing the Web on an analog modem 1is
slow will find that the Web delivered via a wireless network is excruciating.

Using the Syngress Web site again as an example, the number of bytes in the
page source and images total about 197 kilobytes. A T1/DSL/cable connection
presents this page in three to four seconds. A 56Kbps modem presents the page in
about 30 seconds. At maximum speed on the Mobitex network of 9.6Kbps, a
Palm VII presents this page in about three to four minutes.

Third, Palm OS devices have performance and memory issues for supporting
every Web technology. The Palm OS device’s Motorola 68000—based Dragonball
processor and 2 to 8MB of memory provide adequate performance for the per-
sonal information management applications for which it was originally designed.
However, providing full HTML support on a device that already has size and net-
work limitations i1s beyond its capacity.

Due to these limitations, Palm, Inc. has created Web clipping to deliver as
much of the Web experience as possible, redefine and package some components
to perform better on Palm OS devices, and discard the rest. The biggest differ-
ence between Web clipping applications and standard World Wide Web applica-
tions is that Web clipping applications are started by launching an application
database file installed by the user onto the device instead of typing a URL into a
Web browser. A Web clipping database contains static HTML pages, document
graphics and instructions for retrieving information from external servers.

By packaging these components into a single database file, Palm, Inc. signifi-
cantly reduced the data transfer between a device and external server to only the
dynamic components such as account numbers, store directions, or search results.
The HTML and graphics for the page where a user enters her account number,
ZIP Code, or search query is already on the device.

In addition to saving transfer time, Web clipping applications appear as icons
in the Application Launcher alongside the Address Book, MemoPad, and other
Palm OS applications. Because a user has learned how to launch a standard appli-
cation from the Application Launcher, the user already knows how to launch a
Web clipping application as well.

Www.syngress.com

Introducing Web Clipping * Chapter 1

The primary disadvantage to Web clipping technology is that the static com-
ponents in an application are not updated unless the user downloads and installs
updates to the application. Content of a standard Web application is usually
downloaded each time the application is referenced. Web clipping application
developers should be prepared to support all revisions of an application, because
developers cannot guarantee that the user base will diligently update the device-
resident portions of the application on a timely basis.

Note that the screen size, network, and memory limitations of Palm OS
devices are common to other similar devices, such as Microsoft’s Pocket PC,
Blackberry’s RIM pagers, and Web-enabled phones. Palm, Inc. appears to have
found the middle ground for delivering the Web experience.

Loading Web Clipping
Applications on Your Device

New Web clipping applications can be added to Palm VII devices in the same
fashion that Palm OS applications are installed. Web clipping applications can be
added to a Palm VII by using the Install Tool application on a desktop computer
and performing a HotSync operation with the device.

To learn how to install a Web clipping application with the Install Tool, we
will add the Starbuck’s Coftee Store Locator application to a Palm VII. In the
future, you can rely on your Palm VII to lead you to hot fresh coftee.

Running the Install Tool

You can start the Install Tool by launching the Install Tool application or by
launching the Web clipping application file to be installed. In this example, we
launch the Install Tool application itself:

1. From the Start menu, select the Install Tool application from the
Palm Desktop program group. The Install Tool dialog box appears, as
shown in Figure 1.3.

2. Click the Add button. When the file selector dialog box appears, insert
the companion CD from this book into the CD-ROM drive of your
computer. Find the Starbucks.PQA file located in the Applications
directory of the CD and click the Open button.

3. After the Starbucks application has been added, click Done to close the
install tool.

WwWWw.syngress.com

6 Chapter 1 ¢ Introducing Web Clipping

Figure 1.3 The Install Tool Dialog Box

T —
1 1 bk sl we g e S B e
i oy i H d St it gl

Yl Hare | FiGiem |
: [= =y '

A

T

s

e e e sl e g Pk o
Hrrre e Era

st b V. i e VSO0 Wi
Irasicle oar C:\PAL M Fakcied, 0 Kalcher b -3

E [

FeE

Performing a HotSync Operation on Your Device

The Starbucks application has been scheduled for installation on your device. To
finish the installation, perform a HotSync operation as follows:

1. Place your Palm VII into its cradle.

2. Push the HotSync button on the cradle or run the HotSync
application on the Palm VII.

After the HotSync operation is complete, find the Starbucks application in
the Application Launcher of the Palm VII, as shown in Figure 1.4.

Figure 1.4 Starbucks Application Is Now Visible in the Application Launcher

Www.syngress.com

Introducing Web Clipping * Chapter 1

Developing & Deploying...

Beaming PQA Applications

In addition to installing Web clipping applications via a HotSync opera-
tion from your computer, Web clipping applications can be beamed via
the infrared port to other Palm OS devices that support Web clipping.

To beam a Web clipping application to another device, bring up the
Application Launcher, tap the Menu icon and tap the Beam menu
option. Find and tap the name of the WCA in the list, and tap the Beam
button to beam the application to another device. Enable reception of
IR beams in the general panel of the Preferences application of the
receiving device.

Loading Web Clipping Applications
on the Palm OS Emulator

If you do not own one of the wireless Palm OS devices or simply want to eval-
uate this technology, an application called the Palm OS Emulator (POSE) simu-
lates the operation of an actual Palm OS device on your desktop computer. The
Palm OS Emulator is available for Microsoft Windows 95/98/Me/NT /2000,
Apple Macintosh, and various flavors of Unix. The emulator is available at
www.palmos.com/dev/tech/tools/emulator and requires a ROM image.

After downloading and unpacking the POSE archive, you will notice that
POSE does not contain ROM i1mage files. The ROM image files are copies of the
Palm OS that permanently reside on a device. ROM 1mage files can be obtained
by transferring the ROM image from an actual device or by joining the Palm
Alliance Program and downloading ROM images from the Palm OS Web site.

To transfer a ROM image from a device, refer to the section “Transferring a
ROM Image From a Handheld” in the document entitled “Using POSE” sup-
plied with the Palm OS Emulator. You will need an actual Palm VII, VIIx, m500,
or m505 device for downloading the ROM.

To join the Palm Alliance Program and download ROM image files, visit
www.palmos.com/alliance. Signup for the Alliance Program is free. After you
have signed up and agreed to the terms of the agreement, find the link for the
ROM Image Clickwrap Area and then the Special Downloads area for the Palm
VII Family ROMs. At a minimum, download one ROM image file for the Palm

WwWWw.syngress.com

Chapter 1 ¢ Introducing Web Clipping

VII family (palmos32-en-ez.rom) and the Palm VIIx family (palmos35-en-ez-
8mb-wc).You should also get the Palm m505 ROM images if you want to test
on the Palm OS 4.0 version of Web Clippings. We recommend creating a direc-
tory called ROMS underneath the Palm OS Emulator directory and copying
these image files into the ROMS directory.

After you have started the Palm OS Emulator for the first time, the startup
dialog box should appear, as shown in Figure 1.5. Choose your ROM file, make
sure that the device selected is correct, pick the appropriate memory size, and
click OK to start the emulator.

Figure 1.5 Specifying Session Properties for a New Session in the
Palm OS Emulator

Now, the emulator should appear on-screen running the emulated Palm OS
session. Before starting a Web clipping application, confirm the following session
settings:

1. From the Application Launcher screen, tap the Prefs application, tap the
category in the upper-right corner, and tap Wireless (labeled Web
Clipping on Palm OS 4.0). With POSE version 3.1 and later, this set-
ting should be automatically updated to point to the address of the
Palm.Net proxy server. If you encounter problems later with not being
able to reach Web sites, check Palm’s Web Clipping pages and make sure
that this panel is pointing to the correct proxy IP address.

2. From the POSE window, right-click and select Settings from the pop-
up menu, select Properties from the next pop-up menu, and confirm
that the Redirect NetLib calls to host TCP/IP is checked. When
this option is checked, all Transmission Control Protocol/Internet
Protocol (TCP/IP) requests by the device are forwarded to the com-
puter’s Internet connection. When this option is not checked, TCP/IP
requests are sent directly to the device hardware that doesn’t exist on the
emulator.

Www.syngress.com

Introducing Web Clipping * Chapter 1

To learn how to install a new Web clipping application on the Palm OS
Emulator, we will add the Starbucks Coftee Store Locator application.

Installing a Web Clipping
Application on the Emulator

You can use two diftferent methods to install a Web clipping application on the
Palm OS Emulator:

» Right-click the emulator application. From the pop-up menu, select the
Install Application/Database menu option, select Other, and select
the Starbucks.PQA file from the file browser.

» The Palm OS Emulator supports drag-and-drop operations. Simply drag
and drop the Starbucks.PQA file onto the Palm OS Emulator window.

After the HotSync operation is complete, find the Starbucks application in
the Application Launcher of the Palm VII. For either method of installation, you
should not be in the launcher application when you install your Web clipping
application. Due to how Palm OS devices normally handle program installation,
the Launcher recognizes only changes in the list of available programs when it is
started. If you install an application while it is active, it will not show the new
icon, and you may have to reset the emulator session to get it to recognize the
new program.

Using Clipper

The Clipper Web browser displays the text and graphics in Web clipping applica-
tions and performs the wireless communications to communicate over-the-air to
Web servers on the Internet. Clipper is a permanent part of the Palm OS on
Palm VII, VIIx, m500, and m505 devices and is installed separately for the
OmniSky service or the Palm Mobile Internet Kit.

The Clipper application itself does not appear as an icon in the Application
Launcher. Clipper is launched when a Web clipping application is selected from
the Application Launcher. We outline the components of the Clipper application
by using the Starbucks application installed in the previous section.

WwWWw.syngress.com

10

Chapter 1 ¢ Introducing Web Clipping

Navigating within Clipper

Tap on the Starbucks application icon in the Application Launcher to find a
Starbucks located nearby. A window appears like the one shown in Figure 1.6.

Figure 1.6 The Starbucks Coffee Store Locator Window

The opening page appears immediately on the device without lifting the
antenna. Remember that a Web clipping application is a Palm OS database that
typically contains the static HTML pages and graphics for the application. In the
Starbucks application, this opening document and its images are static and are
stored within the Starbucks Web clipping application database.

Aside from this, many components of this page map to components of
desktop Web browsers. The Type and State pop-up triggers mirror the operation
of combo boxes in a desktop Web browser. The street, city, and ZIP fields provide
a place for textual or numeric data entry. The Find, Clear, and Auto-Find buttons
issue the appropriate commands. The About, Help, and Legal links redirect the
application to show a difterent Web page.

In this application, tapping Find requires wireless communication with a Web
server to determine Starbucks locations near to your specified location, to build
an HTML page containing the addresses of those locations, and to send the
HTML to the device.

Notice that the Find button contains a small “over-the-air” icon. This icon
indicates that a wireless communication is required to complete the request. In
addition to the over-the-air icon, you may sometimes see a secure over-the-air
icon with a key to indicate Secure Hypertext Transfer Protocol (HTTPS)

Www.syngress.com

Introducing Web Clipping * Chapter 1

communication. These icons can be found in form buttons or at the end of the
text of a hyperlink and are shown in Figure 1.7.

Figure 1.7 Examples of Nonsecure HTTP and Secure HTTP Icons

(Find®) [Submit¥s)

Enter an address or a ZIP Code into the appropriate fields. Keep an eye on
the title bar and tap Find. On a Palm VII or VIIx device, you must raise the
antenna to make a wireless connection. The device will remind you to raise the
antenna if you try with the antenna down.

During the wireless communication, the title bar caption to the left changes
to Connecting, a small pulsating circle in the center representing wireless activity
and the signal strength indicator in the upper-right corner all indicate that wire-
less communication is in progress. Once complete, the Starbucks locations and
their addresses are displayed as shown in Figure 1.8.

Figure 1.8 Starbucks Store Locator Addresses

After deciding which Starbucks to visit, notice the right arrow and History
pop-up trigger in the title bar. Tapping the right arrow displays the previous page.

Viewing the Clipper History

The History pop-up trigger contains a list of dynamically created pages that were
wirelessly downloaded to the device. Tap History, find the entry containing the
location list built earlier, and tap it. The location and address list reappears.

WwWWw.syngress.com

1

12

Chapter 1 ¢ Introducing Web Clipping

Notice that the opening address entry page does not appear in the History.
Dynamically created pages that were wirelessly downloaded to the device are
stored in the History. Static pages that reside in the Web clipping application itself
are not held in a dynamic cache, but they can be accessed by using the Back
button.

Using Clipper on Palm OS Devices

Although the Palm VII was the first device to merge Web applications on a Palm
OS-based device, there are now several devices and solutions on multiple wireless
networks for using Web clipping applications.

Using Clipper with Palm VII on Mobitex

The majority of Web clipping applications are designed with the Palm VII as the
target device and the Palm OS Clipper application as the browser.

Palm VII and VIIx devices communicate via the Mobitex wireless network
from Cingular Wireless. Mobitex coverage is widely available around most major
urban areas and airports. Although Mobitex network coverage is widely available,
expect a transfer rate of only about 2Kbps, out of a theoretical 9.6Kbps.

Using Clipper with Omnisky

OmniSky provides wireless network access and modems that connect to the Palm
V, Palm Vx, and the entire line of HandSpring Visors.

OmniSky-enabled devices communicate via the Cellular Digital Packet Data
(CDPD) network. This network leverages the original cellular data network to
provide data speeds of up to 19.2Kbps. However, the CDPD access is not as
widely available in the United States as the Mobitex network.

Using Clipper with the Palm Mobile Internet Kit

The Palm Mobile Internet Kit (MIK) from Palm, Inc. is a software solution that
allows you to use your Palm OS handheld in combination with a mobile phone
or modem to wirelessly access the Internet. It works by using the built-in data
capability of your mobile phone or modem to establish a connection to the
Internet for your Palm OS handheld. The Palm MIK works on any Palm OS
device that runs Palm OS 3.5 or later, including the Palm m100, IlIxe, and Vx
devices. The MIK comes with the Palm OS 3.5 upgrade to enable older devices.

Www.syngress.com

Introducing Web Clipping * Chapter 1

The Palm m105 comes bundled with the MIK, whereas the new Palm m500 and
m505 handhelds come with the Palm OS 4.0 version of the MIK built-in.

The performance of the MIK depends upon the performance of the mobile
phone or modem. Using it with a GSM cell phone limits you to 9.6Kbps,
whereas CDMA-based PCS phones have a native data rate of 14.4Kbps. With a
wired modem, speeds vary from 14.4Kbps to 56Kbps.

Using Clipper to Get
Access to Web Information

With the knowledge of installing and using Web clipping applications, sites on
the Internet are available to find additional Web clipping applications to add to
your Palm OS device.

The best place to start for finding Web clipping applications 1s from Palm, Inc.
itself. Palm.Net has an ever-expanding library of applications available for down-
load. Additionally, Palm.Net employees evaluate and rate Web clipping applications
submitted to the site. The applications that receive a five-star rating comply with
the standards Palm, Inc. has established for good Web clipping applications.

We have scanned the Palm.Net Web Clipping library and listed some of the
applications we find useful. However, after you’ve looked at our selections, feel
free to browse the Palm.Net library at http://wireless.palm.net/apps and find
your own favorites.

» Personal ThinAir e-mail client www.thinairapps.com
» UPS package tracking www.ups.com
» Real time traffic information www.traffictouch.com

» Price/product comparisons www.barpoint.com

In the next chapter, we create our first Web clipping application.

NoTE

This book contains numerous Web clipping application development
techniques and tricks to help make the application you develop a suc-
cess. However, another way to get a feel for good Web clipping applica-
tion development is to download, install, and use Web clipping
applications. By using and evaluating these applications, you will quickly
learn what works and does not work.

WwWWw.syngress.com

13

14

o

Www.syngress.com

Chapter 1 ¢ Introducing Web Clipping

Summary

When presented the realities of slow wireless networks and limited screen and
processor capabilities in handheld devices, Palm, Inc. created Web clipping tech-
nology to provide the best World Wide Web experience on wireless-capable Palm
OS devices. By loading static content and images of a Web application directly on
the device, the application accesses the wireless network to retrieve dynamic parts
of an application. Title screens, company logos, and data entry forms that rarely
change are available immediately from the device. Wireless communication is lim-
ited to the remote information retrieval to improve the application experience.

Static portions of a Web clipping application are installed onto a Palm OS
device using the Install Tool. Web clipping applications appear in the Application
Launcher alongside standard Palm OS applications. From a user’s point of view,
Web clipping applications are not that much different than the Address Book,
Date Book, or Expense applications.

Web clipping technology is now available for a wide variety of Palm OS
devices. The Palm VII family of devices has wireless capabilities built in. The Palm
V family of devices and the entire Handspring line of Visor devices can use Web
clipping applications through a wide variety of wireless modems. Finally, the Palm
III series,V series, m100, and m105 modems can send and receive wireless data via
an infrared port to the infrared port of a capable cell phone with the Palm MIK.

Solutions Fast Track

What Is Web Clipping?

M Web clipping is a technology created by Palm, Inc. for delivering Web
content on its line of Palm OS devices.

M Web clipping is a subset of the HTML specification. The specification
keeps elements from standard HTML that translates well to its devices,
modifies elements to improve its delivery on its devices, and trims ele-
ments that do not translate well to its devices.

M Static elements of an application, such as HTML documents and
graphics, are combined into a database that is loaded onto the device.
This database also contains the programming for contacting servers to
build and deliver dynamically created content.

Introducing Web Clipping * Chapter 1

Loading Web Clipping Applications on Your Device

M Use the Palm Install Tool to prepare a Web clipping application to be
installed onto a device in the same manner that a standard Palm OS
application is installed onto a device.

M Perform a HotSync operation to install the application.

Loading Web Clipping Applications
on the Palm OS Emulator

M If you do not own one of the wireless Palm OS devices or simply want
to evaluate this technology, an application called the Palm OS Emulator
(POSE) simulates the operation of an actual Palm OS device on your
desktop computer.

Using Clipper

M The Clipper browser is launched when a Web clipping application is
selected from the Application Launcher.

M The History stores pages dynamically built from a Web server. Static
pages are not listed because they are already stored in the Web clipping
application on the device.

Using Clipper on Palm OS Devices

M The Clipper browser is part of the permanent software of the Palm VII
and VIIx devices. Clipper can be installed as an add-on to the m100,
m105, I1I, I1Ix, IIIxe, IIlc, or V series devices.

M The Palm VII and VIIx use the Mobitex wireless network to communi-
cate to the Internet. The OmniSky service provides a wireless modem
that uses the CDPD network to communicate to the Internet. The

Mobitex network is more widely available than CDPD, but the CDPD
network is much faster than the Mobitex network.

15

16 Chapter 1 ¢ Introducing Web Clipping

Using Clipper to Get Access to Web Information

M Numerous Web clipping applications are available for download from
Palm.Net and other file databases.

M You can use Web clipping applications to communicate with people,
access the enterprise, manage finances, follow the news, travel the world,
shop online, and refer to information.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Do I need to purchase a Palm VII/VIIx, OmniSky wireless modem, or Palm
MIK to develop Web clipping applications?

A: No.With the Palm OS Emulator, a Web clipping application can be com-
pletely developed and tested from your desktop computer. However, you
should eventually test the applications on a real device for debugging and
improving the real-time experience.

Q: Is there an appreciable differencesbetween the Palm VII/VIIx, OmniSky, and
Palm MIK?

A: Aside from the differing speeds of the wireless.networks used, no. The same
i F version of Clipper exists on all three types of solutions, and the end-user’s

experience is the same.

Q: How long does it take to develop a Web clipping application?

A: If you’re using an existing Web application as a model, we have heard
numerous stories of a single person taking a portion of the existing Web
application functionality and creating a working prototype in a weekend. In
these situations, management can easily determine the return on investment.
If youre not using an existing application as a model, creating the full Web

solution before creating the Web clipping solution may be a better idea.

Www.syngress.com

Chapter 2

Building a Simple

Web Clipping
Application

Solutions in this chapter:

= Writing Simple Web Pages

= Running the Web Clipping
Application Builder

- Unwired Widgets Product List Example

M Summary
M Solutions Fast Track

M Frequently Asked Questions

17

18

Chapter 2 « Building a Simple Web Clipping Application

Introduction

If you have developed a standard Web application, the learning curve for devel-
oping Web clipping applications is short. The main difference between developing
Web clipping applications and standard Web applications is that some parts of
your site get stored locally on the device, whereas other parts of it stay on the
Web server to be requested later. By installing the nonchanging parts of the
application on the device, the wireless network transfer time is significantly
reduced. By comparison, standard Web applications generally retrieve both static
and dynamic components via the wired network.

To build a Web clipping application (WCA), Palm, Inc. has provided a utility
called the Web Clipping Application Builder (WCA Builder). The WCA Builder
parses and compresses static Hypertext Markup Language (HTML) and graphics
into a format readable by Clipper, Palm Incs limited Web browser.

This chapter shows you how to use the WCA Builder by building a “Hello,
World!” example. In addition, we compare the differences between the 1.0 and
1.5 Versions of this utility. Finally, we step through the construction of a Web clip-
ping application for the product list of the fictional company Unwired Widgets.

Writing Simple Web Pages

An introduction to a programming language isn’t complete without the tradi-
tional “Hello, World!” example. The following is an HTML implementation of
“Hello, World!”, which is on the CD as the “hello world build 1” example.

<ht ml >

<head>
<title>Hello, World!</ title>

</ head>
<body>
Hel l o, World!

</ body>

</htnm >

Www.syngress.com

| i Y
“'?!II\

Building a Simple Web Clipping Application * Chapter 2

This example serves as a good point of reference for a refresher course on
HTML:

» HTML documents are comprised of actual text to be displayed and tags
that describe page elements or formatting changes. HTML tags are
defined by the less than (<) and greater than (>) symbols. Examples of
HTML tags in the document list above are <HTML>, <HEAD>, and
<TITLE>.

» The text between the <HTML> and </HTML> tags identify the
layout and design of the document in the browser window.

» The <HEAD> section provides a place to identify the title of the page
and define META tags that define characteristics about the page.

» The <BODY> section provides a place to put the content of the page
to be displayed in the browser window.

To start, create a temporary directory named Hello, type the HTML listed
earlier in this section into your favorite text editor and save it into the temporary
directory as hello.html. Load the page as a file into your favorite Web browser and
you’'ll see “Hello, World!” proudly displayed. To show that Web clipping applica-
tion development is virtually the same as standard Web application development,
we use the HTML code for this example to build a Web clipping application.

Running the Web Clipping
Application Builder

Palm, Inc. created a utility for building a Web clipping application called the Web
Clipping Application Builder (WCA Builder). This utility takes the HTML files
and graphics of a Web clipping application as input and combines them into a
compressed database that is installed onto the device. To install the WCA Builder
on your computer, download the latest version of the Web clipping tools from
Palm, Inc. at www.palmos.com/dev/tech/webclipping.

These tools are also provided as part of the Palm OS Software Development
Kit (SDK), which you may already have if you do custom Palm OS program-
ming. The WCA Builder does not come with an installer application. Extract it to
a directory along with all of its support files. Once installed, launch the WCA
Builder executable file named WCABuild.exe. You should see a window that
appears similar to Figure 2.1.

WwWWw.syngress.com

19

20 Chapter 2 « Building a Simple Web Clipping Application

Figure 2.1 Opening Screen of the Web Clipping Application Builder

F inased LA Buide

Picking Your HTML Files

To build a Web clipping application, the WCA Builder needs to know the index
file in your application. The index file refers to the first HTML file that the Web
clipping application will execute and display upon launch. In this example,
index.html is the first HTML file that our example will display.

To identify the index file, select the Open Index... menu option from the
File menu. From the file chooser dialog box, find the index.html file created ear-
lier, select it, and click OK.The display should now look like Figure 2.2, showing
the name of the file you just selected.

Figure 2.2 WCA Builder after Specifying Index File

e Hal

Mg | il T | b |

0wl Sl 1EF HTEL [RN el

1Fm BE 1113 i | inmpacrnind LS |17 Lo | Comrgmeriend

The WCA Builder scans hello.html for references to other HTML documents
or graphic files. If a reference to another HTML document is found, the WCA
Builder checks for the existence of that file, adds it to the list of files for this
application, and opens the new HTML file looking for more references to
graphics files or HTML documents. If graphic image references are found in an
HTML document, the WCA Builder checks for the existence of this file and
adds it to the list of files for this application. When it is finished, the file list

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

window should show everything that can directly be reached by hyperlink or
graphic reference from the initial HTML file.

In our example, the WCA Builder does not find references to other HTML
documents or graphic files and reports that the file index.html is the only static
component in this application. Now that the file list has been determined, it’s
time to build the application file. From the File menu, select the Build PQA...
option. The application presents the Build PQA dialog box.

NoTEe

WCA versus PQA—what’s in a name? Actually, it's all marketing. When
the Palm VII was introduced, the marketing name for the content
delivery technology was Web clipping applications (WCA) but applica-
tions were named Palm Query Applications (PQA).

Palm, Inc. has recently begun referring to Palm Query Applications as
Web clipping applications in both technical and marketing circles.
However, the file extension .pga remains the default extension for an
application constructed by the WCA Builder utility.

Setting Options in the Build PQA Dialog Box

Before continuing with the “Hello, World!” example, take a moment to review
each of the options available on this dialog box (Figure 2.3) before continuing.

Figure 2.3 Build PQA Dialog Box

mhlml-.m ;|-,=- = 0
T
T — []
b2 pp G e I
B b Pl Pl
loare
s |
il | -
Hast oo |
Fleraet | holo pon
P r_ 'I ?—FIF\-DI“' I bt (it -I
HIML Ercadrg | |
POST Encodng: || I |
Moo DT |

WwWWw.syngress.com

21

22 Chapter 2 « Building a Simple Web Clipping Application

» File name File name of the PQA and the application name displayed
on the Application Launcher of the device.

= PQA Version Build the application incorporating the features of
Clipper 1.0 (Palm OS 3.2 and 3.5) or Clipper 2.0 (Palm OS 4.0 and
greater).

» Maximum Screen Depth Maximum screen color depth to prepare
images. The Clipper browser converts images at runtime that displayed
on a screen depth lower than the screen depth selected. PQAs intended
for Clipper 1.0 devices can use at most 2-bit grayscale, because some
Palm VII devices support only four levels of gray.

= HTML Encoding Determines the character set to use to build the
application. The cp1252 character set is Microsoft’s extension of the ISO
8859-1 character set. The shift-jis character set is used for Japanese char-
acter set encoding. Choose cp1252 for English applications.

= POST Encoding When form data is sent from an application to a des-
tination server, the data is first encoded in this format before being sent.
Most applications will use the same encoding for the HTML encoding
as the POST encoding.

= Install to User If the application should be immediately added to a
HotSync user’s folder, check this box and choose the appropriate user.
This option is rarely used when testing an application using the Palm
OS Emulator (POSE). However, if the test environment is the device,
this step eliminates the need to find the PQA file and install it after
building.

» Large Icon The Large button brings up a chooser dialog box for
selecting the image to use for this application in the icon view of the
Application Launcher. Once chosen, the selected image appears to the
right of this button for review. Large icons in the Application Launcher
are 32 pixels wide by 22 pixels high.

» Small Icon Same as the Large button except that this icon is shown
for the list view of the Application Launcher. Small icons in the
Application Launcher are 15 pixels wide by 9 pixels high.

To build the example application, type hello into the File name field and
click Build to build the application. Once finished, locate the file hello.pqa in
the directory specified in the Build PQA dialog box. Install the PQA onto your

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

device or POSE using the methods described in Chapter 1, or use the shortcut
provided by the Install to User checkbox if you're testing on an actual device.
Once installed, a new application called hello is listed in the Application Launcher
of your device, as shown in Figure 2.4.

Figure 2.4 “Hello, World!” Example Installed and Available from the
Application Launcher

=B

1)
]
fud
—*
in
=)
=
=
-
o
=y
y
o
=3
nl

&
=
*

Cate Book Diggnostics hello

N

Hot5Swne iMessenger Merno Pad

C @ O

Prefs Zecurity ToDolist

&
!

Tap the hello icon and feel the sense of accomplishment as the Clipper
browser displays the intended greeting. Figure 2.5 shows the expected screen.You
can return to the launcher by tapping the back arrow at the top of the screen.

Figure 2.5 “Hello, World!” Example Running in the Clipper Browser

Hello, World! 4

Hello, Yorld!

WwWWw.syngress.com

23

24

o
‘F!“

Chapter 2 « Building a Simple Web Clipping Application

Setting Small and Large Icons

When the Build PQA dialog box was displayed, notice that the default icons
were provided for the icon displayed in the Application Launcher. The default
icons were used to build the example because no custom icons were specified.

In the next example, the “Hello, World!” example will be built using custom
icons located on the CD accompanying this book, in the “hello world build 2”
example for Chapter 2. Use the image files large.gif and small.gif from this
directory.

From the WCA Builder, select the Build PQA... menu option from the
File menu again. Confirm that the file name of the application is hello. Click the
Large button and choose the large.gif file from the working directory. Next,
click the Small button and choose the small.gif file from the working directory
(see Figure 2.6).

Figure 2.6 Build PQA Dialog Box after Selecting Large and Small Icons

B FH|
S | 1] Desiron M &@m e b

3 M p Conurants
L2 g S
rtur-_a.-\.."ph.._ Gl I
Ml bl o loar
®
-
P koo
EUT U [P—p— |
U — (- O
HIML Encadng || I |
POST Ercodng: || L
[il |5 eeis B e =

Click the Build button to rebuild the application with the new icons. Install
the hello.pqa file again. From the Application Launcher, notice that the icon has
changed in the Application Launcher to the “hw” icon supplied in the Build
PQA dialog box, as shown in Figure 2.7.The large icon is used when the View
By preference in the Application Launcher is set to Icon. The small icon is used
when the View By preference is set to List. This preference can be changed in the
Preferences menu selection in the Options menu of the Application Launcher.

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2 25

Figure 2.7 "Hello, World!” Example with New Icon in the
Application Launcher

15:17 ar L) -l

Activate Address Calc

5 4 o

Cate Book Diagnostics hella

O H @

HotSwnc iMeszenger Merno Pad

C @ O

Prefs Security ToDolist

A Building a Multiple Document PQA

To expand the capabilities of the single page example, “Hello, World!” will
become both multipage and multilingual. Create another temporary directory to
preserve the first example, if you like. Type the following code into your favorite
text editor and save it as index.html in the new directory (these files are also pro-
vided on the CD in the “hello world build 3” example):

<htm >

<head>
<title>Hello, World!</title>

</ head>

<body>

Tap your |anguage bel ow for your greeting.<p>

Engl i sh</ a>

Espafiol </ a>

Francai s</ a>

Deut sch</ a>

</ body>

WwWWw.syngress.com

Chapter 2 « Building a Simple Web Clipping Application

</htm >

Next, type the following into your favorite text editor and save it as
english.html:

<htm >

<head>
<title>Hello, World!</title>

</ head>

<body>
<hl>Hell o, World!</hl>

Back</ a>

</ body>

</htm >

Finally, create spanish.html, french.html, and german.html by copying the
structure of English.html. For spanish.html, the two changed lines are as follows:
<title>Hola, Mundo!</title>
<hl>Hol a, Mundo! </ h1>

For french.html, the two changed lines are as follows:

<title>Bonjour, Monde!</title>
<h1>Bonj our, Mbnde!</hl>

For german.html, the two changed lines are as follows:

<title>Hallo, Welt!</title>
<hl>Hal l o, Welt!</hl>

After the five files have been created, launch the WCA Builder and choose
the index file index.html by choosing the Open Index... menu option from the
File menu. Because of the way that WCA Builder scans for links, your window
should look like the one in Figure 2.8.

Notice that the WCA Builder scanned hello.html for references to other
HTML files and added the language HTML files to the file list for the application.

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

Figure 2.8 File List in the WCA Builder

R e

s | Gen| Trpm | o

B pgleds bl TEE T Do aned DILARTT 527 A
B bk b 160 HTHL Deourani /TINT] ST
B g s bl 1k HTHEL Do [AL e T
B wvbea el TE R oo TRLTANTT 51 Bt
1B opssh bl 168 H1TiL Deourani DTN ST

EFii

LB (379 ki | L iimparaiond

1 XA |NE bind [ormpuimrind

Build the application again by selecting the Build PQA... menu option
from the File menu. Type hello for the file name, choose the same large and
small icons used in the last example, and click Build. Install the application on
your device or POSE and launch it. Your Palm OS device screen will show the
initial index page, as in Figure 2.9.

Figure 2.9 Multilingual “Hello, World!"” Example

Hello, World! 4

Tap your language below for your
greating.

Englizh

Espanol
Frangais
Deutzch

Tapping one of the language links displays the appropriate page with the
Headline 1 style applied to the greeting and a link for returning to the previous
page. Figure 2.10 shows the results of clicking on the “Espafniol” link.

WwWWw.syngress.com

27

28 Chapter 2 « Building a Simple Web Clipping Application
Figure 2.10 “Hello, World!" in Spanish

Hola, Mundo! 4

Holi, Mundo!
Back

_ Linking to Internet Web Sites

To reinforce the core concept in Web clipping that static HTML content is
loaded from the device instead of over the wireless networks, the next example
links to a standard Web site designed for the desktop computer with a screen sig-
nificantly larger than Palm-sized devices. Make a copy of the previous example,
edit hello.html, and create a link to the popular Yahoo! search engine (these files
are also provided on the CD in the “hello world build 4 example). The change is
listed boldface in the following code below:

<htm >

<head>
<title>Hello, World!</title>

</ head>

<body>

Tap your |anguage bel ow for your greeting.<p>

Engli sh</ a>

Espafiol </ a>

Frangai s</ a>

Deut sch</ a>

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

<p>For nore greetings, search Yahoo! </ a>

</ body>

</htm >

Rebuild the PQA with this change, install it on your device or POSE, and
launch it. The link to Yahoo! is presented at the bottom of the document, similar
to Figure 2.11.

Figure 2.11 Yahoo! Link Added to “Hello, World!”

Hello, World! 4

Tap wour language below far your
greeting.

Englizh

Espafiol

Frangais

Oeutsch

For more greetings, search rahool:

Tap the Yahoo! link at the end of the page, and you will see the initial Yahoo!
screen, similar to what is shown in Figure 2.12.

Figure 2.12 Yahoo! in Clipper

Firestone Tiress

[Searchi] advanced searchi:

! Shopping: Depts: Apparsls,
Computerss, Bookss, Flowerss:

. - -
Stores: M-A-C5, Monderai, d
Yarne<ENnhled and mare-

WwWWw.syngress.com

29

30

Chapter 2 « Building a Simple Web Clipping Application

The layout of the opening page in Yahoo! has historically been a clean, simple
design that views well on a variety of Web browsers on desktop computers.
However, this example illustrates that this page does not translate well for the
small screen.

The purpose of this example was to show that direct links to Web sites could
be created in a Web clipping application. Clipper does its best to faithfully display
the site, which is designed for the big screen, on the small screen. Web pages that
contain few or no graphics and stick to standard HTML formatting tags such as
<H1> and <P> actually translate surprisingly well. To continue this exercise,
swap the link to Yahoo! in this example for some of your favorite Web pages and
notice how the pages are rendered in Clipper.

Automating WCA through
Command Line Parameters

In addition to building PQA files from the Windows client interface, the WCA
Builder can also be used as a command line utility. After building a project for the
tenth time, it comes in handy to create a batch file that builds the PQA file
instead of selecting the same options repetitively with the mouse.

The command syntax is WCABuild HTML filename [commands] [options].
Table 2.1 provides a summary of the command line options.

Table 2.1 Command Line Options for the WCA Builder

Command Description

/h Displays a dialog box with the command line options for
reference.

/pga Builds a query application from command line param-
eters. Launches the Windows user interface if not
specified.

Options

/d <value> Maximum bit depth of application images. Valid values

are “1”,"2","4","8", and “16". Default value is “2" for
black, white, light gray, and dark gray.

/e <value> HTML encoding format to use. Values are cp1252 for
Western encoding or shift_jis for Japanese encoding.
Default value is cp1252.

Continued

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

Table 2.1 Continued

Command

Description

/I “largeicon.gif”

/n “name”

/o "output.pga”
/p <value>

/q <value>

/r <value>

1

/s “smallicon.gif

/u “username”

oY,

Graphic file (BMP, GIF, or JPG) to use as application icon
for the Icon view of the Application Launcher. This file
should be 32 pixels wide by 22 pixels high. Default value
is plain diamond-shaped Web clipping icon.

Name of the query application to display in the
Application Launcher. Double quotation marks are
required. Default is the PQA file name.

File name of the query application to build.

POST-encoding format to use. Values are us-ascii,
is0-8859-1, cp1252, shift_jis, EUC-JP, and is0-2022-jp.
Default value is the HTML encoding format (/e).

Clipper version required for the application. Values are
"1" for Version 1.0 (Palm OS 3.5 and below) or “2" for
Version 2.0 (Palm OS 4.0). Default is “1".

Revision identifier of the query application to display in
the Application Launcher. Double quotation marks are
required. Default is “1.0".

Graphic file (BMP, GIF, or JPG) to use as application icon
for the List view of the Application Launcher. This file
should be 15 pixels wide by 9 pixels high. Default value is
a plain, diamond-shaped Web clipping icon.

Specifies the user folder to install the query application to
on the next HotSync operation. Double quotation marks
are required. Default is no automatic installation.

Verbose mode. WCA Builder displays errors. Default is no
error display.

In our “Hello, World!” example, we identified the following components in

the WCA Builder:

» The first HTML file to display (hello.html)

» The name of the output file (hello.pqa)

» The large icon file (large.gif) and small icon file (small.gif)

Assuming that the hello.html, large.gif, and small.gif files are located in the
same directory as the WCABuild.EXE executable, the syntax for building “Hello,
World!” via the command line is the following:

WwWWw.syngress.com

31

32

Chapter 2 « Building a Simple Web Clipping Application

wcabuild hello.htm /pga /I "large.gif" /o hello.pga /p "cp-1252" /s

"smal | .gif" /v

Note the existence of the POST-encoding option in the command line
(/p “cp-12527). Without specifying this switch, Version 1.5 of the WCA Builder
will not build on and be compatible with Palm OS 3.5 or earlier even if the
Clipper Version option is set to “17” (/q “17). When specifying launcher icons,
both the large and small icons must be identified, or neither icon must be identi-
fied. For example, the large icon or small icon cannot be defined without
defining the other icon as well.

Creating a batch file such as build.bat to build the Query Application Builder
file turns a rebuild into two or three keystrokes instead of several clicks on the
Windows user interface. The Windows user interface of the WCA Builder does
not remember settings from one build to the next.

Using PQA Builder 1.0 and WCA Builder 1.5

Two different versions of the Builder utility exist for building Web clipping appli-
cations. The applications in this chapter have been built with Version 1.5 of the
WCA Builder. Version 1.5 is the current release available as of this writing, avail-
able as part of the Palm OS SDK, Version 4.0.

Version 1.0 of the Builder utility is named the Palm Query Application
Builder (PQA Builder). The acronym PQA reflects the marketing name first used
tor Web clipping applications (see the sidebar earlier in this chapter). It was first
made available with the release of Palm OS 3.2 and the Palm VII device in 1999.

Aside from missing features that apply to the Palm OS 4.0 SDK, the use of
the PQA Builder is identical to the WCA Builder. The index file is still estab-
lished by the Open Index dialog box. An application is built by specifying the
filename and the large and small icons in the Build PQA dialog box. The differ-
ences between the two applications are apparent from the Build PQA dialog box:
Numerous options specific to Palm OS 4.0 are missing.

Which Version Should I Use?

If your target audience is exclusively for Palm OS 3.5 and earlier devices, the
WCA Builder offers no additional features but you may encounter some bugs
that might not be easily diagnosed as a new Palm OS developer. Use PQA
Builder Version 1.0.

If your target audience exclusively uses Palm OS 4.0 devices and needs to
take advantage of new Web clipping features (such as color bitmaps and icons and

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

different HTML and POST encoding types), use WCA Builder Version 1.5.
However, if your target audience includes those using Palm OS 3.5 and earlier
devices, use the WCA Builder Version 1.5—but ensure that your applications are
tested on Palm OS 3.5 and earlier devices to avoid being surprised by some
known (and likely unknown) WCA Builder bugs.

NoTE

Before making PQA Builder your build utility of choice, note that a docu-
mented bug exists in the icon selection of the Build PQA dialog box.
After selecting an icon with PQA Builder 1.0 running on Windows 2000,
the application unexpectedly closes without warning. This problem does
not exist when using the command line arguments to specify the build
options.

Using QAB 1.5 (Palm OS 4.0 SDK)

WCA Builder Version 1.5 is part of the Palm OS 4.0 SDK. In addition to
building applications compatible with versions of Clipper for the Palm OS 3.5
and earlier, WCA Builder supports the following features available in Clipper for
Palm OS 4.0:

= Color icons for the Palm launcher

» Specifying the version of the PQA standard used

» Language used in the HTML documents

» Format for form text posted to the server

= Screen depth

Most of the new features are designed to support internationalization of

Web clipping applications to countries that don’t use the Western character set,
such as Japan.

Color Icons

The WCA Builder supports 4-bit grayscale and 256-color bitmaps for both the
application icon and the page graphics. The “hello world build 5 folder included
on the companion CD has a multilingual “Hello, World!” example with large and
small 256 color bitmaps for the icons.

WwWWw.syngress.com

33

34 Chapter 2 « Building a Simple Web Clipping Application

Copy the color versions of these icons into your working directory, run the
WCA Builder, and change the following options in the Build PQA dialog box:

= PQA Version set to 2.0 (Palm OS 4.0 or greater)

» Maximum Screen Depth set to (8-bit Color)

Don’t forget to change the icons to the color versions using the Large and
Small buttons. Note that when you select an icon, the WCA Builder shows the
grayscale version of the colorized icons. Although this may be annoying, it is
helpful to confirm how the icon will be displayed on a grayscale device. The
command line version to build this application is as follows:

wcabuild hello.htm /pga /d "8" /I "large.gif" /o hello.pga /q "2" /s

"smal | .gif" /v

Debugging...

Using Color Icons in Web Clipping Applications

In addition to matching the blue tone of the other launcher icons, the
blue color (#FF0000) used in the “Hello World!” color icon displays as
black on Palm 3.5 and earlier grayscale devices. The WCA Builder does
not create multiple versions of the icons for various display types. The
Application Launcher and Clipper browser convert colors to gray shades
before displaying them.

When adding color to launcher icons, be sure to check that the same
icon will display properly on grayscale devices. Whether you check them
by testing them on a grayscale device, in the Build PQA display, or with
the Image Checker tool, some colors will not convert as you may expect.
The light blue color used in most of the application icons (#639ACE) con-
verts to white instead of black on the Application Launcher of grayscale
devices.

After building this application, install it to see the colorized icon in the
launcher. Figure 2.13 shows the Launcher from the Palm OS 4.0 ROM (this can
be seen in color on the accompanying CD). Eftective design and use of grayscale
images and color will be covered in detail in Chapter 4.

Www.syngress.com

| i Y
“'i‘\

Building a Simple Web Clipping Application * Chapter 2
Figure 2.13 Color Icon for “Hello, World!” in the Application Launcher

[9:36 am === - All
8, N

Addre:s Calc Card Info

$ & ©

Clack Cate Book Expensze

B @

hiella Hot5wnc Mlail

@ @ ©

flerno Fad Mote Pad Frafs

Unwired Widgets Product List Example

Although the single page “Hello, World!” example was a good introduction to
developing a Web clipping application, a more complex and multiple page appli-
cation 1s included in the “Unwired Widgets” folder on the CD for Chapter 2.To
see it, you can install the prebuilt products.pqa file on your device or POSE.

The Product List application—shown in Figure 2.14—is a Web clipping
application that identifies the widget product line. The entire product list can be
browsed or filtered down to the widget’s shape and size.

Figure 2.14 Unwired Widgets Product List Example

¢

Unwired Widgets
Find the widget that suitz your needs.

iew our entire product list or
browze by shaope, size and color.

Clicking product list displays a table with the part ID, size, shape, and color
for all widgets in the Unwired Widgets inventory. Clicking shape, size and

WwWWw.syngress.com

35

36

Chapter 2 « Building a Simple Web Clipping Application

color first displays a page to choose the size (big or small) followed by a second
page to choose the shape (round or square) followed by a list of widgets with the
shape and size and its color.

Browse through some of the HTML files in this example and note the pres-
ence of formatting tags—such as the header tags <H1> and <H2> and table tags
such as <TABLE> and <TR>-—commonly found in standard Web applications.
(Using tags will be covered in detail in Chapter 3.) For example, the body section
of the file product list.html uses both of these typical HTML elements:

<htm >

<head>

<title>Product List</title>

<met a nanme="pal ntonputingpl atforn content="true">
<neta nanme="pal ml auncherrevi si on" content="1.0">
<neta name="historylisttext" content="(UW Product List">

</ head>

<body>
<h1>Unwi red W dget s</hl>

<t abl e>
<tr>
<td w dt h="42"><u>Part |D
<td wi dt h="32"><u>Sj ze
<td w dt h="38"><u>Shape
<td wi dt h="38"><u>Col or </ b>

<tr><td>256-01 <td>Snall| <td>Round <td>Red
<tr><td>256-02 <td>Snall| <td>Round <td>G een
<tr><t d>256- 03 <td>Smal| <td>Round <t d>Bl ue
<tr><td>256-04 <td>Snall| <td>Round <td>Yell ow
<tr><td>256-11 <td>Smal| <td>Square <td>Red
<tr><td>256-12 <td>Smal| <td>Square <td>G een
<tr><t d>256- 13 <td>Smal| <td>Square <td>Bl ue

Www.syngress.com

<tr><t d>256- 14
<t r><t d>280- 01
<t r ><t d>280- 02
<t r ><t d>280- 03
<t r ><t d>280- 04
<t r><td>280-11
<tr><t d>280- 12
<t r><t d>280- 13
<t r><t d>280- 14
</t abl e>

</ body>

</htnm >

Building a Simple Web Clipping Application * Chapter 2

<t d>Smal |
<td>Lar ge
<t d>Lar ge
<td>Lar ge
<td>Lar ge
<t d>Lar ge
<td>Lar ge
<td>Lar ge

<t d>Lar ge

<td>Square <td>Yel |l ow
<t d>Round <t d>Red
<td>Round <td>G een
<t d>Round <t d>Bl ue

<t d>Round <t d>Yel | ow
<t d>Square <t d>Red
<td>Square <td>G een
<td>Square <td>Bl ue

<td>Square <td>Yell ow

Browse this application in your desktop Web browser by opening the
index.html file. Compare the look and feel of the text and formatting of this

application in the desktop application and the Web clipping application.

Although this application does not have wireless interaction with the

Internet, it does show that a standalone Web clipping application does not have to

interact with the Internet to be useful. Web clipping applications can have static

pages similar to these that provide company profiles, contacts, and help for the

application itself.

WwWWw.syngress.com

37

38

o

Chapter 2 « Building a Simple Web Clipping Application

Summary

The Web Clipping Application (WCA) Builder is a free utility from Palm, Inc.
that creates Web clipping applications from the HTML and graphics you supply.
The WCA Builder creates a database file to install on the Palm OS device for the
nonchanging, or static, components of a Web application. By loading the non-
changing components on the device, the amount of data transmission over wire-
less networks is greatly reduced. This increase in performance and the improved
user experience is a major component of Web clipping technology.

To create a Web clipping application with the WCA Builder, the first step is
creating a Web application designed for the screen size and network capabilities
of wireless Palm OS devices. Launch the WCA Builder, select the Open
Index... menu option from the File menu and identify the index file of the Web
application to build. The WCA Builder searches the index file and subsequent
files for nonchanging documents and graphics to include in the Web clipping
application.

After the index has been processed, select the Build PQA... option from the
File menu to create the Web clipping application. Before building the applica-
tion, several options such as the Application Launcher icons, Clipper version,
screen depth setting, and HTML and POST encoding options can be established.
After selecting the options, clicking the Build button creates the application.

In addition to using the Windows user interface for creating applications,
the WCA Builder also supports command line options for automating the build
process.

Palm, Inc. has two different versions of the builder application. The PQA
Builder Version 1.0 was the first Web clipping application creation utility supplied
with the release of the Palm VII. It is recommended for building applications tar-
geted exclusively for the Palm OS 3.5 and earlier versions. The WCA Builder
Version 1.5 is the version released with the Palm OS 4.0 SDK; use this if specific
functionality in the Palm OS 4.0 is required. It supports new features available in
Palm OS 4.0, such as incorporation of color icons and bitmaps and HTML and
POST document encoding into your applications.

Www.syngress.com

Building a Simple Web Clipping Application * Chapter 2

Solutions Fast Track

Writing Simple Web Pages

]

]

o}

HTML tags indicate document formatting and processing instructions.
HTML tags are flanked by less than (<) and greater than (>) characters.

The <HTML> tag indicates the beginning of an HTML document.
HTML tags inside the <HTML> and </HTML> tags are processed by
Web browsers.

Text located between the <BODY> and </BODY> tags is displayed by
a Web browser in its main window.

Running the Web Clipping Application Builder

|
]

The filename of the utility is WCABuild.exe.

Select the HTML file that will be the first HTML displayed in the
application by selecting the Open Index... choice from the File menu.

After the index file has been determined, build the application by
selecting the Build PQA... choice from the File menu. Type a name
for the file, select large and small icons (if desired), and click Build.

Applications can be built with the WCA Builder from its Windows user
interface or by supplying command line options. For the list of com-
mand line options, refer to Table 2.1 in this chapter or run the WCA
Builder and add /h to the command line.

WCA Builder supports new Web clipping features available in Palm OS
4.0 including color graphics and icons support and HTML and POST
file encoding tags.

39

40 Chapter 2 « Building a Simple Web Clipping Application

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q

o

A
Q:
A

How much does the PQA Builder cost?

It’s free!

Should I use the latest version of the Palm Query Application Builder 1.0 or
Web Clipping Application Builder 1.5?

. If your application audience has devices that are running Palm OS 3.5 or ear-

lier, use PQA Builder 1.0.The additional features in WCA Builder 1.5 apply
only to Palm OS 4.0 devices. If your application needs to use some of the

teatures of Palm OS 4.0 devices,such as color icons and bitmaps or HTML
and POST encoding, use WCA Builder 1.5.

. I get tired of creating the same setting each gime [build an application. How

can | make it remember the last build settings?

. The Windows user interface for the WCA Builder does not remember the

settings of the previous build. However, applications,can be built with the
WCA Builder via command line options.

: Do the builder utilities have any known bugs?

: The application unexpectedly closes when selecting icons from PQA Builder

1.0 under the Windows 2000 environment. The command line requires the
/p “ep-1252” option to be set to build applications for Palm OS 3.5 and
earlier with WCA Builder 1.5.

Www.syngress.com

Chapter 3

Building WCAs

Using HTML

Solutions in this chapter:

« Starting HTML Documents with a Header

» Providing HTML Content with Block and
Text Markup Body Tags

. "Linking to Application Pages and
Web Sites

M Summary
M Solutions Fast Track

M Frequently Asked Questions

41

42

Chapter 3 * Building WCAs Using HTML

Introduction

Because of the small screen size and limited memory of Palm OS devices, Web
browsers on these devices work differently from browsers on the desktop. Clipper
understands a version of Hypertext Markup Language (HTML) based on the 3.2
standard, but with several additions that allow you to optimize pages for device
display.

Some common features of desktop browsers are missing on the Palm OS.You
will find no support for scripting on Web pages. There are no plug-ins for Flash
or for playing Musical Instrument Digital Interface (MIDI) files. Frames are
impractical and popping up another window doesn’t work unless the user just
happens to have an extra Palm OS device nearby. In many ways, it is a throwback
to the early days of the Web when Mosaic was in, Java was for set-top boxes, and
<BLINK> was a joke rather than a feature.

This may sound primitive, and in many ways it is. However, the lack of fea-
tures isn’t an obstacle to producing good Web clipping applications (WCAs). As a
WCA author, you have some advantages a normal Web page author lacks. First,
you can assume one page size for most devices. This simplifies the task of page
layout and design. Second, user expectations are different. Fancy layout isn’t as
impressive as clarity of design and speed of accessing information. Finally, smaller
and simpler pages are easier to maintain.

In this chapter, the subset of HTML 3.2 supported by Clipper and the ele-
ments of HTML 3.2 that are left out are identified. In addition, features to sup-
port optimized content for the Clipper browser are outlined. This chapter is
organized by the different classes of HTML tags: first, we talk about the header
and how you specify information about the document. We then look at the tags
that are used to provide content, at both the block and text level. Finally, we
focus of new features added to Palm Inc’s version of HTML that differ from the
standard HTML used on the desktop Web.

Starting HTML Documents
with a Header

Tags in the header section of an HTML document define properties that apply to
the entire document. This includes information such as the title of the page, who
made it, and if it i1s a “Palm-friendly” document. These header tags are not shown
directly to the user, although they might aftect how the page is displayed. In later

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

sections of this chapter, we talk about the body tags that hold the real content of
the page.

For the Clipper browser, tags in the header section can indicate that a docu-
ment was designed specifically for Clipper, the version of Clipper that the docu-
ment requires, and the title of the document that appears in the upper left-hand
corner of the Clipper browser window. Figure 3.1 shows our <HEAD> section
from the Unwired Widgets example in Chapter 2 (also provided in the Unwired
Widgets example for Chapter 2 on the accompanying CD).

The header is completely enclosed in a <HEAD> tag, starting with
<HEAD> and ending with </HEAD>. If you specity the header-specific tags
outside of a <HEAD> section, you will have an invalid HTML document, and
the browser might ignore their values.

Figure 3.1 Sample HTML Header

<head>

<title>Product List</title>

<neta nanme="pal nconputi ngpl atfornf content="true">
<neta nanme="pal ml auncherrevi si on" content="1.0">

</ head>

Setting the Title of the Page

The <TITLE> tag defines the text to be displayed in the title bar of the Clipper
browser. If we refer to Figure 3.2, we will see that Product List is displayed in the
title bar. The title is also used as the label in the history list that Clipper maintains
of pages pulled from the Web.

Figure 3.2 Product List Title

.
Unwired Widgets

Find the widget that suitz your needs.
Wigw our entire product list or
brawse by shape, size and color, |

Keep the length of this text short. The maximum length of the title extends
to the middle of the screen. If the title is too long to fit, it is truncated and three

WwWWw.syngress.com

43

44

Chapter 3 * Building WCAs Using HTML

periods are appended to indicate that the length of the title is longer than the
space allocated.

You should supply a title in each document. If you had omitted the <TITLE>
tag from the code shown earlier, you would get the display shown in Figure 3.3.
Because a title was not supplied, the URL of the document is used in its place.

Figure 3.3 Title Set To Page URL (file:Products.pga) When Not Specified

Mile:Product.. A
Unwired Widgets
Find the widget that suits wour needs.

View our entire product list or
\[:-r-:-wse bw shape, size and color.)

Using META Tags to Add
Document-Level Information

META tags are a kind of an escape mechanism in HTML. These tags, located in
the header, hold additional data about the document that isn’t represented in
other HTML tags. A META tag has three attributes, http-equiv, name, and content.
The http-equiv attribute is used to emulate actions specified by Hypertext Transfer
Protocol (HTTP) headers, such as automatic refreshing of the pages. Because
Clipper doesn’t handle special HTTP requests, META tags using this attribute are
ignored. Palm, Inc. has defined a Palm-specific set of META tags that provide
information to the Web Clipping Application Builder and to Clipper.

Marking Your Page as Palm-Friendly
with the PalmComputingPlatform Tag

Some META tags with special Palm-specific names are honored, including the
PalmComputingPlatform tag. This META tag tells the Palm.Net proxy that the
page was designed specifically for the Clipper browser. The presence of this tag
implies that the speed and availability of wireless networks and the screen size of
the Palm OS device were taken into account for the page length and its images.
The Palm.Net proxy does not reformat or redesign the page before sending it to
the device.

When this tag is not present in a document, the proxy reserves the right to
truncate page length and remove large images to deliver a page best formatted for

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

the Palm OS device screen. This tag is used as shown here, with the name set to
“PalmComputingPlatform” and the confents attribute set to “true”:

<met a name="Pal nConputi ngPl at fornf content="true">

Providing Icon Information through META Tags

Several META tags can be added to your main page to affect how the Web
clipping application appears in the Palm OS Launcher. These are the
PalmLauncherName, PalmLauncherR evision, PalmLargelconFilename, and
PalmSmalllconFilename tags. Each of these affects some aspect of the appearance.
By specifying PalmLauncherName, you can choose the displayed name for the
WCA.The PalmLargelconFilename and PalmSmalllconFilename tags let you
pick graphics files to use for the large and small icon views. Finally, the
PalmLauncherRevision tag lets you specify a version number for the WCA that
will be shown when the user uses the Info menu command. All of these should
be added to the index HTML page of your Web clipping application, so that they
will be used by the WCA Builder application when building the Palm Query
Application (PQA) file.

Only the PalmLauncherRevision tag is understood by the original Query
Application Builder (QAB) executable. The other three tags aren’t supported until
you use WCA Builder 1.5 from the Palm OS 4.0 Software Development Kit
(SDK). The version of Clipper used does not matter for these tags, because they
affect only the properties of the built PQA file. The usage of these tags is as
follows:

<met a nanme="Pal nLauncher Nane" content="Unwi red W dgets">
<net a nanme="Pal nLauncher Revi si on" content="1.3.2">
<met a name="Pal nlLar gel conFi | enane" content="|ogo_|large.gif">

<met a nane="Pal nSmal | | conFi | enane" content="1ogo_small.gif">

Adding Unconnected Graphics Files

The Locallcon META tag 1s used to add additional files to a Web clipping appli-
cation that are not directly referenced. Because WCA Builder normally just
includes the pages and graphics that can be reached from the index page of the
site, it may leave out material that you want to use from your remote site but do
not want immediately accessible. This tag is discussed in more detail in Chapter 4.

WwWWw.syngress.com

45

46

Chapter 3 * Building WCAs Using HTML

Overriding the History List

The HistoryListText META tag lets you specify an alternate string for the Web
clipping history that Clipper saves. Normally, it uses the title of the page, along
with the time it was received. Using this tag, you can specify your own text for
this cache, including any combination of the current date and time you want.
This is discussed in more detail in Chapter 6.

No Support for Other Standard META Tags

Clipper does not support many of the META tags that a desktop Web browser
honors. As mentioned earlier, no META tags with the http-equiv attribute are
honored, so using a META tag-style redirect will not work on the Palm OS. If
you do wish to redirect the Web page to another location, the Palm.Net proxy
does honor Redirect HTTP headers, although if you redirect more than twice, it
will give up and return an error message to the user about excessive redirection.

Providing HTML Content with
Block and Text Markup Body Tags

Body tags define the content and page presentation of a Web document. The
most common body tags available in the HTML 3.2 specification are available in
the Web clipping HTML definition.

Although the meaning of these tags match the meaning of the tags in the
HTML 3.2 definition, content with these tags applied may render differently to
fit the small Palm OS device’s screen. As a Web developer, this should not come
as a surprise; in practice, each Web browser shows HTML text differently.

The body of the HTML document is contained in a tag called <BODY>.
Although this tag is required in HTML 3.2, in practice it can be left off a Web
page unless you want to specify a special BODY attribute such as the background
color. The body should start with a <BODY> tag, and close with </BODY>.

Block Markup

Within the <BODY> tag, you encounter two classes of HTML tags: block markup
tags and fext markup tags. Block markup is used to describe sections of text. A
new block of text will be separated from the last block by whitespace. Text
markup tags, such as <I> for italic text, should be entirely contained within
blocks and should not span multiple blocks.

Www.syngress.com

G

Building WCAs Using HTML ¢ Chapter 3

Paragraphs: <P>

Individual sentences or groups of sentences that should be formatted as para-
graphs use the <P> tag appended to the beginning of the first sentence in the
paragraph; at the completion of a paragraph, close the block by adding a </P>.
The <P> tag supports the following tag attribute:

» Align for horizontal positioning of text.Values are leff, right, and center.

In the following example code, provided in the build_01 example on the CD,
four paragraphs are defined from the sentence provided using the diftferent para-
graph attributes. The results are illustrated in Figure 3.4.

<body>
<p>Abr aham Li ncol n, Novenber 19, 1863.</p>

<p align=left>Four score and seven years ago, our fathers

brought forth unto this continent a new nation.</p>

<p align=center>Four score and seven years ago, our fathers

brought forth unto this continent a new nation.</p>

<p align=right>Four score and seven years ago, our fathers
brought forth unto this continent a new nation.</p>

</ body>

Figure 3.4 Using the Align Attribute in the <P> Paragraph Tag

Gettysburyg.. 4

Abraham Lincoln, November 19, 1863

Four zcore and seven years ago, our

fathers brought forth unta this

continent a new nation.

Four zcore and seven years ago, aur

fathers brought forth unta this
continent a new nation.

Four zcore and seven years ago, aur

fathers brought forth unta this
continent a new nation.

WwWWw.syngress.com

47

48

G

Chapter 3 * Building WCAs Using HTML

Large Headers: <H1>, <H2>, and <H3>

Headline text that identifies and separates major sections of content by using a
large, boldface font are defined with the tags <H1>, <H2>, and <H3>.These
header tags also support the align attribute with the values left, right, and center.
This example, provided in the build_02 example on the CD, illustrates the
rendering of these headline tags compared to paragraph text. The final rendering

is shown in Figure 3.5.

<body>
<h1>Abr aham Li
<p>Four score

brought forth

<h2>Abr aham Li
<p>Four score

brought forth

<h3>Abr aham Li

<p>Four score

brought forth
</ body>

Figure 3.5 Clipper Rendering of Headline Tags <H1>, <H2>, and <H3>

Notice that the difference in font sizes for the headline and paragraph text is

Www.syngress.com

ncol n</ h1>
and seven years ago, our fathers

unto this continent a new nation.

ncol n</ h2>
and seven years ago, our fathers

unto this continent a new nation.

ncol n</ h3>
and seven years ago, our fathers

unto this continent a new nation.

Gettysburyg.. 4
Abraham Lincoln T

our sCore and sewen years ago, aur
athers brought forth unto thiz
ortinent g new notion.

Abrohom Lincoln

our score and seven years ago, our
athers brought forth unto thiz
ontinent a new nation.

Abraham Lincoln

our sCore and sewen years ago, aur
athers brought forth unto this

ntinent 0 recan aotion

w

not as pronounced as the difference in font sizes for the same tags in Internet
Explorer. These headline tags are one of the few formatting tags that render text

=

Building WCAs Using HTML ¢ Chapter 3

significantly different than HTML 3.2 on a full-size screen. A full-size screen
rendering is shown in Figure 3.6.

Figure 3.6 Internet Explorer Rendering of Headline Tags <H1>, <H2>,
and <H3>

W Getmberg Addeary - Micieaeli Infemel Explase

fin | £ Yo Fpeminr Jaok Help -
.o, = ®* B oA 3 =

Feawoi L1 Redreh Hewr Gapaich Faveles Halore
il [4] C 0T PG D L begmcdas =] #Bs L @ ™
5

Abraham Lincoln

Froz sore and poven yows age, oo fafiers broaght focty et Hes contren® a now zshicn
Abraham Lincoln

Fram score ard pewen pears ags, oun fafiers beought forl enlo s contnent @ new aabion
Abralanm Lol

r i ELOTE AES FETR PEANT .|$, DR AR R r‘-""':sll I'- ria ernio B ITENATE 5 D mARS

=
it cordivitsnadd, b mer b vl ches. ol g

Small Headers: <H4>, <H5>, and <H6>

Although officially defined as headlines, these tags seem to de-emphasize text
instead of emphasize them. These headline tags also support the align attribute.

The code example for showing headlines tags <H1>, <H2>, and <H3> has
been edited to show headlines <H4>, <H5>, and <H6> (provided in the
build_03 example on the CD). The results are shown in Figure 3.7.

Figure 3.7 Headline Tags <H4>, <H5>, and <H6> Are Small

Gettysburyg.. 4

Abraham Lincoln

Four soore and seven pears ago, aur
fathers brought forth unto thiz
continent a new nation.

Abraham Lincoln

Four score and seven pyears ago, our
fathers brought forth unto this

continent a new nation,
Abraham Lincoln

Four soore and seven pears ago, aur
fathers brought forth unto this
continent a new nation.

WwWWw.syngress.com

49

50

=
“'F!I‘\

Chapter 3 * Building WCAs Using HTML

Consider that many Palm OS device owners don’t have 20/20 vision. Avoid
the use of <H5> and <H6> in favor of the larger headline tags.

Horizontal Rule: <HR >

The horizontal rule tag <HR> draws a horizontal line across the screen. The
<HR> tag supports the following attributes:

» Align tor the horizontal justification of the text as left, center, and right.
Center is the default.

» Size for the height of line in pixels (default is one pixel).

» Width for the horizontal length of the line in pixels (default is the entire
screen width).

Horizontal rules are good for visually separating differing sections of content.
In the Fidelity Investments application shown in Figure 3.8, the horizontal rule
separates the document elements that initiate data retrieval from the document
element that defines the use of the application. By providing a visual break
between the two groups of visual elements, the user can easily and quickly deter-
mine where the first control group ends and the next control group begins.

Figure 3.8 Horizontal Rule Separator

Fideicy s, IR AU
& Fidelity InstantBroker ™™
Delayed Quotes

Symbol:] w Basic
w List1 -+ Fun

Market Infio Bedl-Time Juote
Place TradesAccount Info

User Rresment Help

Images:

Sometimes text isn’t enough, and you want to add a graphical image to a Web
page. Most attributes of the image tag are supported in Clipper. The
 tag supports the following attributes for displaying images:

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3 51

= Src for the URL of the image to display.

s Alt for the alternative text to display when the image is not available.
The ALT text may be displayed on Clipper if your image is too large for
the screen.

» Height and width define display dimensions in pixels for the source image
in the document.

= Align specifies the horizontal alignment.Values are leff, right, top, middle,
and bottom.

For the first image example (provided in the build_04 example on the CD
and shown in Figure 3.9), an image named palm.gif, of 108 pixels in length and
108 pixels in height, is displayed in the Clipper window. The code is as follows:

<htn >

<head>

<title>I MG tag</title>

<neta nane="pal nconputi ngpl atfornf content="true">
<met a nanme="pal M auncherrevision" content="1.0">

</ head>

<body>
<ing src="palmgif">
</ body>

</htm >

Figure 3.9

WwWWw.syngress.com

52

Chapter 3 * Building WCAs Using HTML

When the image width and/or height are redefined in the image tag, the
Clipper browser resizes the image to the specified size. When the image height
and width are not defined, the dimensions of the source image itself are used as
the dimensions for the image in the document.

In Figure 3.10, the width and height of the image are redefined to 40 pixels
by 40 pixels as follows (the code is provided in the build_05 example on the CD):

<ing src="palmgif" w dth="40" hei ght="40">

Figure 3.10

On desktop computers with high resolutions and millions of colors, a browser
would retain more of the image detail when resizing this image. However, the
Clipper browser will resize the image as quickly as possible because most device
screen resolutions support a few shades of gray of a maximum or 256 colors.

If the dimensions of the image should be displayed on the document as 40
pixels by 40 pixels, design the image to be 40 pixels by 40 pixels—do not rely on
the Clipper browser to resize the image.

The align attribute defines the horizontal positioning of an image in a docu-
ment. The values leff and right are commonly used in Clipper applications to align
an image against the left or right margin and wrap text around the alternate side.
The values fop, middle, and bottom align the image along the top, middle, or
bottom of the baseline compared to other images in the line. These three values
are not commonly used in Clipper applications.

In the final image tag example (provided in the build_06 example on the CD
and shown in Figure 3.11), the Palm logo is aligned against the right margin of
the document, and text is wrapped around the left and bottom of the image.
(Chapter 4 contains more discussion on creating good images for a Palm OS
device.) The code is as follows:

<body>
<ing src="palmgif" align="right">

<p>Palm Inc. sells the world's favorite handhel d

Www.syngress.com

</ body>

Figure 3.11

conput er s</ b>.

<p>ln May 1999, we | aunched our

w rel ess service,

Building WCAs Using HTML ¢ Chapter 3

to meet specific market needs.

<u>Pal m Net ™/ u>

<p>We also license the Palm OS® to <i>worl d-cl ass

conpani es</i> that create custonized handhel d sol utions

whi ch provides on-the-go Internet

No nodens. No phone Iines.

i coo IR

Falm, Inc.
cells the
orld's
favorite
handheld
COmpUters.
e also

icense the
Palm 056
o
E-:-rl-:l--:luss companies that create

uztomized handheld zalutions to
eet zpecific market needs, In May

b

e |

Ordered and Unordered List: and

The ordered and unordered list tags are faithful to the HTML 3.2 specification in
their use and rendering by Clipper. These tags format listlike information by dis-

playing each list item indented out from the left margin on a separate line with

an item marker prefixing each list item.

List items in ordered lists use incrementing numbers, letters, or roman numerals

as the item marker. The tag for ordered lists accepts the following attributes:

the item marker type.

Start for the starting number in the list. The default starting number 1s 1.

Type for the type of item marker. Values are A for uppercase letters, a for
lowercase letters, I for uppercase Roman numerals, I for lowercase
Roman numerals, and 1 for numbers. The default is 1 for numbers as

WwWWw.syngress.com

53

54

Chapter 3 * Building WCAs Using HTML

List items inside ordered lists are defined using the tag in the similar
fashion that paragraphs are defined using the <P> tag. The end of an ordered list
1s defined with the tag.

The following example lists the different families of Palm OS devices as an
ordered list. The following code is provided in the build_07 example on the CD
and the results are shown in Figure 3.12.

<htm >

<head>

<titl e>Handhel ds</title>

<neta name="pal nconputi ngpl atfornf content="true">
<nmeta nane="pal m auncherrevi si on" content="1.0">

</ head>

<body>
<hl1>Pal m Handhel ds</ h1>

Pal m nb00 Series
Pal m mLOO Series
PalmIIl Series
PalmV Series
Palm VIl Series
</ ol >

</ body>

</htm >

List items in unordered lists use a small shape (or bullet) as the item marker
instead of letters or numbers. The tag for unordered lists accepts the fol-
lowing attribute:

= Type tor the type of item marker.Values are disc, square, and circle.

List items are also defined using the tag in the same fashion as
ordered lists.

Www.syngress.com

o
“'il‘\

Building WCAs Using HTML ¢ Chapter 3

Figure 3.12 Ordered List Example Using Numbers as the Marker Type

¢
Palm Handhelds

Falm mEBEE Series
Falm m188 Serias
Falm lll Series
Falm % Series
Falm Yl Series

T Lol o —

The following example (provided in the build_08 example on the CD and
shown in Figure 3.13) lists the different families of Palm OS devices as an
unordered list.

Figure 3.13 Unordered List Example Using Squares as the Marker Type

*
Faim Hondhelds

=Palm mEHA Series
=Palm m 188 Series
=Palm lll Seriez
=Palm Y Series

= Palm Yl Seriesz

Structured Information: <TABLE>

The <TABLE> tag defines the start of data arranged into rows and columns. In
addition to grouping numeric data or textual information that have similar prop-
erties, tables are often used in HTML to lay out images and text elements in a
document. Using tables for effective layout of Web clipping pages is discussed in
Chapter 6.

Tables are treated differently from a PQA file than from a Web site. If a page
sent from a Web site is not marked as Palm-friendly using the
PalmComputingPlatform META tag, any tables on the page will be ignored.
Tables are always honored in pages compiled into a Web clipping application.

The <TABLE> tag indicates the start of a new table and defines properties
for the entire table. The <TABLE> tag has the following attributes:

WwWWw.syngress.com

55

56

Chapter 3 * Building WCAs Using HTML

» Align for the horizontal alignment of the table.Values are left, center, and
right. The default is left.

= Width for the horizontal width of the table in pixels. Percentage widths
are not supported. The default is the entire length of the browser
window.

» Cellpadding for the spacing between cells in pixels. The default is two
pixels.

s Cellspacing for the spacing within cells in pixels. The default is two pixels.

The <TR> tag indicates the start of a new row in a table and defines proper-
ties for the row. The <TR> tag has the following attribute:

= Align for the horizontal alignment of the row in the table.Values are left,
center, and right. The default is left.

The <TD> tag defines a cell inside a table row called a data cell. The <TD>
tag has the following attributes:

= Align for the horizontal alignment of elements in the cell. Values are left,
center, and right. The default is left.

» Width and height for the dimensions of the cell in pixels. When not
specified, cells are automatically sized up or down to fit the contents of

the cell.

= Rowspan for the number of rows spanned by the cell. The default is
one row.

s Colspan tor the number of columns spanned by the cell. The default is
one column.

The <TH> tag defines a cell inside a table row called a header cell. Header
cells are identical to data cells in all respects except that header cell text is bold-
faced and has a default horizontal alignment of center instead of left.

The Unwired Widgets example in Chapter 2 contained several pages using
tables to format the widget size, shape, and color properties into columns. Here is
the HTML code for the entire product list using tables (see also the build_09
example on the CD):

<htm >

<head>

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3 57

<title>Product List</title>

<nmeta nanme="pal nconputi ngpl atfornt content="true">
<neta nanme="pal m auncherrevi si on" content="1.0">
<neta name="historylisttext" content="(UW Product List">

</ head>

<body>
<h1>Unwi red W dgets</hl>

<t abl e>
<tr>
<th w dt h="42"><u>Part |D
<th w dt h="32"><u>Si ze
<th wi dt h="38"><u>Shape
<th wi dt h="38"><u>Col or

<tr><td>256-01 <td>Snall| <td>Round <td>Red
<tr><td>256-02 <td>Snal!| <td>Round <td>G een
<tr><t d>256- 03 <td>Smal| <td>Round <t d>Bl ue
<tr><td>256-04 <td>Snall| <td>Round <td>Yell ow
<tr><td>256-11 <td>Snmal| <td>Square <td>Red
<tr><td>256-12 <td>Smal| <td>Square <td>G een
<tr><td>256-13 <td>Smal| <td>Square <td>Bl ue
<tr><t d>256- 14 <td>Smal| <td>Square <td>Yell ow
<tr><td>280-01 <td>Large <td>Round <td>Red
<tr><td>280-02 <td>Large <td>Round <td>G een
<tr><t d>280- 03 <td>Large <td>Round <t d>Bl ue
<tr><t d>280-04 <td>Large <td>Round <td>Yell ow
<tr><td>280-11 <td>Large <td>Square <td>Red
<tr><td>280-12 <td>Large <td>Square <td>G een
<tr><td>280- 13 <td>Large <td>Square <td>Bl ue
<tr><td>280- 14 <td>Large <td>Square <td>Yell ow

</t abl e>

WwWWw.syngress.com

58

| i Y
“'i‘\

Chapter 3 * Building WCAs Using HTML

</ body>

</htnm >

A rendering of this code is illustrated in Figure 3.14. Notice that the width of
each column is defined in the header cells that define the category for each
column. The width of data cells in the rows for each widget match the width

defined in the header cells.

Figure 3.14 Table Example

«
Unwired Widgets

Fart ID %ize Shape Color
206-81 Zmall Round Red
206-82 Small Round Green
256-83 Small Round Blue
2E6-8d Small Round Yellow
256-11 Small Square Red
206-12 Small Square Green
286-13 Small Sgquare Elue
206-14 Small Sgquare Yellow w
SRA-A1 laraa Rannd Riad J

Table tags are faithful to the HTML 3.2 specification with one exception:
Tables inside other tables (nested tables) are not supported.

Text Markup

Although block markup tags are used to handle logical chunks of text, the text
markup tags let you change the appearance at the character and word level. These
tags are generally used in short stretches of text to provide some sort of special
effect, such as making the text bold or italic. In a proper HTML document, text
markup tags are entirely contained within block tags. For example, you don’t
specify that an emphasized section starts at paragraph 5 and continues to paragraph
10. Instead, the text in each paragraph is individually marked as emphasized.

Physical Markup: Bold, Italics, and Underlining

Physical markup tags specifically change the display of textual information inside a
block. The tag marks text in a bold font, <I> marks text in an italic font,
and <U> underlines text. No attributes exist for these tags.

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

The start of a physical markup is specified by one of these tags. The end of a
physical markup is specified by its bookend tag , </I>, or </U>.

Figure 3.15 Bold, Italic, and Underlined Example

alm, Inc. zells the world"s
avorite handheld computers.

e alzo license the Palm 056 ta

o -ofar s com panies that create
uztomized handheld zalutions tao

eat specific market neads.

nkay 1999, we launched our
alm.Het™ wirela:z: service, which
ravides on-the-go Internet access.
o modems. Mo phone lines.

The example that follows uses physical markup tags to highlight key phrases
in the company profile for Palm, Inc. The “world’s favorite handheld computers”
phrase is set in boldface, “world-class companies” is set in italics, and “Palm.Net”
is underlined. The code is provided in the build_10 example on the CD and the
results are shown in Figure 3.15.

<htm >

<head>
<title>Palm Inc.</title>
<neta nanme="pal nconputi ngpl atforni content="true">
<neta name="pal m auncherrevi si on" content="1.0">
</ head>
<body>
<p>Palm Inc. sells the world's favorite handhel d

conput er s</ b>.
<p>Weé also license the Palm OS® to <i>worl d-cl ass
conpani es</i> that create custonized handhel d sol utions

to nmeet specific market needs.

<p>In May 1999, we | aunched our <u>Pal m Net ™/ u>

WwWWw.syngress.com

59

60

=

Chapter 3 * Building WCAs Using HTML

wirel ess service, which provides on-the-go Internet
access. No nodens. No phone |ines.

</ body>

</htm >

Font Markup:

You can directly control the font size of text in Clipper by using the
tag. This HTML 3.2 tag is used to change the size and color of text on a Web
page. It uses the following attributes:

» Size which is a number from 1 to 6 that corresponds with the size of text
used by the header tags <H1> through <H6>. Normal text has size 3.

= Color (an RGB value giving the red, green, and blue color levels). On
grayscale devices, you should stay with normal black text, but with color
devices, you can use this to emphasize text beyond bold, italics, and
underlines. A color value looks like “#RR GGBB”, where RR 1is the red
value in hexadecimal, GG is the green value, and BB is the blue value. A
higher number indicates a brighter version of the color. When all three
components are the same, you have a grayscale color, ranging from black
at “#000000” to white at “#FFFFFF”.

Logical Markup: Strong and Emphasized Text

' Whereas physical markup tags specifically define the type of formatting to repre-

sent text, logical markup tags format text for the content and meaning of text and
leave it up to the browser to choose the specific formatting to use.

In the Clipper browser, the tag marks text with a strong
meaning in bold. The tag marks text with an emphasized meaning in italic.
In the following example, provided in the build_11 example on the CD, the
physical tags from the physical markup example shown earlier have been removed
and the and are now in their place. Figure 3.16 shows the
bold and italic markup used for the strong and emphasized tags.

<body>
<p>Palm Inc. sells the world's favorite handhel d

conput er s</ strong>.

Www.syngress.com

</ body>

conpani es</ en® t hat

<p>In May 1999, we |aunched our

Wi rel ess service,

Building WCAs Using HTML ¢ Chapter 3

to nmeet specific market needs.

Pal m Net ™

<p>We al so license the Palm OS® to <empworl d-cl ass

create custom zed handhel d sol utions

whi ch provi des on-the-go Internet

No nodens. No phone Iines.

Figure 3.16 Strong and Emphasized Example

Hyperlinks: <A>

A

aln, Inc. sells the world's
avorite handheld computers.

2 alzo license the Palm 05@ ta
orta-ofar s oom panie s that create
uztomized handheld zalutions to

eat specific market neads.

n May 1999, we launched our

alrn Met™ wireless zervice, which
ravides on-the-go Internet access.
o modems. Mo phone lines.

As an essential part of HTML, the anchor tag, <A>, defines text that marks a
hypertext link for presenting difterent parts of the current document or com-
pletely difterent HTML documents. The <A> tag has the following attributes:

Href creates a hypertext link from the text between the opening and
closing tags.

Name creates an anchor that can be the target of another link.

Button creates a Palm OS—style button to represent a hyperlink using the
text between the opening and closing tags as the button’s caption.

The opening page of the Unwired Widgets example from Chapter 2 is
expanded here to demonstrate both text- and button-based hyperlinks using the
anchor tag. The code is provided in the build_12 example on the CD and the
changes are shown in Figure 3.17.

WwWWw.syngress.com

61

62 Chapter 3 * Building WCAs Using HTML

<htn >

<head>
<title>Product List</title>
<neta name="pal nconputi ngpl atfornf content="true">

<nmeta nane="pal m auncherrevi si on" content="1.0">
</ head>

<body>
<h1>Unwi red W dgets</hl>

<p>Find the wi dget that suits your needs.

<p>View our entire
product |ist or browse by starting with one of
the follow ng w dget sizes.

<p>l arge
<p>snall
</ body>

</htm >

Figure 3.17 Anchor Tag Example Using Both Text and Button Hyperlinks

«
Unwired Widgets

Find the widget that zuits your neads,

iew our entire product list or
browsze by starting with one of the
following widget sizes.

zmall

Www.syngress.com

=

Building WCAs Using HTML ¢ Chapter 3

As a general rule, links to a document containing other information in an
application should use a textual hyperlink. Consider using a button as a hyperlink
for links in a document that execute a command or submit data for processing.
When Clipper shows hyperlinks, it will append a wireless icon or a secure wire-
less icon to the link text if the link is to something over the Internet. This is done
automatically for you, and you can’t disable this. Because all of the links in the
example for Figure 3.17 are to local files, you do not see the wireless icon in the
screen shot.

Line Breaks:

Similar to the paragraph tag, the break tag,
, ends the current line and
starts a new line below for the next document element. The length of the break
is similar to the break between lines of sentences in a paragraph instead of the
longer break in-between paragraphs.

Lines of text that are not considered first sentences for paragraphs can be sep-
arated by adding break tags to the end of each line. The following example, pro-
vided in the build_13 example on the CD, shows two sentences separated by
paragraph tags and break tags. Notice the smaller spacing in the break tag. The
results are shown in Figure 3.18.

<htm >

<head>

<title>Palm Inc.</title>

<neta name="pal nconputi ngpl atfornf content="true">
<neta nanme="pal ml auncherrevi si on" content="1.0">

</ head>

<body>
<p>Palm Inc. sells the world' s favorite handhel d
conput ers.

We also license the Palm OS® to worl d-class conpani es.

<p>Palm Inc. sells the world' s favorite handhel d
conput ers. </ p>

<p>We also license the Palm to world-class

WwWWw.syngress.com

63

64

Ed

n

Chapter 3 * Building WCAs Using HTML

conpani es. </ p>

</ body>

</htnm >

Figure 3.18 Break Tags versus Paragraph Tags

alm, Inc. sells the warld's favorite
andheld computers,

e also licenze the Falm 056 to
arld-class companies.

alm, Inc. sells the world's favorite
andheld computers,

2 gl license the Falm 05@ 1o
arld-class companies.

Linking to Application
Pages and Web Sites

The attributes and values for the anchor tag were introduced earlier in this
chapter. There are, however, some caveats when creating hyperlinks in Web
clipping to elements in the same Web clipping application, different Web clipping
applications, and external Web sites.

In the Unwired Widgets example in Chapter 2, two hyperlinks were pre-
sented for displaying the entire product list or selecting a widget by shape, size, or
color. These hyperlinks presented two different pages within the same Web clip-
ping application:

product |ist

shape, size and col or

This example created and referenced all of the HTML documents in the appli-
cation in the same directory. A Web clipping application can be developed and built
with documents and images located in subdirectories. For example, suppose the
product list document was placed in a subdirectory—called products—underneath
the root application directory. The link for the product list would be as follows:

product |ist

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

Notice that the directory specification is relative to the root and not absolute
to the physical location of the document on the local computer.

When a Web clipping application is built from a local file set with subdirecto-
ries, the Web Clipping Application Builder collapses all the subdirectories into a
single directory to build the PQA file. The product list.html file in the last code
example is now located and referenced in the root directory of the PQA instead
of the products subdirectory.

In addition to linking to documents and images in the same Web clipping
application, one Web clipping application can link to a difterent Web clipping
application entirely. For example, Unwired Widgets might provide a link to the
Web clipping application file for their edge distributor Edge Resources, named
edge.pqa, also installed on the device. The link to the Edge Resources PQA
would be the following:

Edge Resoour ces

However, if the developer for the Edge Resources PQA stored all documents
in a subdirectory called documents oft the root, the link for the company profile
page in the application would not include the relative subdirectory. Web clipping
application subdirectories are flattened into one directory when built by the

WCA Builder. Therefore, a link to the profile.html page in the documents direc-
tory of the edge.pqa would not include the relative subdirectory:

Conpany Pr ofil e</ a>

Hyperlinks can also be created for remote pages and graphics located over the
air. For example, a link for the Palm OS Web page would be the following (pro-
vided in the build_14 example on the CD):

Visit the Pal m CS page

Notice that in Figure 3.19, the link to the Palm OS site adds an over-the-air
icon to the end of the link to represent that a wireless transaction must occur to
retrieve the page.

Figure 3.19 Link to the Palm OS Web Page

Lok L S—
‘ isit the Palm 05 pagas:

WwWWw.syngress.com

65

66

=
“'F!I‘\

Chapter 3 * Building WCAs Using HTML

Secure links (Secure HTTP [HTTPS]) can also be defined. Notice that in
Figure 3.20, the secure over-the-air icon—an over-the-air icon with a key to
represent security—is added to the end of the link.

Secure Site

Figure 3.20 Link to a Secure Web Page

eCuke Site Ti

Finally, links can be created to launch Palm OS applications. Chapter 10
describes using palm and palmcall URL links to run other programs on the Palm
OS device.

Example: Linking to www.unwiredwidgets.com

Because each tag defined in this chapter has an example to demonstrate its use,
the example for this chapter focuses on adding a link to the Unwired Widgets
Web page in the example from Chapter 2. Even though the static product infor-
mation stored in the application is current, adding a link to the main Web page
can keep customers up to date with recent company news and product specials.

The link to the main page will be added to the opening page below the
product list and shape, size, and color links. To separate this local link from the new
remote link, a horizontal line will be used to separate the two groups of links.

The following example is the revised HTML code for the application index,
provided in the Unwired Widgets example for Chapter 3 on the CD.The ren-
dering of the HTML is shown in Figure 3.21.

<htm >

<head>
<title>Product List</title>
<neta nanme="pal nconputi ngpl atfornf’ content="true">
<met a nanme="pal M auncherrevision" content="1.0">

</ head>

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

<body>
<h1>Unwi red W dgets</hl>

<p>Find the w dget that suits your needs.

<p>View our entire product
list or browse by shape, size

and col or</ a>.
<p><hr >

<p>Visit the Unwi r ed
W dget s</ a> honepage for conmpany news and product specials.
</ body>

</htnm >

Figure 3.21 Unwired Widgets Example with Web Page Link

Product Lis+ K N

Unwired Widgets
Find the widget that zuits your neads,

iew our entire product list or browse
bw shape, size and colar,

isit the Unwired Widgetss homepage
for company news and product
Epecials.

WwWWw.syngress.com

67

68

Chapter 3 * Building WCAs Using HTML

Tapping the Unwired Widgets link downloads the Unwired Widgets home
page (shown in Figure 3.22).This page has been designed with the Clipper
browser and Web clipping model in mind.

Figure 3.22 Unwired Widgets Home Page

Unwired Wid.. IIIK BdiGred
nwired Widgets 1

elcome to the Unwired Widgets
ebzite. Thiz iz a demonstration site
o the Swngresz: book Palm 05 Web
pplication Develaper's Guides:,

hiz zite may appear vizually
nexciting in pour deskiop web
roawser. This iz becauze the site has
aen formatted to be viewed by
ireless Palm 05 devices with limited
creen ared and connection speeds, &
uch as the Palm %l)

Www.syngress.com

Building WCAs Using HTML ¢ Chapter 3

Summary

The definition of HTML used in Web clipping applications and the Clipper
browser closely mirrors the HTML 3.2 definition supported by most of today’s
Web browsers. Some elements of the HTML 3.2 specification are not included in
Web clipping because they do not apply to the model or do not render well on
the small screens of Palm OS devices. Some tags are added by Palm, Inc. to their
Web clipping HTML that are Palm OS—specific, such as the META tags for
defining document characteristics specific to the Clipper browser.

In both the HTML 3.2 and the Web clipping specification, the header section
of an HTML document defines characteristics that are specific to the browser
itself. Aside from the <TITLE> tag, definitions in the header section generally do
not directly appear in the browser window itself. Instead, these tags define how
the document is treated and rendered by both the Palm.Net proxy and the
Clipper browser.

The body section defines the layout and content displayed in the browser
window. Text and images are defined and formatted by a wide variety of HTML
tags including block tags for formatting large blocks of text such as paragraphs,
and text tags for small blocks of text such as formatting phrases or lines. Nearly
all body tags in the HTML 3.2 specification are supported in the Web clipping
specification by the Clipper browser, with minor changes.

Solutions Fast Track

Starting HTML Documents with a Header

M Tags in the header section of an HTML document define properties that
apply to the entire document. This includes information such as the title
of the page, who made it, and if it is a “Palm-friendly” document. These
header tags are not shown directly to the user, although they might
affect how the page is displayed.

M The header is completely enclosed in a <HEAD> tag, starting with
<HEAD> and ending with </HEAD>. If you specity the header-
specific tags outside of a <HEAD> section, you will have an invalid
HTML document, and the browser might ignore their values.

M You should supply a title in each document and keep the length of this
text short.

69

70

%

Www.syngress.com

Chapter 3 * Building WCAs Using HTML

M The PalmComputingPlatform META tag tells the Palm.Net proxy that

the page was designed specifically for the Clipper browser. The
PalmLauncherName, PalmLauncherR evision, PalmLargelconFilename,
and PalmSmalllconFilename META tags can be added to your main
page to affect how the Web clipping application appears in the Palm OS
Launcher.

Providing HTML Content with
Block and Text Markup Body Tags

M Body tags define the content and page presentation of a Web document.

The most common body tags available in the HTML 3.2 specification
are available in the Web clipping HTML definition. Content with these
tags applied may render differently to fit the small Palm OS device’s
screen.

The body of the HTML document should start with a <BODY> tag
and close with </BODY>.

Block markup tags are used to describe sections of text. A new block of
text will be separated from the last block by whitespace. Block markup
tags format paragraphs (<P>), small and large headline text (<H1>,
<H2>, and so on), horizontal lines (SHR>), sizing and alignment of
images (), lists (SOL> and), and tables (SKTABLE>).

Text markup tags let you change the appearance at the character and
word level. These tags are generally used in short stretches of text to
provide some sort of special eftect, such as making the text boldface or
italic. Text markup tags include physical markup tags (bold , italic
<I>, and so on), font size and color, logical markup tags (strong
, emphasized , and so on), hypertext links (<A>),
and line breaks (
).

Linking to Application Pages and Web Sites

M A Web application can link to documents and images in the same Web

clipping application; it can be developed and built with documents and
images in the same directory or located in subdirectories. The directory

Building WCAs Using HTML ¢ Chapter 3 71

specification is relative to the root and not absolute to the physical
location of the document on the local computer.

M When a Web clipping application is built from a local file set with
subdirectories, the Web Clipping Application Builder collapses all the
subdirectories into a single directory to build the PQA file.

M One Web clipping application can link to a different Web clipping
application entirely. ‘

M Hyperlinks can also be created for remote pages and graphics located
over the air. Secure links (HTTPS) can also be defined.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Is the Document Type Description (DTD) for the Web clipping HTML
specification available?

A: Yes. Palm, Inc. has published both the 1.0 and 2.0 definitions in the appendix
of its “Web Clipping Guide” document. For the uninitiated, the Palm OS
HTML DTD defines the syntax used to develop HTML documents for the
Clipper browser. A DTD.itself is written in Standard Generalized Markup
Language (SGML), a meta-language used to define other languages.

Q: What happens if the Clipper browser encounters-a.tag not in the Palm OS
HTML specification?

A: Most of the time Clipper completely ignores the tag and any text inside the
tag. If the rogue tag appears to be a block tag; Clipper ignores the tags and
text between the tags. However, Clipper should rarely encounter tags that are
not in the specification, because the Web Clipping Application Builder combs
application documents and flags rogue tags as errors for the programmer to
resolve. The only time Clipper would have to resolve an invalid tag is when it

receives dynamic content from a remote Web server.

WwWWw.syngress.com

72 Chapter 3 * Building WCAs Using HTML

Q: Which tags in typical HTML documents deserve a review for the Web
clipping environment?

A: First, take a look for header tags <H4> through <H6> and consider reorga-
nizing the header structure to exclude these tags. Second, tables embedded
inside tables are not permitted in Web clipping. Third, consider converting
hyperlink images to a textual or button hyperlink. Finally, Clipper doesn’t
support any sort of browser-based scripting, so a site that depends on
JavaScript or VBScript will need to be redesigned.

Q: Where can I find a template for a new Palm OS Web page?
A: For plain pages, start with this template:

<htm >

<head>

<title>TITLE</title>

<met a nane="Pal nConputi ngPl atforni content="true">
</ head>

<body>

<h1>TI TLE<h1>

<p>TEXT</ p>

</ body>
</htm >

Save this to a new file, then start replacing the boilerplate text and adding
* additional tags. If you are designing a large site, you probably should start by
defining a more specific template and then build your pages based on that.

Www.syngress.com

Chapter 4

Using Images in

Web Clipping
Applications

Solutions in this chapter:

Dealing with Limited Screen Size
Specifying Nonlinked Images e
Using Colors and Grayscale

Optimizing Image Size

: Using the Palm Image Checker to

Validate Your Images

Adding Images to the Widget
Catalog Example

Widget Banner Ads Example

M Summary

M Solutions Fast Track

M Frequently Asked Questions

73

74

Chapter 4 * Using Images in Web Clipping Applications

Introduction

Because of the Palm OS device’s limited screen size and memory, coupled with
the limitations of wireless bandwidth, developers need to be much more careful
in the use of graphics in Web clipping applications (WCAs). However, in many
cases, images can be used to good effect to convey information economically.
Graphics can add a lot in terms of aesthetics and usability to your Web clipping
application. Well-designed navigational graphics can make it easier and more
intuitive for visitors to navigate around your site, and for applications such as Web
catalogs, a single image may convey more information in a small space than a text
description could.

If you’re familiar with optimizing graphics for display on the Web, many of
the same principles apply for Palm OS devices. You’ll need to take extra care to
keep size and color depth to an absolute minimum. Web clipping provides a
mechanism for storing graphics on the device to avoid downloading them over a
slow wireless link. You can link to these precompiled graphics both from local
pages as well as from pages downloaded over the Internet. The Palm.Net proxy
can also be of some help, because it will resample online graphics to
monochrome if the device making the request does not support color.

Web clipping can use the two most common Web graphic formats:
CompuServe Graphics Interchange Format (GIF) and Joint Photography Experts
Group (JPEG). Although the first version of Web clipping didn’t support color,
Palm OS 4.0 adds color on those devices that support it. Devices running version
4.0 of the Palm OS send device capability information to the Palm.Net proxy
server, which allows the proxy server to send images with the correct bit depth
back to the device. But because a large percentage of the Palm OS devices cur-
rently in circulation have only monochrome screens, you’ll want to make sure
that your graphics also look good on these devices.

Dealing with Limited Screen Size

Most of the Palm OS-based devices currently available have a screen size of 160
by 160 pixels. When you subtract the areas reserved for the title/menu bar and
the right-side scrollbar, you’re left with an eftective screen size of 153 pixels wide
by 144 pixels high. In addition, Palm OS 3.5 and earlier didn’t support horizontal
scrolling. Any table content, for instance, that went beyond 153 pixels was simply
cropped off; images wider than 153 pixels were simply removed by the Palm.Net
proxy, so they were never even sent to the device. Although vertical scrolling is

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

possible—either with the onscreen scrollbar or the rocker switch—you generally
should avoid graphics larger than 144 pixels high. Palm OS 4.0 does add the
capability to scroll horizontally, but this is awkward and should be avoided. This
hard limit on screen size means that Palm OS developers need to be very creative
in their use of page layout and graphics.

Throughout the rest of this chapter we refer to remote and local images and
pages. Remote means files that reside on a Web server; they are downloaded to the
Palm OS device every time they’re needed on a Web clipping page. Local images
and pages are compiled into the WCA when you run the WCA Builder. That
means they’re already available on the device and don’t need to be downloaded.
You can refer to local images from local pages as well as from pages stored on a
Web server. This is a useful technique; on pages downloaded from the Internet,
even those generated dynamically, you can refer to graphics already present on
the device.Your visitors don’t have to download the graphics over a slow wireless
connection; all that’s sent is the text of the tag.

You include images in your Web clipping pages using the familiar Hypertext
Markup Language (HTML) tag. Table 4.1 details the required and
optional attributes for the tag. Later, we look at when and how to use some of
the optional attributes. Note that because Web clipping does not support
imagemaps, the ismap and usemap attributes are not supported. You also can’t use
images as <FORM> submit buttons.

Table 4.1 Required and Optional Attributes of the Tag

Attribute Definition

Src Required: Identifies the URL for the image file.

align Optional: Identifies the alignment of the image in
relation to any text around it.

alt Optional: Describes the image in case graphics are turned
off on the device.

border Optional: Indicates the border width around the image;
0 (or no border) by default.

height/width Optional: Specifies the height and width (in pixels) of the
image file as displayed.

hspace/vspace Optional: Specifies the amount of space—either horizon-

tally or vertically—between the image as displayed and
any text around it.

WwWWw.syngress.com

75

76

Chapter 4 * Using Images in Web Clipping Applications

How you use the tag depends on whether you intend to refer to
local or remote images, and also on whether the link is on a local or remote
page. The basic syntax for the tag is just the same as it is in regular HTML:

<inmg src="imgeOl.gif">

This expects the file image01.gif to be present wherever the page referencing
it 1s located. So if this link were on a remote page, the image file would also need
to be in the same folder on your Web server. If this link is on a local page of the
WCA, it will expect the image to also be available locally. Beware when using
links to images in subfolders; Web clipping does not support subfolders, and it
will flatten the local folder hierarchy when compiling the WCA. See the
“Flattened Folder Hierarchy” sidebar for more information.

Developing & Deploying...

Flattened Folder Hierarchy

Web developers customarily keep images in subfolders to keep their root
folders less cluttered. Sometimes they will use multiple subfolders. For
example, this might be a typical structure:

Document Root/
i ndex. ht m
about . ht m
contact. htm
/i mages
/top_nav/
i mg01. gi f
i ng02. gi f
| ogo. gi f
/ bott om nav/
i myg03. gi f
i mg04. gi f
| ogo. gi f

Continued

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

However, Web clipping does not support subfolders. The folder
hierarchy will be collapsed when you compile your WCA. This has a
couple of ramifications that are important to remember when writing
your links.

If the images are referenced in any of the local WCA pages, the
W(CA Builder will move those graphics to the root folder level and alter
any links on those pages so that they refer to images only in the root
folder. However, if you refer to local graphics from your remote pages,
make sure that you don’t use folder names:

This tag will not work—that folder does not exist on the WCA. The
correct way to write this link would be as follows:

If you look again at the folder hierarchy, you may notice another
potential problem. Two folders have an image with the same name
(logo.gif). Moving these both to the root folder would result in two files
with the same name. When the WCA Builder tries to compile a page
referencing both of these, it will display an error due to the duplicate
filenames.

Although the folder hierarchy is flattened in the local WCA, you can, how-
ever, continue to use subfolders on your remote pages. You just need to be careful
when writing the links. Consider the following link:

<ing src="top_nav/inmge0l.gif">
If this link is on one of the local pages compiled into the WCA, the Builder
will move the image into the root folder, and rewrite the link accordingly. But if

this code is on a remote page, your Palm OS device will download the image
from the fop_nav folder on your Web server.

WwWWw.syngress.com

77

78

Chapter 4 * Using Images in Web Clipping Applications

Use of the Locallcon META Tag

As we mentioned earlier, you can reference local graphics even in remote pages
downloaded from the server. If the graphic in question is referenced even once in
a local page (that 1s, one of the pages in the WCA), it will already be compiled
into the WCA. But what if you want to store a graphic locally that’s referenced
only from remote pages? The Palm OS provides a special META tag for this pur-
pose: Locallcon. Use this tag to instruct the WCA Builder to compile graphics
into the WCA that are not referenced in any of the local pages. This provides a
very powerful means of preloading all the graphics you’ll need, so that the user
doesn’t have to download them when viewed.

<htm >
<head>
<met a name="pal nconputi ngpl atforni content="true">
<meta name="Local | con" content="w dget01.gif">
<meta nane="Local | con" content="wi dget 02.gif">
<title>Unwired Wdgets</title>
</ head>
<body>
...etc

Use the Locallcon META tag in the <HEAD> section of your index page.
Placing these tags on your index page isn’t required—they can be on any local
page—but keeping them all together on the main index page makes it easier to
debug any image problems later. You’ll need one tag for each graphic you want to
include (see Figure 4.1).

NoTEe

You can use the Locallcon META tag to include HTML pages in your WCA
that are not linked from any local pages. That way, you can refer to
these pages from remote pages, exactly like you would for graphics. In
this case, the format of the META tag would be as follows:

<meta name="Local | con" content="about.htm ">
You would refer to this page from a remote page with this link syntax:

About Us

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.1 Referencing Images with the Locallcon META Tag Includes Them
in the Compiled WCA

O irbes hilml - WIS Bolidie

Fis Help

Harra | Sie| Tupe | bbb [

n_]rill-:-: haml IEE HTHL Dacumsn IS5 300 12 3P

B crgress o KB GF Insge 541 7401 353 P

B wadget . gif KB GIF Image 054 A0 12T B

B wadgetil® i B GIF Image 54 20 1020 P

4 Fil=y 130 1904 byes) Uroompes |1 5K [1610 bates] Compress:

Specifying Nonlinked Images

We’ve used the Locallcon META tag to include images in our WCA that are not
referenced from any local files—now how do we reference these graphics from
our remote pages? The syntax of the link is as follows:

<ing src="fil e: nywca. pqa/ wi dget 01. gi f">

Remember, we also discovered that the WCA Builder collapses the folder
hierarchy, so don’t include any folder names in the link. All images are assumed to
be in the root folder of your WCA.

The use of nonlinked images compiled into the WCA is a powerful way to
drastically reduce the amount of data your users need to download over a slow
wireless link. All you need to send over the air is the link text, so the image will
load almost instantly. For instance, we could precompile all of the Unwired
Widgets product shots into the WCA, so that wireless visitors could browse the
catalog and pull up product detail pages almost instantly. However, the drawback
to this is that your available stock of images is frozen; the only way to add more
images is to have your users download and install a new WCA.You’ll need to
weigh the benefits of speed against how often you think your product assortment
is likely to change.

Figure 4.2 shows a sample page that you would place on the Web server. This
file is also available on the accompanying CD as figure4_2.html.

79

WwWWw.syngress.com

80 Chapter 4 * Using Images in Web Clipping Applications

Figure 4.2 Sample Remote Page Linking to Local and Remote Graphics
(figure4_2.html)

<htm >
<head>
<nmeta name="pal nconputi ngpl atforni content="true">
<title>Unwired Wdgets</title>
</ head>
<body>

Thi s page has been downl oaded from the Wb server, via the
Pal m net proxy.

<hr >

<inmg src="fil e: nywca. pga/ wi dget 01. gi f " >

This graphic is local to the WCA
so it |oads inmediately.

<hr >

<ing src="inages/w dget 03. gi f">

This renpte graphic is on the Wb server, in the "inmages" folder, so it
must first be converted by the Pal mnet proxy, then downl oaded to
the Palm

</ body>

</htm >

For the example in Figure 4.2 to work, you’ll need to create a WCA that
contains the graphic file widgetO1.gif, using the Locallcon syntax we looked at in
the previous section, and build this as mywca.pqa. This WCA is also included on
the companion CD.

Table 4.1 listed the optional attributes of the tag. The main ones of
interest in this example are the height and width attributes. Generally, in regular
Web pages, always including these attributes, as well as the ALT text, is a good
idea. However, unless youre purposely resizing images, as we look at later, you
can save on download times by omitting these attributes from your remote pages.
You’ll notice that in this code we left these attributes out entirely in order to save
a few bytes of download. On a small page, this might not seem like a lot, but over
a slow wireless link, where every byte counts, anything you can do to speed
downloads is probably worth it. Web clipping under Palm OS 4.0 allows people

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

to choose to switch off graphics completely, so if your images provide navigation,
you may want to keep informative ALT tags on these, but you could omit ALT
tags on purely decorative graphics or on product images.

The other attributes of the tag work almost identically to regular
HTML. One difference worth noting is that Clipper won’t automatically put a
border around images that are used as HREF links. If you want this, you need
to set BORDER=“1". Currently, Web clipping supports only border widths of

one pixel.

Using Colors and Grayscale

We take a slight detour here to briefly explain the intricacies of color bit depth.
We take two factors into account when discussing bit depth: the bit depth of the
image file and the capabilities of the display device.

Bit depth 1s a method used to describe the number of possible discrete colors
that a graphic file is capable of producing. For instance, a 1-bit image has exactly
one bit, or binary number, to describe the color of each pixel. The options are
pretty limited: O or 1, which equates to either pure black or pure white. A 2-bit
image, on the other hand, has a vastly expanded palette: four distinct shades, also
referred to as grayscale. Four-bit grayscale allows us to display just 16 distinct
shades of gray, whereas 8-bit grayscale allows us to display continuous-tone
photographic images with 256 shades of gray. Figure 4.3 shows the levels of detail
available with these four grayscale bit depths.

Figure 4.3 Bit Depth and Shades of Gray

1-bit depth 2-hit depth 4-hit depth 8-bit depth
2 shades 4 shades 16 shades 256 shades
486 bytes 635 bytes 1710 bytes 4520 bytes

The early Palm OS models could display just black and white (or black and
greenish, to be more exact). Any Palm OS device with the Dragonball EZ orVZ
processor and with Palm OS 3.5 or later has the capability to do 4-bit grayscale.

WwWWw.syngress.com

81

82

Chapter 4 * Using Images in Web Clipping Applications

(The exceptions are the Palm IIlc and the newer Palm m505, which we discuss
later.) However, the original Web clipping specification allowed for only four
shades of gray, presumably as a way of limiting the size of files downloaded to

the slower Palm VII. The Palm.Net proxy actually converts any remote images to
2-bit grayscale before downloading to the device. The original Query Application
Builder (QAB) also converted images to 2-bit before compiling into a WCA. The
four colors you have available for most devices are black, silver, gray, and white.
Table 4.2 lists these colors, along with their hexadecimal equivalents.

Table 4.2 Available Screen Colors with Hexadecimal Values

Color Name Hex
Black #000000
Silver #C0C0CO
Gray #808080
White #FFFFFF

Palm OS 4.0 now allows for up to 4-bit grayscale and either 8-bit or 16-bit
color on devices that support these bit depths. The WCA Builder included with
the Palm OS 4.0 Software Development Kit (SDK) allows you to specify dif-
ferent bit depths in your WCA (see Figure 4.4).

Figure 4.4 Specifying the Bit Depth of Your WCA in the WCA Builder

Buald Pipa EHE

T = &l | [EmE

Fibe ppsores: |.--|cgt': [t

P4 Vemsior: |11
HTHL Ercodng |
POST Ercodng |

™ tatal o Liser. | Fory =]

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Eight-bit color will give you 256 colors, which on a screen the size of the
Palm OS device should give you more than enough clarity to display full-color
photographs. Eight-bit color yields a possible 65,000 colors, which takes full
advantage of the new m505 Palm and Visor Prism.

Minimizing Bandwidth with Black and White

If you take a look back at Figure 4.3, you’ll notice that file sizes increase signifi-
cantly with added bit depth. If your visitors are using a device with Palm OS 3.5
or earlier, they will never see all of the shades of gray in the 4-bit and 8-bit
images. However, the Palm.Net proxy is still going to have to download the full
size image and reprocess it to 2-bit before sending down to the device.

Unless your images demand high resolution or full color, you can save your
visitors a lot of time (and money, if they are using a per-kilobyte wireless plan) by
restricting your graphics to the fewest possible colors. Line art images, for
instance, seldom require the full range of grays. If your images are mainly line art
or graphical text, consider restricting them to pure black and white. Doing so
will increase the speed of download of your pages and result in a more responsive
WCA. The Picture Viewer included with the Palm OS 4.0 SDK allows you to
experiment with different bit depths and preview how they’ll look after conver-
sion by the Palm.Net proxy.

Smoothing Things Out with Grayscale

Photographic images generally won’t work well in black and white. If you’re using
a device running Palm OS 3.5, you have the option of using 2-bit grayscale,
which gives you four shades of gray. Although photographic images don’t convert
well to four shades of gray, at least with the default settings on the Palm.Net
proxy, you can often improve the quality significantly by using the contrast and
brightness controls in an image-editing program such as Adobe Photoshop or
Jasc’s Paint Shop Pro to convert the image to grayscale yourself. Good image-
editing programs also allow you to apply dithering, which can approximate more
shades of gray by using closely spaced dots of the available colors.

Using Full Color on Palm OS 4.0

Devices running Palm OS 4.0 can display higher bit depths and color images.
Monochrome devices such as the Palm VIIx or Palm Vx are capable of displaying
up to 16 shades of gray. The Palm m505 can display 65,000 different colors. As

color Palm OS devices become more popular, you can design much more visually

WwWWw.syngress.com

83

84

Chapter 4 * Using Images in Web Clipping Applications

appealing mobile Web sites, but to accommodate the large current installed base
of monochrome devices, you should ensure that your color images convert well
to 4-bit grayscale. This is especially true of navigational images that use colored
text on a colored background—when converted to four shades of gray, the text
can eftectively disappear, rendering your navigation useless to users with
monochrome devices.

Optimizing Image Size

The size of files downloaded over the Internet should always be a concern to
Web page designers, but this is even more critical when dealing with the
extremely slow speeds of typical wireless links. Optimizing is the process of
preparing your images so that their file sizes are as small as possible. You can
achieve this in a number of ways.

The first and most obvious way to decrease file size is simply to decrease the
physical dimensions of your image. The visible area of the Palm OS screen is 153
pixels wide by 144 pixels high.Versions prior to Palm OS 4.0, didn’t support hor-
izontal scrolling; the Palm.Net proxy server simply removed any images wider
than 153 pixels before sending the page down to the device.You can make
images taller than 144 pixels, but users then need to scroll to see them. Although
there’s no physical reason you can’t fill the screen with an image, it’s best to keep
images as small as possible.

A major factor aftecting image file size is the effectiveness of the compression
scheme used to save it. Compression 1s the process of removing extraneous infor-
mation from the image in order to make it take up less space. Both of the file
formats supported by Web clipping perform some compression on the image as
they save it. However, in this regard, all image-editing programs are not created
equal. Certain programs perform a much better job of optimizing the quality of
the image while simultaneously creating a smaller file size. Macromedia Fireworks
is a program specifically designed for producing graphics that are optimized for
the Web. At identical image quality, it will typically make significantly smaller file
sizes than programs such as Adobe Photoshop. One especially useful feature in
Fireworks is the Export Preview screen, which allows you to view the eftects of
varying file formats and color depths and make a visual comparison of image
quality versus file size (see Figure 4.5).

Although optimizing images can make a major difference in regular Web
pages, it’s not quite so critical in Web clipping. The reason is that your actual GIF
or JPG file is not downloaded directly to the device. All graphics downloaded to

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Web clipping applications are first processed through the Palm.Net proxy, which
converts them to its own 2-bit grayscale bitmap format before sending them over

the air. The WCA Builder does the same for local graphics. The conversion pro-

cess 1s actually quite efficient; identical graphics in either format, but with varying

levels of compression, will generally convert down to the same size. However,

your remote images still need to be downloaded to the Palm.Net proxy, so opti-
mizing them for smaller file sizes is still a good idea.

Figure 4.5 Fireworks’ Export Preview Screen Shows File Sizes for Various

Color Depths

E bl Fieviee

Optiore: | Fle | Arirestion|
Foema: [+ =] =
e [o
L
CTT T |
CIE LT
Iifl,ﬁl._._ﬁ_ﬂl |'.;.r-..-.:“.-..-\., :I
e | o

[F Putmanst Uenpid Codoes
[T isitsed

]
vl

Craliry 2 1)

Bz i

=
3 g
4835 | pos DER Sk bpE

I =l

[v gl 2 Ogld el =«

(=]

|:|:|;-.:.||

However, this efticiency does come at some cost. Although most small

graphics, particularly line art and text, usually convert quite well, photographic

images frequently look bad after conversion. This is especially true if the image
you start with is in full color. The Palm.Net proxy will first need to convert the

image to grayscale, discarding all color information. But, it has no way of

knowing which colors are important or contain critical detail. It then attempts to

represent the full range of tones in the original with just four shades of gray. If

you intend to use photographic images or other graphics with very subtle

WwWWw.syngress.com

85

86

Chapter 4 * Using Images in Web Clipping Applications

shading, use an image-editing program to first convert the graphics to grayscale
yourself. Most image-editing programs have sophisticated controls for brightness
and contrast that allow you to get a much more pleasing conversion. In some
cases, particularly with faces, it may be necessary to use image-editing tools to
selectively convert some areas difterently than others in order to end up with
pleasing images.

Using the Palm Image Checker

to Validate Your Images

Palm, Inc. includes a program with the WCA Builder called the Palm Image
Checker (PIC), which allows you to preview how your images will look on a
Palm OS device after the conversion process (See Figure 4.6). In the folder that
includes the WCA Builder (or Query Application Builder, if youre using the 3.5
SDK), look for a file called pic.exe.

Figure 4.6 Previewing a Graphic in the Palm Image Checker

ﬂl".llln Imaije [hizcke - local il M= E
Fi= Edt Yew [mapr Windom Hep

= B 7
R local.gi M= E

Thig I8 & besd kocal imags

- LOCAL -

F emdy

The Palm Image Checker is not a sophisticated program. In fact, all it does is
show you the result of processing your images through the Palm.Net proxy.
There’s no option to save, although you can copy and paste into your image-
editing program. PIC also allows you to resize images, but because it doesn’t have
a Save option, you're probably better off doing the resizing in your image-editing
software.

Before compiling graphics into your Palm Query Application (PQA), or
uploading to your Web server, particularly if image quality 1s critical, it’s a good
idea to quickly check them through PIC. Figure 4.7 shows a small JPG image
and the result of previewing it through PIC. Although the subjects are vaguely
recognizable, it’s not the most pleasing rendition.

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4 87

Figure 4.7 PIC's First Pass at Converting a JPG Image

5 Palm Image Checker - mae.geq W= E

Fasdy s

Programs such as Adobe Photoshop or Jasc’s Paint Shop Pro have sophisti-
cated controls for selectively adjusting brightness and contrast. We used
Macromedia Fireworks to convert the original image to grayscale, and then per-
formed some minimal adjustments of brightness and contrast. Figure 4.8 shows
the difference in PIC.

Figure 4.8 The Same Image Converted to Grayscale and Adjusted

5 Palm lmage ickes - map? il

WwWWw.syngress.com

88

Chapter 4 * Using Images in Web Clipping Applications

Although you're still limited by having only four shades of gray to represent
the full range of colors in the original image, you can see that even minimal
changes to the image with an image-editing program can improve the final result.

When previewing images in PIC, bear in mind that this is still using your
high-resolution desktop screen. When you display the image on your Palm OS
device’s greenish or grayish screen, it will look different. This is also subject to the
brightness and contrast settings on the particular Palm OS device, something you
may have no control over.

Experimenting with Color Depth

In the first version of the Query Application Builder, you had no choice
regarding color depth; all images were reduced to 2-bit grayscale during the build
process. The Palm OS 4.0 SDK ships with an updated PIC 1.5 that adds the
capability to preview your images in different bit depths. Figure 4.9 shows the
same image in 2-bit grayscale, 4-bit grayscale, 8-bit color, and 16-bit color, from

left to right.
D M= |
[E:

Bear in mind that images with higher bit depth will take more space to store
in the WCA. If you just have a few images, this shouldn’t be a problem, but if you

Figure 4.9 Previewing Different Bit Depths in PIC

ml—'.llln Imaige Chiecked - map i

have a lot of them, you could potentially end up with quite a large WCA. As an
indication, a simple WCA with our earlier sample image encoded at the 4-bit
depths shown yields the file sizes shown in Table 4.3.

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Table 4.3 Relative File Sizes for Various Bit Depths

Bit Depth File Size
Base JPEG 6.89KB
2-bit gray 2.06KB
4-bit gray 7.27KB
8-bit color 15.6KB
16-bit color 36.4KB

When building your WCA, you need to specify at what bit depth to store the
images (see Figure 4.10). If all of your images are already 2-bit gray, you don’t
need to store them at any higher bit depth. But if your images are in color, and
you would like suitably equipped visitors to see these at their best, select higher.
Do bear in mind the relative file sizes for each, as shown in Table 4.3.

Note that these settings apply only to local images stored in the WCA.The
Palm.Net proxy will still intercede and downshift remote graphics to the appro-
priate bit depth for the requesting device. Palm OS devices running Palm OS 4.0
now send device capability information to the proxy server, which allows the
proxy server to send images with the correct bit depth back to the device.

NoTE

If you look at Figure 4.10, you'll also notice a drop-down box for PQA
Version. The default is 1.0. You can also select 2.0, but doing so will
build your WCA in such a way that it will work only on Palm OS devices
running OS 4.0 or later. If you try to run it on version 3.5 or earlier, you'll
get an error message. Unless your WCA takes specific advantage of some
feature unique to OS 4.0 (such as cookies or cache control), we recom-
mend using version 1.0. This makes your Web clipping application view-
able by the largest number of people. A META tag specifies this version
number, but this can only be used in local pages; it is ignored for remote
pages downloaded over the Internet.

<nmet a nane="Pal nPQAVer si on" content="2">

WwWWw.syngress.com

89

920

Chapter 4 * Using Images in Web Clipping Applications

Figure 4.10 Specifying Bit Depth with the WCA Builder

Ouild POA. .. EE

soveie 23 c0e E I a—

] hoe pga

Fibe e |r|.-.-ca]

POAVemion: |10
HTHL Encodeg |
FOST Enceding. |

I el 5 Ugi |"':-l_t

Resizing Images

A common trick in regular Web page design is to use a small graphic—often
only 1 pixel in size—and “stretch” it by overstating the width or height attributes.
This doesn’t work the same way in Web clipping. You can reference stretched
images in local pages, and the WCA Builder will resize the image before com-
piling it into the WCA. For example, let’s say you have a graphic that’s five pixels
wide and reference it like this in a local page:

When you run the WCA Builder, it will convert this graphic to 153 pixels
wide before including it in the WCA. However, you can not reference the same
image more than once with difterent height or width attributes. For example, this
will not work:

<inmg src="ing0l.gif" w dth="100">

Because each file in a WCA must have a unique file name, the WCA Builder
will display an error if you try to compile these lines.

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

You can reference the same remote graphic with difterent sizes if it is down-
loaded over the Web. In this case, each remote graphic will be resized by the
Palm.Net proxy before being downloaded to your device, so this doesn’t neces-
sarily save you any download time.

PIC allows you to resize images and preview how they will look on a Palm
OS device (see Figure 4.11), but again, because it doesn’t have a Save option
within PIC, you should probably do this in your image-editing program.

Figure 4.11 Resize and Redepth Images in PIC

-4 Palm Image [hecke - map. jpi 0| =
Fi= Edt Yew |mape ‘Window Help

=| 2] 2]
T [|
3 ey 100 ek E

q
_ Concrl |
Heght: I1:5 ek
o 4 ol Depthe [0 =]
. THEL
Z-bul larag
b Gr

B4 Colod
Aoy | MHUH &

Adding Images to the
Widget Catalog Example

Now that you know how to include both local and remote images in a WCA, let’s
put this to practical use. Because the Unwired Widgets company sells widgets in
various shapes and sizes, wouldn’t it be nice to allow visitors using a Palm OS
device to browse the product catalog? We already discussed the possibility of
storing all of the catalog images as local files on the WCA. For this example, we’re
going to assume that the product assortment changes too frequently to allow this,
so we’ll have to download those images over the Internet. But we’ll still store
some more-frequently used images locally. We’ll also add a dash of color, so that
visitors with color-enabled devices get to justify why they bought them.

The first task is to decide which images to include locally in the WCA. The
obvious choice is the front “splash” page, which will have full-color images and

WwWWw.syngress.com

91

92 Chapter 4 * Using Images in Web Clipping Applications

serve as our home navigation page. We’ll also make a title graphic for each sub-
page, again in full color. The code for this page is shown in Figure 4.12 and is
also available on the companion CD.

Figure 4.12 Basic Code for Home Page (figure4 12.html)

<htm >

<head>

<met a nane="Pal nConputi ngPl atforni content="true">
<meta name="Local | con" content="hdr_about.gif">
<meta name="Local | con" content="hdr_products.gif">
<met a nane="Local I con" content="hdr_contact.gif">
<met a name="Local | con" content="hdr_square.gif">
<meta name="Local | con" content="hdr_round.gif">
<title>Unwired Wdgets</title>
</ head>
<body>
<tabl e wi dth="153" border="0" cellspaci ng="0" cell paddi ng="0">
<tr>
<td col span="2">
<inmg src="toplogo.gif" w dth="153" hei ght="50">
</td>
</tr>
<tr>
<td>

</ a>

</ a>

</ a>
</td>
<td>

Www.syngress.com

Continued

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.12 Continued

</td>
</tr>
</t abl e>
</ body>
</htm >

This page uses a simple table structure to hold several independent graphics
that make up the image. (See Chapter 6 for more information on using HTML
tables for laying out your WCA pages.) If you look at the image file dimensions,
you’ll see that this results in a page that’s 153 pixels wide by 140 pixels high. We
could, of course, have used a single full-screen graphic, but this page is also going
to provide links to the other pages in the WCA, so we needed to be able to
insert links; Web clipping does not support imagemaps. Figure 4.13 shows how
this page would look on a color Palm device (see the color image on the CD
that accompanies this book). The orange backgrounds of the independent
graphics merge to give the impression of one large image with floating red text.
A quick check with PIC ensures that these colors are still readable when con-
verted to 2-bit grayscale. The HREF links wrapped around each of the naviga-
tion graphics means that these are clickable. When a user clicks one of these, the
Palm OS device reverses the colors of that image to indicate that it has been
clicked (a very neat feature that on a regular Web page would require several lines
of JavaScript).

Figure 4.13 Our Colorful Home Page on a Palm m505 (figure4_13.tif)

Unwired Wid._ L

Welcome to

Unwired Widgets

About Us
Products

iContact

\ S

WwWWw.syngress.com

93

94

T

g Y

Chapter 4 * Using Images in Web Clipping Applications

Notice in the code in Figure 4.12 that we’ve also used Locallcon to reference
some graphics that are not used on this page, but that we’ll want to refer to from
some of our remote pages. If you'd like to construct this example, save the code
in Figure 4.12 to your disk as home.html. You won’t be able to build it just yet,
until we create some of the linked pages.

Mindful of keeping over-the-air transmissions to a minimum, let’s now add an
intermediate product menu page (see Figure 4.14). This will allow visitors to
choose whether they want square or round widgets before retrieving the product
listing from our server. This code is available on the CD.

Figure 4.14 Intermediate Product Menu Page (figure4 _14.html)

<htm >
<head>
<meta nanme="Pal nConputi ngPl atfornf content="true">
<title>Product Menu</title>
</ head>
<body bgcol or ="#ffcc00">
<tabl e wi dth="153" border="0" cellspaci ng="0" cell paddi ng="0">
<tr>
<t d>
<i ng src="hdr_uw ogo. gi f">
<ing src="hdr_products.gif" w dth="133" hei ght="20">
</td>
</[tr>
<tr>
<td hei ght="100">
W nmake a wide variety of widgets to suit all your needs.
Choose fromthe links below to visit our site and view a
full product listing.
<p align="center">

Square W dget s</ a>
</ p>
<p align="center">

Continued

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.14 Continued

Round W dget s</ a>
</ p>
</td>
</[tr>
<tr>
<t d>
<ing src="ftr_unwi red.gif">
</td>
</tr>
</t abl e>
</ body>
</htm >

Notice a few things here. The <BODY> tag now has a bgcolor attribute. This
allows us to set the background of the page to the same color as the header and
footer graphics, resulting in a much more cohesive page layout. Do be careful
with this attribute, because graphics aren’t always converted to grayscale with the
same colors as the page background.You may need to do a little experimenting
here to get a scheme that works well in both grayscale and color. If you have a
color Palm OS device, this page will give you a full-screen, light orange back-
ground with a red text header and footer. The page content is just black text. The
header includes a miniature version of the Unwired Widgets logo we created ear-
lier. On a monochrome Palm OS device, the background should be a light silver,
with heavier gray for the header and footer text. Again, we used PIC to quickly
verify that the screen would be readable in grayscale.

We’ve also broken the top header graphic into two pieces. The left-side small
logo now links back to the home page, a convention we’ll repeat throughout the
WCA. Likewise, the footer graphic also links back to the home page. If you click
on either of these graphics, the device will briefly reverse the colors—to signity
that you've clicked the graphic—before returning you to the home page. Because
this page 1s quite short and would not fill the device screen, we’ve added the
attribute height=“100" to the middle table cell to force the page to fill the screen.

If you’re constructing these examples yourself, save the code in Figure 4.14 as
prod_menu.html. You’ll also find this on the companion CD as figure4_14.html.

WwWWw.syngress.com

95

96

Chapter 4 * Using Images in Web Clipping Applications

Now, we’ll construct a sample product-listing page that might be returned by
the Web server (see Figure 4.15, also on the CD). Here we’ll begin to see the
benefit of storing images locally and referring to them from remote pages.

Figure 4.15 Product Listing Code Returned from the Server (figure4 15.html)

<htm >

<head>

<nmeta nanme="Pal nConputingPl atform' content="true">

<title>Products</title>
</ head>

<body bgcol or ="#f f cc00" >

<tabl e wi dth="153" border="0" cellspaci ng="0" cell paddi ng="0">

<tr>

<t d>

<ing src="fil e: wi dgets.

<inmg src="fil e: wi dgets.

</td>
</[tr>
<tr>
<td hei ght="100">
34345
<a href="http://cgi.unw
round- hol e adapt er </ a>
34875
<a href="http://cgi.unw
round- hol e adapt er </ a>
34876
<a href="http://cgi.unw
round- hol e adapt er </ a>
34691
<a href="http://cgi.unw
round- hol e adapt er </ a>
</td>

</[tr>

pga/ hdr _uwl ogo. gi f">
pga/ hdr _square. gi f">

redwi dgets. com prod_det ai |
 Red

redw dgets. com prod_det ai |
 G een

redw dgets. com prod_det ai |
 Bl ue

redw dgets. com prod_det ai |
 Yel | ow

. cgi ?sku=34345" >

. cgi ?sku=34875" >

. cgi ?sku=34876" >

. cgi ?sku=34691" >

Www.syngress.com

Continued

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.15 Continued

<tr>

<t d>

</td>
</[tr>
</ tabl e>
</ body>
</htm >

R emember, this is code that would be returned from the server and down-
loaded to the device. In a real application, the listing section of this page would
likely be generated from a Common Gateway Interface (CGI) script, based on
the query string sent from the prod_menu.html page (Figure 4.14). Notice in the
first table row we use the sre=“file:..” format of the tag to refer to
graphics resident on the Palm OS device, saving our visitors the need to down-
load these files. We also use this format for the link back to the home page,
which i1s also local to the WCA:

Further links on each individual product would lead to a product detail page,
which would likewise use local graphics, as well as probably a link to a remote
product shot. We've used <TD HEIGHT=“100"> on this page again, so that if
there are just a few products, the footer graphic is placed at the bottom of the
screen. Had there been more products than would fit on one screen, this attribute
would be overruled and the page would simply push down as far as was needed.

Widget Banner Ads Example

Banner advertisements are either the bane or the savior of the Web, depending on
whom you ask. Either way, a lot of sites depend on these little HTML snippets
for revenue or to drive traffic. Over time, some standards have evolved in the Web
world for dimensions and file sizes for these little ads. No such standardization
has taken place yet on the Palm OS. Moreover, the screen size and bandwidth
limitations of wireless means that developers need to make extra efforts to ensure

WwWWw.syngress.com

97

98

Chapter 4 * Using Images in Web Clipping Applications

that banner ads don’t interfere with the Web clipping’s main function and don’t
overly inconvenience our wireless site’s visitors.

Unwired Widgets wants to include banner ads for a select few partners on
their wireless Web site. They considered using banner ads generated on a remote
server, as is typically the case with Web banners, but decided this would nega-
tively aftect the experience of their site visitors using slow wireless links.
Consequently, they decided to embed the banner ads into the WCA, so that they
would load instantly. The drawback to this is that adding new banner ads isn’t
easy—other than having people install a new WCA.

We first need to decide on dimensions for these banners. Obviously, width is
decided for us—153 pixels is as much as we can use. Most banner ads tend to be
placed towards the top of the page, or “above the fold.” Given that we have only
144 pixels of visible space, we need to make a hard decision about how many of
these pixels we can spare for banner ads. For this example, let’s say we’ll make our
banners 153 by 25 pixels.

The next thing to do is go back to our home page and use the Locallcon
META tag to include the banners we’ll use. Add these lines to the <HEAD>
section of home.html (the code shown in Figure 4.12):

<meta nane="Local | con" content="banner01.gif">
<met a nane="Local | con" content="banner02.gif">

<met a nanme="Local | con" content="banner03.gif">

You could continue like this for however many banners you want to prein-
clude in the WCA.You don’t have to use all of these right away—if you know
that you’ll be doing a special deal or running a promotion with a partner in a
tew months, you could compile these banners into the WCA to be used later.

Now we’re going to put these banners on some pages. Because Unwired
Widgets has weekly specials on their regular Web site, we’ll put a banner ad for
the Palm-friendly version of this page on the WCA. Because this is a constant
teature, we’ll put this first banner on a local page of the WCA, the
prod_menu.html we constructed in Figure 4.14. The modified HTML is shown
in Figure 4.16, which is also available on the companion CD.

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.16 Revised Product Menu Page with Banner Ad (figure4_16.html)

<htnm >
<head>
<met a nane="Pal nConputingPl atfornm' content="true">
<title>Product Menu</title>
</ head>
<body bgcol or ="#ffcc00">
<tabl e wi dth="153" border="0" cellspaci ng="0" cell paddi ng="0">
<tr>
<t d>
<i ng src="hdr_uw ogo. gi f">
<ing src="hdr_products.gif" w dth="133" hei ght="20">
</td>
</tr>
<tr>
<td hei ght="75">
W nmake a wide variety of widgets to suit all your needs.
Choose fromthe links below to visit our site and view a
full product listing.
<p align="center">

Squar e W dget s</ a>
</ p>
<p align="center">

Round W dget s</ a>
</ p>
</td>
</[tr>
<tr>
<t d>

<inmg src="bannerO01l. gi f">

<ing src="ftr_unw red. gi f">

Continued

WwWWw.syngress.com

29

100

o

Chapter 4 * Using Images in Web Clipping Applications

Figure 4.16 Continued

</td>
</[tr>
</tabl e>
</ body>
</htm >

Note two changes here. As you can see in Figure 4.16, we added our first
banner just above the footer graphic. The link associated with this graphic links
to a fictitious mobile_specials.html page we might have on our server. Because
both this page and the banner graphic are local to the WCA, we just link
directly—no need for the src=“file:..” syntax. The other change we made was
reducing the height of the central <TD> tag so that everything still appears on
one screen. Our completed page is also available on the companion CD as
prod_menu.html, ready to be compiled into a WCA.

Now, as shown in Figure 4.17, let’s put an ad on the remote dynamically gen-
erated product listing page. We’ll modify the code from Figure 4.15 to add a dif-
ferent banner. Note also that we need to decrease the height of the <TD> tag so
that this banner appears on the first screen. Of course, if the product listing
returned is longer than one screen, the banner will be pushed down “below the
fold.” Figure 4.17 is provided on the CD.

Figure 4.17 Product Listing Code Returned from the Server, with Local
Banner Ad (figure4_17.html)

<htm >

<head>

<nmeta nanme="Pal nConputi ngPl atforni content="true">

<title>Products</title>

</ head>
<body bgcol or ="#ffcc00">
<tabl e wi dth="153" border="0" cellspaci ng="0" cell paddi ng="0">
<tr>

<t d>

<ing src="fil e: wi dgets. pga/ hdr _uwl ogo. gi f">

<ing src="fil e: wi dgets. pga/ hdr_square.gi f">

Continued

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Figure 4.17 Continued

</td>
</tr>
<tr>
<td hei ght="75">
34345

\%

<a href="http://cgi.unw redw dgets. coni prod_detail.cgi ?sku=34345"
round- hol e adapt er Red

34875

\%

<a href="http://cgi.unw redw dgets. coni prod_detail.cgi ?sku=34875"
round- hol e adapter &nibsp; G een

34876

\%

<a href="http://cgi.unw redw dgets. conif prod_detail.cgi ?sku=34876"
round- hol e adapt er Bl ue

34691

\%

<a href="http://ww. unwi redw dgets. coni prod_detail.cgi ?sku=34691"
round- hol e adapter Yell owbr>
</td>

</[tr>

<tr>
<t d>

<inmg src="fil e: wi dgets. pga/ banner 02. gi f " ></ a>

<inmg src="fil e:wi dgets.pga/ftr_unw red. gi f">
</td>
</tr>
</t abl e>
</ body>
</htm >

The result of this code is shown in Figure 4.18. One important point to note
here is that we added the “over the air” marks to the banner graphic to indicate
to people that this is an online link (these are the little radiant lines that Web

101

WwWWw.syngress.com

102

Chapter 4 * Using Images in Web Clipping Applications

clipping automatically adds to any links that will require an Internet connection).
Providing these marks is a courtesy to our site’s visitors to let them know that
clicking on this banner will incur some cost—either in airtime charges or simply
the time taken to download the page.

Figure 4.18 Product Listing Screen with Local Banner Ad

LEREE & < Py
() Square Widgets

54345 round-hole adapters: Red
34875 round-hole adapters Green
B4e76 round-hole adapters: Elue
Z4691 round-hole adapters: Yellow

Widget Wizards -

Expert sarvice on all Widgats ~

Unwired Widgets

You may have noticed the CGI link around the banner advertisement in
Figure 4.17:

<ing src="fil e: wi dgets. pga/ banner 02. gi f"></ a>

In a real application, because the actual code for the page is retrieved from a
Web server each time, this would allow us to dynamically change out banner ads.
The script that dynamically produces the product listing page could also be
designed to periodically change the code number for both the banner graphic
and the CGI link. A CGI on the server would then redirect the Palm OS device
to the appropriate page that corresponds with the banner (a Palm-friendly page,
we hope). This is close to how banner ads are handled on regular Web sites and
allows you quite a lot of flexibility in changing and rotating banner ads. The only
limitations are that you need to precompile all the banners you’ll need into the
WCA and can't easily add new ones.

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4 103

Summary

Images can add to the aesthetics and usability of your wireless Web site. If used
properly, they can make for very efficient navigation, and they often take the
place of longer text descriptions. However, the limited screen size and bandwidth
available on a wireless Palm OS device present some unique challenges for wire-
less developers. Web clipping applications can use the same graphics file formats
used on regular Web pages: GIF and JPEG. ‘
The available screen size is 153 pixels wide by 144 pixels high. However, this
would be a very large graphic to send over a wireless connection, so it’s best to
keep graphics as small as possible. Palm OS 4.0 adds the capability to scroll hori-
zontally in Web clipping, but this should be avoided. Graphics are not downloaded
directly to the device. Rather, the Palm.Net proxy first converts them to a propri-

etary bitmap format and then sends them over the air to the Palm OS device.

You include graphics on Web clipping pages similar to the way you would on
regular HTML pages. However, the WCA Builder flattens the folder hierarchy, so
you need to be careful with image links and use unique file names. By using the
special Locallcon META tag, you can precompile images into the WCA, which
are then linked to from online pages, saving greatly on download time.

Most of the current Palm OS devices can reproduce only four shades of gray
in Web clipping applications. Palm OS 4.0 adds the capability to use 4-bit
grayscale, which yields 16 shades, as well as 8-bit or 16-bit color, which is sup-
ported on some devices. Bit depth has a significant impact on downloaded file
sizes, so these options should be used only when necessary. The Palm OS 4.0
SDK provides a very basic graphics program that allows you to preview images at
different bit depths. Photographic images reproduce better at the higher bit
depths, but it’s also possible to enhance the Palm.Net proxy’s default conversion
by converting images first in a separate image-editing program. When producing
graphics for use in Web clipping, you need to take care to optimize file sizes and
color depth; you may often need to make a tradeoff between higher image
quality and faster download speeds.

The single-pixel GIF trick doesn’t work the same way in Web clipping as it
does in HTML.You can stretch images, but you need to ensure that each has a

unique filename. This does work for remote graphics, but because each must be
converted by the Palm.Net proxy and downloaded separately, it doesn’t provide
any savings.

Our example demonstrated how to use the various image options to include

both remote and local images in Web clipping pages. By using HTML tables to

WwWWw.syngress.com

104

Chapter 4 * Using Images in Web Clipping Applications

lay out individual graphics, you can produce full-screen, full-color graphical navi-
gation menus that are very quick to download. When using color graphics, con-
stantly check is that these do not degrade badly to grayscale. PIC is useful for
quickly checking that your navigational graphics are still readable in four shades
of gray.

Banner ads ofter special challenges on the Palm OS device. The severely lim-
ited screen real estate means that you have to carefully choose where these are
placed. Here again, the Locallcon META tag can help by compiling banner
graphics into the WCA itself, saving considerably on downloads. With careful
coding, you can use server-side code to rotate banner ads that are stored locally,
offering many of the features of traditional Web ad tracking in a Palm-friendly
format.

Solutions Fast Track

Dealing with Limited Screen Size

M The available screen size on a Palm OS device is 153 pixels wide by 144
pixels high.

=

Web clipping can use both local and remote images.

M Use the Locallcon META tag to include images that are not referenced
from local pages.

M The WCA Builder flattens the folder hierarchy when compiling, so be
sure to use unique file names.

Specifying Nonlinked Images

M Use local images compiled into the WCA to save on download times.

M Remote pages can refer to local images with the syntax .

M Save on downloaded text by omitting the height, width, and alt attributes
of .

Www.syngress.com

Using Images in Web Clipping Applications ¢ Chapter 4

Using Colors and Grayscale

M Palm OS 3.5 Web clipping applications support only four shades of gray.

M The WCA Builder in SDK 4.0 allows you to save in several bit depths,
including color.

M Ensure that color graphics are still readable in 2-bit grayscale.

Optimizing Image Size

M Keep image dimensions as small as possible to keep file sizes down.
M Some image-editing programs optimize much better than others.

M The Palm.Net proxy image conversion can reduce image quality.

Using the Palm Image Checker
to Validate Your Images
M Use PIC to preview images at difterent bit depths before building
your WCA.

M Convert graphics to grayscale in an image-editing program to increase
image quality.
M Bit depth can have a significant eftect on the size of your WCA.

105

—

106 Chapter 4 * Using Images in Web Clipping Applications

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

A,

: Can I use imagemaps for navigation?

A:

b
.
>0 PO PO

o

Www.syngress.com

No, this is not supported. Use multiple images laid out with tables to simulate
this effect.

: I just built a WCA with color images, so why do they show up only as

grayscale?

. Be sure to select the Screen Depth option in the WCA Builder dialog box.

This defaults to 2-bit Gray.

: Can I make WCAs that work only on Palm OS 4.0?
: Yes. When building your WCA, select 2.0 from the PQA Version

drop-down box.

: Can [have different table cell background colors?

: No, Web clipping supports the bgcolor attribute for the <TABLE> tag only,

not for <TD>.

: Why don’t my images show up when I link to.remote pages?

: Be sure that you have the PalmComputingPlatform META tag on all pages.

: Do I have to use Locallcon for every image I want to use in my WCA?

: No. If the images are used on any of the pages within the WCA, the WCA

Builder will find and include them.

: My WCA uses only grayscale images. Does it matter whether I build it as

2-bit gray or 8-bit color?

. Yes, the file size of the WCA roughly doubles for each higher bit depth.

Chapter 5

Interacting with

Forms

Solutions in this chapter:

Using Standard HTML Forms

Tracking Widget Inventory Example

- Placing a Widget Order Example

Enhancing Forms for Clipper

Setting Delivery Dates for Widget
Orders Example

M Summary
M Solutions Fast Track

M Frequently Asked Questions

107

108

Chapter 5 ¢ Interacting with Forms

Introduction

When you add forms to a Web clipping application, it ceases to be a one-way
read-only channel and becomes something that allows user interaction. Forms are
the basis for interaction on the Web, and their availability on Palm handheld
computers expands the range of possibilities for Web clipping applications. Any
application that needs to let users request and/or respond to information can be
supported, including applications for travel, finance, sports, weather—the list goes
on and on.

Adding form elements to a Web clipping application requires new coding.
Clipper supports most of the <FORM> tag specification from HTML 3.2; it
also supports some additional types that take advantage of the built-in controls for
setting times and dates, namely timepicker and datepicker. In this chapter, you will
learn how to use each form element that Clipper supports, including correct
syntax, sample code, and screen shots. Bandwidth considerations will also be pre-
sented to maximize your use of wireless data transfers.

In addition to changing Web pages, handling forms requires scripting on the
server. To process form submissions, you can use many different languages and
systems, but popular choices include Perl, C, PHP, Microsoft’s Active Server Pages
(ASP), and Sun’s Java Server Pages (JSP). Approaches to server-side scripting are
discussed in enough detail in this chapter to get you “up and running” quickly,
and example server-side scripts are provided.

Tying all subject matter together are three progressive examples that cover the
following: first, updating the Unwired Widgets company inventory database;
second, placing a widget order; and third, setting an order delivery date and time.
In each example, the user is allowed to enter a widget of interest (size, shape, and
color) and quantity. A password/key is also available for user authentication to
either lock out unauthorized users or to identify a customer. Submit and Reset
buttons are provided for control. All <FORM?> tags supported by Clipper are
used, along with a robust server-side Perl script for data processing. The software
was tested under both Unix and Windows. (You can find information about the
build process in Chapter 1 and in Chapter 4.)

Using Standard HTML Forms

The <FORM?> tag and its associated attributes are used to create Web Clipping
Applications (WCAs) capable of capturing user inputs and sending information
to a server. Most of the associated attributes are centered on capturing user inputs,

Www.syngress.com

Interacting with Forms ¢ Chapter 5

providing the developer with a feature-rich environment for creating robust user
interfaces. A wide variety of user interface elements/controls can be represented,
from text boxes to multiple selection lists. The <FORM?> tag and its associated
attributes take full advantage of Palm display resources, providing a valuable tool
for creating WCA:s.

For sending information to a server, Clipper’s form processing provides stan-
dard HTML communication support. Whether in response to previously
retrieved data, or as an initial request, Clipper’s form processing provides a mech-
anism by which clients can send strings of concatenated data to a server. Clipper’s
form processing closes the WCA/server communication loop, providing WCAs
their ability to be complete interactive applications rather than simple read-only
Web access portals. The general syntax of the <FORM> tag is as follows:

<f or m met hod="nynet hod" action="myurl" enctype="nyenctype">

</form

NoTE

We will use the following conventions in the code snippets shown in this
chapter to indicate types of input: Bol d variables indicate required infor-
mation; i t al i cs indicate user information. For example, bol d

i talics indicate required user information, whereas nonbol d

i talics indicate optional user information. Also, no information is
case-sensitive. This convention is not applied to complete code listings.

The optional method attribute is GET or POST (default GET), depending on
whether the action is used to retrieve data or if the action changes the state of the
server. For the GET method, form data is used as a list of attributes to the speci-
fied retrieval action. The resulting action URL 1is of the form:

http://cgi.unw redw dgets. coni cgi - bin/your_script.pl?itenl=A& tenR2=B

GET operations can be cached, and they should not change the state of
the server.

In contrast, POST operations send form data in the post body. As a result,
POST operations cannot be cached, and they usually change the state of the
server. POST operations are especially useful for sending large amounts of data

109

WwWWw.syngress.com

110 Chapter 5 ¢ Interacting with Forms

that would otherwise overflow the URL length constraints of the HTTP server
or client.

The required action attribute is a valid URL that will handle your form’s sub-
mission. This is often a server-side Common Gateway Interface (CGI) script.

The optional enctype attribute is the encoding type for your form. The default
1s application/x-www-form-url-encoded, and it is the only enctype supported by
Clipper.

You need to make sure that any <FORM> tags you use are properly nested
within the HTML. For example, if you start a form, start a paragraph, close the
form, and then close the paragraph, you will have improperly nested HTML tags.
This can cause your page to be rejected by the Web Clipping Builder software or
by the Palm.Net proxy server.

\WARNING

Note the <TABLE> and <FORM> restriction that you can’t have a form
within a table cell, although a table can be within a form.

The <FORM?> tag and its associated attributes are a subset of the HTML 3.2
standard for forms. The following tags associated with forms are supported:

= <INPUT>
= <SELECT/OPTION>
= <TEXTAREA>

NoTE

Tags are case insensitive in standard HTML. For example, <form> is the
same as <FORM>.

Accepting User Input

As its name suggests, the <INPUT> tag is used to capture user inputs. It can be
used to capture a wide variety of inputs ranging from radio button selections to
directly-input text. It can even maintain data that is never seen by a user. The
general syntax of the <INPUT> tag is:

Www.syngress.com

Interacting with Forms ¢ Chapter 5

<i nput type="see bel ow' nanme="input_nane" val ue="input_val ue">
The <INPUT> tag typically has three attributes:

» Type Required for all types, except text.
» Name Required for all types, except submit and reset.

» Value Optional for all types, except checkbox and radio.

NoTE

Type is not syntactically required if you have a text input field, because
type="text" is the default. Explicitly specifying it for text fields makes your
HTML more maintainable, because the reader doesn’t need to know about
the default type to understand what kind of <INPUT> tag you are using.

The type attribute indicates what kind of user input can be captured. It is the
most significant attribute for the <INPUT> tag, because it controls both the
operation and appearance of the <INPUT> tag. The type attribute defines the
capabilities of the <INPUT> tag, allowing it to act in a multitude of ways. The
valid values for the fype attribute are as follows (each is discussed in greater detail
in the following section):

s Jext

s Password

s Checkbox
= Radio

» Hidden

s Submit

= Reset

The uvsually required name attribute identifies an <INPUT> tag so that it
can be distinguished from other tags. This is especially important when sending
data to a server. The server needs to be able to determine which data came
from which <INPUT> tag. However, note that the specific meaning of the name
attribute is dependent on the contents of the fype attribute. The following

WwWWw.syngress.com

112

Chapter 5 ¢ Interacting with Forms

sections discuss the meaning of the name attribute as it pertains to the various
types of <INPUT> tag.

The optional value attribute specifies a default value for the <INPUT> tag.
This is useful for pre-populating fields with suggested entries. However, note that
the specific meaning of the value attribute is dependent on the contents of the
type attribute. The following sections discuss the meaning of the value attribute as
it pertains to the various types of <INPUT> tag.

NoTEe

The <INPUT> tag must be embedded within the <FORM> tag, as in
<FORM> ... <INPUT> ... </FORM>.

The <FORM> <INPUT> </FORM> sequence does not have to be con-
tiguous. Other tags can come between the <FORM> and <INPUT> tags
and between the <INPUT> and </FORM> tags.

Handling Textual Input

The fext type indicates that the corresponding <INPUT> tag can accept ASCII
data, and that both the field and the data (when entered) are to be displayed. Any
valid character can be entered, so this type of <INPUT> tag is extremely pow-
erful. Text-type <INPUT> is typically used to capture information that is too
broad for more constrained types of <INPUT>, such as checkbox and radio.
Examples of fext-type <INPUT> include names, addresses, and telephone num-
bers. Note that the numeric data in a fext field is stored as an ASCII string. The
syntax of fext-type <INPUT> is shown in Figure 5.1.

Figure 5.1 Text-Type <INPUT> Syntax

<i nput type="text" name="nytxt" val ue="abc" size="10" maxl ength="20">

The type attribute indicates that the <INPUT> is of text type (such as
“text”). The <INPUT> tag can accept any ASCII string, including strings of
digits for numeric input.

The required name attribute identifies an <INPUT?> tag so that it can be
distinguished from other tags. In Figure 5.1, “mytxt” was chosen arbitrarily to
illustrate a possible choice. For text-type <INPUT>, the name attribute is used to

Www.syngress.com

Interacting with Forms ¢ Chapter 5

identify data to a server so that the server will know from which field the data
originated. The name should be lowercase and short to minimize the bandwidth
required to send data to the server.

The optional value attribute specifies a default value for the <INPUT> tag.
This is useful for pre-populating fields with suggested entries. As shown in Figure
5.1, the string “abc” will be initially displayed as data within the fext-type
<INPUT>. And as with name, the value should be lowercase and short for band-
width conservation.

The optional size attribute is an extra attribute available for fext-type
<INPUT>. Size indicates the width—in number of ASCII characters—of the
displayed text-type field. Size in Figure 5.1 1s “10”, indicating that up to ten char-
acters of the field contents will be displayed. Note that this is different from the
maxlength (the maximum number of ASCII characters that the field can hold). In
WCAs, the size attribute is typically set to a value less than that used for the
maxlength attribute.

The optional maxlength attribute is an extra attribute available for fext-type
<INPUT?>. Maxlength indicates the maximum number of ASCII characters that
the fext-type <INPUT> can hold. Maxlength in Figure 5.1 1s “20”, indicating that
up to twenty characters can be contained in the field. Note that this is different
from the size (the number of ASCII characters of the field that are displayed).
Maxlength should be kept to a minimum to limit the bandwidth required to send
data to the server.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of text-type <INPUT> are shown in Figures 5.2 and 5.3.

Figure 5.2 Text-Type <INPUT> Example

<htm >

<head>

<title>Text</title>

<met a name="Pal nConputi ngPl atfornf content="true">

</ head>

<body>

<cent er >

<f orm net hod=" CGET"
action="http://cgi.unw redw dgets.com cgi-bin/input_text.pl">

TEXT-type & t;|NPUT>

Continued

113

WwWWw.syngress.com

114

Chapter 5 ¢ Interacting with Forms

Figure 5.2 Continued

<input type="text" name="nytxt" val ue="abc" size="10" maxl| ength="20">
</ forne

</center>

</ body>

</htm >

Figure 5.3 Text-Type <INPUT> Example

4
TEXT-type <INFUT=
RE:

Retrieving Sensitive Passwords

A password-type <INPUT> tag is typically used to capture security code informa-
tion, although it can be used to capture any information that is not to be directly
displayed. The password type indicates that the corresponding <INPUT> tag can
accept any valid ASCII data, and that the data itself should not be displayed. Only
an indication about whether data has been entered should be displayed. A pass-
word field that contains data will read “-~Assigned-", whereas one that does not
will read “~Unassigned-". The actual data is sent to a server to determine whether
the corresponding request should be processed. To the server, password data looks
just like fext data—it’s only in the Palm’s user interface where the appearance dif-
ters. The syntax of password-type <INPUT> is shown in Figure 5.4.

Figure 5.4 Password-Type <INPUT> Syntax

<i nput type="password" name="nypw' val ue="guest" nmaxl ength="12">

Www.syngress.com

>

Interacting with Forms ¢ Chapter 5

The type attribute indicates that the <INPUT> is of password type (such as
“password”). That is, the <INPUT> tag can accept any ASCII string that is subse-
quently hidden from view. “~Assigned-" or “~Unassigned-"1s displayed, depending
on whether data has or had not been entered into the field, respectively.

The required name attribute identifies an <INPUT> tag so that it can be dis-
tinguished from other tags. In Figure 5.4, “mypw” was chosen arbitrarily to illus-
trate a possible choice. For password-type <INPUT>, the name attribute is used to
identify data to a server so that the server will know from which field the data
originated. The name should be lowercase and short to minimize the bandwidth
required to send data to the server.

The optional value attribute specifies a default value for the <INPUT> tag.
This is useful for specifying a default password for the <INPUT> tag. One
example application is the creation of guest accounts. And as with name, the value
should be lowercase and short for bandwidth conservation.

The optional maxlength attribute is an extra attribute available for fext-type
<INPUT>. Maxlength indicates the maximum number of ASCII characters that
the password-type <INPUT> can hold. Maxlength in Figure 5.4 is “12”, indicating
that up to twelve characters can be contained in the field. Maxlength should be
kept to a minimum to limit the bandwidth required to send data to the server.

SECURITY ALERT!

Entering a password into a password-type <INPUT> field causes a dialog
box to be displayed. The dialog box accepts the password entry and then
is closed via OK or Cancel. If OK is selected, the password entry is
retained as the field’s value.

When the password is being entered into the dialog box, it is not
masked. Anyone looking over your shoulder will see your password as
you enter it.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of password-type <INPUT> are shown in Figures 5.5 and 5.6.

Figure 5.5 Password-Type <INPUT> Example

T
“i;E

<htm >
<head>

<title>Password</title>

Continued

115

WwWWw.syngress.com

116 Chapter 5 ¢ Interacting with Forms

Figure 5.5 Continued

<met a nane="Pal nConputi ngPl atforni' content="true">
</ head>
<body>
<center>
<f orm net hod=" CGET"
action="http://cgi.unw redw dgets. com cgi -bi n/i nput_password. pl ">
PASSWORD-type & t;I|NPUT>

<i nput type="password" name="nmypw' size="6" maxl|ength="12">
</fornp
</center>
</ body>
</htm >

Figure 5.6 Password-Type <INPUT> Example

¢

............................

Enter a password:

|

Making a Choice Using a Checkbox

The checkbox type indicates that the corresponding <INPUT> tag can accept
multiple on/oft (binary) user inputs. Each checkbox can be individually selected or
unselected, and the value associated with a selection can be assigned a descriptive
value. Also, as you might have guessed, any user inputs are displayed as a check-
mark inside a box.

Www.syngress.com

Interacting with Forms ¢ Chapter 5 117

Developing & Deploying...

Why Doesn’t Password Obscure My Input?

When you enter your password, rather than echoing asterisks like
desktop Web browsers do, Clipper pops up a dialog box in which you
enter the password in the clear. This is done to address the problem of
using the Palm OS graffiti input scheme. Showing the characters is nec-
essary for the user to know what they are actually scribbling. Without
that feedback, you could easily enter wrong data. Palm’s compromise is
to show this password input for only the brief time that the user is
entering the text. After the user hits the OK button, the dialog box is dis-
missed, and the only indication that a password has been entered is the
“-Assigned-" string.

Checkbox-type <INPUT> is typically used to capture selections from a small
list of choices, where any number of selections may need to be made. For
example, in terms of the Unwired Widgets company, a widget delivery could
optionally be specified as overnight and/or insured. Because any combination of
the overnight/insured options is valid, one checkbox-type <INPUT> could be
used for the overnight selection, and another could be used for the insured selec-
tion. The user can tap anywhere on the box or descriptive text to toggle the
value of the checkbox.The syntax of checkbox-type <INPUT> is shown in
Figure 5.7.

NoTEe

Assigning descriptive values to checkbox-type <INPUT> is an effective
tool toward making WCAs more robust and maintainable. Don’t make
your values too long, however, as lengthy values require additional band-
width when being sent to a server.

WwWWw.syngress.com

118

Chapter 5 ¢ Interacting with Forms

Figure 5.7 Checkbox-Type <INPUT> Syntax

<i nput type="checkbox" name="myckboxa" val ue="a" checked>Milti-Option #1
<i nput type="checkbox" name="myckboxb" val ue="b">Milti-COption #2

<i nput type="checkbox" name="myckboxc" val ue="c" checked>Milti-Option #3

The type attribute value of “checkbox’ indicates that the <INPUT> is dis-
played as a typical checkbox control (that is, a small box that can contain a
checkmark). Tapping on the displayed box turns the checkmark on and off.

The required name attribute identifies an <INPUT?> tag so that it can be
distinguished from other tags. In Figure 5.7, “myckboxa,” “myckboxb,” and
“myckboxc” were chosen arbitrarily to illustrate possible choices. The name
should be lowercase and short to minimize the bandwidth required to send data
to the server.

NoTE

As seen in Figure 5.7, the name attribute can be the same for different
checkbox-type <INPUT> tags. This allows different checkbox-type
<INPUT> tags to be identified by the server as part of the same group.
The default data shown in Figure 5.7, when sent to the server, looks like
the following:

Although CGl.pm recognizes only the first value of myckbox (such as
myckbox="1"), both values of myckbox are available to be parsed.

The value attribute specifies the data to be associated with an individual selec-
tion. As seen in Figure 5.7, the value associated with “Multi-Option #1” is a.
Values can be virtually any string, limited only by length, of valid ASCII charac-
ters. If no value is provided, the default “on” is sent to the server if the checkbox is
selected. And as with name, the value should be lowercase and short for bandwidth
conservation.

Www.syngress.com

Interacting with Forms ¢ Chapter 5 119

WARNING

If the same name attribute is assigned to different checkbox-type
<INPUT> tags, each should have a unique value attribute to identify to
the server, which is selected.

The optional checked attribute specifies that the default state for the corre-
sponding checkbox-type <INPUT> be selected (“checked”). This feature can be
used to enhance the user’s experience by providing default selections that match
typical choices.

NoTE

Take care when using the checked attribute to make sure that the selec-
tion doesn’t unnecessarily obligate users. You are making a decision for
your users here, and you have a responsibility to not abuse the privilege.
Users need to have reasonable actions take place when they use your
W(CA as-is, defaults included. For example, don’t assume that all of your
users will want overnight delivery. Even if a user catches (and unchecks)
a default selection, he will become irritated if he has to uncheck the
default selection every time he uses your WCA.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of checkbox-type <INPUT> are shown in Figures 5.8 and 5.9.

@ Figure 5.8 Checkbox-Type <INPUT> Example
 <htm >

<head>

<titl e>Checkbox</title>

<met a name="Pal nConputi ngPl at fornf content="true">
</ head>

<body>

<center>

<f orm net hod="CGET"

action="http://cgi.unw redw dgets. conl cgi - bi n/i nput _checkbox. pl ">

Continued

WwWWw.syngress.com

120 Chapter 5 ¢ Interacting with Forms

Figure 5.8 Continued

CHECKBOX-type & t;I|NPUT>

<i nput type="checkbox" nane="myckbox" val ue="1" checked>Uni-COption #1

<i nput type="checkbox" name="myckbox" val ue="2">Uni-COption #2

<i nput type="checkbox" nane="myckbox" val ue="3" checked>Uni-Option #3

<i nput type="checkbox" name="nmyckboxa" val ue="a" checked>Multi-Option
#1

<i nput type="checkbox" name="myckboxb" val ue="b">Milti-COption #2

<i nput type="checkbox" nanme="myckboxc" val ue="
#3

</forme

c¢" checked>Mul ti-Option

</ center>
</ body>
</htm >

Figure 5.9 Checkbox-Type <INPUT> Example

¥

CHECKEDX-tyupe <IMPUT=
' Uni-Cption #1
O Uni-Option #2
' Uni-Option #3
' Multi-Option #1
O Multi-Option #2
' Multi-Option #3

Www.syngress.com

Interacting with Forms ¢ Chapter 5

Selecting from Several Items with Radio Buttons

The radio type indicates that the corresponding <INPUT> tag can accept a
single selection from a list of choices. Each radio button can be individually
selected, the result of which is that all other related radio buttons are deselected.
Each radio button can also be assigned a descriptive value.

Radio-type <INPUT> is typically used to capture a single selection from a
small list of choices, where only a single selection makes sense. For example, in
terms of Unwired Widgets, the payment method for widgets will either be cash,
check, money order, or credit card. Only one choice at a time makes sense.
Because only one choice at a time should be allowed, the radio-type <INPUT> is
the appropriate tag. The syntax of radio-type <INPUT> is shown in Figure 5.10.

Figure 5.10 Radio-Type <INPUT> Syntax

<i nput type="radi 0" nanme="nyradi 0" value="1" checked>Cpti on #1
<input type="radio" name="nyradi 0" value="2">Cption #2

<i nput type="radi 0" name="nyradi 0" val ue="3">Cption #3

The type attribute indicates that the <INPUT> is of radio type (such as
“radio”). The <INPUT> tag can accept a single entry. Actually, only a single
entry can be accepted from a group of related radio-type <INPUT> tags.

The required name attribute determines which radio tags are related. In Figure
5.10, “myradio” was chosen arbitrarily to illustrate a possible choice. Note that
each of the <INPUT> tags in Figure 5.10 has the same name. This is to identify
the <INPUT> tags as a single group. Clipper will only allow one radio button in
each group to be selected at one time.

When data is sent to a server, this naming convention enables the server to
discern from which group a particular data item originated. The name should be
lowercase and short to minimize the bandwidth required to send data to the
server. The required value attribute specifies the data to be associated with an
individual selection. As seen in Figure 5.10, the value associated with “Option
#1715 “1”.The value is an ASCII string, in this case chosen to be the ASCII rep-
resentation of the number 1.Values can be virtually any string, limited only by
length, of valid ASCII characters. And as with name, the value should be lowercase
and short for bandwidth conservation.

121

WwWWw.syngress.com

122 Chapter 5 ¢ Interacting with Forms
The optional checked attribute specifies that the default state for the corre-

sponding radio-type <INPUT> be selected (such as “checked”). This feature can
be used to provide a default selection for the user.

NoTE

Assign values to each radio option to identify to the server the specific
option selected. Otherwise, data will be sent to the server in the form
“myradio=on", indicating only that a radio option was selected. The
specific option will not be discernable in this case.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of RADIO-type <INPUT> are shown in Figures 5.11 and 5.12.

=

Figure 5.11 Radio-Type <INPUT> Example

<htm >

<head>

<title>Radio</title>

<met a name="Pal nConputi ngPl atfornf content="true">

</ head>

<body>

<cent er >

<f or m met hod="GET"
action="http://cgi.unw redw dgets.com cgi -bin/input_radio.pl">

RADI Otype & t;|NPUT>

<i nput type="radi 0" nane="nyradi 0" value="1" checked>Cption #1

<i nput type="radio" name="nyradi 0" val ue="2">Cption #2

<i nput type="radi 0" name="nyradi 0" val ue="3">Cption #3

</fornmp

</center>

</ body>

</htm >

Www.syngress.com

Interacting with Forms ¢ Chapter 5 123

Figure 5.12 Radio-Type <INPUT> Example

4
RROID-type <IMPUT=
N Cption #2 | Option #3 |

Developing & Deploying...

Radio Buttons and the Palm OS Ul

As a Web designer, you might expect that radio buttons will appear like
they do on the desktop, with a series of circles and labels, the selected
item indicated by a filled circle. As you can see in the screen shots, this
isn’t the case; Clipper uses the Palm OS convention for selection boxes,
where the buttons appear as boxes with the label text inside, and
inverting the entire box highlights the selected button.

Palm chose this interface style because of the small screen size on
the Palm device. Checkboxes and traditional radio buttons looked too
similar in the limited resolution and screen space of the Palm device, so
the user-interface designers created this push-button format.

Because of this change, you should make sure your forms that use
radio buttons appear correctly when shown on Clipper. In general, you
should have the buttons adjacent to each other on a vertical line to
follow Palm’s user interface standards. If you have more choices than
will fit in a single line, you probably should use a selection list to allow
the user to pick a choice from a drop-down list.

WwWWw.syngress.com

124

Chapter 5 ¢ Interacting with Forms

Storing State in Hidden Fields

The hidden type indicates that an <INPUT> field contains data, but that the data
is not displayed. The data is hidden from the user. This does not imply that the
data is protected via some security mechanism, but rather that the data is not dis-
played in Clipper’s user interface but is just stored locally to be submitted with
the form.

SECURITY ALERT!

Data in a hidden field is not protected from the user. While Clipper
doesn’t support a View Source command, it does cache away Web
pages in a page cache that can be browsed using other Palm OS soft-
ware. By looking directly at the binary data, an attacker can possibly see
sensitive information that is stored as a hidden field in a form. Also, an
attacker could just imitate Clipper from a standard Web browser and
then view the fields using normal mechanisms.

The hidden type is particularly useful for storing context within a Web ses-
sion, including data submitted on previous pages. It also servers as a placeholder
tor sending back ZIP Code and device ID information from the Pocket PC.The
syntax of hidden-type <INPUT> is shown in Figure 5.13.The type attribute indi-
cates that the <INPUT> is of hidden type.

Figure 5.13 Hidden-Type <INPUT> Syntax

<i nput type="hidden" name="nyhi dden" val ue="abc">

The required name attribute identifies an <INPUT> tag so that it can be dis-
tinguished from other tags. In Figure 5.13, “myhidden” was chosen arbitrarily to
illustrate a possible choice. For hidden-type <INPUT>, the name attribute is used
to identify data to a server so that the server will know from which field the data
originated. The name should be lowercase and short to minimize the bandwidth
required to send data to the server.

Although the value attribute is optional, having a hidden input with no value
is useless, because there is no other way to specify what the <INPUT> tag will
return. This attribute specifies the value for the <INPUT> tag. As shown in
Figure 5.13, the string “abc” will be stored as the value of the hidden-type

Www.syngress.com

=
“'F!I‘\

Interacting with Forms ¢ Chapter 5

<INPUT>. And as with name, the value should be lowercase and short for band-
width conservation.

NoTEe

%ZIPCODE and %DEVICEID must be used in hidden-type <INPUT> tags
to ensure proper translation. They can also be used at the end of any
URL in a WCA.

SECURITY ALERT!

%DEVICEID is considered useless by many, except for applications where
security is not a factor. Although it may be suitable for accessing nonpro-
tected data, it is unwise to use it in a secure environment. Chapter 8
covers these problems in more detail.

Chapter 8 talks in more detail about using hidden fields to store state infor-
mation; Chapter 9 covers location based services using the %ZIPCODE code. A
complete WCA source code listing illustrating the use of hidden-type <INPUT>
is shown in Figure 5.14.

Figure 5.14 Hidden-Type <INPUT> Example

<htm >

<head>

<title>H dden</title>

<met a name="Pal nConputi ngPl at fornf content="true">

</ head>

<body>

<cent er>

<f orm net hod="CGET"
action="http://cgi.unw redw dgets. conl cgi -bi n/i nput _hi dden. pl ">

H DDEN-type &l t;|NPUT>

Continued

125

WwWWw.syngress.com

126 Chapter 5 ¢ Interacting with Forms

Figure 5.14 Continued

<i nput type="hidden" name="nyhi dden" val ue="abc">
</fornmp

</ center>

</ body>

</htm >

Submitting Completed Forms

The submit type indicates that the corresponding <INPUT> tag is a button. The
button is used to initiate communication with the server named in the
<FORM?> tag’s attributes. The syntax of submit-type <INPUT> is shown in
Figure 5.15.

Figure 5.15 Submit-Type <INPUT> Syntax

<i nput type="submit" val ue="Submt">

The type attribute indicates that the <INPUT> tag will be displayed as a
button and when pressed will send the form data to the server.

The name attribute is not used for submit-type <INPUT> tags/buttons.

The optional value attribute specifies a label for the <INPUT> tag/button.
This is useful for customizing the WCA display. As shown in Figure 5.15, the
string “Submit” will be displayed as the button label for the submit-type
<INPUT> tag/button.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of submit-type <INPUT> are shown in Figures 5.16 and 5.17.

@ Figure 5.16 Submit-Type <INPUT> Example
 <htm >

<head>

<title>Submit</title>

<met a nane="Pal nConputi ngPl atforni' content="true">
</ head>

<body>

<center>

Www.syngress.com

Continued

Interacting with Forms ¢ Chapter 5

Figure 5.16 Continued

<f orm net hod="CGET"
action="http://cgi.unw redw dgets. conl cgi-bin/input_subnit.pl">
SUBM T-type & t;|NPUT>

<input type="submt" val ue="Submit">
</ forne
</ center>
</ body>
</htm >

Figure 5.17 Submit-Type <INPUT> Example

4
SUBIT-ype <INPUT>

Starting with a Clean Slate

The reset type indicates that the corresponding <INPUT> tag is a button used to
reset the form to its initial state, clearing some fields, and restoring default values
to others. The syntax of reset-type <INPUT> is shown in Figure 5.18.

Figure 5.18 Reset-Type <INPUT> Syntax

<i nput type="reset" val ue="Reset">

The type attribute indicates that the <INPUT> tag will be displayed as a
button, and will accept button clicks to clear form contents and to re-initialize all
fields possessing a default value.

127

WwWWw.syngress.com

128 Chapter 5 ¢ Interacting with Forms

The name attribute is not used for reset-type <INPUT> tags/buttons.

The optional value attribute specifies a label for the <INPUT> tag/button.
This is useful for customizing the WCA display. As shown in Figure 5.18, the
string “Reset” will be displayed as the button label for the reset-type <INPUT>
tag/button.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of reset~type <INPUT> are shown in Figures 5.19 and 5.20.

@ Figure 5.19 Reset-Type <INPUT> Example
"~ <htm >

<head>

<title>Reset</title>

<met a name="Pal nConputi ngPl atfornf content="true">

</ head>

<body>

<cent er >

<f orm met hod=" CGET"
action="http://cgi.unw redw dgets. con cgi-bin/input_reset.pl">

RESET-type & t;I|NPUT> </ font>

<i nput type="reset" val ue="Reset">

</fornmp

</ center>

</ body>

</htm >

Selecting from Many Choices

The <SELECT> and <OPTION> tags, like the <INPUT> tag, are used to
capture user inputs. Unlike the <INPUT> tag, the <SELECT> and
<OPTION> tags accept a limited range of inputs. Specifically, the <SELECT>
and <OPTION> tags are used to allow the selection of either one or several
items from a predefined list. Examples include address information (city, state, and
so on), date information (month, day, and so on), and payment method (check,
credit card, and so on). Almost any list can be implemented in this manner; the

Www.syngress.com

Interacting with Forms ¢ Chapter 5

limiting criteria are system memory and the user’s tolerance for scrolling through
a long list of choices. The syntax is as shown in Figure 5.21.

Figure 5.20 Reset-Type <INPUT> Example

4
RESET-type <INFUT>

Figure 5.21 <SELECT>/<OPTION> Syntax

<sel ect nanme="nysel ect" size="1">
<option sel ected>Bi g Square W dget </ option>
<option>Smal | Square W dget </ option>
<option>Bi g Round W dget </ option>
<option>Smal |l Round W dget </ opti on>

</ sel ect >

NoTE

<OPTION> tags should be alphabetized by label, and labels should not
contain any special characters and/or spaces. This is so the Palm OS Ul
can quickly jump to <OPTION> labels as graffiti characters are entered.

The required name attribute identifies the <SELECT> and <OPTION> tags
so that they can be distinguished from other tags. In Figure 5.21, “myselect” was
chosen arbitrarily to illustrate a possible choice. For <SELECT> and
<OPTION> tags, the name attribute is used to identify data to a server so that the
server will know from which field the data originated. The name should be lower-
case and short to minimize the bandwidth required to send data to the server.

129

WwWWw.syngress.com

130

Chapter 5 ¢ Interacting with Forms

The optional size attribute indicates the number of options to be simultane-
ously displayed. Size in Figure 5.21 is “17, specifying that only one option is dis-
played at a time. (Setting size to “1” is the way to create a pop-up menu.) This is
a common setting for WCAs given the Palm OS device’s limited screen real
estate.

An optional attribute not shown in Figure 5.21 is multiple. The multiple
attribute is available, as in <SELECT ... MULTIPLE>, to indicate that the cor-
responding <SELECT>/<OPTION> tags can accept more than one choice at a
time. When using the multiple attribute, make sure that size is set to at least “2” so
that a scrolling list will be visible. This facilitates making more than one selection.
Keep in mind, however, that multiple can adversely affect bandwidth requirements
for server communication should several choices be made before form submission.

The optional selected attribute is an extra attribute available to <OPTION>
tags. Selected indicates that the corresponding item (as in “Big Square Widget” in
Figure 5.21) is the default selection. That is, if a user makes no selection, “Big
Square Widget” 1s used. If you are using a multiple-selection list, you can have
multiple <OPTION> tags selected with this mechanism.

An optional value attribute can be used with the <OPTION> tag, as in
<OPTION ... VALUE="myvalue”>. This is not necessary, however. The
<OPTION> label is the default value and is usually adequate. In Figure 5.21,
<OPTION> labels are: “Big Square Widget,” “Small Square Widget,” and so on.

\WARNING

Within Web clippings, setting the value attribute for <OPTION> tags
produces undesirable results—namely Proxy Server Error Code C2010005.

<OPTION> tags should be terminated with the closing tag. Failing to close
these tags may be tolerated by the Web Clipping Builder application but has
occasionally caused problems at the Palm.Net proxy server when it is translating
the options into its compressed HTML format.

A complete WCA source code listing and Palm OS device screen shot
illustrating the use of the <SELECT> and <OPTION> tags are shown in
Figures 5.22 and 5.23.

Www.syngress.com

T

g 1

G

Interacting with Forms ¢ Chapter 5 131

Figure 5.22 <SELECT>/<OPTION> Example

<htnm >

<head>

<title>Select/Option</title>

<met a name="Pal nConputi ngPl atfornf content="true">

</ head>

<body>

<cent er >

<f or m met hod="GET"
action="http://cgi.unw redw dgets. coni cgi - bi n/sel ect _option.pl">

& t; SELECT/ OPTI ON> ; </ f ont >

<sel ect name="nysel ect" size="1">
<option sel ected>Bi g Square W dget </ option>
<option>Smal|l Square W dget</option>
<option>Bi g Round W dget </option>
<option>Smal | Round W dget </option>

</ sel ect >

</fornp

</center>

</ body>

</htm >

Figure 5.23 <SELECT>/<OPTION> Example

S5elect/Option

<3ELECT AOPTION:

Srnall Square YWidget
Big Round YWidget
Srnall Round Widget

WwWWw.syngress.com

132

Chapter 5 ¢ Interacting with Forms

NoTEe

Sometimes it is useful for the first <OPTION> tag to contain a prompt.
For example, <OPTION>Please Make A Selection. This provides a
mechanism for users and servers alike to know whether an entry has
been made, while circumventing the need to assign a superfluous
default selection. If you use this, you should make sure that your server
script acts sanely if the user submits this default value.

Handling Large Amounts of Input Text

The <TEXTAREA> tag, like the <INPUT> tag, is used to capture user inputs.
Specifically, the <TEXTAREA> tag is used to allow users to enter multiple lines
of text. One application of the <TEXTAREA> tag is to allow users to provide
teedback about your WCA. The syntax of the <TEXTAREA> tag is shown in
Figure 5.24.

Figure 5.24 <TEXTAREA> Syntax

<t ext area name="mytextarea" rows="2" col s="16"></textarea>

The required name attribute identifies a <TEXTAREA> tag so that it can be
distinguished from other tags. In Figure 5.24, “mytextarea” was chosen arbitrarily
to illustrate a possible choice. For <TEXTAREA> tags, the name attribute is used
to identify data to a server so that the server will know from which field the data
originated. The name should be lowercase and short to minimize the bandwidth
required to send data to the server.

The required rows attribute indicates the height of the text area in number of
horizontal lines. Rows in Figure 5.24 1s “2”. This indicates that two rows of text
can be entered.

A reasonable value for rows is eight or less. The Palm device display can
accommodate up to 13 rows, but more than eight is visually cumbersome.
Besides, if more text is entered than can be displayed at a time, scroll bars auto-
matically appear for navigation.

The required cols attribute indicates the width of the text area in number of
ASCII characters. Cols in Figure 5.24 is “16”. This indicates that 16 characters can
be entered on each row of the <TEXTAREA>.

Www.syngress.com

o

Q.

Interacting with Forms ¢ Chapter 5

A reasonable value for cols is twenty or less. The Palm OS device display can
accommodate up to 28 columns, but more than 20 is visually cumbersome.
Besides, if more text is entered than can be displayed at a time, scroll bars auto-
matically appear for navigation.

\WARNING

The <TEXTAREA> tag can result in significant bandwidth consumption,
depending on how much data is entered before form submission.

If you want default text to be displayed in the text area control when its ini-
tially displayed, you should put the text between the start and end tags. This can
be useful for prompting the user or for showing values previously entered if the
user has to revise a form submission. You could also put some sort of prompt in
the initial text that the user will delete and replace with his or her own text.

A complete WCA source code listing and Palm OS device screen shot illus-
trating the use of the <TEXTAREA> tag are shown in Figures 5.25 and 5.26.

Figure 5.25 <TEXTAREA> Example

<htm >

<head>

<title>Textarea</title>
<met a name="Pal nConputi ngPl atfornf content="true">
</ head>
<body>
<cent er >
<f orm met hod=" CGET"
action="http://cgi.unw redw dgets. conf cgi - bi n/textarea. pl">
&t; TEXTAREA> ; </ font >

<t extarea name="nytextarea" rows="2" col s="16"></textarea>
</fornp
</ center>
</ body>
</htm >

133

WwWWw.syngress.com

134 Chapter 5 ¢ Interacting with Forms
Figure 5.26 <TEXTAREA> Example

¢

<TEXTAREA=

Tracking Widget Inventory Example

To tie together the form tags discussed thus far (KINPUT>, <SELECT>/
<OPTION>, and <TEXTAREA>), consider an inventory-update WCA for
Unwired Widgets. A WCA is needed that will assist shipment receiving personnel
in logging the receipt of widgets. The data that must be logged are as follows:

» Widget Type (size, shape, color)
= Quantity
= Receiving Attributes (bad invoice, missing widgets)

= Notes

The corresponding form tags that are needed to handle the data are as follows:
» <SELECT>/<OPTION> Widget Type (size, shape)
» Radio-type <INPUT> Widget Type (color)
s Text-type <INPUT> Quantity

s Checkbox-type <INPUT> Receiving Attributes (bad invoice, missing
widgets)

s <TEXTAREA> Notes

A complete WCA source code listing and Palm OS device screen shot are
shown in Figures 5.27 and 5.28. Note how the WCA flows from top to bottom,
allowing the user to enter the widget of interest (size, shape, color), quantity, and

Www.syngress.com

Interacting with Forms ¢ Chapter 5

receipt information (bad invoice, missing widgets, notes). Finally, a password/key
is available for user authentication by the server—you don’t want everyone
updating your inventory database! Submit and Reset buttons complete the
example, providing necessary control operations. Note, however, that the Notes
(STEXTAREA>) are for illustration only and are not particularly efficient!

Figure 5.27 Inventory Example (WCA)

<htm >

<head>

<title>nventory</title>

<met a nanme="Pal nConputi ngPl atfornf content="true">
</ head>

<body>

<cent er>
<f or m net hod=" GET"

action="http://cgi.unw redw dgets.com cgi-bin/inventory.pl">

lnventory Update Fornx/font>

<sel ect name="itenm size="1">
<option sel ected>Bi g Square W dget </ opti on>
<option>Snal| Square W dget</option>
<opti on>Bi g Round W dget </ option>
<option>Smal | Round W dget </ option>
</ sel ect >

<input type="radio" name="color" value="r" checked>Red
<i nput type="radi 0" name="col or" val ue="g">G een
<i nput type="radi 0" nanme="col or" val ue="b">Bl ue
<i nput type="radi 0" nanme="col or" val ue="y">Yel | ow

Recv'd Quantity:

Continued

135

WwWWw.syngress.com

136 Chapter 5 ¢ Interacting with Forms

Figure 5.27 Continued

<input type="text" name="qty" value="" size="4" naxl ength="6">

<hr >
<i nput type="checkbox" nane="status" value="b_inv">Bad Invoice

<i nput type="checkbox" name="status" val ue="mw d">M ssing Wdgets

<hr >

Not e:

<textarea nane="note" rows="2" col s="16"></textarea>

<i nput type="hi dden" nane="dev" val ue="%levi cei d">

Key:

<i nput type="password" nane="pword" size="6" maxlength="6">

<input type="submt" val ue="Submt">

<input type="reset" val ue="Reset">

unwi redw dgets. conx/font>

</forme

</ center>

</ body>
</htm >

Www.syngress.com

Interacting with Forms ¢ Chapter 5 137

Figure 5.28 Inventory Example (WCA)

lInventory| 4
Invventory Update Form
w Big Sguare Widget

@Green [Eilue [ellow |

Rece'd Quantity]

O Badlinvaice [Mizsing Widgets

Hote:
by

untwiredwidget.com

Processing Forms on the Server

To process form data on a server requires server-side software to receive, inter-
pret, and act on the data. This can be accomplished via a variety of programming
languages, with one common choice being Perl. The Perl script in Figure 5.29
(inventory.pl) illustrates how to process form data—specifically how to process
form data for the Inventory Example (WCA) in Figure 5.27. Figure 5.29 receives
form data and uses it to update an inventory database (inventory.db), shown in
Figure 5.30. A Web clipping is also created and returned to the Palm VII to indi-
cate the status of the operation. Keep in mind that clippings should be kept to a
minimum to conserve communication bandwidth.

Figure 5.29 Inventory Script (inventory.pl)

#!/ usr/ bi n/ perl
use C4;

&updat e_i nvent ory;

sub update_inventory {

parse inconing paraneters as per either "GET" or "POST"
$q = new Cd;

isolate paraneter nanes

@ane_l i st = $g->param

Continued

WwWWw.syngress.com

138 Chapter 5 ¢ Interacting with Forms

Figure 5.29 Continued

extract val ues

foreach $name (@ane_list) {

decode encoding

$val ue = $g->paran($nane);

save pertinent data
if ($name eq "itent) { S$itemvalue = $value; }
elsif ($name eq "color”) { $col or_value = $value; }

elsif ($name eq "qty") { $qty_val ue = $val ue; }

open inventory database
open (inventory, "inventory.db") or

die "Couldn't open inventory.db!";

process inventory database one record at a tine
$updated_db = ""

$flag = 0;

while (<inventory>) {

read dat abase record

readl i ne;
process database record
($fiel d_0, $field_1, $field_2) = split /,/;

if (($field_0 eq $itemvalue) &% ($field_1 eq $col or_value)) {

updat e dat abase record

$updated_db .= $field 0 . "," . $field 1 . ","
($field_2 + $qty_value) . "\n";
$flag = 1;

Continued

Www.syngress.com

Figure 5.29 Continued

Interacting with Forms ¢ Chapter 5 139

}

el se {
updat e database record
$updated_db .= $_;

}

close inventory database

close (inventory) or die "Couldn't

return results header

print "Content-type: text/htm\n\n";

print "<htm >\ n";

print "<head>\n";

print "<title>Inventory</title>\n";
print "</ head>\n";

print "<body>\n";

print "<center>\n";

close inventory.db!";

print "lnventory\n";

report success, or |ack thereof
if ($flag eq 1) {

print "
Successful Update\n";

}
el se {

print "
UNSUCCESSFUL UPDATE; TRY AGAIN'\n";
}

return results footer
print "</center>\n";
print "</body>\n";
print "</htm >\n";

Continued

WwWWw.syngress.com

140 Chapter 5 ¢ Interacting with Forms

Figure 5.29 Continued

update inventory database
if ($flag = 1) {

open inventory database
open (inventory, ">inventory.db") or

die "Couldn't open inventory.db!";

update contents

print (inventory $updated_db);

close inventory database

close (inventory) or die "Couldn't close inventory.db!";

T

Figure 5.30 Inventory Database (inventory.db)

A

i nventory. db

Bi g Square Wdget,r, 11

Bi g Square Wdget, g, 12

Bi g Square Wdget, b, 13

Bi g Square Wdget,y, 14
Smal | Square Wdget,r, 21
Smal | Square W dget, g, 22
Smal | Square W dget, b, 23
Smal | Square W dget,y, 24
Bi g Round Wdget,r, 31

Bi g Round W dget, g, 32

Bi g Round W dget, b, 33

Bi g Round W dget,y, 34
Smal | Round Wdget,r, 41
Smal | Round W dget, g, 42

Www.syngress.com

Continued

Interacting with Forms ¢ Chapter 5 141

Figure 5.30 Continued

Smal | Round W dget, b, 43
Smal | Round W dget,y, 44

Debugging...

What Environment Is Useful
for Debugging My WCA?
Using the Palm OS Emulator’s ability to redirect network requests, com-
bined with Microsoft’s Internet Information Server (lIS) or the Apache
Web server, provides a robust development environment for debugging
WCAs. This approach avoids the need for both a Palm OS device and
Palm.Net account and the associated charges. Also, this approach allows
you to test full server communication, including server-side form data
reception and parsing.

The following server-side Perl script (found on the CD as debug.pl)
returns HTML code showing all of the parameters submitted from a
form; it can be very useful for debugging form submissions.

#1 [/ usr/ bi n/ per |
use C4d;
&debug_client _interface;

sub debug _client_interface {

parse inconing paraneters

$q = new CH;

isol ate paraneter nanes

@ane_| i st = $qg->param

Continued

WwWWw.syngress.com

142 Chapter 5 * Interacting with Forms

Www.syngress.com

>

=
‘g

Interacting with Forms ¢ Chapter 5

NoTEe

A common problem associated with Perl scripts is installing them on a
server where Perl isn't located in /usr/bin, as with Apache running under
Windows NT. For such installations, change the first line of the script to
refer to the Perl interpreter. For example, #!/usr/bin/perl might be
changed to #!/usr/local/bin/perl. The name of the Perl interpreter might
also need to be changed, as in #!/usr/bin/perl5. This is the case with
some installations as a prerequisite to including the CGI package (such as
"use CGI").

On a Windows box where the Perl interpreter is in the server’'s exe-
cutable path, you can just specify “#!perl” with no path information.

Placing a Widget Order Example

On the customer side of business for Unwired Widgets, consider an order-pro-
cessing WCA. A WCA is needed that will assist customers in placing widget
orders. The data that must be collected are as follows:

» Widget Type (size, shape, color)
= Quantity
The corresponding form tags that are needed to handle the data are as follows:
» <SELECT>/<OPTION> Widget Type (size, shape)
» Radio-type <INPUT> Widget Type (color)
s Text-type <INPUT> Quantity

A complete WCA source code listing and Palm OS device screen shot are
shown in Figures 5.31 and 5.32.

Figure 5.31 Order Example

<htnm >

<head>

<title>Order</title>

<met a name="Pal nConputi ngPl atfornf content="true">
</ head>

Continued

143

WwWWw.syngress.com

144

Chapter 5 ¢ Interacting with Forms

Figure 5.31 Continued

<body>

<center>
<f or m net hod="GET"

action="http://cgi.unw redw dgets. conl cgi -bi n/order. pl">

Order Fornx/font>

<sel ect name="itenm size="1">
<option sel ected>Bi g Square W dget </ option>
<option>Smal | Square W dget </ option>
<option>Bi g Round W dget </ option>
<option>Smal | Round W dget </ option>

</ sel ect>

<i nput type="radi 0" nane="col or" checked>Red

<i nput type="radi 0" nanme="col or">G een

<i nput type="radi 0" name="col or">Bl ue

<i nput type="radi 0" name="col or">Yel | ow

O der Quantity:

<i nput type="text" name="qty" val ue=

size="4" maxl engt h="6">
<i nput type="hidden" name="dev" val ue="%leviceid">

Continued

Www.syngress.com

Figure 5.31 Continued

Interacting with Forms ¢ Chapter 5

Cust oner Key:

<i nput type="password" nane="pword" size="6" maxlength="6">

<input type="submt" val ue='

"Submi t ">

<input type="reset" val ue="Reset">

unwi redw dgets. conx/font>

</forme

</ center>

</ body>
</htm >

Figure 5.32 Order Example

(Order +

XY Green [Bluerellow]

Order Farm
w Big Sgquare YWidget

untwiredwidgeat.com

Enhancing Forms for Clipper

The <INPUT> tag, as has been previously discussed, is enhanced by its wide
variety of types. Additional enhancement is also available via two Palm-specific

types: timepicker and datepicker. As their names suggest, they are used to handle

WwWWw.syngress.com

145

146

Chapter 5 ¢ Interacting with Forms

time and date data, respectively. Applications include time/date stamping of
<FORM?> data and displaying the current time and date.

Using the Timepicker Type

The timepicker type indicates that the corresponding <INPUT> tag can display
time data. Timepicker displays the current or specified time in the 12-hour format
“HH:MM am/pm”, although a different display format can be specified in the
Preferences application. Time data is submitted to, and received from, the server
in 24-hour format, “HH:MM?”. Note that the value attribute can be used to set
the time to be displayed. The syntax of timepicker-type <INPUT> is shown in
Figure 5.33.

Figure 5.33 Timepicker-Type <INPUT> Syntax

<i nput type="tinmepicker" name="mytnpckr" val ue="08:29 AM >

The type attribute indicates that the timepicker-type <INPUT> tag is of
timepicker type (such as “timepicker”). That is, the <INPUT> tag can display the
current or specified time.

The required name attribute identifies an <INPUT> tag so that it can be dis-
tinguished from other tags. In Figure 5.33, “mytmpckr” was chosen arbitrarily to
illustrate a possible choice. For timepicker-type <INPUT>, the name attribute is
used to identify data to a server so that the server will know from which field the
data originated.

The format of the optional value attribute is either 12-hour (“HH:MM
am/pm”) or 24-hour (“HH:MM?”). If value is not specified, the current time is
displayed. The display format defaults to 12-hour (“HH:MM am/pm”), although
the user can change this using the Preferences application. Note that time data is
sent to, and received from, the server in 24-hour “HH:MM” format.

NoTE

A value attribute that is not understood is treated as if it had not been
specified at all. For example, in value="mytime,” “mytime” is not under-
stood as a valid time and is ignored. The current time is displayed.

Www.syngress.com

i

n

i

Interacting with Forms ¢ Chapter 5

A complete WCA source code listing and Palm OS device screen shot
illustrating the use of the timepicker-type <INPUT> are shown in Figures 5.34
and 5.35.

Figure 5.34 Timepicker-Type <INPUT> Example

<htm >
<head>
<title>Ti mepicker</title>
<met a name="Pal nConputi ngPl at fornf content="true">
</ head>
<body>
<cent er>
<f orm net hod=" CGET"
action="http://cgi.unw redw dgets. conl cgi-bin/input_tinepicker.pl">
TEXT-type & t; Tl MEPI CKER> ; </ f ont >

<i nput type="tinepicker" nanme="nmytnpckr">
</forne
</center>
</ body>
</htm >

Figure 5.35 Timepicker-Type <INPUT> Example

¢

147

WwWWw.syngress.com

148

Chapter 5 ¢ Interacting with Forms

Using the Datepicker Type

The datepicker type indicates that the corresponding <INPUT> tag can display
date data. Datepicker displays the current or specified date in the format
MM/DD/YY, although a difterent display format can be specified in the
Preferences application. Date data is submitted to, and received from, the server in
YYYY-MM-DD format. Note that the value attribute can be used to set the date
to be displayed. The syntax of datepicker-type <INPUT> is shown in Figure 5.36.

Figure 5.36 Datepicker-Type <INPUT> Syntax

<i nput type="dat epi cker" nanme="nydtpckr" val ue="08/28/62">

The type attribute indicates that the datepicker-type <INPUT> tag is of
datepicker type (e.g., “datepicker”). That is, the <INPUT> tag can display the
current, or specified, dates.

The required name attribute identifies an <INPUT> tag so that it can be dis-
tinguished from other tags. In Figure 5.36, “mydtpckr” was chosen arbitrarily to
illustrate a possible choice. For datepicker-type <INPUT>, the name attribute is
used to identify data to a server so that the server will know from which field the
data originated.

The optional value attribute specifies the date to be displayed. If value is not
specified, the current date is displayed. The format of the value attribute is
MM/DD/YY, which is also the default display format; the display format can be
changed by the user using the Preferences application. Date information is sent
to/from the server inYYYY-MM-DD format.

NoTE

Other undocumented formats can be used to specify a date value, such
as “Aug 28, 1962"” and “08/28/1962". Note, however, that a value
attribute that is not understood is treated as if it had not been specified
at all. For example, in value="1962-08-28", “1962-08-28" is not under-
stood as a valid date and is ignored. The current date is displayed.

A complete WCA source code listing and Palm OS device screen shot
illustrating the use of the datepicker-type <INPUT> are shown in Figures 5.37
and 5.38.

Www.syngress.com

Interacting with Forms ¢ Chapter 5

Figure 5.37 Datepicker-Type <INPUT> Example

<htnm >
<head>
<title>Datepicker</title>
<met a name="Pal nConputi ngPl atfornf content="true">
</ head>
<body>
<cent er >
<f or m met hod="GET"
action="http://cgi.unw redw dgets. coni cgi - bi n/i nput _dat epi cker. pl ">
TEXT-type &l t; DATEPI CKER> ; </ f ont >

<i nput type="datepicker" nane="nydtpckr">
</fornmp
</ center>
</ body>
</htm >

Figure 5.38 Datepicker-Type <INPUT> Example

¢

149

WwWWw.syngress.com

150

Chapter 5 ¢ Interacting with Forms

Setting Delivery Date for
Widget Orders Example

An example application of both timepicker- and datepicker-type <INPUT> tags,
and a Palm OS device screen shot, are shown in Figures 5.39 and 5.40, including
a complete source code listing. Note that no time and/or date information is
preset via the value attribute, implying that the current time and date will be used.

\WARNING

The danger in using timepicker- and datepicker-type <INPUT> tags for
display only is that the user will think that they are dynamic controls and
that changing them will affect form submission.

Figure 5.39 Order Time/Date Example

<htnm >

<head>

<title>Order Tine/Date</title>

<met a name="Pal nConputi ngPl atfornf content="true">
</ head>

<body>

<cent er >
<f or m net hod=" GET"

action="http://cgi.unw redw dgets. conf cgi-bin/order_tmdt.pl">

Order Fornx/font>

<sel ect name="itenl' size="1">
<option sel ected>Bi g Square W dget </ option>

<option>Smal | Square W dget</option>

Continued

Www.syngress.com

Interacting with Forms ¢ Chapter 5 151

Figure 5.39 Continued

<option>Bi g Round W dget </option>

<option>Smal | Round W dget </opti on>

</ sel ect >

<i nput
<i nput
<i nput

<i nput

O der

<i nput

type="radi 0" nanme="col or" checked>Red
type="radi 0" name="col or">G een
type="radi 0" name="col or">Bl ue

type="radi 0" name="col or">Yel | ow

Quantity:
type="text" name="qty" value="" size="4" maxl ength="6">

Delivery Approx. 2 Weeks From

<i nput
<i nput

<i nput

type="ti nepi cker" nane="nyt npckr">
t ype="dat epi cker" nane="nydt pckr">

type="hi dden" nane="dev" val ue="9%glevi cei d">

Cust onmer Key:

<i nput

type="password" nanme="pword" size="6" maxl ength="6">

Continued

WwWWw.syngress.com

152 Chapter 5 ¢ Interacting with Forms

Figure 5.39 Continued

<i nput type="subnmit" val ue="Submt">
<input type="reset" val ue="Reset">

unwi redw dgets. conx/font>

</ fornmp

</ center>

</ body>
</htm >

Figure 5.40 Order Time/Date Example

Order Time/..

Ordet Form
w Big Sguare Widget

@Green [Eilue [ellow |

Order Quantity]

Delivery Appros. 2 Weaeks From;
PEATpr E3028000

untwiredwidget.com

Www.syngress.com

Interacting with Forms ¢ Chapter 5

Summary

This chapter illustrates how forms provide the mechanism for WCAs to become
more than just a one-way read-only communication channel. Forms provide the
means by which user interaction can be supported, thus providing the basis for
WCA interaction with the Web.
Based on HTML 3.2, Clipper supports most standard HTML form tags:
= <INPUT>
= <SELECT/OPTION>
= <TEXTAREA>
These tags are illustrated in two examples: “Tracking Widget Inventory” and
“Placing A Widget Order.” The most flexible of the supported tags is <INPUT>,
as it supports all of the following types:
w Text

s Password

= Checkbox
= Radio

= Hidden

s Submit

= Reset

Clipper also supports Palm-specific input types, most notably timepicker and
datepicker. This is illustrated in a third example, “Setting Delivery Dates For
Widget Orders.”

Communication with a server is accomplished via form GET and PUT
methods, depending on the application. GET appends form data to the action
URL, whereas POST sends form data in the post body. Keep in mind that name
and value attributes for all tags should be kept short to minimize the bandwidth
required to send them to a server.

WwWWw.syngress.com

153

154 Chapter 5 ¢ Interacting with Forms

Solutions Fast Track

Using Standard HTML Forms

]

=

=

HTML forms enable data to be sent to a server or received from a
server.

Three main form tags exist to capture user input: <INPUT>,
<SELECT>/<OPTION>, <TEXTAREA>.

Tags are case-insensitive in standard HTML.

HTML form tags typically have a name and value attribute. Other
attributes are tag-specific. Name and value attributes are lowercase and
short.

<INPUT> tags have many various types, including: fext, password,
checkbox, radio, submit, reset, and hidden.

<OPTION> tags do not typically need the value attribute within WCAs.

<OPTION> tags should be alphabetized by label, and labels should not
contain any special characters and/or spaces. This is so the Palm OS UI
can quickly jump to <OPTION> labels as graffiti characters are
entered.

Tracking Widget Inventory Example

i |ZI
<
- IZ[
1] " 7
F |

]

Many form tags can be incorporated into a single WCA.
Many choices exist in applying form tags to a particular application.

When applying form tags, several rules of thumb exist to optimize server
communication.

Using POSE’s network redirection coupled with IIS is a reasonable
environment in which to develop WCAs. This approach avoids the need
for both a Palm OS device and Palm.Net account—including associated
charges. Also, this approach allows you to test full server communication,
including server-side form data reception and parsing.

Www.syngress.com

Interacting with Forms ¢ Chapter 5 155

Placing a Widget Order Example

M Using a WCA similar to that in the Inventory Example enhances the
user’s experience, not to mention providing the developer the benefits of
code reuse.

M Customer Key is one application of a password-type <INPUT> tag that
can be used to identify existing customers. The net effect is to minimize
the interaction necessary to conduct a transaction. This benefits both g ‘
customer (the Ul experience) and WCA (bandwidth conservation). % aF

Enhancing Forms for Clipper q

M Timepicker and datepicker are Palm-specific types of <INPUT>.

M Timepicker data can be specified in either 12- or 24-hour format. The
display format is specified in the Preferences application, with the default
being the 12-hour “HH:MM am/pm” format. Server communication is
done using the 24-hour “HH:MM?” format.

M Datepicker display format is specified in the Preferences application, with
the default being the same as that for directly specifying a date: i
MM/DD/YY. Server communication format is YYY Y-MM-DD.

M Current time and date can be accessed, or a specific time and date can
be set via the value attribute.

Setting Delivery Dates for Widget Orders Example

M Timepicker and datepicker can be used to augment WCAs.

M Timepicker and datepicker can be used for several applications, including
time stamping activity logs, scheduling, and so on.

156

o

Chapter 5 ¢ Interacting with Forms

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What development package is most useful for creating WCAs (for example,
.htm and/or .html files) and server-side scripts (for example, .pl files)?

A: A simple text editor (such as WordPad under Windows) is a reasonable tool
for WCA and script creation.

Q: How are server-side scripts, such as the Perl sample in this chapter, compiled?

A: Server-side Perl scripts are interpreted and do not have to be compiled. Other
server-side languages do have compilers—you must consult each language’s
particular documentation for additional information.

Q: How are WCAs installed?

A: WCAEs are installed in the same fashion as any other Palm OS application,
regardless of whether installation 1§ occurring within the emulator or on an
actual device.

Q: How are server-side scripts-installed?

A: There is no single answer to this question. However, the Perl scripts used as
examples in this chapter were transferred via EIP (ASCII mode) to a Unix
Web hosting account. A chmod had to be done to insure that execution priv-
ileges were set on the script. Also, “use CGI” within the script required speci-
tying “#!/usr/bin/perl5” as the first line of the script.

Q: Where is a good starting point for additional information?

A:You can always find additional information at Palm, Inc’s Web site at
www.palmos.com.

Www.syngress.com

Chapter 6

Optimizing WCAs

for Palm OS Devices

Solutions in this chapter:
= Making Pages Useful on Both Desktop and
Palm Devices

= Making Unwired Widgets Pages for Both
- Desktop and Palm Devices

» Using Tables for Page Layout
= Specifying History Text
= Using MAILTO Links to Send E-Mail

M Summary
M Solutions Fast Track

M Frequently Asked Questions

157

158

Chapter 6 * Optimizing WCAs for Palm OS Devices

Introduction

In today’s wireless Web, you can seldom specify only one device for accessing
your Web content. As the Internet becomes increasingly central to business and
recreation, the variety of ways to access the Internet is increasing. In Japan, more
people already access the Net from mobile devices than from fixed or “landline”
computers. As the number of mobile devices grows, people are demanding that
they be able to access all Web content from their wireless PDAs.

Building pages for the Palm OS is quite difterent from building pages for the
desktop. A lot of the experience you may have in creating standard Web pages
applies here, but there are several tricks that can enhance the user experience on
a handheld device, and there are also many pitfalls. The first and most obvious
difference is the limited screen size, but just as critical is the very limited down-
load speeds of current wireless devices. The Palm VII has a nominal speed of
9.6Kbps, while the PalmV or Handspring with an OmniSky modem tops out at
19.2Kbps. The screen has a viewing width of 153 pixels. In comparison, most
modern Web sites are designed for a minimum speed of 56Kbps and expect a
screen resolution of at least 800x600 pixels in full color.

However, with some careful planning, you can create pages that are univer-
sally accessible. Among the optimization possibilities are special Hypertext
Markup Language (HTML) tags that allow you to make pages useable from a
standard Web browser and from the Palm OS Clipper. We look at how to modity
your pages to make this easier. If you're building pages just for the Palm OS, you
may find it easier to lay out your presentation using HTML tables. Later in this
chapter, we look at how you can use tables to position items within the Web
clipping page. This is a powerful technique and can help you make efficient use
of the limited screen size, but it’s subject to limitations not seen on the desktop.
We also look at some special tags that allow your visitors to navigate around the
local cache, and we also show you how to send e-mail from within your Web

clipping pages.

Making Pages Useful on Both
Desktop and Palm Devices

Back in the early days of the Web, developers often resorted to writing com-

pletely separate pages for both of the major browsers. These days, your Web site
may be visited by people using everything from a WAP phone to a Palm device
to a Pocket PC to a full-screen Web browser. Although you have no choice but

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

to write separate code for WAP phones, wouldn't it be nice if you could use the
same pages for both full-size Web browsers and Palm devices? Web Clipping
Applications (WCAs), after all, use regular HTML, so there’s no reason your
pages can’t be displayed on a desktop browser (or even Pocket Explorer on a
Windows CE device). The obvious difficulty here is that you need to design
pages to be 153 pixels wide (or less) in order to display properly on a Palm OS
device. Optimizing pages for this format isn’t going to give you a very pleasing
view in a desktop browser. However, with careful planning, you can design pages
that look good in both formats.

What’s needed, of course, is a way to tell Palm OS devices to ignore content
that can’t be displayed properly. Fortunately, Palm anticipated this need and pro-
vided us with a very useful tag: <SMALLSCREENIGNORE>.This tag tells the
Palm.Net proxy to throw away all markup (that is, HTML tags) within this tag
set. You can use this to “mask” markup that you don’t want to appear on a Palm
OS device, such as large graphics or banners. Full-size browsers, meanwhile, will
just ignore this tag and display all valid HTML within it.

However, you need to keep a few limitations in mind. Although you can use
the <SMALLSCREENIGNORE> tag to hide HTML code from the Palm
device, HTML doesn’t have a corresponding tag to tell desktop browsers to
ignore WCA-only content. Provided that you keep your code well-formed by
having no unclosed or improperly nested tags, most browsers will totally ignore
any Palm-proprietary tags or attributes. This means that if you use, for instance,
the Palm-proprietary button attribute of the <A HREF> tag to display links as
buttons, these will revert to normal hypertext links in a desktop browser.
However, desktop browsers will still attempt to parse and display content within
unknown tags. There’s no easy way to tell a browser to skip over a block of code
that you intended only for Palm OS devices. As we’ll see, there are some creative
ways around this that will allow you to create universally good-looking pages, but
we may need to slightly “bend” the rules of good HTML.

Using the <SMALLSCREENIGNORE> Tag

<SMALLSCREENIGNORE> is a proprietary tag, meaning it’s not part of the
official HTML specification. However, it’s used just like a normal HTML tag; it
has an opening and corresponding closing tag but no attributes.

Say, for example, that you have a graphical banner advertisement on your
main page. The typical size for a Web banner ad 1s 470 pixels wide by 60 pixels
high. As you learned in Chapter 4, both the Query Application Builder and the
Palm.Net proxy will simply discard images wider than 153 pixels, replacing them

159

WwWWw.syngress.com

160

Chapter 6 * Optimizing WCAs for Palm OS Devices

with “[image]|” or the text in the alt attribute. However, banner ads are typically
surrounded by a link leading to the advertiser’s Web site. This will not be
removed, so you'll end up with a text link to a Web site that’s most likely not
Palm OS-friendly. The solution is to surround the entire banner code with
<SMALLSCREENIGNORE>, shown as follows:

<snal | scr eeni gnor e>

<ing src="banner.gif" wi dth="470" height="60" alt="Cick Here">
</ a>

</ smal | scr eeni gnor e>

Making Unwired Widgets Pages for
Both Desktop and Palm Devices

As you learned in Chapter 3, Web clipping doesn’t support nested tables (that is, a
table within a table). Nested tables are one of the main techniques Web designers
use to provide a sophisticated page layout in standard desktop browsers. The
Query Application Builder will happily compile a page with nested tables, but it
will ignore any <TABLE> tags nested within the first one, giving you unpre-
dictable, and usually unsatisfactory, results.

Now, HTML purists (and I count myself among them) may want to check
their hats at the door in this section. What I describe—a very neat way to con-
struct pages that look good in standard desktop browsers and Palm OS devices
alike—is not strictly “good” HTML. In fact, if you run your HTML code
through a validator, it will complain about “nesting errors” and illegal tags. In
technical jargon, you will not have well-formed HTML.

Debugging...

Well-Formed HTML and HTML Validation

As you may know, HTML is based on Standard Generalized Markup
Language (SGML). SGML defines a set of rules that detail what tags are
allowed, what attributes they should have, and so forth. This is called
a Document Type Definition (DTD). The World Wide Web Consortium

Continued

www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

(W3Q) is the group charged with creating these DTDs and publishing the
HTML specifications. Web clipping supports a subset of the HTML 3.2
definition. Validating your code against the official specification is
always a good idea. (Validation is the process of comparing your HTML
against the official specification. You can do this online at the W3C'’s
Web site at http://validator.w3.org.) Many professional Web design
tools, such as Allaire’s HomeSite, have built-in validators.

Valid HTML is code that has been checked against the standard to
confirm that tags are used correctly. Because <SMALLSCREENIGNORE >
is a proprietary Palm OS tag and not in the official specification, a val-
idator will complain that this is not a legal tag. However, browsers are
programmed to ignore any tags they don’t recognize, so you can disre-
gard this particular warning.

You can avoid some of these validation errors by specifying the cor-
rect DTD to be used. Most validators allow you to specify where the DTD
is located, in order to override their default DTD. One way to do this is to
include the following tag (all on one line) as the first line in your HTML file:

<I DOCTYPE HTML PUBLIC "-//PCs//DTD WCA HTM. 1. 1//EN'
"http://ww. pal m com dev/ webcl i ppi ng-html -dtd-11. dtd" >

This is called an SGML declaration. It's a way of telling the browser
where it can find the official version of the DTD that this document con-
forms to. In reality, modern browsers have this DTD built in; they already
know the major HTML DTDs. But a validator will use this tag to go out
and download the specific DTD it should validate the document against.
In the tag preceding this paragraph, the document is declaring that it
conforms to the WCA HTML version 1.1 DTD, located on Palm Inc.’s Web
site at the URL specified.

We say markup is well-formed when all tags are closed properly
(every tag has a matched opening and closing tag pair). They must also
be nested properly, so that the opening tag for a one tag pair cannot be
inside another open/close tag pair:

<td>This is not well-formed</td>

<td>This is correct</td>

Unfortunately, you may occasionally need to bend this “well-
formed” rule in your use of <SMALLSCREENIGNORE>.

161

www.syngress.com

162 Chapter 6 * Optimizing WCAs for Palm OS Devices

Starting with a Desktop-Oriented Page

Let’s construct a page (see Figure 6.1) for the Unwired Widgets main Web site
that uses tables to lay out a typical left-hand navigation menu, with another
central table to display a list of available products.

Figure 6.1 Nested Table Construction in HTML

<htm >

<head>

<met a name="pal nconputi ngpl atfornf' content="true">
<meta nanme="historylisttext" content="Products">
<title>Unwired Wdgets - Products</title>

</ head>

<body bgcol or =" #FFFFFF" >
<tabl e wi dt h="750" border="0" cellspaci ng="0" cell paddi ng="2">
<tr>
<td col span="3" align="center">

<img src="http://ww. erbaviva. conling/bannerl.gif" w dth="468"
hei ght =" 60" bor der ="0">
</td>
</tr>
<tr>
<td valign="top" w dth="100">
<tabl e wi dth="100" border="0" cell spaci ng="0" cel | paddi ng="0">
<tr>
<td><ing src="inmage/ unwi red_| ogo.gi f" w dt h="100"
hei ght="75"al t =" Unwi red W dgets"></td>
</tr>
<tr>
<td>About Us</td>
</tr>
<tr>

<td>Product s</ a></t d>

Www.syngress.com

Continued

Optimizing WCAs for Palm OS Devices * Chapter 6 163

Figure 6.1 Continued

</tr>
<tr>

<td>Shop Onli ne</td>
</tr>
<tr>

<td>Contact Us</td>
</tr>

</t abl e>

</td>
<td wi dt h="550">
<hr >
<h2 align="center">Wel cone to Unw red W dgets</h2>
<p>We've got a wi de range of products to neet all of your
wi dget needs. Cick on the itemthat interests you bel ow
to view a picture and further details.</p>
<h3>Pr oduct s</ h3>
<tabl e wi dth="100% border="1" cell spacing="0" cell paddi ng="0">
<tr>
<t h>SKU</ t h>
<t h>Descri ption</th>
<t h>Col or </t h>
</tr>
<tr>
<t d>34345</t d>
<t d>Square wi dget round-hol e adapter</td>
<t d>Red</t d>
</tr>
<tr>
<t d>34875</t d>
<td>Square wi dget round-hol e adapter</td>
<t d>G een</td>

</[tr>

Continued

WwWWw.syngress.com

164 Chapter 6 * Optimizing WCAs for Palm OS Devices

Figure 6.1 Continued

<tr>
<t d>34876</t d>
<t d>Square wi dget round-hol e adapter</td>
<t d>Bl ue</td>
</tr>
<tr>
<t d>34691</t d>
<t d>Square wi dget round-hol e adapter</td>
<td>Yel | ow</t d>
</tr>
</tabl e>
</td>
<td w dth="100" valign="top">

<ing src="inmage/rt_advertl.gif" w dth="100" hei ght="125"

bor der="0"></ a>

Try our Interactive Sizing Quide
</td>
</tr>
<tr>
<td col span="3">
<I— bottom text-only navigation nenu —
<p align="center">
About Us |
Product s |
Shop Online |

Contact Us</p>

<p align="center">© 2001 Unwired W dgets

i nf o@nw redw dgets. conk/ a>
</ p>
</td>

Www.syngress.com

Continued

Optimizing WCAs for Palm OS Devices * Chapter 6 165

Figure 6.1 Continued

</tr>
</ tabl e>
</ body>
</htm >

\WARNING

If you try to compile the code that was shown Figure 6.1 with the Query
Application Builder (QAB), it will give you an error when it hits the first
navigation menu item. This is because it expects the linked pages
about.html, shop.html, and contact.html to exist in the same folder
because they are “local” to the WCA. If these are server-side pages, then
we would link to them with the full syntax. For
clarity, | removed that code. So in order to compile a WCA, you'll need to
either insert the full http://www.unwiredwidgets.com/ part of the links,
as | did with the right-hand sizeguide.html link, or make three empty
pages, in the same folder, with these names.

If you save the code in Figure 6.1 to disk as products.html and then load it
into a browser, you’ll see that it’s a fairly typical (if uninspired) Web page, laid out
with a traditional three-column grid: a banner advertisement across the top, left-
side navigation menu, central content area, and right-side column with special
offers. (In the code, I've omitted the hyperlinks around each product line for
clarity—we add these later in the chapter.) The whole page is laid out in one
three-column table, and both the navigation menu and product listing use nested
sub-tables to control their appearance. Figure 6.2 shows a diagram of the table
layout, and Figure 6.3 shows how this page will look in a desktop browser.

WwWWw.syngress.com

166

Chapter 6 * Optimizing WCAs for Palm OS Devices

Figure 6.2 Layout of Nested Table Construction

Navigation Table

Products Table

Outer Table

Figure 6.3 Nested Table Construction in a Desktop Browser

e Ll e Preie b e
Ehae - - 0 O ks gfess s ol - O H

iy =

e

s g, 1 L

ArormalSecagey ot s sl o) Dr'::-

Aot equig, bl Ml o Ml L O

Websome do Unwired Widgees

2 e rage o et gran f
i ey o bl e e e Py e
Frosdariy
KT Typrripem Talisr
I gear g oo elain
e welgm vl vl
e 2 Ly
par e Ly =

e

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

Redesigning the Page for
Both Desktop and Handheld

We've already seen how to mask the banner advertisement so that it won’t appear
on a Palm OS device. In this case, we could wrap the entire table row containing
the banner in <SMALLSCREENIGNORE>, because it doesn’t contain any-
thing that’s needed on a Palm device.

<snal | scr eeni gnor e>
<tr>
<td col span="3">

<ing src="http://ww. erbaviva. conling/bannerl.gif" w dth="468"
hei ght ="60" bor der="0">
</td>
</tr>

</ smal | scr eeni gnor e>

However, if you look at the navigation menu section of the code, you’ll
notice an immediate problem: The Unwired Widgets logo 1s 100 pixels wide. On
a Palm device screen, that leaves you just 50 pixels or so for the actual content.
The next problem is that the real content of the page—the product listing—is
within a sub-table that’s set at 550 pixels wide. Remember, Web clipping pages
don’t currently provide a horizontal scrollbar, so everything beyond the right
margin is gone forever. Horizontal scrolling is possible in Palm OS 4.0, but it’s
difficult to use and should be avoided.

So how do we go about redesigning this page so that it looks good on a Palm
device or the desktop? First, let’s look at what content we really need to be on
the Palm OS version. Obviously we want the product listing, and we probably
want to link each to a more detailed description page. But we also need some
sort of navigation around the Web site. Beyond that, most of the code that is
shown Figure 6.1 is superfluous on a Palm device.

The left-side navigation menu is the first, and easiest, problem to deal with.
Because it’s in a self-contained table, we just surround it with
<SMALLSCREENIGNORE>:

<snal | scr eeni gnor e>
<td valign="top" w dth="100">
<tabl e wi dt h="100" border="1" cell spacing="0" cell paddi ng="0">

167

WwWWw.syngress.com

168 Chapter 6 * Optimizing WCAs for Palm OS Devices

<tr>

<td>

<ing src="image/ unwi red_| ogo.gif" w dth="100"
hei ght="75" alt="Unwi red Wdgets">

</td>
</tr>
<tr>

<td>About Us</td>
</tr>
<tr>

<td>Product s</td>
</tr>
<tr>

<td>Shop Onli ne</td>
</tr>
<tr>

<td>Contact Us</td>
</tr>
</ tabl e>

</td>

</ smal | screeni gnor e>

What we did was surround both the nested table itself, as well as the
enclosing <TD> column with <SMALLSCREENIGNORE>.This eftectively
removes this whole left-side column from the page when viewed on the Palm
OS device. Now, do the same for the right-side column:
<smul | scr eeni gnor e>

<td w dt h="100" valign="top">

<inmg src="image/rt_advertl.gif" w dth="100"
hei ght ="125" border ="0">

Try our Interactive Sizing Quide
</td>

</ smal | scr eeni gnor e>

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

What we now have, after this code passes through the Palm.Net proxy, is a
main table with one single column. Now things begin to get tricky. Because
we’ve already had an opening <TABLE> tag, the Palm.Net proxy will ignore the
opening <TABLE> tag wrapping the product listing, so it will interpret the
columns within this table as just a string of content text, all in the same cell. But
then it comes upon a closing </TABLE> tag and promptly closes the table,
leaving us with an “orphan” table row at the bottom. We could continue to wrap
bits and pieces of code in more and more <SMALLSCREENIGNORE> tags,
but this would rapidly get unmanageable—and it would result in very bloated
code for desktop browsers. A better way to handle this would be to reformat the
original code a little so that it looks the same on the desktop but is easier to
mark up for the Palm device.

Because what we’re really interested in is the product listing, let’s surround
everything except this with <SMALLSCREENIGNORE>.We probably want to
maintain the introduction text, so leave this. We also need to change some of the
table width settings, because the Palm.Net proxy will happily obey these and give
us a 550-pixel-wide table. An easy way to do this is to replace the absolute pixel
values with percentages. Unfortunately, WCA pages don’t allow percentage
widths for the <TABLE> tag. We could set the width to 153 pixels, but this
would not look good on a regular browser. One way around this is to leave the
inner table width at 100 percent. Web clipping will ignore this attribute, but still
use its “best fit” algorithm to size the table appropriately.

NoTE

Generally, Web clipping pages need to conform to the HTML 3.2 specifi-
cation. HTML 3.2 does not allow percentage widths for the <TD> tag.
Web clipping does—but it does not allow percentage widths for the
<TABLE> tag, something that is valid in HTML 3.2. Instead, the Web
Clipping Application Viewer will use a “best fit” algorithm to determine
the optimum size for the Palm screen.

There is one other way to force a table to be 153 pixels wide on a Palm
device, while using a different measurement on a desktop browser: by using
Cascading Style Sheets (CSS).

<tabl e wi dth="153" border="1" cellspaci ng="0" cel |l paddi ng="0"
style="wi dth: 100% ">

169

WwWWw.syngress.com

170

o

Q.

Chapter 6 * Optimizing WCAs for Palm OS Devices

Because Web clipping doesn’t support CSS, it will ignore the style tags and
render the table width as 153 pixels. Conversely, Internet Explorer and other
CSS-compliant desktop browsers will favor the CSS style and ignore the other
width setting. However, beware: CSS is notoriously difficult to use reliably across
the two main desktop browsers: Internet Explorer and Netscape Navigator. The
designers of Web clipping wisely chose to avoid it totally.

Of course, we also need some way of navigating around the Web site. Luckily,
the designer of the original Web page believed in designing pages accessible to
those with text-only browsers and incorporated an alternate text-only navigation
bar across the bottom of the page. If we move this outside of the main table, it
will still show up, nicely centered. We can then add the Palm OS-proprietary
button attribute of the <A HREF> tag to format these links as buttons. A regular
Web browser will ignore this and format them normally. (Note that I added a
<SMALLSCREENIGNORE> around one of the vertical bars separating the
bottom navigation links in order to hide this on the Palm device.) Figure 6.4 lists
the new code.

Figure 6.4 The Unwired Widgets Code Redesigned to Work in Both Palm OS
and Desktop Browsers

<htnm >

<head>
<met a name="pal nconputi ngpl atfornf' content="true">
<meta nane="historylisttext" content="Products">
<title>Unwired Wdgets - Products</title>

</ head>

<body bgcol or =" #FFFFFF" >
<snal | scr eeni gnor e>
<tabl e wi dth="750" border="0" cellspaci ng="0" cel |l paddi ng="2">
<tr>
<td col span="3" align="center">

<img src="http://ww. erbaviva. conling/bannerl.gif" w dth="468"
hei ght =" 60" border="0">
</td>

</[tr>

Continued

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

Figure 6.4 Continued

<tr>

<td valign="top" width="100">

<tabl e wi dth="100" border="0" cellspaci ng="0" cel |l paddi ng="0">
<tr>

<td><ing src="inmage/ unwi red_| ogo.gif" w dth="100"

hei ght="75" alt="Unwi red Wdgets"></td>

</[tr>
<tr>

<t d>About Us</td>
</[tr>
<tr>

<td>Product s</ a></td>
</tr>
<tr>

<td>Shop Online</td>
</tr>
<tr>

<td>Contact Us</td>
</[tr>

</t abl e>

</td>
<td wi dt h="550">
</ smal | scr eeni gnor e>
<!—Palmfriendly HTM. begins here —
<h2 align="center">Wel come to Unwi red W dgets</h2>
<p>We've got a w de range of products to neet all of
your widget needs. Cick on the itemthat interests
you below to view a picture and further details.</p>
<h3>Pr oduct s</ h3>
<tabl e wi dth="100% border="1" cell spacing="0" cell paddi ng="0">

<tr>

Continued

171

WwWWw.syngress.com

172

Figure 6.4 Continued

Chapter 6 * Optimizing WCAs for Palm OS Devices

<t h>SKU</ t h>
<th>Descriptio

<t h>Col or </t h>

</tr>

<tr>

<t d>34345</t d>

n</th>

<t d>Square w dget round-hol e

<t d>Red</t d>
</[tr>

<tr>

<t d>34875</t d>

<td>Square w dget round-hole

<t d>G een</td>

</[tr>

<tr>

<t d>34876</t d>

<t d>Square w dget round-hole

<t d>Bl ue</td>
</[tr>

<tr>

<t d>34691</t d>

<t d>Square w dget round-hol e

<td>Yel l ow</ td
</[tr>

</t abl e>

<snal | scr eeni gnor e>
</td>
<td w dt h="100"

>

val i gn="t op" >

adapter</td>

adapt er </t d>

adapt er</td>

adapter</td>

<ing src="inmage/rt_advertl.gif" w dth="100"

bor der ="0"></ a>

<pbr >

hei ght =" 125"

Www.syngress.com

Continued

Optimizing WCAs for Palm OS Devices * Chapter 6

Figure 6.4 Continued

Try our Interactive Sizing Quide</td>
</tr>
</tabl e>

</ smal | scr eeni gnor e>

<p align="center">

About Us |

Products

<smul | screeni gnore> | </small screeni gnore>

Shop Online |

Contact Us

</ p>

<p align="center">© 2001 Unwi red W dgets

 nfo@nw redw dgets. conx/ a>

</ p>

</ body>

</htm >

What we'’re left with is a page that looks almost identical in a standard Web
browser (see Figure 6.5), but which also formats quite nicely on the Palm OS
device, as you can see in Figure 6.6.

Figure 6.5 Redesigned Unwired Widgets Page in a Desktop Browser

= [@ = fpms == g
i DT e gless g O d- 02 H L

agaes [l e—— T
Ervpmuydesa s J7 09 ['||_'|l::_-= 1
Ao fomdutin, Lot Ml o M A
Urranrec e
Widgets Wiliame be Ulnwired Widgets m
e el g s e b s ol oy e e 3 Gude
Frodads
[1n] Dlsser o ol
i T -

173

WWww.syngress.com

174

Chapter 6 * Optimizing WCAs for Palm OS Devices

Figure 6.6 Redesigned Unwired Widgets Page on the Palm OS Device

Unwired Wid..

Welcome to Unwired
Widgets
&'ve got g wide range of praducts
to meet all of your widget needs. Click
on the item that interests you below
o wiew g picture and further details.

Prudur.ts

Eku Pescription |

33495 B quare widget Fieed
pound-hale adapter i

TASTCE AanAava midaat » 18

Unwired Wid..

34875 Equare widget areen
pound-hale adapter

387 EEquare widget Elus
pound-hale adapter

3469 1 fFquare widget el
pound-hale adapter

[AboutUs] | [Products]
[Shop Online] | [Contact Us]

2861 Unwired Widgets
infoGunwiredwidgets.com

Remember, as you provide links to other pages on the Web site, these pages
too will need to be formatted to be “Palm-friendly.” Of course, Web pages these
days are usually a lot more complicated than this example, but this shows how a
little planning, and some simple changes, can give you universally accessible Web
pages. With the new Palm.Net proxy, more and more pages that aren’t Palm
OS—friendly get reformatted to better suit the device. However, licensees of Palm,
Incs proxy, such as OmniSky, may not have the current code and may sufter poor
performance in this area. Regardless of the capabilities of the proxy, pages
designed for large screens and faster connection speeds are always going to be
problematic for the small Palm OS screen and slow wireless links. If you expect
your visitors to be using these devices, making the extra effort to make your
pages universally accessible can simplify your Webmaster’s life—and give you
happier Web site visitors.

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

Using Tables for Page Layout

Tables are one of the chief tools used to lay out HTML pages when you want to
precisely control where items appear on the page. Web pages designed for desktop
browsers sometimes use very complex nested tables for sophisticated page layout.
Unfortunately, the designers of Web clipping chose not to support nested tables.
Tables, in fact, require quite a lot of processing on the client side to render, and
they add a significant amount of nondisplayed text to be downloaded. Because
Web clipping was specifically designed to minimize download file sizes over slow
wireless connections, the decision to not support nested tables makes sense.

Nested tables won’t necessarily cause an error. The Palm.Net proxy will
attempt to process the table tags, but it will completely ignore the nested table
and render any content as if it was the content of the parent <TD> cell. This
rarely gives you the effect you were looking for.

Considering the limited space available on a Palm OS screen, you can’t get
very complex with layouts anyway, so the loss of nested tables is not a real
problem.You can, however, still use tables to control how content is displayed on
your pages. The first thing to be aware of is that your tables need to be no more
than 153 pixels wide. Clipper will quite happily accept a table width wider than
153 and render it properly, but because there is no horizontal scroll bar, any con-
tent beyond 153 pixels is lost.

Web clipping supports the width attribute of both the <TABLE> and <TD>
tags. However, as mentioned earlier in the chapter, the <TABLE> tag allows only
absolute pixel widths—percentages are not accepted. If you enter percentage
widths, or no width at all, the Web Clipping Application Viewer will use a “best
fit” algorithm to size the table appropriately. Percentage widths are supported for
the <TD> tag.

Web clipping also supports some other common <TABLE> attributes that
allow you to more accurately get the look you want for your pages. Border is the
size of the lines around the table and between individual table cells. The default, if
you don’t specify anything for this attribute, is no border. To add a border to your
table, use the following:

<tabl e border="1">

On such a small screen, table borders can look quite heavy, so use them judi-
ciously. You can also specify borders larger than 1, but these tend to look over-
powering. Figure 6.7 shows the effect of changing the border attribute of the
<TABLE> tag.

175

WwWWw.syngress.com

176 Chapter 6 * Optimizing WCAs for Palm OS Devices

Figure 6.7 Effect of the Border Attribute of the <TABLE> Tag

Table Test 1 +

Widget A Widget B Widget ©
Barder=4d

idget A|Widget B [idget ¢

Border=1

NoTE

The border attribute behaves a little differently on a Palm OS device than
in a regular browser. In Netscape or Internet Explorer, as you increase the
value of border, the lines between the table cells stay at the default 1,
with the extra being added around the outside of the table to create a
beveled look. In a Web clipping, increasing the value of border adds
thick black lines around and between all table cells. This usually looks
too heavy, although you may be able to use it for effect in some cases.

Cellspacing controls the amount of space between table cells. This amount is in
addition to what you can define with the border attribute. If you have already
specified border=1", then adding cellspacing=°1>* will increase the width of
your column dividers. One good use for this attribute is to set border=“0> so
that the borders are invisible, then add cellspacing=°2"* to create some
breathing room between the content of your table cells.

Cellpadding, which is similar to cellspacing, controls the amount of space around
the text within a <TD> cell. One likely place to use this is when you have a table
with border=1"" and want to add some space around the content without
increasing the width of the dividing lines. In most cases, cellpadding will give you
better results than cellspacing and is the best choice if your table has a visible
border. Note that cellspacing and cellpadding aftect all cells in the table, so you
should use other mechanisms if individual control is needed. Figure 6.8 shows
the effect of changing cellpadding on a Palm OS screen.

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6 177

Figure 6.8 Effect of Changing the Cellpadding Attribute of the <TABLE> Tag

11 = = *
idget AfYidget Bfvidget C
Cellpadding=#H
Widget AWidget B|Widget
Cellpadding=1

Widget A |widget B | idget ¢
Cellpadding=2

Let’s take another look at the product-listing table we created earlier as part
of Figure 6.1.
<tabl e wi dth="100% border="1" cell spaci ng="0" cell paddi ng="0">
<tr>
<t h>SKU</ t h>
<t h>Descri ption</th>
<t h>Col or </t h>
</tr>
<tr>
<t d>34345</t d>
<t d>Square wi dget round-hol e adapter</td>
<t d>Red</t d>
</tr>
<tr>
<t d>34875</t d>
<td>Square wi dget round-hol e adapter</td>
<t d>G een</td>
</tr>
<tr>
<t d>34876</t d>
<t d>Square w dget round-hol e adapter</td>
<t d>Bl ue</td>

WwWWw.syngress.com

178

Chapter 6 * Optimizing WCAs for Palm OS Devices

</tr>

<tr>
<t d>34691</t d>
<t d>Square wi dget round-hol e adapter</td>
<td>Yel | ow</t d>

</[tr>

</t abl e>

This works fine on the Palm device, as you can see from Figure 6.6, and of
course on a desktop browser, too. But it’s not the most attractive table; the border
makes it look heavy, and the text is a little too crowded. What’s more, if you make
a WCA with just this table (adding the necessary head and body tags, of course),
you’ll notice that the Web Clipping Application Viewer has used its “best fit”
algorithm to make the table less than full-screen width, crowding the text even
more. So let’s see if we can clean up the appearance of this table a little, while still
making sure it will work well on a desktop browser.

First, let’s remove the border by setting border=°0". This will crowd all the
text together, so let’s also add a little white space for breathing room around the
text with cellpadding. Notice that cellpadding adds space both top and bottom as well
as left and right. (Adding too much here can make your tables too spaced out.)

<tabl e width="100% border="0" cell spaci ng="0" cel |l paddi ng="2">

We now have a more pleasing-looking table; the heavy border has been
removed, and text is nicely spaced apart for readability, as you can see in Figure 6.9.
To complete it, let’s put back in the <A HREF> links to product detail pages
that we omitted earlier for clarity. In an actual Web site product listing, each item
would typically link to another page that would offer expanded product details.
One way to do this would be to call a Common Gateway Interface (CGI) pro-
gram, a server-side program that would perform a database query and return the
relevant information for the product based on the stockkeeping unit (SKU), a
unique ID commonly used to identify products. In this case, we link to a ficti-
tious CGI called products. We tell this CGI which product we’re interested in by
passing the SKU as part of the URL. The syntax for doing this is:

<a href="http://ww. unwi redw dgets. coni cgi - bi n/

product s. cgi ?sku=34345">Squar e wi dget round-hol e adapter

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6 179

Figure 6.9 Products Table with Extra White Space

Unwired Wid..

KU Description Color

39345 Square widget Fed
raund-hale adapter

34875 Square widget Green
raund-haole adapter

876 Square widget Blue

raund-hale adapter

34691 Square widget “ellow
raund-haole adapter

Because these are links to off-device items, Web clipping displays the “over
the air” symbol next to them, as well as the conventional underline. The resulting
page is shown in Figure 6.10.

Figure 6.10 Products Table with “Over the Air” Symbols

Unwired Wid..

SEU Description Color

34345 Sguare widget Red
round-hole adapters

24875 Sguare widget Green
round-hole adapters

24876 Sguare widget Blue
round-hole adapters

24691 Sguare widget ellow
round-hole adapters

Typically, the product listing itself would also be generated from a database
query. Most companies will have quite a few products, in several categories, that
they want to display to visitors. We could, of course, extend this fairly simple table
to any length, but this would give us a very long, unwieldy table. Because widgets
come in several categories, let’s organize the table by category to increase read-
ability. For this, we can use the colspan attribute of the <TD> tag.

<tabl e wi dth="100% border="0" cell spacing="0" cell paddi ng="2">

<tr>

WwWWw.syngress.com

180 Chapter 6 * Optimizing WCAs for Palm OS Devices

<th col span="3">Squar e
W dget s</th>

</[tr>
<tr>

<t d>34345</t d>

\%

<td><a href="http://ww. unwi redw dgets. cont product s?sku=34345"
round- hol e adapter</td>
<t d>Red</t d>
</tr>
<tr>

<t d>34875</t d>

\%

<td><a href="http://ww. unwi redw dgets. cont product s?sku=34875"
round- hol e adapter</td>
<t d>G een</td>
</tr>
<tr>

<t d>34876</t d>

\%

<td><a href="http://ww. unwi redw dgets. cont product s?sku=34876"
round- hol e adapter</td>
<t d>Bl ue</td>
</tr>
<tr>

<t d>34691</td>

\%

<td><a href="http://ww. unwi redw dgets. cont product s?sku=34691"
round- hol e adapter</td>
<td>Yel | ows/t d>
</tr>
<tr>
<th col span="3">Round W dget s</th>
</tr>
<tr>
<t d>44345</t d>
<td>
squar e- hol e adapter </ a></td>
<t d>Red</t d>

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

</tr>
<tr>
<t d>44875</t d>
<td>
squar e- hol e adapter </ a></td>
<t d>G een</td>
</tr>
<tr>
<t d>44876</t d>
<td>
squar e- hol e adapter </ a></td>
<t d>Bl ue</td>
</tr>
<tr>
<t d>44691</t d>
<td>
squar e- hol e adapter </ a></td>
<td>Yel | ow</t d>
</[tr>

</t abl e>

This gives us a much more readable table. Also, because the text under the
product descriptions is now shorter, the table is more compact so that we can see
more items at a time on the screen. We’ve also added a different text color for the
category names to add some differentiation for the headers. See Figure 6.11 for
the completed table.

This approach works well if you have one or two screens full of items. If your
product assortment contains a larger number of items, or several categories and
sub-categories, you might want to organize them into two or more screens with
sub-menus. Remember, the basic concept of Web clipping is targeted access to
specific information, rather than the “browsing” mode of Web navigation. Visitors
are accessing your pages over a slow link and often paying per kilobyte down-
loaded, so design your navigation so that people see only the items they’re
looking for. Palm, Inc. recommends that you keep the size of downloaded files to
less than 360 bytes. On the Palm VII, which has less memory, even a file of this
size can make the device appear to “freeze” as the Palm device attempts to
decompress and display the entire page.

181

WwWWw.syngress.com

182 Chapter 6 * Optimizing WCAs for Palm OS Devices

Figure 6.11 The Completed Products Table

Unwired Wid..

Square Widgets

34345 round-hale adapters: Red
34875 round-hole adapters: Green
34876 round-hole adaptery: Elue
34691 round-hole adapters ‘Yellow
Round Widgets

44345 square-hale adapters- Red
44575 square-hale adapters: Green

44376 zquare-hole adapteri Blue
MAED] canara-hale adantard Yallean S/

Another way to use tables is for laying out images and text on the same page.
The ESPN WCA, which probably came preinstalled on your Palm VII or PalmV
with OmniSky, shows one good example of this technique.

Figure 6.12 shows the first page of the ESPN WCA. This uses tables to dis-
play quite a lot of links in the available space, without it seeming crammed.
Across the top, a table row uses colspan to display the site logo, as well as two
links: one to breaking news online and one to a local “About” page. Below this
are four columns: the first and third are icons that link to live scores in each of
the sports; the second and fourth lead to local sub-menu pages. Again across the
bottom, colspan is used to allow for a longer piece of hint text.

Figure 6.12 ESPN Home Screen

4 - History

ESPM.com

I A
E==I~E E.com
Top newst: About ESPN.com

i HFL H:: Bazeball

3 HER H:: HHL

H:- Colleqe FE B: W Colleqge BB
H:- Soccer B: W Colleqe BE
Huto Racing Golf

Extrems Sports More sports.t

H: - Tap for scores

Figure 6.13 shows the result of tapping on the underlined NFL text link. This
takes you to a local page that provides expanded links to more online data on the

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6 183

chosen sport. The large graphic loads quickly because it’s precompiled into the
local WCA. (See Chapter 4 for how to compile graphics into your WCA.)

This is a fairly simple table, but used to good effect to create an attractive and
readable page.The top and bottom rows use colspan=°2”’ to house the section
header and site logo respectively. The center of the screen uses two columns to
display a graphic and the links with plenty of white space around them. Also, the
ESPN logos top and bottom both link back to the home page, making this a
very effective use of space.

Figure 6.13 NFL Sub-Menu

4 - Hist-:-r:?
N F L E3r11L.CoM
sHews: '
s SCoress ‘
=itandings -
HECE: | WFCS -
sSchedules :"'l
DRILYS | TERRS -e;“;I
I#
O
E3rn

NoTEe

One of the best ways to improve your WCA design skills is to look at
what other people have done—both the good and the bad. Palm, Inc.
maintains a directory of Web clipping applications you can freely down-
load at http://wireless.palm.net/apps.

Particularly useful are the companion WCAs for major Web sites.
Several sites now offer a downloadable Web clipping application to
access their pages; usually you’ll find it under the “Wireless” link on the
home page.

Several tools are available to turn downloaded WCAs back into HTML
text; Palm Inc.’s Web clipping information page links to some of them.
Reverse engineering WCAs is similar to using View Source in a desktop
browser to examine the underlying HTML of a page—it can be a good
source of ideas, but directly copying the work of others may violate
copyright laws.

WwWWw.syngress.com

184

Chapter 6 * Optimizing WCAs for Palm OS Devices

Specifying History Text

On a desktop browser, you can navigate to pages previously visited by clicking on
the little arrow next to the Back button, creating something like a trail of bread-
crumbs. As you navigate through a Web site and around the Web, the browser also
keeps a record of your travels that allows you to retrace your steps. This is known
as the History list. One improvement it offers over breadcrumb trails is that you
can jump randomly to specific pages in the history, rather than having to work
your way back link by link.

Web clipping offers the same history feature, but with one improvement: You
can specify the text to be displayed in the History list. You can access this history
by either clicking the left arrow in the center of the top margin of the screen to
step back page by page, or you can access it by clicking on the word History
that appears in the upper-right corner of the screen. This will reveal a drop-down
list of recently visited pages, and you can jump directly to any page by clicking
on the History list entry. One advantage of using the history is that the pages will
be loaded from local cache, if available, which makes them load much more
quickly. One disadvantage, at least until Palm OS 4, is that you can’t prevent a
page from being cached and entered into the History list.

Using the HistoryListText META Tag

The tag that enables this is the HistoryListText META tag. A META tag is a spe-
cial form of HTML tag that generally provides information to the browser or the
Web server, rather than being displayed on-screen.

<meta nane="historylisttext" content="Unwired Wdgets">

Remember that this META tag goes in the <HEAD> section of your
HTML page. Whatever you put in the content attribute is what will display in the
History list. However, you can only have about 12 characters displayed here, so
keep the text short. Each successive page you visit is added to the top of the
History list, and previous pages scroll down to accommodate them. Only about
12 history items can appear in the drop-down list, but if there are more, scroll
arrows appear within the drop-down listing. The size of the HistoryListText
cache is about 50K. When this becomes full, items are removed based on a “least
recently used” algorithm.

Web clipping will append not only the text you supply but also the current
time (as set in your device preferences) when you accessed the page. The text you
supply for this History list doesn’t have to be the same as the title of the page.

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

Because you only have such a limited space, you might want to use abbreviations
or some other shortened text that still clearly identifies what the page contains.

If you don’t supply a HistoryListText META tag on your pages, Web clipping
will use whatever 1s in the <TITLE> tag, again truncated to about 12 characters,
and append the time. If your page also doesn’t have a <TITLE>, then the history
will display the page URL, which probably won'’t be very readable in this format,
so it’s best to supply both a <TITLE> tag and the HistoryListText META tag.

NoTE

The history is attached directly to the relevant Web clipping. If you're in
the ESPN Web Clipping, you'll see only your history of navigation around
that particular WCA. Backing up all the way will take you back to the
Applications screen, just as if you had clicked the Home icon on the
touch screen.

This history is maintained between invocations of the WCA. You
could view a page, switch to another program, return to your WCA, and
go back to the page you were viewing by clicking on the History list.

Also, the history is maintained only for pages retrieved over the air. If
you navigate around pages local to the WCA, these are not added to the
History list.

Using Date and Time Variables
with the History Text

As we saw earlier, Web clipping automatically appends the time to whatever you
supply as the content attribute of the HistoryListText META tag. One side effect
of this is that it will truncate your HistoryListText at about 12 characters in order
to be able to display the time.You can control this somewhat by using two special
variables—&date and &time—within the text of the content attribute. If you supply
either of these variables, Web clipping will not truncate your text, and you can
get labels of about 22 characters to display here; however, this will push the actual
date or time oft the right-hand side, so it will be invisible.

In actual use, &date and Gtime will be replaced by the date or time from your
device. The display format will be as you have it set in your device preferences.
For example, if you use the following META tag, the resulting display would be
as shown in Figure 6.14.

185

WwWWw.syngress.com

186

Chapter 6 * Optimizing WCAs for Palm OS Devices

<meta nanme="historylisttext" content="Products &date &tinme">

The first item shows the default when you don'’t specify any variables; the
text is truncated at 11 characters to make room for the time. The middle history
item shows the effect of extending the length of the HistoryListText; the date
and time are pushed off the right-hand side. The bottom item is the result of the
aforementioned tag.

Figure 6.14 HistoryListText Displayed

Unwired Wid.. w History)

----- Urewird ¥id... 11:40 pro
FASTEQUAre iy Gur Products 372
bound| b ogucts 3027 11:40 prn

387 E R quare Wioge . Eiae
pound-hale adapter

3469 1 fFquare widget el
pound-hale adapter

[About Uss] | [ProductsE)
[Shop Onlined] | [Contact Ust |

2861 Unwired Widgets
infoGunwiredwidgets.com

Developing & Deploying...

Clearing Your HistoryListText Cache
with the Palm OS Easter Egg

What is an Easter Egg? This is a secret mini-application that program-
mers sometimes put in a program or OS. A special and unusual sequence
of keystrokes is usually required to activate it, and the egg may do some-
thing funny, list credits for the programming team, or occasionally let
you perform some unusual developer trick. Palm OS programs have
numerous Easter Eggs, but one in particular is of use when playing with
the settings for HistoryListText.

There's normally no way to clear the History cache, but a variation
of the famous “Taxi” Easter Egg will allow you to. Here’s how:

1. Activate the Taxi Easter Egg by opening up the Preferences
page. Select the General screen.

Continued

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

. In the bottom-right corner of the screen, above the calcu-

lator, draw a tiny circle (clockwise or counterclockwise—
either should work).

. An Easter Egg graphic will pop up on the screen. (You can

perform an extra step to have a little taxi drive across your
screen, but we'll assume you’re not that starved for enter-
tainment.)

4. Go into any Web clipping application.

9.

. Tap four times in rapid succession right over the Calculator

silkscreen button.
Tap the Menu silkscreen button.

. If you do it right, you'll see a new selection under the

Options menu called Preferences.

Open this, and set the History list storage to 0. This effec-
tively clears the cache.

Click OK.

After it's cleared, change it back to the default 50K to begin testing
again. A word of warning: Do not change the Proxy setting on this

screen.

The Easter Egg works on the Palm VIl and Vlix and the Handspring
Visor with OmniSky modem. It does not seem to work on the Palm V or
Vx with OmniSky modem. This Easter Egg also gives you another menu
item called Page. Using this, you can go to any arbitrary URL on the
Web—not just Palm OS-friendly pages. But beware—using this can seri-
ously deplete your per-byte transfer allowance on Palm.Net.

Using

MAILTO Links to Send E-Mail

You may have noticed the e-mail address at the bottom of Figure 6.6. Depending

on how your computer is set up, clicking on these kinds of links in a regular

browser will usually launch your default mail program, with this e-mail address

loaded into the “To:” field. This is a useful way of providing feedback links, usu-

ally at the bottom of your pages or on a contact page. It saves people from having

to cut and paste your e-mail address into their mail program.

E-mail 1s a tremendously powerful tool to add to your Web pages. Because

wireless-enabled Palm OS devices also have e-mail capabilities, you might want

to consider putting MAILTO links on your Web clipping pages, too.

www.syngress.com

187

188

Chapter 6 * Optimizing WCAs for Palm OS Devices

So what happens if you click on one of these links from within a Web clip-
ping page on a Palm device? On the Palm VII and VIIx devices, the MAILTO
construct will immediately launch iMessenger, an e-mail application that works
with special Palm.Net e-mail accounts. iMessenger stores messages in an
“outbox” to be sent the next time your device has a connection and you click on
the Check and Send button.

The format of the MAILTO link is exactly the same as on a regular Web page:

Di splay Text

Replace Display Text with the text you want to be highlighted as a link.
Unlike an HTTP link, you don’t place the “//” after the colon.You type this link
exactly as in the example above.

Clicking on this link in a Web clipping on a Palm VII or VIIx launches
iMessenger with the e-mail address already loaded into the “To:” field. You can
then type a subject and message and put it in the Outbox. As soon as your mes-
sage 1s put in the Outbox, iMessenger closes and you're back at the original Web
clipping page you came from. Because iMessenger is a separate program residing
on your Palm OS device; what youre actually doing is calling an external program
from within your WCA. This will be explored in more depth in Chapter 10.

You can also call iMessenger with some of the other parameters already spec-
ified. Netscape pioneered this enhanced MAILTO scheme when they integrated
a mail client into the browser back in the mid-1990s, and Palm, Inc. continues its
support with MAILTO links in Clipper.

<a href="nmailto:info@nw redw dgets. con?subj ect =Feedback&body=Your

website is wonderful.">Send a Conplinent

NoTE

The section on MAILTO in the original version of Palm, Inc.’s Web
Clipping Developer’s Guide contains a typo. The example shown here is
the correct syntax for these links.

This would load iMessenger with the “To:,” “Subj:,” and “Body:” fields
already filled in with your text. Unfortunately, there’s no way to insist that people
send only compliments; they can still modify the message contents before

sending. Figure 6.15 shows the display after someone selects the link on their
Palm VII or VIIx.

Www.syngress.com

Optimizing WCAs for Palm OS Devices * Chapter 6

Figure 6.15 iMessenger Called with Parameters

Mew Message

Subj: Feedback
Body: Your website iz wonderful,

| Putin Outbox || Cancel |

Because this is a regular <A HREF> tag, you can also use the proprietary
button attribute to have this link appear as a graphical button:

<a href="mailto:info@nw redw dgets. con?subj ect =Feedback&body=Your

website is wonderful." button>Send a Conplinent

Using Other Mail Handlers with Palm OS 4.0

In Palm OS 3.5, iMessenger is hard-wired to the MAILTO link. This also works
only on Palm VII and VIIx devices under Palm OS 3.5. Palm OS 4.0 will allow
other applications to register themselves to handle MAILTO, so bear in mind that
iMessenger may not always be the application called when you insert a MAILTO
in your Web clipping page. For instance, developers could write a custom applica-
tion that would detect calls from the MAILTO tag and divert into their own mail
client. Hopefully, the developers would be careful to maintain backward compati-
bility with the current function, but you probably can’t rely on this always being
the case.

189

WwWWw.syngress.com

190

o

Www.syngress.com

Chapter 6 * Optimizing WCAs for Palm OS Devices

Summary

Nowadays, visitors may arrive at your Web site using anything from a WAP
phone to a PDA to a full-screen desktop browser. Developing one set of pages
for both desktop browsers and PDAs offers a huge saving in effort for developers.
Although you need to bear in mind certain limitations, with careful planning you
can construct pages that work well on any size screen.

In this chapter, you learned how to modify your pages to make them work
well on both desktop browsers and a Palm OS device. Although using the special
<SMALLSCREENIGNORE> tag may require you to bend the rules of good
HTML, you can minimize this by adjusting your page layout slightly. Desktop
browsers will ignore the unknown tag, but using the tag allows you to cordon oft
areas of your HTML code that wouldn’t work on a Palm device.

Tables are useful for creating a pleasing layout on the very limited screen of
Palm devices. This is particularly good for mixing text and graphics. Adjust table
borders and padding to give your text some “breathing room” and lighten the
look of the pages. With this approach, you can make optimum use of the available
space, while making a much more readable page. The ESPN Web Clipping shown
is one example, but look at the other samples provided with your Palm device
and those available for download from the Palm, Inc. Web site to see how other
developers approached the problem.

We examined how to use the special HistoryListText tag to allow your visitors
to navigate freely among pages stored in the local cache. We also saw how to con-
trol this history text and to use special variables for date and time. Lastly, we saw
how to insert MAILTO links that allow you to send e-mail directly from within
your Web clipping page in a format that also works well on a desktop browser.
Mail links work well for providing a feedback mechanism for your Web sites.

Solutions Fast Track

Making Pages Useful on Both
Desktop and Palm Devices

M You can write pages that work well on both desktop browsers and Palm
OS devices.

M Ensure that pages and graphics are no more than 153 pixels wide.

Optimizing WCAs for Palm OS Devices * Chapter 6

M Use the <SMALLSCREENIGNORE> tag to mark oft sections of
HTML you don’t want displayed on the Palm device.

Making Unwired Widgets Pages
for Both Desktop and Palm Devices

M Some minor modifications to your HTML can make it easier to opti-
mize for Palm devices.

&

M Decide on what content is truly crucial and put this in one table,
because Palm OS does not support nested tables.

M Minimize nesting errors, although some are unavoidable. Modern
browsers will ignore these.

Using Tables for Page Layout

M Tables must be formatted to be no more than 153 pixels wide.
M Nested tables are not supported.

M Use border and cellpadding to create “breathing room” around your
content.

M Use tables to lay out text and images to create a more pleasing
arrangement.

Specifying History Text

M Palm OS appends the time automatically if you do not specity it.

M The HistoryListText META tag is limited, so keep your labels concise.
M Use &date and &time variables in the HistoryListText.

M Specifying &date and &time allows you to use longer history text.

WwWWw.syngress.com

Use alternate text-only navigation links with the special button attribute. '

191

192

%

o

Www.syngress.com

Chapter 6 * Optimizing WCAs for Palm OS Devices

Using MAILTO Links to Send E-Mail

M Use MAILTO links to allow visitors to send e-mail from within your
Web clipping.

M Append arguments to the MAILTO to prefill the “To:,”“Subj:” and
“Body:” fields.

M iMessenger is the default mailer on Palm VII, but Palm OS 4 will allow
other applications to handle this.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Can I specify an alternate banner graphic to be used on Palm OS pages and
one for desktop browsers?

A: Not easily; although <SMALLSCREENIGNORE> allows you to mark areas
you don’t want to see on a Palm device, there is no corresponding tag to tell
desktop browsers toignore Palm OS—only markup. However, one solution, if
you're familiar with server-side scripting languages such as ASP or Perl, would
be to detect the incoming browser and display different markup in the banner
section according to which browser is accessing the page.

Q: What happens if my table is wider than 153 pixels? Will Web clipping
accept it?

A: Yes, Web clipping will happily process a table wider than 153 pixels, but
because the Web Clipping Application Viewer.does not provide a horizontal
scroll bar, everything beyond the right border is lost. If you're making pages
just for the Palm OS, you can control this, but if you're making universally
accessible pages, try to avoid absolute measurements for <TABLE> and
<TD> tags. Web clipping will do its best to format your table to best fit
in the available space. Palm OS 4 adds horizontal scrolling ability, but it is

difficult to use and should be avoided.

Q:
A:

Optimizing WCAs for Palm OS Devices * Chapter 6 193

Can I have table background colors?

No, Web clipping does not allow background colors for <TABLE> or <TD>
tags. It will simply ignore these. But be careful if you have a table that uses a
black background and white text for a desktop browser. Web clipping will
ignore the background color, but it will accept font colors, which would
make your text invisible.

s

: Can I have MAILTO links launch a different program? ‘ * é
: In Palm OS 3.5, MAILTO is linked only to iMessenger. Palm OS 4.0 will ‘ "

allow applications to register themselves to handle these and other links.

: How long do items stay in the History cache? "

. Items stay in the History cache until it becomes full. The size is about 50K.

When this becomes full, items are removed from the cache based on a “least
recently used” algorithm. There is no easy method of clearing these history
items yourself, but you can use third-party tools such as Cobweb to clear
your device’s Clipper cache. Also see the sidebar on the Easter Egg that allows
you to clear this cache. |

{

WwWWw.syngress.com

Chapter 7

Debugging Web

Clipping
Applications

Solutions in this chapter:

Emulating Web Clipping by Using the
Palm OS Emulator

Understanding the Palm.Net Proxy

5 Using Tools to Debug WCAs

Summary
Solutions Fast Track

Frequently Asked Questions

195

*
.\,i'\«.".-r\;_._.
L

196

Chapter 7 « Debugging Web Clipping Applications

Introduction

You need to test and debug your Web clipping application (WCA) before
sending it out to the world. As an alternative to burning batteries doing exhaus-
tive testing on a real device, Palm, Inc. supports using the Palm OS Emulator
(POSE). This is a program that emulates a real Palm OS device using a copy of
the actual operating system code. You interact with POSE on your desktop, with
mouse clicks taking the place of pen strokes and the keyboard acting as a quick
substitute for graffiti entry of text.

Even with POSE testing, you will sometimes find applications acting very
oddly. Your pages display as blanks, you get odd error messages with cryptic num-
bers, and your server shows too many hits. These are all artifacts of the Palm.Net
proxy server, so understanding how it talks to the device and to your Web server
can help you avoid problems like these.

In debugging, having a good set of tools is important. We close this chapter
talking about software to help you find problems. Among the invaluable part of
your toolkit are programs that will validate your Hypertext Markup Language
(HTML), check your links, decompile your code, and send arbitrary requests to
your Web server. Some of these run on the desktop, some run on the Palm OS
device—using them can really help you out.

Emulating Web Clipping by
Using the Palm OS Emulator

The Palm OS Emulator (POSE) is a standalone software application that mimics
the behavior of Palm OS devices. Supported by Palm, Inc. for both Windows and
Macintosh, POSE allows you to verify the operation of your Web clipping appli-
cation without being burdened with using an actual device.You don’t even need
a cradle to download your new WCA for its first trial run! With its Internet con-
nectivity, POSE offers one of the best ways to test a WCA.

Because POSE lets you run Palm OS applications on your desktop computer,
it lets you check WCAs without going through batteries, as you would when
testing on a real Palm VII device. POSE lets you reuse your existing Internet con-
nection as a substitute for wireless service, so you don’t need to pay connection
fees, and you can test your software when you are out of wireless coverage. You
also can mimic different device types, letting you see what your pages would look
like on everything from the grayscale Palm VII to a 16-bit color Visor Prism.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

POSE also offers the capability to easily make screen shots. One of the menu
options lets you save the current screen as a bitmap; most of the screens shown in
this book were captured this way. Because it runs on a PC, you can also use it for
presentations by hooking up a projector to a laptop computer and letting the
whole room see what is on the emulated Palm OS device’s screen.

An implicit benefit of using POSE is that it allows you to test your server-
side script’s ability to handle default values for Palm OS—specific variables. For
example, POSE produces a %DEVICEID of 0.0.0 and a %ZIPCODE of 00000
(see Chapter 9). Of course, real %DEVICEID and %ZIPCODE values need to be
tested from an actual device, but that can be deferred until you gain some confi-
dence in the overall WCA operation.

POSE’s shortcomings are relatively minor. For example, graftiti input with a
mouse is not easy. But then again, POSE has a keyboard available to do it! The
appropriate time to use POSE is any time from the initial creation of your WCA
through and including the performing of field tests. It can identify problems early
in the software lifecycle, verify that bug fixes have been properly implemented,
and reproduce problems identified on actual devices. In a nutshell, POSE repre-
sents one of the most valuable tools available for debugging your WCA.

Getting a Copy of POSE

The latest version of POSE can be downloaded from Palm, Inc’s emulator Web
site at www.palmos.com/dev/tech/tools/emulator. POSE is provided in binary
form, ready to run on either Windows or the Macintosh, and in source form,
with projects to build Windows, Macintosh, and Unix versions of the emulator.
The emulator is provided under the GNU Public License, which requires that
people distributing versions of the software include the source code—including
any modifications that they’ve made—and that the software can be freely dis-
tributed. Download POSE, unpack the archive, and install the files into a separate
directory. Be sure to review the release notes, which are packed with the emu-
lator in the files _News.txt and _OldNews.txt.

NoTE

Check the POSE Web site frequently to make sure that you are using the
most up-to-date version of POSE. At the time this book was completed,
POSE 3.1 was the current version, with POSE 3.2 with support for the
Palm m500 and m505 devices about to be released.

197

WwWWw.syngress.com

198

Chapter 7 « Debugging Web Clipping Applications

Developing & Deploying...

Dealing with POSE Errors That
Don’t Occur on Actual Devices

Among the many features of POSE is its ability to detect application
errors and warn the user. This is designed to help programmers build
robust Palm OS software by catching problems that could crash a device
or corrupt user data. Unfortunately, the developers of Clipper didn’t
have this error-catching available to them when they were developing
their code, and there are some latent bugs that POSE catches. A mes-
sage you might see is: “Web Clipping 3.2 has just read directly from
memory manager data structures. This problem indicates an error in the
application. Users should upgrade this product immediately to safe-
guard their data.”

One possible cause for this message is activating a Secure Hypertext
Transfer Protocol (HTTPS) link from within your WCA. Unless the Free
Chunk Access debug option is turned off within POSE, the transaction
cannot be completed. However, this message is not displayed when run-
ning the same scenario on an actual device.

Although this is an error in Clipper, it is generally harmless. POSE is
being picky, but it should not cause any problems in real operations. To
silence the warning, you can turn off the corresponding debugging
options within POSE. Also, newer versions of POSE often have special
code to silence warnings like this for known but harmless bugs in the
Palm OS ROMs.

If, like most techno-type personalities, you must do something to
correct the problem, you can try the following procedure. Use an HTML
Validator (see “Using Tools to Debug WCAs” later in this chapter) to
verify that your HTML conforms to the Web clipping Document Type
Definition (DTD). Some Clipper errors are caused by malformed HTML, so
making sure that you have clean input can go a long way towards
silencing POSE's warnings.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

NoTE

When POSE keeps responding with “no interfaces (Net 120C),” check
POSE's configuration to make sure that NetLib requests are being
directed to the desktop’s Transmission Control Protocol/Internet Protocol
(TCP/IP) connection. According to Palm’s documentation, “Right-click on
the Emulator window and select Properties (or if you're on Mac OS, use
the Preferences menu item from the Edit menu).” Then, “check the box
Redirect NetLib calls to host TCP/IP” and “reset the emulated device.”

Obtaining Palm OS ROM Images

By itself, POSE does very little. Although it does emulate the hardware in a Palm
OS device, it requires a copy of the operating system to perform any useful work.
Because the OS is stored in read-only memory (ROM) on the device, the copy
of the OS is referred to as a ROM image.

ROMs are not freely distributable. They contain the copyrighted code of
Palm, Inc. and its licensees, and there are only two legal ways to obtain ROM
images. The first is to download a ROM from the Palm, Inc. Web site. When you
do this, you agree to Palm’s legal agreement that outlines what you can and
cannot do with the OS image. The second method is to download a copy of the
ROM from an actual device, which is the quickest way to get POSE running
when you cannot access Palm’s site.

NoTE

ROMs running inside POSE cannot operate exactly as they would on an
actual device. For example, the execution speed of a ROM within POSE
will most likely be different than the execution speed of a ROM within an
actual device. POSE also does not support infrared (IR) beaming.

Downloading the ROMs from Palm’s Web Site

From the Palm, Inc. developer Web site, you can join the Palm Alliance Program
to gain access to ROM images. You have to wait a few days while Palm, Inc. pro-
cesses your application, but after you have an account, you can enter the resource

199

WwWWw.syngress.com

200

Chapter 7 « Debugging Web Clipping Applications

pavilion and agree to the Palm, Inc. clickwrap agreement, letting you immediately
download ROM images for all of Palm, Inc’s released devices. People accessing
Palm, Inc’s site from outside the United States may have problems downloading
the ROMs this way; Palm, Inc. does not have legal assurances that the Web site
license would be valid outside the U.S., so they require citizens from other coun-
tries to complete a paper agreement in order to get access to the ROMs. Palm,
Inc. also has tighter access control to the images with Web clipping software,
because it contains encryption software that has restrictions on export.

Obtaining ROM images from Palm, Inc. has several advantages. First, you can
get ROMs from several devices, not just the Palm OS device you own. Second,
Palm, Inc. supplies both release and debug ROMs, where the debug versions con-
tain extra checks that help you catch bugs in your programs. Third, ROM images
downloaded from Palm, Inc. are guaranteed to work. If you have modified your
device ROM using a flash programming tool, you won’t be able to upload it to
the desktop and use it in POSE, because the ROM checksum will be invalid.

Grabbing a ROM Image from a Palm OS Device

Another means of obtaining a ROM is grabbing it from an actual device.
Currently, POSE supports uploading ROM images through serial cradles only, so
if you are using a Handspring Visor, Sony Clie, or Palm m500—series device, you
won’t be able to transfer your ROM with this method.

The procedure for downloading a device ROM is straightforward. Within
POSE, select the Transfer ROM... command. This will prompt you to down-
load the ROM Transfer.prc file to the device, to turn off HotSync Manager, and
to run the new ROM Transfer program on your device. POSE and the device
will now talk over the serial link, and a few minutes later, you will have the
ROM image of the Palm OS device on your desktop.

Understanding the Palm.Net Proxy

The Palm.Net proxy is a server farm that provides an interface between your
WCA and the Internet. All of your online activities, wireless or not, flow through
the Palm.Net proxy. This is significant because as you come to understand how
the proxy functions, you come to understand how your device talks to the rest of
the world. A typical flow of data is as follows:

» User initiates a request by selecting a link or clicking on a submit
button, for example.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

= Data request is sent to the Palm.Net proxy. If the transfer is secure,
the data request is first encrypted using Certicom’s Elliptic Curve
Cryptosystems (ECC) process.

» Palm.Net proxy interprets the data request, making an equivalent
HTTP/HTML request of the specified destination server. If the transfer
1s secure, the data request is first decrypted. Upon interpretation, an
equivalent encrypted request is made via a Secure Sockets Layer (SSL)
connection to the destination server.

» Destination server interprets the data request, responding to the proxy
with an HTML page as part of the HTTP or HTTPS transaction.

» Palm.Net proxy interprets the HTML, translating it into the compressed
form used by Clipper. If the transfer is secure, the proxy encodes the
response using the ECC encryption scheme. This response is now sent
back to the device.

= Requesting device receives the Web clipping. If the transfer is secure, the
Web clipping is first decrypted. The Clipper application then renders the
Web clipping.

In this data flow, two interfaces to the Palm.Net proxy exist. The first is the
interface between POSE/device and the proxy. This interface is characterized by
a custom protocol and the WCA data format—a compressed subset of the
HTML 3.2 standard. The second is the interface between the proxy and the
Internet, which uses standard HTTP and HTML. Each of these interfaces is dis-
cussed in the following sections.

Communicating between
POSE/Devices and the Proxy

Communication between either POSE or an actual device and the Palm.Net proxy
1s accomplished using a compressed subset of HTML 3.2, called the Compressed
Markup Language (CML). Both device-resident WCAs and clippings sent back
from the Palm.Net proxy servers are represented in this format, making Clipper’s
rendering task the same regardless of the data source. The WCA Builder produces
this format from HTML pages on your hard drive, whereas the Palm.Net proxy
produces this format from the HTML pages returned by Web servers.

A full description of the device-resident version of this format is included in
the document “Palm File Formats,” available from www.palmos.com. This file also

201

WwWWw.syngress.com

202

Chapter 7 « Debugging Web Clipping Applications

describes the .prc and .pdb formats used for Palm programs and databases, but the
last two chapters are dedicated to the CML and how it is used inside Palm
Query Application (PQA) files.

Understanding how the WCA format is processed and transferred is the key
to understanding how POSE/device communicates with the proxy. In addition
to basic compression, the WCA format is processed and transferred by a variety
of mechanisms:

» Hashing links
= Converting images
» Securing data using ECC

» Talking to development and production servers

Hashing Links

Link hashing 1s a process whereby links are not sent verbatim from the proxy to the
device. Links are replaced with an index and checksum. The index is the output of
a hashing scheme and indicates the relative position of the link within the Web
clipping. The checksum is based on the link’s full URL, protocol, and parameter
data. The index and checksum are generated as part of the compression process.

Sending an index/checksum pair in lieu of a link minimizes the bandwidth
required for POSE/device-to-proxy communication. Granted, this is more of a
concern when the proxy is communicating with an actual device, although it is
still the method employed when the proxy is communicating with POSE. After
all, the point of using POSE is to test your WCA in an environment that mimics
a real environment as closely as possible.

The effects of link hashing on pages dynamically generated by your Web
server are explored in the Chapter 8 discussion of session management using
URL rewriting.

Converting Images

Images are converted to the 2-bit depth Palm bitmap format for inclusion into
Web clippings. This 1s consistent with the processing performed by the WCA
Builder, which also converts images to conform to the WCA format. With Palm
OS 4.0 and later devices, the proxy may convert images to higher bit depths,
depending on the settings in Clipper. The proxy will also resize some pictures to
fit the 153-pixel wide clipping area.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

Securing Data Using Elliptic Curve Cryptosystems

Certicom’s Elliptic Curve Cryptosystems (ECC) technology is used to protect data
transferred between the device and the proxy. Data is encrypted using Certicom’s
Security Builder product and is kept in an encrypted state until decrypted by the
proxy. Decryption is also performed with Certicom’s technology.

The ECC approach combines the speed of symmetric-key cryptography with
the power of public-key cryptography. Symmetric-key cryptography is used to
encrypt message data. The speed of this algorithm is beneficial given unknown
and potentially large message size. The symmetric key is randomly generated for
each transmission.

The key is then protected by slower, yet more powerful, public-key encryp-
tion. An Elliptic Curve Diftie-Hellman (ECDH) function generates a Data
Encryption Standard Extended (DESX) key. Represented as a 163-bit ECC key,
the protection this key offers is approximately the same as that provided by a
1024-bit Rivest Shamir Adelman (RSA) key. And because encryption performed
with this key can only be decrypted using the corresponding private key, the pri-
vate key is kept only on the proxy server for added protection.

A public key transaction is not made every time the Palm OS device talks to
the proxy. Instead, public key updates occur occasionally, when either the proxy
or device thinks that it has used the current symmetric key for too long and that
it should be invalidated.

Talking to Development and Production Servers

Two types of servers exist for POSE and device communication with the
Palm.Net proxy servers: development servers and production servers.

Development Servers

Development servers are available for POSE-to-proxy communication. They
communicate between POSE and the proxy over a TCP/IP connection, using
sockets to facilitate data transfer. To facilitate the use of POSE, Palm, Inc. makes
available two dedicated development proxy servers:

» content-dev.palm.net
» content-dev2.palm.net
Their addresses are available from the Web clipping proxy (WCP) server status

page, http://oasis.palm.com/dev/proxy. To use one of them, first verify that
POSE is pointed to the appropriate server by running the Prefs application and

203

WwWWw.syngress.com

204

Chapter 7 « Debugging Web Clipping Applications

going to the wireless page. Next, verify that POSE is set to Redirect NetLib
calls to host TCP/IP by examining the POSE Settings/Properties dialog box.
These development proxy servers mimic Palm.Net for WCA testing, with the
exception that they do not support iMessenger. However, note that content-
dev2.palm.net is also used for testing prereleases of the proxy server.

NoTE

The status of Palm, Inc.’s development servers needs to be checked peri-
odically, because the addresses associated with each is subject to
change. Check the proxy status page for more details.

Production Servers

Production servers are available for device-to-proxy communication. They com-
municate between actual devices and the proxy over a User Datagram Protocol
(UDP) connection, using sockets to facilitate data transfer. Their actual IP address
is usually unimportant, because the device-to-proxy connection is managed as
part of the Mobitex network. In contrast to using POSE, an explicit address does
not have to be specified for communication to occur.

On non-Mobitex devices, such as those using the Palm Mobile Internet Kit,
the ofticial proxy server is at “proxy.palm.net”. On Palm OS 3.5 devices, you will
need to get the IP address of this server and use it directly.

NoTE

The IP address of the Palm.Net proxy must sometimes be known in order
for your WCA to gain access to a destination server. This occurs when the
destination server is behind a firewall that requires a priori knowledge of
IP addresses to which it will grant access. The IP addresses associated
with Palm.Net can be obtained from the WCP server status page.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

Communicating between the
Proxy and Your Web Server

Communication between the proxy and a destination server is conducted using
standard Internet interfaces such as HTTP and HTML. The proxy employs stan-
dard techniques and practices to take advantage of the efficiencies and security of
existing technologies. Two such examples are caching and SSL.

Caching

The proxy server does not cache Web clippings per se, although it does cache
static Internet HTML pages. When the proxy server determines that the cache
contains the static page corresponding to a Web clipping request, it responds to
the request with a Web clipping version of the cached page.

The determination about whether a page has been cached is made using the
HTTP date header. This field is retrieved from the content server and used to
indicate the last modified date for the static page. If this date is later than the cor-
responding date in the proxy cache, a request for an updated copy of the page is
sent. The content server responds with the latest copy of the page, which is used
to overwrite the corresponding page in the proxy cache.

When considering dynamic clippings, however, caching does not apply.
Dynamic clippings—clippings generated on the fly—are not available to be
cached because they are not stored on a content server. Comparison of modifica-
tion dates cannot be done. This applies to all nonstored pages, including those
generated by Common Gateway Interface (CGI) scripts, Active Server Pages
(ASPs), and so on.

Because the proxy server cannot determine whether a page is dynamically
generated, the page content itself must specify whether this is the case. To make
certain that the proxy server does not attempt to cache dynamically generated
pages, the pages should always include the PRAGMA: NO-CACHE header in
the HTTP response. This should be done in lieu of CACHE-CONTROL: NO-
CACHE, which may not be honored by the proxy server.

Secure Sockets Layer Encryption

As a protection mechanism for communication between the proxy server and
your Web server, SSL is employed. Information, or requests for information,
received from WCAs is decrypted from its ECC form and re-encrypted using
SSL. No data is stored in its decrypted form.

205

WwWWw.syngress.com

206 Chapter 7 « Debugging Web Clipping Applications

Before data is sent to a content server, however, the server must identify itself
by providing a credential certificate. The proxy server verifies the credentials by
verifying that the server has the private key matching the public key embedded
within the certificate. The certificate is also verified as having been issued by a
trusted Certification Authority (CA). The certificate chain is verified to be com-
plete and all certificates in the chain are verified to be current and active (for
example, nonrevoked). After the content server’s identify is verified, SSL-
encrypted data is sent. Encryption is performed using a 128-bit strong RSA
encryption. Decryption is performed on the content server.

NoTE

When changing your WCA during the test-modify-retest cycle, introduce
temporary characters into your code in conspicuous places. For example,
add a leading alphanumeric character to the title of your WCA. This will
help you verify that your changes are being properly compiled and loaded
into POSE and/or your actual device. You don’t want to be testing old
code! Keep in mind that this trick works for server-side software as well.

Detecting Proxy Problems

Various problems may arise during the debugging of your WCA. Some of the
more likely issues you will have to address are the following:

» Using valid development proxy servers and HTTP port numbers
» Having a valid security certificate

» Failing due to invalid HTML

» Diagnosing image problems

= Detecting server errors

» Getting multiple Web server hits

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7 207

NoTE

Several valuable resources exist for developing and debugging your WCA:

= Developer Forums www.palmos.com/dev/tech/support/forums

= Developer Exchange www.palmos.com/dev/tech/support/
devexchange.html

= Developers’ Nation www.devnation.net

Using Valid Development Proxy
Servers and HTTP Port Numbers

Using an incorrect development proxy server and/or HTTP/HTTPS port
number for the proxy server creates a potential source of proxy problems.
Palm.Net has specific proxy servers for development, and it restricts the number
of open ports available to URLs within Web clipping applications. Valid develop-
ment proxy servers and ports follow:

Development Proxy Servers
content-dev.palm.net
content-dev.palm.net
HTTP Port Numbers
80 8000 8080 8801
81 8001 8083
82 8002

8003

8004

8005
HTTPS Port Numbers
443 8003 10443

NoTE

POSE requires port 5002 to be open in both directions through a firewall.

WwWWw.syngress.com

208 Chapter 7 « Debugging Web Clipping Applications

Having a Valid Security Certificate

Palm.Net recognizes only some authorities for signed server certificates; having
one from a nontrusted authority will prevent secure communications. Certificates
must conform to the X.509 certificate format, and be verifiable using one of the
following certificate authorities:

= VeriSign

» Thawte

» Keywitness Canada, Inc.

= GTE Cybertrust ROOT

= Root Server Gated Cryptography (SGC) Authority

= Microsoft Root Authority

Additional information can be obtained from www.ietf.org/html.charters/
pkix-charter.html, the home page of the Internet Engineering Task Force (IETF)
Public-Key Infrastructure group.

NoTE

Do not require a certificate from the proxy server when establishing an
SSL connection, because Palm.Net does not supply user certificates.

Failing Due to Invalid HTML

The WCA Builder catches HTML errors during the WCA build process, but the
proxy server must catch errors when it is generating its CML data from the
returned Web pages.

Due to the complexity of pages returned over the Web, sometimes the proxy
will produce invalid CML and send that to the device, although the proxy does a
much better job now than it did in the past due to software upgrades. Invalid
pages can be generated from HTML that does not belong in the Web clipping or
that would not validate due to missing tags. Examples include the following:

» Protocols being used other than http, https, file, mailto, palm, and palmcall

» Forgetting to include PalmComputingPlatform META tag

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

» Using embedded scripting
» Using tables wider than 153 pixels on pre—Palm OS 4.0 devices

» Using references of the form file:mine.pga/about.html from the
root page

= Attempting to redirect to a page stored on the device (a maximum of
three Internet redirects is allowed)

» Using relative references to pages stored on the device

NoTE

Forgetting to include the PalmComputingPlatform META tag within the
HEAD container allows automatic truncation of the Web clipping to
occur. Truncation occurs at 10KB with the current proxy servers.

Diagnosing Image Problems

You may encounter the following common problems associated with images:

= Accessing images that exceed the memory and display limits imposed
on WCAs

= Not being able to see an image at all

With regard to WCAs, images are limited to 64KB of storage and must be
153 pixels wide or less. The storage limit is imposed as a result of Palm OS
database file restrictions. As a part of a Palm OS database file (for example, the
database file containing the Web clipping), images are storage-limited to ensure
that the entire Web clipping does not exceed what the Palm OS can handle.
Keep in mind, then, that the 64KB limit represents a best-case scenario. The
width limit is imposed to ensure that images will fit on the Palm OS device’s
screen. No height limit is imposed because vertical scrolling is supported.

If an image cannot be seen at all, the PalmComputingPlatform META tag is
probably missing from within the HEAD container. When this is the case, auto-
matic truncation of the Web clipping occurs. The result is truncation to 1KB,
which can easily cut oft any image data from the Web clipping.

209

WwWWw.syngress.com

210 Chapter 7 « Debugging Web Clipping Applications

NoTE

Packet flow control between a Palm OS device and the underlying wire-
less data network can limit the practical image size to between 5 and
13KB.

Detecting Server Errors

Several difterent types of server errors are possible when using WCAs. The list is

difficult to enumerate, because each WCA and the corresponding server interface
1s different. However, the following errors are representative of those you may

encounter:

Getting an “Access Forbidden” error when attempting to access
a server configured for Basic Challenge Response authentication
Challenge and response authentication is not supported by the Web clip-
ping proxy server.

» Corrective Action: Reconfigure your WCA so that challenge and
response authentication is not attempted.

Getting errors when activating a link within a dynamically gen-
erated Web clipping A link within a Web clipping is not a link per se,
but rather an index referring to the link. This efficient representation is
used in Web clippings to minimize bandwidth consumption between the
proxy and device. However, with dynamic content, the number and
order of links sometimes changes. When this occurs, the links (for
example, link indexes) previously created are invalidated—that is, the
checksum used to verify them fails.

= Corrective Action: One possible solution could be for each link
to include an instance ID. It could uniquely identify which revision
of each link was being activated. The server could then determine
whether a previously generated Web clipping was being requested,
and if so, which one. The challenge with this approach would be to
make sure that the instance ID is not updated during each request to
the content server, because more than one request is required to
serve a single link activation (for example, link hash resolution
requires more than one content server hit per link activation).

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7 211

Debugging...

Link Activation Errors

Errors associated with link activation in dynamically generated Web clip-
pings pose unique challenges to debugging WCAs. One tempting cor-
rection is to dynamically produce a root Web clipping that always
contains the same links in the same order. Any variations in Web clipping
data would be represented in clippings referred to by the root clipping.
Unfortunately, this approach does not eliminate the problem—it only
buries it a level deeper in the Web clipping access chain.

» Getting incomplete and/or incorrect data when parsing param-
eter data that contains empty form fields When parsing parameter
data, empty form fields confuse the process, making the data seem
incomplete and/or incorrect. Empty form fields are sent to the proxy
server in the following form:

fld_1=&hfld_28&pfld_3&fld_d=

The & character separates parameter data definitions, thus causing
the previous line to be interpreted as the following:

fld_1=
hfld_2
pfld_3
fld_4=

The fields fld_1 and fld_4 represent empty text fields. The fields
hfld_2 and pfld_3 represent a hidden field and password field, respec-
tively. The hidden and password fields, when empty, have data definitions
that do not include the & character. This confuses some server-side
parameter processing software.

» Corrective Action: Test your server-side parameter processing
software to determine whether or not it has a problem parsing
empty field data. If it does, you will have to write a wrapper for it to
anticipate empty fields. Of course, you may want to look into your
server-side software documentation to make sure that it doesn’t have
the ability to handle the WCA empty-field format before developing

this wrapper.
WWww.syngress.com

212 Chapter 7 « Debugging Web Clipping Applications

NoTE

Fields associated with radio buttons and checkboxes are not represented
at all in the parameter string when their value is empty/NULL.

» Getting a garbled % DEVICEID The %DEVICEID string is being
received in the form “[dbjrnva.poldyr]|”. The %DEVICEID string is
probably being used as a parameter at the end of a URL, and it isn’t
being properly expanded (for example, %DEVICEID is a Palm OS—
specific variable/macro). This is a byproduct of link hashing.

s Corrective Action: Use %DEVICEID within a hidden form field.

NoTE

Palm-specific variables can have uninteresting values that must be
anticipated on the server. Examples are %DEVICEID=0.0.0 and
%ZIPCODE=00000. Some of these are POSE-specific, whereas others
can occur on the device. In any event, POSE produces each of these,
making it a valuable tool in testing WCA robustness.

Getting Multiple Web Server Hits

The proxy server caches static HTML pages from content servers in an attempt
to efficiently serve Web clippings to Palm OS devices. However, this does not
preclude the proxy server from having to perform multiple Web server hits on
content servers.

Due to the link hashing scheme, the proxy may refetch the original page
when the user tries to follow a link, so it retrieves the original URL string. If the
page is cached, the proxy may not have to go back to your server to get the orig-
inal text, but if the user waits too long, the page may leave the cache.

Another reason for multiple server hits is cache coherency. Sometimes,
Palm.Net will request a page to see if its copy in the cache is still current. This is
necessary to ensure that the proxy server will produce a Web clipping from the
latest copy of the page. If the content server has an updated copy of the page
(that is, its modification date is later than that for the cached page), a full copy of
the updated page must be obtained. This results in an additional Web server hit.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

Understanding POSE Transaction Errors

Several types of error are possible when dealing with your WCA, proxy servers,
and the server. This section classifies, and provides a brief explanation of, each
documented error message. These error codes can be categorized as follows:

= Device
» Proxy server
= HTTP

= Miscellaneous

NoTEe

The latest version of the Web Clipping Guide is an invaluable resource for
understanding POSE transaction errors.

Device Error Codes

Device error codes specific to POSE and/or an actual device are described in
Table 7.1.

Table 7.1 POSE Device Error Codes

Code Text Description

Net 1205 No more sockets An attempt was made to exceed the
maximum number of allowable open
sockets (four).

Remedy: Check the number of currently
open sockets before attempting to
open another one. Also, close sockets
when they are no longer needed.

Net 1206 No interfaces POSE has not been configured to
redirect iNetLib requests to the
desktop’s TCP/IP connection.

Remedy: Within POSE, modify
Properties to redirect iNetLib requests
to the desktop’s TCP/IP connection and
then reset POSE.

Continued

213

WwWWw.syngress.com

214

Table 7.1 Continued

Chapter 7 « Debugging Web Clipping Applications

Code Text

Description

Net 1410 Your handheld could
not connect to the

server. Wait a few

minutes and try again.

Net 1413 Your handheld could
not connect to the

server. Wait a few

minutes and try again.

Net 145D Your handheld lost
connection with the

server. Wait a few

minutes and try again.

A problem has been encountered
connecting to the Web clipping proxy
server. The server may be down or
operating slowly.

Remedy: If you are using POSE, try the
other proxy server. Otherwise, you may
need to take the advice given in the
error message and wait a few minutes.

A connection was established to the
Web clipping proxy server and/or your
destination server. However, the
attempt to read data timed out before
any data was received.

Remedy: If you are using POSE, try the
other proxy server. Otherwise, you may
need to take the advice given in the
error message and wait a few minutes.

The connection to either the Web
clipping proxy server and/or your
destination server has been closed.
Remedy: Palm OS closes a connection
after data (or a request for data) is
sent. If a firewall is involved in your
connection (if you are using POSE
behind a firewall and/or your server is
behind a firewall), the firewall may be
closing the connection with Palm.Net
and/or your destination server. Some
firewalls consider leaving an incoming
connection open to be a security risk.

Proxy Server Error Codes

Proxy server error codes specific to POSE and/or an actual device are described

in Table 7.2.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

Table 7.2 POSE Proxy Server Errors

Code

Text

Description

00002AF9
or
503

0000274C

0000274D
or
503

C100000C

C2010005

Host not found or
unavailable or Service
Unavailable

Timed out

Connection refused
Service Unavailable

The remote machine
closed the connection

An invalid CTP request
was received

The Web clipping proxy server could
not find a host for a URL, or the host
was busy.

Remedy: Check the validity of the
URL. As an alternative, check the
HTTP Content-Location header value
string—redirection links can cause
this type of error if this header is
improperly formatted.

A response was not received before
the connection waiting time expired.
Standard wait-time is 30 seconds.
Remedy: Try again.

A connection could not be made,
possibly resulting from the destina-
tion server being located behind a
firewall.

Remedy: The firewall will have to be
reconfigured to allow the proxy
server to have access (either direct or
indirect) to the destination server.

The destination server closed the con-
nection between the proxy server and
the destination server.

Remedy: Try again. If the problem
persists, contact the system adminis-
trator of the destination server.

A problem was detected with data
transferred between the device and
proxy server. One possible cause is the
transfer of an HTML form within a
clipping that contains value attributes
within OPTION tags. Value attributes
are incorrectly interpreted as link hash
codes by the proxy server.

Remedy: Until there is a ROM fix for
this officially-logged problem, create
server-generated HTML that does not
set the value attribute with OPTION
tags.

Continued

215

WwWWw.syngress.com

216 Chapter 7 « Debugging Web Clipping Applications

Table 7.2 Continued

Code Text

Description

C201000D Attempt to reference an A URL link seems to be stale. One

indirect hyperlink with
out of date base docu-
ment

C201001D Content conversion
error — unsupported
content type

C201001E The requested content
contained an unsup-
ported encoding type

C2020004 The HTTP response is
not formatted correctly

possible cause is that the hashed link
sent to the device does not match
the current Web clipping. This can be
a problem, particularly with dynami-
cally generated clipping. For example,
if a link’s position in the current Web
clipping is different than it was when
the clipping was initially downloaded
to the device (hashed), then this error
will be generated.

Remedy: Verify that the Web clipping
in question remains unchanged, at
least with respect to the relative posi-
tion of links, over the life of a user’s
access.

A type of media has been referenced
that is not supported by the proxy
server. Currently, the supported types
are "text/html", "text/plain",
"image/qgif" and "image/jpeg".
Remedy: Correct the HTML media
type string being sent to the proxy
server.

The HTML contains an HTTP "Content-
encoding" header. Content encoding
is not supported for Web clippings.
Remedy: Produce HTML that does
not contain an HTTP "Content-
encoding" header.

The response probably contains an
invalid HTTPS header field.
Remedy: Make sure that response
header fields conform to the RFC
2616 standard, Hypertext Transfer
Protocol—HTTP/1.1.

Www.syngress.com

Continued

Debugging Web Clipping Applications * Chapter 7

Table 7.2 Continued

Code Text Description
C202000A Received a request with An encoding type other than "appli-
an unsupported cation/x-www-form-urlencoded" was
encoding type specified received.
Remedy: Make sure that the
encoding type "application/
x-www-form-urlencoded" is used.
C202000B There are no active HTTP The proxy server was unable to con-
or HTTPS proxies avail- nect to a proxy cache.
able to handle the Remedy: Notify Palm.Net technical
request support of this (internal) problem:
support@palm.net or (407) 531-4400
C2060001 Could not correctly rec- The response contains an invalid
ognize Internet date HTTPS date header field.
string Remedy: Make sure that the
response header field conforms to
the RFC 2616 standard, Hypertext
Transfer Protocol—HTTP/1.1.
C2060002 Could not correctly The proxy server had one of several

parse an Internet string

problems: parsing a requested URL
string, interpreting an HTTP header
string format, or dealing with a blank
HTTP header field value.

Remedy: Make sure that the
response header field conforms to
the RFC 2616 standard, Hypertext
Transfer Protocol—HTTP/1.1.

HTTP Error Codes

HTTP error codes are not specific to POSE, actual devices, or Palm.Net. They
are standard error codes for HTTP(S) messages and can be found at Hypertext
Transfer Protocol—HTTP/1.1.

Miscellaneous Error Codes

Miscellaneous error codes specific to POSE and/or an actual device are described

in Table 7.3.

217

WwWWw.syngress.com

218

Chapter 7 « Debugging Web Clipping Applications

Table 7.3 Miscellaneous POSE Errors

Text Description

Web Clipping 3.2 has just read These types of error typically indicate
directly from memory manager Clipper problems recognized by POSE. They
data structures. do not indicate WCA problems.
Remedy: Hit Continue; this type of error
won’t show up on an actual device.

Using Tools to Debug WCAs

The following tools are available to support WCA testing:

= HTML validators
= Link checkers
» WCA decompilers

» Palm’s InetLow application

HTML validators are designed to work with Palm’s DTD to provide robust
HTML checking for your WCA. This is in addition to the checking that the
WCA Builder performs and is helpful to examine any Web content under your
control that will reside on a destination server. One option is A Real Validator,
http://arealvalidator.com; another is the validation service provided by the World
Wide Web Consortium (W3C) at http://validator.w3.org.

Make sure that the HTML being validated references the correct DTD for
WCA validation. The following line of code tells the validator where to find the
DTD to use to verify the encompassing HTML file:

<I DOCTYPE HTM. PUBLIC "-//PCS//DTD WCA HTM. 1. 1//EN"
"http://ww. pal m com dev/ webcl i ppi ng-htm -dtd-11. dtd"

WARNING

Directly validating all dynamically generated HTML content is impossible.
As an attempt, however, save representative examples of dynamically
generated HTML content and validate it. This will provide at least basic
confidence that the dynamically generated HTML content does not suffer
from glaring errors.

Www.syngress.com

Debugging Web Clipping Applications * Chapter 7

Link checkers can scan a set of HTML pages for dead links, allowing you to
make sure that your WCA 1is not stale. Several packages are available, including
one from Netmechanic at www.netmechanic.com.

WCA decompilers allow you to extract significant details from compiled
WCAs. Basically, decompilers put a .pqa in a format that is more easily read.
Palm, Inc’s Web clipping tools Web page links to several tools that can turn PQA
files into text or HTML.

Palm’s InetLow application demonstrates how to use the INetLib API for
obtaining and displaying raw data from a URL. It can be used to test communica-
tion with a destination server, including data transfers and server-side processing.
InetLow helps verify that the WCA-to-server interface is functioning properly,
including the ability to navigate through firewalls. It can be downloaded from the
Palm Knowledge Base at http://oasis.palm.com/dev/kb/samples/1709.ctm.

NoTE

Some testing tools can be ignored, because they are not particularly
applicable to WCAs. For example, Gremlins within POSE are a useful
mechanism for testing Palm OS applications. However, the Palm OS appli-
cation associated with WCAs is Clipper, which has already been tested.

219

WwWWw.syngress.com

220

o

Www.syngress.com

Chapter 7 « Debugging Web Clipping Applications

Summary

Debugging Web clipping applications (WCAs) can seem like a daunting task.
Fortunately, many tools and techniques are available to assist you. From emulators
to online discussion groups, it is difficult to find a circumstance that has not or
cannot be addressed to your satisfaction.

One of the first tools that you should consider is the Palm OS Emulator
(POSE). Built on the actual Palm OS, this tool allows you to test your WCA
without even owning a device. No batteries are required, no wireless connection
fees are incurred, and multiple types of Palm OS devices can be tested anytime
and anywhere. You can even test your WCA right on your desktop without so
much as a single HotSync operation.

After you have a working knowledge of POSE, consideration must be given
to behind-the-scenes operation of the Palm.Net proxy. This server farm coordi-
nates communication between WCAs and the Internet, providing access to a
multitude of content servers. The proxy communicates with POSE and your
device using Transmission Control Protocol/Internet Protocol (TCP/IP) and
User Datagram Protocol (UDP), respectively, securing data using Elliptic Curve
Cryptosystems (ECC) technology. Data is sent using a compressed subset of
HTML 3.2 (the WCA format). Communication between the proxy and destina-
tion servers takes place using TCP/IP, securing data using Secure Sockets Layer
(SSL) encryption. Data is sent using the HTML 3.2 standard.

The WCA format is used to represent both POSE/device-resident WCAs and
Web clippings. Web clippings, when generated dynamically, require special atten-
tion during debugging because they can confuse the proxy server’s link hashing
algorithm.

Turning attention back to tools, advanced utilities exist to support your
advanced software development tasks. HTML validators, link checkers, WCA
decompilers, and Palm’s InetLow application are all available to assist in various
ways. HTML validators check HTML source code for compliance with the
WCA Document Type Definition (DTD). Link checkers verify that no hypertext
links are stale. WCA decompilers help verity that what is actually contained
within a WCA and/or Web clipping reflects what was specified in the corre-
sponding source code. And Palm, Inc’s InetLow application demonstrates how to
use the INetLib API for obtaining and displaying raw data from a URL.

In conclusion, remember to take advantage of all resources available when
debugging your WCA. The chances are good that others have already faced any
problem you face. So try out the tools, think about whether your WCA is in tune

Debugging Web Clipping Applications * Chapter 7

with Palm.Net’s operational characteristics, and then plug into online resources

and forums.

Solutions Fast Track

Emulating Web Clipping by
Using the Palm OS Emulator

]

(N

]

POSE mimics the operation of a Palm OS device using actual
Palm OS software.

POSE allows WCAs to be tested without using an actual device, and it
requires no batteries, no wireless connection, and no connection charges.

POSE operation is not limited to the wireless coverage area.

POSE is tightly integrated with the desktop, providing for widely visible
presentations and/or demonstrations and easily obtained screen shots.

POSE can emulate multiple types of device.

Understanding the Palm.Net Proxy

|

]

=

Palm.Net 1s a server farm that facilitates WCA connections to the
Internet.

Palm.Net protects data between itself and POSE/device using ECC, and
between itself and content servers using SSL.

Palm.Net responds to requests with Web clippings in the WCA format
(a compressed form of HTML 3.2).

Web clippings are not cached.

Dynamically generated Web clippings can cause problems for Palm.Net
relative to Palm.Net’s link hashing algorithm.

Given the broad scope of Palm.Net’s responsibilities, it is susceptible to a
variety of problems.

221

o

222

o

Chapter 7 « Debugging Web Clipping Applications

Using Tools to Debug WCAs

M HTML validators check HTML source code for compliance with the
WCA Document Type Definition (DTD).

M Link checkers verify that no hypertext links are stale.

M WCA decompilers help verify that what is actually contained within a
WCA and/or Web clipping reflects what was specified in the corre-
sponding source code.

M Palm’s InetLow application demonstrates how to use the InetLib API for
obtaining and displaying raw data from a URL.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Where should proxy server problems be reported?

A:

Www.syngress.com

Visit the Proxy Server Feedback page at
http://oasis.palm.com/dev/support/ask.cfm?page=38 and include pertinent
information, such as the steps required to produce the problem, date and time
of the first occurrence (including time zone), and so on.

: What can I do to stay abreast of the latest developments in WCA debugging

technology?

1 A good first step is to join the Web Clipping Announcement list and Web

Clipping Forum using the-forms at-www.palmos.com/dev/tech/support/
forums.

: Where are additional resources for WCA debugging?

: Palm, Inc’s Web clipping development site, www.palmos.com/dev/tech/

webclipping, contains additional information related to both development and
debugging of WCAs.

Chapter 8

Identifying Users

and Sessions

Solutions in this chapter:
= Using %DEVICEID to Uniquely Identify % 1‘
a Device "
= Identifying Sessions Using URL Rewriting
. My Unwired Widgets Order Example

» Identifying Sessions Using Cookies in
Palm OS 4.0

» Cookie Explorer Example

M Summary
M Solutions Fast Track

M Frequently Asked Questions

223

224

Chapter 8 ¢ Identifying Users and Sessions

Introduction

In a word processing program, you have a document with words, images, and for-
matting commands. In a spreadsheet, you have a table of cells, each with its own
value or formula. In an adventure game, you have the player’s current location
and the inventory of objects that the character is carrying. Although this data is
all different, it is united by a common concept called state. The state of a system is
the information that differentiates one instance of the system from another. State
can be very simple: a light bulb is either on or off. It can also be very complex:
the air traftic control system’s state includes the position and velocity of every air-
craft in the sky, along with information about each airport.

Computer programs can be seen as processors of state. They all start the same
way, then they change states based upon the input of the user, eventually using
that state to produce output. State has lots of difterent names: memory, storage,
databases, and variables are just four terms that describe different forms of state.

Maintaining State on the Web

On the Web, state is a problem. Hypertext Transfer Protocol (HTTP), which is
used to communicate between Web browser and Web server, is a stateless protocol:
Each page served by a Web site is independent of the others, and the server does
not remember anything from one transaction to another. This is done intention-
ally; building a server with no state lets you perform tasks more efticiently, and it
lets you improve your network by adding servers or moving services from one
box to another. It also means that you can build very simple Web servers that
exist only to handle a single request, then go away.

For many applications, this works perfectly. This is because the state regarding
the session is maintained on the client devices. When a Web browser requests a
page, it gets back a document that might have links to other documents on the
same server. The client has the memory about what has been requested and what
should be fetched, but the server cares about the requests only while it is processing
them.

This scheme of shifting state from server to client works well for more com-
plex situations. In the case of a search engine, a user using a Web browser asks the
Web server to search its database for a term. The server performs the search, and
then returns a document that has the first twenty matches. In that document, the
server also provides a link that gives instructions on how to ask the server for the
next twenty matches. If the user wants more matches, they request a new search,

Www.syngress.com

Identifying Users and Sessions * Chapter 8

showing items 20 to 40. As long as the searches can be done efficiently, this shifts
the role of keeping track of where the user is in a search from the Web server to
the Web client. It also means that different machines could do each set of
matches, which helps simplify a network because the computational task of doing
a search can be balanced between several Web servers. At the time this chapter
was written, Google (www.google.com), a popular Web search engine, uses this
kind of setup to distribute search requests to over 8,000 difterent Web servers on
its network, according to an April 27, 2001 Internet Week story.

Sometimes, having the user maintain all of the system’s state is a bad idea.
Many applications use the Web browser as a user interface into a larger system
that 1s not completely open to the user. In an e-commerce system, you might
want to keep track of the user’s orders and preferences. If you store this informa-
tion in the Web server, then you cannot trust the quality of the data sent back to
you. Perhaps you want to make a special offer that customers can use only one
time. If you store the state of the offer in the Web browser, then it’s simple for the
user to access your site from a different browser or to change the state in the cur-
rent one to reactivate the coupon.

Using %DEVICEID to
Uniquely Identify a Device

Many Web applications rely on uniquely identifying a user. This can be used for
several purposes, such as allowing the presentation of the site to be customized
for each viewer or to prevent unauthorized access to financial transactions. The
primary technique used by Palm’s Web clipping application for identifying a user
1s the special string %DEVICEID. This string can be embedded in a Web page,
where it will be replaced by Clipper with another string that uniquely identifies
the device.

Reasons to Avoid %DEVICEID

Before we explain how %DEVICEID works, we want to warn you that using
this for the purpose of authenticating a user is not a good idea. If you need a
secure solution, we urge you to use one of the other methods explored in this
chapter.

The problem with using %DEVICEID is that it is the device’s “true name.”
Each device has only one device ID, and the user cannot change it. Therefore, if
it gets compromised, the problem can’t be fixed without replacing the device.

225

WwWWw.syngress.com

226

Chapter 8 ¢ Identifying Users and Sessions

When a site requests this string, it gets returned the actual device ID string,
not a version of it created especially for the site. This means that any site you visit
with Clipper can capture this information. The “Wireless/Web Clipping” panel
has an option in the system preferences that allows the user to turn off sending
identifying information, but if this flag is turned off, the user isn’t alerted when
this identifying information is sent.

Here is the security issue: Suppose evilsite.com distributes a Palm Query
Application (PQA) for the purpose of grabbing device ID strings. Evilsite.com
might disguise this Web clipping application (WCA) as a useful reference. A user
uses this PQA file to visit the site, and now the administrators of evilsite.com
know the user’s device’s ID. If mybankaccount.com uses the device ID to authen-
ticate the user, then the administrators of evilsite.com can make a custom
INetLib application that will impersonate Clipper but send the captured device
ID, letting them log in to mybankaccount.com, impersonating one of their users.
They have access to any of the accounts of people who have used both
evilsite.com and the bank site, because the bank is using information shared with
evilsite.com to prove what user is accessing its site.

Suppose the mybankaccount.com just uses the device ID to maintain a ses-
sion after the user has logged into the site. Now, evilsite has it a bit harder,
because they don’t know the username and password. However, they just need to
wait for the user to log in to the bank and set up a session, then they can hijack
the session because the bank is using the device ID.

Palm, Inc. should have used some methods that would have reduced the
effectiveness of an attack like this. Having the device return a unique ID string
that was hashed against the requesting site’s hostname would have allowed sites to
remember users while limiting the portability of those strings between sites and
preventing this attack.

Because Palm, Inc. has introduced cookies with the Palm OS 4.0 version of
Clipper, the %DEVICEID support seems unlikely to change. Cookies solve this
problem because they allow sessions and identification of the user using data cre-
ated on the server. Because that data is unique to the site that creates it, it cannot
be taken by other sites and used to impersonate the user.

Because of this security problem, the authors of this book do not want to
encourage use of this feature. A few situations exist where a user would want per-
sonal data available to the operators of any site the user visits. If you want to use
the device identifier, you should make sure that it, by itself, is insufficient to
authorize actions on behalf of the user or to get to personal data of the user.

Www.syngress.com

i

%Y

G

Identifying Users and Sessions * Chapter 8

Using %DEVICEID in a PQA

You can use the %DEVICEID variable in your HTML page, either as a hidden
input field to a form or as part of a URL in a hyperlink. In Figure 8.1, we create
a simple form that will submit the device ID to the server. Figure 8.2 has the
server-side Common Gateway Interface (CGI) script that echoes the device ID
string to the user. Figure 8.3 shows the output of this when run in the Palm OS
emulator, which always has an ID of 0.0.

Figure 8.1 Using %DEVICEID in a Hidden <INPUT> Tag

<htm >
<head>
<title>DEVICEID Test</title>
</ head>
<body>
<p>Press the button to subnit your device identifier.</p>
<form
action="http://cgi.unw redw dgets. cont cgi - bi n/ echo-devi cel D. cgi "
met hod="POST" >
<i nput type="H DDEN' nane="|1D" val ue="%0DEVI CEl D' >
<i nput type="SUBM T">
</fornp
</ body>
</htm >

Figure 8.2 CGlI Script to Echo the Device ID (echo-devicelD.cgi)

#l perl -w

use Cd ;

$q = new Cd;

print $qg->header,
$g->start_htnl (" Your %OEVICEID'),
$g->p(" Your YOEVICEID is " . $g->paran("1D")),
$g->end_htm ;

227

WwWWw.syngress.com

228

Chapter 8 ¢ Identifying Users and Sessions

Figure 8.3 PQA Screen and Output of Echo Device ID Script

DEVICEID Test IR Dhdiited

Press the button to zubmit wour
device identifier,

vour 26DEVIC.. [

our $OEYICEID is 068

On static pages that are part of a Web clipping application file, you can use
the %DEVICEID string in both forms and hyperlinks. However, for dynamic
pages, use it only as a hidden field in a form. The problem is link hashing, which
causes the proxy server to not send complete URL strings to the device. Because
the device never sees the string “%DEVICEID”, it doesn’t insert its special codes
with the device identifier in its output, so your site will not see the string in the
URL that follows.

Formatting a Device Identifier

In their Web Clipping Guide, Palm, Inc. published a specification for how device
identifiers are sent to the server. A %DEVICEID string starts with one of three
numbers: —1, 0, or 1, then a period follows, and then you have a string of digits
that provide a unique value derived from the device.You have no guarantees as to
the format of this string, but you should assume that the string contains no white

Www.syngress.com

Identifying Users and Sessions * Chapter 8 229

space. The leading number is treated as a namespace for interpreting the fol-
lowing string. Right now, all Palm VII/VIIx devices report an ID in the “1”
space, whereas requests from the Palm OS Emulator always show up as “0.0.0”.
The device IDs produced by the Palm Mobile Internet Kit (MIK) and OmniSky
devices all start with —1. Palm, Inc. has reserved the other leading numbers for
expansion as they and their licensees introduce new device types (Table 8.1).

Table 8.1 Device ID String Formats

Device Type ID String Format

Palm VII/VIIx 1.nnnnnnnn.nnnnnnnn (8 digits per bundle)

Palm OS Emulator, device 0.0.0
with no flash ID

Palm OS device with a -1.nnnnnnnn.nnnnnnnn (8 digits per bundle)
flash ID

Developing & Deploying...

How Device IDs Are Sent from the Device

Palm.Net's proxy does not derive your device ID from the network.
Instead, the proxy relies on data sent by the device in a special format.
This string looks like “[dhjljlas.awejola]”. It represents two 32-bit values,
rendered in Base 26 notation wherea = 0, b = 1, ... z = 25. To translate
this back to a number, you have to convert each letter to a digit and add
the values together, shifting as you go. The delimiters for this string are
“[d" at the beginning, “.” in the middle, and “]” at the end. If you're
sending raw data through the Palm.Net proxy using INetLib (as explained
in Chapter 11), you need to be careful to use a proper Multipurpose
Internet Mail Extension (MIME) content type or the proxy could translate
data that looks like these device identifiers into strings such as
“1.2242.21245". It is unclear why Palm, Inc. used this encoding format,
although a likely explanation is that they wanted an encoding which
would compress effectively in their 5-bit CML encoding scheme. This
encoding scheme is explained in more detail in the Palm Knowledge Base
technical note “Why is data sent from a Palm device url-encoded...,”
available at http://oasis.palm.com/dev/kb/fag/1816.cfm.

WwWWw.syngress.com

230

Chapter 8 ¢ Identifying Users and Sessions

Building Device Identifiers on Mobitex Devices

The Palm VII was the original platform where Web clipping was deployed.
Because these devices all communicated on Cingular Wireless’ Mobitex network,
each one had a built-in unique identifier called the Mobitex Access Number
(MAN). This is the address that the Mobitex network uses to route messages to
the device and identify transmissions from the device. If you look at a Palm VII, it
1s the three-part number printed below the bar code on the back of the unit.
Because this identifier was required for the network, the Palm.Net team decided
to also expose this to Web clipping developers. This device identifier is guaran-
teed to be unique among Palm OS devices.

Building Device Identifiers
on the Palm OS Emulator

The Palm OS Emulator can do Web clipping using ROM images from devices
that have INetLib and Clipper installed, such as the Palm VIIx and Palm m505.
However, the Emulator has no radio or flash identifier from which it can derive
its ID, so it always uses a default ID of “0.0.0”, which is represented over the air

as “[da.a]”.

Building Device Identifiers
with the Mobile Internet Kit

The Mobile Internet Kit (MIK) provides INetLib and Web clippings over a
normal Transmission Control Protocol/Internet Protocol (TCP/IP) connection.
Because nothing in the connection provides a consistent, unique identifier, the
MIK produces this ID from the flash identifier. If your device does not have a
flash ID, like the Palm m100 and m105 handhelds, then the MIK reverts to the
value used by the Palm OS emulator, “0.0.0”.

Building Device Identifiers with
the OmniSky CDPD Modem

OmniSky’s wireless Internet service uses the Cellular Digital Packet Data net-
works of AT&T, Verizon Wireless, Cingular Wireless, and ALLTEL to provide
19.2Kbps wireless data service. Their modems come bundled with a custom ver-
sion of INetLib and Clipper. With the OmniSky version of INetLib, the device
ID is derived from an internal identifier in the wireless modem. This means that

Www.syngress.com

Identifying Users and Sessions * Chapter 8

even on devices with no flash, such as the Handspring Visor handhelds, you will
have a unique ID.

Developing & Deploying...

HTTP Access Control

One of the earliest features added to HTTP was user access control at the
protocol level. In this scheme, a site would isolate some pages into con-
trolled areas where the client would have to send a valid username and
password with each request or not get access to the pages.

When the user tried to access a page that was off-limits, the server
would return a special error code rather than the page. The browser
would then ask the user for his or her username and password, and it
would request the page again, passing this information as additional
headers on the HTTP GET operation. If the username and password were
valid, the server would send the page, and the browser would remember
the values the user entered and use them to retrieve future pages on the
same server.

Web clipping on the Palm OS device does not support this mecha-
nism. If you try to access a page that uses HTTP-level access control, you
will get back an unauthorized access error message, but you have no
way to send a username and password back to the site. This is not a big
obstacle to controlling site access, because a site can use other methods
that don’t rely on these headers to control who can see a Web page. But
you should be aware of this if you are converting a site that uses HTTP
authentication to wireless access over Palm OS devices.

Building Device Identifiers on the
Kyocera QCP-6035 Smartphone

In the spring of 2001, Kyocera, the Korean company that had bought
Qualcomm’s PCS phone business in 1999, introduced its next-generation cell-
phone, the QCP-6035.This phone incorporated a Palm OS PDA into the
normal cell phone functions; it also supported wireless data access, using both
NetLib and INetLib. The %DEVICEID value used by Clipper is based on a
network identifier given to the phone by the service provider, so it is unique.

231

WwWWw.syngress.com

232

Chapter 8 ¢ Identifying Users and Sessions

However, users of the phone have noticed that this identifier has changed since
they first received their phones, which indicates that the PCS carriers (Sprint
PCS and Verizon Wireless, at the time this was written) have the ability to change
the %DEVICEID remotely.

Identifying Sessions
Using URL Rewriting

A useful method for tracking user sessions is to encode a server-generated identi-
fier in the URLs used to access data. This method is called URL rewriting, because
normal URLs that are used to get to a resource are modified to include the
custom information. Unlike cookies, URL rewriting does not require special
support in the Web browser, making it quite appropriate for the limited capabili-
ties of Web clipping.

This information can take several forms. It could be a copy of the informa-
tion your scripts will need on the next page; this method works poorly in prac-
tice due to security problems and verboseness. To give an example of what can go
wrong, consider what happened to some Internet retailers in the early days of
online commerce. The retailers used shopping cart systems that stored all of the
information about a user’s order in form variables that got resubmitted on each
user action. When the user added items to the shopping cart, the item list being
stored on the user’s PC held the item, quantity, and price. System abusers discov-
ered that they could change this information and resubmit their orders with the
prices changed to give everything a huge discount. Because these retailers had
automated the entire order system, this fraud wasn’t detected until well after the
“free” items had been sent oft, and the corrupt user had disappeared.

NoTE

The BugTragq mailing list hosted by SecurityFocus.com serves as a forum
for exposing security problems in widely used software. One example of
the kind of pricing vulnerability discussed in this section is documented
in the BugTraq archives at www.securityfocus.com/archive/1/136764. A
summary of the kinds of attacks that have been made against shopping
carts is included in an article at www.securityfocus.com/archive/1/44785.

Www.syngress.com

Identifying Users and Sessions * Chapter 8

A better method of tracking user sessions is to use a session ID, which is a
unique identifier that does not contain any information other than the name of a
user session. All of the session data is kept on the server where it is secure. The
user could alter her session ID, but unless she had special knowledge of which ses-
sions were open, doing so would only result in a rejected session from the server.

A good session identifier has several properties: It should be of sufficient
length and randomness that an attacker would not be able to guess an active ses-
sion ID.The server should have some mechanism to invalidate and remove old
sessions from the server after a period of nonuse. When using session 1Ds with
Palm’s Web clipping, the ID should stay the same through the entire user session;
if it does not, issues arise with link caching (which we discuss later). The session
ID should also be valid in the standard URL character set without using URL-
encoding escapes, because this simplifies the session-handling logic on the server.

Developing & Deploying...

Rewriting in the Real World

The idea of encoding identifying information into an address isn’t new
with the Web. This practice has been used for years, especially in big
mail centers. The next time you look at rebate coupons, notice that
many rebates—even from different companies—all go to a similar
address, often a place such as Young America, Minnesota. Other parts
of the address, such as the department number, are actually used to
identify which rebate it is, what retailer sold the product offering the
rebate, or what region of the country the purchaser lives in. A similar
technique is used for record clubs, where the same offer might be in
four different publications, but each one has its own toll-free number so
that the record club can tell which ads are generating which calls.

Encoding a Session ID in a URL

Typically, the session ID is added to all of the internal URLs on the page using
an automated mechanism. This discussion is a bit abstract, applying to session IDs
as used on many different systems. Although session IDs are independent of the
Web browser, their implementation is specific to the back-end system you use on

233

WwWWw.syngress.com

234

=

-

Chapter 8 ¢ Identifying Users and Sessions

your Web site. Later in this chapter we show you how to implement session IDs
using PHP: Hypertext Processor (PHP), a popular and free system for dynami-
cally creating Web pages.

Typically, a session ID is added as a form variable to the end of every URL on
the page. Remembering the form request syntax from Chapter 5,2 GET action
acts just like a normal request, except that extra text is added to the end of the
URL to indicate the choices made by the user. This text takes the form
“name=value”, with a leading question mark and ampersands separating the
name/value pairs. However, you don’t need a form to use this syntax. For a fixed
query, you can specify everything in the hypertext link. In eftect, a page fetch with
a session ID i1s a fixed query, with the one parameter being the session identifier.

The device doesn’t know the session ID when it first connects to the server.
An access without a session ID causes the server to generate a new one to be
used while the user is accessing the site. The server should produce a long,
random string that cannot be easily guessed, but that also can be sent easily as
part of a URL string.

For example, if you were connected to the Unwired Widgets Web site and
your connection was given the new session ID “3HSS678B”, then links on that
initial page would be encoded to include the session ID. A link to the home page
might show up as “http://www.unwiredwidgets.com/?sid=3HSS678B”, as shown
in Figure 8.4. Notice that we’ve taken a normal link and appended the form
variable sid with the value “3HSS678B”. We also modified the link to the sales
page in the same manner. We did not modify the link to Palm, Inc., because that
goes to another company’s site that is not running the same session identification
scheme we are using.

Figure 8.4 Hypertext Links with and without Embedded Session IDs

Unwi red Wdgets Home Page

Unwi red Wdgets Sal es Information

Palm |nc. Hone Page

This embedding of the ID at the end of a hypertext link works fine for stan-
dard hyperlinks. However, if you want to actually use an HTML form, you need
to use an alternate scheme. The way to go in this case is to add a hidden input
field to your forms, with a variable named the same as the name you gave your

Www.syngress.com

Identifying Users and Sessions * Chapter 8

session 1D, and with its value set to the session identifier. If you do this, the ses-
sion ID will be transmitted along with the rest of the user responses when the
form is submitted. Figure 8.5 shows this technique as used in a simple form that
gets the user’s name.

Figure 8.5 HTML Form with Embedded Session ID

<f orm met hod=" CGET"

action="http://cgi.unw redw dgets. com cgi - bi n/ usernane. cgi ">
<p>Pl ease enter your name:

<i nput type="hidden" nane="sid" val ue="3HSS678B">

<i nput type="text" name="usernanme" naxl| ength="30">

<i nput type="submt" val ue="OK">
</ p>

</fornme

If you use this method, you should be sure your scripts that handle the form
submissions also work with your session management code. Most form processing
packages will ignore extra variables, but you may want to look up user informa-
tion using the session ID or just return it in the hyperlinks for the output page.

Managing Sessions with PHP 4

In the free software world, PHP, the recursively named PHP: Hypertext Processor,
has become the dominant dynamic content system for Web servers, due to its
combination of ease-of-use, speed, flexibility, and availability. PHP is available in
binary and source form for a variety of systems, include Linux, Solaris, BSD Unix,
and Windows. For these reasons, this chapter will use PHP as the example to show
how to perform session handling. There are many different systems available that
help you generate dynamic content, including Microsoft’s Internet Information
Server (IIS) with Active Server Pages (ASP) and Allaire’s ColdFusion. If you are
using one of these systems, you should be able to apply the concepts shown here,
although the syntax and operation details will be difterent.

235

WwWWw.syngress.com

236

Chapter 8 ¢ Identifying Users and Sessions

Developing & Deploying...

Installing Apache and PHP on Windows

The CD that accompanies this book includes the current Apache and PHP
distributions; the code for this chapter was developed on a Windows
2000 system running Apache 1.3.19 and PHP 4.0.4. Apache’s installation
on Windows is very straightforward; the installation file is a “.msi"
archive, which is used by the Microsoft Windows Installer. If you are using
Windows 2000 or Windows Me, you already have Windows Installer as
part of your system. If you're running an older Microsoft operating
system, you may need to download the Windows Installer binary from
Microsoft at www.microsoft.com/msdownload/platformsdk/instmsi.htm.

PHP is shipped as a ZIP file. To install it, you should unzip the PHP
binary distribution file into a directory like C:\PHP\, and then you should
follow the instructions in Chapter 2 of the PHP Manual to change the
appropriate files to get Apache to launch the PHP processor on files with
the PHP extension.

PHP can also install into Microsoft IIS and other popular Windows
Web servers. See the PHP manual for details. To get the latest version of
the Apache server, visit the Apache Group’s Web site at www.apache.org.
They have source distributions, along with prebuilt binaries for Windows
and Linux systems. The latest releases of PHP are available at the PHP site,
at www.php.net.

Understanding PHP Syntax

When using PHP, you have an HTML file with special embedded directives that
direct the processor to perform special actions. These actions vary from simple
substitutions of variables to complex database manipulations. PHP directives are
isolated from standard HTML by the delimiters <?PHP and ?>. Anything
between these strings is considered a PHP command, whereas the rest of the text
is passed directly as output.You can also use just <? to start a PHP directive
block, but this usage is discouraged, because it is incompatible with XHTML, the
next-generation HTML standard based around XML.

Page processing has several phases. Any PHP directives that appear before
your <HTML> tag get executed before headers are output, so they can affect
how the page is transmitted and cached. This is also a good place to put PHP

Www.syngress.com

Identifying Users and Sessions * Chapter 8

functions that you've defined to be used later in the page. After you've started
your HTML text, directives get executed as they are seen.

NoTEe

For more information on PHP's syntax, refer to the PHP Reference
Manual, downloadable from www.php.net/docs.php. The current copy of
this manual in Adobe Acrobat PDF format is provided on the bundled
CD. This manual is not the easiest way to learn PHP syntax, because it is
designed as a reference. If you want more information about PHP, the
PHP site has an extensive book list at www.php.net/books.php.

Figure 8.6 shows a small “Hello, World” example of a PHP page. When you
access this page, you will get back an HTML document saying “Hello” and
telling you what Web browser you used to access the page.

Figure 8.6 “Hello, World” and Browser Identification Using PHP

<htm >
<head>
<title>PHP Hello World Exanple</title>
</ head>
<body>
<p>
<?php
echo "Hello, PHP user!
\n";
echo "Your browser is ", $HITP_USER AGENT, ".\n"
?>
</ p>
</ body>
</htm >

In this example, we use two echo statements to output a hello greeting in the
middle of our HTML page. The first echo just outputs plain text, but the second
one used a predefined variable, HTTP_USER _AGENT. Variables in PHP start
with the dollar sign character. This prefix prevents conflicts between variable

237

WwWWw.syngress.com

238

Chapter 8 ¢ Identifying Users and Sessions

names and function names, because functions cannot start with a dollar sign.
HTTP_USER_AGENT is an environment variable set by the Web server based
on the User-Agent HTTP header, which is a header sent by Web browsers to
identify what software was used to access the site. Figure 8.7 shows the result of
accessing this PHP page from Clipper.

Figure 8.7 Output of PHP “Hello, World"” Example in Clipper

PHP Hello .. K BLIEES)

Hello, PHFP uzer!
our browszer iz Mozillas2.8
compatible; Elaines 283,

Configuring PHP for URL Rewriting

Out of the box, PHP is set up to use cookies to manage sessions. This method
doesn’t work for most of the user base of Web clipping, because cookie support
wasn’t added until Palm OS 4.0.To configure PHP to use URL rewriting to
manage sessions, you should alter the PHP.INI file by adding the line:

session. use_cookies = 0

Another setting you might want to change for use with Web clipping is the
name used for the session variable. The default value is “PHPSESSID”, but the
session.name variable in the PHPINI file controls what name is used. Using a
shorter name can save transmission time and characters, because it can get sent
many times in one page. If you wanted to use the name “SID”, you would add
the line:

session.name = "SI D'

To prevent naming conflicts, you should pick a name that is not used in any
of your forms.

Www.syngress.com

Identifying Users and Sessions * Chapter 8

Starting a Session

There are two ways to tell a PHP page that it should use PHP’s session manage-
ment scheme. Before you have any HTML text on your PHP page, you should
add the directive session_start. This command causes the PHP server to re-
establish the session from the submitted session ID or to create a new session 1D
if one was not available. See Figure 8.7 for an example of this usage.You also can
also use the session_register command, which will also begin a session if one
has not yet been established. This command is also used to associate PHP vari-
ables with the session, so their values will be preserved from page to page.

PHP can also be set to always start sessions when a page is loaded, which may
be useful if your site will always be managing user sessions. The configuration set-
ting 1s called session.auto_start, and it is set in the PHPINI configuration file. To
activate this, add this line to your PHPINI file:

session.auto_start = 1

Saving System State in a Session

Just having a session is not very useful. You need to be able to store data with the
session. PHP does this by associating variables with the session object. The values
of these variables are saved on the server, and their values are available to other
pages that will be generated in the session.

Lots of values are candidates for saving as part of the session. In a shopping
cart application, you could save the list of items the user had added to the cart in
the session variables. After the user has selected several items and navigated to the
checkout form, a PHP script would display all of them along with their current
prices, as pulled from a database.

To get a PHP variable saved from session to session, you use the
session_register command to add the variable’s name to the list of those whose
values will be saved. When you use session_register, you provide a comma-
separated list of the variable names as strings, not the actual variables themselves.
Consider this example: You have stored the result of a list of shipping methods in
the variable $SHIPPING_METHOD. To register this as a session variable so your
later forms could use it, you would write:

<?PHP session_regi ster("SH PPI NG METHOD') ?>
Later pages in the same session would then see a variable called

$SHIPPING_METHOD. Variables have to be registered to the session only once.
After the initial registration, changes to the variables will be automatically saved.

239

WwWWw.syngress.com

240 Chapter 8 ¢ Identifying Users and Sessions

PHP saves the session just before it exits, writing any variables that have been
registered, using session_register, back to the server in a file named after the ses-
sion ID. PHP never accepts session IDs from the user; it creates these session files
only when the user accesses a page that uses sessions without an existing ID. The
PHP documentation describes where these session files are saved and how you can
alter the session save-and-restore process to store this data into a database.

Using Automatic URL Rewriting

PHP can automatically change URL strings to include the session identifier.
When you have sessions enabled, any relative URLs (ones without schemes or
site names) will be automatically rewritten to include the session ID name and
value. For example, if your hyperlink looks like this:

CGo to page 2

PHP will automatically rewrite it to read like this:

CGo to page 2

PHP also recognizes several other kinds of links. Links to images within your
page will also have the session ID appended. PHP also automatically inserts
hidden fields into any forms on the page to preserve the session identifier when
you make a form submission.

Adding Session IDs to Hyperlinks and Forms

Sometimes, PHP cannot automatically add the session ID to your hyperlink. If
you try to link to another page using a full URL, PHP will not add the session
ID to avoid passing sensitive session information to other sites. In this situation,
you can explicitly add this identifier by using the SID variable. An example of

how to write a hyperlink with an embedded session ID is as follows:

<a href="http://unw redw dgets. coni hone. ht ml ?<?=S| D?>" >Honme</ a>

To output the variable value, we use “<?=SID?>"The “<?=" starts the PHP
directive and is a shortcut for “<?PHP echo”. SID is a special session command
that outputs either “PHPSESSID=session” or a blank string, depending on
whether the session ID has been set. “?>" closes the directive. We prefixed this
with a question mark; without it, PHP wouldn’t see the session ID string as a
form variable.

If you have a form that submits to an absolute URL, you cannot rely on the
automatic URL expansion either, because the URL specified by the action

Www.syngress.com

Identifying Users and Sessions * Chapter 8

attribute is not modified by PHP’s automatic rewriting. To fix this, you can either
add the same “?<?=SID?>" construct to your URL string, or you could make
the session ID an explicit form variable by specifying it as a hidden input to the
form, using code like this:

<i nput type="hi dden" nane="<?= session_nanme() ?>"

val ue="<?= session_id() ?>">

This input tag uses two of PHP’s session-handling calls, session_name and
session_id, to fill in the name and values of the hidden field. This will be part of
the variables sent to the server when the form is submitted.

Palm.Net Proxy URL Hashing and Session IDs

The Palm.Net proxy, by default, saves URL strings on the server and sends a
hashed form of the URL to the device. Instead of sending the long URL string,
the proxy turns each string into a much smaller number produced by taking the
string and performing computations on it, such as taking its length, adding the
values of all the characters, or performing a Cyclic Redundancy Check (CRC).
When the device wants to follow a URL, it sends the address of the current doc-
ument and the hash value of the URL. The proxy goes and refetches the original
page, reruns the hash function on each URL, finds the one that matches the
request, and then follows it to fetch the new page for the device.

As an example, consider a Web page that has a hyperlink to the URL
http://www.unwiredwidgets.com/salesflyer/page4/specialofter2.html. If this were
sent directly over the air, you would have 65 characters just to represent the com-
plete URL. With hashing, this could be reduced to a 32-bit number, which is
made of only 4 characters. If you have half-a-dozen links of that length on a
page, your transmission size has just been reduced from 360 characters to 24, a
major savings when the users are paying by the byte for data, like they do with
some of the Palm.Net plans for the Palm VII and VIIx.

When this works, it does a good job of reducing the bandwidth used
between the proxy and wireless Palm OS devices. Web sites have gotten into the
habit of sending long URLs to desktop Web browsers, where the length of the
text is overwhelmed by the size of associated graphic files.

However, you should be aware of two possible failure points. First, sometimes
the hash function that the Palm.Net proxy uses doesn’t produce unique values.
For this hash to work, each link on the page should have a unique hash value so
that when you follow a link, it finds the correct one at the server. Early versions
of Palm.Net proxies used a hashing scheme that ignored characters at the end of

241

WwWWw.syngress.com

242

Chapter 8 ¢ Identifying Users and Sessions

long URLs. Some systems that had deep directory structures or long session IDs
produced pages with multiple links that matched to the same value. The best way
to avoid this bug is to make sure that your URL strings have sufficient differences
to trigger different hash values.

NoTE

As an example of a long URL, a recent visit to one of the book pages at
Amazon.com produced the URL http://www.amazon.com/exec/obidos/
ASIN/1928994326/ref%3Dnosim/searchbyisbn/104-4588797-9911941, a
total of 95 characters. This link seems to encode the name of Amazon’s
book lookup software, an ISBN code, a string that identifies the referring
site, and finally a session ID.

Second, you have to be concerned about the initial creation of the session.
The problem is that when you grab the first page in a session, you get a unique
ID handed back to the device. When you follow a link, the proxy server may use
a cached copy of that page with the session ID, but it also could go back to the
server and request the original page again. If the proxy does the latter, it will now
get a difterent session ID, so the link hashes will not match, causing a connection
error.

To solve this problem, you need to prevent the server from using link hashing
on your initial session page.You can do this in two ways. The most reliable is to
always generate the start page with an HTTP POST event. You could do this
from a Web clipping application by making your page a form that uses the POST
action to submit its query to the server. The Palm.Net proxy does not do link
hashing for posts, it instead passes the text of the URLs to the device; this is
because of the HTTP semantics for a post, which indicate that a post cannot be
resent to the server. Because Palm cannot guarantee that it will keep the result of
the posting in its cache, it sends the full URLs to the device so that the links will
be able to be followed in the future.

The other method available to solve this problem involves adding a special
attribute to your Web pages to specify that link hashing should not be done. This
can be done using either a META tag, which controls the entire document, or by
tagging individual hyperlinks. Adding the following line to the <HEAD> tag of
your HTML page will cause the Palm.Net proxy to send full URL strings back
to the device:

Www.syngress.com

Identifying Users and Sessions * Chapter 8

<META NAME="Pal mHREFSt yl e" CONTENT="FULL" >

If you have only some hyperlinks where this hashing will be an issue, you can
leave the page with the default scheme and tag individual hyperlinks with the
PalmStyle attribute, like this:

hyperlink

This method does work well, but the PalmStyle attributes are understood only
on recent versions of the Palm.Net proxy. If you are using Clipper through a ser-
vice provider using an older proxy, the POST method is the only one guaranteed
to work.

My Unwired Widgets Order Example

Let’s take a look at an example using two PHP files that together form a session-
based order system. This example is a very simplified version of a real-world
shopping cart program, but it does show how sessions let us keep information in
variables for later processing.

The entry page, order.php, shown in Figure 8.8, represents a simple HTML
form for ordering widgets. In this form, you enter a quantity, and then choose
the color, size, and shape of the widgets you want to order. When you hit the
Add button, the order gets submitted back to the server, which reruns the orig-
inal PHP page. We also have a form link that goes to the companion PHP page,
checkout.php, which shows the user a list of all the widgets he has ordered.

All of the order data is stored in one variable, the multidimensional array
$ORDER. We use PHP to store all of the orders as items in a simple array,
where each individual order is an associative array holding the order details. In
our session management code, we have to establish the §ORDER variable as an
array before registering it as a session variable, or it will be registered as a string,
and the array operations when we add to it will cause PHP to indicate an error.

In this page, we use the presence of the §COLOR variable to tell if we’re
processing a form submission or just showing the page for the first time. We pro-
cess the submission late in the page because we are also giving you feedback
about what you just ordered, and it’s convenient to add the order to our array at
the same time as we tell you what we added.

243

WwWWw.syngress.com

244 Chapter 8 ¢ Identifying Users and Sessions

=

% Figure 8.8 Unwired Widgets Order Script (order.php)

A

i¥ <?php

session_start();

/1 force $order to be an array if it doesn't exist

if (enpty($order)) { S$order=array(); }

session_register("order");
?>
<htn >
<head>
<title>UWN Order Wdget</title>
<met a nane="Pal nConputi ngPl at f orni' cont ent =" TRUE" >
</ head>
<body>
<hl>Unwi red W dgets</hl>

<p>Choose a widget style and quantity and hit "Add"

to add it to your order, or hit "Checkout" to

confirm your sel ection. </p>

<f orm met hod="post" acti on="order. php">

<t abl e>

<tr>

<td>Quantity:</td>
<t d>

<i nput nanme="quantity" naxlength="5" size="5" val ue="1">

</ftd></tr>

<tr>
<t d>Col or: </td>
<td>

Www.syngress.com

Continued

Identifying Users and Sessions * Chapter 8

Figure 8.8 Continued

<sel ect name="color" size="1">

<opti on>r ed</ opti on><opti on>bl ue</ opti on>
<opti on>gr een</ opti on><opti on>yel | ow</ opti on>
</ sel ect>

</[td></tr>

<tr>

<t d>Si ze: </ td>

<td>

<sel ect nane="si ze" size="1">

<opt i on>bi g</ opti on><opti on>snal | </ opti on>
</ sel ect >

</ftd></tr>

<tr>

<t d>Shape: </t d>

<td>

<sel ect name="shape" size="1">

<opt i on>squar e</ opt i on><opt i on>r ound</ opti on>
</ sel ect>

</ftd></tr>

</t abl e>

<i nput type="submt" val ue="Add">

</ forme

<f orm nmet hod="post" action="checkout. php">

<i nput type="subnmit" val ue="Checkout">

</ fornm>

<?php

Continued

245

WwWWw.syngress.com

246 Chapter 8 ¢ Identifying Users and Sessions

Figure 8.8 Continued

echo "<p>Already seen ", count($order), " orders</p>";

/1 if we're responding to a POST, add the new
/!l order to the list, and |et the user know what
/!l was added

if (isset($color) && is_nuneric($quantity))

{
$order[] = array(
"color" => $col or,
"size" => $size,
"shape" => $shape,
"quantity" => $quantity);
printf("<p>Added % %, %, % wi dget(s)</p>",
$quantity, $color, $size, $shape);
}
?>
</ body>
</htm >

Figure 8.9 shows our checkout.php script. When you access this page with an
active session, it shows you everything that we’ve stored away in the §ORDER
variable by generating an HTML table from the items in the array.

=

Figure 8.9 Unwired Widgets Checkout Script (checkout.php)

<?php session_start(); ?>

<htm >

<head>

<title>UWNW Order Checkout</title>

<met a name="Pal nConputi ngPl at fornf cont ent =" TRUE" >
</ head>

<body>

Www.syngress.com

Continued

Identifying Users and Sessions * Chapter 8

Figure 8.9 Continued

<hl>Unwi red W dgets</hl>
<p>Here is your order:</p>
<t abl e>

<tr>

<th>Qy. </th> <th>Col or</th> <th>Sj ze</th> <t h>Shape</th>

</[tr>
<?php
for ($i = 0; $i < count($order); $i++)
{
echo "<tr>\n";
echo "<td>", S$order[$i]["quantity"], "</td>\n";
echo "<td>", $order[$i]["color"], "</td>\n";
echo "<td>", $order[$i]["size"], "</td>\n";
echo "<td>", S$order[$i]["shape"], "</td>\n";
echo "</tr>\n";
}
?>
</t abl e>
</ body>
</htm >

This example has several problems that should be addressed in real-world
code. The first problem is data validation. If you enter nothing or a non-number
for the quantity field, you don’t get any sort of error message. Also, no validation
exists to make sure that the selections from the <SELECT> tags are valid.
Although you would not expect Clipper to send back bad data, someone trying to
break the security of the system could send anything as an imitation of Clipper.

This system also needs to be expanded to provide order editing. At the least,
the user should be able to clear all pending orders, but giving the user the ability
to edit individual items would be nice. When designing systems for Palm OS

247

WwWWw.syngress.com

248

i

%Y

Chapter 8 ¢ Identifying Users and Sessions

devices, you should remember that you have limited bandwidth and screen space,
so some features that may be appropriate for a desktop shopping cart would be
excessive on the handheld.

Finally, to be useful, you would need to track additional information, such as
the name and address of the customer. This would be a good opportunity to use
PHP’s huge library of functions to access your customer list, validate credit card
numbers, and communicate with other network systems to let your order fulfill-
ment personnel know about the new order.

To complete the example, we need a WCA that will launch the user into the
order system. Because we don’t want caching problems, our WCA will enter this
system using an HTTP form submission. Figure 8.10 shows the HTML source
used to make this WCA.

Figure 8.10 Unwired Widgets Order System WCA
<htm >

<head>

<title>UWN Enter Oder Systenx/title>
</ head>
<body>
<h1>Unwi red W dgets</hl>
<f or m met hod="post "
action="http://ww. unw redwi dgets. conf order. php">
<i nput type="submit" value="Enter Order Systeni>
</fornmp
</ body>
</htm >

In a more secure system, you may want to put a username and password field
on this form, then use those to set up the user session before letting the user add
items to her shopping cart.

Identifying Sessions Using
Cookies in Palm OS 4.0

Cookies, in the Web sense, are an invention designed to deal with HTTP’s lack of
state. Online privacy advocates hate cookies, going as far as disabling them in

Www.syngress.com

Identifying Users and Sessions * Chapter 8

their Web browsers. Web designers find them extremely useful, often making sites
that won'’t allow access without them. As with many things in life, cookies are
neither a plight nor a savior for the Web, but to understand that, we need to first
understand what cookies are.

To explain, we will use the analogy of a pass. In real life, a pass is granted from
some issuing authority to a person.To use the pass, the passholder presents it back
to the authority. Passes usually have an expiration date—after some amount of
time they are no longer good. Passes often carry some sort of information that is
useful to the issuer. Sometimes this information is very brief—consider a parking
pass that just has the year and the parking area allowed. Sometimes this informa-
tion 1s very detailed: A driver’s license can be considered as a kind of pass that had
the name of the issuing state, the name of the driver, a license number, the
driver’s personal traits, and the expiration date of the license. Finally, a pass usually
means nothing to an authority that isn’t associated with the issuer.

Cookies share many of the properties of a pass. A cookie is just a pair of
strings: a name and a value. They are issued by a Web site as part of the site
returning a Web page. Once issued, the Web browser will send the cookie back as
part of any Web page requests made at the issuing site. A cookie has an expiration
date; the issuing site can set some time in the future where the cookie will no
longer be valid, or the site can leave it at its default, which is until the Web
browser session is finished. A cookie can be very short, or it can be up to 4K
long (short is encouraged). Finally, a cookie can be returned only to the site that
issued it, although there are some exceptions.

One area where cookies and passes difter is their voluntary nature. When
you’re given a pass in real life, you have the ability to reject it before ever
receiving it, and once you’ve received it, you can ignore it, never showing it to
anyone. Because the Web browser automatically handles cookies, a user is not
given a choice to accept cookies sent from a site. Palm Inc’s cookie implementa-
tion in Palm OS 4.0 is this way; the user cannot use a setting to turn cookie han-
dling oft, and the user has no control over accepting or declining cookies from
Web sites. Some desktop Web browsers, such as Microsoft’s Internet Explorer 6.0
and the open source Mozilla, give users more control over cookies, but this capa-
bility is very new to the Web.

Sending Cookies from a Web Server

The formal specification for cookies is RFC 2109, which is a formalization of
the specification originally designed by Netscape for the Netscape Navigator 1.0

249

WwWWw.syngress.com

250 Chapter 8 ¢ Identifying Users and Sessions

browser back in 1995. Palm’s documentation claims compliance with Netscape’s
document, so use it as your primary reference.

NoTEe

The text of RFC 2109 is available from www.cis.ohio-state.edu/cgi-bin/rfc/
rfc2109.html. Netscape’s document describing cookies is available at
http://home.netscape.com/newsref/std/cookie_spec.html.

To set a cookie, a Web server returns one or more special “Set-Cookie”
headers. Each header sets one cookie in the Web browser. The contents of this
header follow a set format. First, you have the name and value for the cookie in
the form “name=value”. This can be the complete cookie, but usually it is fol-
lowed by optional attributes that modify the cookie from its default behavior.

The full syntax is as follows:

Set - Cooki e: NAME=VALUE; expires=DATE; pat h=PATH, donmai n=DOVAI N_NAME;

secure

Anything after the “name=value” part is optional, but for compatibility, it
should be presented in the order shown here. Both the NAME and VALUE
strings are limited to non-whitespace, non-comma, non-semicolon ASCII charac-
ters. The standard recommends using URL encoding to include the prohibited
characters, but this convention isn’t required.

The expires attribute describes a date when the cookie is no longer valid. The
format for this date is very specific:

Wiy, DD Mon-YYYY, HH MM SS GMI

This format is similar to the required date format specified in RFC 822,
RFC 850, RFC 1036, and RFC 1123, the specifications that describe e-mails and
newsgroup postings. The difference between those specifications and the dates
described in the cookies document is that cookies require the Greenwich Mean
Time (GMT) time zone, and they allow only the dash to separate parts of the
date. A sample date might look like this:

Sun, 13- May-2001, 19:02:00 GMI

This requirement for GMT time ofters a clue as to why Palm, Inc. didn’t
support cookies until Palm OS 4.0. Before that version of the operating system,

Www.syngress.com

Identifying Users and Sessions * Chapter 8

no global setting existed to describe the time zone in which the device was oper-
ating. Because of that, cookies could not be reliably expired, because the Palm
couldn’t map the GMT time into a local operating time. With OS 4.0, Palm
added a time zone setting, so this is no longer a problem.

The path attribute is used to describe the set of URL paths on a Web site
over which the cookie operates. The default is for the cookie to be sent back
only to the page that originally sent it. By setting a path of “/”, the cookie would
be sent on a request for any page at the site. Other path settings are more restric-
tive: Setting it to “/foo/bar/” would cause the cookie to be sent on a request for
“/too/bar/baz.html” but not for “/foo/quux.html”.

The domain attribute is like path, because it regulates what sites the cookie
will be sent to. Again, the default is the most restrictive, allowing the cookie to be
sent back to only the original machine it was sent from.You can loosen this
requirement by specifying a more top-level domain. For example, if your Web
server machine was “www.unwiredwidgets.com”, you could set the domain of
your cookie to be “unwiredwidgets.com”, and the cookie would now be sent to
any machine whose name ended with “unwiredwidgets.com”, such as
“www2.unwiredwidgets.com” or “alpha.beta.unwiredwidgets.com”. The domain
of the sending machine limits this attribute—a Web server at “foo.net” could not
set the domain attribute to be “bar.com”. Also, it wouldn’t be able to set it to be
“.net”; the domain attribute requires at least a second-level domain (or a third-
level domain if the TLD is a two-letter country code such as “uk” or “de”).

The final attribute is secure. If this keyword is listed, then the cookie will be
sent back only over secure connections, as in ones that use the HTTPS protocol.
Normally, cookies will be sent over any HTTP connection type.

Servers can also delete cookies that are already on the browser by sending a
name-value pair with an empty value. The cookie has to match the one on the
client exactly—name, path, and domain information all must be exact matches
for the stored forms in the Web browser. Also, the same restrictions apply for
deleting as do for creating; “foo.net” is unable to delete a cookie stored by
“bar.com”.

Including Cookies in a Web Browser Request

A Web browser keeps a local database of all the cookies it has seen along with the
restriction information it has stored to tell it when to send back the stored cookies.
Most browsers have some sort of built-in limit as to how many cookies they will
store and how large each cookie can be.The original minimums specified in

251

WwWWw.syngress.com

252

Chapter 8 ¢ Identifying Users and Sessions

Netscape’s document were 300 total cookies, each up to 4K in size, with at most
20 cookies per specified domain. Microsoft’s Internet Explorer does not seem to
limit the total number of cookies, but it does limit each domain to 30 total
cookies. On the Palm OS, the limitation is expressed in terms of database size: By
default, Clipper allows the cookie database to grow to 50K; any new cookies cause
older cookies to be removed.

When the Web browser is ready to request a Web page, it goes through its
cookie list, trying to find any cookies that might match the domain name of the
site it’s going to access. This is also usually when it removes any expired cookies
from the local database. After it collects this list, it then weeds out any cookies
whose paths don’t match the path of the request. Now, the browser has a list of
cookies to send. It formats the list into an HTTP “Cookie” header in the
tollowing form:

Cooki e: NAME=VALUE; NAME=VALUE; ... NAME=VALUE

It has no trailing semicolon, and no cookies are found, this header is not sent.
The order of the name-value pairs is significant. If more than one cookie has
been sent for a particular name, all of the cookies will be sent, but the one with
the closest match to the site will be sent first, followed by the next-closest match,
and so on until all cookies have been sent. Usually, you will get your expected

behavior if your cookie processing script just uses the first value seen for any
particular name.

Using Cookies to Enhance Web Sites

Web designers have invented many different uses for cookies throughout the life-
time of the Web. Most uses fall into one of several categories:

e Username and password storage
* User preferences

e Shopping carts

e User tracking

* Session management

Username and password tracking is natural for cookies. When the user suc-
cessfully logs in to the site for the first time, the site returns a cookie with an
encoded form of the username and password the user entered. When the user
returns to the site, these get sent automatically, and the site can log in the user

Www.syngress.com

Identifying Users and Sessions * Chapter 8

without interaction. Usually, sites that do this ofter a logout option that deletes
the cookie, and they make saving the cookie in the browser optional through a
checkbox that enables saving it on the user’s machine. This may be a good candi-
date for the “secure” attribute, so the cookie with the username and password
doesn’t ever get sent in the clear.

Rather than storing a user database on the server, you may find it easier to
save user preferences in cookies on the device. Although you could store each
preference in its own variable, it’s better to represent all of the preferences in one
string that you can parse at the beginning of your server script. Site preferences
can be anything. On the Palm, some preferences might be the maximum length
of pages to return, displayed fields and sort keys for database tables, or the user’s
home town for a location-based service.

Cookies can store quite a bit of data. Netscape’s original specification allowed
a single cookie to grow to 4K of storage. For a Palm OS device, you should limit
your cookies to a few hundred bytes at most, because they get sent for every page
transaction, and some wireless services charge by the byte. Still, it’s possible to
store a shopping cart in a very small number of bytes if you use the right
encoding. The key is to save your shopping cart as a compact string, with just the
item quantities and part numbers. You should heed the security warnings from
the “Identifying Sessions Using URL Rewriting” section earlier in this chapter
and not store any sensitive data that you wouldn’t want the user to change in a
cookie; just store the user’s choices and keep recomputing everything else on
your Web server.

Using cookies to track users is a common task but one that has given cookies
a bad name among computer users concerned about their privacy. The idea is for
a site to issue a cookie with a random string. Then, every time that site sees that
cookie again, it knows that the original user has returned. Because cookies are
returned only to the site that issued them, this doesn’t seem so bad. However,
with the growth of advertising networks, Web programmers realized that many
different Web sites would be showing images served from a single advertiser
domain. Because the ads are fetched over HTTP, it’s possible for the advertising
company to send a cookie when you view an ad on site A, then get that cookie
returned when you visit unrelated sites B and C.The advertising company now
knows that this one user has visited all three sites.

In the previous section, we talked about managing sessions using URL
rewriting. You can also track a session by using cookies, storing the session ID in
the cookie but keeping all of the session variables on the server. This is the

253

WwWWw.syngress.com

254

Chapter 8 ¢ Identifying Users and Sessions

default mode for sessions when using PHP, and it can be explicitly enabled using
the following in the PHPINI file:

session. use_cookies = 1

Unless your site also uses cookies for other purposes, you should probably use
URL rewriting if it’s available, because cookies are not available on Palm OS
devices running Palm OS 3.5 or earlier.

Cookies versus URL Rewriting

The biggest advantage cookies have over URL rewriting is that cookies can be
preserved from one session to another. If you set a cookie with an expiration
date, it will be kept on the device, even when other applications are running
instead of Clipper. When the user relaunches the Web clipping application and
goes back to your site, she won’t need to re-establish context, because the cookies
set in a previous session will be automatically returned if they haven’t expired.

Cookies also work with nondynamic pages. If you use cookies, you don’t
need to generate every page on your site with a script, because you aren’t relying
on altering the URL strings to maintain the session. Cookies will always be sent,
as long as the address being loaded matches the cookie criteria.

On the Palm OS device, the big disadvantage of cookies is support in
Clipper. Cookie support didn’t get added until Palm OS 4.0, so the majority of
Web clipping users will not be able to use pages that rely on cookie support. If
you have to support a user base that includes Palm VII and VIIx users, cookies
just aren’t part of your Web site toolbox.

Another disadvantage to using cookies is the bandwidth used, especially on
the request side. Cookies can burden every request to your site with hundreds of
bytes of cookie data that have to be sent every time a user follows a link. With
the slow and expensive connections that Palm OS devices use to connect to the
Web, this is a factor against using complicated cookie schemes.

Cookie Explorer Example

This example doesn’t build on the Unwired Widgets site, but it is useful for
playing with cookies and seeing how they work on a Palm OS device. Cookie
Explorer is a PHP page that lets you set cookies in your browser using simple
HTML forms. The page will tell you what it sent in its Set-Cookie header and
will also let you see all the cookies that were sent to it from your Web browser.

Www.syngress.com

Identifying Users and Sessions * Chapter 8 255

To use this site, you navigate to the initial page; on the Palm OS device, a
simple Web clipping application that just links to the Cookie Explorer page is suf-
ficient. If this is the first time you've used this page, it should show that no cookies
have been set and give you an input screen like the one shown in Figure 8.11. If
you enter parameters for a cookie and submit it, you will get the original input
form repeated, with the addition of a line saying that the server sent back a cookie
with your values. At this time, you should be able to reload the page by following
its link back to itself. When you do that, the PHP script is run again, but now it
has your first cookie sent back as another input. Figure 8.12 shows Clipper’s view
of the page after it has been run several times, setting multiple cookies.

Figure 8.11 Cookie Explorer: Initial Page

Cookie Explor .. 4 w History
hiz zite currently sees these cookies:

Figure 8.12 Cookie Explorer: After Several Cookie Submissions

cookie Explor.. I R E0E0

This zite currently sees these cookias:

=testl ="zalong"
= test2 = "and thanks for"
=testd = "all the fish"

Reload the pages: or et a new cookie
zing the form below,

Mame]
alue:
Expirationd

WwWWw.syngress.com

256

Chapter 8 ¢ Identifying Users and Sessions

Using Cookie Explorer, you can leave the expiration at O to make a session-
only cookie, or you can give it a positive number, which is treated as the number
of seconds past the current time to set the expiration. When we were using this,
we found out that the Palm OS device didn’t seem to deal with expirations in
the very near future. When we set the number of seconds to expire a cookie
within a minute of it being sent, the cookie never got sent back to the server.
Based on this, we’d recommend setting the expiration time of your cookies at
least five minutes from the time you sent it.

The code for the Cookie Explorer page is listed in Figure 8.13.This PHP
page does not do extensive error checking—it is possible for you to give illegal
cookie names or values, although it looks like PHP automatically URL encodes
and decodes cookies, so it never really sends anything illegal.

Figure 8.13 Cookie Explorer PHP Script (cookietest.php)

<?php
if (isset($cookie_nane))
{
/1 adjust non-zero val ue expirations
/1 using the input as an offset fromthe
/1 current tine
if ($cookie_expires !'= 0)
{
$cooki e_expires += tine();
}
Set Cooki e(
$cooki e_nane,
$cooki e_val ue
$cooki e_expires);
}
?>
<htm >
<head>
<title>Cookie Explorer</title>
</ head>

Continued

Www.syngress.com

Identifying Users and Sessions * Chapter 8 257

Figure 8.13 Continued

<body>
<?php
if (isset($cookie_nane))
{
echo "<p>Just set cookie ", $cooki e_nane;
echo " with value \"", $cookie_value, "\". "
if ($cookie_expires != 0)
{
echo strftime("lIt expires at %t %M %6 "
"on % %/ %. ", $cookie_expires);
}
echo "Reload to see it in cookie list.</p>";
}
?>

<p>This site currently sees these cookies: </p>

<?php

reset ($HTTP_COOXKI E_VARS) ;
while (list ($key, $val) = each ($HTTP_COOKI E_VARS))

{
echo "", $key;
echo " = \"", $val, "\"\n";
}
?>

<hr >

<p>Rel oad the page or

set a new cookie using the form bel ow </ p>

<form acti on="cooki et est. php" net hod="POST" >
Name: <input type="text" nanme="cooki e_name" size=20>

Val ue: <input type="text" name="cooki e_val ue" size=20>

Continued

WwWWw.syngress.com

258 Chapter 8 ¢ Identifying Users and Sessions

Figure 8.13 Continued

Expiration: <input type="text" name="cookie_expires" val ue="0"
si ze=10>

<i nput type="submit" val ue="Set Cookie">
</forne
</ body>
</htm >

This script is great for experimenting. In testing cookies, we modified this to
send a lot of cookies in a loop every time the page was loaded. Although Internet
Explorer will keep only the last 30 cookies sent, Palm’s Clipper in OS 4.0 kept
track of 100 different cookies on one of my tests, sending them all back to the
site. We think it actually was able to keep track of more cookies than could be
returned, causing my Apache server to abort the transaction with an internal
error thrown by having a cookies header that was much too long.

Also, we tested this script without building any PQA files; instead, we directly
navigated to the site using the “go to URL” feature of iKnapsack, as described in
Chapter 10. The CD included with this book contains both this source file and a
small source file that you can change and point at your server to run this Cookie
Explorer.

Www.syngress.com

Identifying Users and Sessions * Chapter 8 259

Summary

Sophisticated techniques have overcome the stateless nature of HT TP, allowing
complex applications to be implemented on the Web. This chapter showed three
different technologies that allow a Web site developer to find out more about the
site’s users and to provide a customized user experience.

The first mechanism was to use the unique identifier that Clipper can be
asked to return to track a user’s identify. However, because the unique ID isn’t
treated as a secret, using it invites people to break into your site, representing ".
themselves as other users by hijacking their device IDs. The ID can be used for
nonsecure applications, but should never be used as the sole authentication
authority.

A better approach is to use the links that a user follows to store information

about his or her session. By rewriting each URL to include a tracking string, you
can associate data stored on the server with a particular user. This technique
doesn’t require any specific device support, because it uses standard links that
have extra information encoded in the Web addresses. PHP 4.0 proved to be a
useful tool for implementing URL rewriting, with built-in support for modifying
all the local hyperlinks on a Web page to include the session ID variable.

With Palm OS 4.0, you can use cookies to provide context and state to Web
transactions. By storing data on the device that gets automatically sent back to
the server, you can identify users, manage Web sessions, and provide a better user
experience. However, cookies can be misused, and you need to be aware that
older devices are not capable of sending and receiving them.

Solutions Fast Track

Using %DEVICEID to Uniquely Identify a Device

M Many devices that support Web clipping will send unique identifiers
when the string %DEVICEID is used in a URL or form.

M Because the device ID can be spoofed, you should not rely on it to give
the users access to sensitive data.

WwWWw.syngress.com

260 Chapter 8 ¢ Identifying Users and Sessions

Identifying Sessions Using URL Rewriting

M By adding a server-generated identifier to all of your page’s URLs, you
can track a user across pages on a Web site.

M PHP 4 provides a powerful system for generating content for the Web.

M To use PHP’ session rewriting, each page must enable sessions using the
session_start or session_register commands.

M PHP’s sessions allow you to preserve the values of variables across mul-
tiple page loads without directly exposing the values of those variables to
the user.

My Unwired Widgets Order Example

M PHP sessions can be used to implement a simple shopping cart system.

M When implementing a real system, you should pay close attention to

user authentication and the security of form submissions.

___I':*é‘ Identifying Sessions Using Cookies in Palm OS 4.0

M Cookies let you store data on the device that can be retrieved at a
later time.

M Cookies are supported only in Web clipping on Palm OS 4.0 and later
devices.

i 4 M Although cookies can be used to make the user’s life much easier, by
storing preferences or login information, they can also be used to
i secretly track which sites a user visits.

Cookie Explorer Example

M The Cookie Explorer PHP script can be used to set and delete cookies
on your Palm OS 4.0 device.

M The script can be customized to automate your cookie explorations.

Www.syngress.com

Identifying Users and Sessions * Chapter 8

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Does every device have a unique identifier?

A: No. Although you can request a %DEVICEID string through Web clipping,
this string always has the same value for every user of the Palm OS emulator
or for devices that do not have a flash ID, such as the Palm m100 and m105
handhelds.

Q: My %DEVICEID request returned the actual string “%DEVICEID”. What

went wrong?

A: You can only put this string in a link URL under three circumstances. First, if
it is used in a PQA file local to the device, this will work. Second, you can
put it on a link returned by the HTTP POST form transaction. Finally, if you
are using the new proxy and youshave specified that either the page or the
link not be hashed, this will work. Otherwise, you need to just put it in a
hidden field on a form submission.

Q: I'm using PHP session management with URL rewriting. Why do I lose the
user’s session when they go to one of my static pages?

A: The PHP session is maintained only as long as_the user keeps following links
that contain the session ID. If the user goes to a nondynamic page, that page
will lack rewritten URLs, and any links followed will not be tagged with a
session ID.

Q: Which method is more bandwidth efficient: URL rewriting or cookies?

A: If you're using the standard Palm.Net proxy and your pages are mostly
returned as the result of following normal links, URL rewriting is very efti-
cient, because the URLs containing the session IDs are not sent in full to the
device, and the device doesn’t have to send back a cookie with every request.
However, for a forms-heavy site where link hashing doesn’t happen, it’s better
to send just one cookie than to repeat the session ID string over and over.

261

WwWWw.syngress.com

262 Chapter 8 ¢ Identifying Users and Sessions

Q: How do I look at the cookies stored on my device?

A: At the time this book was written, there weren’t any specialized cookie
viewers. However, an on-device resource editor such as Insider or Onboard
RsrcEdit can be used to open the database “CookieDB” and directly view
the cookie records. There is one cookie per database entry, and the entries’
name, value, path, and domain attributes are all easy to identify as ASCII
strings.

Q: Can I use cookies on my Palm VII or VIIx?

A: No. Cookie support requires Palm OS 4.0 or later, and although an OS
upgrade is available for some older Palm OS devices, the Palm VII and VIIx
handhelds do not have sufficient flash memory to hold Palm OS 4.0, the
Mobitex radio libraries, and the new Web clipping tools.

Www.syngress.com

Chapter 9

Locating Mobile

Users

Solutions in this chapter:

= Finding a User’s Position with the Palm Vii
= Address Locator Example

= Mapping ZIP Codes to Coordinates

= Determining the Closest Address

» Locating the Closest Widget
Outlet Example

= Using Enhanced %LOCATION Information
in Palm OS 4.0

M Summary
M Solutions Fast Track

M Frequently Asked Questions
263

264

Chapter 9 ¢ Locating Mobile Users

Introduction

One of the unique capabilities of mobile Web access is the ability it affords the
user to tailor his or her experience based on physical location. Palm OS Web
clipping supports this through U.S. Postal Service Zone Improvement Plan (ZIP)
Code information that can be provided for the device.

Each Palm VII device communicates with Palm.Net via a BellSouth Mobitex
base station. The wireless system keeps track of the base station with which a
Palm VII device is communicating, and also the ZIP Code of each base station.
By correlation, the wireless system can determine the ZIP Code of a Palm VII
device.

Using ZIP Code information is a way to make your applications position-
sensitive. You will find that despite some technical challenges, ZIP Code interpre-
tation can greatly improve the user experience. Technical challenges include the
need to turn ZIP Codes into coordinates and searching through a database to
find coordinate-based information (for example, the closest address). It can be
quite complicated, but the challenges are typically justified by the outcome.

Already, many useful position-based systems exist. Weather applications use
your local ZIP Code to tell you about conditions nearby. Store and bank locators
can tell you the closest branch position. News sites can tailor the coverage to
include both local and national stories.

In this chapter, you will learn how to make your WCA position-sensitive,
including both obtaining and processing position information. You will learn how
to find a Palm VII device’s ZIP Code and how to map that ZIP Code to lati-
tude/longitude coordinates; these coordinates will be used to determine which
address in a database 1s closest to the Palm VII device’s current position. This
chapter will also explain how to use the new Palm OS variable %LOCATION.
You will learn enough about Palm VII position-based WCA development to give
your users a new level of performance.

Finding a User’s Position
with the Palm VIi

The Palm OS-specific variable %ZIPCODE is the mechanism available to WCAs
to determine the current position of a Palm VII device. The %ZIPCODE variable
provides a rough estimate of a device’s position by referring to the ZIP Code

of the base station with which it is currently communicating. Its use can make
possible the existence of new and exciting applications, while enhancing others.

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

Position-based applications include, among others, weather information, ATMs,
car repair and gas, entertainment, airline arrival/departure information, real-time
traffic, realty information, boating services, and news information. However,
%ZIPCODE is not a perfect answer to the position question, and an under-
standing about its operation and limitations must be gained in order to use it
appropriately.

Understanding %ZIPCODE Operation

As with any other server, the server for your Palm VII device (that is, Palm.Net) is
aware of the identity of specific computers with which it communicates.
Palm.Net knows how to identify each computer, usually via IP address.
Fortunately, this ability carries over to base stations. Palm.Net can identify specific
base stations with which it communicates.

Because base stations are stationary, it is a direct correlation for Palm.Net to
assoclate a base station with its encompassing ZIP Code. And, because a Palm VII
device typically communicates with the nearest base station, the base station ZIP
Code is a reasonable estimate of the Palm VII device’s encompassing ZIP Code.
However, reasonable estimates are not always accurate.

NoTE

In the headers of Mobitex packets forwarded to Palm.Net is information
about the Mobitex Access Number (MAN) of both the base station and
the Palm VII device that is communicating. The base station’s MAN is
cross-referenced with a current server list, finding the server’s ZIP Code.
Server ZIP Code is inherited by the Palm VIl device as the value of %ZIP-
CODE. This explains why sometimes you get 00000 as the ZIP Code when
you're talking to a base station about which Palm.Net has not learned.

Understanding %ZIPCODE Limitations

Base station coverage areas cannot follow ZIP Code boundaries, especially because
ZIP Codes do not always have well defined boundaries. This is not to say that ZIP
Codes have no meaningful geographic description, rather that the ZIP Code geo-
graphic description is not always an enclosed geometric shape. For example, ZIP
Codes associated with rural areas may simply be represented by a group of lines.
Also note that ZIP Codes can exist across state, county, and city boundaries.

265

WwWWw.syngress.com

266

Chapter 9 ¢ Locating Mobile Users

Even if enclosed geometric shapes characterized ZIP Codes, gaps and/or
overlaps would still exist between base stations. This would confuse how a
reported ZIP Code should be interpreted. If coverage gaps exist, it may not be
possible for any reported ZIP Code to ever match the actual ZIP Code of the
Palm VII device’s position. If coverage overlaps exist, more than one reported ZIP
Code possibility might exist for a given Palm VII device position.

Additional considerations include both natural and man-made obstacles.
Natural obstacles include mountain ranges and vegetation, whereas man-made
obstacles include buildings and bridges. Any natural or man-made obstacle can
block the line of sight between a Palm VII device and the closest base station,
which will result in a Palm VII device having to communicate with a base station
that 1s farther away. The net effect 1s that the ZIP Code of the more distant base
station will be reported as the ZIP Code of the Palm VII device, even though the
Z1IP Code is not that of the closest base station.

Additionally, even if an obstacle doesn’t affect the base station with which a
Palm VII device communicates, it may aftect application-specific interpretation of
the reported ZIP Code. For example, if an Unwired Widgets WCA is used to
locate the nearest store/kiosk, the interpretation of “nearest” will be based on the
reported ZIP Code. The nearest store/kiosk may actually be in or near the
reported ZIP Code, only in an area difficult to access from the Palm VII device’s
current position (for example, across a bay or down the busiest streets).

Keep in mind that even an exact ZIP Code determination is a coarse mea-
surement at best, because ZIP Codes typically cover areas measured in square
miles rather than square inches. The main rule of thumb is to use caution when
interpreting reported ZIP Codes. Even with its inherent limitations, %ZIPCODE
can satisty a wide variety of applications. In fact, for some applications such as
weather reporting, which do not rely on an exact location, the ZIP Code position
accuracy 1is quite sufficient.

\WARNING

For some applications, ZIP Code positioning does not provide enough
accuracy. In the case of moving map software, for example, the ZIP Code
associated with a person or vehicle may not change even though the
person or vehicle has traveled several miles.

Www.syngress.com

o
‘F!II\

Locating Mobile Users ¢ Chapter 9
Understanding %ZIPCODE Syntax

The syntax of %ZIPCODE is straightforward, as shown in Figure 9.1.

Figure 9.1 %ZIPCODE Syntax

<i nput type="hi dden" nane="zip" val ue="%i pcode">
-OR-
<f orm met hod="get "

action="http://ww. unw redwi dgets. com cgi - bi n/ zi p. pl ?zi p=%i pcode" >

The type qualifier indicates that the <INPUT> tag is of hidden type. For a full
explanation of the <INPUT> tag, see Chapter 5.

The name qualifier identifies an <INPUT> tag so that it can be distinguished
from other tags. In Figure 9.1, zip was chosen arbitrarily to illustrate that the
hidden type <INPUT> tag will contain a ZIP Code.

The value qualifier specifies the default value for the hidden type <INPUT>
tag. In the case of %ZIPCODE, the value qualifier indicates that the hidden type
<INPUT?> tag contains a placeholder for the current base station ZIP Code.

Within URLs, %ZIPCODE is appended to the end, as shown in the
<FORM> example in Figure 9.1.

Complete WCA source code for a %ZIPCODE example is shown in
Figure 9.2, and the server-side script is shown in Figure 9.3. Before and after
screen shots are shown in Figures 9.4 and 9.5.

Figure 9.2 %ZIPCODE Example

<htm >

<head>

<title>ZI P Code</title>

<met a name="Pal nConputi ngPl atfornf content="true">
</ head>

<body>

<cent er>

ZI P Code (%i pcode)

<f orm met hod=" CGET"

action="http://cgi.unw redw dgets. con cgi - bi n/ zi p_code. pl ">

Continued

267

WwWWw.syngress.com

268

Chapter 9 ¢ Locating Mobile Users

Figure 9.2 Continued

<i nput type="hidden" name="zip" val ue="%i pcode">

<input type="submt" value="Get ZI P Code">

</forne
</center>
</ body>
</htm >

Figure 9.3 %ZIPCODE Example (zip_code.pl)

- #!/usr/bin/perl

use C4d;

&extract _n_di spl ay_zi pcode;

sub extract _n_di spl ay_zi pcode {

parse inconing paraneters as either "GET" or
$q = new CQ;

isolate paraneter nanes

@ane_l i st = $g->param

return results header

print "Content-type: text/htm\n\n";
print "<htm >\n";

print "<head>\n";

print "<title>ZI P Code</title>\n";
print "</head>\n";

print "<body>\n";

print "<center>\n";

print "ZI P Code\n";

" POST"

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9 269

Figure 9.3 Continued

print "

\n";

print "<i>(As Interpreted By Palmnet)</i>\n";

extract val ues

foreach $nanme (@ane_list) {

decode encoding

$val ue = $qg->paran($nane);

output received data
print "
";

print $nane;

print "=";

print $val ue;

print "\n";

return results footer
print "</center>\n";
print "</body>\n";
print "</htm >\n";

Address Locator Example

To illustrate the concepts discussed thus far, consider an address locator example
that looks for a store address for Unwired Widgets that has the same ZIP Code as
the Palm VII device. This example demonstrates how to obtain the %ZIPCODE
value and how to perform a direct match between it and a store address database.
Although the direct match approach may work, keep in mind that no match is
guaranteed.

WwWWw.syngress.com

270 Chapter 9 ¢ Locating Mobile Users

Figure 9.4 The Before Screen Shot

ZIP Code 4 - History

ZIP Code {3 zipoode)

Get ZIP Codes

Figure 9.5 The After Screen Shot

ZIP Code 4 Histary

ZIP Code

(&5 intarpreted By Faln.nat)
Zip=35381

A complete WCA source code listing, server-side script, and sample store
address database are shown in Figures 9.6, 9.7, and 9.8, respectively. The WCA
before and after screen shots are shown in Figures 9.9 and 9.10. Note that your
application should be able to handle ZIP Code strings of 00000.

ﬁ Figure 9.6 Address Locator Example
»»” <htm >

<head>

<title>Address Locator</title>
<met a nane="Pal nConputi ngPl atforni' content="true">

</ head>

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9

Figure 9.6 Continued

<body>

<cent er >

Address Locator Exanpl e
<f orm net hod="CGET"

action="http://cgi.unw redw dgets. com cgi - bi n/ address_| ocator.pl">

<i nput type="hidden" name="zip" val ue="%i pcode">

<input type="submt" value="Get Address">

</fornp
</center>
</ body>
</htm >

Figure 9.7 Address Locator Example (address_locator.pl)

#! / usr/ bi n/ perl

use C43;

&find_st ore_by_addr ess;

sub find_store_by_address {

parse incomng paraneters as either "CET" or "POST"
$q = new CQ;

isolate paraneter nanes

@ane_l i st = $g->param

extract val ues

foreach $nanme (@ane_list) {

Continued

271

WwWWw.syngress.com

272 Chapter 9 ¢ Locating Mobile Users

Figure 9.7 Continued

decode encoding

$val ue = $qg->paran($nane);

save pertinent data

if ($nane eq "zip") {$zip_value = $val ue;}

check for a ZI P Code of 00000
if ($zip_value eq "00000") {

die "ZI P Code value is unavailable (e.g. 00000).";

open store address database
open (store_addresses, "store_addresses.db") or

die "Couldn't open store_addresses.db!";

process store address database one record at a tine
$store_nanme = ""
$store_addr = ""
$store city = "";
$store_st ="
$store_zip = ""

whil e (<store_addresses>) {

read dat abase record

readl i ne;

process database record

($fiel d_0, $field_1, $field_2, $fiel d_3, $field_4) = split /,/;
$zi p_read = substr($field_4, 0, 5);

if ($zip_read eq $zip_value) {

Continued

Www.syngress.com

Figure 9.7 Continued

Locating Mobile Users ¢ Chapter 9 273

keep the matching store address

$store_nanme = $fiel d_O;
$store_addr = $fiel d_1;
$store_city = $fiel d_2;
$store_st = $fiel d_3;
$store_zip = $fiel d_4;

close store address database

close (store_addresses) or die "Couldn't
store_addresses. db!";

return results header
nt "Content-type: text/htm\n\n";
nt "<htm >\ n";

pri
pri
pri
pri
pri
pri
pri
pri

nt "<head>\n";

cl ose

nt "<title>Address Locator</title>\n";

nt "</ head>\n";

nt "<body>\n";

nt "<center>\n";

nt "Address Locator

return matching store address

if ($store_name ne "") {

pri
pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt

nt

"
<pr>\n";

"Store Address Match\n";
"

\n";
$store_nane;

"\n";

"
\n";

$st ore_addr;

Resul t s</ b>\ n";

Continued

WwWWw.syngress.com

274 Chapter 9 ¢ Locating Mobile Users

Figure 9.7 Continued

pri
pri
pri
pri
pri
pri
pri
pri

el se {

pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt
nt

nt

nt
nt
nt
nt
nt

nt

"\n";

"
\n";

$store_city;

n ",
’ ’

$store_st;

)

$store_zip;

"\ n";

"

\n";

"No Store Address

" <b|’ ><b|’ " :

"ZI P Code ";

$zi p_val ue;

"\ n";

return results footer

print "</center>\n";

print "</body>\n";
print "</htm >\n";

Mat ches\ n";

Figure 9.8 Store Address Database (store_addresses.db)

W dget Enporium 456 Your
W dget s- R-Us, 789 Your
Unwi red Wdget Qutl et
CGet Unwired, DEF-2 Your

st ore_addresses. db
The Wdget Qutlet, 123 Your

Street, Center
#1, ABC-1 Your
Street, Hazel

Street, Toney, AL, 35773
Street, Springville, AL, 35146

Poi nt , AL, 35235
Street, Decat ur, AL, 35601
G een, AL, 35750

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9 275

Figure 9.8 Continued

Unwi red Wdget Qutlet #2,GH -3 Your Street, Laceys Spring, AL, 35754
ABC W dgets, JKL-4 Your Street, Meridianville, AL, 35759

John's Wdgets, MN\O-5 Your Street, Val hermbso Springs, AL, 35775

W dgets 123, PQR-6 Your Street, Huntsville, AL, 35801

Figure 9.9 The Before Screen Shot

Address Loca... w Hiztory)

Address Locator E<ample

Get Addresss:

/
A

Figure 9.10 The After Screen Shot

Address Loca... w History)

Address Locator Results
Store Address Match

Midgets 123
POR-& Your Street
Huntsville, AL 35361

WwWWw.syngress.com

276

Chapter 9 ¢ Locating Mobile Users

Mapping ZIP Codes to Coordinates

As seen 1n the previous example, performing direct ZIP Code matching is not
robust. Of course, ZIP Codes were not designed with intelligent WCA processing
in mind, so a different, better approach is needed.

Latitude/longitude measurements provide a robust, global description of posi-
tion information. Used for centuries, latitude/longitude measurements denote
positions in a generic, country-independent format. They ofter a numeric descrip-
tion of positions (free from arbitrarily assigned codes and identifiers) that lends
itself to automated processing. Latitude/longitude measurements are the standard
position descriptors for applications in mapping, navigation, aviation, and global
positioning. By converting ZIP Codes to their corresponding latitude/longitude, a
wide spectrum of new opportunities arises for robust position processing.

Considering Available Data Sources

Several data sources exist for mapping ZIP Codes to their corresponding lati-
tude/longitude. Two significant sources are the U.S. Census Bureau and the U.S.
Postal Service. Their corresponding links are:

= U.S. Census Bureau Files http://ftp.census.gov/geo/www/gazetteer/
places.html
» U.S. Postal Service Files www.usps.gov/ncsc/products/tiger.htm
Additional data sources are available from several commercial vendors,
including the following:
» GreatData.com www.emory.com/progress/US-Zips.htm
» HALLoGRAM www.hallogram.com/mailers/zipdata

» ZIP Code USA www.tpsnet.com/html/zipcode.html and also
www.zipcodedatabases.com

» ZIPList5 Geocode http://zipinfo.com/products/z511/z511.htm

For the purposes of this book, the U.S. Census Bureau’s data source was
selected for illustration. This is due in large part because it is free—it is not the
most up-to-date, but it serves the intended purpose well. You should consider
other data sources for more recently updated, albeit costly, alternatives.

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

Extracting Coordinates

As of this writing, the U.S. Census Bureau offers four views of its data source,
each contained in a downloadable .zip file. The .zip files are as follows:

= counties.zip

= mcds.zip

= places.zip

" Zips.zip

Each .zip file contains a single ASCIIL.txt file of the same name, written one

line per record, and containing both latitude and longitude data. Each file also
contains various references to the Federal Information Processing Standard (FIPS)
codes for states’ various census unit subdivisions.

The counties.txt file contains all counties included in the 1990 U.S. Census,
specified in the following format:

» Columns 1-2 State FIPS Code

» Columns 6-8 County FIPS Code

= Columns 10-75 County Name

= Columns 77-78 State Abbreviation

= Columns 80-88 Total 1990 Population

» Columns 90-98 Number of 1990 Housing Units
» Columns 100-109 Land Area

» Columns 111-120 Water Area

» Columns 122-130 Latitude

» Columns 132-141 Longitude

Note that columns 10 through 75 contain the county name, including a
“County” suffix. Also, columns 100-109 and 111-120 (Land Area and Water
Area) are measured in thousandths of a square kilometer. Columns 122—-130 and
132—141 (Latitude and Longitude) are measured in millionths of a degree (10°
units = 1 deg). Latitude begins with either a plus sign (+) or a minus sign (-),
indicating North or South respectively; longitude begins with either a plus sign
(+) or a minus sign (-), indicating East or West respectively. An excerpt from
counties.txt looks as follows:

277

WwWWw.syngress.com

278

Chapter 9 ¢ Locating Mobile Users

01 089 Madi son County
AL 000238912 000097855 0002084844 0000020532 +34760002 -086548777
01 103 Morgan County
AL 000100043 000040419 0001508018 0000043624 +34453298 -086857298

The mcds.txt file contains all subcounties, or Minor Civil Divisions (MCD)
and Common Core of Data (CCD) (county subdivisions record type 060) places
in the U.S. included in the 1990 U.S. Census. The format is:

= Columns 1-2 State FIPS Code

» Columns 4-8 County Subdivision FIPS Code
» Columns 10-75 Place Name

= Columns 77-78 State Abbreviation

» Columns 80-88 Total 1990 Population

» Columns 90-98 Number of 1990 Housing Units
= Columns 100-109 Land Area

» Columns 111-120 Water Area

» Columns 122-130 Latitude

» Columns 132-141 Longitude

= Columns 143-145 County FIPS Code

Note that columns 10 through 75 contain the place name, including the type
of place (city, town, borough, village, or Census-designated place [CDP]). Also,
columns 100-109 and 111-120 (Land Area and Water Area) are measured in
thousandths of a square kilometer. Columns 122-130 and 132-141 (Latitude and
Longitude) are measured in millionths of a degree (10° units = 1 deg). Latitude
begins with either a plus sign (+) or a minus sign (-), indicating North or South;
longitude begins with either a plus sign (+) or a minus sign (-), indicating East or
West. An excerpt from mcds.txt follows:

01 90171 Autaugaville division

AL 2983 1117 0000478289 0000013428 +32458063 -086728471 001
01 90315 Billingsley division
AL 2282 887 0000387786 0000000947 +32603561 -086763221 001

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

The places.txt file contains all places (incorporated and unincorporated settle-
ments) in the U.S. and outlying areas (excluding MCDs and CCD:s) included in
the 1990 U.S. Census. The format is:

» Columns 1-2 State FIPS Code

» Columns 4-8 Place FIPS Code

» Columns 10-75 Place Name

» Columns 77-78 State Abbreviation

= Columns 80-88 Total 1990 Population

= Columns 90-98 Number of 1990 Housing Units
» Columns 100-109 Land Area

» Columns 111-120 Water Area

» Columns 122-130 Latitude

= Columns 132-141 Longitude

Note that columns 10 through 75 contain the place name, being either a city,
town, borough, village, or CDP. Also, columns 100-109 and 111-120 (Land Area
and Water Area) are measured in thousandths of a square kilometer. Columns
122-130 and 132-141 (Latitude and Longitude) are measured in millionths of a
degree (10° units = 1 deg). Latitude begins with either a plus sign (+) or a minus

sign (-), indicating North or South; longitude begins with either a plus sign (+) or
a minus sign (-), indicating East or West. An excerpt from places.txt follows:

01 09400 Brighton city

AL 4518 1735 0000003627 0000000000 +33438850 -086945474
01 09424 Brilliant town
AL 751 366 0000007825 0000000000 +34016723 -087775810

The zips.txt file contains all 1990 ZIP Codes by state. The format is comma-
separated values:

» Field 1 State FIPS Code
» Field 2 5-digit ZIP Code
» Field 3 State Abbreviation
= Field 4 ZIP Code Name

279

WwWWw.syngress.com

280 Chapter 9 ¢ Locating Mobile Users

Field 5 Longitude (decimal degrees)

Field 6 Latitude (decimal degrees)
Field 7 1990 100 percent Population

Field 8 Allocation Factor (decimal portion of state within ZIP Code)

Note that field 5 (Longitude) is considered a West measurement by default—
no minus sign is required. Field 6 (Latitude) is considered a North measurement
by default—mno plus sign is required. An excerpt from zips.txt follows:
"01","35601", "AL", "DECATUR", 86. 98868, 34. 589599, 36696, 0. 009082
"01","35759", "AL", "MERI DI ANVI LLE", 86. 578879, 34. 861779, 2597, 0. 000643

Note that the latitude and longitude for each place was calculated not with
respect to its visual center but rather with respect to its legal boundaries.

\WARNING

Latitude and longitude measurements are not as accurate as the preci-
sion of their values implies. The extra precision is useful only for pro-
cessing purposes to guarantee numeric separation of features between
which is minimal spacing.

Accessing and processing these coordinate files is most easily done on a server
using your choice of language. The zips.txt file is used to convert a ZIP Code to
its corresponding latitude/longitude; the other files (counties.txt, mecds.txt, and
places.txt) are used to obtain additional qualifying data. Undoubtedly, zips.txt is
the most significant file because it is used to obtain latitude/longitude data
needed for the “Closest Address” algorithm (see the upcoming sections). But
counties.txt, mcds.txt, and places.txt can be used to model the new Palm OS 4.0
%LOCATION variable (see “Using Enhanced %LOCATION Information in
Palm OS 4.0” later in this chapter). For example, the following thread through
the coordinate files can be followed to achieve some of the results provided by
%LOCATION:

» Use zips.txt and ZIP Code to look up a state’s FIPS code, state abbrevia-
tion, and latitude/longitude. This information resembles that obtained
via the L, 1, and G/R codes for %LOCATION (that is, %location:L.,
%location:l., and %location:g#r.).

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

NoTE

%ZIPCODE itself provides the information obtained via the z code for
%LOCATION (for example, %location:z.).

» Use mcds.txt and latitude/longitude (from the previous step) to look up
the county subdivision FIPS code and county FIPS code. This informa-
tion resembles that obtained via the O code for %LOCATION (for

example, %location:O.).

» Use counties.txt, mcds.txt, places.txt, and latitude/longitude to obtain
a place/county name. This information resembles that obtained via the
c and o codes for %WLOCATION (for example, %location:c. and
%location:o.).

NoTE

Using latitude/longitude data to look up additional information in coun-
ties.txt, mcds.txt, and places.txt is more involved than performing simple
latitude/longitude numeric comparisons. For example, the latitude/longi-
tude of a ZIP Code will most likely not exactly match the latitude/longi-
tude of a corresponding county. The “Closest Address” algorithm defined
in the following sections needs to be used.

The only codes associated with %YLOCATION that are not mimicked are y
(Country Name) and Y (Country Code). The coordinate files presented herein
do not explicitly provide Country Name/Code—these fields are expected to be
in the U.S. (The coordinate files are a U.S.-oriented resource.)

NoTE

You can find additional resources containing preprocessed ZIP Code
interpretations at http://oseda.missouri.edu/mscdc. Specifically, the fol-
lowing interpretations are available in SAS code as of this writing:

281

WwWWw.syngress.com

282

Chapter 9 ¢ Locating Mobile Users

» ZIP Code to State http://oseda.missouri.edu/mscdc/sasfmats/
Szipstab.sas

= ZIP Code to County http://oseda.missouri.edu/mscdc/sasfmats/
Szipcnty.sas

= ZIP Code to Metro Area http://oseda.missouri.edu/mscdc/
sasfmats/Szipmetr.sas

» ZIP Code Names http:/oseda.missouri.edu/mscdc/sasfmats/
Szipnmus.sas

= ZIP Code to “Many Places” http://oseda.missouri.edu/mscdc/
sasfmats/Szipcods.sas

“Many Places” are represented in the list of geographic codes avail-
able for each ZIP Code. See http://oseda.missouri.edu/mscdc/sasfmats/
zipcods.usgnotes for more details.

Developing & Deploying...

Obtaining Latitude/Longitude
Coordinates from External Devices

You can use the Palm VII device’s serial port to interface to alternative
positioning devices—most notably Global Positioning System (GPS) and
Ultra Wide Band (UWB) receivers. These devices supply latitude/longi-
tude data in a format consistent with the National Marine Electronic
Association (NMEA) standards.

The NMEA standard (NMEA 0183) defines an electrical interface
and data protocol for communication between marine instrumentation.
Under the NMEA 0183 standard, all characters used are printable ASCII
text (plus carriage return and line feed). The data is transmitted in the
form of “sentences.” Each sentence starts with a dollar sign ($), a two
letter talker ID, a three-letter sentence ID, followed by a number of data
fields separated by commas, and terminated by an optional checksum
and a carriage return/line feed (CR/LF). A sentence may contain up to 82
characters including the $ and CR/LF.

Complete NMEA 0183 documentation can be obtained (for a fee)
from: NMEA 0183 Documentation, PO Box 3435, New Bern, NC
28564-3435 USA (Telephone: [919] 638-2626; Fax: [919] 638-4885)
E-mail NMEA at: nmea@coastalnet.com, or go to the Web site at
www4.coastalnet.com/nmea/default.html.

WwWw.syngress.com

Locating Mobile Users ¢ Chapter 9

Determining the Closest Address

In order to employ latitude/longitude data in a closest-address search, an algo-

rithm is needed to define how the search will be conducted. A Closest Address
algorithm 1s needed to specify how latitude/longitude data will be processed in
order to provide the best possible results (that is, the closest address to the cur-

rent, or specified, position).

Five steps are involved in locating the address closest to a reference ZIP Code:

1.

If the reference ZIP Code (the ZIP Code indicated by %ZIPCODE) is
00000, stop processing. A “Position Information Unavailable” clipping is
a reasonable way to stop gracefully.

Search an application-specific address database/file for a direct ZIP Code
match. This is illustrated previously in this chapter’s “Address Locator
Example” section.

If a ZIP Code match is found, stop. The application-specific address

database/file record containing the address closest to the reference ZIP
Code has been found.

\WARNING

More than one ZIP Code match exists if the application-specific address
database/file contains more than one entry for a given ZIP Code. Proper
handling of this situation depends on the needs of the application.
Traditional choices include presenting all candidate choices to the user or
selecting the first encountered match.

4. Because no direct ZIP Code match was found, look up the latitude/

longitude corresponding to the reference ZIP Code (see “Extracting
Coordinates” section earlier in this chapter). This latitude/longitude is
referred to as the reference latitude/longitude.

Search the application-specific address database/file for the latitude/
longitude closest to the reference latitude/longitude. Process one lati-
tude/longitude at a time:

» Read a latitude/longitude, observing sign conventions (N is positive,
S 1s negative; E is positive, 1/ 1s negative).

283

WwWWw.syngress.com

284

Chapter 9 ¢ Locating Mobile Users

Find the straight-line distance between this latitude/longitude and
the reference latitude/longitude, using the Pythagorean Theorem.
Keep in mind that latitude/longitude are angle measurements per-
taining to a curved Earth surface. The distance’s units are the same as
those used for the Earth’s radius. (Note that the following equations
do not take into account any scaling needed for latitude/longitude.
For example, if latitude/longitude are measured in millionths of
degree, they need to be divided by one million before applying the
following equations.)

dist y = 2 * earth_radius * sin((latitude — latitude_ref)/ 2)
dist x = 2 * earth_radius * sin((longitude — longitude_ref) / 2)
dist_straight = sqgrt(dist x* + dist_y?)

Find the curved-line distance between this latitude/longitude and
the reference latitude/longitude.

dist_curved = 2 * 2 * pi * earth_radius * arcsin(dist_straight /
(2 * earth_radius)) / 360

\WARNING

If this curved distance is less than the previously calculated curved
distance, this latitude/longitude (and corresponding ZIP Code) is
closer to the reference latitude/longitude than the previous
latitude/longitude.

Latitude/longitude provide only a two-dimensional model for distance
calculations. The curvature of the Earth is taken into account, but the
curved-surface model still represents only two dimensions. Elevation is
not taken into account.

Note that the application-specific address database/file 1s more efticient if it

contains both the ZIP Code and corresponding latitude/longitude for each address.
This will prevent an on-the-fly mapping of each ZIP Code to its corresponding

latitude/longitude. Latitude/longitude data can be incorporated into the applica-
tion-specific address database/file via the address database/file’s preprocessing with

Z1ps.tXt.

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

WARNING

ZIP Codes are designed to represent linear postal delivery routes, not
fully enclosed polygons. This can adversely affect the accuracy of %ZIP-
CODE values and the accuracy of Closest Address algorithms.

Locating the Closest
Widget Outlet Example

An implementation of the Closest Address algorithm is covered in this section.
The zips.txt file from http://ftp.census.gov/geo/www/gazetteer/places.html is
used, along with store_addresses_ll.db, an expanded version of store_addresses.db
from the “Address Locator (Example)” section earlier in this chapter. The zips.txt
file supports the mapping of ZIP Codes to latitude/longitude coordinates, and
store_addresses_ll.db provides an annotated list of store outlets for the Unwired
Widgets company. The annotations specify the latitude/longitude coordinates
corresponding to each outlet’s ZIP Code.

A complete WCA source code listing and server-side script are shown in
Figures 9.11 and 9.12. Figures 9.13 and 9.14 show the first ten lines of zips.txt
and all of store_addresses_ll.db, respectively. Finally, Figures 9.15 and 9.16 show
before and after screen shots of the WCA. The after screen shot was generated by
entering a ZIP Code of 35806, for which no Unwired Widgets outlet/store exists
(the Closest Address algorithm was invoked).

NoTEe

The performance of the Closest Address algorithm can be optimized by
using a threshold for acceptable distance-to-an-outlet. The threshold can
allow a search to be terminated as soon as an outlet is found that is
within the threshold distance of the current/specified position.

285

WwWWw.syngress.com

286 Chapter 9 ¢ Locating Mobile Users

Figure 9.11 Closest Widget Outlet Example

<htm >

<head>

<title>CQutlet Locator</title>

<met a name="Pal nConputi ngPl atfornf content="true">
</ head>

<body>

<cent er >

CQutlet Locator Exanpl e
<f orm net hod="CGET"

action="http://cgi.unw redw dgets. conicgi-bin/closest_outlet_|ocator.pl">

ZI P Code: <input type="text" nanme="zip_input" value="">

(Default Is Current Location)

<i nput type="hidden" nanme="zip" val ue="9%i pcode" >

<input type="submt" val ue="Locate Qutlet">

</fornp
</center>
</ body>
</htm >

. Figure 9.12 Closest Widget Outlet Example (closest_outlet_locator.pl)

#! [/ usr/ bi n/ perl

use C4d;

$zip_ref .
$l at _ref 0. 0;

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9 287

Figure 9.12 Continued

$long_ref = 0.0;

$st ore_nane .

$st or e_addr e

$store_city

$store_st n.

$store_zip e

&find_cl osest _store;

sub find_cl osest_store {

parse incomng paraneters as either "CGET" or
$q = new Cd;

isol ate paraneter nanes

@ane_| i st = $g->param
extract val ues
$zi p_i nput _value = ""

foreach $name (@ane_list) {

decode encoding

$val ue = $g->paran($nane);

save pertinent data

" POST"

if ($name eq "zip_input") {$zip_input_value = $val ue;}

if ($name eq "zip") {$zi p_val ue

use the user-supplied ZI P Code, if any;

= $val ue;}

ot herwi se, use the non-00000 default/current ZlI P Code

Continued

WwWWw.syngress.com

288 Chapter 9 ¢ Locating Mobile Users

Figure 9.12 Continued

if ($zi p_i nput _value ne "") { $zip_ref = $zip_i nput_val ue
}

el sif ($zip_val ue ne "00000") { $zip_ref = $zip_value
}

else { die "ZIP Code value is unavailable (e.g. 00000)."; }

open store address database
open (store_addresses_ ||, "store_addresses_|I|.db") or

die "Couldn't open store_addresses_|I|.db!";

process store address database one record at a tinme

while (<store_addresses_|1>) {

read dat abase record

readl i ne;

process database record
($fiel d_0, $fiel d_1, $field_2, $fiel d_3, $fiel d_4,
$fiel d_5, $field_6) = split /,/;
$zi p_read = substr($field_4, 0, 5); # renove trailing space

if ($zip_read eq $zip_ref) {

keep the matching store address
$store_nanme = $fiel d_O;
$store_addr = $fiel d_1;
$store_city = $fiel d_2;
$store_st = $fiel d_3;
$store_zip = S$fiel d_4;

close store address database

close (store_addresses_|Il) or

Www.syngress.com

Continued

Figure 9.12 Continued

Locating Mobile Users ¢ Chapter 9

die "Couldn't close store_addresses_I|.db!";

return results header

print "Content-type: text/htm\n\n";
print "<htm >\ n";

print "<head>\n";

print "<title>CQutlet Locator</title>\n";
print "</ head>\n";

print "<body>\n";

print "<center>\n";

print "Cutlet Locator

return matching store address

if ($store_nane ne "") {

direct ZIP Code match found
print "

\n";

print "Store Address Match\n";
print "

\n";

print $store_nane;

print "\n";

print "
\n";

print $store_addr;

print "\n";

print "
\n";

print $store_city;

print ", ";

print $store_st;

print " ";
print $store_zip;
print "\n";

}

el se {

Resul t s</ b>\n";

Continued

289

WwWWw.syngress.com

290

Chapter 9 ¢ Locating Mobile Users

Figure 9.12 Continued

no direct ZIP Code match found,
get reference lat/long for "closest" search

find_l at _| ong();

search for the store closest to the reference lat/long

find_cl osest _| at _| ong();

report the closest store to the reference lat/long

if ($store_name ne "") {

store within 500 statute mles found
print "

\n";
print "C osest Qutlet Found\n";
print "

\n";
print $store_nane;
print "\n";
print "
\n";
print $store_addr;
print "\n";
print "
\n";
print $store_city;
print ", ";
print $store_st;
print " &bsp;";
print $store_zip;
print "\n";
}

el se {

no store within 500 statute mles found
print "

\n";
print "No Store Address Match\n";

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9 291

Figure 9.12 Continued

print "

\n";

print "Wthin 500 Statute MIles\n";

return results footer
print "</center>\n"
print "</body>\n";
print "</htm >\n";

sub find_l at_long() {

open ZI P Code dat abase

open (zipcodes, "zips.txt") or die "Couldn't open zips.txt!";

process ZI P Code database one record at a tine
whil e (<zipcodes>) {

read dat abase record

readl i ne;

process database record (use substr() to renove

surrounding delinmters such as quotes)

($fiel d_0, $fiel d_1, $field_2, $fiel d_3, $fiel d_4, $fiel d_5,
$fiel d_6, $field_7) = split /,/;

if (substr($field_1, 1, 5) eq $zip_ref) {

keep the latitude/longitude corresponding to the
matching ZI P Code
$long_ref = $field_4; # dec. degrees, default W no —

$lat_ref = $field 5; # dec. degrees, default is N, no +

Continued

WwWWw.syngress.com

292 Chapter 9 ¢ Locating Mobile Users

Figure 9.12 Continued
}

close ZI P Code database

cl ose (zipcodes) or die "Couldn't close zips.txt!";

sub find_cl osest _Iat_long() {

open store address database
open (store_addresses_|l, "store_addresses_|I|.db") or

die "Couldn't open store_addresses_|I.db!";

process store address database one record at a tinme

(look for the lat/long closest to the reference lat/long

$eart h_radi us = 3900. 0; # est. of earth's radius in statute mles
$pi
$di stance_mn = "";

3.1415927; # approxi mate val ue of PI
while (<store_addresses_|1>) {

read dat abase record

readl i ne;

process database record
($fiel d_0, $fiel d_1, $field_2, $fiel d_3, $fiel d_4,
$fiel d_5, $field_6) = split /,/;
$lat = substr($field_6, O
I engt h($field_6) - 2); # renove trailing spaces
$l ong = $fiel d_5;

cal cul ate the distance between the current lat/long and
the reference lat/long
(pass arguments to trigononetric functions in radians)

$di stance_y = 2.0 * $earth_radius *

Www.syngress.com

Continued

Locating Mobile Users ¢ Chapter 9

Figure 9.12 Continued

sin((($lat - S$lat_ref) * $pi/180.0) / 2.0);

$di st ance_x = 2.0 * $earth_radius *

sin((($long - $long_ ref) * $pi/180.0) / 2.0);

$di stance_strai ght = sqrt($di stance_x * $di stance_x

H O O OE O OE K K K O K K K K K OE K E KKK OE K KK

+ $distance_y * $distance_y);

only direct distances of less than 500 niles are processed
(the distance along the earth's surface is actually a bit

longer); this threshold is arbitrary, but seens reasonable
froma user's perspective (e.g. only show stores within a

day's drive)

this threshold also serves to sinplify the curved-distance
calculation, as the "asin" trigononmetric function is no |onger
needed; this is due to the fact that for small angles

(e.g. snall lat/long measurenents between the two points), the

sin of the angle equals the angle when neasured in radians

the original equation:
$di stance_curved = 2.0 * 2.0 * pi * earth_radius
* asin($distance_straight / (2.0 * earth_radius))
/[(2.0 * $pi)

t he new equati on:
$di stance_curved = 2.0 * 2.0 * pi * earth_radius
* $di stance_straight / (2.0 * earth_radius)
/[(2.0 * $pi);

the new equation (sinplified):

$di stance_curved = $di stance_straight;

if ($distance_straight It 500.0) {

Continued

293

WwWWw.syngress.com

294 Chapter 9 ¢ Locating Mobile Users

Figure 9.12 Continued

$di stance_curved = $di stance_strai ght;

keep information if a smaller distance (e.g. closer
store) is found

if ($distance_nmn eq "") {

keep m ni mum di st ance

$di stance_nin = $di stance_curved,;

keep the matching store address
$store_nanme = $fiel d_O;
$store_addr = $fiel d_1;
$store_city = $fiel d_2;
$store_st = $fiel d_3;
$store_zip = $fiel d_4;

}

elsif ($distance_curved It $distance_mn) {

keep m ni mum di st ance

$di stance_nin = $di stance_curved,;

keep the matching store address
$store_name = $fiel d_O;
$store_addr = $fiel d_1;
$store_city = $fiel d_2;
$store_st = $fiel d_3;
$store_zip = $fiel d_4;

close store address database

Continued

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

Figure 9.12 Continued

cl ose (store_addresses_|1) or

die "Couldn't close store_addresses_II|.db!";

Figure 9.13 ZIP Code Database: The First 10 Lines

zi ps. txt

"01","35004","AL", " ACMAR', 86. 51557, 33. 584132, 6055, 0. 001499

"01", "35005", "AL", " ADAMSVI LLE", 86. 959727, 33. 588437, 10616, 0. 002627
"01", "35006", "AL", " ADGER", 87. 167455, 33. 434277, 3205, 0. 000793
"01","35007","AL", "KEYSTONE", 86. 812861, 33. 236868, 14218, 0. 003519
"01", "35010", "AL","NEW SI TE", 85. 951086, 32. 941445, 19942, 0. 004935
"01", "35014", "AL", " ALPI NE", 86. 208934, 33. 331165, 3062, 0. 000758
"01","35016", "AL", " ARAB", 86. 489638, 34. 328339, 13650, 0. 003378
"01", "35019", "AL", "BAI LEYTON', 86. 621299, 34. 268298, 1781, 0. 000441
"01", "35020", "AL", "BESSEMER', 86. 947547, 33. 409002, 40549, 0. 010035
"01","35023","AL", "HUEYTOM", 86. 999607, 33. 414625, 39677, 0. 00982

Figure 9.14 Store Address Latitude/Longitude Database (store_addresses_Il.db)

store_addresses_I1.db
The Wdget Qutlet, 123 Your Street, Toney, AL, 35773, 86. 699951, 34. 911644
W dget Enporium 456 Your Street, Springville, AL, 35146, 86. 439407, 33. 738647
W dgets-R-Us, 789 Your Street, Center Point, AL, 35235, 86. 661051, 33. 618045
Unwi red Wdget Qutlet #1,ABC-1 Your Street, Decatur, AL, 35601, 86. 98868,
34. 589599
CGet Unwired, DEF-2 Your Street, Hazel G een, AL, 35750, 86. 593484, 34. 949627
Unwi red Wdget Qutlet #2,GH -3 Your Street, Laceys Spring, AL, 35754,
86. 612869, 34. 499647
ABC W dgets, JKL-4 Your Street,Meridianville, AL, 35759, 86. 578879, 34. 861779
John's Wdgets, MNO-5 Your Street, Val hermoso Springs, AL, 35775, 86. 678,
34. 538145
W dgets 123, PQR-6 Your Street,Huntsville, AL, 35801, 86. 567318,
34.726866

295

WwWWw.syngress.com

296 Chapter 9 ¢ Locating Mobile Users

Figure 9.15 The Before Screen Shot

Qutlet Locat... w History

Qutlet Locator Example
ZIF Code:

{Default Is Current Location)

Locate Qutlats:

Figure 9.16 The After Screen Shot

Qutlet Locat... w History

Outlet Locator Results
Clozest Outlet Found

ABLC Widgets
JEL-4 “our Street
Meridianville, AL 35759

Using Enhanced %LOCATION
Information in Palm OS 4.0

Because position-aware WCAs often need to convert %ZIPCODE to other posi-
tion qualifiers (State and County, for example), a new Palm-specific variable has
been created within Palm OS 4.0. Named %LOCATION, it provides a robust
mechanism for obtaining additional qualifiers for the current base station.
%LOCATION data is not more accurate than its %ZIPCODE counterpart, but
it 1s certainly more descriptive. The regular-expression syntax of %LOCATION
is shown in Figure 9.17.

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

NoTE

The Palm OS 4.0 version of Clipper is required to use the %LOCATION
variable. %LOCATION is interpreted upon form submission or upon a link
being followed that specifies the variable.

Figure 9.17 %LOCATION Regular-Expression Syntax

% ocat i on: <code>(<separ at or >?<code>) *.

The syntax for %LOCATION is the keyword %location: followed by a list of
one or more <code>s.The <code>s are delineated by an optional <separator> char-
acter, and the entire % LOCATION string is terminated by a period (.). The
<separator> 1is a single character such as the semicolon (), colon (:), or pound sign
(#). It 1s used to make the %WLOCATION specification easier to read. The <code>s
are single character values chosen from Table 9.1. Note that %LOCATION can be
used in lieu of %ZIPCODE via %location:z..

Table 9.1 Code Values

<code> Name

City Name

GPS Longitude/Latitude

State Name

State Code

County Name

County Code

Raw Location Hexadecimal Data
Country Name

Country Code

ZIP Code

N << moor—n o

Note that lower case letters denote names (except in the case of z), whereas
their uppercase counterparts describe the corresponding unique identifier.
Further, the U.S.-specific entities of County and State are used as placeholders
for, respectively, the small and large political divisions of countries other than the

297

WwWWw.syngress.com

298

Chapter 9 * Locating Mobile Users

U.S. The Country entities are based on Codes for the Representation of Names of
Countries, ISO 3166-1993 (E). This document is available from the appropriate
national standards body (in the U.S., it’s the American National Standards
Institute; in the United Kingdom, it’s the British Standards Institute). Samples of
syntactically correct uses of %LOCATION are as follows. (Be sure not to forget
the trailing period (.) in the %LOCATION string.)

% ocation: z; c.

% ocat i on: z#c.

% ocat i on: c#Y.

%LOCATION can be used in a form field or appended to the end of a URL:
<i nput type="hidden" nane="|oc" val ue="% ocation:z;c.">
- OR-
<f orm met hod="get "

action="http://cgi.conpany. com cgi-bin/script?var=% ocation:z;c.">

NoTE

Unlike %ZIPCODE, %LOCATION can be used in <INPUT> fields regardless
of whether they are hidden. For example, a City field within a form could
have value='%location:c.’ to initialize it to the current city. The user
could then overwrite this field if they were interested in another city.

Developing & Deploying...

Using Simulated Position Information
to Test a %ZIPCODE WCA

Certain models of GPS (for example, Garmin’s GPS Ill) provide a “simu-
lation” mode in which the GPS receiver produces NMEA-compatible lat-
itude/longitude sentences. You can use this simulated data to test and
demonstrate your position-specific application’s capabilities, even when
indoors!

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

Summary

As shown throughout this chapter, the Palm OS-specific variables %ZIPCODE
and %LOCATION provide a mechanism for making your applications position-
aware. Because a Palm VII device typically communicates with the nearest
BellSouth Mobitex base station, the base station ZIP Code is a reasonable esti-
mate of the Palm VII device’s encompassing ZIP Code. By using %ZIPCODE,
the general area in which a Palm VII device is located can be determined,
keeping in mind that gaps or overlaps between base stations, physical obstacles,
ZIP Codes that cross state boundaries, and other considerations limit the location
as a coarse estimate. The ZIP Code can be used directly or as an index to addi-
tional data such as city or state. This additional data can also be obtained directly
via %LOCATION, although Palm OS 4.0 is required. If you choose against
levying a Palm OS 4.0 requirement on your users, %ZIPCODE can be used to
emulate most %LOCATION capabilities.

In either case, position data is available to perform tasks such as locating a
store with a specified ZIP Code or determining which store is closest to a given
position. The latter task involves mapping %ZIPCODE information to
latitude/longitude measurements. Latitude/longitude measurements provide a
robust, global description of position information. Data on city and county loca-
tions can be obtained through government Census sources or more up-to-date
commercial sources. Because the latitude/longitude of a ZIP Code may not
exactly match the latitude/longitude of a corresponding county, the Closest
Address algorithm needs to be used to employ the data in a closest-address
search. The algorithm defines how latitude/longitude data will be processed in
order to provide the closest address to the current, or specified, position. Uses for
position-based applications include those reliant upon a user’s general location,
such as weather and news, and their specific location, such as address lookups for
a store.

Solutions Fast Track

Finding a User’s Position with the Palm VII

M %ZIPCODE provides an approximate measure of a Palm VII’s location.

299

4

L

300 Chapter 9 * Locating Mobile Users

M Several databases exist for mapping ZIP Codes to latitude/longitude

E coordinates. A free data source is the U.S. Census Bureau:
http://ftp.census.gov/geo/www/gazetteer/places.html. Note the file

M %ZIPCODE is the ZIP Code of the current base station with which a
Palm VII is communicating. Its value will be 00000 if the base station’s
ZIP Code has not been recorded.

M ZIP Codes are not always defined by fully enclosed geometric shapes,
and they can cross state, county, and city boundaries.

Address Locator Example
M A direct comparison of a %ZIPCODE value to a database can be made
(with limited success) to locate a close entity.

M No match is guaranteed when performing a direct comparison of a
%ZIPCODE value to a database.

M Base stations are typically 5 to 10 miles away from the user.

Mapping ZIP Codes to Coordinates

zips.txt.

M Also from the U.S. Census Bureau—counties.txt, places.txt, and
mcds.txt can be used to model operation of the Palm OS 4.0 variable

%LOCATION.
-

Determining the Closest Address

i M Pythagorean-based minimum distance searching is more robust than
direct ZIP Code matching for “closest address” determination.

M More than one ZIP Code match exists if the application-specific address

database/file contains more than one entry for a given ZIP Code.

M A possible %ZIPCODE value of 00000 must be handled by a Closest
Address algorithm.

Www.syngress.com

Locating Mobile Users ¢ Chapter 9

Locating the Closest Widget Outlet Example

M Latitude/longitude processing can take the earth’s curvature, but not
surface elevation, into account.

M Latitude/longitude processing is not necessary if a direct ZIP Code
match is found.

M ZIP Codes of 00000 should be anticipated.

Using Enhanced %LOCATION
Information in Palm OS 4.0

M Palm OS 4.0 is required for the %LOCATION variable to be interpreted.

M %LOCATION can be used to obtain a variety of position qualifiers,
including: City Name, GPS Longitude/Latitude, State Name, State
Code, County Name, County Code, Raw Location, Hexadecimal Data,
Country Name, Country Code, and ZIP Code.

M The U.S.-specific entities of county and state are used as placeholders
for, respectively, the small and large political division of countries other
than the U.S.

M Country entities are based on Codes for the Representation of Names of
Countries, ISO 3166-1993 (E). This document is available from the
appropriate national standards body. In the U.S,, it’s the American
National Standards Institute; in the United Kingdom, it’s the British
Standards Institute.

WwWWw.syngress.com

301

302

Chapter 9 ¢ Locating Mobile Users

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:

A:

Why would %YLOCATION ever be used if %ZIPCODE can emulate it,
especially given that %LOCATION requires the use of Palm OS 4.0?
The %LOCATIONyvariable is easier to use than %ZIPCODE, and

%LOCATION can be used to initialize text fields. Also, over time, Palm OS
4.0 will become more commonplace.

: Will %ZIPCODE be deprecated, now that %LOCATION is available?
. Given that Palm OS 4.0 1s required for %LOCATION, and given the volume

of Palm OS 3.x devices in_the field, %ZIPCODE will most likely enjoy a
long life.

: Where is a good starting point for additional information?

: Palm, Inc’s Web Clipping Development pages, at www.palmos.com/dev/tech/

webclipping.

Www.syngress.com

Chapter 10

Integrating Web

Clipping with Palm
OS Applications

Solutions in this chapter:

Launching and Sublaunching Applications
Calling Clipper from Palm OS Applications

Calling iMessenger from
Palm OS Applications

Unwired Widgets Application About
Box Example

- Calling Palm OS Applications from Web

Clipping Applicati