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Preface

Quantum computing and communications is one of the promising new fields of the
new millennium. This emerging topic has reached the age when not only physicists
and mathematicians but also engineers are becoming more and more interested in
it. This book is based on the first semester of a two-semester subject dedicated to
Ph.D. students and undergraduates in electrical engineering and computer sciences
at Budapest University of Technology and Economics. This first semester covers a
thorough basic introduction to the quantum computing world and discusses quantum-
assisted computing and communications where we use the new paradigm to improve
(assist) the performance of classical systems (e.g. searching in an unsorted database
or strengthening communication security). In addition the second semester deals
with quantum-based communications or more precisely with quantum information
theory (e.g. channel capacity, error correction). After six semesters of experience we
decided to prepare a book which can be used both as lecture notes and as a standalone
learning aid for colleagues with engineering practice.

Although there are several good books on the market none of them has been
written by engineers to engineers. The so-called ‘engineering’ approach has minor
and major differences compared to materials authored by experts of physics, despite
the fact that they cover more or less the same topic. As a simple example for the
former category let us mention that engineers use j rather than i to denote the
imaginary part of a complex number. However, it is not only conventions that make
the discussion different. A presented sophisticated solution of a certain problem and
the proof of its correctness do no satisfy an engineer. She/he always wants to know
the way leading from the definition of the problem via system model construction
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and a logical chain of thoughts before reaching an answer to the original problem.
If this ‘special’ viewpoint is omitted, which happens often when the authors are
not familiar with engineers’ everyday lives, then it always leaves behind a lack of
completeness.

Another important aspect for engineers can be summarized as the ‘need for
practical applications’. A new theory or even an algorithm in itself has limited
value. One has to prove and show that their implementation constraints, such as
computational complexity, required memory, etc., can be fulfilled in the case of
certain practical applications. Furthermore an unambiguous mapping of theoretical
and real-life parameters has to be provided.

Finally, working as an engineer means the permanent study of the science of
making compromises. The outcome of a design process must be precise enough
and cheap enough and manageable enough and etc. and not the most precise or
the cheapest or the most manageable or etc. Hence error analysis must always be
kept at the focus of investigations.

All these endeavors are motivated by the fact that engineers should learn how
to design new practical solutions. We always have this philosophy in sight when
addressing various topics of quantum computing and communications. Of course
we do not want to rank the engineering approach above those of physicists and
mathematicians, we simply state that they are different (and not better or worse)
in some sense. Due to this fact learning and understanding are much easier if
explanations follow the way we are used to.

From a background mathematics’ point of view we assumed a typical curriculum
of engineers and computer scientists, however, the required math has been
summarized in the appendix.

Because of the limited size of this book there are some aspects that are not
discussed in detail. We did not devote an individual chapter to the implementation
questions of quantum computers. Instead at the end of each chapter in the Further
Reading we give a state-of-the-art survey of the current status of implementation
and provide up-to-date references for interested readers. Philosophical questions and
answers are also beyond the scope of this book but we suggest reading e.g. [84, 145]
if the reader has time and would like to widen his/her knowledge.

Now we invite the reader to join us on the journey which is going to pass
sometimes interesting, sometimes strange and sometimes challenging lands of the
quantum world. Do not hesitate, the new world is waiting for you. . .

The Authors



How to use this book

According to ancient legend, one day Alexander the Great, conqueror of the
‘that time known world’ (Greece, Egypt, Persia), asked Menaikhmos the famous
mathematician to teach him geometry in an easier and faster way. Menaikhmos
smiled at this wish and answered: ‘Oh king, you ordered your engineers to build
distinct roads for citizens and for messengers and the army of the king all around
your empire, but there is only one road for all in geometry!’1

Basically we agree with Menaikhmos: learning and understanding quantum
computing and communications need time and effort from the reader. However, we
are convinced that if the way the knowledge is served is chosen carefully and fits
more or less to previous studies of the reader, then high spirits can be maintained at
hard portions of the topic. Before starting the voyage we would like to provide some
useful hints and tools similarly to seamen who check their maps and compasses
before sailing out to sea.

This book can be divided logically into three well-defined parts. Part I explains
the basics of quantum computing and communications. As the next level Part II
introduces well-known quantum algorithms while advanced readers can find several
quantum assisted solutions for state-of-the-art infocom problems in Part III. The
book has been equipped with several special features intended to help the reader.

• A dedicated web site can be found at www.mcl.hu/qcc containing useful
information related to this book.

1The same story is known with Euclid and King Ptolemy.



xvi HOW TO USE THIS BOOK

• All the used notations, acronyms and abbreviations are summarized at the
beginning of this book so that the reader can turn to this list at any time.

• We prepared plenty of exercises from easy to hard-to-answer types, which
allow the reader to test whether his/her understanding is appropriate. The
solutions of exercises can be downloaded from the web site of this book or
a hard copy can be obtained from the publisher. We do not claim, however,
that the proposed solutions are the simplest and shortest ones. Therefore we
encourage diligent readers to find more attractive solutions and send them to
the authors (imre@hit.bme.hu) in latex format. Appropriate alternatives will
be included with the names of their solver into the solutions file.

• As a life belt the reader may find a summary of corresponding mathematical
background in the appendices.

• In order to allow the reader to widen his/her knowledge beyond the scope and
size of this book a carefully selected large list of references has been attached.
We took special care to choose – if possible – such publications that can be
accessed electronically on the Internet so that the reader may save time (and
money).

• The book is amended with a list containing links to the web pages of the most
important leading institutes and laboratories where additional information can
be found or even current activities can be followed.

• Obviously the probability of writing a book without any error is fairly low.
Therefore we ask the reader to address any comments or found errata to
the authors (imre@hit.bme.hu). A regularly updated and downloadable list of
errata is maintained on the book’s web site.
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ă Technical constraint/demand for variable a, e.g. a must
be less than ă
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Part I

Introduction to Quantum
Computing





1
Motivations

1.1 LIFE CYCLE OF A WELL-KNOWN INVENTION

Every invention/technology has its own life cycle, similar to a human being. It can be
shorter or longer but all of them have common phases and stages. Let us summarize
this evolution using the well-known example of steam engine. First, scientists
spend lots of time to find out something new. In our case Heron, a most famous
experimenter, designed and implemented a steam-engined ball named Heron’s ball
(see Fig. 1.1).

Once a new idea has been born a long period of time is required until the
stage when size, cost, efficiency, etc. of pieces of this equipment reach a minimally
required and acceptable level. Many amateurs and experts devote their life to fulfil
these requirements representing the childhood of the technology. The way is paved
with many failures and rare successes therefore most of them remain anonymous
forever. However, one day a clever guy manages to combine the small pieces of
former results and adds something to them thus finally he/she succeeds. Concerning
our example James Watt built the first working steam engine in 1765. Thanks to Mr.
Watt steam technology attained its majority.

In the third phase the technology emerges from the deep of dark and mysterious
laboratories and begins spreading among everyday people. Fulton’s ship Clermont
in 1807 irreversibly ended the glorious age of sailing ships and men of war while
Stephenson’s Rocket in 1829 convinced the skeptics that railway would be the
leading transportation solution on land in the future. Human, sail and animal power
had been replaced by steam engines during some decades from the kitchens via
workshops up to enormously large ships such as Titanic or the battleships of World

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)



2 MOTIVATIONS

Fig. 1.1 Heron’s ball about 100 B.C.

War I. The efficiency of the largest steam engine reached 22000 kW in 1941. Of
course to achieve this level of popularity geniuses have to overcome strong resistance
from those who exert the power. For instance William Symington built a steam-
engined towboat on the Thames and presented her capabilities. Unfortunately the
officials prohibited Symington from using the boat because they were afraid that the
waves generated by the boat might damage the river-bank.

The size/power in itself is, however, not enough to survive (cf. dinosaurs or large
empires). After a certain point efficiency becomes as important as power. It was
foreseen and proven theoretically – long before steam-powered systems reached the
top – that the efficiency of any steam-engine is limited and not enough for example
for flight. If the new demand cannot be satisfied by means of a certain technology
then other, even very young ideas are brought to light while the old one will be
squeezed gradually. The reader may guess the name of the new pretender: yes, it was
the internal combustion engine.

1.2 WHAT ABOUT COMPUTERS AND COMPUTING?

Now let us turn to our ‘home’ science which focuses on computers, computing and
communications. The most important steps towards an electronic computer were
done during World War II when the large number calculations in the Manhattan
project required an elementary new equipment which was fast enough and adaptive
(programmable). Many clever scientists were engaged with this problem. We
mention here the polymath Neumann because he will appear several times in this
book. As we will see later he played important role in quantum mechanics as well
but at this moment we say thank you to him for the invention of the ‘control by
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stored program’ principle.1 This principle combined with the vacuum tube hardware
which formed the basis of the first successful computers.2 Unfortunately the tubes
strongly limited the possibilities of miniaturization hence the first computers filled up
a whole room, which strongly restricted their wide applications. Therefore scientists
paid attention to the small-scale behavior of matter. Fortunately the invention of
semiconductors and the appearance of the transistor in 1948 by Bardeen, Brattain
and Schockley opened the way to personal computers and other handheld equipment.

One day in 1965 when Gordon Moore from Intel was preparing his talk and
started to draw a plot about the performance of memory chips he suddenly observed
an interesting rule called Moore’s law. As it is depicted in Fig. 1.2 he concluded
that since the invention of the transistor the number of transistors per chip roughly
doubled every 18–24 months, which means an exponential increase in the computing
power of computers. Although it was an empirical observation without theoretical
proof the law seems to be still valid nowadays. However, similar to the case of
steam engine farseeing experts tried to determine the future of this technology.
They estimate serious problems around 2015. What reasons may stand behind this
prophecy?

No matter how surprising it sounds this trend can be traced back simply to
drawing lines. The growth in processors’ performance is due to the fact that we
put more and more transistors on the same size chip. This requires smaller and
smaller transistors, which can be achieved if we are able to draw thinner and thinner
– even much thinner than a hair – lines onto the surface of a semiconductor disk.
Next current technology enables us to remove or retain parts of the disk according
to the line structure evolving to transistors, diodes, contacts, etc. Apart from the
technical problem of drawing such thin lines one day our lines will leave our well-
known natural environment with well-known rules revealed step by step during the
evolution of human race and enter into a new world where the traveler must obey
new and strange rules if he/she would like to pass through this land. The new world
is called nano-world, the new rules are explained by quantum mechanics and the
border between the worlds lies around nanometer (10−9m) thickness. Fortunately
scientists have already performed many reconnaissance missions in the nano-scale
region thus we have not only theoretical but also technology-related knowledge in
our hands called nanotechnology.

From a computer scientist’s point of view, who has algorithms and programs in
his/her mind, the growth in the capabilities of the underlying hardware is vital. If we
have an algorithm which is not efficient often enough time alone solves the problem
due to the faster new hardware. We can say that we got used to Moore’s law during
the last decades and forgot to follow what is happening and what will happen with
the hardware. For decades, this attitude was irrelevant but the deadline to change it
is near to its expiration. Fortunately experts called our attention to the fact that we

1The third area where he is counted among the founding fathers is called game theory.
2As an interesting story we mention here that Neumann was talented in mental arithmetic, too. The correct
operation of the computer under construction was tested by multiplying two 8-digit numbers. Typically
Neumann was the fastest.
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Fig. 1.2 Moore’s law

will have to face serious problems if this trend cannot be maintained. One thing is
sure, however, the closer we are to the one-electron transistor (see Fig. 1.2) disturbing
quantum effects will appear more often and stronger. Hence either we manage to find
a new way of miniaturization or we have to learn how to exploit the difficulties and
strangeness of quantum mechanics. Independently from the chosen way we must
do something because Computing is a must or as ancient Romans said “Navigare
necesse est!”

In compliance with the latter concept Feynman suggested a new straightforward
approach. Instead of regarding computers as devices working under the laws of
classical physics – which is common sense – let us consider their operation as a
special case of a more general theory governed by quantum mechanics. Thus the
way becomes open from the hardware point of view. On the other hand hardware
and software always influence each other. Since new hardware concepts require
and enable new software concepts we have to study quantum mechanics from a
computer science point of view. Moreover it is worth seeking algorithms which
are more efficient than their best classical counterparts thanks to the exploited
possibilities available only in the quantum world. These software-related efforts
are comprehended by quantum computing. Once we familiarized ourselves with
quantum-faced computing why keep communications away from the new chances.
May be the capacity of a quantum channel could exceed that of classical cable
or we could design more secure protocols than currently applied ones. Quantum
communications or quantum information theory tries to answer these questions.

Realization issues are out of the scope of this book thus we mention here that
there are fairly promising results in certain areas e.g. implementation of secure
quantum-based communications but we do not want to conceal that desktop quantum
personal computers are far from introduction to the market. Concerning the subject
of our book, quantum computing and communications have passed several important
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milestones. Top experts have experimentally validated algorithms which overcome
the classical competitors. For instance we are able to find an item in an unsorted
database or factorize large numbers very quickly. Quantum principles allow solving
easily a long discussed problem, namely random number generators e.g. [21].
Furthermore as we mentioned before, implementation of certain algorithms reached
such a stage that one can buy corresponding equipment in an appropriate shop.
Fortunately many questions are waiting to be answered thus the reader will find not
only solutions but open questions in this book. Nothing shores up more convincing
the spreading of the new paradigm than the fact that more and more publications
appear in popular science magazines and journals [38, 22, 110, 115].

Remark: Moore’s law has several interpretations depending on which side of the
market it has been phrased

• Rock’s law: “The cost of capital equipment to build semiconductors will
double every four years.” by Arthur Rock (industry)

• Machrone’s law: “The machine you wants always costs $5000.” by Bill
Machrone (customer)

• If the reader is familiar with other versions of Moore’s law we ask him/her
to post it to the authors (imre@hit.bme.hu) so that we will share them on the
book’s web page.

1.3 LET US PLAY MARBLES

Playing games is as old as humankind. To give further motivations to study quantum
computing and communications and to read the remaining more then 250 pages of
this book we suggest playing a simple but interesting game. First let us introduce our
virtual friends who are always ready to participate in games or any other experiment.
They are Alice, Bob and Eve. Since Eve is often inclined to act the young rascal any
time when we need an eavesdropper or negative hero she will be happy to play this
role.

Alice and Bob decide to join. We explain the rules of the game to them (cf.
Fig. 1.3). We have a sack full of marbles. First we put 0, 1, 2, 3 or 4 marbles into a
blue colored box. Our choice is uniformly random. Next we take a red box and flip
a coin. In compliance with the result if we got a tail we put marbles from the sack
into this box such that the total number of marbles in the two boxes will be 4 else we
complement them to 6. Now we ask Alice and Bob to enter two perfectly separated
rooms which prevent any type of communications between them i.e. they are shaded
from voice, electromagnetic radiation, etc. Both of them are only allowed to take one
of two identical, previously prepared devices each having an integer input and a one-
bit output. When our players have seated themselves comfortably we give Alice the
blue box while Bob obtains the red one. Now they are allowed to open the boxes and
feed the device with the number of marbles. Next each of them has the possibility to
give a one-bit sign according to the device’s output, for instance via setting a flag in
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Fig. 1.3 Alice and Bob are playing marbles

an up or down position. If they are able – based on this sign and their own marbles
– to design a perfect device (i.e. strategy or mapping) which makes obvious to the
audience whether the coin has fallen onto heads or tails then they win this turn and
are rewarded with a pair of cinema or theatre tickets.

Alice and Bob are clever and wily hence they investigate first the existence
of such a strategy which provides success with probability 1. Let (x; y) denote
a certain configuration, where x refers to the number of Alice’s marbles while
y to that of Bob. If the total number of marbles equals 4 then one of the
following five combinations has been prepared: {(0; 4), (1; 3), (2; 2), (3; 1), (4; 0)}.
On the other hand Alice and Bob have to face one element of the following set:
{(0; 6), (1; 5), (2; 4), (3; 3), (4; 2)}.3

It is easy to see that no classical strategy exists which ensures certain success.
However, interestingly as we will present at the end of Part I a simple quantum
protocol allows Alice and Bob to make any combination unambiguous for the
audience. This seems to be in total contradiction to our classical theory of probability
or more generally how nature works. We hope that the reader is eager to learn this
protocol and we ask him/her to read the basics before turning to those pages. In the
meantime we call the reader to participate in the quest of the most efficient classical
strategy that results in the largest probability of success if the game is repeated
many times. Please, post your candidate strategy with derivation of the corresponding
probability of success to the authors (imre@hit.bme.hu) in ps or pdf format. Correct
strategies will be published on the book’s web page.

3Configurations (5; 1) and (6; 0) are trivially excluded since Alice is given at most 4 marbles.
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Quantum Computing

Basics

This chapter is devoted to the basic information, techniques and skills required to
travel around the quantum world safely. First we introduce quantum phenomena
using the strange sounding probabilistic

√
I gate in Section 2.1. Quantum computing

is rooted in quantum mechanics therefore Section 2.2 explains the postulates of
quantum mechanics which form the solid base of any further discussion. Next we
build bridges between classical and quantum computing in Section 2.3 and 2.4 where
generalization of registers and logic gates are investigated. The following Section 2.5
analyzes an interesting quantum circuit called quantum interferometer. Quantum
mechanics offers certain possibilities which are not present in classical computing.
The most important one which connects pieces of quantum information very tightly
is referred to as entanglement and is introduced in Section 2.6. As in everyday life
everything has its price. The price of entanglement has some restrictions e.g. we
can use the COPY command in quantum computing as explained in Section 2.7.
Finally we show how to prepare an arbitrary quantum state in a quantum register in
Section 2.8.

2.1 MYSTERY OF PROBABILISTIC
√

I GATE

We propose to start getting acquainted with quantum computing and communications
by means of a thought experiment leading to a fairly surprising result. Let us
investigate coin tossing using scientific apparatus. If one flips a coin she/he will

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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Fig. 2.1 Scientific model for coin tossing

obtain a head or a tail randomly. When we have a legal coin1 tossed enough times
then statistically both results occur about half of the times. This operation can
be modeled by means of a device depicted in Fig. 2.1 where heads and tails are
represented by logical 0 and 1, respectively. Transition probabilities are defined in
the following manner

pkl � P (out = l | in = k); k, l ∈ {0, 1},

and obviously
∑

l pkl = 1. Moreover our model is able to handle counterfeiters
with illegal coins demanding pkl different from 0.5. However, from the scientific
point of view we have constructed the most general binary memoryless probabilistic
function f : {0, 1} → {0, 1}. Its operation becomes deterministic only either if
p00 = p11 = 1, p01 = p10 = 0, which models an identity transformation (shortcut)
or when p00 = p11 = 0, p01 = p10 = 1 implements an inverter.

Now we make the experiment more difficult by tossing a certain coin two times
successively, which can be modelled by concatenating two boxes according to
Fig. 2.2. Furthermore we are interested in the transition probabilities Pkl of a special
single gate which is equivalent to the two-gate configuration. It is reasonable to
assume that the two tossings are independent thus basic probability theory advises
us how to calculate different Pkl

P00 = p00p00 + p01p10,

P01 = p01p11 + p00p01,

P10 = p11p10 + p10p00,

P11 = p11p11 + p10p01. (2.1)

Interestingly if p00 = p11 = p01 = p10 = 0.5 then P00 = P11 = P01 = P10 = 0.5,
that is using two concatenated gates provides the same result as a single one which

1Readers from telecom may consider binary symmetric channel as an equivalent problem.
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Fig. 2.2 Scientific model for concatenated coin tossing

is in full harmony with our everyday experiences, namely flipping a coin twice
produces random results similarly to a single tossing.

With this point our view of nature proved to be round and complete. However,
readers who are not familiar with quantum mechanics are kindly asked to steel their
hearts. There exist devices which operate in full compliance with the random coin
tossing model if only one of them is investigated, but when concatenating two of
them the output becomes suddenly deterministic! Deterministic means here that the
two gates together look as if they implemented an identity transform.

Maybe probability theory is able to provide a reassuring answer to this paradox.
Identity means that P01 and P10 must be equal to zero. Unfortunately the
corresponding equations in (2.1) contradict this demand because identity requires
nonzero p00 and p11, thus to achieve P01 = P10 = 0 one needs p01 = p10 = 0
since negative probabilities are not allowed. On the other hand individual random
behavior cannot be imagined with p01 = p10 = 0. Our well-known and well-tried
classical probability theory seems to be in real trouble. Is the situation really that
serious? Fortunately not, at least in terms of everything we have learned in the frame
of classical probability theory remain valid provided one does not want to extend
his/her journey to the nano-scale world. Unfortunately we have just started such a
visit therefore we need a new theory to explain this surprising identity operation and
to be general enough to describe traditional coin tossing as well.

This new theory is called quantum mechanics. Before revealing our strange device
which will be referred as probabilistic

√
I (square root identity) gate2 let us illustrate

a potential mathematical apparatus which is able to handle this unusual phenomenon.
Roughly speaking Schrödinger suggested assigning so-called probability amplitudes
to nano-scale events instead of classical probabilities. Unlike classical probability p
which should be real and can have values between 0 and 1 probability amplitudes
c are complex numbers. Probability amplitudes can be handled in the same way
as classical probabilities when considering e.g. alternative or independent events.
Moreover the observed classical probability can be determined in a very simple
way namely p = |c|2. Unfortunately we are able to access probability amplitudes

2
√

I
√

I = I .
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Fig. 2.3 Concatenated probabilistic
√

I gates

only indirectly via measurements (observations) representing the bridge between the
macro-scale classical and nano-scale quantum worlds. It has to be emphasized that
only one world exists which obeys the rules (postulates) of quantum mechanics but
our everyday strongly limited observation possibilities show a certain ‘projection’
of it. This is maybe the most disturbing consequence of quantum mechanics. So we
ask the reader not to be worried at this stage since we are going to return to this
strangeness several times within the introduction so that he/she can accept3 it easier.

In possession of the notion of probability amplitudes we are able to design suitable
probabilistic

√
I gates and concatenate two of them, see Fig. 2.3. If one would like to

define the quantum equivalent of the legal coin tossing then c00 = c01 = c10 = 1√
2

and c11 = − 1√
2

has to be set up. Let us check the transition probability amplitudes
of the equivalent single gate

C00 = c00c00 + c01c10 =
1√
2

1√
2

+
1√
2

1√
2

= 1,

C01 = c01c11 + c00c01 =
1√
2

(
− 1√

2

)
+

1√
2

1√
2

= 0,

C10 = c11c10 + c10c00 =
(
− 1√

2

)
1√
2

+
1√
2

1√
2

= 0,

C11 = c11c11 + c10c01 =
(
− 1√

2

)(
− 1√

2

)
+

1√
2

1√
2

= 1. (2.2)

The experienced classical probabilities can be calculated by the ‘squared absolute
value’ function that is P00 = P11 = |1|2 and P01 = P10 = |0|2, which is the identity
transform.

A plausible explanation of this surprising result can be given if the reader
considers the arrows in Fig. 2.3 as waves (sinusoid signals) with amplitudes ckl and
these waves interfere with each other causing total wipe out or maximal gain. This

3Unfortunately either we accept it or not as with the axioms of Euclidian geometry, which are based on
the reasonable argument that everything that contradicts the experimental results has to be rejected while
those statements which prove to be in harmony with them can be accepted.
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I gate – the half-silvered mirror

reasoning is much closer to the truth than one may expect because our mysterious
equipment which contradicts the classical probability theory is a half-silvered mirror
(or beam splitter). It operates in the following way (see Fig. 2.4). When a great
amount of photons are shot onto the beam splitter about half of them hits the vertical
detector and the remaining half arrives at the horizontal detector. Next we connect
the outputs of such a device by means of traditional mirrors to the inputs of an
identical half-silvered mirror. Surprisingly the horizontally launched photons always
hit the vertical detector (see Fig. 2.5). It is hard to interpret this result using our
classical view of nature. If we consider the photon as a small marble whose way
is chosen randomly at each beam splitter then it is impossible to explain why the
photon is directed each time to the same detector. Maybe deploying a detector onto
one of the paths between the two beam splitters can answer which way the photon
was travelling? However, the photon does not accept this trick. Because of the extra
detector the operation of the configuration loses its deterministic nature and becomes
random as if only the second half-silvered mirror were used alone. This is another
important lesson. Measurements typically influence the observed system and thus the
measurement results themselves. A more successful attempt if the photon is regarded
as a marble before arriving the first beam-splitter is that it turns into a wave which
propagates on both paths. At the second half-silvered mirror the two waves (the
photon) interfere(s) (with itself) and convert back to a marble before striking the
detector. This explanation highlights why the concatenated probabilistic

√
I gates

are referred as quantum interferometer.
Finally we would like to emphasize that there is no sense in thinking about

the state of the photon (which path it is taking), it must be considered as being in
both states (both paths) at the same time and the measurement force it to collapse
(select) into one of them. This differs fundamentally from our classical approach
which assumes that the photon always travels along a single path hidden to the
eyes of the observer and measurements only reveal this path instead of deciding
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Fig. 2.5 Concatenated half-silvered mirrors as identity transformation

it. We will analyze the interferometer more scientifically in Section 2.5 and discuss
measurements in Chapter 3.

Remark: Let us throw some light upon the close connection between the
measuring apparatus and the measured object using the widely known microscopy.
Optical microscopes use the reflected photons from the object’s surface. To achieve
reflection the half-wavelength of the photon (more precisely light is considered as a
wave at this point) has to be smaller than the unevenness of the surface. Therefore in
order to observe smaller and smaller details we need shorter and shorter wavelengths
e.g. X-rays. On the other hand the light can be regarded as a series of photons.
Each photon has its mass and thus its energy which depends on the frequency of
the light. The higher the frequency then the higher the corresponding energy. Since
frequency and wavelength are in inverse relation the reflecting photon transfers more
and more energy to the observed object, that is the photon influences it more and
more radically.

2.2 THE POSTULATES OF QUANTUM MECHANICS

Nobody knows how the physical world really operates. The only thing we can
do is to model it. A given model/theory can be regarded as a suitable tool for
the description of events all around us if the difference/error between expectations
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originating from the theory and the observations remain below a certain limit. For
instance different models were developed for throwing during the history of the
human race. First cavemen formed some simple rules based on experiences related to
the power and angle of throwing. Although this approach ensured a high percentage
hit on a mammoth it proved to be insufficient for cannon-balls. Later Isaac Newton
introduced gravity and more sophisticated formulas which enable more or less
precise hits on the enemy’s castle if the shell is regarded as a zero-sized elementary
mass and the trajectory is calculated in advance. Unfortunately in order to enter the
spaceflight and advanced astronomical age Newtonian theory had to be replaced by
relativity theory, which provides a high probability of survival for astronauts fired out
towards the moon. This proposal handles the spaceship as a marble rolling ahead in
the elastic textile of space-time curved by planets and stars. These models represent
different viewpoints about nature therefore they give different explanations of how
the world operates but what they have common is that they do not answer why the
world operates that way.

Each theory is based on several assumptions that cannot be verified theoretically,
only experiments shore up that they are in consonance of the nature. For example
Euclidian geometry has so-called axioms e.g. the sum of angles in a triangle equals
180◦. However, these assumptions can be replaced by other ones, for instance the
sum of angles in a triangle is less or greater than 180◦ leading to Riemanian (elliptic)
or Bolyaian (hyperbolic) geometry.

In the case of quantum mechanics we have four assumptions called postulates
which form a solid base for the theory. According to our state-of-the-art knowledge
most of the rules in the universe can be traced back to these postulates and only
a few effects such as the long-range gravity seem to be an exception. Thousands
of scientists are spending their scientific life trying to discover the so-called great
unified theory (GUT) which is able to squeeze these two theories, i.e. relativity theory
and quantum mechanics, into a single one.4

Because not only the universe but also the content of this book are based on these
postulates let us summarize them from a quantum computing point of view.

First Postulate (state space): The actual state of any closed physical system can be
described by means of a so-called state vector v having complex coefficients
and unit length in a Hilbert space V , i.e. a complex linear vector space
(state space) equipped with an inner product.

A two-dimensional Hilbert space can be regarded as the simplest example of
a closed physical system. The state of the system can represented by means
of a two-dimensional vector v = [a, b]T = a0 + b1, where 0 = [1, 0]T and
1 = [0, 1]T stand for the orthonormal basis vectors of the Hilbert space V and
a, b ∈ C. In order to preserve the unit length constraint the following relation
binds together the coefficients |a|2 + |b|2 = 1. The coordinates of a quantum

4Roughly speaking the problem can be focused on the geometry of space and time or space-time, which
is handled in totally different ways in relativity theory and quantum mechanics.
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state vector are often referred as probability amplitudes because they play the
role of amplitudes in Schrödinger wave functions describing the location of
particles.

Second Postulate (evolution): The evolution of any closed physical system in time
can be characterized by means of unitary transforms depending only on the
starting and finishing time of the evolution.

According to the previously introduced physical system the second Postulate
can be interpreted as v′(t2) = U(t1, t2)v(t2) and v′ ∈ V .

The above definition describes the evolution between discrete time instants,
which is more suitable in the context of quantum computing, however, we cite
here its original continuous-time form known as the Schrödinger equation

Hv = i�
∂v
∂t

,

where � denotes the Planck’s constant5 and H/� represents the so-called
Hamiltonian, a Hermitian operator characterizing the evolution of the system.
Comparing H to U the former is time invariant. The connection between the
two approaches can be bridged by means of the following relation

U(t1, t2) = e
−iH(t2−t1)

� .

Those readers who are not familiar with operator functions are advised to read
Section 12.2.6.

The linear algebraic representation of a unitary operator U is a quadratic
matrix U which consists of elements Uij denoting the conditional probability
amplitude connecting input orthonormal basis vector j with vector i. Unitarity
has several equivalent definitions which are summarized in Section 12.2.5.

Third Postulate (measurement): Any quantum measurement can be described by
means of a set of measurement operators {Mm}, where m stands for the
possible results of the measurement. The probability of measuring m if the
system is in state v can be calculated as

P (m | v) = v†M †
mMmv,

and the system after measuring m goes to state

v′ =
Mmv√

v†M †
mMmv

.

Because classical probability theory requires that∑
m

P (m | v) =
∑
m

v†M †
mMmv ≡ 1,

5h = 6.6260755 · 10−34 Js.
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measurement operators have to satisfy the following completeness relation

∑
m

M †
mMm ≡ I.

Measurements are obviously not reversible and therefore they represent the
only exception under the unitarity constraint. We can say that measurements
connect the quantum and classical worlds6 or measurements are the only
tools which allow taking a look at what happens in the quantum world.
Unfortunately they prove to be very coarse, like an elephant in a porcelain
store, i.e. they influence the system itself under measurement as the second
part of the third Postulate and our former discussion about microscopes claim.

The completeness relation is very useful when designing measurements
because it allows checking whether all the possible outcomes were taken into
account.

Fourth Postulate (composite systems): The state space of a composite physical
system W can be determined using the tensor product of the individual systems
W = V ⊗ Y . Furthermore having defined v ∈ V and y ∈ Y then the joint
state of the composite system is w = v ⊗ y.

2.3 QBITS AND QREGISTERS

The postulates of quantum mechanics introduced in the previous section provide
exact mathematical formulations of the basic rules of nature. However, they are far
from everyday computer scientist or engineering practice. We would rather prefer a
higher level abstraction which hides real physical particles and processes and allows
the application of such notions as bit, register, gates, circuits and last but not least
communication channels because they represent our homely environment. Therefore
this section is devoted to building up a similar level of abstraction for the quantum
universe.

The smallest information-bearing unit is called a bit. It contains either 0 or 1 but
only one of them at the same time. A coin is a good classical realization of a bit. It
has two sides, a head and a tail, and one can assign logical values 0 and 1 to them.
In compliance with the first Postulate the simplest quantum system can be described
by means of a two-dimensional complex valued vector in a two-dimensional Hilbert
space. We call it a qbit and the reader may think of an electron or photon as physical
implementations. Column vector v will be denoted by |v〉 and pronounced as ‘ket v’
according to Dirac and the literature.

A qbit has two ‘computational basis vectors’ |0〉 and |1〉 of the Hilbert space
corresponding to the classical bit values 0 and 1 and an arbitrary state |ϕ〉 of a qbit is

6A coarse definition of a classical world is that part of the universe which can be observed by means of
the five original senses. Or in a more compact form everything which is above the nanometer scale.
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nothing else than a linearly weighted combination of the computational basis vectors

|ϕ〉 = a|0〉 + b|1〉 = a

[
1
0

]
+ b

[
0
1

]
=

[
a
b

]
, (2.3)

where the weighting factors a, b ∈ C are the so-called probability amplitudes,
thus they must satisfy |a|2 + |b|2 = 1. This is in full harmony with the third
Postulate which states when measuring a qbit we will obtain |0〉 with probability
|a|2 and |1〉 with |b|2, respectively. We strongly emphasize here again that before the
measurement the qbit has both logical values, i.e. it is in both computational basis
states at the same time and the measurement allows the qbit to collapse into one
of them. This completely differs from the classical approach which assumes that the
coin is in one of the logical states before the measurement and the measurement only
reveals this fact.

Computational basis states are orthogonal therefore from a practical point of view
the computational basis vectors of a photon can be represented by horizontal and
vertical polarization or for an electron, spin up and spin down can play these roles.
The terminology widely used in the literature, which refers to the linearly weighted
superposition of computational basis vectors (even for more than two-dimensional
Hilbert spaces), is superposition.

We will denote the row vector corresponding to |ϕ〉 as 〈ϕ| using the pronunciation
‘bra ϕ’. The relation between column and row vectors are |ϕ〉 = (〈ϕ|)†.

The inner (scalar) product of two vectors |ϕ〉 and |ψ〉 gives the explanation of
these strange names. It has to be written as 〈ϕ|ψ〉 and as the reader has already
guessed we will say ‘braket’ or more precisely ‘bracket’ ϕ and ψ.7

Before building more complex systems from qbits let us introduce a spectacular
geometrical representation of a single qbit. This requires us to rewrite (2.3) into a
more plausible form

|ϕ〉 = ejγ
[
cos

(α

2

)
|0〉 + ejβ sin

(α

2

)
|1〉

]
, (2.4)

where α, β, γ ∈ R. Factor ejγ is called the global phase. Since its absolute value
equals 1 the global phase does not influence the measurement statistics which rely
on the | · |2 function of the probability amplitudes. Due to this reason the global phase
is often omitted during the analysis of quantum algorithms and circuits.

While (2.3) can be viewed as a vector in a two-dimensional Descartes
(orthogonal) coordinate system whose axes are complex planes requiring four
geometrical axes to draw the vector, (2.4) without ejγ hides the description of a
vector in a three-dimensional polar coordinate system. Polar coordinate systems need
two real angles α, β and the length of the vector which is trivially 1 in our case
thanks to the first Postulate. This special visualization is linked to Felix Bloch, thus
we call the coordinate system in Fig. 2.6 the Bloch sphere. We can convert the polar

7Dirac had a colorful and witty personality, didn’t he?
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Fig. 2.6 Geometrical visualization of one qbit in the Bloch sphere

coordinates into three-dimensional Descartes coordinates in the following manner

|ϕ〉 = [x, y, z]T = [cos(β) sin(α), sin(β) sin(α), cos(α)]T . (2.5)

Finally we emphasize that the Bloch sphere gives visualization up to a global
phase ejγ . If we decide for another γ then |ϕ〉 will point to another position on the
surface.

Similarly to classical computer science a collection of n qbits is called a qregister
of size n. It may contain any of the N = 2n-dimensional computational basis
vectors, n qbit of size, or arbitrary superposition of these vectors. If the content of
the qbits of a qregister is known then the state of the qregister can be computed by
means of a tensor product in compliance with the fourth Postulate in the following
way |ϕ〉 = |qbitN−1〉 ⊗ |qbitN−2〉 ⊗ · · · ⊗ |qbit1〉 ⊗ |qbit0〉.

Let us consider a simple example with two qbits

|ϕ1〉 =
|0〉 + |1〉√

2
, |ϕ2〉 =

|0〉 + |1〉√
2

.
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When we join the two qbits we yield a four-dimensional qregister |ϕ〉

|ϕ〉 ≡ |ϕ1〉|ϕ2〉 ≡ |ϕ1, ϕ2〉 ≡ |ϕ1ϕ2〉

=
|0〉 ⊗ |0〉 + |1〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |1〉

2
=

|00〉 + |01〉 + |10〉 + |11〉
2

.

This result explains that the state of a two-qbit register consists of four, linearly
weighted (by probability amplitudes) computational basis vectors. These vectors –
00, 01, 10 and 11 – are nothing else than the potential contents of a classical two-
bit register. However, in our quantum case all of them are squeezed into a single
qregister. States which can be produced from individual lower dimensional states by
means of tensor product are called product states.

What happens if we measure the first qbit? Let us assume |ϕ1〉 = |0〉 as
the measurement outcome. The state of the qregister changes because of the
measurement to

|ϕ〉 = |0〉 ⊗ |0〉 + |1〉√
2

=
|00〉 + |11〉√

2
,

which highlights the fact that a qregister does not contain necessarily all the basis
vectors. More precisely we should say that the missing computational basis states
are present in the superposition but with zero probability amplitudes.

If we generalize this simple example with two gbits to an n-gbit register then its
general state can be characterized by

|ϕ〉 =
2n−1∑
i=0

ϕi|i〉,

where ϕi represents the probability amplitude belonging to the computational basis
state |i〉. Wait! Is it true than that such a qregister contains 2n different classical
numbers at the same time? The answer is unanimously yes. The consequences prove
to be really dizzying. Provided n = 500 the corresponding qregister comprises more
classical numbers than the number of all atoms in the known universe! In order to
picture how large this 2500 is we assume an extraterrestrial being which decided
shortly after the big bang to move only a point of a pencil made of black lead from
one place on her desk to another, carbon atom by carbon atom. She started this
persistence-requiring hobby about 15,000,000,000 years ago. If she takes an atom
each second then she has only completed 1

100,000 of the job although only a small
point of pencil has been considered. . .

Furthermore we are able to perform a mathematical operation in a single step
on all the numbers, which can be regarded as an extraordinary parallel processing
capability. Unfortunately as we will see later only one of the numbers can be
accessed when asking (measuring) about the content of the qregister. Therefore the
real challenge is not the usage of quantum parallelism, but to design suitable gates
or algorithms which are able to increase the probability amplitude of the wanted
result as close to 1 as possible thus ensuring almost certain success during the
measurement.
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Finally we mention here that our attempts to give geometrical visualization of
quantum systems has ended with the one-qbit Bloch sphere because the organs of
senses of human race are confined to three space dimensions.

2.4 ELEMENTARY QUANTUM GATES

We have outlined the analogy between classical and quantum computing in terms
of how to describe information-storing entities called registers. The next obvious
question is how to generalize classical operations (logic gates and circuits) on
classical registers to their quantum counterparts. The second Postulate clearly
explains that time evolution of the states of quantum registers can be modelled by
means of unitary operators which are often referred to as quantum gates. Therefore
a quantum gate can be regarded as an elementary quantum-computing device which
performs a fixed unitary operation on selected qbits in a fixed period of time. One-
qbit quantum gates are called elementary quantum gates. Since unitary operators
have several interesting and useful properties we suggest the reader jumps to
Section 12.2.5 for a few moments.

Before getting acquainted with some widely used simple quantum gates let us take
a short detour to clarify an apparent paradox. We know that unitary operators are
reversible and they are implementing a distance-preserving mapping. Furthermore
we have learned that the quantum description of nature is more general than the
classical one, that is there may exist quantum phenomena that cannot be explained
using the classical theory but quantum mechanical postulates have to fit to all
classical events. However, even the reader is able to list classical logic gates which
are not reversible such as AND, XOR, etc. For instance if an XOR gate8 emits a 1
we cannot be sure whether the inputs were (0,0) or (1,1). The situation seems to be
very hard, maybe quantum mechanics is not complete? In order to banish the storm-
clouds we suggest reading again the corresponding postulate. It begins with ‘The
evolution of any closed physical system. . . ’, which gives the key. AND and XOR
gates are not closed systems. If we extended the XOR gate with an extra output bit
(e.g. it is enough to connect one of the inputs to this extra output) then we would be
able to reveal both input bits unambiguously. In full compliance with this conclusion
unitary gates have quadratic matrices i.e. they have the same number of inputs and
outputs.

Now the time has come to introduce several basic, one-qbit quantum gates U . We
will present their operation on most general one-qbit state |ϕ〉 = a|0〉+ b|1〉 and the
outcome state will be referred as |ψ〉 = U |ϕ〉. We start with the quantum analogy of

8Irreversibility of the XOR gate can also be originated from the fact that it has two input bits but only a
single one-bit output.
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the classical inverter called the bit-flip gate or Pauli-X gate

|ψ〉 = X |ϕ〉 =
[

0 1
1 0

]

a
b




[
b
a

]
= b|0〉+ a|1〉.

It is easy to see that the bit-flip gate exchanges the probability amplitudes of the
computational basis states. Considering the classical case, that is |ϕ〉 = |0〉 or |1〉,
|ψ〉 will be the inverse of |ϕ〉.

Our next quantum gate has no classical predecessor but it is rather motivated by
the bit-flip gate. The Pauli-Z or phase-flip gate flips the phase of the input state

|ψ〉 = Z|ϕ〉 =
[

1 0
0 −1

]

a
b




[
a
−b

]
= a|0〉 − b|1〉.

As a simple rule of thumb one can realize that the phase-flip gate multiplies the
probability amplitude of computational basis state |1〉 by −1.

To make the set of Pauli-gates complete we define the Pauli-Y gate in the
following way

|ψ〉 = Y |ϕ〉 =
[

0 −j
j 0

]

a
b




[−jb
ja

]
= −jb|0〉+ ja|1〉,

which results in exchanged probability amplitudes multiplied by j.
The effect of Pauli gates can be easily visualized exploiting the Bloch sphere from

the previous subsection. Rotations around the x, y and z axes can be generated by
Pauli gates. For instance a rotation by angle α around the x axis can be expressed as

e−j α
2 X = cos

(α

2

)
I − j sin

(α

2

)
X,

where we exploited the definition of operator functions discussed in Section 12.2.6.
A simple sheet of glass can behave as an elementary quantum gate as we will see

soon in Section 2.8. Its quantum logic name is phase-rotator gate or phase gate and
it performs the following operation

|ψ〉 = P (α)|ϕ〉 =
[

1 0
0 ejα

]

a
b




[
a

ejαb

]
= a|0〉 + ejαb|1〉.
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Finally we discuss the so-called Hadamard gate. For a general input it produces

|ψ〉 = H |ϕ〉 =
1√
2

[
1 1
1 −1

]


a
b




[a+b√
2

a−b√
2

]
=

a + b√
2

|0〉 +
a − b√

2
|1〉. (2.6)

It is easy to see taking a look at the related matrix that the Hadamard gate is
not only unitary but it is Hermitian (H† = H), too. Furthermore HH = I as the
reader can deduce in Exercise 2.1. Pauli gates and the Hadamard gate have special
connections explained in Exercise 2.2, HXH = Z , HY H = −Y and HZH = X .
The first and the third relations highlight the fact that the bit-flip and phase-flip
gates can substitute for each other when Hadamard gates are available i.e they are
equivalents up to the Hadamard transform.

Because Hadamard gates are often initialized with classical inputs in many
quantum-computing algorithms we provide here the corresponding outputs

H |0〉 =
|0〉 + |1〉√

2
,

H |1〉 =
|0〉 − |1〉√

2
. (2.7)

Both results suggest that a Hadamard gate feeded with classical states creates
a uniformly distributed superposition of all the computational basis vectors and
only the sign of the amplitudes may vary. This simple observation can be easily
generalized for n-qbit registers whose each individual qbit is connected to a one-
qbit Hadamard gate. First we present the outcome provided an all-zero input |ϕ〉 =
|000 . . .0〉

|ψ〉 = H⊗n|ϕ〉 =
1√
2n

2n−1∑
i=0

|i〉, (2.8)

where H⊗n stands for the joined n-qbit Hadamard gate. If we use an arbitrary
computational basis state |k〉, k = 0, 1, . . . , 2n − 1 as the input then the output
superposition can be computed in the following manner

H⊗n|k〉 =
1√
2n

2n−1∑
i=0

(−1)ik|i〉, (2.9)

where ik refers to the binary scalar product of the two decimal numbers considering
them as binary vectors (sum of bitwise products modulo 2).

Next we use the Hadamard gate to emphasize the superposition principle which
proves to be often very useful when analyzing quantum circuits or algorithms. We
applied the matrix-vector operation to compute the outcome of the Hadamard gate
assuming arbitrary initial superposition in (2.6). The same results can be achieved if
the gate is feeded with each computational basis state individually and the results are
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added together. Equations (2.7) presented the requested individual output states thus

|ψ〉 = H |ϕ〉 = a
|0〉 + |1〉√

2
+ b

|0〉 − |1〉√
2

=
a + b√

2
|0〉 +

a − b√
2

|1〉,

which reinforces (see (2.6)) the applicability of the superposition principle.
We close this subsection with some useful definitions. A quantum network

or quantum circuit is a quantum-computing device consisting of quantum logic
gates whose computational steps are synchronized in time. The outputs of some
of the gates are connected by wires to the inputs of others. The size of the
network is its number of gates. A quantum computer will be viewed in this book
as a quantum network (or a group of quantum networks). The term quantum
computation/computing is defined as a unitary evolution of the network which takes
its initial input state to some final output state.

Exercise 2.1. Prove in several different ways that HH = I .

Exercise 2.2. Prove that HXH = Z , HY H = −Y and HZH = X .

2.5 GENERAL DESCRIPTION OF THE INTERFEROMETER

We have provided a plausible explanation based on complex valued probability
amplitudes in Section 2.1 when the

√
I gate were explained. Now, in possession

of the Postulates of quantum mechanics and having gathered some experiences
with simple quantum transformations it is worth describing the operation of the
interferometer. Fig. 2.7 depicts a more general architecture than the previously
discussed one, that is two sheets of glass were deployed into the ways of photons.
Their role is to introduce different delays into the propagation along the two paths
and thus enabling a more general description of the interferometer.

Since this is our first quantum circuit analysis we use the linear algebraic approach
and follow the operation step by step. On the other hand we ask the reader to perform
the analysis by means of the plausible superposition principle in Exercise 2.3.

First we define the transforms implemented by hardware elements providing a
quantum-computing type abstraction. The matrix describing a beam splitter can be
easily produced taking into account the block diagram of the probabilistic

√
I gate

and assigning logical in- and outputs while having in sight Fig. 2.7 and considering
that Hij stands for the conditional probability amplitude connecting the input
computational basis state |j〉 to output |i〉, i, j ∈ {0, 1}

H =
1√
2

[
1 1
1 −1

]

which is nothing else than the Hadamard gate. The two sheets of glass are functioning
as phase shifters acting on different computational basis vectors thus

P =
[

ejα0 0
0 ejα1

]
.
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Fig. 2.7 Generalized interferometer
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Fig. 2.8 Abstract quantum circuit of the generalized interferometer

For the sake of practicing what we have learned let us calculate the input and
output states of each gate in detail, only this time in compliance with Fig. 2.8.
Shooting photons horizontally onto the first half-silvered mirror means an initial state
|ϕ0〉 = |0〉. The beam splitter carries out a Hadamard transform

|ϕ1〉 = H |ϕ0〉 =
1√
2

[
1 1
1 −1

]


1
0




[ 1√
2

1√
2

]
.



24 QUANTUM COMPUTING BASICS

Next the phase shifter has to be applied

|ϕ2〉 = P |ϕ1〉 =
[

ejα0 0
0 ejα1

]




1√
2

1√
2





 ejα0√

2

ejα1√
2


.

Finally the second beam splitter takes care of interfering the two paths

|ϕ3〉 = H |ϕ2〉 =
1√
2

[
1 1
1 −1

]




ejα0√
2

ejα1√
2





 ejα0+ejα1

2

ejα0−ejα1

2


.

In order to understand the operation of the interferometer it is worth converting |ϕ3〉
into a more illustrative form

|ϕ3〉 =
ejα0 + ejα1

2
|0〉 +

ejα0 − ejα1

2
|1〉

= ej
α0+α1

2

(
ej

α0−α1
2 + e−j

α0−α1
2

2
|0〉 +

ej
α0−α1

2 − e−j
α0−α1

2

2
|1〉

)
.

The term ej
α0+α1

2 can be omitted during further analysis because it represents
the global phase and thus it does not influence the final measurement statistics.
Moreover let us introduce ∆α � α0 − α1. With respect to the well-known relations
ej∆α+e−j∆α

2
= cos(∆α), ej∆α−e−j∆α

2j
= sin(∆α) we reach

|ϕ3〉 = cos
(

∆α

2

)
|0〉 + j sin

(
∆α

2

)
|1〉.

Now, we are able to determine the probabilities of hitting the photon with the
horizontal or vertical detector

P0 = cos2
(

∆α

2

)
= (1 + cos(∆α))

1
2
,

P1 = sin2

(
∆α

2

)
= (1 − cos(∆α))

1
2
.

If ∆α = 0 then we yield the idealistic scenario (i.e. no phase shifters) that is one
of the paths is cancelled due to the interference and the operation becomes fully
deterministic. Provided a π

2 difference exists between the two paths both detectors are
hit equiprobable. Obviously the operation depends only on ∆α which represents the
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difference in the thickness of the sheets placed into the two paths in our experiment.
This harmonizes with the fact that the global phase can be omitted from the outcome
statistics point of view.

Exercise 2.3. Perform the analysis of the generalized interferometer using the
superposition principle.

2.6 ENTANGLEMENT

2.6.1 A surprising quantum state – entanglement

If we ask the reader to determine the individual one-qbit states of a 2-qbit quantum
register |ϕ〉 = a|00〉 + b|01〉, then recalling the 4th Postulate, which advises us
how to handle individual and corresponding merged system, one can easily calculate
|ϕ1〉 = |0〉 and |ϕ2〉 = a|0〉 + b|1〉, where |ϕ〉 = |ϕ1〉 ⊗ |ϕ2〉.

Now we are interested in the decomposition of |ϕ〉 = a|00〉+ b|11〉. Interestingly
this effort proves to be fruitless because no individual one-qbit states exist at all.
One may think at first sight that such a |ϕ〉 is not allowed by quantum mechanics.
However, if we consider that |ϕ〉 can be regarded as a special two-qbit superposition
having zero probability amplitudes for computational basis states |01〉 and |10〉 then
this simple answer seems to be more than doubtful. As we will see soon such special
states can be produced easily but of course not by means of joining two single qbits
(see Section 2.6.2).

Let us investigate the potentialities hidden in |ϕ〉. If we decide to measure the first
qbit then either |0〉 or |1〉 will be obtained randomly with corresponding probabilities
|a|2 and |b|2, respectively. However, provided the measuring equipment answers 0
then a measurement on the second qbit can lead only to 0. Similarly a 1 on the
first qbit results in 1 with sure success on the second one. It looks like there is
a mysterious connection between the two qbits! Carefully designed experiments
proved that this interesting effect remains valid even if the qbits of |ϕ〉 is delivered
onto two distant locations. Furthermore surprisingly the propagation of this binding
effect between the two qbits after the first measurement takes zero time, i.e. it is much
faster than the speed would need. Wait! This effect seems to be in total contradiction
of Einstein’s relativity theory with bounded speed of any signal or effect.9 Not
surprisingly Einstein had never accepted in his life this consequence of quantum
mechanical description of the Nature. But experiments (see Section 2.6.5) performed
after his death disproved Einstein’s belief. . .

Bowing to the arguments of experimental physicians we turn to exploit this
strange property of nature, but first let us introduce the related terminology. States
whose decomposition comprise one-qbit states are called product states while

9It is worth citing Einstein’s interpretation of relativity theory: “When a man sits with a pretty girl for
an hour, it seems like a minute. But let him sit on a hot stove for a minute and it’s longer than any hour.
That’s relativity.”
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C IN

D IN

CNOT

x x

y y x

C OUT

D OUT

Fig. 2.9 Controlled NOT gate

qbits/qregisters bounded together by this special phenomenon are referred to as
entangled states. What if our two assistants Alice and Bob share an entangled pair
and Bob travels to another city. If Alice were able to influence the results of her
measurement then she could transmit a binary encoded message to Bob faster than
any communication device, even those ones using light or electromagnetic radiation.
Fortunately (at least from a relativity theory point of view) as we will see soon
in Section 2.6.5 it is out of her possibilities. However, the reader should not be
disappointed about our first unsuccessful attempt. Although Alice and Bob failed
with the faster than light communications, entanglement still remains one of the most
efficient tools of quantum computing and communications enabling e.g. teleportation
(see Section 4.2) and is thus often mentioned as a basic resource. In order to be
able to exploit this strange gift of Nature we need to learn first how to produce it
and what disadvantageous consequences should be taken into account. Therefore the
forthcoming sections are devoted to discussing different aspects of entanglement.

2.6.2 The CNOT gate as classical copy machine and quantum
entangler

Let us now focus on the exciting question of how to produce an entangled pair of
qbits if a tensor product does not lead to it. As the first step we introduce a simple
but very important two-qbit gate called controlled NOT or CNOT. If we use classical
inputs then it operates in the following manner. One of its inputs is referred as data
and the other as control. Both inputs can be feeded with 0 or 1. If the control has
been initialized with 0 then the CNOT gate simply connects the data input to the data
output. Conversely a control with 1 results in an inverted data output. Thus the name
of the gate becomes obvious for the reader.

For the sake of being precise this set of rules has been summarized in a circuit
implementing the functionality of CNOT and is depicted in Fig. 2.9 with the
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Table 2.1 Truth table of controlled NOT gate

IN OUT

x y x y ⊕ x

0 0 0 0 ⊕ 0 = 0
0 1 0 1 ⊕ 0 = 1
1 0 1 0 ⊕ 1 = 1
1 1 1 1 ⊕ 1 = 0

corresponding truth table (see Table 2.1) and master equation

CNOT : |x〉|y〉 → |x〉|y ⊕ x〉. (2.10)

We strongly emphasize here that x and y are classical values (i.e. computational basis
states 0 and 1).

As a next step let us derive the matrix of the CNOT gate. We can follow two
ways. On one hand the truth table advises us that the CNOT gate connects the input
and output classical dibits in the following manner |00〉 → |00〉, |01〉 → |01〉,
|10〉 → |11〉 and |11〉 → |10〉 thus

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (2.11)

where we remind the reader that it is enough to consider the computational basis
states when deducing the matrix of a unitary transform thanks to the superposition
principle. A bit more pragmatic way to write up the matrix is if one realizes that
the CNOT gate is nothing more than a controlled Pauli-X gate, hence we need an
identity matrix in the upper left corner and a matrix X in the lower right-hand side
corner.

The CNOT gate is obviously unitary, which fact can be easily recognized using
that definition which states that the rows/columns of its matrix should form an
orthogonal set of unit vectors.

The COPY command is a fairly common one often used by computer scientists
and programmers. It is worth pointing out that the CNOT gate can be regarded as a
one-bit copy machine. Provided its data input is initialized permanently with |0〉 then
the CNOT gate emits a copy of the control input on each output.

Now let us try to make a copy of |C〉IN = a|0〉 + b|1〉. The input joint state
is |C〉IN ⊗ |D〉IN = a|00〉 + b|10〉. Using the superposition principle one gets
a|0, 0 ⊕ 0〉 + b|1, 1 ⊕ 0〉 = a|00〉 + b|11〉 at the output which is nothing less than
an entangled pair! The same result can be achieved using an algebraic matrix-vector
operation.

Our mood is a bit ambivalent. On one hand we learned how to produce an
entangled pair but on the other hand we have failed with copying an arbitrary
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Fig. 2.10 SWAP gate made of CNOTs

quantum state. As we will see in Section 2.7 our worry is not groundless. However,
at this moment we are satisfied with our entangler gate.

Finally before discussing several special entangled pairs we introduce an
interesting application of the CNOT gate. Many sophisticated quantum algorithms
require a gate which is able to reverse (swap) the sequence of quantum wires. The
gate implementing this useful functionality is called a SWAP gate. Fig. 2.10 presents
three concatenated CNOT gates swapping two quantum wires.

Thanks to the superposition principle it is enough to investigate the operation
of the SWAP gate assuming computational basis state inputs |i〉 and |k〉 where
i, k ∈ {0, 1}. Instead of exploiting the matrix definition of the CNOT gate let us
rely on Fig. 2.9. The system is initialized with |ϕ0〉 = |i〉 ⊗ |k〉. The output of the
first CNOT is simply |ϕ1〉 = |i〉⊗ |i ⊕ k〉. When computing the output of the middle
CNOT gate we take into account that the roles of control and data wires have to be
swapped thus

|ϕ2〉 = |i ⊕ (i ⊕ k)〉 ⊗ |i ⊕ k〉 = |k〉 ⊗ |i ⊕ k〉.

Finally the third CNOT gate produces

|ϕ3〉 = |k〉 ⊗ |(i ⊕ k) ⊕ k〉 = |k〉 ⊗ |i〉.

We give the opportunity to the reader to prove that he/she really managed to
understand how the SWAP gate operates in Exercise 2.4 where we ask the reader
to calculate its matrix.

Exercise 2.4. Calculate the matrix of the two-qbit SWAP gate.

2.6.3 Bell states

Obviously an infinite number of different entangled pairs can be defined by only
varying probability amplitudes of |ϕ〉 = a|00〉 + b|11〉. Moreover computational
basis states |01〉 and |10〉 also form a suitable subset of all possible two-qbit basis
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Fig. 2.11 Bell state generator quantum circuit

vectors. There are four distinguished entangled pairs called Bell states or EPR pairs

|β00〉 =
|00〉 + |11〉√

2
,

|β01〉 =
|01〉 + |10〉√

2
,

|β10〉 =
|00〉 − |11〉√

2
,

|β11〉 =
|01〉 − |10〉√

2
.

For the sake of memory a compact formula can be derived

|βab〉 =
|0, b〉 + (−1)a|1, NOT (b)〉√

2
, (2.12)

where a, b ∈ {0, 1}. The corresponding quantum circuit which can be used to
produce the Bell states can be seen in Fig. 2.11.

Bell states have an often exploited important property, namely they form an
orthonormal vector set which is equivalent to the fact – as we will see later – that
they can be distinguished unambiguously.

Obviously entangled pairs can be generalized to entangled triplets, e.g.
|000〉+|111〉√

2
, which are often referred to in the literature as Greenberg–Horne–

Zeilinger states (GHZ states). The generator quantum circuit for n-qbit orthogonal
entangled states is depicted in Fig. 2.12 that has to be fed with n-qbit computational
basis states. Fig. 2.12 has an important lesson. If we have say an entangled pair
divided between two parties and a third player would like to entangle his/her qbit
with the other ones then it is enough to meet with the player holding the Hadamard
gate and what is more it can be easily shown that not only the first quantum wire is
suitable for control purposes but any entangled wire can be used, too. Therefore to
spread entanglement it is enough to access one of the entangled qbits. Unfortunately
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H

Fig. 2.12 Generalized quantum entangler

this concession cannot be further softened i.e. by means of classical communication
only we are not able to entangle two qbits.

2.6.4 Entanglement with the environment – decoherence

The interferometer and entanglement
Every real system, whether it is quantum or classical is in contact with an
external environment – a noisy collection of particles whose state can never be
perfectly known. Of course the system and the environment together form a closed
quantum system for which the postulates of the quantum mechanics are valid. This
entanglement between the system and the environment in which it is embedded leads
the system to change its state over time randomly from the observer point of view.
This process is known as decoherence. In order to illustrate this unwanted effect we
turn to the interferometer whose operation was exhaustively analyzed in Section 2.5.

The system in question will be the photon travelling through the interferometer
while the environment contains the whole universe except the photon. As we
discussed earlier (see Fig. 2.7) we shoot the photon horizontally into the system
represented by |0〉 while the initial state of the environment is denoted by |Ω〉. The
photon passes a beam splitter (i.e. a Hadamard gate) which is followed by a phase
shifter producing

|ϕ2〉 =
ejα0 |0〉 + ejα1 |1〉√

2
|Ω〉 = |ϕ2〉 =

ejα0 |0〉|Ω〉 + ejα1 |1〉|Ω〉√
2

.

for the closed system (photon + universe) according to Fig. 2.8.
At this point suddenly an intelligent quantum butterfly incarnates the

entanglement between the photon and the universe in the following manner. If the
system (photon) is in state |0〉 then it flies to a white flower causing the universe to
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change to |Ω0〉 else it lands on a red flower resulting in the environment in state |Ω1〉.
This simple rule can be described more precisely, namely

|0〉|Ω〉 → |0〉|Ω0〉, |1〉|Ω〉 → |1〉|Ω1〉.
Therefore the butterfly changes |ϕ2〉 to

|ϕ′
2〉 = |ϕ2〉 =

ejα0 |0〉|Ω0〉 + ejα1 |1〉|Ω1〉√
2

.

The second Hadamard gate makes the two paths interfered

|ϕ3〉 =
ejα0 |0〉+|1〉√

2
|Ω0〉 + ejα1 |0〉−|1〉√

2
|Ω1〉√

2

= |0〉e
jα0 |Ω0〉 + ejα1 |Ω1〉

2
+ |1〉e

jα0 |Ω0〉 − ejα1 |Ω1〉
2

= ej
α0+α1

2

(
|0〉e

j
α0−α1

2 |Ω0〉 + e−j
α0−α1

2 |Ω1〉
2

+ |1〉e
j

α0−α1
2 |Ω0〉 − e−j

α0−α1
2 |Ω1〉

2

)
.

Omitting the global phase and using ∆α � α0 − α1 again we obtain

|ϕ3〉 = |0〉e
j ∆α

2 |Ω0〉 + e−j ∆α
2 |Ω1〉

2
+ |1〉e

j ∆α
2 |Ω0〉 − e−j ∆α

2 |Ω1〉
2

.

When deducing the probability of measuring |0〉 or |1〉 we must be careful because
|Ω0〉 and |Ω1〉 are not orthogonal by all means, i.e. 〈Ω0|Ω1〉 	= 0. |Ω1〉 can be
expressed by means of its projection onto |Ω0〉 and onto an orthogonal vector |Ω⊥

0 〉
in the form of

|Ω1〉 = 〈Ω0|Ω1〉|Ω0〉 +
√

1 − |〈Ω0|Ω1〉|2 |Ω⊥
0 〉,

where for the sake of simplicity we assumed that |Ω0〉 and |Ω1〉 are unit length states
and 〈Ω0|Ω1〉 is real thus

|ϕ3〉 =
ej ∆α

2 + 〈Ω0|Ω1〉e−j ∆α
2

2
|0〉|Ω0〉 +

e−j ∆α
2

2

√
1 − |〈Ω0|Ω1〉|2 |0〉|Ω⊥

0 〉

+
ej ∆α

2 − 〈Ω0|Ω1〉e−j ∆α
2

2
|1〉|Ω0〉 − e−j ∆α

2

2

√
1 − |〈Ω0|Ω1〉|2 |1〉|Ω⊥

0 〉.

Now we are able to calculate the probability of hitting the detector belonging to
state |0〉

P0 =

∣∣∣∣∣
ej ∆α

2 + 〈Ω0|Ω1〉e−j ∆α
2

2

∣∣∣∣∣
2

+

∣∣∣∣∣
e−j ∆α

2

2

√
1 − |〈Ω0|Ω1〉|2

∣∣∣∣∣
2

.
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Having in sight that for any z ∈ C : |z|2 = zz∗ and substituting ej∆α+e−j∆α

2 with
cos(∆α) one gets

P0 = (1 + 〈Ω0|Ω1〉 cos(∆α))1
2 .

Using similar techniques we obtain

P1 = (1 − 〈Ω0|Ω1〉 cos(∆α))1
2 .

These results differ from the unentangled scenario discussed in Section 2.5 only
in term 〈Ω0|Ω1〉, that is we managed to concentrate the effect of the entanglement
into a single quantity which can be easily interpreted. Obviously if 〈Ω0|Ω1〉 = 1, i.e.
the two states of the environment are parallel/equal then entanglement disappears
and the interferometer operates deterministically. The opposite extreme scenario
happens if 〈Ω0|Ω1〉 = 0, which belongs to orthogonal environmental states.
P0 = P1 = 0.5 represents a maximally entangled photon and environment, namely
the interferometer becomes fully random. Of course there are many intermediate
scenarios introducing more or less randomness into the operation. Thus we can
conclude that an observer placed in the system will experience entanglement
as happening random events while from the closed system point of view we
see that events in the environment influence the system in a well-defined way.
Therefore reducing the effects of entanglement with the environment (decoherence)
is crucial when designing and building quantum mechanics based computers or
communication devices.

Schrödinger’s cat
Although Schrödinger’s equation was an important step leading to the theory
of quantum mechanics, Schrödinger10 was sure that several contradictions still
remained open between the classical and quantum description of Nature. In order to
show that quantum superpositions make sense, he suggested the following thought-
experiment.

Let us put an everyday macroscopic cat into a metal box together with a devilish
equipment that consists of a microscopic radioactive atom, a hammer and a cyanide
capsule. We know that the atom decays with certain probability. This effect triggers
the hammer to hit the capsule, which kills our poor cat. When we start the experiment
everything is clear. The cat is alive and we close the box. The atom can be represented
as a qbit being in state |not − decayed〉. However, after closing the box the state
of the atom turns to a superposition of |not − decayed〉 and |decayed〉. Than
Schrödinger asks us whether the cat is dead or still alive? Obviously we can answer
this question via opening the box and making sure with our eyes about the result.
But if we are not allowed to look into the box we can say in possession of quantum
theory that the cat is in a special superposition of states |alive〉 and |dead〉. The next
forthcoming question is very obvious: when does the cat die?

10“I do not like it, and I am sorry I ever had anything to do with it.” Erwin Schrödinger, speaking of
quantum mechanics.
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According to Bohr’s approach conscious observation is what causes real events
to happen. He thought there is an aspect of the world described by the evolution of
probabilities in quantum mechanics and another aspect of the world that we observe.
Whenever we open the box, i.e. make a measurement, we obtain some definite result
and not just a probability. However, if we do not look there then no events happen and
only probabilities are changing. Thus Bohr’s interpretation assumes that the observer
and the observed system cannot be dissociated.

Bohr’s idea is called the Copenhagen interpretation of quantum mechanics. It is
important to highlight that this is an interpretation and not a theory. This means
that we are not able to test it using sophisticated measurements, it gives only
a philosophical explanation. Another popular interpretation assumes that a large
amount of parallel universes (worlds) exist, one for each possible measurement
outcome (thus we have two cats one dead and another one alive) and when measuring
the system we only select one of them. Independently from the interpretations
one consequence is very important, namely the measurement represents the bridge
between the quantum and classical worlds.

Accepting one of these interpretations the reader my still remain discontented:
how can a macroscopic animal be in a superposition? During the history of the human
race probably nobody has met such a frightening creature. In any case Schrödinger
himself said, later in life, that he wished he had never met that cat.

We have demonstrated in the previous subsection that entanglement with the
environment can be very unpleasant when using quantum devices. Now, it provides
a life belt to escape from Schrödinger’s trap. The rate of decoherence depends on the
size of the quantum system. Physicists are now able to create and maintain quantum
particles such as atoms or single photons in superpositions for significant periods
of time, provided that the coupling to the environment is weak. However, for a
system which is as big as a cat and which comprises billions upon billions of atoms,
decoherence happens almost instantaneously, so that the cat can never be both alive
and dead for any measurable instant.

Remark: If the reader is still not satisfied with the reasoning then it is not his/her
fault. Clearly speaking how Nature works in the case of Schrödinger’s cat has never
been explained to everyone’s satisfaction, but quantum information theory discussed
in the second volume of this book gives a more or less plausible explanation based
on mixed states.

Remark: In spite of the above more or less reassuring explanation the probability
of meeting such a cat is still nonzero. . . remember the salutation of the boy scouts
“Be prepared!”.

2.6.5 The EPR paradox and the Bell inequality

The strangeness of quantum principles does not end with Schrödinger’s cat.
Although Einstein, similarly to Schrödinger, was one of the initiators of the big quest
for quantum theory, later they formed the ‘conservative’ group of physicists together
with de Broglie. After a promising start they got frightened or became dizzy from the
consequences of what they had launched, hence they insisted on connecting the new
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theory to classical physics and never had the courage to leave the safe harbor. This
can be a bit surprising in the case of Einstein considering his relativity theory with
combined space and time which was strange enough at his time, but if we consider
that quantum mechanics seemed to be in heavy contradiction with relativity theory
(as we will see soon) we should understand his obstinacy. Please, do not regard this
comment as criticism. We agree with the ancient Greeks who said that the balance
of judicious elderly and courageous young people ensures the guaranty of dynamic
development.

Einstein had never accepted that randomness can act as a basic organizing
principle of nature. This belief led to his famous objections11 stating that God
does not play dice with the universe, which mirrors the fundamental conviction
that quantum mechanics is an incomplete theory when describing the state of a
particle only by means of a superposition (i.e. using ‘ket’ vectors). He believed
that the probabilistic behavior of a measurement on a one-qbit superposition is only
virtual and in reality there are variables hidden from physicists whose control enables
them to make measurements deterministic. Thus it is enough to find these variables
– sooner or later it has marginal importance. Of course the connection between
variables (small goblins sitting in the depths of the matter) and our experiences about
the measurement results can be quite complex but if you can add these goblins to the
list of your friends then the wanted result can be achieved with sure success.

In the meantime while others were searching for the hidden variables Einstein,
Podolsky and Rosen came forward with a thought-experiment – called the EPR
paradox according to the initials of the authors – which seemed to validate their
theory.

They proposed to share an entangled pair of particles e.g. a spin-up and a spin-
down electron12 between Alice and Bob. By means of our notations this pair can

be described as
|01〉−|10〉√

2
if |0〉 represents a spin-up and |1〉 a spin-down electron

respectively. Next Alice measures her qbit in the |0〉 and |1〉 basis and yields any of
them with the same probability. One thing is sure if Alice’s device shows 0 then Bob
will obtain 1 if he measures his own qbit. Similarly if Alice gets 1 then Bob’s result
will be 0. This happens even if they run the measurements at the same time or more
precisely in a causally disconnected way, that is only a faster than light medium could
transfer the information about Alice’s result to Bob. Einstein called this surprising
phenomenon ‘spooky action at a distance’. Provided we accept relativity theory with
its limited speed of light then quantum mechanics must be wrong or as Einstein
politely said incomplete. In this case by means of hidden variables one can easily
explain the experienced effect. The fans of quantum mechanics stuck into the EPR
paradox since quantum (nanoscale) description of Nature must contain our classical
(macroscopic) everyday experiences as well, since the macroscopic world consists

11“Quantum mechanics is very impressive. But an inner voice tells me that it is not yet the real thing.
The theory yields a lot, but it hardly brings us any closer to the secret of the Old One. In any case I am
convinced that He doesn’t play dice.”
12The same can be done with polarized photons.
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of nanoscale particles. Relativity theory is a well-known, more or less user-friendly
and experimentally many times proven description of nature hence nothing stands
in the way of accepting the reasoning of the EPR triumvirate. Unfortunately (at
least from Einstein’s point of view) there is a minor problem in the form of the
Bell inequality which allows us to check experimentally which theory provides the
proper description. As we are going to see Einstein made a mistake. . .

The Bell inequality in its original form is not practical enough for experimental
validation thus several alternatives were proposed and it is better to use the plural
i.e. Bell inequalities. Because Bell inequalities are going to play an important role
in this book later in connection with certain infocom applications (see Section 10.3),
we introduce here its so-called CHSH13 version. In order to become more plausible
we explain first the CHSH inequality using an everyday example (for more precise
mathematical formulation see Further Reading) and next we apply it to particles as
if they were classical objects obeying our best classical theory (i.e. relativity theory)
of nature.

We invite our friends Alice and Bob to participate in an experiment. We ask
them to go up to the bookshelf full of different books in the room. We take books
from the shelf randomly and Alice’s task is to check one of the following two
properties: Does the title of the book contain character ‘a’ or not and does it contain
character ‘b’ or not? Similarly Bob has to check the same with characters ‘c’ and ‘d’.
Because we are suspicious about their correctness we instruct them to select between
the measurements with probability 1

2 , and to avoid their cooperation we make an
identical copy of each book and ask Bob to follow us to another room which is far
away enough from Alice’s room such that information exchange about their results
would require faster than light communication.

Let us denote the event when Alice decides for checking (measuring) character
‘a’ (property a) with Ma and similarly for other characters Mb, Mc, Md. Thus four
different scenarios can happen Ma ∧ Mc, Ma ∧ Md, Mb ∧ Mc and Mb ∧ Md.

Furthermore we know their thirst for excitement therefore we propose the
following offer: they get 1 virtual14 cent for every successful measurement, e.g. if
Alice decides to check character ‘a’ in the next title and the title really contains ‘a’
then Alice and Bob can harvest 1 virtual cent. However, if the measurement fails
then Alice loses 1 virtual cent. This regrettable event will be denoted by earning -1
virtual cent. The real winnings15 are the product of virtual cents in each turn when
Ma ∧ Mc, Ma ∧ Md, Mb ∧ Mc except Mb ∧ Md when we introduce a small trick,
namely the real winning is multiplied by -1. Assuming total number of L attempts
the aggregate earning can be calculated as

SL �
L∑

l=1

(AC)l + (AD)l + (BC)l − (BD)l =
L∑

l=1

Sl,

13After the initials of Clauser, Horne, Shimony and Holt.
14We use here the word virtual to the fact that their real winnings are calculated from the virtual ones.
15The reader may reproduce the experiment with small coins of his/her country.
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where A, B, C, D ∈ ±1 denote the virtual winnings and l is indexing the sequence
number of the turns. Despite the fact that only one of the above terms is obtained in
each turn based on our classical view of nature, Alice and Bob can be sure that also
the other three terms also exist because all the four properties exist independently
whether we measure them or not. In order to be fair with them we also perform the
remaining three measurements, and calculate SL in a correct way. Obviously Sl is
an observable for Alice and Bob, which depends on the actually observed term and
on three hidden variables in each turn, similarly to Einstein’s expectations.16

Alice and Bob utilize their knowledge about basic probability theory (see
Section 12.1) to estimate their revenues. First they realize that they can either win
or lose 2 cents per turn according to Exercise 2.5. Their long-term success depends
on the sign of the expected revenue in a certain turn i.e. E(s) = E(AC + AD +
BC − BD). To calculate this the joint probability density function of the properties
represented by P (A = α ∧ B = β ∧ C = γ ∧ D = δ) � Pα,β,γ,δ is needed, which
describes the probability of having the values denoted by Greek letters before the
measurement. Roughly speaking this probability can be computed as a product of
individual probabilities P (A = α), etc., but if we asked a linguist he/she would call
our attention to certain correlations between the occurrences of different characters17

therefore we insist on the general approach. Now applying the rule of calculating
expectation values they get

E(s) = E(AC + AD + BC − BD)

=
∑

α

∑
β

∑
γ

∑
δ

(AC + AD + BC − BD)Pα,β,γ,δ

and conclude that before starting the game they have to chose books written in such
a language that the gambling will be profitable.

Let us suppose that they accept the rules. Next we observe that since the peak
value(s) of a random variable is always greater than or equal to its expected value
hence E(s) ≤ 2. Now we ask Alice and Bob to check this obvious inequality
experimentally. Unfortunately they are allowed to measure one of the terms in s but
this is not a real problem because we have already learned that the expected value of
a sum is the sum of expected values that is

E(AC + AD + BC − BD) = E(AC) + E(AD) + E(BC) − E(BD),

hence the used ‘sampling’ of terms during the experiment gives the same result
from the expected value point of view as if we had measured all the terms. Thus
we reached the so-called CHSH inequality

E(AC) + E(AD) + E(BC) − E(BD) ≤ 2. (2.13)

16“I think that a particle must have a separate reality independent of the measurements. That is an electron
has spin, location and so forth even when it is not being measured. I like to think that the moon is there
even if I am not looking at it.” Albert Einstein
17These correlations follow different rules in the case of different languages but in the case of a homemade
experiment the product approach is satisfactory.
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Not surprisingly if the patient reader performs the above experiment the obtained
result will fit the theoretical ones.

Remark: As advice we suggest the reader writes a simple C program during 10
minutes and run it for 1 second, which is equivalent to a one-hour book sorting (and
no duplicated libraries are required).

Because Alice and Bob are ardent admirers of quantum mechanics they decide
to reproduce the above experiment using nanoscale particles. To build the analogy
it is enough to replace the identical pairs of books with entangled quantum bits,
e.g. with photon or electron pairs where polarization or spin represents the quantum
behavior. Surprisingly by applying suitable measurements (observations) Alice and
Bob measure

E(AC) = E(AD) = E(BC) = −E(BD) =
√

2
2

. (2.14)

If one substitutes these values into the CHSH inequality then he/she starts turning
pale because

E(AC) + E(AD) + E(BC) − E(BD) = 2
√

2, (2.15)

which is in total contradiction to (2.13)! The derivation of this result will be discussed
later in Section 3.2.5 where we will have the required formalism in our hands.

What is wrong with our classical perception of nature? We used three implicit
axioms during the above reasoning which are called together the local realism picture
of nature:

• Either our locality axiom is wrong where ‘local’ means everything that is
bounded by the relativity theory, that is we assume that the speed of light
is limited and nothing can exceed this limit. To show that hurting this axiom
is not unimaginable we ask the reader to take a simple sheet of paper and put
randomly two crosses onto it, say cross A and B. Next please connect them
together drawing a line with a ruler. It is easy to calculate the required time of
a two-dimensional super-advanced being travelling from point A to B with the
speed of light. Now, we ask the significantly less advanced three-dimensional
reader to bend the sheet such that the two crosses fit to each other. Than simply
by punching the paper by the point of the pencil allows us to overtake the two-
dimensional alien.

• We can fail with our realism axiom, too. It states that every physical
parameter exists independently whether it is observed or not. When we
were explaining the CHSH inequality we assumed that different properties
of a book exist permanently and do not change when observing the book.
However, as we have already seen in connection with Schrödinger’s cat, the
Copenhagen interpretation says that physical properties of particles depend on
the observation or more strangely there is no sense in assuming the existence
of a physical property until we observe the particle. This line of thought leads
far away to the ocean of philosophy which is full of interesting and surprising
ideas, e.g. the anthropomorphic approach assumes that only those universes
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exist which are observed by a conscious being such as the human race or as
a generalization, is it possible that the human race with our universe exists
because somebody (God?) is observing us? Now, we stop here and advise the
reader to turn to one of the professional books of Stephen Hawking or Paul
Davies.

• Finally we assumed that logic is an appropriate tool for reasoning.
Unfortunately Gödel proved that any logic system (except if we strongly
limited it) will contain statements which are neither false nor true but simply
unprovable.

Remark: Let us mention here two responses to Einstein’s ‘dicing God’ from the
‘revolutionary’ group18 of physicists. Bohr was the more concise: “Quit telling God
what to do!” and Born was the more striking: “If God has made the world a perfect
mechanism, He has at least conceded so much to our imperfect intellect that in order
to predict little parts of it, we need not solve innumerable differential equations, but
can use dice with fair success”.

Remark: It can be said in Einstein’s justification that experimental validation of
quantum mechanics does not mean that relativity theory become obsolete. On the
contrary both theories are appropriate according to our state of the art knowledge
but they describe nature on different scales. The big quest for the Great Unified
Theory (GUT) aims to reconcile the two theories. Maybe quantum gravity can be
the interfacing point.

Exercise 2.5. Show that AC + AD + BC − BD = ±2.

2.7 NO CLONING THEOREM

We have already investigated the operation of the CNOT gate feeded with
superposition in Section 2.6.2. Although we expected to realize the COPY command
we reached entanglement instead. On one hand we were delighted with this
surprising outcome but on the other hand we started to have suspicions about the
limits of copying in the quantum world. Now it is time to explore the possibilities.

Let us assume that there exists a transformation Q which implements the COPY
function for arbitrary quantum superpositions denoted by |ϕ〉. In order to be as
general as possible we do not require its unitary nature our only demand is that Q
can be extended to an unitary operator U acting on a closed system, which comprises
the state |ϕ〉 to be cloned and a suitable environment (even the whole universe). The
quantum COPY machine extended with the environment is depicted in Fig. 2.13.
The input |0〉 state is used to ensure the same number of input and output quantum
wires, which is essential for unitary matrices. If we were able to construct such a U

18Heisenberg with his uncertainty principle belonged to this group, too.
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Fig. 2.13 Quantum COPY machine

our hope for a quantum cloning device Q would still be saved. So let us check the
existence of U and than the design leading to Q.

Considering our special problem the most suitable definition of unitary nature is
the one which claims that unitary operators keep the inner product. To exploit this
definition we select two arbitrary superpositions |ϕ〉 and |ψ〉. Making a copy of each
means

U : |ϕ〉|0〉|Ω〉 → |ϕ〉|ϕ〉|Ωϕ〉,
U : |ψ〉|0〉|Ω〉 → |ψ〉|ψ〉|Ωψ〉,

where |Ωϕ〉 and |Ωψ〉 describe the states of the environment after the successful
cloning. The inner product of the inputs is

〈Ω,0, ψ|ϕ,0, Ω〉 = 〈ψ|ϕ〉〈0|0〉〈Ω|Ω〉 = 〈ψ|ϕ〉

while for the outputs we obtain

〈Ωψ, ψ, ψ|ϕ, ϕ, Ωϕ〉 = 〈ψ|ϕ〉〈ψ|ϕ〉〈Ωψ|Ωϕ〉 = 〈ψ|ϕ〉2〈Ωψ|Ωϕ〉.

These two quantities on the right-hand side can be equal if

• 〈ψ|ϕ〉 = ±1 which is equivalent to |ϕ〉 = |ψ〉 or

• 〈ψ|ϕ〉 = 0 which represents the orthogonality between |ϕ〉 and |ψ〉
and no other chance to satisfy the equality. The reader may propose to set 〈ψ|ϕ〉 =

1

〈Ωψ|Ωϕ〉 , which seems to be an appropriate scenario. Unfortunately we are working

with unit vectors hence their inner products must be less or equal to 1. Thus only
〈ψ|ϕ〉 = 〈Ωψ|Ωϕ〉 = 1 is allowed which has been taken previously into account.

As a conclusion of the above investigation the no cloning theorem of quantum
computing claims that only orthogonal quantum states can be copied. Fortunately
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classical states are widely used in computers today and processors are orthogonal
therefore quantum description of nature – which is more general than the classical
theories – proved to be in harmony with our everyday experiences. This property is
fairly useful for a theory that aspires to be the most (almost) general one.

2.8 HOW TO PREPARE AN ARBITRARY SUPERPOSITION

Quantum computing aims to solve computationally hard problems by means of
devices based on quantum mechanical principles. The majority of this book
is devoted to the techniques which explain how to design such circuits and
algorithms/protocols. However, human organs match the classical world therefore
we need interfaces between the user and the equipment. The interface at the output
is responsible for how to transform the quantum state of the system into classical
states. It is called measurement and discussed in detail in Chapter 3. Now we are
concentrating on the input interface, namely how to produce an arbitrary input
superposition to initialize the device? Since we have learned that multi-qbit states
can be realized partly or entirely as tensor products of one-qbit states and/or using
CNOT to bind them together via entanglement, we will show here how to prepare an
arbitrary one-qbit state |ϕ〉 = a|0〉 + b|1〉 starting from classical |0〉.

The appropriate quantum circuit is depicted in Fig. 2.14 whose evolution is
investigated gate by gate. We begin with

|ϕ0〉 = |0〉,

from which the first Hadamard gates produces

|ϕ1〉 = H |0〉 =
|0〉 + |1〉√

2

in accordance with (2.7). The first phase gate rotates the probability amplitude
belonging to computational basis state |1〉 by an angle α

|ϕ2〉 = P (α)|ϕ1〉 =
|0〉 + ejα|1〉√

2
.

The following second Hadamard gate acts on |0〉 and |1〉 in a different manner having
in sight (2.7) again

|ϕ3〉 = H |ϕ2〉 =
|0〉+|1〉√

2
+ ejα |0〉−|1〉√

2√
2

=
1 + ejα

2
|0〉 +

1 − ejα

2
|1〉.

The second phase gate only rotates the coefficient of |1〉 again

|ϕ4〉 = P (0.5π + β)|ϕ4〉 =
1 + ejα

2
|0〉 + ej(0.5π+β) 1 − ejα

2
|1〉.
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Fig. 2.14 Abstract quantum circuit of the generalized interferometer

In order to bring |ϕ4〉 into a more treatable form we ask the reader to show in
Exercise 2.6 that 1+ejα

2 = ej0.5α cos(0.5α) and ej0.5π 1−ejα

2 = ej0.5α sin(0.5α).
Substituting these results into |ϕ4〉 we obtain

|ϕ4〉 = ejα
[
cos

(α

2

)
|0〉 + ejβ sin

(α

2

)
|1〉

]
,

which is nothing more than the most general one-qbit state introduced in (2.4). The
only minor deviation appears in the global phase factor which is in our case not
independent from the other two angles but this fact does not mean a real restriction
because global phase has no influence on the classical result yielded on the output
interface. Thus we managed to produce |ϕ〉 in the form of |ϕ4〉.

If the reader compares Fig. 2.14 with Fig. 2.8 then it is easy to recognize
that the optical implementation of the quantum initializing circuit consists of a
generalized interferometer extended with another sheet of glass delaying the photon
by ej(0.5π+β).

Exercise 2.6. Show that 1+ejα

2 = ej0.5α cos(0.5α) and ej0.5π 1−ejα

2 =
ej0.5α sin(0.5α).

2.9 FURTHER READING

The idea of introducing probability amplitudes by means of probabilistic gates
emerged first in [48]. However, we modified it reasonably in order to create
consistency between interferometer experiments and the corresponding abstract
quantum computing description.

Readers interested in a more detailed view of quantum mechanics are directed to
several appropriate books e.g. [23].

The quantum computing based description of the interferometer originates from
[9] which has been slightly modified to ensure the harmony between the probabilistic√

I gate and the interferometer.
Schrödinger proposed [135] his cat-threatening equipment in 1935 causing

serious headaches for physicists engaged with quantum mechanics and the
interpretation of how nature really operates. Einstein, Podolsky and Rosen [4]
published their thought-experiment known as the EPR paradox in 1935. After long



42 QUANTUM COMPUTING BASICS

discussions Bell proposed his famous inequality [29] in 1964 providing the key to
an experiment which decided the debate. CHSH inequality yielded its name after the
initials of its inventors Clauser, Horne, Shimony and Holt [83]. Because experimental
testing of Bell inequalities was crucial to decide whether local realism or quantum
mechanics gave the more suitable description of nature, large amount of efforts were
invested see e.g. [2, 157, 155, 151] most of them voting for the latter one.

Our technique to produce an arbitrary one-qbit state is based on the brilliant idea
discussed in [9].



3
Measurements

Measurements as tunnels between the quantum and classical worlds play an
important role. Carefully designed measurements allow access to information with
high probability or even with sure success, while clumsy constructions select
according to uniform distributions among the possible results. Recalling our example
– the Euclidian geometry – referenced when we were introducing the postulates of
quantum mechanics, the authors are sure that except for a few very talented readers
the majority was not able to invent Pythagoras’ theorem after having a short look
at the axioms in primary school although it is an evident consequence of them
provided readers are familiar with the required simple steps. Therefore this chapter
is devoted to the 3rd Postulate of quantum mechanics and derives practical rules
for designing measurements. First we reformulate the 3rd Postulate representing
the general measurement according to the applied notations in the literature in
Section 3.1. Next, Section 3.2 focuses on the special case of orthogonal measurement
operators (projectors). Construction rules for general measurements are discussed in
Section 3.3 while we summarize the connections between the different measurement
approaches in Section 3.4. Finally we design a quantum computing based efficient
solution for a game with marbles in Section 3.5.

3.1 GENERAL MEASUREMENTS

Measurements can be modelled as defining a finite or infinite set of possible
outcomes and than selecting one of them according to a predefined (measurement)
rule. Quantum measurements are controlled by the 3rd Postulate (see Section 2.2).

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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First let us rephrase them using the ‘ket’ notations that is any quantum
measurement can be described by means of a set of measurement operators {Mm},
where m stands for the possible results of the measurement. The probability of
measuring m provided the system is in state |ϕ〉 can be calculated as

P (m | |ϕ〉) = 〈ϕ|M †
mMm|ϕ〉, (3.1)

and the system after measuring m gets the state

|ϕ′〉 =
Mm|ϕ〉√

〈ϕ|M †
mMm|ϕ〉

. (3.2)

Definition (3.2) is fairly similar to a unitary transformation of a given state except
that we need a denominator different from 1 in order to normalize the resulted state.
This modification can be regarded as the compensation of the vanished information
because of the non-reversible measurement operator. Since classical probability
theory requires that

∑
m

P (m | |ϕ〉) =
∑
m

〈ϕ|†M †
mMm|ϕ〉 ≡ 1, (3.3)

the following completeness relation has to be fulfilled by the measurement operators
∑
m

M †
mMm ≡ I. (3.4)

We would like to emphasize that the completeness relation must be always checked
when all the measurement operators are believed to be constructed, because it
prevents us from forgetting one or more potential measurement outcomes on the
indicator dial of the measurement equipment.

Finally it is easy to see that consecutive measurements can be combined:
Assuming measurement {Mm}, which is followed by another one {Qq}, they can
be merged into a single measurement with operators Rqm = MmQq, ∀q, m.

The above definitions do not advise us how to construct a given measurement, they
only allow us to predict the outcome of the measurement and the post-measurement
state of the system. From a practical point of view we need a cookery book to build
our own measuring devices. Therefore the forthcoming sections are dedicated to
some recipes allowing typical sets of states to be distinguished.

3.2 PROJECTIVE MEASUREMENTS

When we were invoking measurements in the previous sections we always used the
set of orthonormal computational basis states and the measuring device selected one
of them. Therefore rules for the construction of measurement operators are discussed
in the case of orthonormal vectors. This type of measurement is called projective
measurement or von Neumann measurement.
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3.2.1 Measurement operators and the 3rd Postulate in the case of
projective measurement

Let us consider a simple example of two orthonormal states |ϕm〉 = |0〉 or |1〉, which
allows us to form the rules for an arbitrary large set of such vectors. The problem is
the following. We are given a single qbit prepared in |ϕ0〉 = |0〉 or |ϕ1〉 = |1〉
without any hint about which of them was chosen, and we have to guess the right
answer whether m = 0 or m = 1.

In order to achieve a proper decision with probability 1 assuming |0〉 has been
received we turn to (3.1) that requires

1 = 〈0|M †
0M0|0〉,

0 = 〈1|M †
0M0|1〉. (3.5)

Provided we are seeking for M0 in the form of

M0 =
[

a b
c d

]

then equation system (3.5) is reduced to

1 = |a|2 + |c|2,
0 = |b|2 + |d|2.

For the sake of simplicity we choose a = 1 and c = 0 in the first equation and from
the second one obviously b = d = 0, thus

M0 =
[

1 0
0 0

]
. (3.6)

The same technique can be applied for |ϕ1〉 resulting in

M1 =
[

0 0
0 1

]
. (3.7)

As we were advised in Section 2.2 we check whether the completeness relation is
satisfied or not using (3.4)

∑
m

M†
mMm =

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
= I.

Although we have both measurement operators in our hands it is worth taking another
glance at them and realizing that M0 = |0〉〈0| and M1 = |1〉〈1|.

Thus we reached a very simple and practical rule of thumb: When we have a set
of orthonormal states {|ϕm〉} then the corresponding measurement operators which
provide exact differentiation among them can be produced by Mm = |ϕm〉〈ϕm|.

The previously defined operators Mm belong to a special family of linear
operators called projectors (see Section 12.2.5) and have several interesting and
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important properties. First of all to emphasize their special nature we will denote
them from this point on by Pm according to the literature:

1. Obviously they are self-adjoint operators P †
m ≡ Pm since (|ϕm〉〈ϕm|)† =

〈ϕm|†|ϕm〉† = |ϕm〉〈ϕm|.
2. Furthermore PmPm = |ϕm〉 〈ϕm||ϕm〉︸ ︷︷ ︸

≡1

〈ϕm| = Pm.

3. Finally they are orthogonal which means PmPn = |ϕm〉 〈ϕm||ϕn〉︸ ︷︷ ︸
≡1or0

〈ϕn| =

δ(m − n)Pm.

We emphasize that orthogonality was exploited only at the third property.
Based on these recognitions we can adapt the general equations of the 3rd

Postulate to the projective measurement

P (m | |ϕ〉) = 〈ϕ|Pm|ϕ〉, (3.8)

|ϕ′〉 =
Pm|ϕ〉√〈ϕ|Pm|ϕ〉 , (3.9)

and finally the completeness relation reduces to

∑
m

Pm ≡ I. (3.10)

Remark: The construction rule of the projective operators can be interpreted in
two different ways:

• In the case of a direct approach we start from (3.8) and we would like to
ensure P (m | |ϕm〉) = 1 if |ϕm〉 is received. This can be done using parallel
vectors to |ϕm〉 in the outer product representation of Pm thus P (m | |ϕm〉) =
〈ϕm||ϕm〉︸ ︷︷ ︸

≡1

〈ϕm||ϕm〉︸ ︷︷ ︸
≡1

= 1. Using the same technique for all possible m we

form the set of measurement operators.

• According to the indirect approach we start from (3.8) again but we would like
to ensure P (n | |ϕm〉) = 0, ∀n �= m if |ϕm〉 is received. This can be achieved
by applying orthogonal vectors to |ϕm〉 in the outer product representation of
Pm thus P (n | |ϕm〉) = 〈ϕm||ϕn〉︸ ︷︷ ︸

≡0

〈ϕn||ϕm〉︸ ︷︷ ︸
≡0

= 0, ∀n �= m and because

∑
l P (l | |ϕm〉) = 1, P (m | |ϕm〉) = 1. Using the same technique for all

possible m we form the set of measurement operators.

Exercise 3.1. Construct the measurement operators providing sure success in the

case of the following set |ϕ0〉 =
|0〉+|1〉√

2
and |ϕ1〉 =

|0〉−|1〉√
2

.
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3.2.2 Measurement using the computational basis states

It may happen that our partner in the above discussed simple example tries to cheat
by using an arbitrary unit length vector |ϕ〉 = a|0〉 + b|1〉 instead of the agreed
computational basis states |0〉 or |1〉. Let us calculate the probability of receiving |0〉
and |1〉

P (0 | |ϕ〉) = 〈ϕ|P0|ϕ〉 =
[

1 0
0 0

]
[
a∗ b∗

]


a
b




[
a
0

]

|a|2
,

P (1 | |ϕ〉) = 〈ϕ|P0|ϕ〉 =
[

0 0
0 1

]
[
a∗ b∗

]


a
b




[
0
b

]

|b|2
,

and our qbit falls into the following states due to the measurement in compliance
with (3.9)

|ϕ′
0〉 =

P0|0〉√
P (0 | |ϕ〉) =

a|0〉
|a|2 ,

|ϕ′
1〉 =

P1|0〉√
P (1 | |ϕ〉) =

b|1〉
|b|2 .

The above results fully correspond to the interpretation of the probability amplitudes,
namely if a qbit were measured then we would receive basis state |0〉 with probability
|a|2 and |1〉 with probability |b|2, respectively.

If we are playing the game with qregisters n qbits of length then we have to
prepare ourselves for two kinds of cheating. The first one is the simple generalization
of the previous one-qbit scenario, that is instead of selecting one of the elements from
{|k〉} we are given an arbitrary superposition |ϕ〉 =

∑
k ϕk|k〉. Analogously to the

previous result we will measure m with probability P (m | |ϕ〉) = |ϕm|2 and the
register will end in this case in state ϕm

|ϕm|2 |m〉, which equals |m〉 up to a global
phase.

Finally another trick can be applied if we have an orthonormal set S = {|ϕk〉}
but not all the basis vectors are included. Then our unfair partner may give us a
|ϕm〉 which is orthogonal to the elements of S but does not belong to it. What will
happen? If the measurement operators are constructed as Pk = |ϕk〉〈ϕk|, k ∈ S
and implemented carefully an extra operator Pcheating = I − ∑

k∈S Pk = I −∑
k∈S |ϕk〉〈ϕk|, then for any |ϕm〉, m /∈ S the measuring device will point to scale

value cheating in the dial.
Remark: Orthogonal states can always be distinguished via constructing

appropriate measurement operators (projectors). This is another explanation why
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orthogonal (classical) states can be copied as was stated in Section 2.7 because
being in possession of the exact information about such states we can build a
quantum circuit producing them.

3.2.3 Observable and projective measurement

We learned with regard to normal operators (see Section 12.2.5) that they are
diagonizable, i.e. their spectral decomposition always exists. Since projectors are
Hermitian and thus normal, {|ϕm〉} forming {Pm} can be regarded as eigenvectors
of an operator K representing an observable

K =
∑
m

mPm, (3.11)

where the measurement outcomes m are the eigenvalues of K . Let us calculate the
expected value of this observable if the measurement is repeated several times (of
course not on the same qregister)

E(K) =
∑
m

mP (m | |ϕ〉) =
∑
m

m〈ϕ|Pm|ϕ〉 = 〈ϕ|
(∑

m

mPm

)
|ϕ〉 = 〈ϕ|K|ϕ〉.

(3.12)

3.2.4 Repeated projective measurement

Before leaving the projective measurement it is worth investigating the effect
of repeated measurements on the same qregister. Provided we defined a set of
orthogonal measurement operators (projectors) Pk to the set {|ϕk〉} and outcome
m has been chosen by the device feeded by arbitrary |ϕ〉 then the qregister after the
first measurement is with respect to (3.9) in state

|ϕm〉 =
Pm|ϕ〉√〈ϕ|Pm|ϕ〉 ,

up to a global phase factor. Applying again this measurement on |ϕm〉 and replacing
Pm = |ϕm〉〈ϕm|

|ϕm〉′ =
Pm|ϕm〉√〈ϕm|Pm|ϕm〉 =

|ϕm〉〈ϕm||ϕm〉√〈ϕm||ϕm〉〈ϕm||ϕm〉 = |ϕm〉,

which claims that P (m||ϕm〉) = 1, i.e. repeated measurements do not change the
status of the register.

Remark: Mindful readers may reach this result from the discussion in
Section 3.2.1, i.e. if we receive one of the vectors from the orthonormal set then
the projective measurement always gives back the corresponding index with sure
success.
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3.2.5 CHSH inequality with entangled particles

When we were discussing the EPR paradox and the CHSH inequality in Section 2.6.5
we promised to derive the quite surprising result (2.15). Instead of using two copies
of a library we apply Bell states. The entangled qbits represent two identical copies
if we use e.g.

|β00〉 =
|00〉 + |11〉√

2
.

However, for both historical and practical reasons we use |β11〉 which can be
produced much easier in an experiment

|β11〉 =
|01〉 − |10〉√

2
. (3.13)

Let us denote the four observables with A, B, C and D similarly to the classical case.
Furthermore we need four matrices describing the observables OA, OB, OC and OD .
According to Section 3.2.3 the measurement results correspond to the eigenvalues of
these matrices. Since A, B, C, D ∈ {±1} we have to keep this fact in view when
designing the measurements. After some discussions Alice and Bob decide to use
the following observables

OA =
[

1 0
0 −1

]
, OB =

[
1 0
0 1

]
,

OC =
1√
2

[ −1 −1
−1 1

]
, OD =

1√
2

[
1 −1
−1 −1

]
. (3.14)

Matrices of these observables have two different eigenvalues, namely ±1. Now,
we have to evaluate

E(s) = E(AC) + E(AD) + E(BC) − E(BD), (3.15)

which can be reformulated bearing in mind (3.12)

E(s) = 〈β11|OAC |β11〉 + 〈β11|OAD|β11〉 + 〈β11|OBC |β11〉 + 〈β11|OBD|β11〉,
(3.16)

where OXY stands for the joined observables, i.e. product of X and Y .
In order to compute (3.16) first we show how to determine the expected value

of the product of two observables belonging to two qbits, say for observable A and
C. We know from (3.11) that an observable can be expressed using the potential
measurement results and the corresponding projectors, i.e.

OA =
∑

α

αPα, E(A) = 〈ϕ1|OA|ϕ1〉,

OC =
∑

γ

γPγ , E(C) = 〈ϕ2|OC |ϕ2〉, (3.17)
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if the input states of the two measurement apparatus are |ϕ1〉 and |ϕ2〉 respectively.
Furthermore Pα and Pγ denote the projectors belonging to the measurement results
α and γ. On the other hand if we regard these two independent measurements as a
single combined one we can calculate the expected value in the following way

E(AC) �
∑
α

∑
γ

αγP (A = α ∧ C = γ||ψ〉) =
∑

α

∑
γ

αγ〈ψ|Pα,γ |ψ〉,

= 〈ψ|
∑

α

∑
γ

αγPα,γ |ψ〉, (3.18)

where |ψ〉 stands for the input two-qbit register, P (A = α ∧ C = γ||ψ〉) is the joint
probability distribution and Pα,γ refers to the joint projector working on the two-qbit
register.

Since the two measurements are independent on different qbits we can write
Pα,γ = Pα ⊗ Pγ . Therefore we obtain from (3.18)

E(AC) = 〈ψ|
∑
α

∑
γ

αγ(Pα ⊗ Pγ)|ψ〉 = 〈ψ|
(∑

α

αPα

)
⊗

(∑
γ

γPγ

)
|ψ〉

= 〈ψ|OA ⊗ OC |ψ〉. (3.19)

Now we are able to calculate E(s), which leads to the surprising result of (2.15)
that is 2

√
2 which is obviously greater than the classical result 2.

Remark: Here we introduced the most serious violation of the CHSH inequality,
in practice, however, if the observables are chosen not so carefully the difference
between the classical and quantum results may be smaller.

3.3 POSITIVE OPERATOR VALUED MEASUREMENT

As we have seen in the previous section if an orthonormal set of vectors is used and
our partner is correct then the game does not cause any excitement. Let us therefore
consider a set of non-orthogonal states. Obviously projective measurement will fail
with certain probability in accordance with (3.8). In order to control this uncertainty
positive operator valued measurement (POVM) is proposed in the forthcoming
discussion.

For the sake of simplifying the analysis we merge M †
mMm into a single operator

Dm. Equation (3.1) in the 3rd Postulate requires that the probability of measuring m
must be nonnegative, which presses M †

mMm and thus Dm for being positive semi-
definite (see Section 12.2.5). Now the reader can realize the origin of the name of
this type of measurement.

The previously defined operators Dm have several interesting and important
properties:

1. Obviously they are self-adjoint operators because D†
m =

(
M †

mMm

)† =
M †

mMm = Dm.
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2. Any operator in the form of |ϕm〉〈ϕm| is positive semi-definite since for all
|ψ〉, P (m | |ψ〉) = 〈ψ||ϕm〉〈ϕm||ψ〉 = 〈ψ|ϕm〉(〈ψ|ϕm〉)∗ = |〈ψ|ϕm〉|2 ≥ 0.
Because both |ψ〉 and |ϕm〉 are unit length vectors thus P (m | |ψ〉) ≤ 1.

3. This latter statement is also true from the opposite direction because Dm is
constructed in the form of M †

mMm.1

Finally applying Dm the definitions in the 3rd Postulate become

P (m | |ϕ〉) = 〈ϕ|Dm|ϕ〉, (3.20)

and we are typically not interested in the post-measurement state in the case of
POVM because for a given Dm one cannot solve the equation system Dm =
M †

mMm unambiguously. Finally the completeness relation turns to

∑
m

Dm ≡ I. (3.21)

Before presenting how to determine the members of a POVM operator set it is
worth thinking about the expected result if we would like to distinguish vectors
from a non-orthogonal set {|ϕk〉}. Let us take first |ϕm〉. To ensure sure success
of measuring m if |ϕm〉 is received then with respect to the direct approach in
Section 3.2.1 we define Dm = Pm = |ϕm〉〈ϕm|. Thus exploiting (3.20) P (m |
|ϕm〉) = 〈ϕm|Dm|ϕm〉 = 〈ϕm||ϕm〉〈ϕm||ϕm〉 ≡ 1 and indirectly any other
P (k | |ϕm〉) = 0, k �= m because of the completeness relation. Now if we were
sent |ϕn〉 angular to |ϕm〉, which means 0 < 〈ϕm|ϕn〉 < 1 then |ϕn〉 can be
decomposed into a parallel |ϕ�

m〉 and an orthogonal |ϕ⊥
m〉 component to |ϕm〉, that is

|ϕn〉 = |ϕ�

m〉 + |ϕ⊥
m〉. Calculating the probability of measuring m

P (m | |ϕn〉) = 〈ϕn|Dm|ϕn〉 = (〈ϕ�

m| + 〈ϕ⊥
m|)|ϕm〉〈ϕm|(|ϕ�

m〉 + |ϕ⊥
m〉)

= 〈ϕ⊥
m||ϕm〉︸ ︷︷ ︸
≡0

〈ϕm||ϕ⊥
m〉︸ ︷︷ ︸

≡0

+ 〈ϕ�

m||ϕm〉︸ ︷︷ ︸
�=0

〈ϕm||ϕ�

m〉︸ ︷︷ ︸
�=0

+ 〈ϕ⊥
m||ϕm〉︸ ︷︷ ︸
≡0

〈ϕm||ϕ�

m〉︸ ︷︷ ︸
�=0

+ 〈ϕ�

m||ϕm〉︸ ︷︷ ︸
�=0

〈ϕm||ϕ⊥
m〉︸ ︷︷ ︸

≡0

�= 0. (3.22)

Although the first term equals zero the second one proves to be always positive,
hence we can deduce the following lesson: No set of measurement operators exists
which is able to distinguish non-orthogonal states unambiguously. This is another
explanation why non-orthogonal states cannot be copied as was stated in Section 2.7
because of lack of exact information about such states we cannot build a quantum
circuit to produce them.

1However, it has to be emphasized that not only rank-one Hermitian operators can be positive semi-definite
in general.
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3.3.1 Measurement operators and the 3rd Postulate in the case of
POVM

We turn to our one-qbit example once more retaining |ϕ0〉 = |0〉 but replacing

|ϕ1〉 = |1〉 with |ϕ1〉 = |0〉+|1〉√
2

. Obviously the two vectors are non-orthogonal,

i.e. 〈ϕ0|ϕ1〉 = 1√
2
�= 0.

In order to form the members of the POVM set we exploit the indirect construction
approach used for projective measurements in Section 3.2.1, which means that we
would like to prevent the measurement device from answering m = 1 if |ϕ0〉 and
m = 0 if |ϕ1〉 was given to us, respectively. More precisely we would like to ensure

P (1 | |ϕ0〉) = 〈ϕ0|D1|ϕ0〉 = 0, P (0 | |ϕ1〉) = 〈ϕ1|D0|ϕ1〉 = 0.

To achieve this goal we choose D0 orthogonal to |ϕ1〉 and D1 orthogonal to |ϕ0〉 as
if we were designing a projective measurement

D0 = α
|0〉 − |1〉√

2
〈0| − 〈1|√

2
, D1 = β|1〉〈1| (3.23)

with the corresponding matrices

D0 =

[
α
2

−α
2

−α
2

α
2

]
, D1 =

[
0 0
0 β

]
, (3.24)

where α, β ∈ C. Because we are well trained in using the 3rd Postulate we introduce
a third operator with respect to the completeness relation

D2 = I − D0 − D1 ⇒ D2 =

[
1 − α

2
α
2

α
2 1 − β − α

2

]
. (3.25)

Obviously D0 and D1 are positive semi-definite because of the outer product based
construction. Regarding D2 we will investigate this property later.

Before turning to setup α and β it is worth analyzing the operation of Dm. Let
us compute the probabilities of measuring m = 0, 1, 2 in the case of |ϕ0〉 or |ϕ1〉
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arriving at the measuring equipment with respect to P (m | |ϕk〉) = 〈ϕk|Dm|ϕk〉

P (0 | |ϕ0〉) =

[
α
2

−α
2

−α
2

α
2

]

[
1 0

]


1
0




[
α
2

−α
2

]

α
2

, P (1 | |ϕ0〉) =
[
0 0
0 β

]
[
1 0

]


1
0




[
0
0

]

0

,

P (2 | |ϕ0〉) =

[
1 − α

2
α
2

α
2 1 − β − α

2

]

[
1 0

]


1
0




[
1 − α

2
α
2

]

1 − α
2

, P (0 | |ϕ1〉) =

[
α
2

−α
2

−α
2

α
2

]

[ 1√
2

1√
2

]




1√
2

1√
2




[
0
0

]

0

,

P (1 | |ϕ1〉) =
[
0 0
0 β

]
[ 1√

2
1√
2

]




1√
2

1√
2




[
0
β√
2

]

β
2

, P (2 | |ϕ1〉) =

[
1 − α

2
α
2

α
2 1 − β − α

2

]

[ 1√
2

1√
2

]




1√
2

1√
2




[ 1√
2

1−β√
2

]

1 − β
2

.

It is easy to see that to our satisfaction the completeness relation (3.3) has been
fulfilled

2∑
m=0

P (m | |ϕ0〉) = 1,
2∑

m=0

P (m | |ϕ1〉) = 1.

Now, in possession of the above probabilities we can design different strategies
(parameter setups). The most obvious one seems to cancel P (2 | |ϕ0〉) and P (2 |
|ϕ1〉) to zero because in this way P (0 | |ϕ0〉) = 1 and P (1 | |ϕ1〉) = 1 and we
are able to differentiate |ϕ0〉 and |ϕ1〉 unambiguously. It requires α = β = 2. Wait!
We have just claimed the very opposite at the end of the previous section. When and
where did we make the mistake? Remember we postponed checking whether D2 is
positive semi-definite or not. It is easy to see that our current parameter setup for α
and β does not provide this property. We are searching for D2 in the form of |ϕ2〉〈ϕ2|
because it guarantees that D2 is positive semi-definite. Provided |ϕ2〉 = [a, b]T with
real parameter a and b we infer

D2 = |ϕ2〉〈ϕ2| =
[
a
b

]
[
a b

]
[
1 − α

2
α
2

α
2 1 − β − α

2

]
,

from which

a =
√

1 − α

2
, b =

√
1 − β − α

2
,
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and we have the following constraint

α

2
=

√
1 − α

2

√
1 − β − α

2
⇒ β =

1 − α

1 − α
2

. (3.26)

Unfortunately setup α = β = 2 does not satisfy (3.26).

3.3.2 How to apply POVM operators

Equation (3.26) allows some freedom when designing the POVM set. Therefore the
free parameters should be adjusted according to the demand of the technical problem
under consideration. However, before dealing with these parameters let us explain
how to use the previously defined POVM operators.

If |ϕ0〉 were received then according to the probabilities P (m | |ϕ0〉) we would
never measure m = 1, thus if the measuring device shows m = 1 we can be sure that
|ϕ1〉 was fed to the equipment. Similarly if |ϕ1〉 were sent to us then we would never
measure m = 0, hence if the equipment shows m = 0 then obviously |ϕ1〉 was the
selected state. Of course in certain cases the device responds with m = 2, then we
can only guess the chosen vector from the set. Although we are not able to make
uncertainty disappear there is a qualitative difference compared to the projective
measurement. Unlike observing an outcome as in the projective measurement we
can never be sure about the input, however, POVM enables – not in all cases – to
give the correct answer with probability 1. Now we are ready to turn to the free
parameters.

Keeping in view (3.26) first we assume that measuring 2 instead of the sent 0 or
1 has the same importance. Therefore we adjust P (2 | |ϕ0〉) = P (2 | |ϕ1〉), which
requires α = β = 2±√

2. Because α = β = 2+
√

2 leads to P (2 | |ϕ0〉) < 0, P (2 |
|ϕ1〉) > 1 we decide to set α = β = 2 − √

2. When we have a priori information
about the statistics of |ϕ0〉 and |ϕ1〉 we can compensate different rates of occurrence
by means of α.

However, all these tunings are controlled by an important rule which keeps us
away from unambiguously distinguishing non-orthogonal states. Therefore as the
second attempt we try to minimize the probability of measuring m = 2, that is to
minimize the uncertainty of our decisions

P (m = 2) = P (2 | |ϕ0〉)P (|ϕ0〉) + P (2 | |ϕ1〉)P (|ϕ1〉).

Assuming uniformly distributed a priori probabilities P (|ϕk〉) = 1
2 (which is also

the best decision if one has no information about P (|ϕk〉)), we get

P (m = 2) = −1
4

α2 − 4α + 6
α − 2

.

P (m = 2) is depicted vs. α in Fig. 3.1 together with P (m = 2) = 1 which shows
the region where acceptable values of α are located. We know furthermore that α, β
have to be nonnegative and less or equal to 2 in order to ensure P (0 | |ϕ0〉) ≥ 0 and
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Fig. 3.1 P (m = 2) and P (m = 2) = 1 vs. α

P (1 | |ϕ1〉) ≥ 0. In order to find its minimum point we calculate

dP (m = 2)
dα

= −1
4

α2 − 4α + 2
(α − 2)2

= 0,

which advises us to chose α = β = 2 − √
2. Thus both aims can be fulfilled. The

related P (m = 2) equals 1√
2

and as we expected P (m = 2) cannot be reduced to
zero, or in a much plausible form: we are restricted in moving probabilities between
the certainty (P (m = 0), P (m = 1)) and uncertainty (P (m = 2)) cases.

Our third endeavor aims to handle the so-called false alarm – not happen alarm
problem. From an engineering point of view there are problems where making errors
has different costs. For instance if the fire brigade visits a spot with nothing to do
because no emergency situation has occurred the cost is less than sitting in the fire-
station while a warehouse is burning down. Hence we assume that detecting |ϕ1〉
correctly is much more important. We know already that there are some limitations
for moving probabilities between P (2 | |ϕ1〉) and P (1 | |ϕ1〉) but maybe we can do
the same between P (0 | |ϕ0〉) and P (1 | |ϕ1〉). Although Fig. 3.2 emphasizes that
limα→−∞ P (2 | |ϕ1〉) = 1 unfortunately we need α ≥ 0, therefore α = 0 is the
best setup which provides P (1 | |ϕ1〉) = 0.5. Hence asymptotically in half of the
cases we will be able to give a correct answer if |ϕ1〉 has been fed to the measuring
device unlike the first two strategies where this value was only about 0.3. Of course
we have to pay the price for this improvement, namely P (0 | |ϕ0〉) becomes 0 and
equivalently always m = 2 is detected if |ϕ0〉 has been sent.

Finally we emphasize a two-step generalization of the above example. First if
we use a set of n-bit long linearly independent states {|ϕk〉} with N elements
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(k = 0, 1 . . .N − 1) where obviously N ≤ 2n − 1, then in compliance with
the above explained technique one can form corresponding POVM operators Dm,
m = 0, 1 . . .N which enables correct answers if the measuring equipment indicates
m < N and we become indecisive only when m = N . Of course while expanding
the number of dimensions the number of free parameters is also increasing providing
weighting among the measurement outcomes. Moreover, if the linear independency
is not fulfilled for the members of the vector set then decision uncertainty will be
increased but still one can optimize according to some demands (e.g. squared norm)
based on the free parameters. For useful references see the Further Reading of this
chapter.

3.4 RELATIONS AMONG THE MEASUREMENT TYPES

As we discussed in Section 3.2.1 projector Pm is constructed using the outer
product representation |ϕm〉〈ϕm|, where |ϕm〉 belongs to an orthonormal set {|ϕk〉}.
Furthermore any operator in the form of |ϕm〉〈ϕm| proves to be positive semi-
definite thus it can be regarded as a member of a POVM set (see Section 3.3.1).
Consequently any projector is also positive semi-definite, therefore each projective
measurement means at the same time a POVM while the POVM becomes projective
measurement if Dm ≡ Pm, that is they are defined over an orthonormal set.

While projective measurements can be regarded as special cases of general
measurements, clearly speaking POVM should be considered as watching general
measurements via special spectacles. Therefore for any POVM set {Dm} we can
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Fig. 3.3 Implementing general measurement by means of a projective one

define Mm =
√

Dm and vice versa. However, the connection between {Dm} and
Mm is not unambiguous, that is we can define several different Mm to a certain
Dm. All of them result in the same measurement statistic but they produce different
post-measurement states. This is the reason why we omit dealing with the second
statement of the 3rd Postulate.

The connection between the two types of measurements is based on Neumark’s
theorem. Assuming a set of non-orthogonal states n-qbit of length each and a general
measurement acting on them, we can ensure their orthogonality by extending them
with several auxiliary qbits. This means nothing more than increasing the number of
dimensions and within a larger space the states can be orthogonalized. To achieve
this goal we need a so-called ancilla qregister |γ〉 initialized with any classical
state (say |0〉) and a unitary transformation U which produces the orthogonal states
|ψk〉 in the larger space, see Fig. 3.3. In possession of |ψk〉 we can define a
projective measurement Pk = |ψk〉〈ψk| for the extended system which results in
the measurement outcomes of the original system as if we had performed the general
measurement.

3.5 QUANTUM COMPUTING-BASED SOLUTION OF THE GAME WITH
MARBLES

Now, we are in possession of all the knowledge that is required to design a sure-
success strategy for Alice and Bob in the game introduced in Section 1.3. If the reader
recalls the rules of this simple game it becomes obvious that Alice and Bob need to
decide between two properties, namely whether the aggregate number of marbles
equals 4 or 6 (or equivalently we get a head or a tail). Furthermore we concluded that
when using classical approaches certainty cannot be achieved. Therefore we need
something really ‘quantum’. Let us try Einstein’s spooky action at a distance, namely
the entanglement. Hopefully it will supply us with the missing surplus. We suggest

that Alice and Bob prepare and share a Bell state say |β00〉 =
|00〉+|11〉√

2
. They will

modify this state according to their observations by means of appropriate quantum
gates. The possible outcomes of these operations should be such that they allow
distinguishing the 4- and 6-marbles scenarios. As we have learned in this chapter
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states can be distinguished unambiguously only if they are orthogonal. Hence we

take say |β01〉 =
|00〉−|11〉√

2
as the other quantum state beside |β00〉 because Bell

states ensure the required orthogonality. Now we have two problems to solve when
designing the new quantum computing based strategy:

• First we should give transformations to Alice and Bob which ensures that
marble combinations belonging to tail keep state |β00〉 while those which are
forming the set of head lead to |β01〉.

• Once we have achieved our first goal an appropriate measurement apparatus
should be constructed. Theoretically there is no obstacle in our way.
Generation of Bell states is very simple (cf. Fig. 2.11) we need only a
Hadamard and a CNOT gate. If we reverse these gates then we will yield
either |00〉 or |01〉. The second bit belongs to Bob thus by signalling this
one-bit information the original question related to the coin can be answered
trivially. Interestingly Bob obtained the answer without any communication –
neither quantum nor classical – with Alice. Hence if the roles were replaced
faster than light communication would be implemented. At least at first sight.
The inverse of the Hadamard gate is itself and exploiting the definition of
unitary transforms we need to calculate the adjoint of the matrix of a CNOT
gate. Unfortunately there is a minor practical problem between us and the
devastation of relativity theory. The CNOT gate operates on both qbits at the
same time thus its inverse does the same. However, the rules of our game do not
enable the usage of such a common equipment for Alice therefore we should
find out how to surmount this difficulty. We require independent transforms
and measurements for our players.

Let us first tackle the former problem. |β01〉 can be reached from |β00〉in a single
step using a phase gate P (α) with parameter α = π

P(α) =
[

1 0
0 e−jα

]
.

If we consider that in the case of tail we have all together 4 marbles while head
results in 6 of them then obviously setting α = π

2
and performing such a phase gate

successively as many times as many marbles Alice and Bob hold in their hands the
common state of the two qbits will fit our expectations.

Concerning the second problem we follow a pragmatic approach. Let us skip the
inverse of the CNOT gate and apply only the Hadamard gate on the first (Alice’s)
qbit and check what happens with the qbits

(H ⊗ I)|β00〉 = |β10〉 =
|01〉 + |10〉√

2

while

(H ⊗ I)|β01〉 = |β00〉 =
|00〉 + |11〉√

2
.
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Fig. 3.4 Alice and Bob are playing marbles using quantum strategy

Thus if Alice and Bob perform separated measurements in the |0〉, |1〉 basis then the
result can be distinguished easily without the application of the inverted CNOT gate.
Alice and Bob signal their outcomes using the flags to the audience who makes the
following simple mapping: they announce head if the two qbits are the same else
head has to be reported.

Having finished the design process we emphasize that another interesting (slightly
more difficult game) can be found at [80].

Finally we call the reader to design similar motivation games and post it to the
authors (imre@hit.bme.hu) in ps or pdf format. New games will be collected and
shared on the book’s web page.

3.6 FURTHER READING

The technique we used to introduce POVM for distinguishing non-orthogonal states
is based on Peres’ work [119] which was further refined in [17]. Extension of the
two-states one-qbit example for multiple, linearly independent states scenario was
considered in [93]. Hausladen et al. discussed the general problem which aims at
the differentiation among the states of an arbitrary set with the constraint that the
number of states is less or equal to the dimension of the space they span [116].
The measurement they defined is referred to as square-root measurement (SRM) in
the literature. The operators of a SRM can be easily produced using the states in
question and we can minimize the probability of error if the states possess certain
symmetries [103]. As one may expect SRM performs fairly well if the states are near
orthogonal and their a priori probabilities follow uniform distribution [117] and it
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can be proven that it is asymptotically optimal [116]. A very sophisticated survey of
these achievements and the proof of optimality of SRM in least-square sense can be
found in [154].

Concerning the Neumark extension we advise the reader to read [120].
Eldar and Oppenheim introduced an interesting and straightforward special

framework for classical signal processing with borrowed ideas related to quantum
measurements in [153]. Dušek and Bužek proposed a programmable quantum
measurement device for POVM in [106].



Part II

Quantum Algorithms





4
Two Simple Quantum

Algorithms

The majority of this book focuses on quantum algorithms which are significantly
more efficient than their best-known classical alternatives. There are no magic
formulas about designing appropriate quantum algorithms to solve a certain problem.
As we will see later several often used and fairly useful tools can be attained when
studying available quantum algorithms systematically. However, before staring this
interesting but time-consuming process we present two simple algorithms that can
be understood without effort based on our (at this point) limited available skills in
quantum computing. They typically excite beginners and give enough stimulation
to get through some hard topics. We show how to use quantum communication
channels to achieve higher information transfer rates by means of superdense coding
in Section 4.1. Next the dream of all science fiction fans will be fulfilled when we
design a quantum-based teleportation device in Section 4.2.

4.1 SUPERDENSE CODING

The science that is responsible among others for investigating theoretical limits
of communication over an erroneous channel is called information theory. It was
founded by Claude Shannon [136] in the 1940s. This science has since been
flourishing not only in terms of theory but also the results have been transplanted
into equivalent everyday practice and built in all communication devices. The
corresponding quantum equivalent – called quantum information theory – forms the
backbone of the second volume of this book. Here we would like to present only a

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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Fig. 4.1 The superdense coding scenario

simple but very stimulating example referred to as superdense coding in the literature
that highlights the jewels hidden in the quantum world.

Being frustrated with the everyday phone conversations our assistants Alice and
Bob decided to exchange information over an error-free quantum channel instead of
using a pair of copper wires, where quantum refers to the capability of being able to
deliver superpositions instead of classical states. The major steps can be followed in
Fig. 4.1.

First Alice and Bob prepare several |β00〉 Bell states and Bob slips one qbit of
each pair in his pocket before leaving. Later when they begin the conversation Alice
converts the analogous speech signal into binary strings consisting of classical 0s and
1s. Next she encodes each dibit (pair of two consecutive bits) into a superposition
using special transformations on the half pair being in her possession. The coding
rules are listed in the first two columns of Table 4.1. Alice then sends her qbit over
the quantum channel to Bob. Now Bob has to find an appropriate decoding scheme
to restore the original classical information. Since Bob was a keen student during
the previous chapters he calculates the possible joint states of the two-qbit system
in his hands and writes them into the third column. After a short cogitation Bob
realizes (hopefully together with the reader) that the listed states are nothing more
than the Bell pairs introduced in Section 2.6.3. We learned there their important
property, namely they are orthogonal thus they can be cloned and distinguished
unambiguously. Let us help Bob to design such a decoding equipment. Bell states
can be produced by means of a Hadamard and a CNOT gate according to Fig. 2.11.

Therefore in order to obtain the classical inputs in this figure from the outputs we
have to reverse i.e. invert this circuit. Because of the unitary nature of the Bell gate
its inverse can be computed as its adjoint

((H ⊗ I)CNOT)−1 = ((H ⊗ I)CNOT)† = CNOT†(H ⊗ I)†.

Since both (H ⊗ I) and CNOT are Hermitian operators Bob has to implement these
gates in the reverse order to build the decoder. We ask the reader to validate this
result in Exercise 4.1.
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Having clarified all the technical questions related to the quantum-assisted
classical information transfer we turn to the evaluation of its advantages. If Alice
and Bob were using classical digital telephones then they would need to send and
receive both classical bits of each dibit. The quantum computing based solution
utilizes two quantum bits, too. However, unlike the classical approach, at the time
of the conversation only half the amount of qbits has to be sent revealing why this
algorithm is called superdense coding.

Table 4.1 Encoding rules for Alice and the corresponding two-qbit states

dibit transform joint state

00 I
|00〉+|11〉√

2

01 Z
|00〉−|11〉√

2

10 X
|10〉+|01〉√

2

11 jY
|01〉−|10〉√

2

Exercise 4.1. Check whether the CNOT(H ⊗ I) gate really returns the wanted
classical states.

4.2 QUANTUM TELEPORTATION

There is an often-repeated scene in most popular science fiction novels and movies.
The space traveller enters a cabin on the board of a space ship than he/she suddenly
disappears accompanied by colorful lighting effects. A few moments later our
astronaut appears in another cabin located on a planet hundreds of light-years away
from the starting point. Let us analyze this futuristic scene scientifically. There are
two alternatives about how to carry out teleportation in practice.

On one hand we can break the traveller into smaller parts, say to elementary
particles such as electrons, protons, etc., in the departure cabin. As we have
learned earlier these particles obey quantum mechanics and thus each of them
can be represented as a one-qbit superposition. Therefore we need a quantum
communication channel between the two locations to transfer the components of
our daring astronaut. Finally he/she has to be rebuilt in the arrival cabin from
the original particles. This approach requires an error-free channel (more precisely
error-free communication protocol) unless we would like to meet with a monster.
Communications over a quantum channel together with other aspects of quantum
information theory belong to the main part of the second volume of this book.
However, we can reveal in advance that this job proves to be very hard.
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On the other hand we are able to replace quantum communications with a classical
one and utilize our related broad knowledge. To follow this way we have to measure
and encode the state of each particle and only this classical information will be
delivered between the two cabins. In the destination cabin a stockpile of particles are
required from which the traveller can be rebuilt in compliance with the transferred
assembly manual. Unfortunately this idea also suffers some drawbacks. The most
challenging one is how the states of the particles can be measured? Theoretically we
need an infinite number of measurements to estimate the corresponding probability
amplitudes with arbitrary small inaccuracy. Finally we can conclude that neither
method seems to be mature enough for practical implementation, if only. . .

If only we exploit our skills in quantum computing. Our assistants Alice and
Bob are going to demonstrate a suitable protocol. They decided to teleport an
apple in commemoration of Newton between Alice standing on the Earth and Bob
spending the weekend on the Moon. For the sake of simplicity they will present
the teleportation of a single particle because if it works then an apple requires only
solving some minor technological problems.

Let us denote the arbitrary quantum state of the particle to be teleported by
|ψ〉 = a|0〉 + b|1〉. The operation of the teleporting device can be followed step

by step in Fig. 4.2. First Alice and Bob share a |β00〉 =
|00〉+|11〉√

2
Bell pair and Bob

puts his qbit in his pocket before leaving for the Moon. To make it easier to follow
the operation we refer to Alice’s quantum wires as A1 and A2 and to Bob’s half pair
as B. The initial input joint state is trivially

|ϕ0〉 = |ψ〉|β00〉 =
1√
2

[
a|A1

0 〉
(
|A2
0

B
0〉 + |A2

1
B
1〉

)
+ b|A1

1 〉
(
|A2
0

B
0〉 + |A2

1
B
1〉

)]
.

Next Alice applies a CNOT gate onto the qbits in her hands. However, instead
of using matrix-vector operations we exploit the superposition principle, that is a
control with 0 leaves the data qbit unchanged while a 1 on the upper wire inverts the
lower output (see Section 2.6.2). In order to highlight the modifications due to the
CNOT gate we have boldfaced the corresponding qbit (A2)

|ϕ1〉 =
1√
2

[
a|A1

0 〉
(
|A2
0

B
0〉 + |A2

1
B
1〉

)
+ b|A1

1 〉
(
|A2

1
B
0〉 + |A2

0
B
1〉

)]
.

The forthcoming Hadamard transform on the topmost quantum wire implements the

well-known rule: H |0〉 → |0〉+|1〉√
2

and H |1〉 → |0〉−|1〉√
2

leading to

|ϕ2〉 =
1√
2

1√
2

×
[
a

(
|A1

0 〉 + |A1

1 〉
) (

|A2
0

B
0〉 + |A2

1
B
1〉

)
+ b

(
|A1

0 〉 − |A1

1 〉
) (

|A2
1

B
0〉 + |A2

0
B
1〉

)]
.
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Fig. 4.2 The teleportation scenario

Before performing the measurements Alice regroups the terms in |ϕ2〉 according to
her two qbits to produce a more readable form

|ϕ2〉 =
1
2

[
|A1
0

A2
0 〉

(
a|B0〉 + b|B1〉

)
+ |A1

0
A2
1 〉

(
a|B1〉 + b|B0〉

)

+ |A1
1

A2
0 〉

(
a|B0〉 − b|B1〉

)
+ |A1

1
A2
1 〉

(
a|B1〉 − b|B0〉

)]
. (4.1)

Obviously Alice obtains one of the four possible two-bit results among 00, 01, 10 or
11 as measurement outcome. Each of them is in close connection with the state of
Bob’s qbit hence Alice sends these two classical bits to Bob. After a short hesitation
Bob compares |ψ〉 to the potential states of his half Bell pair. It is easy to realize the
following relations

A1A2 → B = U |ψ〉
00 → a|0〉+b|1〉

2 = I|ψ〉
01 → a|1〉+b|0〉

2 = X |ψ〉
10 → a|0〉−b|1〉

2 = Z|ψ〉
11 → a|1〉−b|0〉

2 = ZX |ψ〉.

Therefore Bob has only to apply the inverse of the appropriate transform(s) in
compliance with the received classical bits. Since our Bob read Part I carefully he
knows that all these operators are unitary thus their inverses can be calculated simply
by building their adjoint. Moreover it is easy to see that they are Hermitian too,
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which explains why the original gates are used in Fig. 4.2 as gates controlled by
measurement results M1 and M2. Thus finally Bob obtains the original |ψ〉.

The reader may wonder where the information really travelled between Alice and
Bob? Trivially the classically sent two bits were not enough to carry almost arbitrary
a and b complex pairs. We would rather say that Alice encodes the difference
between |ψ〉 and the half Bell pair into the classical bits. Since the other half is
in Bob’s possession he is able to reproduce |ψ〉 by means of the difference.

Another straightforward approach to explain the surprising operation of the
teleporting device is if the reader recalls what we have learned about preparing
entanglement in Section 2.6.3. If one managed to produce a Bell pair successfully
then a third qbit can be entangled with the other two having only one of them in our
hands. Alice’s CNOT gate operates as an entangler machine thus the information has
been transferred via the indirect entanglement between |ψ〉 and Bob’s qbit.

There are several important aspects and consequences of the above explained
teleportation technique:

• Alice needs no information about |ψ〉 to teleport it.

• Without Alice’s classically transferred bit pair Bob is not able to produce |ψ〉
thus no ‘faster than light’ communication is possible in this way, which is in
full harmony with the relativity theory.

• In order to encode and transfer a and b, i.e. |ψ〉 classically, Alice may require
a very large amount of classical bits let alone the measurement problem about
how to gain them. Conversely teleportation needs only two classical and two
quantum bits altogether.

Exercise 4.2. Using teleportation Bob obtains a replica of an arbitrary one-qbit state
in Alice’s hand. Explain why quantum teleportation cannot be used in this way as a
cloning machine.

4.3 FURTHER READING

Superdense coding was proposed by Bennett and Wiesner [41] in 1992. The
first idea of how to carry out theoretically quantum teleportation originated from
Charles Bennett and his international team [40, 152] in 1993. The first experimental
realization was accomplished by the team of Anton Zeilinger [47] in Insbruck in
1997. A popular description of their work can be found in [22]. Braunstein and
Kimble expanded the Insbruck experiment in 1998 and showed [141, 142] that the
input and output states of teleportation are the same. An NMR-based realization was
carried out by Nielsen and his colleagues [102] in the same year. Impressive results
on successful long-distance teleportation is related to Nicolas Gisin and his Geneva
team. They use teleportation as a building block of quantum cryptography protocols
for references see Chapter 10. Since these very first results the topic is becoming
very popular both from the algorithmic and implementation point of view. Interested
readers are suggested to read [79].



5
Quantum Parallelism

Quantum parallelism is one of the major driving forces of quantum computing and
can be referred to as a solid basis of most quantum-based algorithms alongside
entanglement. This special kind of parallel computation allows solving classically
complex problems such as searching an unstructured database or finding prime
factors of large numbers while breaking ciphering protocols during an astonishing
short period of time. In order to lay dawn the foundations of sophisticated quantum
algorithms mathematical formulation of quantum parallelism (Section 5.1) with
simple practical examples of Deutsch–Jozsa and Simon algorithms (Section 5.2 and
5.3) are provided within this chapter.

5.1 INTRODUCTION

Let us assume that we have an unknown function f(x) : {0, 1}n → {0, 1}1. In
order to determine the exact rules of its operation classically we have to substitute
all the potential inputs x = 0, 1, . . . , 2n − 1, which requires either a large amount of
evaluation of f sequentially or we need to buy N = 2n pieces of parallel switched
elementary gates implementing f .

We try to exploit the special features of the quantum world to build a quantum
gate which is able to perform this job in a single step. First we solve this problem for
f(x) : {0, 1}1 → {0, 1}1, which will be followed by the generalization of the binary
result to n.

When we consider the master equation of the CNOT gate (2.10) with control input

|C〉IN = |0〉+|1〉√
2

and data input |D〉IN = |0〉 i.e., we produce Bell pair
|00〉+|11〉√

2
,

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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C IN
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x x

y y f x( )

C OUT

D OUT

Fig. 5.1 f -controlled CNOT gate

Table 5.1 Truth table of f -controlled CNOT gate

IN OUT

x y x y ⊕ f(x)

0 0 0 0 ⊕ f(0) = f(0)
0 1 0 1 ⊕ f(0)
1 0 1 0 ⊕ f(1) = f(1)
1 1 1 1 ⊕ f(1)

we can observe apart from entanglement that data output contains both possible data
input values. Now we introduce a little modification of the master equation (2.10) in
the following way

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (5.1)

where variables x and y are depicted in Fig. 5.1 and they refer to computational
basis vectors instead of arbitrary superpositions. Therefore x, y ∈ {0, 1} and the
corresponding truth table is presented in Table 5.1, which allows us to apply the
superposition principle for arbitrary superpositions at the inputs of the new gate.

Assuming the same inputs as for the CNOT gate and considering truth Table 5.1
we can easily calculate the output of the f -controlled CNOT gate

Uf
|00〉 + |10〉√

2
=

|0〉|f(0)〉 + |1〉|f(1)〉√
2

, (5.2)

which comprises both f(0) and f(1) after a single run of the gate. We emphasize
that in this binary case |C〉IN contains |0〉 and |1〉, i.e. all the possible values of x.

Remark: It is worth emphasizing that Uf is reversible independently from the fact
whether f is reversible or not. It has been achieved by retaining the corresponding
input |x〉 beside |f(x)〉 at the output.
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Fig. 5.2 f -controlled CNOT gate with N -dimensional control input implementing parallel
evaluation of f

Since we know from (2.9) that the output of an n-qbit Hadamard gate contains a
superposition of all the possible x of n bit length if it was fed with |0〉2n , hence when
generalizing the binary result to an input control register n bit of size we have to start
with a quantum state |0〉N which is connected to an N -dimensional Hadamard gate
H⊗n, i.e. on each control wire a one-qbit H is deployed (see Fig. 5.2). The output
of the Hadamard gate has to be connected to the input control register and a |0〉 to
the data input, respectively. Generalizing master equation (5.1) to multiqbit control
input we get

Uf : |x〉N |y〉 → |x〉N |y ⊕ f(x)〉, (5.3)

where by applying the binary notation x ∈ {0, 1}n we are going to highlight the fact
that a qregister n bit of length is used as the control input. Therefore the output of
the generalized f -controlled CNOT gate can be expressed as

Uf
1√
2n

∑
x∈{0,1}n

|x〉|0〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0 ⊕ f(x)〉

=
1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉 =
1√
2n

2n−1∑
x=0

|x〉|f(x)〉, (5.4)

which means that we have a special superposition: each member of this superposition
consists of a control output emitting one of the possible arguments x and a data
output which represents the corresponding f(x). So f(x) has been evaluated for all
the x in a single step independently from the size of N ! We mentioned at the end
of Section 2.3 that n = 500 qbit forming a quantum register may contain more
integer numbers than the number of atoms in the known universe. Now we designed
a quantum gate which is able to evaluate a given function for all these numbers in a
single step.

Unfortunately there is a non-subsidiary fact which cannot be omitted. When we
try to access the result register containing all the values of f(x) independently from
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the applied measurement technique we are able to get back only one of them. The
price we must pay seems to be too high because taking into account this constraint
one may put the following obvious question: is it worth using quantum parallelism
at all? Fortunately we have a straightforward and reassuring answer to this question.
On one hand while we run quantum operators without measurements, advantages
of quantum parallelism can be exploited without any difficulties. On the other hand
apart from quantum parallelism we possess a brain which is able to construct such
quantum gates that perform so-called amplitude amplification, i.e. they increase the
probability amplitude of a given f(x) near or equal to 1. This fact results that an
appropriate measurement will give back the requested f(x) value with probability
O(1) or in certain cases with sure success.

Remark: Amplitude amplification referred originally to a recursive technique
related to the generalization of the Grover algorithm (see Chapter 7). However,
we use it in a more generalized sense, denoting any techniques aiming to increase
target probability amplitudes before measurement. Perhaps the plainest example of
amplitude amplification is the operation of the idealistic quantum interferometer (see
Section 2.5), where the second beam splitter (half-silvered mirror), while interfering
the two branches of the interferometer, ensures that the photon always hits the same
detector, i.e. the probability amplitude of striking that detector was amplified to 1.
Therefore this notion is also often referred to as constructive interference. In the
case of constructive interference amplitude amplification comprises only a single
iteration step.

Presumably the reason now becomes clear for the reader why we mentioned at the
beginning of this chapter that quantum parallelism is only one of the major driving
forces of quantum computing. It is similar to an everyday tool whose handling must
be learned in order to use it efficiently. The essence of the further sections in this
chapter – beyond introducing several simple problems and their quantum solutions
– can be regarded as a training on how to exploit quantum parallelism.

Exercise 5.1. Prove that Uf : |x〉N |y〉 → |x〉N |y ⊕ f(x)〉 is unitary.

5.2 DEUTSCH–JOZSA ALGORITHM

People who are familiar with old tales and legends know that these stories contain
pieces from a large common set of patterns which originate from the ancient heritage
of the human race. It is typical that the young hero/prince has to stand several tests
during his long journey before winning the love of the beautiful princess and/or the
kingdom of the old king.1 One often-mentioned episode is when the prince arrives at

1E.g. If the reader is living in the northern hemisphere and takes a look at the starry sky she/he can easily
recognize several constellations (in italics) telling the story of Greek Perseus who killed the evil Medusa
liberating Pegasos the winged horse and finally rescued the beautiful Andromeda daughter of Kepheus
and Kassiopeia.
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a crossroad which either leads to Hell or to the castle of the princess and the hero has
to decide which of them to choose (this good way-bad way situation often occurs in
the third millennium too when we are trying to reach our workplace by car during the
morning rush hours). Fortunately there are usually two tramps/witches offering their
services and the prince has to answer some tricky questions/puzzles in exchange of
information about the right way.

Now during our journey in the quantum world, which is full of strange phenomena
and rules, we arrive at our crossroad where we have to encode our questions to the
witches into n-bit long binary vectors x ∈ {0, 1}n and they respond by means of
YES/NO, i.e. binary 0 or 1. We use binary notation instead of applying decimal
numbers – in spite of the fact that they are equivalent – in this section because
the former one proves to be more convenient for the mathematical formalism.
Furthermore they tell us that one of them answers consequently with either 0 or 1
to all the possible questions and the other one replies with 0 for half of all possible x
and 1 for the remaining half. The function f(x) implemented by the former witch is
called constant in the literature while the latter one balanced and we have to guess
which of the witches is constant and which is the balanced one.

Classical heroes such as Odysseus or King Arthur would need 2n/2 + 1 =
2n−1+1 questions to carry out such a classification with certainty but for pioneers of
quantum computing – Deutsch and Jozsa – it was enough to ask a single question to
one of the witches (assuming they are quantum witches). In this section we present
a suitable algorithm proposed in its original form by Deutsch and Jozsa and later
refined by other scientists (see Further Reading) to solve this good way-bad way
type of problem.

Assuming n-bit long questions we have all together N = 2n different possibilities
for x, and we know that f(x) : {0, 1}n → {0, 1}1. It is obvious that quantum
parallelism and interference (amplitude amplification) are more efficient tools than
the best classical algorithm. Therefore we use the f -controlled CNOT gate (see
Fig. 5.2) supplemented on its inputs and outputs according to the architecture in
Fig. 5.3. The control input of gate Uf contains all the possible x prepared by means
of an N -dimensional Hadamard gate, i.e. we put all the questions together to the
witch in one special question. The novelty appears on the data input in the form of a

superposition |D〉IN = |0〉−|1〉√
2

instead of the basis state |0〉. Since the initial state
of the system is |ϕ0〉 = |0〉N |1〉, the input state of Uf can be described as

|ϕ1〉 = H⊗(n+1)|ϕ0〉 =
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉 − |1〉√
2

=
1√

2(n+1)

∑
x∈{0,1}n

|x〉|0〉 − 1√
2(n+1)

∑
x∈{0,1}n

|x〉|1〉. (5.5)

Now the witch processes this input state using master equation (5.3) and
remembering the superposition principle which allows her to use (5.3) independently
in the two terms of (5.5). Regarding the first term she can rely on (5.4) and concerning
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Fig. 5.3 Quantum architecture for solving the Deutsch–Jozsa problem

the second term

Uf
1√
2n

∑
x∈{0,1}n

|x〉|1〉 =
1√
2n

∑
x∈{0,1}n

|x〉|1 ⊕ f(x)〉. (5.6)

Finally she calculates her answer in the form of the output qregister

|ϕ2〉 = Uf |ϕ1〉 =
1√

2(n+1)

∑
x∈{0,1}n

|x〉|f(x)〉 − 1√
2(n+1)

∑
x∈{0,1}n

|x〉|1 ⊕ f(x)〉

=
1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉 − |1 ⊕ f(x)〉√
2

=
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉 ⊗ |0〉 − |1〉√
2

, (5.7)

where at the last step she utilized the result of Exercise 5.2. Interestingly we obtained
the same quantum state on the lower output as the corresponding input, thus it seems
as if the lower quantum wire were a simple shortcut. This is, however, an ‘optical’
illusion because only the superposition principle acting inside the gate presented
such a special output. In possession of her answer, before performing a suitable
measurement, our prince has to amplify the appropriate probability amplitudes. To
put this goal into practice we apply a H⊗n gate to the control output qbits. We know
from Section 2.4 that for computational basis vector |x〉

H⊗n|x〉 =
1√
2n

∑
z∈{0,1}n

(−1)xz|z〉, (5.8)

where xz refers to the binary scalar product of the two numbers considering them
as binary vectors (sum of bitwise products modulo 2). We replace here z by x′ in
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order to highlight the fact that before and after the transformation we use the same
computational basis states, only the corresponding probability amplitudes have been
modified. Therefore

|ϕ3〉 = (H⊗n ⊗ I)|ϕ2〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x)H⊗n|x〉 ⊗ |0〉 − |1〉√
2

=
1√
2n

∑
x∈{0,1}n

(−1)f(x) 1√
2n

∑
x′∈{0,1}n

(−1)xx′|x′〉 ⊗ |0〉 − |1〉√
2

=
∑

x′∈{0,1}n


 1

2n

∑
x∈{0,1}n

(−1)xx′+f(x)




︸ ︷︷ ︸
cx′

|x′〉 ⊗ |0〉 − |1〉√
2

. (5.9)

Finally we construct a measurement which is able to discriminate between the two
possibilities (constant or balanced). In order to carry out this task we examine
coefficient c0. Thus one can observe that

c0 =
1
2n

∑
x∈{0,1}n

(−1)xx′+f(x) =
1
2n

∑
x∈{0,1}n

(−1)f(x) (5.10)

since xx′ = x0 ≡ 0. Now let us investigate (5.10) when f(x) is constant, then

c0 =
{ −1 if f(x) ≡ 1

1 if f(x) ≡ 0.
(5.11)

When concentrating on |ϕ3〉 it is useful to highlight that the state of the data qbit is
constant in terms of not depending on x (more precisely we can say that the control
and data subsystems are not entangled) hence cx′ equals the probability amplitude
of corresponding |x′〉. We would like to emphasize here that in a more general case
where entanglement binds together the two subsystems cx′ does not represent at
all the probability amplitude of |x′〉 (see Simon algorithm in Section 5.3). Taking
into account that c0 belongs to the partial system comprising the control qbits and
it does not depend on the actual status of the data quantum wire, i.e. whether it is
measured or not at all, measuring the control qbits in the computational basis states
we always get |0〉 with probability 1, that is probability amplitudes of other basis
vectors are expunged. Concerning the balanced scenario c0 = 0 since we have the
same number of positive (+1) and negative (-1) terms in the sum. Hence one thing is
certain, namely the measuring equipment may respond to any of the computational
basis states except |0〉. Keeping in mind these two results the prince2 is able to decide
by means of a single challenge whether the given witch is constant or balanced with
sure success.

2Important hint for princes who are still wet behind the ears: before challenging an unknown witch make
sure of her quantum capabilities!
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Fig. 5.4 Quantum architecture for solving Simon’s problem

Remark: The single-control bit version (n = 1) of the Deutsch–Jozsa
algorithm refers to the original Deutsch problem where one has to decide
whether f(x) : {0, 1}1 → {0, 1}1 it is constant or varying.

Exercise 5.2. Prove that |f(x)〉 − |1 ⊕ f(x)〉 = (−1)f(x)(|0〉 − |1〉).

5.3 SIMON ALGORITHM

Let us modify the function f and the related question under discussion in the
Deutsch–Jozsa problem in the following way: f : {0, 1}n → {0, 1}n, i.e. Simon’s
algorithm deals with a binary vector valued function which is constrained by a special
condition. f is periodical in terms of f(x) = f(y) if and only if x = y or x = y ⊕ r,
where r �= 0 stands for the binary period of f . There are two obvious questions,
namely how and in how many steps (evaluation of f ) can r be computed. These
questions can answered both classically and quantum computationally but with a
major difference. A traditional computer requires an exponential number of queries
while Simon’s solution is able to find r after O(n) iterations with high probability.
To achieve this promising efficiency, master equation (5.3) has to be modified in
compliance with f

Uf : |x〉N |y〉N → |x〉N |y ⊕ f(x)〉N . (5.12)

The required architecture is depicted in Fig. 5.4. As one may recognize we start
from |ϕ0〉 = |0〉N |0〉N , which is the modified version of the Deutsch–Jozsa scenario
for multiqbit data output, where N = 2n. Next an N -dimensional Hadamard gate is
applied to the control qbits, but as an essential difference, data qbits are left to flow
into the Uf gate without any transformation, thus

|ϕ1〉 = (H⊗n ⊗ I⊗n)|ϕ0〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0〉N . (5.13)



SIMON ALGORITHM 77

The output of Uf can be determined easily because quantum parallelism is acting in
the gate

|ϕ2〉 = Uf |ϕ1〉 =
1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉. (5.14)

Since the two-to-one constraint |f(x)〉 = |f(x ⊕ r)〉 pertaining to f strictly regulates
that not only a given value of f originates exactly from two different arguments, but
a given x may result exactly in one f value, the following superposition equals (5.14)

|ϕ2〉 =
1√
2n

∑
x∈{0,1}n

|x ⊕ r〉|f(x ⊕ r)〉. (5.15)

Combining (5.14) with (5.15) and considering f(x) = f(x⊕r) and if r is a nontrivial
period (r �= 0) of f we get

|ϕ2〉 =
1√
2n

∑
x∈{0,1}n

|x〉 + |x ⊕ r〉
2

|f(x)〉, (5.16)

where the extra division by factor 2 corrects the fact that every term in the sum
is counted twice, i.e. we guaranteed in this way that |ϕ2〉 remains a vector of unit
length.

We have again the H⊗n gate at the control output to accomplish constructive
interference in order to eliminate probability amplitudes of unwanted computational
basis states. According to (5.8) the measurement device is feeded with the upper n
control qbits of the following superposition

|ϕ3〉 = (H⊗n ⊗ I⊗n)|ϕ2〉 =
1√

2(n+2)

∑
x∈{0,1}n

H⊗n(|x〉 + |x ⊕ r〉) ⊗ |f(x)〉

=
∑

x′∈{0,1}n

∑
x∈{0,1}n

(
1

2n+1
[(−1)xx′

+ (−1)(x⊕r)x′
]
)

︸ ︷︷ ︸
cx′,x

|x′〉 ⊗ |f(x)〉. (5.17)

Similarly to the Deutsch–Jozsa algorithm we try to draw conclusions evaluating
coefficient cx′,x but in this case the control and data subsystems are entangled
therefore it represents probability amplitude of |x′〉|f(x)〉. Taking into account that
xx′ = (x ⊕ r)x′ ≡ xx′ ⊕ rx′ if and only if rx′ = 0 else the two terms in cx′,x
eliminate each other, thus

cx′,x =




2
2n+1

(−1)xx′
= 2−n(−1)xx′

if rx′ = 0

0 if rx′ = 1.
(5.18)

Obviously P (x′ = z∧ rz = 1) = 0. When we are interested in P (x′ = z∧ rz = 0),
however, first we realize that cx′,x and cx′,x⊕r belong to the same computational
basis state |x′〉|f(x)〉 therefore they have to be added together as probability
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amplitudes. This means that the number of different basis states are exactly half of the
number of different x. Moreover at a fixed x′ = z we have to sum up the absolute-
squared probability amplitudes (probabilities) of all the computational basis states
|x′ = z〉|f(x)〉. Thus any measurement on the control qbits in the computational
basis states will result in |x′ = z〉 such that rz = 0 with uniformly distributed
probability

P (x′ = z ∧ rz = 0) =
∑

x∈{0,1}n

|cz,x + cz,x⊕r|2
2

=
(

1
2n

)2 ∑
x∈{0,1}n

1
2
|2(−1)xz|2︸ ︷︷ ︸

≡22

= 2
1

22n
2n =

1
2(n−1)

. (5.19)

The division by 2 is needed because the sum runs over all possible x so without it
we would consider two times each basis vector. Performing L times this algorithm
we will have a linear equation system in our hand that can be solved by means of
Gaussian elimination (see Section 12.2.2)

rx′
l = 0, l = 1, 2, . . . , L, (5.20)

where x′
l refers to the result of the lth measurement. If x′

l were different then
L = n measurements would be enough to calculate r exactly. Unfortunately the
applied quantum measurements select among the computational bases states |x′〉
probabilistically in each turn, which allows repeated occurrence of a given x′

l.
Fortunately it was proven in [52] that the probability that the equation system (5.20)
cannot be solved unambiguously after n trials is exponentially small in n. Conversely
a classical random search would require trivially 2n−1 − 1 turns in the worst case
while on the average O(

√
2n) function call is required [139].

Finally a natural question may arise since we used a constraint r �= 0 when
deriving (5.16) – what happens when we try to trick the Simon algorithm3 using
trivial period r = 0? In this case (5.16) becomes

|ϕ2〉 =
1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉, (5.21)

3Or we have no information about r.
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because |x〉 ≡ |x ⊕ r〉. Applying the Hadamard gate for the upper quantum wire we
get

|ϕ3〉 = (H⊗n ⊗ I⊗n)|ϕ2〉 =
1√
2n

∑
x∈{0,1}n

H⊗n|x〉 ⊗ |f(x)〉

=
∑

x′∈{0,1}n

∑
x∈{0,1}n

1
2n︸︷︷︸

cx′,x

|x′〉 ⊗ |f(x)〉

=


 1√

2n

∑
x′∈{0,1}n

|x′〉

 ⊗


 1√

2n

∑
x∈{0,1}n

|f(x)〉

 . (5.22)

The last row highlights the fact that the two qregisters are separable (not entangled).
Thus any measurement on the control qbits in the computational basis states will
result in any x′ ∈ {0, 1}n with uniformly distributed probability and rx′ = 0 only if
r = 0 except x′ = 0

P (x′ = z) =
∑

x∈{0,1}n

|cz,x|2 = (2−n)22n =
1
2n

. (5.23)

So we can repeat the algorithm similarly to the r �= 0 case in order to collect a linear
equation system which allows computing r = 0.

5.4 FURTHER READING

The term amplitude amplification was originally used in solving a set separation type
problem by Brassard, Hoyer, Mosca and Tapp in [62].

Deutsch raised his problem with a probabilistic answer in [51]. However, the first
practical application of quantum parallelism in solving a theoretical problem was
introduced by Deutsch and Jozsa [49] in 1992. The original probabilistic solution
was refined in [124] and extended by Constantini and Smeraldi [63] to the case
f : {0, 1}n → {0, 1}m. The algorithm presented in this book is based on [124].

The Deutsch–Jozsa algorithm was generalized for continuous variables by Pati
and Braunstein in [11]. The original Deutsch–Jozsa problem – whether a function
f is constant or balanced – has been replaced by the decision whether f is constant
or evenly distributed in [50]. An infocom related application of the Deutsch–Jozsa
algorithm in handling the so-called Guessing secrets problem (arising in context with
the Internet) will be explained in Part III, Chapter 11.

Regarding implementation issues of the Deutsch–Jozsa algorithm many proposals
were made during the last decade, e.g. using Josephson charge qbits in [85], applying
NMR in [82] and [18] or an optical solution in [55]. Those readers who are interested
in additional techniques and solutions are suggested to look at references in the above
citations.
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Simon introduced his problem with a probabilistic solution in [140]. We
followed a similar way to the original one in this chapter in order to explain the
algorithm, however, also its QFT based extension for period finding is presented
in Section 6.5.1. An exact quantum polynomial-time algorithm with worst case
O(n) steps instead of expected O(n) was proposed by Brassard and Hoyer for
Simon’s problem in [60]. Biham et al. presented an alternative technique to solve
the Deutsch–Jozsa and Simon problem without entanglement but in a more efficient
way than the best classical one in [52].



6
Quantum Fourier
Transform and its

Applications
When Fourier published his most famous work Théorie analitique de la chaleur
in 1822 he had not the slightest idea that his transform – which was originally
applied in thermodynamics – would run such a widespread course in many different
areas of signal/information processing from spectroscopy to telecommunications
where this transform constitutes the bridge between signal representations in time
and frequency domains. The extraordinary success of the Fourier transform is due
to its discrete version the so-called discrete Fourier transform (DFT), which has
a computationally very efficient implementation in the form of the fast Fourier
transform (FFT).

The quantum version of the Fourier transform lies at the core of many quantum
computing algorithms. The quantum Fourier transform (QFT) is analogous to the
classical FFT, and by exploiting the advantages of quantum parallelism, can be
computed exponentially faster. However, as we will explain in this chapter this
advantage cannot be used to enhance the speed of data processing directly, since
all the individual Fourier coefficients (probability amplitudes) cannot be accessed by
a measurement, similar to the fact we experienced with quantum parallelism. Instead
QFT can be regarded as a building block of complex quantum algorithms.

First classical Fourier transform and its quantum counterpart will be introduced
in Section 6.1 which is followed in Section 6.2 by its very useful application called
quantum phase estimation that serves also as an important element of several efficient
quantum algorithms (e.g. the Grover searching algorithm, see Chapter 7). Another
important and interesting application of QFT investigated within this chapter is order
finding, which forms the basis of efficient quantum factorization algorithms and is
explained in Section 6.3. We stop for a while to build bridges between Chapter 6

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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and 5 in Section 6.4. As a generalization of order finding, period finding and discrete
logarithm algorithms are discussed in Section 6.5. In order to exploit advantages
of QFT, related infocommunication problems are discussed in Part III. This chapter
requires some basic knowledge of number theory which has been summarized in
Section 12.3.

6.1 QUANTUM FOURIER TRANSFORM

In order to illuminate the similarities and differences between classical DFT and
quantum QFT first traditional DFT is summarized. Let us assume a vector x =
[x0, x1, . . . , xN−1]T with complex coordinates xi ∈ C. The discrete Fourier
transform of x is denoted by y = DFT{x} where the Fourier coefficients of y
are defined as1

yk � 1√
N

N−1∑
i=0

xie
j 2π

N ik. (6.1)

DFT determines a transformation which creates a connection between two
vectors. As we know from the postulates of quantum mechanics closed physical
systems are also represented by complex vectors called superpositions using the
‘ket’ |.〉 notation, where coordinates stand for the probability amplitudes of related
computational basis vectors. So let us define a transformation called QFT and
denoted by F in an analogous way to the classical DFT in the following manner.
We start from a superposition |ϕ〉 in the space of computational basis vectors
|i〉, i = 0 . . .N − 1

|ϕ〉 =
N−1∑
i=0

ϕi|i〉

and transform it to |ψ〉 = F |ϕ〉 in compliance with the following rule (cf. (6.1))

ψk � 1√
N

N−1∑
i=0

ϕie
j 2π

N ik, (6.2)

which results in a superposition

|ψ〉 =
N−1∑
k=0

ψk|k〉 =
1√
N

N−1∑
k=0

N−1∑
i=0

ϕie
j 2π

N ik|k〉. (6.3)

We mention here that applying QFT to computational basis state |i〉 produces

F |i〉 =
1√
N

N−1∑
k=0

ej 2π
N ik|k〉. (6.4)

1 2π
N

is often referred to as ω0 in electrical engineering practice.
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Finally it is worth defining the inverse of the quantum Fourier transform since it is
often used as a building block in more sophisticated algorithms

ϕi � 1√
N

N−1∑
k=0

ψke−j 2π
N ik, (6.5)

and for computational basis states

F †|k〉 =
1√
N

N−1∑
i=0

e−j 2π
N ik|i〉. (6.6)

Because the operator of QFT is unitary (see Exercise 6.1), we refer to the operator
of IQFT as F †.

Although QFT is exponentially faster in some sense than its classical counterpart
as we will see later in this chapter, the task that they perform is quite different. QFT
does not explicitly produce any of the Fourier coefficients. Intuitively, the difference
between performing DFT and QFT can be regarded as computing all the probabilities
of a probability distribution or sampling this distribution.

Having defined the quantum Fourier transform and before applying it as a building
block of a more complex algorithm the following natural question may arise, namely
how to implement QFT by means of elementary quantum gates. Of course we
cannot avoid answering questions pertaining to computational complexity, either.
Fortunately two talented teams – Griffiths, Niu and Cleve, Ekert, Macciavello, Mosca
– found a way to trace back QFT to its tensor product decomposition. This was a
stroke of a genius since by having the terms of decomposition in our hands we can
associate one quantum wire with one-qbit gates to each term! In the remaining part of
this section we reach step by step the quantum circuit implementing QFT efficiently.

An integer number k ∈ {0, 1, . . . , 2n − 1} can be represented in the binary form
of (k1, k2, . . . , kn) = k12n−1 + k22n−2 + · · · + kn20, where kl ∈ {0, 1}. Let us
introduce moreover for h ≥ 0 the binary notation of

0.klkl+1 . . . kl+h � kl

21
+

kl+1

22
+ · · · + kl+h

2h+1
; km ∈ {0, 1}. (6.7)

Taking into account the superposition principle it is enough to design a quantum
circuit which carries out the transformation of a computational basis state |k〉 in
compliance with (6.4) because this circuit will work for arbitrary superposition |ϕ〉
as well. So we start from (6.4) using a binary form of integer numbers and replacing
N by 2n

F |i〉 =
1√
N

N−1∑
k=0

ej 2π
N ik|k〉 =

1√
2n

2n−1∑
k=0

ej2πi
∑n

l=1 kl
2n−l

2n |k〉.

Recognizing that 2n−l

2n = 2−l and exploiting that |k〉 = |k1, k2, . . . , kn〉 = |k1〉 ⊗
|k2〉 ⊗ · · · ⊗ |kn〉 and eα+β ≡ eαeβ

F |i〉 =
1√
2n

2n−1∑
k=0

n∏
l=1

ej2πikl2
−l

n⊗
l=1

|kl〉 =
1√
2n

2n−1∑
k=0

n⊗
l=1

ej2πikl2
−l |kl〉.
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Fig. 6.1 Sketch of QFT circuit

Considering that kl ∈ {0, 1} we collect the factors of the tensor product into two
groups with respect to |0〉 and |1〉

F |i〉 =
1√
2n

n⊗
l=1

(
ej2πi(kl=0)2−l |0〉 + ej2πi(kl=1)2−l |1〉

)

=
1√
2n

n⊗
l=1

(
|0〉 + ej2πi2−l |1〉

)
. (6.8)

Equation (6.8) clearly highlights the fact that tensor product decomposition exists
for any computational basis vectors for any superposition states, moreover it advices
us to choose an n-qbit circuit (see Fig. 6.1). For the sake of simplicity we introduce
the notation

|µl〉 � 1√
2

(
|0〉 + ej2πi2−l |1〉

)
. (6.9)

Definition (6.9) can be further simplified realizing i =
∑n

l=1 il2n−l and using
definition (6.7), thus (2πi2−l) mod 2π = 0.il−nil−n+1 . . . in where only ih, h ≥ 0
terms count

F |i〉 =
( |0〉 + ej2π0.in |1〉√

2

)
︸ ︷︷ ︸

|µ1〉

⊗
( |0〉 + ej2π0.in−1in |1〉√

2

)
︸ ︷︷ ︸

|µ2〉

⊗ · · ·

⊗
( |0〉 + ej2π0.i1i2...in |1〉√

2

)
︸ ︷︷ ︸

|µn〉

. (6.10)

Now we show what type of elementary gates in which sequence have to be
deployed onto the quantum wires to implement (6.10). First we reverse the order
of qbits at the output by means of an n-qbit swap gate so that it is enough to
carry out Ul : |il〉 → |µn−l+1〉 transformations (see Fig. 6.3). Let us start with
the determination of operator Un. Since ej2π0.in = ±1 having in sight in = 0, 1
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Fig. 6.3 Quantum circuit implementing QFT

therefore

|µ1〉 =




|0〉 + |1〉√
2

if in = 0

|0〉 − |1〉√
2

if in = 1,

which trivially characterizes the operation of a Hadamard gate i.e. Un = H . Next
we turn to Un−1 : |in−1〉 → |µ2〉 and rewrite |µ2〉 bearing in mind (6.10) and the
knowledge about Un

|µ2〉 =
1√
2


|0〉 + ej2π0.in−1 ·




P

(
2π

1
22

)
|1〉 if in = 1

1|1〉 if in = 0




 ,

where P (·) refers to a phase gate and factor 1
22 in the argument of the phase gate

follows from the fact that in represents the value of the second bit. |µ2〉 shows
some similarities with |µ1〉, however, it seems to be a Hadamard gate if in = 0
and a combination of Hadamard and phase gates otherwise. The difference can
be concentrated into in that controls the operation of the phase gate. The circuit
implementing operator Un−1 is depicted in Fig. 6.2.
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In order to use a more compact notation when describing Ul we introduce a special
controlled phase gate characterized by the following operator

Rh,p �




P

(
2π

1
2h

)
if ip = 1

1 if ip = 0.
(6.11)

Now it is time to generalize the technique applied for Un and Un−1. The quantum
circuit that has to be deployed onto the lth quantum wire can be built up using
Hadamard and special controlled phase gates as we sketched the circuit performing
QFT in Fig. 6.3. This architecture requires O(n2) elementary gates including the
swap gate. However, for advances in the field of QFT implementation the reader is
advised to skim through Further Reading of this chapter.

Exercise 6.1. Prove that operator F is unitary.

Exercise 6.2. Determine the matrix of QFT.

6.2 QUANTUM PHASE ESTIMATION

Phase estimation is an important building block of several quantum algorithms
e.g. quantum counting, factorization of large numbers, etc. and offers excellent
possibilities to exploit what we have learned about QFT. Let us assume that we have
a unitary operator U with eigenvector |u〉. We already know that any eigenvalue of
a unitary operator has the form of ejαu with real αu (see Section 12.2.4). Phase
estimation is interested in the phase αu. From a practical point of view we are
searching for the phase ratio κu ∈ [0, 1) : αu = 2πκu, which is equivalent to
the original problem. Furthermore we do not explicitly know the matrix of U but
instead we have a device that implements it and allows controlled operation.

6.2.1 Idealistic phase estimation

First we investigate the case when κu = i/2n and i ∈ {0, 1, . . . , 2n − 1}. Now
we ask the reader to take a look at (6.4). Considering that N = 2n if we were able
to produce the right-hand side of (6.4) such that i/2n = κu it would be enough
to perform an IQFT to get back |i〉 from which κu is trivially available. Assuming
constraint i/2n = κu is fulfilled the definition of |µl〉 in (6.9) can be reformulated as

|µl〉 =
1√
2

(
|0〉 + ej2π2n−lκu |1〉

)
. (6.12)

Following the technique introduced at the implementation of QFT we try to
exploit the tensor product decomposition to design a suitable circuit that produces
|µl〉 wire by wire. We start with |µn〉 = 1√

2

(|0〉 + ej2πκu |1〉). It is similar to the output
superposition of a Hadamard gate feeded by |0〉, but we should smuggle somehow the
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Fig. 6.4 Quantum circuit producing |µn〉

exponential factor in front to |1〉. Since for any eigenvector |u〉 : U |u〉 = ej2πκu |u〉
and bearing quantum parallelism in mind as was exploited by Simon in Section 5.3
we propose the circuit depicted in Fig. 6.4 that consists of two qregisters. The upper
one contains only a single qbit |0〉 while the lower one has been initialized with the
eigenvector |u〉 with t qbit of length, so the starting state equals |ϕ0〉 = |0〉 ⊗ |u〉.
Let us check the operation of this circuit. Applying the Hadamard gate to the upper
qregister

|ϕ1〉 = (H ⊗ I⊗t)|ϕ0〉 =
|0〉 + |1〉√

2
|u〉 =

|0〉|u〉 + |1〉|u〉√
2

.

Because we do not have any direct information about the matrix of operator U , in
order to compute |ϕ2〉 we utilize the superposition principle keeping the control qbit
in mind

|ϕ2〉 = (I ⊗ U)|ϕ1〉 =
1√
2

(|0〉|u〉 + ej2πκu |1〉|u〉)

=
1√
2

(
|0〉 + ej2π20κu |1〉

)
⊗ |u〉,

which clearly equals |µn〉 on the upper (control) wire.
Now we are ready to construct |µl〉. The only difference arises in the exponent,

namely in the generalized case 20 = 1 is replaced by 2n−l. This minor departure can
be handled quite easily if we consider the effect of repeated applications of operator
U on its eigenvector |u〉

Uh � UU . . . U︸ ︷︷ ︸
h

,

Uh|u〉 = ej2πκuej2πκu . . . ej2πκu︸ ︷︷ ︸
h

|u〉 = ej2πhκu |u〉.

Based on this observation when we are designing circuit for |µl〉, the gate U = U20

has to be replaced by a gate implementing U2n−l

. Thus the architecture which aims to
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Fig. 6.5 Quantum circuit computing the phase

compute phase αu in question contains an upper qregister with n qbits and is showed
in Fig. 6.5. Furthermore we recall that a measuring equipment after the IQFT gives
back an integer number m – which is equal to i in this case – therefore a classical
gate is required to calculate α̃u = 2πm/2n = 2πi/2n = αu. So we managed to
calculate the exact value for the phase due to the fact m = i.

Remark: After the measurement the MSB can be found on the bottom wire and
the LSB on the topmost one. Thus omitting qbits from the top on one hand classical
accuracy of α̃u will be reduced while on the other hand less Hadamard and U gates
are needed.

Remark: We avoided answering how to initialize the lower quantum register. This
problem will be handled in context with the practical solution in the next section.

6.2.2 Phase estimation in practical cases

Unfortunately before celebrating this clever circuit we must mention that our high
spirits are dampened by the constraint κu = i/2n. What is going to happen if
we allow arbitrary κu ∈ [0, 1)? In most of the applications we cannot expect
that anybody guarantees a phase ratio with such special property. As a qualitative
analysis, we may realize at first sight that the IQFT will work inaccurately in terms
of calculating the phase since i/2n has been replaced by κu, i.e. the phase will only
be estimated. On the other hand we may expect that the larger the number of qbits
n of the upper qregister is the more precise will be the estimation of phase because
i/2n → κu. Higher numbers of qbits, however, typically goes together with higher
costs, hence the trade off between price and accuracy always lies at the center of
engineering practice. Moreover in everyday applications exact solutions are typically
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not of interest.2 Therefore it seems to be more important from an engineering point
of view to derive the relation between n and the error in phase than calculating the
phase without any error. Of course for mathematicians this is not the case, hence for
those readers who are interested in exact computation of phase useful hints can be
found in Further Reading.

When carrying out error analysis it is worth formulating the output state of the
IQFT. To do this we determine first the superposition feeded to the IQFT

|µ〉 =
n⊗

l=1

1√
2

(
|0〉 + ej2π2n−lκu |1〉

)
, (6.13)

which can be rewritten by exploiting the equivalence of (6.4) and (6.8) in the
following way

|µ〉 =
2n−1∑
k=0

1√
2n

ej2πkκu |k〉. (6.14)

Now we apply the IQFT rule (6.6) to each computational basis state |k〉 in |µ〉 relying
on the superposition principle

F †|µ〉 =
2n−1∑
k=0

1√
2n

ej2πkκu
1√
2n

2n−1∑
i=0

e−j2π i
2n k|i〉

=
1
2n

2n−1∑
k=0

2n−1∑
i=0

ej2πk(κu− i
2n )|i〉 =

2n−1∑
i=0

2n−1∑
k=0

1
2n

(
ej2π(κu− i

2n )
)k

|i〉.

(6.15)

As we mentioned earlier if κu were equal to i
2n then the IQFT would answer exactly

F †|µ〉 = |i〉, but this is a more general scenario. We investigate now the probability
amplitude of |i〉

ϕi =
1
2n

2n−1∑
k=0

(
ej2π(κu− i

2n )
)k

, (6.16)

which is simply the sum of a geometrical sequence with quotient q = ej2π(κu− i
2n ).

On one hand if the quotient equals 1 which happens only if κu is an integer multiple
of 1

2n then ϕi=κu2n = 1 and any other probability amplitudes disappear. On the
other hand if q �= 1 then

ϕi =
1
2n

1 − q2n

1 − q
=

1
2n

1 − ej2π(2nκu−i)

1 − ej2π(κu− i
2n )

, (6.17)

which gives another good explanation of uncertainty and thus appearing inaccuracy
when measuring the output of IQFT. If more than one ϕi differs from zero then

2Electrical engineers may recall e.g. color TV which is one of the biggest cheats (of eyes) of the 20th
century, experts of informatics may remember hash functions in security systems!
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Fig. 6.6 Illustration of probability amplitude regions before measurement with different
index transformations

there is a nonzero probability of receiving different phases after the measurement
when repeating the algorithm. Let us denote the closest n-bit long integer to κu2n

by a. It is easy to see that 0 ≤ a ≤ 2n − 1, moreover if ∆u � κu − a/2n then
|∆u| ≤ 2−(n+1). Assuming that the error ε allowed at the IQFT’s output is bounded
by ε i.e. a− ε ≤ m < a + ε, where m stands for the measured integer value m, then
the conditional probability Pε that we measure value m out of the range ε around a
can be defined as

Pε � P (m < a − ε ∨ a + ε ≤ m|a). (6.18)

Thus Pε can be traced back to those probability amplitudes ϕi which have fallen into
the region denoted by thin lines on the horizontal axes in Fig. 6.6, while thick lines
represent those amplitudes which lead to success. We can observe that ej2π(κu− i

2n )

is periodic in i according to 2n thus ϕi has the same periodicity. Unfortunately this
figure highlights the fact that these regions are typically not contiguous on [0, 2n),
which means taking stock of probability amplitudes.

In order to overcome this problem and to simplify further analysis we define
symmetric indices h ∈ (−2n−1, 2n−1] around a in compliance with Fig. 6.6. We
have several alternatives to perform this operation with the common feature that they
transform i = a to h = 0: either we shift axis i from right to left by using h = i − a
or from left to right by h = i + 2n − a = i − a (exploiting the periodicity of 2n)
and last but not least we can reflect axis i onto its basis i = 0 and then applying a
shift by a i.e. h = a − i will result in the required index h. These methods do not
cause any substantial differences during the analysis therefore we select the last one
for historical reason. So the relationship between i and h is simply h = (a − i),
which corresponds to the fact that probability amplitude ϕh = ϕi=(a−h) mod 2n and
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ϕh belong to the computational basis state |(a − h) mod 2n〉. Therefore if κu = a
2n

then ϕh �=0 = 0 and only ϕ0 = 1 (idealistic scenario). Contrary if κu �= a
2n then

ϕh =
1
2n

1 − ej2π(2nκu−(a−h))

1 − ej2π(κu− a−h
2n )

,

which can be further simplified keeping in view that κu = ∆u + a/2n

ϕh =
1
2n

1 − ej2π(2n∆u+h)

1 − ej2π(∆u+ h
2n )

, ∆u �= 0. (6.19)

Now we are able to derive the probability Ps of successfully measuring an m within
the acceptable region around i = a (equivalently around h = 0) by summing up the
probabilities of corresponding computational basis states3

Ps =
ε∑

h=−ε+1

|ϕh|2, ∆u �= 0. (6.20)

Using the result of Exercise 6.3 i.e.
∣∣1 − ejγ

∣∣2 = 4 sin2(γ
2 ) together with (6.19)

|ϕh|2 =
1

22n

sin2(π(2n∆u + h))
sin2(π(∆u + h

2n ))
, ∆u �= 0 (6.21)

and substituting it into (6.20) we get

Ps =
ε∑

h=−ε+1

1
22n

sin2(π(2n∆u + h))
sin2(π(∆u + h

2n ))
, ∆u �= 0. (6.22)

Now we have a beautiful result in our hands with a minor flaw, namely parameter
ε has no useful meaning from an engineering point of view. We would rather be
familiar with the relationship between probability of success Ps (or probability
of error Pε = 1 − Ps), number of applied qbits n in the upper register of the
phase estimator device and the required accuracy of phase κu originating from the
engineering problem, or formulating much precisely the question: how many qbits
should be bought (cost) and built in to provide accuracy, say 2−c (demand), with
probability at least Ps (trade off )? This requires a little cogitation upon the sources
of phase error.

Let us denote the difference between the exact and the measured value of phase
α̃u by du = |αu − α̃u|. First type phase error is fully classical since it originates
from the allowed inaccuracy, i.e. the specification of the technical problem demands

that du ≤ d̆max. This can be easily converted into D̆max = d̆max
2π ≥ |∆u|. Clearly

speaking this inaccuracy can be regarded as an error only from a theoretical point of

3We have transformed index i ∈ [a − ε, a + ε − 1] to h ∈ [−ε + 1, ε].
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view because from the application side it does not cause any malfunction. Assuming
a demand D̆max = 2−c to handle this type of error we would need an n = (c − 1)-
qbit register because |∆u| ≤ 2−(n+1) = 2−(c−1+1) = 2−c. The source of the second
type error – called quantum inaccuracy or uncertainty – lies in the quantum world.
As we discussed earlier unwanted probability amplitudes may occur because of the
IQFT in spite the fact that no classical inaccuracy is allowed. So the upper n-qbit
register of the phase estimator has to contain (c − 1) qbits for the sake of allowing
classical inaccuracy 2−c, but in order to hold quantum inaccuracy below a certain
limit P̆ε, another p qbits are required (n = c − 1 + p).

Remark: If d̆max = 2−r is given as an engineering parameter for the phase then
n = r − 1 + p + �ld(2π)� qbits are needed because phase estimation deals with
phase ratios and only indirectly with phases. Therefore if we are able to provide
2−(r+�ld(2π)�) accuracy in the phase ratio then it will result in 2−r accuracy of the
phase.

Remark: The additional p qbits are deployed to amplify the amount of probability
around a and have no influences on classical accuracy, hence measurement can be
reduced onto the lower (c − 1) qbits of the upper section!

Finally the connection between ε and p can be easily derived bearing in mind that
the phase estimation is successful if a has been measured on the lower (c − 1) qbits
of the upper qregister. If this happens the upper p qbits of the upper section contain
one of the possible 2p different bitstrings. Probability amplitudes belonging to these
vectors increase the probability of measuring a hence

2ε = 2p ⇒ ε = 2p−1. (6.23)

Remark: In the case when p = 0 has to be handled in a special way since the
(−ε, ε] region reduces to a single probability amplitude located in h = 0:

Ps =
1

22c−2

sin2(π2c−1∆u)
sin2(π∆u)

, ∆u �= 0. (6.24)

The only parameter that remains to be expressed by means of design parameters
in (6.22) is ∆u. Since

a =
⌊αu

2π
2n
⌉
⇒ ∆u = κu − �αu

π 2n−1�
2n

. (6.25)

Exercise 6.3. Prove that
∣∣1 − ejγ

∣∣2 = 4 sin2(γ
2 ).

6.2.3 Quantitative analysis of the phase estimator

Now we are ready to analyze (6.22), which depends only on engineering parameters
n, c, p and of course on αu. Let us assume classically required accuracy c = 10 ⇒
2−c = D̆max = 1

1024 ≈ 10−3. Fig. 6.7 presents the probability P (h) of measuring
h on a logarithmic scale if αu = 0.4 · 2π ⇒ κu = 0.4 and p = 4 auxiliary qbits
are invested. The curve is rather promising. Despite the logarithmic representation
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the probabilities are strongly concentrating around h = 0 thus providing high
probability of measuring i = a. During the next investigation in Fig. 6.8 we keep
the previous parameters except allowing p the variation between 0 (no redundancy)
and 10. Obviously the advantageous shape of P (h) is practically independent from
p, only the ranges of h differ.

Beside the probability density function of measuring a given m we are also
interested in the probability of achieving m = a. Fig. 6.9 presents Ps vs. p when
c = 10 and αu = 0.4·2π. The result is a bit surprising because although Ps converges
to sure success very fast when we invest more and more auxiliary qbits, the curve is
not a strictly monotonously increasing function. Why?

Fig. 6.10 allows us to take a look at the principles working deep inside in
quantum phase estimation. One would naturally expect that increasing the number of
additional qbits ensures finer resolution of a thus it brings us closer to our estimation
to κu i.e. ∆u → 0, therefore the probability of success will also be closer to 1
(we know that ∆u = 0 provides sure success of measuring αu = κu2n). Unlike
this reasoning – which is correct, but a little bit coarse – the alteration in Fig. 6.10
points out that increasing p does not necessarily mean smaller ∆u! This effect is
marginalized, however, at large values of p by another not so obvious effect which
increases the probability of success. It can be summarized with respect to (6.22):
each new auxiliary qbit restructures the probability amplitudes ϕh involving more
and more probability into the exponentially increasing ε = 2p−1 range of h = 0
(or equivalently i = a) while c remains fixed.4 This reasoning explains the shape
of Ps in Fig. 6.9, but does not reassure an engineer about the required number of
additional qbits. Maybe the fast convergence of Ps is not typical? To overcome
this problem we are going to deliver a useful practical approximation formula in
Section 6.2.4.

We illustrated the trade off between classical (c) and quantum (p) accuracy in the
case of fixed n = 10 in Fig. 6.11. Starting from p = 0 we increased p step by step.
Since the probability amplitudes depend only on n, they can be regarded as constants
during the investigation. Obviously smaller c ensures less accurate estimation of the
phase while larger p enables the measuring device to collect probability amplitudes
from a wider range (ε) around a (see Fig. 6.6), thus probability of successful
measurement also increases.

A previously mentioned salutary special scenario is depicted in Fig. 6.12. We
assumed no quantum uncertainty restriction (p = 0) and the probability Ps

is sketched in the function of c and ∆u. As the reader would expect if best
approximation a/2c−1 is equal to κu in question (i.e. ∆u = 0) then sure success
(Ps = 1) can be provided. The worst case situation occurs if |∆u| reaches its
maximum 2−c.

Now let us determine a lower bound for successful measurement when no
additional qbits are deployed at all to decrease quantum inaccuracy. Equation (6.24)

4An astronomer would say that the black hole located in h = 0 feeds more and more percentages of the
whole matter of pdf until it swallows asymptotically the entire one.



94 QUANTUM FOURIER TRANSFORM AND ITS APPLICATIONS

-5

-4

-3

-2

-1

0

-200 -100 0 100 200

h

log ( ( ))10 P h

Fig. 6.7 log10(P (h)) in case c = 10, p = 4 and αu = 0.4π

can be further simplified by substituting the worst case |∆u| = 2−c (because of
sin2(·) the surface is symmetric onto h and the sign of ∆u has no importance)

Ps =
1

22c−2

sin2(π2c−12−c)
sin2(π2−c)

=
4

22c

sin2(π/2)
sin2(π2−c)

=
4

22c sin2(π2−c)
. (6.26)

Computing (6.26) for the smallest reasonable c = 2 we get 0.5 in accordance with
Fig. 6.12. Studying the figure we can observe that Ps ≈ 0.4 if c goes to infinity and
exact calculations show that

lim
c→+∞

4
22c sin2(π2−c)

=
4

22c(π2−c)2
=

4
π2

, (6.27)

where we used the well-known relation γ � 1 : sin(γ) ∼= γ.

6.2.4 Estimating quantum uncertainty

The previous analysis is quite useful to understand the basics of phase estimation
but from an engineering point of view it cannot be applied as a rule of thumb
because of its time-consuming evaluation and we have no information about the
convergence of Ps. Instead we would prefer a less accurate but easily computable
relation between engineering parameters n, p, c, Pε. In order to accomplish this task
we try to upper estimate the probability of error. The probability of measuring m
which is different from a can be derived by simply summing up the probabilities of
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unwanted computational basis states

Pε =
−ε∑

h=−2n−1+1

|ϕh|2 +
2n−1∑

h=ε+1

|ϕh|2. (6.28)

Substituting (6.19) into (6.28) we get

Pε =
−ε∑

h=−2n−1+1

1
22n

|1 − ej2π(2n∆u+h)|2
|1 − ej2π(∆u+ h

2n )|2

+
2n−1∑

h=ε+1

1
22n

|1 − ej2π(2n∆u+h)|2
|1 − ej2π(∆u+ h

2n )|2 , ∆u �= 0. (6.29)

Instead of calculating the exact value of Pε we attempt to upperbound it. To do
this on one hand we upperbound the numerator of (6.19) by means of Exercise 6.4
that claims |1 − ejγ | ≤ 2 and on the other hand the denominator of (6.21) is
lowerbounded using the result of Exercise 6.5 (|1 − ejγ | ≥ 2|γ|

π if γ ∈ [−π, π])
because |γ| = 2π|∆u + h

2n | ≤ π if h ∈ (−2n−1, 2n−1). Therefore

|ϕh| ≤ 1
2 · 2n|∆u + h

2n |
=

1
2|2n∆u + h| . (6.30)
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Substituting (6.30) into (6.29) we get a much more treatable upperbound for Pε

Pε ≤ 1
4


 −ε∑

h=−2n−1+1

1
(2n∆u + h)2

+
2n−1∑

h=ε+1

1
(2n∆u + h)2


 . (6.31)

Concerning the fact that 2n∆u ∈ [−1/2, 1/2] therefore

Pε ≤ 1
4


 −ε∑

h=−2n−1+1

1
(h + 1

2 )2
+

2n−1∑
h=ε+1

1
h2




=
1
4


2n−1−1∑

h=ε

1
(h − 1

2 )2
+

2n−1∑
h=ε+1

1
h2




≤ 1
4


2n−1−1∑

h=ε

1
(h − 1

2 )2
+

2n−1∑
h=ε+1

1
(h − 1

2 )2


 ≤ 1

2

2n−1−1∑
h=ε

1
(h − 1

2 )2
. (6.32)

So we are near to the final solution. Since 1
(h− 1

2 )2
is strictly monotonously decreasing

if h ≥ we can upperestimate the sum by the following integral on [ε − 1, 2n−1 − 1]
if ε > 1

Pε <
1
2

2n−1−1∫
ε−1

1
(h − 1

2 )2
dh <

1
2ε − 3

; ε > 1. (6.33)

Let us compute the unconditional error probability related to the event that the
estimation fails

Perror =
∑

a

PεP (a), (6.34)

where Pε represents the conditional error probability defined in (6.18). Because we
have no information about the statistics of a it is assumed that P (a) is uniformly
distributed. The right-hand side of (6.33) does not depend on a, which allows us to
replace Pε with a quantity that is independent from the summation index thus

Perror <
1

2ε − 3
≤ P̆ε. (6.35)

If we have an engineering constraint for Perror say P̆ε then via combining (6.35)
with (6.23) we manage to find a rule of thumb between the probability of phase ratio
error and the number of used auxiliary qbits p

p ≥ ld
(

3 +
1
P̆ε

)
. (6.36)

Since p should be an integer – but as small as possible – number, our final result for
the upper qregister in the phase estimator is

n = c − 1 +
⌈
ld
(

3 +
1
P̆ε

)⌉
. (6.37)
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Remark: If classical accuracy 2−c is related to the phase (du) instead of the phase
ratio then obviously

n = c − 1 +
⌈
ld(2π) + ld

(
3 +

1
P̆ε

)⌉
. (6.38)

We presented the relationship between ‘overhead’p and demand P̆ε in compliance
with (6.36) assuming equality in Fig. 6.13. We emphasize that the curve is fairly
rough (it suggests at least two extra qbits) for small p because of the applied
approximations during upper estimating Pε. Conversely advantageously the curve
is independent from n, c and the phase itself. A straight line with slope ≈ −3.3 and
offset ≈ 0 can be fitted to the curve.5 Since P̆ε has been sketched on a logarithmic
scale one can deduce as an engineering rule of thumb that each additional qtribit
reduces the probability of phase error to one-tenth.

Remark: As a matter of fact we obtained (6.38) after several approximations.
Therefore if we get n < 1 then obviously n has to be set to 1.

Remark: We were afraid of the convergence speed of Ps in function of p.
Fortunately Fig. 6.13 resolves our doubt, e.g. Ps = 0.999 can be achieved by means
of only 10 extra qbits.

We have determined all the required parameters and their relation to estimating
phase αu of eigenvalue ej2πκu , but what if |u〉 is unknown? We remember that
eigenvectors of a unitary operator always form a set of orthonormal basis states.
Therefore we initialize the lower qregister of the phase estimator with |ψ〉 =∑

u ψu|u〉. Because of the superposition principle we will get back an estimation of
phase αu, where u has been selected according to the probability distribution |ψu|2.

5p � −3.3 log10(P̆ε).



100 QUANTUM FOURIER TRANSFORM AND ITS APPLICATIONS

As a last step of discussion about phase estimation let us determine how many
U , denoted by T (n), are needed to build the phase estimator circuit. Taking a look
at Fig. 6.5 it becomes obvious that we have to calculate the sum of a geometric
sequence comprising n terms and having quotient 2, thus

T (n) =
qn − 1
q − 1

=
2n − 1
2 − 1

= 2n − 1. (6.39)

However, if we are interested in the number of elementary gates required to
implement the sequence of U2l

operators, instead of the total number of U then we
need only O(n3) elementary gates! Furthermore the Hadamard transform requires
O(n) elementary gates while for the IQFT we need O(n2) gates. Thus from the
number of elementary gates, point of view we need only O(n3) gates.

Exercise 6.4. Prove that |1 − ejγ | ≤ 2.

Exercise 6.5. Prove |1 − ejγ | ≥ 2|γ|
π if γ ∈ [−π, π].

6.3 ORDER FINDING AND FACTORING – SHOR ALGORITHM

Shor’s efficient factoring algorithm consists of a quantum and a classical part.
As a matter of fact the former one is a quantum-based solution of the so-called
order-finding problem. Because this algorithm hides the seminal idea, which allows
factoring a large number N in O(ld3(N)) steps (gates) instead of the best-known
classical method requiring asymptotically O(exp[c · ld 1

3 (N)ld
2
3 (ld(N))]) steps (i.e.

it is exponential in ld
1
3 (N)) with some constant c [10], we show first how to trace

classically factoring to find the order of an integer x and the quantum-based order-
finding algorithm will be introduced afterwards.

6.3.1 Connection between factoring and order finding

Let us assume two positive integers x < N that are co-primes, i.e. gcd(x, N) = 1.
The order of x in modulo N sense is defined as the least natural number r such that

xr mod N = 1 (6.40)

and it is easy to see that 1 < r < N , too. The order of x is in close connection with
the period of the function f(z) = xz mod N since

f(z + r) = xz+r mod N = ((xz mod N) · (xr mod N︸ ︷︷ ︸
≡1

)) mod N = f(z). (6.41)

Now in possession of the above definition we go ahead to find prime factors of A.
First if A is even then one can divide A by 2 repeatedly until it becomes an odd B.
Next we select randomly x < B. If gcd(x, B) = b and b �= 1 then b is a common
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factor of x and B hence B can be divided by b. This step can be repeated until b = 1
resulting in N . Therefore it is sufficient to investigate the case when 0 < x < N
and composite odd N are relative primes. When N is a power of a prime number
then there exists an efficient classical algorithm to recognize this fact and to find that
prime. If N comprises different prime factors then let us assume that order r of x
modulo N is even thus we can define variable y as

y � x
r
2 .

It follows from (6.40) that
y2 mod N = 1. (6.42)

Equation (6.42) can be rearranged by subtracting 1 from both sides as

(y2 − 1) mod N = 0 ⇒ ((y + 1)(y − 1)) mod N = 0, (6.43)

which corresponds to the fact that N divides (y + 1)(y − 1) without any remainder.
Equation (6.43) can be reformulated using the associative property of modular
arithmetic

([(y + 1) mod N︸ ︷︷ ︸
b+1

][(y − 1) mod N︸ ︷︷ ︸
b−1

]) mod N = 0, (6.44)

where obviously 0 ≤ b+1, b−1 < N . Calculating c+1 = gcd(b+1, N) and c−1 =
gcd(b−1, N) we have the following possibilities6 to ensure the equality to zero in
(6.44)

• either b+1 = 0 then c+1 = N and b−1 = N − 2, since neighboring odd
numbers are co-primes therefore c−1 = 1,

• or b−1 = 0 then c−1 = N and b+1 = 2, because N is odd hence c+1 = 1,

• finally b+1b−1 = kN, 0 < k < N ⇒ 0 < b−1 < b+1 < N therefore N
divides into neither b+1 nor b−1, thus to fulfil expectation in (6.44) b+1b−1

must have common factor(s) with N , i.e. c+1 and c−1 represent nontrivial
factor(s) of N .

If x does not satisfy 0 < c−1, c+1 < N (it would result in trivial factors of N ) or N
has further nontrivial factors then a new x has to be selected (in a random way) and
corresponding greatest common divisors have to be calculated until we have all the
prime factors of N in our hands. We emphasize here, that computing c+1 and c−1

requires the knowledge of r.
There are two important questions remaining:

1. We had an initial assumption on r and the algorithm itself proved to be
probabilistic. Is it reasonable to use this algorithm, i.e. is the probability of
finding a prime factor in one turn high enough?

6The first two scenarios are often summarized in the literature as y mod N �= ±1.
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2. We have efficient classical solutions for all the above listed steps of the
factorization algorithm except for finding the order of x. Maybe quantum
computing can assist us in this problem?

The first question was answered by Shor in [137]. He proved that for an odd natural
number N and for a random integer x uniformly selected from [1, N) that satisfy
gcd(x, N) = 1 the probability being order r even and x

r
2 mod N �= ±1 is greater or

equal to 1− 21−l, where l stands for the number of prime factors of N . For instance
in the worst case when l = 2 the probability of finding nontrivial factors is at least
0.5. The second question proves to be, however, more challenging therefore the
next section is dedicated to constructing an efficient quantum-based order-finding
algorithm.

Exercise 6.6. Factorize A = 66! To find the order use exhaustive search.

6.3.2 Quantum-based order finding

In order to design a polynomial-time quantum order-finding algorithm we turn to
the well-tried and successful technique already used plenty of times in this book,
namely to quantum parallelism combined with constructive interference. It seems to
be reasonable to compute and store all the possible xk mod N for 0 ≤ k < N in a
quantum register t = �ld(N)� qbit of size and related k values in another entangled
qregister with the same size. Next we try to increase the probability amplitude of
|xk mod N = 1〉 in the first qregister as close to 1 as possible, then a measurement
on the second qregister will return the requested order r with high probability. This
idea seems to be very simple, however, to turn it into cash a slightly longer discussion
is needed and the reader can follow the design of the corresponding quantum circuit
in Fig. 6.14.

First of all the system is initialized with computational basis (classical) states
|ϕ0〉 = |γ0〉|ψ0〉, where γ0, ψ0 ∈ [0, 2t − 1). Next we fill the upper qregister with
potential values k of the order r providing uniform probability amplitudes. This can
be done using an n-qbit Hadamard gate for |γ0〉 = |0〉. At this stage of the discussion
we assume n = t and it will be corrected later when designing considerations imply
this, thus

|ϕ1〉 =
1√
2n

2n−1∑
k=0

|k〉 ⊗ |ψ0〉. (6.45)

Now we have to construct a gate V which consists of a lower part producing
xk mod N and an upper section with a qregister containing all the possible values of
k while controlling the lower part. So we expect that V |ϕ1〉 = |ϕ2〉, where

|ϕ2〉 =
1√
2n

2n−1∑
k=0

|k〉|xk mod N〉. (6.46)
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We invoke modular exponentiation from Section 12.3.1 which has the form in our
case

xk mod N =
2n∏
l=1

(
xkl2

n−l

mod N
)

=
(
xk12n−1

mod N
)(

xk22n−2
mod N

)
. . .
(
xkn20

mod N
)

, (6.47)

where k = k12n−1 + k22n−2 + · · · + kn20 and kl ∈ {0, 1}. Equation (6.47) can be
interpreted as a set of consecutive gates with the following properties: the (n − l)th

gate implements f(l) = x2n−l

and it is controlled by the lth wire of the upper section
of the circuit due to kl in the exponent. This structure is nothing more than the first
stage of the phase estimator circuit (cf. Fig. 6.5) with a special operator U that simply
multiplies its input q by x (of course in modulo N sense) instead of an arbitrary one

U : |q〉 → |(qx) mod N〉. (6.48)
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Remark: Wide-awake readers may pose this question. We rounded up N to 2t

since we can buy qregisters comprising only integer numbers of qbits. However, this
operation introduces extra values of k = N . . . 2t − 1 which should be chosen to
keep unitarity of U . In order to avoid this problem we extend the N × N matrix to
2t × 2t by means of rows/columns such that they become orthogonal to the original
ones. The simplest way to do this if we put 1s into the main diagonal positions using
|k〉 → |k〉 if k = N . . . 2t − 1 (see Exercise 6.7).

Remark: It is interesting to show that if the order-finding circuit is initialized with
|ϕ0〉 = |0〉|0〉 and V is replaced by V ′ : |k〉|q〉 → |k〉|(q + xk) mod N〉 then it
produces |ϕ2〉 according to (6.46) (see Exercise 6.8).

We now return to order finding and remember that if we used an IQFT for the
upper section then in accordance with the operation of the phase estimator circuit
we would get the eigenvalues of U . Now let us stop for a while and check whether
it is worth applying IQFT. One way to find eigenvalues and eigenvectors is if we
follow the traditional method summarized in Section 12.2.4. Unfortunately solving
characteristic equations seems to be quite hard for arbitrary x and N therefore we
propose to utilize our knowledge about the phase estimator. Let us denote the state
of the phase estimator at checkpoint 2 by |ϕP2〉 in Fig. 6.5 to distinguish it from the
state (6.46) of the order-finding circuit at the same checkpoint. We make an attempt
to derive corresponding eigenvalues and eigenvectors by comparing the two states
and ensuring that |ϕ2〉 is a given solution of the general case |ϕP2〉.

First we reformulate (6.46) with respect to the fact that function xk mod N is
periodic in r (see (6.41)) and thus there are only r different values of xk mod N

|ϕ2〉 =
1√
2n

r−1∑
k=0

(
Zk∑
z=0

|zr + k〉
)
|xk mod N〉, (6.49)

where we concentrated the states of the upper section belonging to a given
|xk mod N〉, k = 0 . . . r − 1 into a superposition. When calculating Zk one has
to bear in mind that 0 ≤ zr + k ≤ 2n − 1 and z is integer, which results in
0 ≤ z ≤ � 2n−1−k

r � = Zk.
On the other hand |ϕP2〉 can be formulated in accordance with (6.14) as

|ϕP2〉 =
2n−1∑
k=0

1√
2n

ej2πkκu |k〉|u〉. (6.50)

Equation (6.50) is valid only for the case if |ψ0〉 had been initialized by known
eigenvector |u〉, however, we have no information yet about |ψ0〉, only the output
|xk mod N〉 of the lower section is known. Hence recalling the life-belt from this
awkward situation |ψ0〉 is set to an equal superposition of eigenvectors

|ψ0〉 =
B−1∑
b=0

1√
B
|ub〉, (6.51)

where B refers to the number of involved eigenvectors, whose exact value should be
determined during the analysis. Now, using the superposition principle the output of
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the phase estimator can be described by applying (6.50) for |ψ0〉

|ϕP2〉 =
1√
2n

2n−1∑
k=0

B−1∑
b=0

ej2πkκb

√
B

|k〉|ub〉 =
1√
2n

2n−1∑
k=0

|k〉
B−1∑
b=0

ej2πkκb

√
B

|ub〉,
(6.52)

where κb stands for the phase ratio belonging to eigenvector |ub〉. Remembering that
we plan to derive a common form for |ϕP2〉 and |ϕ2〉 it seems to be reasonable to
perform the same index transformation on k

|ϕP2〉 =
1√
2n

r−1∑
k=0

Zk∑
z=0

|zr + k〉
B−1∑
b=0

ej2πkκb

√
B

|ub〉. (6.53)

Comparing (6.49) and (6.53) one can deduce that the equivalence of |ϕP2〉 and |ϕ2〉
requires

|xk mod N〉 =
B−1∑
b=0

ej2πkκb

√
B

|ub〉, k = 0 . . . r − 1. (6.54)

To find suitable parameters for the right-hand side that provides the equality in (6.54)
we start to form the left-hand side. Using the well-known relation

B−1∑
b=0

e−j2π b
B s

B
=

B−1∑
b=0

e+j2π b
B s

B
= δ(s − B) =

{
1, if s is a multiple of B
0, else,

(6.55)
we can write

|xk mod N〉 =
B−1∑
s=0

B−1∑
b=0

e−j2π b
B s

B︸ ︷︷ ︸
δ(s−0)

|xk mod N〉.

Because k runs from 0 up to r − 1 it is reasonable to set B = r and to involve
|xk mod N〉 in the summation

|xk mod N〉 =
r−1∑
s=0

r−1∑
b=0

e−j2π b
r (s−k)

r︸ ︷︷ ︸
δ(s−k)

|xs mod N〉.

Applying some algebraic steps we reach the final form

|xk mod N〉 =
r−1∑
b=0

ej2π k
r b

√
r

r−1∑
s=0

e−j2π b
r s

√
r

|xs mod N〉. (6.56)

If we compare the right-hand side of (6.54) with this result we can conclude that for
k = 1 . . . r − 1

κb =
b

r
, |ub〉 =

r−1∑
s=0

e−j2π b
r s

√
r

|xs mod N〉. (6.57)
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We ask the reader to check whether |ub〉 are eigenvectors of U in Exercise 6.9.
Remark: It has to be emphasized that in spite of the fact that here we used only r

eigenvectors of operator U it has 2t orthonormal eigenvectors because of its unitary
nature.

Now we have reached a very promising point. The phase ratios, which are the
results of an IQFT on the upper section, contain the order r! Before designing an
appropriate technique to obtain r from κb we have to find a suitable initialization
vector for |ψ0〉. Since neither of the eigenvectors can be implemented trivially (all of
them requires the knowledge of r) we turn back to the superposition of eigenvectors
and compute (6.51) with B = r

|ψ0〉 =
r−1∑
b=0

1√
r
|ub〉 =

r−1∑
b=0

1√
r

r−1∑
s=0

e−j2π b
r s

√
r

|xs mod N〉

=
1
r

r−1∑
s=0

(
r−1∑
b=0

e−j2π b
r s

)

︸ ︷︷ ︸
rδ(s−0)

|xs mod N〉 = |x0 mod N〉 = |1〉2t . (6.58)

So it is enough to put a classical state |1〉2t to the lower input of the phase estimator.
Remark: We would like to call the attention of the reader to an important aspect.

We did not require explicit knowledge about the transformation rule of U to derive its
eigenvalues, eigenvectors and |ψ0〉. Instead we used the indirect information related
to U hidden in |ϕ1〉 and |ϕ2〉. This technique will be referred to in Section 6.5.1
when we are trying to find the period of function f .

Being professional in phase estimation we expect that a measurement on the IQFT
output (see Fig. 6.14) gives back an estimation mb for κb ≈ mb/2n where κb has
been selected in accordance with uniform distribution on b ∈ [0 . . . r). Next we show
how to determine r in possession of mb/2n. Theorem 12.1 provides the key to the
solution.

In order to fulfil the condition in the theorem∣∣∣∣ br − mb

2n

∣∣∣∣ ≤ 1
2r2

(6.59)

we recall the error analysis of the phase estimator in Section 6.2.2. We concluded
there that if mb/2n is the closest estimation7 to b/r then |∆b| = |κb − κ̃b| =∣∣ b
r − mb

2n

∣∣ ≤ 2−(n+1). Thus we need

1
2(n+1)

≤ 1
2r2

⇒ r2 ≤ 2n ⇒︸︷︷︸
r<N

N2 ≤ 2n ⇒ n = �ld(N2)�. (6.60)

However, we have also learned that IQFT may introduce a quantum error – if
mb/2n does not exactly equal s/b – with probability Pε, which advises us to buy
n = �ld(N2)� + p qbits for the upper section of the order-finding device.

7Assuming mb is a natural number and no auxiliary qbits are involved to lower quantum uncertainty i.e.
n = c − 1.
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Having designed all the important blocks of the equipment from the required
number of qbits up to unitary gates, we are now ready to perform the continued
fraction algorithm in compliance with Section 12.3.4 to derive the convergents of
mb/2n. Because we have chosen 2n such that it is greater or equal to N2 and r < N
hence there is only a single b which fulfils (6.59). Let us assume the convergent has
the form of b′/r′, i.e. we have to search for the closest convergent with denominator
r′ < N . Calculating xr′

mod N either we get 1 which proves that r′ = r is the
order of x or we receive any other value, which points out that r is a multiple of r′

(this occurs if mb and r have common factor(s)). In the latter case we have to repeat
the algorithm to obtain a different r′. Fortunately from the probability of being r
and r′ relative primes P (gcd(r, r′) = 1) = 1

O(ld(ld(N))) and by repeating the steps
of the algorithm O(ld(ld(N))) times we may expect an appropriate r′ with high
probability.

This section began by emphasizing the efficiency of Shor’s algorithm over the
best (equal) classical one. We do not discuss this topic in detail, interested users
are advised to read [139] or [149]. Here we lay stress upon the essence of this
topic. It was previously mentioned that the required O(ld3(N)) gates can be further
reduced to O(ld2(N) · ld(ld(N)) · ld(ld(ld(N)))) for moderately large N if the
grade school multiplication algorithm is replaced by Schönhage–Strassen [20] fast
integer multiplication during the modular exponentiation. However, both results are
basically influenced by O(ld2(N)) originating from the IQFT implementation.

Exercise 6.7. Derive the matrix of operator U : |q〉 → |(qx) mod N〉.

Exercise 6.8. Prove that if the order-finding circuit initialized with |ϕ0〉 = |0〉|0〉
and its gate V is replaced by V ′ : |k〉|q〉 → |k〉|(q + xk) mod N〉 then it produces
|ϕ2〉 = 1√

2n

∑2n−1
k=0 |k〉|xk mod N〉, too.

Exercise 6.9. Prove that |ub〉 =
∑r−1

s=0
e−j2π b

r
s

√
r

|xs mod N〉, b = 0 . . . r − 1 are

eigenvectors of U : |q〉 → |(qx) mod N〉.

6.3.3 Error analysis and a numerical example

There is only one point in the previous subsection which remained open, namely
we alluded that mb/r may be a rough estimation of b/r instead of being the best
one. This follows from the operation of the phase estimator. Next we calculate the
probability of measuring i = mb at the output of the IQFT. Afterwards we use this
result in numerical examples to illuminate the most important steps in order finding
and to summarize the algorithm. To compute pdf P (i) one has two choices. Either
the results obtained at phase estimation can be exploited or we calculate |ϕ3〉 in
Fig. 6.14. We decided for the latter one to give a comprehensive discussion of the
order-finding circuit, however, we ask the reader to also follow the former way.
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|ϕ3〉 can be determined simply by using IQFT (see (6.6)) on the upper n qbits of
|ϕ2〉 (see (6.49))

|ϕ3〉 = (F † ⊗ I⊗t)|ϕ2〉 =
1√
2n

r−1∑
k=0

Zk∑
z=0

1√
2n

2n−1∑
i=0

e−j 2π
2n i(zr+k)|i〉|xk mod N〉

=
2n−1∑
i=0

r−1∑
k=0

(
Zk∑
z=0

e−j 2π
2n i(zr+k)

2n

)

︸ ︷︷ ︸
ϕik

|i〉|xk mod N〉. (6.61)

Coefficient |ϕik|2 represents the probability of measuring |i〉|xk mod N〉 at the
output of the circuit. The summation within the parenthesis demonstrates the
constructive interference which was mentioned as a required technique beside
quantum parallelism at the very beginning of the previous subsection. The
probability amplitudes may cancel each other while increasing the probability of
measuring a suitable state as we will see later. Basic probability theory ensures that

P (i) =
r−1∑
k=0

|ϕik|2 =
r−1∑
k=0

∣∣∣∣∣
Zk∑
z=0

e−j 2π
2n i(zr+k)

2n

∣∣∣∣∣
2

=
r−1∑
k=0

∣∣∣e−j 2π
2n ik
∣∣∣2︸ ︷︷ ︸

≡1

∣∣∣∣∣
1
2n

Zk∑
z=0

(
e−j 2π

2n ir
)z
∣∣∣∣∣
2

, (6.62)

which can be further simplified realizing that a sum of geometrical sequence can be
found within the argument of the absolute value operator with quotient q = e−j 2π

2n ir

and starting value 1/22n. If q = 1 ⇒ ir
2n ∈ Z then

P (i) =
r−1∑
k=0

(
Zk + 1

2n

)2

, (6.63)

else

P (i) =
r−1∑
k=0

1
22n

∣∣∣∣1 − qZk+1

1 − q

∣∣∣∣
2

=
r−1∑
k=0

1
22n

∣∣∣∣∣
1 − e−j 2π

2n ir(Zk+1)

1 − e−j 2π
2n ir

∣∣∣∣∣
2

=
r−1∑
k=0

1
22n

sin2(πir(Zk+1)
2n )

sin2(πir
2n )

, if q �= 1, (6.64)

where we used the result of Exercise 6.3 in the last step. Trivially (6.63) belongs to
the idealistic case when b

r = mb

2n and (6.64) to the practical one. The pdf of random
variable i has been depicted for n = 11, N = 33, x = 5, r = 10 in Fig. 6.15.
According to the expectations the reader may observe peaks near to 2n

r b since the
ideal case would be b

r = mb

2n . The figure highlights the fact that probabilities are



ORDER FINDING AND FACTORING – SHOR ALGORITHM 109

concentrating around the wanted phase ratios thus quantum inaccuracy has marginal
influence on successful order finding. Furthermore we emphasize that if 2n is a
multiple of r then the peaks move exactly to 2n

r b and what is more interesting is that
the quantum uncertainty also disappears (see Exercise 6.10). Unfortunately we do
not know r in advance hence suitable n cannot be chosen. However, as we discussed
in connection with the phase estimation this quantum inaccuracy can be handled by
means of some overhead p qbits deployed in the upper qregister.

As an example and illustration of quantum-based order finding we continue the
factorization example introduced in Exercise 6.6 and replace the exhaustive search
for the order. Remember that we have to find the order r of x = 5 modulo N = 33.
First one should define the initialization parameters of the order-finding device. We
set n = �ld(332)� = 11 and t = �ld(33)� = 6, therefore the circuit is initialized
with |ϕ0〉 = |0〉211 |1〉26 , which is followed by a H⊗11 gate on the upper qregister
resulting |ϕ1〉 according to (6.45)

|ϕ1〉 =
1√

2048

2047∑
k=0

|k〉 ⊗ |1〉26 .

Now we let gate V operate on both qregister in compliance with (6.46)

|ϕ2〉 =
1√

2048

2047∑
k=0

|k〉|xk mod 33〉,

which has the following more illustrative form

|ϕ2〉 =
1√

2048
(|0〉|1〉 + |1〉|5〉 + |2〉|25〉+ |3〉|26〉 + |4〉|31〉 + |5〉|23〉

+ |6〉|16〉 + |7〉|14〉 + |8〉|4〉 + |9〉|20〉 + |10〉|1〉 + |11〉|5〉
+|12〉|25〉 + |13〉|26〉 + · · · ) .

It is obvious that xk mod 33 has a period r = 10 as we determined earlier by
exhaustive search. Terms of |ϕ2〉 can be regrouped as was advised in (6.49) according
to the computational basis states stored in the second qregister (1,5,25,26,31,23,16,
14,4,20)

|ϕ2〉 =
9∑

k=0

(
1√
2048

Zk∑
z=0

|10z + k〉
)

︸ ︷︷ ︸
|ϕ2k〉

|xk mod 33〉

=
1√

2048
(|0〉 + |10〉 + |20〉 + · · · + |2030〉+ |2040〉)|1〉

+
1√

2048
(|1〉 + |11〉 + |21〉 + · · · + |2031〉+ |2041〉)|5〉

+
1√

2048
(|2〉 + |12〉 + |22〉 + · · · + |2032〉+ |2042〉)|25〉
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+
1√

2048
(|3〉 + |13〉 + |23〉 + · · · + |2033〉+ |2043〉)|26〉

+
1√

2048
(|4〉 + |14〉 + |24〉 + · · · + |2034〉+ |2044〉)|31〉

+
1√

2048
(|5〉 + |15〉 + |25〉 + · · · + |2036〉+ |2045〉)|23〉

+
1√

2048
(|6〉 + |16〉 + |26〉 + · · · + |2036〉+ |2046〉)|16〉

+
1√

2048
(|7〉 + |17〉 + |27〉 + · · · + |2037〉+ |2047〉)|14〉

+
1√

2048
(|8〉 + |18〉 + |28〉 + · · · + |2038〉)|4〉

+
1√

2048
(|9〉 + |19〉 + |29〉 + · · · + |2039〉)|20〉.

The reader may recognize that not all the |ϕ2k〉 contain the same number of
computational basis states because of Zk, however, as we concluded in Exercise 6.10
if r divided 2n without reminder Zk values would lose their dependence on k and
all the superpositions |ϕ2k〉 would comprise equal numbers of basis vectors. We will
point out soon that quantum inaccuracy when finding the order can be traced back to
this anomaly.

As the last step before measurement an IQFT is performed on the upper section
bearing in mind (6.61). The superposition principle allows this operator to act one
by one on each |ϕ2k〉 thus

|ϕ3〉 = (F † ⊗ I⊗6)|ϕ2〉 =
9∑

k=0

(F † ⊗ I⊗6)|ϕ2k〉|xk mod 33〉

=
9∑

k=0

2047∑
i=0

ϕik︷ ︸︸ ︷
Zk∑
z=0

1
2048

e−j 2π
2048 i(10z+k) |i〉

︸ ︷︷ ︸
|ϕ3k〉

|xk mod 33〉

=
9∑

k=0

(ϕ0k|0〉 + ϕ1k|1〉 + · · · + ϕik|i〉 + · · · + ϕ2047k|2047〉)︸ ︷︷ ︸
|ϕ3k〉

|xk mod 33〉.

Finally the measurement randomly selects a computational basis vector |i〉. Since all
possible |i〉 occur in all |ϕ3k〉 therefore the probability of measuring i is

P (i) =
9∑

k=0

|ϕik|2 =




9∑
k=0

(
Zk + 1
2048

)2

if
10i

2048
∈ Z

9∑
k=0

1
20482

sin2(π10i(Zk+1)
2048 )

sin2(π10i
2048 )

else,
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where we used the results of (6.63) and (6.64). Fig. 6.15 depicts P (i). Peaks can be
observed at 0, 205, 410, 614, 819, 1024, 1229, 1434, 1638, 1843which are the closest
integers to b2n/r with periodicity ≈ 2n/r = 205. Related peak probability val-
ues are 0.1, 0.0875, 0.0573, 0.0573, 0.08753, 0.1, 0.08753, 0.0573, 0.0573, 0.08753.
The probability of measuring one of them is 0.779. Because we set n = �ld(N2)�,
if we measured one of the peaks then they are close enough to b 2n

r to perform
continued fraction algorithms to extract r from mb. Let us assume mb = 614. The
corresponding convergents are: 1

3 , 2
7 , 3

10 , 152
507 , 307

1024 . Among them 3
10 is the closest

one to 614
2048 with denominator less than N . Therefore we check 510 mod 33 which

equals 1 thus we managed to find r. However, if mb were measured to 819 then
convergents would be: 1

2 , 1
3 , 2

5 , 819
2048 . According to the selection rules we should take

2
5 , but when testing it 55 mod 33 = 23, which implies that r′ = 5 is a factor of r and
not r itself. Unlike the ideal case (see Exercise 6.10) when 2n is a multiple of r –
or equivalently mb

2n = b
r – in our realistic scenario values of peaks are not uniformly

equal to 1/r and probabilities are not concentrated exactly into special values b 2n

r .
Applying logarithmic scale emphasizes this fact in Fig. 6.16. Since we are not aware
of r in advance and therefore an appropriate value cannot be set to n the only chance
of reducing the probability of error Pε is if we increase the size of the upper qregister
by p additional qbits according to (6.36)

n = c − 1 + p =
⌈
ld(N2) + ld

(
3 +

1
P̆ε

)⌉
, (6.65)

where the term ld(2π) was removed because order finding is related to the accuracy
of phase ratio κb = b/r instead of the phase αb = 2πb/r itself.

Finally we remind the reader the basic concept of designing the quantum
order-finding circuit, which corresponds to a general cooking recipe. First quantum
parallelism was exploited in order to produce all the |k〉|xk mod N〉 states. Next
instead of performing an immediate measurement promising an equiprobable result
for all xk mod N we used constructive interference to amplify those probability
amplitudes which were closely related to the r in question. In this case an IQFT gate
was responsible for this interference. Finally some classical postprocessing steps
were utilized to obtain r from the measurement result.

Exercise 6.10. Assuming 2n is a multiple of r (r is a power of 2) prove that quantum
inaccuracy disappears from |ϕ3〉.

6.4 QFT AS GENERALIZED HADAMARD TRANSFORM

Now, it is time to stop for a while in order to build bridges between this chapter and
other parts of this book. First let us reconsider the transformation rule of Hadamard
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Fig. 6.17 Deutsch–Jozsa circuit as a decision maker whether f is constant or varying

gates: H |0〉 = (|0〉 + |1〉)/√2, H |1〉 = (|0〉 − |1〉)/√2. Using n = 1 in (2.9)

H⊗1|i〉 =
1√
21

∑
k∈{0,1}1

(−1)ik|k〉 =
1√
2

1∑
k=0

(−1)ik|k〉, (6.66)

where i ∈ {0, 1}. Recalling that −1 = ej2π 1
2 (6.66) can be rewritten as

H |i〉 =
1√
2

1∑
k=0

ej2π ik
2 |k〉. (6.67)

If the reader compares (6.67) with (6.4) he/she can conclude that H |i〉 is nothing
more than the QFT of |i〉 i.e. the one-qbit Hadamard gate corresponds to the QFT
over ZN=2. Based on this fact it is reasonable to point out that H⊗n is the equivalent
of QFT over (Z2)n. As we discussed in Section 6.1 QFT over (Z2)n = ZN=2n

(i.e. H⊗n) can be extended to ZN with arbitrary nonnegative integer N by means of
controlled phase gates Rh,p (see Fig. 6.3). For further extensions of QFT over more
general groups see Further Reading.

As a next step we build the connection between the Deutsch–Jozsa algorithm (see
Section 5.2) and QFT. In Fig. 6.17 we presented the n = 1 qbit version of the circuit
depicted in Fig. 5.3, which is often referred to as the Deutsch circuit. Let us moreover
select f(x) : f(0) = 0, f(1) = 1 that results in a Uf = CNOT gate in the middle. If
the lower (data) input has been feeded by |0〉 the measuring equipment answers with
|0〉 since f is a balanced function. In the opposite case when we initialize data input
to |1〉 the output will be |1〉.8

Now let us assume the role of a phase estimation expert! Suddenly the CNOT
gate turns into a controlled X gate and the H gate at the output has been changed to
an IQFT in accordance with the above observation on the relationship between the
QFT and Hadamard gate9 (see Fig. 6.18). Leaning on the results of Exercise 6.11 we

8One may remark that we managed to realize a quantum-assisted classical shortcut, but fortunately this
circuit has more important lessons.
9Do not forget that H is a Hermitian operator (and therefore also unitary), hence H−1 = H .
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Fig. 6.18 Deutsch–Jozsa circuit as a simple phase estimator

know that operator X has eigenvalues ejα0 = 1 and ejα1 = −1 (α0 = 0, α1 = π)
with eigenvectors |u0〉 = (|0〉 + |1〉)/√2 and |u1〉 = (|0〉 − |1〉)/√2 respectively. It
is clear from the above analysis that the Deutsch circuit emits either m = 0 which
corresponds to 2π m

2 = 0 = α̃0 or m = 1 which reflects to 2π m
2 = π = α̃1, that is

α̃0 = α0 and α̃1 = α1. So we can conclude that the circuit for solving the Deutsch
problem can be regarded as a phase estimator device as well.

Finally as an example we investigate the case of unknown eigenvectors. If we
are not familiar with the matrix of operator X – it can be regarded as a black box
– then we have to send a superposition of eigenvectors into the data input of the
phase estimator in Fig. 6.18. However, without any information about eigenvectors
how can a superposition be prepared? Since the eigenvectors of any unitary operator
form an orthonormal basis, i.e. an arbitrary state |ψ〉 can be expressed as their
linear combination. Let us for instance set |ψ〉 = |0〉 and calculate the pdf of the
measurement results. The results can be originated either from an n = 1 qbit Simon
circuit (Fig. 5.4) with f(x) : f(0) = 0, f(1) = 1 or by simply computing the effect
of Hadamard and CNOT gates as Fig. 6.18 and linear algebra claim. We chose the
former solution and let the reader follow the latter one in Exercise 6.12. Function
f has only a trivial period r = 0, therefore probability amplitude cx′,x of state
|x′〉|f(x)〉 can be calculated easily for n = 1 and x′, x ∈ {0, 1} based on (5.22)
bearing in mind that here x′ belongs to the upper quantum wire connected to the
measuring device and x to the lower qbit, respectively

c00 = 1
2 , c01 = 1

2 , c10 = 1
2 , c10 = − 1

2 ,

from which by measuring the first qbit we get

P0 =
(

1
2

)2 +
(

1
2

)2 = 1
2 and P1 =

(
1
2

)2 +
(− 1

2

)2 = 1
2 .

This result corresponds to the fact that |ψ〉 = |0〉 represents an equal superposition
of |u0〉 and |u1〉 thus the observed probabilities at the output are expected to be
uniform.
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Exercise 6.11. Determine the eigenvectors and eigenvalues of operator X .

Exercise 6.12. Calculate the probabilities (P0 and P1) of measuring m = 0 and
m = 1 for the phase estimator circuit in Fig. 6.18 using linear algebraic operations
if the eigenvector input has been initialized to |0〉.

6.5 GENERALIZATIONS OF ORDER FINDING

We have shown an efficient quantum-based solution for an order-finding problem
in the context of factorization in Section 6.3.2. However, order finding is only a
special case of more general problems. The following subsections introduce two of
them, namely period finding for one- and two-dimensional functions with a related
application called the discrete logarithm.

6.5.1 Period finding

Simon’s algorithm was the most complex and sophisticated basic quantum algorithm
introduced in Section 5.3; it was able to find the period r of a function f : {0, 1}n →
{0, 1}n. If we compare the master equation (5.12) of gate Uf in Fig. 5.4 with
that of V ′ in the alternative version of the quantum order-finding device explained
in Exercise 6.8 then we can easily recognize the similarities. Based on these
observations we design a quantum period-finding equipment on the range [0, N)
for f : ZN → ZN , f(k) = f(k + r) in a similar way as we did for order finding.
Our first goal is to produce a superposition containing all the possible f(k) values.
Since f is not reversible, we need to store k as well. Therefore our target state should
be (see Fig. 6.19)

|ϕ2〉 =
1√
2n

2n−1∑
k=0

|k〉|f(k)〉. (6.68)

To produce this state we have two possibilities. Either we use the first stages of
Simon’s circuit with |ϕ0〉 = |0〉2n |0〉2t (without loss of generality we can assume
that N = 2t and n ≥ 2t), next a Hadamard gate on the upper qbits results in

|ϕ1〉 =
1√
2n

2n−1∑
k=0

|k〉|0〉 (6.69)

and generalizing (5.12) we get

Uf : |k〉|q〉 → |k〉|(q + f(k)) mod N〉. (6.70)

Or we approach the problem from the phase estimation point of view. Analogously
to order finding |ϕ2〉 can be established replacing Uf with Vf comprising controlled
U gates and using appropriate |ψ0〉. As it was pointed out during the design process
eigenvectors, eigenvalues of U and |ψ0〉 can be determined in possession of |γ0〉 =
|0〉 and |ϕ2〉. By means of replacing the special case f(k) = xk mod N with f(k)
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Fig. 6.19 Period-finding quantum circuit over ZN

itself in equations from (6.49) to 6.56) we obtain

κb =
b

r
, |ub〉 =

r−1∑
s=0

e−j2π b
r s

√
r

|f(s)〉, (6.71)

and

|ψ0〉 =
r−1∑
b=0

1√
r
|ub〉 = |f(s = 0)〉2t . (6.72)

The IQFT gate in Fig. 6.19 is fed with |ϕ2〉, but it is not interested in which
way |ϕ2〉 has been produced since both solutions are equivalent. Of course it is
reasonable to choose the first method since it does not require any information about
f to prepare initial state |ϕ0〉. Fortunately this decision does not prevent us from
evaluating the effect of IQFT as if the second method had been applied.10 According
to the discussion of order finding when measuring the output of the IQFT we receive
one of the phase ratios b

r with probability Ps if n is set to at least �ld(N2)�. Finally
performing the already known classical steps one can obtain r.

Exercise 6.13. Determine the transformation rule of controlled operator U applied
in gate Vf .

6.5.2 Two-dimensional period finding and discrete logarithm

In possession of the period-finding algorithm discussed in the previous subsection
we may wonder whether it is possible to generalize this result for two-dimensional
periodic functions. More specifically having a function f with the property
f(k1, k2) = f(k1 + r1, k2) and f(k1, k2) = f(k1, k2 + r2) for k1, k2 ∈ [0, N)
and N is assumed to be a power of 2 (N = 2t) without loss of generality then we

10A goblin sitting in the box of IQFT gate takes care only of the input superposition and therefore may
imagine that Vf was used with corresponding |ψ0〉.
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would like to design an efficient quantum algorithm that is able to find both periods
r1 and r2. Periodicity of f is represented by the (r1, r2) pair. The methodology of
developing such an algorithm has already been explained several times in this chapter
therefore we can follow a well-known track.

First we produce |ϕ1〉 in Fig. 6.20 containing all the possible k1, k2 values by
means of two Hadamard gates acting on the upper two quantum registers11 n qbit of
size each (n ≥ �ld(N2)�) and initialization vector |ϕ0〉 = |0〉|0〉|0〉 (cf. (6.45))

|ϕ1〉 =
1
2n

2n−1∑
k1=0

2n−1∑
k2=0

|k1〉|k2〉 ⊗ |0〉. (6.73)

Next we apply Uf : |k1〉|k2〉|q〉 → |k1〉|k2〉|(q + f(k1, k2)) mod N〉 exploiting
quantum parallelism to evaluate f for all the (k1, k2) pairs (see (6.46))

|ϕ2〉 =
1
2n

2n−1∑
k1=0

2n−1∑
k2=0

|k1〉|k2〉|f(k1, k2)〉, (6.74)

If the sums of (6.74) are regrouped in the following way

|ϕ2〉 =
1√
2n

2n−1∑
k1=0

|k1〉 1√
2n

2n−1∑
k2=0

|k2〉|f(k1, k2)〉
︸ ︷︷ ︸

|ϕ′
2〉

, (6.75)

then it becomes obvious that |ϕ′
2〉 is nothing more than |ϕ2〉 in the case of one-

dimensional period finding (cf. (6.68)) with fixed k1, i.e. applying an IQFT gate and
a measurement on the qbits belonging to the second qregister in the upper section
and some classical processing steps in compliance with order finding will result in
r2. Since exchanging the indices k1 and k2 does not influence |ϕ2〉 the same method
can be used for obtaining r1. The two measurements do not influence each other
since the lower qregister has not been measured at all!

Remark: As Exercise 6.14 claims that the two IQFT gates can be combined into
a single one.

Remark: The presented technique can be easily extended for finding periods of
arbitrary dimensional f .

As a practical example for the above algorithm we bring out the so-called discrete
logarithm problem, which emerges when breaking certain cryptographic systems
(see Chapter 9). The problem can be formulated in the following way: suitable
smallest w is requested that satisfies b = aw mod N if a, b, w ∈ ZN where a, b
and N are known, i.e. w = loga(b) =? The order-finding modulo N problem is a
special case with w = r and b = 1!

11Of course the two n-dimensional Hadamard gates can be replaced by a single H⊗2n.
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Fig. 6.20 Two-dimensional period-finding quantum circuit

We start with f(k1, k2) = ak1bk2 mod N which has two periods r1 and r2, where
r1 and r2 are the orders of a and b modulo N respectively (see (6.41)). We have a
given relationship between a and b therefore the two periods are not independent,
either. In order to derive this connection first we realize that in this special case
f(k1, k2) = f(k1 + r1, k2 + r2) because

(ak1bk2) mod N = [(ak1+r1 mod N)(bk2+r2 mod N)] mod N (6.76)

and r1, r2 have been defined according to ar1 mod N = 1, br2 mod N = 1. Next
substituting b = aw mod N into the definition of f(k1, k2) we get

f(k1, k2) = (ak1bk2) mod N = ak1+wk2 mod N = ak1+r1+w(k2+r2) mod N,
(6.77)

where in the last step we utilized (6.76). Applying modular arithmetic the last
equality can be further processed

ak1+wk2 mod N = [(ak1+wk2 mod N) (ar1 mod N)︸ ︷︷ ︸
≡1

(awr2 mod N)] mod N.

(6.78)
Equality in (6.78) can be maintained only if wr2 ≡ lr1 (do not forget that r1

is the smallest integer satisfying ar1 mod N = 1, where l is a positive integer).
Now we are almost ready because by deploying an appropriate Uf : |k1〉|k2〉|q〉 →
|k1〉|k2〉|(q + ak1bk2) mod N)〉 we can receive r1 and r2 at the output of the circuit,
which allows calculating lw and thus w itself using a few steps.

Remark: It is obvious that this two-dimensional period-finding algorithm for
solving the discrete logarithm problem is equivalent to two independent one-
dimensional period finding (order finding) because there is a one-to-one connection
between the two periods (orders).

Exercise 6.14. Show that F⊗n ⊗ F⊗n ≡ F⊗2n.
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6.6 FURTHER READING

The original version of QFT was introduced by Coppersmith [44] and also by Shor
[122]. The standard QFT has order 2n and it is applied to a qregister of n qbits.
Similarly to FFT it can be generalized to orders which are a power of a small
prime and more generally to so-called smooth numbers, i.e. integers which have
only small prime factors [42]. Kitaev [91] gave an approximate implementation for
arbitrary order based on eigenvalue estimation. This result was improved by Mosca
and Zalka [108] involving amplitude amplification to replace the estimation by an
exact solution. Jozsa described the quantum algorithms of Deutsch, Simon and Shor
in a way which highlights their dependence on the Fourier transform in [89].

Besides outlining the milestones it is worth discussing implementation-related
questions and solutions of QFT, dividing them into circuit and physical level
approaches.

Classical FFT, which was proposed by Cooley and Tukey in [86], computes the
DFT with O(N ld(N)) elementary arithmetic operations compared to the trivial
O(N2) steps. As for the classical case for special values of N there are quite
efficient QFT algorithms available. This fact was firstly recognized by Shor [122],
providing a polynomial solution which requires O(ld2(N)) quantum gates assuming
the particular case when modulus N = 2n. The product state decomposition of QFT
explained here in this chapter was published independently in [123] and [124].

Another fundamental endeavor can be observed concerning computation of QFT,
namely since physical implementation of quantum gates and circuits always suffers
from noise and consequently from some amount of inaccuracy, it seems to be a very
reasonable approach to allow some imperfections when designing QFT algorithms in
exchange for faster computation, i.e. unitary transforms have to be designed whose
difference from the original QFT operator is limited in terms of e.g. Euclidean
distance-based operator norm. Coppersmith proposed the first approximation of QFT
with error bounded by Pε in [44]. His proposal required O(n log(n/Pε)) gates
assuming modulus N = 2n. As we mentioned above Kitaev presented an algorithm
to calculate QFT for an arbitrary modulus N and showed that it needs O(log(N/Pε))
gates in [91]. Cleve and Watrous gave new bounds on the circuit complexity of QFT
in [125]. They provided an upper bound of O(log(n)+log(log(1/Pε))) on the circuit
depth for computing an approximation of the QFT in case of N = 2n and error
smaller than Pε. Thus, even for exponentially small error, QFT circuits have depth
O(log(n)). The best previous depth bound was O(n), even for approximations with
constant error. Moreover, their circuits contain O(n log(n/Pε)) elementary gates.
They also proved an upper bound of O(n(log(n))2 log(log(n))) on the circuit size in
the case of the exact QFT modulo 2n, for which the best previous bound was O(n2).
As an application of their depth bound, Cleve and Watrous showed that Shor’s
factoring algorithm may be based on quantum circuits with depth only O(log(n))
and polynomial size, in combination with classical polynomial-time pre- and post-
processing. A sophisticated survey of different extensions of original QFT can be
found in [100].
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Because of its important role in quantum computing implementation of QFT
has been widely discussed in the literature. Therefore here we make an attempt to
collect several typical references that more or less cover this area but we suggest the
interested reader follow their reference lists. A three-qbit NMR processor has been
considered for QFT in [156]. Various quantum computing schemes implementing the
QFT on a spin-based two-qbit NMR quantum information processor were compared
by Dorai and Suter [90] from a time-costs and accuracy point of view, and for
bulk spin resonance computer and spin resonance transistor by Saito et al. in
[19]. A. Muthukrishnan and Stroud proposed an implementation of the QFT in an
entangled system of multilevel atoms in [16].

Phase estimation was the first application of QFT in quantum computing
introduced by Kitaev [91] and further refined in [124]. Discussion of phase
estimation especially the error analysis is based on this latter excellent work,
however, the design method of the phase estimating circuit was replaced by a
constructive one instead of the original analytic solution. Moreover Kitaev [91]
generalized Shor’s algorithm, showing how a quantum computer can generate an
eigenvalue of an arbitrary unitary operator (with the limit of a large number of qbits,
and not necessarily efficiently). Travaglione and Milburn presented in [25] how to
use the phase estimation algorithm for generation of eigenvalues associated with
an operator and how to implement this method on a small-scale ion trap quantum
computer. Later they showed with Ralph the connection between phase estimation
and non-demolition measurements in [26]. Wei and Nori discussed the problem of
coherent phase errors produced by the time delays between sequential operations
in [95]. They presented that in the framework of quantum phase estimation these
coherent phase errors can be avoided efficiently by setting up the delay times to
satisfy certain matching conditions.

The efficient quantum algorithm for calculation of the discrete logarithm was born
together with factorization in [122].

Peter Shor’s spectacular application of the Fourier transform has led to the
discovery of an efficient quantum factoring algorithm [122] and in a more mature and
extended version [137], [138] and [124]. Zalka proposed a technique parallelizing
the individual addition steps in order to provide a better space-time tradeoff in [158].
An interesting attempt to replace QFT with a simpler operator in the Shor algorithm
was presented by Lev in [94]. Wei and his colleagues enhanced their phase-matching
approach on QFT [95] to the Shor algorithm in order to eliminate the dynamic phase
error in [96]. Lomonaco and Kauffman introduced the continuous variable analog of
Shor’s quantum factoring algorithm in [134].

Shor’s factorization algorithm is arguably the driving force behind much
experimental quantum computer research. Therefore it is crucial to investigate
whether realistic quantum computers can successfully run Shor’s algorithm on
integers of commercially interesting length. The Shor algorithm has been verified
experimentally in a liquid-state NMR system with a few qbits using pentafluoro-
butadienyl cyclopentadienyldicarbonyliron complex (molecule) by Vandersypen
et al. in [98] and [97]. Fowler and Hollenberg investigated in [6] in detail the effect
of imposing a rotation control limit of 2π/2dmax . They found that integers thousands
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of bits long can be factorized provided rotation gates of magnitude π/64 can be
implemented.

A more general formulation of the order-finding problem as well as the discrete
logarithm [137] problem, and the Abelian stabiliser problem is the hidden subgroup
problem or the unknown sub-group problem. A good overview can be found in [107].

For those readers who are interested in the discrete cosine transform (DCT) its
quantum equivalent is discussed in [12].
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7
Searching in an Unsorted

Database

In order to survive from day to day in a very hostile and dangerous environment
prehistoric men spent most of their time seeking for such resources as food, fresh
water, suitable stones for tools, etc. The world around us was nothing more than
a large unsorted database. Efficiency of the two basic methods, namely random
and exhaustive search, proved to be rather poor. The only way to achieve some
improvement was the involvement of more people (parallel processing). The first
breakthrough in this field can be connected to the first settlements and the appearance
of agriculture which brought along the intention to make and keep order in the
world.1 A field of wheat or a vegetable garden compared to a meadow embodied
the order which increased the probability of successful searching almost up to 1.
Therefore our ancestors were balancing during the last 10 thousand years between
the resource requirement of making order and seeking for a requested thing.
However, at the dawn of the third millennium our dreams seem to become true
due to quantum computing. Grover’s database search algorithm enables a dramatic
reduction in the computational complexity of seeking in an unsorted database. The
change is tremendous, the classically required O(N) database queries when we have
N different entries has been replaced by O(

√
N) steps using quantum computers.

We follow the evolution of quantum-based searching from the basic idea to
the most sophisticated general solution in this chapter which is organized as
follows: Section 7.1 introduces the original Grover algorithm explaining the related
architecture and error analysis as well. Afterwards phase estimation based quantum

1Ancient Greeks referred to this change as the birth of cosmos (κoσµoσ = order) from chaos (χαoσ =
disorder). So to use cosmos as a synonym of universe is not unintentional.

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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counting is discussed in Section 7.2, which can be used both as a standalone
algorithm or enables minimizing the error probability when searching for a given
entry in the database. A special and often used case of counting is when we are
interested in whether a database contains a certain entry at all. The solution to this
problem originates from phase estimation. It is called existence testing and it is
explained in Section 7.3. We show how to use quantum existence testing when one
is interested in the largest or smallest entry of an unsorted database in Section 7.4.
Finally Section 7.5 focuses on the generalization of the basic algorithm providing
sure success measurements and enabling an arbitrary initial state of the algorithm,
which can be quite useful when deploying the searching circuit within a larger
quantum network.

7.1 THE BASIC GROVER ALGORITHM

First of all let us define more precisely the problem: Considering a database DB with
N different entries (e.g. names of fruits) indexed by x ∈ [0, N − 1] we are looking
for that index x0 which points to the requested entry DB[x0] = apple.

Before buckling down to the design of a suitable quantum algorithm for database
searching it is worth looking at the already known quantum algorithms and check
whether we can exploit some parts of them. All of them started with quantum
parallelism in order to prepare all the potential results with uniform probability
amplitudes in a qregister. Remember the prince who put all his questions to the witch
in a single but quantum question (see the introduction of Deutsch–Jozsa problem in
Section 5.2). This first stage is followed typically by a unitary operator (often referred
as Uf ) being responsible for processing all the computational basis states according
to the given problem. Uf always requires an auxiliary (lower) qregister that provides
reversible operation of the gate. Finally we use a Hadamard or IQFT gate in order to
have quantum interference to act on the upper qregister and the algorithm is finished
by measuring this qregister. According to these lessons quantum searching operator
G consists of two regular stages (see Fig. 7.1) preceded by an initialization phase.

7.1.1 Initialization – quantum parallelism

As we did several times during the design of basic quantum algorithms we prepare
two quantum registers. The upper one contains n qbits with respect to the size
N = 2n of the database2 and it is initialized with |γ0〉 = |0〉. We feed an n-
dimensional Hadamard gate with this qregister while the lower qregister is connected
to an unknown gate T producing

|ϕ1〉 = (H⊗n ⊗ T⊗t) (|γ0〉 ⊗ |ψ0〉) =
1√
N

N−1∑
x=0

|x〉 ⊗ T |ψ0〉, (7.1)

2If N is not a power of 2 we extend the database with several dummy entries to fulfil this requirement.
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Fig. 7.1 Circuit implementing the Grover operator
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Fig. 7.2 Probability amplitude distribution of the index register at |ϕ1〉

where |ψ1〉 = T |ψ0〉 stands for the state of the lower auxiliary qregister t bit of size
and

|γ1〉 =
1√
N

N−1∑
x=0

|x〉. (7.2)

The exact value of |ψ0〉 and T will be determined later according to the
considerations originating from the following stage. In order to make it easier
to follow the operation of different stages we present the probability amplitude
distribution of the index register at the end of each stage. Fig.7.2 depicts these
probability amplitudes at |ϕ1〉, where x0 stands for the index of the requested entry.

Remark: Entries, which are solutions of the search problem, are called marked
states according to the literature and ones which do not lead to a solution are referred
as unmarked states.
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Fig. 7.3 Content of qregister |γ2〉 after invoking the Oracle

7.1.2 First stage of G – the Oracle

In the second stage a special gate, the so-called Oracle,3 is used to distinguish
between the marked and unmarked states. The Oracle multiplies the probability
amplitude of the requested item by −1 and leaves any other amplitudes unchanged.
This functionality is presented in Fig. 7.3 and can be summarized as

O : |x〉|y〉 → (−1)f(x)|x〉|y〉, (7.3)

where

f(x) =
{

1 if x = x0 (i.e. DB[x0] matches the searched item),
0 otherwise.

(7.4)

Function f(x) seems to be a bit contradictory because it has to know whether a
given x leads to the solution of the searching problem or not. If we know the solution
in advance we do not need searching, but to know the solution we always have to
perform searching. The only way to escape from this vicious circle is to decide that
x = x0 does not require any a priori knowledge about x0, it can be evaluated real
time using a simple comparison.

Without loss of generality we assumed that N is an integer power of 2. If not we
extend N to the nearest 2n sticking entries with f(x) = 0.

The next naturally arising question is related to the implementation of O. Before
the reader begins to look for a suitable answer we remember an intermediate result
(5.5) from the analysis of the Deutsch–Jozsa algorithm (see Section 5.2). Applying
what we have learned there we use a single qbit (t = 1) lower qregister initialized
with |ψ0〉 = |1〉 and T is set to a Hadamard gate hence

|ϕ1〉 =
1√
N

N−1∑
x=0

|x〉 ⊗ |0〉 − |1〉√
2

. (7.5)

3Unlike oracles in the ancient Egypt, Greece or Roman Empire our quantum oracle proves to be a quite
deterministic one.
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If we select the Oracle according to Uf (the witch) in Fig. 5.3

O : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (7.6)

then the status of the lower qbit remains unchanged and

|ϕ2〉 =
1√
N

N−1∑
x=0

(−1)f(x)|x〉 ⊗ |0〉 − |1〉√
2

= |γ2〉 ⊗ |0〉 − |1〉√
2

. (7.7)

in compliance with (5.7).
Finally the Oracle can be represented using operator formalism in compliance

with Exercise 7.1 in the following manner

O = I − 2|x0〉〈x0|. (7.8)

Exercise 7.1. Show that the transformation of the Oracle can be represented as
O = I − 2|x0〉〈x0|.
Exercise 7.2. Determine the matrix of the Oracle in the case of an N = 4 database
assuming x0 = 2.

7.1.3 Second stage of G – inversion about the average

As we discussed earlier the second stage is responsible for amplifying the probability
amplitude of |x0〉 while suppressing any other probability amplitudes. The only
limiting restriction which has to be kept in mind is the unitary nature of the
chosen transformation. Furthermore this transform cannot distinguish between
computational basis states according to their marked or unmarked status, hence we
need such a gate which applies the same rule for all the basis vectors. Therefore we
can exploit the only difference, namely the sign of the probability amplitudes. This
aim can be achieved by means of a clever mathematical tool called inversion about
the average. First we show how it operates on the probability amplitudes, the exact
mathematical formulation will be provided afterwards.

Let us assume that we are able to calculate the average a of the probability
amplitudes in |γ2〉

a =
1
N

N−1∑
x=0

γ2x, (7.9)

where γ2x refers to the probability amplitude of computational basis state |x〉 in |γ2〉.
If we reflect each amplitude onto a then the amplitude of the marked state becomes
greater than a since a negative number was subtracted from a positive one. Any other
amplitudes will then be decreased (see Fig. 7.4). Thus x0 appears with an amplified
amplitude in |γ3〉. Moreover with respect to our expectations this transform seems to
be reversible and because the probability amplitude of x0 has been increased at the
expense of other probability amplitudes we may expect that |γ3〉 has unit length, too.
So both requirements of unitary operators may be accomplished.
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Fig. 7.4 Effect of inversion about the average a

Now to validate the previous qualitative analysis and to design the Grover circuit
we have to find unitary gate(s) implementing this transform. However, in order
to be more general because of later considerations we assume that very special
|γ1〉 is replaced by an almost arbitrary superposition |γ♠

1 〉, which contains uniform
probability amplitudes for unmarked states. Observing Fig. 7.4 one can infer the
following transformation rule

γ3x = 2a − γ2x, (7.10)

where |γ2〉 refers to O|γ♠
1 〉 from which

|γ3〉 =
N−1∑
x=0

(2a − γ2x)|x〉 = 2
N−1∑
x=0

a|x〉 −
N−1∑
x=0

γ2x|x〉. (7.11)

Obviously the second sum in (7.11) is nothing more than |γ2〉 while the first one can
be expressed using (7.9) as 2|γ1〉〈γ1||γ2〉 – where |γ1〉 is according to (7.2) – because

〈γ1|γ2〉 =
1√
N

N−1∑
x=0

γ2x =
√

Na,

hence |γ3〉 can be expressed as

|γ3〉 = 2|γ1〉〈γ1||γ2〉 − |γ2〉.

Therefore to produce |γ3〉 from |γ2〉 we need an operator

Uγ = 2|γ1〉〈γ1| − I (7.12)
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with matrix

Uγ =




1√
N
1√
N

...
1√
N




[ 1√
N

1√
N

· · · 1√
N

]




1
N

1
N · · · 1

N
1
N

1
N · · · 1

N

...
. . .

...
1
N · · · · · · 1

N


 − I =




2
N − 1 2

N · · · 2
N

2
N

2
N − 1 · · · 2

N

...
. . .

...
2
N · · · 2

N
2
N − 1


 .

(7.13)
Taking into account that |γ1〉 = H |0〉, H = H† and HIH ≡ I , (7.12) can be further
refined

Uγ = 2H |0〉〈0|H − HIH = H(2|0〉〈0| − I)H. (7.14)

Equation (7.14) provides the key to the realization of the inversion about the average.
We require two Hadamard gates and a controlled phase shifter gate P in the
middle (see Fig. 7.1). The transformation rule of P is quite simple: it leaves all the
probability amplitudes unchanged except that of |0〉 whose sign is inverted.

Remark: Since P consists of unitary operators inversion about the average is also
unitary!

Now we are ready to derive the Grover operator G itself

G = HPHO = (2H |0〉〈0|H − I)O = (2|γ1〉〈γ1| − I)(I − 2|x0〉〈x0|). (7.15)

Bearing in mind (7.10) we can state that after a single operation of G for ā > 0

γ3x

{
> γ♠

1x if x = x0

< γ♠
1x otherwise.

(7.16)

Amplitude amplification aims to increase γ3x0 as close to 1 as possible, which
implies that other probability amplitudes go to zero since

∑
x |γ3x|2 = 1. Obviously

a single run of G will achieve this goal only in very special cases (see Exercise 7.3).
Fortunately the status of the auxiliary qbit does not change between the input and
output therefore we can loop back the output of G to its input or equivalently invoke
G several times successively.

Remark: The function f in (7.3) can have the value 1 either at a single or
multiple (say M ) indices, depending on how many identical searched entries exist in
a particular database. The above-discussed technique is trivially not sensitive to this
modification at all. The only difference appearing due to this fact is that the value of
probability belonging to the marked states is divided uniformly among them.

Remark: The major difference and novelty which can be observed if one makes
a comparison between the operation of previous algorithms such as Deutsch–Jozsa,
Simon or Shor and Grover’s database search is the repeated application of quantum
interference (so-called amplitude amplification) instead of a single Hadamard or
IQFT gate. Thus the Grover algorithm itself can be regarded as a sequence of the
same Grover operator.
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Remark: Obviously in case of multiple marked entries in the database (say M )
all of these states have uniform probability amplitudes since the Grover algorithm
does not make any difference among them.

Exercise 7.3. Show an example scenario when a single application of G ensures
sure success for measuring |x0〉.

7.1.4 Required number of iterations

The next question we have to answer is obvious. How many Grover gates have to be
applied – how many times shall we turn to the database – in order to get γ3x0 as close
to 1 as possible? Or from an economical point of view: does there exist an optimal
number of iterations or do we have to buy as many G as our budget allows? To find
a satisfactory answer to these questions we introduce a very spectacular geometrical
interpretation of the Grover algorithm. For the sake of being more general we are
considering multiple marked entries (M ≥ 1).

First we form two sets from the indices, one S for the marked (f(x) = 1) and
another S for the unmarked (f(x) = 0) ones, i.e. we build two superpositions
comprising uniformly distributed computational basis states

|α〉 � 1√
N − M

∑
x∈S

|x〉, (7.17)

|β〉 � 1√
M

∑
x∈S

|x〉, (7.18)

where |α〉 and |β〉 form an orthonormal basis of a two-dimensional Hilbert space
which is depicted in Fig. 7.5. The original input state |γ1〉 of G can be expressed in
this space in the following way

|γ1〉 =
1√
N

∑
x∈S

|x〉 +
1√
N

∑
x∈S

|x〉,

=

√
N − M

N
|α〉 +

√
M

N
|β〉. (7.19)

Remark: There are two special cases. If all the entries are marked then we have
only vector |β〉 and a measurement before the search will provide sure success or if
the database does not contain the requested item at all then only vector |α〉 exists.
Both scenarios can be recognized and excluded using quantum counting (see later
in Section 7.2) prior to the search. Therefore in the forthcoming analysis we assume
that both vectors exist, i.e. neither of the two sets are empty.

Coordinates of |γ1〉 are strictly related to the angle between |γ1〉 and |α〉 denoted
by Ωγ

2 in Fig. 7.5. Using basic trigonometry we can calculate the projection of |γ1〉
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onto the axes

cos
(

Ωγ

2

)
=

√
N−M

N

1
,

sin
(

Ωγ

2

)
=

√
M
N

1
⇒ Ωγ = 2 arcsin

(√
M

N

)
, (7.20)

where denominators in (7.20) correspond to the fact that vector |γ1〉 has unit length.
As it was described earlier in this section the basic Grover operator consists of

two transformations on the index register. First the Oracle flips all the probability
amplitudes of the marked states, which can be regarded as a reflection about axis |α〉
because these indices are contained only by |β〉 (see Fig. 7.5), that is

O(a|α〉 + b|β〉) = a|α〉 − b|β〉.
Of course in the case of multiple marked states the Oracle has to be defined in the

following manner
O = I − 2

∑
x∈S

|x〉〈x|. (7.21)

The inversion about the average HPH transformation reflects its input state |γ2〉
about |γ1〉 as the reader may prove in Exercise 7.4. These two reflections together
form a rotation by angle Ωγ starting from |γ1〉 towards |β〉. Within the frames of this
geometrical interpretation our goal simplifies to rotating the index qregister as close
to |β〉 as possible. Performing a projective measurement in the computational basis
vectors afterwards will return one of the marked states with high probability.
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Remark: This interpretation highlights the very important fact that applying less
rotations than the optimal is as bad as applying greater rotations.

The effect of rotating the initial state |γ1〉 to the desired state |β〉 after l evaluations
of the Grover operator can be summarized as

Gl|γ1〉 = cos
(

lΩγ +
Ωγ

2

)
|α〉 + sin

(
lΩγ +

Ωγ

2

)
|β〉

= cos
(

2l + 1
2

Ωγ

)
|α〉 + sin

(
2l + 1

2
Ωγ

)
|β〉. (7.22)

It is worth performing a measurement if Gl|γ1〉 is equal to the basis vector |β〉, or
equivalently if Gl|γ1〉 is orthogonal to the basis vector |α〉 i.e

〈α|Gl|γ1〉 = cos
(

2l + 1
2

Ωγ

)
= 0,

which can be transformed to

2l + 1
2

· Ωγ =
π

2
+ iπ,

where i = 0, 1, . . . . Thus the optimal number of iterations is simply

lopti =
π
2 + iπ − Ωγ

2

Ωγ
. (7.23)

Equation (7.23) corresponds to the geometrical approach (see Fig. 7.5) because
the numerator represents the angle between the initial state |γ1〉 and the final state
|β〉 while the denominator substitutes the rotation step, respectively. Trivially we
are forced to employ as few iterations as possible, therefore mini lopti = lopt0 .
Furthermore, one can apply only integer numbers of iterations, Lopt0 , in a quantum
circuit which has to be calculated as

Lopt0 = �lopt0� =

⌊
π
2 − Ωγ

2

Ωγ

⌉
. (7.24)

This selects the vector that results in the smaller angle between Θ1 and Θ2 in
compliance with Fig. 7.6 since the probability of measuring one of the marked states
is in unambiguous connection with the projection of the final state to |β〉.

Remark: According to our expectations the optimal number of iterations depends
on the initial angle Ωγ

2 and indirectly (see (7.20)) on the size (N ) of the database and
the number of the marked entries M , i.e. a larger database requires more iterations to
find a given entry while replicated items increase the chance of finding one of them.

In the case of practical applications the size of the database is typically
significantly larger than the occurrences of the searched entry, that is M  N (i.e.
Ωγ  1) therefore

Ωγ

2
� sin

(
Ωγ

2

)
=

√
M

N
, (7.25)
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yielding from (7.20). Substituting (7.25) into (7.24) one achieves an important and
surprising result related to the optimal number of evaluations

Lopt0 =

⌊
π

4

√
N

M
− 1

⌉
� π

4

√
N

M
. (7.26)

Now, we have reached the surprising result Lopt0 = O
(√

N
M

)
, which points

out the tremendous possibilities hidden in quantum computing. Although it is
straightforward to expect that finding a needle in a haystack comprising more
needles than hay is a much simpler job then looking for a single one, classically
the improvement is in proportion to the number of needles M while quantum
mechanically only a reduction by

√
M can be achieved. Fortunately the influence

of N on the number of required Oracle calls (database queries) proves to be much
stronger than that of M thus the classical and quantum solutions have the same
performance only in the trivial case N = M .

Exercise 7.4. Prove that inversion about the average is equivalent to a reflection
about |γ1〉 in the two-dimensional geometrical interpretation.

7.1.5 Error analysis

If lopt0 proves to be a non-integer number then Gl|γ1〉 is angular to |β〉 thus the
probability of error resulting from basic Grover’s search algorithm is calculated as

Pε = |〈α|GLopt0 |γ1〉|2 = cos2
(

(2Lopt0 + 1)Ωγ

2

)
, (7.27)
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and the probability of success

Ps = 1 − Pε = sin2

(
(2Lopt0 + 1)Ωγ

2

)
. (7.28)

Since Θ1, Θ2 ≤ Ωγ

2 therefore

Pε ≤ sin2

(
Ωγ

2

)
. (7.29)

Substituting Ωγ according to (7.20),

Pε ≤ M

N
= P̃ε = 1 − P̃s. (7.30)

Considering Lopt0 and Ps one may reach a surprising conclusion. The efficiency
(number of iteration steps) and the quantum accuracy depend only on the ratio of M
and N . Therefore let us examine M

N .

• It is clear that M
N must be less than or equal to 1, otherwise it would stand

for more marked states than the entire number of entries in the database. A
trivial solution occurs when M

N = 1, which means an initial angle Ωγ

2 = π
2

implying no need for any rotation. Immediate measurement produces the
correct solution, however, this case has no practical importance. We mentioned
it only because it highlights the consistency of the classical and quantum
interpretation of our world.

• Keeping in mind the geometrical interpretation (see Fig. 7.5) the reader may
wonder what happens if Ωγ

2 > π
4 ⇒ the rotation angle is Ωγ > π

2 ⇒ M
N > 1

2?
The algorithm seems to fail. Fortunately we can avoid this difficulty by
doubling the index space of the database (and not the database itself) and
setting f(x) = 0 for N ≤ x < 2N . Thus M ≤ N

2 always holds. Another
rather pragmatic solution if we realize from (7.30) that the probability of
success is Ps ≥ M

N > 1
2 in this case, therefore repeating the algorithm several

times we will measure a marked state with high probability.

We depicted the probability of successful measurement and corresponding Pε

in Fig. 7.7 in function of M
N assuming an optimal number of iterations. First we

can observe that the straight line of P̃ε really upperbounds the error probability.
Furthermore Pε has local minimum and maximum points in accordance with the
cases where lopt0 is an integer number or Pε = P̃ε = M

N , respectively. The exact
locations of the minimums (Pε = 0 ⇒ Ps = 1) can be derived from (7.23)
substituting i = 0 and having in mind (7.20)

M

N
= sin2

(
π

4(lopt0 + 1
2 )

)
, (7.31)
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where we know that lopt0 ∈ Z+. On the other hand maximums can be determined
using Pε = M

N in (7.27) but we can achieve our goal much faster if we realize that
maximum points are connected to lopt0 = 0.5, 1.5, 2.5, . . . because they result in
Θi = Ωγ

2 . Therefore we can utilize (7.31) again.
Finally, we have to mention an important aspect. The decision for i = 0 in (7.24)

was inspired by the principle that efficiency is playing a more important role than
quantum accuracy. So we were interested in the least number of iterations. However,
there are practical applications where the requirements are reversed. Clearly speaking
i allows a tradeoff between Pε and Lopti , because lopt0 can be regarded only as
a local minimum of the number of iterations. For instance −|β〉 could also be an
appropriate target state of the repeated rotation while the increase in the number of
iterations remains marginal because of the square root operator.

Another approach which provides tradeoff between uncertainty (Pε) and
efficiency (number of iterations) is if we extend the database with dummy entries,
i.e. with f(x) = 0. The increased size of the database will cause smaller Ωγ thus
less uncertainty at a price of more iteration steps. Doubling the size of the database
will halve the probability of error (7.30) while the number of rotations has to be
multiplied only by

√
2, see (7.26).

Unlike performing more and more iterations there is another alternative, namely
if we are able to adjust (or replace) the elementary gates forming operator G we can
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guarantee sure success using about Lopt0 iterations (see Section 7.5). However, if we
are restricted to buying the original Grover circuit at the grocer’s it may be worth
seeking for the global optimum.

Remark: We would like to strongly emphasize that the database does not need to
exist at all in the form of a memory! To implement the Grover operator one requires
only a function f(x) whose only job is to compare the requested item to another
value which may originate either from a database (DB[x]) or for instance from
another function g(x). This kind of freedom allows the usage of Grover algorithm
in a wide range of engineering problems since g(x) cannot be sorted typically in
advance.

Exercise 7.5. – single marked state case – Assuming N = 4, M = 1 and x0 = 2
determine the matrices of O, Uf and G, the optimal number of iterations and the
probability of error.

Exercise 7.6. – multiple marked state case – Assuming N = 8, M = 3 and marked
states x = 1, 4, 7 determine the matrices of O, Uf and G, the optimal number of
iterations and the probability of error.

7.2 QUANTUM COUNTING

Readers having followed carefully the previous analysis of Grover algorithm may
hit on an important shortcoming. Namely in order to determine the optimal number
of iterations Lopt0 in (7.24) we require indirectly exact knowledge about the order
of multiplicity M . One may imagine engineering problems where it is available, but
this is typically not the case. It looks like we have fallen into a very serious trap
which may call the conduciveness of all the already achieved results into question.
Fortunately quantum computing drops a rope to escape from this serious problem
because it provides us with an algorithm capable of computing M efficiently.

7.2.1 Quantum counting based on phase estimation

First we utilize the result of Exercise 7.7 which claims that the matrix of the Grover
operator can be expressed in the basis of |α〉 and |β〉 as

G =
[

cos(Ωγ) − sin(Ωγ)
sin(Ωγ) cos(Ωγ)

]
.

Solving Exercise 7.8 the reader will realize that G has two eigenvalues namely
e±jΩγ . Recalling phase estimation from Section 6.2, which aimed to determine the
phase belonging to a given eigenvalue of an operator, we are out of the trap. A phase
estimation applying U = G and using appropriate parameters and initialization will
return a good estimation of Ωγ with high probability, which is in direct connection
with M via (7.20). We depicted the quantum counting circuit in Fig. 7.8 keeping in
mind Fig. 6.5.
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Fig. 7.8 Quantum counting circuit

Before celebrating our clever ‘discovery’, however, we have to set some
parameters for the circuit of Fig. 6.5. As we have learned at the phase estimation
we need a lower section comprising n qbits and initialized by the eigenvectors of the
expected eigenvalue. Exercise 7.8 provides the corresponding eigenvectors

|g1〉 =
ejξ

√
2

[
j
1

]
, |g2〉 =

ejξ

√
2

[−j
1

]
, ξ ∈ R,

but unfortunately we are not able to feed the circuit either with |g1〉 or |g2〉 because
it would require |α〉 or |β〉, i.e. the complete knowledge about the marked and
unmarked sets. Thus another trap is seeming to crop up but we have all the required
capabilities to avoid it. We know that by using a superposition of the eigenvectors
as the lower input we get one of the eigenvalues after the measurement at the
upper output. Luckily we have only two and easily distinguishable phases Ωγ and
−Ωγ = 2π − Ωγ in our very special case since Ωγ ≤ π

4 . Therefore without
being familiar in advance with Ωγ we are able to compute it from the measurement
result. For the sake of simplicity we use |γ1〉 for this purpose, which is trivially a
superposition of |α〉 and |β〉. Because |g1〉 and |g2〉 form an orthonormal basis of the
space spanned by |α〉 and |β〉, |γ1〉 can be expressed as a linear combination of |g1〉
and |g2〉.

Finally we have to set up the size of the upper quantum register. In order to
avoid the confusion of using notation n in two different meanings, the number of
qbits in the upper section of the counting circuit will be denoted by n♣. As we saw
in Section 6.2.4 practical setting of n♣ depends on both classical accuracy 2−c of
Ωγ and allowed quantum uncertainty P̆εP of the phase estimation in the following
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manner

n♣ = c − 1 +
⌈
ld(2π) + ld

(
3 +

1
P̆εP

)⌉
. (7.32)

Exercise 7.7. Determine the matrix of the Grover operator in the basis of |α〉 and
|β〉.
Exercise 7.8. Determine the eigenvalues and corresponding eigenvectors of the
Grover operator in the basis of |α〉 and |β〉.

7.2.2 Error analysis

In the case of quantum counting we have a demand on accuracy 2q of M that
upperbounds the maximum difference between the real value of M and the measured
value M̃ , i.e ∆M � M̃ − M ⇒ |∆M | ≤ 2q. For the sake of simplifying the
forthcoming analysis we assume that the size of the database has been doubled using
unmarked entries thus M ≤ N/2. In order to use (7.32) the relation between c and
q has to be analyzed. We know that 0 ≤ M ≤ N/2 and therefore 2q ≤ N/2.
Furthermore we have to bear in mind during the forthcoming analysis that 0 ≤ M̃ ≤
N 4 thus max{M − 2q, 0} ≤ M̃ ≤ min{M +2q, N}. M and Ωγ are linked together
by (7.20) and we depicted

Ωγ(M) = 2 arcsin

(√
M

N

)
, Ωγ±(M, q) = 2 arcsin

(√
M ± 2q

N

)
, (7.33)

in Fig. 7.9. It is easy to recognize that increasing q enables exponentially more and
more deviation in Ωγ and Ωγ±(M, q) has a cut off because 0 ≤ M̃ ≤ N . When
determining the required c(M, q) in the phase estimator we consider the worst-case
scenario

|Ω̃γ − Ωγ | ≤ 2−c(M,q) ≤ min± {|Ωγ±(M, q) − Ωγ(M)|} = Ωγ+(M, q) − Ωγ(M),

(7.34)
where we exploited the strictly monotonously increasing nature of arcsin(·) in the
last step. Taking the logarithm to base 2 of both sides

c(M, q) ≥ �−ld(Ωγ+(M, q) − Ωγ(M))�. (7.35)

The points of c(M, q) in the case of different M = 1, 4, 64, 2048 – from M  N
to M ≈ N/2 – are presented in Fig. 7.10. All of the curves are crossing axis q at 11
because N/2 = 2048 = 211. A straight line can be fitted to each curve in the range
q ∈ [0, ld(N/2)] with slope from ≈ −1/2 to 1 at q = ld(N/2) (where c(M, q)
crosses the horizontal axis), that is each bit increase in accuracy of M requires from
half to one additional qbit in the upper qregister depending on the ratio of M and N .

4Of course if the phase estimator gives back an M̃ > N/2 we may be suspicious about the result. If such
situation happens obviously one should replace M̃ with N/2.
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Or taking into account that we need ld(N/2) qbits to represent M exactly, if we are
satisfied with ld(N/2)− q MSB bits of the closest integer to M to describe M , then
we have to install c(M, q) − 1 qbits in the phase estimator. At q = 0, which can be
regarded as reasonable setup, small Ms require about half the amount of qbits than
large M values. Furthermore in the latter case c(M, q = 0) ≈ ld(max M̃) = ld(N).
The reader may wonder whether this observation can be generalized or is it valid for
this special parameter setup only?

To answer this question we investigate c(M, q) in M  N and M = N/2 cases
at q = 0. Substituting (7.20) into (7.35) and assuming equality as the most pragmatic
case we get

c(M, q) =

⌈
−ld

(
2 arcsin

(√
M + 2q

N

)
− 2 arcsin

(√
M

N

))⌉
, (7.36)
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from which using q = 0

c(M, 0) =

⌈
−ld

(
2 arcsin

(√
M + 1

N

)
− 2 arcsin

(√
M

N

))⌉
. (7.37)

If M  N , i.e. extreme value M = 1 is assumed then

c(1, 0) =

⌈
−ld

(
2 arcsin

(√
2
N

)
− 2 arcsin

(√
1
N

))⌉
.

Considering that 1/N  1 and arcsin(x) ≈ x if x  1

c(1, 0) ≈
⌈
−ld

(
2

√
2
N

− 2

√
1
N

)⌉

=
⌈
−ld(2

√
2 − 2) +

1
2
ld(N)

⌉
=

1
2
ld(N) + 1, (7.38)

where we remember that N is assumed to be an integer power of 2.
Concentrating on the case of M = N/2 (7.37) becomes

c(N/2, 0) =

⌈
−ld

(
2 arcsin

(√
N + 2
2N

)
− 2 arcsin

(√
1
2

))⌉
.

Applying arcsin(x) − arcsin(y) = arcsin(x
√

1 − y2 − y
√

1 − x2) if x2 + y2 ≤ 1
we get

c(N/2, 0) ≈
⌈
−ld

(
2 arcsin

(√
1

4N
(
√

N + 2 −√
N − 2)

))⌉
.

Approximating (
√

N + 2−√
N − 2) with

√
4/N and using again arcsin(x) ≈ x if

x  1

c(N/2, 0) ≈
⌈
−ld

(
2 arcsin

(√
1

4N

√
4
N

))⌉
= ld(N) + 1, (7.39)

which is in full harmony with our expectations.
Remark: Obviously q can be lowerbounded by −1 because we can perform only

integer number of rotations (Grover operators) thus if |M − M̃ | < 1
2 then we have

to choose the closest integer to M̃ to get the correct value of M .
As an extreme scenario of q = −1 from which follows that the probability of

counting error, i.e. determining another value for M than the exact one, PεC = PεP .
If M = N/2 then classically we have to check all the N entries to determine M
exactly. The corresponding quantum solution calls the Oracle T (n♣) = O(N) times
in compliance with (6.39) so no significant difference can be found between the
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two approaches. However, if M = 1 then T (n♣) = O(2c(1,−1)) = O(
√

N) (see
(7.38)) while classically O(N) database queries are still required. Furthermore if we
used classically only

√
N queries it would result in a probability of counting error

PεC = 1 − 1√
N

(see Exercise 7.9), which is greater than 1
2 if N > 4.

What happens if q ≥ −1 is allowed in the engineering problem when applying
quantum counting, that is we are investigating the effect of varying q? Since quantum
counting inherits quantum based uncertainty P̆εP from the phase estimation (7.32),
which can be controlled fortunately very efficiently using a small, constant5 number
of additional qbits in the upper register, we have here nothing to do about the error
probability. However, (7.36) and Fig. 7.10 emphasize that the number of required
Grover gates T (n♣) = O(2c(M,q)) will be reduced! Therefore the reference classical
algorithm will require less queries to the database to achieve the same probability of
error or the same number of queries results in a smaller error probability.

This line of thought can be summarized/rephrased much practically in the
following way: a tiny M allows large q. Because the required resource c(M, q) in
the upper section of the quantum counting circuit (7.32) is in inverse proportion to q
(7.36), small Ms require less qbits assuming given P̆ε. Therefore if one has a priori
information about the order of M then significant amount of qbits can be saved.

Remark: Of course if we select a c(M, q) curve at a given q it will work as a
worst-case scenario for all M ′ ≤ M from an accuracy point of view.

However, if we have no information about M then the worst of the worst-case
scenarios has to be considered, that is the curve belonging to M = N/2 must be
selected at a given q to determine the required c(M = N/2, q). This fact implies
not only economical considerations but also it is fundamental from a computational
complexity point of view since c(M, q) strongly influences the number of Grover
gates T (n♣) to be deployed within the quantum counting device (6.39) and thus
the running time. Classically if we have no information about the database entries
we can only check step by step – selecting randomly or deterministically – the
items belonging to the database whether they match the marked state or not. Hence
classically M can be obtained via counting the number of matching indexes.

Selecting c(M = N/2, q) is equivalent to choosing the greatest q belonging to
different Ms (i.e drawing a horizontal line across c(M = N/2, q)) in Fig. 7.10.
Therefore when measuring M̃ the accuracy (the projection of the intersection of the
horizontal line and a given curve c(M, q) onto the horizontal axis) depends on M .
Of course we cannot exploit this fact directly because M is unknown and therefore
we cannot assume a lower 2q′

than 2q, but there are applications such as finding an
extreme value in a database where this hidden information can be utilized.

If one would like to use quantum counting as a block in unsorted database
searching which allows determining M – and thus the optimal number of iterations
– for the Grover algorithm then demand for the accuracy 2q of M originates from
the maximum allowed error probability P̆ε. Here we assume that PεP is negligible
or can be made negligible compared with Pε. We know from (7.29) that an error 2q

5It does not depend on q, N, M .
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in M will cause that the probability of measuring a false index during the Grover
algorithm is

Pε ≤ sin2

(
Ωγ(M + 2q)

2

)
≤ P̆ε, (7.40)

from which with respect to (7.33) if we have a constraint that the probability of error
must be less than P̆ε

q ≤
⌊
ld

(
N sin2

(
arcsin

(√
P̆ε

))
− M

)⌋
, (7.41)

where obviously the argument of ld(·) has to be chosen such that the argument
remains positive because we cannot guarantee smaller error probability than that
one belonging to the optimal number of iterations. Of course q depends on Ωγ(M)
which is influenced by the actual value of M . Therefore we depicted the relationship
between M and allowed inaccuracy q in the case of demand P̆ε = 0.1 in a database
N = 4096 of size in Fig. 7.11.

According to our expectations a small M – which is related to small Ωγ(M)
thus small Pε (see (7.40)) – allows larger deviation in M still remaining under P̆ε.
Contrary if M is big then by performing optimal number of iterations we cannot
rotate |γ1〉 close to |β〉 hence only a small error in M can be allowed.

The results we have already achieved in this chapter are summarized in Fig. 7.12.
First we run a quantum counting (Q#) procedure to find the number of repeated
occurrences of M in the database DB. In possession of M we are able to calculate
the optimal number of Grover iterations (Lopt0) and initialize a classical counter
(C#), which loops back the output of G to its input until we managed to rotate |γ1〉
as close to |β〉 as possible. Finally a projective measurement in the computational
basis states provides one of the marked entries with high probability or in certain
cases with sure success.
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Remark: What happens if the database does not contains the requested item at all?
In this case |γ1〉 = |α〉 ⇒ Ωγ = 0 thus the phase estimator returns M = 0.

Remark: It is important to emphasize that concerning the scenario when the
database is virtual (e.g. a given function defines it and we do not need to build
special hardware to access the database) we are interested rather in the number of
elementary gates implementing the counting than in the number of applied Grover
operators. As we learned at the end of Section 6.2.4 the complexity can be expressed
with O((n♣)3) = O(ld3(N)) gates, which is a significantly favorable metrics for
complexity!

Remark: Obviously determining M for computing the number of iterations in the
Grover algorithm is only one potential application of quantum counting. We show as
an example a telecommunications related problem where quantum counting is used
in Chapter 8.

Exercise 7.9. Prove that the probability of failing in seeking for the marked entry
(M = 1) after putting L queries to the database classically is PεC(L) = N−L

N .

7.2.3 Replacing quantum counting with indirect estimation on M

Boyer and his colleagues proposed an ingenious alternative solution in [104], which
may replace quantum counting if one needs M to determine the optimal number
of rotations Lopt0 in the Grover algorithm. Instead of wasting time with quantum
counting we try to estimate M indirectly. We know from (7.28) that the probability
of measuring a marked state after l iterations is

Ps(l, M) = sin2

(
(2l + 1)Ωγ(M)

2

)
, (7.42)

provided there are M marked states in the database. Therefore we decide to repeat
several times – we call one turn a cycle – the Grover algorithm (and not the Grover
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operator!) with l rotations. After each cycle we check whether the measured index
leads to a marked state or not. In the latter case we run the Grover algorithm again
and again g times until we get a marked entry when finishing the cycle. The expected
number of cycles E(g|M ∧ l) which is needed before successfully finding a marked
state can be calculated as the inverse of Ps(l, M). Thus the expected value of the
total number z of Grover operators E(z|M ∧ l) can be expressed as the product of
the number of cycles and the number of Grover calls in each cycle (we have increased
l by 1 because to check the result requires an extra query to the database at the end
of each Grover algorithm)

E(z|M ∧ l) = (l + 1)
1

Ps(l, M)
=

l + 1

sin2
(

(2l+1)Ωγ(M)
2

) . (7.43)

In the case of l = 0 where although we do not use any rotations at all, measurements
cannot be omitted in harmony with classical probability theory

E(z|M ∧ 0) =
1

Ps(0, M)
=

N

M
.

If we were in possession of M then E(z|M ∧ l) could be minimized on l by setting
its first derivative to zero

dE(z|M ∧ l)
dl

= 0 ⇒ tan
(

(2l + 1)Ωγ(M)
2

)
= 2(l + 1)Ωγ(M). (7.44)

In spite of the fact that M is unknown in our case it is worth making a detour to
investigate this idea in Exercise 7.10.

What shall we do if we have only partial information about M or we have no
guess for M at all. Let us assume that at least one marked item exists and we can
upperbound M with Mmax. Here Mmax = N/2 can be considered as a worst-case
scenario with totally unknown M . If Mmax is assumed and the Grover search is
repeated a large amount of times with potentially different Ms then the best strategy
we can follow is to handle M as a uniform random variable on [1, Mmax], i.e.
P (M) = 1

Mmax
. Now, we can easily calculate the total number of required Grover

calls in the following way

E(z|l) =
Mmax∑
M=1

E(z|M ∧ l) · P (M)

=
1

Mmax

Mmax∑
M=1

l + 1

sin2
(

(2l+1)Ωγ(M)
2

) . (7.45)

Concerning the l = 0 scenario we get

E(z|0) =
1

Mmax

Mmax∑
M=1

N

M
.
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Fig. 7.13 Optimal number of rotations L vs. Mmax if N = 4096

We have optimized E(z|l) in function of l at different Mmax ∈ [1, N/2] and the
corresponding optimal L and minimal E(z|L) values are depicted in Fig. 7.13 and
Fig. 7.14, respectively. Obviously when optimizing z we try to find a good trade off
between the number of cycles and the number of applied Grover operators l in a
given cycle. Increasing l in the case of small M values will enhance significantly the
probability of successful measurements and thus less cycles are required. Conversely
if we let large Ms dominate (i.e. Mmax → N/2) then the probability of success
becomes big enough to provide a marked state after a few rotations, hence small l
can be optimal (cf. Fig. 7.13). Fig. 7.14 contains not only E(z|L) but we presented√

N and
√

N/Mmax as references. As the reader may recognize the original and the
expected value based approach have almost the same performance. Of course with
the major difference being that the latter one requires typically less or more Grover
gates than the former one.

Exercise 7.10. Let us consider a database with N = 220 and M = 8. Calculate
the optimal number of rotations L which minimizes the expected number of required
Grover gates E(z|M ∧ l) when using the cycle repetition based searching. Compare
the optimal number of Grover operators in case of the original Grover algorithm to
E(z|M ∧ L).

7.3 QUANTUM EXISTENCE TESTING

A special case of quantum counting is if one is interested in whether a given entry
exists in the database at all instead of the number M of occurrences. Clearly speaking
our goal is to determine whether the initial vector of the index qregister is parallel
or angular to basis state |α〉 in the two-dimensional rotation based picture of the
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Fig. 7.14 Optimized expected total number of Grover operators E(z|L) vs. Mmax if
N = 4096 with
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Grover operator, that is we would like to distinguish the case Ωγ

2 = 0 ⇒ Ωγ = 0
from Ωγ

2 �= 0. Trivially we can use quantum counting to solve this problem, namely
if we yield M �= 0 then the database contains the requested entry else it does not.
However, quantum counting involves some amount of overhead information because
from an existence point of view the accurate value of M is indifferent. Hence it is
worth discussing the required number of qbits for the upper section (based on (7.32))
and suitable error analysis.

Concerning this question let us deal first with classical accuracy. If M = 0 then
the output of the IQFT should be unambiguously |0〉 while provided M �= 0 we
can accept any other computational basis states except |0〉. So we do not need the
precise value of M in the latter case instead classically less accurate results are as
appropriate as the exact one. Thus the worst-case scenario occurs when Ωγ

2 is the
smallest, that is we have the smallest angle between |γ1〉 and |α〉. Hence the classical
accuracy c should be chosen such that in the case M = 1 the measured output of the
IQFT contains at least one nonzero bit which allows distinguishing it from |0〉. Let
us assume again without loss of generality that we have a database N = 2n entry of
size, therefore using (7.20) we need

min (Ωγ) = 2 arcsin

(√
1
N

)
∼= 2

√
1
N

= 2(−n/2+1) ≥ 2−c (7.46)

where we applied the well-known relation arcsin(y) = y if y  1, from which we
get

c =
⌈n

2

⌉
− 1.
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Of course we have to take care of quantum uncertainty of phase estimation as well,
hence we need all together

n♣ =
⌈

n

2
+ ld(2π) + ld

(
3 +

1
P̆εP

)⌉
− 2

qbits, where P̆εP stands for the allowed maximum quantum uncertainty and
correction ld(2π) is required because c refers to the accuracy of the estimated phase
instead of the phase ratio itself. Since the −2 term has marginal influence on the
complexity we omit it during the further discussion, that is

n♣ =
⌈

n

2
+ ld(2π) + ld

(
3 +

1
P̆εP

)⌉
. (7.47)

Moreover if one gets n♣ < 1 then n♣ has to be set to 1.

7.3.1 Error analysis

Formula (7.47) gives a rule of thumb when roughly estimating the required qbits in
the upper section of the phase estimator. However, as we have seen in the previous
subsection the interpretation of classical accuracy was a bit different in the case of
counting and existence testing (in the latter case we have a softer constraint). Thus
we expect that a similar effect will emerge when investigating quantum inaccuracy.
Therefore let us derive the required number p of additional qbits in the upper section
of the device if we have a constraint P̆ε of quantum uncertainty.

It is easy to see that if M = 0 then Ωγ = 0 is measured always with certainty
since the phase ratio κ = Ωγ/2π is also equal to zero, which corresponds to the
idealistic phase estimation discussed in Section 6.2.1. Hence only the case Ωγ �= 0
should be taken into consideration from a quantum error point of view when seeking
the relationship between the required number of additional qbits and PεE , where
subscript E refers to existence testing. For the sake of controlling precisely this PεE

one needs p additional qbits to n
2 + ld(2π) qbits in the upper qregister to guarantee

classical accuracy 2−c. An error occurs if Ω̃γ = 0 is measured although Ωγ �= 0
which is equivalent to the case when we get a computational basis state having zero
bits on the n♣ − p MSB positions that is

PεE = P (Ω̃γ �= 0|Ωγ = 0)︸ ︷︷ ︸
≡0

P (Ωγ = 0) +
∑

Ωγ �=0

P (Ω̃γ = 0|Ωγ)P (Ωγ). (7.48)

On one hand the conditional error probability can be calculated in the following way

P (Ω̃γ = 0|Ωγ) =
2p−1∑
i=0

∣∣ϕi(n♣, Ωγ)
∣∣2 (7.49)

where ϕi(n♣, Ωγ) is an adapted version of (6.17) and i ∈ [0, 2n)

ϕi(n♣, Ωγ) =
1

2n♣
1 − ej2π(2n♣ Ωγ

2π −i)

1 − e
j2π(

Ωγ
2π − i

2n♣ )
. (7.50)
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On the other hand we assume that P (M) is uniformly distributed as a worst-case
approach. Furthermore since M ∈ [0, N − 1] and M is connected to Ωγ via a
reversible function (7.20) therefore P (Ωγ) = 1

N .
Unlike (7.48) in order to build a useful connection between PεE and overhead p it

is worth searching for an appropriate upperbound Pupper for P (Ω̃γ = 0|Ωγ), which
is independent from Ωγ

PεE =
∑

Ωγ �=0

P (Ω̃γ = 0|Ωγ)P (Ωγ) ≤ Pupper
N − 1

N
. (7.51)

In order to majorize |ϕi(n♣, Ωγ)|2 we upperbound its numerator and lowerbound

its denominator applying the same inequalities |1 − eα| ≤ 2 and |1 − eα| ≥ 2|α|
π as

we used for the phase estimation, respectively. Thus we get

∣∣ϕi(n♣, Ωγ)
∣∣2 ≤ 1

4
1

2n♣
(

Ωγ

2π − i

2n♣

)2 ,

which can be further majorized exploiting min(Ωγ) from (7.46)

∣∣ϕi(n♣, Ωγ)
∣∣2 ≤ 1

4
1(

2n♣

π
√

N
− i

)2 . (7.52)

Considering that
√

N = 2
n
2 and n♣ = n

2 + ld(2π) + p the right-hand side of (7.52)
simplifies to ∣∣ϕi(n♣, Ωγ)

∣∣2 ≤ 1
4

1
(2p+1 − i)2

.

Now we are able to derive a suitable Pupper

P (Ω̃γ = 0|Ωγ) ≤
2p−1∑
k=0

1
4

1
(2p+1 − k)2

. (7.53)

If (2p+1−k)2 were strictly monotonously increasing in [0, 2p] then the sum in (7.53)
could be upperbounded by the corresponding integral i.e.

2p−1∑
k=0

1
4

1

(2p+1 − k)2
≤

∫ 2p

0

1
4

1

(2p+1 − k)2
dk.

This requires that 2p+1−k ≥ 0 ⇒ 2p+1 ≥ 2p which is trivially satisfied. Evaluating
the above integral one obtains

P (Ω̃γ = 0|Ωγ) ≤
∫ 2p

0

1
4

1

(2p+1 − k)2
dk =

1
4

(
1

2p+1 − 2p
− 1

2p+1

)

=
1
8

1
2p

= Pupper , (7.54)
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which allows upperbounding PεE itself based on (7.51)

PεE ≤ 1
8

1
2p

2n − 1
2n

. (7.55)

Provided we have an engineering constraint P̆ε ≥ PεE one needs

p = ld
(

2n − 1
8 · 2nP̆ε

)
≤ ld

(
1

8P̆ε

)
, (7.56)

qbits to fulfil it and the total number of required qbits in the upper section is

n♣ =
⌈

n

2
+ ld(2π) + ld

(
1

8P̆ε

)⌉
. (7.57)

Using the above derived existence tester, in order to separate the two outcome
categories, it is enough to check whether the output of the device contains at least
one nonzero bit or not. If yes then the database comprises the requested item else it is
not in. Furthermore we emphasize that this method does not suffer from any classical
errors!

Concerning the computational complexity we can state that the quantum existence
tester saves n/2 qbits and 3 qbits in classical accuracy and quantum uncertainty
compared to the quantum counting circuit, which can be significant if N � 1.

7.4 FINDING EXTREME VALUES IN AN UNSORTED DATABASE

Many computing and engineering problems can be traced back to an optimization
process which aims to find the extreme value (minimum or maximum point) of a
so-called cost function or a database. We list here only several well-known cases
of these types of problems. For instance global infocom networks needing to find
the optimum route between two terminals located on different continents in terms
of the shortest path or optimal signal detection on the air interfaces of state-of-the
art mobile networks need to perform maximum likelihood hypothesis testing based
on finding the largest conditional probability density function (pdf) among say 1030

pdfs. Unfortunately because of their huge computational complexity these problems
are typically answered by means of suboptimal solutions. From this point on we use
notions database and function as synonyms.

From a quantum computing point of view we should consider the Grover
algorithm as the most promising candidate. Unfortunately as we summarize in the
corresponding Further Reading the proposed Grover-based solutions are efficient
only in terms of expected number of database queries. In order to overcome this
major shortcoming we decided to use the quantum existence testing algorithm as a
core function. This is because our special problem does not require quantum counting
on the whole, that is we do not need to determine the number of occurrences of a
certain entry in the database rather we are interested in whether the database contains
it at all.
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Having introduced the quantum existence testing algorithm in Section 7.3 we are
ready to turn to extreme value searching. We will embed our special core function
into a classical logarithmic search (see e.g. [143, 92]). Let us assume that we have
a function y = g[x] which has integer input x ∈ [0, N − 1] and integer output
y ∈ [Gmin 0, Gmax 0], that is we have a rough estimation about the range of y (e.g.
we know that y is non-negative thus Gmin0 = 0 proves to be a suitable lower bound).
Using these notations the problem can be formulated as follows. We are interested in
yopt such that minx(g[x]) = g[xopt] = yopt. We emphasize that although a minimum
value search is considered here, the suggested technique can be trivially transformed
to find the maximal entry of a database. The best classical solutions require N queries
to the database to find xopt hence our aim is to design a more efficient algorithm
based on quantum computing.

To solve the above-mentioned problem we combine the well-known logarithmic
(often referred as binary) search algorithm – which is originally intended for
searching a given item in a sorted database – with quantum existence testing.
Hereby we produce an algorithm which keeps the efficiency of binary search while
processing an unsorted database. It operates in a recursive way where in the sth

step we halve the actual searching region splitting it into two subregions. Let Gmed s

denote that y value which separates the subregions. Next we launch the quantum
existence testing algorithm – represented here by function QET (z) – to check
whether there is a y < z marked state in the lower subregion or not. If the answer
is YES then we use the lower subregion as the input of the next searching step else
the upper one has to be chosen. In order to be more precise the proposed algorithm
is now given in detail:

1. We start with s = 0: Gmin 1 = Gmin0, Gmax 1 = Gmax 0 and ∆G =
Gmax 0 − Gmin 0

2. s = s + 1

3. Gmed s = Gmin s +
⌈

Gmax s−Gmin s

2

⌉
4. flag = QET (Gmeds)

• if flag = YES then Gmax s+1 = Gmed s, Gmin s+1 = Gmin s

• else Gmax s+1 = Gmax s, Gmin s+1 = Gmed s

5. if s < ld(∆G) then go to (2) else stop and yopt = Gmed s.

We have two additional remarks about this algorithm. First it can be used
obviously in the case of multiple minimum values, too. Next if one is interested
in the corresponding xopt = g−1[yopt] then a single quantum counting followed by a
single Grover search has to be performed resulting in the number of different x values
belonging to yopt and obtaining one of them according to a uniform distribution.

Finally computational complexity should be considered. Obviously for the best
classical strategy the exhaustive search needs O(N) steps to find yopt with sure
success. Already available quantum computing based solutions require O(

√
N +
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ld2(N)) [32, 1] iterations (i.e. Grover operators) for an expected value. Conversely
the proposed new approach obtains yopt using O(ld(∆G)ld3(

√
N)) elementary

steps originating from the computational complexity of the phase estimation, which
means a fairly huge difference if N � 1. The initial searching range influences the
complexity as well, but in many practical applications one has enough pieces of basic
information about Gmin 0 and Gmax 0, without causing difficulties thanks to the ld(·)
function.

7.5 THE GENERALIZED GROVER ALGORITHM

During the previous analysis of the basic Grover algorithm we aspired to find a
suitable trade off between computational complexity (number of rotations or more
precisely number of database queries l) and uncertainty (probability of error Pε).
We tried to use as few iterations as possible meanwhile ensuring as high probability
of success as achievable. Moreover we have some limitations that may prevent the
application of our clever quantum-searching algorithm in many practical cases.

• Unfortunately sure success cannot be guaranteed merely in exchange of
increased number of rotations in the basic Grover algorithm. We have proposed
some techniques (e.g. extended database with ‘dummy’ entries) at the end of
Section 7.1.5 which provides sure success asymptotically but require O(N)
rotations to achieve this. However, there are technical problems where we are
not permitted to exceed a given P̆ε while the number of Grover operators also
has to be upperbounded.

• According to the potential applications of Grover’s database search algorithm
in practice, larger quantum systems should be taken into account where the
input index register of the algorithm is given as an arbitrary output state of a
former circuit and the output of the algorithm can feed another circuit without
any measurement. Therefore we need a modified Grover algorithm which
allows an arbitrary initial state instead of the original H |0〉.

In order to minimize the above listed problems the original Grover algorithm will be
generalized and discussed in the next subsections.

7.5.1 Generalization of the basic Grover database search algorithm

Before investigating the possibilities of how to introduce some freedom into the
Grover algorithm to enable its generalization let us summarize our knowledge about
the Grover operator (7.15) which was originally defined in Section 7.1.3 as

G � HPHO,
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where

P � 2|0〉〈0| − I,

O � I − 2
∑
x∈S

|x〉〈x|.

These definitions were motivated by considerations emerging during the design of
the searching algorithm. Furthermore we learned in Section 6.4 that the Hadamard
transform is nothing more than a special QFT. Therefore it seems to be reasonable
to replace the original operators with more general ones. New parameters can be
involved in this way, which could be the base of a more efficient solution.

1. We allow an arbitrary unitary gate U instead of the Hadamard gate H .

2. We let the Oracle rotate the probability amplitudes of the marked items in the
index register with angle φ in lieu of π (the original setup), where φ ∈ [−π, π].
Thus (7.21) is altered to

O → Iβ � I +
(
ejφ − 1

)∑
x∈S

|x〉〈x|, (7.58)

where subscript β refers to the fact that the Oracle modifies the probability
amplitudes of the computational basis states forming |β〉. The matrix of Iβ is
a modified identity matrix with diagonal elements Iβxx = ejφ if x ∈ S.

3. Analogously to the Oracle above, the controlled phase gate P , which was
working originally on state |0〉, should be based on an arbitrary basis state
|η〉 resulting in a multiplication by ejθ instead of −1, where θ ∈ [−π, π]. In
more exact mathematical formalism

P → Iη � I +
(
ejθ − 1

) |η〉〈η|. (7.59)

The matrix of Iη is a modified identity matrix with diagonal element Iβxx =
ejθ if x = η.

4. Finally the initial state of the index register at the input of the first Grover gate
is considered as

|γ1〉 �
N−1∑
x=0

γ1x|x〉, (7.60)

where
∑(N−1)

x=0 |γ1x|2 = 1 as appropriate.

Next the two basis vectors |α〉 and |β〉 comprising the indexes leading to
unmarked items (set S) and that ending in a marked entry (set S) should be redefined,
which were originally set in (7.17) and (7.18), respectively

|α〉 =
1√∑

x∈S |γ1x|2
∑
x∈S

γ1x|x〉, (7.61)

|β〉 =
1√∑

x∈S |γ1x|2
∑
x∈S

γ1x|x〉. (7.62)
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Observing the new basis vectors |α〉 and |β〉 orthogonality is still given between
them, 〈α|β〉 = 0, since during the pairwise multiplication within the inner product
one of the probability aplitudes is always zero.

Remark: In order to avoid the division by zero in (7.61) and (7.62) we require
that at least one nonzero probability amplitude exists for the marked and unmarked
indices. If all the entries are marked then we have only vector |β〉 and a measurement
before the search will result in a marked state with certainty. Conversely if the
database does not contain the requested item at all then only vector |α〉 exists. As
we will discuss later at the end of Section 7.5.3 both scenarios can be recognized by
means of a phase estimation. Therefore in the forthcoming analysis we assume that
both vectors exist, that is neither of the two sets are empty.

Now it is time to construct the generalized Grover operator Q from previously
defined gates (G → Q)

Q � −UIηU †Iβ = −U
(
I +

(
ejθ − 1

) |η〉〈η|)U †Iβ

= − (
UIU−1 +

(
ejθ − 1

)
U |η〉〈η|U †) Iβ

= − (
I +

(
ejθ − 1

) |µ〉〈µ|) Iβ , (7.63)

where
|µ〉 � U |η〉 (7.64)

and relation U † = U−1 is exploited in consequence of the unitary property.
In possession of N -dimensional Q first we have to prove that its output vector

always remains in the two-dimensional space of |α〉 and |β〉, which helps us to
preserve our rotation-based visualization. This requires the proof of the following
theorem:

If the state vectors |α〉 and |β〉 are defined according to (7.61) and (7.62) and both
of them contain at least one nonzero probability amplitude, as well as the unitary
operator U and an arbitrary state |η〉 are taken in such a way that U |η〉 lies within
the vector space V spanned by the state vectors |α〉 and |β〉, then the generalized
Grover operator Q preserves this two-dimensional vector space. In other words for
any |v〉 ∈ V , Q|v〉 ∈ V is true.

Proof. Following the geometrical definition of the inner product, the projection of
U |η〉 on vector |β〉 can be calculated as 〈β|U |η〉 · |β〉. Since U |η〉 is defined in the
vector space V and it has unit length, vector U |η〉−〈β|U |η〉|β〉 is parallel to |α〉 and
it can be computed in the following way

U |η〉 − 〈β|U |η〉|β〉 =
√

1 − |〈β|U |η〉|2|α〉,

from which |α〉 can be expressed in the nontrivial case, i.e. if |〈β|U |η〉| �= 1 as

|α〉 =
1√

1 − |〈β|U |η〉|2
(U |η〉 − 〈β|U |η〉|β〉) .
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Vector |µ〉 is considered as an arbitrary unit vector in V

|µ〉2 = cos (Ω) |α〉 + sin (Ω) ejΛ|β〉, (7.65)

where Ω, Λ ∈ [−π, π] and the subscript 2 refers to the two-dimensional represen-
tation of originally N -dimensional |µ〉. The global phase was omitted in (7.65) since
it does not influence the operation and the final result.

In order to reach the well-tried rotation-based picture of searching, the generalized
Grover operator should be determined in V where the required two-dimensional
Grover matrix is searched in the form of

Q2 =
[
Q11 Q12

Q21 Q22

]
. (7.66)

Now we are able to compute the effect of Q on the basis vectors |α〉 and |β〉. Provided
the resulting vectors remain in V then this property will be valid for their arbitrary
linear combination (superposition) |v〉 = a|α〉 + b|β〉 because of the superposition
principle. Therefore we apply Q for basis vector |β〉 first

Q|β〉 = − (
I +

(
ejθ − 1

) |µ〉〈µ|) Iβ |β〉. (7.67)

As Iβ multiplies6 every index leading to a marked entry by ejφ, i.e. |β〉 is an
eigenvector of Iβ with eigenvalue ejφ thus

Iβ |β〉 = ejφ|β〉. (7.68)

Substituting (7.68) into (7.67) we get

Q|β〉 = −ejφ
((

ejθ − 1
) 〈µ|β〉|µ〉 + |β〉) . (7.69)

Applying (7.65) and relation 〈µ|β〉 = 〈β|µ〉∗ = sin (Ω) e−jΛ

Q|β〉 = −ejφ
(
ejθ − 1

)
sin (Ω) e−jΛ

(
cos (Ω) |α〉 + sin (Ω) ejΛ|β〉)− ejφ|β〉

= −ejφ
(
ejθ − 1

)
sin (Ω) cos (Ω) e−jΛ︸ ︷︷ ︸
Q21

|α〉

+ −ejφ
[(

ejθ − 1
)
sin2 (Ω) + 1

]
︸ ︷︷ ︸

Q22

|β〉. (7.70)

Moreover, the other two entries in Q can be determined by feeding Q with |α〉
Q|α〉 = − (

I +
(
ejθ − 1

) |µ〉〈µ|) Iβ |α〉, (7.71)

where Iβ |α〉 = |α〉, because only those indices belonging to solutions of the
searching problem are rotated by Iβ others are left unchanged.7 Exploiting the

6The Oracle O did the same using multiplication factor −1.
7Thus |α〉 and 1 are the eigenvector and eigenvalue of Iβ respectively.
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relation
〈µ|α〉 = 〈α|µ〉∗ = cos (Ω) (7.72)

we get the missing two elements

Q|α〉 = − [
1 +

(
ejθ − 1

)
cos2 (Ω)

]
︸ ︷︷ ︸

Q11

|α〉 + − [(
ejθ − 1

)
cos (Ω) sin (Ω) ejΛ

]
︸ ︷︷ ︸

Q12

|β〉.

(7.73)
Now, the reader may conclude from (7.70) and (7.73) that Q|α〉 and Q|β〉 did not
leave vector space V , therefore all their linear superpositions |v〉 = a|α〉 + b|β〉
transformed by Q still remain in V .

Based on equations (7.70) and (7.73) we have matrix Q2 in a suitable two-
dimensional form

Q2 = −
[

1 +
(
ejθ − 1

)
cos2 (Ω) ejφ

(
ejθ − 1

)
sin (Ω) cos (Ω) ejΛ(

ejθ − 1
)
cos (Ω) sin (Ω) e−jΛ ejφ

[
1 +

(
ejθ − 1

)
sin2 (Ω)

]
]

= −
[
ejθ cos2 (Ω) + sin2 (Ω) ejφe−jΛ

(
ejθ − 1

) sin(2Ω)
2(

ejθ − 1
)
ejΛ sin(2Ω)

2 ejφ
[
ejθ sin2 (Ω) + cos2 (Ω)

]
]

.

From this point forward Q always refers to the two-dimensional Grover matrix, if
not indicated otherwise.

7.5.2 Required number of iterations in the generalized Grover
algorithm

Having obtained the two-dimensional generalized Grover operator Q, we try to
follow the rotation-based representation of the search. Therefore the optimal number
of iterations (Grover gates) ls required to find a marked item with sure success should
be derived. Starting from initial state |γ1〉 sure success can be provided if

〈α|Qls |γ1〉 = 0, (7.74)

which stands for having an index register orthogonal to the vector including all
the indices which do not lead to a solution. Because |α〉 and |β〉 are orthogonal
and |γ1〉 ∈ V , this assumption can be interpreted as Qls |γ1〉 is parallel to |β〉,
i.e. Qls |γ1〉 = ejδ|β〉. In this case sure success can be reached after a single
measurement. Since Q is unitary and therefore it is a normal operator too, it has
a spectral decomposition

Q = q1|ψ1〉〈ψ1| + q2|ψ2〉〈ψ2|, (7.75)

where q1,2 denote the eigenvalues of Q and |ψ1,2〉 stand for the corresponding
eigenvectors, respectively. Thus the following equalities hold

Q|ψ1,2〉 = q1,2|ψ1,2〉, (7.76)



158 SEARCHING IN AN UNSORTED DATABASE

where 〈ψ1|ψ2〉 = 0, because of the orthogonality property of the eigenvectors of any
normal operators. The eigenvalues which can be determined from the characteristic
equation det (Q− qI) = 0 are

q1,2 = −ej( θ+φ
2 ±Υ). (7.77)

In addition we claim the following restriction on angle Υ

cos(Υ) = cos
(

θ − φ

2

)
+ sin2 (Ω)

(
cos

(
θ + φ

2

)
− cos

(
θ − φ

2

))
. (7.78)

In possession of the eigenvalues the next step towards the optimal number of
iterations is the determination of the normalized eigenvectors |ψ1,2〉, which are

|ψ1〉 = cos (z) ej( φ
2 −Λ)|α〉 + sin (z) |β〉, (7.79)

|ψ2〉 = − sin (z) ej( φ
2 −Λ)|α〉 + cos (z) |β〉, (7.80)

where

sin2(z) =
sin2 (2Ω) sin2

(
θ
2

)
2
(
1 − cos

(
θ
2

)
cos

(
φ
2 − Υ

)
− 2 cos (2Ω) sin

(
θ
2

)
sin

(
φ
2 − Υ

)) .

The detailed derivation of the eigenvectors and eigenvalues can be found in
Appendices 13.1 and 13.2.

Having the required elements of the spectral decomposition of Q we are able to
calculate the operator representing the l-times repetition of Q

Ql = ql
1|ψ1〉〈ψ1| + ql

2|ψ2〉〈ψ2| = (−1)l ej·l( θ+φ
2 )

·
[
ej2( φ

2 −Λ) (ejlΥ cos2 (z) + e−jlΥ sin2 (z)
)

j sin (lΥ) sin (2z) ej(φ
2 −Λ)

j sin (lΥ) sin (2z) e−j( φ
2 −Λ) ejlΥ sin2 (z) + e−jlΥ cos2 (z)

]
,

(7.81)

where we exploited the fact that 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = 0. Based on (7.81) the
optimal ls enabling sure success can be derived using (7.74) which is fulfilled if both
– the real and the imaginary – parts of 〈α|Qls |γ1〉 are equal to zero.

Let |γ1〉 be defined as an arbitrary unit vector in V standing for the initial state of
the index qregister

|γ1〉 = cos
(

Ωγ

2

)
|α〉 + sin

(
Ωγ

2

)
ejΛγ |β〉. (7.82)

Thus (7.74) becomes

〈α|Qls |γ1〉 = cos
(

Ωγ

2

)
Qls

11 + sin
(

Ωγ

2

)
ejΛγ Qls

12

= cos
(

Ωγ

2

)[
ejlsΥ cos2 (z) + e−jlsΥ sin2 (z)

]

+ jej( φ
2 −Λ+Λγ) sin (lsΥ) sin (2z) sin

(
Ωγ

2

)
= 0. (7.83)
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First we calculate the real part of (7.83)

�{〈α|Qls |γ1〉
}

= cos
(

Ωγ

2

)[
cos (lsΥ) cos2 (z) + cos (lsΥ) sin2 (z)

]
︸ ︷︷ ︸

cos(lsΥ)

− sin
(

Λγ − Λ +
φ

2

)
sin (lsΥ) sin (2z) sin

(
Ωγ

2

)

= cos
(

Ωγ

2

)
cos (lsΥ)

− sin
(

Ωγ

2

)
sin (lsΥ) sin (2z) sin

(
Λγ − Λ +

φ

2

)
= 0,

(7.84)

which is followed by the imaginary part

�{〈α|Qls |γ1〉
}

= cos
(

Ωγ

2

)[
sin (lsΥ)cos2 (z) − sin (lsΥ) sin2 (z)

]
︸ ︷︷ ︸

sin(lsΥ) cos(2z)

+ cos
(

Λγ − Λ +
φ

2

)
sin (lsΥ) sin (2z) sin

(
Ωγ

2

)
= 0.

(7.85)

Let us first consider that sin (lsΥ) = 0 ⇒ cos (lsΥ) = 1. In this case the real part of
(7.84) is simplified to

cos
(

Ωγ

2

)
cos (lsΥ) = cos

(
Ωγ

2

)
= 0 ⇒ Ωγ = 0 ± kπ,

while the imaginary part equals constantly 0. Therefore this scenario represents the
situation where all the entries are unmarked. Conversely if sin (lsΥ) �= 0 then

�{〈α|Qls |γ1〉
}

sin (lsΥ)
= cos

(
Λγ − Λ +

φ

2

)
sin (2z) sin

(
Ωγ

2

)

+ cos
(

Ωγ

2

)
cos (2z) = 0. (7.86)

Equation (7.86) does not depend on ls, which makes it suitable to determine the
so-called ‘matching condition’ (MC), the relationship between θ and φ

cos
(

Λγ − Λ +
φ

2

)
= − cot (2z) cot

(
Ωγ

2

)
,

and thus

tan
(

φ

2

)
=

cos (2Ω) + sin (2Ω) · tan
(

Ωγ

2

)
cos (Λ − Λγ)

cot
(

θ
2

)− tan
(

Ωγ

2

)
sin (2Ω) sin (Λ − Λγ)

. (7.87)
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It is worth emphasizing that according to (7.78) Υ seems to be 4π periodical in
function of θ, which implies 4π periodicity for φ as well when determining φ from
θ because Υ also depends on φ. This seems to be inconsistent with the fact that
eigenvalues q1,2 should be 2π periodical in θ and φ, see (7.77). This problem can be
resolved if φ(θ) is calculated for the range [−2π, 2π] in function of θ ∈ [−2π, 2π].
Practically ±2π should be added to φ if it has a cut-off at certain θs. The points
where φ (θ) has cut-offs within the range of [−2π, 2π] can be determined easily in
the following manner

φ = ±π ⇒ tan
(

φ

2

)
= ±∞.

Since the numerator of the matching condition in (7.87) is constant in θ, the
denominator has to be zero to achieve the condition φ = ±∞. The cut-off angles
θco1,2 can be derived from the denominator of (7.87) as follows

cot
(

θ

2

)
= tan

(
Ωγ

2

)
sin (2Ω) sin (Λ − Λγ)

thus the cut-off angles in [−2π, 2π] are

θco1 = 2arccot
(

tan
(

Ωγ

2

)
sin (2Ω) sin (Λ − Λγ)

)
, (7.88)

θco2 = θco1 ± 2π. (7.89)

We depicted φ(θ) with and without the ±2π correction in Fig. 7.15. The cut-off
points are in this case θ = ±π. By means of this correction 2π periodicity of Υ is
achieved, hence the eigenvalues and eigenvectors of Q; even Q itself can boast a 2π
periodicity in θ.

Now, the way is open to determine ls from (7.84) supporting a final measurement
with Ps = 1. The matching condition (7.87) should also be considered leading to

cos
(

lsΥ + arcsin
(

sin
(

φ

2
− Λ + Λγ

)
sin

(
Ωγ

2

)))
= 0,

which is equivalent to

lsΥ = ±π

2
± iπ − arcsin

(
sin

(
φ

2
− Λ + Λγ

)
sin

(
Ωγ

2

))
, (7.90)

where ±iπ, i > 1 can be omitted from the right-hand side, because it would result
in a bigger ls than absolutely necessary. Unlike the basic algorithm where i > 0
could result in a more accurate measurement – in exchange of increased number of
rotations – in the case of the generalized algorithm i = 0, 1 can provide Pε = 0.
Expression (7.90) can be interpreted in the following way. The generalized Grover
operator (Q) rotates the new initial state |γ1〉′ having the initial angle

Ω′
γ

2
= arcsin

(
sin

(
φ

2
− Λ + Λγ

)
sin

(
Ωγ

2

))
(7.91)
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Fig. 7.15 The matching condition between φ and θ with and without correction assuming
Ω = 0.5, Ωγ

2
= 0.0001, Λγ = 0.004, Λ = 0.004

in a plane V ′ spanned by the basis vectors |α〉′ and |β〉′ with a rotation angle Υ
towards |β〉′ as it is depicted in Fig. 7.16. It has to be remarked that |α〉′ and |β〉′ are
real valued axes while |α〉 and |β〉 are complex valued. Because of the arbitrary sign

of sin
(

φ
2 − Λ + Λγ

)
,

Ω′
γ

2 can take different values depending on

ν = arcsin
(

sin
(

φ

2
− Λ + Λγ

)
sin

(
Ωγ

2

))
, (7.92)

where arcsin(·) is defined as

|arcsin (·)| ≤ π

2
.

If ν is positive the initial angle
Ω′

γ

2 could be (π − ν) or (ν), in the other case the
possible values are (−π+ν) or (−ν) (see Fig. 7.17). Substituting matching condition
into (7.78) it becomes obvious that

Υ ∈




[
0,

π

2

]
if

Ω′
γ

2
∈ I. or III. quadrant

[
−π

2
, 0

)
if

Ω′
γ

2
∈ II. or IV. quadrant

and because +|β〉′ is as appropriate for the final state as −|β〉′ therefore ±|β〉′ can

be reached from any interpretation of
Ω′

γ

2 by means of an overall rotation smaller
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Fig. 7.16 Geometrical interpretation of the generalized Grover iteration

than π
2 (see Fig. 7.17). Υ can be seen in function of θ in Fig. 7.18. The number of

iterations ls ensuring sure success can be expressed from (7.90) as

ls =
π
2 −

∣∣∣arcsin
(
sin

(
φ(θ)

2 − Λ + Λγ

)
sin

(
Ωγ

2

))∣∣∣
Υ

, (7.93)

where the absolute value operator is omitted in the denominator because

0 ≤ arccos (·) ≤ π

has been assumed.
However, we need an integer number of rotations in practice, moreover it is worth

investigating the effect of different variables determining ls especially φ which is
restricted by the matching condition, therefore the next subsection is dedicated to
these questions.

7.5.3 Design considerations of the generalized Grover operator

In order to build the generalized Grover operator one has to define θ, φ and |µ〉. On
one hand the first two parameters have fixed relation via the matching condition,
on the other hand Q provides sure success, therefore the design process of Q can
be traced back to minimizing ls in function of θ and |µ〉. To achieve this goal we
investigate several scenarios differing in the amount of available information.

The basic Grover algorithm
As the first scenario we analyze the original Grover algorithm (see Section 7.1) as a
special case of the generalized one. Thus we have the following setup: θ = φ = π,
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U = H , |η〉 = |0〉. Furthermore we know that input state |γ1〉 equals the axis
of the inversion about average |µ〉 that is Λ = Λγ = 0 as well as Ω =

Ωγ

2
=

arcsin
(√

M/N
)

.
In possession of this information let us calculate the corresponding Υ using (7.78)

cos(Υ) =

=1︷ ︸︸ ︷
cos

(
θ − φ

2

)
+ sin2 (Ω) ·




=−1︷ ︸︸ ︷
cos

(
θ + φ

2

)
−

=1︷ ︸︸ ︷
cos

(
θ − φ

2

)



= cos2
(

2
Ωγ

2

)
− sin2

(
2
Ωγ

2

)
= cos (Ωγ) , (7.94)

from which Υ = Ωγ and thus the optimal number of iterations from (7.93)

lopt =
π
2 −

∣∣∣arcsin
(
sin

(
φ
2 − Λ + Λγ

)
sin

(
Ωγ

2

))∣∣∣
Υ

=
π
2 − Ωγ

2

Ωγ
,

which is nothing more than the required number of rotations lopt0 (7.23) in the basic
Grover algorithm. Unfortunately choosing the predefined fixed relation θ = φ = π
does not guarantee sure success by all means, because the matching condition may
be violated.

Providing sure success by modifying the basic Grover algorithm
Now we try to measure one of the marked entries with Ps = 1. To achieve this
we keep all the previous parameters, except θ and φ are adjusted according to the
matching condition, i.e. φ(θ) becomes a function of θ. Remember that Ωγ is available
from performing a quantum counting (see Section 7.2.1) with θ = φ = π. The
optimal θopt which minimizes ls can be computed solving

dls(φ(θ), θ)
dθ

=
∂ls(φ(θ), θ)

∂φ(θ)
· dφ(θ)

dθ
+

∂ls(φ(θ), θ)
∂θ

= 0,

i.e. we determine the minimum point of ls in Fig. 7.19. In order to be able to
substitute φ(θ) into (7.78) and (7.93) one has to evaluate the matching condition
(7.87) assuming the given parameter setup

tan
(

φ

2

)
=

cos
(
2Ωγ

2

)
+ sin

(
2Ωγ

2

)
· tan

(
Ωγ

2

) =1︷ ︸︸ ︷
cos (Λ − Λγ)

cot
(

θ
2

)− tan
(

Ωγ

2

)
sin

(
2Ωγ

2

)
sin (Λ − Λγ)︸ ︷︷ ︸

=0

= tan
(

θ

2

)
·
(

cos(Ωγ) + sin(Ωγ) tan
(

Ωγ

2

))

= tan
(

θ

2

)
· (cos(Ωγ) + 1 − cos(Ωγ)) = tan

(
θ

2

)
,
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where we exploited basic trigonometric relation tan
(

x
2

) ≡ 1−cos(x)
sin(x)

. We reached an
important result, namely to provide sure success we need θ = φ. Substituting this
special matching condition into (7.78)

cos(Υ) = cos
(

φ − φ

2

)
+ sin2

(
Ωγ

2

)
·
(

cos
(

φ + φ

2

)
− cos

(
φ − φ

2

))

= cos(φ) sin2

(
Ωγ

2

)
+ cos2

(
Ωγ

2

)
.

Now we can turn to minimize ls in θ

ls(θ) =
π
2 −

∣∣∣arcsin
(
sin

(
φ
2

)
sin

(
Ωγ

2

))∣∣∣
arccos

(
cos(φ) sin2

(
Ωγ

2

)
+ cos2

(
Ωγ

2

)) .

However, instead of beginning long-lasting derivations the reader may realize that
the denominator has a maximum if cos(φ) = 1 ⇒ φ = π and the numerator has a

minimum if sin
(

φ
2

)
= 1 ⇒ φ = π therefore θopt = φopt = π, which is the original

setup of the basic Grover algorithm. Thus the basic Grover algorithm proves to be
optimal in terms of the number of database queries if we have no a priori information
about the database, i.e. it is really unsorted.

We depicted ls(θ) in Fig. 7.19. Since lopt = ls(θopt) is not an integer, the nearest
superior integer Lopt has to be taken into account. In consequence of this deferral,
the matching condition is affected, which requires the calibration of angle θ and φ. In
possession of Lopt we can calculate φ′

opt from (7.93) and substituting it into (7.87)
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we get θ′opt. Obviously there are two such values for θ but we present only one of
them in Fig. 7.19.

Finally we would like to emphasize that to achieve a sure success searching
algorithm we did not need to increase the number of database queries compared to
the basic algorithm, instead the Oracle and the phase gate were modified!

Starting from an arbitrary initial state
The initial state of the index qreqister was set to |γ1〉 = H |0〉 in the case of the basic
Grover algorithm since we had no information about the structure of the database, i.e.
it was considered as being unsorted. However, as we mentioned in the introduction of
this subsection there are practical problems when we have some a priori information
about the database. Based on this information one can preprocess the index qregister
amplifying the probability amplitudes of the marked states – even not uniformly –
producing an arbitrary |γ1〉, see (7.60). Is it possible to exploit this fact by means
of the generalized Grover algorithm or shall we lose this advantage when returning
to the uniformly distributed initial probability amplitudes of the index qregister of
the basic algorithm? To answer this question we have to determine θ, φ and |µ〉 in
possession of |γ1〉.

Obviously if we were familiar with which states are marked and unmarked then
we are able to calculate |µ〉 in such a way that a single rotation would provide sure
success. As an example let us consider the basic Grover algorithm. Provided the axis

of the inversion about the average is chosen to Ω =
π
2 +

Ωγ
2

2 then the reflection about
|µ〉 after applying the Oracle (reflecting |γ1〉 onto |α〉) will result in |β〉 (see Fig. 7.5).

Unfortunately when searching is needed this information is not available.
Therefore the best we can do is to set |µ〉 = |γ1〉, that is Ω = Ωγ

2 and Λ = Λγ . Since
the matching condition and thus lopt depend only on the difference between Λ and
Λγ their actual values do not influence the design of Q, i.e. Λ − Λγ ≡ 0. Since |γ1〉
is known, |µ〉 can be easily produced using an appropriate U . In order to minimize ls
in θ the only missing parameter is Ω. We showed in (7.77) that the eigenvalues of Q

have the following form q1,2 = −ej( θ+φ
2 ±Υ). Hence using a phase estimation with

θ = φ = π it returns Υ unambiguously from which Ω can be computed exploiting
(7.78) and bearing in mind the actual values of θ and φ, namely Ω = Υ(θ=π,φ=π)

2
(see (7.94)). Next the same technique can be applied as for the enhanced basic Grover
algorithm to determine φ′

opt, θ′opt and the corresponding Lopt.

7.6 FURTHER READING

L. K. Grover published his fast database searching algorithm first in [70] and [68]
using the diffusion matrix approach to illustrate the effect of the Grover operator,
that took O(

√
N ) iterations to carry out the search, which is the optimal solution,

as it was proved in [160]. Boyer, Brassard, Hoyer and Tapp [104] enhanced the
original algorithm for more than one marked entry in the database and introduced
upper bounds for the required number of evaluations.
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After a short debate, Bennett, Bernstein, Brassard and Vazirani gave the first poof
of the optimality of Grover’s algorithm in [33]. The proof was refined by Zalka in
[160] and [159].

Later the rotation in a two-dimensional state space (with the bases of separately
superpositioned marked and unmarked states) the SU(2) approach was introduced by
Boyer et al. in [104]. Within this book we followed this representation according to
its popularity in the literature.

During the above-mentioned evolution of the Grover algorithm a new quest started
to formulate the building blocks of the algorithm as generally as possible. The
motivations for putting so much effort into this direction were on one hand to get
a much deeper insight into the heart of the algorithm and on the other hand to
overcome the main shortcoming of the algorithm, namely the sure success of finding
a marked state cannot be guaranteed. In [69] the authors replaced the Hadamard
transformation with an arbitrary unitary one. The next step was the introduction of
arbitrary phase rotations in the Oracle and in the phase shifter instead of π in [67].
To provide sure success at the final measurement Brassard et al. [62] ran the original
Grover algorithm, but for the final turn a special Grover operator with a smaller step
was applied. Hoyer et al. [74] gave another ingenious solution of the problem. They
modified the original Grover algorithm and the initial distribution.

To give another viewpoint Long et al. introduced the three-dimensional SO(3)
picture in the description of Grover operator in [65]. The achievements were
summarized and extended by Long [99] and an exact matching condition was derived
for multiple marked states in [66]. Unfortunately the SO(3) picture is less picturesque
and it misses the global phase factor before the measurement. In normal cases it does
not cause any difficulty because measurement results are immune to it. However, if it
is planned (we plan) to reuse the final state of the index register without measurement
as the input of a further algorithm (operator), it is crucial to deal with the global
phase. Therefore, Hsieh and Li [87] returned to the traditional two-dimensional
SU(2) formulation and derived the same matching condition for one marked element
as Long achieved but they saved the final global phase factor. One important part
of these solutions, however, was missing. Namely, they required that the initial state
should fit into the two-dimensional state space defined by the marked and unmarked
states with uniform probability amplitudes. This gives large freedom for designers
but encumbers the application of the generalized Grover algorithm as a building
block of a larger quantum system.

Therefore another very important question within this topic proved to be the anal-
ysis of the evolution of the basic Grover algorithm when it is started from an arbitrary
initial state, i.e. the amplitudes are either real or complex and follow any arbitrary
distribution. In this case sure success cannot be guaranteed, but the probability of
success can be maximized. Biham and his team first gave the analysis of the original
Grover algorithm in [46] and [53]. In [54] the analysis was extended to the general-
ized Grover algorithm with arbitrary unitary transformation and phase rotations.

Within this book we combined and enhanced the results for the generalized
Grover searching algorithm in terms of arbitrary initial distribution, arbitrary unitary
transformation, arbitrary phase rotations and arbitrary number of marked items



168 SEARCHING IN AN UNSORTED DATABASE

to construct an unsorted database search algorithm which can be included inside
a quantum computing system. Because of its constructive nature this algorithm
is capable of any amplitude distribution at its input, provides sure success in
case of measurement and allows connecting its output to another algorithm if
no measurement is performed. Of course, this approach assumes that the initial
distribution is given and it determines all the other parameters according to the
construction rules. However, readers who are interested in applying a predefined
unitary transformation as the fixed parameter should settle for a restricted set of
initial states and it is suggested that they look at [87].

Grover’s database search algorithm assumes the knowledge of the number of
marked states, but it is typical that we do not have this information in advance.
Brassard et al. [61] gave the first valuable idea of how to estimate the missing number
of marked states, which was enhanced in [62] and traced back to a phase estimation
of the Grover operator.

A rather useful extension of the Grover algorithm is finding the mini-
mum/maximum point of a cost function. Dürr and Hoyer suggested the first statistical
method and bound to solve the problem in [32]. Later, based on this result, Ahuya
and Kapoor improved the bounds in [1]. Both papers exploit the estimation of the
expected number of iterations introduced in [104]. Unfortunately all these algorithms
provide the extreme value efficiently in terms of expected value thus no reasonable
upper bound for the number of required elementary steps can be given. This fact
strongly restricts the usage of such solutions in real applications. Therefore we
introduced another approach based on quantum existence testing.

Recently Grover emphasized in [71] that the number of elementary unitary
operations can be reduced which launched a new quest for the most effective Grover
structure in terms of the number of basic operations.

The Grover algorithm has been verified first experimentally in a liquid-state NMR
system [81] and [88] with a few qbits. Bhattacharya and his colleagues reported
the implementation of the quantum search algorithm using classical Fourier optics
in [112].



8
Quantum-based Multi-user

Detection

Every telecommunication system designed to provide services for more than one
subscriber has to cope with the problem of medium access control (MAC), which
regulates how to share the common medium (channel) among the users. Unlike
traditional solutions where subscribers are separated in time, frequency or space,
state of the art third/fourth generation mobile systems differentiate the users based
on special individual codes assigned to each customer. Unfortunately performing
optimal detection proves to be a hard task classically, therefore suitable suboptimal
solutions are the focus of international research. However, quantum computing offers
a direct way to the optimal solution because of its parallel processing capabilities.

Hence we introduce a mobile telecommunication oriented application based on
quantum counting in this chapter: Section 8.1 explains the theoretical background of
code division multiple access systems, highlights the related detection problem and
gives the most trivial answer to it. Optimal detection criteria and their complexity are
summarized and classical optimum detectors are discussed in Section 8.2. Finally we
trace the optimal detection to quantum counting in Section 8.3.

8.1 INTRODUCTION TO CODE DIVISION MULTIPLE ACCESS AND
CLASSICAL MULTI-USER DETECTION

Traditional telecommunication systems share the channel among the users in
different ways:

TDMA Time Division Multiple Access ensures separation by assigning time slots
to the users. The time axis consists of so-called frames which are repeated

Quantum Computing and Communications S. Imre, F. Balázs
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periodically. Each frame is subdivided into slots (channels) representing
transmission opportunities for the customers.

FDMA Frequency Division Multiple Access supports distinction among subscribers
by frequency. The available frequency spectrum is divided into frequency
bands (channels). Signals which are limited within a certain band theoretically
do not disturb signals of other users in different bands.

SDMA Space Division Multiple Access exploits the trivial fact that if radiations
from directed antennas do not cross one another then users can be separated
reliably.

Of course arbitrary combinations of the above approaches are allowed. For instance
in the case of GSM 200 kHz bands are used with eight time slots in each.

Remark: While multiple access refers to the notion that information from sources
placed on distributed locations are collected together (e.g. mobile terminals transmit
to the same base station from different positions). The reverse process, when several
pieces of information are collected together at a given point and then distributed
among the subscribers, is called multiplexing and corresponding techniques are
denoted by TDM, FDM and SDM respectively.

The above solutions have several advantages e.g. call admission control (CAC)
becomes very simple since a new call can be accepted until we run out of

channels, or by assigning time slots with different length we can easily adjust the
network resources to various traffic demands. Unfortunately there are also some
disadvantages. The most common and important one can be summarized in the
following way. Although theoretically all the above-mentioned techniques ensure
perfect separation of the users, this is not actually the case in practice. Since we
are not able to build switches working infinitely fast or filters with infinite slope,
or antennas with square-shaped lobes thus we need to apply guard slots, bands
between adjacent channels to avoid mixed signals. However, these guard channels
mean overhead, which decreases the spectral efficiency1 of the system.

The ultimate idea to handle this problem was discovered during World War II
when members of the resistance tried to prevent German eavesdropper teams
intercepting radio messages and locating their positions via periodically changing
the transmission frequency. If the sender and receiver have the same code table
containing the sequences of frequency bands then they can listen to each other
otherwise the eavesdropper can only guess the currently used frequency. Clearly
speaking this approach enables users to be distinguished by means of non-
overlapping (in the literature: orthogonal) code (frequency) sequences. Thus this
technique is called code division multiple access (CDMA). As the reader may realize
all the users use the same band, time slot and spatial region at the same time

1Spectral efficiency is one of the most important descriptors of a telecom system. It defines how many
bits can be transmitted reliably in each second projected onto one Hz of bandwidth. Since network
providers buy frequency bands typically at enormously high rates spectral efficiency strongly influences
their returns.
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without involving guard resources! The codes in this example hop among frequencies
therefore it is referred to as frequency hopping ( FH) CDMA. Beside enabling secure
communications CDMA has another tremendous advantage. The fast changes in the
signal because of the hopping produces high frequency components in the spectrum
of the signal, that is the bandwidth of an FH-CDMA signal is much wider than that of
the original narrowband one. This phenomenon is cited in the literature as spectrum
spreading and related systems are known as spread spectrum (SS) systems. Therefore
anybody who wants to blanket the radio transmission with a narrowband source will
fail. This capability can be utilized against non-intentional interferers as well thus
the reader may understand why CDMA based solutions are so popular in 3G/4G
wireless systems.

Remark: The previous explanation concluded that combining spectrum spreading
and code division multiple access has many advantages. However, in certain systems
such as wireless local area networks (WLANs), where no central entity exists, which
is responsible for distributing the codes among users, SS is used alone to combat the
hostile nature of the radio channel while MAC is e.g. TDMA based.

8.1.1 DS-CDMA in theory

The most popular public land mobile networks (UMTS, IS-95, cdma2000,
W-CDMA) apply another way to implement SS-CDMA. The reader can follow the
operation of the system with Alice as sender and Bob as the receiver in Fig. 8.1.
Alice has a sequence of symbols to transmit. For the sake of simplicity we assume
that each symbol corresponds to one bit of the message. For practical reasons Alice
produces +1 and -1 according to the logical value of the actual bit (0 or 1) with a
certain transmission rate, say some kbps. Instead of feeding her antenna with these
symbols directly she sends a binary chip sequence into the channel in place of each
symbol. A symbol representing a certain chip can have a value +1 or -1 similar
to the symbols substituting bits. The only difference is that the chip rate is much
faster than the bit rate, say some Mbps. Keeping in view that we use ±1 instead
of 0/1 this procedure can be modelled as a multiplication of the two sequences
in compliance with Fig. 8.2. Since the transmitted signal has fast variations the
spectrum of the original signal becomes fairly wide after the multiplication. For
example third-generation mobile systems use 5 MHz bandwidth compared to the
GSM’s 200 kHz. Roughly speaking this is the reason why these types of CDMA
systems are called wideband CDMA or WCDMA. Equivalently Tc, representing the
time duration of one chip, is significantly smaller than Ts, standing for the symbol’s
length.

Detection at the receiver side is very easy. Bob multiplies the received sequence
chip by chip with the same chip sequence as Alice used previously and sums the
products, i.e. he computes the inner product of the two sequences. He obtains ±PG
if ±1 has been sent, respectively, where PG – the so-called processing gain – denotes
the length of the chip sequence. Thus a simple comparator is able to decide the
original value of Alice’s bit symbol.
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Fig. 8.1 Idealistic DS-CDMA architecture

So Alice and Bob can protect themselves from narrowband interferers, but how
can they share the channel with Eve? The answer is fairly simple. An individual chip
sequence has to be assigned to each user with the property that the sequences are
orthogonal, that is their pairwise inner product equals zero. Thus as Fig. 8.3 explains
Bob is able to detect a signal from Alice using Alice’s chip sequence because the
inner product operation suppresses the component from Eve in the received signal.
Similarly Bob uses Eve’s chip code when detecting her message. This pragmatic
approach using spectrum spreading is called direct sequence CDMA (DS-CDMA).

In our example Alice is holding a mobile phone and her intention is to send signals
to Bob. These signals are received by a special access point of the system the so-
called base station (BS) (see Fig. 8.4). The BSs are connected to one another via the
access and core networks in cellular mobile systems. Thus Alice’s signal is received
first at the closest base station to Alice, than it is delivered across the access-core-
access networks (they are typically wired and use their own transmission schemes)
to the base station whose range Bob is located in. Finally this latter base station sends
Alice’s bits applying DS-CDMA again to Bob’s mobile. Now let us concentrate on
the air interface of the above system. Alice is assumed to be the sender and Bob is
playing the role of a base station’s receiver. This set up is referred to as the uplink
scenario, which describes the case when mobile terminals are transmitting and the
base station is receiving the signals2 (see Fig. 8.4).

8.1.2 DS-CDMA in practice

DS-CDMA works very well, in theory, where signals from different users remain
orthogonal at the receiver. In practice, however, the radio channel proves to be much
more hostile. It has deterministic modifications and e.g. random variations in signal
strength and delay. Deterministic channel attenuation originates from the fact that
mobile terminals are typically at different distances from the base station. We can
fight against this effect using power control, that is the base station instructs the

2The opposite direction is called downlink.
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Fig. 8.4 Mobile access directions

mobiles to adjust their transmission powers so that all the signals are received with
almost the same signal strength at the base station. Since the speed of light and
thus that of electromagnetic radiation is constant, terminal positions with different
distances around the base station cause differences in delays as well. This effect is
further complicated if one considers that a transmitted signal may travel in different
tracks with different lengths at the same time. This latter effect is referred to as multi-
path propagation. Hence Bob does not know exactly when he has to start the inner
product operation (detection). If he is late or in a hurry then orthogonality may be
upset. We show a simple example for this effect in Fig. 8.5. While orthogonal code
families can be produced easily by the reader as well, such code families whose
members are orthogonal to any shifted versions of other members prove to be a
really hard task even for experts. The suggested remedy to this problem is the so-
called Rake receiver which applies the inner product operation with different shifted
versions of the corresponding chip sequence at the same time and combines the
results. Roughly speaking it can be regarded as a kind of synchronization.

Remark: We can conclude that orthogonality means the common basis of
different medium access schemes. They achieve this property in different ways using
frequency bands, time slots, spatial regions or codes. The difference lies in the
important fact that the first three approaches have hard limits regarding the admitted
users in the network, that is if we run out of e.g. form time slots then no subscriber
can be accepted until somebody leaves the system. On the other hand a new user
entering a CDMA system only decreases the orthogonality in the receivers, which
produces more errors as a consequence but the number of acceptable users is only
asymptotically limited, i.e. the more users we have the less transmission rates can be
offered. Thus CDMA networks are much more flexible from this point of view, and
we call them soft limited systems.

Random effects, however, are more dangerous. Random attenuation and delay
may cause different weighting and shift of the individual signals in the received
signal, which is advantageous for certain signals and disadvantageous for others in
the detector when the inner product operation is performed. In order to describe
these phenomena we derive the received signal r(t) at the base station using
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appropriate mathematical formalism. Similar to radio broadcasting each wireless
system uses a different frequency band, which complicates the discussion because
carrier frequencies have to be involved into the description. Clearly speaking
we are interested in the baseband signals and carriers represent the unavoidable
necessary evil element of the formalism. Fortunately a complex baseband-equivalent
description allows omitting carriers and using complex valued functions instead of
real ones, e.g. rekv(t) instead of r(t). Readers unfamiliar with this useful technique
can find a brief summary in Section 14. From this point we consider complex
baseband-equivalent signals and symbols therefore we omit the subscript eqv. We
suggest following the steps of producing r(t) in Fig. 8.6 which depicts the block
diagram of the transmitter and the channel.

As we mentioned earlier an uplink DS-DCDMA system is investigated. The ith

symbol of the kth (k = 1, 2, . . . , K) user is denoted by bk[i] ∈ {+1,−1}. This
assumption corresponds to the simplest scenario where symbols remain real-valued
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although we use the complex equivalent description. We call this type of modulation
binary phase shift keying (BPSK). Its alphabet consists of only two elements. Of
course higher level modulations with a larger symbol alphabet such as 16 quadrature
amplitude modulation can be applied in practice, but from our point of view this
fact would not influence the theoretical background of the detection therefore we use
BPSK for the sake of simplicity.

In DS-CDMA systems an information-bearing bit is encoded by means of a user-
specific chip code having the length of the processing gain (PG). Let ck[q] refer
to the qth chip of the code word of subscriber k, and we chose again the simplest
alphabet ck[q] ∈ {+1,−1}. Since only continuous electromagnetic waveforms can
be transmitted in the radio channel in practice each chip has to be multiplied with
the so-called chip elementary waveform denoted by gk(t). Thus the analog version
of the chip sequence is referred to as the user continuous signature waveform

sk(t) =
PG−1∑
q=0

ck[q]gk(t − qTc), (8.1)

where Tc stands for the time duration of one chip. Obviously members of {sk(t)}
are orthogonal concerning the symbol length Ts i.e.

Ts∫
0

sk(t)sl(t)dt ≡ 0, ∀k �= l, (8.2)

and normalized
Ts∫
0

�2(sk(t))dt +

Ts∫
0

�2(sk(t))dt = 1.

Thus the output signal of the kth user related to the ith symbol, denoted by vk(t), is
given as

vk(i, t) = bk[i]sk(t). (8.3)

Alice sends strings of consecutive symbols called bursts. Let us assume that
each burst consist of R + 1 symbols. Therefore we introduce vector bk =
[bk[0], . . . , bk[R]]T denoting the data symbols of the kth user in a certain burst. Thus
the kth user’s signal during this burst can be expressed as

vk(t) =
R∑

i=0

bk[i]sk(t − iTs). (8.4)

Now, Alice’s signal is sent out to the air. We apply here a widely used channel
model and remark that of course other, more sophisticated models are also available
in the literature (see Further Reading). However, the selected model contains the
most important impacts and does not require us to be lost in details. The channel
distortion from the kth user point of view is modelled via an impulse response
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function as if the channel were a filter

hk(i, t) = ak[i]δ(t − τk),

where ak[i] = Ak[i]ejαk[i] with real Ak[i] and αk[i]. ak[i] comprises phenomena
causing the random nature of the channel and it is called fading. Ak[i], αk[i] and τk

are typically independent random variables while let us suppose as the worst case
that they are uniformly distributed about the following regions:

Ak[i] ∈ [−A, A]; αk[i] ∈ [0, 2π]; τk ∈ [0, Ts].

Deterministic attenuation is omitted since it can be handled using power control.
Similarly we do not consider Gaussian noise because CDMA systems are strongly
interference limited thus Gaussian noise has marginal influence on detection. Finally
we assume that τk remains constant during each burst while ak[i] varies from symbol
to symbol. The channel not only delays and distorts Alice’s transmitted signal but
also adds together all the signals originating from other users, hence we are able to
describe the received signal at the base station via convolving the channel input with
its impulse response in the following manner

r(t) =
K∑

k=1

R∑
i=0

hk(i, t) ∗ vk(i, t) =
K∑

k=1

R∑
i=0

ak[i]bk[i]sk(t − iTS − τk). (8.5)

8.2 OPTIMAL MULTI-USER DETECTION

Now, having received r(t) at the base station Bob would like to extract (demodulate)
Alice’s signal. Let us assume that τk = 0 and ak = 1 deterministically (equivalently
the channel is regarded as a shortcut or an identity transformation). In this case the
received signal becomes

r(i, t) =
K∑

k=1

bk[i]sk(t), (8.6)

considering the interval belonging to the ith symbol.
Bob tries to obtain a fairly good estimation b̃k[i] using the orthogonality of

signature waveforms according to (8.2). This requires multiplication with Alice’s
waveform sk(t) and integration on [0, Ts] (see Fig. 8.7). This operation is nothing
more than the calculation of the inner product for continuous variables. Bearing in
mind the often used notion for this operation in the literature we call it a matched
filter. Let us denote the output of the matched filter in case of the ith symbol
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Fig. 8.7 Single-user DS-CDMA detector with matched filter, idealistic case

with yk[i]

yk[i] =

Ts∫
0

r(i, t)sk(t)dt

=

Ts∫
0

bk[i]sk(t)sk(t)dt +

Ts∫
0

K∑
l=1,l �=k

bl[i]sl(t)sk(t)dt = bk[i]. (8.7)

Thus theoretically the output of the matched filter contains information only about
bk[i] and its sign can be used to decide which symbol has been sent by applying a
comparator. Therefore Bob can use yk[i] directly to determine b̃k[i] = sgn(yk[i]).

As we discussed earlier orthogonality may be violated because of the random
delays in the channel. In a realistic scenario the above introduced detector may fail
with certain probability. Optimal solutions minimize this probability by possessing
additional information. If we insist on using only Alice’s signature waveform to
detect symbols originating from Alice then this technique is referred to as single-
user detection. This approach can be appropriate when the detector is located in
a mobile terminal whose computational power is moderated. However, sitting at a
base station’s receiver module we are allowed to be more pragmatic. Since all the
signals arriving from different users must be detected all the signature waveforms
are available! Why not exploit this possibility? Thus those schemes performing
combined detection are called multi-user detectors (MUD) .

Before explaining how the optimal MUD operates it is worth classifying our
scenario. Since different τk delays are considered the channel is asynchronous.
Furthermore ak[i] is assumed to be completely unknown in the receiver hence we
have to solve a non-coherent detection problem.

In possession of the concept of the single-user DS-CDMA detectors and being
familiar with the effects of the radio channel waiting for naive subscribers we are
ready to design an optimal detector architecture.
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First of all we have to realize that in the case of random delays to detect the
ith symbol it is not enough to take into account the incoming signal during the
corresponding symbol period. Instead we need to consider the whole burst. Therefore
we concentrate on vector bk representing the data symbols of the kth user’s burst
under detection.

Next we require a suitable definition for optimality. Two extreme answers and
many intermediate criteria can be found in the literature. The most popular definition
is based on the maximum likelihood sequence (MLS) decision principle – often
referred to as the jointly optimum decision – while the other end ensures minimum
bit error rate (MBER) and is cited as the individually optimum decision.

In order to formulate more precisely these two decision techniques and explain
the origin of their names let us introduce the following matrix

B = [b1,b2, . . . ,bK ] ⇒ Bik = bk[i], k = 1, . . . , K; i = 0, . . . , R. (8.8)

Furthermore Bob collects the outputs of the matched filters

yk[i] =

(i+1)Ts∫
iTs

r(t)sk(t − iTs)dt (8.9)

into Y such that

Y = [y1,y2, . . . ,yK ] ⇒ Yik = yk[i], k = 1, . . . , K; i = 0, . . . , R. (8.10)

In the case of an MLS decision we have 2K(R+1) different hypotheses according to
the different Bm vectors

H1 : Y = w(B1)
H2 : Y = w(B2)
...
H2K(R+1) : Y = w(B2K(R+1) )

(8.11)
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where w(Bm) denotes a matrix-matrix function producing the matrix of the matched
filters’ outputs provided Bm contains the symbols sent by all the users during
the burst in question and related to the mth hypothesis (m = 1, . . . , 2K(R+1)).
The corresponding architecture is depicted in Fig. 8.8. It does not matter whether
we use MLS or MBER detectors. The difference lies in the decision boxes.
Obviously w(·) depends not only on the transmitted symbols but on random channel
parameters too. Moreover w(·) is not reversible. Therefore Bob is not able to
compute unambiguously that B leads to Y. Instead he invokes decision theory (see
Section 12.1.2). The optimal decision in an MLS sense ‘simply’ requires us to find
that hypothesis with maximal conditional probability density function i.e.

B̃MLS : max
m

f(Y|Bm). (8.12)

Let us suppose that we quantize the random variables characterizing the radio
channel into sufficiently small pieces from the detector point of view. Say NA, Nα

and Nτ represent the number of different values of Ak[i], αk[i] and τk respectively.
Furthermore we collect the supposed values of these parameters during the detected
burst into the following matrices and vector

A : Aik = Ak[i]; C : Cik = αk[i]; d : dk = τk.

Next we form a single matrix in the following manner

Z = [A,C,d].

Bearing in mind that all the random variables are uniformly distributed, in order to
calculate the conditional density functions in (8.12) one has to count those Z matrices
which lead to Y i.e.

f(Y|Bm) =
#(Z : Y = u(Bm,Z))

#(Z)
, (8.13)

where w(Bm,Z) represents a matrix-matrix function computing the matrix of the
matched filters’ outputs if Bm and Z are assumed.

While an MLS detector tries to estimate all the symbols jointly during a given
burst in the case of MBER detectors we decide for b̃k[i] from symbol to symbol.
Thus we have to perform K(R + 1) decisions each of which selects one of the
following two hypotheses

H1 : yk[i] = w′(bk[i] = 1)
H2 : yk[i] = w′(bk[i] = −1)

where function w′(bk[i]) calculates the output of the kth user’s matched filter after
the ith symbol interval. This hypothesis testing requires maximizing the following
conditional pdfs

b̃k[i] : max
bk[i]=±1

f(yk[i]|bk[i]) (8.14)
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and B̃MBER = [b̃k[i]]. In order to express conditional pdfs in (8.14) we introduce

Z±1 = [B±1,A,C,d],

where matrices B±1 consist of possible values for bl[c] (l �= k and c �= i at the
same time) while bk[i] is set either +1 or −1. Since each bl[c] can be assumed as an
independent equiprobable random variable

f(yk[i]|bk[i] = ±1) =
#(Z±1 : yk[i] = u′(Z±1))

#(Z±1)
, (8.15)

where u′(Z±1) calculates the outcome of the corresponding matched filter.
Unfortunately both MUD techniques are rather time consuming. In the case

of MLS approach one needs to test 2K(R+1) different hypotheses, which grows
exponentially with the number of active users. On the other hand MBER detection
requires 2K(R+1) evaluation of the conditional pdfs. Furthermore the evaluations of
the conditional pdfs are rather hard tasks especially in the latter case. Therefore they
cannot be used in practice and suboptimal approximations are the focus of research
and used in practical applications such as single-user, interference cancelling,
decorrelating detectors (see Further Reading).

8.3 QUANTUM-BASED MULTI-USER DETECTION

Although MLS-based optimal multi-user detectors are more popular than the MBER
based ones because of their less computational complexity, both approaches are far
from practical implementations. However, quantum assisted computing exploiting
quantum parallelism may help us to attack the optimum MUD problem directly.

Let us discuss the MBER problem and concentrate on the detection of the bk[i]
symbol. As we deduced in (8.14) Bob needs to evaluate two conditional pdfs. We
derived some hints about how to perform this in (8.15). Since we are interested only
in the larger pdf the denominators can be omitted. Both numerators require solving
a special counting problem. Because all the channel parameters and other symbols
are independent and uniformly distributed Bob has to decide whether the number of
Z+1 or Z−1 leading to yk[i] is bigger, which is equivalent to the question whether
bk[i] = +1 or bk[i] = −1 have the larger probability of being the originator of yk[i]?

We have already discussed the counting problem related to the search in an
unstructured database in Section 7.2, where a fairly efficient quantum-based solution
was proposed, which uses phase estimation on the Grover operator. Concerning
our special multi-user detection scenario we have a virtual database encoded into
function u′(·) instead of a real one.

In possession of a promising idea and with knowledge about quantum counting
next we determine the architecture and initialization parameters of the quantum-
based MUD (QMUD) detector. We apply the top-down design principle thus we
depict the system concept in Fig. 8.9. We define two counting circuits according to
the two hypotheses, one that assumes bk[i] = +1 and another for bk[i] = −1. Their
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outputs representing the numerators in (8.15) are denoted by

e±1 = #(Z±1 : yk[i] = u′(Z±1)). (8.16)

Each quantum counter is fed with the outcome yk[i] of the matched filter, the
corresponding hypothesis bk[i] = ±1 and the set S = {sk(t)} of individual signature
waveforms of all the active users. Next the outputs e±1 are compared and the result
determines Bob’s estimation b̃k[i] = arg max±1{e±1}.

Following the top-down concept we have to examine the design of the Grover
operator. Without harming generality we use the basic Grover box introduced in
Section 7.1. First of all it requires an index register input denoted by |γ〉. As Fig. 8.10
shows we form each computational basis state |x〉 of |γ〉 from consecutive blocks.
Each block is responsible for the storage of different parameters. First we use all the
K(R + 1)− 1 qbits to represent different bl[c] symbols l = 1, . . . , K; c = 0, . . . , R,
only bk[i] is omitted because there is an individual input defined for it directly to the
Oracle. This is followed by three other blocks consisting of K(R + 1)nA, K(R +
1)nα and Knτ qbits and comprising values for Ak[i], αk[i] and τk respectively,
where

nA = 
ld(NA)�; nα = 
ld(Nα)�Nα; nτ = 
ld(Nτ )�.
Therefore Bob requires

n = K(R + 1)(nA + nα + 1) + Knτ − 1

qbits to describe a given configuration. Having defined the size of the index register
we turn to the Oracle. Originally it calls the database and compares DB[x] with the
requested item in compliance with (7.4). Now, we use u′′(bk[i], x) as a ‘database’
which computes the matched filter output as if bk[i] = ±1 and x were given to it and
the Oracle compares the result with yk[i] in the following way

f(x) =
{

1 if yk[i] = u′′(bk[i], x),
0 otherwise.

(8.17)

As the last design step we remember that phase estimation and thus quantum
counting includes quantum uncertainty, which can be controlled by means of
additional qbits in the upper section of the phase estimator according to (7.32).
Considering the worst-case scenario i.e. (7.39), this means in our case

n♣ = n +
⌈
ld(2π) + ld

(
3 +

1
P̆ε

)⌉
,

where P̆ε stands for the maximum allowed quantum uncertainty. Taking a look at
Fig. 6.13 the reader can conclude that a fairly good quantum uncertainty from the air
interface point of view, say less than 10−8, can be achieved by using about 25 extra
qbits which is negligible compared to n.

Finally the computational complexity of the QMUD algorithm can be easily
determined if the reader recalls our remarks from the end of Section 7.2.2, namely
we need O(n3) elementary gates, where 2n represents the size of the database.
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Remark: The above method can be trivially extended to that case when we use
multi-level symbols instead of binary ones. If M -level symbols are applied then Bob
needs to run M quantum counters in parallel or sequentially.

8.4 FURTHER READING

Subscribers of the next generation wireless systems will communicate simultane-
ously, sharing the same frequency band. All around the world 3G mobile systems
apply DS-CDMA because of its high capacity and inherent resistance to interference,
hence it comes into the limelight in many communication systems. Nevertheless due
to the hostile property of the channel, in the case of CDMA communication the
orthogonality between user codes at the receiver is lost, which leads to performance
degradation in a multi-user environment. A good overview of wireless channel
models can be found in [118, 45] while state-of-the-art mobile systems such as GSM,
IS-95, cdma2000, UMTS, W-CDMA, etc. are surveyed in [73, 101, 144].

Single-user detectors were overtaxed and showed rather poor performance even
in multi-path environments [146]. To overcome this problem, in recent years multi-
user detection has received considerable attention and has become one of the most
important signal-processing tasks in wireless communication.
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Verdu [146] has proved that the optimal solution is an NP-hard problem
as the number of users grows, which causes significant limitations in practical
applications. Many authors proposed suboptimal linear and nonlinear solutions such
as decorrelating detector, MMSE (minimum mean square error) detector, recurrent
and Hoppfield neural network based detectors, multi-stage detector [24, 109, 146, 5],
and the references therein. One can find a comparison of the performance of the
above-mentioned algorithms in [64].

The unwanted effects of the radio channel can be compensated by means
of channel equalization [3, 129, 7]. The most conventional method for channel
equalization employs training sequences of known data. However, such a scheme
requires more bandwidth to transmit the some amount of payload. Furthermore, in
multi-user CDMA systems the coordination of users is a difficult task. Consequently,
there is a tremendous interest in blind detection schemes for multi-user systems,
where no training sequences are needed. Our quantum-based MUD proposal belongs
to this latter group because it does not require any information about the channel.
The basic idea which traces MUD to set separation was published in [130, 131]
and analyzed [133, 132]. This chapter introduces a refined version which extends
(deterministic) set separation to (probabilistic) hypothesis testing.



9
Quantum-based Code

Breaking

Damocles’s sword is hanging over our widespread classical public key cryptosystems
because their security is based on the belief that computing certain mathematical
functions are hard tasks. However, due to the advent of quantum computing the long
desired wish of code-breakers has been fulfilled.

Section 9.1 summarizes the basic terminology of cryptology. Next we introduce
two fundamental cryptosystems based on symmetric key and asymmetric key
architectures in Section 9.2 and Section 9.3, respectively. Both sections contain a
practical example, the RSA algorithm for the former and the ElGamal algorithm
for the latter. Well-tried security techniques such as public key cryptography seem
to become obsolete at the dawn of the third millennium while new quantum-based
solutions are emerging. We explain in Section 9.4 how to exploit quantum algorithms
introduced in previous chapters of this book to break public key cryptosystems.

Fortunately defense against such quantum-assisted attacks is available by also
using quantum principles. We explain them in Chapter 10.

9.1 INTRODUCTION TO CRYPTOLOGY

Keeping information secret played/plays/will always play an important role the
history. Battles, wars or the destiny of whole nations depended often on broken codes
e.g. the fact that the Allies were in possession of the German ciphering system called
ENIGMA proved to be decisive in World War II.

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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The science dealing with secret information is called cryptology.1 It consists of
two major areas:

• Cryptography covers all the efforts to produce secure transmission of
information implementing different aspects such as confidentiality, data
integrity, authentication and non-repudiation.

• Cryptoanalysis gathers all the techniques aiming to break encrypted messages.

Instead of introducing all the above functionalities in detail we concentrate only
on those items which are playing certain roles in this book.2

We assume in our model that Alice would like to send messages to Bob in a secure
way i.e.

• preventing Eve from accessing the original information (no eavesdropping)
and

• preventing Eve from being able to send messages to Bob as if she were Alice
(no impersonation).

Therefore Alice performs encryption (ciphering) to produce secret messages from
plain ones

E = eA(P ), (9.1)

where P represents the plain message, eB(·) stands for Alice’s ciphering function
when communicating with Bob and E denotes the encrypted message. Roughly
speaking encryption is responsible for code making, while cryptoanalysis for code
breaking, respectively. Bob receives E from the communication channel and by
applying corresponding decryption function dB(·) obtains the original message that
is

P = dB(E). (9.2)

In order to provide safe information transfer eB(·) and dB(·) must be kept secret.
Unfortunately this approach is not practical enough because it requires a large
amount of different function pairs according to the typical number of users in an
infocom system, moreover hardware/software implementation of various functions
is not efficient. As a trivial example the reader may think of the following scenario.
Alice writes her message onto a sheet of paper and puts it into a box equipped with
a special lock. She has to buy different boxes for sending messages to each partner.
A more straightforward and cost-effective solution is if she uses uniform boxes with
individual keys. In this way security is concentrated into the keys which are cheap,
small and therefore it is easy to hide them. Similar to this concept we use symbol

1The word cryptology originates from the Greek cryptos = hidden and logos = word.
2Further Reading of this chapter contains appropriate hints for those readers interested in a wider
overview of this topic.
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Fig. 9.1 Basic concept of secure information transfer

sequences called keys in cryptography. Thus (9.1) and (9.2) becomes

E = e(P, KB),
P = d(E, LB), (9.3)

where the ciphering and deciphering functions have encryption key and decryption
key inputs KB and LB and the functions do not depend on the parties. We allow
different keys here for the sake of generality. Later we will see that it proves to be
rather useful in certain cases. The basic architecture of secure message transfer can
be seen in Fig. 9.1.

9.2 SYMMETRIC KEY CRYPTOGRAPHY

In the case of a secret key or symmetric key cryptographic system the communicating
parties use the same key for ciphering the plain message and deciphering the
encrypted one i.e. KB ≡ LB. After several preliminaries Gilbert Vernam proposed
the so-called one-time pad or Vernam cipher – the state-of-the-art solid base of
symmetric key cryptographic systems. Its tremendous advantage was proved by
Shannon, namely if the plain text and the key have the same length and the key
is really random then the cryptosystem is secure i.e. while the keys are kept secret
there is no systematic algorithm which is able to decrypt the plain text from observed
encrypted messages. Clearly speaking until now this is the only known provably
secure solution!

In order to explain the basic operation let us assume that Alice and Bob would like
to perform a conversation via a secure channel. Therefore first they meet and agree
a common pair of identical secret keys. Furthermore a common alphabet comprising
N different symbols is considered. Next the architecture proposed in Fig. 9.2 is used.
Alice adds together the symbols (bits) of the plain message and the symbols of the
secret key in modulo N sense producing the encrypted message

E[k] = e(P [k], KB) = (P [k] + KB[k]) mod N, (9.4)

where E[k] stands for the kth symbol of the encrypted message, P [k] and KB[k]
for the plain text and the secret key, respectively. It is important to emphasize
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that the ciphering operation is quite simple which is fundamental in reducing the
overhead during the communication introduced by the security system. Having
received the encrypted message from the channel Bob applies the inverse3 (modulo
N subtraction) operation as Alice used that is he subtracts the symbols of the same
key from the incoming symbols recovering the original plain text

P [k] = d(E[k], LB) = (E[k] − KB[k]) mod N. (9.5)

The reader may challenge his/her ciphering skills in Exercise 9.1 by encrypting
the words quantum computing.

Because the keys used for encryption and decryption are kept secret our
expectations defined in the introductory section are trivially fulfilled. In spite of being
a simple and brilliant idea the one-time pad suffers some problems which might lead
to serious difficulties. Let us summarize them next with the offered solutions.

9.2.1 Large number of users

The parties must meet first to agree the common keys. In the case of a few number of
users this does not cause serious difficulties. However, if we consider a large amount
of customers, for instance via the Internet or in a digital cellular mobile network (e.g.
GSM, UMTS, IS95), it is unimaginable to organize such key exchanges. There are
several solutions to handle this problem.

Either we use several, preprogrammed static keys as typical WLANs do. Of
course the number of such keys are rather limited thus really secure transmission
cannot be provided.

Or we apply the so-called public key ciphering concept which will be explained in
detail in Section 9.3. This technique allows Alice to publicly announce a special key
which can be used to encrypt messages intended for her. Unfortunately this solution
suffers from the lack of theoretically proven secureness.

3In the binary case, that is N = 2, the two operations are the same i.e. e(·) = d(·)!
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Finally we use the GSM4 network to explain the most practical approach widely
used in the telecom world. Each user is provided with a secret key together with
his/her subscription. This key is stored on the SIM card – a special smart card
located inside the mobile phone – therefore the key is available each time the user
initiates a new call. A perfect copy of this key is safely stored in the Home Location
Register (HLR) at the operator. When Alice and Bob are communicating with each
other the channel between them is split into two parts from a security point of view.
Each section is encrypted between the user and the system using the corresponding
symmetric key pairs as depicted in Fig. 9.3.

Although this solution passed the test of time two shortcomings should be
revealed. First we remark that obviously there are certain point(s) inside the network
where the messages appear deciphered or the information travels without ciphering
between them. Secondly we have to maintain a network with a strongly centralized
infrastructure which takes the weight of key registration and management off
customers’ shoulders.

Exercise 9.1. Encrypt and decrypt the following message ‘QUANTUM COMPUT-
ING’ using the following alphabet: space, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O,
P, Q, R, S, T, U, V, W, X, Y, Z.

9.2.2 Length of the key and its randomness

Alice and Bob need random keys having the same length as the plain text.
Randomness can be easily provided since fairly good random number generators

4Here we apply a strongly simplified model of the GSM security system, for references see Further
Reading.
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were developed within the frames of information theory. However, the latter
constraint seems to be much more challenging because it requires either enormously
large memories to store the keys or Alice and Bob must meet very often to agree the
new keys. Fortunately a simple circuit, e.g. a feedback shiftregister (or convolutional
encoder), can be used as a key generator (KG) because it requires only a short
initialization string – in our case the secret key – and it emits a pseudorandom
sequence of symbols – used as the key for encryption – with very long periodicity
(see Fig. 9.4). Therefore from this point on we assume that e(·) and d(·) contain the
key generators.

Because the key sequence is not fully random we violate Shannon’s requirement.
Fortunately this deviation is marginal and it can be further suppressed if another,
time-varying initialization vector (IV) is used each time a new call is established.

9.3 PUBLIC KEY CRYPTOGRAPHY

Unlike centralized networks applying symmetric keys there are distributed systems
such as the well-known Internet where no standardized entity is available which
is responsible for assigning a secret key for each joining user and for maintaining
the database of these keys. Therefore with public key cryptography, often called
asymmetric cryptography, our two players Alice and Bob use different keys for
encryption and decryption, respectively. More precisely Bob defines its secret key
LB for deciphering messages arriving from Alice and publicly announce another
one KB which can be used by Alice to encrypt the messages, that is

d(e(P, KB), LB) = P. (9.6)

Furthermore when exchanging the keys the following connection also has to be
fulfilled

d(e(P, LB), KB) = P (9.7)

i.e. the keys are inverses of each other.
However, the public key allows Eve to send messages to Bob instead of Alice.

Therefore before sending encrypted messages we have to extend the new concept
in the following way. Alice copies Bob in key preparation, which results in another
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pair of keys KA and LA. Next Alice produces the ciphered text using a two-step
procedure, first she uses her own private key, which is followed by an encryption
with Bob’s public key

E = e(e(P, LA), KB). (9.8)

To obtain the original message Bob applies

d(d(E, LB), KA) = d(d(e(e(P, LA), KB), LB), KA) = d(e(P, LA), KA) = P,
(9.9)

where we exploited (9.6) and (9.7) subsequently. This excellent idea was invented by
Diffie and Hellman thus the algorithm bears their names.

Remark: We ask the reader to notice that Alice uses her secret key to authenticate
the message, thus she prevents Eve from being able to send messages as if she were
Alice. This technique will be exploited in a related field called digital signatures in
Section 9.3.2.

On the first sight this approach seems to be very vulnerable since the relation
(function) binding the two keys together must be deterministic (and therefore
reversible), thus with possession of the public key and the ciphering/deciphering
functions the secret key can be unravelled theoretically. In practice, however, Bob
may select such a function for key generation which allows easy computation
of the public key from the secret one but the reverse operation proves to be a
computationally complex problem. These type of functions are called one-way
functions in cryptography (see Section 12.3.2). As a simple example we consider
an English–Hungarian dictionary. If we asked the reader to look up the Hungarian
counterpart of the English word home she/he would find it within seconds because of
the alphabetical sorting of the words. Contrary if the task were to find the Hungarian
word otthon in the same dictionary then hours could be spent without success.
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9.3.1 The RSA algorithm

The most widely used realization of the above principle is the RSA algorithm which
exploits the multiplication as a one-way function. Multiplication of two integers
belongs to the syllabus of any primary school, however, finding factors of a large
number there is no known efficient classical algorithm. First let us summarize how
to produce the secret and public key pairs in RSA.

1. Bob selects randomly two large prime numbers p and q such that p �= q.

2. He calculates N = p · q.

3. Bob selects randomly a small odd number a such that gcd(ϕ(N), a) = 1,
where ϕ(N) denotes the corresponding Euler function (see Section 12.3.2).
Since N is a product of two prime numbers we can utilize Theorem 12.2
resulting in ϕ(N) = (p − 1) · (q − 1).

4. Next he calculates the multiplicative inverse (see Section 12.3.2) of a in
modulo ϕ(N) sense using Euclid’s algorithm (see Section 12.3.3) and denotes
it with b: (a · b) mod ϕ(N) = 1. Moreover he knows that b always exists
because of Theorem 12.3.

5. Bob announces the public key KB = (a, N) and

6. keeps secret the private key LB = (b, N).

Encryption and decryption are performed by means of the following special
functions

E = e(P, KB) = (P a) mod N,

P = d(E, LB) = (Eb) mod N. (9.10)

Now we prove that by applying these functions Bob receives Alice’s message. Based
on (9.9) it is enough to realize that d(e(P, LA), KA) = P . Substituting the RSA
keys we reach

d(e(P, LA), KA) = (P ba) mod N.

Since a and b are multiplicative inverses modulo ϕ(N) = (p − 1) · (q − 1) there is
an appropriate integer k for which

ab = 1 + kϕ(N).

If P mod q �= 0 then

P ba ≡ P (P q−1)k(p−1) (mod q),

where exploiting Fermat’s little theorem (see Theorem 12.4) we get

P ba ≡ P (1)k(p−1) (mod q) = P (mod q).



PUBLIC KEY CRYPTOGRAPHY 193

=?

e()· d()·

channel

Alice Bob

Plain

LA

message (P)

Signature

(S)

Signature

(S)

KA

yes

no

S

P

P
~

REJECT

ACCEPT

Fig. 9.6 Architecture implementing the digital signature concept

Obviously P ba ≡ P (mod q) is fulfilled trivially if P mod q ≡ 0 thus for all possible
P

P ba ≡ P (mod q)

and similarly
P ba ≡ P (mod p).

Therefore the Chinese remainder theorem (see Theorem 12.6) ensures that

P ba ≡ P (mod N), ∀P.

9.3.2 Digital signatures

As we discussed earlier with the Diffie–Hellman algorithm the two-stage encoding
by Alice was motivated on one hand to prevent Eve from understanding Alice’s
message and on the other hand to avoid impersonation of Alice by Eve. Alice
achieved this latter functionality via using her own secret key originally intended
to decipher messages from Bob. In practice we are not restricted to apply these two
coding steps together. If a person uses the public key cryptography to authenticate
messages or to sign documents electronically then we call that person the user of the
digital signature.

The architecture related to digital signatures (without ciphering) is depicted in
Fig. 9.6. Alice produces her signature S using the encryption function and her secret
key LA

S = e(P, LA).

She amends the original message P with this personal signature and sends it to Bob
who obtains Alice’s public key from an open server. Next he performs the inverse
function on S calculating the assumed plain text

P̃ = d(S, KA).

Finally Bob compares P̃ and P to decide whether to accept the message or reject.
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In order to highlight that cryptography can be regarded as a really colorful
scientific area we present here a discrete logarithm based on the digital signature
scheme invented by ElGamal. The keys are generated according to the following
steps

1. Alice selects randomly a large prime p and a generator a of the multiplicative
group Z∗

p (see Section 12.3.2).

2. Next she selects a random integer b, 1 ≤ b ≤ p − 2.

3. Alice computes y = ab mod p and

4. announces public key KB = (p, a, y) while keeping LB = b secret.

In possession of the keys Alice generates the signature in the following way.

1. Alice randomly selects an integer 1 ≤ l ≤ p − 2 such that l and (p − 1) are
co-prime, gcd(l, p − 1) = 1.

2. Than she calculates r = al mod p and

3. the multiplicative inverse k of l in modulo (p−1) sense, (l·k) mod (p−1) = 1.

4. Alice computes s = [k · (h(P ) − b · r)] mod (p − 1), where h(·) is the
so-called hash function, which is used typically to perform a many-to-one
transformation from the set of plain messages to Zp.

5. As the last step Alice’s signature for message P is S = (r, s).

In order to check whether the sender of the received message was Alice, Bob should
perform the following procedure.

1. Bob obtains Alice’s public key KB = (p, a, y) from a free database.

2. He verifies that 1 ≤ r = al mod p ≤ p − 1, if not he rejects the message else.

3. Bob calculates q1 = (yrrs) mod p and

4. h(P ) and q2 = ah(P ) mod p.

5. Finally he accepts the signature if q1 = q2.

Let us verify the discussed algorithm. We know that during the signature generation
Alice produces

s = [k · (h(P ) − b · r)] mod (p − 1).

Multiplying both sides by the inverse of k we get

l · s ≡ l · k · (h(P ) − b · r) (mod p − 1).

Since (l · k) mod (p − 1) = 1 restructuring the congruence

h(P ) ≡ br + ls (mod p − 1)

from which we can conclude that

q2 = ah(P ) ≡ abr+ls ≡ (ab)r (mod p) = q1.
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9.4 QUANTUM-BASED SOLUTIONS FOR BREAKING PUBLIC KEY
CRYPTOSYSTEMS

First of all we would like to point out that symmetric key cryptography was
proven information-theoretically secure by Shannon as we have already discussed
in Section 9.2, hence we put our effort to breaking asymmetric key architectures.
The more so since the safety of the latter approach is based on the hope that the
applied one-way function is really ‘one-way’, i.e. the inverse operation has really
high complexity from a computational point of view. Unfortunately this property
strongly depends on the available computing power and algorithms. This is the point
where we have good chances to find a security gap enabling access to the heart of
the cryptosystem.

In Part II we introduced and explained such quantum algorithms which proved
to be much more efficient than their classical alternatives. We set ourself the target
in this section to utilize these algorithms for solving a rather practical engineering
problem. RSA is widely used in today’s Internet, therefore being able to crack it has
great significance.

9.4.1 Using Grover’s database search algorithm to break RSA

The Grover algorithm offers two approaches to finding the secret key LB . We
remember that N is a product of two prime numbers and it is enough to find one of
its factors to deduce the private key via repeating the steps described in Section 9.3.1.

• The brute force method exploits the fact that it is enough to test integer
numbers x from 2 up to �√N� whether they divide N without reminder or not
to find the smaller one among p and q. In order to launch the Grover search
we have to define on one hand the function f(x) controlling the Oracle and
on the other hand the optimal number of iterations. The first question can be
answered based in (7.4)

f(x) =
{

1 if N/x = �N/x� ,
0 otherwise,

while the second one requires (see 7.26) knowledge of the size of the database
and the repeated occurrence M of the searched entry, which equals in our case
trivially

√
N and 1 respectively. Hence we reach the following very promising

result

Lopt0 � π

4

√√
N = O(N

1
4 ).

• Another Grover algorithm based solution can be constructed if we use a
database search directly for factorization. More precisely we plan to find the
prime factors of N according to the combined classical–quantum procedure
introduced in Section 6.3.1, however, the phase estimation based order finding
Shor algorithm is replaced with a Grover search based one. Assigning the
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following function to the Oracle

f(x) =
{

1 if ax mod N = 1 ,
0 otherwise,

the measurement at the output will give back m which is equal to order r or its
integer multiple with high probability. Since x refers here to the computational
basis states stored in the index qregister, a plays the role of the random number
denoted by x when we were discussing factorization in Section 6.3.1. Of
course we need to perform quantum counting to obtain M and thus the optimal
number of iterations. In possession of M and m we are able to determine r.
Although the resource requirement of this method is obviously larger than
the previous one because of the additional classical steps and the quantum
counting we mentioned it to emphasize the wide variety of potential solutions
emerging from the quantum world.

9.4.2 Using Shor’s order finding algorithm to break RSA

Shor’s solution for finding the order allows breaking RSA much more efficiently than
the Grover algorithm does. Evidently the most trivial solution is if we seek for the
prime factors of N using combined classical–quantum algorithms as it was described
in Section 6.3. However, another brilliant alternative exists which follows an indirect
way to decipher the encoded message E = (P a) mod N .

Eve – our evil character in this story – downloads Bob’s public key KB = (a, N)
from the free database and launches the following process:

1. First she calculates the order of E in modulo N sense using the Shor algorithm
and denotes it with r that is ((P a)r) mod N = 1. This step requires that
E and N are relative primes. If not Eve can apply Euclid’s algorithm (see
Section 12.3.3) to eliminate the common factors, which provides p and q.

2. Next she computes the modulo r multiplicative inverse of a. The existence
of this inverse b� requires that a is co-prime to r. Since (Er) mod N = 1
and Euler’s theorem (see Section 12.5) states that (Eϕ(N)) mod N = 1 thus
ϕ(N) = k · r for certain integer k, that is prime factors of r form a subset
of those of ϕ(N). Keeping in view that gcd(ϕ(N), a) = 1, a and ϕ(N) are
relative primes, because of the operation of RSA algorithm, we can conclude
that a is co-prime to r, too.

3. Furthermore Eve recalls from the RSA algorithm that (a · b) mod ϕ(N) = 1
while she obtained in Point 2 that (a · b�) mod r = 1 and ϕ(N) = k · r hence
b� = b + k · r.

4. Now, in possession of b� Eve replaces in her decipher the unknown b with it.
Hence(

(P a)b�
)

mod N =
(
P ab+akr

)
mod N = (P ab · (P ar)k) mod N = P,
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where Eve reveals that the first term modulo N equals P while because of the
definition of r (see Point 1) the second term becomes 1. Thus Eve managed
to access the plain message without any knowledge about b. Clearly speaking
she utilized the special connection between b and b�.

In order to compare the different solutions according to the elapsed time before
breaking the code we defined the following scenario. As a reference let us consider
a classical and a quantum computer being able to perform 1012 steps (evaluations) a
second. We varied n = ld(N) – the length of N – from 16 bits up to 1024 and for
the following methods:
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Table 9.1 Code-breaking methods and related complexity

Method n = 128 n = 128 n = 1024 n = 1024 1s barrier

BF 1.8 · 107 s 0.58 year 1.3 · 10142 s 4 · 10134 year 80 bit
BC 6 · 10−4 s 1.9 · 10−11 year 3.5 · 108 s 11.29 year 273 bit
G 4 · 10−3 s 1.3 · 10−10 year 1.1 · 1065 s 3.7 · 1057 year 159 bit
S 2 · 10−5 s 6.6 · 10−14 year 0.01 s 3.4 · 10−11 year 10000 bit

• BF: brute force classical method which scans the integer numbers from 2 to
	√N
 with complexity O(

√
N),

• BC: best classical method requiring O(exp[c · ld 1
3 (N)ld

2
3 (ld(N))]) steps,

• G: Grover search based scheme with O(N
1
4 ),

• S: Shor factorization with O(ld(N)3).

Fig. 9.7 presents the four curves on a logarithmic scale. As we expected Shor’s
algorithm proves to be the most efficient while the Grover based solution and the best
classical one share second and third place. In order to give a quantitative comparison
we enlarged the n = 16 . . .350 region in Fig. 9.8 and summarized some important
points of the curves in Table 9.1. The reader may conclude that Shor’s proposal
will make RSA-type public key cryptography obsolete once its reliable physical
implementation becomes available on the market. Fortunately the panic this fact may
evoke can be moderated significantly due to the new ideas explained in Chapter 10.

Finally we would like to point out that discrete logarithms (see Section 6.5.2)
based public key cryptosystems (e.g. digital signature scheme introduced in
Section 9.3.2) are also very vulnerable because the discrete logarithm problem can be
traced back to period finding, which is common in order finding using factorization.

9.5 FURTHER READING

Basic terminology of cryptology was summarized within this chapter using the
excellent Handbook of Applied Cryptography authored by Menezes, van Oorschot
and Vanstone [8]. Readers interested in this specific area are strongly recommended
to turn to this book, it is accessible via the Internet, too.

We used a simplified description of the security system of GSM networks in
this chapter. In reality it is much more complex. For example the keys used for
ciphering are actually derived from the symmetric secret keys each time that a new
call is established, or encryption covers only the air-interface sections of the whole
connection.

Gilbert Vernam published the so-called one-time pad in [148] in 1926. Shannon
proved its secureness in [136] in 1949.
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The basic idea of asymmetric cryptography was proposed by two experts from
Standford University, Diffie and Hellman [127] in 1976. The most successful
implementation – the RSA – algorithm was invented5 by Rivest, Shamir and
Adlemann [128] at the Massachusetts Institute of Technology in 1978. A good survey
of public and secret key cryptographic algorithms can be found in [143]. ElGamal’s
digital signature scheme was introduced in [57].

Concerning our short introduction to cryptography we would like to strongly
emphasize that only basic principles and the most popular algorithms were
summarized. The related literature covers various versions of these techniques as
well as solutions based on different ideas.

5In accordance with the British Government, an RSA-like public key cryptography algorithm was invented
at the Government Communications Headquarters in Cheltenham as early as in 1973 [58], [43].
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Quantum-based Key

Distribution

Quantum key distribution is one of the most discussed topics of quantum computing.
The motivation behind this can be traced back to implementation issues. Namely
while construction of a quantum computer is fairly difficult at this moment because
we are not able to isolate sufficiently the system from the environment, optical
fibers or even the open air proved to be appropriate channels for distribution of
cryptographic keys if photons are exploited as quantum bits.

As we have discussed in Chapter 9.1 when we were introducing cryptography
in connection with code breaking, secure communications between parties can be
provided in two essentially different ways. Both are common in using so-called keys
to encrypt plain text messages. Symmetric key cryptography (see Section 9.2) applies
the same keys at both communication edges. This approach is theoretically secure.
From a practical point of view all the technical problems can be solved efficiently
(see Sections 9.2.1 and 9.2.2) only sharing the common key represents a real
challenge. Either we design a strongly centralized1 network architecture, e.g. cellular
mobile systems, or the parties have to meet regularly to exchange the keys. Public key
cryptography (see Section 9.3) is advantageous in a distributed environment because
it applies different keys making key exchange obsolete. Unfortunately we have to
face the issue that its secureness has never been proven; only a belief shores up our
hope that calculation of the secret key from the public one is a really computationally
complex problem. This hope is, however, fading due to quantum computing and
especially Shor’s factorization algorithm. Now, what shall we do in order to provide
secure communications in a distributed network if it is endangered by quantum

1The terms centralized and distributed characterize here the system only from a security point of view!

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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computers? The answer is similar to the case when scientists were confronted with
quantum mechanical effects reaching the atomic scale due to Moore’s law. If we are
affected by these strange effects why not benefit from them?

Surprisingly quantum computing proved to be much more efficient in averting
eavesdroppers than in supporting agents/criminals hunting for secret information.
If we were able to distribute keys in a secure manner based on quantum mechanics
then the problem could be traced back to symmetric key cryptography. Thus quantum
computing offers the answer to a crucial technical problem.

This chapter summarizes the basic ideas establishing quantum key distribution.
We introduce the first successful protocol called BB84 in Section 10.1, which is
followed by its simplified version in Section 10.2. The security of both protocols is
based on the no cloning theorem. Finally we explain the operation of another type of
protocols exploiting entanglement and the Bell inequality in Section 10.3.

10.1 THE BB84 PROTOCOL

In the same way as a director of a costume drama we have to assign the roles. We ask
Alice and Bob to act the two lovers who are intending to exchange messages while
Eve is playing the evil eavesdropper. In order to highlight all the important details of
the BB84 protocol we explain first how the parties Alice and Bob are communicating
in an idealistic scenario, that is we assume that the communication channel is free
of errors and Eve is away on holiday. Next we ask Eve to return unexpectedly and
to make an attempt to capture the secret key via observing the channel. Finally we
consider a realistic channel with its consequences.

10.1.1 Idealistic scenario

Obviously Alice and Bob have to chose such an idea as the basis of the new key
distribution protocol which is rooted in the quantum world since no classical method
is known for the problem. We have already met with such phenomena e.g. no cloning
theorem (see Section 2.7) or entanglement (see Section 2.6). The BB84 protocol
exploits the former one.

The reader may follow the handshaking steps of the protocol in Fig. 10.1:

1. Since Alice has already learned that perfect secureness requires random keys,
she produces first a binary sequence sA using a random number generator.2

For the sake of simplicity let us assume the following eight-bit length series
[01100101]. Alice is familiar with the rule that non-orthogonal states cannot
been copied successfully. Therefore she buys two different modulators in the
nearest QAS.3 One of them polarizes photons horizontally if it has logical
0 input and vertically if it is feeded with 1, that is it produces states |0〉

2Which can be a quantum-based one as well!
3Quantum Accessories Shop.
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Fig. 10.1 Steps of BB84 protocol if no eavesdropper is present and the channel is idealistic

and |1〉, respectively. The other device establishes ±π
4 polarization to logical

0 and 1 values or equivalently |0〉±|1〉√
2

states. Next she produces another binary
sequence mA with the same length, whose 0 bits advise Alice to use modulator
No. 0 to polarize the actual photon from sA before transmission while bits with
value 1 suggest using modulator No. 1. Hereby logical 0 and 1 will be encoded
into non-orthogonal states.

2. Provided mA = [10111100] Fig. 10.1 presents the transmitted photon (qbit)
series over the quantum channel (e.g. an optical fiber).

3. Obviously if Bob were in possession of mA he would be able to restore
sA without any error by applying two measurement devices: one of which

measures in the |0〉, |1〉 basis while the other one in the |0〉±|1〉√
2

. Unfortunately
mA is unknown to him therefore he tries to guess it using his own random
series mB = [00101010]. This sequence has identical and non-agreeing bits
compared to mA. Since about half of the bits are identical the corresponding
bits in sA will be detected correctly in the demodulator output sB with sure
success. Furthermore in the case of the bits belonging to the remaining half
the measurement will result in correct answers on average for every second
bit. Hence Bob can expect a BER of 25%.

4. However, in order to understand Alice’s messages Bob needs to use the same
key, i.e. kA = kB . To fulfil this requirement they have to perform some kind
of ‘error correction’. Therefore Alice and Bob announce mA and mB on a
public classical channel.
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Fig. 10.2 Eve’s eavesdropping equipment

5. Finally they discuss which bits are the same in the two sequences. Selecting
the related bits from sA and sB they obtain two identical series kA and kB

having on average half of the length compared to sA.

10.1.2 Eve appears on the scene

Now, Eve returns and attempts to obtain kA = kB by placing an eavesdropping
device into the quantum channel. Her instrument is depicted in Fig. 10.2 which
implements the following general strategy. Eve feeds its equipment on one hand with
qbit |ϕ〉 captured in the channel and on the other hand with a predefined qregister |ψ〉.
Next an arbitrary unitary transform U is executed on the inputs which has to produce
|ϕ〉 and a modified version of |ψ〉 say |ψ′〉. If Eve manages to produce different |ψ′〉s
from different |ϕ〉s then the former deviation can be exploited to differentiate the
qbits traveling over the channel.

Clearly speaking Eve would like to build a special quantum copy machine. As we
have already learned in connection with the no cloning theorem this endeavor will
fail unless the states are orthogonal. This fact can be shown using several simple
steps. Let us assume that |ϕ〉 and |ϕ′〉 are non-orthogonal and non-identical vectors
that is

〈ϕ′|ϕ〉 �= 0, 〈ϕ′|ϕ〉 �= 1, (10.1)

then Eve expects that

U(|ϕ〉 ⊗ |ψ〉) = |ϕ〉 ⊗ |ψ′〉
U(|ϕ′〉 ⊗ |ψ〉) = |ϕ′〉 ⊗ |ψ′′〉,

where
〈ψ′|ψ′′〉 �= 1.

Because U is unitary it saves the inner product (see Section 12.2.5), namely the inner
product at its input must equal the one computed to its output

〈ϕ|ϕ′〉 〈ψ|ψ〉︸ ︷︷ ︸
≡1

= 〈ϕ|ϕ′〉〈ψ′|ψ′′〉.

Since 〈ϕ′|ϕ〉 �= 0 because of (10.1) we can divide both sides with 〈ϕ′|ϕ〉 yielding

1 = 〈ψ′|ψ′′〉, (10.2)
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Fig. 10.3 Steps of BB84 protocol if Eve is present and the channel is idealistic

which can be satisfied if and only if |ψ′〉 and |ψ′′〉 are identical, i.e. Eve can access
no information about the captured qbits. The most that she can do is to follow Bob’s
method as if she were Bob (see Fig. 10.3). So Eve produces mE = [10001011] and
measures the captured photons in compliance with this sequence. Thus she obtains
an sE = 01010010 series, but in order to avoid the exposure by Bob she has to
send photons towards Bob. Because Eve does not know Alice’s mA she can use
only mE together with sE instead. Statistically mA and mE agree in half of the
positions (bits) and the belonging bits in sA will be detected correctly. These bits
can be retransmitted to Bob without revealing the fact of eavesdropping. However,
in the case of the other half Eve applies the wrong modulator, which causes errors
at Bob. Approximately half of this half i.e. overall 25% of the received bits will
fail. Therefore if Alice and Bob introduce a sixth step into the protocol devoted to
comparing sufficiently long parts of kA and kB – which should be identical – they
will find errors (different bits) at certain positions. These errors mean the tragic end
for Eve in the drama (or not?).

Remark: This protocol assumes that Eve is not able to perform a so-called man
in the middle attack, that is she has no possibility to play for Alice as she were Bob
and for Bob as she were Alice in each step of the protocol. In the case of the BB84
protocol this fact can be easily recognized.

10.1.3 When the channel introduces errors

Having been defeated in the first act Eve still does not give up hope of tricking
Alice and Bob. At the beginning of the second act the main conclusion of Eve’s
eavesdropping action can be summarized in a very simple way. She introduces errors
into the communication while observing the channel. Wait! By replacing idealistic
channels with practical ones Bob will observe errors even if Eve is on holiday.
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Therefore the next important question to answer is how to distinguish the two types
of errors? Obviously BER values for practical channels are typically known. For
instance an optical fiber introduces about 10−9 BER. Thus if the experienced BER is
significantly higher than the acceptable value for the given channel this fact reveals
Eve’s attempt.

An interesting idea may be conceived in Eve’s mind. As we inferred at the end of
the previous subsection obtaining 50% of information at Eve causes 25% BER for
Alice and Bob. What if Eve intercepts only one-tenth of the photons in the channel?
This strategy would cause only 2.5% BER which is not significant compared to
errors introduced by the channel. Of course Eve must pay the price for it, namely she
obtains only 5% information about the key. Unfortunately to achieve the magnitude
of an optical BER Eve has to give up almost all the information related to the secret
key. On the other hand an open air connection is less reliable thus Eve still has some
business here. Furthermore Eve can reveal another security gap.

Alice and Bob need the same secret key bit by bit. In order to eliminate the
errors caused by the channel (or partly by Eve) they have to perform a classical
error correction procedure over the public classical channel which can be accessed
by Eve as well. Observing these classical bits Eve may increase mutual information
between kA and kE . Hence Alice and Bob must perform another classical algorithm
called privacy amplification to decrease this unwanted correlation. This technique
further reduces the length of the key but the mutual information is made less than a
predefined engineering value. For details related to privacy amplification see Further
Reading.

10.2 THE B92 ALGORITHM

The reader may find that the BB84 protocol is a bit complex in terms of protocol
steps. Bennett developed further the BB84 protocol and he published a simple two-
state protocol called B92 while still exploiting the no cloning theorem. We explain
here the basic operation of this protocol because it managed to catch the essence
of non-distinguishable quantum states in the simplest way. On the other hand we
emphasize that although this algorithm is secure in theory, from the practical point
of view it has some shortcomings (see Further Reading). Now, the communication
steps between Alice and Bob can be followed in Fig. 10.4:

1. First Alice generates a random binary sequence mA = [10111100] as she did
with the BB84 protocol and modulates directly4 the photons according to a
simple rule

|ϕ〉 =



|0〉 if mA[i] = 0
|0〉 + |1〉√

2
if mA[i] = 1,

4i.e. no sA is required!
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Fig. 10.4 Steps of B92 protocol if Eve is not present and the channel is idealistic

that is she uses non-orthogonal polarizations again. Index i refers to the ith bit
of a series.

2. Next Alice sends the ith qbit over the quantum channel to Bob.

3. Bob receives this qbit and because he has no idea about Alice’s mA

he generates another random sequence mB = [00101010] and uses
its corresponding bit to determine which of the previously defined two
measurement devices should be applied. He stores the measurement results
in sB = [10010010], where Bob gets 0 with sure success in all those positions
where mA[i] = mB[i]. Other bits prove to be 0 or 1 with the same probability.

4. It follows from the previous point that Bob yields sB[i] = 1 only if mA[i] �=
mB[i]. Therefore he announces sB and Alice and Bob keep those bits from
mA and mB as the secret key for which sB[i] = 1. Obviously one of them
must invert his/her own key bits.

To avoid eavesdropping Alice and Bob use the same techniques as the BB84
protocol.

Remark: It is easy to see that unlike the BB84 protocol this method can be
performed bit by bit.
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10.3 EPR PARADOX BASED KEY DISTRIBUTION

Unlike the previous two protocols which exploited the possibilities concealed in
the no cloning theorem there is another special quantum phenomenon available
called entanglement for potential application within this topic. However, in order
to establish a seamless transition from the BB84 protocol to the new one we ask Eve
to play a friend of Alice and Bob in this new scene. Now, Eve generates random
sequences sE and mE and uses the latter one to determine which of the two bases
(modulator) to use for the bits of the former bit series. She makes a copy of the
actual qbit5 and sends half of the pair to Alice and the other half to Bob. They use
their own random sequences mA and mB to measure the received qbits (similar to
Bob’s operation in the BB84 protocol). Next Eve announces her mE , which allows
Alice and Bob to filter those qbits which were measured in the same bases. These
bits will be identical and can be used as the secret key (of course after classical
error correction, etc.). Obviously while Eve remains correct this new protocol and
the original BB84 are functionally equivalent as it is depicted in Fig. 10.5.

Unfortunately this protocol is very fragile in Eve’s hand because Alice and Bob
can never be sure about Eve. Therefore we have to further modify the three-party
algorithm asking Eve to send entangled pairs of qbits, e.g. Bell states |β00〉 =
|00〉+|11〉√

2
. From Alice and Bob’s point of view there are only minor changes in the

protocol. Since the measured bits are identical at both parties if they used the same
measurement bases, Alice and Bob have to exchange their mA and mB series over
a public classical channel to obtain the key bits. Only one question remains, namely
how can they reveal whether |β00〉 has been modified due to an intentional attempt to
access the information? The answer is based on the Bell inequality, which is in close
connection to the EPR paradox (see Section 2.6.5). Violation of the Bell inequality
can be tested by Alice and Bob by devoting several received qbits.

It is interesting to highlight the fact that in the case of the EPR based protocol no
predefined key exists! Instead Alice and Bob generate the secret key indirectly when
measuring their own halves of the Bell pairs.

Remark: Of course the entangled pairs can be produced not only by a third party
but Alice can prepare and send them to Bob or they can share a couple of pairs in
advance.

10.4 TELEPORTATION AS A USEFUL ELEMENT IN QUANTUM
CRYPTOGRAPHY

This chapter is devoted to secure classical information transfer. As we observed the
theoretically secure one-time pad implementing symmetric key cryptography often
cannot be applied due to practical reasons in a classical environment. In order to

5Recall that known non-orthogonal states can be copied without any difficulties.
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Fig. 10.5 Equivalence of two- and three-party version of BB84 protocol

trace these scenarios to the Vernam cipher previous sections introduced quantum-
assisted solutions establishing secure secret key distribution. All of these efforts were
devoted to delivering classical information from Alice to Bob. However, readers
with open minds to this area may put the natural question: what if we would like to
send quantum information (a message encoded into a sequence of one-qbit quantum
states) between the edges of a larger quantum system in a secure way?

The answer is much simpler than one would expect. We ask the reader to recall
quantum teleportation explained in detail in Section 4.2. Using this algorithm Alice
was able to transfer an arbitrary qbit |ϕ〉 to Bob involving an entangled |β00〉 Bell
state. As we discussed earlier the two classical bits carry only relative information
between |ϕ〉 and the half of |β00〉 thus intercepting these bits in itself does not allow
Eve reproducing |ϕ〉. Eavesdropping here and cloning in Exercise 4.2 have the same
fundamental barrier.

10.5 FURTHER READING

The first workable quantum key distribution protocol was invented by Bennett and
Brassard [35, 36]. The earliest discussion of privacy amplification can be found in
[39]. Later it was extended in [34, 37]. Bennett reduced the number of handshaking of
the BB84 protocol in [30] in 1992; this solution is often referred as the B92 protocol.
Although this protocol proves to be safe theoretically because non-orthogonal states
cannot be copied without perturbation, unfortunately it has some drawbacks in
practice. This lies in the fact that in exchange of some losses the states can be
distinguished unambiguously [119]. To realize these losses Alice and Bob have to
monitor the attenuation of the channel, however, if Eve is able to influence this
property of the channel then she can trick our lovers.

We discussed in this chapter the two-state B92 and four-state BB84 protocols. An
obvious step ahead is if one considers a two-state protocol for instance as Bruss [31]
in 1998 or Bechmann and Gisin [72] did in 1999. The applied six states belong to
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three different basis. This causes on one hand that the probability of using the same
basis by Alice and Bob reduces to 1

3 , on the other hand the bit error ratio originating
from Eve’s action increases to 33% instead of 25% experienced at the BB84 protocol.

The EPR-paradox based key distribution protocol was published by Ekert [56] in
1991.

We have summarized only the basic ideas behind quantum-based key distribution
and some well-known protocols highlighting the applications of these concepts.
However, this topic is much more popular and fully discussed in the literature thus
interested readers are suggested to follow the links in Chapter 15.

Concerning the implementation of quantum key distribution algorithms there are
several problems to solve. First we have to select a suitable physical representation
of qbits. A self-evident solution is offered by photons which are the fastest
information-carrying alternative. Furthermore as an important advantage light is
widely used in classical communications both in wired (optical) or in wireless
(infrared) environments, thus large amounts of theoretical knowledge and practical
devices are available. Of course in the case of quantum key distribution we are
planning to use these channels in different ways. Therefore some extra requirements
must be satisfied.

First of all we need appropriate photon sources (so-called photon guns) that
are able to fire single photons. On the receiving side we should use single photon
detectors. Implementation of both devices seem to be very challenging tasks which
can be solved hopefully in the near future. Fortunately we do not have to wait until
they are available on the market because faint laser pulses can replace them in the
experiments.

Cryptography independently of its classical or quantum origin requires
sophisticated random number generators. As a matter of fact the quantum behavior
of nature at a small (nano) scale offers a perfect solution. As we learned earlier

measuring state |0〉+|1〉√
2

in the |0〉, |1〉 basis can be regarded as a perfect coin
tossing without hidden variables. Thus quantum-based random number generators
are entering a fairly promising arena [21, 76].

As the last but not least barrier repeaters have to be considered. Long-distance
communication cannot be maintained without deploying repeaters within certain
ranges in order to compensate for the attenuation of the physical medium. Unlike
classical optical communications where we use orthogonal (i.e. classical) states
to represent information, making copies of the incoming bits does not cause any
technical difficulties, however, in the case of quantum information transfer the no
cloning theorem prevents us from building perfect repeaters.

The first successful experiment [34] related to quantum key distribution was
carried out at IBM by in 1989. Bennett and his team managed to transfer keys over
a short link 30 cm of length. Muller and his colleagues [15] at University of Geneva,
Switzerland increased this distance first to 1100 m in 1993, which was extended
[13, 14] to 23 km in 1995. They implemented the BB84 protocol over a traditional
optical fiber under Lake Geneva, which was the first experiment outside a laboratory.
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In the meantime Huttner and his colleagues [27] (1996) and Clarke et al. [105]
(2000) have demonstrated how to eavesdrop the B92 protocol in practice.

Jacobs and Franson [28] were the first who managed to demonstrate outdoor free
space key distribution over 75 m in 1996. Hughes and his colleagues [150] exceeded
the 1 km free space barrier in 1998. Atmospheric key distribution has already been
tested by John Rarity [75] over a 2 km link in 2001 while Hughes and his colleagues
[126] reached the 10 km distance in 2002.

As the most dynamically developing area in quantum computing quantum key
distribution has already reached the commercialization phase, see e.g. [78, 77].

Since the topic is so wide and popular listing both the theoretical and practical
results in the field of quantum key distribution is outside the scope of this book
therefore interested readers can find a fairly good summary of different realization
techniques and results in [113].
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Surfing the WEB on

Quantum Basis

11.1 INTRODUCTION TO WEB SURFING

The number of hosts and the generated traffic on the Internet grows exponentially
day by day. The Internet Protocol (IP) which was originally designed for data transfer
among academic institutes slowly but surely enmeshes our globe. At the same time
the original aim of this network and protocol passed through significant changes.
This means not only the appearance of Internet access in each household but state-of-
the-art infocom systems use or start using IP as their networking layer protocol. The
new, so-called ALL-IP concept is depicted in Fig. 11.1. The global infocom network
consists of an IP-based backbone and various kinds of access networks, which can
be both wired or wireless, and of course it is connected to the Internet as well. Thus
users and customers can exploit end-to-end IP connectivity.

The World Wide Web (WWW or simply WEB) is sitting on the Internet and
enables users to access WEB content placed anywhere. The spectrum of such
contents is quite broad from weather forecasts and stock exchange data through to
submarine images about the sea-bottom to movie/music trailers. From a technical
point of view Internet content is delivered in IP packets which provide a datagram-
type bearer service. This means that the wanted content is segmented into smaller
parts and these parts are put into packets. For the sake of simplicity a connection
between two points on the Internet are connected together in the IP layer in a fairly
straightforward way. There is no call set up phase to reserve resources in advance
instead the packets are launched simply into the network and they have to find their
destinations. In order to make this job easier useful payload is extended by a so-
called header which contains hints for the packet, e.g. the address of the destination
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Fig. 11.1 The ‘All-IP’ concept

and the sender. Furthermore special entities are deployed all around the Internet, we
call them routers. They are similar to police officers in a busy metropolis to whom
we can turn if we feel lost. Routers have routing tables advising the packet to travel
further in a proper direction towards the destination. In order to make this addressing
mechanism more sophisticated IP addresses are unique 32- or 128-bit strings1 and
are distributed among hosts on a geographic basis i.e. a 32-bit address is divided into
four one-byte fields introducing hierarchical levels into routing e.g. 65.246.255.51
refers to the address of Internet Engineering Task Force (IETF) responsible for the
coordination of ‘standardization’ of the Internet.

Although the hierarchy makes the routing really efficient it has some drawbacks
as well. For instance mobile terminals which are continuously changing their access
points to the network get into serious trouble. Either they should change their IP
addresses at each access point change or the routing tables should be updated. This
problem leads far away hence interested users are advised to look for ‘IP mobility’
(even using a WEB browser). However, hierarchical location-based addressing lies
in the heart of this chapter as well. To understand it we shortly summarize how a
certain WEB content can be downloaded from a distant server to our host computer.

Memorizing 32-bit binary numbers even in decimal form is not for an everyday
human brain therefore nicknames (Uniform Resource Locators, URL) are applied to
identify hosts (more precisely hosts and contents), e.g. for IETF we use www.ietf.org.
On the other hand we should provide mapping between names and numerical IP
addresses. This functionality is provided by Domain Name Servers (DNS). When we
launch a request from a WEB browser this request is directed first to a name server

1In the case of IPv4 we use 32 bits to address a certain host uniquely while IPv6 applies 128 bits for this
purpose.
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which searches its table and based on the result passes the request to the wanted
content server. This strategy works fine until the requests dedicated to a given server
exceed a certain amount. Popular WEB sites can become easily overloaded, hence
the applied technique needs to be enhanced. Nowadays replicating the WEB content
on different servers means a promising breakthrough. If these servers are distributed
in a proper way throughout the world then it is enough to direct the request to the
nearest server. However, this ‘enough’ proves to be quite a hard task because it
has to be implemented in a totally compatible way. Therefore a special system is
realized [121] over the name servers. Thus the name server first obtains a request
and forwards this query to the overlay system (called Akamai), which answers with
the numerical IP address of the nearest content server storing the requested content.
To do this the overlay system needs to know the location of the user. Unfortunately
protocols used on the Internet do not allow handling the name server’s address and
that of its client it is currently serving at the same time. Therefore for compatibility
reasons the overlay system only has information about the location of the name
server, which might be fairly unreliable. Fortunately the overlay system can start
a ‘Twenty Questions’ or ‘Barkohba’2 like game to guess the user’s numerical IP
address. If the client has only one single IP address then it is enough to ask for each
digit of its address question by question by the overlay system similar to the Twenty
Questions game where one of the players (we call him/her ‘Adversary’) selects a
secret from a large set e.g. dog from animals, and the other one (let’s call him/her
‘Seeker’) has to guess this secret putting questions to the adversary who answers
with yes or no.

The problem becomes more interesting if the user has more than one address
either for security or other reasons. Several important questions arise in this context.
How much information can we obtain about the secrets (IP addresses) using yes/no
type questions? Is it possible to access completely the secrets with an arbitrary large
number of questions? The problem has been tackled from mathematicians’ point of
view in [59].

Chung, Graham and Leighton investigated this ‘Guessing Secret’ problem
using classical computing tools and listed several strategies and analyzed their
computational complexity. Later similarities between the Guessing Secrets problem
and list decoding were discovered. This latter problem is related to error correction.
When we are transmitting digital information over a noisy channel errors may occur.
If the number of erroneous bits are moderated suitably chosen overhead (error-
correcting codes) can help to recover the original data. However, in a fairly hostile
radio channel this effort could be not enough hence we are not able to decode
unambiguously the transmitted information. In this hopeless scenario, however, one
can isolate a small set (list) of potential messages which contain the original message

2Bar Kohba (‘son of the star’) originally Simon bar (ben) Kosiba was the commander of the Jewish
troops during the second Jewish War (132–135 B.C.) against Rome [147]. After some success he and his
troops became encircled in a mountain fort. Due to betrayal they were captured and executed in 135 B.C.
According to a legend Bar Kohba’s tongue was cut out. Hence he was able to answer only yes or no by
shaking his head during his imprisonment.
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as well. The computational complexity of the best-known classical strategy for the
Guessing Secrets problem [111] is O(log(L)+log3(L)) whose log(L) term refers to
the number of questions and log3(L) refers to the evaluation process of the answers.

11.2 QUANTUM-BASED SOLUTION OF THE GUESSING SECRET
PROBLEM

Before invoking quantum computing to handle this challenging problem and prove
its superiority over classical approaches let us first give the precise mathematical
formulation. We denote the set of potential secrets by Λ containing L different
elements. Moreover only the two-secret case (k = 2) is considered for the sake of
plausible explanation. Interested readers will find references to the generalized (k ≥
2) case at the end of this chapter. The two secrets are referred as s1, s2 ∈ Λ coded
into l = ld(L)-bit binary numbers and the Seeker strives to recover one of them. The
Adversary’s yes/no answers can be modeled via functions fq(si) : {0, 1}l → {0, 1}
where q ∈ {0, 1}l stands for the binary identifier of a certain question. The adversary
is assumed malicious but truthful. The former attribute refers to the fact that he/she
may respond a given question q by fq(s1) or fq(s2) even randomly while the
latter ensures us that fq(si) is deterministic. For the sake of better understanding
the Guessing Secrets problem can be visualized by means of graphs consisting of
vertices representing the secrets and edges showing logical connections between
them. A simple four-secret example is depicted in Fig. 11.2. At the beginning of the
game the graph (phase A) is full meshed and each question eliminates one or more
vertices. As Chung and his colleagues noted in [59] the minimal number of questions
is O(ld(L)) in compliance with our heuristic expectation (cf. the Twenty Questions
as the simplest case). If we manage to reach phase B – which comprises two disjoint
pairs of vertices (s1, s2) and (s3, s4) – thanks to our wise questions then the Seeker
can hit the jackpot via asking such that fq(s1) = fq(s2) �= fq(s3) = fq(s4).
Contrary phase C and D show two topologies where the Adversary can trick the
Seeker. In case of a star centered on s1 (phase C) giving answers related always to
s2 the Seeker is able to deduce only s2 because it has no common property with
other non-selected elements of Λ, but s1 remains uncovered. Moreover in a triangle-
type scenario (phase D) independently from the Seeker’s questions the Adversary
can prevent him from deciding which of the two remaining three elements are the
secrets. So our goal is to gain as much information about the secrets as possible
using as few questions as possible.

The quantum computing based solution of the Guessing Secrets problem was
discussed first by Michael Nathanson [114] in 2003. We will follow his line of
thought with minor modifications when explaining how to trace this problem to our
previous results.

If the readers make a short inventory of the already discussed algorithms and
techniques they can easily recognize the similarities between the Deutsch–Jozsa
algorithm presented in Section 5.2 and our actual challenge. As the major difference
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Fig. 11.2 Graph representation of the Guessing Secrets problem

we note that the roles were exchanged, namely we (the hero) had to guess q that
is whether fq(si) was constant or balanced using arbitrary inputs si. Now, we have
freedom to choose any function (questions) and a reduced set of {s1, s2} ⊂ Λ should
be deduced.

As a straightforward approach – often used in the literature – we define the
answers as a binary inner product (modulo 2 sum of bitwise products) of index q
and question s that is fq(s) = qs. Therefore a similar architecture can be applied as
we used in the Deutsch–Jozsa problem in Fig. 5.3 with a bit-modified f -controlled
CNOT gate. The original master equation (5.3) has to be replaced by

Uf : |q〉L|y〉 → |q〉L|y ⊕ fq(si)〉, (11.1)

and obviously the Adversary selects that gate which belongs to the chosen secret
si. Furthermore the upper qregister contained after the Hadamard gate an equal
superposition of all possible arguments x of f(x) while now we feed the f -controlled
CNOT gate with the equal superposition of all possible questions q.

Next, let us investigate the probability amplitudes at the output of the upper
qregister similarly to the princess but from the Guessing Secrets problem point
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of view. Equation (5.9) helps us to derive the amplitude cx′(si) belonging to
computational basis state |x′〉 : x′ ∈ Λ

|ϕ3〉 =
∑

x′∈{0,1}n


 1

L

∑
q∈{0,1}n

(−1)qx′+fq(si)




︸ ︷︷ ︸
cx′(si)

|x′〉 ⊗ |0〉 − |1〉√
2

. (11.2)

Obviously we are interested in the probability of measuring the secrets x′ = s1 or
x′ = s2. In order to obtain the corresponding probability amplitudes let us interpret
cx′(si) in the following way

cx′(si) =
1
L

∑
q∈{0,1}n

(−1)qx′+fq(si),

and the sum contains +1 and −1 terms according to qx′ + fq(si) and is even or odd,
that is qx′ = fq(si) or not. Therefore cx′(si) can be rewritten as

cx′(si) =
1
L

[#(q : qx′ = fq(si)) − #(q : qx′ �= fq(si))] (11.3)

and explained in the following manner: it counts – up to a constant factor 1
L – for

a certain potential secret x′ how many times (for how many different questions) it
happens that fq(x′) = fq(si) or fq(x′) �= fq(si) where si depends on the decision
of the Adversary.

Since fq(si) equals either qs1 or qs2 thus concerning cx′(si) there are three
different types of questions:

• Type A: fq(si) = qs1 = qs2

• Type B: fq(si) = qs1 and qs1 �= qs2

• Type C: fq(si) = qs2 and qs1 �= qs2.

It is easy to see that for fixed s1, s2 ∈ Λ exactly half of the questions fall into the
first category, i.e. #(TypeA) = L

2 , furthermore

cx′(s1) =
1
L

[#(TypeA) + #(TypeB) − #(TypeC)],

while

cx′(s2) =
1
L

[#(TypeA) + #(TypeC) − #(TypeB)].

The probability of measuring |s1〉 or |s2〉 can be obtained by adding together classical
probabilities

P (s1 ∨ s2) = |cx′(s1)|2 + |cx′(s2)|2,



QUANTUM-BASED SOLUTION OF THE GUESSING SECRET PROBLEM 219

which always upperbounds

(cx′(s1) + cx′(s2))2

2
=

1
2

(
2 · #(TypeA)

L

)2

=
1
2

because of the real coefficients and thanks to Exercise 11.1:

P (s1 ∨ s2) ≥ 1
2 .

Since cx′(s1) + cx′(s2) ≡ 1 the equality can be achieved if cx′(s1) = cx′(s2)
which is equivalent to #(TypeB) = #(TypeC). This points out the most efficient
strategy of a malicious Adversary. He/she should choose s1, s2 when calculating the
answers such that this special relation will be achieved. Contrary the Seeker may use
this assumption as a worst-case scenario therefore if his/her strategy enables efficient
access to the secret(s) even in such an evil-minded case then he/she can always be sat-
isfied. Let us investigate the P (s1∨s2) = 1

2 case. Obviously the probability of failure
is also Pf = 0.5. If the Seeker repeats the proposed quantum guessing algorithm then
the probability of being unsuccessful after the nth attempt equals PF = 0.5n, which
tends to zero very rapidly as n grows. Returning to our infocom example the list-
decoding technique requires O(l + l3) complexity with l = 32 or 128, i.e ∼ 32800
or 2097280 elementary operations while enabling the Seeker to use the quantum
algorithm l times he/she needs only ∼ 1056 or 16512 operations with corresponding
failure probability 2−32 ≈ 10−9. Moreover the Seeker has the freedom to reduce
further the required number of elementary operations in price of less strict probability
of fiasco, which means that the computational complexity of the evaluation process
of the answers is O(1) while a classical Seeker cannot avoid O(l3).

Next we assume a well-meaning Adversary. If he/she insists on using the same
secret say s1 for all the questions then #(TypeC) becomes 0 thus cx′(s1) = 1,
therefore a measurement on the upper qregister will yield |s1〉 with probability one.
To achieve this the Seeker needs only one single but quantum question compared to
the known most efficient classical counterpart which scans s1 bit by bit by means of
l questions.

The k > 2 case has several surprises in store which are outside the scope of this
book. Here we would like only to give some motivation to the interested readers
to continue the exploration of the problem. If we have more than two secrets the
possibilities for the Adversary begin to flourish. Receiving a certain question he/she
can select the secret to compute the answer randomly or can make a majority decision
based on the evaluation with all the secrets, etc. Nathanson also investigated this
more sophisticated problem in [114] but enough questions have been left open for
talented readers.

Finally it is worth emphasizing that the technical problem can add individual
colors to the problem. For instance the Internet content hunting may assume a
conscious Adversary which could be well-minded or hostile. On the other hand in
the case of list decoding the channel behaves rather like a puckish goblin playing
dice.

Exercise 11.1. Show that (a + b)2 ≤ 2(a2 + b2)!
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12
Mathematical Background

Proofs that odd numbers are prime:

• Mathematician: 1 is prime, 3 is prime, 5 is prime, 7 is prime, therefore, by
induction, all odd numbers are prime.

• Physicist: 1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 is a bad data point,
11 is prime, 13 is prime. . .

• Engineer: 1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 is approximately
prime, 11 is prime, 13 is prime. . .

• Computer scientist:1 1 is prime, 1 is prime, 1 is prime, 1 is prime. . .

12.1 BASIC PROBABILITY THEORY

12.1.1 Characterization of random events

Let A and B denote two random events. If the corresponding probabilities are
represented by P (A) and P (B) then we have several important relations:

• OR connection: P (A ∨ B) = P (A) + P (B) − P (A ∧ B). If P (A ∧ B) = 0
then P (A ∨ B) = P (A) + P (B).

1working with 0s and 1s.

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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• Conditional probability: P (A|B) = P (A)·P (B)
P (B) .

• Independent events: If A and B are independent if and only if P (A ∧ B) =
P (A) · P (B) then P (A|B) = P (A).

• Law of total probability: P (A) =
∑

i P (A|Bi)P (Bi).

• Bayes formula: P (Bi|A) = P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

.

A group of mutually excluding probabilistic events {a} belonging to the same
observable is represented by means of random variables in probability theory. If
variable A stands for a certain random event then the probability of obtaining A = a
is denoted by P (A = a). Random variables are typically categorized according to
their discrete or continuous nature. The most typical way to characterize a random
variable is when its probability distribution function is given which determines the
probability of being the random variable less than a certain value i.e. FA(a) �
P (A < a). Equivalently the first derivative of the probability distribution fA(A)
– called the probability density function (pdf) – can be used

FA(a) �
a∫

−∞
fA(t)dt,

from which

P (a ≤ A < b) = FA(b) − FA(a) =

b∫
a

fA(t)dt.

Obviously in the case of discrete random variables the integral has to be replaced by
a summation, that is

FA(a) �
a∑

t=−∞
P (A = t),

where P (A = a) is playing the role of the pdf in question.
Although any random variable can be represented perfectly by means of its

moments typically the first two moments are used. These are the expected value
E(A) and the variance σA with the following definitions

E(A) �
−∞∑

a=−∞
aP (A = a)

if A is discrete and

E(A) �
∞∫
−∞

afA(a)da.

Otherwise σ2
A � E((E(A) − A)2) ≡ E(A2) − E2(A).
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The above definitions lead to the fact that for independent random variables
fA∧B(a, b) = fA(a) ·fB(b) and thus E(A ·B) = E(A) ·E(B). Moreover it is useful
to know that if we are interested in the expected value of a transformed random
variable e.g. B = g(A) then we do not need to calculate the pdf of B instead it is
enough to know fA(a) and the following formula should be used

E(B) �
−∞∑

a=−∞
g(a)P (A = a)

if A is discrete otherwise

E(B) �
∞∫
−∞

g(a)fA(a)da.

Furthermore provided one knows fA∧B(a, b) and the random variables are not
independent (i.e. the product form cannot be applied) then the individual pdfs can
be determined as

fA(a) =

∞∫
−∞

fA∧B(a, b)db,

or

P (A = a) =
∞∑

b=−∞
PA∧B(a, b).

Finally we introduce conditional pdfs in the following way

fA|B=b0(a) =
fA∧B(a, b = b0)

fB(b = b0)
,

which can be further processed to reach the Bayes formula for random variables

fA|B(a) =
fB|A(b)fA(a)

fB(b)
.

12.1.2 Decision theory

Let us assume that we have a random variable r. Its measured value depends on
a selected element xl from a finite set (l = 1, . . . , L) and a process which can be
characterized by means of a conditional pdf f(r|xl) belonging to the given element.
Our task is to decide which xl was selected if a certain r has been measured. Each
guess Hl for xl can be regarded as a hypothesis. Therefore decision theory is dealing
with the design and analysis of suitable rules building connections between the set
of observations and hypotheses.

If we are familiar with the unconditional (a priori) probabilities P (xl) then
the Bayes formula helps us to compute the conditional (a posteriori) probabilities
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P (Hl|r) in the following way

P (Hl|r) =
f(r|xl)P (xl)∑L

i=1 f(r|xi)P (xi)
.

Obviously the most pragmatic solution is if one chooses Hl belonging to the largest
P (Hl|r). This type of hypothesis testing is called a maximum a posteriori (MAP)
decision.

If a priori probabilities are unknown or xl is equiprobable then the maximum
likelihood (ML) decision can be used. It selects Hl resulting in the largest f(r|xl)
when the observed r is substituted in order to minimize the probability of error.

12.2 LINEAR ALGEBRA

12.2.1 Complex numbers

Complex number c can be defined by means of its real cr and imaginary ci parts
i.e. c = cr + jci, where j stands for

√−1. c can be interpreted as a vector with
two-dimensional Descartes coordinates cr and ci. Hence its absolute value (length)
C and phase αc can be computed in the following way

C =
√
|cr|2 + |ci|2, αc = arctan

(
ci

cr

)
.

Furthermore an equivalent representation can be obtained substituting these
parameters into the Euler form c = Cejαc .

Addition and substraction of complex numbers c and y can be easily performed
based on the vector interpretation

x = c ± y = (cr ± yr) + j(ci ± yi).

On the other hand multiplication and division can be achieved much easier by using
the exponential form

x = c · y = CY ej(αc+αy),

x =
c

y
=

C

Y
ej(αc−αy).

The complex conjugate of a complex number c is denoted by c∗ and computed by
inverting the imaginary part of c i.e. c∗ � cr − jci ≡ Ce−jαc .

12.2.2 Gaussian elimination

The Gaussian elimination algorithm is able to solve systems of linear equations using
finite steps in an automated way. Choosing an appropriate arrangement of variables
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xi we can show that a11 differs from zero in the following equation system

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
an1x1 + an2x2 + · · · + annxn = bn,

then subtracting the first equation multiplied by ak1/a11 from the kth equation for
k = 2, . . . , n we get a new system of (n − 1) equations such that it does not contain
x1. Repeating this step at most (n − 1) times only a single equation remains with
one variable. Solving this equation and substituting its solution back to the former
equation systems x1, x2, . . . , xn will be available.

12.2.3 Vector spaces

V is called an n-dimensional vector space over complex numbers2 if the following
criteria are satisfied:

1. Elements of V called vectors3 which are n-tuples of complex numbers |v〉 =
[v1, v2, . . . , vn]T , vi ∈ C.

2. There is an operation called addition defined as |a〉 = |v〉 + |b〉, ai = vi + bi.
Addition does not lead out from the vector space i.e. |a〉 ∈ V .

3. Addition is associative and commutative and a so-called zero vector exists 0
for which ∀|v〉 ∈ V, |v〉 + 0 = |v〉.

4. A so-called additive inverse −|v〉 belongs to each element of V such that
|v〉 + (−|v〉) = 0.

5. There is another operation called scalar multiplication between complex
numbers c and vectors, |a〉 = c · |v〉, ai = c · vi. Multiplication keeps the
vector space, it is associative and commutative, furthermore 1 · |v〉 = |v〉.

Bases and linear independency:

• |v1〉, . . . , |vm〉 are spanning vectors of m-dimensional space V if ∀|v〉 ∈
V, |v〉 =

∑
i ci|vi〉, ci ∈ C. A certain V has several spanning vector sets.

• |v1〉, . . . , |vm〉 are linearly dependent if ∃c1, . . . , cm ∈ C, ci 
= 0 such that∑
i ci|vi〉 = 0 else {|vi〉} are linearly independent.

• A spanning set of space V consisting of linearly independent vectors is called
a basis of this space. The dimension of a certain space V equals the number of
its basis vectors.

2Real numbers are regarded in this context as special complex numbers.
3Vectors are typically denoted by x, x̄ or x by mathematicians but we use here quantum mechanical ‘ket’
notation in compliance with the topic of this book.
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Basic operations on vectors:

• Transpose (T) of vector |v〉 produces a column vector and vice versa.

• Complex conjugate (*) of vector |v〉 conjugates each coordinate of the vector.

• Adjoint (†) of vector |v〉 is defined as |v〉† � (|v〉T )∗ and denoted by 〈v|.

• Scalar product or inner product of two vectors |v〉 and |w〉 is a scalar quantity
defined as 〈v|w〉 �

∑
i v∗i · wi i.e.

〈v|w〉 =
[
v∗1 v∗2 · · · v∗m

]




w1

w2

...
wm




∑
i

v∗i wi.

Furthermore in the case of unit vectors 〈v|w〉 = 1 if and only if |w〉 ≡ |v〉 and
〈v|w〉 = 0 if and only if |v〉 and |w〉 are orthogonal. Finally 〈v|a〉 ≡ (〈a|v〉)∗.

Norm:

• Norm can be interpreted as the generalization of the notion of absolute value
assigning to each |v〉 ∈ V a scalar and it is denoted by ‖|v〉‖. Norm has to
fulfil the following constraints:

1. ‖|v〉‖ ≥ 0 and ‖|v〉‖ = 0 if and only if |v〉 = 0 if |v〉 ∈ V

2. ‖|v1〉 + |v2〉‖ ≤ ‖|v1〉‖ + ‖|v2〉‖ if |v1〉, |v2〉 ∈ V

3. ‖c · |v〉‖ = |c| · ‖|v〉‖ if |v〉 ∈ V and c ∈ C.

• A vector space is normalized if a certain norm is defined for the space.

• A finite dimensional linear vector space is called a Hilbert space if its vectors
have complex coordinates and the norm is defined as ‖|v〉‖ =

√〈v|v〉. In this
case the norm represents the length of the vector.

• A vector |v〉 is normalized or we call it a unit vector if the corresponding norm
equals 1.

• Elements of a vector set {|vi〉} are orthonormal if they have unit length and
they are mutually orthogonal i.e. 〈vi|vj〉 = δ(i − j).

Linear operators:
Let V and W be vector spaces over complex numbers. A transform U is called a
linear operator if it assigns to ∀|v〉 ∈ V a |w〉 = U |v〉 ∈ W such that for arbitrary
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scalar c ∈ C and vectors |v〉, |v1〉, |v2〉

U(|v1〉 + |v2〉) = U |v1〉 + U |v2〉,
U(c · |v〉) = c · U |v〉.

The former constraint is called the superposition principle and proves to be very
useful when evaluating the operation of a certain quantum circuit. An identity
operator I performs the following transformation ∀|v〉 ∈ V I|v〉 = |v〉 while the
zero operator assigns the zero vector to each |v〉 ∈ V i.e O|v〉 = 0.

Linear operator U connecting an m-dimensional space to an n-dimensional one
is represented by means of its matrix form

Unm =




U11 U12 · · · U1m

U21 U22 · · · U2m

...
...

. . .
...

Un1 Un2 · · · Unm


 .

The resulting vector |w〉 = U |v〉 can be calculated as wi =
∑

j Uijvj .
Outer product is a special linear operator with the following definition. Let

|v〉, |z〉 ∈ V and |w〉 ∈ W be vectors in Hilbert spaces then outer product operator
|w〉〈v| connects the two spaces as |w〉〈v||z〉 ≡ |w〉〈v|z〉 = 〈v|z〉|w〉. The matrix of
U = |w〉〈v| can be computed as Uij = wi · v∗j i.e.

U =




w1

w2

...
wn




[
v∗1 v∗2 · · · v∗m

]



w1v
∗
1 w1v

∗
2 · · · w1v

∗
m

w2v
∗
1 w2v

∗
2 · · · w2v

∗
m

...
...

. . .
...

wnv∗1 wnv∗2 · · · wnv∗m


.

If {|vi〉} forms an orthonormal basis of space V then the following completeness
relation holds ∑

i

|vi〉〈vi| ≡ I.

Tensor product or direct product (⊗) of vectors are used to unify separate vector
spaces. If {|vi〉 ∈ V } and {|wj〉 ∈ W} are orthonormal bases then {|vi〉 ⊗ |wj〉}
form an orthonormal basis for vector space V ⊗ W . Equivalent notations for tensor
product are |v〉 ⊗ |w〉, |v〉|w〉, |vw〉. If operator A acts on space V while operator B
acts on space W then C = A⊗B which operates on V ⊗W and can be calculated as

C =




A11B A12B · · · A1mB
A21B A22B · · · A2mB

...
...

. . .
...

An1B An2B · · · AnmB


 .
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12.2.4 Eigenvectors and eigenvalues

Eigenvectors |u〉 of a linear operator U have the following property

U |u〉 = ωu|u〉,
where ωu ∈ C represents the eigenvalues of U . Eigenvalues can be determined by
solving the characteristic equation system

det(U − ωI) = 0.

If a given eigenvalue belongs to more than one eigenvector then those vectors are
called degenerate.

Diagonalizable operators have a special – so-called diagonal – representation,
which is often referred as spectral/orthogonal decomposition

UN×N =
N−1∑
u=0

ωu|u〉〈u| =




ω0 0 · · · 0
0 ω1 · · · 0
...

...
. . .

...
0 0 · · · ωN−1


 ,

where {|u〉} form an orthonormal basis vector set in the space U is acting for.
Scalar invariants of the matrix U belonging to operator U are its determinant and

trace

• det(U) =
∏

u ωu,

• tr(U) =
∑

i Uii =
∑

u ωu.

12.2.5 Special linear operators

Adjoint
Let us assume a linear operator U acting on a Hilbert space V then the adjoint of U
is another linear operator which satisfies ∀|v〉, |w〉 ∈ V with the following equality

〈v|U |w〉 = 〈w|U †|v〉.
As a consequence of this definition the following relations hold:

• (UT )† = T †U †,

• |v〉† = 〈v|,
• (U |v〉)† = 〈v|U †,

• ((U †)† = U .

Normal operators
Normal operators have the following definition UU † ≡ U †U . An operator is normal
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if and only if it is diagonizable, that is it has spectral decomposition.

Self-adjoint or Hermitian operators
A self-adjoint or Hermitian operator equals its conjugate transpose i.e. U ≡ (UT )∗

or using adjoint operator notation U ≡ U †. Hermitian operators are normal thus
they have special spectral decomposition with real eigenvalues.

Unitary operators
A linear operator is called unitary if its adjoint is equal to its inverse U † ≡ U−1.
Unitary operators have some very important properties, namely

• they have n × n matrices,

• they are normal operators ⇒ they have spectral decompositions ⇒ their
eigenvectors always form an orthonormal basis vector set,

• they have eigenvalues in the form of ejαu .

There are three other equivalent definitions for unitarity that may help in certain cases
to catch the essence of these very special and in quantum computing very important
operators. A linear operator U with an n × n matrix is unitary if and only if

• the rows (columns) of its matrix form an orthonormal (orthogonal and unit
length) vector set or,

• the operator is reversible, i.e. any input vector can be restored in possession of
the related output vector and keeps the unit length property of its input vector
while producing the output,

• the operator keeps the inner product, i.e. 〈ϕ|U †U |ψ〉 ≡ 〈ϕ|ψ〉.
Operators which are unitary and Hermitian at the same time have eigenvalues ±1.

Positive definite operators
An operator U is positive semi-definite if ∀|v〉 
= 0 ∈ V 〈v|A|v〉 ≥ 0. If only the
inequality is satisfied then U is called positive definite. There are several important
consequences of this definition:

• Positive semi-definite operators are Hermitian.

• Operators in the form of |v〉〈v| are always positive semi-definite.

• For any U the operator U †U is positive semi-definite.

Projectors
Projectors form a special group of Hermitian operators. They orthogonally transform
(‘project’) space V to one of its subspaces W . If {|vi〉} form an orthonormal basis
for V with dimension n then we can select m of them {|vl〉} such that this subset
represents an orthonormal basis of W having m dimensions. The projector onto W
can be computed as P =

∑m
i=1 |vl〉〈vl|.
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• For projectors PP = P .

• Projectors are Hermitian because they are positive semi-definite since |v〉〈v|
are positive semi-definite.

12.2.6 Operator functions

Normal operators can be used as an input of any function f : C → C. We call such
matrix-fed functions operator functions and they can be interpreted in the following
way. If U is a normal operator then it has spectral decomposition

U =
∑

u

ωu|u〉〈u|

with eigenvalue ωu and eigenvector |u〉 and

f(U) ≡ U =
∑

u

f(ωu)|u〉〈u|.

As an example f(X) = ejαX can be calculated considering the spectral
decomposition of X (see Exercise 6.11)

X = (+1)
|0〉 + |1〉√

2
〈0| + 〈1|√

2
+ (−1)

|0〉 − |1〉√
2

〈0| − 〈1|√
2

= (+1)

[
1
2

1
2

1
2

1
2

]
+ (−1)

[
1
2 − 1

2

− 1
2

1
2

]
=

[
0 1
1 0

]
,

hence

f(X) = ejα

[
1
2

1
2

1
2

1
2

]
+ e−jα

[
1
2 − 1

2

− 1
2

1
2

]

=

[
ejα+e−jα

2
ejα−e−jα

2

ejα−e−jα

2
ejα+e−jα

2

]
=

[
cos(α) j sin(α)
j sin(α) cos(α)

]
.

12.3 NUMBER THEORY

12.3.1 Modular arithmetic

Modular arithmetic was introduced by Gauss in his famous work Disquistiones
Arithmeticae in 1801.

The notation c = a mod b refers to the remainder obtained by dividing a by b
and results in a number c which is always smaller than a. For instance 5 mod 3 = 2.
Numbers a and b are equal in modulo N sense (b = a mod N) if a = b + kN , e.g.
5 mod 3 = 10 mod 8 = 4 mod 2. This fact can be expressed as ‘a is congruent to b
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modulo N ’ or ‘b is the residue of a modulo N ’. Modular arithmetic has the following
properties

commutative:(a ± b) mod N = ((a mod N) ± (b mod N)) mod N
associative:(a · b) mod N = ((a mod N) · (b mod N)) mod N
distributive:(a · (b + c)) mod N = (((a · b) mod N) + ((a · c) mod N)) mod N.

It is useful to highlight that modular addition and multiplication are unitary
operators for x, y, a ∈ {0, 1}n

|x〉 U+→ |(x + a) mod 2n〉 = |y〉,
|x〉 U×→ |(x × a) mod 2n〉 = |y〉,

Since decomposition of modular exponentiation is a very useful tool we
summarize it here. Exploiting the binary representation of a =

∑2n

i=1 ai2n−i and
ai ∈ {0, 1}

(xa) mod 2n =
2n∏
i=1

[(
xai2

n−i
)

mod 2n
]
.

12.3.2 Definitions

Greatest common divisor: Assuming two positive integers a, b ∈ Z
+, their greatest

common divisor is denoted by gcd(a, b) and defined as the largest integer number c
that divides both a and b. E.g. gcd(16, 20) = 5.

Prime number: an integer a ≥ 2 is said to be prime if it can be divided only by 1
and a without a remainder.

Relative primes or co-primes: Integers a and b are relative primes if gcd(a, b) = 1.

Congruence: equations whose two sides are equal in modulo N sense are called
congruences and denoted a ≡ b (mod N).

Multiplicative inverse: Let a and N be relative primes (gcd(a, N) = 1) and
assume that for integer 0 < b ≤ N − 1, (a · b) mod N = 1 then b is called the
multiplicative inverse of a in modulo N sense.

Group: a group (G, @) contains a set G and an operation @ fulfilling the following
axioms:

1. The group operation is associative: a@(b@c) = (a@b)@c ∀ a, b, c ∈ G.

2. Identity element 1 ∈ G exists: a@1 = 1@a = a ∀ a ∈ G.

3. Inverse of a ∈ G exists: a@a−1 = a−1@a = 1 ∀ a ∈ G.
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A group is called commutative or Abelian if besides these three axioms the following
one is also true: a@b = b@a ∀ a, b ∈ G.

Additive group: if the operation @ equals the modulo N addition then the group
is called modulo N additive group. Trivially in this case G = ZN .

Multiplicative group: if the operation @ equals the modulo N multiplication then
the group is called modulo N multiplicative group and denoted with

G = Z
∗
N = {a ∈ ZN : gcd(a, N) = 1}.

For example Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}.

Order: Let x < N be two positive integers x < N which are co-primes, i.e.
gcd(x, N) = 1. The order of x modulo N is defined as the least natural integer r
such that xr mod N = 1.

Generator: a group G is called cyclic if there is an element a ∈ G such that
for each b ∈ G an integer c exists fulfilling b = ac. Moreover a is regarded as the
generator of G.

One-way functions: A function f : x → y is called a one-way function if
computing f(x) for all x can be performed easily (fast) but the opposite direction
i.e. calculating x from any y = f(x) proves to be hard.

Euler function: for an arbitrary positive integer N the corresponding Euler
function ϕ(N) gives the number of relative primes to N from the range 1, 2, . . . , N .
E.g. ϕ(1) = 1, ϕ(10) = 4.

12.3.3 Euclid’s algorithm

Euclid’s algorithm aims to find gcd(a, b) and can be summarized in the following
manner.

1. Dividing a by b we get quotient q1 and nonzero remainder r1:

a = q1b + r1, 0 < r1 < b.

2. b is divided by r1 i.e. b plays the role of a and r1 that of b resulting in q2 and
nonzero r2:

b = q2r1 + r2, 0 < r2 < r1.

3. We continue the algorithm while the actual remainder remains nonzero:

rk = qk+2rk+1 + rk+2, 0 < rk+2 < rk+1.
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4. When the division returns rl = 0 we know that rl−2 = qlrl−1 + 0 and the
algorithm stops with gcd(a, b) = rl−1.

Example: Determine the greatest common divisor of a = 330 and b = 126!

1. step: 330 = 2 × 126 + 78

2. step: 126 = 1 × 78 + 48

3. step: 78 = 1 × 48 + 30

4. step: 48 = 1 × 30 + 18

5. step: 30 = 1 × 18 + 12

6. step: 18 = 1 × 12 + 6

7. step: 12 = 2 × 6 + 0

12.3.4 Continued fraction and convergents

If a and b are integers then a/b is called the rational fraction or rational number.
Continued fraction representation of a rational fraction can be derived from Euclid’s
algorithm.

a = q1b + r1 ⇒ a

b
= q1 +

1
b
r1

b = q2r1 + r2 ⇒ b

r1
= q2 +

1
r1
r2

... ⇒ ...

rk = qk+2rk+1 + rk+2 ⇒ rk

rk+1
= qk+2 +

1
rk+1
rk+2

... ⇒ ...

rl−2 = qlrl−1 ⇒ rl−2

rl−1
= ql.

Thus using the right-hand side equivalences we can describe a
b as

a

b
= q1 +

1

q2 +
1

q3 + · · · + 1
ql

.

Convergents of rational number a
b are the following rational fractions

ζ1 = q1, ζ2 = q1 +
1
q2

, ζ3 = q1 +
1

q2 + 1
q3

, . . . , ζl =
a

b
.
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Example: Determine the continued fraction representation of a/b if a = 330 and
b = 126 and the corresponding convergents.

1. step:330 = 2 × 126 + 78 ⇒ 330
126

= 2 +
1

126
78

2. step:126 = 1 × 78 + 48 ⇒ 330
126

= 2 +
1

1 +
1
78
48

3. step:78 = 1 × 48 + 30 ⇒ 330
126

= 2 +
1

1 +
1

1 +
1
48
30

4. step:48 = 1 × 30 + 18 ⇒ 330
126

= 2 +
1

1 +
1

1 +
1

1 +
1
30
18

5. step:30 = 1 × 18 + 12 ⇒ 330
126

= 2 +
1

1 +
1

1 +
1

1 +
1

1 +
1
18
12

6. step:18 = 1 × 12 + 6 ⇒ 330
126

= 2 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1
12
6
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7. step:12 = 2 × 6 + 0 ⇒ 330
126

= 2 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1
2

.

The convergents are

ζ1 = 2; ζ2 = 2 +
1
1

= 3; ζ3 = 2 +
1

1 +
1
1

=
5
2

= 2.5;

ζ4 = 2 +
1

1 +
1

1 +
1
1

=
8
3

= 2.6•;

ζ5 = 2 +
1

1 +
1

1 +
1

1 +
1
1

=
13
5

= 2.6;

ζ6 = 2 +
1

1 +
1

1 +
1

1 +
1

1 +
1
1

=
21
8

= 2.625;

ζ7 = 2 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1
2

=
55
21

=
330
126

= 2.619.

12.3.5 Useful theorems

Theorem 12.1. If mb/2n is a rational fraction and b and r are positive integers that
satisfy ∣∣∣∣ br − mb

2n

∣∣∣∣ ≤ 1
2r2

then b/r is a convergent of the continued fraction of mb

2n .
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Theorem 12.2. The Euler function can be computed for arbitrary positive integer
N in the following way

ϕ(N) = N
∏
p

(
p − 1

p

)

where p runs over all the different prime factors of N including N itself if it is a
prime.

Two important consequences: ϕ(N) = N − 1 if and only if N is prime. If N is a
composite number then ϕ(N) < N − 1.

Theorem 12.3. For arbitrary integer N > 1 if gcd(N, a) = 1 then the following
congruence (ax) mod N ≡ 1 has only a single solution in modulo N sense, else no
solution exists.

Theorem 12.4. Fermat’s little theorem: For arbitrary prime N and a ∈ Z
∗
N

(aN−1) mod N ≡ 1.

This theorem was generalized by Euler in Theorem 12.5.

Theorem 12.5. Euler’s theorem: For arbitrary integer N > 1 and a ∈ Z
∗
N

(aϕ(N)) mod N ≡ 1.

An important consequence: The Euler function is multiplicative that is
ϕ(a) · ϕ(b) = ϕ(ab) whenever gcd(a, b) = 1.

Theorem 12.6. Chinese remainder theorem: Assume the following system of
congruences to different moduli:

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),

...
x ≡ al (mod ml).

Furthermore it is supposed that mi and mk are pairwise co-primes i.e.
gcd(mi, mk) = 1 if i 
= k then there exists a solution x0 for all the congruences
and any two solutions are congruents to one another in modulo m =

∏l
i=1 mi

sense.



13
Derivations Related to the

Generalized Grover
Algorithm

13.1 EIGENVALUES OF THE GENERALIZED GROVER OPERATOR

To find the eigenvalues of Q one should solve the characteristic equation
det {Q− qI} = 0, which seems to be a fairly hard task

(Q11 − q) (Q22 − q) − Q12Q21 = 0,

q1,2 =
Q11 + Q22 ±

√
(Q11 + Q22)

2 − 4 (Q11Q22 − Q12Q21)

2
. (13.1)

Therefore we follow a more pragmatic way. Applying the basis-independent
product of eigenvalues in the form of det {Q} = q1q2 as well as exploiting the
form of eigenvalues of unitary operators ejε,

det (Q) = Q11Q22 − Q12Q21, (13.2)

Q11Q22 = (−1)(−1)
[
1 +

(
ejθ − 1

)
cos2 (Ω)

]
ejφ

[
1 +

(
ejθ − 1

)
sin2 (Ω)

]

= ejφ


1 +

(
ejθ − 1

) (
sin2 (Ω) + cos2 (Ω)

)
︸ ︷︷ ︸

≡1

+
(
ejθ − 1

)2
sin2 (Ω) cos2 (Ω)




= ejφ
[
ejθ +

(
ejθ − 1

)2
sin2 (Ω) cos2 (Ω)

]
. (13.3)

Q12Q21 = (−1)(−1)ejφ
(
ejθ−1

)
sin (Ω) cos (Ω) ejΛ

(
ejθ−1

)
sin (Ω) cos (Ω) e−jΛ

= ejφ
[(

ejθ − 1
)2

sin2 (Ω) cos2 (Ω)
]
. (13.4)

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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Substituting (13.3) and (13.4) into (13.2) we get

det (Q) = ej(θ+φ) (13.5)

since qi = ejεi , hence the eigenvalues of the generalized Grover operator become

q1,2 = −ej( θ+φ
2 ±Υ). (13.6)

Furthermore, it is known that the trace of Q can be expressed as

Q11 + Q22 = q1 + q2, (13.7)

resulting in

Q11 + Q22 = − [
1 +

(
ejθ − 1

)
cos2 (Ω) + ejφ

[
1 +

(
ejθ − 1

)
sin2 (Ω)

]]

= −


1 − cos2 (Ω)︸ ︷︷ ︸

sin2(Ω)

+ejθ cos2 (Ω)︸ ︷︷ ︸
1−sin2(Ω)

+ejφ + ej(φ+θ) sin2 (Ω) − ejφ sin2 (Ω)




= −
[
sin2 (Ω) + ejθ + ejφ − sin2 (Ω)

(
−ejθ − ejφ + ej(φ+θ)

)]
, (13.8)

where the equality stands if both the real and the imaginary parts of (13.8) holds
separately. The imaginary part looks like

�{Q11 + Q22}
= − [

sin (θ) + sin (φ) + sin2 (Ω) (− sin (θ) − sin (φ) + sin (φ + θ))
]

= −
{

2 sin
(

φ + θ

2

)
cos

(
φ − θ

2

)

+ sin2 (Ω)
[
sin

(
φ + θ

2

)
cos

(
φ − θ

2

)
+ 2 sin

(
φ + θ

2

)
cos

(
φ + θ

2

)]}
,

(13.9)

where the trigonometrical equivalence
[
sin x + sin y = 2 sin

(
x+y

2

)
cos

(
x−y

2

)]
is

employed. Applying (13.6) on (13.7) and substituting them into (13.8) we get

�{q1 + q2} = −
{

sin
(

θ + φ

2
+ Υ

)
+ sin

(
θ + φ

2
− Υ

)}

= −2 sin
(

θ + φ

2

)
cos (Υ) . (13.10)
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From (13.9) and (13.10) it follows that

cos(Υ) = cos
(

φ − θ

2

)
+ sin2 (Ω)

(
cos

(
θ + φ

2

)
− cos

(
φ − θ

2

))

= cos
(

φ − θ

2

)
− 2 sin2 (Ω) sin

(
φ

2

)
sin

(
θ

2

)

= cos
(

φ

2

)
cos

(
θ

2

)
+ sin

(
φ

2

)
sin

(
θ

2

) [
1 − 2 sin2 (Ω)

]

= cos
(

φ

2

)
cos

(
θ

2

)
+ sin

(
φ

2

)
sin

(
θ

2

)
cos (2Ω) . (13.11)

The derivation of the real part of (13.8) is straightforward, hence

�{Q11 + Q22}

= −
[
2 cos

(
θ + φ

2

)
cos

(
θ − φ

2

)
+ sin2 (Ω) · 2 cos2

(
θ + φ

2

)]
, (13.12)

thus

�{q1 + q2} = −2 cos
(

θ + φ

2

)
cos (Υ) , (13.13)

whereas we reached the same result as in (13.11)

cos(Υ) = cos
(

θ − φ

2

)
+ sin2 (Ω)

(
cos

(
θ + φ

2

)
− cos

(
θ − φ

2

))
.

Consequently, only one restriction has to be made, namely cos(Υ) = cos (−Υ).
At the same time according to the special form of the eigenvalues in (13.6) the two
Υ’s are equivalent to each other, since both lead to the same eigenvalue pair.

13.2 EIGENVECTORS OF THE GENERALIZED GROVER OPERATOR

In possession of the eigenvalues q1,2 derived above in (13.6) we now derive the
eigenvectors of Q.

Starting from (7.66) and using expression

|ψ1〉 = ψ1α|α〉 + ψ1β |β〉, (13.14)

a homogeneous linear equation system is obtained

Q11ψ1α + Q12ψ1β = q1ψ1α,

Q21ψ1α + Q22ψ1β = q2ψ1β , (13.15)

from which

ψ1α

ψ1β
=

q1 − Q22

Q21
, (13.16)

ψ1β

ψ1α
=

q1 − Q11

Q12
. (13.17)
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Apparently, there are infinite solutions of (13.15), differing only in a scalar factor.
For our purposes we only need those ones having unit length in the form

|ψ〉norm = cos(z)ejC |α〉 + sin(z)|β〉. (13.18)

According to (13.16) let ψ1α = q1 − Q22 and ψ1β = Q22. From the possible
solutions we focus our attention on those that have unit length,

∥∥|ψ1〉norm
∥∥ = 1,

thus
∣∣cos(z)ejC

∣∣2 + |sin(z)|2 = 1, where

sin2(z) =
|ψ1β |2

|ψ1α|2 + |ψ1β |2 , (13.19)

cos2(z) =
|ψ1α|2

|ψ1α|2 + |ψ1β |2 . (13.20)

Following our antecedent establishments

|ψ1α|2 = |q1 − Q22|2

=

|�()|2︷ ︸︸ ︷(
− cos

(
θ + φ

2
+ Υ

)
+ sin2(Ω) cos

(
θ + φ

2

)
+ cos2(Ω) cos(φ)

)2

+
(
− sin

(
θ + φ

2
+ Υ

)
+ sin2(Ω) sin

(
θ + φ

2

)
+ cos2(Ω) sin(φ)

)2

︸ ︷︷ ︸
|�()|2

,

(13.21)

and

|ψ1α|2 = ψ1αψ∗
1α, (13.22)

|ψ1β |2 = ψ1βψ∗
1β , (13.23)

respectively. As the next step let us derive |ψ1α/ψ1β|2 as follows

∣
∣
∣
∣
ψ1α

ψ1β

∣
∣
∣
∣

2

=
−ej( θ+φ

2 +Υ) + ejφ
[(

ejθ − 1
)
sin2 (Ω) + 1

]

−ejφ (ejθ − 1) sin (Ω) cos (Ω) e−jΛ

· −e−j( θ+φ
2 +Υ) + e−jφ

[(
e−jθ − 1

)
sin2 (Ω) + 1

]

−e−jφ (e−jθ − 1) sin (Ω) cos (Ω) ejΛ

=

(
1 − ej( θ−φ

2 +Υ) +
(
ejθ − 1

)
sin2 (Ω)

)

(ejθ − 1) (e−jθ − 1) sin2 (Ω) cos2 (Ω)

·
(
1 − e−j( θ−φ

2 +Υ) +
(
e−jθ − 1

)
sin2 (Ω)

)

(ejθ − 1) (e−jθ − 1) sin2 (Ω) cos2 (Ω)
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=

[
1 − ej( θ−φ

2 +Υ) − e−j( θ−φ
2 +Υ) + 1

]
+
[
1 − e−jθ − ejθ + 1

]
sin4 (Ω)

sin2 (Ω) cos2 (Ω) [1 − e−jθ − ejθ + 1]

+
sin2 (Ω)

[
ejθ−1−ej( θ+φ

2 −Υ)+e−j( θ−φ
2 +Υ)+e−jθ−1−e−j( θ+φ

2 −Υ)+ej( θ−φ
2 +Υ)

]

sin2 (Ω) cos2 (Ω) [1 − e−jθ − ejθ + 1]

=
2 − 2 cos

(
θ−φ

2
+ Υ
)− sin2 (Ω) cos2 (Ω) [2 − 2 cos (θ)]

sin2 (Ω) cos2 (Ω) [2 − 2 cos (θ)]

+
sin2 (Ω)

[
2 − 2 cos (θ) − 2 + 2 cos (θ) − 2 cos

(
θ+φ

2
− Υ
)

+ 2 cos
(

θ−φ
2

+ Υ
)]

sin2 (Ω) cos2 (Ω) [2 − 2 cos (θ)]

=
2 − 2 cos

(
θ−φ

2
+ Υ
)−

sin2(2Ω)
︷ ︸︸ ︷
sin2 (Ω) cos2 (Ω) 4 sin2

(
θ
2

)

sin2 (2Ω) sin2
(

θ
2

)

+
sin2 (Ω)

[
2 cos

(
θ−φ

2
+ Υ
)− 2 cos

(
θ+φ

2
− Υ
)]

sin2 (2Ω) sin2
(

θ
2

) . (13.24)

Keeping in mind expression (13.19) in which |ψ1α/ψ1β|2 can be substituted from
(13.24),

|ψ1β |2
|ψ1α|2 + |ψ1β |2 =

sin2 (2Ω) sin2
(

θ
2

)

2 − 2 cos
(

θ−φ
2

+ Υ
)
sin2 (Ω)

[
2 cos

(
θ−φ

2
+ Υ
)− 2 cos

(
θ+φ

2
− Υ
)]

=
sin2 (2Ω) sin2

(
θ
2

)

2 − 2 cos
(

θ−φ
2

+ Υ
)

+ 4 sin2 (Ω) sin
(

θ
2

)
sin
(

φ
2
− Υ
)

=
sin2 (2Ω) sin2

(
θ
2

)

2−2 cos
(

θ
2

)
cos
(

φ
2
−Υ
)− 2 sin

(
θ

2

)
sin

(
φ

2
−Υ

)
+4 sin2(Ω) sin

(
θ

2

)
sin

(
φ

2
−Υ

)

︸ ︷︷ ︸
sin( θ

2 ) sin( φ
2 −Υ)

(
4 sin2(Ω)−2

)

︸ ︷︷ ︸
−2 cos(2Ω)

which leads to

sin2(z) =
sin2 (2Ω) sin2

(
θ
2

)
2

(
1 − cos

(
θ
2

)
cos

(
φ
2 − Υ

)
− 2 cos (2Ω) sin

(
θ
2

)
sin

(
φ
2 − Υ

))
(13.25)

and obviously
cos2(z) = 1 − sin2(z).

Finally, to determine the eigenvectors |ψ1,2〉, only the ejC factor is remaining in
(13.18). Considering the relation

ψ1α

ψ1β
=

cos (z)
sin (z)

ejC1 ,
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and thus (
ψ1α

ψ1β

)2

= cot2(z)ej2C1 =
Q12

Q21
· q1 − Q22

q1 − Q11
,

where equations (13.16), (13.17) were employed. It can be proven easily that

q1 − Q22

q1 − Q11

is a real number, which implies that

Q12

Q21
=

e−jΛejφ

e−jΛ
= ej(φ−2Λ),

thus (
ejC1

)2
=

Q12

Q21
= ej(φ−2Λ),

from which follows
ejC1 = ±ej(φ

2 −Λ). (13.26)

Based on (13.26) the normalized eigenvector is

|ψ1〉 = cos (z) ej( φ
2 −Λ)|α〉 + sin (z) |β〉. (13.27)

Eigenvector |ψ2〉 has to be calculated in a similar way, where the other eigenvalue q2

should be taken into account, which results in a simple sign change of Υ. Due to the
definition of C2 in (13.18), it does not depend on the sign of Υ, thus ejC2 = ±ejC1 .
To ensure the orthogonality the eigenvectors |ψ1〉 and |ψ2〉, ejC2 must be equal to
−ejC1 , whereas the second eigenvector will be

|ψ2〉 = − sin (z) ej( φ
2 −Λ)|α〉 + cos (z) |β〉. (13.28)



14
Complex

Baseband-equivalent
Description of Bandlimited

Signals
A bandlimited real-valued signal can be characterized by means of the following
formula

v(t) = a(t) cos(ω0t + φ(t)),

where ω0 stands for the carrier frequency, a(t) represents the amplitude of the signal
and φ(t) denotes the corresponding phase. All of these parameters are real-valued.
v(t) can be split into two parts in the following way

v(t) = vI(t) cos(ω0t) − vQ(t) sin(ω0t),

where

vI(t) = a(t) cos(φ(t)),
vQ(t) = a(t) sin(φ(t)),

are the so called in-phase and quadrature-phase components, respectively. The two
components together are referred to as quadrature components.

Since vI(t) and vQ(t) are independent from the carrier frequency let us introduce
the complex baseband equivalent of v(t)

veqv(t) = vI(t) + jvQ(t)

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)



246 COMPLEX BASEBAND-EQUIVALENT DESCRIPTION OF BANDLIMITED SIGNALS

which is the same as
veqv(t) = a(t)ejφ(t).

This ‘virtual’ description can be used between the endpoints without including the
carrier and since we are interested in the real signal in the receiver we can apply the
following relations

a(t) =
√

v2
I (t) + v2

Q(t),

φ(t) = arctan
(

vQ(t)
vI(t)

)
mod 2π,

or equivalently
v(t) = � (

veqv(t)ejω0t
)
.

The next problem is how to involve the effect of the channel into this description.
In reality the channel is characterized by means of its impulse response function1

denoted here by h(t) and in the time domain convolution has to be used to compute
the output signal r(t)

r(t) = v(t) ∗ h(t).

In our carrier-free world we follow this rule but for equivalent functions

rekv(t) = vekv(t) ∗ hekv(t),

where
h(t) = 2� (

heqv(t)ejω0t
)
.

Therefore the received signal can be expressed as

r(t) = � (
reqv(t)ejω0t

)
= rI(t) cos(ω0t) − rQ(t) sin(ω0t).

1If the channel is feeded by a single Dirac pulse it answers with h(t).
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Useful Links

Leading laboratories and teams

• Center of Quantum Computation, http://www.qubit.org/

• Media Lab, Quanta, Massachusetts Institute of Technology,
http://www.media.mit.edu/quanta/

• Quantum Computing Group, University of Bristol,
http://www.cs.bris.ac.uk/Research/QuantumComputing/index.html

• Institute for Quantum Information, California Institute of Technology,
http://www.iqi.caltech.edu/index.html

• IBM Research,
http://www.research.ibm.com/quantuminfo/

• Institut für Experimentalphysik, Universität Wien,
http://www.quantum.univie.ac.at/

• Group of Applied Physics at the University of Geneva,
http://www.gap-optique.unige.ch/

• The Stanford-Berkeley-MIT-IBM NMR Quantum Computation Project,
http://feynman.media.mit.edu/quanta/nmrqc-darpa/index.html

• Quantum Information Processing and Communications in the 6th
Framework European Programme (2003-2006),
http://www.cordis.lu/ist/fet/qipc.htm

• A good summary of further important links can be found at
http://www.imaph.tu-bs.de/qi/links .html

Quantum Computing and Communications S. Imre, F. Balázs
c© 2004 John Wiley & Sons, Ltd ISBN 0-470-86902-X (HB)
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Publication and information sources

• http://arxiv.org/archive/quant-ph

• http://quantum.fis.ucm.es/

• http://www.quiprocone.org/

• http://prl.aps.org/

Simulation tools and quantum program languages

• QCL: http://tph.tuwien.ac.at/oemer/qcl.html

• QCE: http://rugth30.phys.rug.nl/compphys0/qce.htm

• QSS: http://strc.herts.ac.uk/tp/info/qucomp/qucompApplet.html
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37. C. H. Bennett, G. Brassard , C. Crépeau, U. M. Maurer. Generalized privacy
amplification. IEEE Transaction on Information Theory, 41:1915–1923, 1995.

38. C. H. Bennett, G. Brassard, A. Ekert. Quantum cryptography. Scientific
American, 267(4):50–57, 1992.

39. C. H. Bennett, G. Brassard, J.-M. Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17:210–229, 1988.
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Solutions of Exercises

Exercise 2.1: Prove in several different ways that HH = I .
Solution: First we use matrix algebraic multiplication

HH =
1√
2

[
1 1
1 −1

]
1√
2


 1 1

1 −1




[
1 0
0 1

]
= I.

Next we utilize the superposition principle which claims that performing a linear
operator on a superposition is equivalent to computing the outcomes with each
individual computational basis state as an input and than adding the results together.
Since HH |0〉 = |0〉 and HH |1〉 = |1〉 therefore two consecutive Hadamard gates
act as an identity transform on their arbitrary superpositions.

Finally we remember that Hadamard gates are Hermitian (H† = H) and unitary
(H† = H−1) thus HH = HH† = HH−1 = I .

Exercise 2.2: Prove that HXH = Z ,HY H = −Y and HZH = X .
Solution:

HXH =
1√
2

[
1 1
1 −1

]

 0 1

1 0




1√
2

[
1 1
−1 1

]
1√
2


 1 1

1 −1




[
1 0
0 −1

]
= Z
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HY H =
1√
2

[
1 1
1 −1

]

 0 −j

j 0




1√
2

[
j −j
−j −j

]
1√
2


 1 1

1 −1




[
0 j
−j 0

]
= −Y

HZH =
1√
2

[
1 1
1 −1

]

 1 0

0 −1




1√
2

[
1 1
1 −1

]
1√
2


 1 1

1 −1




[
0 1
1 0

]
= X.

Exercise 2.3: Perform the analysis of the generalized interferometer using the
superposition principle.

Solution: We start from |0〉 according to Fig. 2.7. The first Hadamard gate
produces

|0〉 → |0〉 + |1〉√
2

.

The phase shifter introduces delays independently along the two paths

|0〉 + |1〉√
2

→ ejα0 |0〉 + ejα1 |1〉√
2

.

Finally we apply the second Hadamard gate for the computational basis vectors |0〉
and |1〉 independently (|0〉 → |0〉+|1〉√

2
and |1〉 → |0〉−|1〉√

2
) and the outcomes have to

be added together

ejα0 |0〉 + ejα1 |1〉√
2

→
ejα0 |0〉+|1〉√

2√
2

+
ejα1 |0〉−|1〉√

2√
2

=
ejα0 + ejα1

2
|0〉 +

ejα1 − ejα1

2
|1〉.

Exercise 2.4: Calculate the matrix of the two-qbit SWAP gate.
Solution: One possible easy way to reach the requested matrix is if we consider

the transitions of the computational basis states

|00〉 → |00〉, |01〉 → |10〉, |10〉 → |01〉, |11〉 → |11〉
and taking into account the role of Uij (see the remark to the 2nd Postulate in
Section 2.2) thus

CNOT =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Exercise 2.5: Show that AC + AD + BC − BD = ±2.
Solution: Since A, B, C, D ∈ ±1 and

AC + AD + BC − BD = A(C + D) + B(C − D)
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therefore either (C + D) or (C −D) is always zero from which the statement holds.

Exercise 2.6: Show that 1+ejα

2 = ej0.5α cos(0.5α) and ej0.5π 1−ejα

2 =
ej0.5α sin(0.5α).

Solution:

1 + ejα

2
=

1 + ej0.5αej0.5α

2
= ej0.5α ej0.5α + e−j0.5α

2
= ej0.5α cos(0.5α),

ej(0.5π) 1 − ejα

2
= ej(0.5π)︸ ︷︷ ︸

1
−j

ej0.5α e−j0.5α − e−j0.5α

2
= ej0.5α sin(0.5α).

Exercise 3.1: Construct the measurement operators providing sure success in the

case of the following set |ϕ0〉 =
|0〉+|1〉√

2
and |ϕ1〉 =

|0〉−|1〉√
2

.
Solution: Applying the rule of thumb for projective measurement

P0 = |ϕ0〉〈ϕ0| =
|0〉 + |1〉√

2
⊗ 〈0| + 〈1|√

2

=
|0〉〈0| + |1〉〈0| + |0〉〈1| + |1〉〈1|

2
=

1
2

[
1 1
1 1

]
,

P1 = |ϕ1〉〈ϕ1| =
|0〉 − |1〉√

2
⊗ 〈0| − 〈1|√

2

=
|0〉〈0| − |1〉〈0| − |0〉〈1| + |1〉〈1|

2
=

1
2

[
1 −1
−1 1

]
.

In order to avoid trouble we check the completeness relation

P0 + P1 =
1
2

[
1 1
1 1

]
+

1
2

[
1 −1
−1 1

]
=
[

1 0
0 1

]
= I.

Exercise 4.1: Check whether the CNOT(H ⊗ I) gate really returns the wanted
classical states.

Solution: The brute force method to prove the proper functionality is if we
perform linear algebraic operations with the matrix of the proposed circuit and all
the four |βab〉 states. Instead we follow a more clever way based on the superposition
principle. Equation (2.12) says that

|βab〉 =
|0, b〉+ (−1)a|1, NOT(b)〉√

2
.

Applying first the CNOT gate it retains |0, b〉 while inverts NOT(b) on the data wire
because of the control with 1

(−1)a|1, NOT(b)〉 → (−1)a|1, b〉,
hence the output of the CNOT gate will be

|βab〉 =
|0, b〉 + (−1)a|1, b〉√

2
=

|0〉 + (−1)a|1〉√
2

|b〉.
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Next the Hadamard gate acts on the control qbit

(
H |0〉 → |0〉 + |1〉√

2
, H |1〉 → |0〉 − |1〉√

2

)

resulting in

|0〉+|1〉√
2

+ (−1)a |0〉−|1〉√
2√

2
|b〉 =

(
1 + (−1)a

2
|0〉 +

1 − (−1)a

2
|1〉

)
|b〉 = |a〉|b〉.

Exercise 4.2: Using teleportation Bob obtains a replica of an arbitrary one-qbit
state in Alice’s hand. Explain why quantum teleportation cannot be used in this way
as a cloning machine.

Solution: The answer is simple but a bit tricky. Bob requires the two classical
measurement result bits from Alice to produce |ψ〉. However, while Alice is
measuring her qbits she is demolishing |ψ〉 thus there is no moment when both |ψ〉
exist.

Exercise 5.1: Prove that Uf : |x〉N |y〉 → |x〉N |y ⊕ f(x)〉 is unitary.
Solution: We have several equivalent definitions for unitary operators. The most

suitable one in this case claims that unitary operators are reversible and save the unit
length. Thanks to the superposition principle it is enough to check these properties
for computational basis states. Since the output of Uf contains x we are able to
compute f(x). Observing y ⊕ f(x) we can deduce y in possession of f(x) which
proves the reversible nature of Uf . Furthermore the input computational basis vector
has obviously unit length and the output proves to be another computational basis
vector therefore both requirements have been satisfied.

Exercise 5.2: Prove that |f(x)〉 − |1 ⊕ f(x)〉 = (−1)f(x)(|0〉 − |1〉).
Solution: There are two scenarios to be considered either f(x) = 0 or f(x) = 1.

Substituting these values the equivalence is obvious.

Exercise 6.1: Prove that operator F is unitary.
Solution: We have several equivalent definitions for unitary operators. The most

suitable one in this case claims that the rows/columns of unitary matrices form
an orthonormal vector set. Definition (6.4) ensures trivially that the columns are
normalized because F |i〉 is nothing more than the ith column of the matrix (cf.
Exercise 6.2). Next we calculate the inner product of the ith and lth columns

〈l|F †F |i〉 =
N−1∑
k=0

1√
N

e−j 2π
N lk 1√

N
ej 2π

N ik =
N−1∑
k=0

ej2π k
N (i−l)

N
,

which trivially equals 1 if i = l and 0 else (i �= l) due to (6.55).

Exercise 6.2: Determine the matrix of QFT.
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Solution:

F =
1√
N




1 1 1 · · · 1
1 B B2 · · · B(N−1)

1 B2 B4 · · · B2(N−1)

...
...

...
. . .

...
1 B(N−1) B2(N−1) · · · B(N−1)2




where B = e
j2π
N . The reader may recognize that B is periodic in N and 1 = B0 thus

F becomes symmetric

F =
1√
N




1 1 1 · · · 1 1 1
1 B B2 · · · B(N−3) B(N−2) B(N−1)

1 B2 B4 · · · B(N−6) B(N−4) B(N−2)

...
...

...
. . .

...
...

...
1 B(N−3) B(N−6) · · · B9 B6 B3

1 B(N−2) B(N−4) · · · B6 B4 B2

1 B(N−1) B(N−2) · · · B3 B2 B1




.

Exercise 6.3: Prove that
∣∣1 − ejγ

∣∣2 = 4 sin2(γ
2 ).

Solution: Using the following identities: |z|2 ≡ zz∗ if z ∈ C, ejγ ≡ cos(γ) +
j sin(γ) and sin2(γ) + cos2(γ) ≡ 1 we get

∣∣1 − ejα
∣∣2 = (1 − cos(α) − j sin(α))(1 − cos(α) + j sin(α))

= 2 − 2 cos(α) = 4
1 − cos(α)

2
= 4 sin2

(α

2

)
.

Exercise 6.4: Prove that |1 − ejγ | ≤ 2.
Solution: The explanation of this inequality can be traced back to Fig. 1, where

ejγ = cos(γ)+ j sin(γ) is depicted as a unit vector in the complex plain. It points to
[cos(γ), sin(γ)]. |1 − ejγ | is nothing more than the distance between this point and
[1,0]. Since ejγ sweeps the unit circle in function of γ this distance (the length of the
chord) cannot exceed the diameter of the circle which is equal trivially to 2.

Exercise 6.5: Prove |1 − ejγ | ≥ 2|γ|
π if γ ∈ [−π, π].

Solution: If one rewrites the inequality in the following manner

|1 − ejγ |
2

≥ |γ|
π

,

then it is easy to recognize on the left-hand side the fraction of the actual chord and
the related maximum value (i.e. the diameter 2) while on the right-hand side the arc
belonging to the current chord divided with the maximum arc (π). Since both sides
are symmetrical on the vertical axis it is enough to investigate the inequality on [0, π].
Let us replace the right-hand side with |γ|

a , where a is a real free parameter. This can
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[1,0]

[cos( ),sin( )]gg

|1 |e jg

e jg

Fig. 1 Geometrical interpretation to Exercise 6.4 and Exercise 6.5

be regarded as a linear function in γ with slope 1
a

|1 − ejγ |
2

≥ |γ|
a

.

The equality holds trivially if γ = 0. Since both sides of the above inequality are
strongly monotonic increasing functions without inflection it is enough to check
γ = π. If in this case the inequality is satisfied then it is also valid for any other
γ. Substituting γ = π one yields that a = π still fulfils the requirements, i.e. the
inequality turns to equality.

Exercise 6.6: Factorize A = 66! To find the order use an exhaustive search.
Solution: Since 66 is even we divide it by 2. N = 33 is a composite odd integer

and it is easy to see that 33 does not prove to be a prime power. Therefore we
cast a 32-faced dice and we get say x = 5. Now we are seeking for the order
r of 5 in modulo 33 sense using an exhaustive search, i.e. we try to determine
r : xr mod N = 1

51 mod 33 = 5, 56 mod 33 = 16,
52 mod 33 = 25, 57 mod 33 = 14,
53 mod 33 = 26, 58 mod 33 = 4,
54 mod 33 = 31, 59 mod 33 = 20,
55 mod 33 = 23, 510 mod 33 = 1.
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So r = 10 is even thus y = x
r
2 = 55. Next we have to calculate

b+1 = (y + 1) mod N = 24 and b−1 = (y − 1) mod N = 22. Fortunately
neither of them equals zero (i.e. x

r
2 mod N �= ±1), which enables us to compute

nontrivial factors c+1 = gcd(24, 33) = 3 and c−1 = gcd(22, 33) = 11. In order to
check the results it is worth calculating 3 · 11 = 33.

Exercise 6.7: Derive the matrix of operator U : |q〉 → |(qx) mod N〉.
Solution: Let us first determine the original N × N matrix denoted here by U ′.

This operator has the special property that each output vector depends only on one
input vector. This fact means that matrix element U ′

iq = 1 if |i〉 = |(qx) mod N〉
else U ′

iq = 0 or more plausible: the columns of U ′ from left to right correspond
to the input vectors form |0〉 to |N − 1〉, while rows from top to bottom to the
output vectors |0〉 to |N − 1〉, respectively. Setting U ′

iq = 1 results that operator
U ′ transforms input vector |q〉 to output vector |i〉. Therefore we get a matrix with
rows/columns having a single entry since U ′ is unitary. In order to save unitary nature
for U2t×2t we were advised to join rows/columns with 1s in the main diagonal. In
order to illustrate U we prepared an example for N = 5 ⇒ t = ld(5)� = 3 and
x = 3

U =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




.

Exercise 6.8: Prove that if the order-finding circuit initialized with |ϕ0〉 = |0〉|0〉
and its gate V is replaced by V ′ : |k〉|q〉 → |k〉|(q + xk) mod N〉 then it produces
|ϕ2〉 = 1√

2n

∑2n−1
k=0 |k〉|xk mod N〉, too.

Solution: Applying the Hadamard gate for the upper qregister we get in
accordance with (6.45)

|ϕ1〉 =
1√
2n

2n−1∑
k=0

|k〉 ⊗ |0〉.

When V ′ acts on each computational basis states of |ϕ1〉 in the spirit of the
superposition principle

|ϕ2〉 =
1√
2n

2n−1∑
k=0

|k〉|(0 + xk) mod N〉.

Exercise 6.9: Prove that |ub〉 =
∑r−1

s=0
e−j2π b

r
s

√
r

|xs mod N〉, b = 0 . . . r − 1 are
eigenvectors of U : |q〉 → |(qx) mod N〉.
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Solution:

U |ub〉 =
r−1∑
s=0

e−j2π b
r s

√
r

U |xs mod N〉 =
r−1∑
s=0

e−j2π b
r s

√
r

|xxs mod N〉

=
r−1∑
s=0

e−j2π b
r s

√
r

e−j2π b
r ej2π b

r︸ ︷︷ ︸
1

|xs+1 mod N〉

= ej2π b
r

r−1∑
s=0

e−j2π b
r (s+1)

√
r

|xs+1 mod N〉

= ej2π b
r

r∑
s=1

e−j2π b
r s

√
r

|xs mod N〉 = ej2π b
r |ub〉,

where we utilized in the last row that the following two sets are the same
{|xs mod N〉, s = 0 . . . r − 1} ≡ {|xs mod N〉, s = 1 . . . r} because r is the period
of function xs mod N .

Exercise 6.10: Assuming 2n is a multiple of r (r is a power of 2) prove that
quantum inaccuracy disappears from |ϕ3〉.

Solution: We start from (6.61) and realize that Zk = 2n

r − 1, next e−j 2π
2n ik is

pulled out from the summation over z

|ϕ3〉 =
2n−1∑
i=0

r−1∑
k=0




2n

r −1∑
z=0

1
2n

e−j2π i(zr+k)
2n




︸ ︷︷ ︸
ϕik

|i〉|xk mod N〉

=
2n−1∑
i=0

r−1∑
k=0


e−j2π ik

2n
1
r

2n

r −1∑
z=0

1
2n/r

e−j2π z
2n/r i




︸ ︷︷ ︸
ϕik

|i〉|xk mod N〉.

Because of (6.55)
2n

r −1∑
z=0

e−j2π z
2n/r

i

2n/r
= δ

(
i − b

2n

r

)
,

therefore only those i have to be considered for which i = b 2n

r ⇒ b = 0 . . . r − 1
(remember that b stands for the index of eigenvalues see (6.57)), other values for i
are cancelled by constructive interference, i.e. quantum uncertainty has disappeared,
mb/2n = b/r

|ϕ3〉 =
r−1∑
b=0

r−1∑
k=0

(
1
r
e−j2π bk

r

)
︸ ︷︷ ︸

ϕbk

|b 2n

r 〉|xk mod N〉.
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Finally let us calculate the probability P (i = mb)

P (i = mb) = P (b2n/r = mb) =
r−1∑
k=0

|ϕbk|2 =
1
r2

r−1∑
k=0

∣∣∣e−j2π bk
r

∣∣∣2︸ ︷︷ ︸
≡1

=
1
r
,

which does not depend on b at all and which is in consonance with our expectations
– since the initial state |ψ2〉 consists of eigenvectors of a superposition with uniform
probability amplitudes, eigenvalues belonging to different eigenvectors are expected
to be measured according to a uniform distribution on [0 . . . r).

Exercise 6.11: Determine the eigenvectors and eigenvalues of operator X .
Solution: Based on the definitions introduced in Section 12.2.4 we solve the

characteristic equation

det(X − qI) = 0.

X− qI =
[

0 1
1 0

]
−
[ −q 0

0 −q

]
=
[ −q 1

1 −q

]
,

from which q = ±1. Now in possession of the eigenvalues we turn to the
eigenvectors. Assuming |u〉 in the form of |u〉 = a|0〉 + b|1〉 and demanding
X |u〉 = q|u〉 one obtains b = a or b = −a which leads to

|u〉 =
|0〉 ± |1〉√

2
.

Eigenvalues and eigenvectors allow us to formulate the spectral decomposition of X
in the following manner

X = (+1)
|0〉 + |1〉√

2
〈0| + 〈1|√

2
+ (−1)

|0〉 − |1〉√
2

〈0| − 〈1|√
2

.

Exercise 6.12: Calculate the probabilities (P0 and P1) of measuring m = 0 and
m = 1 for the phase estimator circuit in Fig. 6.18 using linear algebraic operations
if the eigenvector input has been initialized to |0〉.

Solution: The initial state of the circuit is trivially |ϕ0〉 = |0〉 ⊗ |0〉 = |00〉. The
first Hadamard gate on the upper wire prepares an equiprobable superposition of |0〉
and |1〉, which corresponds to the following state of the system

|ϕ1〉 =
|0〉 + |1〉√

2
⊗ |0〉 =

|00〉 + |10〉√
2

=
1√
2
[1, 0, 1, 0]T .

Applying the controlled X gate, i.e. a CNOT gate which swaps computational basis
states |10〉 and |11〉 while the others are left unchanged

|ϕ2〉 = CNOT|ϕ1〉 =
1√
2
[1, 0, 0, 1]T =

|00〉 + |11〉√
2

.



270 SOLUTIONS OF EXERCISES

The next Hadamard gate on the upper wire acts on the first qbit

|ϕ3〉 = (H⊗I)|ϕ2〉 =
|0〉+|1〉√

2
⊗ |0〉+ |0〉−|1〉√

2
⊗ |1〉

√
2

=
1
2
(|00〉+ |11〉+ |10〉−|11〉).

Measuring the first qbit we get |0〉 and |1〉 with the same probability

P0 =
(

1
2

)2 +
(

1
2

)2 = 1
2 and P1 =

(
1
2

)2 +
(− 1

2

)2 = 1
2 .

Exercise 6.13: Determine the transformation rule of controlled operator U applied
in gate Vf .

Solution: Let us be a bit pragmatic and exploit the technique used in Exercise 6.9
instead of using linear equation systems. As we know from Section 6.5.1 when
generalizing order finding to search for period r of function f one has to replace
the special f(k) = xk mod N with general f(k). We can deduce an important
conclusion of Exercise 6.9, namely U increases the exponent k of x by 1, i.e. it shifts
function f . Therefore it seems to be reasonable to propose U : |f(k)〉 → |f(k + 1)〉.
Now let us validate our conjecture

U |ub〉 =
r−1∑
s=0

e−j2π b
r s

√
r

U |f(s)〉 =
r−1∑
s=0

e−j2π b
r s

√
r

|f(s + 1)〉

=
r−1∑
s=0

e−j2π b
r s

√
r

e−j2π b
r ej2π b

r︸ ︷︷ ︸
1

|f(s + 1)〉

= ej2π b
r

r−1∑
s=0

e−j2π b
r (s+1)

√
r

|f(s + 1)〉

= ej2π b
r

r∑
s=1

e−j2π b
r s

√
r

|f(s)〉 = ej2π b
r |ub〉,

where we utilized in the last row that the following two sets are the same
{|f(s)〉, s = 0 . . . r − 1} ≡ {|f(s)〉, s = 1 . . . r} because r is the period of function
f(s). Finally we point out that actually one uses U repeatedly several times in gate
Vf (see Fig. 6.5), i.e. U2n−l

: |f(k)〉 → |f(k + 2n−l)〉 gates are used.

Exercise 6.14: Show that F⊗n ⊗ F⊗n ≡ F⊗2n.
Solution: Let {|i〉} and {|l〉} be two orthonormal N -dimensional computational

basis vector sets for spanning the Hilbert spaces that the Fourier transforms acting
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on. Applying the definition of the QFT (see (6.4)) and the 4th Postulate we get

(
F⊗n|i〉)⊗ (

F⊗n|l〉) =

(
1√
N

N−1∑
k=0

ej 2π
N ik|k〉

)
⊗
(

1√
N

N−1∑
m=0

ej 2π
N lm|m〉

)

=
1
N

N−1∑
k=0

N−1∑
m=0

ej 2π
N ikej 2π

N lm|k〉|m〉

=
1
N

N2−1∑
z=0

ej 2π
N2 (i⊗l)z |z〉 = F⊗2n(|i〉 ⊗ |l〉)

where {|z〉} form an orthonormal basis for the N2-dimensional merged Hilbert
space.

Exercise 7.1: Show that the transformation of the Oracle can be represented as
O = I − 2|x0〉〈x0|.

Solution: As we already know the outer product of a computational basis vector
with itself results in an N × N matrix with elements Aij ≡ 0 except Ax0,x0 = 1.
Subtracting the double of this matrix from the identity matrix we get almost
an identity matrix, the only deviation is that Ax0,x0 = 1 has been replaced by
Ax0,x0 = −1 which is in consonance of the original definition (7.3).

Exercise 7.2: Determine the matrix of the Oracle in the case of an N = 4 database
assuming x0 = 2.

Solution I: If we start from the definition (7.3) of the Oracle then we need an
identity matrix with diagonal elements Aii = 1 except Ax0,x0 = −1.

Solution II: |x0〉 =
[
0 0 1 0

]T
. Using operator formalism in accordance

with (7.14) the matrix O representing the Oracle can be calculated as

O = I − 2



0
0
1
0




[
0 0 1 0

]


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 =



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 .

Exercise 7.3: Show an example scenario when a single application of G ensures
sure success for measuring |x0〉.

Solution: Using the geometrical interpretation from (7.23) with i = 0 one can
easily spot the initial angle Ωγ/2 for a single query, which is Ωγ = 60◦. This leads
to a special relation between the size N of the database and the number of marked
states M (see (7.20)) which is

N = 4M.

The reader is advised to compare this result with that of Exercise 7.5.
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Fig. 2 Geometrical interpretation of the Grover operator

Exercise 7.4: Prove that inversion about the average is equivalent to a reflection
about |γ1〉 in the two-dimensional geometrical interpretation.

Solution: In order to support the explanation of the solution, Fig. 7.5 has been
extended according to Fig. 2.

If we were able to prove that the projection of |γ3〉 onto |γ1〉 and that of |γ2〉
onto |γ1〉 has the same length, i.e. we get a single intersection point B, then triangles
ABC� and ADB� are the same and thus BC = DB. This follows from the fact
that both rectangular triangles have a common leg AB and hypotenuse of unit length.

To compute the projections we exploit the fact that all the vectors in question have
unit length, thus we are interested in whether |AB| = |〈γ1|γ2〉| = |〈γ1|γ3〉|.

First let us determine the two-dimensional representations of the vectors in
question. |γ1〉 is available from (7.19). |γ2〉 can be regarded as an arbitrary vector
in the form of

|γ2〉 = k|α〉 + l|β〉

with the condition |k|2 + |l|2 = 1. In order to obtain |γ3〉 we calculate the
N -dimensional probability amplitudes γ3x utilizing

γ2x = k
1√

N − M
; x ∈ S,

γ2x = l
1√
M

; x ∈ S
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(see definitions (7.17) and (7.18)) and (7.10) therefore

γ3x = 2a − k√
N − M

; x ∈ S,

γ3x = 2a − l√
M

; x ∈ S.

Next we produce coordinates of |γ3〉 in the two-dimensional space

|γ3〉 = (2a
√

N − M − k)|α〉 + (2a
√

M − l)|β〉.
Now, let us determine the projections in possession of the three vectors

AB1 = |〈γ1|γ2〉| = k

√
N − M

N
+ l

√
M

N
.

Furthermore

AB2 = |〈γ1|γ3〉| =

√
N − M

N
(2a

√
N − M − k) +

√
M

N
(2a

√
M − l)

= 2a − k

√
N − M

N
− l

√
M

N
.

If one substitutes the above results on γ2x into definition (7.9) of a then we obtain

a =
1
N

N−1∑
x=0

γ2x =
1
N

(
(N − M)

k√
N − M

+ M
l√
M

)
= k

√
N − M

N
+ l

√
M

N

and therefore AB2 becomes equal to AB1, i.e. we have managed to prove that the
inversion about the average operation reflects |γ2〉 over |γ1〉 to |γ3〉.

Exercise 7.5: – single marked state case – Assuming N = 4, M = 1 and x0 = 2
determine the matrices of O, Uf and G, the optimal number of iterations and the
probability of error.

Solution: O is already known from Exercise 7.2

O =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 .

Uγ can be computed bearing in mind (7.13)

Uγ =




2
4 − 1 2

4
2
4

2
4

2
4

2
4 − 1 2

4
2
4

2
4

2
4

2
4 − 1 2

4
2
4

2
4

2
4

2
4 − 1


 =



−1/2 1/2 1/2 1/2
1/2 −1/2 1/2 1/2
1/2 1/2 −1/2 1/2
1/2 1/2 1/2 −1/2


 .
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Considering G = UγO we can utilize that O originates from an identity matrix
whose third column was multiplied by −1 therefore the same transformation will
happen in Uγ if it is multiplied by O from right

G =



−1/2 1/2 −1/2 1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2


 .

As the next step one should find out the angle between the initial state |γ1〉 and the
basis vector |α〉. Applying (7.20)

Ωγ

2
= arcsin

(
1
4

)
= 30◦,

from which follows that Θ1 = Θ2 = 0 and the required number of iterations (see
(7.24)) is

Lopt0 = lopt0 = 1.

Performing a single turn of the Grover operator on |γ1〉 the outcome becomes

G|γ1〉 =
[
0 0 1 0

]T
.

This indicates that a measurement in the computational basis states will find the
marked state after a single iteration with probability of error

Pε = 0.

The reader is advised to compare this result with that of Exercise 7.3.

Exercise 7.6: – multiple marked state case – Assuming N = 8, M = 3 and
marked states x = 1, 4, 7 determine the matrices of O, Uf and G, the optimal number
of iterations and the probability of error.

Solution: Following the line of thought used in Exercise 7.5

O =




1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1




,
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Uγ =




−3/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
1/4 −3/4 1/4 1/4 1/4 1/4 1/4 1/4
1/4 1/4 −3/4 1/4 1/4 1/4 1/4 1/4
1/4 1/4 1/4 −3/4 1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4 −3/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4 1/4 −3/4 1/4 1/4
1/4 1/4 1/4 1/4 1/4 1/4 −3/4 1/4
1/4 1/4 1/4 1/4 1/4 1/4 1/4 −3/4




,

G =




−3/4 −1/4 1/4 1/4 −1/4 1/4 1/4 −1/4
1/4 3/4 1/4 1/4 −1/4 1/4 1/4 −1/4
1/4 −1/4 −3/4 1/4 −1/4 1/4 1/4 −1/4
1/4 −1/4 1/4 −3/4 −1/4 1/4 1/4 −1/4
1/4 −1/4 1/4 1/4 3/4 1/4 1/4 −1/4
1/4 −1/4 1/4 1/4 −1/4 −3/4 1/4 −1/4
1/4 −1/4 1/4 1/4 −1/4 1/4 −3/4 −1/4
1/4 −1/4 1/4 1/4 −1/4 1/4 1/4 −1/4




,

Ωγ

2
= arcsin

(√
3
8

)
= 37.76◦,

hence Lopt = 1 and the final state before the measurement is

G|γ1〉 =
[−0.176 0.53 −0.176 −0.176 0.53 −0.176 −0.176 0.53

]T
.

Summing up the appropriate squared probability amplitudes we conclude an error
with probability

Pε = 5 · |−0.176|2 � 0.155.

Exercise 7.7: Determine the matrix of the Grover operator in the basis of |α〉 and
|β〉.

Solution: It is clear from Fig. 7.5 that |γ1〉 and G|γ1〉 can be expressed in the basis
of |α〉 and |β〉 as

|γ1〉 =

[
cos(Ωγ

2 )

sin(Ωγ

2 )

]
, |γ3〉 = G|γ1〉 =

[
cos(Ωγ + Ωγ

2 )

sin(Ωγ + Ωγ

2 )

]
.

Therefore applying the unknown

G =
[

G11 G12

G21 G22

]
,

we get

G|γ1〉=|γ3〉⇒
[

G11 G12

G21 G22

]



cos(Ωγ

2 )

sin(Ωγ

2 )




[
cos(Ωγ

2 )G11 + sin(Ωγ

2 )G12

cos(Ωγ

2 )G21 + sin(Ωγ

2 )G22

]
=

[
cos(Ωγ + Ωγ

2 )

sin(Ωγ + Ωγ

2 )

]
.
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Having in sight basic trigonometric calculus

sin(α + β) = sin(α) cos(β) + cos(α) + sin(β),
cos(α + β) = cos(α) cos(β) − sin(α) + sin(β)

we reach

G =
[

cos(Ωγ) − sin(Ωγ)
sin(Ωγ) cos(Ωγ)

]
.

Exercise 7.8: Determine the eigenvalues and corresponding eigenvectors of the
Grover operator on the basis of |α〉 and |β〉.

Solution: Based on Section 12.2.4 in the mathematical background we start with
the characteristic equation related to G

det(G− ωI) = det
([

cos(Ωγ) − ω − sin(Ωγ)
sin(Ωγ) cos(Ωγ) − ω

])
= 0,

from which

(cos(Ωγ) − ω)2 + sin2(Ωγ) = ω2 − 2ω cos(Ωγ) + 1 = 0.

ω1,2 =
2 cos(Ωγ) ±√

4 cos2(Ωγ) − 4
2

= cos(Ωγ) ± j sin(Ωγ) = e±jΩγ .

According to our expectations ω1,2 correspond to the form of eigenvalues of a unitary
matrix.

Having the eigenvalues in our hands we determine the eigenvectors |g〉 =
[
a
b

]
:

G|g〉 = e±jΩγ |g〉

G|u〉 = e±jΩγ |u〉 ⇒
[

cos(Ωγ) − sin(Ωγ)
sin(Ωγ) cos(Ωγ)

]

a
b




[
a cos(Ωγ) − b sin(Ωγ)
a sin(Ωγ) + b cos(Ωγ)

]

=
[
a(cos(Ωγ) ± j sin(Ωγ))
b(cos(Ωγ) ± j sin(Ωγ))

]
,

which leads to a homogeneous equation system with the following solutions

|g1〉 =
ejξ

√
2

[
j
1

]
, |g2〉 =

ejξ

√
2

[−j
1

]
,

where α ∈ R. |g1〉 and |g2〉 are orthogonal (〈g1|g2〉 = 0) as we have learned for
unitary matrices.

Exercise 7.9: Prove that the probability of failing in seeking for the marked entry
(M = 1) after putting L queries to the database classically is PεC(L) = N−L

N .
Solution: The probability of failing in the first step is trivially PεC(1) = 1 −

PsC(1) = 1 − 1
N = N−1

N . We learned from basic probability theory that for events
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A and B the following rule is valid: P (A ∧ B) = P (A|B) · P (A). If the first
attempt was unsuccessful then the probability of failing again in the second step is
PεC(l = 2|l = 1) = N−2

N−1 thus

PεC(2) = PεC(l = 2 ∧ l = 1) = PεC(l = 2|l = 1)PεC(1) =
N − 2
N − 1

N − 1
N

.

Generalizing this line of thought we get

PεC(L) =
L∏

l=1

N − l

N − l + 1
=

N − 1
N

N − 2
N − 1

· · · N − L

N − L + 1
=

N − L

N
= 1 − L

N
.

Exercise 7.10: Let us consider a database with N = 220 and M = 8. Calculate
the optimal number of rotations L which minimizes the expected number of required
Grover gates E(z|M ∧ l) when using the cycle repetition based searching. Compare
the optimal number of Grover operators in the case of the original Grover algorithm
to E(z|M ∧ L).

Solution: We know from (7.33) that

Ωγ(M) = 2 arcsin

(√
M

N

)
= Ωγ(8) = 2 arcsin

(√
8

220

)
= 0.0055,

from which using (7.43)

E(z|8 ∧ l) =
l + 1

sin2 ((2l + 1) 0.011)
.

Solving (7.44)

dE(z|8 ∧ l)
dl

= 0 ⇒ tan ((2l + 1) 0.011) = 2(l + 1)0.0055 ⇒ L = 211,

therefore E(z|8 ∧ 211) = 249 while from (7.24)

Lopt0 =

⌊
π
2 − Ωγ(M)

2

Ωγ(M)

⌉
=
⌊ π

2 − 0.011
0.0055

⌉
= 284.

If we would like to be fair this 284 has to be increased to 285 because we have to
check the index coming from the Grover algorithm. This result is a bit surprising
because the expected value-based solution seems to be more efficient. However, do
not forget that the original solution gives back one of the marked states with high
probability (see (7.28))

Ps = sin2

(
(2Lopt0 + 1)Ωγ(M)

2

)
= sin2

(
(2 · 284 + 1) 0.0055

2

)
= 0.99998,

after 284 rotations while the new proposal provides this 249 iterations only on
average!



278 SOLUTIONS OF EXERCISES

Exercise 9.1 Encrypt and decrypt the following message ‘QUANTUM
COMPUTING’ using the following alphabet: space, A, B, C, D, E, F, G, H, I, J,
K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z.

Solution: First we realize that our alphabet comprises N = 27 different letters
including the space. Therefore we enumerate them from 0 up to 26.

space A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Next we construct a 17-symbol random secret key according to the length of the
plain text and compute the encrypted message using (9.1).

message Q U A N T U M C O M P U T I N G
P[·] 17 21 1 14 20 21 13 0 3 15 13 16 21 20 9 14 7
K[·] 26 10 20 12 4 14 2 12 1 22 15 5 4 16 24 17 5
E[·] 16 4 21 26 24 8 15 12 4 10 1 21 25 9 6 4 12
E[·] P D U Z X H O L D J A U Y I F D L

It is easy to see that by applying (9.2) we get back the original plain message.

Exercise 11.1 Show that (a + b)2 ≤ 2(a2 + b2).
Solution: Let us start from the indirect assumption (a + b)2 > 2(a2 + b2) and

show that it leads to contradiction

(a + b)2 = (a2 + b2) + 2ab > 2(a2 + b2) = (a2 + b2) + a2 + b2

2ab > a2 + b2

0 > a2 − 2ab + b2 = (a − b)2 ≥ 0.



Index

a posteriori, 225
a priori, 225

Abelian group, 234
Abelian stabiliser problem, 121
additive group, 234
adjoint, 230
Adlemann, L. M., 199
ALL-IP concept, 213
amplitude amplification, 72, 79, 131
asymmetric cryptography, 190

B92 protocol, 206, 209
Bardeen, J., 3
base station, 172
Bayes formula, 224, 225
BB84 protocol, 202, 209
beam splitter, 72
Bell inequality, 35, 42, 202, 208
Bell pairs, 29, 64, 66–69
Bell states, 29, 49, 57, 64, 66–69
Bell, J. S., 42, 208
Bennett, Ch. H., 68, 209, 210
bit-flip gate, 20, 21
blind detection, 184

Bloch sphere, 16, 17, 19, 20
Bloch, F., 16
Bohr, N., 33, 38
Bolyai, J., 13
BPSK, 176
Brassard, G., 209
Brattain, W. H., 3
Broglie, M., 33
burst, 176, 179

CAC, 170
call admission control, 170
CDMA, 170, 174
cdma2000, 171
channel equalization, 184
characteristic equation system, 230
Chinese remainder theorem, 193, 238
CHSH inequality, 35–37, 42, 49, 50
ciphering, 186
CNOT gate, 26, 66, 68
co-primes, 100, 233, 234
code breaking, 186
code division multiple access, 170
commutative group, 234

279



280 INDEX

completeness relation, 15, 44, 52,
229

complex baseband-equivalent
description, 175, 245

computational basis, 15
conditional probability, 223
congruence, 194, 233, 238
congruent, 232
constructive interference, 72, 77,

102, 108, 111, 268
continued fraction, 107, 235
controlled NOT, 26
convergents, 107, 235
convolutional encoder, 190
Copenhagen interpretation, 33, 37
counting, 138
cryptoanalysis, 186
cryptography, 186, 201
cryptology, 186

decision theory, 225
decoherence, 30, 33
Deutsch, D., 73
Deutsch–Jozsa algorithm, 72, 216
DFT, 81
diagonal representation, 230
diagonalizable operator, 230
Diffie, W., 199
Diffie–Hellman algorithm, 191, 193
digital signature, 191, 193
Dirac, P. A. M., 15
direct product, 229
discrete cosine transform, 121
discrete logarithm, 117, 194, 198
downlink, 172
DS-CDMA, 172, 183

eavesdropping, 186
eigenvalue, 230
eigenvector, 230
Einstein, A., 25, 33, 34, 36, 38, 41,

57
Ekert, A., 83, 210
elementary quantum gates, 19
ElGamal, T., 194, 199
encryption, 186

entangled states, 26
entanglement, 25, 30, 202
EPR pairs, 29
EPR paradox, 34, 41, 49, 208, 210
Euclid, xv, 13, 234
Euclid’s algorithm, 192, 196, 234
Euler function, 192, 234, 238
Euler’s theorem, 196, 238
Euler, L., 192, 196, 234
existence testing, 147
expected value, 224

factorization, 201
fading, 177
FDMA, 170
feedback shiftregister, 190
Fermat’s little theorem, 192, 238
Feynman, R. P., 4
FFT, 81
FH, 171
Fourier transform, 81
Fourier, J-B. J, 81
frequency division multiple access,

170
frequency hopping, 171
Fulton, R., 1
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