Expressions and Statements

Premature optimization
is the root of all evil.
— D. Knuth

On the other hand,

we cannot ignore efficiency.
— Jon Bentley

Desk calculator example- input — command line arguments- expression summary
— logical and relational operators increment and decremest free store— explicit
type conversior— statement summary- declarations— selection statements- decla-
rations in conditions— iteration statements— the infamousgoto — comments and
indentation— advice— exercises.

6.1 A Desk Calculatorexpr.calculator]

Statements and expressions are introduced by presenting a desk calculator program that provides
the four standard arithmetic operations as infix operators on floating-point numbers. The user can
also define variables. For example, given the input

r=2.5
area=pi*r*r

(pi is predefined) the calculator program will write

2.5
19. 635

where2. 5is the result of the first line of input add. 635 is the result of the second.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

108 Expressions and Statements Chapter 6

The calculator consists of four main parts: a parser, an input function, a symbol table, and a
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the input
function handles input and lexical analysis, the symbol table holds permanent information, and the
driver handles initialization, output, and errors. We could add many features to this calculator to
make it more useful (86.6[20]), but the code is long enough as it is, and most features would just
add code without providing additional insight into the usetof.C

6.1.1 The Parser [expr.parser]

Here is a grammar for the language accepted by the calculator:

program
END /1 END is end-of-input
expr_list END

expr_list
expression PRINT /1 PRINT is semicolon

expression PRINT expr_list
expression:
expression + term
expression - term
term
term:
term/ primary
term * primary
primary
primary:
NUMBER
NAME
NAME = expression
- primary
(expression)

In other words, a program is a sequence of expressions separated by semicolons. The basic units of
an expression are numbers, names, and the opetatbrst, - (both unary and binary), anel
Names need not be declared before use.

The style of syntax analysis used is usually cakedirsive descenit is a popular and straight-
forward top-down technique. In a language such &8 @ which function calls are relatively
cheap, it is also efficient. For each production in the grammar, there is a function that calls other
functions. Terminal symbols (for exampEND, NUMBER, +, and-) are recognized by the lexi-
cal analyzerget token() ; and nonterminal symbols are recognized by the syntax analyzer func-
tions,expr() ,term() , andprim() . As soon as both operands of a (sub)expression are known, the
expression is evaluated; in a real compiler, code could be generated at this point.

The parser uses a functiget token() to get input. The value of the most recent call of
get token() can be found in the global varialdarr_tok. The type ofcurr_tok is the enumera-
tion Token value

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 109

enum Token value{

NAME, NUMBER, END,
PLUS="+, MINUS="-", MUL="*", DIV="/",
PRINT=";, ASSIGN="=", LP="(/, RP=")

k
Token value curr_tok = PRINT;

Representing each token by the integer value of its character is convenient and efficient and can be
a help to people using debuggers. This works as long as no character used as input has a value used
as an enumerater and no character set | know of has a printing character with a single-digit inte-
ger value. | chos®RINT as the initial value focurr_tok because that is the value it will have
after the calculator has evaluated an expression and displayed its value. Thus, | “start the system”
in a normal state to minimize the chance of errors and the need for special startup code.

Each parser function takedaol (84.2) argument indicating whether the function needs to call
get token() to get the next token. Each parser function evaluates “its” expression and returns the
value. The functiomxpr() handles addition and subtraction. It consists of a single loop that looks
for terms to add or subtract:

double expr(bool get) / | add and subtract

double left = term(get) ;

for (;;) /| “forever”
switch (curr_tok) {
case PLUS
left += term(true) ;
break;
case MINUS
left -= term(true);
break;
default:
return left;
}

}

This function really does not do much itself. In a manner typical of higher-level functions in a
large program, it calls other functions to do the work.

The switch-statemertests the value of its condition, which is supplied in parentheses after the
switch keyword, against a set of constants. Treak-statemestare used to exit thewitch-
statement The constants following thease labels must be distinct. If the value tested does not
match anycaselabel, thedefault is chosen. The programmer need not providefault.

Note that an expression such2za8+4 is evaluated ag2- 3)+ 4, as specified in the grammar.

The curious notatioffor(;;) is the standard way to specify an infinite loop; you could pro-
nounce it “forever.” It is a degenerate form ofa@-statemen{86.3.3);while(true) is an alterna-
tive. Theswitch-statemeris executed repeatedly until something different fromnd- is found,
and then theeturn-statemenin the default case is executed.

The operators= and-= are used to handle the addition and subtractefts;left+term() and

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

110 Expressions and Statements Chapter 6

left=left- term() could have been used without changing the meaning of the program. However,
left+=term() and left-=term() not only are shorter but also express the intended operation
directly. Each assignment operator is a separate lexical tokar; sdl; is a syntax error because
of the space between theand the=.

Assignment operators are provided for the binary operators

+ - % & | N << >>

so that the following assignment operators are possible
= += = *= [= Op= &= |: Nz <<= >>=

The %is the modulo, or remainder, operat&y;| , and” are the bitwise logical operators AND,
OR, and exclusive ORs< and>> are the left shift and right shift operators; §6.2 summarizes the
operators and their meanings. For a binary opei@applied to operands of built-in types, an
expressionk@=y meanx=x@y, except thax is evaluated once only.

Chapter 8 and Chapter 9 discuss how to organize a program as a set of modules. With one
exception, the declarations for this calculator example can be ordered so that everything is declared
exactly once and before it is used. The exceptioexqs() , which callsterm() , which calls
prim() , which in turn callexpr() . This loop must be broken somehow. A declaration

double expr(bool);

before the definition oprim() will do nicely.
Functionterm() handles multiplication and division in the same vexpr() handles addition
and subtraction:

double term(bool get) /| multiply and divide

double left = prim(get);

for (;;)
switch (curr_tok) {
case MUL:
left *= prim(true);
break;
case DIV:
if (double di= prim(true)) {
left /= d;
break;
}
return emor(" divide by 0") ;
default:
return left;
}

}

The result of dividing by zero is undefined and usually disastrous. We therefore t@stefmre
dividing and callerror() if we detect a zero divisor. The functierror() is described in §6.1.4.

The variabled is introduced into the program exactly where it is needed and initialized immedi-
ately. The scope of a name introduced in a condition is the statement controlled by that condition,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 111

and the resulting value is the value of the condition (86.3.2.1). Consequently, the division and
assignmenteft/= d is done if and only ifl is nonzero.

The functionprim() handling gprimaryis much likeexpr() andterm() , except that because
we are getting lower in the call hierarchy a bit of real work is being done and no loop is necessary:

double mumber_value;
string string_value;

double prim(bool get) / | handle primaries

{
if (get) get token() ;

switch (curr_tok) {

case NUMBER /I floating-point constant
{ double v= number_value;
get_token() ;
return v,
}
case NAME:

{ double& v = table| string_value] ;
if (get_token() == ASSIGN) v = expr(true);

return v,

case MINUS /[unary minus
return - prim(true) ;

case LP:

{ double e= expr(true);
if (curr_tok!'= RP) return emror(") expected’) ;

get_token() ; | | eat’y
return e
}
default:
return eror(" primary expected’) ;
}

}

When aNUMBER (that is, an integer or floating-point literal) is seen, its value is returned. The
input routineget_token() places the value in the global variablamber_value. Use of a global
variable in a program often indicates that the structure is not quite-eléaat some sort of opti-
mization has been applied. So itis here. Ideally, a lexical token consists of two parts: a value spec-
ifying the kind of token (&oken_valuein this program) and (when needed) the value of the token.
Here, there is only a single, simple varialdarr_tok, so the global variablaumber_value is
needed to hold the value of the IBBIMBER read. Eliminating this spurious global variable is left
as an exercise (86.6[21]). Saving the valuawhber_value in the local variables before calling
get_token() is not really necessary. For every legal input, the calculator always uses one number
in the computation before reading another from input. However, saving the value and displaying it
correctly after an error helps the user.

In the same way that the value of the H&IMBER is kept innumber_value, the character
string representation of the |a¥AME seen is kept irstring_value. Before doing anything to a

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

112 Expressions and Statements Chapter 6

name, the calculator must first look ahead to see if it is being assigned to or simply read. In both
cases, the symbol table is consulted. The symbol tablmap $83.7.4, 817.4.1):

map<string, double> table;

That is, whertable is indexed by a&tring, the resulting value is thdouble corresponding to the
string. For example, if the user enters

radius = 6378. 388;

the calculator will execute

double& v = table[" radius'] ;
/1 ... expr() calculates the value to be assigned ...
v = 6378. 388;

The reference is used to hold on to thdouble associated withadius while expr() calculates the
value6378. 388 from the input characters.

6.1.2 The Input Function [expr.input]

Reading input is often the messiest part of a program. This is because a program must communi-
cate with a person, it must cope with that person’s whims, conventions, and seemingly random
errors. Trying to force the person to behave in a manner more suitable for the machine is often
(rightly) considered offensive. The task of a low-level input routine is to read characters and com-
pose higher-level tokens from them. These tokens are then the units of input for higher-level rou-
tines. Here, low-level input is done get token() . Writing a low-level input routine need not be
an everyday task. Many systems provide standard functions for this.

| build get token() in two stages. First, | provide a deceptively simple version that imposes a
burden on the user. Next, | modify it into a slightly less elegant, but much easier to use, version.

The idea is to read a character, use that character to decide what kind of token needs to be com-
posed, and then return tfieken valuerepresenting the token read.

The initial statements read the first non-whitespace charactechrdod check that the read
operation succeeded:

Token value get token()
{
char ch=0;
cin>>ch;
switch (ch) {
case @
return curr_tok=END; / / assign and return

By default, operator> skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the value
of chunchanged if the input operation failed. Consequeakiy=0 indicates end of input.

Assignment is an operator, and the result of the assignment is the value of the variable assigned
to. This allows me to assign the valBEND to curr_tok and return it in the same statement. Hav-
ing a single statement rather than two is useful in maintenance. If the assignment and the return
became separated in the code, a programmer might update the one and forget to update to the other.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.2 The Input Function 113

Let us look at some of the cases separately before considering the complete function. The
expression terminatdr” , the parentheses, and the operators are handled simply by returning their
values:

case’;":
case’*":
case’/":
case’+':
case’-":
case ("
case’)":
case’'=":
return curr_tok=Token value(ch);

Numbers are handled like this:
case’ 0 case’1: case” 2: case 3. case 4
case’ 5: case’ 6: case’ 7. case 8. case 9
case’.”:
cin. putback(ch);
cin >> number_value,
return curr_tok=NUMBER,

Stackingcase labels horizontally rather than vertically is generally not a good idea because this
arrangement is harder to read. However, having one line for each digit is tedious. Because opera-
tor >> is already defined for reading floating-point constants irdouble, the code is trivial. First
the initial character (a digit or a dot) is put back ioin. Then the constant can be read into
number_value.

A name is handled similarly:

default: / | NAME, NAME =, or error
if (isalpha(ch)) {
cin. putback(ch);
cin>>string_value;
return curr_tok=NAME;

}
emror(" bad token") ;
return curr_tok=PRINT;

The standard library functiasalpha() (820.4.2) is used to avoid listing every character as a sepa-
ratecaselabel. Operator> applied to a string (in this cassfring_value) reads until it hits white-
space. Consequently, a user must terminate a name by a space before an operator using the name as
an operand. This is less than ideal, so we will return to this problem in §6.1.3.

Here, finally, is the complete input function:

Token value get token()

char ch=0;
cin>>ch;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

114 Expressions and Statements Chapter 6

switch (ch) {
case O
return curr_tok=END;
case’;”:
case *’:
case’/:
case’ +':
case’-":
case’(":
case’)":
case’=":
return curr_tok=Token value(ch);
case’ 0 case’1: case” 2: case 3: case 4
case’ 5: case’ 6. case’ 7. case 8: case 9
case’.”:
cin. putback(ch);
cin >> number_value,
return curr_tok=NUMBER,

default: /| NAME, NAME =, or error
if (isalpha(ch)) {
cin. putback(ch);
cin>>string_value;
return curr_tok=NAME;

}
emror(" bad token') ;
return curr_tok=PRINT;

}

The conversion of an operator to its token value is trivial becauskokea value of an operator
was defined as the integer value of the operator (84.8).

6.1.3 Low-level Input [expr.low]

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remember to
add a semicolon after an expression in order to get its value printed, and having a name terminated
by whitespace only is a real nuisance. For exanxgléjs an identifie— rather than the identifier
x followed by the operator and the numbeY. Both problems are solved by replacing the type-
oriented default input operationsget_token() with code that reads individual characters.

First, we’'ll make a newline equivalent to the semicolon used to mark the end of expression:

Token value get token()
{

char ch;

do{/ / skip whitespace except \n’
if(! cin. get(ch)) return curr_tok = END;
} while (chl=" \n" &&isspace(ch)) ;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.3 Low-level Input 115

switch (ch) {

case’;”:

case’ \n":

return curr_tok=PRINT;

A do-statemenis used; it is equivalent towhile-statemengxcept that the controlled statement is
always executed at least once. The call get(ch) reads a single character from the standard
input stream intch. By default,get() does not skip whitespace the waperator >> does. The
testif (! cin. get(ch)) fails if no character can be read fram,; in this caseEND is returned to
terminate the calculator session. The operfatgNOT) is used becaugget() returnstruein case
of success.

The standard library functioisspace() provides the standard test for whitespace (820.4.2);
isspace(¢) returns a nonzero value dfis a whitespace character and zero otherwise. The test is
implemented as a table lookup, so usisgpace() is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a-dsgligit() — a letter— isal-
pha() — or a digit or letter isalnum() .

After whitespace has been skipped, the next character is used to determine what kind of lexical
token is coming.

The problem caused by> reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

default: !/ | NAME, NAME-=, or error
if (isalpha(ch)) {
string_value = ch;
while (cin. get(ch) &&isalnum(ch)) string_value. push_back(ch);
cin. putback(ch);
return curr_tok=NAME;

}
emor(" bad token') ;
return curr_tok=PRINT;

Fortunately, these two improvements could both be implemented by modifying a single local sec-
tion of code. Constructing programs so that improvements can be implemented through local mod-
ifications only is an important design aim.

6.1.4 Error Handling [expr.error]

Because the program is so simple, error handling is not a major concern. The error function simply
counts the errors, writes out an error message, and returns:

int no_of_errors;

double @ror(const string& s)

{
no_of_ermrors++;
car << "emor: " <<s<<’'\n’;
return 1,

}

The streanterr is an unbuffered output stream usually used to report errors (§21.2.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

116 Expressions and Statements Chapter 6

The reason for returning a value is that errors typically occur in the middle of the evaluation of
an expression, so we should either abort that evaluation entirely or return a value that is unlikely to
cause subsequent errors. The latter is adequate for this simple calculatayet Hekien() kept
track of the line number®rror() could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively (86.6[19]).

Often, a program must be terminated after an error has occurred because no sensible way of
continuing has been devised. This can be done by catibg , which first cleans up things like
output streams and then terminates the program with its argument as the return value (§89.4.1.1).

More stylized error-handling mechanisms can be implemented using exceptions (see 88.3,
Chapter 14), but what we have here is quite suitable for a 150-line calculator.

6.1.5 The Driver [expr.driver]

With all the pieces of the program in place, we need only a driver to start things. In this simple
examplemain() can do that:

int main()
{

table[" pi"] = 3. 1415926535897932385; / / insert predefined names
table[" € = 2. 7182818284590452354;

while (cin) {
get_token() ;
if (curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout << expr(false) << \n’;

}

return no_of_errors;

}

Conventionallymain() should return zero if the program terminates normally and nonzero other-
wise (83.2). Returning the number of errors accomplishes this nicely. As it happens, the only
initialization needed is to insert the predefined names into the symbol table.

The primary task of the main loop is to read expressions and write out the answer. This is
achieved by the line:

cout << expr(false) << \n’;

The argumentalsetells expr() that it does not need to cgkt token() to get a current token on
which to work.

Testingcin each time around the loop ensures that the program terminates if something goes
wrong with the input stream, and testing END ensures that the loop is correctly exited when
get_token() encounters end-of-file. Areak-statemerdxits its nearest enclosimsgvitch-statement
or loop (that is, dor-statementwhile-statementor do-statement Testing forPRINT (that is, for
“\n" and”;”) relievesexpr() of the responsibility for handling empty expressionscofitinue-
statemenis equivalent to going to the very end of a loop, so in this case

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.5 The Driver 117

while (cin) {
/...
if (curr_tok == PRINT) continue;
cout << expr(false) << \n’;

}

is equivalent to

while (cin) {
/..
if (curr_tok!= PRINT)
cout << expr(false) << \n’;

6.1.6 Headers [expr.headers]

The calculator uses standard library facilities. Therefore, appropriate headers #imefuded to
complete the program:

#include<iostream> / / 1/0
#include<string> [| strings
#include<map> /1 map
#include<cctype> / / isalpha(), etc.

All of these headers provide facilities in thiel namespace, so to use the names they provide we
must either use explicit qualification wisitd: : or bring the names into the global namespace by

using namespace std;

To avoid confusing the discussion of expressions with modularity issues, | did the latter. Chapter 8
and Chapter 9 discuss ways of organizing this calculator into modules using namespaces and how
to organize it into source files. On many systems, standard headers have equivalenthwitf a

fix that declare the classes, functions, etc., and place them in the global namespace (§89.2.1, §9.2.4,
§B.3.1).

6.1.7 Command-Line Arguments [expr.command]

After the program was written and tested, | found it a bother to first start the program, then type the

expressions, and finally quit. My most common use was to evaluate a single expression. If that

expression could be presented as a command-line argument, a few keystrokes could be avoided.
A program starts by callingain() (83.2, §9.4). When this is donmain() is given two

arguments specifying the number of arguments, usually catigel and an array of arguments,

usually calledargv. The arguments are character strings, so the typegefis char*[argc+1] .

The name of the program (as it occurs on the command line) is pasasgvia8] , soargc is

always at least. The list of arguments is zero-terminated; thahigyv] argc]== 0. For example,

for the command

dc 150/ 1. 1934

the arguments have these values:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

118

Expressions and Statements

argc:

age [[[0]

Chapter 6

\ "150/1.1934"

Because the conventions for callimain() are shared with C, C-style arrays and strings are used.

It is not difficult to get hold of a command-line argument. The problem is how to use it with
minimal reprogramming. The idea is to read from the command string in the same way that we
read from the input stream. A stream that reads from a string is unsurprisingly called an
istringstream. Unfortunately, there is no elegant way of makaimy refer to anistringstream.
Therefore, we must find a way of getting the calculator input functions to refelistriagstream.
Furthermore, we must find a way of getting the calculator input functions to refer to an
istringstream or to cin depending on what kind of command-line argument we supply.

A simple solution is to introduce a global poinimput that points to the input stream to be used
and have every input routine use that:

istream™ input;/ / pointer to input stream

int main(int argc, char* argv(])

{

switch (argc) {
case 1L
input = &cin;
break;

case 2

input = new istringstream(argV{ 1)) ;

break;

default:
emror(" too many arguments’) ;
return 1,

}

table[" pi"] = 3. 1415926535897932385;
table[" € = 2. 7182818284590452354;

while (* input) {
get_token() ;
if (curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout << expr(false) <<’ \n’;

}

if (input != &cin) delete input;
return no_of_errors;

/ | read from standard input

/ | read argument string

/I insert predefined names

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.7 Command-Line Arguments 119

An istringstream is a kind ofistream that reads from its character string argument (§21.5.3).
Upon reaching the end of its string, istringstream fails exactly like other streams do when they
hit the end of input (83.6, §21.3.3). To usdsiringstream, you must include:ssiream>.

It would be easy to modifynain() to accept several command-line arguments, but this does
not appear to be necessary, especially as several expressions can be passed as a single argument:

dc " rate=1. 1934; 150/ rate; 19. 75/ rate; 217/ rate"

| use quotes becauses the command separator on my UNIX systems. Other systems have differ-
ent conventions for supplying arguments to a program on startup.

It was inelegant to modify all of the input routines to tiagput rather tharcin to gain the flex-
ibility to use alternative sources of input. The change could have been avoided had | shown fore-
sight by introducing something likaput from the start. A more general and useful view is to note
that the source of input really should be the parameter of a calculator module. That is, the funda-
mental problem with this calculator example is that what | refer to as “the calculator” is only a col-
lection of functions and data. There is no module (82.4) or object (82.5.2) that explicitly represents
the calculator. Had | set out to design a calculator module or a calculator type, | would naturally
have considered what its parameters should be (§8.5[3], §10.6[16]).

6.1.8 A Note on Style [expr.style]

To programmers unacquainted with associative arrays, the use of the standardnidpay the

symbol table seems almost like cheating. It is not. The standard library and other libraries are
meant to be used. Often, a library has received more care in its design and implementation than a
programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there isn't
much traditional C-style, low-level code presented. Many of the traditional tricky details have been
replaced by uses of standard library classes suobti@am, string, andmap (83.4, §83.5, §3.7.4,
Chapter 17).

Note the relative scarcity of arithmetic, loops, and even assignments. This is the way things
ought to be in code that doesn’t manipulate hardware directly or implement low-level abstractions.

6.2 Operator Summary[expr.operators]

This section presents a summary of expressions and some examples. Each operator is followed by
one or more names commonly used for it and an example of its use. In these hksname
is the name of a class,raemberis a member name, abjectis an expression yielding a class
object, apointeris an expression yielding a pointer, expris an expression, and &ralueis an
expression denoting a nonconstant objecttyge can be a fully general type name (with() ,
etc.) only when it appears in parentheses; elsewhere, there are restrictions (8A.5).

The syntax of expressions is independent of operand types. The meanings presented here apply
when the operands are of built-in types (§84.1.1). In addition, you can define meanings for operators
applied to operands of user-defined types (82.5.2, Chapter 11).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

120 Expressions and Statements Chapter 6

U Operator Summary U
E§cope resolution class name:: member S
[scope resolution namespacename:. member 0
Chlobal ;1 name O
(ylobal :: qualified-name g
i - - O
rnember selection object. member 0
member selection pointer-> member 0
CBubscripting pointer[expr] O
Ltunction call expr(expr list) g

alue construction type(expr list) E
rpost increment Ivalue++ 0
[post decrement Ivalue-- 0
(type identification typeid (type) d
Lrun-time type identification typeid (expr) O

un-time checked conversion dynamic_cast < type> (expr) E
rfompile-time checked conversion static_cast < type> (expr) 0
runchecked conversion reinterpret_cast < type> (expr) O
Ctonst conversion const_cast < type> (expr) d

ize of object sizeof expr 5
size of type sizeof (type) 0
[pre increment ++ lvalue O
Cpre decrement -- Ivalue O
Ltomplement ~ expr 0

ot I expr E
cunary minus - expr 0
runary plus + expr O
Caddress of & Ivalue O
Ldereference Dexpr 0

reate (allocate) new type E
[Freate (allocate and initialize) new type(expr-list) 0
[rreate (place) new (expr-list) type 0
Ctreate (place and initialize) new (expr-list) type(expr-list) 0O
LHestroy (de-allocate) delete pointer g

estroy array delete]] pointer E
rcast (type conversion) (type) expr 0
Cmember selection object.* pointer-to-member O
Einember selection pointer->* pointer-to-member U
H‘nultiply exprexpr g
divide expr/ expr 0
Fmodulo (remainder) expryoexpr i

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2

Each box holds operators with the same precedence. Operators in higher boxes have higher prece-

Operator Summary

rdivide and assign
Cmodulo and assign
Lhdd and assign
ubtract and assign
hift left and assign
rshift right and assign
CAND and assign

Unclusive OR and assign
xclusive OR and assign

Ivalue/= expr
Ivalue %=expr
Ivalue+= expr
Ivalue-= expr
Ivalue<<= expr
Ivalue>>= expr
Ivalue &= expr
Ivalue|= expr
Ivalue”= expr

rronditional expression

expr? expr: expr

throw exception

throw expr

U Operator Summary (continued) S
—Rdd (plus) expr+ expr 0
[subtract (minus) expr- expr 0
L5hift left expr<< expr u
E‘Phift right expr>> expr E
ress than expr< expr 0
(ess than or equal expr<= expr O
reater than expr> expr g
reater than or equal expr>= expr E
quual expr== expr 0
Chot equal expr!= expr a
#bitwise AND expr& expr E
Chitwise exclusive OR expr™ expr 0
Chitwise inclusive OR expr| expr E
Flogical AND expr&&expr 0
Oogical inclusive OR expr|| expr O
imple assignment Ivalue= expr é
rnultiply and assign Ivalue C= expr 5
O

O

0

O

O

0

O

O

0

O

O

[l

O

O

O

] .
[comma (sequencing)

expr, expr

121

dence than operators in lower boxes. For exangzlb* c meansa+(b*c) rather than(a+b)* c
becausé has higher precedence than

Unary operators and assignment operators are right-associative; all others are left-associative.

For examplea=b=c meansa=(b=c) , a+b+c means(at+b)+ ¢, and* p++ means*(p++), not

(* p)++.

A few grammar rules cannot be expressed in terms of precedence (also known as binding

strength) and associativity. For exampdeb<c?d=e: f=g meansa=((b<c)?(d=e):(f=g)) ,
but you need to look at the grammar (8A.5) to determine that.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.

Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

122 Expressions and Statements Chapter 6

6.2.1 Results [expr.res]

The result types of arithmetic operators are determined by a set of rules known as “the usual arith-
metic conversions” (8C.6.3). The overall aim is to produce a result of the “largest” operand type.
For example, if a binary operator has a floating-point operand, the computation is done using
floating-point arithmetic and the result is a floating-point value. If it hisag operand, the com-
putation is done using long integer arithmetic, and the resultdaga Operands that are smaller
than anint (such asool andchar) are converted timt before the operator is applied.

The relational operators=, <=, etc., produce Boolean results. The meaning and result type of
user-defined operators are determined by their declarations (811.2).

Where logically feasible, the result of an operator that takes an Ivalue operand is an Ivalue
denoting that lvalue operand. For example:

void f(int X, int y)

{
int j=x=y; /| the value of x=y is the value of x after the assignment
int* p=&++x; / | p points to x
int* q=&(x++); /| error: x++ is not an lvalue (it is not the value stored in x)
int* pp=&(x>y?x y); [/ [/ address of the int with the larger value

}

If both the second and third operand®ofare Ivalues and have the same type, the result is of that
type and is an Ivalue. Preserving Ivalues in this way allows greater flexibility in using operators.
This is particularly useful when writing code that needs to work uniformly and efficiently with both
built-in and user-defined types (e.g., when writing templates or programs that gereratel€).
The result ofsizeof is of an unsigned integral type callsize t defined in<cstddef>. The
result of pointer subtraction is of a signed integral type caliadiff t defined in<cstddef>.
Implementations do not have to check for arithmetic overflow and hardly any do. For example:

void f()
{

int i=1;

while (0 < i) i++;

cout<<"i has become megativel" <<i<<’'\n’;
}

This will (eventually) try to increasepast the largest integer. What happens then is undefined, but
typically the value “wraps around” to a negative number (on my mach#147483648). Simi-

larly, the effect of dividing by zero is undefined, but doing so usually causes abrupt termination of
the program. In particular, underflow, overflow, and division by zero do not throw standard excep-
tions (814.10).

6.2.2 Evaluation Order [expr.evaluation]

The order of evaluation of subexpressions within an expression is undefined. In particular, you
cannot assume that the expression is evaluated left to right. For example:

int x="1(2)+g(3); / / undefined whether f() or g() is called first

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.2 Evaluation Order 123

Better code can be generated in the absence of restrictions on expression evaluation order. How-
ever, the absence of restrictions on evaluation order can lead to undefined results. For example,

int i=1;

Vv[i] =i++; [/ [/ undefined result
may be evaluated as eithgrl]= 1 or v[2]= 1 or may cause some even stranger behavior. Com-
pilers can warn about such ambiguities. Unfortunately, most do not.

The operators (comma),&& (logical and), and| (logical or) guarantee that their left-hand
operand is evaluated before their right-hand operand. For examplas2, a+1) assigns3to b.
Examples of the use {f and&&can be found in §6.2.3. For built-in types, the second operand of
&&is evaluated only if its first operandtizie, and the second operand|of is evaluated only if its
first operand idalse this is sometimes calleshort-circuit evaluation Note that the sequencing
operator, (comma) is logically different from the comma used to separate arguments in a function
call. Consider:

fi(v i], i++); / | two arguments
f2((V[i],i++)); [/ [one argument

The call offl has two arguments i] andi++, and the order of evaluation of the argument
expressions is undefined. Order dependence of argument expressions is very poor style and has
undefined behavior. The call # has one argument, the comma expreséign], i++) , which is
equivalent ta++.

Parentheses can be used to force grouping. For exaaijblec meand a* b)/ ¢ so parenthe-
ses must be used to g&(b/ ¢) ; a*(b/ ¢) may be evaluated §sa* b)/ c only if the user cannot
tell the difference. In particular, for many floating-point computatatisb/ c) and(a*b)/ c are
significantly different, so a compiler will evaluate such expressions exactly as written.

6.2.3 Operator Precedence [expr.precedence]

Precedence levels and associativity rules reflect the most common usage. For example,
if (i<=0| max<i) // ...

means “ifi is less than or equal @or if maxis less than.” That is, it is equivalent to
if ((i<=0) || (max<i)) // ..

and not the legal but nonsensical
if (i <= (0| max) <i) // ..

However, parentheses should be used whenever a programmer is in doubt about those rules. Use of
parentheses becomes more common as the subexpressions become more complicated, but compli-
cated subexpressions are a source of errors. Therefore, if you start feeling the need for parentheses,
you might consider breaking up the expression by using an extra variable.

There are cases when the operator precedence does not result in the “obvious” interpretation.
For example:

if (i&mask == 0) / | oops! == expression as operand for &

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

124 Expressions and Statements Chapter 6

This does not apply a mask it@nd then test if the result is zero. Becassehas higher prece-
dence thar&, the expression is interpretedi&§ mask==0) . Fortunately, it is easy enough for a
compiler to warn about most such mistakes. In this case, parentheses are important:

if (i&mask) ==0) // ...
It is worth noting that the following does not work the way a mathematician might expect:
if (0<=x<=99) // ..

This is legal, but it is interpreted &8<=x)<= 99, where the result of the first comparison is either
true or false This Boolean value is then implicitly converteditor 0, which is then compared to
99, yieldingtrue. To test whethexis in the rang®.. 99, we might use:

if (0<=x &&x<=99) // ...
A common mistake for novices is to us€assignment) instead ef (equals) in a condition:

if (a=7)/ /| oops! constant assignment in condition

This is natural because means “equals” in many languages. Again, it is easy for a compiler to
warn about most such mistakesind many do.

6.2.4 Bitwise Logical Operators [expr.logical]

The bitwise logical operatoss | , ~, ~, >>, and<< are applied to objects of integer typethat is,
booal, char, short, int, long, and theiunsigned counterparts. The results are also integers.

A typical use of bitwise logical operators is to implement the notion of a small set (a bit vector).
In this case, each bit of an unsigned integer represents one member of the set, and the number of
bits limits the number of members. The binary oper&tisrinterpreted as intersectignas union,
A as symmetric difference, andas complement. An enumeration can be used to name the mem-
bers of such a set. Here is a small example borrowed from an implementaistrear

enum ios _base : iostate {
goodbit=0, eofbit=1, failbit=2, badbit=4
h
The implementation of a stream can set and test its state like this:
state = goodbit;

/...
if (state&(badbit| failbit)) // stream no good

The extra parentheses are necessary beéauss higher precedence than
A function that reaches the end of input might report it like this:

state|= eofbit;

The|= operator is used to add to the state. A simple assignstateeofbit, would have cleared
all other bits.

These stream state flags are observable from outside the stream implementation. For example,
we could see how the states of two streams differ like this:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.4 Bitwise Logical Operators 125

int diff = cin. rdstate()* cout. rdstate() ; / / rdstate() returns the state

Computing differences of stream states is not very common. For other similar types, computing
differences is essential. For example, consider comparing a bit vector that represents the set of
interrupts being handled with another that represents the set of interrupts waiting to be handled.

Please note that this bit fiddling is taken from the implementation of iostreams rather than from
the user interface. Convenient bit manipulation can be very important, but for reliability, maintain-
ability, portability, etc., it should be kept at low levels of a system. For more general notions of a
set, see the standard libraet (817.4.3) bitset (§17.5.3), andrector<bool> (§16.3.11).

Using fields (8C.8.1) is really a convenient shorthand for shifting and masking to extract bit
fields from a word. This can, of course, also be done using the bitwise logical operators. For
example, one could extract the middle 16 bits of a 3hd like this:

unsigned short middle(long a) { return (a>>8)& Oxffff; }

Do not confuse the bitwise logical operators with the logical opera&@sd| , and ! . The latter
return eithertrue or false and they are primarily useful for writing the test inifrwhile, or for
statement (86.3.2, §6.3.3). For exampl@,(not zero) is the valutrue, whereas-0 (complement
of zero) is the bit pattern all-ones, which in two’s complement representation is the ¥alue

6.2.5 Increment and Decrement [expr.incr]

The ++ operator is used to express incrementing directly, rather than expressing it indirectly using
a combination of an addition and an assignment. By definitidlvalue meandvalue+=1, which
again meangvalue=lvalue+1 providedlvalue has no side effects. The expression denoting the
object to be incremented is evaluated once (only). Decrementing is similarly expressed-by the
operator. The operatotis- and-- can be used as both prefix and postfix operators. The value of
++X is the new (that is, incremented) valuexofFor exampley=++x is equivalent to/=(x+=1) .
The value ofx++, however, is the old value of. For example,y=x++ is equivalent to
y=(t=x, x+=1, t) , wheret is a variable of the same typexas

Like addition and subtraction of pointets; and-- on pointers operate in terms of elements of
the array into which the pointer poings;+ makesp point to the next element (85.3.1).

The increment operators are particularly useful for incrementing and decrementing variables in
loops. For example, one can copy a zero-terminated string like this:

void cpy(char* p, const char* q)

while (* p++ =*qt++) ;

}
Like C, Cr+is both loved and hated for enabling such terse, expression-oriented coding. Because
while (* p++ = *qg++) ;

is more than a little obscure to non-C programmers and because the style of coding is not uncom-
mon in C and €+, it is worth examining more closely.
Consider first a more traditional way of copying an array of characters:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

126 Expressions and Statements Chapter 6

int length = strlen(q);

for (int i =0; i<=length; i++) p[i] =q[i];
This is wasteful. The length of a zero-terminated string is found by reading the string looking for
the terminating zero. Thus, we read the string twice: once to find its length and once to copy it. So
we try this instead:

int i;
for (i=0; q[i]'= 0; i++) p[i] =q[i];
pli] =0;/ / terminating zero

The variabld used for indexing can be eliminated becguaedq are pointers:
while (* q'= 0) {

* p =% q
p++; / | point to next character
g++; /| point to next character
}
*p=0; / | terminating zero

Because the post-increment operation allows us first to use the value and then to increment it, we
can rewrite the loop like this:

while (* q!= 0) {
*pt+ = * gt
}

*p=0; // terminating zero
The value of p++ =* gq++ is*q. We can therefore rewrite the example like this:
while (* p++=*g++) 1= 0) { }

In this case, we don’t notice thag) is zero until we already have copied it ifitp and incremented

p. Consequently, we can eliminate the final assignment of the terminating zero. Finally, we can
reduce the example further by observing that we don’t need the empty block and that Bieis
redundant because the result of a pointer or integral condition is always compared to zero anyway.
Thus, we get the version we set out to discover:

while (* p++ =*q++) ;

Is this version less readable than the previous versions? Not to an experiencettHpragéam-
mer. Is this version more efficient in time or space than the previous versions? Except for the first
version that calledstrlen() , not really. Which version is the most efficient will vary among
machine architectures and among compilers.

The most efficient way of copying a zero-terminated character string for your particular
machine ought to be the standard string copy function;

char* strcpy(char*, const char*) ; / / from<string.r»

For more general copying, the standeapy algorithm (8§2.7.2, §18.6.1) can be used. Whenever
possible, use standard library facilities in preference to fiddling with pointers and bytes. Standard
library functions may be inlined (87.1.1) or even implemented using specialized machine

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.5 Increment and Decrement 127

instructions. Therefore, you should measure carefully before believing that some piece of hand-
crafted code outperforms library functions.

6.2.6 Free Store [expr.free]

A named object has its lifetime determined by its scope (84.9.4). However, it is often useful to cre-
ate an object that exists independently of the scope in which it was created. In particular, it is com-
mon to create objects that can be used after returning from the function in which they were created.
The operatomew creates such objects, and the operakdete can be used to destroy them.
Objects allocated byiew are said to be “on the free store” (also, to be “heap objects,” or “allo-
cated in dynamic memory”).

Consider how we might write a compiler in the style used for the desk calculator (86.1). The
syntax analysis functions might build a tree of the expressions for use by the code generator:

struct Enode {
Token value oper;
Enode* left;
Enode* right;
/...

h

Enode* expr(bool get)

Enode* left = term(get);

for (;;)
switch(curr_tok) {
case PLUS
case MINUS
{ Enode* n=new Enode;, / / create an Enode on free store
n-> oper = curr_tok;

n-> left = left;

n-> right = term(true) ;

left = n;

break;
}
default:

return left; / | return node
}

}
A code generator would then use the resulting nodes and delete them:
void generate(Enode* n)

{
switch (n-> oper) {
case PLUS
/I ...
delete m; / / delete an Enode from the free store
}
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

128 Expressions and Statements Chapter 6

An object created bpew exists until it is explicitly destroyed hyelete. Then, the space it occu-
pied can be reused mew. A C++implementation does not guarantee the presence of a “garbage
collector” that looks out for unreferenced objects and makes them availaiss for reuse. Con-
sequently, | will assume that objects createdéy are manually freed usindelete. If a garbage
collector is present, theeletes can be omitted in most cases (8C.9.1).

The delete operator may be applied only to a pointer returnecésy or to zero. Applying
delete to zero has no effect.

More specialized versions of operatew can also be defined (815.6).

6.2.6.1 Arrays [expr.array]

Arrays of objects can also be created usieg. For example:

char* save string(const char* p)

{
char* s= new char[strlen(p)+ 1];
strepy(s, p); / | copyfromptos
return s

}

int main(int argc, char* argv(])

{
if (argc< 2) exit(1);
char* p = save string(argV 1)) ;
/...
delete]] p;

}

The “plain” operatordelete is used to delete individual objectielete]] is used to delete arrays.

To deallocate space allocatedrisw, delete anddelete]] must be able to determine the size of
the object allocated. This implies that an object allocated using the standard implementation of
new will occupy slightly more space than a static object. Typically, one word is used to hold the
object’s size.

Note that avector (83.7.1, §16.3) is a proper object and can therefore be allocated and deallo-
cated using plainewanddelete. For example:

void f(int n)
{
vector<int>* p = new vector<int>(n); / I individual object
int* q=new int[n]; [| array
/...
delete |
deletel] q;
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.6.2 Memory Exhaustion 129

6.2.6.2 Memory Exhaustion [expr.exhaust]

The free store operatongw, delete, new[] , anddelete]] are implemented using functions:

void* operator new(size t); / / space for individual object
void operator delete(void*) ;

void* operator new{](size t);/ / space for array
void operator delete[](void®) ;

When operatonew needs to allocate space for an object, it apkrator new() to allocate a suit-
able number of bytes. Similarly, when operatew needs to allocate space for an array, it calls
operator new(]()

The standard implementationsaperator new() andoperator new{]() do not initialize the
memory returned.

What happens whenew can find no store to allocate? By default, the allocator throws a
bad alloc exception. For example:

void f()

try {
for(;;) new char[10000];

}
catch(bad_alloc) {

cer << " Memory exhausted \n";
}

}

However much memory we have available, this will eventually invokbalealloc handler.
We can specify whatew should do upon memory exhaustion. Wimemy fails, it first calls a
function specified by a call tset new _handler() declared irknew>, if any. For example:

void out_of_store()

{
cearr << " operator new failed out of store\n’;
throw bad_alloc() ;
}
int main()
set_new_handler(out_of_store); // make outof store the newhandler
for (;;) new char[10000] ;
cout << " done\n";
}

This will never get to writelone. Instead, it will write
operator new failed out of store
See 814.4.5 for a plausible implementation obperator new() that checks to see if there is a

new handler to call and that throlwad alloc if not. A new_handler might do something more
clever than simply terminating the program. If you know Ines anddelete work — for example,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

130 Expressions and Statements Chapter 6

because you provided your ovaperator new() and operator delete() — the handler might
attempt to find some memory foew to return. In other words, a user might provide a garbage
collector, thus rendering the used#lete optional. Doing this is most definitely not a task for a
beginner, though. For almost everybody who needs an automatic garbage collector, the right thing
to do is to acquire one that has already been written and tested (8C.9.1).

By providing anew_handler, we take care of the check for memory exhaustion for every ordi-
nary use ohewin the program. Two alternative ways of controlling memory allocation exist. We
can either provide nonstandard allocation and deallocation functions (815.6) for the standard uses
of newor rely on additional allocation information provided by the user (§10.4.11, §19.4.5).

6.2.7 Explicit Type Conversion [expr.cast]

Sometimes, we have to deal with“raw memory;” that is, memory that holds or will hold objects of

a type not known to the compiler. For example, a memory allocator may retoidt gpointing to

newly allocated memory or we might want to state that a given integer value is to be treated as the
address of an 1/0O device:

void* malloc(size t);

void f()

{
int* p = static_cast<int*>(malloc(100)) ; / | new allocation used as ints
10_device* d1 = reinterpret_cast<lO_device*>(0Xff00); / / device at OXff0O
/] ...

}

A compiler does not know the type of the object pointed to byaid¥ . Nor can it know whether

the integerOXffo0 is a valid address. Consequently, the correctness of the conversions are com-
pletely in the hands of the programmer. Explicit type conversion, often caligithg is occasion-

ally essential. However, traditionally it is seriously overused and a major source of errors.

The static_cast operator converts between related types such as one pointer type to another, an
enumeration to an integral type, or a floating-point type to an integral typereiftterpret_cast
handles conversions between unrelated types such as an integer to a pointer. This distinction
allows the compiler to apply some minimal type checkingstatic_cast and makes it easier for a
programmer to find the more dangerous conversions representszinteypret_casts. Some
static_casts are portable, but feweinterpret _casts are. Hardly any guarantees are made for
reinterpret_cast, but generally it produces a value of a new type that has the same bit pattern as its
argument. If the target has at least as many bits as the original value, reintenpret_cast the
result back to its original type and use it. The result oéiaterpret cast is guaranteed to be
usable only if its result type is the exact type used to define the value involved. Note that
reinterpret_castis the kind of conversion that must be used for pointers to functions (87.7).

If you feel tempted to use an explicit type conversion, take the time to consider rigallis
necessary. In €, explicit type conversion is unnecessary in most cases when C needs it (§1.6)
and also in many cases in which earlier versions+df ii@eded it (§1.6.2, §B.2.3). In many pro-
grams, explicit type conversion can be completely avoided; in others, its use can be localized to a
few routines. In this book, explicit type conversion is used in realistic situations in 86.2.7, 87.7,
813.5, 815.4, and §25.4.1, only.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.7 Explicit Type Conversion 131

A form of run-time checked conversiadynamic_cast (§15.4.1), and a cast for removiognst
qualifiers,const_cast (815.4.2.1), are also provided.

From C, G+ inherited the notatioQiT) e, which performs any conversion that can be expressed
as a combination o$tatic_casts, reinterpret_casts, andconst_casts to make a value of typE
from the expressioa (§B.2.3). This C-style cast is far more dangerous than the named conversion
operators because the notation is harder to spot in a large program and the kind of conversion
intended by the programmer is not explicit. That(i) e might be doing a portable conversion
between related types, a nonportable conversion between unrelated types, or remosangtthe
modifier from a pointer type. Without knowing the exact type¥ ande, you cannot tell.

6.2.8 Constructors [expr.ctor]

The construction of a value of tydefrom a valuee can be expressed by the functional notation
T(e). For example:

void f(double d)

{
int i =int(d); / | truncate d
complex z= complex(d); / / make a complex from d
/...

}

TheT(€) construct is sometimes referred to daraction-style castFor a built-in typeT, T(€) is
equivalent tostatic_cast<T>(€) . Unfortunately, this implies that the useTfe) is not always

safe. For arithmetic types, values can be truncated and even explicit conversion of a longer integer
type to a shorter (such &ng to char) can result in undefined behavior. | try to use the notation
exclusively where the construction of a value is well-defined; that is, for narrowing arithmetic con-
versions (8C.6), for conversion from integers to enumerations (84.8), and the construction of
objects of user-defined types (§2.5.2, §10.2.3).

Pointer conversions cannot be expressed directly usingrtlee notation. For example,
char*(2) is a syntax error. Unfortunately, the protection that the constructor notation provides
against such dangerous conversions can be circumvented by tysadgf names (84.9.7) for
pointer types.

The constructor notatiofi() is used to express the default value of typd-or example:

void f(double d)
{

int j=int() ; / | default int value
complex z= complex() ; / / default complex value
/...

}

The value of an explicit use of the constructor for a built-in tyfecisnverted to that type (84.9.5).
Thus,int() is another way of writin@. For a user-defined typg T() is defined by the default
constructor (810.4.2), if any.

The use of the constructor notation for built-in types is particularly important when writing tem-
plates. Then, the programmer does not know whether a template parameter will refer to a built-in
type or a user-defined type (§16.3.4, §17.4.1.2).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

132 Expressions and Statements Chapter 6

6.3 Statement Summaryexpr.stmts]

Here are a summary and some examplestéfstatements:

Statement Syntax

tatement:
declaration
{ statement-ligf, }
try { statement-ligf, } handler-list
expressiog), ;

if (condition) statement
if (condition) statementelse statement
switch (condition) statement

while (condition) statement
do statementwhile (expression) ;
for (for-init-statement conditiqp, ; expressiog,) statement

case constant-expression statement
default : statement

break ;

continue ;

return expressiog, ;

goto identifier ;
identifier : statement

tatement-list:
statement statement-|igt

o e e e YA

ondition:
expression
type-specifier declarator= expression

ooy oo

rhandler-list:
O catch (exception-declaration) { statement-ligf, }
H handler-list handler-lisg,

e

Note that a declaration is a statement and that there is no assignment statement or procedure call
statement; assignments and function calls are expressions. The statements for handling exceptions,
try-blocks, are described in §8.3.1.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.1 Declarations as Statements 133

6.3.1 Declarations as Statements [expr.dcl]

A declaration is a statement. Unless a variable is dectaéid, its initializer is executed when-

ever the thread of control passes through the declaration (see also §10.4.8). The reason for allow-
ing declarations wherever a statement can be used (and a few other places; 86.3.2.1, §6.3.3.1) is to
enable the programmer to minimize the errors caused by uninitialized variables and to allow better
locality in code. There is rarely a reason to introduce a variable before there is a value for it to
hold. For example:

void f(vector<string>& v, int i, const char* p)

{
if (p==0) return;
if (i<0|| v.size))<= i) emor(" bad index') ;
string s=V[i];
if(s==p) {
/..
}
/..
}

The ability to place declarations after executable code is essential for many constants and for
single-assignment styles of programming where a value of an object is not changed after initial-
ization. For user-defined types, postponing the definition of a variable until a suitable initializer is
available can also lead to better performance. For example,

string s /* ...*/ s="The best is the enemy of the good.";
can easily be much slower than
string s=" Voltaire";

The most common reason to declare a variable without an initializer is that it requires a statement
to initialize it. Examples are input variables and arrays.

6.3.2 Selection Statements [expr.select]

A value can be tested by eitherifistatement or awitch statement:

if (condition) statement
if (condition) statementlse statement
switch (condition) statement

The comparison operators
== I= < <= > >=
return thebool trueif the comparison is true arfdlse otherwise.
In anif statement, the first (or only) statement is executed if the expression is honzero and the

second statement (if it is specified) is executed otherwise. This implies that any arithmetic or
pointer expression can be used as a condition. For examypls,dh integer, then

if(x) 1/ ...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

134 Expressions and Statements Chapter 6

means
if (x!= 0) /] ...
For a pointep,

if(p) // ..
is a direct statement of the test “dqepoint to a valid object,” whereas

if(pl= 0) // ..
states the same question indirectly by comparing to a value known not to point to an object. Note
that the representation of the poinfeis not all-zeros on all machines (85.1.1). Every compiler |

have checked generated the same code for both forms of the test.
The logical operators

&& || !
are most commonly used in conditions. The opera@rand|| will not evaluate their second
argument unless doing so is necessary. For example,

if (p &&1<p->count) // ...

first tests thap is nonzero. It testé<p-> count only if p is nonzero.
Someif-statemerg can conveniently be replaceddmpnditional-expressian For example,

if (a<=b)
max = b;
clse
max = a;

is better expressed like this:
max=(a<=hb) ?b: a

The parentheses around the condition are not necessary, but | find the code easier to read when they
are used.
A switch-statementan alternatively be written as a setfefstatements. For example,

switch (val) {
case 1L
f() ;
break;
case 2
q0 ;
break;
default:
h() ;
break;
}

could alternatively be expressed as

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.2 Selection Statements 135

if (val == 1)
fO ;
else if (val == 2)

a0 ;
hQ ;

The meaning is the same, but the fisstifch) version is preferred because the nature of the opera-
tion (testing a value against a set of constants) is explicit. This makssitbl statement easier
to read for nontrivial examples. It can also lead to the generation of better code.

Beware that a case of a switch must be terminated somehow unless you want to carry on execut-
ing the next case. Consider:

else

switch (val) { / | beware
case 1

cout << " case I\n";
case 2

cout << " case 2An";
default:

cout << " default: case mot found\n";
}

Invoked withval==1, this prints

case 1
case 2
default: case mot found

to the great surprise of the uninitiated. It is a good idea to comment the (rare) cases in which a
fall-through is intentional so that an uncommented fall-through can be assumed to be an error. A
break is the most common way of terminating a case, lvetuan is often useful (86.1.1).

6.3.2.1 Declarations in Conditions [expr.cond]

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into the
smallest scope possible. In particular, it is usually best to delay the definition of a local variable
until one can give it an initial value. That way, one cannot get into trouble by using the variable
before its initial value is assigned.
One of the most elegant applications of these two principles is to declare a variable in a condi-
tion. Consider:
if (double di= prim(true)) {
left /= d;
break;
}

Here,d is declared and initialized and the valueddadfter initialization is tested as the value of the
condition. The scope af extends from its point of declaration to the end of the statement that the
condition controls. For example, had there beeels&branch to thef-statementd would be in
scope on both branches.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

136 Expressions and Statements Chapter 6

The obvious and traditional alternative is to decldrbefore the condition. However, this
opens the scope (literally) for the usedddefore its initialization or after its intended useful life:

double d

Il ...

d2=d; / / oops!

/...

if (d = prim(true)) {
left /= d;
break;

}

/...

d=2.0; // two unrelated uses of d

In addition to the logical benefits of declaring variables in conditions, doing so also yields the most
compact source code.
A declaration in a condition must declare and initialize a single varialsienst

6.3.3 lteration Statements [expr.loop]

A loop can be expressed atos, while, or do statement:

while (condition) statement
do statement while (expression) ;
for (' for- init- statement condition,, ; expression,,) statement

Each of these statements executes a statement (calledntnelled statement or théody of the
loop) repeatedly until the condition becomes false or the programmer breaks out of the loop some
other way.

The for-statements intended for expressing fairly regular loops. The loop variable, the termi-
nation condition, and the expression that updates the loop variable can be presented “up front” on
a single line. This can greatly increase readability and thereby decrease the frequency of errors. If
no initialization is needed, the initializing statement can be empty. Hahditionis omitted, the
for-statementvill loop forever unless the user explicitly exits it bjpreak, return, goto, throw, or
some less obvious way such as a cakxif() (89.4.1.1). If theexpressioris omitted, we must
update some form of loop variable in the body of the loop. If the loop isn’t of the simple “intro-
duce a loop variable, test the condition, update the loop variable” variety, it is often better
expressed as while-statement A for-statemenis also useful for expressing a loop without an
explicit termination condition:

for(;;) {// “forever”
/...
}

A while-statemengimply executes its controlled statement until its condition becfalses | tend

to preferwhile-statemerst overfor-statemers when there isn’t an obvious loop variable or where
the update of a loop variable naturally comes in the middle of the loop body. An input loop is an
example of a loop where there is no obvious loop variable:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.3 Iteration Statements 137

while(cin>>ch) // ...

In my experience, thdo-statemenis a source of errors and confusion. The reason is that its body

is always executed once before the condition is evaluated. However, for the body to work cor-
rectly, something very much like the condition must hold even the first time through. More often
than | would have guessed, | have found that condition not to hold as expected either when the pro-
gram was first written and tested or later after the code preceding it has been modified. | also prefer
the condition “up front where | can see it.” Consequently, | tend to adoigtatemerst

6.3.3.1 Declarations in For-Statements [expr.for]

A variable can be declared in the initializer part dbrastatement If that initializer is a declara-
tion, the variable (or variables) it introduces is in scope until the end dbtfstatement For
example:

void f(int V[] , int max)

for (int i =0; i<max;, i++) V[i] =i*i;
}

If the final value of an index needs to be known after exit frdordoop, the index variable must
be declared outside tlier-loop (e.g., §6.3.4).

6.3.4 Goto [expr.goto]

C++ possesses the infamogisto:

goto identifier ;
identifier : statement

Thegoto has few uses in general high-level programming, but it can be very useful wheode
is generated by a program rather than written directly by a person; for exgotptecan be used
in a parser generated from a grammar by a parser generatogotéhen also be important in the
rare cases in which optimal efficiency is essential, for example, in the inner loop of some real-time
application.
One of the few sensible uses gdto in ordinary code is to break out from a nested loop or
switch-statementa break breaks out of only the innermost enclosing loopwitch-statemeit
For example:

void f()

{ - .
int i
int j;

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

138 Expressions and Statements Chapter 6

for (i =0; i<n; i++)
for (j=0; j<m; j++) if (nm[i][j] == a) goto found;
/1 not found
/...
found:
[l nm[i][j] == a

There is also gontinue statement that, in effect, goes to the end of a loop statement, as explained
in 86.1.5.

6.4 Comments and Indentatiorjexpr.comment]

Judicious use of comments and consistent use of indentation can make the task of reading and
understanding a program much more pleasant. Several different consistent styles of indentation are
in use. | see no fundamental reason to prefer one over another (although, like most programmers, |
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The com-
piler does not understand the contents of a comment, so it has no way of ensuring that a comment

[1] is meaningful,

[2] describes the program, and

[3] is up to date.
Most programs contain comments that are incomprehensible, ambiguous, and just plain wrong.
Bad comments can be worse than no comments.

If something can be statéd the language itselit should be, and not just mentioned in a com-
ment. This remark is aimed at comments such as these:

/1 variable "v" must be initialized

/1 variable "v" must be used only by function "f()"

/1 call function "init()" before calling any other function in this file
/1 call function "cleanup()" at the end of your program

/1 don’t use function "weird()"

/1 function "f()" takes two arguments

Such comments can often be rendered unnecessary by proper gge &oCexample, one might
utilize the linkage rules (89.2) and the visibility, initialization, and cleanup rules for classes (see
§10.4.1) to make the preceding examples redundant.

Once something has been stated clearly in the language, it should not be mentioned a second
time in a comment. For example:

a=Db+c; / /| abecomes b+c
count++; / / increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reader has
to look at, they often obscure the structure of the program, and they may be wrong. Note, however,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.4 Comments and Indentation 139

that such comments are used extensively for teaching purposes in programming language textbooks
such as this. This is one of the many ways a program in a textbook differs from a real program.
My preference is for:
[1] A comment for each source file stating what the declarations in it have in common, refer-
ences to manuals, general hints for maintenance, etc.
[2] A comment for each class, template, and namespace
[3] A comment for each nontrivial function stating its purpose, the algorithm used (unless it is
obvious), and maybe something about the assumptions it makes about its environment
[4] A comment for each global and namespace variable and constant
[5] A few comments where the code is nonobvious and/or nonportable
[6] Very little else
For example:

/1 tbl.c: Implementation of the symbol table.

/*
Gaussian elimination with partial pivoting.
See Ralston: "A first course ..." pg 411.
*/

/1 swap() assumes the stack layout of an SGI R6000.

/* * * *

Copyright (c) 1997 AT&T, Inc.
All rights reserved

* * * * * */

A well-chosen and well-written set of comments is an essential part of a good program. Writing
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.

Note also that if/ comments are used exclusively in a function, then any part of that function
can be commented out usiftg */ style comments, and vice versa.

6.5 Advice[expr.advice]

[1] Prefer the standard library to other libraries and to “handcrafted code;” §6.1.8.

[2] Avoid complicated expressions; §6.2.3.

[3] Ifin doubt about operator precedence, parenthesize; §6.2.3.

[4] Avoid explicit type conversion (casts); §6.2.7.

[5] When explicit type conversion is necessary, prefer the more specific cast operators to the C-
style cast; §6.2.7.

[6] Use theT(e) notation exclusively for well-defined construction; §6.2.8.

[7] Avoid expressions with undefined order of evaluation; §6.2.2.

[8] Avoid goto; §6.3.4.

[9] Avoid do-statemerst §6.3.3.

[10] Don't declare a variable until you have a value to initialize it with; §6.3.1, §6.3.2.1, §86.3.3.1.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

140 Expressions and Statements Chapter 6

[11] Keep comments crisp; §6.4.

[12] Maintain a consistent indentation style; §6.4.

[13] Prefer defining a membeperator new() (815.6) to replacing the globaperator new() ;
86.2.6.2.

[14] When reading input, always consider ill-formed input; 86.1.3.

6.6 Exercisegexpr.exercises]

1. () Rewrite the followindor statement as an equivalevhile statement:
for (i=0; i<max_length; i++) if (input_ling[i] =="?") quest_count++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the form
.
p=="7".
2. () Fully parenthesize the following expressions:

a=b+c*d<<2&8
a&077!= 3

a==b|| a==c&&c<5
c=x!=0

0<=i<7

f(1, 2+ 3
a=-1++b-- -5
a=b==c++
a=b=c=0

a4 2] *=*b?c: *d* 2
a- b, c=d

3. (@) Read a sequence of possibly whitespace-separated (name,value) pairs, where the name is a
single whitespace-separated word and the value is an integer or a floating-point value. Compute
and print the sum and mean for each nhame and the sum and mean for all names. Hint: §6.1.8.

4. () Write a table of values for the bitwise logical operations (86.2.4) for all possible combina-
tions of0 and1 operands.

5. (@L.5) Find 5 different €+ constructs for which the meaning is undefined (§C.2}.5) Find 5
different G-+ constructs for which the meaning is implementation-defined (§C.2).

6. (1) Find 10 different examples of nonportabtetCode.

7. () Write 5 expressions for which the order of evaluation is undefined. Execute them to see
what one or preferably— more implementations do with them.

8. (L.5) What happens if you divide by zero on your system? What happens in case of overflow
and underflow?

9. () Fully parenthesize the following expressions:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.6 Exercises 141

*pt+
- p
++a--
(int*) p>m
* p.m
*a[i]

10. (*2) Write these functionsstrlen() , which returns the length of a C-style stristycpy() |,
which copies a string into another; astocmp() , which compares two strings. Consider what
the argument types and return types ought to be. Then compare your functions with the stan-
dard library versions as declared<iostring> (<string. h>) and as specified in §20.4.1.

11. () See how your compiler reacts to these errors:

void f(int a, int b)

{
if(a=3) // ..
if (a&077==0) // ...
a:= b+i;

}

Devise more simple errors and see how the compiler reacts.

12. (R) Modify the program from 86.6[3] to also compute the median.

13. (R) Write a functiorcat() that takes two C-style string arguments and returns a string that is
the concatenation of the arguments. bearto find store for the result.

14. (R) Write a functiorrew() that takes a string argument and reverses the characters in it. That
is, afterrev(p) the last character @fwill be the first, etc.

15. (L.5) What does the following example do?

void send(int* to, int* from, int count)
/1 Duff's device. Helpful comment deliberately deleted.

{
int n=(count+7)/ 8;
switch (count¥8) {
case @ do{* to++=*from++;
case 7. * to++ = * fromt++;
case 6 * to++ = * from++;
case i * to++ = * fromt+;
case 4 * to++ = * from++;
case 3 * tot++ = * from++;
case 2 * to++ = * from++;
case 1 * to++ = *fromt++;

} while (- n>0);
}

Why would anyone write something like that?

16. (R) Write a functionatoi(const char*) that takes a string containing digits and returns the
correspondingnt. For exampleatoi(" 123") is 123. Modify atoi() to handle €+ octal and
hexadecimal notation in addition to plain decimal numbers. Matdy) to handle the €+

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

142 Expressions and Statements Chapter 6

character constant notation.

17. (®) Write a functionitoa(int i, char b[]) that creates a string representatiori of b and
returnsb.

18. (*2) Type in the calculator example and get it to work. Do not “save time” by using an already
entered text. You'll learn most from finding and correcting “little silly errors.”

19. ((2) Modify the calculator to report line numbers for errors.

20. (B) Allow a user to define functions in the calculator. Hint: Define a function as a sequence of
operations just as a user would have typed them. Such a sequence can be stored either as a
character string or as a list of tokens. Then read and execute those operations when the function
is called. If you want a user-defined function to take arguments, you will have to invent a nota-
tion for that.

21. [.5) Convert the desk calculator to ussymbol structure instead of using the static variables
number_value andstring_value.

22. ([2.5) Write a program that strips comments out oft& @rogram. That is, read fromwin,
remove both// comments and**/ comments, and write the result¢out. Do not worry
about making the layout of the output look nice (that would be another, and much harder, exer-
cise). Do not worry about incorrect programs. Bewarl of* , and*/ in comments, strings,
and character constants.

23. (®) Look at some programs to get an idea of the variety of indentation, naming, and comment-
ing styles actually used.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	6.1 A Desk Calculator
	6.2 Operator Summary
	6.3 Statement Summary
	6.4 Comments and Indentation
	6.5 Advice

	buy now:

